oo LdT)

DV d
School of Computing porm - s1q

A Theory of Scene Understanding
and Object Recognition

Craig Dillon

This thesis is presented as part of the requirements for
the award of the Degree of Doctor of Philosophy
of the
Curtin University of Technology

September, 1996

Acknowledgements

This research described in this dissertation was supported by a Curtin University Post-
graduate Scholarship and a Higher Education Contribution Scheme Exemption Award.

I must make special mention in thanking my supervisor and mentor, Professor Terry
Caelli, whose enthusiasm, encouragement and humour have made my time as a PhD
student exciting and rewarding. I am also indebted to Professor Walter Bischof, Asso-
ciate Professor Svetha Venkatesh and the members of the “Vislab” (alias “Nerds”) for
many useful and inspiring discussions.

The technical and administrative staff at both Curtin and Melbourne Universities have
provided excellent resources without which this dissertation would not be possible.
I must also thank my colleagues at these universities for creating a most enjoyable
working environment.

This dissertation is dedicated to Kerri, Beverly and Carl who provided unending sup-
port and encouragement.

ii

Abstract

This dissertation presents a new approach to image interpretation which can produce
hierarchical descriptions of visnally sensed scenes based on an incrementally learnt
hierarchical knowledge base. Multiple segmentation and labelling hypotheses are gen-
erated with local constraint satisfaction being achieved through a hierarchical form of
relaxation labelling. The traditionally unidirectional segmentation-matching process is
recast into a dynamic closed-loop system where the current interpretation state is used
to drive the lower level image processing functions. The theory presented in this dis-
sertation is applied to a new object recognition and scene understanding system called
Cite which is described in detail.

CONTENTS iii
Contents

1 Introduction 1

1.1 Contributions of this Dissertation 2

1.2 Organisation of this Dissertation 3

2 Related Literature and Proposed Theory 4

21 Imtroduction e 4

2.2 Object Recognition Systemso 4

2.2.1 Knowledge Acquisition Lo 0L 5

2.2.2 Object Representation 9

2.2.3 Matching Strategieso oL 11

2.24 Verification Processes o 0L 14

2.2.5 Segmentation and Feature Extraction 15

2.2.6 Range Versus Intensity in Object Recognition Systems 17

2.3 Scene Understanding Systemso 19

231 SCHEMA 0 it e e e e e e e 19

232 SIGMA e e 20

2.4 Machine Learning o e e 22

2.4,1 Single Point Unary Classification 23

2.4.2 Relational Learning o0 24

CONTENTS iv
2.4.3 Hierarchical Knowledge and Learning 25

2.5 Proposed Theory 26

3 World Knowledge 29
3.1 Knowledge Base Structure 0L 30
3.2 Knowledge Base Node Types v o v i it i i v 31
3.2.1 Constructed Objects - The Part-Of Node 32

3.2.2 Taxonomies - The Type-Of Node 33

3.2.3 View Representations - The View-Of Node 33

3.3 Special Constructions 0 0 e e e 34
3.4 KB Node Common Properties 37
3.5 KB Node Specific Properties 38
3.5.1 Part-Of Specific Properties 38

3.5.2 Type-Of Specific Properties 38

3.5.3 View-Of Specific Properties 38

4 Interpretation Structures 39
4.1 Visual Interpretation L. 39
4,1.1 Visual Interpretation Structure 41

4.1.2 The Visual Interpretation Node in Detail 41

4.1.21 Graph Connections 41

4,1.2.2 Scene Interpretation Connections 42

41.2.3 Region Description. 42

4.1.3 The Set of Views and Visual Interpretations 44

4.2 Scene Imterpretationo e e e e 45
4.2.1 Scene Interpretation Structure 47

CONTENTS

v

4.2.2 Scene Interpretation Node in Detail, ..., .. 48
4.2.21 Graph Connectionso.... 48

4.2.2.2 Visual Interpretation Connections 48

4.2.2.3 Knowledge Base Connections 48

4.3 A Formal Definition of the VI, SI and KB Structures 50
5 Operational Overview 52
5.1 A Simple Example 53
5.2 Operator Scheduling L. 58
5.3 Segmentation Operators 59
5.3.1 Segmentation Execution Operator 59
5.3.2 Segmentation Initialisation Operator 60
5.3.3 Resegmentation Operator 60
5.3.4 Connected Components Grouping Operator 61
5.3.6 Clique Resolving Operator. 61

5.4 Feaiure Extraction Operators, 61
5.5 Hypothesis Generation Operatorso o 0 ... 61
5.5.1 Basic Unary Matching Operator 62
5.5.2 Generating SIfrom VI 62
5.5.3 Generating VIfrom SI 62
5.5.4 Hierarchical Group Matching 63
5.5.0 Knowledge Base Hierarchy Matching 63

5.6 Relaxation Labelling Operators 63
5.7 Ancillary Operators o e e e 64
5.7.1 Initialisation Operators 64

572 VINodeChecking 64

CONTENTS

5.7.3 CPU Performance Operator o ...

5.7.4 Profile Update Operator v

6 Learning World Knowledge

6.1 Supervised Versus Unsupervised Learning
6.2 Incremental Supervised Learning
6.3 The Part-Indexing Problem
6.4 Overview of the Learning Strategy in Cite
6.4.1 LearningOptions oo
6.4.2 Building a Context Sensitive Knowledge Base

6.5 Unary Learning Algorithms
6.5.1 Learning Unary Bounded Rules
6.5.2 Learning Unary Prototype Rules
6.5.3 Learning by Explanatory Least Generalisation
6.5.3.1 ELG - A Theory of Incremental Learning

6.5.3.2 The Incremental Decision Tree Algorithm

6.5.3.3 ExampleResults

6.6 Binary Learning Algorithms
6.6.1 Learning Binary Closest Matching
6.6.2 Learning Binary Bipartite Matching

6.7 Interaction of Unary and Binary Matching with Relaxation Labelling . .

7 Hypothesis Generation
7.1 Hypothesis Types and Storage
7.1.1 Hypothesis Notation,

7.1.2 Hypothesis Storage oL oo oL

CONTENTS

vii

7.2 Hypothesis Generation Procedures 101
7.3 Unary Hypothesis Generation 101
7.3.1 Generating VI Nodes from Image Data 102
7.3.2 Generating VI Nodes from The VI Graph 103
7.3.3 Generating VI Nodes from the SIGraph 104
7.3.4 (Generating SI Nodes from the VIGraph 106
7.3.5 Generating SI Nodes from the KB Graph 107

7.4 Binary Hypothesis Generation. 109
7.4.1 Hypothesis Generation by Basic Unary Matching 109
7.4.2 Resolving Clique Membership 110
7.4.3 Hypothesis Generation by KB Matching 113
7.4.4 Weak Hypothesis Removal Process 114

8 Relaxation Labelling with Hierarchical Constraints 116
8.1 Non-Hierarchical Relaxation Labelling 117
8.2 Relaxation Labellingin Cite o o L. 119
8.2.1 Updating SI-KB Link Hypotheses 120
8.2.2 Updating SI Link Hypotheses 121
8.2.3 Updating SI Existence Hypotheses 122
8.2.4 Updating VI-SI Link Hypotheses 122
8.2.5 Updating VI Link Hypotheses 123
8.2.6 Updating VI Existence Hypotheses 123

8.3 Weight Update Process 124
9 Knowledge Driven Segmentation 125
9.1 The Segmentation Cycle 126

CONTENTS viii

9.1.1 The Resegmentation Algorithm 127
9.1.2 Interaction of Relaxation Labelling and Resegmentation 129
9.1.3 Execution of Segmentation Procedures 130

9.2 Evidence of the Power of Resegmentation 131
9.3 Modification of Segmentation Lists, 133
9.4 Segmentation Algorithms 134
9.4.1 Segmentation by Clustering and Growing 135
9.4.2 Segmentation by Clustering and Ratio Growing 136
9.4.3 Segmentation by Edge Extraction and Merging 137

10 Feature Extraction 140
10.1 Feature Storage, Calculation, and Matching 142
10.2 Notation 0 0 0 o v 0 e e e e e e e e 143
10.3 Unary Features L . . 0 o i i e e 144
10.3.1 Colour Unary Features 144
10.3.2 Texture Unary Features 145
10.3.3 Geometric Unary Features 146
10.3.3.1 Size Unary Feature 146

10.3.3.2 Height-to-Width Unary Feature 147

10.3.3.3 Elongation Unary Feature. 147

10.3.3.4 AOnPSqr Unary Feature 148

10.3.3.5 Straightness Unary Feature 148

10.3.3.6 Extent Unary Feature 149

10.4 Binary Features - . . . 0 0 b e e e e e 149
10.4.1 Binary Size Ratio Feature 150

10.4.2 Binary Image Distance Feature 150

CONTENTS

ix

10.4.3 Binary Boundary Feature 151

10.4.4 Binary Above/Below Feature 151

10.5 Feature Invariances« . « v v v v vt i e e e e e e 152
10.5.1 Unary Feature Invariances v o v ot 153

10.5.2 Binary Feature Invariances 153

11 System Performance and Results 154
11.1 Views of Street Scenes o . v v v i e e e e e e 155
11.2 Views of Office Objects« . . . o v i o 160
11.3 Aerial Views of Airports e 168
11.4 Context Sensitive Taxonomieso 177

12 Conclusion 180
12.1 Directions for Further Research 181

A Additional Details 189
Al Algorithm Details. oo 189
A.1.1 ProcessSIFromKB Algorithm 189

A.1.2 Algorithm for UnaryBounded Learning 191

A.1.3 ProcessVIFromSI Algorithm 192

A.1.4 ProcessSIFromVTI Algorithm 192

A.1.5 Most Common Parent Algorithm 192

A.1.6 ProcessMatchKB Algorithm 194

A2 Operator Early Termination Requirements 195
A.3 Derivation of Vertical Straightness 196

B System Operation 199

B.1

Overview

CONTENTS X

B.2 Operation e 199
B.2.1 The Command Window 200
B.22 Thelmage Window, 202
B.2.3 The Data Graph Window 202
B.2.4 The Hypothesis Weight Window 204
B.2.5 The Profile Window 205
B.26 Results Window 207

B.3 CiteFiles and File Formats, 207
B31 ThelLogFile 207
B.3.2 Imput Image Format 208
B.3.3 Data Structure File Formats 208

C Related Papers Published During PhD Period 209

LIST OF FIGURES

xi

[] L]
List of Figures

2.1 Overview of Cite Architecture 27
3.1 Knowledge Base Graph Example 29
3.2 Knowledge Base Parent-Child Relationships 31
3.3 Two Alternative Tree Taxonomies 33
3.4 Labelled Emergency SceneImage 35
3.5 Knowledge Base Supporting Airport “Emergency” and “Load” 3D
3.6 Labelled Loading SceneImage. 36
3.7 Correct Knowledge Base Supporting “Emergency” and “Load” 36
3.8 Incorrect and Correct Versions Of Representing Not-Always-Part-Of . . 37
4.1 Undirected Hypothesis Weights Connecting VINodes 42
4.2 Tllustration of Inadequacy of Direct Labelling 45
4.3 Hierarchical Compatibility Sets via the Insertion of the SI Structure 47
5.1 Overview of Data Structures and Operators within Cife 53
5.2 Norfolk Island Pine Image and Botanist Knowledge Base. 54
5.3 Top Level KB Node Segmenter used for Initial Segmentation 54
5.4 Initial Segmentation and Corresponding VI Graph 55
5.5 KB, SI and VI Graphs After Initial Segmentation and Processing 56
56 Example Data Graphs after the Second Segmentation 57

LIST OF FIGURES

xil
5.7 Final Labelled Segmentation of the Example Image 57
5.8 Text Description of Example Scene 58
6.1 A Categorisation Method for Incremental Learning Algorithms 70
6.2 Two Objects Indistinguishable Without Unary and Binary Indexing 72
6.3 Knowledge Base Depicting Botanist’s Taxonomy 75
6.4 Knowledge Base Depicting Forester’s Taxonomy 76
6.5 Knowledge Base Depicting Gardener’s Taxonomy 76
6.6 Examples of Unary Bounded Rules in a Two Dimensional Feature Space 78
6.7 UnaryBounded Learning Algorithm Flow Chart 79
6.8 Decision Boundaries For Various Popular Metrics 80
6.9 Prototype Trajectory for One Prototype During Incremental Learning . 81
6.10 Basic Incremental Learning Flow Chart 82
6.11 Example of a Feature Space and the Computed Binary Decision Tree . . 84
6.12 Incremental Learning Rule and Least Generalisation Model 85
6.13 Examples of the Five Pattern Categories 85
6.14 Feature Space Distribution of the Five Pattern Categories 87
6.15 Decision Tree Generated after 100 Iterations 88
6.16 Decision Tree Represented as Feature Space Partitions 88
6.17 Direct Implementation of Bipartite Matching 92
6.18 Bipartite Matching Extended to Include Partial Relational Information 92
6.19 Interaction of Unary and Binary Matching, Relaxation Labelling and
Hypothesis Generation o oo 94
7.1 Hypothesis Notationin Cite 99
7.2 Storage of Hypothesis Weights 100
7.3 Description of ProcessVIFromSI Algorithm 105

LIST OF FIGURES xiii

7.4

7.5

7.6

7.7

7.8

8.1

8.2

9.1

9.2

9.3

9.4

10.1

10.2

10.3

10.4

11.1

11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

Description of ProcessSIFromVT Algorithm 106
Description of ProcessSIFromKB Algorithm 108

Aerial View of Airport Illustrating Plane and Firetruck in Emergency . 111

Tllustration of Variables for Clique Membership Algorithm 112
Description of ProcessMatchKB Algorithm 114
Relaxation Labelling Notation. 117
Update Diagram for P,-JK 121
SI Viewing Window Indicating Displayed Hypothesis Weights 129

Hypothesis Graph Window Illustrating Selected Hypothesis Weights . . 129

Sample of Images used in Botanist Knowledge Base. 131
Knowledge Base Segmenter List Editor 133
Storage of Unary and Binary Featuresin VINodes 142
VI Node File Format Illustrating Unary Feature Storage 143
Two Methods for Computing Shared Boundary Ratio 151
Examples of the Binary Above/Below Feature 152
Knowledge Base for Town Scenes 155
Sample of Images used to Build Street Scene Knowledge Base 156
Simple Street Scene L 157
Text Description of Street Scene oL, 157
Complex Street Scene L 1568
Text Description of Street Scene oL 159
Sample of Images used in Office Knowledge Base 160
Office Knowledge Base 161

Text Description of Office Knowledge Base 162

LIST OF FIGURES xiv

11.10

11.11

11.12

11.13

11.14

11.15

11.16

11.17

11.18

11.19

11.20

11.21

11.22

11.23

11.24

11.25

11.26

11.27

11.28

11.29

11.30

11.31

11.32

11.33

11.34

Disk and Duster Image and Analysis Graph 163
Text Description of Disk and Duster Scene . . . 163
Mug, Stapler and LiguidPaper Image and Analysis Graph 164
Text Description of Mug, Stapler and LiquidPaper Scene 164
CD, Keyset, Gluestick and Drink Scene 165
Text, Description of CD, Keyset, Gluestick and Drink Scene 165
Two Pens, Two Cups and Holepunch Scene 166
Text Description of Pens, Cups and Holepunch Scene 166
Stapler, Mug and Pliers Scene L. 167
Text Description of Stapler, Mug and Pliers Scene 167
Full Knowledge Base used in Airport Analysis 168
Emergency Image and Analysis Graph 170
Text Description of Emergency Scene 170
Landing Image and Analysis Graph 171
Text Description of Landing Scene 171
Loading Image and Analaysis Graph 172
Text Description of Loading Scene 172
Refuelling Image and Analysis Graph 173
Text Description of Refuelling Scene 173
Service Image and Analysis Graph 174
Text Description of Service Scene 174
Emergency and Load Image and Analysis Graph 175
Text Description of Emergency and Load Scene 175
Service and Refuel Image and Analysis Graph 176
Text Description of Service and Refuel Scene 176

LIST OF FIGURES XV

11.35 Sample of Images used in Context Sensitive Knowledge Bases 177
11.36 Three Context Sensitive Knowledge Bases 178
B.1 The Main Command Window in Cite 200
B.2 The Options Window in Cite 202
B.3 The Image and Segmentation Window 203
B.4 The Data Graph Window 204
B.5 Node Display Windows for VI, Sland KBNodes 205
B.6 The Hypothesis Graphing Window oo . 206
B.7 The Operator Profile Window 206
B.8 The Results Window 207

LIST OF TABLES xvi

List of Tables

2.1

2.2

6.1

7.1

7.2

7.3

7.4

9.1

9.2

9.3

9.4

10.1

10.2

10.3

10.4

11.1

11.2

Summary of Object Recognition Systems 6
Surface Type by Mean and Gaussian Curvature 16
Convergence of the ELG Partitions 89
Notation of Hypothesis Types 98
Notation of Node Index Sets, 99
Unary Hypothesis Generation Algorithms 102
Binary Hypothesis Generation Algorithms 109
Botanist Knowledge Base Classification Results 132
Parameters for SegmentSeed Segmentation Algorithm 136
Parameters for SegmentSeedRatio Segmentation Algorithm 137
Parameters for Edge Segmentation Algorithm 139
Summary of Unary Features, 144
Summary of Binary Features 149
Invariance Properties of Unary Features 153
Invariance Properties of Binary Features 153
Summary of Results Presented 154

Image Categories for Three Different Taxonomies 179

LIST OF TABLES xvil
11.3 C(Classification Results for Three Different Taxonomies 179
B.1 Commandsin Cite« v i e e e e e e e e e e e 201

LIST OF ALGORITHMS xviii

List of Algorithms

10

11

12

Algorithm for Adding New Instance to Knowledge Base 86
Connectivity Matrix Algorithm 103
Algorithm for Generating Basic Unary Matches 109
Algorithm for Resolving Clique Membership 113
Algorithm for Initiating Knowledge Driven Resegmentation 128
Region Merging in SegmenterEdge Algorithm 138
Algorithm for Generating SI Nodes from the KB Graph 190
Algorithm for UnaryBounded Learning 191
Algorithm for Building Scene Hierarchies 192
Algorithm for Generating SI Nodes from VINodes 193
Algorithm for Determining Most Common Parent 193

Algorithm for Matching SI Parent Nodes to the KB Graph 194

1. Introduction 1

Chapter 1

Introduction

Learning about and understanding the environment is critically important to a number
of existing and emerging challenges including autonomous navigation, environmental
monitoring, surveillance and content specific image queries. Passively viewing the ex-
ternal world is a consistent and informative way automata can obtain local area data. A
common passive modality is through visual sources such as CCD cameras. This thesis
presents a theory of object recognition and scene understanding which could enable an
autonomous robot or other visual processing systems to obtain a detailed description

of complex natural and person-made worlds and environments.

The earliest forms of object recognition dealt with the task of identifying single isolated
objects in one image. This remains the most common form of object recognition today,
and despite the increase in complexity of the methods, the results have not improved
greatly. Early scene understanding systems typically dealt with person-perspective or
map views of natural scenes containing objects such as a buildings, trees, and roads.
Within the object recognition research, considerable effort has been spent on solving the
part indexing, part cligue and knowledge acquisition problems. By comparison, scene
understanding systems tend to be pixel-based and are concerned more with identifying

probable labels for small image regions rather than locating and labelling entire objects.

In this dissertation, a new theory of object recognition and scene understanding is

1.1 Contributions of this Dissertation 2

presented. A hierarchical knowledge base is used to provide context sensitivity and
knowledge driven lower and middle-level visual processing. Incremental supervised
learning is used to continually build and update the knowledge base as the system is
used. Relaxation labelling drives a closed-loop constraint propagation and hypothesis
generation process which enables global consistencies to be resolved from local ambigu-
ities. Minimum view generation is proposed with respect to optimising classification.
Hierarchical knowledge driven segmentation provides the basis for the context sensitive

visual analysis.

1.1 Contributions of this Dissertation

The primary contributions of this dissertation are in the development of a general the-
ory which integrates both object recognition and scene understanding. To accomplish
this, a hierarchical world knowledge base is required, which is built via supervised incre-
mental learning. An important contribution is in the study of how a more contextually
structured knowledge base can be used to improve the descriptive power of the vision

system, as well as its efficiency. This has not been studied experimentally before.

The secondary contributions of this dissertation involve the development of specific
algorithms for knowledge driven segmentation, hierarchical relaxation labelling and the
learning paradigm of explanatory least generalisation. These three new algorithms
provide the ground-work upon which a complex vision system can be built. Many
existing vision systems are restricted to a simpler knowledge base, and hence do not

explore the more complex algorithmic requirements of hierarchical visual interpretation.

1.2 Organisation of this Dissertation 3

1.2 Organisation of this Dissertation

The theory of vision presented in this dissertation is embodied in a computer program
called Cite. Cite contains three inter-connected data structures which represent differ-
ent aspects of the system; the knowledge base, the scene interpretation and the visual
interpretation. The knowledge base structure is described in Chapter 3. Chapter 4

describes the visual interpretation and the scene interpretation structures.

Following these two chapters which deal with representation are the descriptions of the
algorithms used in Clite. Chapter 5 provides an overview of the operators in Cite that
create and manipulate the three data structures and their interconnecting hypothesis
links. Chapter 6 describes the supervised incremental learning of the knowledge base,
Chapter 7 details the hypothesis generation and Chapter 8 describes the relaxation

labelling procedures used during recognition.

Following this is Chapter 9 which describes the hierarchical knowledge driven segmenta-
tion algorithm and Chapter 10 which details the feature extraction procedures. Partial
results are presented throughout the thesis to demonstrate specific algorithms, and
these results are listed fully in Chapter 11. The dissertation is summarised in Chapter

12 which includes suggested directions for further work.

Appendix A contains further details of mathematical and algorithmic derivations. Ap-
pendix B describes the operation of the Cite system and gives a brief overview of the

implementation details.

2. Related Literature and Proposed Theory 4

Chapter 2

Related Literature and Proposed
Theory

2.1 Introduction

This chapter reviews the published literature in the areas of object recognition systems,
scene understanding systems and machine learning technologies. Critical attention is
focused on the advantages, disadvantages, abilities amd limitations of the published
research, and how this has driven the new ideas presented in this thesis. The chapter

concludes with an overview statement of the theory proposed in this dissertation.

2.2 Object Recognition Systems

An object recognition system (ORS) is a methodology, usually embodied in a set of al-
gorithms implemented in a computer, which can take as input colour, intensity and/or
range information and produce some form of labelling or description of the objects
being viewed. The distinction between an object recognition system and a scene un-
derstanding system is not clear, although a scene understanding system usually deals

with more complex “natural” objects and can sometimes provide a query system for

2.2 Object Recognition Systems 5

answering more complex questions than simply what is in the image. Other vision sys-
tem modalities such as tracking systems and robot navigation systems are not classed
as object recognition systems. They may be able to detect the presence of an object
{for the purpose of tracking it or avoiding it}, but unless they also attempt to label
the object with some meaningful description, they will not generally be classified as an

ORS.

There are a number of fundamental issues addressed by all object recognition systems.
Primarily there is the question of whether the system contains pre-programmed mod-
els of the objects or whether it will learn these models from sensed data. Secondly
there is the guestion of whether the objects will be represented using viewer-centred
or object-centred features, and whether these are implicit or explicit. Thirdly there is
the matching strategy used to determine which object in the database most accurately

matches the object in the image.

Other issues revolve around the features used, whether the system operates on range
images, intensity images, colour images or some combination of these. There are also
the questions of low level filtering and segmentation, whether the system works from
regional parts or edge parts or both, and whether the system attempts any type of

verification by rendering or remodelling the image in some way.

Fach of these properties of object recognition systems will be discussed in this section.
Table 2.1 contains a summary of the systems reviewed in this section in terms of these
properties. Following this are sections exploring each property and the contributing

research in detail.

2.2.1 Knowledge Acquisition

In order to recognise objects or scene elements, any object recognition system must
contain a database of knowledge (a knowledge base). This knowledge can take a wide

variety of forms, and can be acquired in different ways.

There are two main categories of knowledge acquisition; it can be learnt or it can be

2.2 Object Recognition Systems

System Year | Knowledge Representation | Recognition
Acquisition Procedure
Garvey 1976 | learnt implicit histogram
[Garvey, 1976]
ACRONYM 1981 | programmed object-centred matching
[Brooks, 1981} explicit search
Local Feature Focus 1982 | CAD explicit local feature
[Bolles and Cain, 1982] analysis object-centred focus
Osima and Shirai 1983 | learnt object-centred region
[Oshmia and Shirai, 1983] explicit
3DPO 1986 | learnt explicit pruned
[Bolles and Horaud, 1986] CAD features hypothesis
Faugeras and Herbert 1986 | learnt explicit hypothesis
[Faugeras and Herbert, 1986] (range) viewer-centred tree search
Grimson and Lozano-Pérez 1986 | programmed explicit tree search
[Grimson and Lozano-Perez, 1986]
SCERPO 1987 | Programmed explicit geometric consis-
[Lowe, 1987] 3D wire frame tency, ranking
Evidence Based Recognition 1988 | learnt (range) | bounded parallel cert-
[Jain and Hoffman, 1988] evidence rules ainty inference
Fau et al 1989 | learnt (range) | explicit pruncd graph
[Ting-Jun Fan and Navatia, 1989] (graph) matching
Hansen and Henderson 1989 | CAD object-centered | strategy
[Hansen and Henderson, 1989] analysis explicit trees
Murray et al 1989 | CAD explicit, geometric
[Murray, Castelow and Buxton, 1989] wireframe matching
Wong et al 1989 | CAD Attributed Graph
[Wong, Lu and Rioux, 1989] analysis hypergraphs monomorphism
3D Objects from Image Contours 1990 | programmed Explicit surface | algebraic
[Kriegman and Ponce, 1990] of rotation Blimination
Bonsal 1991 | learnt from implicit, inter- tree search,
[Flynn and Jain, 1991a) CAD models pretation trees | verification
Evidence Based System 1994 | learnt bounded rules, parallel
[Caelli and Drier, 1994] (range) relational inference

Table 2.1: Summary of Object Recognition Systems

programmed. Learning can be done either from examples or from a non-sensed repre-
sentation of the objects. Learning from examples yields the greatest level of automa-
tion, learning from other representations is less automated, and acquiring knowledge

by direct programming yields no automation.

Computer aided design (CAD) representations are the most common in knowledge
acquisition from a non-sensed representation. In systems such as BONSAI [Flynn and
Jain, 1991b], analysis of CAD models of objects is used to create an interpretation tree.
At run time, sensed data (in this case, range data) is examined and label hypotheses
are generated from this precomputed structure. Interpretation trees have also been
constructed to represent three dimensional polyhedral objects [Grimson and Lozano-

Perez, 1986]. Tn this approach, the interpretation tree is constructed from CAD models

2.2 Object Recognition Systems 7

by examining the range of distances, angles, directions and triple product signs between
pairs of surface points and their local surface normals. Extensions to this work [Murray
and Cook, 1988} examine other edge-based constraints extracted from the model and

data geometries.

One interesting approach is to precompile part graphs based on the process of graph
path hypothesis generation as used in the local feature focus (LFF) method [Bolles
and Cain, 1982]. In this method, expliéit knowledge representation is optimised for the
matching process. This is achieved by ranking significant parts according to rotational
symmetry and structural equivalence. The explicit nature of this representation reduces

generalisation, however this approach does represent some matching optimisation.

A knowledge base can be acquired by examining a training set of input images to
determine salient features which are then used during recognition. The evidence based
approach [Jain and Hoffman, 1988] induces sets of evidence rules, of which each element
is a weighted bounded attributed rule. For example, an object perimeter in the range
(10.0, 20.0) may give strong support (wa = 1.0) for object A, no support (wg = 0.0)
for object B and weak refutation (we = —0.5) for object C. The rulebase is generated
by removing inconsistent edges from a minimal spanning tree built in a labelled feature
space. In this approach an inconsistent edge is defined by a number of heuristics

operating on the topology of the minimal spanning tree.

One central problem in 3D object recognition is that of rotational variance of objects.
Most objects, whether they be man-made or natural, have high rotational variance. One
frequently finds that views of different objects have greater similarity than different
views of the same object. A common approach to solving this problem is to first
partition the object view space into what is termed a wview sphere in which each view
is essentially treated separately. An alternative approach is to treat each view as
a seperate example of the object and construct the knowledge base assuming that
multiple rules will be required to adequately cover all views of the object, such as in

the evidence based approach [Caelli and Drier, 1994].

The view-sphere representation can be constructed from CAD models [Flynn and Jain,

2.2 Object Recognition Systems 8

1991b)], or from different views of the object [Seibert and Waxman, 1992]. In both cases
the number and Euler position of each view can be specified heuristically or by analysis
of the object in question. These methods have some disadvantages. In both cases a
complete object description must be available for analysis, and it is easy to show that
the resulting aspect graphs are not necessarily the minimal view representation for a
given object with respect to the knowledge base. This thesis solves these problems by
defining the minimal aspect graph as that which permits the recognition of each object

against the entire knowledge base.

An interesting variation on the multiple view theme is to use a motion sequence of
views to provide temporal ordering of expected views [Seibert and Waxman, 1992].
This temporal sequencing creates a further constraint which can be applied during
recognition of moving objects. A number of different schemes exist for determining the
number and position of the views in a view-sphere. Regular tessellation of the sphere
of up to 320 views have been proposed [Flynn and Jain, 1991b]. Random tessellations

of up to 100 views have also been proposed and evaluated [Raja and Jain, 1992).

Explicit representation schemes (see Section 2.2.2) match explicitly to codifications of
sensed images. In this sense there is only weak learning because there is little or no
generalisation. For example, explicit surface patch representations of industrial parts
[Faugeras and Herbert, 1986] cannot be generalised to determine salient features, thus
not accommodating variations in objects belonging to the same class. This is entirely
suitable to industrial part inspection where a valid error model may be available, but
much less suitable to objects that cannot have such explicit descriptions (such as many
natural and man made objects). In general, explicit representations permit only weak

generalisation and the knowledge acquisition is a trivial process of data storage.

In the Smoothed Local Symmetry representation [Connell and Brady, 1985}, ANALOGY
is used to generalise examples and to create reduced representations. Inductive gener-
alisation is used, but only on positive examples of the object at each node in the visual
hierarchy. To prevent gross over-generalisation, disjunctions of rules are formed and
later consolidated into single rules where appropriate. This process is controlled by a

set of heuristics which determine the distance a new object is from existing rules and

2.2 Object Recognition Systems 9

whether this will result in over-generalisation.

Alternative schemes using neural networks as the knowledge base have also been at-
tempted. In the CRESCEPTRON framework [Weng, Ahuja and Huang, 1993], edge
features are used as the input to a multi-layer self-organising network. Translation and
scale invariance is achieved by naively scanning the image with a foveation window
scaled by 20% at each pass. The system is not 2D rotationally invariant, and no con-
sideration is given to 3D rotational invariance. As expected and demonstrated, such
approaches are valuable in 2D pattern recognition, but are of less importance to 3D
object recognition because of the lack of part indexing, multiple view representations

and geometric constraint satisfaction.

2.2.2 Object Representation

Generally speaking, knowledge representation can be explicit or implicit. In an explicit
representation object recognition system, the knowledge base contains a direct or com-
plete representation of each object. For example, if one stores CAD models or bit-map

images of objects then this is an explicit representation.

Implicit representations are usually characterised by partial or minimal knowledge
coded in an operationally efficient way. For example, a decision tree with simple deci-
sion rules in each node and object labels at each leaf node is an implicit representation
of the objects in the database. In general, an explicit representation will contain a
richer description of the objects and will not be organised well for matching, while an

implicit representation contains less data and is better organised for matching.

Bonsal [Flynn and Jain, 1991a] represents objects implicitly in the form of an inter-
pretation tree. Bach level within this tree represents an additional part labelling, and
the depth of the tree is determined by label and pose uniqueness. Each object is dis-
tributed widely across the tree, which is optimised for run-time efficiency. The principal
disadvantage for the application of such methods in this research is the requirement

of full CAD models for the construction of the knowledge base. One objective in this

2.2 Object Recognition Systems 10

thesis is to build the knowledge base only using sensed data. The interpretation tree

representation has also been applied to bin-of-parts problems [Tkeuchi, 1987).

Another implicit representation is that used in the evidence based approach [Jain and
Hoffman, 1988] where objects are represented across a large set of evidential rules which,

when activated, combine to provide a final classification hypothesis.

Explicit representations tend to be used in research aiming for exact pixel-level match-
ing, such as in industrial inspection or in the recognition of objects from their contours
or surface representations. For example, objects may be represented by surfaces of
rotation [Kriegman and Ponce, 1990] and algebraic matching is done on the detected
contours, or in the form of CAD models described by declarative and functional codifi-
cation [Goodman, Haralick and Shapiro, 1989]. While this work is less relevant to this
thesis where the main concern is in the classification from minimal representations, one
sub-goal is the provision of seamless integration of explicit representations into the one

scheme.

Another common representation is that of surface patches segmented from range im-
ages [Faugeras and Herbert, 1986]. To form this representation, the 3D surface normal
is estimated at each pixel in a range image of the object. Regions are then formed and
merged against a global error measure based on least squares fits to low order poly-
nomial models. Differential geometry [Besl and Jain, 1985] and zero-crossing analysis
of principal curvature {Fan, Medioni and Navatia, 1987] may also be used to segment

range images into surface patches (see Section 2.2.5).

ACRONYM [Brooks, 1981] uses an explicit representation in the form of a compositional
hierarchy of ribbons (generalised cones) and ellipses in a database of objects. From this
a prediction graph is generated which contains invariant and quasi-invariant properties
that need to be matched in the image. The database of cbjects is hand-coded and the
system’s ability to generalise is expressed as algebraic relationships between properties
of parts. In this sense, ACRONYM can provide quite a powerful matching across wide
classes of manufactured objects with multiple parts. However, natural objects are not

considered in this approach.

2.2 Object Recognition Systems 11

A generalised form of Gray coding has been used to describe 2D object boundaries
[Connell and Brady, 1985]. This work is interesting because the scalability of the
boundary representation was used to form simple taxonomies of objects (in this case
common hand tools). The geometric nature of these boundary representations tends to
restrict the visual hierarchies to scale based decompositions. Some modifications to the
boundary representation have been explored which add symbolic descriptions of parts

at different levels in the hierarchy (such as end, corner, bump or smooth).

Wireframe and line drawing representations are also useful in recognising many man-
made objects. Line drawings may be interpretted as three dimensional surfaces [Barrow
and Tenenbaum, 1981] by a process of line classification and surface interpolation.
This may be assisted by alternative approaches in which lines are classified by their

singularities and junctions [Nalwa, 1988].

2.2.3 Matching Strategies

Pattern recognition is primarily concerned with the matching and categorisation of data
according to its first order (unary) properties. Object recognition is made more complex
by the requirement that individual parts and their relationships (binary properties)
must be matched. The matching strategies used in object recognition are varied and

diverse, covering both explicit and implicit knowledge representations.

