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Abstract

The design of envelope-constrained (EC) filters is considered for the time-domain synthesis of
filters for signal processing problems. The objective is to achieve minimal noise enhancement
where the shape of the filter output to a specified input signal is constrained to lie within
prescribed upper and lower bounds. Traditionally, problems of this type were treated by using
the least-square (LS) approach. However, in many practical signal processing problems, this
“soft” least-square approach is unsatisfactory because large narrow excursions from the desired
shape occur so that the norm of the filter can be large and the choice of an appropriate weighting
function is not obvious. Moreover, the solution can be sensitive to the detailed structure of the
desired pulse, and it is usually not obvious how the shape of the desired pulse should be alterad
in order to improve on the solution. The “hard” EC filter formulation is more relevant than
the “soft” LS approach in a variety of signal processing flelds such as robust antenna and filter
design, communication channel equalization, and pulse compression in radar and sonar. The
distinctive feature is the set of inequality constraints on the output waveform: rather than
attempting to match a specific desired pulse, we deal with a whole set of allowable outputs and
seek an optimal point of that set.

The EC optimal filter design problems involve a convex quadratic cost function and a number
of linear inequality constraints. These EC filtering problems are classified into: discrete-time
EC filtering problem, continuous-time EC filtering problem, and adaptive discrete-time EC
filtering problem.

The discrete-time EC filtering problem is handled using the discrete Lagrangian duality
theory in combination with the space transformation function. The optimal solution of the
dual problem can be computed by finding the limiting point of an ordinary differential equation
given in terms of the gradient flow. Two iterative algorithms utilizing the simple structure of
the gradient flow are developed via discretizing the differential equations. Their convergence
properties are derived for a deterministic environment. From the primal-dual relationship,
the corresponding sequence of approximate solutions to the original discrete-time EC filtering
problem is chtained.

The continuous-time EC filtering problem (semi-infinite convex programming problem) is
handled using the continuous Lagrangian duality theory and Carathéodory’s dimensionality
theory. Several important properties are derived and discussed in relation to practical engi-
neering requirements. These include the observation that the continuous-time optimal filter via
orthonormal filters has the structure of a matched filter in cascade with another filter. Further-

more, the semi-infinite convex programming problem is converted into an equivalent finite dual



optimization problem, which can be solved by the optimization methods developed. Anocther
issue, which relates to the continuous-time optimal filter design problem, is the design of robust
optimal EC filters. The robustness issue arises because the solution of the EC filtering problem
lies on the boundary of the feasible region. Thus, any disturbance in the prescribed input signal
or errors in the implementation of the optimal filter are likely to result in the output constraints
being violated. A detailed formulation and a corresponding design method for improving the
robustness of optimal EC filters are given.

Finally, an adaptive algorithm suitable for a stochastic environment is presented. The

convergence properties of the algorithm in a stochastic environment are established.

xi



Chapter 1

Introduction

1.1 .Introduction and Motivation

This thesis is concerned with the problem of designing a linear time-invariant (LTT) filter with
impulse response u to process a given input signal s corrupted by an additive random noise
n such that the noise enhancement is minimized (see Figure 1.1{2)}), while the noiseless filter
output % lies within an output pulse shape envelope (see Figure 1.1(b)).

Problems of this type are often treated by minimizing the mean square difference between
the output response and some desired pulse shape known as the least mean square (LMS)
approach. In many applications a “soft” least square approach is, however, unsatisfactory due
to occurrence of a large narrow excursions from the desired shape. Moreover, the solution can
be sensitive to the detailed structure of the desired pulse, and it is usually not obvious how
the shape of the desired pulse should be altered in order to improve on the solution. With
the envelope-constrained formulation, the performance requirements can be specified by using
output envelope constraints. Also, the designer can avoid the difficulty of choosing a particular
desired pulse. Thus, the envelope-constrained formulation has a clear advantage over the least
mean square approach [12, 21, 35, 42, 60] and can be employed as an effective approach for

solving a wide range of practical problems arising in signal processing and communications {1,
36, 39, 486, 70l

1.2 History and Contributions

The first results, which formulated signal processing problems as optimization problems with
inequality constraints, appear to be those of McAulay {39, 41]. He considered the design of

signals and filters, subject to a finite number of sidelobe inequality constraints.
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Figure 1.1: Receiver model and output mask.

Around the same time, a similar signal and filter design problem with an infinite number
of sidelobe constraints was investigated by Fortmann and Athans [18]. Latter, this approach
was applied and extended to time varying sidelobe constraints problem (envelope-constrained
problem) by Fortmann and Evans [13, 19]. This continuous-time problem was solved by the
primal-dual method, which involves transforming the constrained optimization problem into a
non-smooth unconstrained dual problem [12, 13]. A steepest descent type of iterative algorithm,
which is referred to as the primal-dual algorithm, was developed to tackle the non-smooth dual
problem via discretizing an infinite set of constraints into a finite set of constraints.

In [12], the primal-dual algorithm was also applied to solve the discrete-time version of the
envelope-constrained filtering problem with FIR model structure. The convergence properties
were discussed for both deterministic and stochastic environments. However, the convergence
can be quite slow, and for the case of a fixed step-size, the generated filters converge only to
within a neighborhood of the optimal filter in a deterministic environment.

Since the solution of the envelope-constrained filtering problem as introduced lies on the
boundary of the feasible region, any disturbance in the prescribed input signal could result in
the cutput constraints being violated. Thus, Evans et.al. [11] addressed this problem by defining
a pulse-shape envelope for the input signals. This is known as the envelope-constrained with
uncertain input (ECUI) filtering problem. The EC filtering problem is a special case in which
the input uncertainty is zero. The work in [72} and [73] addresses questions related to how large
the input mask can be or how tight the output mask can be before there is no solution to the
ECUI problem for the discrete-time case.

A related continuous-time problem to ECUI for the design of robust EC filters against errors



in the implementation of the optimal filter or any disturbance that appears in the prescribed
input signal has been tackled by using the formulation known as the constraint robustness
formulation (CRF) {4, 58, 62, 74].

Within this broad and existing framework in the envelope-constrained filtering, this thesis
presents a detailed theoretical study of a number of problems and makes the following contri-

butions:

o Two newly developed efficient iterative algorithms, namely the barrier-gradient algorithm
and the barrier-Newton algorithm, for numerically solving the EC filtering problems are
given and their convergence properties are analyzed in a deterministic environment. These
algorithms are obtained by using the Lagrangian duality theory in conjunction with space
transformation techniques and then discretization. We show that the sequences of filters
generated by these iterative algorithms with a fixed step-size converge globally to the

optimal filter.

« Based on the iterative barrier-gradient algorithm, we define an adaptive algorithm for
solving the stochastic EC filtering problem in which the input signal is contaminated by
additivé random noise. The mean and mean square convergence properties in a stochastic
environment are established for a fixed step-size. For a sequence of decreasing step-sizes,

mean square and with probability one (w.p.1) convergence are also established.

s« We show that the dual semi-infinite programming parameterization method associated
with the barrier-Newton method can be used to solve the continuous-time EC filtering
problem. A significant advantage of this approach is that the original semi-infinite opti-
mization problem can be solved directly as an equivalent finite dimensional minimization
problem. In particular, we demonstrate that a small number of active time supporting
points can provide enough information to define the optimal solution such that the out-
put response fits into the output mask. In comparison, discrete approximation methods
cannot guarantee that the optimal solution obtained satisfies the continuous constraints

of the original problem.

e For the continuous-time constraint robusiness formulation, a newly developed simple yet
efficient algorithm is proposed to solve the problem such that a constraint robustness
margin is maximized. In the proposed algorithm, a smoothing technique is introduced to
convert the semi-infinite constrained optimization problem into an equivalent constrained
optimization problem with integral cost and strictly convex constraint. We show that

allowing a larger noise gain can increase the constraint robustness margin. Furthermore,



we characterize the robustness of the optimal filter to perturbations in the input signal

and to the implementation error.

These contributions have been published by the author and coauthors in [57]-[64].

1.3 Thesis Qutline

Chapter 1 contains an introduction to the envelope-constrained filtering problem as well as a
brief literature survey of the area.
In Chapter 2, six representative formulations of the envelope-constrained filtering problem

are reviewed.
o The contimious-time envelope-constrained optimal filter design problem.

The envelope-constrained filtering problem with L? orthonormal basis.

The continuous-time constraint robustness formulation.

The discrete-time envelope-constrained optimal filter design probiem.

The envelope-constrained filtering problem with £2 orthonormal basis.

The discrete-time envelope-constrained filtering problem with uncertain input.

These problems have been chosen to represent a large class of practical problems and at the
same time to best demonstrate the mathematical techniques developed in this thesis.

In Chapter 3, a semi-infinite constrained convex optimization technique for studying the
continuous-time EC filtering problems is given. Instead of discretizing the continuous-time
problem using a sampling rate sufficiently high to capture enough information for approximat-
ing the optimal solution, Carathéodory’s dimensionality theorem [51] is applied to transform
the dual semi-infinite programming problem into an equivalent finite dimensional optimization
problem. Thus, one seeks the few crucial time supporting points for which the continuous-time
constraints are active. It is shown in [59] that these active points contain enough information to
ensure that the continuous-time constraints are met and the optimal solution is found. There-
fore, the new approach leads to a computationally tractable method for obtaining the optimal
solution meeting the constraints at all times. A practical application of the semi-infinite con-
strained convex optimization problem in the design of the envelope-constrained filtering problem

is given in Chapter 5.



Chapter 4 presents two new iterative methods for solving a convex programming problem,
subject to a finite number of linear inequality constraints. Using the dual parameterization in
combination with the techniques of the space transformation [15, 16} and the gradient flow (22,
45, the optimal solution of the dual problem can be computed by finding the limiting point
of ordinary differential equations (ODE’s) given in terms of the gradient flow. It is shown by
using the Lyapunov stability theory [14] on ODE that these system of ODE’s is asymptotically
stable at the equilibrium point (optimal solution point). Two iterative schemes (57, 59, 60]
are developed via discretizing the differential equations. From the primal-dual relationship, the
corresponding sequence of approximate solutions to the original convex programming problem is
obtained. The convergence properties of these two schemes are also established in this chapter.

Chapter 5 deals with algorithms for, respectively, solving the continuous-time EC filtering
problem with L? orthonormal basis [59] and the robustness of the optimal continuous-time EC
filter design problem [58, 62). Using the results obtained in Chapter 3 and combining them
with the barrier-Newton method developed in Chapter 4, two efficient iterative algorithms are
constructed for solving the finite dimensional dual optimization problem which is equivalent to
the original continuous-time EC filtering problem with L? orthonormal basis. As for the robust
optimal EC filter design problem (constraint robustness formulation problem), an efficient algo-
rithm is developed to deal with the continuous-time constraint robustness formulation problem.
By using a smoothing technique [28, 56], the relationship between the robustness margin and
the noise gain for the continuous-time EC filter is established. Furthermore, the tolerance of
the continuous-time EC filtering problem to input signal perturbations and implementation er-
rors is examined. Numerical results involving the continuous-time Laguerre networks structure
are given for both issues. The Laguerre networks is a special case of the continuous-time EC
filtering problem with L? orthonormal basis.

In Chapter 6, the simple yet efficient iterative algorithms developed in Chapter 4 are ap-
plied to the discrete-time envelope-constrained filtering problem with FIR model structure and
with ¢2 orthonormal basis. In particular, we present the filter characterization for the optimal
filter (in £ Hilbert space) of the discrete-time EC filtering problem. Furthermore, a practi-
cal application of the discrete-time Laguerre networks is devoted to the EC filtering problem
with £2 orthonormal basis. Simulation results corresponding to these discrete-time EC filter
design problems are obtained for several practical examples. These examples involve pulse
compression [60] and channel equalization [61]. '

Chapter 7 is devoted to the study of an adaptive training algorithm based on the proposed

iterative barrier-gradient (BG) algorithm in a stochastic environment. The convergence be-



havior is determined in mean and in mean square sense [60, 63, 64] when the step-size of the
adaptive algorithm is fixed. Furthermore, the adaptive algorithm converges linearly in mean
square sense and with probability one [63, 64] to the optimal filter if a sequence of decreasing
step-sizes is used. The structure and convergence properties of the adaptive BG filter are com-
pared with those of the adaptive primal-dual (PD) filter given in [12, 13}, and with those of the
adaptive least-mean-squares (LLMS) filter given in [9, 68, 69]. Numerical results involving pulse
compression and channel equalization are given to illustrate the convergence properties.

In Appendices A-D, the proofs of results presented in Chapters 3-7 are given.



Chapter 2

Problem Formulations

2.1 Introduction

The purpose of this chapter is to precisely formulate the six envelope-constrained (EC) filtering
problems studied in this thesis. These problems have been chosen to represent a large class
of practical problems and at the same time to best demonstrate the mathematical techniques
developed in the thesis to solve them.

In Section 2.2, we focus on the continuocus-time EC filtering problems, in particular, the
continuous-time EC optimal filter design problem [12, 13], the EC filtering problem with L?
orthonormal basis [59, 66] and the robustness of continuous-time EC optimal filter design prob-
lem [4, 58, 62, 74]. We formulate the continuous-time EC filtering problem in Section 2.2.1.
In this problem, the output of the filter is required to fit into a prescribed output pulse shape
envelope, whereas minimizing the output noise power gain. One of the attractive features of
the EC filter is that the output response is guaranteed to satisfy stringent engineering require-
ments as specified by the envelope constraints {12, 21, 35, 42, 77]. Therefore, it has application
to robust antenna, communication channel equalization, and pulse compression in radar and
sonar [1, 18, 19, 36, 46, 70].

In Section 2.2.2, we study the continuous-time EC filtering problem with L? orthonormal
basis. This problem is useful for designing data transmission channel equalizers. The use of an
orthonormal basis provides an approach for approximating infinite dimensional system by finite
dimensional system [40].

The robustness of continuous-time optimum EC filter design problem is the subject matter
investigated in Section 2.2.3.

In Section 2.3, discrete-time EC optimal filter design problems are considered. Specifically,

we deal with the discrete-time EC filtering problem using a FIR model structure [12, 60, 65, 75|,



the EC filtering problem with £2 orthonormal basis (61, 76], and the discrete-time EC filtering
problem with uncertain input [11, 73]. In Section 2.3.1, we formulate the discrete-time EC
filtering problem which is relevant to the design of FIR equalizers for data communications
channels. In this case, we assume that the input signal, filter impuise response and filter
output are finite length discrete-time sequences. The problem is also considered in a stochastic
environment in Chapter 7 to develop an adaptive (on-line) algorithm for solving the discrete-
time EC filtering problem.

In Section 2.3.2, EC filtering problem with £2 orthonormal basis is considered. An or-
thonormal basis in #2 Hilbert space is used to represent the filter. Specifically, the discrete-time
Laguerre functions (52, 67] forms a special case of a finite subset of an orthonormal basis. It has
been shown [76] that the use of the Laguerre functions for filter representation is more robust
than that of FIR filters as each of the Laguerre function contains a pole which is an adjustable
parameter. In particular, the FIR filters are the special case of the Laguerre filters when the
adjustable pole is chosen to be zero.

Finally, the discrete-time EC filtering problem with uncertain input is formulated in Sec-
tion 2.3.3.

2.2 Continuous EC Filtering Problems

In this section, we consider the problem of finding a filter with a linear time-invariant impulse
response u(¢) such that for a given input signal s(¢), the output waveform (t) fits into a pulse
shape envelope described by the lower and upper boundaries e~ (t) and ¥ (¢}, respectively, (see
Figure 1.1). Further, since the input signal s(t} is corrupted by an additive random noise n(t),
we define the optimal pulse shaping filter as the filter which minimizes the output noise power

while satisfying the pulse shape constraints.

2.2.1 Continuous-Time EC Optimal Filter Design Problem

Let the input signal s(t),¢ € [0,00) be a continuous function of time (see Figure 1.1{a}). It
is available at the receiver corrupted by an additive random noise n{t). The received signal
is passed through a linear time-invariant filter u(¢) &€ L2({[0,0c)) where L?([0, 00)) denotes the
Hilbert space consisting of all real-valued Lebesgue measurable and square integral functions

on the semi-infinite interval [0, o0) with inner product

(1,902 [ 1®gt)de, for any £,g € L¥([0,00)).



The norm of f € L%([0,00)) is defined by

Ifll2 = (£ 1 =/ [o ZF ) pat.

Thus, the filter output is represented as:
&4}
w(t) = / u(r)s(t — 7)dr, t€[0,00)
0

Tt was shown in {12] that additive white noise with mean zero and variance o2 at the filter
input causes a noise component with mean zero and variance o2||ul|? at the filter output. Thus,
it makes sense to choose the norm square of the filter, ||u||3, as the objective function to be
minimized. Furthermore, the noiseless output response ¥(t) is required to fit into an output

pulse shape envelope defined by the lower and upper boundaries £~ (¢) and et (), ie,.
e () <yYlt) <et(t), te(0,00).

By defining the two continuous functions d(t) 2 S—Jr(—%zf;@- and e(t) 4 mgs—_m-, the continuous-
time EC filtering problem can be cast as the following quadratic programming (QP) optimiza-
tion problem
min  f(w) =l e L3(0,00) .
subject to | f5° u(r)s(t — r)dr —d(t)| <e(t), t€[0,00).
In [17], it is shown that ¥(t) € C([0, 00)) when u(¢) is square integrable and s(¢) is continuous,
where C{[0,00)) denotes the Banach space consisting of all continuous functions defined on

{0,0) and equipped with the sup-norm.

2.2.2 EC Filtering Problem with L* Orthonormal Basis

Consider the continuous-time EC filtering problem (2.2.1). Since u(t) € L%([0,20)), it follows
that if {;}32, is a complete orthonormal basis of L%{[0, 00)) Hilbert space, then u(t) can be

expressed as:

u(t) = Z z;0;(t) and z; = (u,¢;), (2.2.2)
§=0

where z;,7 = 0,1,..., are the filter coefficients corresponding to the filter u(t) and

oo 1 ifi=j
(i, 05) = / i(t)p;()dt = &5 2 ’
0 0 ifi#j.

We consider only those filters u,(¢) whose impulse responses are approximated by

n—1
un(t) = ) wip;(t), teE [0 00) (2.2.3)
j=0

9



Thus, the corresponding filter output ¥ (¢) to the input signal s(t) is expressed as:

e o)
Ya(t) = f un(7)s(t — 7)dr = O'(t)x, ¢ € [0,50) (2.2.4)
0
where the filter coefficient vector x € R™ and the input signal vector ©(f) € R" are given as
follows:
X = [x{], s ,a:n_l]' y @(t) = [90(t), e ,Bn_l(t”' (2.2.5)
while
o0
g;(t) = / w;j(r)s(t —T)dr, j=0,...,n-L (2.2.6)
0

From (2.2.3), the norm of the filter u, can be written as:

n—ln—1
lunllz = \l YNz (i 04)

i=0 j=0

= Vx'x = ||x]2. (2.2.7)

From (2.2.3)-(2.2.7), the EC filtering problem with L? orthonormal basis is approximated as:
min Ixl|3 = x'x, x&®R" (2.2.8)

subject to 7 {f) < @' (t)x < et(t), Vt€E[0,00).
Define
o't *t
Alt) = O =] T (2.2.9)
—®'(t) 2xn | —em(#) onl

where A(t) € C([0,0), R2*") and b(t) € C([0,00),R?). Here C([0,00), R**") (respectively,
C{[0, o0), ®?)) denotes the Banach space consisting of all continuous functions defined on [0, 00)
with value in R®*" (respectively, R?). The norms of these Banach spaces are their respective
sup-norms. In most practical situations, the EC filtering problem (2.2.8) is approximated with

support in {0, T, and accordingly cast as the following QP problem.

min f(x)

| (2.2.10)
subject to g(x,f) <0q, Vte[0,T]

where f(x) = ||x||3, and for each x € ®", g(x,t) = A(t)x — b(t) € C([0, T], ®?).

Clearly, the QP problem (2.2.10) is a convex semi-infinite programming problem where the
cost function is strictly convex and the constraints g(-,¢) are linear, and hence convex functions
for each ¢t € [0,T]. If there is a feasible solution in the constraint set, the QP problem (2.2.10)
admits a unique optimal solution. To avoid the trivial solution u,(t) = 0 (ie., x = 0,), we

impose the following assumption.

10



Assumption 2.2.1 There exists at least one point in the output mask at which the upper and
lower mask boundaries have the same sign, i.e, there erists at least one to € [0,T such that

et (tp)e(to) > 0.

2.2.3 Continuous-Time Constraint Robustness Formulation

In this subsection, we present a technique [4, 74] for providing a guard band on the output mask
of the continuous-time EC filtering problem (2.2.8). For a given filter coefficient vector x € R"
(which may or may not satisfy the envelope constraints in the EC filtering problem (2.2.8)), let
us define, for t € [0, 00),

It

{ BN = £*(H) — dalx,)
o~(X)E) = ¥alx,t)—e(8)
where ¥n(x,t) = @{t)x. Clearly, if ¢~(x) and ¢~ (x) are positive for all t € [0,00), then x
satisfies the continuous-time output constraints in the EC filtering problem (2.2.8). To quantify

the notion of robustness, we define the constraint robustness margin as:

o) = min {minlg™ (I(0) mialg (O}

The feasible region of the continuous-time EC filtering problem (2.2.8) can now be expressed

in terms of the robustness margin as:
F = {xeR":0(x)>0}.

Note that if o(x) > 0, the minimum distance between the output response ¥n(x,t) and the
output mask is at least equal to o(x). Specifically, if x is a feasible solution of the constraints
of the EC filtering problem (2.2.8) such that the equality constraints are satisfied at some
points in [0, o), then o(x) = 0. Therefore, o(x) is called the constraint robustness margin
corresponding to x. In practice, it may be necessary to have a larger constraint robustness
margin over certain intervals. In this case, a weighting function 3 can be used to achieve the
purpose. More specifically, we define the weighted constraint robustness margin as follows:

¢l . (67 () }
8B e B

where 3 is a positive piece wise continuous weighting function which is normalized so that it

o3(x) = min{miin (2.2.11)

attains a minimum of unity. We depict the mask for the weighted constraint robustness margin

in Figure 2.1. The EC filtering problem with robustness constraint may now be formulated and
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DS8X3 Pulse Mask for the Coaxial Pair Interface at 44.736 Mb/s
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Figure 2.1: The masks of the nonrobust EC filtering and that of the robust weighted EC
filtering.

approximated with support in [0, 7] as the following constrained optimization problem.

max ag
subject to €7 (t) + B(t)os < ¥n(x,t) < e¥(t) — B(t)og,t € [0,T] (2.2.12)
Ix[13 < (1+ 8)||x*[13, 05 > 0,
where x* € R" is the optimal filter coefficient vector, § > 0 is a constant specifying the allowable

amount of increase of the output noise power.

2.3 Discrete EC Filtering Problems

In this section, we consider the discrete-time version of the EC filtering problems. We first
formulate the discrete-time EC filtering problem with FIR model structure in Section 2.3.1.
The EC filter design problem with approximate 2 orthonormal basis and the discrete-time
EC filtering problem with uncertain input are described, respectively, in Section 2.3.2 and

Section 2.3.3.

2.3.1 Discrete-Time EC Optimal FIR Filter Design Problem

Consider the continuous-time EC filtering problem (2.2.1) with support in [0,7]. Then the

discrete-time version of the EC filtering problem (2.2.1) consists of breaking the time interval

12
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s(k) s(k-1) s(k-n+2) s(k-n+1)

+ W(k)

Figure 2.2: Tapped delay line FIR filter

. . . . TN
[0,T] into N = m+4n-1 subintervals, and approximating the input signals = [sy,... ,Sm] € R™,
o
the filter impulse response u £ [1,...,un) € R®, and the output response 9 = [¢1,...,% N =

Su € RY, where the N x n Sylvester input signal matrix S is defined by

(s, 0 - 0
81
R |
s = | ™ . (2.3.1)
| 0 - 0 sm |

Thus, the discrete-time EC filtering problem is formulated as follows:

min  fw) = ulf, uew" 232
subjectto d—e<yp <d-+¢
where the constraint functions d € RY and ¢ € R¥ are, respectively, given by
d&d,... dy] = 3= et Eet,...,eh) e R
A . o with AL i . (2.3.3)
g =[er,...,en) = =5 e =[e7,.. ., ey ERY.

We note that this problem is important for designing tapped delay line equalizers as shown
in Figure 2.2, where z~1 is the unit delay operator and n is the order of the filter, for data

communication channels and it will be discussed in Section 6.2,

Define

S et
A= e RV b= e R, (2.3.4)
-8 —£”
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The EC filtering problem (2.3.2) is rewritten as the following QP problem:

min  f(u)=|ul}, ueR" (2.3.5)

subject to Au<b.

Note that the problem (2.3.5) consists of a strictly convex cost function and a finite number
of linear constraints. Clearly, if the set of constraints admits a feasible solution, then the
problem (2.3.3) has a unique optimal solution. Thus, similar to Assumption 2.2.1 so as to
exclude the trivial solution where the zero output response lies within the prescribed output
mask, there must exist at least one ¢ € {1,2,..., N} such that etfe; > 0 where ¢ and ¢; are,

respectively, the ith elements of e™ and ™.

2.3.2 EC Filtering Problem with 2 Orthonormal Basis

In this subsection, the EC filter design problem with an approximate orthonormal basis is
formulated in the Hilbert space #2. The necessary mathematical background ans notation for

norms and inner products are provided for completeness.

Orthonormal basis on ¢

Let #2 denote the Hilbert space consisting of all real-valued square summable functions defined

on the set {1,2,...} with inner product given by

o0
(fr9) 2 S figi, forany f,g€ £ and fi, g €R.

i=l

The norm of f € £2 is defined by

2T = S I (2.3.6)
i=1

By the completeness of ¢2, there exists a complete orthonormal basis {;}7, such that any

f € 2% can be expressed as:

f = Z:L‘,'Epi (2.3.7)

i=10

where z; = (f,¢:i),t =0,1,..., and {pi, p;} = & ;.

Envelope-Constrained Filtering Problem

Let s(k) denote the present value of the input signal, and s{k —~ 1),s(k — 2),...,3(0) denote

the k past values of the input signal. Let u(k) and (k) represent the present value of the

14



filter impulse response and that of the corresponding output response, respectively. From the
input-output relation of the filter, we may then describe the present values of the filter impulse

response u(k) € £2 as follows:
=}
u(k) = Z z;0;(k), k=0,1,...,
—

where {;}32, is a complete orthonormal basis of 22, and z; is the filter coefficient given by

z; = (u, ;). The corresponding present value of the output response (k) is thus given by
o
J=0
Then, the discrete-time EC filtering problem with £2 orthonormal basis can be posed as follows:

min lull2, »eé

subject to e (k) < ¥(k) <et(k), k=0,1,...

where £~ (k) and e* (k) are, respectively, the present values of the lower and upper boundaries
of the output mask. Let us consider only those filters u,(k) whose impulse responses are

approximated by
n—1
ualk) = > zjpi(k), k=0,1,.... (2.3.8)
J=0
The corresponding present values of the output response to the input signal s(k} are given by

Palk) = Y un(f)s(k—3)
=0

n—1
= Y Gik)z:, E=0,1,..., (2.3.9)
i=0
where
8:(k) =Y wilf)s(k - 7), i=0,1,...,n—1. (2.3.10)
=0

By the definition of the norm in 2 Hilbert space given by (2.3.6), the norm of the filter u, can

be written as:

7=0 k=0

= Vx'x = ||x||2 (2.3.11)

n—ln—1
lunjlz = \1 S5z (@, o)

where x = [Ty, T1,...,Zn_1] € R" is the filter coefficient vector and {i;, ¢x) = §;4-
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From (2.3.8)-(2.3.11), the discrete-time EC filtering problem with ¢% orthonormal basis is

approximated as:

3 — r mﬂ
min f{ix)=x'%x, x€ (2.3.12)
subject to &7 < ¢ (x) <e”

where ¥, (x) 2 S,x € BV is the output response vector. The input signal matrix S, € RN xm,
the lower output mask e~ € ®Y and the upper output mask e* € RV are, respectively, given

by

0n(0) 8.(0) ...  Bn1(0)
s & fo(1) (1) ... Baaa(l) (2.3.13)
(N =1) BN -1) . B (V1)
@ ] [ o) |
~el 0 sa =W (2.3.14)
e (N-1) | | eT (N -1) |

Remark 2.3.1 Combining with (2.5.8) and {2.3.10), the output response vector ¥n(x) is trans-
formed into ¥n(uy) = Su, where u, € R" is the filter impulse response vector, S € RV*™ is g

Sylvester input signal mairiz given by (2.3.1), and N =n+m — L.

Let d 2 f—;-i_- e RY and ¢ 2 ‘+—55—— € RY. Then, the set of feasible points for the prob-

lem (2.3.12) can be characterized by the following set:
X={xeR :d-e<S,x<d+e}={xeR": Ax < b,} (2.3.15)

where A, € R2¥*" and b, € R?*N are defined analogously to (2.3.4). By (2.3.15), the EC
filtering problem (2.3.12) can now be rewritten as a QP problem:
min fx)=x'x, xeR"

(2.3.16)
subject to A,x < b,.

Note that the QP problem (2.3.16) has a strictly convex cost function and linear constraints in x.
If the constraint set admits a feasible solution, then the problem has a unique optimal solution
by assuming that there exists at least one k € {0,1,..., N —1} such that ¥ (k)e™ (k) > O where

£T(k) and s~ (k) are, respectively, the kth elements of e* and €™.
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2.3.3 Discrete-Time EC Filtering Problem with Uncertain Input

In EC filtering problem, the filter is optimized subject to the requirement that the output
response to a given input signal lies within a specified envelope or mask. EC filters with
uncertain input (ECUT) [11] arises when the EC filtering problem is faced with the robustness
requirements. These requirements are real practical issues, as the input signal may not be
precisely the ideal shape but is known to be within a specified mask. The optimal solution to
the EC filtering problem can be de-sensitized with respect to uncertainty in the prescribed input
signal by assuming that the input signal lies within an input envelope described, respectively,
by upper and lower boundaries s* € R™ and s~ € R™. The objective of ECUI is to minimize
|lu||3 under the requirement that every input signal s € 8™ within the input envelope evokes

an output response that lies in the output envelope:

min ul}, weRr”

subject to Y€, VYs€S;

where the set of all outputs within the output mask and the set of all inputs within the input

mask are given, respectively, by

¥ 2 (er¥:d-e<y<d+e}
Ss 2 {seR™":c-0<s<c+8},
while d and ¢ are defined by (2.3.3), a.ndcéi—'zf‘—s-: E?Rm,géf;—s_ € R™. Note that d

represents the center of the output mask, whereas ¢ stands for a scaling vector of the size of
the output mask. Similarly, ¢ represents the center of the input mask, whereas & stands for a
scaling vector of the size of the input mask.

The set of all linear time-invariant FIR filters, which will take any and every signal s € S;

and map it into an element 3 € ¥ is given by
U = {ueR":d-=<Su<d+s, V¥5,:C-0<§5,<C+06} (2.3.17)

where the matrices C € RV*" and © € RY*" are defined analogously to S in terms of ¢ and @.
Since the set, U, of feasible filters is not suitable for optimization analysis in its present form,

it has been shown in [11] that the set (2.3.17) is equivalent to

U={ueR":[|[Cu—d|+0Ou|); <g,i=12,... N} CR"
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and the optimal filter is found by solving

min |ull3 = v'u, ueRr"
Cu-d+0u<e (2.3.18)

subject to
—Cu+d+8fu<e,

where |uj is defined by |u| 2 [lu1], |ual, ..., |ual]. It is worth noting that the problem (2.3.18) is

a nonsmooth optimization problem. To overcome the difficulties caused, it is shown in [55] that
. R A

by introducing the coordinate vector z € ®°* partitioned as: z = [z ,2_] where z,,z_ € R,

the ECUT problem (2.3.18) is equivalent to the following quadratic programming problem

: 2 2n
min zll5, zeh
=iz (2.3.19)
subject to Qz <e

where

A
-C+© C+8© e—d

C+0 —c+e} gt o2 [s+d] "

and u* = 2% — z* is an optimal solution to the ECUI problem (2.3.18) if and only if z* is an
optimal solution to the problem (2.3.19).

Note that the EC filtering problem with uncertain input has been extensively studied in {11,
55]. The work in [72, 73] addresses questions related to how large the input mask can be or
how tight the output mask can be before there is no solution to the ECUI problem.
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Chapter 3

Semi-infinite Constrained Convex

Quadratic Programming Problem

3.1 Introduction

In this chapter, we investigate in a general framework, the problem of minimizing a convex cost
function over a convex set defined by continuous linear inequality constraints. This problem is
known as the semi-infinite constrained convex programming problem.

The semi-infinite programming problem arises in a number of applications, and it was from
these that the first attempts to extend the finite-dimensional theory arose. The semi-infinite
constrained linear programming problem has been well documented in [3, 25]. The main ob-
jective of this chapter is to present a semi-infinite constrained convex quadratic programming
(QP) problem which contains the class of the continuous-time EC filtering problems formulated
in Section 2.2. The theory of the quadratic programming in semi-infinite-dimensional spaces is
both elegant and complete with the Lagrangian duality theory [2, 34] and Carathéodory’s dimen-
sionality theory [51]. Using the Lagrangian duality theory in combination with Carathéodory’s
dimensionality theory, 'the semi-infinite QP problem is converted into an equivalent finite di-
mensional optimization problem which is solvable by any finite optimization method.

Instead of discretizing the semi-infinite problem and solving the discretized problem to
obtain an approximate optimal solution, our approach directly handle the semi-infinite problem
by seeking only a few crucial time supporting points for which the continuous constraints are
active. We show that these active supporting points and the corresponding dual variables carry
enough information to obtain the optimal solution such that the continuous constraints are met.

The results presented in this chapter are obtained by extending those reported in [30, 59].
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This chapter is organized as follows: In Section 3.2, a semi-infinite constrained convex
quadratic programming problem is stated. Section 3.3 deals with the Lagrangian duality theory
associated with the semi-infinite convex QP problem with inequality constraints. This leads tc a
dual semi-infinite QP problem with only simple nonnegativity constraints on the dual variables.
Finally, by using Carathéodory’s dimensionality theory, the dual semi-infinite programming
problem is reduced to an equivalent finite dimensional optimization problem. This result is
presented in Section 3.4.

The main references for this chapter are (2, 34, 51|

3.2 Problem Formulation

Consider the convex semi-infinite QP problem as follows:

min f{x), xe®R" (3.2.1)
subject to g(x,t) <0, forallte .

The objective function f : R™ — R and the constraint function g : R x @ — R™ are, respec-

tively, defined by

>

f(x) ~21-x'Qx+c'x+ d (3.2.2)

g(x,t) =

A(t)x — b(t)

where Q € R"*" is a symmetric positive definite matrix, c € R*, d € R, & C R is a compact set,
A(t) € C(2, R™*"*} and b(t) € C(2, R™), while C(Q, R™*") and C(§2, R™) denote, respectively,
the Banach spaces consisting of all continuous functions defined on Q with value on R™*™ and
R™. The norms of these Banach spaces are their respective sup-norms. In addition, it is
assumed that for each x € R", g(x,t) € C(f2, R™).

Since the Hessian matrix Q is symmetric positive definite, the cost function f(x) is strictly
convex, i.e, the contour of the values for the function f in any two-dimensional subspace are
ellipses (the vector ¢ merely shifts the center of the ellipse, and the scalar d merely shifts the
minimum value achieved). Clearly, g(-,¢) is a linear, and hence convex function for each ¢ € Q.
Thus, if the constraints of the QP problem (3.2.1) admit a feasible solution, then the problem
has a unique solution [34].

In the subsequent sections, the dual parameterization technique, together with Carathéodory’s
dimensionality theory will be used to convert the semi-infinite convex QP problem into an equiv-

alent finite dimensional optimization problem.
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3.3 Continuous Dual Parameterization

In this section, we use the Lagrangian duality theory to convert the semi-infinite convex QP
problem (3.2.1) with continuous inequality constraints into a dual semi-infinite programming
problem with simple nonnegativity constraints.

Consider the QP problem (3.2.1) and define the Lagrangian function as follows:

A
L(x,A) = f(x)+ (g(x,t), A(£))
= X'Qute'x+d o+ (Alt)x —b(t), A(D)
where £ : R® x M(Q,R™) — R, and A(t) = [(M(t),..., Am(t)] € M(Q2,R™) is the Lagrange
multiplier vector with 0 < A;(t) € M(Q,R),i = 1,2,...,m, while M(2,R) is the dual space

of C{Q,R). It consists of all finite signed regular Borel measures on 2, and (-, -} denotes the

inner product defined by

WO A®) = [ vOde.

Clearly,
(ABX L) = % /n A'(B)dMD).
Thus,
Lix,A) = -;—x’Qx-f-c’x- /ﬂ b(t)dA(t) + ¥ /Q A'R)dA(E) + d

Since the Lagrange multiplier vector A(t} do not always exist for constrained minimization prob-
lems, it becomes necessary to add some additional assumptions on the nature of the constraint
equations. Slater's constraint qualification condition [49] is suitable for a constrained minimiza-
tion problem with a convex set of inequality constraints. In fact, it ensures the existence of

Ai(t),2 =1,...,m, not all zero so that the following equations hold:

VL(x*, A(t)) =0,
<g(X*v t)! A(t)) =0
At} 2 0, teq
where x* is the optimal solution to the primal problem (3.2.1). Thus, we proceed to consider

the primal problem (3.2.1) under Slater's constraint qualification condition.

Assumption 3.3.1 {Slater’s constraint qualification(CQ)} [49]
There exists an x° € R™ such that g(x%,¢) < 0, for all t € 1.
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Since the Lagrangian function is convex in x and concave in A, by Assumption 3.3.1, we obtain

the following Lagrangian duality theorem for the QP problem (3.2.1).

Theorem 3.3.1 {Lagrangian Duality} [2, 34]

Let Assumption 3.9.1 be satisfied. If the optimal solution of the primal problem (3.2.1) is
achieved at x* € R™, then there exists a solution X*(t) = [A}(2),..., AL(t)] € M(Q,RT) with
AHt) € M(Q,R.), such that

fx)= ,max m;cinﬁ(x,k) = miinf,(x,.k*) (3.3.1)
tE0

(g(x",£),A"(8)) =0
From (3.3.1)}, we note that the minimization over x is unconstrained. Thus,
Vo Lix,)) = Qx + ¢ + fﬂ A'(#)dA(E) = 0.
The above equation immediately yields
x(t,A(t)) = —-Q7! (fg A'()dA(t) + c) . (3.3.2)

Substituting (3.3.2) into the problem (3.3.1), we obtain the following dual semi-infinite QP

problem corresponding to the primal problem (3.2.1):

ming iy S A)
subject to  A(¢) > 0, t€Q,

(3.3.3)

where the dual cost function ¢(t, A) is given by

St N) = %( fn A’(t)dz\(t)+c),Q*1 ( /ﬂ A'(t)d)\(t)-l—c) + fg b (£)dA(E) — d.

Note that the dual problem is easier to solve than the primal problem, as the constraint set is

much simpler.

3.4 An Equivalent Finite Optimization Problem

In this section, we transform the dual semi-infinite QP problem (3.3.3) into an equivalent finite
dimensional optimization problem by using the Karush-Kuhn-Tucker (KKT) conditions (2, 34]
and Carathéodory’s dimensionality theory [51}.

Note that the cost function f(x) given by (3.2.2) is differentiable in x € R™. Furthermore, the
constraint function g{x, ¢t} is continuous in ¢ for each x € R", and it is convex and continuously
differentiable in x for each t € Q. By (2, 34|, the KKT optimality conditions for the primal QP
problem (3.2.1) are obtained in the following.
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Lemma 3.4.1 {KKT conditions} (2, 34/
Let Assumption 3.3.1 be satisfied. The optimal solution of the QF problem (8.2.1) is achieved
at x* € R™ if and only if X* is feasible and there exists a A*(t) € M(Q, RY) such that

VR L(x* A (1)) = V(x*) + [o V' (x",£)dA*(£) = On,
Jog/ (x5, 8)dX"(t) =0, (3.4.1)
A*(t) > Om, (A*(t) is a regular Borel measure).

In the next two lemmas, we extend the results [30, 59] from ®? to ®™. The new results are
then used in combination with Carathéodory’s dimensionality theorem to obtain a necessary
condition for which the set of the Lagrangian multiplier vector {A(t}) € RT,t € O} satisfying
the KKT conditions (3.4.1) includes a measure with finite support at no more than mn points.
This result is presented in Theorem 3.4.2. Consequently, we obtain in Theorem 3.4.3 that the
optimal solution A*(¢) to the dual QP problem (3.3.3) always includes a measure with finite

support at no more than mn points.

Lemma 3.4.2 Let Assumption 3.3.1 be satisfied. Assume that the optimal solution of the
primal QP problem (3.2.1} is achieved at x* € R". Then the set of multipliers satisfying the
KKT conditions (3.4.1) coincides with the optimal solution to the dual QP problem (3.3.3).

Proof: See Appendix A.1. |
Lemma 3.4.3 Let Q(x*) e {t € Q|g(x*,t) =0m}. Foreachi=1,...m, let

Xii = {/;‘z(x-} ngi(X*:t)d)\i(t)’U < xft) e M(Q,?R)}

Xa; = {vxg,-(x*,r)’teﬁ(x*)}.

Define
m m
X1=) Xii Xo=) coneXa;
=1 i=1
Then, Xl = Xz.
Proof: See Appendix A.2. 1

Carathéodory’s dimensionality theorem given below will be needed in the proofs of the subse-

quent theorems.

Theorem 3.4.1 {Cerathéodory’s dimensionality theorem} [(51]

Let {X;|i € I} be an arbitrary collection of non-empty convez sets in R", and K be the convez
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cone generated by the union of the collection. Then every non-zero vector of K can be expressed
as a non-negative linear combination of n. or fewer linearly independent vectors, each belonging

to a different X;.

By using the results obtained from Lemma 3.4.3 and Carathéodory’s dimensionality theorem,
we attain the following necessary condition for transforming the dual semi-infinite convex QP

problem (3.3.3) into an equivalent finite dimensional optimization problem.

Theorem 3.4.2 Let Assumption 3.3.1 be satisfied and assume that the optimal solution of the
primal QP problem (3.2.1) is achieved at x* € R". Then the set of multipliers satisfying the
KKT conditions (3.4.1) necessarily includes a measure with finite support at no more than mn

points.
Proof: See Appendix A.3. |
The result obtained in Theorem 3.4.2 yields the following classical result [31].

Corollary 3.4.1 Let Assumptions 3.3.1 be satisfied. The optimal solution of the primal prob-
lem (3.2.1) is achieved at x* € R™ if and only if x* is feasible and there exist positive A]; for

elli=1,...,k, and j =1,...,m, such that

m kj
—Vf{x") = Z Z Vxg;(x", t;:)A; ;; for some t;; € Q(x*) (3.4.2)
j=li=l
m kj
Yo¥ gix )M =0, AL =0, (3.4.3)
j=li=1
where for i =1,...,k;, A]; is the jih component of A = A1 A, €ERT and kj < n.

Associated with Lemma 3.4.2 and Theorem 3.4.2, the set of solutions to the dual QP prob-

lem (3.3.3) always includes a measure with finite support at no more than mn points.

Theorem 3.4.3 Let Assumption 3.3.1 be satisfied. Assume that the optimal solution of the
primal QP problem (3.2.1) is achieved at x* € R™. Then the optimal solution to the dual QF

problem (3.3.3) alweys includes ¢ measure with finite support at no more than mn points.

By Corollary 3.4.1 and Theorem 3.4.3, we are able to find a dual solution in a subset of M (2, RT)
whose elements are characterized by the location of a finite number of supporting points and
the associated measures are concentrated only on these points. More specifically, for each

j=1,...,m, there are k; < n points for the constraint g;(x",t) < 0. Let k = 372, k; < mn.
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Now, we add in, for each j = 1,...,m, ¥,z k; points for the constraint g;(x*,t) £ 0, giving k
i)
supporting points. In view of (3.4.2)-(3.4.3), these k supporting points are written as:

r ={ (t].,].,- - :tl,kl):(t2,lj" . 1t2,kz):‘ ey (tm,ls - 1tm,km) }

in which the k supporting points are denoted by the corresponding ¢; with ¢; € T'. Consequently,
for Al; € {1, AL} with A7 =[Af;,. .. s Afml (3.4.2) is reduced to
k m

-Vix*) = ZZ Vxg;(x*, t;)A;, for somei; € Q(x*) (3.4.4)
i=1j=1

where A* 2 [AY,...,Af) € R™k. Then, solving the dual semi-infinite QP problem (3.3.3) is

equivalent to solving the following finite dimensional optimization problem.

mingy) 90t AL))
subject to  A(t) = Ome

(3.4.5)

where the cost function ¢(t, A(t)) is given by
1
Bt A(L) = 3 (A'()A(t) +¢) Q71 (A/(£)A(t) +c) + b/(E)A(E) — d.
Here t € R, A(t) € RT*, A(t) € R™" and b(t) € R™, are given, respectively, as follows:

t=[ty,...,te), Al)=[N({t),..., N (&) (3.4.6)
Alt) =[A'(t),.- ., A'(%)),  b{t) =[b'(ta),..., b ()] (3.4.7)

where t; € Q, A(t;) € R™ ", b(t;) € R™, and ME;) = [Mi1,. ., Aim) ERT,i=1,...,k Oncet
and the corresponding A(t) are obtained, the original (primal) QP problem (3.2.1) with strictly

convex cost function is readily obtained from the primal-dual relationship as follows:

x(t,A()) = —Q7 (A'(B)A(t) +¢).
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Chapter 4

Finite Convex Quadratic

Programming Problem

4.1 Introduction

In this chapter, we present two new iterative methods for solving a convex QP problem with a
finite number of linear inequality constraints. The main idea behind these methods is to convert
the constrained convex QP problem into a dual problem with simple constraints by applying the
concept of the Lagrangian duality theory. We note that the dual problem remains unchanged as
a QP problem. By means of the space transformation function [15, 16] in combination with the
gradient flow technique {22, 45|, the dual QP problem is transformed into a Cauchy problem
(differential equation). As a result of the space transformation, the right-hand side of the
differential equation appears as the multiplication of the gradient of the cost function with an
appropriate diagonal matrix. This diagonal matrix is to prevent the trajectories from crossing
the boundary of the feasible set. Euler method is then applied to discretize the Cauchy problem
leading to two simple yet efficient new gradient-type numerical methods for solving the dual
QP problem. We note that since the diagonal matrix plays the role of barrier, the resulting
methods are called the barrier-gradient (BG) and barrier-Newton (BN) methods [57, 59, 60].
From the primal-dual relationship, the solution of the original (primal} QP problem is readily
obtained.

As can be noted that the term “barrier” used in this thesis is different from the one used
as a penalty function described in the books [20, 22, 14]. Numerical methods based on penalty
functions are inherently unstable and expensive since the penalty parameter is usually required

to be sufficiently large to ensure feasibility. Moreover, it is difficult to locate the minimizer due
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to ill-conditioning and large gradients. In contrast, the unconventional multiplicative barriers,
which we use, do not tend to infinity as the current point approaches the boundary of the
feasible set. In our algorithms, the barrier functions are continuous and equal to zero on the
boundary. These barriers ensure the feasibility of the trajectories without the need of any
penalty coeflicient.

This chapter is divided into four sections. In Section 4.2, the general format of a convex
QP problem is addressed. In Section 4.3, the discrete dual parameterization technique is used
to convert the original (primal) problem into a corresponding dual problem which is also a
QP problem. The dual QP problem is easier to solve than the primal QP problem since the
constraint set is much simpler.

In Section 4.4.1, the space transformation technique is used to convert the dual QP problem
with simple constraints into an unconstrained optimization problem. By applying the gradient
flow technique to the unconstrained optimization problem yields an ordinary differential equa-
tion (ODE)- an initial value problem. The limiting solution of the ODE sclves the dual QP
problem. Integrating the ODE numerically by using Euler method, we obtain an iterative BG
scheme for solving the dual QP problem. The simple iterative BG scheme is suitable for on-line
(adaptive) applications in a stochastic setting. A practical on-line application based on the
iterative BG scheme in the design of the adaptive FIR envelope-constrained filtering problem
in a stochastic environment is given in Chapter 7.

In Section 4.4.2, a Jacobian matrix and its inverse are introduced to the left-hand side of the
differential equation. This leads to a new ODE, which is usually referred to as the continuous
analog of Newton’s method. The optimal solution of the dual QP problem can also be obtained
by finding the limiting point of the specified ODE. Since the Jacobian matrix is nonsingular
at the optimal dual vector, we can integrate the ODE numerically in a neighborhood of the
optimal dual vector by using Euler method to obtain an iterative scheme. This scheme is called
BN scheme.

Finally, we make use of the Lyapunov stability theory [14] in Section 4.4 to establish the
stability and convergence properties of solutions of the above two ODE’s and their corresponding
algorithms. These results are extended from those reported in [57, 59, 60]. They are applicable
to any finite dimensional constrained convex optimization problem.

The main references for this chapter are [14, 15, 18, 22, 45, 57, 59, 60].
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4.2 Problem Formulation

Consider a convex QP problem of the form

min flx)=1x'Qx+c'x+d, xeR"
subject to Ax<b

(4.2.1)

where f : R — R is a strictly convex quadratic function consisting of the symmetric positive
definite Hessian matrix Q € R**", ¢ € R®, and d € R. The constraint matrix A € R™*" and
vector b € R™ are given, and x € R" is a decision vector to be determined. It is assumed that
m > 7, i.e., there are more constraints than variables.

In view of the QP problem (4.2.1), we note that the cost function f(x) is strictly convex
and the constraint set is convex. Thus, any point x* satisfying the KKT conditions is the global

maximizer.

4.3 Discrete Dual Parameterization

Define the Lagrangian function for the convex QP problem (4.2.1) as follows:
1
L{x,A) = Ex'Qx +cx+N(Ax—-b) +d

where A = [A1,...,Am] € RT is the Lagrange multiplier vector with the property that A; > 0,
i =1,...,m. Then, it is easily seen that the gradients of the Lagrange function with respect

to x and A are:

Vel(x,)) = :
{ {x, A} Qx+c+A'X (43.1)

Vil(x,A) = Ax-b.

Assumption 4.3.1 There exists an x° € R* satisfying Ax" < b.

By the Lagrangian duality theory [34] and Assumption 4.3.1, it follows that the convex QP
problem (4.2.1) is equivalent to

max min L{x,A). (4.3.2)

Since the minimization over x is unconstrained in (4.3.2), it follows from (4.3.1) that
x(A) = -Q7YA'A+c). (4.3.3)

Substituting (4.3.3) into the problem (4.3.2) gives rise to the following dual optimization prob-
lem with respect to the primal problem (4.2.1):

__1 ! ty=1l¢a’ '
g%i{ 2(A}\+C)Q (AJ\-I—c)-)«b—l-d}
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or equivalently,

min { SvAA+ NE+ a} : (4.3.4)
A>0m L2
where
A2AQ'A, ©2b+AQ L, 4= %C'Q_lc —d. (4.3.5)

Clearly, the dual problem is also a QP problem. If the matrix A is positive definite (respectively,
positive semi-definite), then the dual cost function is strictly convex (respectively, convex).
From (4.3.3), the optimal solution of the primal convex QP problem (4.2.1) can be readily

obtained.

4.4 Solution Techniques

In this section, two gradient-based optimization methods will be developed for solving the
convex QP problem (4.3.4) by using the techniques of the space transformation [15, 16] and the
gradient flow [22, 45]. These methods are: the barrier-gradient method and the barrier-Newton
method. To establish the stability and convergence properties, Lyapunov stability theory [14]
is applied to the above two methods and their corresponding schemes. The resulting properties
are extended from those reported in [57, 59, 60]. They are applicable to any finite dimensional

constrained convex optimization problem.