When explicit object representations are used, the matching strategy is critical as there
is generally no precompiling of decision strategies into the knowledge base. In contour
matching of surfaces of revolution [Kriegman and Ponce, 1990], algebraic elimination
can be used to reduce projection and image contour equations to provide a distance
measure between an object and image contour C. The best matched object has to be
found by testing all objects against C, or by indexing parametric functions of closest
fit models (in [Kriegman and Ponce, 1990] this was the ratio of inner to outer radii in

a torus fit to C).

Some object recognition schemes use a parts-and-their-relationships representation. Ex-

2.2 Object Recognition Systems 12

plicit forms of this representation require a complex structural matching process. The
attributed graph representation [Ting-Jun Fan and Navatia, 1989] is matched using a
bipartite unary matching, with relational information being factored in to evaluate the
quality of each candidate matching. In this approach, an initial pruning is performed
based on simple measures such as the number of nodes, the number of planar nodes

and the area of the largest surface patch.

Studies have been carried out in inezact graph matching [Shapiro and Haralick, 1981]
with the clear result that a pruned tree search using backtracking and/or forward
look-ahead is more efficient than computing exhaustive sub-graph isomorphism. The
general understanding that determining full sub-graph isomorphism is NP-complete has
attracted considerable research effort to the problem. Unfortunately, in practical object
recognition systems the number of parts per view of object is typically very small. The
amount of computation saved by these more elegant algorithms when applied to real
objects is generally negligible in comparison to the linear database search between each

sensed object and each object in the database.

Explicit surface patch representations can be matched to the test object by a pruned
tree search [Faugeras and Herbert, 1986]. This is achieved by generating surface patch
correspondence hypotheses based on unary constraints, and then pruning the tree enu-

meration by binary constraints and heuristics applied to each feature type.

Interpretation trees provide an efficient implicit representation which is optimised
for matching. Bonsa1 [Flynn and Jain, 1991a) and others [Grimson and Lozano-
Perez, 1986] use interpretation trees constructed from CAD models of the objects to
be recognised. The interpretation generation process is a simple and efficient one of
descending the tree, computing features at each level within the tree and pruning
sub-trees when they are deemed to be invalid interpretations. Global validity for an
interpretation can be established by using partial hypotheses to determine the scale,
rotation and translation which link the model to the sensor [Murray and Cook, 1988].
The features which are used to prune such interpretation trees are described in Section

2.2.5.

2.2 Object Recognition Systems i3

Similar to tree search, the local feature focus method [Bolles and Cain, 1982] matches
to candidate objects by moving from one feature (the focus feature) to the next in a
sequential manner. Matching strength is based on unary attribute compatibility with
the next feature being chosen from a pre-compiled local cluster of features. Condi-
tional rule generation {CRG) [Bischof and Caelli, 1994] descends a rule hierarchy until
unique labellings are found. In this approach, each rule level represents alternatively a
unary and a binary feature space resulting in the accumulation of label evidence over a
sequence of parts and their relations. The region based matching of Oshima and Shirai
[Oshmia and Shirai, 1983] is similar to CRG in that unary-binary chains are analysed
for global compatibility.

A directly geometric approach to matching 2D edge images subject to 3D rotation is
explored in SCERPO [Lowe, 1987]. In this approach, the knowledge base is an explicit
3D wire-frame representation of the object being searched for. Perceptual groupings of
sensed image edges are made such that these groupings are most likely to be invariant
under 3D rotation. These groupings are made on the basis of the proximity of line
endpoints, the degree of line parallelism, and the degree of line collinearity. Object
hypotheses are then made subject to a probabilistic ranking of these perceptual group-
ings which is also pruned by a pre-computed visibility property (a wvisthle hemisphere)
of each group. SCERPO has been demonstrated effectively on classic bin-of-parts prob-
lems in industrial inspection. It is not possible to generalise the notion of perceptual
groupings to cover hierarchical objects or objects that are described by properties more
complex than edges without also needing to come to terms with issues of part indexing
and matching generalisation. The explicit programmed nature of the knowledge base in
SCERPO does not facilitate generalisation, yet does permit precise geometric matching

to well defined objects. This is a common tradeoff in object recognition systems.

Evidence may be accumulated for each hypothesised object using recognition networks
[Bolle, Califano and Kjeldsen, 1992] which sum multiple hypotheses and use geometric
and image model constraints to refine these. This approach has not yet been demon-

strated, and is confined to model based 3D object recognition.

When multiple objects are present in the scene, there is a non-trivial process of breaking

2.2 Object Recognition Systems 14

this into most probable groupings of objects, termed the parts cligue problem. One
heuristic approach to this problem is to split the multiple object graph along lines of
weak matching [Ting-Jun Fan and Navatia, 1989], and then complete the single object

matching on the remaining graph components.

Relaxation labelling has been proposed as a method for solving the parts clique problem
[Kim and Kak, 1991]. In this approach, initial estimates are obtained using bipartite
matching, and then relational compatibilities are propagated using discrete relaxation

labelling.

2.2.4 Verification Processes

After generating a set of possible label and orientation hypotheses, BoNsA1 [Flynn and
Jain, 1991a] verifies each by rendering a range map and comparing this at a pixel level
to the sensed data. While this is successful in certain applications, for more natural
objects of less definition such as “tree” or “grass”, this would not work. This method
would also work poorly on intensity data unless very accurate models of material and
lighting were deducible, which is itself an extremely complex problem (for example,
[Kay and Caelli, 1994]). However, BONSAI does represent a successful application of
feedback in computer vision. It is worth noting that although an implicit representation
is used for hypothesis of location and orientation, an explicit CAD model is used during

the verification process.

SCERPO [Lowe, 1987] verifies object position and rotation by projecting a visible wire-
frame model (derived from a 3D line model) onto the sensed edge image. Newton
iteration is used to shift, scale and rotate the projected lines to best match the image
lines. Although this will correct for small errors in initial hypotheses, it is not used
to generate new hypotheses. As such, this single stage verification process is still only

open-loop and does not represent true cloged-loop feedback.

2.2 Object Recognition Systems 15

2.2.5 Segmentation and Feature Extraction

Any image, whether range, colour or intensity, contains a large amount of data that
needs to be partially summarised before object recognition or scene understanding can
occur. A common approach is to break the image into regions of common property,
or into edges and other salient features such as corners or holes. For each of these
image tokens, properties can be computed describing the token {called unary features)
and the relationship between this token and others (called binary features). Higher
order features have been proposed [Flynn and Jain, 1991b] and implemented [Flynn
and Jain, 1991a).

BoONSAIL uses range data only, and computes the four unary part attributes of area,
surface type (planar, cylindrical and spherical), and surface intrinsic parameter equal-
ity. It also uses four binary attributes which are parallel plane distance, common view
visibility, pairwise relative orientation, and a global model-centred orientation. Seg-
mentation into parts is achieved by pruned connected components analysis of clustered

surface normals (using program CLUSTER [Michalski and Stepp, 1983a)).

Other interpretation tree approaches [Grimson and Lozano-Perez, 1986] use features
such as surface distance, intersecting angle, surface orientation and the sign of surface
normal triple products to prune the interpretation process. These are typical features
applied when 3D range data is available. Shape-only features such as angles and relative
directions have also been used [Murray and Cook, 1988] to provide a degree of scale

invariance in matching 3D polyhedral models.

Differential geometry is a popular method for segmentation of range images. When
dense range images area available, mean and Gaussian curvature can be computed
from local difference operators [Besl and Jain, 1985]. Surface classification into eight
fundamental types can be achieved by thresholding each of the mean and Gaussian
curvatures into positive, zero and negative ranges. Table 2.2 lists each of these basic
surface types. Note that the Gaussian curvature cannot be positive when the mean

curvature is zero.

2.2 Object Recognition Systems 16

Mean Curvature | Gaussian Curvature | Surface Type
H<0 K=>0 Peak
H=>0 K>0 Pit
H<0 K=0 Ridge
H>0 K=0 Valley
H=0 K=0 Planar
H=0 K<0 Minimal
H<?0 K<0 Saddle Ridge
H>0 K<0 Saddle Valley

Table 2.2: Surface Type by Mean and Gaussian Curvature

The segmentation of range images using mean and Gaussian curvature has the advan-
tage that these measures are 3D rotationally invariant, but the disadvantage that they
are quite sensitive to noise. The numerical estimates of mean and Gaussian curvature
can also be used as unary surface patch features [Caelli and Drier, 1994] [Barth, Caelli

and Zetzsche, 1993}, although they are sensitive to scale.

In the evidence based recognition approach [Jain and Hoffman, 1988], range images are
segmented by clustering on spatial coordinates (z, y, z) and surface normal components
(ng, ny, n;) estimated from a 5x5 window. Morphological properties of perimeter and
the number of background connected patches are used. Individual surface patches are
described by their surface type, size, span and boundary linearity. Boundary relations
(binary properties) are described by the boundary type (jump, adjacent or remote), the
angle between patch normals, the minimum and maximum distance between patches,

the boundary angle and the jump gap distance (where appropriate).

Explicit representational schemes [Kriegman and Ponce, 1990] extract detailed object
contours using standard edge detection methods. Such recognition schemes can only
be applied to smooth boundary, high contrast objects with low surface texture. Other
systems that use simple object extraction methods [Seibert and Waxman, 1992| typi-
cally do basic extraction and log polar transformations on single object images. Contour
based descriptions of objects can also be determined by identifying association relations

between contours from full volumetric data [Wang and Aggarwal, 1986).

For industrial parts classification and location [Bolles and Cain, 1982}, corners, edges

2.2 Object Recognition Systems 17

and holes may be used to assist in recognition, especially where back-lit (silhouette)

2D intensity images are available.

Algebraic descriptions of surfaces and edges can also be used as unary features in vision
systems. Quasi-topological features such as convexity, loop and connectivity [Nishida

and Mori, 1992] can describe images curves.

Image segmentation is a non-robust process, and a number of approaches have been
applied to the process of resegmenting the image according to the ongoing interpre-
tation. Heuristics have been used to alter thresholds and control parameters in the
resegmentation process [Wang and Srihari, 1988] [Nazif and Levine, 1984]. Knowledge
based approaches have also been explored using either domain specific knowledge in
the resegmentation of aerial images (the SPAM system [McKeown, Harvey and McDer-
mott, 1985]), or by changing the segmentation operator and control parameters based

on expectation [Hwang, Davis and Matsuyama, 1986].

2.2.6 Range Versus Intensity in Object Recognition Systems

Object recognition systems typically use intensity, colour or range information as the
primary input. Intensity and colour images are represented as two dimensional arrays of
pixels, where each pixel represents the surface illumination or colour at a point projected
back to the camera. Range images are usually represented as two dimensional arrays
of depth values where each depth value represents the distance from the camera to a

particular surface point.

Range information can be computed directly using active means such as time-of-flight
laser range finders, active lighting shape-from-shading, or projective strip-light scan-
ning. The resulting range maps are usually quite dense with valid range estimates at
most pixel locations. Range information can also be estimated passively using multiple
cameras in a stereo configuration, shape from focus, passive-lighting shape from shad-
ing and shape from local texture gradients. Stereo vision is the most popular, but has

been extended to more than two cameras [Dhond and Aggarwal, 1991] and to other

2.2 Object Recognition Systems 18

novel methods such as shape from virtual aperture focus [Dillon and Caelli, 1993] and

the plenoptic camera [Adelson and Wang, 1992].

The choice of whether to use range or intensity/colour information as the input into
an ORS depends on the desired application of the system. Natural outdoor scenes
and aerial image analysis tends to provide little useful depth variation, although air-
borne stereo has been studied and laser range finders have been used successfully in
autonomous roving vehicles. Under some circumstances, dense range images are more
robustly segmentable than colour images. However, most matching algorithms can
be adapted to use either range or colour information. The exceptions to this are the
methods which require range data to generate hypotheses about the three dimensional
properties of surface patches for the purpose of image level object fitting. Intensity and

colour images tend to provide a much greater range of computable features.

Computing depth information from stereo is a popular modality despite the fact that
it gives reasonably poor results due to the sparse nature of the computed depth map.
The high level of interest in this approach is probably due to the fact that most an-
imals have two eyes, although it is clear that stereo vision is not required for animal
object recognition. If this were not the case, the visual world would disappear into a
meaningless jumble if we had only one eye open, which clearly does not occur. Stereo
vision is, however, useful in robotic object avoidance and high accuracy stereoscopic

applications such as photogrammetry.

2.3 Scene Understanding Systems 19

2.3 Scene Understanding Systems

In contrast to the object recognition systems described in Section 2.2, scene under-
standing systems try to label multiple complex objects in images which are usually of
natural outdoor scenes. The methods used in scene understanding systems tend to be

less precise and more evidential in approach.

2.3.1 SCHEMA

The SCHEMA system [Draper, Collins, Brolio, Hanson and Riseman, 1989] is a major
attempt at a general purpose knowledge based scene interpretation system. The fun-
damental aspect of SCHEMA that sets it apart from most other scene interpretation
systems is that both knowledge and computation are partitioned at a coarse-grained
semantic level. The knowledge base contains a set of schemas, each of which is designed
to recognise one particular class of object. This differs from most machine vision ap-

proaches which usually focus on one representation and one matching strategy.

Each schema has access to a gobal blackboard which contains the current interpretation
of the scene, and can post and receive messages to this global space asynchronously.
An instance of the appropriate schema is generated for each hypothesised instance of
the object in the scene. Each schema instance has access to what are termed knowledge
sources. The knowledge sources, which operate at a number of different levels, provide
analysis of the image and resultant image structures. For example, there are lower level
feature extraction and segmentation knowledge sources, and higher level knowledge
sources covering initial hypothesis generation, token clustering and knowledge driven

resegmentation.

The knowledge base in SCHEMA is hand coded by a knowledge engineer in declarative
langugage which covers the endorsement space, confidence function and control strate-
gies for each schema. The endorsement space contains structures which can accumulate
evidence for an instance of the object represented by the schema, and the confidence

function describes how to combine these various endorsements. The control strategy

2.3 Scene Understanding Systems 20

section of each schema determines how the support space is searched by providing
flow control over the sequence of knowledge sources accessed by the schema. Although
demonstrated to be successful on natural images with a small number (15) of objects
in the knowledge base, the requirement for each schema to be programmed requires the

presence and attention of an expert.

The features used in SCHEMA cover colour, texture, shape, size and location of regions
and other basic scene elements. The colour features include the mean and standard
deviation of the red, green, blue, excess red, excess green, excess blue, and the three
colour components of the HSV and YIQ colour spaces. Excess red is calculated as
2R — G — B, and the YIQ colour spaces are calculated as linear combinations red, green

and blue combinations.

2.3.2 SicMma

The S1GMA system [Matsuyama and Hwang, 1990) is a complete image understanding
system designed for aerial image analysis. It contains three modules for low level vision,
model selection and geometric reasoning, as well as a query module through which the
user interacts. These modules are interconnected such that top-down and bottom-up
vision processes are closely intergrated. The interpretation within SIGMA is in the
form of a part-of hierarchy with image features at the leaf nodes and spatial relations

describing the higher level structure.

SiGMA’s knowledge base is object oriented in the sense that instances of an object are
created (instansiated) dynamically from base object classes. Each object has three
main knowledge components; unary properties of the object, relationships with other
objects, and control information to guide the analysis process. The control structures

are triplets of the form (condition, hypothesis, action).

After an initial segmentation, seed hypotheses are generated and stored in the iconic
/ symbolic datobase which represents the instantaneous scene interpretation. These

initial hypotheses result in bottom-up hypothesis generation of higher level object in-

2.3 Scene Understanding Systems 21

stances. These, in turn, result in the top-down hypothesis generation of missing parts.
The geometric reasoning expert iterates the interpretation cycle through hypothesis
generation, evidence accumulation and the resolution of the most reliable composite
hypothesis. This cycle continues until no new hypotheses are generated and the result-

ing global interpretation is stable.

SIGMA contains a sophisticated low level vision module which performs goal directed
image segmentation. A goal in this system is expressed as a set of constraints and
properties that the solution must satisfy, some of which specify the environment in
which the sclution is to be found. One strength of this system is the ability to search

the image at a very low level for expected image features.

S1GMA has been demonstrated on aerial images of new housing developments and ro-
bustness to shadows and poor image contrast has been shown. As with SCHEMA, the
knowledge base for S1GMA is hand-coded by an expert, and the system as a whole has

not been demonstrated to recognise more than a few different object classes.

The texture measures in SIGMA include the per-unit strength of horizontal, vertical
and diagonal lines, and the energy and entropy of the intensity histogram. Lines are
also grouped according to length and contrast, and measures of theire density included

as texture measures.

Regions are described using compactness (the ratio of the square of perimeter to area),
minimum bounding rectangle (MBR) orientation, MBR fill ratio, region height to width
ratio and the ratio of the region perimeter to the MBR perimeter. Region size is
described in terms of absolute pixel count, perimeter length, region height and width,
and MBR height and width, all in units of screen pixels. SiGMA also describes each
region’s location in terms of the absclute screen position of the upper left corner, lower

right corner and region centroid.

2.4 Machine Learning 22

2.4 Machine Learning

Machine learning and computer vision have, in general, remained separate disciplines
within computer science. From a computer vision perspective, this has resulted in less
emphasis on learning relational structures in the machine learning literature, and an
ignorance in the computer vision literature of the power of many machine learning

algorithms.

For this review, a suitable taxonomy of machine learning systems is to classify them
according to their application domain, the underlying learning strategies used and the

representation of knowledge [Carbonell, Michalski and Mitchell, 1983].

In terms of the application domain we are primarily interested in classification sys-
tems. Other learning application domains such as computer programming, planning
and problem-solving will not be considered unless the knowledge representation is also

applicable to classification.

With respect to the underlying learning strategy, the theories presented in this disser-
tation primarily involve supervised learning from positive and negative examples. This
may be incremental or non-incremental, although the final algorithms developed will all
be incremental. Unsupervised learning can still be valuable in situations where a data
model is known, such as in image segmentation. Contrary to some beliefs, unsupervised
systems such as COBWEB [Fisher, 1987] and CLUSTER/2 [Michalski and Stepp, 1983b]

do contain a data model {(usually in the form of metric on the attribute space).

The issue of knowledge representation is critical in developing any machine learning
system. Of relevance to this investigation are decision trees, graph and network rep-
resentations, frames and schemas, taxonomies and hybrids of these. Other knowledge
representations which are less suited to the classification problem include formal logic
expressions, procedural codifications, sets of production rules and other formal gram-

mars.

2.4 Machine Learning 23

2.4.1 Single Point Unary Classification

The single-point unary classification problem can be stated as follows. Consider a
vector space of dimensionality n, and a set of m points in that vector space each of
which is labelled with an integer in the range 1 to r. The objective is to determine a
function F which will map all of the points onto their labels. Once this function has
been determined, new unlabelled points can be classified. If F is well designed, the new
data points will be correctly classified and the system will have “learnt” to classify new
data. There is a necessary requirement that the initial labelled data cover all labels

(m > r) and it is typical to have many examples of each label (m > r).

There have been a number of approaches to generating the classification function F.
One of the most common is through decision trees. Each non-leaf node of a decision
tree contains a decision rule which operates on one attribute (or feature). These rules
can be designed to operate on discrete or continuous data, and can branch to two child
nodes (a binary decision tree) or a larger number of child nodes. The leaf nodes in the

decision tree contain the final classification label.

ID-3 [Quinlan, 1986] determines the attribute which is to be operated on in each node
by measuring the information theoretic minimum entropy partitioning of the data. At
each node, the attribute and decision threshold for that attribute which minimise the
partition entropy of the training data in that node is chosen. The decision tree is built
recursively in this manner until the entropy at each leaf node is zero (corresponding to

training data at that leal node which all have the same classification label).

ForIL [Quinlan, 1990] is also a data-driven induction method which specialises conjunc-
tive expressions to determine a set of non-overlapping covers for objects of different
classes. The PROTOS system [Bareiss, Porter and Weir, 1988] integrates inductive
learning and deductive problem solving in the task of heuristic classification in medical

applications.

2.4 Machine Learning 24

2.4.2 Relational Learning

The previous section discussed single point, or unary classification and learning. This
methodology assumes that the input sample is described by a single vector, where
each dimension represents some measure of the input instance, and the order of these
measures is fixed. Object recognition requires an extension to this approach because
an object is typically analysed in terms of a number of parts, each of which has specific

properties, as well as specific relationships to the other parts in the object.

An object is typically represented as a graph in which the vertices are the parts and
the edges are the relationships between the parts. There is no natural ordering of the
parts that will be stable to 3D rotation, noise and other distortions, so it is not possible
to form a single stable vector which describes the full object and all its relationships.
If this were possible, unary classification could be used on this full vector. However,
because there is no natural ordering of the parts, a large number of permutations exist
(order n! in the number of parts) and this would be impractical to be learnt using any

unary classification system.

Relational matching schemes include various degrees of solution to the graph isomor-
phism problem, interpretation trees and evidential approaches. Relational learning
typically involves the process of constructing the appropriate data structures to com-
plete the relational matching, based either on a training set of images, or on internal
object representations such as CAD models. Most relation matching schemes use unary
attribute learning, and rely on the run-time matching strategy to provide the desired

level of labelling uniqueness.

The Evidence Based System (EBS) [Caelli and Drier, 1994] learns both unary and bi-
nary attributes into non-indexed rules. These rules are then mapped using a neural
network which is trained using back propagation. This approach does not represent
full relational learning, although co-occurrence is learnt by the neural network classi-
fier. Conditional Rule Generation (CRG) [Bischof and Caelli, 1994] performs relational
learning of paths through the object graphs. These paths, representing chains of unary

and binary information, are stored in the form of a decision tree with the partition

2.4 Machine Learning 25

feature being determined by partition entropy.

2.4.3 Hierarchical Knowledge and Learning

Within the artificial intelligence community, hierarchical knowledge representation is
common place. However, research into automatically building hierarchical knowledge is
less common, and it is virtually non-existent in machine vision. Despite this, there are
a number of research outcomes relevant to this dissertation in the area of hierarchical

knowledge and hierarchical learning.

Minimum entropy hierarchical clustering algorithms have been proposed [Wallace and
Kanade, 1989] which form clusters over unclassified data points using a Gaussian en-
tropy model. While this technique provides interesting results, it is not directly suitable
for supervised learning machine vision applications such as Cite. Clustering does, how-
ever, play an important role in the low level process of image segmentation in most
object recognition systems. Incremental learning of hierarchical concepts has also been
demonstrated in the CLASSIT algorithm [Gennari, Langley and Fisher, 1989] and ap-

plied to the unsupervised learning of cardiology data.

2.5 Proposed Theory 26

2.5 Proposed Theory

This dissertation describes Clite which specifically aims to extend and improve the cur-
rent research in object recognition, scene understanding systems, and machine learning
as applied to computer vision systems. Cite extends the conventional flat knowledge
base to a fully hierarchical one with no depth limitation. Multiple hypotheses are gen-
erated for each scene element, and these are resolved using a hierarchical extension to
relaxation labelling. Traditional feed-forward segmentation is augmented with knowl-
edge driven resegmentation which closes the control loop on low level vision processes.
Clite also extends the typical learn-phase then run-phase operational environment with
robust incremental learning algorithms which build and improve the knowledge base

after each scene has been fully analysed.

An architectural diagram of C'ite is shown in Figure 2.1. The numbers beside each
function block represent the approximate order of operation for each operator. An
initial segmentation (1) of the image causes the unary feature calculator to compute
features for each of the low level regions (2). These features are then matched with
the knowledge base (3) to provide initial labelling hypotheses which are represented in
the indexing structure called the scene interpretation. Clique resolving and hierarchi-
cal binary matching then occur on these initial hypotheses (5) using binary features
calculated from the hierarchical segmentation (4). The higher level scene hypotheses
are added into the scene interpretation structure, and hierarchical relaxation labelling

begins to resolve the multiple ambiguous labels for each object (6).

As the labels begin to resolve, nodes are individually resegmented (7) using parameters
stored in the knowledge base. These resegmentations replace the initial segmentations
in the visual interpretation structure, resulting in a repeat of the unary and binary
feature extraction and matching (stages (2) through (6)). This cycle continues a num-
ber of times until the interpretation becomes stable. If Cite’s final interpretation is
incorrect, the user may chose to incrementally learn the correct object labelling (8)
by selecting the incorrectly labelled nodes and the desired knowledge base node. The

updated knowledge base is then available as the next scene is viewed.

2.5 Proposed Theory 27

Encwledge Base Supervised (4 User
[Incremental
Learning Scene
4 Description

[

6] Relaxation
Labelling

¥

> Cligue Resclwving
and Hierarchical
Matching
F
¥
3| znitial
Hypotheses
F Y
1 Binary Interpretation
Features
]
2
Unary
Features
yy Visual
Interpretation
3
7

Knowledge Driven
Resegmentation

[

1] Initial

Segmentation l////‘“ =

P >

Input Image (colour}

Figure 2.1: Overview of Cite Architecture

The relaxation labelling, knowledge driven resegmentation and hierarchical clique re-
solving and matching provide very tight closed-loop feedback within Cite. The hierar-

chical knowledge base provides a rich scene description which can include contextual,

2.5 Proposed Theory 28

taxanomic and deep decomposition information. The use of incremental supervised
learning provides Cite with the ability to increase the descriptive power and accuracy
of its analyses, as well as to add new world knowledge as it becomes available, rather

than requiring the full set of scene objects to be present during an initial learning phase.

3. World Knowledge 29

Chapter 3

World Knowledge

One of the most important data representations in scene understanding and object
recognition systems is the representation of world knowledge. Cite represents world
knowledge as a semi restricted graph in which each node represents an object or visual
concept which is either a part-of, a view-of or a type-of its parent or parents. Figure
3.1 is a simple example of such a knowledge base. Within each node is stored informa-
tion about the optimal segmentation, feature extraction and matching algorithms that

are used to recognise this object in an image.

Building
Parent-to-child

traversal (House) (Farm)

Child-to-parent
traversal

Wall Roof ('_I‘runkJ (Foliage)

Lowest Level Nodes

Figure 3.1: Knowledge Base Graph Example

Most previous object recognition systems represent world knowledge as a simple linear
list of objects, each of which may be described by specified properties, or as a set of

parts each of which can be described. Cite can easily represent such a data structure,

3.1 Knowledge Base Structure 30

but because the objective is to use higher level contextual information to describe
the scene, the hierarchical knowledge base in (lite represents a significant knowledge

extension in comparison to conventional object recognition systems.

This chapter describes the data structures used to represent knowledge in Cite. The
supervised incremental learning processes which build the knowledge base are described
in Chapter 6. Chapter 4 describes the data structures used to represent each image,
and the scene interpretation data structures which connect the visual analysis of each

image to the knowledge base.

3.1 Knowledge Base Structure

The knowledge base in Cite is stored as a semi-restricted graph where each node in
the graph represents an object or scene element. The objects themselves may be parts
of objects or parts of parts of objects, and so on. Each node can have a number of
child nodes and a number of parent nodes. The child nodes represent either parts-of,

views-of or types-of the parent node.

The graph is restricted in that no cycle in the graph can contain only parent-to-child
edges or only child-to-parent edges. There must be at least one child-to-parent and
one parent-to-child relationship in every cycle. An important and useful consequence
of this is that the graph can be drawn in two dimensions such that for every node its

parents are above it and its children are below it.

Figure 3.2 illustrates the parent and child relationships for a node in the knowledge base.
Any downward traversal of the graph is treating edges as parent-to-child edges, and
upward traversals are child-to-parent edges. All knowledge bases in this dissertation are
depicted in this manner. An interesting point is that nodes higher up in the knowledge
base represent more general knowledge, and nodes lower down in the knowledge base

represent more specific knowledge.

The knowledge base is unbounded with the exception that it must have exactly one

3.2 Knowledge Base Node Types 31

More Generalised knowledge

(parent &) (Parent B)

(chiia a) (chila B)

More Specific knowledge

Figure 3.2: Knowledge Base Parent-Child Relationships

node with no parents (called “World”). There must also exist a downward traversal
path containing only parent-to-child edges connecting the top level “world” node to
every other node. Expressed in another way, every node other than the top level node
must have at least one parent. A typical knowledge base tends to expand out looking
similar to a tree, with the addition of a small number of nodes with multiple parents.
Nodes with no children are called leaf nodes and generally represent the smallest atomic

scene elements.

3.2 Knowledge Base Node Types

The knowledge base in Cite decomposes world knowledge in three ways. A scene
element or object may be broken into constituent parts, into different views of the
object under 3D rotation, or into different specific types of the object. Consequently
there are three types of parent-child relationships; part-of, view-of and type-of. Nodes
in the knowledge base always contain children with the same parent-child relationship
type. A parent whose children have a part-of parent-child relationship is called a part-
of node for simplicity, and similarly for view-of and type-of nodes. Sections 3.2.1, 3.2.2

and 3.2.3 discuss these three knowledge base node types in detail.

3.2 Knowledge Base Node Types 32

3.2.1 Constructed Objects - The Part-Of Node

In the part-of node, the parent is constructed or composed from instances of the chil-
dren. For example, “car” would be the parent node, and “wheel”, “door”, “windscreen”
and “side-panel” could be the children. The “wheel” node in turn could have two chil-
dren “tyre” and “rim”. A forest could be described as being composed of trees, ground,

bushes, and maybe a river.

There are two variants of the part-of node. The “constructed” part-of node describes
objects which are composed from a strict number of parts where the relationships be-
tween those parts is complex but generally rigid. The “consists” part-of node describes
scene elements where the parts are collected together less rigidly to form the collective
object. A car would be described using a “constructed” part-of node, while a forest

would be described using a “consists™ part-of node.

Deep knowledge hierarchies are supported by Cite so that it is possible to decompose
objects over a number of levels. Part-of nodes within such a hierarchy can be a mixture
of “constructed” and “consists” nodes. This permits the construction of less well-
defined objects such as a “street-scene” which contains well defined objects such as

cars, people, and a road.

Each part-of node contains a unary and a binary matching strategy, usually in the form
of rules which are evaluated on candidate image regions or groups of image regions.
The unary matching strategy is used to recognise the object as a whole, whereas the

binary matching strategy is used to recognise the configuration of the constituent parts.

A special situation arises with leaf nodes in the knowledge base. These are always
designated “part-of” nodes and contain a valid unary matching strategy, but no binary
matching strategy as there are no children. In this sense it is important to realise that
an object may match using data stored at its own node, but relationships with other

objects are matched using data stored at the parent node.

3.2 Knowledge Base Node Types a3

3.2.2 Taxonomies - The Type-Of Node

Ciite represents taxonomies using the type-of node. For complex hierarchical world
knowledge, taxonomies represent valuable reductions in data complexity. A “forest”
may contain a number of “tree” objects where each “tree” could be of type “gum”,
“poplar” or “oak”. In the same knowledge base, “my house” might be represented as
a “house” object next to a “gum”. Specifying a simple tree taxonomy in this situation

ives the specificity required for “my house” and the generality required for “forest”.
g P ¥ g

Deep taxonomies can be built using many levels of type-of node and each level offers
a different degree of semantic generalisation. Because the knowledge base is built us-
ing supervised learning, the taxonomies embedded in the knowledge base are context
sensitive. Figure 3.3 illustrates two possible “tree” taxonomies - one that could have
been constructed by a botanist, the other by a forester. The variations in these con-
texts result in differing interactions between the unary and binary learning and the

hierarchical relaxation labelling.

Q{arvest NOUD G-Iarvest Latea @emove)

G Gomei) (@

Botanist’s Tree Taxonomy Forester's Treea Taxonomy

Figure 3.3: Two Alternative Tree Taxonomies

3.2.3 View Representations - The View-Of Node

Most objects look very different from different viewing directions. There is often more
similarity between two views of different objects than there is between two different

views of the same object. Cite represents different views of the same object as children

3.3 Special Constructions 34

of a common parent. This is achieved through the view-of node.

Some object representations are viewer-centred, meaning that the object is composed
from a union of the projected views that the viewer is able to see. Other objects are
represented using object-centred descriptions, meaning that only one “view” of the
object is required. For example, surface representations are viewer-centred, whereas

constructive solid geometry (CSG) is an object-centred representation.

Many object recognition systems make the assumption that their world is best repre-
sented by either viewer-centred or object-centred representations, but never a mixture
of the two. Often this imposes strict limits on the range of knowledge that can be repre-
sented. By permitting any choice of features to represent an object, and by permitting

single or multiple view representations, Cite avoids this limitation.

The view-of representation is not tied explicitly to a geometric viewsphere interpreta-
tion, and consequently Cife can represent multiple views of objects using only as many
views as are required to distinguish the object from other objects in the knowledge base.
In most viewsphere representations a predetermined tessellation of the viewsphere is
used to calculate the number of views required, or analysis of CAD models or com-
plete 2D image sets ([Seibert and Waxman, 1992] for example) determines the full set
of characteristic views. These methods all treat the object in isolation to the other

objects in the knowledge base, and hence excessive data can be stored.

3.3 Special Constructions

When dealing with higher level scene elements there are situations where the formal
structure of the knowledge base as described in the previous section is too restrictive.
In some higher level scene interpretations certain scene elements may be able to exist

on their own or as part of another construction.

For example, in interpreting aerial views of an airport, a “loading” may be defined as as
g g

the presence of a “plane” and a “terminal” with certain relational (binary) properties.
p P

3.3 Special Constructions 35

Similarly, an “emergency” may be defined as a “plane” and a “firetruck” in close
proximity. Figure 3.4 illustrates the emergency scene and Figure 3.6 illustrates the

loading scene.

Figure 3.4: Labelled Emergency Scene Image

Figure 3.5: Knowledge Base Supporting Airport “Emergency” and “Load”

The knowledge base which can support all the concepts depicted in these two airport
scenes is shown in Figure 3.5. A complication arises because according to this knowledge
base the “terminal” object can only ever be part of a “service” operation. In other
words, when the system detects a “terminal” there must be a “service” object present, in

which case there should also be a “plane” present with the appropriate binary relations.

3.3 Special Constructions 36

This clearly fails when, for example, the system views the emergency scene and the

“terminal” as simply part of the “world” and not related to anything else.

Figure 3.6: Labelled Loading Scene Image

Figure 3.7: Correct Knowledge Base Supporting Airport “Emergency” and “Load”

For consistency with the relaxation labelling process it is undesirable to have direct
links that permit a node in the knowledge base to have both a parent and a parent’s
parent as its own direct parents. Links are permitted to span multiple generations, but
only as long as these links join nodes to their grand-parent nodes. The solution to this
problem is to insert a node in the link between the child and the grand-parent node, as

shown in Figure 3.8. This represents the notion of an object possibly not being a part

3.4 KB Node Common Properties 37

Extra node
inserted here

loading ‘//// loading

*plane
terminal plane terminal plane
Incorrect Correct
Representation Representation

Figure 3.8: Incorrect(left) and Correct(right) Versions
Of Representing Not-Always-Part-Of

of any higher level construction at this level within the knowledge base.

Such marker nodes are represented as part-of nodes with one child. Because this con-
struction will never be created otherwise, it is easy to detect when generating descrip-
tions of the scene. As such, they add nothing to the complexity of the recognition
process, rather they reduce the need for the relaxation labelling and hypothesis genera-
tion processes to cope with tight multiple generation links. Nodes used for this purpose
are labelled with the name of their child node preceded by an asterisk, as shown in

Figure 3.7.

It should be noted that these special case part-of nodes are not treated any differently
by any of the internal processes in Cite and are only occasionally required in the correct

representation of higher level scene elements.

3.4 KB Node Common Properties

Each knowledge base (KB) node contains one list of parents and one list of children.
Each element in these lists is another KB node. The parent list is an unweighted list,
while the child list is weighted. This is done so that the KB-KB hypothesis weight is
stored in only one place. The probability of KB node a being the parent of KB node &
is the same as the probability of KB node b being the child of KB node a.

3.5 KB Node Specific Properties 38

3.5 KB Node Specific Properties

Each of the three KB node types contain specific properties related to the use of the

particular KB node type. This section describes these specific properties in detail.

3.5.1 Part-Of Specific Properties

The part-of node contains three additional components beyond the parent and child
lists. The first is a flag indicating whether the type-of node is a “consists” node or a
“constructed” node. This flag is used by a number of processes in Clife to determine

whether all children are expected or required.

The other two additional components are the unary and binary matching strategies
used by that node. These matching strategies do not necessarily contain descriptions
of the objects, rather they contain parameterised processes which can match the object
to a given set of data. Both the unary and binary matching strategies are built by

supervised incremental learning. This process is discussed further in Chapter 6.

3.5.2 Type-Of Specific Properties

There are no additional specific properties in the type-of node, other than those present

in all three knowledge base node types.

3.5.8 View-Of Specific Properties

The view-of knowledge base node could contain Euler angle or other pointing vector
notation such that the orientation of the object can be determined once it has been
optimally matched. This is currently not done as it is a simple addition which is not
relevant to the overall task of decomposing the input images into their constituent scene

elements.

4. Interpretation Structures 39

Chapter 4

Interpretation Structures

Cite contains a hierarchical segmentation in the form of a semi-restricted graph called
the visual interpretation. Multiple labelling hypotheses can be generated for each node
in the visual interpretation and these are stored in an intermediate structure called the
scene interpretation. This chapter describes both these structures and concludes with

a formal definition of the three data types used in Cite.

4.1 Visual Interpretation

Most object recognition systems work from single level segmentations. That is, the
image is broken into non-overlapping regions in which each pixel belongs to one region
and one region only. It is generally assumed that by direct (open-loop) segmentation
these regions will all represent objects or parts of objects, and the objects can be
found from appropriate groupings. In the case of recognising isolated objects this
latter grouping is not required as all parts (apart from the background) are assumed

to belong to the object in question.

Cite differs in that it contains a true hierarchical segmentation in which regions are
grouped to form larger regions which are grouped to form even larger regions and so

on. There can be multiple visual interpretation graphs for the scene; one for each

4.1 Visual Interpretation 40

image.

Unlike the knowledge base, there is only one type of node in the visual interpretation
graph. This is called the VI node and may contain multiple parents and multiple
children. Multiple children represent the grouping of smaller regions with common
properties or labels into a larger region with a single label. Multiple parents represent
the notion of ambiguous set membership, which is important in solving what is called

the cligue problem.

The clique problem is one of the main reasons why object recognition systems that can
recognise only single objects cannot be easily generalised to recognise multiple objects.
By way of example, consider a crowded street scene where there may be many parts that
match as car bodies and car wheels. For any given car body or car wheel part there may
be a number of possible ways to group this with other parts to form a complete “car”
subject to the expected relationships between the parts. When examined locally, many
of these groupings may appear consistent and hence can only be resolved by looking at
a more global level. Unfortunately, whenever global consistency is required in computer
vision, the complexity of an exhaustive solution rises exponentially. The clique problem
can be stated most succinctly as being the process of extracting sub-groups of parts
{cliques) to form objects so as to maximise adherence to local constraints within the

confines of maximising global consistency.

Cite uses a process of parallel hypothesis generation to generate multiple likely solu-
tions (local constraints) and then relaxation labelling to propagate these hypotheses to
maximise global consistency. This process is discussed in detail in Chapter 7, suffice to
say at this point that this approach relies on the ability for the segmentation structure

to support multiple ambiguous parent memberships for parts.

The remainder of this section describes the data structures used to represent the hier-
archical visual interpretation. Section 4.2 describes the scene interpretation structure

which provides indexing links between the visual interpretation and the knowledge base.

4.1 Visual Interpretation 41

4.1.1 Visual Interpretation Structure

There is one node type in the visual interpretation (VI) graph, called a VI node. There

is a separate VI graph for each image of the current scene.

Each VI graph is restricted in that no cycle in the graph can contain only parent-to-child
edges or only child-to-parent edges. There must be at least one child-to-parent and one
parent-to-child relationship in every cycle. Similar to the knowledge base graph, the VI
graph can be drawn in two dimensions such that for every node its parents are above

it and its children are below it.

The visual interpretation graphs are unbounded with the exception that there is one
node with no parents, representing the entire image. Leaf nodes with no children
represent the lowest level (finest detail) of image segmentation. Unary (part) and
binary (relational) features are calculated and stored at each level in the segmentation

hierarchy.

4.1.2 The Visual Interpretation Node in Detail

4.1.2.1 Graph Connections

Each VI node contains a list of parents and a list of children. Each element in these lists
is ancther VI node. The parent list is an unweighted list, and the child list is weighted.
This is done so that the VI-VI hypothesis weight is only stored in one place, although
for the purposes of analysing the VI structure the hypothesis weight is accessible from
either the parent or the child node. Thus, the probability of VI node a being the parent
of VI node b is the same as the probability of VI node b being the child of VI node a,
as depicted in Figure 4.1.

4.1 Visual Interpretation 42

VI Node A

Pr(B~child-of-A) = Pr{A-parent-of-B)

Figure 4.1: Undirected Hypothesis Weights Connecting VI Nodes

4.1.2.2 Scene Interpretation Connections

The scene interpretation (SI) structure is an indexing structure which connects the
visual interpretation to the knowledge base, and represents the current scene belief

state. The scene interpretation structure is discussed in full detail in Section 4.2.

Each VI node contains a weighted list of hypothesis links to SI nodes and each hypoth-
esis link is interpreted as being the visual support for the given scene interpretation
node. Multiple SI hypotheses may be connected to a VI node during top-down hypoth-
esis of the existence of missing or occluded parts. Ambiguous clique memberships may

also be represented by multiple SI hypotheses on the given VI node.

4.1.2.3 Region Description

Each VI node also contains a list of pixels that the node represents in the original
input image. There is no ordering or adjacency limitation placed on these pixels, which
means that a VI node can be used to represent multiple non-connected regions. This
is particularly useful for representing occluded objects and complex high level scene

elements whose constituent parts are not necessarily connected in the image.

The only requirement placed on a VI node’s pixel list is that the list be a subset of
each parent’s pixel list. This implies that at some level in a VI graph a pixel may
appear in multiple children of a VI node, representing ambiguous classifications for
that pixel. This is entirely the objective of Cite in supporting multiple contradictory

segmentations with the view to resolving them using higher level knowledge. The

4.1 Visual Interpretation 43

VI graphs constructed in this manner efficiently represent multiple segmentations at

different levels of detail.

Consider VI nodes ¢; to ¢, which are children of VI node p;, where the child nodes
have pixel sets {(z,y)}s, through to {(z,y)}., and the parent’s pixel set is {(z,¥%)}p .
Formally we have that {{z,y)}s; C {(z,¥)}p, ¥i € {1..n}, for all nodes in the VI graph.
In the case where all of the child nodes are leaf nodes, we can say that U; {(z,y)}, =

p; Vj € {1..n}. In addition, for leaf child nodes of any given parent the child nodes do

not overlap (that is, {(z,y)}e; N {(z,¥)}; = OV, 5,1 # 7).

In addition to the region description itself, the VI node is also the data structure where
image features are stored when they have been calculated. Image features may describe
a region {unary features), or the relationships between regions (binery features). Unary
features are stored in the VI node and binary features are stored in the common parent
of the multiple VI nodes between which they are calculated. Both unary and binary
features can be calculated on a “need-to-know” basis, and the feature operators are

discussed in detail in Chapter 10.

4.1 Visual Interpretation 44

4.1.3 The Set of Views and Visual Interpretations

Cite has facility for viewing multiple images of the same scene to establish a more
complete interpretation. Each image is represented as an element in the view-set which
contains both the input image and the visual interpretation structure for each image.
There is, however, only one scene interpretation structure for each scene being viewed.

The visual interpretation nodes all provide SI hypothesis links connecting to this.

Adding multiple views adds the additional complexity of the object correspondence
problem. If an image contains three trees for example, and another view from a different
direction contains those three trees, it is a non-trivial problem to determine which tree
corresponds to which in the two images. This is analogous to the depth-from-stereo
correspondence problem with the additional complication that the views can be from
vastly different positions making some properties such as the baseline and crossover

constraint unusable.

4.2 Scene Interpretation 45

4.2 Scene Interpretation

Most object recognition systems work only from single images of single or small numbers
of different objects. The internal representation tends to be a list of parts, each with one
label which represents the most common object part. In more sophisticated systems,
there may be multiple labels for each part or a first level of grouping parts together to
form objects, each of which has a label. In these systems, the knowledge base is shallow
and the data representation for hypotheses is a straight forward connection from each

part to a node in the knowledge base.

Unfortunately for more complex scene analysis this direct connection of regions to labels
is not sufficient. For example, we may know that a region exists but it may helong to
two possible objects. In this instance, the region requires two part labellings. Without
a further indexing scheme it will not be clear to each of the two parent object labels
which of the child labels necessarily supports its own hypothesis. This situation is
shown in Figure 4.2. When computing the support for the node labelled VP-KP1 it is
not clear how to interpret the multiple VC-KC1 and VC-KC2 hypothesis labellings. Of
course, one could search the parent-child relationships to look for ancestry, but in the

generalised graph where the hierarchy may be considerably deeper this form of search

becomes very costly.

Knowledge
Base

Hierarchical
Segmentation

Figure 4.2: Illustration of Inadequacy of Direct Labelling

4.2 Scene Interpretation 46

Another problem arising from the direct labelling depicted in Figure 4.2 is that the
instantaneous interpretation of the scene is a piece-wise linear addition of multiple
interpretations. That is, the scene would be described as containing an object of type
KP1 or KP2, with a child of type KC1 or KC2. A more appropriate interpretation
would be that the scene contains either a KP1 with a KC1 child, or a KP2 with a
KC2 child. Again, this interpretation could in most cases be deduced by examining the
labelling paths to determine the most likely outcome. However, this will not work in

general and will be computationally expensive across deep hierarchies.

The problem occurring in Figure 4.2 is that there is no relational information between
the various hypotheses. The relational information required is in the form of a compat-
ibility set which groups hypotheses into mutually consistent groups. For a hierarchical
scene description these compatibility sets must also be hierarchical. The most appro-
priate structure is a graph of similar construction to the knowledge base and visual

interpretation, which is called the scene interpretation.

The direct labelling example in Figure 4.2 is shown with the intermediate scene inter-
pretation (SI) structure in Figure 4.3. The instantaneous scene description, including
all the appropriate ambiguities, can now be read directly from the SI graph. The scene
now contains two alternative interpretations, embodied in nodes labelled S1 and S2.
These scene interpretation nodes establish the compatabilities between hypotheses such
that, for example, the KP1-VP hypothesis cannot now be associated with the KC2-VC
hypothesis. When one considers that Cite operates over deep hierarchies with a knowl-
edge base where a node may belong to a number of parents, the scene may contain
multiple instances of the same object and where multiple views of the scene need to be

integrated, the scene interpretation graph becomes a fundamental requirement.

In many ways the scene interpretation graph represents a full analysis of the scene.
However, it contains no data other than the hypothesis links to the KB and VI nodes.
All of the segmentation and feature information (the data) is stored in the visunal inter-
pretation. All the world knowledge and matching strategies are stored in the knowledge
base. In this sense, Clite’s three data structures represent an elegant and formal sepa-
ration of a vision system into the knowledge, data and interpretation constituent parts

with a generalised hypothesis scheme connecting the three structures.

4.2 Scene Interpretation 47

Knowledge
Base

Scene
Interpretation

Hierarchical
Segmentation

Figure 4.3: Hierarchical Compatibility Sets via the Inser-
tion of the Scene Interpretation Structure

4.2.1 Scene Interpretation Structure

There is only one node type in the scene interpretation (SI) graph, called an SI node.
Like the knowledge base, the SI graph is restricted in that no cycle in the graph can
contain only parent-to-child edges or only child-to-parent edges. There must be at least

one child-to-parent and one parent-to-child relationship in every cycle.

The scene interpretation graph is unbounded with the exception that there is one
node with no parents as this represents the entire scene. Leaf nodes with no children

represent the lowest level (finest detail) of scene analysis.

4.2 Scene Interpretation 48

4.2.2 Scene Interpretation Node in Detail

4.2.2.1 Graph Connections

Each SI node contains a list of parents and a list of children. Each element in these
lists is another SI node. The parent list is an unweighted list and the child list is
weighted. This is done so that the SI-SI hypothesis weight is stored in only one place.
The probability of SI node a being the parent of SI node b is the same as the probability
of ST node b being the child of SI node a, in exactly the same way as described for the

visual interpretation structure (see Section 4.1.2.1).

4,2.2.2 Visual Interpretation Connections

Each SI node contains a weighted list of VI nodes that are interpreted as being the
visual support for that particular scene element. Multiple VI nodes may be connected

to a SI node during top-down hypothesis of the existence of missing or occluded parts.

The weighting for the SI to VI hypotheses is identical to the VI to SI hypotheses (that
is, the VI-SI hypothesis is undirected). The actual weight for each VI-SI hypothesis is

stored in the SI node.

4.2.2.3 Knowledge Base Connections

Each SI node containg a weighted list of knowledge base nodes that represent possible
object labellings for that SI node. Each weight in the KB node list can be seen as a

probability, and as a result of the normalisation process these will add to 1.0.

Unlike other inter-node connections in Cite, the SFKB connections are not duplicated
as KB-SI connections. This is because the knowledge base is the last point of reference
and there are no operators that traverse the knowledge base needing to refer back
to the scene. This separation of scene interpretation and knowledge base is another

motivation for moving the inter-object indexing away from the knowledge base and into

4.2 Scene Interpretation 49

the distinct data structure of the scene interpretation graph.

Multiple SI-KB labellings represent an ambiguous classification and these are resolved
through a process of relaxation labelling. This process is described fully in Chapter
8. The SI-KB hypothesis weight is stored in the SI node, and in conjuction with the
VI-SI weights, these connections represent the main “interpretation state” of Cite at

any given moment.

4.3 A Formal Definition of the VI, SI and KB Structures 50

4.3 A Formal Definition of the VI, SI and KB Structures

Definition 1: A C-node is a graph vertez containing a set of edges to parent C-nodes
and a set of edges to child C-nodes. In each C-node these two sets contain no duplicates

and are disjoint.

Definition 2: A C-groph is a semi-restricted graph of C-nodes which has one C-node
with an empty parent set, and all cycles contain at least one parent-to-child edge and

at least one child-to-parent edge.

Definition 3: A Part-Of node is a C-node additionally containing a text label, a unary

matching strategy end a binary maetching strategy.

Definition 4: A Type-Of node and o View-Of node are C-nodes additionally containing
a text label

Definition 5: The knowledge base (KB) is a C-graph with un-attributed edges where
each C-node is a Part-Of, Type-Of or View-Of node.

Definition 6: A wvisual interpretation (VI) node is a C-node additionally containing a
set of (z,y) pizel locations, a set of unary features, a set of binary features, a segmen-

tation history list, and a set of attributed hypothesis links to the scene interpretation.

Definition 7: A VI graph is a C-graph where each edge is ettributed with a single
weight in the range [0,1] and each vertex is a VI node.

Definition 8: A scene interpretation (SI} node is a C-node additionally containing a
set of attributed hypothesis links to KB nodes and a set of attributed hypothesis links to
VI nodes.

Definition 9: A SI graph is a C-graph where each vertez is a SI node.

Definition 10: A unary matching strategy is an algorithm containing the required data
and processes to compute the degree of similarity to a VI node, and to adaptively update

these data and processes to incorporate positive and negotive examples in the form of

4.3 A Formal Definition of the VI, SI and KB Structures 51

VI nodes.

Definition 11: A binary matching strategy is an algorithm containing the required data
and processes to compute the degree of similarity to a set of VI nodes with a common
parent, and to adaptively update these date and processes to incorporate positive and

negative examples in the form of a set of VI nodes with a common parent.

Cite contains one knowledge base graph as defined in Definition 5. For the current
scene, Cite containg one scene interpretation graph as defined in Definition 9, which
is renewed as each scene is viewed. For each image of the scene there is one visual

interpretation as described in Definition 7.

5. Operational Overview 52

Chapter 5

Operational Overview

The two previous chapters described the knowledge base and scene interpretation data
structures used in Cite. These following chapters describe the operators and algo-
rithms which construct and manipulate these data structures. This chapter provides

an overview of these processes.

Many vision systems have a simple flow-through architecture. Typically this involves
an image segmentation stage, followed by a feature extraction stage, followed by a
matching stage. In each stage the data flows in one direction only and there are no
other control signals. Some systems, such as BONSAI [Flynn and Jain, 1991a} do have a
coarse-grained feedback mechanism that makes corrections to the object hypothesis by
image back-projection. Cite attempts to further refine these feedback processes, and

the resultant complexity requires a more structured description.

By way of introduction, Figure 5.1 shows an example of the three main data structures
in Cite and the operators which construct and manipulate these data structures. In this
chapter a simple example is followed through in detail, followed by a brief description
of each operator. Figure 5.1 serves primarily as an example road-map for the operation
of Cite, and Figure 2.1 (at the end of Chapter 2) should be consulted for a description

of the temporal data flow sequence.

5.1 A Simple Example

53

Update:Weightsg
A —

(Features:Unary)

(Feature:Binary)

(Matcher: Hierarchy KB}

@ SI

H Grouper :
Hierarchy Parts

Matcher Matcher
VI from ST SI from VI

Matcher basic
unary

rouplng Connected
Components

(Segmenter:Initial)

Segmenter ;:Run

Figure 5.1: Overview of Data Structures and Operators within Cite

5.1 A Simple Example

For the purposes of illustrating the function and data flow surrounding the main oper-

ators in Cite, a simple example of recognising a Norfolk Island Pine using the Botanist

knowledge base is considered. The sample image and knowledge base (KB) are shown

in Figure 5.2.

When Cite first loads an image a default top level VI node is created. The segmentation

initialisation process detects that this VI node has not yet been segmented and begins

this process. As no recognition has occurred yet, Cite uses the top level KB node to

5.1 A Simple Example 54

World
. —
= . TEE
— 7l ‘m"‘-“.
out _//‘-/ - mﬁl_mnifar
@ 8.

- s o
lane, - ~._ozgk pex in.

Figure 5.2: Norfolk Island Pine Image and Botanist Knowledge Base

determine the initial segmenter and its parameterisation. This information is stored
inside the KB node, and can be viewed by the user in a small pop-up window as is

shown in Figure 5.3.

Figure 5.3: Top Level KB Node Segmenter used for Initial Segmentation

The segmentation operator then executes the segmentation process. This operator can
execute multiple independent segmentations on different parts of the image at the same
or overlapping times. The last thing the segmentation operator does before terminating
is to generate the VI nodes corresponding to each region. Figure 5.4 shows this initial
segmentation and the VI graph at this point. Note that this initial segmentation has
resulted in an over-segmentation of the image. The objective is to end up with just two

parts, the trunk and the foliage, as described in the knowledge base.

After the initial segmentation occurs, the unary feature extraction operator detects
unattributed VI nodes and begins calculating the unary features for these nodes. At the
same time, the connected components grouper constructs a parent VI node representing

the collection of VI leaf nodes. For this example, the connected components operator

5.1 A Simple Example 55

Figure 5.4: Initial Segmentation and Corresponding VI Graph

is used instead of the clique resolving operator for simplicity. The grouped VI nodes
are then processed by the SI-from-VI matching operator. This begins the process of
generating the scene interpretation graph. Once the scene interpretation has been
started, the basic unary matching occurs. This matches the leal VI nodes with the
knowledge base and generates SI hypotheses linking the SI nodes to the knowledge base.
When this is complete the hierarchical knowledge based matching operator detects
missing levels in the scene interpretation and fills these in. The VI-from-SI matching

operator then propagates these down to the VI graph.

Figure 5.5 illustrates the three graph structures at this point in the analysis process.
Several SI nodes have been selected by the user (indicated by being coloured) which
also displays their KB and VI hypotheses. The weights on each link indicate the initial

matching strengths before the relaxation labelling process has begun.

In conjunction with the SI and VI node construction operators, the knowledge driven
resegmentation operator scans the SI graph for nodes that may require resegmentation.
This process is discussed in more detail in Chapter 9, suffice to say at this point that
although Cite believes the object to be an oak tree it clearly has too many children and
can be resegmented using the segmentation parameterisation stored in the “Oak” KB
node. This resegmentation results in the dismantling of most of the VI and SI nodes,

leaving just the parent object node which it knows is a “Tree”.

Figure 5.6 shows the new data graphs after the system has stabilised. The hypothesis

for the object is now that it is a “nipine” (Norfolk Island pine), which is correct. Note

5.1 A Simple Example 56

e ™
N _a—f"‘f"'_”‘—_-r Ty
?“.{H s /J'UL\-\"‘*\\
O O F e (L
plane. " " oak penuliﬁme" \w
7 TN s ‘_‘
mu” SN mak N b
. 9. tod o . f\u} {3 l_}
; L
) e f\ _}‘ 55
£ ‘
#], J 0 - .
TN A oo %
08460783 0679 ' ‘1:1753\3\521
l‘. ‘J . —— " H‘w‘—_"-\--,,)
.,-A)—‘ .o) “““—ﬁ..
g e o ;ﬁu—m,h__

AT __,_A:-"”'_J' £ ——
[F Lt
K Syt

J_f "‘4’{{[}%1‘“* e
O O O e o Ml

Figure 5.5: KB, SI and VI Graphs After Initial Segmentation and Processing

that one SI leaf node has multiple hypotheses linking it with the knowledge base. This
will be resolved trivially by the hierarchical relaxation labelling process, which has not
been discussed in this example. The labelled segmentation is shown in Figure 5.7. Cite

can also produce a text description of the scene, which is detailed in Figure 5.8.

As a rough account of the performance of the system, this simple scene interpretation
took 66 seconds to compute!, most of which was spent completing the two segmenta-
tions. The knowledge base used in this example was constructed from 19 images of
four types of tree and two types of shrub. The process of building the knowledge base

is described in Chapter 6.

This example has shown the basic methods by which Cite operates. The most important
aspects are the three interconnected data structures representing the knowledge base,

scene interpretation and visual interpretation, and the range of operators which create

'This is when exceuted on a single 150 MHz R4400 processor

5.1 A Simple Example 57

Figure 5.6: Example Data Graphs after the Second Segmentation

Figure 5.7: Final Labelled Segmentation of the Example Image

and modify these data structures. The operators behave independently and represent
a range of functionality from low level segmentation and feature extraction through to

hierarchical relaxation labelling, clique resolving and knowledge directed segmentation.

5.2 Operator Scheduling 58

World[0] {1.000) Consisting of:
tree[11] (1.000) Of Type:
conifer(12] (1.000) Of Type:
nipine[6] (1.000) Constructed from:
l:trunk[g] (0.919)
foliage[10] (0.971)

Figure 5.8: Text Description of Example Scene

The remainder of this chapter describes how the operators are run, and categorises
and summarises each of the operator types and their function. It will be valuable for
the reader to refer back to Figure 5.1 to locate each operator and examine its position

within the data structures in Cite.

5.2 Operator Scheduling

Cite's operators are all loaded into a process stack when the system is initialised.
The process scheduler cycles through this process stack and executes each operator.
The process scheduler is not interrupt or timer driven but relies on each operator to
return control to the scheduler after a short time interval. There is no inter-process

communication other than via the status of the interpretation structures.

Each operator is responsible for determining whether there is any work for it to do.
If so, it must return control to the process scheduler within a reasonable period of
time (less than one second) to ensure that the user interface does not slow down. A
commercially oriented implementation of Cite in a multi-processing environment could
easily fork each operator as a separate process. The current cyclic scheduler was used

for simplicity alone.

In the evolution of Cite other architectures and process scheduling algorithms were
considered. The final system is a data structure oriented system where the data struc-
tures alone hold all process control information in an implicit form. This architecture
is similar to a data flow architecture in that the process control is carried out directly

according to the state of the data.

5.3 Segmentation Operators 59

The choice of a cyclic scheduler over a control flow scheduler was made so that each
operator behaves independently. This provides the system with an “agented” flavour,
however this description would be inaccurate as the processes do not duplicate or re-
move themselves and do not contain any permanent data. Another motivation for this
approach is that the data structures in Cite represent the current scene interpreta-
tion, and the interpretation functions decompose easily into a number of separate and

independent processes.

5.3 Segmentation Operators

The segmentation operators are responsible for grouping pixels in the image into regions
of common texture or colour, for the grouping of these regions into possible higher level
objects, and for the knowledge driven resegmentation. The segmentation algorithms

are discussed in more detail in Chapter 9, but each will be described briefly here.

5.3.1 Segmentation Execution Operator

The PROCESSSEGMENTRUN operator is the main segmentation execution operator. It
scans the visual interpretation graph for nodes with incomplete segmentations loaded
into their segmentation stack. In this instance, a segmentation comprises the choice of
segmentation algorithm and the set of parameters for that instance of the segmentation

algorithm.

When an incomplete segmentation is detected, this process executes one cycle of the
segmentation before returning control to the process scheduler. When the segmentation
process on the given VI node is complete, the PROCESSSEGMENTRUN operator removes
the segmentation from the segmentation stack and places it on the segmentation history
stack in the VI node. The segmentation history is maintained so that the knowledge
driven segmentation process knows what segmentations have been tried in the past on

each VI node.

5.3 Segmentation Operators 60

5.3.2 Segmentation Initialisation Operator

The PROCESSSEGMENTINITIAL operator scans the scene interpretation graph for nodes
with no child visual support. That is, if the visual support node or nodes for the
ST node under consideration have no children then Clite knows that segmentation is
required on the childless VI node. When this condition is detected Clite determines the
best segmenter algorithm and its parameterisation to be run on the VI node. This is
loaded into the segmentation stack in the VI node and will then be executed by the
PROCESSSEGMENTRUN operator in due course. The algorithm for determining the best

segmenter and its parameterisation is described in Section 9.1.1.

This operator is used to generate the initial segmentation for each image and the
initial segmentation for top-down VI hypothesis generation. The PROCESSRESEGMENT
operator is similar, but operates only after the initial segmentation and labelling has

occurred.

5.3.3 Resegmentation Operator

The PROCESSRESEGMENT operator is similar to the PROCESSSEGMENTINITIAL op-
erator in that it scans the scene interpretation graph looking for nodes that require
segmentation. However, the resegmentation operator only operates on SI nodes whose
visual interpretation nodes have had at least one segmentation already, and where mul-
tiple knowledge base hypotheses exist or, in the case of part-of nodes, the number of

children does not match the number in the knowledge base.

This operator will initiate a resegmentation of the VI node in question if labelling
subsequent to the earlier segmentations gives rise to a better hypothesis of what the
scene element is, and there exists a more appropriate segmenter that can be run based
on this subsequent labelling. This is knowledge driven resegmentation and is described
in further detail in Chapter 9. The net result of this operator is the dismantling of the
local VI sub-tree, and the loading of a new segmenter into the segmentation stack of

the parent VI node.

5.4 Feature Extraction Operators 61

5.3.4 Connected Components Grouping Operator

The PROCESSSEGMENTCC operator is used to group regions by connected components
analysis to form objects. This is a standard bottom-up part grouping algorithm in com-
mon usage in machine vision systems. Although fast, it only works on isolated objects
(objects that do not touch other objects). In Cite this operator is only used in early

learning when the more sophisticated clique resolving operator has been deactivated.

5.3.5 Clique Resolving Operator

The PROCESSCLIQUEGROUPING operator is a more sophisticated part grouping algo-
rithm that creates groups of parts that may belong to the same object. This algorithm
typically generates a number of different groupings when there are multiple touching
or overlapping objects. This operator over-rides the simple connected components op-

erator which is only used when there are single or isolated objects in the image.

5.4 Feature Extraction Operators

The feature extraction process is currently carried out by two processes; PROCESSBA-
SICUNARY and PROCESSBASICBINARY. These calculate the default unary and binary
features and store the results in the visual interpretation structure. One important
part of these operators is that they must recompute features after resegmentation takes
place. This is achieved by iteration-stamping the features in the visual interpretation

structure so that Cite knows how old the features are.

5.5 Hypothesis Generation Operators

Hypotheses in Cite include all components of the visual and scene interpretation struc-
tures. In some senses, the segmentation processes are hypothesis generation processes

because they generate low level “hypotheses” about which pixels belong together. How-

5.5 Hypothesis Generation Operators 62

ever, because the accepted terminology segregates these into the class of “segmenta-
tion” operators, they are described separately. The remaining hypothesis generation

processes are discussed here.

5.5.1 Basic Unary Matching Operator

The PROCESSUNARY MATCH operator takes low level nodes in the visual interpretation
and tries to match them with the knowledge base. This is achieved by executing the
EvaluatePoint function of the learning/matching strategy stored in the knowledge
base with the unary features of the part. The hypotheses generated link the associated
scene interpretation node with the knowledge base nodes that best match the unary

region properties, using a measure defined separately by each unary matching process.

5.5.2 Generating SI from VI

The ProCESSSIFROMVI operator examines the hierarchical structure of the visual
interpretation graph to make sure that the hierarchical components are reflected in the
scene interpretation graph. The scene interpretation graph is not necessarily identical
to the visual interpretation graph but must reflect its topology. This is a bottom-up

process.

5.5.3 Generating VI from SI

The top-down version of the PROCESSSIFROMVT operator is the PROCESSVIFROMSI
operator which propagates scene interpretation hierarchical structure down to the visual
interpretation structure. The scene interpretation structure typically comes from the

knowledge base and hence is a knowledge driven top-down process.

5.6 Relaxation Labelling Operators 63

5.5.4 Hierarchical Group Matching

The PROCESSHIERARCHYMATCHGROUPS operator takes possible groupings of parts
and examines the knowledge base for objects that the parts could belong to. This pro-
cess combines unary and binary information to generate the initial object hypotheses.
This operator only executes when the hypothesised parent knowledge base node is a

Part-Of node indicating a construction.

5.5.5 Knowledge Base Hierarchy Matching

The PROCESSHIERARCHYMATCHKB operator examines the knowledge base hierarchy
and ensures that the scene interpretation structure reflects the Type-Of and View-Of
knowledge. This operator effectively works hand in hand with the PROCESSHIERACHY-
MATCHGROUPS operator to provide knowledge driven (top-down) hierarchical scene
decomposition. The hierarchy generated in the scene interpretation is then propagated

down to the visual interpretation structure by the PROCESSVIFROMSI operator.

5.6 Relaxation Labelling Operators

Cite can generate multiple labelling hypotheses, multiple grouping hypotheses and mul-
tiple parent relationships for nodes in the scene interpretation and visual interpretation.
Each of these is weighted, and the weights can be interpreted as probabilities. A hier-
archical form of relaxation labelling is used to update these probabilities and propagate

constraints across the various graph structures.

The relaxation labelling process is a two stage process; the first stage generates new
estimates for each hypothesis, and the second stage normalises these hypotheses with
respect to the scene and visual interpretation structures. Because of the interaction of
the hypothesis update algorithms, all hypotheses must be re-estimated before any are
normalised. The estimation processes leave the hypotheses in an un-usable state, so for

this reason the normalisation stage must occur immediately after the estimation stage.

5.7 Ancillary Operators 64

Consequently, all the relaxation labelling algorithms are combined into one process
called PrROCESSUPDATEWEIGHTS which does both the estimation and then the nor-
malisation on all hypotheses in Cite. This one process is quite involved algorithmically,
but is fast to execute, so there is no problem integrating the various algorithms to-
gether. Each of the hypothesis update algorithms is described in detail in Chapter
8.

5.7 Ancillary Operators

In addition to the main operators described in the previous sections, Cite contains a
number of maintenance, status and consistency checking operators. These make C'ite
more usable as well as automatically detecting problems in the interpretation structures.
This latter facility is most valuable because the interpretation structures are constantly

being created, dismantled and moved around.

5.7.1 Initialisation Operators

The two operators PROCESSINITSCENE and PROCESSINITVINODE generate the top
level SI and VI nodes respectively when a new scene or view is loaded. These processes
effectively seed the more complex operators described above. PROCESSINITVINODE
creates a new top level VI node if it detects an image without a corresponding VI node.
PROCESSINITSCENE creates a top level SI node if there is a top level VI node with no

SI hypothesis and the top level SI node does not exist.

5.7.2 VI Node Checking

Two operators, PROCESSVINODECHECK and PROCESSVINODECHECK2, scan the vi-
sual interpretation structure and make sure that the various requirements of this struc-
ture are maintained at all times. These operators check the following VI node proper-

ties:

5.7 Ancillary Operators 65

e Bach pixel in a VI node is also a pixel of each parent VI node.

e No pixel is repeated in a VI node pixel list.

5.7.3 CPU Performance Operator

The PROCESSPERFORMANCECHECK operator computes a simple estimate of the CPU
performance in comparison to a 150 MHz R4400 processor (as this is what Cite is
normally run on). Cite maintains a list of execution times and rates for each operator
which is useful in comparing the relative computational cost of each process. The global
performance measure is useful in comparing these execution times when the program

is run on other systems.

5.7.4 Profile Update Operator

The PROCESSPROFILEREFRESH operator periodically updates the operator profile win-
dow. This window contains a list of all operators, their total execution time, and a
number of time weighted averages of their execution time and percentage total execu-

tion time. This status window is described in more detail in Appendix B.2.5.

6. Learning World Knowledge 66

Chapter 6

Learning World Knowledge

The database in any information processing system can be built in three main ways.
It is possible to sit down and “hard-code” algorithms optimised for the detection of
certain signals based on the experts knowledge of these signals. Secondly, knowledge can
be constructed from idealised internal representations such as computer aided design
(CAD) object models. Finally, knowledge can be obtained by learning from examples

that are sensed in the same manner as in normal run-time operation.

Hard coding algorithms and building knowledge from idealised models is known as the
model-based approach. One example of this is Computer Aided Design (CAD) based
object recognition which is quite common in industrial inspection applications where
the object models are already available. Hard coding of recognition algorithms tends
to be quite difficult in object recognition because of the large amounts of data involved
and the inflexibility of the resulting system, and for these reasons is not a common

approach.

Learning from examples is a difficult approach yet one that is becoming increasingly
popular mainly because it moves the knowledge acquisition burden from knowledge
engineering to machine learning. Within the learning from examples approach, there
are two broad categories; supervised and unsupervised learning. In supervised learning,

the classification system is told what each object is as it is being learnt, whereas in

6.1 Supervised Versus Unsupervised Learning 67

unsupervised learning this additional information is not known.