4.4.1 Barrier-Gradient Method

Let the cost function of the dual QP problem (4.3.4) be written as:

-

1., -
“NAA+VE+d (4.4.1)

5 2 3

Consider a m—dimensional space with the coordinate vector y € R™ given by

Yy = [y iyl (4.4.2)

We then introduce the following quadratic component-wise space transformation function:

A=£y)=[&ly) ... mlym)] € RT, (4.4.3)
where
A= Gilw) = i—y?, 1<i<m. (4.4.4)
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We now construct a new unconstrained optimization problem based on the space transformation
function as follows:

Dip, #N) = min $(E(v)) = min, #(y) (4.4.5)

where the cost function ¢{y) = #(£(y)) is a differentiable function of y.
Since the right-hand side of (4.4.5) is an unconstrained minimization problem, the gradient
of the cost function @(y) with respect to y, denoted as Vé(y), can be expressed in terms of the

gradient of the dual cost function, denoted as V¢(A), as follows:

- p(é(y)) _ /Og(A) A
viy) = e =( )
= (Vé(\),3(x)) - (4.4.6)

where the gradient Vé(y) is to be realized as a column vector, the gradient V¢(A) and the
Jacobian matrix J(y) of the transformation A = £(y) with respect to y are, respectively, given
by

Q@
©-

Vo(d) = §X=AA+E
Jy) = 3—68%. (4.4.7)

Making use of the quadratic component-wise transformation function given in (4.4.3)-(4.4.4),

it is clear from (4.4.7} that the Jacobian matrix of the mapping £(y) yields
= 1
I(y) = 3D@) (4.4.8)

where D(y) = diag(y1,. .., Ym) € R™*™ is a diagonal matrix containing only components of
the vector y defined in (4.4.2). Substituting y; = £2+/X;, i = 1,...,m, into (4.4.8), we obtain

the matrix J(y) in terms of A-function as follows:
Jiy) = D(=VX) (4.4.9)

where D(=v/X) 2 diag(£v/31,- .., =vAm) € R™*™ Combining (4.4.6) with (4.4.9), the gradi-

ent of ¢(y) can be rewritten in terms of A-function as:

Valy) = (V6(A), 3(y)) = DEVHV(N). (4.4.10)

Let the gradient flow associated with the unconstrained problem (4.4.5) be expressed as

dy ~
- = —Voé(y). (4.4.11)
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Based on the transformation function, the dual QP problem (4.3.4) is equivalent to the uncon-

strained problem (4.4.5). We note from the system (4.4.11) that

dé(y)
Tdt

dy

= (Va3

) ~ VeI <o. (4.412)

Furthermore, following from the system (4.4.11), y(¢) converges to the following singleton set
{y e R |V(y) = Om }.

Now by differentiating £(y) with respect to y, we obtain the following ordinary differential

equations associated with the dual QP problem (4.3.4) as:

A S D LT A 0:AY= A" R 4.4.13
dt < 5‘9 T dt /]’ A( ’ ) + ( )

By (4.4.7) and (4.4.9), we obtain

9(y) _
i D(£V2).

Combining the systems (4.4.11) and (4.4.13) yields the following Cauchy problem:

% - <8§3(y) dt> D(i‘/_

-D(=vVNV(y). (4.4.14)

Substituting (4.4.10) into the system (4.4.14), we obtain

& = -DEVRDEVAVSN)] = ~DAVH()

= —F()), A0;A)=A"eRT (4.4.15)
where F(A) = D(A\)V¢()) is a continuous barrier function and A = A(¢; A).

Remark 4.4.1

1) For any i€ {1,...,m}, if there ezists a { such that \;(£;A%) = 0, then Dy; (A(t;\%)) = 0 for
. (5.0 .
all t > t and hence, i (;'A ) = 0 for all t > t. This simply implies that the trajectory X (t; A)

of the system (4.4.15) cannot cross the boundary A; = 0. In other words, if a starting point is
feasible then the subsequent trajectories remain in the feasible set, i.e, the feasibility of the dual

constraints is preserved.

2} By differentiating the dual cost function ¢ (A(t; A%)) with respect to ¢, we obtain

d%” _ <3°f;&) dt>z-v¢’(A)D(A)V¢(A)

~IDEVX)VEN)|3 = ||V <0, for all A > 0.
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Thus, it is clear that the dual cost function ¢ (t; A(A)) is monotonically decreasing and bounded
along the trajectory X (t; AY) without leaving the feasible set RT.

3) Along the descent search direction —F(A) < O, we find that A(t) converges to the singleton
set {A € RTF(A) = Om}-

Definition 4.4.1 If A* € R satisfies the following condition
F(\") = DX )V¢(A*) = Om, (1.4.16)
then it is said to be a local minimizer of the dual QP problem (4.3.4).

Integrating the Cauchy equation (4.4.15) numerically by using Euler method, we obtain an

iterative scheme for solving the dual QP problem (4.3.4):
AL = AR g R(AF) (4.4.17)

where AF £ A(t), tk+1 = tr + hg, and hy is an appropriate step-size.
Substituting (4.4.17) into x(A) in (4.3.3) yields the following simple iterative BG scheme for
solving the original convex QP problem {4.2.1)
F(X) = D)Vg(F)
AL = Mk R R(AK) (4.4.18)
xck+1 - ___Q—l (A")\H'l + c) i
Definition 4.4.2 \* = [A},..., ALl € RT is said to satisfy the strict complementary condition
(SCC) if for all i € {1,...,m}, either A} >0 and V;¢(A*) =0 or A} =0 and V;d(A*) > 0.

Lemma 4.4.1 Assume SCC holds and let the Hessian matriz A defined in ({.5.5) be symmetric
positive semi-definite. Since X* € R satisfies (4.4.16), the Jacobian matriz of the mapping
F(\) at A* defined by

VF(X*) = D(Va(A*))+D("A (4.4.19)
s symmetric positive definite.
Proof: See Appendix B.1. |

In the remaining part of this section, we shall make use of the Lyapunov stability theory [14]
on differential equations to establish the stability and convergence properties of solutions of the
Cauchy equation (4.4.15) and the corresponding BG scheme (4.4.18).

We say that a point A is an equilibrium point of the system (4.4.15) if the right-hand side
of the system (4.4.15) evaluated at A is a zero vector. From (4.4.16), the optimal point A* is
clearly an equilibrium point of the system (4.4.15).
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Definition 4.4.3 Let A (t; A%} be the solution of the system ({.4.15) corresponding to the initial
condition A (0; A%) = AV. An equilibrium point X* € R is said to be asymptotically stable if for
any v > 0, there ezists a o = o(v), such that for any X° satisfying |A® —A*||2 < v, the following
conditions hold:

(3): |A(t;A0) — A2 < &, for all t € [0,00);

(it): [|A(5 AY) = A™fla = 0 as t ~> co.

Theorem 4.4.1 Let the conditions in Lemma 4.4.1 be satisfied. Then, the system (4.4.15)

is asymptotically stable at the global solution point X*. Furthermore, there exists a number

h* = n"fu where Nmaz 18 the largest eigenvalue of the Jacobian matriz VF(A*) defined in (4.4.19)
such that for a fized step-size hy = h for all k satisfying 0 < h < h*, the sequences {A\*}32, and
{x*132, generated by the BG scheme (4.4.18} converge, respectively, to the optimum X\* and

x*, both globally and at a linear rate.

Proof: See Appendix B.2. 1

4.4.2 Barrier-Newton Method

We present another gradient-type approach for solving the dual QP problem (4.3.4). This
approach is called the barrier-Newton method, and it possesses a quadratic rate of convergence.

Motivated by the system (4.4.15), we consider the following initial value problem.

dA

VF(\)

= —D(@)F(A), AN, t) = A0 € BT (4.4.20)

where D(a) £ diag (ai,...,am) is a diagonal matrix containing a positive scaling vector o 2
[o1,...,am]" € RT and VF()) defined by (4.4.19) is the Jacobian matrix of the mapping F(}).
The initial value problem (4.4.20) is known as the continuous analog of Newton’s method.
From Lemma 4.4.1, it follows that all eigenvalues of VF(A) at A* are real and positive.
This implies that VF(A*) is a positive definite matrix and hence nonsingular. Combining with
the convexity of the dual cost function ¢(A) defined by (4.4.1) and taking into account of the
fact that the Jacobian matrix is nonsingular at A*, the stability and convergence properties of
solutions of the system (4.4.20) are obtained via Lyapunov stability theory and Newton method

in the following theorem.

Theorem 4.4.2 Let the conditions in Lemma 4.4.1 be satisfied. Then, for any scaling vector
a > Op, the system ({.4.20) is asymptotically stable at the equilibrium point \* which is an
isolated global minimizer of the dual QP problem (4.3.4). For A\F S A(te) and troy = tx + Ay, in
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a neighborhood N(X*) of the solution A* of the system (4.4.20), the sequence {A¥}2 , generated

by the following iterative scheme
AFL = A% R VFTHOAS)D (o) F(OF) (4.4.21)

converges globally to the point A* with at least linear rate if the step size hy = h is chosen such
that 0 < h < 2 for every k where o' = maxi[a;]. Furthermore, if there exists a constant
¢ > 0 such that the Jacobian mairiz VF()) satisfies o Lipschitz condition in the neighborhood
of the point A*, i.e., ||[VF(A) — VE(A"}l2 < ZIA — M2 VA € N(X*), and oy = e = 2.71828,
Vi = 1,...,m, then the sequence {A\*}%2, and the corresponding sequence {x*}22, globally

converge to the optimum A* and x*, respectively, at a quadratic rate.

Proof: See Appendix B.3. 1

Remark 4.4.2

1) In view of Remark {.4.1(1), we see that the trajectory of the system (4.4.20) starting at a
point XY > 0 does not leave the feasible set R

2) To analyze the convergence property of the system (4.4.20) and to determine the step-size
for the BN scheme ({.4.21), the system (4.4.20) is linearized in a neighborhood of the point A*

AME) = —HM)AME), AMA%8) =20

where AXA S A — X, AA(t) £ 92X 4ng

4

H(*) VE I AND(a) VE(A). (4.4.22)

Since the matrizx H(A*) is a similarity transform of the diagonal matriz D{a) consisting of
the scaling vector o € RT, they have the same eigenvalues. Thus, for o specified a; = a,1 =
1,...,m, the matrizc H(A*) = al,,. Accordingly, the step-size hy = h,Vk, depends on & > 0,
i.e, the largest eigenvalue of the matriz H(\*). Therefore, a bigger step-size combined with a

smaller scaling parameter & can create a faster convergent algorithm.
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Chapter 5

Application Algorithms:
Continuous-Time EC Filtering

Problems

5.1 Introduction

The continuous-time EC filtering problems consist of two major classes: continuous-time EC
filtering problem with L? orthonormal basis; and the robustness of the continuous-time EC op-
timal filter design problem in L? Hilbert space. In this chapter, we give an approach for solving
both types of continuous-time EC filtering problem in L? Hilbert basis without resorting to the
discretization of any of the functions. More specifically, using the Lagrangian duality theory in
combination with Carathéodory’s dimensionality theory, the continuous-time EC filtering prob-
lem with L? orthonormal basis (semi-infinite programming problem) is reduced to an equivalent
finite dual optimization problem discussed in Section 5.2.

In Section 5.3, the robust continuous-time EC optimal filter design problem in L? Hilbert
space is considered. Using the smoothing technique [28, 56], the semi-infinite constrained op-
timization problem is converted into an equivalent constrained optimization problem with in-
tegral cost and strictly convex constraint. It is shown in {56, 62] that solving the semi-infinite
constrained optimization problem is equivalent to solving a sequence of finite constrained opti-
mization problems with integral cost. Numerical examples involving the orthonormal Laguerre
series are solved for both classes of continuous-time EC filtering problem in Section 5.4.

The main references for this chapter are [58, 57, 59, 62].
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5.2 EC Filtering Problem with L? Orthonormal Basis

The EC filtering problems was initially posed in the continuous-time domain as a constrained
L? space optimization problem [12]. However, only the discretized version has been solved using
various approaches, e.g., [12, 66. The EC filtering problem considered in 12| is formulated in
terms of discrete-time versions of the input signal, the filter and the output response and as
such can only be an approximation to the continuous-time problem. In 66], the EC filtering
problem is formulated in terms of a continuous-time filter and input signal. However, only a
discrete-time version of the filter output and the output mask is considered.

With the help of the general frame work of the semi-infinite constrained convex QP problem
discussed in Chapter 3, we can handle the same class of continuous-time EC filtering prob-
lem as in [66] in this section without resorting to the discretization of any of the functions.
Carathéodory’s dimensional theorem [51] is used together with the semi-infinite constrained
convex programiming problem to obtain a dual finite dimensional optimization problem. The
dual problem is equivalent to the original continuous-time EC filtering problem. Two algorithms
based on the space transformation and the gradient flow techniques [15, 16, 57] are developed for
solving the dual optimization problem. Instead of discretizing the continuous-time problem us-
ing a sampling rate sufficiently high to capture enough information to approximate the optimal
solution, our approach seeks only a few crucial time points at which the envelope constraints
are active. It is shown that these active points provide enough information for finding the op-
timal filter such that the corresponding output response fits into the output mask. Therefore,
the new approach leads to a computationally tractable method for obtaining the optimal filter
with a guarantee that the solution meets the constraints. In contrast, a problem with methods
that employ discrete-time approximations is that there is no guarantee that the output mask

constraints will be met,.

5.2.1 Dual Semi-infinite EC Filtering Problem

In developing the characterization of the continuous-time EC optimal filter, we first convert
the continuous-time EC filtering problem with inequality constraints into a dual semi-infinite
programming problem with simple constraints by utilizing the Lagrangian duality theory.

5.2.1.1 Continuous Dual Parameterization

Consider the continuous-time EC filtering problem (2.2.10). Assume that there exists a x* € R"

such that Slater’s constraint qualification given in Assumption 3.3.1 holds, ie, g(x°,¢) < 0g,
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for all t € [0,7]. By Theorem 3.3.1, we obtain the filter coefficient vector
1 4T -
X)) = —5/ A'()dA(2). (5.2.1)
0

where A(t) = [A1(t), A2(t)]’ is the Lagrange multiplier vector with A; € M([0,T],R4),é = 1,2.

Substituting (5.2.1) into the objective function f(x) = x'x, we obtain the following dual semi-
infinite QP problem:

ming gy B A)

subject to A(t) >0, ¢t €(0,T),

(5.2.2)
where the dual cost function ¢(t, A(t)) is given by

L[ 7 LTy
B(EA) = 1” /0 A'(£)dA(2) & fo b'(£)dA(t).

5.2.1.2 Characterization of Continuous Optimal Filter

To characterize the continuous EC optimal filter, we consider the filter coefficient vector x &
R, Substituting the matrix A(t) given by (2.2.9) into (5.2.1) and associating with (2.2.2)
and (2.2.6), the (j + 1)th component of the filter coeflicient vector is given by

(6N = —% /0 T 0, ()dANE) = -% OT ( [0 oogaj(T)s(t—T)dT) dAN()

oo T oo .
- /0 (-% j{; s(t—r)dL\)\(t)) pi(r)dr = /0 ()03 (7Y

where AA(¢) = A1 (t)—Az2(t). Thus, the optimal filter u;, can be expressed in terms of the optimal
Lagrange multiplier vector A*(2) = [A{(£), A5(¢)]’, which is the solution of the semi-infinite dual
problem (5.2.2), as follows:

T
i (r) = —% fo s(t—T)AN(E), T € [0,00) (5.2.3)

where AN (¢) = A{(t) — A3(t),t € [0,T]. We note from (5.2.3) that the optimal filter can
be interpreted as consisting of a filter matched to the input signal followed by an equalizer

determined by the optimal Lagrange multiplier vector A*(¢),t € [0, 7).

5.2.2 An Equivalent Finite EC Filtering Problem

Applying the results obtained in Section 3.4, the dual semi-infinite EC filtering problem (5.2.2)
is converted into an equivalent finite dual optimization problem without discretization on any
continuous function. Making use of Theorem 3.4.3 to the primal EC filtering problem (2.2.10),
we obtain the following theorem which points out that the optimal solution to the dual prob-

lem (5.2.2) always includes a measure of finite support at no more than 2n points.
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Theorem 5.2.1 Let Slater’s constraint qualification be satisfied. Assume that the optimal so-
lution of the primal EC filtering problem (2.2.10) is achieved at x* € R". Then the optimal
solution to the corresponding dual problem (5.2.2) always includes a measure of finite support

at no more than 2n points.

In view of Theorem 5.2.1, (3.4.4) is reduced to
ko2

—Vf(x*') = Z Z Vxg;i(x*, t;)A];, for somei; € Q(x*)
i=lj=1

where k < 2n, Q(x*) 2 {t € [0, T]|g(x",t) = 0z}, and
A= D] € R with A = [N L) € B2

Accordingly, the dual semi-infinite EC filtering problem (5.2.2) can be converted into the fol-
lowing equivalent finite dimensional optimization problem.

min

Gy BEAL))

(5.2.4)
subject to A(t) > O
where these &k, k < 2n, active time supporting points are denoted collectively by t 2 1.tk €
R, and the finite dual cost function is given by
1
B(tA) = ZIA(BADIF+D (AW (5.2.5)

Here A(t) € R2 with A(t;) = (i1, Mi2) €R,i=1,...,k, is given in (3.4.6), and A(t) € R¥**"
and b(t) € R?*, with b(t;) € R%, Vi = 1,.. ., k, are given in (3.4.7).
Once t and the corresponding A(t) are obtained, the filter coefficient vector x(t, A(t)) and

the noiseless output response defined by (2.2.4) can be constructed, respectively, as follows:

x(t, AL)) = —A'(£)A(t) (5.2.6)

1
2
Un(t) = ©(t)s, (5.2.7)
© where 9, (t) € R*, O(t) € R"** and ©(t;) € R™ are, respectively, given by

Yn(t1) &'(t1) Bo(t:)
Wn(t) = : , O'(t) = : , Ot) =
PYn(te) O’ (te) Brr(ts)

while 6;(¢;) is given by (2.26), fori=1,...,kand j=0,...,n — 1.
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5.2.2.1 Characterization of Equivalent Discrete Optimal Filter

Following the steps used to establish the equivalent finite dimensional optimization prob-
lem (5.2.4), we are able to characterize the equivalent discrete optimal filter. First, we note

that the filter coefficient vector given in (5.2.6) can be written as:

k
x(t, A(t)) = -% YA (ML) = —% 3" O(t) AN

i=1 =1

where AM; = Ai1 — Ai2. Then, by combining it with (2.2.2) and (2.2.6), it follows that the

(7 + 1)th component of the discrete filter coefficient vector is:

1 & /oo
r; = _—29 AN ——-—2-2(/0 rpj(r)s(ti--r)d-,—)A)\i
oo 1 k -
= /‘; (—5;S(ti—f)zﬁz\i) ‘Pj(T)d‘f':fO- ua(7)pi(r)dr, j=0,..n—1

Thus, the equivalent discrete optimal filter corresponding to the continuous optimal filter (5.2.3)

can be expressed as:

k
Z (t; —T)AX, T €[0,00) (5.2.8)

loln—l

It is worth noting that the discrete optimal filter (5.2.8) consists of a matched filter followed by
an equalizer whose weights are the elements of the Lagrange multiplier vector A*. Furthermore,

the equalizer has tap positions determined by the set of the time supporting points {¢;}5;.

5.2.3 Iterative Algorithms

In this subsection, we develop two iterative algorithms based on the BN method constructed in
Section 4.5 for solving the equivalent finite dimensional dual problem (5.2.4).

Let n = [t',A’) € R and consider the quadratic component-wise space transformation
function (4.4.3) with the coordinate vector vector y = [y1,...,y3:] € R¥*. Following the BN

method developed in Section 4.5, we obtain the following iterative scheme

7 = g - VFN () )D(a)F(7) (5.2.9)
where D(a) = diag {ay,...,03) € ?Rikm" is a diagonal matrix containing components of a
scaling vector o = (@1, ..., 03] € R%, the barrier function F() € R%, and the Jaccbian

matrix VF(n) € R®%¥*3* are, respectively, defined by

D(t)Vi(t, A) ]
D(A)quﬁ(t?A)

F(n) = D(mVe(n) = (5.2.10)
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VF(n) = D(Vé(n)) + D(n)V¢(n) (5.2.11)

_ [ D(egte,0) + D) TE6(8, 4) D(t)V, ,(t, A)
D(A)V%, y8(t, A) D(V (5, A)) + D(A)V3(t, 4)

while Vig(t, A), Vag(t, A), Vigp(t, A), V(Qt’A)qb(t,A), V%A’t)q&(t,A) and V2 ¢(t, A) are all defined
in Appendix C. Substituting 77*! in (5.2.9) into x7*! given by (5.2.6), we obtain the following

simple iterative algorithm for solving the continuous-time EC filtering problem (2.2.10).

Algorithm 5.2.1 Set j = 0. Choose an initial point n° € R¥*, o stopping criterion €,, and a

proper step-size hj.

1. Let &7 = VF~ Y/ )D(a)F(1’) be a search direction where the matrices F(n’) and VF (1)
are, respectively, given by (5.2.10) and (5.2.11).

Calculate the following scheme
Pl o= o - hjd! (5.2.12)
in which the step-size h; is chosen such that
Vé'()d <0 and 77 > O3 (5.2.13)

2. Use p’t1 to obtain xI*1 and fi*! as follows:

. 1 , .
xit! = _,__2_A’(t.?+1)A1+1

P = .

If x?71 satisfies the continuous constraints of the EC filtering problem (2.2.10) and the
stopping criterion ||d7F1|z < €, is satisfied, then terminate; otherwise return to Step 1

with j replaced by j+1.

Remark 5.2.1

1) In Step 1, there exists, by Theorem 4.4.2, a fized step-size 0 < hj =h < ﬁm
such that conditions (5.2.13) are satisfied for all j. Furthermore, if the Jacobian matriz VF(n)
satisfies a Lipschitz condition in a neighborhood of n* and o; = e ~ 2.71828, Vi = 1,...,3k,
then the sequence {r/ }320 generated by the scheme (5.2.9) converges to n* locally and at a
gquadratic rate.

2) Many simulation studies have been carried out by using Algorithm 5.2.1 for various EC filter

design problems. Our experience indicates thet minimizing the time supporting point t; and the

corresponding dual varigble \;, Vi = 1,... k, simultaneously may cause numerical problems. It

15 due to two causes:
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* The equivalent finite optimization problem is nonconvez with respect to the time supporting

point t;, i =1,...,k.

¢ A large error 1s accumulated in the computation of the second derivatives involving the

dual vector A.

The second cause is more severe for the ezample considered in this chapter. To alleviate this

difficully, we propose an alternative algorithm to solve the continuous-time EC filtering prob-

lem (2.2.10).
Define
G(t) = D(t)Vis(t,A) € R,
G(A) = D(A)Va¢(t,A) € RZF
and

V.G(t) = D(Vig(t,A)) +D(t)Vie(t, A) € R=¥,
VAG(A) = D(Vag(t,A) + D(A)VE4(t, A) € R2EX2E,

Algorithm 5.2.2 Seti = j =0. Let D(a) = D(e) € %% and D(B) = D{e) € RE** where
+ +

e = 2.71828. Choose two initial points t° € RE and A® € R2* | two proper step-sizes hi and &%,
+ + t A

and three stopping criteria cf, €, and 4.

1. Fiz AL = A and let di = VG~ (t")D(B)G(t?) be a search direction.

Calculate the following scheme
tH =t~ hid;
in which the step-size hi is chosen such that

Ve (£, A)dIYE < Q. (5.2.14)

Fiz t**1 = t and complete Steps (a) and (b).
(a) Let &} = V4G~Y{AI)D(e)G(A?) be an another search direction and perform the

following scheme to obtain the optimum At*l:
AT = A Aldd, (5.2.15)
where the step-size B, is chosen such that
Vad' (t, AT <0 and AT > 0y (5.2.16)

(8) If AL > 09s and the stopping criterion deng < ep 15 satisfied, then stop and set

AL = ATFL; otherwise return to Step (a) with j replaced by j+1.
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3. Use (71, ALY to obtain x**! and fi*! as follows:

. 1 ‘ :
il = —EA'(t"H)AiH, (5.2.17}

fi+1 - f(xH'l).

If x*T1 satisfies the continuous constraints of the EC filtering problem (2.2.10) and the
stopping criteria |f7| < ¢ and [[dTY||y < e are satisfied, then stop; otherwise return

to Step 1 with i replaced by 1+1.

Remark 5.2.2
1) By Theorem 4.4.2, there exist fired step-sizes ht = hy and hi = ha such that conditons
in (5.2.14) and (5.2.16) are, respectively, satisfied for all i and j.

2) There are two importent issues in the implementation of the above algorithm.:

(a) The choice of ¢ good initial time supporting point t°.
To obtain a good initial point t°, we first discretize the time interval [0,T), such that
the dual problem (5.2.2) has o finite number of constraints. We then use Step 2 of Al-
gorithm 5.2.2 to obtain the dual vector A corresponding to the initial supporting point
vector t° = [82, ... [ #]). Clearly, each Agj, where AEj = [A?}l, )\2,2]’ , corresponds to a time
supporting point t? € [0,T] such that the active time supporting point of the output con-
straint is achieved at t? € {t9,..., 80} if either Ay or /\?’2 is nonzero. This simple test
enables us not only to select o good initial supporting point vector t°, but also to estimate
the dimension of t* at the ith iteration in terms of the number of the active supporting

points.

(b) The determination of dimension of the supporting points t* at the ith iteration.
In view of results obtained in Theorem 5.2.1, the dimension of the supporting points t
is k& < 2n. However, extensive simulation ezperience indicates that k is usuaily much

smaller than 2n.