Cite uses the supervised learning method because the limitations imposed by the other
two methods are too great. Direct hard-coding is time consuming and, in the case of
computer vision, subject to a general lack of expert knowledge. One disadvantage with
model based approaches is that the system requires access to complete descriptions of
objects so that it can then prune the information to a minimal form for recognition
purposes. Only for simple constructed objects is such information available. Less rigidly
defined objects such as “tree” or “house” and higher level concepts such as “forest” or

“street scene” have no known explicit model representation.

The choice of supervised over unsupervised learning is clear in the case of Clite, and of
scene understanding and object recognition systems in general. Unsupervised learning
(similar to clustering and data mining) will not necessarily learn the desired categories
for objects as determined to be useful by the user. In addition, Cite uses incremental
supervised learning in which the training and run-time phases are unified so that the

system may continually learn as it is being used.

This chapter describes in detail the learning mechanisms in Cite. Section 6.1 dis-
cusses the differences between supervised and unsupervised learning in more detail,
and Section 6.2 describes in general terms the refinements required of supervised learn-
ing algorithms to make them incremental. The remainder of the chapter describes the
learning processes used in Cite and concludes with a discussion of how the unary and

binary matching algorithms interact with the relaxation labelling process.

6.1 Supervised Versus Unsupervised Learning

There are two general categories of inductive machine learning; supervised and unsu-
pervised. In supervised learning, the system is told what each example is and must
work out what sets it apart from other objects of different classes, and what common
characteristics it has with objects of the same class. In unsupervised learning, the sys-

tem creates class categories from a large set of examples based on a model of the data

6.1 Supervised Versus Unsupervised Learning 68

coded into the algorithm.

It is often claimed that unsupervised methods discover natural categories in training
examples with no prior knowledge. Unfortunately this is not the case as all unsuper-
vised learning methods contain some form of metric which measures how similar or
dissimilar two data items are. Most unsupervised learning methods that operate on
real valued data use some form of clustering or agglomeration to group objects of sim-
ilar characteristics together. Unsupervised neural network training schemes such as
adaptive resonance theory (ART and ART-II} [Carpenter and Grossberg, 1988] and
self organising maps such as Kohonen maps [Kohonen, 1990] contain metrics for de-
termining input vector differences, or differences between input vectors and prototypic
output states. In all of these unsupervised learning schemes this metric represents prior
knowledge as it is a model of the space of input vector values. There is no “discovery
of natural classes”, rather, these methods cluster or map feature vectors onto output
classifications (or mappings) to preserve or optimise some pre-determined model of the

input vector space.

By way of example, AUTOCLASS [Cheeseman, Kelly, Self, Stutz, Taylor and Freeman,
1988] is an unsupervised learning scheme based on a Bayesian statistics model. In the
conclusion, the authors state that the approach is “free of ad hoc quantities, and in
particular free of any measures which alter the data to suit the needs of the program”.
Contrary to this claim, AUTOCLASS uses an axis-aligned normal distribution model of
the input feature space, which is a commonly chosen model. This is a model of the
data which may need to be altered in different circumstances; for example bounded

rules assume no correlation between features whereas (Gaussian distributions do.

Unsupervised learning, clustering, correlation and other data analysis methods can
yield very interesting and important results. As mentioned in [Cheeseman et al., 1988}
the resulting clusters can provide a useful starting point for further expert analysis
of the data. The main point of this discussion is to unambiguously assert that the
differences between unsupervised and supervised learning are significant, and the claims
of generality occasionally made in some unsupervised learning research are not always

entirely appropriate.

6.2 Incremental Supervised Learning 69

6.2 Incremental Supervised Learning

Most supervised learning concentrates on the task of building a classification mapping
from a set of representative training data. A number of common issues arise in relation
to the amount of training data to use, and how representative of the full problem space
the data is. Most researchers report the best classification rates obtained from both
the training data and the unseen test data. This methodology has a distinct training
phase and a distinct runtime phase where classification rules and parameters are frozen

after the training phase has completed.

A variant on the supervised learning method merges the training and run-time phases
together so that the system can continue to learn as well as being used to classify seen
and unseen data. This approach is called incremental supervised learning and requires

a number of extensions to simpler non-incremental approaches.

The conversion of a non-incremental learning algorithm to an incremental form is a com-
plex and seemingly not well understood problem. In general, there are three categories
of such conversions; catastrophic, useless and ideal. The category can be determined
by looking at the way the memory consumption of the algorithm increases and the way
the computational complexity of the algorithm increases as a function of the number

of points being learnt.

If M{(n) is the memory usage of the incremental form, then the ratio of Ras(n) = —Aﬂnﬂl
gives an indication as to how the memory usage increases with the number of learnt
points, n. If Rjs is equal to one, then the algorithm probably falls into the useless
category as it would be just as memory efficient to store all points ever seen. If Ry is
greater than one, the algorithm is catastrophic as it is using more memory than would
be required to store all the points ever seen. Clearly it is ideal for the algorithm’s
memory use to be sub-linear in the number of points seen. This requirement is usuaily
achieved by non-incremental machine learning algorithms, but can be overlooked in the
conversion to the incremental form (for example, ID-3 and its incremental forms ID-4

[Schlimmer and Fisher, 1986] and ID-5R [Utgoff, 1989]).

6.2 Incremental Supervised Learning 70

If Cyz(n + 1) is the number of computation steps required to learn (n + 1) points
from scratch in a non-incremental algorithm, and Cr(n — = + 1) is the computation

required for the incremental algorithm to go from the n* to the (n + 1)** point, the

Cr{n—n+l

SRS should be less than one also for an ideal algorithm. If Re

ratio Rg(n) =
is equal to one, then it is no different to simply learning all n points from scratch,

and if R is greater than one the algorithm is clearly catastrophic in its computational

complexity.
o
0
A oA
Catastrophic S Catastrophic
i
; :
o S Useless
=] o
2 -
—_ Ld Tdeal
3 g
0 =
- !
0
> a »
H

Non-Incremental
Computation

Number of Points

Figure 6.1: A Categorisation Method for Incremental Learning Algorithms

Figure 6.1 illustrates these two ratios and the categories described. Some incremental
learning algorithms proposed in the literature are linear in memory or computation or
both, and hence have questionable usefulness. The Explanatory Least Generalisation
algorithm described in Section 6.5.3 as applied to incrementally generating decision
trees is novel in that it achieves sub-linear growth in both memory and computation

requirements.

Further, it appears that an incremental learning algorithm should converge to a solu-
tion equivalent (if not identical) to the non-incremental form as the number of training
samples approaches infinity and given a stationary class distribution. Some of the
incremental algorithms published achieve this, but invariably do so by repeatedly re-
building their rule structures from scratch with linear computational cost in the number

of training samples.

6.3 The Part-Indexing Problem 71

6.3 The Part-Indexing Problem

A common claim underpinning a large proportion of the supervised learning literature is
that the learning problem can be stated without loss of generality as being the problem
of finding a mapping between the input space and a classification space such that the
training data is classified correctly and the system behaves with sufficient generality
on unseen data. This assumption is reasonable with regard to many applications of
machine learning where each feature point represents a single isolated object. However,
in object recognition one typically has several parts of a given object and the generality

of this approach fails when part labels (identity or indexing) must be considered.

To illustrate this problem, consider a face recognition application where two eyes, a nose
and a mouth can be segmented out and described by a set of unary features covering
the colour, size and shape of each part. The system can also compute binaery features
such as the distance and relative orientation between pairs of these parts. For four
parts, there are four unary description vectors and up to twelve! binary description
vectors. A system could conceivably contain a unary classification mapping and a
binary classification mapping, but a problem exists when trying to put all of this

evidence together to detect the presence of the “face” object.

Adopting a simple approach of accumulating evidence for the “face” object from the
unary and binary components will produce usable results but it will not, for example,
be able to distingnish the two images shown in Figure 6.2. This is because the set of

unary and binary features for the parts in these two objects is identical.

An unambiguous inferpretation requires not only unary and binary features to be
matched, but the correct indexing of these parts. For example, a system may know that
there exist two parts Hcm apart, but it must know which parts are Scm apart in order
to arrive at a correct interpretation. The worst case ambiguity arises when matching
objects with identical parts and one can typically, for n parts, have n! objects which

could map perfectly to it without full part indexing,

!The maximum number of asymmetric binary relations between n parts being n(n — 1)

6.3 The Part-Indexing Problem 72

Figure 6.2: Two Objects Indistinguishable Without Correct Indexing
Between Unary and Binary Features

A number of solutions to the indexing problem have been proposed. A simple solution
is to store a graph representation of the object such that at recognition time the best
possible cross-indexing of parts can be determined (usually a costly process). More
sophisticated approaches have been proposed to reduce the graph sub-isomorphism
complexity (such as the CLARET algorithm [Pearce, Caelli and Bischof, 1994]) or for
recognising objects more as a probabilistic mapping on parts (such as CRG and its

variants [Bischof and Caelli, 1994]).

In Cite, the binary matching algorithms may be different at each applicable node in
the knowledge base and may include exhaustive graph matching and other techniques
which exhibit differing degrees of solution of the part indexing problem. Relaxation
labelling is always used to resolve wider scope label incompatibilities represented by the
hypotheses in the scene interpretation. This can influence the way the binary matching
results are propagated through the scene interpretation graph, but does not play a role
in how the binary matching results are generated. This is solely done by the binary
matching algorithms stored at each Part-Of parent node in the knowledge base. These

binary matching algorithms are discussed in detail later in this chapter.

6.4 Overview of the Learning Strategy in Cite 73

6.4 Overview of the Learning Strategy in (ite

As discussed above, single point classification strategies require some level of solution
of the part indexing problem to be useful in object recognition. This problem has
received some attention in the literature, as has the learning of these more sophisticated
recognition strategies. For Cite, however, supervised learning must be extended once
more to also include the learning of hierarchical knowledge. Hierarchical learning has
received attention in AT literature, but because this tends to be hierarchical learning

in symbolic concept formation, it is less applicable to scene understanding systems.

The hierarchical learning in Cite is made relatively easy by the fact that the hierarchy
is defined contextually according to the manner in which the system is used. That is,
the descriptions of the objects that the operator gives Cite during an incremental learn-
ing step contain sufficient information to build the hierarchy in a reasonably straight
forward manner. Hierarchical learning in Cite is of less interest than the incremental
learning which occurs at each node within the knowledge base, and of the way the

hierarchy is used during classification.

This section describes the various processes which are used to build the knowledge
base in Cite. Following this is a description of the supervised incremental learning

algorithms used at each node within the KB for both unary and binary classification.

6.4.1 Learning Options

If Cite correctly classifies a new instance of an object already in the knowledge base,
then, in general, it can be claimed that the knowledge base is sufficiently general to
recognise the new object instance. In some cases, such as when the learning algorithm
being used is based on a set of probabilistic rules, it would be appropriate to run the
LearnTrue function on this correctly labelled object to reinforce its rules. In most
other learning methods there is nothing to be gained from learning already correctly

labelled objects.

6.4 Overview of the Learning Strategy in (ite 74

When Cite incorrectly labels an object that is already in the knowledge base there are

three possible reasons for this, each of which requires a different action:

e The incorrectly labelled object may be a completely new view of the object, and

hence a new view must be added to the knowledge base.

e The matching algorithm may not be utilising the correct or available features
(whether unary or binary) so these may need to be added to or deleted from the

existing knowledge base.

e The object may be a different example of an existing view of an object, but the
matching algorithm may have incorrect rules or parameters that require incre-

mental retraining.

Of these three options, incremental rule modification is the least computationally and
memory expensive, while adding a new view is the most expensive in these two regards.
In the current implementation of Cite the features calculated are fixed and all are
considered during learning although they may not all be considered during recognition.
Deciding between learning a new view and learning a new example of a current view is

determined by the user when learning is required.

6.4.2 Building a Context Sensitive Knowledge Base

In a conventional flat knowledge base built with supervised learning the labels assigned
to each object can reflect context sensitivity to some extent. For example, if the user
of a system only cares to classify trees as all being the same type, the description for a
tree will be very general. If the user of such a system labelled trees according to their

species name, then each tree description would have to be far more specific.

Cite is designed to accommodate such differing levels of context sensitivity. However, a
far more valuable context sensitivity occurs in the construction of the knowledge base
hierarchy according to the user’s classification. Having deep knowledge hierarchies gives

rise to reduced feature and rule requirements, thus improving performance with fewer

6.4 Overview of the Learning Strategy in Cite 75

and less complex rules.

To demonstrate this, classification taxonomies of trees and bushes are built under
three different contexts; that of a botanist, a forester, and a landscape gardener. The
botanist will classify trees and bushes according to species, the forester will classify
trees according to their straightness and size and ignore bushes, and the landscape
gardener will classify the trees and bushes according to their size, foliage shape and

wind coverage.

In each of the three cases, the same data is used but classified in different ways. In
addition, the effectiveness of the hierarchy in reducing the knowledge base informa-
tion is demonstrated by building three flat knowledge bases which represent the same

taxonomies built without hierarchies.

@edga G..antana)

hedgel-2 lantanal-2

nipinel-4 pencilpingl-8 planel-8 oakl-8
nipinebent1-4

Figure 6.3: Knowledge Base Depicting Botanist’s Taxonomy

The three taxonomies are depicted in Figure 6.3, Figure 6.5 and Figure 6.4. The full
learning and recognition results for these context sensitive knowledge bases is described

in Section 11.4.

6.5 Unary Learning Algorithms 76

World

@arvest NOVD G{arvest Latea @emove)

oakl1-8
(o) (zer 7o)
nipinel-4 pencilpinel-8 planel-3 lantanal-2

nipinebentl-4 hedgel-2

Figure 6.4: Knowledge Base Depicting Forester’s Taxonomy

lantanal-2

Wind Break

nipine1-4 pencilpinel-8
nipinebent1-4 oakl-8

Barrier

plane1-8 hedgel-2

Figure 6.5: Knowledge Base Depicting Gardener’s Taxonomy

6.5 Unary Learning Algorithms

In each node of the knowledge base, a unary matching strategy and all its required data
structures can be stored. The unary matching strategy may be different at each node,
and there need not be one at each node, although there does need to be at least one at

every leaf node. Each matching strategy must be able to perform three operations:

1. to determine the degree of match or mismatch to a candidate part,

2. to learn a new positive example,

6.5 Unary Learning Algorithms 77

3. and to learn a new negative example.

In addition it is desirable that the learning strategy adhere to the two incremental
learning algorithm requirements of bounded memory usage and bounded computational

complexity when incrementally learning.

Clite currently contains two unary matching strategies; a bounded rule based method
and a prototype nearest-neighbour based method. In their current form, neither of
these algorithms conform to the bounded memory and complexity requirements of
ideal incremental learning algorithms. However, this dissertation does contain a sig-
nificant new method for converting non-incremental to incremental algorithms which
does conform to the bounded memory and complexity requirements. This method,
known as the explanatory least generalisation (ELG) method is described in detail in
Section 6.5.3 where it is applied to the ID-3 minimum entropy decision tree algorithm
[Quinlan, 1986]. The ELG method could be applied to the two unary learning strate-
gies used in Cite, but with the modest size of the knowledge base there would be no

practical performance improvement.

6.5.1 Learning Unary Bounded Rules

A common rule representation in machine learning and pattern recognition is that of the
conjunction of bounded attribute rules. For example, one may say that if an object’s
redness is between 0.8 and 1.0, its circularity is between 0.7 and 0.9 and its size is
between 0.15 and 0.2, then it is an apple. Such rules effectively form hyper-rectangular
volumes in feature space, with each providing evidence for the object that is represented
by the rule. Objects may have multiple overlapping rules, and some approaches have
rules representing evidence for the object and other rules representing evidence against

it.

Figure 6.6 illustrates a simple two dimensional feature space with multiple classes and
a number of possible rules operating on this space. Such feature spaces typically have

ten to twenty features. Note that if overlapping rules give evidence for different classes

6.5 Unary Learning Algorithms 78

of objects, then some further resclution is required.

Generalisation is achieved by having rule conjunctions covering a volume in feature
space greater than the set of individual training examples. One problem with gen-
eralisation obtained using this method is that the training examples need to cover
the extreme range of feature bounds unless a heuristic is used to make the bounding

volumes larger than the convex volume surrounding the training samples.

F 3
I- """"" i
X g !
1 i
! x 1o 9l
o] P X : ' '
. x L 0.
& X [—
o | x
R
s SNy
'{,‘é ittt 1) '
g . o o) !
- Dg L O
t |
==

Feature One

Figure 6.6: Examples of Unary Bounded Rules in a
Two Dimensional Feature Space

In Cite the bounded unary rule matching strategy is coded into a matching and learning
class appropriately called the UNARYBOUNDED algorithm. The UnaryBounded rules
are incrementally built from example positive and negative points. Bounded rules are
evaluated as a conjunction of feature upper and lower bounds. That is, test point u

p

u
u; <r;; where rlow
- 33

low
S i,

activates rule ¢ if, for all features j € {1...n}, r;

AL is the lower
tj

bound of rule i in feature j and ?'E }) is the upper bound of rule i in feature j.

In the UnaryBounded learning algorithm, rules are constructed according to the algo-
rithm described in 8 as listed in Appendix A.1.2. This algorithm is pictorially described
in Figure 6.7. To learn a new positive example, both positive and negative rules are
considered. Each positive rule is extended to include the new point (1), and then any of
these extended rules which overlap negative rules are not considered (2). If there are no

extended rules remaining, a new small volume rule is constructed centered around the

6.5 Unary Learning Algorithms 79

new point (3). If there are multiple extended rules which do not overlap any negative
rules, the rule of smallest volume increase (4) is kept and placed in the final positive

rule set (5).

Current Positive Rules Current Negative Rules

[
“| (]

Wew point to learn,

1. Each pesitive rule is extended
to include new point.

s

2. Extended rules that overlap
negative rules are remowved.

4. Volume increase
is calculated for
each rule.

new rule iz created.

— RNV

l 3. If none remain, a

D |:| 5. The smallest

volume increase
rule is kept.

O

Figure 6.7: UnaryBounded Learning Algorithm Flow Chart

In the case of learning a new negative example, the same algorithm is applied but
negative rules are extended and not permitted to overlap existing positive rules. The
net result is that positive rules may overlap each other, as may negative rules, but
positive and negative may not overlap each other. This algorithm keeps only existing
rules from one iteration to the next, but is not as stable as the ELG algorithm applied
to decision trees. However, it does provide a usable algorithm to compare performance

at matching and generalisation.

6.5 Unary Learning Algorithms 80

6.5.2 Learning Unary Prototype Rules

An alternative to the UNARYBOUNDED algorithm is to construct prototypes of each
object in the feature space, and then classify according to the test point’s distance from
each prototype. Depending on the distance metric used, the classification boundaries

are a form of Voronoi tessellation, as shown in Figure 6.8.

Euclidean Mahlanobis

Hamming Weighted Mahlanobis

Figure 6.8: Decision Boundaries For Various Popular Metrics

In Cite this matching strategy is called the UNARYCLOSEST algorithm. This is a
simple system, and the prototype points may be built by a number of methods. In
a non-incremental form the prototypes can be built using clustering techniques. The
incremental form proposed uses a straight forward time series averaging algorithm,

although many other approaches could be used.

The incremental learning algorithm for the UNARYCLOSEST matching strategy moves
the prototype points towards the training samples when correctly matched, or creates
new prototype points when not correctly matched (this is similar to Kohonen Maps

[Kohonen, 1990]. The Euclidean metric is used to determine proximity to the prototype

6.5 Unary Learning Algorithms 81

points, which end up following a trajectory towards the mean position of the local
training samples, as shown in Figure 6.9. In this figure, the numbers indicate the order
in which the points are learnt and the circles represent the new updated position of the

prototype point.

q] rraining Example
N (O Prototype Position

Lo

Figure 6.9: Prototype Trajectory for One Prototype
During Incremental L.earning

6.5.3 Learning by Explanatory Least Generalisation

Categorical machine learning is concerned with the classification of object instances by
concepts learned from examples of these objects. The objective is to form concepts
(rules) that operate on object attributes such that the system can be used to classify
further unknown objects. Incremental learning is concerned with learning these rules
from a serial presentation of object instances, as opposed to having a large training set

of instances available for learning.

As discussed earlier, incremental learning algorithms should be sub-linear in memory
and complexity with respect to the number of training examples, and should converge to
at least an equivalent solution as the non-incremental form of the algorithm given that
the presentation order to the incremental algorithm is first-order stationary. Published
incremental learning theories in machine learning, such as Schlimmer and Fisher’s ID-
4 [Schlimmer and Fisher, 1986] and Utgofl’s ID-5R [Utgoff, 1989], do not completely
satisfy the above requirements. ID-4 keeps insufficient information to converge to the

same solution provided by the non-incremental variant, ID-3 [Quinlan, 1986]. The ID-

6.5 Unary Learning Algorithms 82

5R. algorithm essentially keeps the full set of instances distributed across the concept

hierarchy.

The following section is concerned with a general approach to the development of in-
cremental supervised learning methods that conform to the conditions described above,
and a specific example is demonstrated in the development of a memory-bounded and
convergent incremental learning system for decision trees on real-valued attributes.
This general approach is achieved by storing a least generalisation of the data which
gives a minimum explanation of the current concept hierarchy. This is termed the

explanatory least generalisation (ELG) incremental learning method.

6.5.3.1 ELG - A Theory of Incremental Learning

At each iteration, an incremental learning system is provided with a new instance of
data that may or may not be classified correctly according to the current learned con-
cepts (Figure 6.10). If the new data is not classified correctly then the current concepts
must be modified to accommodate the new data. Local concept restructuring will not
always result in the optimal solution[Utgoff, 1989], so global restructuring is necessary.
However, global restructuring on available instances is not only computationally inten-
sive, but also requires storage of these instances, which does not satisfy the incremental

learning requirement of bounded memory.

New Point

Correctly Incorrectly Unclassifiable
Classified Classified

Possibly update Split and Merge Create and Merge
probability database) | Rules Rules

Figure 6.10: Basic Incremental Learning Flow Chart

6.5 Unary Learning Algorithms 83

The solution lies in a general approach of storing both the concept hierarchy and a
sufficient least generalisation of the instances observed to explain the current concept
hierarchy. This least generalisation is termed an ezplanatory least generalisation (ELG)
of the instances with respect to the particular concept hierarchy used. The ELG can be
constructed by maintaining a least generalisation of instances that map into each rule.
At each iteration, the ELG is used in restructuring the set of classification rules (the
knowledge base), and then these rules are used to split and merge the ELG. The result
is that at the end of each iteration the ELG is valid for the current set of categorical
rules. In order to formalise this theory, the following sections demonstrate the ELG

approach applied to binary decision trees.

6.5.3.2 The Incremental Decision Tree Algorithm

Pattern recognition typically involves real-valued attributes (also called features}, which
are often visualised as a Cartesian space. Object instances are represented as points
in this feature space, one-sided rules are represented as partitions, and conjunctive
rules are represented as hyper-rectangles. Both partitions and hyper-rectangles are

generalisations in the feature space of dimensionality equal to the number of features.

Formally the attributes for each instance are denoted as f;; for attribute j of instance
1. Attributes are typically measures of size, colour, shape, or relational attributes. The
binary decision tree is a hierarchy of feature partitions constructed from single feature
splits, as shown in Figure 6.11. Each node in the decision tree is either a categorisation
(a leaf node) or a decision node. At each decision node, one and only one feature value
is one-sided tested, with the left branch being true, and the right-branch being false.

This gives rise to tiled hyper-rectangular feature space partitions.

Non-incremental binary decision tree algorithms examine a large set of training data
in order to arrive at the optimal set of feature partitions. The ELG method constructs
and maintains the ELG alongside the binary decision tree and uses this, rather than

the training data, to construct the binary decision tree.

The ELG that is maintained at each leaf node in the binary decision tree is a feature

6.5 Unary Learning Algorithms 84

12 - size
[}
xx ¢ nb
a}
) P W £ [o (f1c12)
0% o ° /\
© o X o
0 >
1]
0 1 2
f1 - colour

Figure 6.11: Example of a Feature Space and the Computed
Binary Decision Tree

space hyper-rectangle that contains, in addition to the feature bounds of instances
generalised by the hyper-rectangle, the time the hyper-rectangle was created and the
number of instances generalised by the hyper-rectangle. This latter information is nsed

in merging, splitting and removing hyper-rectangles.

At each application of a new, correctly labelled feature instance, the algorithm creates
a single-point hyper-rectangle of no volume. This hyper-rectangle, along with the
previous explanatory least generalisation hyper-rectangles are then processed to form a
binary decision tree (Figure 6.12). Splitting is done to minimise the partition entropy,
which is a common metric used in real-valued decision trees. Partition entropy is
calculated as E = Py + P, where P is the entropy of the ELG partitions below the
nominated decision boundary and P, is the entropy above the nominated decision
boundary. Entropy is calculated as P = — YN piin(p;) where N is the number of
different categories, and p; is the fraction of instances of class ¢. The number of instances
that fall into each ELG partition needs to be kept in order to calculate the partition
entropies. Apart from this information, however, the exact feature vector f; is ignored
after this point. The important distinction between this and previous methods is that
the data atoms are the ELGs, which are hyper-rectangles, as opposed to the full training
set, which is a large set of feature points. This results in the possibility of splitting an
ELG hyper-rectangle, in which case point instances are distributed uniformly amongst

the split regions.

The new set of hyper-rectangles is then merged according to the feature space partition-

6.5 Unary Learning Algorithms 85

ing dictated by the decision tree thus created. This resultant set of hyper-rectangles
is the correct ELG for the next iteration, and the new decision tree can be used for

correct classification at that point in time.

Rules (Decision Tree) Memmory (Least Generalisation)

J
e m e m e ——————

T Update Rules & Add new point

and Generalisation

............. —

D
Create Tree

Merge/Split
in Generalisation

Figure 6.12: Incremental Learning Rule and Least Generalisation Model

Type A

Type B

Type C

Type D

Figure 6.13: Examples of the Five Pattern Categories

6.5 Unary Learning Algorithms 86

PROCEDURE ADDINSTANCE:
CREATE A ONE-POINT LABELLED PARTITION.
RECURSIVELY CALL GENERATE.
MERGE.
PURGE.
PROCEDURE GENERATE:
if NO VALID POINTS then
RETURN
end if
for all F € FEATURELIST do
SORT ELG BOUNDS ACCORDING TO THIS FEATURE.
CONSTRUCT A LIST OF PARTITION SPLIT POSSIBILITIES.
for all SPLIT € SPLITLIST do
MEASURE THE PARTITION ENTROPY.
BEST SPLIT IS LOWEST ENTROPY.
end for
end for
SPLIT RELEVANT ELGS ON BEST SPLIT.
PROCEDURE MERGE:
for all srLIT ELG PARTITIONS do
if PARTITION LABELS ARE IDENTICAL then
MERGE THE ELG PARTITIONS.
end if
end for
PROCEDURE PURGE:
for all ELG PARTITIONS de
if ACTIVITY LESS THAN THRESHOLD then
REMOVE PARTITION
end if
end for

Algorithm 1: Algorithm for Adding New Instance to Knowledge Base

The algorithm for adding a single new instance to the knowledge base is described in
Algorithm 1. The procedure Generate is similar to ID-3 and other binary decision
tree systems. However, the method for generating potential feature splits is far more
complex here because the “raw data” is a set of non-zero extents on each feature
axis (pairs of upper and lower bounds from each ELG partition). Similarly, once the
feature and the position of the best split is determined, it is necessary to split the ELG
partitions. This can become complex as a number of special cases arise if the new data

point happens to land in a current ELG partition.

Typically, complete restructuring is rare and only occurs when a new instance sets up a
long chain of concept violations. The complexity of this reconstruction is bounded ap-

proximately by the number of leaf nodes in the decision tree. This compares favourably

6.5 Unary Learning Algorithms 87

with the heavily computational task of reconstructing the decision tree on a large num-
ber of individual training instances (as is the case in non-incremental learning). As the
complexity of the ELG matches that of the decision tree and dictates the amount of
data used in each reconstruction process, the amount of memory and computer time
used is directly related to the complexity of the classification problem, not the amount

of data used.

6.5.3.3 Example Results

The example learning task is that involving noisy samples of b objects depicted in
Figure 6.13. For illustrative purposes, only two features were chosen; compactness and
image variance. For the compactness measure we used ln(%?) where P is the object
perimeter and A is the object area. Image variance was calculated as the normalised
intensity variance over the object. Noisy samples of the objects were chosen such that

the samples covered the regions in feature space as shown in Figure 6.14.

Feature 2 (variance)

0 2 4 6 8
Feature 1 (compactness)

Figure 6.14: Feature Space Distribution of the Five Pattern Categories

6.5 Unary Learning Algorithms 88

Pattern E (fl < 2.48) Pattern C Pattern D

AN

Pattern A | | Pattern B

Figure 6.15: Decision Tree Generated after 100 Iterations

Feature 2 (variance)

-

sssssmnammannmbencccsccovancannas
e e L L T T T

0 2 4 6 8
Feature 1 (compactness)

Figure 6.16: Decision Tree Represented as Feature Space Partitions

These samples were presented in a random order to the ELG algorithm which started
from a null knowledge base. At example 28, the correct number of rules and partitions
is established. However, one of these is incorrect as it is removed at example 50 by
the procedure Purge. Correct rules are established at example 58. From example 58
onwards the ELG partition bounds are gradually improved through merging on new
data, and no more splitting is required. Table 6.1 illustrates the convergence of the
ELG partitions to the correct feature distributions, with snapshots at 100 and 200

examples.

6.5 Unary Learning Algorithms 89

[Pattern Min fi | Max f; [Min f; [Max f5 |
A (Actual 1.0 2.0 2.0 3.0
(n=100) | 1.161 | 1.842 |2.123 | 2938
(n=200) | 1.155 1.944 2.013 2.971
(Actual) | 3.0 4.0 20 3.0

—

(n=100) | 3.041 3.967 2.014 2.924
(n=200) | 3.030 3.995 2.000 2.991
(Actual) | 5.0 6.0 0.0 3.0

(n=100) | 5.041 |5.997 |0.004 | 2.972
(n=200) | 5.008 | 5997 |0.004 | 2972
(Actual) | 7.0 8.0 2.0 3.0
(
(

n=100) | 7.084 7.749 2.075 2.924
n=100) | 7.083 7.879 2.008 2.936
(Actual) | 1.0 4.0 0.0 1.0
(n=100) | 1.153 | 3.841 | 0.060 | 0.989
(n=200) | 1.053 3.841 0.015 0.989

Table 6.1: Convergence of the ELG Partitions

The binary decision tree used in the classification phases converges to the non-incre-
mental decision tree at the same rate because the binary decision tree is determined
from the ELG partitions. The final decision tree is described as a tree in Figure 6.15

and as a set of feature space partitions in Figure 6.16.

6.6 Binary Learning Algorithms 90

6.6 Binary Learning Algorithms

Binary matching in Cite occurs when the operator HIERARCHYMATCHKB detects an
unmatched parent with multiple children each of which has at least one initial label
hypothesis. Binary matching can also occur as a result of the clique resolving algorithimn
generating possible groupings of parts. The binary matching algorithm is run similarly
to the unary matching algorithm except that the test point is a binary feature table

rather than a single unary feature point.

Clite contains two binary matching algorithms, BINARYBIPARTITE and BINARYCLOS-
EST. The choice of binary matching algorithm used can be different for each node in

the knowledge base.

6.6.1 Learning Binary Closest Matching

The BINARYCLOSEST matching algorithm is a simple high-speed binary matching al-
gorithm that relies on the correct ordering of the unary parts from the unary matching
process. The degree of match is computed as the Euclidean proximity to the closest

prototype point, which is very similar to the UNARYCLOSEST algorithm.

If we let fs: be the binary feature vector describing the relationship between parts @
and j, and M{fj be the binary feature vector describing the relationship between model

parts # and j in prototype k, then the degree of match is defined as the following;

— : F. Lk
¢ = min 2”_: 1£i; — Ml (6.1)
d
t = 1—-— 6.
match N (6.2)

Updating of the prototype models M is done in the same manner as in the UNARYCLOS-
EST algorithm. When learning a new positive example, the closest prototype is time-

series updated if it is within a pre-set threshold distance of the closest prototype point,

6.6 Binary Learning Algorithms 91

otherwise a new prototype point is added to the model set.

The BINARY CLOSEST matching algorithm does not fully address the part indexing prob-
lem. For many objects the parts are correctly indexed by combining the unary matching
outcome with relaxation labelling, then the binary matching determines which is the
best “group” description of the parts. For this, the BINARYCLOSEST algorithm works
perfectly well, especially in conjunction with the clique resolving process. However, for
objects that have multiple similar parts with different spatial relations to other parts
in the object, the part indexing problem needs to be taken more seriously. To cover
this range of objects the BINARYBIPARTITE algorithm, described in the next section,

is also included in Cite.

6.6.2 Learning Binary Bipartite Matching

Complete solutions to the graph isomorphism problem are generally computationally
exhaustive 2 or memory intensive with large pre-compilation complexity [Messmer and
Bunke, 1995). Algorithms providing different degrees of solution exist, ranging from
the naive complete solution (which is O(n!) in the number of parts) to simple methods
that effectively ignore the part indexing problem and accumulate evidence based on
occurrence of features (such as in EBS [Caelli and Drier, 1994] or BINARYCLOSEST
above). For different applications, different degrees of solution are required to provide

satisfactory answers and there is usually a trade-off between speed and uniqueness.

Bipartite matching is an intermediate solution to the graph matching problem which,
when implemented directly, incorporates unary information but not binary or relational
information other than the injective mapping between the data and model graphs.
Figure 6.17 illustrates this direct implementation of the bipartite matching scheme.
Such a scheme has been used in object recognition, usually in conjunction with other
methods to incorporate relational information[Kak and Kim, 1991]. Bipartite matching

has been shown to be polynomial in the number of parts [Hopcraft and Karp, 1973].

2The best algorithm for the worst case scenario is known to be 0(2%) in the number of parts [Tarjan
and Trojanowski, 1977)

6.6 Binary Learning Algorithms 92

|_| (-

RNy
-
1 ",

Injective
Bipartite
Mapping

Graph of Input

Set of Input

Vertices Set of Model
Vertices

Figure 6.17: Direct Implementation of Bipartite Matching

Bipartite matching can be easily extended to include some relational information by
matching pairs of data nodes to pairs of model nodes. This is achieved by creating the
n{n — 1) pairs of data nodes and m{m — 1) pairs of model nodes and then applying
bipartite matching to these. Figure 6.18 illustrates this process using the same input
graph as in Figure 6.17. Note that in extended bipartite matching each matching node
now represents two unary nodes (vertices) and the binary relations between them (the

edge).

Input Image

Injective
Bipartite
Mapping

(;raph of Inpué)

Set of Input Set of Model
Vertex Pairsg Vertex Pairs

Figure 6.18: Bipartite Matching Extended to Include Partial Relational Information

6.6 Binary Learning Algorithms 93

Graph bipartite matching of this form using partial relational information does not
guarantee a unique solution and in some cases can provide “non-physical” solutions.
For example, the node corresponding to the data pair (1,2) may map to the model pair
(5,6), and the data pair (1,3) may map to the model pair (7,8). The mapping D(1,2)
-+ M(5,6) implies that data vertex (1) maps to one of model vertices (5) or (6) and
that data vertex (2) maps to the other. However, the second mapping D(1,3) — M(7,8)
implies a contradictory possible mapping. The reason for this is that indices are not
used in the matching process. If they were, the algorithm would be fully solving the

graph matching problem, which is computationally exponential.

The measure of match for bipartite graph matching can be obtained using a number
of methods. The implementation in Cite sums the total error based on a Euclidean
distance metric and the best match is declared as that which has the smallest error.
A discrete form of this is presented in [Kak and Kim, 1991] in which matches occur
based on proximity subject to a global noise threshold. In general, the actual solution
to the bipartite matching is not important; the algorithm is used simply to determine
whether a solution exists or not. In Cite the hypothesis is made that the solution
exists (based on unary matching) and the degree of best match as determined by the
bipartite matching is used to initialise the relaxation labelling process. This interaction

is discussed in detail in the next section.

The number of nodes to be matched in extended bipartite matching is n(n—1), however
this still yields a polynomial solution for the most efficient algorithm. The value of
polynomial over exponential solutions to graph matching problems is largely academic
when applied to general machine vision systems. The number of parts that need to
be matched is typically small and the main problem is robust segmentation of the
parts, not the few milliseconds required to match the graphs. In more sophisticated
applications of graph matching the complexity of the algorithm suddenly becomes quite

important as the number of parts exceeds about twenty.

6.7 Interaction of Unary and Binary Matching with Relaxation Labellingd4

6.7 Interaction of Unary and Binary Matching with Re-

laxation Labelling

Cite’s recognition process may be considered to be operating at a number of levels.
At the “local” level, recognition is distributed between four operator classes which
cover unary and binary matching, group hypothesis generation and relaxation labelling.
These are described as the local recognition operators because they concentrate on
the local structure of the scene interpretation (SI) graph. At a wider scale, other
operators such as the knowledge driven resegmentation and hierarchical matching also
contribute importantly to the recognition outcome. However, their interactions are far

more quantised than the local processes.

(?. Grouping by Connected Componentf)

or Cligue Resolving Operators

ST Parent 3. Initial Hypothesis Weights
by Binary Matching
4. Hypothesis Updates by
Relaxation Labelling
SI Child

1. Neode Labelling by
Unary Matching

Figure 6.19: Interaction of Unary and Binary Matching, Relax-
ation Labelling and Hypothesis Generation

Figure 6.19 illustrates the local recognition processes on a small section of a scene in-
terpretation graph. The numbers in each of the boxes gives an approximate temporal
order of events. Before the parent SI nodes exist, the child nodes are generated indi-
rectly from the segmentation process.. These are then matched to the knowledge base
using the unary matching strategy (1) present at each applicable KB node. From this,
the connected components or clique resolving operator groups the child nodes into mul-

tiple possible parent groupings (2). This again is an indirect process because grouping

6.7 Interaction of Unary and Binary Matching with Relaxation Labellingdb

actually occurs in the hierarchical segmentation (VI graph) and is propagated to the SI
by another operator. When these possible groupings have been established, the binary
matching operator determines the match to each parent using the matching strategy at
each applicable node in the knowledge base (3). These degrees of matching combined
with unary matching and support from related sections of the SI graph then serve to

initialise the hierarchical relaxation labelling process (4).

Although the initial order of these operations for a single object will be as described, for
multiple objects the process becomes more temporally complicated. Certain objects will
be classified faster than others, and the resegmentation process will restart the entire
local recognition process for different sub-parts of the scene interpretation graph at
different times. This on-going change means that the relaxation labelling process must
be able to cope with the creation and removal of unary and binary matching strengths

at each point in the scene interpretation graph at different times.

7. Hypothesis Generation 96

Chapter 7

Hypothesis Generation

Cite generates classification labels and grouping hypotheses in the visual interpretation
and scene interpretation structures based on segmentation results, unary and binary
feature matching and examination of knowledge base data structures. Hypotheses
exist at many different levels within Cite and are resolved by a process of hierarchical
relaxation labelling and constraint propagation. By extending traditional relaxation
labelling to operate over a hierarchy, top-down and bottom-up recognition processes
are seamlessly integrated. Through interaction with other operators the results of
the relaxation labelling can then result in resegmentation of image regions and the

prediction of missing parts or objects.

This approach departs significantly from the processes used in most object recognition
systems where there is little or no feedback between the various stages during recogni-
tion. This chapter describes the process of actually generating the hypotheses. Chapter
8 continues with a presentation of the hierarchical relaxation labelling processes which

dvnamically update these initial hypotheses.

One innovation in Cite is that of considering all components of the data structure,
including the hierarchical segmentation structures, as hypotheses. This view enables
an elegant and general application of relaxation labelling as the constraint propagation

process.

7.1 Hypothesis Types and Storage g7

7.1 Hypothesis Types and Storage

Every aspect of the visual interpretation and scene interpretation graphs is considered
as an hypothesis within Cite. The existence of a VI node or a SI node is a unary
hypothesis, and the links between these nodes and through to the knowledge base are
called binary hypotheses'. Each hypothesis contains a weight which represents the

probability of that hypothesis being true.

In the visual interpretation graph, a VI node represents the probability that a certain
group of pixels can be described as a single object or scene element. The VI-VI links
represent the child VI node as being a valid partial decomposition of the parent VI

node.

In the scene interpretation graph, a SI node represents the probability that an instance
of an object exists in the scene. The SI-SI links represent the child SI node as being
a valid component, view or type of the parent SI node. The VI-SI links represent the
probability of the VI node providing image support for the SI node, and the SI-KB
links represent the probability of labelling the SI node as an instance of the KB node

in question.

Clite’s data structures essentially form a decomposition web and analysis at multiple
levels of abstraction which range from image pixels through to knowledge base nodes.
This unifying concept allows common treatment of hypotheses and permits powerful
relaxation operations because all aspects of the data structures are weighted and can

thus be modified in a similar manner,

7.1.1 Hypothesis Notation

Table 7.1 describes each of the hypothesis types and where they are found in the graph
structures. For completeness, we could also include P,-K and ﬂ{‘; and define them as the

probability of KB node 7 existing and the probability of KB node 7 being a child of KB

1Note that unary and binary hypotheses are unrelated to unary and binary features or matching.

7.1 Hypothesis Types and Storage 98

Name | Location | Description

Probability that VI node i exists. Interpret this as the
Py VI Node probability that VI node { is a correct segmentation of the
pixels it contains.

Probability that VI node ¢ is a child of VI node j, where
both are in the same image.

PY. | VI-VI Edge

12

Probability that VI node ¢ is the segment of the image
corresponding to S! node j.

PS SI Node | Probability that SI node i exists.

i

Pfj SI-SI Edge | Probability that SI node ¢ is a child of 51 node j.

PYS | VI-SI Edge

4

Png SIKB Edge frobablhty that SI node ¢ is an object matching KB node

Table 7.1: Notation of Hypothesis Types

node j respectively. However, these values would always be 1.0, and the probability
normalisation would not be applicable because the KB graph can remain as a graph

with each node having multiple parents.

Figure 7.1 illustrates the different hypothesis types and where they appear in the graph
structures. Starting with the visual interpretation graph, which represents the hierar-
chical segmentation, we have P being the probability that VI node i exists, and P.‘-f;
being the probability that VI node ¢ is a child of VI node a. Linking this with the
scene interpretation graph, P,X;S is the probability that ST node j is represented by VI
node ¢ in the image. Inside the scene interpretation graph, PJS is the probability that
SI node j exists, and P[fj is the probability that SI node j is the parent of SI node b.
Making the final connection between the scene interpretation and the knowledge base,
IDJ‘?',GK is the probability that SI node 7 is an instance of object k. Note that this figure is
for notation purposes only, and typical full graphs contain multiple parent connections
and multiple labelling hypotheses for each node. Examples of these graphs are given

later when the hypothesis relaxation processes are discussed.

In order to simplify the hypothesis update expressions, it is necessary to define a no-
tation for the child and parent lists in each of the three graph structures. Table 7.2
contains a description of these index sets. The list of all parents of a SI node, for

example, is S%-P .

7.1 Hypothesis Types and Storage

99

Knowledge
Base
K
ik
\
\
\
'
\ \ 1
! N ! Scene
\ \ (- .
\ \ .r Interpretation
\ AP
N oY
N »
W
P
. ~
y ~
s ~
4 -
s, -
’ ’,
P -,
+ -

Visual =4
Interpretation

Figure 7.1: Hypothesis Notation in Cile

Name | Location | Description
Ve V1 Indices of children of VI node 1.
viP VI Indices of parents of VI node 4.
V3 VI Indices of ST nodes with hypothesis links from VI node i.
S¢ N1 | Indices of children of SI node i.
St SI Indices of parents of SI node <.
SE 51 Indices of KB nodes with hypothesis links from SI node <.
Kf KB Indices of children of KB node 1.
KF KB Indices of parents of KB node i.

Table 7.2: Notation of Node Index Sets

7.1 Hypothesis Types and Storage 100

7.1.2 Hypothesis Storage

Unary hypotheses, dealing with the existence of VI and SI nodes are stored simply by
their creation and addition to existing data structures. Each of these nodes contains a
hypothesis weight which can be interpreted as being the probability of the node being a
correct grouping of pixels (leaf VI nodes), a correct grouping of segments (hierarchical

VI nodes) or a correct scene hypothesis (SI nodes).

Binary hypothesis weights, which cover VI-VI, SI-8I, VI-SI and SI-KB hypotheses, are
stored alongside the reference to the link destination node. The VI-VI, 8I-SI and VI-SI
binary hypotheses are stored both at the source and destination nodes. The weights on
these hypotheses are stored only at one of the nodes to avoid duplication. The weights
themselves are stored as a float (32 bit real value)} in the range [0.0,1.0]. In addition,
there is a termnporary weight storage used by the first phase of the relaxation labelling
process, and a weight history stack which records the epoch (iteration number) and
value of the weight whenever it is changed. The weight history is only used to graph

the weight for analysis purposes.

Figure 7.2 illustrates the various components of the weight storage. Every hypothesis
in Clite is stored in this manner, including all parent lists, child lists, KB-SI and VI-SI
hypotheses and VI and SI node hypotheses.

E Current Value Epoch Weight

32 bit real #132 bit int |32 bit real
A

-

[
[]
o
?_'ﬂ
g
ot
B
© 0
-]
z_
%
[
» p-
o
™
I+
[T
4]
B

!
i Weight History Stack
i
1

Figure 7.2: Storage of Hypothesis Weights

7.2 Hypothesis Generation Procedures 101

7.2 Hypothesis Generation Procedures

In Cite, a hypothesis can represent a scene element labelling (SI-KB), a grouping of
pixels (VI), hierarchical groupings of parts (VI-VI), existence of objects in the scene
(81), visual support for these scene objects (VI-SI), and hierarchical groupings of scene

objects (SI-SI).

There are two basic types of hypothesis generation procedure. The generation of a SI
or a VI node is achieved by unary hypothesis procedures, and the generation of VI-VI,
VI-SI, SI-SI and SI-KB hypotheses is performed by binary hypothesis procedures. Note
that there is no connection between unary and binary hypothesis generation procedures

and unary and binary feature related procedures.

There will be some situations where multiple binary hypotheses can be generated as
a result of a single unary hypothesis. For example, in clique resolving by connected
components a parent VI node is generated with binary hypotheses to the image regions
that are its children. This can only be sensibly achieved in a single procedure, which

can generate both unary and binary hypotheses.

In general, VI-VI and SI-SI hypotheses are simple and are handled by the unary VI
and SI generation procedures. The more complex VI-SI and SI-KB binary hypotheses

are generated by separate procedures.

7.3 Unary Hypothesis Generation

This section describes unary hypothesis generation procedures which construct the
VI and SI nodes and can build VI-VI and SI-SI hypothesis links as required. These

processes are listed in Table 7.3.

7.3 Unary Hypothesis Generation 102

Generates | From Operator Description

VI nodes Image SEGMENTINITIAL | Image segmentation and
SEGMENTRUN knowledge driven resegmentation
RESEGMENT

VI nodes VI graph | SEGMENTCC Connected components segmenter

VI nodes SI graph | VIFrROMSI Top-down hierarchy building

SI nodes VI graph | SIFROMVI Bottom-up hierarchy building

SI nodes KB graph | SIFROMKDB Top-down hierarchy building

Table 7.3: Unary Hypothesis Generation Algorithms

7.3.1 Generating VI Nodes from Image Data

The process of image segmentation is usually a low-level bottom-up procedure which is
executed as the first stage in most object recognition and scene understanding systems.
Segmentation is invariably fragile and requires significant parameter adjustment to
provide even vaguely useful results. Cite improves significantly on the standard bottom-
up segmentation process by also including top-down knowledge driven segmentation.
That is, multiple resegmentations of regions within the image can occur as Cite builds

up evidence for the current scene interpretation.

The knowledge driven segmentation process and specific details of the segmentation
algorithms are described in detail in Chapter 9. At this point, it suffices to describe
the segmentation processes as producing VI leaf nodes, each of which represents one
region in the image when viewed at the lowest level of detail. VI nodes themselves are
generated by the PROCESSSEGMENTRUN operator, which executes the segmentation
processes loaded into the visual interpretation structures by the PROCESSSEGMEN-

TINITIAL operator and the PROCESSRESEGMENT operator.

VI nodes generated by the first segmentation will always end up as leaf nodes added
under the top level VI node. Nodes generated by subsequent resegmentations will be
attached as leaf nodes at the appropriate point in the hierarchy, which is typically under
the parent VI node from which the resegmentation occurred. There will be occasions
when nodes generated from resegmentations will be placed higher in the hierarchy, but

this is described later in Section 9.1.1.

7.3 Unary Hypothesis Generation 103

Visual interpretation nodes in Cite are considered as unary hypotheses which can also be
interpreted as being the probability that the group of pixels represented by each VI node
corresponds to some scene element as expressed in the knowledge base. Considering the
VI nodes as unary interpretation hypotheses makes the application of a more general

form of relaxation labelling possible.

7.3.2 Generating VI Nodes from The VI Graph

Intermediate parent VI nodes can be generated directly from the image data and visual
interpretation structures when the connected components operator, PROCESSGROUP-
INGCC, is activated. Connected components grouping is only used during early training
when the system is shown single objects and has not yet learned enough to reliably run
the clique resolving process. The decision to switch from the connected components

grouper to the clique resolving grouper is controlled from the user interface.

The algorithm for the connected components grouping is straight forward and moder-
ately efficient?. A connectivity matrix C is generated such that C(4,) is the number of
boundary pixels region ¢ shares with region j. This is computed using Algorithm 2. A
label array is then allocated, and unigue labels are propagated using a recursive paint
fill operation on the label array, constrained by the connectivity matrix. Identically

labelled regions are then grouped and a parent VI node is created and added to the VI
graph.

NUMREGIONS
C = ARRAY [0..NUMREGIONS-1]{0..NUMREGIONS-1]
for vy = 1 To HEIGHT-1 do
for x = 1 To WIDTH-1 do
C[IMAGE[X}{Y]][IMAGE[X-1][Y]] ++
C[IMAGE[X][Y]][IMAGE[X][Y-1]]++
end for
end for

Algorithm 2: Connectivity Matrix Algorithm

2 A full discussion of linear time connected components labelling is given in [Dillencourt, Samet and
Tamminen, 1992

7.3 Unary Hypothesis Generation 104

This two stage process of building the connectivity matrix from the image and then
performing a paint fill on the label array is much more efficient than simply performing
the paint fill operation directly on the image. Paint fill algorithms are not efficient,
but reducing the number of data points from order 100,000 (number of pixels) down to

order 10 (number of regions) removes any problems of computational speed.

The concept of forming objects by simple connected components analysis is common
in object recognition systems. It fails when there are multiple overlapping objects
and in this case must be replaced by a more sophisticated algorithm. The connected
components grouping algorithm is essentially a boot-strap algorithm that is deactivated

after the first few objects have been learnt.

7.3.3 Generating VI Nodes from the SI Graph

There are two processes which build VI nodes by examining the SI graph structure. The
first is the resegmentation process which will take a VI node and its leaf node children
and apply a new segmentation process to this based on the SI node knowledge base
hypothesis. The second is the top-down process of ensuring that higher level labelling

structures (such as taxonomic expansions) are reflected in the visual interpretation.

Both of these processes are top-down, one representing knowledge driven resegmen-
tation, the other knowledge driven image analysis. The resegmentation process has
already been discussed in Section 7.3.2, and the algorithm for initiating resegmentation

is described in Chapter 9.

The PrROCESSVIFROMSI operator is responsible for propagating hierarchical scene in-
terpretation information down to the visual interpretation structure. This algorithm is
described in Figure 7.3 which executes recursively on the visual interpretation structure,
and is listed in Algorithm 9 in Appendix A.1.3. The basic principle of this algorithm
is to scan the visual interpretation graph looking for nodes and their children whose SI
nodes have an extra layer or layers of nodes between them. This implies that there is

hierarchical structure in the scene interpretation which needs to be propagated down

7.3 Unary Hypothesis Generation 105

to the visual interpretation. Once such a node has been found, an appropriate SI node
from the middle SI layers is located. The final stage is that an intermediate VI node
is inserted and linked to the intermediate SI node. The algorithm returns from deep
within the nested loops because at the point where the modification is made the VI
graph becomes different from that used by the system during the recursion process and

the algorithm must terminate after each modification. This property of the operators

is discussed in more detail in Appendix A.2.

| Scene Interpretaticd

Generation
Distance.

@——=—== Current VI Node

If generaticn distance greater than
one then proceed to next stage.

Best §I Naode

~

For all children of hest SI Nede,
look for ancestor to child’s best

$I Node.

Child‘s Best
SI Node

If suitable intermediate SI
node found then add to VI.

Current VI Node

New VI Node linked to
hypothesised SI Node

Previously child of
Current VI Node

Figure 7.3: Description of ProcessVIFromSI Algorithm

7.3 Unary Hypothesis Generation 106

7.3.4 Generating SI Nodes from the VI Graph

When grouping occurs in the VI graph this structure must also be translated into the SI
graph. Region grouping will occur in the VI graph as a result of connected components
grouping, which is only used during early training, and the more sophisticated region

grouping by clique resolving which is used a majority of the time.

The translation of visual interpretation structures up to the scene interpretation is done
by the PROCESSSIFROMVI operator. The algorithm for this operator is reasonably
straight forward, and is listed in Algorithm 10 in Appendix A.1.3.

One new SI node is created
for each of these two
intermediate VI nodes. 4)

If un-connected VI nodes exist
then algorithm proceeds to insert
new SI nodes in the SI graph.

New SI hypotheses
added after new
81 nodes are created

Figure 7.4: Description of ProcessSIFromVI Algorithm

7.3 Unary Hypothesis Generation 107

This algorithm is run recursively on the visual interpretation structure and operates
on VI nodes with no SI hypothesis but with children that each have at least one SI
hypothesis, as shown in Figure 7.4. Once such a node is found, the MOSTCOMMON-
PARENT algorithm (see Appendix A.1.5) is used to determine the attachment point in
the SI structure, and an intermediate SI node is created. This new SI node has as its

children the SI nodes of the VI node’s children.

7.3.5 QGenerating SI Nodes from the KB Graph

The PROCESSSIFROMKB operator runs on the scene interpretation structure and ex-
amines the knowledge base looking for missing nodes to insert into the scene interpre-
tation graph. This is a top-down process which expands the scene interpretation graph
to include taxonomy and view information relating to already hypothesised existing

objects. This algorithm is listed in Algorithm 7 in Appendix A.1.1.

Figure 7.5 illustrates the three main stages of the algorithm, which is not greatly
different from the PROCESSVIFROMSI algorithm. The first stage determines nodes
in the scene interpretation which require insertion of their descendants based on the
structure of the knowledge base. There must exist missing structure, and the best
hypothesis for the SI node in question must be sufficiently greater than the others. In
the second stage of the algorithm, the most appropriate KB to insert is determined by
looking for commonality of ancestry of the best KB node’s children. Once this new
KB has been determined, a new SI node is added in stage three with one hypothesis

pointing to this KB node.

7.3 Unary Hypothesis Generation 108

Knowledge Base

. Best KB Node
“s. Full list of KB hypothese
* \for current SI node.

+
| ,.----| EB-1]0.825 ::) Ratic of these two
[}

i .=--| EB-2 [0.344 numbers is the

R NextBestRatio.
b+ _--1EKB-2|0.321

; ,--=-"| kB~3 | 0.109
r

Generation
Distance.

~

]
L)
[}
1
1
1

‘ Scene Interpretation

“—— Current SI Node

If generation distance greater than
one, and NextBestRatio is greater
than a specified threshold, then
proceed to next stage.

Best KB Node

~

. . ’
Child‘s Best o ¥or all children of best KB Node,
KB Noda look for ancestor to child's best
KB Node.

If suitable intermediate KB
node found then add to SI.

Current SI Node

New SI Node linked to hypothesised KB Nodes
with matching greater than threshold.

Previously child of
Current ST Node

Figure 7.5: Description of ProcessSIFromKB Algorithm

7.4 Binary Hypothesis Generation 109

7.4 Binary Hypothesis Generation

This section describes the binary hypothesis generation of VI-SI and SI-KB hypothesis
links. These procedures can also generate SI and VI nodes as required, and are listed

in Table 7.4.

Generates Operator Description

VI-SI, SI.LKB | BASICUNARY | Basic Unary Matching

SI, SI-51 CLIQUE Clique Resolving

SI-KB MATCcHKB Hierarchical KB Matching

Table 7.4: Binary Hypothesis Generation Algorithms

7.4.1 Hypothesis Generation by Basic Unary Matching

The basic unary matching operator generates SI-KB hypotheses for leaf VI nodes by
matching them to KB nodes. This is achieved by running the EVALUATEPOINT method
in the unary matching strategy stored in the KB node being matched to. The algorithm
for the PROCESSUNARYMATCH is described in Algorithm 3 which is run recursively on

the visual interpretation structure.

if |CHILDLIST|| = 0 AND [JSIL1ST|| = 0 then
KBASE.LEAFUNARYMATCH(UNARY,MATCHWEIGHT ,MATCHNODE)
ADDPOINT = SCENE
if |PARENTLIST|| then
if ||PARENT[0].SILIST|| then
ADDPOINT = PARENT([0].BESTSINODE
end if
end if
NEWSI = NEW SINODE
BEST = MAX(MATCHWEIGHT).INDEX
for all NODE € MATCHNODE do
if MATCHWEIGHT{NODE] > MATCHWEIGHT([BEST| @umatch then
if MATCHWEIGHT|NODE] > Qtymin then
NEWSI. ADDK BNODE(NCDE,MATCHWEIGHT[NODE])
end if
end if
end for
ADDSINODE(NEWSI)
ADDPOINT.ADDCHILD(NEWSI)
end if

Algorithm 3: Algorithm for Generating Basic Unary Matches

7.4 Binary Hypothesis Generation 110

7.4.2 Resolving Clique Membership

One important factor in categorising object recognition and scene understanding sys-
tems is their ability to isolate and identify multiple touching or overlapping objects.
Consider an image in which there are n regions grouped together such that they are
path connected across adjacent boundaries. Let us suppose there are m possible ob-
jects in the database, each with m; parts where m; > 1 for all 2. Without unary or
binary pruning, the number of label combinations is ¢® where ¢ = }~; m;, assuming no
objects have shared parts. If we use winner-takes-all unary matching we can reduce
the number of label combinations to 1, but we are still left with the number of region
grouping combinations being of order "C,, where p is the number of grouped objects in
the image. The process of grouping parts or image features into objects or scene ele-
ments is called the cligue membership or parts cligue problem. This problem becomes
extreme when parts-based recognition is used in industrial inspection style bin-of-parts

problems.

Connectivity is a common constraint used to reduce the complexity of the clique mem-
bership problem in conventional object recognition systems. In this situation, the
connectivity constraint simply states that any object or scene element in the image
will be constructed from connected regions. This constraint is useful for physically
constructed objects, but is too strong for higher level scene elements. For example,
Figure 7.6 shows an aerial view of an airport with a firetruck close to a plane. We may
wish to describe these two objects as an “emergency” even though the two objects are
not physically touching. Note that object recognition systems which are restricted to

single isolated objects do not address the clique membership problem.

The clique membership problem is solved in Cite using interaction between a number of
different processes. Operating on the VI graph, the SEGMENTGROUPCLIQUE process
generates sets of possible VI parent nodes, each of which represents a clique. Interme-
diate SI nodes are then generated by the MATCHSIFROMV]I process operating on the
SI graph. These generated nodes then interact with the normal relaxation labelling

update processes until stable hypothesis weights are achieved. During this process,

7.4 Binary Hypothesis Generation 111

Figure 7.6: Aerial View of Airport Illustrating Plane and Firetruck in an Emergency

weak hypotheses (in the form of both SI nodes and SI-KB links) can be removed by

the REMOVEWEAK process operating on the SI graph.

The clique membership process SEGMENTGROUPCLIQUE operates on groups of VI
nodes that have SI hypotheses which cover KB nodes with different parents. This
situation is better understood by examining Figure 7.7. The VI node on which the
algorithm is being run is indicated as the “current vi”. This VI node has a number
of children, each of which has an SI hypothesis. The SI nodes each have hypotheses
linking them to the knowledge base. One can see in Figure 7.7 that children of objects
labelled “A”, “B” and “C” have each been hypothesised.

The clique membership process performs a non-trivial operation only when the car-
dinality of the set of these KB parent nodes is greater than one. For completeness,
the algorithm still operates when only one KB parent node has been hypothesised. In
addition, any existing hypothesised KB parent nodes are removed from the set of KB
parent nodes. This is important because the clique membership process must interact
with other processes which may have grouped VI nodes already, but not separated

them from the ungrouped VI nodes.

The objective of the clique membership process is to produce possible groupings of VI
nodes based on their common KB parent hypotheses. This is done by indexing the VI

nodes against the children of each node in the parent KB node list (denoted “kbplist” in

7.4 Binary Hypothesis Generation

112

Knowledge A
Base

i m——————
-

-

S

-
~

¥
'
.
oA
i
?
~
5
7 e
h ’t\ ‘\
’ .
n
,'a.
&
o]
=
[
w
(a3
n
~
pd
fve]
(9]
—
H
—~
Jos)
—

.
-
-
L
3
i

Scene
Interpretation

Visual
Interpretation

Figure 7.7: Illustration of Variables for Clique Membership Algorithm

Figure 7.7). A full set of possible matching child VI nodes (a clique) is constructed by

enumerating these index sets. The typical result is a small number of possible cliques
that match each KB parent node.

Following this, the clique membership process generates all of what now becomes an
intermediate layer of VI nodes, each one representing part of a possible decomposition
of the original set of VI nodes (the children of the “current vi” node). This process does
not generate any SI hypotheses, or any binary hypotheses between VI and SI or SI and
KB nodes. Unary and binary features of the cliques are calculated as a consequence
of the construction of new VI nodes. This is done by the feature calculation processes

as soon as they detect recently created VI nodes. The clique membership algorithm is
listed in Algorithm 4.

An important consequence of this type of approach to solving the clique membership
problem is that it is essentially a local operation. Once created, each clique is treated
independently of the others. Multiple parent hypotheses in the VI graph are resolved
through relaxation labelling processes. Searching for a global optimal solution is nei-
ther computationally or performance desirable. For example, strongly matched cliques
may require no more processing, while image regions corresponding to weakly matched

cliques may undergo resegmentation, merging or further feature extraction. Attempt-

7.4 Binary Hypothesis Generation 113

KBPL1ST = {LIST OF BEST KB NODE PARENTS}
KBPL1sT = KBPLIST - {LIST OF EXISTING KB NODE PARENTS}
for all kP € KBPLisT do
for all vi € CURRENT_VI.CHILDLIST do
sip = VI.BESTSI
for all MkB € sip.KBLisT do
INDEXLIST{MKB| = INDEXLIST[MKB| + {VI}
end for
end for
if [lokepexpp.CHiLDLIsT [[INDEXLIST[CKBP]|| # 0 then
for all INDEX € PERM(INDEXLIST) do
NEWVI = NEW VI NODE
NEWVL.CHILDLIST = CURRENT_VI.CHILDLIST.SUBSET(INDEX)
end for
end if
end for

Algorithm 4: Algorithm for Resolving Clique Membership

ing to define a global metric that could incorporate these factors would be difficult (if
not impossible) and would give a better solution only in extreme cases of bin-of-parts

problems where the gradient descent nature of relaxation labelling might fail.

It is important to note thé,t the local nature of this clique membership resolving al-
gorithm is local with respect to the knowledge base, not with respect to the image.
This is an important knowledge-based constraint that is based on the structure of the
knowledge base, and not on the structure of the viewed image. Had the connectivity
constraint been used, the process would have been unable to handle complex natural-

world constructions such as those illustrated in the airport scenes example in Section

11.3.

7.4.3 Hypothesis Generation by KB Matching

When groups exist in the scene interpretation structure they need to be matched against
the knowledge base to determine the most likely object labelling. This involves examin-
ing the unary matching strengths in addition to executing the binary matching strategy.
Cite uses unary matchings to prune the possible parent object labellings, and the pro-
cess which conducts the matching is the PROCESSMATCHKB operator. The algorithm

for this operator is listed in Algorithm 12 in Appendix 7.4.3.

7.4 Binary Hypothesis Generation 114

Figure 7.8 illustrates the principal of the PROCESSMATCHKB operator. Possible parent
labellings are pruned by the child matches, and the degree of match which is eventu-
ally loaded into the parent SI node hypothesis combines unary and binary matching

strengths.

Knowledge Base

Both these EB nodes may be
matched to current SI node

For all pessible matching KB nodes,
computa the evidence weight for that
KB node (see algorithm).

KB - A 0.835

KB - C | 0.652

KB - B | 0.441

From list of possible KB nodes, zelect
those above ratie to best weight.

Enowledge Base

Two new hypotheses to A and C, but not B. Chi]ﬁ

links to B will fade with relaxation labelling

Figure 7.8: Description of ProcessMatchKB Algorithm

7.4.4 Weak Hypothesis Removal Process

The clique resolving process can generate multiple possible parent nodes for each group-
ing of child nodes in the visual interpretation, and this structure is translated into the

scene interpretation. As the matching and relaxation labelling operations stabilise, it

7.4 Binary Hypothesis Generation 115

is advantageous to remove weak hypotheses to simplify the final “best” interpretation.

The objective of the PROCESSWEAKREMOVAL operator is to remove weak hypotheses
such that the scene interpretation and visual interpretation graphs are reduced to trees
where each node has exactly one parent {other than the top level node). Any cycle in
the SI or VI implies an ambiguous or unresolved labelling. This operator is straight
forward because the relaxation labelling process will reduce the unary hypothesis weight

of the least successful SI nodes identically to 0.0, which is easily detected.

When hypotheses are removed, the issue of overall system stability becomes important.
If, for example, the PROCESSWEAKREMOVAL operator were to remove hypotheses
{(unary or binary) before another operator considered them to be suitably stable to
operate on then the originating process would continually create the hypotheses just to
have them prematurely removed. For this reason, the threshold at which the PROCESS-
WEAKREMOVAL operator functions is always higher than any other operator, implying
that it should be the last to operate on any hypothesis configuration. The direct re-
sult of this is that this operator is essentially a post-processing operator and plays an

insignificant role in the dynamic behaviour of the system.

8. Relaxation Labelling with Hierarchical Constraints 116

Chapter 8

Relaxation Labelling with

Hierarchical Constraints

As described in the previous chapter, Cite generates labelling hypotheses for each region
in the viewed image, as well as for groupings of regions and the existence of higher level
nodes within the scene interpretation and visual interpretation graphs. Typically there

are multiple labellings and hypothesised memberships for each node.

The method by which these multiple hypotheses are resolved against the unary and bi-
nary rule structures of the knowledge base is, in general, the main focus of most implicit-
representation object recognition research. In CRG, for example, a path through alter-
nating unary and binary decision spaces is generated for each region, and then cliques
are formed to construct objects. Graph matching techniques exhaustively enumer-
ate possible label sets to determine optimal groupings. BONSAI uses rule activation
table lookup, and more symbolic representation systems such as ACRONYM evaluate
region properties against stored symbolic descriptions of objects in a winner-takes-all

approach.

Relaxation labelling is a method of resolving multiple hypothesis labellings with re-
spect to a compatibility function which computes the compatibilities of two pairwise

labellings. Relaxation labelling is essentially gradient descent, and consequently cannot

8.1 Non-Hierarchical Relaxation Labelling 117

guarantee a globally optimal solution [Rosenfeld, Hummel and Zucker, 1976]. However,

the iterative nature of the relaxation labelling process is ideal for the purposes of Cite.

This chapter begins with a discussion of conventional non-hierarchical relaxation la-
belling. A method of making this hierarchical is discussed, and the relaxation labelling

processes used in Cite are then explained in detail.

8.1 Non-Hierarchical Relaxation Labelling

Relaxation labelling [Hummel and Zucker, 1983] is a process in which initial probabili-
ties for object labellings are updated iteratively according to predefined compatibilities
of these object labellings. One property of this process is the ability to propagate local
constraints through the interaction of compatible or incompatible labels. This property
has been used successfully at the pixel level in line and curve enhancement [Duncan
and Birkholzer, 1992]. In this section, the notation by Rosenfeld, Hummel and Zucker
[Rosenfeld et al., 1976] (from [Pelillo and Refice, 1994]) is used.

Let B be a set of objects {b1,..., b}, and A be a set of labels {1,...,m}. For each object
b; we can obtain an initial label probability vector P? = ?1, ...,p?m) where 0 < p?j <1,
for i = 1..n and j = 1...m, and Ejp?j =1, for ¢ = 1...n. This is illustrated in Figure

8.1 where the probabilities are represented as the lines connecting objects to labels.

Objects Labels

()

/“
AV 49
‘\ \(b

/‘-"-‘\

'
o)

‘\\\
;‘\)

\

Figure 8.1: Relaxation Labelling Notation

8.1 Non-Hierarchical Relaxation Labelling 118

Each initial probability vector is interpreted as the prior probability distribution of
labels for that object. In an object recognition system, these prior probabilities can be

computed from the initial unary and binary matching.