In view of Remark 5.2.2, we present Algorithm 5.2.2 as flowcharts in Figure 5.1 where initializa-
tion, processing module 1, and processing module 2 are designed as modules. More specifically,
the initialization module is used to determine a good initial point t° and the dimension of active
supporting points t at each iteration. Furthermore, for a fixed A = A%, where ¢ denotes the
ith iteration, the processing module 1 is designed to search for a new active supporting point
vector t't!, whereas the design of processing module 2 is for finding an optimum A% with the

supporting point vector t**! obtained from the previous processing taken as a fixed parameter.
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For a specific active point vector t¢, the schemes (5.2.15) and (5.2.17) are equivalent to the

Figure 5.1: Flowcharts for Algorithm 5.2.2.

following dual finite dimensional minimization problem.
min Aft?
¢ ( _( ) (5.2.18)
subject to  A(t}) > 0o
where the cost function is given by

(B,

BAM) = 1 [A(HAE)
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while A(t*) € R¥*" and b(t') € ®?* are, respectivly, given by

A Bo(t%)

AltH) = . ‘ iy _ @’(t;‘) 2xn iy _ : n
(t) = : with A(t;)} = or(t) € R¥", and O(t}) = : eER
o tl_
A(ty) ? 9n—1(tj,-)
and
+i4
b(th) = [b’(tﬁ),...,b’(t;;)] with b(t}) = { © (t?) EREVY =1,....k
e (¢5)

The corresponding primal finite convex programming problem can also be obtained:

min fi{x)

. . _ (5.2.19)
subject to g(x,t') = A(t")x — b(t*) < Og

where g(x, t') = [g/(x,),...,8/(x,t1)]’ € R¥*, while gx, ) e R Vi=1,... k.
Define two feasible solution sets corresponding to the primal semi-infinite EC filtering prob-

lem (2.2.10) and the primal equivalent finite EC filtering problem (5.2.19), respectively, as

follows:

X

{x e R" : g(x,t) < 0q,¥t € [0,T]}

i

X, {xeR" 1 g(x,t;) <09,7=1,...,k}.

Theorem 5.2.2 Let the optimal solutions % € X3 and x* € X1. If % € X4, then x = x*.

Proof: Trivially, X; C Xs. Let x* = argmin {f(x):x € X} and % & argmin {f(x) : x € X}
It is clear that f(%) < f(x*). If X € Xy, then X is an optimal solution of the primal semi-infinite
EC filtering problem (2.2.10), i.e., f(X) = f(x*). Since f is strictly convex in x, we conclude
that x = x*. [

Remark 5.2.3 If Algorithm 5.2.2 is terminated at x* = X because the continuous constraints
of the EC filtering problem (2.2.10) is satisfied, then % € Xy which implies f(%) > f(x*). By
Theorem 5.2.2, we conclude that X = x*. However, the algorithm may fail to find an % such

that X € Xy if the initial supporting points t° are badly chosen.

5.3 Robust Optimal EC Filtering Problem

For the EC filtering problem introduced in the previous sections, the output response of the

optimum filter to the prescribed input signal touches the output boundaries at some points.
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Consequently, any disturbance in the prescribed input signal or errors in the implementation of
the optimal filter could result in the ontput constraints being violated. Clearly, it is practically
important to design filters which are robust against such disturbances.

One approach for dealing with this problem is to maximize the minimum distance between
the output response and the output envelope constraints, subject to a specified allowable in-
crease in the optimal noise power gain. This formulation, which is called constraint robustness
formulation (CRF}, was first proposed in [4, 74] as a semi-infinite constrained optimization
problem. However, only a discrete-time version of the time-domain constraints is considered.
In this section, we handle directly the same class of the semi-infinite constrained optimiza-
tion problem without resorting to the discretization of any of the functions involved. Using
a smoothing technique reported in [28, 56], the semi-infinite constrained problem is converted
into an equivalent constrained optimization problem with integral cost and strictly convex con-
straint. It is shown in [56, 62] that solving the semi-infinite constrained optimization problem is

equivalent to solving a sequence of finite constrained optimization problems with integral cost.

5.3.1 Robust Envelope-Constrained Filter

Consider the constraint robustness formulation (CRF) of the problem (2.2.12) with support in
[0, . For a given weighted constrained robustness margin o defined in (2.2.11), we define the

feasible region of the CRF problem in x as follows:

Fop(x) = {x € R" 1 [9a(x,t) — d(8)] < e(t) - B(e)op,t € 0, T, IxI < (1 + )" I3}

where d(t) is a desired pulse shape, and £(t) is an error tolerance band about d(t).
We characterize the sensitivity of the feasible point in the set Fay with different values of

oz in the following proposition.

Proposition 5.3.1 Let o and o} be such that Xyl € Fa}, (x) and Xg3 € F(,g (x). fO0<oj <

g, then
Foy () S Fpy(x) and |ixgillz < izl (5.3.1)
Proof: Clearly, [y¥n(x,t) — d(t)| < e(t) - B(t)afg < egft) ~ ﬁ(t)aé, te[0,7]. |

Remark 5.3.1
1) Proposition 5.3.1 indicates that the optimum o3 must be a bounded positive constant. Other-
wise, there is no solution to the CRF problem (2.2.12) for any finite og. In addition, a feasible

point with a bigger consiraint robustness margin can be found at the expense of the increased
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noise gain [|x||2.

2) By (5.3.1), it is clear that finding the mazimum og by solving the CRF problem (2.2.12) is
equivalent to finding the maximum og for which the set Fay(x) remains non-empty. Thus, for
a given weighting function 3 > 0, we can begin with a g5 > 0 and check if the corresponding set
Fog(x) remains nonempty. If it does, we can increase the value of og and repeat the process. On
the other hand, if the set Fr,(x) becomes empty for a given og, it follows from Proposition 5.3.1

that the value of og needs to be reduced.

In view of Remark 5.3.1, we see that the golden section search method [44] can be applied
to locate the maximum value of o3 to within a required inter\}a,l of uncertainty. To check the
feasibility of the set F,,(x) for a given op, we use the idea reported in {28] to handle the
continuous ineqguality constraints.

Let the weighted constraints in the CRF problem (2.2.12) be defined as:

{ q1(x, tlag)

92(x? th’ﬁ)

Bltlog — Ya(x,t) + 7 (t)
B(t)oa + Yn(x,t) — =7 (t).

e e

Clearly, for a given g5 > 0, g1(x, tlog) and ga{x, tlos) satisfy the following conditions:

1) gi(x,tieg), § = 1,2, are continuous in ¢ € [0,7], and for each x, @‘%f_lfﬂ is piecewise
continuous in ¢ € [0, 7).

2) gj(x,tlog), 7 = 1,2 are continuously differentiable with respect to x for almost all ¢ & [0, T].
Then, for a given og, we construct the following optimization problem which contains a strictly
convex constraint. This optimization problem is used to check the feasibility of the constraints

of the CRF problem (2.2.12) corresponding to the given o3.

min Je(x|og), xeR"

(5.3.2)
subject to ||x||3 < (1 + 8)||x*|12

where € > 0 is an accuracy parameter, and the integral cost function J; is given by

T
Lixos) = [ (@dartx toa)) + oalx, tioa)) ) s,

while the smoothing constraint transcription @,(-) is differentiable and defined by

0 if g5 < —¢
Bulg) = { U fe<gi<e
95 ifg; > e

Remark 5.3.2
1) c(g5),4 = 1,2, possess the following properties:
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o ®.(g;) is once continuously differentioble and piece-wise twice continuously differentiable.
o & {g;) is convez and monotonically non-decreasing.
2) The accuracy parameter in the problem (5.3.2) is required to be positive but not necessarily be
small. In fact, if the feasible space is sufficiently large, a larger € may be chosen so as to enhance

the convergence characteristic of the algorithm. Otherwise, a smaller € should be chosen.

The next two propositions contain, respectively, necessary and sufficient conditions for feasibility

of the set 7, (x) for a given oy (for details, see [28]).

Proposition 5.3.2 {Necessary condition}
For a given og 2 0 and o given € > 0, let X € Fyy(x). If Foy(x) # 0, then

J(%los) < %F—- (5.3.3)
Proposition 5.3.3 {Sufficient condition}
Let X be such that
J(los) < imin{i— T} (5.3.4)
€ 16 -_ 8 4M? Py 2

where

M = mu{iﬁ’gﬁﬂ‘ te0,T],j = 1,2}.

Then % € Fiy(x).

Associated with Propositions 5.3.2- 5.3.3, we can determine whether an x is such that 7, (x) #

® for a given o by solving the constrained minimization problem (5.3.2).

Remark 5.3.3 The constrained minimization problem (5.3.2) is solvable by gradient-besed
quasi-Newton methods. We note that for quasi-Newton methods, the cost and constraint func-
tion values and their gradients need to be calculated. The gradient of the cost function J.(x|og)

with respect to x is given by

Vo(xlos) = /T (aég(gl(x, tiog)) N B‘PE(gg(x,tlag))) "

ox ax

where aq"(gé:’t‘“” e RN, 7 =1,2, are defined as

if gi(x, tlog) < —e

8%.(g;(x, tlog)) xtlonrie o (xtion)
Jax — gsr:(x 2|:',ﬂ)+ ) ya(;;cﬂ ) if —€ < g;(x,tog) < e
(xtio ,
: (%F 2 if g;(x, tlog) > e
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5.3.2 Iterative Algorithms

Let the cost function J.(x|og), that is piece-wise twice continuously differentiable with respect

to x at the iterate x*, be expressed as the following convex quadratic model
Je(x* +djog) = J(x*log) +d' VI (x|og) + éd'vz.fe(xﬂcrg)d (5.3.5)
Clearly, (5.3.5) produces a search direction d* given by
df* = -H*VJ.(x|os)

where HF is constructed sequentially to approximate the inverse Hessian V2J;1(x*|o5). Ac-
cordingly, quasi-Newton method is discussed in terms of updating H” in the following algorithm
that is used to determine whether a given o4 is feasible when a feasible solution of the con-
strained minimization problem (5.3.2) is obtained. To efficiently update the matrix H*, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula [14] is applied to the following al-

gorithm.

Algorithm 5.3.1 Set k = 0 and H° = 1. Given a weighted constraint robustness margin
og 2 0 with weighting function 3 > 0, an accuracy peramter € > 0, and an appropriate step-

size hy.

1. Caleulate the gradient VJ.(x*{og) and the search direction d* = —HFV J, (x¥|op).

Perform the following iterative scheme to find a new point
xk+1 = Xk-f-hkdk
in which the step-size hy is chosen such that
VJix*og)d® < 0.
2. If Je(xk|aﬁ) > 922 then go to Step 4; otherwise, go to Step 3.

3. Check if the constraints of the CRF problem (2.2.12) are satisfied. If so, go to Step 5;
otherwise, go to Step 4.

4. Update the gradient o obtain o new search direction d**! = —H*¥*'V J (x*+1|og) where

the BFGS update formula for H*! is given by

(ax* — H*Agk) Ax¥ + Axk (Axk - H*Agt)
(Axk, Agk)
<Ax" - H"Ag",Agk>

- AxFax®
(Ax*, Agk)?

H = gF L
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where Ax® = x*+! — x* and Agh = VI (x**ag) — VI (x*|og). Set k =k + 1, and go
to Step 1.

5. Stop. x* is a feasible point in Faz(x).

Remark 5.3.4 IfHY is positive definite matriz and Je(x|ag) is strictly convez, then each of the
subsequent H* obtained by the quasi-Newton update formula is positive definite. Furthermore, if
the gradient VJe(x*|og) # 0, d* is a descent search direction. Thus, o line search can produce

a step-size hy such that J.(x*"|og) < J.{xFloy).

In view of Algorithm 5.3.1, the CRF problem (2.2.12) can be solved by using a combination of

the golden section search method and a quasi-Newton method as follows:

Algorithm 5.3.2 Setk = 0 and 059 = 0, choose a o5, > 0, and assign the accuracy parameters

71 >0 and y2 > 0 for og and (1 + 6)||x*||3 — ||x*|{3, respectively.

1. Determine if F,,, (x¥} =0 by using Algorithm 5.3.1.
2. If s0, go to Step 3; otherwise, set ogo = o and oa; = 20, and then go to Step 1.

3. Set &gy = ogo+(1—A)(opt —0op0); T3t = ggo+ Alose — ogo) where A = 0.618 is the golden

section ratio.

k

4. 1If Fgﬁo(ig) = 0, set o = &gy, x* = xﬁ and go to Step 6; otherwise, set ogy = Fpo,

xf = %% and go to Step 5.

5. If Fsp(%F) = 0, set og; = 5, x* = x§ and go to Step 6; otherwise, set ogy = gy,

xF = %¥ and go to Step 6.

6. If opt — ogo < and (1 4+ 8)||x* I3 — ||x*(|2 < 7o, set oa(xt) = ogo, x: = x* and stop;
otherwise, go to Step 3 and replace k by k + 1.
Algorithm 5.3.2 can be presented in the form of a Flowchart 5.2. More specifically, the module
of initialization is designed to determine the feasibility of the constraint robustness formulation
problem in x for a given o via solving the constrained minimization problem (5.3.2) using a
quasi-Newton method. The processing module is used to locate the optimal solution og(x?)

with the robust optimal filter coefficient vector x! by using the golden section search method.

Theorem 5.3.1 Algorithm 5.3.2 is guaranteed to locate the optimal solution oa(x*) of the
problem (2.2.12) with the robust optimal filter coefficient vector x} to within a given interval of

uncerteinty in ¢ finite number of iterations.

Proof: See Appendix C.3. 1
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5.3.3 Behavior of Optimal Filter with Perturbations

In this subsection, we consider two perturbation cases, namely perturbation in the implemen-
tation of the optimal filter, and perturbation in the prescribed input signal. Without the
robustness constraints, these two types of perturbation will result in the output constraints

being violated.

5.3.3.1 Perturbation in the Implementation of Optimal Filter

Let i) (t) denote the perturbed EC optimal filter that results due to error in the implementation

of the nonrobust EC optimal filter u};(¢). @X(t) is given by
n—1
B = 3 #et), tedm)
e

e B - . . .
where %* = [£},...,%5_;]' € R™ denotes the perturbed optimal filter coefficient vector resulting
from the implementation error. The corresponding output response of the perturbed optimal

filter to the input signal s(t) is
Unl(@h, 1) = / @ (P)s(t — 7)dr = $a(R*, 8), £ € [0, o0), (5.3.6)
0

where 1,(X*, t) = ©'(t)x* and ©(t) is defined by (2.2.5). By the definition of the weighted con-
straint robustness margin defined in (2.2.11), it follows from (5.3.6) that the weighted constraint

margin og(X*) € R of the perturbed normal EC optimal filter coefficient vector is:

op(X") = min{mﬁin ls+(t) ;Ei")‘(i*‘t)] , min [“/’"(i*’;gt)_ E_(t)]}. (5.3.7)

Let us define the perturbed robust EC optimal filter coefficient vector x3:. Similar to (5.3.7),

we also obtain the weighted constraint margin og(%;)} € R of the perturbed robust EC optimal

filter coefficient vector as:

et —¥n i:? : n i:: —E&
os{X;) = min {mtin{ ®) ﬁz‘i)( t)] , Tin [¢ ( ;2:&) (t)] } (5.3.8)

Theorem 5.3.2 Let the weighted constraint margins o3(X*) and og(X}) be, respectively, defined

in (5.8.7)-(5.3.8) where X* 2 x*+ ap Ax||x™ {2 and X = X; + apAx||x}||2, while x* and x;
are, respectively, the nonrobust optimal filter coefficient vector and the robust optimal filter
coefficient vector, oy > 0 is the perturbation scaling parameter and Ax is an error vector due
to an error in the implementation of the optimal filter. Assume that |©(t)|]2 < C,t € [0,00)
end {Ax||le < 7 hold. Then there ezists a number ap = ﬁ‘c;wf‘x”, where My = /(1 + §)Cqix*| 2
and 8 = max,[8(t)], such that for ay satisfying 0 < ay < a}, oa(Xr) > 0 > a(x").
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Proof: See Appendix C.4, | |

Remark 5.3.5

1) If the error vector Ax is normalized to achieve |Axl|ls = 1, then the perturbation scaling
parameter «s is a measure of the norm of the error in the implementation of the optimal filter
as a fraction of the optimal filier norm.

2) Theorem 5.3.2 indicates that if the error vector is bounded within a certain interval, then the
output response of the perturbed robust EC optimal filter remains within the prescribed upper
and lower boundaries. However, the same bounded error vector introduced on the normal EC
optimal filter results in the oulput constraints being violated and its weighted constraint margin

op(x*) will become negative.

5.3.3.2 Perturbation in the Prescribed Input Signal

Let §(t) denote the input signal contaminated by perturbation. By the expression of the filter
impulse response uq(t) in (2.2.3), the corresponding perturbed output response of the nonrobust

EC optimal filter u;,(t) is obtained as:

It = [ u(mse-n) = Zect

= 1Aﬁn(x",t), t € [0, 00) (5.3.9)
where 1, (x*, 1) = ©'(¢)x*, ©'(¢t) = [Bo(t), 8,-1(t)] is the vector representing the perturba-
tion input signal, and

f wi(T)3(t-1)dr, j=0,...,n—1. (5.3.10)
0

By (2.2.11), we obtain the weighted constraint margin 53(x*) € R of the nonrobust EC optimal
filter coefficient vector for the perturbed input signal as:

gs(x*) = min {mtin [E+(t) ;E,f;(x*,t)] ,mtin [Jﬂ(x";gt)— E“(t)‘| } . (5.3.11)

Similar to (5.3.9), the output response of the robust EC optimal filter with the perturbed input

signal is given by
Pn(x5,t) = O'(t)x*, te[0,00). (5.3.12)

Using (5.3.12), we also obtain the weighted constraint margin &5(x}) € R of the robust EC
optimal filter coefficient vector for the perturbed inpﬁt gignal as:
S e = daxtp) Yn(xs,t) — s~ (1)
gs(x;) = min< min |, min : . 5.3.13
o { : [ 0 : 50 (5319
By (5.3.11) and (5.3.13), we obtain a similar result as Theorem 5.3.2 in the following.
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Theorem 5.3.3 Define the perturbed input signal as i(t) 2 s(t) + o, As(t)s*, t € [0,00), where
@y > 0 is the perturbation sceling parameter, As(t) is o perturbation on the input signal, and
s* = mazy[|s(t)|]. Let 5g(x") and Gg(x}) be, respectively, defined in (5.3.11) and (5.5.18). As-
sume that |As(t)l < 7 holds. Then there exists a number of = E:.&%%’fﬁ) where 3% = max:[3(t)]
and M, = /n{1+0)7||x*||2, while § > 0 is defined in the CRF problem (2.2.12) such that for

a, satisfying 0 < a, < af, 03(x}) > 0 > F5(x).

Proof: See Appendix C.5. [

Remark 5.3.6

1) For the numerical examples to be considered in Section 5.4.3.2, the input signal s(t) and
the perturbation As(t) will be epprozimated by the time interval [0,T), and [0,T) is divided
into m subintervals. These signal sequences are represented as vectors denoted by s € R™
and As € R™, respectively. Then, the approzimate perturbed input signal 3 € R™ becomes
§ = 8 + a,As|s|lw. By choosing 0 < o, < af, where of = ﬁvfﬁiﬁ%, we have the results of
Theorem 5.3.3. Furthermore, when ||As| . = 1, the scaling parameter o is a measure of the
norm of the perturbation as a fraction of the signal norm.

2) Theorem 5.3.3 shows that if the perturbation on the input signal is bounded within o certain
interval, then the output response of the robust EC optimal filter to the perturbed input signal
remains in the region defined by the output boundaries. On the other hand, with the same
bounded perturbation on the input signal, the corresponding output response of the normal EC
optimal filter will violate the output envelope constraints and the weighted constrained margin

Fp(x*) will become negative.

5.4 Numerical Results with Laguerre Networks

To illustrate the performance of the algorithm derived in the previous section, we consider the
Laguerre basis functions which have been used as examples in the previous work on the EC
filtering problems. These functions can be implemented as cascaded filters with a single real
pole. The use of Laguerre functions for signal representation and filter synthesis has been well
documented (52, 40]. Other filter structures could also be used. For example, Legendre functions
correspond to cascade filters with real non-identical poles, {37}, and Kautz filters consist of
cascaded all-pass filter sections with a pair of complex conjugate non-identical poles, [33]. In
comparison, the structure of Laguerre filters is easier to implement.

In what follows, we briefly introduce the orthonormal Laguerre basis and then apply it to
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a practical EC filter design example involving the channel equalization of a data communica-
tions (33].
5.4.1 Laguerre Basis of L*([0, 00))
Let C? {t),t € [0, 0) be the Laguerre function with a scale factor p > 0 defined by
E?(t) = 2pe P;(2pt), §=0,1,2,... (5.4.14)

where £;(t) is the classical Laguerre polynominal given by

ed .
450) = g ()

— i( 7 ){:?i, F=0,1,2,...

i=0 J—1

Taking the Laplace transform of L‘; (t), we obtain

) = L2 (22

7
1 =0,1,2,...
S+p 3+P)1] Lk Bt |

Foreach j =0,1,2,..., the function H}’ (3) consists of the first-order low-pass term and the jth-
order all-pass factor. These functions are the classical Laguerre functions in frequency domain.
It is known that the Laguerre sequence {£%}32, forms a uniformly bounded orthonormal basis
for the Hilbert space L%([0, 00)) (cf. {52, 40}).

Since {£F}32, is an orthonormal basis of L*{[0, c0)), any u(t) € L?([0,00)) can be repre-

sented as:
o
u(t) = szﬁg(t), t € [0,00)
i

where z; = (u, L? >, J =0,1,... are known as the Laguerre-Fourier coefficients. Define the

Laguerre filter of order n as:
n—1
ua(t) = Y z;LNe), tel0,00). (5.4.15)
i=0
Let Uy(s) denote the Laplace transform of u,(t). Then, U,(s) can be expressed as:
n--1
Ua(s) = > z;HI(s). (5.4.16)
s

From (5.4.14)-(5.4.16), the continuous-time EC filtering system with Laguerre orthonormal
basis is realized and shown in Figure 5.3, where s(t) and 9, (t),t € [0, 00) denote, respectively,

the input and output pulses.
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s(t) | stp stp
eo(r) Bl(t)

Figure 5.3: Block diagram of implementation of the continuous-time EC filter with Laguerre

basis.

Remark 5.4.1 [f is possible to include the scale factor p as a variable of the optimization
problem. However, we have chosen fo fiz it due to the following consideration:

1) For many real systems, the bandwidth of the channel to be equalized is often known at least
approzimately. In this case, the scale factor p in the Laguerre filter can often be chosen off-line
from a priori information about the channel impulse response.

2) Including p in the optimization problem may complicate the presentation without providing
any odditional insight into the proposed method which is the primary focus of this chapter.
Moreover, the optimization of p for impulse inputs and any well-behaved input can be achieved

by the methods reported such as in [6, 10, 53, 54].

5.4.2 Test 1: EC Filter with Continuous Laguerre Networks

We consider the equalization of a digital transmission channel involving a coaxial cable operating
at the DSX3 rate (44.736 Mb/s) {5]. The coaxial cable has a 30 dB attenunation at a normalized
frequency of 1/3 where 3 is the baud interval (22.35 x 10™%s).

The design objective is to find an equalizing filter shaping the impulse response of the coaxial
cable so that the output response of the filter fits into the envelope given by the DSX3 pulse
template. The input signal and the output pulse mask are given in continuous-time domain
with support in [0,7T] in Appendix C.

To have a good representation of the continuous input signal, the analog input signal is
sampled every -:% time unit over [0,T] where T = 323. To display the designed results, we
further discretize the input signal, the output mask and the filter output in (5.2.7) into 1024

points. This gives a reasonably fine partition over the interval. However, we note that the
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approach presented in Section 5.2 for obtaining the optimal solution does not require any
discretization of input signal, the output mask, and the filter output.

Solving the discretized problem, we first obtain a good initial guess A% needed in Step 2 of
Algorithm 5.2.2. Then, t° can be chosen accordingly. In this example, we note that it is only
required to use m = 3 points although n = 8 Laguerre coefficients are used in this example.
From A9, we choose t° = [0.2,0.875,1.1)" as the initial guess. We further choose k¢ = hy = 1073
as the fixed step-sizes for Step 1 and Step 2 of Algorithm 5.2.2, the scale factor p = 14/323. The
simulation results are depicted in Figure 5.4 and Figure 5.5. From Figure 5.4, it is clear that
the output response fits into the output envelope mask. Figure 5.5 shows that all convergence

conditions are satisfied. The optimal cost value obtained using Algorithm 5.2.2 is 53.3968.

5.4.3 Test 2: Robust Optimal EC Filter with Continuous Laguerre Networks

In this test, we consider two examples: without perturbations; and with perturbations for the

design of the robust EC optimum filter with the continuous-time Laguerre networks.

5.4.3.1 Example 1: Without Perturbations

For the first test, we assume that there is no disturbance in the prescribed input signal nor
implementation error. The noiseless output response of the normal EC optimal filter fits into
the envelope constraints as shown in Figure 5.4 and the optimal cost value ||x*||3 is obtained in
Section 5.4.2. The robust EC filtering problem is combined with a weighting function 5{t) =
i@—;flﬂ, where £7(t) and 7 (¢) are defined in Section 2.2.1 with support in [0,328]. 5(t) is
a tolerance band about the desired pulse shape d(¢).

For Algorithm 5.3.2, we begin the simulation with ogy = 0, g = 0.1, xp = x* and specify
the iteration accuracy parameter v, = 107, and v, = 10~%. For the improved robustness
in the CRF problem (2.2.12), we are prepared to accept an additional 100% increase in the
output noise power gain, i.e, 4 = 1.0. The accuracy parameter in Algorithm 5.3.1 is set at
¢ = 1073, The simulation results are depicted in Figures 5.6- 5.7. Figure 5.6{(a) shows the
convergence of Algorithm 5.3.2 where the golden section search method is used to locate og,
and og,. Figure 5.6(b) depicts the convergence of the robust filters to meet the noise gain
constraint in a finite number of iterations. This is consistent with Theorem 5.3.1. Figure 5.7
shows a comparison between the nonrobust EC optimal output response and the robust optimal
output response. Clearly, the robust optimal output response is farther from the boundaries of

the output mask when compared with the nonrobust optimal output response.
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5.4.3.2 Example 2: With Perturbations

To illustrate the irﬁproved tolerance of the robust optimal filter to the perturbations discussed in
Section 5.3.3, we consider the performance of the optimal filter in the presence of perturbations
in the prescribed input signal, and errors in the implementation of the optimal filter.