In a relaxation labelling scheme, the objective is to obtain a unique label for each object
subject to the specified compatibility constraints. These constraints can be described

as a n X n block matrix R:

Ry - Ry,
R=| : . (8.1)
R‘nl e Rnn

where each R;; is a m x m matrix of non-negative real-valued compatibility coefficients:

rii(1,1) -+ (1, m)
Ry = : : (8.2)

’f'ij(m, 1 - r,;j(m, m)

The coefficient ri;{A,) is a measure of the compatibility between object b; being la-
belled A and object b; being labelled y. The relaxation labelling algorithm iteratively

updates the probability vectors P using a normalised weighted sum equation:

£t
Pirg;
p:j‘—l = — AT (8.3)
Zpﬁ,uqu
pu=1

where the denominator is the normalisation factor and:

n

¢h=7 i rei(A)Pl (8.4)

j=lp=1

The objective is to end up with a unique label for each object. Depending on the com-

8.2 Relaxation Labelling in Cite 119

patibility coefficients r;;(A, p¢) it is not possible to guarantee convergence. As relaxation
labelling is essentially gradient descent there is no guarantee that the final outcome will
be optimal with respect to the compatibility coefficient matrix £. Optimality can only
be guaranteed with near-exhaustive search, which has been shown to be NP-complete

[Haralick, Davis, Rosenfeld and Milgram, 1978].

Most research into relaxation labelling takes the form described above. In this form, the
number of objects is constant and the number of iterations, ¢, is the same for each object.
However, Cite contains hierarchical knowledge in the form of a semi-restricted graph
and can generate and remove image regions dynamically. Static hierarchical relaxation
labelling has been discussed briefly in the literature [Davis and Rosenfeld, 1981], but

not considered further.

8.2 Relaxation Labelling in Clite

To simplify the notation, the relaxation labelling process is described in terms of op-
erations on the probabilities listed in Table 7.1. Relaxation labelling is achieved in
a two stage process. The first stage involves computing the un-normalised estimator
for the probability, and the second involves normalising this against other competing

hypotheses.

There are a total of six different types of hypothesis in Cite. There are two unary
existence hypothesis types which represent the probability that any given VI or SI
node exists. There are two inter-graph hypotheses which represent the probability that
a VI or SI node is a child of its parent. Finally, and generally most importantly, there
are the intra-graph hypotheses which represent the probability that a given SI node is
represented in the image by a given VI node, and that a given SI node is an instance of a
given KB node. In many respects, the most important of these is the SI-KB hypothesis

which represents the object labelling of each scene element.

One advantage in having a hierarchical knowledge base (and as a consequence of top-

down hierarchy matching processes, hierarchical scene and visual data graphs) is that

8.2 Relaxation Labelling in Cite 120

these hierarchies can be used to prune the hypothesis update process. This effectively
puts large blocks of 0-value into the compatibility matrix R in situations where the
hierarchical structure of the knowledge base would be violated. As such, it is more
efficient to recast the relaxation labelling process as a hypothesis npdate process and

only store non-zero hypotheses.

The very sparse compatibility matrix used in Cite also needs to be dynamically recom-
puted with the creation and destruction of hypotheses. It is more efficient to decompose
the compatibility matrix down to constituent parts applicable to each of the six types of
hypothesis, and explicitly represent these as dynamic calculations which are computed
at each iteration. These equations are dynamic, not in the dynamic programming sense,
but in that the index sets over which the partial summations are computed can change

from one iteration to the next.

The following six sections describe the update processes for each of the six hypothesis

types.

8.2.1 Updating SI-KB Link Hypotheses

SI-KB link hypotheses represent the best matches of each SI node to nodes in the
knowledge base. They are updated according to the level of support given by the SI

children and SI parents, as follows:

Piij = (1—Gfpc) Z pr-s\s:i Z P£§(+af’c 2 prf’\ Z Pf? (8‘5)
Aest 1 ed res? tekl

The initial hypothesis value is set by the unary and/or binary matching from the
operator which created the given SI-KB hypothesis. The update ratio of parent and
child support (e} reveals some asymmetry in the update procedure in terms of the
relative importance of children and parents. This is necessary because, in general, there

are fewer parents of a SI node than children.

8.2 Relaxation Labelling in Cite 121

In Equation 8.5, the double summations represent the summing over what are termed
compatibility cycles between the scene interpretation and knowledge base graphs. Fig-
ure 8.2 illustrates a compatibility cycle including knowledge base nodes (a) and (b) and
scene interpretation nodes (c) and (d). The compatibility eycle is a cycle comprising
four hypotheses and is computed through the parent chain (right half of Equation 8.5)
and through the child chain (left half of Equation 8.5). There are only three terms,
rather than four, in each half of the update equation because the parent-child knowl-
edge base link has a set hypothesis weight of 1.0. An extension to the knowledge base
facilitating partial belief in the knowledge structure could be achieved by including a

non-unity term into this equation.

Knowledge
Base

\
Scene
e Interpretation

-~
Y
) e .
- -

Figure 8.2: Update Diagram for P,,-‘JK

8.2.2 Updating SI Link Hypotheses

The SI link hypotheses are only updated in a parent-looking direction. This is done
simply because the SI-SI hypothesis links are undirected and the same weight applies to
the parent—schild interpretation as the child—parent interpretation of the hypothesis.
The SI-SI hypothesis update method is straight forward, with each parent weight being
updated according to the unary hypothesis strength for the existence of that SI node:

DS S pSs
Pi,j = P!.,JPJ (86)

8.2 Relaxation Labelling in Cite 122

This is then subject to the normalisation constraint:
Z Rf)\ = 1Vi (8.7)
AreSF

8.2.3 Updating SI Existence Hypotheses

The SI existence hypothesis, P,;S, is updated from the sum of the visual interpretation

support and the SI-KB hypothesis links, as follows:

-~ 1 1
P = P,{/z’g"“— P“S‘){{ (8.8)
S T sy TR 2

This is thresholded to the range [0.0,1.0], and saturates when there is firm belief that
the SI node in question actually is a real scene element. When either the matching
support is removed (bad matches, or competing cliques), or when the visual inter-

pretation support is removed (better labelled cliques, or better cliques resulting from

resegmentation) the SI hypothesis strength drops rapidly te zero.

8.2.4 Updating VI-SI Link Hypotheses

The VI-SI links are updated subject only to the unary SI and VI probabilities, as

follows:

PYS = PYSRVES 9)

These are then subject to the normalisation constraint that:

8.2 Relaxation Labelling in Cite 123

> PSS = 1vi (8.10)
AeV?

8.2.5 Updating VI Link Hypotheses
The VI-VI hypotheses are initialised to unity and then normalised at each update stage

in a parent-traversing direction weighted by the VI unary hypotheses. The update

equation is simply:

ﬁin - Pz",_/jPJV (8.11)

As with the SI-SI links, this is then subject to the normalisation condition:
S P = 1vi (8.12)
LA T .
reVF
8.2.6 Updating VI Existence Hypotheses

The visual interpretation nodes are updated according to the number of pixels not
uniquely associated with that region and according to the SI unary hypothesis strength

for any SI nodes that the VI node is hypothesised to, as follows:

Py = Z R;KSPAS' — amrPixelOverlapRatio() (8.13)
reVSE

The PIXELOVERLAP function returns the fraction (between 0.0 and 1.0) of pixels in

8.3 Weight Update Process 124

multiple regions, and &y, is a mixing coefficient (default value of 0.1).

8.3 Weight Update Process

The weight update operator, PROCESSUPDATEWEIGHTS, works in two stages. The first
stage calculates new estimators for each hypothesis while the second stage transfers
these estimators from a temporary buffer into the primary weight variable for each
hypothesis. This two stage process is required because each weight calculation uses
other weights in the calculation process. This is a standard approach used in many

sitnations where a parallel update is required to be executed on a sequential machine.

Each of the two stages in PROCESSUPDATEWEIGHTS is broken into six functional
blocks, each re-estimating or updating one type of hypothesis in the visual or scene

interpretation hierarchies.

9. Knowledge Driven Segmentation 125

Chapter 9

Knowledge Driven Segmentation

The purpose of image segmentation is to group pixels into regions that represent parts or
objects. Once these groupings have been made, recognition is achieved using computed
properties of these parts or objects. A common misconception {caused undoubtedly
by the simplicity of the approach) is that it is possible to perform image segmentation
in a reliable manner using primitive attributes such as colour and texture with no
prior knowledge of image content. There is no foundation for this belief, and Clite

demonstrates the importance of using knowledge to drive the segmentation process.

Most object recognition and scene understanding systems use uncontrolled segmen-
tation; uncontrolled in the sense that the algorithms and parameterisations of these
algorithms are chosen manually after long testing to produce the required results from
the input data in question. In Cife, segmentation is very much a controlled process in
which the current expectation of scene content is used to determine which segmentation
algorithm and parameterisation is to be used. This is achieved by storing in each knowl-
edge base node a list of those segmentation procedures and parameterisations which
have been the most effective at segmenting the object or scene element represented by
that node. Image segmentation may occur on any arbitrary sub-set of the image, and
it is not uncommon for Cite to be executing half a dozen different segmentations at

OIlCEe.

9.1 The Segmentation Cycle 126

By closing the loop on segmentation, Cite is able to apply multiple segmentation al-
gorithms and parametrisations to different regions of the image based on ongoing hy-
potheses of scene content. This provides the overall system with greater robustness to
noise and distortion, and permits a much broader range of objects and scene elements
to be recognised using the one methodology. Some systems do actively search the im-
age based on expectation (SIGMA and SCHEMA) however the mechanisms for doing
so are constructed under specific processes, and do not apply in a general way to the

knowledge structures or the hypothesis generation process.

This chapter describes the segmentation processes, how they are stored and executed,
and the process of resegmenting areas of an image according to the current scene
interpretation. Chapter 10 describes the unary and binary features calculated on the

segmented images.

9.1 The Segmentation Cycle

Segmentation and resegmentation occur continuously in Cite. Every node in the visual
interpretation graph has a segmentation stack which contains the segmenter currently
being executed on that part of the image represented by that node. Segmenters are
added to the segmentation stack by bottom-up and top-down processes. The segmenters
are executed effectively at random and quite often take varying amounts of time to
compute depending on the algorithm being run and the size and complexity of the

region.

When an image is first loaded the default segmenter is executed on this image. The
default segmenter is the segmenter contained in the top level “World” knowledge node.
Segments produced from this initial segmentation will then cause labelling hypotheses
and part groupings to be generated, and in this way the scene interpretation structure
will begin to take form. As the hypothesis generation and relaxation labelling processes
proceed, there will be numerous occasions when Clite realises that although it may
believe a certain object to exist in the scene, it may have an incorrect number of

parts or badly matching parts. In these situations Cife consults the knowledge base

9.1 The Segmentation Cycle 127

to determine the best possible segmenter to apply to the sub-image of the ambiguous
object or scene element, and loads this segmenter into the segmentation stack in that

VI node.

When the new segmenter has been executed, Cite may have a better idea of what object
is present and may initiate another resegmentation based on this refined knowledge. It
may also split the object into a number of different objects, or it may discover that the

latest segmentation provides a satisfactory decomposition of that part of the scene.

9.1.1 The Resegmentation Algorithm

Once an initial segmentation has been completed and hypotheses created, Clite tests

these hypotheses to determine if sub-region resegmentation is possible and appropriate.

The algorithm for determining resegmentation is reasonably simple. If the SI node
currently being considered for resegmentation has multiple KB hypotheses and the
best of these is significantly better than the others, then this node is considered for
resegmentation according to the dictates of the KB node hypothesised. Cite accesses
the knowledge base to determine the best segmenter to run on the region, and this is
then loaded into the segmenter stack of the region’s VI node. This algorithm is detailed
in Algorithin 5.

To determine the best segmenter to use at each resegmentation stage, Cite accesses
the most likely KB parent node. If this KB node has a segmenter, this is used. If it
does not, the system recursively looks back up through the knowledge base to obtain
the next closest node that does contain a segmenter. Once located, the segmenter is
compared to those already run on the region by examining the segmenter history stack
in the VI node for that region. If the new segmenter has not been previously executed

on this region, the resegmentation occurs.

An important graph maintenance function is undertaken when resegmentation occurs.
The SI nodes and their supporting VI nodes below the SI node to be resegmented are

all deleted. In addition, all SI nodes with only one parent and one child above the SI

9.1 The Segmentation Cycle 128

if (CHILDLIST = @) U (KBLIST = @) then
RETURN
end if
NUMFOUND = (}
KB = KBLIST.BESTMATCH
for all k¢ € KB.CHILDLIST do
FOUND = FALSE
for all ¢ € CHILDLIST do
if c.KBLiST = § then
RETURN
end if
if . KBLIST.BESTMATCH = KC then
FOUND = TRUE
BREAK
end if
end for
if FOUND then
NUMFOUND ++4
end if
end for
if (kB.NUMCHILDREN = NUMCHILDREN) N (NUMFOUND = NUMCHILDREN} then
RETURN
end if
SEG = KB.SEGMENTER(0)
if VIL1ST.BESTMATCH. MATCHSEGMENTER(SEG) then
RETURN
end if
DELETESURTREE
VILIST.BESTMATCH.INITIALISESEGMENTER(SEG)

Algorithm 5: Algorithm for Initiating Knowledge Driven Resegmentation

node to be resegmented are also deleted. This second phase of deletion is important
in situations where deep instantiations of taxonomic decomposition have been created
before the resegmentation process became possible. If these higher level SI nodes were
to remain, the matching of the newly segmented image region would be restricted
too far down the knowledge hierarchy. This means that leaf nodes generated by a
resegmentation process can, in these circumstances, end up being placed in the visual
interpretation structure at a higher level that the parent VI node which originally

initiated the resegmentation.

9.1 The Segmentation Cycle 129

Figure 9.1: SI Viewing Window Indicating Displayed
Hypothesis Weights

Oak Foliage
Initial Oak

Final Oak

Final
Pencilpine

Pencilpine
Foliage

Initial Pencilpine

Figure 9.2: Hypothesis Graph Window Illustrating Se-
lected Hypothesis Weights

9.1.2 Interaction of Relaxation Labelling and Resegmentation

The relaxation labelling and resegmentation processes in Cile interact quite closely in a
dynamic way, which is illustrated by a simple example of a two stage segmentation and
recognition of an oak tree. Figure 9.2 illustrates four hypotheses as a function of time
as the relaxation labelling and resegmentation processes interact. Figure 9.1 shows the
SI node viewing windows for the parent SI node and one of the subsequently generated
child SI nodes (corresponding to the “foliage” part of the tree). In this example, the
object in question is a single tree that matches well to the “oak” and to the “pencilpine”

after the initial segmentation. The object has been imperfectly segmented (in this case

9.1 The Segmentation Cycle 130

under-segmented) and only one part is available for matching.

[n this example, initial segmentation occurs at iteration 0. Relaxation then occurs
from iteration 0 to iteration 30, at which point resegmentation occurs. Note that the
hypothesis weights move towards 0.5 from iteration 30 through to iteration 52. This
occurs because the supporting child node of the parent object node has been removed
during the resegmentation process. The lack of bottom up support effectively lets
Cite return to a state of equal “confusion”. At iteration 52, when the resegmentation
process is complete, new child nodes are added. Matches are made between the foliage
part of the oak and pencilpine tree, and these have been graphed in addition to the
parent node hypotheses. The relaxation labelling process continues to apply, and drives
the hypothesis weights towards a conclusion which in this case is correct. Note also
that the final weight of the oak tree hypothesis is higher than that which would have
been obtained had resegmentation not occurred {the value at iteration 30). Without
resegmentation, a weakly matched under-segmented result would have been the best

that could have been obtained.

9.1.3 Execution of Segmentation Procedures

The resegmentation process chooses a segmenter from the knowledge base hierarchy
based on the expectation of finding the node in question in the image region which
is to be segmented. This segmenter is loaded into the VI node segmenter stack and

executed in due course by the PROCESSSEGMENTRUN operator.

During execution, the segmentation instance is passed a region description and an image
to segment. The region description is in the form of a visual interpretation node, and
the image is in an internal object format. When complete, the sub-regions resulting
from segmentation are added as children to the parent specified and the segmenter is

added to the VI node segmenter history stack.

To enable more fluid operation with the user interface the segmenter routine is called

repeatedly and returns control to the process scheduler at regular intervals. To facili-

9.2 Evidence of the Power of Resegmentation 131

tate this operation cleanly each segmenter contains all necessary code and variables to
remember what processing stage it was up to at each call of the segmentation function.

The segmenter is initialised by passing the image and region description as arguments.

9.2 Evidence of the Power of Resegmentation

The Botanist knowledge base classification results are given as an illustration of the
power of knowledge driven resegmentation. The Botanist knowledge base used is shown
in Figure 5.2 {(in Chapter 5), and a sampling of the images covered by this knowledge

base is shown in Figure 9.3.

Hedge (bush) Lantana (bush}

Plane Tree Pencilpine

Norfolk Island Pine Oak Tree

Figure 9.3: Sample of Images used in Botanist Knowledge Base

9.2 Evidence of the Power of Resegmentation

132

Image NIFPine Seg PencilPine Seg | Oak Seg Plane Seg
nipinel Correct Correct {2—53) Correet, Corroct, (5—2)
nipine2 Correct Correct, Correct (3—2) | Correct {(7T—3—2)
nipine3 Correct, Correct Correat, Correct. (4—2)
nipined Correct Corroect, Correct Correct (3—52)
pencilpined | Correct (1-32) 1 Correct. Correet {3—22) | Correct (T—3—2)
pencilpineé | Correct (1-2) Correct Correct Correct (3—2)
pencilpine? | Correet: (1-2) | Correct Correct (122) | Correct (11—-2)
pencilpine8 { Correct (1—-2) | Correct Corroct Correct (b—+2)
oakh Corroct (1—2) | Correct, Correct. Corrcet, (4—2)
oaké Correct (1—2) | Correct Correct Correet (5—2)
oak? Correct (1—2) | Correct Caorrect, Corroet. (£—2)
oak8 Correct (L—2) | Correct Correct Correct {4—2)
planc3 Correct Corroct Correct Corroct,

plancd Correct (1-32) | Correet (152) Correct {1—2) | Correet

planes Correet (1—2) | Correct (1—2) Correct (1—=2) | Correct,

hedgel Correct, Carreet Correct, Correct

hedge2 Correct, Correet, Correct, Correct

lantanal Correct Correet, Corroct Correet

lantana2 Correct Incorrect Correct Correct,

Table 9.1: Botanist Knowledge Base Classification Results

The classification resulis are shown in Table 9.1. Fach column in this table repre-
sents results obtained with a different default segmenter {the segmenter stored in the
top-level knowledge base node). The system achieves an average classification rate of
%99 when operating normally. Each instance where a resegmentation has occurred is
noted; for example (7—3—2) means that the initial segmentation gave 7 parts, the first
resegmentation gave 3 parts and the second resegmentation gave 2 parts. In each case
of resegmentation, the initial hypothesis or group of hypotheses will have represented
either an ambiguous classification, or a weak classification with an incorrect number of
children. If the knowledge driven resegmentation is deactivated (any process can be se-
lectively not loaded into the process scheduler during startup) the average classification

rate drops to %59.

This example illustrates the value of knowledge driven resegmentation. Omne might
think that a single segmenter could correctly segment each of the objects shown in
Figure 9.3 because they are all so similar. This example illustrates that even when

three segmentation algorithms are available, subtle differences exist between even sim-

9.3 Modification of Segmentation Lists 133

ilar objects that give rise to the necessity for knowledge driven segmentation. When
one considers a knowledge base containing vastly different objects and scene elements,

knowledge driven resegmentation becomes even more important.

9.3 Modification of Segmentation Lists

Through the graphical user interface, the user can add or remove segmenters from
any given KB node, and can also change the parameterisations. Figure 9.4 shows the
segmenter list editing window open on a KB node, and two segmenters with their

parameterisations listed.

Figure 9.4: Knowledge Base Segmenter List Editor

9.4 Segmentation Algorithms 134

9.4 Segmentation Algorithms

This section describes each segmentation algorithm in Cite in detail. The segmentation
algorithms have a varying number of parameters, and these are listed and described in

each section.

All of the segmenters have a number of common properties, as follows:

Each segmenter must be able to operate on an arbitrary subset of any of the im-
ages currently being processed, which may itself form multiple contiguous regions

in the image.

e The segmenter must be able to operate on integrally scaled images, scaled down

in width and height by the scale factor 6, where 8, is typically 1, 2 or 4.

o The segmenter must be able to run in parallel with other segmenters running on
the same or different parts of the same or other images. This is important because
it then permits the knowledge driven resegmentation process to operate locally

without consideration for other segmentation processes that may be running.

e The segmenter algorithm must be re-entrant to enable smooth operation of the
user interface, and contain suitable hooks for the user interface specification of

parameters.

In general it is not difficult to obtain these four properties. The most difficult is the
ability to operate on an arbitrary subset of an image because of complex boundary

effects. The other properties can be achieved by effective software engineering.

One problem that occurs in designing segmentation algorithms is the difference between
- known and unknown segmentation regions with background removal activated. When
the region is not defined (and hence the entire image is being processed) the estimate of
the true region size is slightly larger than the resulting region size. This is because the
background and the region border may contain noisy pixels which become merged into

the background rather than into the region. The main consequence of this is that when

9.4 Segmentation Algorithms 135

knowledge driven resegmentation is activated, the minimum region size ratio should be
reduced by between 3% and 5% when the segmenter is loaded into the knowledge base
node corresponding to that object. Quite often this is not necessary because of the
stability in the segmentation algorithms, but may be required where the extraction of
small noise-sensitive regions is important. In the Tree Taxonomies, for example, the
oak tree has such a small trunk in comparison to the foliage that this adjustment to

the minimum region size ratio is necessary.

The next three sections describe the SEGMENTSEED, SEGMENTSEEDRATIO and SEG-

MENTEDGE segmentation algorithms currently used in Cite.

9.4.1 Segmentation by Clustering and Growing

The SEGMENTSEED algorithm initially builds a small RGB histogram to find seed
points for region growing. The histogram has an equal number of equally sized bins
in the red, green and blue axes. The number of bins is given in the parameter &, and
typical values are 8, 16 or 32, yielding small memory requirements of 2, 16 and 128

Kbytes respectively!.

A seed point is chosen as the most common colour in the RGB histogram. Regions
are then grown from all pixels of this colour. The regions may incorporate pixels of
slightly different colours according to a colour distance threshold, Ac. This is measured
as the stum of the squares of the differences in the red, green and blue planes. All pixels
labelled are removed from the histogram. This process is repeated until the histogram
is empty and all pixels in the area of the image to be segmented have been labelled.

The parameters for the algorithm are obtained from the best hypothesised KB node.

Fach region in the label image is then relabelled so that the labels are unique. Regions
are then grown to remove small regions. A small region is one whose size is less than
the total cover divided by @,. In the region growing algorithm, regions are relabelled
to the nearest neighbour with the highest matched colour. The region growing process

continues until there are no small regions.

1The amount of memory required is sizeof{int} * 8}

9.4 Segmentation Algorithms 136

A full list of parameters for this algorithm is given in Table 9.2. Increasing the colour
growing distance A, allows region growing to extend further making regions larger.

Increasing the minimum region ratio will result in smaller regions being accepted.

Parameter Symbol | Description Type | Default
NumBins B Number of bins Integer 16
Distance Ac Colour growing distance | Integer 4000
GrowThreshold B Minimum region size Integer 200
Scale A Image scale ratio Integer 2

Table 9.2: Parameters for SegmentSeed Segmentation Algorithm

The SEGMENTERSEED algorithm contains a number of optimised sub-algorithms. After
the initial labelling process occurs, the regions will not necessarily be labelled uniquely.
This effectively requires a paint-fill style operation which is optimised by building row
segments of uniquely labelled pixels and then propagating labels via a connectivity
matrix. This speeds up this phase of the segmentation because the paint fill is reduced
from a two dimensional to a one dimensional problem. The SEGMENTERSEED algorithm
also contains code for computing minimum region size under a number of different
circumstances; with and without background removal and under different sub-image

conditions.

9.4.2 Segmentation by Clustering and Ratio Growing

The SEGMENTERSEED algorithm was found to work well for a large number of objects,
but failed on objects with low contrast parts. This was mainly because colour distance
is calculated as an absolute measure, so could not detect changes in badly illuminated
objects. A modified version of this segmenter was constructed which computed all

colour differences as ratios rather than absolute differences.

A list of parameters for the SEGMENTERSEEDRATIO object is given in Table 9.3. The
SEGMENTERSEED and SEGMENTERSEEDRATIO algorithms are similar in design, yet
provide sufficiently non-overlapping operational domains to warrant providing both in

Cite.

9.4 Segmentation Algorithms 137

Parameter Symbol | Description Type | Default
NumBins & Number of bins Integer 16
Distance Ac Colour growing ratio | Real L5
GrowThreshold O Minimum region size | Integer 200
Scale 9, Image scale ratio Integer 2

Table 9.3: Parameters for SegmentSeedRatio Segmentation Algorithm

9.4.3 Segmentation by Edge Extraction and Merging

The SEGMENTEDGE algorithm initially performs a standard edge detection based on a
small local window and added across each of the three colour planes. The edge operator

is as follows:

edge(x,y) = |pixel(z,y) — pixel(z — 1,¥)| + (9.1)
|pixel(z, y) — pixel(z + 1, y)| +
|pixel(z,y) — pixel(z,y — 1}| +
|pixel(z,y) — pixel(z,y + 1)

where [p| is the absolute value of p and:

|pixel(a) — pixel(b)| = |pixel(a).red — pixel(b).red| + (9.2)
|pixel(a).green — pixel(b).green|
|pixel{a).blue — pixel(b).blue|

The set of edge pixels E is created by thresholding all pixels in the edge map against
an upper threshold A, such that all (a) € E satisfy edge(a) > A,. From these edge
pixels, the edges are grown in an eight-connected fashion from a € Eto b ¢ E if
edge(b) > o, edge(a) and edge(b) > A;. The lower threshold A; is chosen such that
A < A, and the edge growing ratio o, is chosen such that 0 < @, < 1. This edge
growing is iterated until there are no more pixels being labelled as edges. Threshold
parameters are obtained from the current best hypothesised KB node for the VI node

being segmented.

9.4 Segmentation Algorithms 138

REGIONS = {1,...,NUMREGIONS}
repeat
OUuTERNOCHANGE = TRUE
for all R € REGIONS do
if S1zE(R) < TOTALSIZE/6,, then
LARGE = (
for all s € NEIGHBOURHCOD(R) do
if S1zE(8) > TOTALSIZE/d,, then
LARGE = LARGE -+ 1
end if
end for
if LARGE = 0 then
repeat
NoCHANGE = TRUE
for all s € NEIGHBOUREOOD(R) do
if S1zE(s) < TOTALSIZE/#,, then
RELABEL S =& R
REGIONS = REQGIONS - {s}
RECOMPUTE NEIGHBOURHQOD
RECOMPUTE SIZE
NOCHANGE = FALSE
QUTERNOCHANGE = FALSE
end if
end for
until (REGIONS = @) U NOCHANGE
end if
end if
end for
until (REGIONS =) U OUTERNOCHANGE
for all R € REGIONS do
if S1ZE(R) <« TOTALSIZE/G,, then
§ = LARGEST NEIGHBOUR OF R
RELABEL R — 8 REGIONS = REGIONS - {R}
end if
end for

Algorithm 6: Region Merging in SegmenterEdge Algorithm

Once edge growing is complete, uniquely labelled regions are created by a standard
recursive paint filling algorithm. The edge pixels E are then eroded away to leave a

full covering of the region of the image being segmented.

Regions below a specified fraction of the overall region size are then merged according to
Algorithm 6 using parameters obtained from the hypothesised KB node. This algorithm
can be broken into two parts. The first part considers small regions only connected to
other small regions, and then propagates their labels into other small regions, where

a region is small if it covers fewer pixels than the total coverage divided by #,. The

9.4 Segmentation Algorithms

second part of the algorithm looks at all remaining small regions and relabels them as

their closest large neighbour, for which there will always be at least one.

This region merging is ideal for complex textured regions which yield a large number
of small regions placed close together. In cases where small regions may be generated

not only from large textured surfaces, a different segmenter can be chosen. A full set

of parameters for this segmentation algorithm are described in Table 9.4.

Parameter Symbol | Description Type | Default
Scale 8y Image scale ratio Integer 2
GrowThreshold O Minimum region size | Integer 200
Upper Au Upper edge threshold | Float 300.0
Lower Al Lower edge threshold | Float 100.0
Ratio Oy Edge growing ratio Float 0.8

Tahle §.4: Parameters for Edge Segmentation Algorithm

10. Feature Extraction 140

Chapter 10

Feature Extraction

Segmentation and feature extraction are the two most dramatic data reduction stages
in a machine vision system. Segmentation places pixels together into groups that have
something in common, and feature extraction produces measures on those groups of
pixels. Quite often an image region which might represent tens of kilobytes of data can

be summarised by a few numbers after segmentation and feature extraction.

The very earliest object recognition systems used classic pattern recognition approaches
where features were calculated on the entire object considered as one image entity. For
some objects, this works sufficiently well to be useful, but for more complex objects the
method fails because the object may contain a number of very distinct parts. When
the object is considered as a whole, the useful properties which make these parts so
recognisable are lost. A good example of this would be an object like a car, where
individually the wheels are a distinctive black colour and very circular, and the body
has a uniform colour as well. However if one considers the car as a whole, it no longer

has a uniform colour, and the circularity feature would be virtually undetectable.

For this reason, object recognition research very quickly moved to breaking objects
into parts using either range, intensity or colour information. Parts were either image
regions (or surface patches in the case of range segmentation [Besl and Jain, 1986])

or boundary shape segments. Some systems, such as the Local-Feature-Focus method

141

[Bolles and Cain, 1982] used a combination of boundary segments and interior features.
In all of these methods, features must be computed to describe the regions or boundary
segments and the relationships between them. Features describing a single region are
called unery features, and features describing the relationship between two regions are

called binary features.

Unary features typically include colour, texture, size and shape descriptions of the re-
gion. Binary features typically concentrate on geometric properties such as the distance
between two regions, length of common border and so on. However, it is conceivable
{although not common) that binary features could describe unusual relational features

such as how similarly coloured or textured the two parts were.

While some research continues into global features for object recognition (such as
Fourier descriptors, radial basis decomposition and occluding contour descriptions

[Kriegman and Ponce, 1990]), it is generally held that segmentation into distinct parts
or surface patches, each of which is independently described, is the most effective ap-
proach. While this may be true for some types of objects, it is unlikely to be true in
general due to the difficulty of obtaining robust segmentation. One hint that this is
where many problems in machine vision lie is the realisation that segmentation and
feature extraction processes reduce the information content by as much as four decimal
orders of magnitude, which is by far the largest information reduction step in any vision

system.

Clite uses both unary and binary features, which can be calculated across the visual in-
terpretation hierarchy. This represents a broadly quantised contextual scale invariance
in the feature extraction process that goes a small way to address this issue of such

large information reduction.

This chapter describes the various unary and binary features used in Cite, how they

are computed, and how they are stored in the visual interpretation structure.

10.1 Feature Storage, Calculation, and Matching 142

10.1 Feature Storage, Calculation, and Matching

When calculated, features are stored in the visual interpretation nodes. Each visual
interpretation node can store all unary and binary features calculated on that node.
Binary features stored at a node describe the relationships between the children of the
node, whereas the unary features stored at a node describe the node itself, as illustrated

in Figure 10.1.

Binary Features
Unary Features

- 112]3 Dist. 0.29
Size 0.39 VI Parent
1 Border | 0.02
Colour| 0.72
2 Angle | 0.43
Elong.| 0.66
3

Binary Feature Table

DI GED

VI Child Nodes

Figure 10.1: Storage of Unary and Binary Features in VI Nodes

For the purposes of presenting the learning and classification systems with uniform
data, all unary and binary features within Cite are scaled to the range 0.0 to 1.0. In
the case of features which have no upper bound, a reasonable scaling is applied and

then the feature is clipped to 1.0.

Feature matching is the process whereby computed features are used to determine object
classification. In Cite, this process is achieved by the hypothesis generation operators
which use the matching algorithms stored in the knowledge base. This process is
covered in detail in Chapter 7, but it is important to understand that these operators
are responsible for taking the computed features and matching them to the knowledge

base.

In Cite, unary and binary features are stored in a manner such that feature operators
may be easily added and removed from Cite to conduct experiments of performance
with respect to feature operators. Knowledge base matching strategies that directly

use unary and binary feature representations can save these to file in a human readable,

10.2 Notation 143

annotated format. The visual interpretation structures can also be saved to file in this
manner, facilitating the use of Cite’s hierarchical segmentation and feature extraction

with other systems. An example of a VI node file format is contained in Figure 10.2

VINode

ID 10

NumChildren Q

ChildId

NumParents 1

ParentId 9

NumPixels 6144

PixelXY
211 116 212 116 213 116 214 116 215 116 216 116
217 116 218 116 219 116 220 116 221 116 222 116

Unary
UF_ILLUMINATION 0.478168
UF_RED 0.570500
UF_GREEN (.453530
UF_BLUE 0.410413
UF_ELONGATION 0.535825
UF_HEIGHTWIDTH 0.328467
UF_VARRED 0.539429
UF_VARGREEN 0.447481
UF_VARBLUE 0.3b5886
UF_SIZE 0.238813
UF_STRAIGHTNESS ©.0C0000
UF_AONPSQR 0.875182
UF_EXTENT 0.000000

EndUnary

Binary

NumParts 0

NumSegmenterList O

Figure 10.2: VI Node File Format Illustrating Unary Feature Storage

10.2 Notation

The following two sections, Section 10.3 and Section 10.4, describe how unary and
binary features are calculated. In these two sections, K denotes the region of interest

and, in the case of binary relations, S denotes the second region used in the calculations.

10.3 Unary Features 144

Let Ry and Rg be the number of pixels in region R and S respectively.

We define R; is the ith pixel of region R, not sorted in any particular order. The pixel
x and y coordinates are denoted z; and y; respectively. The red, green and blue colour

components of pixel i are r;, g; and b;, and they can each range between 0 and 255.

10.3 Unary Features

This section describes in detail the unary feature operators available within Cite. The
choice of features calculated for each region is based on knowledge about the current
scene interpretation and learning results. Table 10.1 contains a summary of each fea-

ture.

Feature Type Description

Iumination | Colour Average region illumination

Red Colour Average region red component
Green Colour Average region green component
Blue Colour Average region blue component
VarRed Texture Variance in region red component
VarGreen Texture Variance in region green component
VarBlue Texture Variance in region blue component
Size Geometric | Ratio of region to parent
Elongation Geometric | Ratio of diameter to area
HeightWidth | Geometric | Height to width ratio

Straightness | Geometric | Vertical straightness measure
AQnPSqr Geometric | Area to Perimeter ratio

Extent Geometric | Whether region has infinite extent

Table 10.1: Summary of Unary Features

10.3.1 Colour Unary Features

The colour of a region can often give important information as to what the region may
be. For example, a blue object is more likely to be sky than grass, given that colour is

the only description we have.

10.3 Unary Features 145

The most common representation for colour in machine vision is to express the colour as
a red-green-blue (RGB) triple. Other colour spaces are sometimes used when required,
such as HSV and YIQ. The preference for RGB is due mainly to the fact that most

computer frame capture hardware produces RGB datal.

The current implementation of colour features in Cite uses the RGB colour space. The
average red, green, blue and illumination values of a region are calculated using the

following simple formulae:

1 Lt}

Ry = Ry 2255 (10.1)
Rpreem = }%%R% (10.2)
P = RLNER;;E) (10.3)
Rarm = %(R;E+RW+ Ry) (10.4)

10.3.2 Texture Unary Features

Colour variance (or standard deviation) measures are not a very sophisticated measure
of texture because they do not code spatial information. However they do give a rough
indication of colour variation in a region. They have one advantage in that, apart from
pixel aliasing problems, they are invariant to scale. The standard deviation in red,

green and blue are calculated using the following formulae:

1 T4 2
= 9 _ — R 10.
Ro'red \ RN ;EZR (255 Rred) (5)
R = 2|1 (i’i-mR—)g (10.6)
Tgreen /\ RN = 255 green .

!The reason most frame capture hardware produces RGB data by default is because all computer
monitors have red-green-blue video output, so displaying images is simply a case of copying data.

10.3 Unary Features 146

1 b; 2
Ro'blue = QJ ﬁ—]; Z (E% - Rau_&) (107)

icR

A scale factor of 2 is used to normalise the standard deviations to within (0,1.0). The
maximum variance occurs if half of the pixel values are 0 and half are 255. To show
that this scaled standard deviation normalises to 1, consider the standard deviation in

red when the highest variance conditions are present.:

R, = 2.|— (i—R—n-)2 (10.8)
Tred \RN s 255 red .
_ 1 (Ry /0 2 Ry (255 2
_ Z\R_N(T (ﬁ 0.5) - (255 0.5) (10.9)
1 (Ry RN)
— Y (aherh A\ 10.1
2\/RN (3 + 3 (10.10)
1
= 2 1 (10.11)
=1 (10.12)

10.3.3 Geometric Unary Features

Colour and texture features often give a good description of an image region. However,
it is important to augment these with geometric descriptions as well. This section

discusses each of the geometric unary features used in Cite.

10.3.3.1 Size Unary Feature

The unary size feature of a region is given as the square root of the ratio of its size
(in pixels) to its parent’s size, or in the case of the top-level node (the only visual
interpretation node with no parents), it is set to 1. If we define P to be the parent of
region R then we know that R C P, and that Ry < Py, and so the normalised size

can be written simply as:

10.3 Unary Features 147

Rere = 1/ =X (10.13)

Taking the square root of the pixel ratio increases the dynamic range of the size feature.

If this step is not included, small parts of large objects generate unusable size ratios.

10.3.3.2 Height-to-Width Unary Feature

A normalised height-to-width ratio of a region is calculated as the ratio between the
height of the region and the sum of its height and width. This is done on a bounding

box touching the exterior most points of the region, in the following manner:

max{y} — min{y} + 1
max{y} + max{z} — min{y} — min{z} + 2

Rhpeight—width (10.14)

10.3.3.3 Elongation Unary Feature

The elongation of a region is defined as twice the ratio of the maximum diameter to the
perimeter. Regions with very jagged edges would give erroneously low elongations, but
such regions are comparatively rare. The algorithm for calculating elongation involves

first obtaining a set of perimeter pixels, Rp as follows:

Rp = {z,y}:{zy} e RA({z-Ly} ¢ RV{z+ 1y} ¢R (10.15)
V{z,y—1} ¢ Rv{z,y+1} ¢ R) (10.16)

If we define the number of pixels in Rp as Rpy, and || || as the Euclidean distance

metric, then the elongation can be written as follows:

10.3 Unary Features 148

2 max ||Rp, — RPj“ Vi,j € {1..Rpy}
Rp,

(10.17)

R ongation —

10.3.3.4 AOnPSqgr Unary Feature

Another common region shape descriptor is the ratio of area to perimeter squared,
called “A on P squared”. This feature gives an indication of the degree of roughness of
the region shape. The AOnPSqr feature is unitless and bounded by % corresponding
to a circle. The smaller the feature measure the rougher the region shape. AOnPSqr

is calculated as follows:

Raonpsgr = 411'T (10.18)

10.3.3.5 Straightness Unary Feature

An estimate of the vertical straightness of a region can be obtained by fitting a quadratic
line to the mid-point of each scan line in the region. The straightness of the region is
then inversely proportional to the coefficient of the second order term. This measure
does not work well when the region is anything other than a long and thin region,
because the centre line of the region is not stable. A better solution is to compute the
quadratic coefficients of each side of the region (a; and e,) and then compare these in

the following manner:

v = Bylor+ oa)(er + ad) (10.19)
0 ifv<0
Rstrm'ghtness = \/’6 fv<l (1020)

1 otherwise

10.4 Binary Features 149

In Equation 10.19, ag, is a small offset term (currently 1073) to counter aliasing errors
in the computation of the second order term. {3, is 2 scaling term (currently 10*) which
brings the feature into a more useful range. The computation of the second order term

in the quadratic fit is given in Appendix A.3.

10.3.3.6 Extent Unary Feature

The unary extent feature is designed to give Cite an indication of whether the size
of a region is bounded. For example, sky and ground regions can be considered to
have “infinite” extent, and this is a useful attribute of those regions. The unary extent

feature is set to 1.0 if the region touches the edge of the image, or 0.0 if it does not.

10.4 Binary Features

This section describes in detail the binary feature operators available within Cite. The
choice of features calculated for each region are based on knowledge about the current

scene interpretation and learning results.

Table 10.2 contains a summary of each binary feature. A binary feature is said to be
directed if F(a,b) # F(b,a). Most learning and binary matching systems are designed
to use directed features, and they incorporate undirected features simply by computing

both the feature using both region orderings. Clite adopts this strategy.

Feature Description Directed
Size Ratio Ratio of image sizes Yes
Distance Image distance to size ratio No
Boundary Ratio of shared boundary Yes
Above/Below | Proportion above/below region | Yes

Table 10.2: Summary of Binary Features

10.4 Binary Features 150

10.4.1 Binary Size Ratio Feature

The binary size ratio feature provides an indication of how large or small one region is
compared to another. For two regions a and b with region sizes N, and N, respectively,

a size ratio is defined as:

1 1{./N,
= —+-(gd=2-1 .
v 5+3 (N) (10.21)
1 ifv>1
Rsizeratio = (10.22)

v otherwise

The size ratio measure will thus be 1.0 for regions that are equal to or larger than eight

times the size of the region being compared.

10.4.2 Binary Image Distance Feature

A common binary feature is to compute the distance between the centroids of the two
regions. This would be measured in image pixels and would not be invariant to scaling.
One method to achieve scale invariance is to scale the distance by the average area, as

follows:

(m_a — fb)z + (y_a - gb)z
= 10.23
v \/ 16(N, + No) (10.23)
1 ifo>1
Rdiamnce = (10.24)

v otherwise

10.4 Binary Features 151

10.4.3 Binary Boundary Feature

Another common binary feature, also implemented in Cite, is the fraction of shared
boundary between two regions. Given the hierarchical nature of Cife’s segmentation
structure, and the fact that pixels may belong to a number of regions at the same
level in the hierarchy, there are two ways to compute the binary boundary feature, as

illustrated in Figure 10.3

L~ Region B ~&]

‘Shared’
Pixels .

Region A

Boundary-Region Overlap Boundary-Boundary Overlap

Figure 10.3: Two Methods for Computing Shared Boundary Ratio

The boundary-region method counts up all boundary pixels of region A that are within
one {four connected) pixel of region B. The boundary-boundary method counts up all
boundary pixels of region A that are within one (four connected) pixel of the boundary
pixels of region B. Both methods give identical results when regions are not permitted
to overlap, but because in Cite this restriction is lifted, the boundary-region method
is used. This method is better behaved with regions that significantly overlap. The
actual binary boundary feature is the ratio of the overlapping boundary pixels in region

A to the total boundary length of region A.

10.4.4 Binary Above/Below Feature

The above/below feature computes the number of pixels of region A that are above
region B, napove, and the number that are below region B, npgmy, and computes the

above/below feature as:

10.5 Feature Invariances 152

1 Nabove — Thel .
Rabovepelow = E (] - “”rLQEPN——PmU> (1020)
(13

In Equation 10.25, N, is the total number of pixels in region A, which means that
Roubovebetow 18 correctly bounded between 0.0 and 1.0. The above/below feature gives a
good indication of the relative vertical position of objects, and is useful in describing
relationships between objects that are always viewed in certain orientations. -Figure
10.4 illustrates some examples of this binary feature, which is well behaved in situations

where region A has pixels both above and below region B.

Region A Region B Region A Region B Region A Region B

|
1

LTI

| EEEEEN

Above=0, Below=48, Above=6, Below=5, Above=60, Below=0,
Feature=0.1 Feature=0.508 Feature=1.0

Figure 10.4: Examples of the Binary Above/Below Feature

10.5 Feature Invariances

An important characteristic of both unary and binary features is their invariance char-
acteristic. Of most importance to Cite is invariance to two dimensional translation,
rotation, scale and illumination. Translation invariance is typically the easiest to ob-
tain, however for reasons of global positioning of objects, sometimes features are used
that are not invariant to translation. For example, in outdoor scenes, the ground is
typically found at the bottom of the image and the sky is typically found at the top of

the image.

10.5 Feature Invariances 153

10.5.1 Unary Feature Invariances

Table 10.3 summarises the invariance properties of the unary features, and Table 10.4
summarises the invariance properties of the binary features. In each of these tables,

“ves” means that the feature is invariant to changes in that attribute.

Feature Tllumination | Rotation | Scale | Translation
Red No Yes Yes Yes
Green No Yes Yes Yes
Blue No Yes Yes Yes
Illumination No Yes Yes Yes
Var. Red No Yes Yes Yes
Var. Green No Yes Yes Yes
Var. Blue No Yes Yes Yes
Size Ratio Yes Yes Yes Yes
Height-Width Yes No Yes Yes
Elongation Yes Yes Yes Yes
AOnPSqr Yes Yes Yes Yes
Straightness Yes No Yes Yes
Extent Yes Yes Yes Yes

Table 10.3: Invariance Properties of Unary Features

10.5.2 Binary Feature Invariances

The directedness (or symmetry) of a binary feature is an important characteristic.
Some binary features, such as relative orientation or relative size, are not symmetric.
As mentioned earlier, Cite handles symmetric and asymmetric features equally well.
Table 10.4 describes each binary feature in terms of its invariance characteristics. An
invariance to translation, scale or rotation implies that the feature gives the same result

when such an operation is performed about a common {but arbitrary) origin.

Feature Illumination | Rotation | Scale | Translation { Symmetric
Image Distance Yes Yes Yes Yes Yes
Size Ratio Yes Yes Yes Yes No
Boundary Ratio Yes Yes Yes Yes No
Above/Below Yes No Yes Yes No

Table 10.4: Invariance Properties of Binary Features

11. System Performance and Results 154

Chapter 11

System Performance and Results

This chapter presents complete results on four different scenarios; views of street scenes,
views of office objects, aerial views of airports, and the context sensitive tree tax-
onomies. The results summary for these scenarios is listed in Table 11.1 and the results

for each scenario are contained in seperate sections of this chapter.

In total, 253 scene elements were detected from 38 images of the four scenarios. The
knowledge bases for the scenarios were constructed from a collection of 85 images. The
knowledge bases themselves contain a total of 155 scene elements at different levels of
abstraction. Of the 253 detected scene elements, an average classification success of

%96 was achieved.

Scenario KB Elements | Elements Tested | % Correct
Street Scenes 24 38 95
Office Scenes 64 73 95
Airport Scenes 19 70 100
Tree Taxonomies 48 72 93
Total 155 253 96

Table 11.1: Summary of Results Presented

11.1 Views of Street Scenes 155

11.1 Views of Street Scenes

The street scene scenarios provide a simple demonstration of Cite in a general environ-
ment. The knowledge base, shown in Figure 11.1 was constructed from isolated and
in-situ examples of objects. In the case of objects of a finite extent such as the buildings
and vehicles, these were learnt from isolated examples as shown in Figure 11.2. The
objects of unlimited extent such as the various ground covers and the sky were learnt

from landscapes containing just those scene elements.

World{0] Consisting of:
— pencilpine[1] Constructed from:
':——- trunk[2]

foliage(3]
— dairy[4] Constructed from:
[: roof(h)

building[6]
— firetruck[7] Constructed from:
— wheels[8]
— body[9]
L — emblem[10]
— sky|[11]
+— ground[14] Of Types:
|— road[13]
— prass[12]
— path[24]
L— bugh[25]
— house[17] Constructed from:
F— building[18]
— roof{19)
l— chimney[20]
L fueltruck{21} Constructed from:

': chasgis[22]
tank(23]

Figure 11.1: Knowledge Base for Town Scenes

The following pages contain two example scenarios testing the street scene knowledge
base. In the first example, Cite correctly recognises the objects present on the first
pass and then uses the knowledge driven resegmentation to obtain a finer resolution
description. The resulting object labels and segment boundaries are shown overlay-
ing the original image in Figure 11.3. The results are shown both at the leaf node

description (most detailed) and at the next level up.

11.1 Views of Street Scenes 156

PencilPine Bush

Firetruck FuelTruck

Figure 11.2: Sample of Images used to Build Street Scene Knowledge Base

11.1 Views of Street Scenes 157

Figure 11.3: Images and Analysis Graph of Simple Street Scene

World[0] (1.000) Consisting of:
— sky[6] (1.000)
— ground[7] (1.000) Of Type:
road[1] (1.000)
— ground([8] (1.000) Of Type:
grass[2] (1.000)
— dairy[9] (1.000) Constructed from:
building[15] {1.000)
E building[16] (1.000)
roof[17] (1.000)
— firetruck[10] (1.000) Constructed from:
E body[12] (1.000)
wheels[13] {1.000)
cinblem|14] (1.000)
— pencilpine(11] (1.000) Constructed from:

|: trunk[18] (0.981)
foliage[19] (0.981)

Figure 11.4: Text Description of Street Scene

11.1 Views of Street Scenes 158

4
Z
7,
-
’
>
R

<

Figure 11.5: Images and Analysis Graph of Complex Street Scene

In the more complex street scene shown in Figure 11.5 a total of 24 scene elements have
been detected. Of these, one is a mis-classification and three are the result of spurious

segmentations. One of the spurious segmentations, the shadow under the fuel-truck,

11.1 Views of Street Scenes 159

generates an incorrect “trunk” object. The other two are under and over segmenta-
tions, but are correctly labelled as “grass’. Figure 11.6 shows the full text description
generated by Cife, including the groupings of the low level parts into constituent ob-

Jjects.

World[0] (1.000) Consisting of:
L sky[25] (0.876)
— ground[26] (1.000)} Of Type:
graga[1] {0.825)
— pencilpine[27] (1. 000) Constructed from:
|: foliage[9] (0.932)
trunk(5] (0.878)
— pencilpine(29] (1. 000) Constructed from:
foliage[22] (0.922)
— pencilpine[31] (1.000) Constructed from:
foliage[23] (0.939)
— house[36] (0.666) Constructed from:
building(19] (1.000)
roof[18] (1.000)
— fueltruck[44] {1.000) Constructed from:
i-: chassis[11] (1.000)
tank[10] (0.920)
— dairy[45] (1.000) Constructed from:
l—: roof[21] (0.934)
building[20] (1.000)
ound[46] {1.000) Of Type:
grass[2] (0.868)
ound[47] (1.000) Of Type:
grass[3] (0.848)
ound[48] {1.000) Of Type:
grass[4] (0.563)
ound[49] (1.000) Of Type:
road[6] (1.000}
ound[50] (1.000) Of Type:
grass(7] {0.687)
ound([51] (1.000) Of Type:
road(8] (0.830)
— firetruck{52] (1.000) Constructed from:
body[12] (0.842)
— ground[53] (1.000) Of Type:
_ grass[13] (1.000)
—— ground[54] (1.000) Of Type:
grass[14] (0.716)
— ground[55] (1.000) Of Type:
path[15] (L. 000)
L— ground[56] (1.000) Of Type:
road[16] (1. 000)

Figure 11.6: Text Description of Street Scene

11.2 Views of Office Objects 160

11.2 Views of Office Objects

This section illustrates Cite in operation recognising small collections of objects from
a database of twenty objects arranged in a hierarchy containing sixty four elements.

Examples of the isolated objects as used in training are shown in Figure 11.7.

Calculator Drink Duster Mug-Molly

Cup-Espresso Cup-Tea Mug-Craig Mug-Soup

Staplerl Stapler2 Heolepunchl Holepunch2

Disk Pen-Green Pen-Blue

Key Set Pliers Liguid Paper Glue Stick
Figure 11.7: Sample of Images used in Office Knowledge Base
The office knowledge base as seen in the graph display window in Cite is shown in

Figure 11.8 with some nodes labelled. The full knowledge base is listed in an expanded

text form in Figure 11.9.

Following Figure 11.9 are five pages showing the results for the system recognising

small collections of partially overlapping objects. The first and third (Figures 11.10

11.2 Views of Office Objects 161

storage
==

?l"lff S e Ll %M; s

soie Joer k.di*%” ‘“"g'mﬁﬂy\m? B g
%

Figure 11.8: Office Knowledge Base

and 11.14) show perfect recognition and scene decomposition. Figure 11.12 shows
the background seen through the handle of the coffee mug generating an incorrect
“holepunch-old” object because there is no background object in the knowledge base.

The actual objects in the scene have been correctly recognised.

Four of five objects in Figure 11.16 are correctly recognised, with the tea-cup being
mis-matched for part of a type of mug. Figure 11.18 illustrates a situation where the
initial segmentation has over-segmented the image and produced an incorrect object
instance (the “slide”). These two examples can both be corrected with subsequent
incremental supervised learning, but have been included to demonstrate the possible

failure modes of Cite.

11.2 Views of Office Objects 162

World{0] Consisting of

— stapler{57] Of Types:

stapler2[53] Constructed from:
hase[54]
lever[55]

stapler1[49] Constructed from:

basa[50]
leverf51]
head52]

—- holepunch[56} OF Types:

holepunch-old{26]

holepunch-new[23] Constructed from:
base{24]
handle{25]

— liquidpaper!30]

L— storagel62] Of Types:

disk[10] Constructed from:

case[L1]
slide[12]
label[13]

edrom[1} Constructed from:
t case[2)
label(d]
l-— duster{17] Constructed from:
felt[18]
handle{19}
— receptacie[61] Of Types:
= cup[60] Of Types:
teald]
espresso[B]
— mug[58] Of Types:
mug-soup[38]
mug-molly[34] Constructed from:

E bady[35]
face[36]
rirnf37]

mug-craig[31] Constructed from:
bady[32]
rim(33]
— drinki14] Constructed from:
bottle[15]
Lid[16]
—— calculatorid] Constructed from:
— caseD]
— keypad|[6]
— display[7]
- tool[63] OFf Types:
— pliers[45] Constructed from:

handle(46]
Jaws[47]
handle[48]

— keyset[27] Construceed from:
holder[28]
keys[29)
— gluestick 20] Constructed from:
hase[21]
lid{22]
— pen[58} Of Types:
pen-green[42] Constructed from:
body[43]
lid[44]
pen-blue[39] Constructed from:
hody[40]
lid[41]

Figure 11.9: Text Description of Office Knowledge Base

11.2 Views of Office Objects 163

o

'
o

D) 3
oy
:

boLana e o
Gt O i T T
4 '

Figure 11.10: Disk and Duster Image and Analysis Graph

World[0] (1.000) Consisting of:
duster[11] (1.000) Constructed from:
felt[3] (1.000)
handle[5] (0.956)
storage[15] (1.000) Of Type:
disk[10] (1.000) Constructed from:
cover[1] (1.000)
E slide[2] (1.000)
label[4] (1.000)

Figure 11.11: Text Description of Disk and Duster Scene

11.2 Views of Office Objects 164

.

Figure 11.12: Mug, Stapler and LiquidPaper Image and Analysis Graph

World[0] (1.000) Consisting of:
— liquidpaper[5] (0.962)
— holepunch[11] (1.000) Of Type:
holepunch-old[6] (1.000)
— stapler{12] (1.000) Of Type:
stapler1[9] (1.000) Constructed from:
base[1] (1.000)
E lever[2] (1.000)
head([3] (1.000)
— receptacle[13] (1.000) Of Type:
mug[15] (1.000) Of Type:
mug-craig[10] (1.000) Constructed from:
body[4] (1.000)

rim|7] {1.000)

Figure 11.13: Text Description of Mug, Stapler and LiquidPaper Scene

11.2 Views of Office Objects 165

Sk

4

i

a1ty

T \.:‘f

-~

Figure 11.14: CD, Keyset, Gluestick and Drink Scene

Waorld[0] (1.000) Consisting of:
— gluestick[13] (1.000) Constructed from:
base[6] {1.000)
lid[7] (0.831)
— tool[15] (1.000) Of Type:
keyset[10] (1.000) Constructed from:
holder[2] (1.000)
keys[1] (1.000)
— receptacle[16] (1.000) Of Type:
. drink[11] (0.896) Constructed from:
bottle[3] (0.906)
lid[8] (0.891)
L— storage[17] (1.000) Of Type:
cdrom[12] (0.545) Constructed from:

': casec[5] (0.725)
label[4] (0.706)

Figure 11.15: Text Description of CD, Keyset, Gluestick and Drink Scene

11.2 Views of Office Objects 166

Figure 11.16: Two Pens, Two Cups and Holepunch Scene

World[1] (1.000) Consisting of:
— receptacle[14] (1.000) Of Type:
mug(19] (1.000) Of Type:
mug-molly[20] (1.000) Constructed from:
face[9] (1.000)
— penf15] (1.000) Of Type:
pen-blue(11] (1.000) Constructed from:
body[3] (1.000)
1id[2] (1.000)
— holepunch[16] (1.000) Of Type:
holepunch-new([12] (1.000) Constructed from:
base[4] (1.000)
handle[5] (1.000)
— pen[17] (1.000) Of Type:
pen- gwnn[l.}] (l 000) Constructed from:
t body[6] (1.000)
1id[7] (1.000)
“— receptaclef[21] (1. DUO) Of Type:
cup[22] (1.000) Of Type:
espresso[8] (1.000)

Figure 11.17: Text Description of Pens, Cups and Holepunch Scene

11.2 Views of Office Objects 167

3.

Figure 11.18: Stapler, Mug and Pliers Scene

World[1] (1.000) Consisting of:
receptacle[14] (1.000) Of Type:
mug[20] (1.000) Of Type:
mug-soup(6] (1.000)
— stapler[15] (1.000) Of Type:
stapler2[10] (1.000) Constructed from:
base[5] (1.000)
lever[7] (1.000)
— slide[8] (0.638)
— tool[17] (1.000) Of Type:
pliers[12] (0.666) Constructed from:
handle[4] (0.558)
Ejaws[Z} {1.000)
handle[3] (1.000)

Figure 11.19: Text Description of Stapler, Mug and Pliers Scene

11.3 Aerial Views of Airports 168

11.3 Aerial Views of Airports

The objective of this section is to demonstrate the operation of the clique resolving
process and the hierarchical relaxation labelling as a constraint propagation mechanism.
To demonstrate these features of Cite, seven aerial images of an airport are analysed to
determine not only the labelling of the constituent parts, but the local configurations
that they are in. These local configurations have been chosen to heavily overlap so that

the system must rely on relational information to resolve ambiguities.

The full knowledge base in shown in Figure 11.20. This was constructed by learning
each object from a single image, followed by learning each higher level configuration
from full scene examples. As can be seen, the “plane” object plays a central role, being
involved in five higher level objects; the “loading”, the “emergency”, the “service”, the
“landing” and the “refuelling” objects. When a plane is detected, the system must use
relational information to determine which of the five possible parent objects the plane
is most likely to belong to, and then propagate this through the scene interpretation
graph using relaxation labelling. The clique resolving operator generates the most likely
set of possibilities, and relaxation labelling resolves these to determine a subset of high

compatability.

Figure 11.20: Full Knowledge Base used in Airport Analysis

A further complication in these scenes is that a number of objects in the database can
appear in isolation, or as part of a higher level object. The determination for this in
each case rests solely on the strength of the binary matching, and the propagation of

the resulting hypotheses through the scene interpretation structure. These nodes are

11.3 Aerial Views of Airports 169

those whose names are preceeded by an asterisk as described in the Not-Always-Partof

section {Section 3.3).

The first five pages show instances of a single “situation” and the recognition results
obtained. The last two pages show pairs of situations in which two planes are involved.
In these two test, Cite must determine not only if a particular situation is occuring,
but which objects are involved in that situation. In all cases this is determined solely
by the propagation of relational matching through the hierarchical scene description.
In all seven test images, Cite correctly recognises the various objects and the higher

level situations in which they are involved.

11.3 Aerial Views of Airports 170

Figure 11.21: Emergency lmage and Analysis Graph

World[1] (1.000) Consisting of:
— grass{2] (1.000)
— runway(3] (1.000)
— *hangar[11] (1.000)
— cmergency[12] (0.946) Construcied from:
r: plane[5] (1.000)
firetruck[6] (1.000)
— *terminal[17] (1.000)
— *tower[18] (1.000)
— *fueltruck[19] (1.000)

Figure 11.22: Text Description of Emergency Scene

11.3 Aerial Views of Airports 171

Figure 11.23: Landing Image and Analysis Graph

World[20] (1.000) Consisting of:

— grass[21] (1.000)

— runway(22] (1.000)

— *hangar[30] (1.000)

— *firetruck[32] (1.000)

— landing[35] (0.946) Constructed from:
tower[27] (1.000)

plane(25] (1.000)

— *terminal[36] (1.000)

— *fuecltruck[38] (1.000)

Figure 11.24: Text Description of Landing Scene

11.3 Aerial Views of Airports 172

Figure 11.25: Loading Image and Analysis Graph

World[39] (1.000) Consisting of:
— grass[40] (1.000)
— runway[41] (1.000)
— *hangar[48] (1.000)
—— *firetruck[50] (1.000)
— loading[51] (0.946) Constructed from:
!: plane[44] (1.000)
terminal[45] (1.000)
— *tower[54] (1.000)

Figure 11.26: Text Description of Loading Scene

11.3 Aerial Views of Airports 173

Figure 11.27: Refuelling Image and Analysis Graph

World[55] (1.000) Consisting of:

— grass[56] (1.000)

— runway[57] (1.000)

— *hangar[65] (1.000)

— refuel[68] (0.946) Constructed from:
fucltruck|61] (1.000)
plane[59] (1.000)

— *firetruck(70] (1.000)

— *terminal[72] (1.000)

— *tower[73] (1.000)

Figure 11.28: Text Description of Refuelling Scene

11.3 Aerial Views of Airports 174

Figure 11.29: Service Image and Analysis Graph

World[74] (1.000) Consisting of:
: | (1.000)
— runway|[76] (1.000)
— serviee[82] (0.946) Constructed from:
[:lnng,al [77] (1.000)
planc[78] (1.000)
— *terminal[87] (1.000)
— *tower[88] (1.000)
— *fueliruck(89] (1.000)

Figure 11.30: Text Description of Service Scene

11.3 Aerial Views of Airports 175

Figure 11.31: Emergency and Load Image and Analysis Graph

World[90] (1.000) Consisting of:

— grass[91] (1.000)

— runway([92] (1.000)

— *hangar[101] (1.000)

— emergency[102] (0.946) Constructed from:
plane[94] (1.000)

firetruck[96] (1.000)

— loading[105] (0.946) Constructed from:
planc[95] (1.000)

terminal[97] (1.000)

— *tower[110] (1.000)

Figure 11.32: Text Description of Emergency and Load Scene

11.3 Aerial Views of Airports 176

Figure 11.33: Service and Refuel Image and Analysis Graph

World([111] (1.000) Consisting of:

— grass[112] (1.000)

— runway[113] (1.000)

— *hangar{122] (1.000)

— crmergency[123] (0.946) Constructed from:
plane[115] (1.000)
firctruck[117] (1.000)

— loading[126] (0.946) Constructed from:

|: plane[116] (1.000)

terminal[118] (1.000)

— *tower[131] (1.000)

Figure 11.34: Text Description of Service and Refuel Scene

11.4 Context Sensitive Taxonomies 177

11.4 Context Sensitive Taxonomies

To illustrate the context sensitive nature of the knowledge base in Cite, three knowledge
bases have been built which describe exactly the same objects in different ways. Objects
with a high degree of similarity are best suited to demonstrate the sensitivity of different
knowledge hierarchies. For this, five tree types and two shrub types have been classified
into three taxonomies as might be constructed by a botanist, a forester and a landscape

gardener.

Examples of the seven objects are shown in Figure 11.35. Figure 11.36 shows the three
taxonomies, and Table 11.2 lists which tree and shrub images are classified into each

category in each of the three taxonomies.

Hedge (bush) Lantana (bush) Cak Tree

Plane Tree Pencilpine Norfolk Island Pine

Norfolk Island Pine
(Curved Trunk)

Figure 11.35: Sample of Images used in Context Sensitive Knowledge Base

11.4 Context Sensitive Taxonomies 178

World

._’-—’"-A,’“’—’—’_'_w
shrub P . ree

e

"\’ T o ;
]anga hge nu s _hfjmmfer
e .:‘«-.\) ‘,/,\ s o
plane_~ " D&k pencilpine” ™ mﬁe

.

¢ & ¥ %
K

Botanist Knowledge Base

World

Er o e
o’ e '._‘ ""L—L,_‘_i_hm
harvest-noy. "~ harvest-later Tove. TEmove

. T
4 S

er—pulp [iage tres’ Kx\m‘lshrub
8’ @ ¢ & o
A 4 K‘fb.]l A ;
trunk iage iage L e
& & % é ¢

Forester Knowledge Base

o

timber

s
"y
s
P

i T P
shade _—=""igindbreak-"
i o

",
ﬂ; 7," .

P(IJ),
na;l(/ \%bliage trunk’ \@i‘%t tree/” “._hedge
® ¢ j | ®

Gardener Knowledge Base

Figure 11.36: Three Context Sensitive Knowledge Bases

Each of the three taxonomy knowledge bases were tested against a sequence of 24 im-
ages, 7 of which had been used in the initial creation of the knowledge base. The results
shown in Table 11.3 are examining the higher level classifications of the tree and shrub

objects into their respective categories. Of all 72 tests, Cite correctly decomposed the

11.4 Context Sensitive Taxonomies 179

objects into their constituent parts, and was able to combine the unary and relational
evidence for correct higher level matching in 67 cases. This represents a %93 correct
classification rate when differentiating similar objects based on an externally imposed

contextual hierachy.

Image No. | Botanist Forrester Gardener
Plane 8 Plane:Nut:Tree Tree:Remove Tree:Barrier
NIPine 4 NIPine:Conifer;Tree Timber:HarvestNow Shade
NIPineBent 4 NIPine:Conifer:Tree Tree:Remove Shade
PencilPine 8 | PencilPine:Conifer:Tree | PaperPulp:HarvestNow | WindBreak
Qak 8 Qak:Nut: Tree HarvestLater WindBreak
Hedge 2 | Hegde:Shrub Shrub:Remove Hedge:Barrier
Lantana 2 Lantana:Shrub Shrub:Remove GroundCover

Table 11.2: Image Categories for Three Different Taxonomies

Immage No. Tested Botanist Forrester Gardener
No. Correct | No. Correct | No. Correct
Plane 4 4 4 4
NIPine 4 4 4 4
NIFPineBent 4 4 3 4
PencilPine 4 4 4 4
Qak 4 4 2 2
Hedge 2 2 2 2
Lantana 2 2 2 2
Total 24 24 21 22

Table 11.3: Classification Results for Three Different Taxonomies

12. Conclusion 180

Chapter 12

Conclusion

This dissertation has presented a new theory of machine vision which integrates bottom-
up and top-down processing to integrate object recognition and scene understanding
capabilities within the same framework. The more novel aspects of this dissertation are
in the use of hierarchical structures to describe world knowledge in addition to scene
and visual decompositions, knowledge driven resegmentation, incremental supervised

learning methods, and hierarchical relaxation labelling.

Explanatory least generalisation on decision trees is presented as one method of con-
verting non-incremental learning algorithms into an incremental form that obeys the
identified desirable qualities of sub-linear growth in memory and computational com-
plexity. Results are presented illustrating the performance improvement gained by

closing the loop on segmentation with the knowledge driven resegmentation algorithm.

This dissertation also describes the Cite system which has been built to experimentally
test the theories presented. Cite provides an ideal test-bed for comparing various

segmentation, feature extraction, matching and learning algorithms.

12.1 Directions for Further Research 181

12.1 Directions for Further Research

The Cite system can be extended in a number of different ways. The knowledge driven
resegmentation could be augmented with a data driven supervised process whereby the
user could outline individual regions in the image and the system would search through
the available segmentation routines to determine the optimal segmenter for that region.
This supervised segmentation is itself an extremely complex process, but would be ideal

to develop under Cite’s operational framework.

The hierarchical knowledge base is potentially sub-optimal in that it reflects directly
the user’s taxonomic and hierarchic description of the world. One possible extension
of the hierarchical construction process is to balance the tree-like components of the
knowledge base automatically by clustering children into intermediate nodes such that
the classification expectation at each level is as uniform as possible. This would bias
the knowledge hierarchy towards optimal search efficiency while maintaining the user’s

imposed contextual representation.

The process of tree matching [Ramesh and Ramakrishnan, 1992] (as opposed to tree
search or decision trees) is concerned with matching two trees or subtrees. This process
is irrelevant to matching sensed data and decision tree or interpretation tree approaches
in conventional non-hierarchical object recognition systems. However, because Cite pro-
vides both a hierarchical knowledge base and a hierarchical scene description, such tree
matching could be valnable in providing a useful lower comparison for the performance

of the hierarchical matching strategy.

BIBLIOGRAPHY 182

Bibliography

Adelson, E. and Wang, J. (1992). Single lens stereo with a plenoptic camera, IEFE
Transactions on Pattern Analysis and Machine Intelligence 14(2): 99-106.

Bareiss, R., Porter, B. and Weir, C. (1988). Protos: an exemplar-based learning ap-
prentice, International Journal of Man-Machine Studies pp. 549-561.

Barrow, H. and Tenenbaum, J. (1981). Interpreting line drawings as three-dimensional

surfaces, Artificial Intelligence 17: 75-1186.

Barth, E., Caelli, T. and Zetzsche, C. (1993). Image encoding, labeling and reconstruc-
tion from differential geometry, Computer Vision, Graphics and Image Processing

55(6): 428-46.

Besl, P. and Jain, R. (1985). Three-dimensional object recognition, Computing Surveys
17(1): 75-145.

Besl, P. and Jain, R. (1986). Invariant surface characteristics for 3d object recognition

in range images, Computer Vision, Graphics and Image Processing 33: 33-80.

Bischof, W. F. and Caelli, T. (1994). Learning structural descriptions of patterns: A
new technique for conditional clustering and rule generation, Pattern Recognition

27(5): 689-97.

Bolle, R., Califano, A. and Kjeldsen, R. (1992). A complete and extendable approach
to visual recognition, JEEE Transactions on Pattern Analysis and Machine Intel-

ligence 14(5): 534-548.

BIBLIOGRAPHY 183

Bolles, R. and Cain, R. (1982). Recognising and locating partially visible objects: The
local-feature-focus method, Robot Vision pp. 43-82.