The output response of the implemented optimal filter will depend on the actual implemen-
tation error and the actual perturbation on the input signal. To obtain an idea on the effect
of different input signal perturbations, the responses of the robust optimal filter to fifty input
signals with random perturbations were determined. In the numerical examples, the input sig-
nal is represented by a discrete sequence comprised of 1024 samples over its support interval
[0,323]. Each of the fifty input signal perturbation sequence, {As' € R}, | is generated by
producing m = 1024 independent zero mean random numbers from a uniform distribution over
the interval {—1.0, 1.0]. Since the perturbation is generated on the interval [~1.0, 1.0], we have
that |As*|lee = 1,¥i = 1,...,50.

Similarly, to gauge the effect of implementation errors, the response of fifty different imple-
mentations of robust optimal filter were determined. The fifty different implementations were
produced by adding a perturbation vector, {Ax* € RV} | to the optimal filter vector. The
components of each perturbation vector were zero mean independent random numbers from a
uniform distribution over the interval [-1.0,1.0]. The perturbation vectors were normalized to
have unit norm, that is, ||Ax?|js = 1,i =1,...,50.

Figure 5.8(a) shows that the nonrobust optimal filter has zero tolerance to implementation
errors since the weighted constraint margin becomes negative at the presence of any implemen-
tation error. On the other hand, Figure 5.8(b) shows that fhe robust optimal filter is highly
tolerant to implementation errors since for a wide range of implementation errors the oufput
has a positive margin.

Figure 5.9(a) shows that the nonrobust optimal filter has zero tolerance to input signal
perturbations since the weighted constraint margin becomes negative at the presence of any
input perturbation. From Figure 5.9(b), we see that the robust optimal filter is highly tolerant
to implementation errors since for a wide range of input signal perturbations the output has a
positive margin.

The numerical results obtained for the above two types of perturbation example are consis-
tent with Theorem 5.3.2 and Theorem 5.3.3, and illustrate the improved tolerance of the robust

optimal filter with respect to input signal perturbations and implementation errors.
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Figure 5.4: DSX3 pulse template superimposed on coaxial cable response and filter output.
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Figure 5.5: The convergence results for DSX3 pulse coaxial cable example.
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Chapter 6

Application Algorithms:
Discrete-Time EC Filtering

Problems

6.1 Introduction

The aim of this chapter is to apply the newly developed simple yet efficient gradient-type
methods of Chapter 4 to solve the discrete-time EC filtering problems formulated in Section 2.3.
The discrete-time EC filtering problems include the discrete EC optimum filter design problem
with FIR model structure and the EC filtering problem with an approximate £2 orthonormal
basis. Applying the Lagrangian duality theory [34] to the original EC filtering problems, we
obtain the dual optimization problems. Based on the space transformation and gradient flow
techniques, the barrier-gradient (BG) and barrier-Newton (BN) algorithms with a continuous
barrier function are developed to solve the dual EC filtering problems. As a result of the
continuous barrier function, filters generated by these algorithms with a fixed step-size globally
converge to the optimal filter.

This chapter is divided into four sections. Section 6.2, two efficient iterative algorithms are
developed to solve the discrete-time EC filtering problem with FIR filter. In Section 6.3, the EC
filtering problem with #2 orthonormal basis is considered. We first present a characterization
of the optimal filter relying on the application of the Lagrangian duality theory and proper-
ties of a complete orthonormal basis of ¢ Hilbert space. Similar to Section 6.2, two efficient
iterative algorithms are then constructed to solve the EC filtering problem. The convergence

results obtained in Chapter 4 are directly applicable to the discrete-time EC filtering struc-
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tures. Furthermore, a practical application of the discrete-time Laguerre networks is examined
in Section 6.3. We note that the FIR filter is a special case of the discrete-time Laguerre filter
as the pole in the Laguerre networks equals zero. Finally, some numerical results involving
pulse compression and channel equalization are presented in Section 6.4 to demonstrate the
effectiveness of the proposed algorithms.

The main references of this chapter are [57, 60, 61].

6.2 Tapped Delay Line FIR Filters

In this section, we consider the optimum EC filter design problem (2.3.5) using FIR model
structure. Applying the BG and BN methods discussed in Chapter 4, two simple yet efficient
iterative algorithms are constructed to solve the discrete-time EC filtering problem {2.3.2).
Numerical results involving pulse compression Barker code signal and channel equalization of a

digital transmission coaxial cable are presented.

6.2.1 Discrete Dual Parameterization

Consider the discrete-time EC filtering problem {2.3.5). Assuming that there is a u’ € R™ such
that Au® < b where A and b are, respectively, defined in (2.3.4), and applying the Lagrangian
duality theory introduced in Section 4.3, we obtain the filter response u in terms of the Lagrange

§R2N

multiplier vector A € as follows:

u(d) = -—%A’A. (6.2.1)

Substituting {6.2.1) into the primal EC filtering problem (2.3.5) yields the following dual opti-

mization problem

min A =LiNAMN+ D
6(A) =3 (6.2.2)
subject to A > Oay

where the Hessian A 2 %AA’ is a symmetric positive semi-definite matrix and hence the
dual cost function ¢(A) is convex. Once the dual vector is found, the optimal solution of the
primal EC filtering problem (2.3.5) can be readily obtained. To solve the dual problem (6.2.2)
efficiently, two gradient-based schemes obtained in Chapter 4 are applied to this problem.

6.2.2 Tterative Algorithms

In view of the BG and BN methods developed in Section 4.4, two efficient iterative algorithms

are constructed to solve the discrete-time EC filtering problem (2.3.5).
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6.2.2.1 Barrier-Gradient Algorithm

Consider the quadratic component-wise space transformation function {4.4.3) with the coordi-
nate vector y = [y1,...,v2n] € R*Y. Applying the BG method discussed in Section 4.4, we

obtain a simple iterative algorithm for solving the discrete-time EC filtering problem (2.3.5).

Algorithm 6.2.1 Set k = 0. Choose an initial point A° € RT, a proper step-size hy and the

stopping criterion .

1. Let F(A*) = D(X¥)V¢(A¥) be a search direction where Vp(I\*) = AN +b.

Calculate the following iterative scheme
ARFL =k RO, (6.2.3)
where the step-size hy is chosen such that

Vo' (AFHIF(AF) <0 and AR > Ogy. (6.2.4)

2. Use AL {o obtain u*tt and f*t1 as follows:

uk-{-l — __;_AfAk-i-l’ fk+1 = f(uk+1). (62«.5)

If u**1 satisfies the constraints Au ™! < b and the stopping criterion |F(AF)|l2 < € is

satisfied, then terminate; otherwise return to Step 1 with k replaced by k + 1.

Remark 6.2.1
1} By Theorem 4.4.1, there ezists a fized step-size hy = h such that the conditions (6.2.4) are

satisfied. Furthermore, there exists a constant h* = —2—, where Nmae is the largest eigenvalue

of the Jacobian matriz VF(A*) defined by ({.4.19) s:ch that for the fized step-size h satisfying
0 < h < h*, the sequences {\*}32, and {u*}, generated by schemes (6.2.3) and (6.2.5) con-
verge, respectively, to the optimum A* and the optimal filter u*, both globally at a linear rate.

2) The proposed iterative BG algorithm 6.2.1 looks similer to the primal-dual (PD) algo-
rithm [12] and the steepest-descent (SD) algowithm [75]. However, there are significant dif-

ferences.
(a) Comparison with the PD algorithm.

e The PD algorithm converges very slowly towards the optimum compared to the BG
algorithm. Although using a larger step-size can increase the speed of convergence

of the PD algorithm, this will result in a larger normalized error. In contrast, the
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BG algorithm possesses a much better transient response. Due to the preservation of
the feasibility at oll times {see Remark 4.4.1), the normalized error is substantially
reduced. Thus, a larger step-size can be chosen in the algorithm so as to increase the

speed of convergence without wiolating the dual constraints.

o The PD algorithm has difficulties in ensuring that the constraints are satisfied, even
when it appears to have converged after a relatively large number of iterations for
variable step-size. This is because the search directions in the PD algorithm are
discontinuous functions. As a result, the sequence of filters generated by the PD
algorithm converges (see [12]) only to within a neighborhood of the optimal filter. On
the other hand, the search directions in the BG algorithm are smooth functions and
equal to zero on the boundary. Therefore, as shown in Theorem 4.4.1, the sequence
of filters generated by the BG algorithm converges to the optimal filter for which the

constraints are setisfied.

(b) Comparison with the SD algorithm based on the constraint transcription and smoothing

techniques.

o In view of Theorem 4.4.1, we note that the sequences generated by the BG algorithm
converge globally and asymptotically to the optimal solution. However, the SD algo-
rithm reported in [75] does not possess such a property, as the smoothing parameter
15 embedded in the gradienis and Hessian matrices. To ensure differentiability of the
augmented cost function, the smoothing parameter is not allowed to be reduced to
zero. Thus, the sequence obtained from the SD algorithm converges only to within a

neighborhood of the optimal solution, leading only to a suboptimal solution.

o The BG algorithm is extensible to an adaptive algorithm in a stochastic environment.
More specifically, an adaplive algorithm based on the BG algorithm is developed in
Chapter 7 for solving the EC filtering problem in a noisy environment. However, it
does not appear possible to extend the SD algorithm to an adaeptive algorithm for a

stochastic setting.

6.2.2.2 Barrier-Newton Algorithm

Using the same transformation function as given in section 6.2.2.1 and following the steps given
in Section 4.5, we have the following BN algorithm for solving the discrete-time EC filtering

problem (2.3.5).
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Algorithm 6.2.2 Set k = 0. Let D{(a) = D(e) € RZV*2¥ Choose an initial point A% ¢ R2V,

a proper step-size hy, and the stopping criferion e,

1. Let d* = VP 1 (AFID(a)F()*) be a search direction where F(A*) and VF()*) are given
by

F(A*) = D(X)V(X*), VF(X*) = D(V(X*)) + D(A*)A
Caleulate the following iterative scheme
Ak-H' — Ak _ hkdk
in which the step-size hy is chosen such that

Vo' (M Nd* ! <0 and Mt > 0gy. (6.2.6)

2. Use A*+! to obtain u*T! and f5+! as follows:

ol = _%Ai/\k-i-l‘ FEEL = plyhthy,

If u*t1 satisfies the constraints AufT! < b and the stopping criterion ||d*Ti|s < ey is

satisfied, then terminate; otherwise return to Step I with k replaced by k + 1.

Remark 6.2.2 There erists o fized step-size hy = h such that the conditions in (6.2.6) are
satisfied for all k. Furthermore, we note from Remark 4.4.2 that for a specified oy = @,1 =
1,...,2N, the fized step-size h can be chosen depending on H()\') = aloy. In addition, if
the fized step-size satisfies 0 < h < 2/&, and the Jacobian matriz VF(X) satisfies a Lipschitz
condition in a neighborhood of \*, Theorem 4.4.2 ensures that the generated sequence of filters

{u* }o2, converges quadraticolly to the optimal filter u* if @ = e ~ 2.71828.

6.3 EC Filtering Problem with #2 Orthonormal Basis

In this section, the discrete-time EC filtering problem (2.3.16) with £2 orthonormal basis is
studied. The characterization of the optimal filter and the development of two new and simple
yet efficient iterative algorithms for solving the EC filtering problem are presented. Applications

using the discrete-time Laguerre networks are also given in this section.
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6.3.1 Characterization of Optimal Filter

Consider the EC filtering problem {2.3.16) with an approximate 2 orthonormal basis. The
characterization of the optimal filter u}, € £2 to the EC filtering problem (2.3.16) relies on the
Lagrangian duality theory and properties of a complete orthonormal basis of £2. We assume that
there is an x° € R™ such that A,x° < b, where A, and b, are, respectively, defined in (2.3.15).
Then, by applying the Lagrangian duality thecry to the primal EC filtering problem (2.3.16),

we obtain a dual minimization problem.

min  ¢(A) = LI ALAIE + byA

(6.3.7)
subject to A > Ogn
where A = [A1,...,Aan] € R2¥ is the Lagrange multiplier vector and x = [zg,...,2n_1] € R"
is the filter coefficient vector expressed in terms of A as:
1
x = —-AlA (6.3.8)

2

We note from Remark 2.3.1 that the convolution mairix A,Al is symmetric positive semi-
definite and hence the cost function ¢(A) is convex. To characterize the optimal filter »;, in
relation to the optimal Lagrange multipliers A}, = 1,...,2N, we begin with analyzing the filter
coefficient vector x. Substituting the signal matrix A, into (6.3.8) and combining with (2.3.10),
the (§ + 1)th component of the filter coefficient vector x is

1 N-1 1 N-=1
i = 3 3 0 (E) Akt — ANksr) = =2 Z Z‘pf(z s(k ~ )| k1 = Avtirn)
k=0 k 0 Li=0
N 1
= —= Z s(k — 1) (Ar+1 — ANtk ] 10!
k-ﬂ

MB L(~]s

The optimal ﬁlter u;, can, therefore, be expressed in terms of the optimal solution of the dual

EC filtering problem (6.3.7) as follows:

Un = T3 Z (Aks1 — Mgkl 1=0,1,.... (6.3.9)

We note from (6.3.9) that the optlma.l filter can be interpreted as consisting of a filter matched
to the input signal followed by an equalizer determined by the Lagrange multipliers A} 41 and
ANikyp E=0,... N -1

6.3.2 Iterative Algorithms

As in the previous section, we also develop two iterative algorithms based on the BG and BN

methods for solving the EC filtering problem (2.3.16).
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6.3.2.1 Barrier-Gradient Algorithm

Using the same quadratic component-wise space transformation function as given in the above
section, it follows from the steps used to obtain the scheme (6.2.3) and combining with (6.3.8)

that we have the BG algorithm for solving the EC filtering problem (2.3.186).

Algorithm 6.3.1 Set k = 0. Choose an initial point A" € U%E_N, a proper step-size by and a

stopping criferion ep.

1. Let F(AF) = D(A*)V@(AF) be o search direction where Vo(A*) = 1A, ALA% + b,

Calculate the following iterative scheme:
AML = AR LB F(AR) (6.3.10)
where the step-size hy is chosen such that

Vo' (AFTHF(AF) <0 and AR > 0y (6.3.11)

2. Use A1 to obtain x*T! and f*+' as follows:
1
xk-l-l = _EA;Ak+1, fk+1 — f(xk+1). (6312)

Ifx**1 satisfies the constraints in the primal EC filtering problem (2.3.16), and ||F(A*¥+)|2 <
€x 15 satisfied, then stop; otherwise return to Step 1 with k replaced by k+1.

In view of Theorem 4.4.1, we note that there exists a constant h* = %% such that if a fixed
step-size is chosen satisfying 0 < hy = h < h* for all &, then so are the conditions (6.3.11).
Furthermore, the sequences {A*}22, and {x*}32 ; generated by the schemes (6.3.10) and (6.3.12)
converge, respectively, to the optimal solutions A* and x*, both globally at a linear rate. Here

Nmaz 15 the largest eigenvalue of VF(A*) defined analogously to VF(A*).

6.3.2.2 Barrier-Newton Algorithm

Using the BN method as given in Section 4.5 and combining with (6.3.8), the following algorithm
is obtained to solve the EC filtering problem (2.3.16):

Algorithm 6.3.2 Set k = 0. Let D(a) = D(e) € R2V*2 (¢ ~ 2.71828). Choose an initial

point A° € R2N q proper step-size hy, and a stopping criterion €.

1. Let d* = VF Y(AF)D(a)F(A*) be a search direction where F(A*) and VF(A*) are, re-
spectively, defined as follows:

F(A") = D(AY)VH(A¥), VE(A%) = D(VG(A¥)) + -D(A*)A,AL,
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Figure 6.1: Implementation of an EC discrete-time Laguerre networks.
Calculate the following iterative scheme:
Ak+1 — Ak _ hkdk
in which the step-size hy 15 chosen such that

VH (A DAF T <0 and AT > 0oy, (6.3.13)

2. Use A**! to obtain x**1 and f¥t1 as follows:

1
xk-!—l — _EAJ[‘)AL'-{—].’ fk-H. — f(xk+l).

If x¥*1 satisfies the constraints in the EC filtering problem (2.3.16), and ||d**1l; < ey is
satisfied, then stop; otherwise return to Step 1 with k replaced by k+1.

We note by Theorem 4.4.2 that the sequences {A¥}22, and {x*}$%, generated by the above
algorithm converge quadratically to the optimal solutions A* and x*, respectively, if a fixed
step-size is chosen satisfying 0 < hp = h < 2/a for all k. We further note that the speed of
convergence can be significantly improved by adjusting the scaling parameter & and hence the

fixed step-size h to meet the conditions (6.3.13).

6.3.3 Application: Discrete-Time Laguerre Networks

Consider the Laguerre orthonormal basis functions in the Hilbert space £2. Let the jth order

discrete-time Laguerre function in Z-domain be given by

m(z~1_b)f ;

b
LJ(Z) 20:11"'1

1—bz"1 \1—pbz!
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where —1 < b < 1 is an adjustable pole. It is well known that the discrete-time Laguerre
sequence {C;’-(z)};";o forms an orthonormal basis in the Hardy space [52, 67]. Since the Hardy
space is isomorphic to the Hilbert space, the transfer function of the Laguerre networks is given

by
o o]
Ulz) = Z sr:j[.'.;’-(z).
nrd
The corresponding present value of the noiseless output response can be written as:

wk) = Y 6;(k)z;, k=0,1,...
=0

where 6;(k) = L2, L4(4)s(k —i). In the following, we consider only the nth partial sum
of Up. Then, ||Ua|3 = x’x and the discrete-time EC filtering problem with an approximate
Laguerre basis can be realized as shown in Figure 6.1, where s(k) and ¥, (k),k =0, ..., denote,
respectively, the present values of the input signal and output response. It is worth noting that

the FIR filter is a special case of the Laguerre filter with b = 0.

6.4 Numerical Results

To demonstrate the efficiency of the proposed BG and BN algorithms, two practical examples
involving pulse compression and channel equalization are solved in this section. For comparison,
the quadratic programming in the MATLAB optimization toolbox [27] is applied to each of these
problems. The optimal solution ugy,, and the corresponding Lagrange multiplier Agp (respectively,
Xgp and A7) are used as the benchmark in the design of the discrete-time EC optimum filter

using FIR model structure (respectively, the EC filtering with discrete-time Laguerre networks).

6.4.1 Test 1: Discrete-Time EC Optimum Filter

Two practical examples involving pulse compression Barker code signal and the digital trans-
mission channel equalization are presented. They are solved by using the BG algorithm 6.2.1

and the BN algorithm 6.2.2.

Pulse Compression

The first test example involves the rectangular pulse compression of a 13-bit Barker code signal

(m=13) as shown in Figure 6.2(a) and given by

s = {11111-1-111-11-11] e RY,
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The output mask is a mainlobe peak of 0.69+0.075 with sidelobe levels of +£0.025 in conjunction
with a filter with n = 27 samples. Correspondingly, the desired output response vector d and

the tolerance band vector € are given by

d=1{0,...,0,0.69,0,...,0 and e=[0.025,...,0.025,0.075,0.025...,0.025]".
LS ~— ’ L —

19 19 19 19

The output response is required to fit into the output mask while the noise power gain at the

. o . A |ug,—u*]s .
output response is to be minimized. The normalized error (NE) defined by NE = Huglu. ul 2"2 is
qp!

applied to measure the accuracy of an estimated filter u®.

The BG algorithm 6.2.1 was run with a fixed step-size A = 2.8, while the BN algo-
rithm 6.2.2 was run with three different step-sizes in conjunction with three different &, i.e,
(h=8.0x10"2,&a=10e),(h=9.0x10"1,& =0.1¢), and (h = 1.93,& = 0.05¢). The optimal
Lagrange multiplier vector, the optimal filter (restricted to n=27 samples), and the equalized
output response are shown, respectively, in Figures 6.2(b)-(d). It is clear from Figure 6.2(d)
that for both methods, the output response completely fits into the mask. To illustrate the con-
vergence results for the proposed BG and BN algorithms, we depict the results of jju® — ugyile,
AR — Agpllzs ||lw* — ¥ypll2, and NE with the convergence criterion €) = 1079, respectively, in
Figure 6.3 and Figure 6.4. Clearly, the normalized errors as shown in Figures 6..3(b) and 6.4(b)
have been substantially reduced to be close to zero. This means that these iterative algorithms
have a high accuracy for estimating the filter. Furthermore, by adjusting the scaling parameter
& in combination with the Jacobian matrix VF(A), the performance of the BN Algorithm as
shown in Figure 6.4 can be significantly improved compared to that of the BG algorithm as
shown in Figure 6.3. However, the BG algorithm can be made adaptive which is then suitable
for the stochastic noisy training case due to its simple structure. This is the subject matter of
Chapter 7. On the other hand, it does not appear possible to extend the BN algorithm to an

adaptive noisy training algorithm.

Channel Equalization

In this example, we concern with the equalization of a digital transmission channel consisting of
a coaxial cable operating at the DSX3 rate (5]. The design objective is to find an equalizing filter
which takes a sampled impulse response of a coaxial cable with a loss of 30dB at a normalized
frequency of 1/3 as input, where 3 is the baud interval, and produces an output which lies
within the envelope given by the DSX3 pulse template. Since the input signal is decayed to a
negligible level at t = 3243, it can be treated as a time limited signal over the interval [0, 324).

For this filter design problem, since the input signals are in a continuous-time setting and given
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in Section 5.4.2, the analog input signals are discretized and sampled in a period of g time unit
over the interval {0, 324].

In this example, the fixed step-size for the BG algorithm is given by A = 0.5. Similar to
the testing procedures in the pulse compression example, the BN algorithm was separately
run with three different step-sizes in conjunction with three different scaling parameters &,
(h=0.12,& =€), (h=1.3,a8 =0.1e), and (h = 2.85,& = 0.05¢). It is clear from Figure 6.5
that the optimal output response completely fits into the prescribed output envelope constraints.
Figure 6.6 and Figure 6.7 have shown, respectively, the convergence results obtained by using
the BG and the BN algorithms with the convergence criterion ey = 1075, In particular, we
demonstrate that without viclating the dual constraints, a bigger fixed step-size A in combina-
tion with a small scaling parameter & could made a significant improvement on the speed of

convergence.

6.4.2 Test 2: EC Filter with Discrete-Time Laguerre Networks

In this test example, the proposed BG algorithm 6.3.1 and the BN algorithm 6.3.2 are used to
design an equalization filter using Laguerre networks for a digital transmission channel consisting
of a coaxial cable on which data is transmitted. The accuracy of the estimated filter coefficient
vector x is measured by NE defined by NE = H—xﬁ}ﬁ#

The number of taps in our simulation studies is n = 16 Laguerre coefficients in combination
with a fixed pole b = 0.4 and the discretized input signal which is sampled every % time unit
on the interval [0,323]. We choose a fixed step-size A = 0.5 for the BG algorithm 6.3.1. For
the BN algorithm 6.3.2, we use, as in the previous example, three different fixed step-sizes in
conjunction with three different scaling parameters &, i.e, (h =0.12,& = ¢), (h = 1.3,& = 0.1e)
and (h =2.9,& = 0.05e). The noiseless optimal output response obtained by either the BG
algorithm or the BN algorithm completely fits into the output envelope in a finite number
of iterations and is shown in Figure 6.8. The convergence results depicted in Figure 6.9 and
Figure 6.10 are obtained with the convergence criterion €4 < 1075,

We note that Test 1 and Test 2 presented in this section have clearly demonstrated that the

proposed BG and BN algorithms are efficient for solving the discrete-time EC filtering problems.
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Figure 6.2: Sidelobe reduction problem for 13-bit barker-code signal (a): Original 13-bit barker-
code signal s. (b): Optimal Lagrange multiplier vector A*. (¢): Optimal filter u*. (d): Optimal

output response t* and output mask (dash line).
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Figure 6.5: Input signal and output response with sampling period % for the optimal FIR EC
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Figure 6.6: The convergence results for the barrier-gradient algorithm using FIR EC filter.
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Chapter 7

Adaptive Implementation for

Discrete-Time EC Filtering Problem

7.1 Introduction

For an adaptive (on-line) version of the EC filtering problem, the signal s is the input to the
adaptive filter u. Typically, s results from passing periodically a known test or training signal
sT at a predetermined time through a channel that may be time-varying or unknown. The
output response t is checked against the required mask as shown in Figure 7.1.

The adjustable filter u in Figure 7.1 is an equalizing filter to combat the distortion introduced
by the unknown channel. The result of the comparison between the output response 1 and the
constraint boundaries et and €~ is then processed in some way and fed back to adjust the filter
u. This process is repeated until the filter is sufficiently well trained and hence is ready to
process data. Additional test pulses are then inserted in the data stream at regular intervals so
that the filter can continue to adjust itself and track any change in the channel through which
it passes. Ideally, the equalization filter would be obtained adaptively.

The motivation for considering this type of adaptive structure is very strong as discussed by
Widrow, Haykin, and others (26, 29, 69]. It is important to note that, although the structures
are similar, the adaptive EC filter differs in a fundamental way from all other adaptive filters.
The distinctive feature is the set of inequality constraints on the cutput waveform: rather than
attempt to match a specific desired pulse shape, we deal with a whole set of allowable outputs
and seek an optimal point of that set.

The EC filters posted in the 1970°s [12, 13] soon led to attempt to analyze its convergence

behavior in noisy and noise-free environments. Combining the primal-dual (PD) algorithm [22]
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Figure 7.1: Feedback adaptive structure.

with the Goldstein-Levitin-Poljak gradient projection method [23]|, a number of results have
been obtained in both the deterministic and the stochastic settings. However, the convergence
properties of the iterative PD algorithm are rather slow and poor. For the case of a fixed step-
size, since the search directions in the PD algorithm are discontinuous, the sequence of filters
generated by the iterative noise-free algorithm (respectively, the adaptive algorithm) converges
only to within a neighborhood of the noiseless optimal filter.