Bolles, R. and Horaud, P. (1986). 3DPO: A three-dimensional part crientation system,
International Journal of Robotics Research 3(5): 3-26.

Brooks, R. (1981). Symbolic reasoning among 3-d models and 2-d images, Artificial
Intelligence 17: 285-349.

Caelli, T. and Drier, A. (1994). Variations on the evidence-based object recognition

theme, Pattern Recogn. 27(2): 185-204.

Carbonell, J., Michalski, R. and Mitchell, T. (1983). An Overview of Machine Learning,
Vol. 1, Morgan Kaufmann, Los Altos, CA, chapter 1, pp. 3-23.

Carpenter, G. A. and Grossberg, S. (1988). The art of adaptive pattern recognition by
a self-organizing neural network, IEEE Computer 21(3): 77-88.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W. and Freeman, D. (1988).
AutoClass: a Bayesian classification system, Proceedings of the Fifth International

Workshop on Machine Learning, Morgan Kaufman, San Mateo, CA, pp. 296-306.

Connell, J. and Brady, M. (1985). Generating and generalizing models of visual objects,
Massachusetts Institute of Technology, AI Memo 823 .

Davis, L. and Rosenfeld, A. (1981). Cooperating processes for low-level vision: A

survey, Artificial Intelligence 17: 245-263.

Dhond, U. and Aggarwal, J. (1991). A cost-benefit analysis of a third camera for stereo

correspondence, International Journal of Computer Vision 6(1): 39-58.

Dillencourt, M., Samet, H. and Tamminen, M. (1992). A general approach to connected-
component labeling for arbitrary image representations, Journal of the ACM

39(2): 253-280.

Dillon, C. and Caelli, T. (1993). Shape from virtual aperture focus, Australian and
New Zealand Intelligent Information Systems Conference pp. 382-386.

BIBLIOGRAPHY 184

Draper, B., Collins, T., Brolio, J., Hanson, A. and Riseman, E. (1989). The schema

system, International Journal of Computer Vision 2: 209-250.

Duncan, J. and Birkholzer, T. {1992). Reinforcement of linear structure using parame-
terized relaxation labelling, IEEE Transactions on Pattern Analysis and Machine

Intelligence 14(5): 502-515.

Fan, T., Medioni, G. and Navatia, R. (1987). Segmented descriptions of 3-d surfaces,
IEEE Journel of Robotics and Automation 3(6): 527-538.

Faugeras, O. and Herbert, M. (1986). The representation, recognition and location of

3-d objects, International Journal of Robotics Research 5(3): 27-52.

Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering, Ma-

chine Learning 2: 173-190.

Flynn, P. and Jain, A. (1991a). BONSAL 3d object recognition using con-
strained search, IEEE Transactions on Pattern Analysis and Machine Intelligence

13(10): 1066-1075.

Flynn, P. and Jain, A. (1991b). CAD-based computer vision: From CAD models to re-
lational graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence
13(2): 114-132.

Garvey, T. (1976). An experiment with a system for locating objects in multisensory

images, Int. Joint Conf. on Pattern Recognition pp. 567-575.

Gennari, J., Langley, P. and Fisher, D. (1989). Models of incremental learning, Artificial
Intelligence pp. 11-59.

Goodman, A., Haralick, R. and Shapiro, L. (1989). Knowledge-based computer vision,
IEEE Computer pp. 43-54.

Grimson, E. and Lozano-Perez, T. (1986). Model-based recognition and localization

from sparse range data, Technigues for 3-D Machine Perception pp. 113-147.

Hansen, C. and Henderson, T. (1989). CAGD-based compter vision, IEEE Transactions
on Pattern Analysis and Machine Intelligence 11(11): 1181-1193.

BIBLIOGRAPHY 185

Haralick, R., Davis, L., Rosenfeld, A. and Milgram, D. (1978). Reduction operations

for constraint satisfaction, Information Science 14: 199-219.

Hopcraft, J. and Karp, R. (1973). A ns algorithm for maximum matching in bipartite
graphs, J. SIAM Comp 2: 225-231.

Hummel, R. A. and Zucker, S. W. (1983). On the foundations of relaxation label-
ing processes, IEEE Transactions on Pattern Analysis and Machine Intelligence

5(3): 267-287.

Hwang, V., Davis, L. and Matsuyama, T. (1986). Hypothesis integration in image un-
derstanding systems, Computer Vision, Graphics and Image Processing 36: 321—
371.

Ikeuchi, K. (1987). Precompiling a geometrical model into an interpretation tree for
object recognition in bin-picking tasks, Proc. DARPA Image Understanding Work-
shop pp. 321-339.

Jain, A. and Hoffman, R. (1988). Evidence-based recognition of 3-d objects, IEEE
Transactions on Pattern Analysis and Machine Intelligence 10(6): 783-802.

Kak, A. and Kim, W. (1991). 3-d object recognition using bipartite matching embed-
ded in discrete relaxation, IEEE Transactions on Pattern Analysis and Machine

Intelligence 13(3): 224-251.

Kay, G. and Caelli, T. (1994). Inverting the phong lighting model from range and
intensity maps, CVGIP: Image Understanding 59(2): 183-201.

Kim, W. and Kak, A. C. (1991). 3-d object recognition using bipartite matching embed-
ded in discrete relaxation, JEEE Transactions on Pattern Analysis and Machine

Intelligence 13(3): 224-251.

Kohonen, T. (1990). The self-organizing map, Proceedings of the IEEE, Vol. 78,
pp. 1464-1481.

Kriegman, D. J. and Ponce, J. (1990). On recognizing and positioning curved 3-d
objects from image contours, IEEE Transactions on Pattern Analysis and Machine

Intelligence 12(12): 1127-1137.

BIBLIOGRAPHY 186

Lowe, D. (1987). Three-dimensional object recognition from single two-dimensional

images, Artificial Intelligence 31: 355-395.

Matsuyama, T. and Hwang, V. (1990). Sigma: A Knowledge-Based Aerial Image

Understanding System, Plenum Press.

McKeown, D., Harvey, W. and McDermott, J. (1985). Rule-based interpretation of
aerial images, IEEE Transactions on Pattern Analysis and Machine Intelligence

7: 570-585.

Messmer, B. T. and Bunke, H. (1995). Subgraph isomorphism detection in polynomial
time on preprocessed model graphs, in S. Li, D. Mital, E. Teoh and H. Wan (eds),
Recent Developments in Computer Vision. Second Asian Conference on Computer
Vision, ACCV ‘95, Singapore, Invited Session Papers, Springer-Verlag, Berlin,
Germany, pp. 373-82.

Michalski, R. and Stepp, R. (1983a). Automated construction of classifications: Con-
ceptual clustering versus numerical taxonomy, IEEE Transactions on Pattern

Analysis and Machine Intelligence 5: 396-409. not held.

Michalski, R. and Stepp, R. (1983b). Learning From Observation: Conceptual Cluster-
ing, Morgan Kaufmann, Los Altos, CA, chapter 11, pp. 331-363.

Murray, D. and Cook, D). (1988). Using the orientation of fragmentary 3d edge seg-
ments for polyhedral object recognition, International Journal of Computer Vision

2: 153-169.

Murray, D. W., Castelow, D. A, and Buxton, B. F. (1989). From image sequences to
recognized moving polyhedral objects, International Journal of Computer Vision

3: 181-208.

Nalwa, V. (1988). Line-drawing interpretation: Straight lines and conic sections, T-

PAMI 10(4): 514-529.

Nazif, A. and Levine, M. (1984). Low level image segmentation: An expert system,

IEEE Transactions on Pattern Analysis and Machine Intelligence 6(5): 574-579.

BIBLIOGRAPHY 187

Nishida, H. and Mori, 8. (1992). Algebraic description of curve structure, IEEE Trans-
actions on Pottern Analysis and Machine Intelligence 14(5): 516-533.

Oshmia, M. and Shirai, Y. (1983). Object recognition using three-dimensional informa-
tion, IEEE Transactions on Pattern Analysis and Machine Intelligence 5(4): 353—
361.

Pearce, A. R., Caelli, T. and Bischof, W. F. {1994). Rulegraphs for graph matching in
pattern recognition, Patiern Recognition 27(9): 1231-47.

Pelillo, M. and Refice, M. (1994). Learning compatability coefficients for relaxation
labelling processes, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 16(9): 933-945.

Quinlan, J. (1986). Induction of decision trees, Machine Learning 1: 81-106.

Quinlan, J. R. (1990). Learning logical definitions from relations, Machine Learning

5: 239-266.

Raja, N. and Jain, A. (1992). Obtaining generic parts from range data using a multi-
view representation, SPIE proceedings on Application of Artificial Intelligence:

Machine Vision and Robotics .

Ramesh, R. and Ramakrishnan, . (1992). Nonlinear pattern matching in trees, Journal

of the ACM 39(2): 295-316.

Rosenfeld, A., Hummel, R. and Zucker, 8. (1976). Scene labeling by relaxation opera-
tions, IEEE Transactions on Systems, Man and Cybernetics 6(6): 420-433.

Schlimmer, J. and Fisher, D. (1986). A case study of incremental concept induction,

Proceedings of the Fifth National Conference on Artificial Intelligence pp. 496-501.

Seibert, M. and Waxman, A. (1992). Adpative 3-d object recognition from mul-
tiple views, IEEE Transactions on Pattern Analysis and Machine Intelligence

14(2): 107-124.

Shapiro, L. and Haralick, R. (1981). Structural descriptions and inexact matching,
IEEE Transactions on Pattern Analysis and Machine Intelligence 3(5): 504-519.

BIBLIOGRAPHY 188

Tarjan, R. E. and Trojanowski, A. E. (1977). Finding a maximum independent set,
SIAM Journal of Computing 6(3): 537 — 546.

Ting-Jun Fan, G. M. and Navatia, R. (1989). Recognizing 3-d objects using surface
descriptions, IEEE Transactions on Pattern Analysis and Machine Intelligence
11(11): 1140-1157.

Utgoff, P. (1989). Incremental induction of decision trees, Machine Learning 4: 161-186.

Wallace, R. and Kanade, T. (1989). Finding hierarchical clusters by entropy minimiza-
tion, Image Understending Workshop, pp. 1105-1116.

Wang, C. and Srihari, S. (1988). A framework for object recognition in a visually
complex environment and its application to locating address blocks on mail pieces,

International Journal of Computer Vision 2: 125-151.

Wang, Y. and Aggarwal, J. (1986). Surface reconstruction and representation of 3-d
scenes, Pattern Recognition 19(3): 197-207.

Weng, J., Ahuja, N. and Huang, T. (1993). Learning recognition and segmentation of
3d objects from 2d images, Proceedings of the Fourth International Conference on

Computer Vision .

Wong, A., Lu, S. and Rioux, M. (1989). Recognition and shape synthesis of 3-d objects
based on attributed hypergraphs, IEEE Transactions on Pattern Analysis and
Mauchine Intelligence 11(3): 279-290.

A. Additional Details 189

Appendix A

Additional Details

A.1 Algorithm Details

This section lists each of the main algorithms used in Cite. Reference should be made

to the appropriate chapters for a detailed description of each algorithm.

A.1.1 ProcessSIFromKB Algorithm

The algorithm for the PROCESSSIFROMKB top-down process is listed in Algorithm 7.
This algorithm is described in detail in Section 7.3.5 and propagates taxonomic and
hierarchical decomposition information from the knowledge base to the scene interpre-

tation graph.

A.1 Algorithm Details 190

BESTKB = BESTKBNODE
if BESTKB.TYPE 7% KBPART then
for all cHILD € CHILDLIST do
if cHILD.KBLIST = 0 then
CONTINUE
end if
if ||cHiLp. KBLisT|| > 1 then
if cHILD . NEXTBESTKBRATIO > Gppretio then
CONTINUE
end if
end if
CBESTKB = CHILD.BESTKBNODE
if BESTKB, RELATIONSHIPDISTANCE(CBESTKB) < 1 then
CONTINUE
end if
for all KBCHILD € BESTKB.CHILDLIST do
if CHILD.ISANCESTOR(KBCHILD) then
if kBCHILD.TYPE = KBPART then
FOUND = FALSE
for all ¢ € CuoLisT do
if ¢ = cHILD then
CONTINUE
end if
for all k € ¢.KBLIST do
if C.RELATIONSHIP(K) # 0 then
FOUND = TRUE
end if
end for
end for
if NOT FOUND then
if || BESTKB.CHILDLIST|| = 1 then
CONTINUE
end if
else
if ||CuiLpLisTy| # 1 |J ||BESTKB.CHILDLIST|| = 1 then
CONTINUE
end if
end if
end if
NEWSI = NEW SINODE
NEWSI. ADDCHILD (CHILD)
REMOVECHILD (CHILD)
ADDCHILD (NEWSI)
NEWSL. ADDKBNODE(KBCHILD)
RETURN
end if
end for
end for
end if

Algorithm 7: Algorithm for Generating SI Nodes from the KB Graph

A.1 Algorithm Details 191

A.1.2 Algorithm for UnaryBounded Learning

The algorithm for the UNARYBOUNDED incremental learning process is listed in Al-
gorithm 8. This algorithm is one of a number that may be instantiated at each node

in the knowledge base for generating unary matching hypotheses, and is described in

detail in Section 6.5.1.

if NEW.TYPE = POSITIVE then
SLIST = POSITIVELIST
OLIST = NEGATIVELIST
else
SLIST = NEGATIVELIST
OLIST = POSITIVELIST
end if
BEST = {)
for all 1 € sL1sT do
TEST = HULL(I + NEW)
OVERLAP = FALSE
for all 1 € oLsT doO
if 1.OVERLAP(TEST) then
OVERLAP = TRUE
end if
end for
if OVERLAP = FALSE then
if BEST = [} then
BEST = TEST
else
if TEST.SI1ZE() < BEST.SI1ZE() then
BEST = TEST
end if
end if
end if
end for
if BEST = { then
SLIST = SLIST + NEW
else
SLIST = SLIST + BEST
end if
SLIST.REDUCE()

Algorithm 8: Algorithm for UnaryBounded Learning

A.1 Algorithm Details 192

A.1.3 ProcessVIFromSI Algorithm

The algorithm for the PROCESSVIFROMSI top down hierarchical structure process is

listed in Algorithm 9. This algorithm is described in detail in Section 7.3.3.

if CuiLDLIST = § then
RETURN
end if
if SILisT # @ then
for all cHILD € CHILDLIST do
if cHILD.SILIST # (} then
if BESTSINODE. RELATIONSHIPDISTANCE(CHILD. BESTSINODE) > 1 then
for all pscHILD € BEsTSINODE.CHILDLIST do
if ¢HILD.BESTSINODE.ISANCESTOR(PSCHILD) then
NEWVI = NEW VINODE
NEWVI. ADDCHILD{CHILD)
REMOVECHILD (CHILD)
ADDCHILD(NEWVI)
NEWVI.ADDSINODE (PSCHILD)
RETURN
end if
end for
end if
end if
end for
end if

Algorithm 9: Algorithm for Building Scene Hierarchies

A.1.4 ProcessSIFromVI Algorithm

The algorithm for the PROCESSSIFROMVI bottom-up process is listed in Algorithm 10.
This algorithm is described in detail in Section 7.3.4 and propagates structure from the
clique grouping or connected components analysis in the visual interpretation structure

up to the scene interpretation structure.

A.1.5 Most Common Parent Algorithm

The MoSTCOMMONPARENT algorithm returns the most common parent of a group of
nodes within the same graph. This algorithm is run both on the scene interpretation

and knowledge base by a number of different operators within Cite. The algorithm

A.1 Algorithm Details 193

if SILIST # { then
RETURN
end if
TEMPSI = {§
for all cHILD € CHILDSET do
if ¢HILD.SILIST = § then
RETURN
end if
TEMPSI = TEMPSI + {CHILD.BESTSINODE}
end for
ATTACHPOINT = MOSTCOMMONPARENT (TEMPSI)
NEWSI = NEW SINODE
for all ITEM € TEMPSI do
NEWSI. ADDCHILD(ITEM)
if ATTACHPOINT € ITEM.PARENTLIST then
ITEM.REMOVEPARENT{ATTACHPOINT)
end if
end for
ATTACHPOINT. ADDCHILD(NEWSI)
ADDSINODE(NEWSI)

Algorithm 10: Algorithm for Generating SI Nodes from VI Nodes

is shown in Algorithm 11 and recursively descends the graph until it finds a node
which is not a descendent of all the nodes for which the most common parent is being

determined.

ARRAY = {NODE}
for all ITEM € ARRAY do
if NOoT DESCENDENT(ITEM) then
RETURN {
end if
end for

for all CHILD € CHILDLIST do
RETURN_VALUE = CHILD.MOSTCOMMONPARENT({ARRAY)
if RETURN_VALUE # § then
RETURN RETURN_VALUE
end if
end for

RETURN THIS

Algorithm 11: Algorithm for Determining Most Common Parent

A.1 Algorithm Details 194

A.1.6 ProcessMatchKB Algorithm

The algorithm for the PROCESSMATCHKB top-down process is listed in Algorithm 12.
This algorithm is described in detail in Section 7.4.3 and matches nodes in the scene

interpretation graph using both unary and binary hypotheses.

POSSIBLEKB =
for all cHm.p € CHILDLIST do
for all kB € cHILD.KBLIST do
for all PKB € KB.PARENTLIST do
if PKB ¢ POSSIBLEKB then
POSSIBLEKB = POSSIBLEKB + {PKB}
end if
end for
end for
end for
for all TESTKB € POSSIBLEKB do
MATCH[TESTKB] = 0
for all cHiLp € CHILDLIST do
WEIGHT = 0
MATCHES = 0
for all xB € caiLp. KBL1sT do
for all PKB € KB.PARENTLIST do
if PKB = TESTKB then
MATCHES = MATCHES + 1
WEIGHT = WEIGHT + CHILD.KBWEIGHT(KB) / CHILD. KBWEIGHTRANK (KB)
end if
end for
end for
if MATCHES then
MATCH[TESTKB] = MATCH[TESTKB] + WEIGHT / MATCHES
end if
end for
if || TESTKB.CHILDLIST|| then
MATCH[TESTKB| = MATCH[TESTKB] / || TESTKB.CHILDLIST]|
end if
end for
BEST = MAX{MATCH}.INDEX
for all KB € POSSIBLEKB do
if MATCH[KB] > MATCH[BEST] ¢maqicn then
ADDKBNODE(KB)
end if
end for

Algorithm 12: Algorithm for Matching SI Parent Nodes to the KB Graph

A.2 Operator Early Termination Requirements 195

A.2 Operator Early Termination Requirements

A number of the unary hypothesis generation operators in Cite operate recursively
on the data structures that they modify. This can cause some subtle but potentially
disastrous consequences if the operators are not modified for early termination upon

making their first change.

For additive unary hypothesis operators, the recursion code is typically something like

the following:

for(int i=0;i<NumChildren(};i++)
{
GetChild(i)->Operation();

code to perform operation on current node

If unchecked, and the operator makes a number of changes to the structure, this can
cause the system to fail if these changes result in changing the parent-child relationships
in the structure. This occurs because the recursion code effectively builds a depth first
stack on the system stack, which can lose synchronisation with the actual structure.
The worse case scenario is when operators remove and delete nodes from the structure

which may still be on the system stack as a result of the recursion code.

The solution to this problem is straight forward and simple to implement. In program-
ming these operators which can get into trouble in this way, the function must simply
be able to return back up through what is known to be an unmodified structure. This
can easily be achieved by returning control back to the process scheduler as soon as
the first change is made. Because every operator in Cite scans the structures looking
for processing that needs to be done, every part of the structure will be processed.
Only few operators require this attention, and the slight performance penalty is not

significant.

A.3 Derivation of Vertical Straightness 196

A.3 Derivation of Vertical Straightness

Working first with horizontal straightness, a quadratic fit to an object may be modelled
as §; = a1x7 + asx; + ag. Using a least squared error criterion, the following is to be

minimised:

> (a1af + agwi + a3 — 4i)® (A1)
:

Taking the partial derivatives with respect to a1, az and a3 and setting these to zero

the following three equations are obtained:

Z(alxz? +as7; +az —gi)zd = 0 (A.2)
i

> (a2} +agzi +az—yi)zi = O (A.3)
i

> (ozf + ez +az—3) = 0 (A4)

Expanding these out yields:

ay Z:ﬂ? + asg me + agzsc? - Zyim? =0 (A.5)
alz:c +agZ:c +a32.1:, Zyimg =0 {A.6)
alzm +a22x@+a3n—2y, =0 (A.7)

Substituting X(] =n, Xl = Zi i, -X2 E‘z 1.1 X3 - Zz 1,1 X4 = Zz i 1 = Ei Vi,
Yo =3,y and Y3 = Y yx? the following is obtained:

A.3 Derivation of Vertical Straightness 197

a1 XgtasXs+asXo—Ys = 0 (A.S)
a1 Xz +aXot+azX:—Ys = 0 (Ag)
a1 Xz +asXitaz3Xyg—Y1 = 0 (A.].O)

Solving 3 into 1 and 3 into 2 yields:

al(X1X4 - X2X3) + (13(X1X2 — X0X3) + X3V -XiYs = 0 (A.ll)

a(X1 X3 — XD + a3(XE — XoXo) + XoY1 - X1Ya = 0 (A.12)

Which when solved gives:

_ (XeYi - XiV) (X1 Xa — XoX3) — (Xa¥h — Xa V) (X} - XoX3)
(X1 Xy — XoX3)(X? — XoXo) — (X1X3 = X3) (X1 X2 — XoX3)

ay {A.13)
This then needs to be axis flipped such that it represents the minimisation of the error

in # = a1y2 + asy + as.

After some experimentation, this method of fitting a quadratic to the set of points has
a number of failings. Firstly, if a long object has a blob at one end then this blob
receives more statistical weight because of the number of pixels present. Secondly,
for large blobby objects the calculated straightness varies wildly with the shape and

distribution of the region which is not acceptable.

The solution to this is to determine the straightness of the two edges made from the
minimum and maximum x value on each line. For objects that are genuinely bent, the
two edges will have roughly the same second order term. For blobby objects, the two

edges will have large positive and negative values.

The final straightness value is determined by:

A.3 Derivation of Vertical Straightness 198

sy = (0.001+ a140:)(0.001 4+ a2 right) (A.14)
0 if 5, <0
5 = 100,/5, if0 < s, <1074 (A.15)

1 if s, > 1074

B. System Operation 199

Appendix B

System Operation

B.1 Overview

Cite is implemented as a single X-Windows based Unix program. The graphical user
interface uses the Motif widget set, and was developed on a Silicon Graphics Indy
using GNU C++. The system dynamically determines whether the live video capture
hardware is present, and if so allows the user to grab images directly. However, most
of the testing of Cite was done using pre-saved images which can be loaded into Cile at
any point. This appendix describes each of the graphical windows in the Cite system,

the menus and the user controlled options.

B.2 Operation

Cite may be launched from the command line by typing ‘cite’ at the Unix prompt
without any arguments. The default start-up behaviour is for each main window other
than the results window to be displayed. Each of these main windows is described in

the following sections.

B.2 Operation 200

B.2.1 The Command Window

The command window is the main control window in Cite. It lets you enter commands
from pull-down menus or from a one line text command prompt. Figure B.1 shows the
command window as it normally appears. The top text window contains the status
and progress reporting messages from Cite. The middle text window is a history of the
previous entered commands, and the lower text window is the command prompt. The

commands that can be entered at the command prompt are described in Table B.1.

Figure B.1: The Main Command Window in Cite

Most of the boolean flags that can be set in Cite activate one or more of Cite’s oper-
ators. These are included so that the user can selectively disable an operator, such as
the knowledge driven resegmenter, in order to watch the system in operation. Cite’s
relaxation labelling process is very fast, and it is quite often useful to slow this down

using a single-step manual control rather than selecting the continuous update.

Real valued parameters are used mainly by the hypothesis generation and relaxation
labelling algorithms. These typically determine how fast hypotheses are updated, how
quickly before a resegmentation occurs, and the breadth of hypotheses generated by

the matching processes. At the extremes of these parameters the system behaves catas-

B.2 Operation 201

trophically - either halting or producing a useless labelling. However, there is a wide
operational range around the default values which provides acceptable system oper-
ation. These parameters have been placed in the user interface to allow the user to

experiment with the stability of the system in different configurations.

Command Argument | Description

load image filename loads an image from disk

load scenc filename loads the ST from disk

load kbase filename loads the KB from disk

gave viewset filename saves the VI to disk

SAVE SCOLC filenaine saves the SIto disk

save kbasc filename saves the KB to disk

describe filename saves the description to file
show irnage mteger shows the n'™ image

show seg integer shows the n*® segientation
show depth integer shows scgmentation at depth n
quit nfa quits Cite

NOW SCCHEe nfa cloars the 5T and VI

new kbase n/a clears the Sf, VI and KB

learn label learns sclected ST as label
forget u/a daletes aelectod KB nodes

sct nobackgronnd hoot sats background removal

set reseginentation bool activates resegmentation

set allchildrenreseg hoaol resog. cven if children match
sct antominsize hool auto. calculation of minsize

st cligue bool activate clique resolving

sot eliquecommected bool activate couuceted componcnts
seh contivuonsupdate | bool continmons weight update

sct resegratio real ratio before rescgrmentation

set simatchkbratio real ratio of 31 in MatchKI3

st parentchildratio real ratio of child-parent in update
sof slunarymatch real ratio to best for woary match
sot slunarymin real roinirmum absolute unary match
sct sigronpsmatch real ratio to best in MatchKDB

sot siparentchildratio | real parent-child ratio in update
set npdateorigrix real time-series update ratio

sct showweights bool display weights on graph window
delefe n/a delete selected VI/SI nodes
typoof label constructs sclected KB as typeof label
insert typoeof label mserts typeof in KB

Table B.1: Commands in Cite

Under the main menu in the command window are menu options which duplicate the
commands that can be entered at the command prompt. In addition, there are menu
options for displaying a live video window and for grabbing the live video input and
saving it to a file (Silicon Graphics machines only). There is an additional window

under the “Options” window which contains a slidebar for each of the real-valued

B.2 Operation 202

Figure B.2: The Options Window in Cite

options under the “set” command. This options window is shown in Figure B.2.

B.2.2 The Iinage Window

The image window contains the images of the current scene and their segmentations.
When labelling is complete the labels are placed over the segmented image. The op-
erator can choose to display the segmentation at any level, such as at leaf nodes, at

parents of leaf nodes, and so on.

Under the options menu in this window is a toggle for displaying the best hypothe-
sised label on the segment. This defaults to “true”, but can be switched off if over-
segmentation occurs so that the user can view underlying segments without the clutter

of text labels.

B.2.3 The Data Graph Window

The data graph window is the most important visual display in Cife. It contains
three panels, one above the other. The top panel contains the knowledge base, the
middle panel contains the scene interpretation, and the bottom panel contains the

visual interpretation for each image.

B.2 Operation 203

Figure B.3: The Image and Segmentation Window

There are many display options which control what is displayed on the screen. This
includes displaying hypotheses from the visual interpretations to the scene interpreta-
tion, and from the scene interpretation to the knowledge base. The user can also select
nodes for editing, grouping or deleting with the mouse. The data graph window is

shown in Figure B.4.

The menu options in this window enable various levels of display detail of hypotheses.
There is a considerable amount of information in the three graphs represented in this
window, and to display all this at once would be virtually impossible. Nodes may be
selected by clicking on them with the left mouse button. Clicking on them with the
right button brings up the display window for that node. There are three basic types
of node display window; one for VI nodes, one for SI nodes and one for KB nodes. An

example of each type is shown in Figure B.5.

Selecting a VI node at the same level of display as the segmentation shown in the image

window causes that segment to be displayed with a cross-hatch pattern. This is useful

B.2 Operation 204

Psprb e 1Bres
10-plane” N 7:pm.:ilpiat,/ " Lnipine
uamli 1foliage &:ituﬂm' é‘jgxge a:gi{' 9‘%3?_ Ry 31%“
@ :
e L
i .
i '
i v
A \ ; ‘
et D78sU7S008%M
e = o e & "
e B T
i i N
oo o 0 0 e o
! i
¥ '
| i
| {
ok e 1000
SR i :
I all® S S Sl Wiy, SUUURY
1”'/,('/"‘/) /”—J L \\\ s 1‘4""‘\\“}:0“" ~ -
O . @) Q ® O

Figure B.4: The Data Graph Window

for identifying which region belongs to which VI node. Likewise selecting a region
or clicking on the original image causes the region to be displayed with a cross-hatch

pattern and the corresponding VI node to become selected.

B.2.4 The Hypothesis Weight Window

A more detailed analysis of the hypothesis weights can be obtained via the hypothesis
weight window. This displays a graph of hypothesis weights as a function of time. The
weights that are displayed can be individually selected from the node display windows
by clicking on the text display of the particular hypothesis of interest. Figure B.6 shows
the hypothesis weight window with three SI-KB hypotheses selected. Every hypothesis
has a unique integer identifier, and this is displayed on this window as well as the node

display window.

The horizontal scale in the hypothesis weight window is the iteration number where

B.2 Operation 205

Figure B.5: Node Display Windows for VI, SI and KB Nodes

each iteration represents one complete pass through the process stack when a change
occurred in at least one hypothesis. That is, a cycle through the process stack is
only considered a full iteration if it results in a hypothesis changing its weight. This
prevents the system running to infinity with subsequent loss of the interesting parts of
the hypothesis curves. The horizontal axis is auto-scaling and the vertical axis ranges

between 0.0 and 1.0.

B.2.5 The Profile Window

Cite has a cyclic process scheduler which runs each loaded operator for a short period
of time before going to the next. The total amount of time spent in each operator is
stored in the operator description class, and displayed in the profile window shown in
Figure B.7. The columns in the profile window show the total time spent executing
each operator, the overall percentage, a short-term percentage, a long-term percentage,

and the absolute time spent in the most previous execution. In addition there is

B.2 Operation 206

Figure B.6: The Hypothesis Graphing Window

a performance measure expressed relative to the original development platform of a
150 MHz R4400 processor. The profiler gives useful information as to the relative

computation required for each sub-task within Cite.

FROCESS NAME Totalfs) Total(%) Sher(%) Long(%) Last(ms)

Profile: Refresh 34 04 7 : 00
Check: ViNode 33 049 5 . 0o
Check?: VINode 520 136 3 i 0o
Init: Scene 21 086 i ; 00
Init: ViNoce 42 1.1 3 ; ili}
Segmenter: Bun 64,3 17.0 . 00
Segmenter: Initial 17.8 46 X ¥ 0.1
Segmenter: Grouping by CC 14.0 a4 . o
Segmenter: Cligue Growping 2.1 06

Features: Besic Unary 181 5.0

Features: Basic Einary 355 250

Iatcher: Basic Unary 100 28

Matcher: S| From VI 9.5 25

Matcher: VI From S1 370

Grouper: Hierarchy parts 8.3

Malcher: Hierarchy KB 174

Learning: monitor 2.3

Weight Updaler 2.3

CPU Perfarmance Check 158

ReSegmenter

Figure B.7: The Operator Profile Window

B.3 Cite Files and File Formats 207

Figure B.8: The Results Window

B.2.6 Results Window

In order to produce the highest quality results, there is an additional results window
which shows the image in the original size with black-bordered regions and the region
labels in a more printable font. The results window is shown in Figure B.8 and is
displayed from a menu entry under the main system menu in the command window.

The results shown in Chapter 11 were generated using this window.

B.3 C(ite Files and File Formats

B.3.1 The Log File

Cite generates a log file called cite.log which contains time-stamped entries indicating
which files were loaded and saved, and any warning or error messages. The log file

is appended, so the full operational history of Cife can be kept. The following is an

example of this log file.

B.3 Cite Files and File Formats 208

16:21:01] : System started

16:21:03] : Segmenting VINode: 0

16:21:27] : Unknown command: swho depth 1

16:21:33] : quit

16:22:00] : Exactly one KB node must be selected to set the name
16:21:37] : Loaded Images/HolePunchl/holepunchl-1.rgb (378x285)
16:21:38] : System started

16:21:42] : Segmenting VINede: ©

16:24:10] : quit

Progress [Jul
Progress [Jul
Progress [Jul
Progress [Jul
Warning [Jul
Progreas [Jul
Progress [Jul
Progress [Jul
Progress [Jul

W W wwwwww

B.3.2 Input Image Format

For historical reasons, the IPRS RGB image format is nused for all images loaded from
file. This is a binary file format containing a header with pixels stored in correct
Cartesian scan format (upside down raster format) at three bytes per pixel. Utilities

are available for converting to and from the IPRS image format.

B.3.3 Data Structure File Formats

Each of the knowledge base, scene interpretation and visual interpretation data graphs
can be saved to file and loaded from file. These files are stored in a human readable
format, but will not be discussed in detail here. In each case, the structures are stored
one node per file, with the filename constructed by concatenating the base filename, the

3

node identification number (a unique integer) and one of “kb”, “.si” or “.vi” depending

on which structure the node belongs to.

C. Related Papers Published During PhD Period 209

Appendix C

Related Papers Published During
PhD Period

During the period of my PhD I was the principal author of the following papers related

to image interpretation and machine learning:

Craig Dillon and Terry Caelli, Infering Shape from Multiple Views using Focus and
Correspondence Measures, TR-91/28 University of Melbourne, November 1991.

Craig Dillon and Terry Caelli, Interpolating Depth in Passive Sensing, Digital Image
Computing: Techniques and Applications, pp.451-458, December 1991.

Craig Dillon and Terry Caelli, Generating Complete Depth Maps in Passive Vision
Systems, Proceedings 11th IAPR, pp. A:562-566, Den Hague, The Netherlands, August
1992.

Craig Dillon and Terry Caelli, Hobust Inecremental Learning in Fatlern Hecognition,
First Asian Conference on Computer Vision, pp. 652-655, Osaka, Japan, November
1993.

210

Craig Dillon and Terry Caelli, Shape from Virtual Aperture Focus, Australian and New
Zealand Intelligent Information Systems Conference, pp. 382-386, Perth, December
1993.

Craig Dillon and Terry Caelli, Cite: A Scene Understanding and Object Recognition
System, Western Australia Computer Science Symposium, Perth, September 1994.

Craig Dillon and Terry Caelli, Cite: A Scene Understanding and Object Recognition
System, Second Asian Conference on Computer Vision, pp. 1:214-218 Singapore, De-
cember 1995.

	11180_downloaded_stream_11180
	11181_downloaded_stream_11181
	11182_downloaded_stream_11182
	11183_downloaded_stream_11183
	11184_downloaded_stream_11184
	11185_downloaded_stream_11185
	11186_downloaded_stream_11186
	11187_downloaded_stream_11187
	11188_downloaded_stream_11188
	11189_downloaded_stream_11189
	11190_downloaded_stream_11190
	11191_downloaded_stream_11191
	11192_downloaded_stream_11192
	11193_downloaded_stream_11193
	11194_downloaded_stream_11194
	11195_downloaded_stream_11195
	11196_downloaded_stream_11196
	11197_downloaded_stream_11197