In [75], the constraint transcription and smoothing techniques [28] are used to convert the EC
filtering problem into an unconstrained optimization problem involving a penalty parameter and
a smoothing parameter. The summation of all the obtained approximate constraints is appended
to the cost function as a penalty function. Recursive procedures are thus developed to solve
the EC filtering problem leading to iterative design algorithms suitable for applications with
large signal-to-noise ratios. However, The extension to an adaptive algorithm for a stochastic
environment does not appear possible.

In this chapter, we develop an adaptive training algorithm based on the iterative BG al-
gorithm proposed in Section 6.2 for dealing with the EC filtering problem in a stochastic en-
vironment. The convergence properties of the adaptive algorithm are established in the mean

sense, and in the mean square sense for a fixed step-size. Moreover, the adaptive algorithm
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- converges in mean square sense and with probability one when a sequence of decreasing step-
sizes is used. The results in this chapter are analogous to those obtained by using the adaptive
PD algorithm [12, 13] for solving the EC filtering problem in stochastic setting. Furthermore,
these results are analogous to Widrow’s work on adaptive least mean square {LMS) filters, but
in the context of a constrained pulise shaping.

This chapter is organized as follows: Consider the case in which the input signal is corrupted
by additive random noise. Then, by the iterative BG algorithm developed in Section 6.2,
an adaptive algorithm is developed in Section 7.2 for solving the discrete-time EC filtering
problem (2.3.5} in a stochastic setting. The convergence properties in mean sense and in mean
square sense are established in Section 7.3 for the adaptive algorithm with a fixed step-size in
Theorem 7.3.1 and Theorem 7.3.2, respectively. For a sequence of decreasing step-sizes, the
convergence properties in mean square sense and with probability one (w.p.1) are obtained
in Theorem 7.3.3.

In Section 7.4, the structure and convergence properties of the adaptive BG filter are com-
pared with those of the adaptive PD filter given in [12, 13], and with those of the adaptive LMS
filter given in [9, 68, 69]. In Section 7.3, some numerical results involving pulse compression
and channel equalization are given to illustrate the convergence in mean sense and in mean
square sense through solving the EC filtering problem (2.3.5) in a noisy environment. In par-
ticular, the approximate mean of the adaptive EC filter and the corresponding approximate
mean filter output are compared with those obtained by the off-line optimal EC filter and the
corresponding optimal output response. For testing the convergence properties in mean square
sense, many simulations have been carried out using different fixed step-sizes. We observed that
when the adaptive algorithm approaches steady state, a smaller fixed step-size gives rise to a
smaller magnitude of mean square error.

The main references of this chapter are [60, 63, 64].

7.2 Adaptive Structures

Consider the iterative BG algorithm 6.2.1. There are basically three approaches [12] of interest
when noise is present:

1) The input signal-to-noise ratio (SNR) is high enough so that the effects of the noise can be
ignored;

2) Before processing adaptive iterations, many noise test pulses are averaged, stored and used

repeatedly in the iteration process;
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3) The noisy inputs are used directly in the adaptive algorithm.

Approach 1 can be considered as a noise-free case (i.e., the input signal s used for updating
the filter is not corrupted by noise). Thus, the iterative BG scheme obtained in Chapter 6 is
directly applicable.

For the noisy case, the input signal s is contaminated by additive input noise n. This noise
has the effect of distorting the input signal so that the signal matrix S defined by (2.3.1) and the
filter output response ¥ = Su are noisy. As a result, the search direction F(A) determined in
the iterative Algorithm 6.2.1 is corrupted. This leads to the use of an adaptive processor stated
in Approach 2 and Approach 3. More specifically, Approach 2 is to average enough noisy input
signals so that a good estimate of input signal s is obtained. The averaged signal is then stored
and used repeatedly in the training process. Since the input signal has become deterministic,
the training process can be analyzed as in Section 4.4 with the same convergence properties
given in Thecrem 4.4.1.

A possible hardware structure for implementing Approach 2 using the adaptive BG algo-
rithm is indicated schematically as shown in Figure 7.2. The hardware requirements for the
adaptive EC filter are relatively modest. A tapped delay line realizes the filter itself, and three
other delay lines store the Lagrange multipliers and the constraint boundaries. The calculation
of the new filter u**! requires n multipliers and n accumulators.

The operation of the hardware structure is synchronous, starting when the first component
s1 of the input sequence enters the tapped delay line. For each component s;,i = 1,...,m,
enters ¥, d;, and ¢; are all added together to determine the descent search direction —F(\¥)
following by feeding back the A¥. The input is also correlated with —3\¥. After the entire signal
has traversed the tapped delay line, the correlator contains the new filter uf+! = —1A’)*+1 to
form the new output response ¥*t! = Su**! and then fed back the error between the output,

and the upper and lower boundaries where the feed back output is formed by

¢k+1 S
M

1
= —-AAN*T and A S
_¢k+1 2
In Approach 3, each iterate uses the noisy search direction F()). Thus, the adaptive filters

are determined in accordance with the changing statistics of the input signals to be filtered. It
is, therefore, more practical than Approach 2. This is the main subject matter of this chapter.
We assume that the noisy input signal at the kth iteration is

§k !

=s+n"=[s1,...,9m] +[nf,... .05

k

where n® is a vector of zero-mean and white noise samples with variance o?. Then, the noisy
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output signal at the kth iteration is

a

W 2 (S + NF)G* = yF 4 ¢F

where N¥ is a N x n matrix of noise sample defined by

k .
k
i1
k : ..
Nk — nj+m . ' 0
- ]
k P
0 nj+m nj—l-—l
k
| O e 0omin
while (nf., ... n* are the last m notse samples. The adaptive training version is thus given
i+1 Y g p P £

by

F(A¥) = D(A*)[L(A + N*)(A + N*¥)3* +b]
ML = 3R RF()
aFl = ——%(A + Nk)lik-kl’ k=0,1,... (7.2.4)

where N¥ = [N¥ —N¥] € R**2¥_ Since both #i*! and A**! depend on (A + N*), a bias is
introduced in the filter update equation (7.2.4). This difficulty is well-known in adaptive least
mean square filter design 24, 46]. To eliminate the bias, one method known as the dual test
pulse method was introduced in {12, 13]. It was achieved by using two noisy input signals per
iteration. The first noisy input signal is used to update the noisy Lagrange multiplier vector
A¥+1 while the second one is cross correlated with this updated A¥+! to simultaneously update

the noisy filter G**+!. The corresponding adaptive training scheme is as follows:
F(X*) = D(XM)Vg(3¥)
AL = Xk F(OF) (7.2.5)

Gkt — _%(A+l'\']-l2c)f;k+lj k=0,1,...

where Vo(A¥) = 1(A + N¥)(A + N5YX* 1+ b, while (A + N¥) is the signal convolution matrix
obtained from the first noisy input signal and (A + I:T’rj) is from the second noisy input signal.

Provided N¥% is uncorrelated with N%, no bias is introduced.

Algorithm 7.2.1 Set k£ = 0. Choose an initial point \° € §R§_N , two stopping criteria € and

Ex, and a proper step-size hy.
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1. Let F()F) = D(A*)V$(AF) be a search direction where

2

Vo (AF) %(A + NF)(A + NEYA: - b,

Cualeulnte the following scheme
AL = 3 PO (7.2.6)
tn which the step-size hyr is chosen such that

V& AHPOMY) <0 and 3 > 09y

2. Use NFTL to obtain 2% as follows:
&t = -%(A + NEY AR+, (7.2.7)

If either |[F(A** )| < &) or k > e, then terminate; otherwise return to Step 1 with &

replaced by k + 1.

7.3 Convergence Results

In this section, the convergence of the adaptive EC filter using the adaptive BG scheme (7.2.5)
are established in mean sense and in mean square sense to the noiseless optimum'ﬁlter u* when
the step-size is fixed. For a sequence of decreasing step-sizes {hx};—,, the adaptive scheme
converges in mean square sense and with probability one to the noiseless optimum filter. To
analyze the adaptive BG scheme (7.2.5), the following assumptions are made on the sequence

of input noises.

Assumption 7.3.1

1) For each k =0,1,..., the components nf of the noise vector n* satisfy
Enf]=0 and var(nf) =52, Wi,

where E:] denotes the mathematical ezpectation.

2) For each k = 0,1,..., the noise matrices ﬁ"f and ﬁ’z‘ are of mean zero and uncorrelated with
one another. This is clearly the case for white noise and in practice is true if the noise samples
are sufficiently spaced in time.

3) The sample noise matriz N¥ (respectively, N¥) is statistically independent of all previous

sample matrices (NI, =0,1,...,k — 1} (respectively, {I:Ig,j =0,1,...,k—1}).
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Theorem T7.3.1 Consider a sequence {;\k}z":O generated by the adaptive training scheme (7.2.6).
Let & 2 3 — )* where A® denotes the noiseless optimal solution of the dual problem (6.2.2).
If € is such that E[||€®||3] is in an appropriate neighborhood of the origin and the step-size hy
1s chosen such that 0 < h = hp < "Jm% for all & where Nmax is the largest eigenvalues of the
posttive definite Jacobian matriz VF(A*) defined by (4.4.13), then the sequence {ik}z":o and the
corresponding sequence {01*}3°, generated by schemes (7.2.6) and (7.2.7) converge, respectively,

to the optimal solution X* and the optimal filter u*, in the sense that

lim || B[} = O
k—oo
Jim B[] - w3 = o.
Proof: See Appendix D.1. 1

Remark 7.3.1 In the numerical study, it is important to ensure that the adaptive Lagrange
multiplier vector A¥, after processing k iterations, is in a small neighborhood of the optimum
Lagrange multiplier vector A*. We then start to collect and average certain samples of filters as

an approzimate mean filter.

Theorem 7.3.2 Let conditions in Theorem 7.3.1 be satisfied and let {A*}$2, be a sequence
generated by the adeptive training scheme (7.2.6). Assume that there exists a constant £ such
that Ef||e*||3] < ¢(E(||e*|13)%. If the step-size hy is fixed at 0 < hy = h < nﬁ: for all k, then
the resulting sequences {A*}22, and {0¥}%, enter and remain, respectively, in a neighborhood

of the optimum A* and the optimal filter u*, in the sense that
Tm Bfle*lf] < V(h)
—_r— ~ kY * 1
T BB - o] < 1AV
o0

where 1im denotes the limit superior, E{ii¥|\*] indicates the conditional ezpectation of i* given
A, and the h-neighborhood V(h) satisfies V{h) =0 as h = 0.

Proof: See Appendix D.2. u

Remark 7.3.2

1) In Theorem 7.3.2, we assume the fourth moments to simplify the results, i.e,

Elle*l3] < el 13).

In the white noise case, the fourth moments naturally emerge since the calculation is based on

variance. Therefore, in that sense, it seems unlikely that a much better result can be obtained.
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2) The proof of Theorem 7.5.2 also shows that V(R)Z230, for 0 < hy = h < nm% where
o = y/var{n).
The next theorem is concerned with using a sequence of decreasing step-sizes in the adaptive

noisy training algorithm 7.2.1.

Theorem 7.3.3 Let conditions in Theorem 7.3.1 be satisfied and let {5\"}2"20 be a sequence gen-
erated by the adaptive training scheme (7.2.6). Suppose that the sequence of step-sizes {he}reg

satisfies
he >0, k=0,1,..., (7.3.8)

Y hp=o00, Y hi<oo. (7.3.9)
k=0 k=0

Then, the resulting sequence {5\"}2":0 and the corresponding sequence {4*}$2 ) converge, respec-
tively, to the optimum Laegrange multiplier vector A* and the optimal filter u*, both in the mean

square sense and with probability one, i.¢e,
lim E{X* ~x*|5] =0, lim E[E[G*A] -3 =0, (ms)
k—roo k—oo
Prob{ lim ||A¥ — Ao = 0} =1, Prob{ lim ||E[G*)A*) —u’]fs = O} =1, (wp.1)
ko0 k—oo

Proof: See Appendiz D.35. _ |

Remark 7.3.3

1) The sequence of step-sizes {hx }32 satisfying conditions (7.3.8)-(7.3.9) ensures that {hi}ie,
is a sequence of decreasing step-sizes, i.e, hy =50,

2) In view of Theorem 7.3.3, the adaptive training algorithm using a sequence of decreasing step-
sizes converges to the noiseless optimum filter on a fired mean-square-error (MSE) surface. We
note that the MSE is a quadratic function of the tap-weights forming a hyperparaboloid surface
with a uniquely defined bottom or minimum point. However, it is not practical to apply variable
step-sizes in the adaptive training algorithm because the MSE surface changes constantly with
time. Furthermore, as the step-size approaches zero, the adaptive algorithm tends to cease to
move. Thus, as a result of the changing MSE surface, the learning procedure of the adaptive
algorithm is force to stop. Therefore, we never get close to the noiseless optimum filter (i.e, the

minamum point of the MSE surface).

7.4 Comparison with Adaptive LMS and PD Algorithms

It is important to compare the structure and convergence properties of the adaptive BG filter

presented here with those of the adaptive PD filter given in [12, 13], and with those of the
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adaptive LMS filter presented in [9, 68, 69]. In what follows, we briefly address the key results
associated with the PD and the LMS structures.

7.4.1 PD Algorithm

The iterative PD algorithm is used to find the optimum EC filter u* by solving the discrete-time
EC filtering problem (2.3.2). This algorithm consists of the following procedures:

1) Converting the primal problem into an unconstrained dual problem;

2) Solving the unconstrained dual problem using the directional differential of the cost function
leading to a non-differentiable search direction I(A).

An iterative algorithm was thus developed as follows:

AL = AR LR IR (7.4.10)
uftl = —%S’A"“ (7.4.11)

where hy is the step-size and I(AF) = ¢* — d + f(e,%*, A¥) is a generalized direction of the

steepest ascent based on the directional differential, while the ith component of (e, ¥*, A¥) is

—€;, ifA;>0,0orif A; =0 and v; > ¢
file, w5, XF) = €, ifA<0 orif=0andv;<e¢
0, HM=D0Dande <o <e.

Let e* = A\F — \* denote the error vector where A* is the optimal solution of the dual problem.

From (7.4.10)-(7.4.11), it follows that for variable decreasing step-sizes, we have
le¥+H 5 = lle®l3 + 2k (1%, ) + AT

Thus, the noise-free training algorithm converges to the optimal filter u* if the sequence of
step-sizes {hy},_, satisfies conditions (7.3.9)-(7.3.8). Furthermore, if the step-size is fixed at
0< hy=h< ”—52”3 for all &, where ||S||2 is the spectral norm of the matrix S, then the noise-free
training algorithm converges to a neighborhood of the optimal filter. A possible structure of
the PD algorithm is depicted in Figure 7.3. We note that the functions of tapped delay line
for generating the output response, correlator for generating a new tap weight, and three other
delay lines for storing the Lagrange multipliers, and the constraint boundaries are the same as
those given in Figure 7.2.

If the input signal s € R™ is corrupted by an additive white noise samples with mean zero
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and variance o2, then the adaptive algorithm with noisy training pulses is given by
I = (S + NFYik — d + f(e, g%, AF)
Mkl = 3F 4 R I(AR) (7.4.12)

Gftt = —1(S 4 MEY AR

where N* and M* are two uncorrelated matrices of noise sample. For a fixed step-size 0 <

hi =h < Fsgﬁg’ it can be shown [12, 13] that
E%”E[ﬁk —u'lif < W(h)

TmE{|EL*A*] - u'l}] < Va(h)
k—0

where limy_,o Vi(h) = 0, for ¢ = 1,2. Furthermore, if the sequence of step-sizes {ht}5o, satisfies
conditions (7.3.8)-(7.3.9), then the adaptive PD algorithm (7.4.12) converges in the mean square

sense and with probability one (w.p.1) to A*, i.e,
. 3E a2 =
Jim B[R - X3 = 0, (ms)

Prob{ lim [|A* — A*||; = 0} = 1, (w.p.l).
k—oo
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7.4.2 LMS Algorithm

The iterative LMS algorithm is used to find a filier u € R" whose output approximates a desired
output d € R¥ by solving the following unconstrained minimization problem in a least square

EITOr sense:
min |Su—d|3, ue®". (7.4.13)
The optimal (Wiener) solution is given by
u = (8'Ss)"ls'd. (7.4.14)

For the fixed step-size A, a steepest-descent-based algorithm can be used to search for the

Wiener solution (7.4.14) as follows:

ut ! = uf —hgf = u* - 288/ (9F — d)

(I - 2AS'S)u* +2n8'd (7.4.15)

where gk = 28/(¢* — d) represents a gradient vector of the cost function with respect to
the filter u. Clearly, the procedure of the adaptive algorithm for solving the least square
problem (7.4.13) simply consists of the difference between the output response and the desired
shape d. Therefore, the LMS algorithm can be implemented adaptively by employing the
structure as shown in Figure 7.4.

Combining the optimal solution (7.4.14) with (7.4.15), we obtain

u*l—u* = (I-AS'S)u* —u*).

Thus, for a fixed step-size satisfying 0 < h < n—ﬂfa—m where 7maz is the largest eigenvalues of
matrix $'S, the noise-free training scheme (7.4.15) converges to the noiseless optimal LMS
filter u*.

For the noisy case whose input signal is contaminated by additive mean zero stationary
white noise with variance 02, the adaptive training scheme, which is obtained by extending the
noise-free training scheme (7.4.15) for solving the LMS problem to a stochastic environment, is

given by
G = [I- 2A(S + N¥)'(S + N*)}li* + 2h(S + N*Yd. (7.4.16)

where N* is a matrix of noise samples consisting of m input noise sample shifted N times.
For the convergence in mean sense, similar to the noiseless lease square problem (7.4.13),

we minimize the expected value of square norm error between the noisy output and the desired
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output as follows:
min E[}(S+N)u—dj3, aeRr" (7.4.17)
G :
Clearly, the solution of the above unconstrained minimization is given by
@ = (oI+8'S)7lg'd. (7.4.18)

Associated (7.4.16) with the optimum solution (7.4.18) of the least mean square problem (7.4.17),

we have

IE[E* — 8"l < (|X— h(c®L + §'S)||2|| E[@* — a*].

Thus, for a fixed step-size satisfying 0 < A < n:rz— where %yq; is the largest eigenvalue of

the matrix (oI + §'S), E[i*] converges to the noiseless sub-optimal LMS filter ii*. We note
that as compared with the Wiener solution (noiseless optimum filter) given by (7.4.14), 0* is a
sub-optimum LMS filter. Moreover, it was shown in [24] that the variance about this noiseless

sub-optimal filter is bounded, i.e,
lim B[ —a*f] < V(h),
k—roo

where V(h) - 0 as h = 0.
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Finally, if the sequence of decreasing step-sizes {hy};=, satisfies conditions (7.3.8)-(7.3.9),
then the adaptive LMS algorithm converges in mean square sense and with probability one to
the noiseless sub-optimum filter 4*.

A comparison among the adaptive barrier-gradient (BG) filter, the adaptive primal-dual

(PD) filter, and the adaptive least mean square (LMS) filter is summarized as follows:

Structure

LMS: Feed back the error between the output and the desired output.

PD: Feed back the error between the output and the upper boundary when AF >0, the output
and the lower boundary when Af < 0, and the constraint violation, either upper or lower

boundary when Af = 0.

BG: Feed back the error between the output and the constraint boundaries.

Convergence without Noise

LMS: Converges linearly to the optimal filter for a small fixed step-size.

PD: Converges linearly to within a neighborhood of the optimal filter for a small fixed step-
size and converges to the optimal filter exactly for variable step-sizes satisfying condi-

tions (7.3.9)-(7.3.8).

BG: Converges linearly to the optimal filter for a fixed step-size.

Convergence with Noise

LMS: Mean converges linearly to a noiseless sub-optimum filter for a small fixed step-size. The
mean square error about this sub-optimal filter is bounded and step-size-dependent. For
variable decreasing step-sizes, the adaptive algorithm converges in mean square sense and

with probability one to the suboptimal filter.

PD: For a small fixed step-size, the mean converges linearly to within a neighborhood of the
noiseless optimum filter. The mean square error is bounded and step-size-dependent. For
variable decreasing step-sizes, the adaptive algorithm converges in mean square sense and

with probability one to the optimal filter.

BG: Mean converges linearly to the noiseless optimal filter with a small fixed step-size. The

mean square error about the optimal filter is bounded and step-size-dependent. For vari-
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able decreasing step-sizes, the adaptive algorithm converges in mean square sense and

with probability one to the optimal filter.

7.5 Numerical Results

In this section, two practical examples involving pulse compression 13-bit Barker code input
signal and digital transmission channel equalization operating at the DSX3 rate are solved by
the adaptive EC filtering problem in a noisy environment. It is assumed that a test signal
is sent periodically by the transmitter and the response is obtained as shown in Figure 7.1.
There are guard samples between the test signal and the normal signal so that the responses
of the filter to the test signal are the only samples. When the distorted test signal (filter
input, Figure 7.1) is received, the coefficient update algorithm is executed for the noise-free
case discussed in Chapter 6. For the noisy case, however, the channel output (filter input,
Figure 7.1) is corrupted by a stationary zero-mean and unity variance white Gaussian noise

with input signal-to-noise ratio (SNR) defined by

: 2
SNR 2 10logy [(_Pe_aﬁzggai)_] _

noise variance

Adaptive training algorithm is then applied to examine the noisy case.

7.5.1 Pulse Compression

For the rectangular pulse compression example, the adaptive noisy training BG algorithm 7.2.1
is applied to solve the discrete-time EC filtering problem with an approximate 12dB input
signal-to-noise ratio. The noiseless input signal is a 13-bit Barker code signal and the cutput
mask is a mainlobe peak of 0.69+0.075 with sidelobe levels of +0.025 and the order of the filter
is fixed at n = 27. In the following two tests, we wish to verify the convergence results presented

in Theorem 7.3.1 and Theorem 7.3.2 for the adaptive BG algorithm 7.2.1 in mean sense and

*

in mean square sense. The noiseless optimal solution Uy,

and the corresponding Lagrange
multiplier vector A7, are obtained by the quadratic programming in the Matlab optimization

toolbox and are used as the benchmark for both tests.

7.5.1.1 Test 1: Convergence in Mean

For the first test, the adaptive training algorithm 7.2.1 is implemented to verify the convergence
in mean sense. To compare the performance, the iterative BG algorithm 6.2.1 is applied to the

same off-line problem depicted in Figure 7.5(a) as the scheme (a). We first implement the
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Figure 7.5: An EC filter diagram for implementing the noise case.

adaptive algorithm depicted in Figure 7.5(b) as the scheme (b). The adaptive scheme (b) was
run with a fixed step-size h = 0.085. After 2488 iterations, we start to collect and average extra
samples of filters as the successive approximate mean filters &* for & = 23,25 27, and 2°. These
results are depicted in Figures 7.6(a)-(d). These approximate mean filters are compared with
the noiseless optimal filter uy,. We also show the corresponding approximate mean filter outputs
Jk for £ = 23,25,27, and 2° in Figure 7.7(a)-(d). Clearly, the approximate mean filters and
their corresponding approximate mean filter outputs are getting closer to the noiseless optimal
filter and its output response, respectively. These numerical results are given in Table 7.1. They

are consistent with Theorem 7.3.1.

Mean Convergence for Pulse Compression Example, n = 27

Noise Sample No. k 8 32 128 512 1024
Scheme(a) | [[u* —u |13 || 3.55x10~% | 1.41x107% | 1.78x10~* | 6.99x10~% | 2.61x10~5
h=2.0 9% — w3l | 2.04x107" | 1.32x107! | 4.61x1072 | 2.91x107% | 1.82x 1072
Scheme(b) | |[&* - uplly || 7.77x1073 | 1.85x10~3 | 3.62x10~% | 1.50x107¢ | 6.57x107"
h=8.5x10"2 ||IfE — Wphta 1| 3.01x1071 | 1.49x107" | 6.85 x 1072 | 4.24x 1072 | 2.91x 102
Scheme(a) | [lu® — ulj3 | 4.83x1073 | 1.83x107% | 3.62x10™* | 3.10x10~* | 2.76x10~*
h=8.13x107% | |l9p* — ¥ ll2 || 2.40x1071 | 1.49x107! | 7.73x 102 | 7.10x1072 | 6.84x 1072

Table 7.1: Filter and Filter Output for Scheme {a) and Scheme (b).

For comparison, the off-line scheme (a) was simulated with a fixed step-size & = 2.0 where
the same numbers of noisy input signal samples used for generating the approximate mean
filters and their corresponding approximate mean output responses are collected and averaged.
With these averaged noisy signal samples, the iterative BG algorithm 6.2.1 is used to obtain

the optimal filter, denoted by u*, and the corresponding output response, denoted by ©*. They
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are then compared with the noiseless optimum filter and the corresponding output response.

These results are also given in Table 7.1.

Remark 7.5.1 From Table 7.1, we observe that

1) The performance of the scheme (a} is similar to that of the scheme (b). However, the adaptive
notsy training scheme (b) is more practical than the noise-free training scheme (a), as the filters
are determined in accordance with the changing statistics of the signals to be filtered.

2) If the step-size is reduced to h = 8.13 x 1073 in the scheme (a), we obtain the results similar

to those obtained by the scheme (b) for cases where the number of input noise samples is k = 32

and k = 128,

7.5.1.2 Test 2: Convergence in Mean Square

The adaptive EC filter with a fixed step-size is applied to this test for verifying the convergence
in mean square sense about A* to within an upper bound.

To compare the results obtained with different fixed step-sizes, the adaptive training BG
algorithm 7.2.1 was run separately with three different fixed step-sizes A = 0.1,A = 0.06,
and h = 0.02. After 500 iterations, we start to collect samples of square error, ||e*||3,k =
0,1,..., for each specified fixed step-size mentioned above. These samples are stored as a
sequence of square errors until the filter is sufficiently well trained, i.e, at the steady state.
For a specified fixed step-size, many sequences of square errors are collected and averaged to
achieve the sequence of approximate mean square errors, i.e, {ﬂéﬂ'@} This process is repeated
for the three different fixed step-sizes and their corresponding sequences of approximate mean
square érrors are depicted in Figure 7.8 and Table 7.2. In view of Figure 7.8, we see that the
approximate MSE curve (i.e, the sequence of approximate mean square errors) with the smallest
fixed step-size approaches steady state more slowly compared with the other two approximate
MSE curves with two larger fixed step-sizes. However, as shown in Figure 7.8 and in Table 7.2,
the approximate MSE magnitude for the smallest step-size at the steady state is the smallest.
Furthermore, a smaller step-size corresponds to a smoother convergence path.

These results shown in Figure 7.8 and Table 7.2 are consistent with Theorem 7.3.2. Note

that the MSE value approaches to zero as the fixed step-size tends to zero.

7.5.2 Channel Equalization

In this test example, the proposed adaptive BG algorithm is applied to design equalization

of a digital transmission channel consisting of a coaxial cable on which data is operating at
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MSE Pulse Compression, n = 27, Iteration No. k = 3.0 x 10*

Step Size | A=1.0x 107! | A=6.0x10"2 | h=2.0 x 10™2
lle*i3 6.94 x 107° 5.50 x 1073 3.22 x 107°

Table 7.2: Approximate Mean Square Errors for Pulse Compression Example at the Steady
State.

the DSX3 rate. The discrete-time EC filtering problem is solved with an approximate 26dB
input SNR. For this filter design problem, the order of the filter is fixed at n = 16, and the
input signal is sampled every g time unit over the interval [0, 323] where 5 is the baud interval
(22.35 x 107 %s).

7.5.2.1 Test 1: Convergence in Mean

The test of convergence in mean sense is concerned with the same testing procedure as in the
pulse compression example. The adaptive scheme (b) in Figure 7.5 is compared with the same
problem as in the off-line scheme (a).

The adaptive scheme (b) was run with a fixed step-size & = 1.2 x 10~% while the off-line
scheme (a) was run with a fixed step-size h = 3.0x1072. Following the process of the scheme (b),
after 4488 runs of the adaptive noisy training algorithm we start to collect and average samples of
filters as the successive approximate mean filter @* for k = 22,25, 27, and 2°. The corresponding
approximate mean output responses ; are also obtained for & = 22,2327, and 2° samples.
These approximate mean filters and mean output responses are depicted in Figure 7.9 and
Figure 7.10. Table 7.3(b) shows the obtained results of the square norm difference between the
noiseless optimum filter u;, and each approximate mean filter (respectively, the norm difference
between the noiseless filter output 7, and each approximate mean filter output).

Regarding the process in the off-line scheme (a), the same number of noisy input signal
samples as those used for generating the approximate mean filters and their corresponding mean
output responses are stored and averaged so that a good estimated input signal is obtained for
individual number of noisy input signal samples. The noise-free training algorithm 6.2.1 is then
applied to generate the filters and its corresponding output responses. The obtained filters and
their corresponding output responses are compared with the noiseless optimum filter and the

corresponding filter output. (See Table 7.3(a)} for details).
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Mean Convergence for Channel Equalization Example, n = 16
Noise Sample No. k 8 32 128 512 1024
Scheme(a) | [lu* —ug, 3 || 7.7688 | 7.40x107! | 1.93x1072 | 9.52x107% | 2.46x1073
h=3.0x107% | [|9F — 7/l || 1.0837 | 4.36x107! 1.15%107% | 3.46x1072 | 2.55x 1072
Scheme(b) | [[&* — ul,ll3 || 10.3580 | 9.12x107! | 5.02x1072 | 1.85x1072 | 7.79x 1073
h=1.2x10"3 HEk —ooll2 || 3.0188 | 8.49x1071 | 6.85 x 1071 | 7.24x107? | 5.91x107?

Table 7.3: Filter and Filter QOutput for Scheme (a) and Scheme (b).

Test 2: Convergence in Mean Square

To test the convergence in mean square sense, the adaptive BG algorithm was separately run

with three different fixed step-sizes h = 1.0 x 1073, A = 5.0 x 10~%, and A = 1.0 x 10~%.

Following the same procedure for obtaining the value of approximate mean square error in

the pulse compression example, we obtained three approximate MSE curves corresponding to

the three different fixed step-sizes. Each curve represents a sequence of values of approximate

mean square errors, i.e, { ||e¥||3 . These results are depicted in Figure 7.11 and Table 7.4. From
2 g

Figure 7.11, it clearly shows that although the sequence of approximate MSE values with the

smallest step-size approaches steady state slower than the other two with larger step-sizes, the

magnitude of the approximate MSE at the steady state is smaller than the other two. This is

also verified by the results shown in Table 7.4. Furthermore, a smaller step-size also ensures a

smoother convergence path.

MSE Channel Equalization, n = 186, Iteration No. £ = 5.0 x 104

Step Size

h=10x10"3

h=5.0x10"¢

h=10x10"*

lle*13

8.03 x 1073

3.61x 103

2.23 x 1073

Table 7.4: Approximate Mean Square Errors for Channel Equalization Example at the Steady

State.
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Figure 7.6: Pulse compression example. Solid line: optimal filter ug,,. Dash-dot line: approx-
imate mean filters G* about (a): k = 23 samples. (b): k = 2° samples. (c): k = 27 samples.

(d): & = 2° samples.
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Figure 7.7: Pulse compression example. Solid line: optimal output response 1,. Dash-dot line:
approximate mean output responses qﬁ about (a): k = 23 samples. (b): k = 2% samples. (c):

k = 27 samples. (d): k = 2° samples.

97



Mean Square Error E|je"|9

=

h=01 . h=006 @ h=002

Magnitude of Approximate MSE

5

10 i i i i |
0 0.5 1 15 2 25
Iteration Number (k) % 10°

Figure 7.8: Mean square convergence results for pulse compression example using three different

fixed step-sizes.
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Figure 7.9: Channel equalization example. Solid Line: optimal filter ug,. Dash-dot Line:
approximate mean filters G* about (a): k& = 2% samples. (b): k = 25 samples. (c): k = 27

samples. (d): k = 2° samples.
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Figure 7.10: Channel equalization example. Solid line: optimal output response 1z,. Dash-dot
—k
line: approximate mean output responses ¥ about (a): k = 2% samples. (b): k = 2% samples.

(¢): k = 27 samples. (d): k = 2% samples.
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Figure 7.11: Mean square convergence results for channel equalization example using three

different fixed step-sizes.
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Chapter 8

Conclusion and Extensions

8.1 Summary and Conclusion

1. In this thesis, we studied a variety of EC filtering problems including continuous and
discrete problems. The EC filtering problems with orthonormal bases in Hilbert spaces L2
and £2 were also considered. These problems were formulated as quadratic programming

(QP) problems with linear inequality constraints.
2. For discrete-time EC filtering problem:

e We have developed two efficient iterative algorithms, barrier-gradient (BG) and
barrier-Newton (BN) algorithms, for solving a class of deterministic EC filtering
problems. Using Lagrangian duality theory followed by a space transformation leads
to ordinary differential equations (ODE). Then, by appropriate discretization of the
ODE’s, the BG and BN algorithms are obtained.

e We have shown that the sequences of filters generated by these two iterative al-
gorithms with a fixed step-size globally converge to the optimal filter with linear
and quadratic rates of convergence. This has substantially improved the results ob-
tained by either the gradient-projection based primal-dual (PD) algorithm or the
constraint transcription based steepest-descent (SD) and Newton-Raphon (NR) al-
gorithms. More specifically, the sequence of filters generated by the PD algorithm
with a fixed step-size converges only to within a neighborhood of the optimal fil-
ter due to a non-differentiable cost function. For the SD and NR algorithms, the
obtained sequence of filters converges only to a suboptimal filter in a neighborhood
of the optimal filter since the smoothing parameter embedded in the gradients and

Hessian matrices i3 not allowed to reduced to zero.
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3. For continuous-time (semi-infinite) EC filtering problem:

» We have shown that the parameterization method for the dual semi-infinite program-
ming problem in combination with the barrier-Newton method can be used to solve

the continuous-time EC filtering problem.

o A significant advantage of this approach is that the original semi-infinite dimensional
constrained problem can be solved as an equivalent finite dimensional minimization
problem. In particular, we have demonstrated that a small number of active sup-
porting points can provide enough information to define the optimal solution such
that the solution fits into the output mask. In comparison, discrete approximation
methods cannot guarantee that the optimal solution obtained satisfies the continuous

constraints of the original problem.
4. For adaptive EC ﬁltering problem:

¢ Based on the iterative barrier-gradient algorithm, we have developed an adaptive
training algorithm for solving the stochastic EC filtering problem in which the input

signal is contaminated by additive zero mean, stationary white noise.

e We have shown that the sequences of filters generated by our adaptive training
algorithm using a fixed step-size converge to the noiseless optirmum filter in mean
sense and in mean square sense. If a sequence of decreasing step-sizes is used, the
convergence of the adaptive BG algorithm is also established in mean square sense

as well as with probability one to the noiseless optimum filter.
5. For the robustness of EC filtering problem:

e The tolerance of the continuous-time EC filtering problem to input signal pertur-
bations and implementations errors has been examined and a robust optimal filter
formulation was introduced. An efficient algorithm was proposed to solve the robust

optimal filter problem.

¢ The key idea to the development of the proposed algorithm is to seek a feasible point
to the constraint set F,,(x) where 0 < o3(x) < op(x}). A smoothing technique
is then applied to solve this problem. This converts the semi-infinite constrained
minimization problem into a finite constrained minimization problem with integral
cost and strictly convex constraint. The numerical examples presented show that
the algorithm is effective and that the robust optimal filter is tolerant to input signal

perturbations and implementation errors.
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8.2 Extensions

There are two interesting aspects of the envelope-constrained approach that require further

study.

o The possibility of applying the time-domain constrained robustness formulation problem
into the frequency-domain problem. Although the present constrained robustness for-
mulation problem is based on the continuous time-domain, many results presented here
do have an analogue in the frequency-domain. Accordingly, the formulation of the CRF

problem in frequency-domain is of interest and is mathematical challenging.

e Relaxation of the conditions for convergence of the proposed adaptive noisy training al-
gorithm., Convergence has been established when the given initial point of the adaptive
algorithm is in a small neighborhood of the optimal filter. It thus represents a challenge

to relax the small neighborhood condition.
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Appendix A

Proofs of Results in Chapter 3

A.1 Proof of Lemma 3.4.2

Let (x*,A*(t)} be the solution of the unconstrained minimization problem (3.3.1). Clearly,
it satisfies the stationary condition in (3.4.1). We shall show that A* in the unconstrained
minimization problem (3.3.1) solves the dual problem (3.3.3). Since f and g(.,t) are convex

and differentiable at x, for all x € R™, we have

Fx) 2 FET (VA (x —x7))
g(x: t) > g(x*v t) + {vg(X*? t)r (X - x‘)) .

Combining with A* > Op, and Vi L{x*,A*) =0, for all x € ®", the Lagrange function at \* is

L(x, A7) = f(x)+ (g(x 1), A"()
FO™) +{g(x", £), A(8)) + (VF(x") + (Vg'(x",8), A*(2)), (x — x*))
= F(7) + {8(x71 1), A() + (VxL(x", A7), (x —x7))
= L(x",\"). (A.1.1)

v

Since g(x",t) < 0y, and {g(x",t), A" (t)) =0, the Lagrange function at x* is reduced to

Lx"A) = f(x7) + (8(x", 1), M) < F(x*)
= f{x*) + (g(x", 1), A*(8)) = L(x", \*), (A.L2)

for all A > 0. Combining (A.1.2) with (A.1.1), it is clear that {x*, A*(t)) satisfies the saddle
point condition for all x € R™ and A{t}) > 0,,,t € Q:

L(x,A") > L(x*, A*) > L{x*, A).
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Thus, it follows that
mxin L{x, A") = L(x*,A") 2 L{x", ) = rr;inﬁ(x, A) for all A(t) > 0,,, ¥t € 02

The above equation implies that

At = arg Tax m)énﬁ(x, A)
where A = {A(¢) : A(¢) = O, t € £2}. Hence, A* solves the dual problem (3.3.3). |

A.2 Proof of Lemma 3.4.3

For each + = 1,...,m, X;; is a convex cone and X;; D Xj3;. This, in turn, implies that
X1, D coXa, where coXs; denotes the convex hull of Xy ; which is the collection of all convex
combination of elements of the set Xj ;.

Let 0 # x € Xy ;. Then, there exists a 0 < A; € M(£, R) such that [5,-)dAi(t) # 0 and

x = .[ Vi (x*, t)dA(2)
0x*)

By the continuity of g;(x*, -}, we see that the set (x*) is closed, and hence compact in ©2. Again,
by the continuity of Vyg;, the set Xy ; is compact in R". Thus, the set coXs; is compact and

closed. Assume that xp & coXy, i.e,

x 2 x / fn oy N0 # 00X

Since x € X ; and the set X ; is a convex cone, it is clear that xo € X ;. Then, by the strict

separation theorem [51] of convex sets, there exist an a € R" and an o € R such that

a'xg >« (A.2.1)

a'y <o for all y € coXy;. (A.2.2)
Clearly, from (A.2.2), we have
a'Vygi(x*,t) < a, for allt e Q(x*),
and hence
a'xg = / a'ngi(x*,t)d,\,'(t)//_ dXi(t) < o
f(x") Q(x")

This contradicts (A.2.1). Thus, x¢ € coXs; and hence X, ; = coXs;. Therefore, X; = X,. 1
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A.3 Proof of Theorem 3.4.2
The set ((z*) is defined in Lemma 3.4.3. Then, its complement set is:
MOQ(x*) = {teig(x",t) <0}

Clearly, the complement set Q\{(x")is open since Q(x*) is closed. Thus, the complementary
condition (i.e, the second condition in {3.4.1}) ensures that A*(t) = O, on t € 2\Q(x*). Thus,

the stationary condition in (3.4.1) is reduced to

Vi) + [m Vg N (1) =0,
Therefore, it follows from Lemma 3.4.3 that ~V f(x*) € X5, where

m
X2 = ZCOXQJ and Xz,{ = {ng;(x*,t)ht = Q(X*)} ,i = 1, -

i=1
By Carathéodory’s dimensionality theorem (51, there exists, foreachi = 1,...,k;,7 = 1,...,m,

a positive A ; such that

m K
—Vix*) = Z vagj(x*,tj,,-})\,?’j,for some £;; € (x*) (A.3.1)
j=1i=1
where, for s =1,..., k;, A}, is the jth component of A = Al Ayl and k; < m.
It is clear from (A.3.1) that A* 2 [A¥ .. AL [ € RTFm satisfies the stationary condition

in (3.4.1). The corresponding time supporting points are, thus, given by

r ={ (Brts k) s (Eatre e B2a) s ooy (oo Ermen) } (A.3.2)

Accordingly, it is a measure with finite support at these points. We now rearrange (A.3.2) as
(t1,t2,...,tg), where k = k; + k2 + ... + km < mn. Then, we consider the same % points for

the following m constraints,

gi(x"t;) £ 0, j=1,....mi=1,...,k

More specifically, for each 7 = 1,...,m, we add in 3.7, k; extra points for the constraint
i)
g;i(x*,t) < 0. Clearly, for each j = 1,...,m, these additional points give rise to inactive

constraints. Thus, the associated Lagrange multipliers are zero. On this basis, (A.3.1) can be

written as:

k m

=V = 30D Vagi(x',t)A],, for some t; € ((x*)

i=1 j=1
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Appendix B

Proofs of Results in Chapter 4

B.1 Proof of Lemma 4.4.1

We rearrange the optimal Lagrangian multiplier vector A* as:

AB
A = [ ] (B.1.1)
AN
where the vectors A% € ®™, AY ¢ R and n; + ny = m. Here AZ and MV are, respectively,
given by
A A
A= and A =] :
}\fl AN
with AP > 0,7 =1,...,n; and )\f,-v =0,7 =1,...,n. Accordingly, we rearrange the following
matrices
) D8 0o ) VP (A*) P%  PpPBN
D(\*) = ,VA(A*) = -
0 DY) Vot (A%) pNB p¥

where the matrix P? > 0, and the matrices PEN, P¥Z and PV are all null matrices. The

Jacobian matrix VF(A\*) can be decomposed into blocks as follows:
VF(X*) = D(Veé(A")) + D(AYP

D(VeP () 0
0 D(VeV (A7)

i

[ D(AB) 0
+
0 DM

[PB 0

} (B.1.2)
N

From the strict complementary condition (SCC), it follows that
ATHAY = AFVHB(A) + AN VY (AN = 0
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and
VeT(X) = 0y
VeN(A*) > Oy, (B.1.3)
Therefore, (B.1.2) is reduced to blocks as follows:
VF' 0
0 VF?

D(XB)p8 0
0 D(VeM(A))

VF(\*) = =

where the matrix VF! £ D(AB)P® and the matrix VF? 2 D(V¢V (A%)).

To find out the eigenvalues of the Jacobian matrix VF(\*), we consider the characteristic

VF! - g1, 0
0 VF? — nl,,

where the roots np of the characteristic equation are the eigenvalues of the Jacobian matrix

equation:

[VE(A")} = plm| = =0, (B.1.4)

VF(A*). It suffices to consider the following two characteristic equations:

|V}.-‘1—-r,.1ﬂ1 = 0, (B.1.5)

|VF2 - I,

= 0. (B.1.6)

Let us first consider the characteristic equation (B.1.5). Let (z,m7), z: # 0, 1 <i < ng, be an
eigenvector-eigenvalue pair of the matrix VF!. Then, the eigenvalues of the matrix VF' are
'D(AB)PE .
= L'(ﬂ?.T?’_z > 0, Yi=1,...,m (B.1.7)
For the second characteristic equation (B.1.6), it follows from (B.1.3) that

DV (X)) =, | = 0

= n;=V¢r(A)>0, Yi=mn+1,...,m. (B.1.8)

From (B.1.7)- (B.1.8), we conclude that all the roots of the characteristic equation for the

Jacobian matrix VF({A*) are real and the smallest root fmin is positive. This completes the

proof. n

B.2 Proof of Theorem 4.4.1

Clearly, F{A) = D{A)V(X) is a differentiable function of A with F(A*) = 0. Applying the

Taylor series expansion of the function F{A) about the point A* yields
F(A) = F(A")+ VFADAX+O0(|ax)2) {B.2.1)
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where VF'(A) = VF(A) is the Jacobian matrix of F{)) defined by (4.4.19), and is symmetric,
AME) = A(A",t) — X* and

O(IAND)
A—Ar ”A/\”g
Linearize the system (4.4.15) in a neighborhood of the equilibrium point A*. Then by (B.2.1),

we obtain the system of the first order approximation:
AME) = —VF(QAHAXE), M0y =A% (B.2.2)
We first establish th.e stability of the system (B.2.2} by considering the characteristic equation
[VE(A*) —nL,| = 0 (B.2.3)

where the roots n of the characteristic equation are the eigenvalues of the Jacobian matrix
VF(A*). In Lemma 4.4.1, we have shown that all eigenvalues of VF(A*) are real and positive.
Thus, by the Lyapunov’s linearization principle [14], the system (4.4.15) is asymptotically stable
at the equilibrium point A*. In particular, condition (i) of Definition 4.4.3 is satisfied with
O = Tlmin, Where Nni, denotes the smallest eigenvalue of the Jacobian matrix VF{A*).

To establish the convergence of the scheme (4.4.18), we consider the scheme (4.4.17) defined
by

TR = AF — B F(AF).
Since both T(A) and F(A) are differentiable at A = A*, we obtain
VT(A") = I-—hVF(XY).

Since the Jacobian matrix VF(A*) is positive definite, there exists a constant h* such that
if hy = h is a fixed step size for all k& and satisfies 0 < A < h*, the norm of the matrix
VT(A®) =1 — hVF(X*) is less than unity. Consequently, all eigenvalues of the matrix VT{\*)
are less than unity. Thus, the spectral radius p(VT(A*)) < 1. By Theorem 2.3.4 of [14]
and the convexity property established in Theorem 9.4.1 of [22], the sequence {A*}2, and
the corresponding sequence {x*}2% , generated by the scheme (4.4.18) converge globally to the
optimal solutions A* and x*, respectively, both at a linear rate. Thus, the scheme 4.4.18 is
convergent if the fixed step size h is chosen such that 0 < A < A*.

To find out h*, we consider the characteristic equation of matrix VT'(A) at A*

|VT(/\*) - ’YIml = |12N - hka()‘*) - 'YIml =0.
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The above equation can be written as:

VF(\*) — lh_k"’lm = 0.

Comparing with {B.2.3), it is clear that the roots of these two equations are related in a simple
way: n = %, ie.,

v=1-—hn = ¥ =1-(2— hgn)han.
The conditions 0 < v < 1, since p(VT(A*)) < 1, and A > 0 yield

2—hn > 0.

Thus, for any hy = h > 0, it follows that

1 2
h* =2 min [—} =
i€[lim] 17} Tmax

where Nmqz denotes the largest eigenvalue of the Jacobian matrix VF(A*). This completes the

proof. |

B.3 Proof of Theorem 4.4.2
The linearized system (4.4.22) about the point A* is:
AXE) = —HA)AM) (B.3.1)
where the matrix H(\*) is given by
H(\Y) = VF(A")D(a)VF(\). (B.3.2)

It is clear from (B.3.2) that the matrix H{)*) is a similarity transform of the diagonal matrix
D{c) consisting of the scaling vector a = [a1, ..., am]"
To establish the asymptotic stability of the system (B.3.1), we consider the characteristic

equation:
[H(A*) =nla| = 0

where the roots n of the characteristic equation are the eigenvalues of the matrix H{A*).
Since the matrix H()*) is similar to the diagonal matrix D{«a), they have the same eigenval-
ues 1 = o > 0,2=1,...,m. Thus, it follows from the Lyapunov's linearization principle {71]

that the system (4.4.22) is asymptotically stable at the equilibrium point A*.
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To establish the convergence of the scheme (4.4.21), we first show that for each k the mapping
T()*) defined by

T(A) 2 AF — b VF- (A )D(a)F(A})

is differentiable at A*. This is equivalent to showing for each &

i IT(AF) = T(A)ll2
im
S O N

= IVTO)]l. (B.3.3)
By F(A\*) = 0, we obtain

IT(AF) = T2 = [IAF = A" = B VE L AR)D(a)F(M)2
= |[VF ' (3*)D(a)[D () VE(X*)(A* — X"} = AeF(A")]|l2
= [IVET (A )D(a){—As[F(A") = F(X*) — VF(A*)(AF — X)) — B VE(AF)(A* — A7)
+DHa) VE(A*)(A* — A*)Hlz
k| VETHAF)D(@) 21 F(A*) = F(A") = VE(A)(AF — 3|l
+[IT = A H(A®)fi[|A* = A2, (B.3.4)

in

where H(-) is defined by (B.3.2) in terms of A*. From the continuity of the derivative VF({A¥)
for each % at the point A* yields

Lo IFO®) = FO0) = TROSOk = 2]y _
1Tt =
M =Xl

0. (B.3.5)
Combining (B.3.5) with (B.3.4), we obtain (B.3.3) that is given by

[VT(A)l2 < (11— AeE(AT)]2.

Since the matrix H(A*) is positive definite, there exists a constant A* such that if Az = h is a fixed
step-size for all k and satisfies 0 < kA < h*, the matrix norm {|I — hH(A*)||2 is less than unity.
As a result, all eigenvalues of the matrix VT(A*) are less than unity and hence, the spectral
radius p(T(A*)) < 1. We note that for a specified a; = & for every i = 1,...,m, the matrix
H()*) = al. Accordingly, |[VT{A*)||2 € 1 —~ h& Thus, the spectral radius p(T(A*)) = 0 can
be achieved depending on the choices of 4 and & By Theorem 2.3.4 of [14] and the convexity
property established in Theorem 9.4.1 of 22], the sequence {A\*}$2, and the corresponding
sequence {x*}° . generated by the scheme (4.4.21) converge globally to the optimal solutions
A* and x*, respectively, both at least a linear rate. The remaining part for finding A* is similar
to that given for the corresponding part of Theorem 4.4.1. Thus, we obtain A* = a% where

o = max;[cy).
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Let o; = e, Vi and choose the step-size Ay = % for each k. If there exists a constant
¢ > 0 such that for each k the Jacobian matrix VF()\*) defined by (4.4.19) satisfies a Lipschitz

condition in the neighborhood of the point A*, we have

IT(N*) = T(A®)fi2 = | — X" = VEI(AF)F(A)]
< IVETAR I V() — VE)|[2f|A* = A"l + [[F(XF) — F(A*) = TE)(AF — A7)}
< IVETH S 2[NE = AT+ IX* = XTZH@(A7)]|o]
< (EHIVETH B2l — AT3,

where F(A¥) is Fréchet differentiable at the point A* for each k and the vector function $(A*)
is bounded at a constant ¢, i.e., ||®(A*)||2 < e. Clearly,

o ITOF) = Tl
st PUSSYIE

< (6+ HVF A"z < o0,

where [VF~1(A*)|; is bounded since VF()*} is nonsingular. Following from Theorem 2.5.3
of {14] and the convexity property established in Theorem 9.4.1 of [22] , the sequence {\¥}22
and the corresponding sequence {x* ro globally converge to the optimum A* and x*, respec-

tively, at a quadratic rate. This completes the proof. |
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Appendix C

Proofs of Results in Chapter 5

C.1 Gradients of the dual cost function ¢(t,A) about t and A

The gradients of the dual cost function ¢{t,A) about t and A are as follows:

1
Vid(t,A) = 5[D(A)VtA(t)A’(t)A]+th’(t)AE§R’“
[ e aeon - | [ %
= 3 : + :
| AP A ()h + .+ AT R A X T
RS RS
= 3 : + :
a
AL 2R AN A YR |
and
Vad(t,A) = SA(t)A'(t)A +Db(t) € R*
. Alt)A (B)M + ..+ At A (te) Ak b(t1)
A(t)A (B L+ Al)A (B} Mk b(tx)
A(t)A(t)A b(t1)
1 . :
= 3 : =+ :
| A(te)A(B)A b(tx)
where

8b(t;) elt) 1 sA(h) bty
_ ! = _09) |



80'(t) _ [aeo(:,-) 89.,_1(1‘.-)]
at; gt at,

e N o]
agég') -~ /U LE(n)s(t— T)dryi=1,... b, =0,1,...,n— 1,
f

0 t < —0.68

e7(t) = < 05[1+sin(Z(1+55)] —0.68 <t <0.36
0.05 + 0.407e1-84(t—0.36) 0.36 <t
0 t < —0.36

e7(t) = { 0.5[1+sin(F{1+ 555))] —0.36 <t<0.28
0.11e34%(¢-03) 0.28 < t.

“

C.2 Hessians of the dual cost function ¢(t,A) about t and A

The Hessians of the dual cost function ¢(t, A} about t and A are as follows:

B2(t,A) 8p(t,A) 2 é{t,A) 83a(t,A)
a7 ) oty Oty Gti18A, R 8t10A;
Vid(t,A) = : Vi a6t A) = Lo
32¢gt,A1 32¢gt A) 82 p{t,A) 32 pt,A)
dtp oty . Exk Aty Ay T atkaz\.k k% 2k
A(t))A () ... A(t)A'(8)
vig(t, ) = 3 : ‘
At)A(t) ... A(tn)Al(t) ——

22a(t,A) & p(t.A)
dMét T 3B,

2 . . .
V(A,t)¢(t’ 1\) = . Y . L
32¢l£t,A! a%gt,{q
AR 8t1 T AA Ot ek
where

GA (L) . ,
—BtL,-l at(:‘ AJ! (27&])

'
(’\Ia §t1!A’ A+A;aatg ! i !A)_'_A.rabt (?::j)

Ly
2
L
2

HAG) T (i)
( 'A(t) —~—(—l+,\'A( )3A (t})+a'§£fi) (i = §)
a

2= b=
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O A(t;) M-l 520,(t:) 1 -1
Allty) = 20 (t5) ,
Btf ! =0 Btf ! -1 1
Bet(t)
#bt:) Eat,.t
8'&2 - _325_ i !
at?
while
8%6;(t) oo di(t - 7) _
517 /0 L?(T)Tdf, ¥i=0,1,...,n—1
(0 t < —0.68
Be(¢) ) = cos[F(1+555)]  —0.68 <t <0.36
ot —0.7489e~184(t-0.360) 036 <t < T
L0 t>T
[ ¢ t < —0.36
8~ (t) ) $%cos[F(1+ gh5)] —0.36 <t <0.28
at —0.3762e~3#2At=03) a8 <t < T
| 0 t>T
0 t < —0.68
82e*(t) 4 20 sin[3(1+ 55;)] —0.68 <t <0.36
oe? 1.378¢~1-84(t~0.36) 036 <t<T
|0 t>T
0 t < ~0.36
&% (t) I sin[F (1 + 5i5)] —0.36 <t < 0.28
ot 1.2866¢~342(:-0.3) 028<t<T
|0 t>T
and
0 t<0
AZ
s(t A e_'lﬁl
(t) be T 0<t<T,
0 t>T
AaO
A, , Ag0=30and fo=1
20 logyp{e)v/m fo 0 and fo
ds(t 0 t<0
E(t) ;(t) - i}i 2 !
Age3E [42
4/mes [2* 3] t>0
di(t) 0 ] t<0
dt —5}‘- 42 2
et (G- -2-1] t>0



C.3 Proof of Theorem 5.3.1

There are three possibilities for the optimal og of the CRF problem (2.2.12): (i} og = 0; (ii)
o3 = 00; and (iii) 0 < oy < 0o. We note that gg = 0 is the solution obtained by solving the
nonrobust continuous-time EC filtering problem (2.2.8). Case (ii) implies that there exists .no
output mask. Thus, it suffices to consider case (iii), i.e, o5 is a bounded positive constant.

From (5.3.1), it follows that for, 0 < o} < o3,
Fag(x) #0 = }",é(x) £0 or }'o.é(x) =)= Fdﬁ(x) = 0. (C.3.1)

Thus, by using Steps 2 and 3 of Algorithm 5.3.2, we can find ogg and o such that o € [og0, Tpt]
in a finite number of steps.
By (C.3.1), it follows from Steps 4 —6 of Algorithm 5.3.2 that, after k iterations, the interval

of uncertainty is reduced to
Gge— g0 < A(op— op0) (C.3.2)
where A ~ 0.618, If &£ is such that
Mlogi—og) < m (C.3.3)

where 7, is a pre-assigned accuracy, then it follows from (C.3.2) and (C.3.3) that dg: — 59 < 1.
Since a finite positive integer & can be determined from (C.3.3), the golden section method can
locate o to the required interval [Fgp, &g in 2 finite number of iterations. This completes the

proof. |

C.4 Proof of Theorem 5.3.2

Since X7 = X7 + ayAx||x}|j2, the output response of the perturbed robust optimal filter coeffi-

cient vector X, can be obtained from (5.3.6) as:
Yn(X7,t) = O'(t)X = O0(t) (x] + oy Axix]|2)
= Gul(x,t) + asgn(Ax, xca ¢ € [0,00) (C.4.1)
where ¥, (Ax,t) = ©'(t)Ax is the output rresponse of the error vector due to error in the
implementation of the optimal filter.
By the assumptions: ||©(t)}l2 < C,t € [0,00) and ||Ax||z < 7, and noting that x; satisfies

the constraints in the CRF problem (2.2.12), we obtain a bound for the perturbation term
Y (AX, t)||x}| in (C.4.1) as:

[n(Ax, B)[[x2ll2 < (O l2ll Axllalixtllz < M (C.4.2)
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where My = /(1 + 8)}C7jllx*||2 is a constant.
Combining with (C.4.2) and the weighted constraints in the CRF problem (2.2.12) at x}
and og(x}), we obtain the upper and lower bounds of the perturbed robust optimal output

response

e () + (Bt)og(x7) — ap Mx) < hn(X7,8) S £7(¢) — (B(t)og(x]) — oy Mx).

Choosing the scaling parameter oy > 0 sufficiently small such that

Bt)os(x}) —asMx >0 <= a;<a}= ﬁ“ﬂi—i"r)

where 3* = max,[3(t)]. Then, for any 0 < ay < a}, we have

&7 (1) + (B(1)op(xt) — apMy) < ¥n(X:, 1) < £¥(2) ~ (B(E)oa(xt) ~ ay M)

= & (t) <a(X}, 1) < et (1)

Thus, by the definition of the weighted constraint margin given by (5.3.8) with respect to the
perturbed robust optimal filter coefficient vector, we obtain os(x}} > 0. This means that
the output response 1, (X;,t) of the perturbed optimal filter remains in the original envelope
constraints for any ¢ € [0, ).

Next, we will show that the weighted constraint margin with respect to the perturbed
nonrobust optimal filter coefficient vector is negative if the perturbation results due to error in
the implementation of the nonrobust EC optimal filter uy, i.e, og(%X*) < 0.

Similar to (C.4.1), if the perturbed nonrobust EC optimal filter coefficient vector x*, that
results from the implementation error, is given by X* = x*+a;Ax{|x*||2, then the corresponding

output response is
Pal(X* 1) = Un(x",t) + apa(Ax, t)]|x*||2, ¥t € (0, 00). (C.4.3)
Since [|©(t)||2 < C and ||Ax||2 € 7, the perturbation term is bounded by
[ (A%, D) lx" 2 < |O(8) ol Axzllx*[l2 < M (C.4.4)

Making use of (C.4.4) and the output constraints at the optimal solution x* of the nonrobust

EC filtering problem (2.2.8), the perturbed nonrobust optimal output response is bounded by
€7 (t) — apMy < Pn(X*,t) < eV (E) + ap My (C.4.5)
Following the definition of the weighted constraint robustness margin given by {2.2.11), we have

;. M.
Uﬂ(x)z—-—a‘fﬁl*x<0

Le, the output response t,(x*,t) of X* is outside the envelope constraints. |
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C.5 Proof of Theorem 5.3.3

Combining the input signal 3(¢) = s(t) + a,As(t)s*,t € [0,00) contaminated by perturbation
with (5.3.10), we obtain

5 = [ i -r)ar
= [T ei)stt - 1) + st = r)stydr
= 0,(t) + apA8;(8)s", £ &[0, 00)
where AB,(t) is given by
AG; () = /Omwj(T)As(t—T)dT. (C.5.1)

- The output response (5.3.12) of the robust optimal filter coefficient vector to the perturbed
input signal thus yields

(X2, t) = (O'(8) + , AO'(E)s*)x?
= Pp(x},t) + a8 Atpa(x], £)

where Ayn(x7,t) = AO'(t)x; is the perturbation term appeared in the output, while A®'(¢) =
[ABy(t), ..., AbBn_1{t)] is a vector of perturbation. Since the perturbation attached to the input
signal is bounded, i.e, |As(t)| < ¥,¢ € [0, o0), it follows from (C.5.1) that

2 )
20,08 = | [T exnaste-nar| < [T leynast - rdr

s fg o3 (r)*|As(t ~ 7)Pdr < fo i (7)27dr
= <enei>7 =7 (C.5.2)

By (C.5.2) and making use of the Cauchy-Schwarz inequality, we obtain the perturbation term

appeared in the output response as follows

|An(xs,8)] = IA@'(t)X"‘I<IIA9(t)|I2IIXIHz

- Z'M (BORlIx 2 < M, (C.5.3)

where M, = /n(1 + §}7||x*||2 is & constant.
Note that the output response 4, (x}, t) of the robust EC optimal filter satisfies the weighted

constraints in the CRF problem (2.2.12). Thus, it follows from {C.5.3) that

€7(t) + (B(t)op(x}) — aes* M,) < 9(x7,8) S &t (8) - (B(t)oa(x7) — ass™ M,)
= & (1) <P(x}, 1) < ().

The proofs of o3(x;) > 0 and &3(x*} < 0 are identical to those given for Theorem 5.3.2. |
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Appendix D

Proofs of Results in Chapter 7

D.1 Proof of Theorem 7.3.1
Consider the following adaptive pulse scheme:

X’H-l — Xk_ gD(ik)(A+ﬁ-lf)(A+ﬁ§)’j\k+hD(ik)b
T (D.1.1)

where F(3*) = D(A¥)[H*A* + b}, while H* = L(A + N¥)(A + NEY, and Ak is independent of
NF and N£. Let T(3) £ [T, (1), ... , Tan(A)] € R2N be given by

T(N) £ X~ AD()H) +b),

We consider the ith component of the function T()) as

T,‘(;) = A - h)\i(ﬁi,lil + ...+ I’:Ii’2Ni2N +b;), 1<i<2N.

where I:L-”; represents the ¢jth element of the matrix H.
Clearly, T;(A) is a quadratic differentiable function of A. Using the differentiability of T;(}),

we obtain
Ti(A) = T;(A") + VT - A% — pi(/\* M)A =A%)

- ~ - h - -
= i) = A+ VT3 - 47) = 2pl(07, (- 4) - by (Z H; ;A5 + by )
j=1

= T(A) - A" = VI'M)A = A*) — 58 (A", M)A = A*) - ARFO™) (D.1.2)

where
T(AY) = [T1(A"),..., Tan (A7) € B2V
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[t

VT{A*) (VTL(AY),..., VTon(A")] € RZV XN

>

VT [VTa(A%),..., VTian(AY)), Vi=1,...,2N

F(A*)

%D(J\*)(A +R(A + N3YA* + DO)b

P

15>

[851,- e 7521\'] < ;R?NXZN,

while 5; 2 Pi(A—X*) € R2¥X1 (Fand &; are used to denote p(A*, A) and p;(A*, ), respectively).
Here T;(A*), Vi‘ij(A*),‘v’j =1,...,2N, and P;,¥i = 1,... 2N, are given, respectively, by

2N
T:(A") A - B | HLA + by
j=1
T —RHX, Cifi#j
VT;{AY) = ! N ~ #J (D.13)
1- h( ?21 H; ;A7 + Hi:A) + b..;) , ifi=3j

0 o H, 0 0
0 0o H;, 0 0
P, = fIm fI,';,;q Zﬁi,i ﬁi,i+1 ITI:',2N (D.1.4)
0 0 Hgy O 0
0 ... 0 Hpap 0 ... 0 |

Let e* £ AF — A* be the kth error vector about A*. Since \* is deterministic, we have
E[F(\)] = E[DA)(H'A* +b)] = D) E[H|A* + b]
= F(A") =0qy. (D.1.5)

We now take the expectations of (D.1.2) with A = A¥, where the sequence {A¥} is generated by
the adaptive training scheme (D.1.1) with e® = A% — X\ e N = {e0 e RV - V) < 5}, while &
is an appropriate positive constant.

By the fact that e* is independent of the matrix VT(A*), we obtain
1B - Xl = (B8] - Y B (0, 35)ek] - AEEG]e
< AVTOIEE + 2B O el
< VIO + 1Bl (3, et (D.16)

where VI'(X*) = E[VT'(\*)]. We note from Theorem 4.4.1 that the step-size h satisfying

0<h< n—n:‘:;— can be chosen such that the spectral norm of the matrix VT(A*) is less than
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one, i.e, [VT(A")|la = p < 1, where p is the spectral radius of VT{A*) and fme. is the largest
eigenvalue of the Jacobian matrix VF{A*).

Let T(A%) — A* 2 gkl Accordingly, (D.1.6) may be written as:

+ h . 3
1B Ml < ol B!l + 1Bl (A, A)eH 2. (D.L.7)
Thus, the square norm of the second term of (D.1.7} can be expanded as:
L 2
E [ek’ Plek]
A L : 1o K5 k2
1B’ (W, AReH; = 5 : =12 Bl Bet]}
[~ i=1
E [ek PgNek] 5
128
< 5 2 IBEEe D = M(E(lle* 3] (D.1.8)
i=1

where the constant M = gz?;"l |P;||3 and the 2N x 2N matrix P; is given by

[ o 0 AA! 0 0o |
0 0 AAL, 0O 0
P.=| a;al AAL 2AMAL AAL, AAL,
0 0 AAL, O 0
0 0 AALy O 0 |

Note that the matrix B* = %(A+ﬁf)(A+ﬁ§)’ . Furthermore, A* and hence e* is independent
of the input noisy matrices ﬁ’f and ﬁ’z‘, while ﬁ'f and ﬁg, both with zero mean, are also
independent with one another. Thus, it is easy to show that E[HF | = 1A;A}, where A;
represents the ith row of the matrix A.

‘Take the square norm of (D.1.7). Then, by (D.1.8), we obtain

- 2 -
IEESIE < PPER IS + holl Ele¥] ol Elp' (A", A*)e* 2 + %IIE[p'(k*, A5)efli3

IA

2
P Ele™]|13 + hov/ M| Ele*][ E[ll* 3] + %M(E[Ile"!!g])z

3 2
PIEIIE + hoV (B[l B + L mr(ETet13)?
= PlBEI3 + hf(ef)

1A

(D.1.9)

where the function f : R2Y — R is defined by

h

f(ef) = TM(E[l*B])? + oV M(B[le*13)7.
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Clearly, for each k&,
fle)  _

T 0

m
Elllet ;210 E[|le*|}3]

Thus, for any e > 0, there exists a § = §(¢) such that, for each &,

—f(e:)2 < e for E[||ek||§] < 4. (D.1.10)
Elle*|[3]

Combining {D.1.10) with (D.1.9) yields
IE* i3 < APIE[e*]F + hed. (D.1.11)

Since bothe > 0and 0 < A < Eﬁ can be chosen arbitrarily small, it follows from the strict

inequality (D.1.11) that

1B I < A%l B(e*]i3. (D.1.12)

From (D.1.10), we have ||E[ef]|3 < Ef|le*||3] < 6. By (D.1.12) and the fact that p < 1, we

obtain || E[e*+1]||2 < p?§ < 4. Thus,

1B )3 < °*HY| B3 <= Jim I E[e*]]13 = 0. (D.1.13)
-0
Furthermore, since
e . Lork
E[@* A —u* = —§Ae ,

it is easily shown by using (D.1.13) that
. - . 1 . . ~ «
Jim [|B[5*] — ' < ZJAlZ lim B[N} = lim | B[] - w3 =0.
—oo 4 k—oa k-roa

The proof is complete. |

D.2 Proof of Theorem 7.3.2

2

Consider the adaptive pulse scheme (D.1.1). Let e = A* — \* be the kth error vector about

A", Then, it follows from (D.1.2) that
- h - -
el = TT/(A%)e* - Z#' O, ARk — RF(A*) (D.2.1)

where the matrices VI'(X*), p'(A*, A*) and F()\*) are defined in the proof of Theorem 7.3.1.
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Taking the square-norm and the mathematical expectations on both sides of (D.2.1), we

obtain
~ h " -
Effe 3] = BIIVT'(V)e® — 26/(X", A¥)e — hE (X))l

—~ 2 - —
= EIVEOHE + T Elle (7, 5F)e I3 + A ENIF () )
~hE[e" VT(A")p' (X", A)e*] — 2nBle* VI (A)F(A*)] + R2E[F' (A )p' (A", AF)ef]

A

o~ * h2 £ T Sy *
E{|[VT'(Aetiz] + L Ellle' (A, A" i3] + hlB[e® VT(X")o' (X", AF)e¥]]
+R2E(IF(A%)3) + 2RI Ele¥ VIOF ()] + RIBIF (A)g (3, 35)et]]  (D.22)
where E{||e*||] is the variance of the adaptive weighting vector about A*.
Let us investigate each term on the right-hand side of (D.2.2). For the first-term, it follows

from properties of the conditional expectation, the Cauchy-Schwarz inequality, and the fact

that the matrix VT{A*) is independent of A* that

E[[VT'(\)e* (3] = B[e¥ V(A" )VT/(X)ek]
= E[MBE[VT(\)VT'(3")[Ae!] < g(h)Eflle*|I3], (D.2.3)

where g{h) is a function of h and is given by

g(h) = | E[VT(A) VT (3]
= |E{I~hVF(A)HI - aVF'(A)}l2
= ||I—AE[VF(\")] — RE[VF'(A")] + RRE[VFOVE ()] |2
< T = 2RVF(A)|z + R2E(| VE(A)13]
= 1= 2hnmin + h*E[|TF(A"){3] = 3(h), (D-2.4)
while fmin is the smallest eigenvalue of the Jacobian matrix VF(X*), the matrics VT(A*) and
E[Vf‘(k*)] are, respectively, given by
VT(A*) = I-AVF(AY)
~ 1
E[VF(AY)] = VFQ)Y) = D(-z—AA’A* +b) + %D(A*)AA’.
Here, all matrix norms are to be understood as the spectral norm, fmin > 0 denoctes the smallest

eigenvalue of the Jacobian matrix VF(A*), and E{[|VF()\*)||2] = ©(c) is a function of &, where
B(r) = ©1(0) + O3(c) + O3(c) + B4(c), while

O1(0) = B{ID(H"A" + b)[] < 2E[|DE"X")3] + 2|D(b)|I3
{ID(AA'XI + E{ID(ANS A)|3] + EIDENTAN)[3])

=R
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E[|D(N{N3 A%)[|3] + 2/ D(b)II3

Fa

5 {ID(AAN)3 + " B2l AIS +n%0)} + 2(D(b)I3,
Os(0) = @3(0) = | E[D(H"A* + b)D(A")H"||»
VEIIDE x + b)[3]y/ BIID (A E*[3]

V01 DO 2y ElE- 1]

S VB IDO (AN} + n%6?),

E[ID(YE*I3] < IDO)I3EIE 3]

In N

IA

B4(o)

It

A

1 *

ZIDO)BIANR = n2?)2.

These inequalities are obtained because

E(IN7I3] = ENN3|3] < n®0®
~ 1

E[JH3] < (Al + n’c?).

For the second-term, it follows from the fact that the matrix 15f is independent of A* (and

hence e*) that

et'Pkek
<k t 2N .
Ellg’ (A%, A)e 3] = E : = 3" EfJe* Pte*?]
~ =1
ek'PgNek 0
W N
< D EUPHIRNeIZ] = > EUPFIZIE N * 5]
i=1 =1
= CE(leM ) (D.25)
where C; = Y28 E[||P¥||3] is a constant term. By the assumption: E{|le*||4] < 2(E[||e*|3])?,
(D.2.5) is reduced to
Efllp' (A, A3 < Cue(Ef|e*|I3)? (D.2.6)

For the third-term, since F(A*) = D(A*)(1AA')" +b) = Oz, and the input noisy matrices N}

and N3 are uncorrelated with one another, we have

E[IFOIE] = ;EE[IID(/\*)(AﬁE')\*+ﬁ§(A+ﬁ§)’)||§]

1 * nT#! 4 T+ N
< EHD(A WEEIANS A + N(A + N3Y'||3]
1 * * ok
< anaan(,\ NI 321 ANZ +n?6%) = 7°(0) (D.2.7)
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For the fourth-term, we note that the matrices VIT(A*) and p'(A*, A*) are mutually independent.
Thus,

E[F VT(A )/ (A", A)e] = Ele¥ E[VT(X")p' (A", Ak)e¥|3¥]]
= E[" E[VT(\)E[R' (X, 3¥)e* |3
Applying the Cauchy-Schwarz inequality yields

[E[¥ VI ) (A, 3!l < Eflle*|l2 EIVT(A)]Il2 | Elg' (A", A*)e*[3¥]]la]
(1 — hjmin ) Eflie* (2| Elp' (A", X)e"|N ][] (D.2.8)

H

where |[E[VT(A*)|llz = I — AVF(A*)|l2 = 1 — hfjmin for 0 < h < n% Nmaz a0d Tmin are,
respectively, the largest and the smallest eigenvalues of VF(A*).

Since the matrix P¥ is independent of A* (and hence e*), it follows that

o 2N . IN N
1E[p' (A%, X)e*|AF]l; = \JZ | (e Plek|\F|[2 = JZ |e¥’ B[Pfle 2

i=1 i=1

< \Jg I3 EPX3 < Veille* i3 (D.2.9)
Combining (D.2.9) and (D.2.8), we obtain
B VRGO, e < VEL( — Arimin) Bl 1. (D.2.10)
To analyze E[||e¥||3], we make use of the Cauchy-Schwarz inequality again. This leads to

Elle* 3] = Elie*Illle* i3] < v/ Ellle*l2]y/ Elle )4
< VEE(lI3)? (D.2.11)

Combining (D.2.11} with (D.2.10), we obtain the following inequality for the fourth-term

|Ble¥ VT(A)p (3", X)ek]| < VEIE(L — Bmin) (E[e*13]) 2. (D.2.12)
Similarly, we can show that the fifth-term yields
B VIOFA) = |E[e¥|E[TTA)EW)]| < |Ble ]l BIYT O FA)]Il2
< VBl BIVT (AT F(A")]lz.
Moreover, since E[F(A*)] = F()\*) = 0, we obtain
IBYTOA)FO)2 = ||E{(I—hvf‘(/\*))ﬁm}||2
= [|B[F(A")] = hE[VF(A)F(A")]]ls

< BE[VFO)F(X)]ll2 = hCa(o)
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where, by (D.2.7), we obtain the following inequalities for the constant term Cz(e):

Cale) = lIE[Vf’()\’“)f‘(f\*.)]llz <V EIIVEO) 3]y EIF ()3
B(o)y/7*(0),

(A

while E{|| VF(A\*)||3] = ©(c). Thus, the fifth-term is reduced to

B[ VTOAFO))| < hCa(o)y/ Elle* 12 (D.2.13)

For the last term, we note that the matrix F(A\*) is independent of e* and that E[F(A*)] = 0.
Thus,

E[F' (AN’ (A, AF)ef] = E[F'(A)]Elp' (A%, A)e*] = (D.2.14)
Combining (D.2.3)-(D.2.14) with (D.2.2) yields

2 3
Efjle* 3] < a(h)E[ne“u%H%CIE(E[ue’“H%])?+h\/’éﬁ(1—hnmm)(E[ize’W@]ﬂ
+2h2Cy(0)y/ Ellle*|3] + £%5* (o)
= §(h)Blle*3] + hf(B{le"13)) + h2(2C2(0)y/ Eflle*|3] +7"(0)) (D.2.15)

where the function f: R — R is defined by

FENFIE) = TCUBINHIRN? + VEEL ~ hrmin) (B[l 12D Y.

Clearly, for each &,

LB
Blle*|zl»0  E{lleX(3]

Hence, for any € > 0, there exists a § = d(¢), such that for each k,

FE*3])
Ellle*|i3]

Since € > 0 can be chosen arbitrarily small, it follows from (D.2.16) and (D.2.15) that

<e for Efje¥|3] < 4. (D.2.16)

Eflle*"1|I3] < (@(h) + eh) E[le*[13] + A*(2C2(0)VE + 7"(o))-
= B[l i3] < qh)Elle* 3] + h*(2C2(0)V3E + 77 (0)). (D.2.17)

Clearly, by (D.2.17), we have

E[”ek-‘-lllg] < (q‘-(h))k+lE[||e0 ng] + hz(QC-z(O')\/S +?*(0'))(1 - (ﬁ(h))k+1)

B 1—g(h)
2 oL %
— (a-(h))bH. (E[“e[\”%} _ h (202(10)_\/5(;;7 (U))) + h2(262(f)—‘é§(;5 Y (U))
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If the initial error point € is such that E[ffe%||3] is in a sufficiently small neighborhood of the

origin, and the step-size A is chosen sufficiently small such that
G(h) = 1 = 2hnmin + B2|©(0)ll2 < 1,

then it follows that E[/le**!||2] < & < 4, Vk. Thus, the above inequality leads to

h(2C3(a)V3 +3*(0))
2Mmin

where the neighborhood V' (h) of the step-size h satisfies 0 < V(R) < dfor 0 < b < nm%, and

Jim Bljle* 3] < =V(R) (D.2.18)

imV(k) = 0.
h—{
Note that if ¢ = /var(n;) — 0 where n is the noise vector, then V(h) — O for0 < h < 5;-"2:

Since B[a*|AF] — u* = —} A’eF, it follows from (D.2.18) that
kL 1
Jm (B[ M] - w|f]) < AV (R).
~00

The proof is complete. 1

D.3 Proof of Theorem 7.3.3

Let e* 2 3* —A* be the kth error vector about A* and consider the adaptive pulse scheme (D.1.1)

with variable step-size hg. Then, we obtain

et = TR (A*)ek — %hkp’()\*,j\k)ek — RF(A), (D.3.1)
where the matrices VI'(\*), o' (A*, A¥) and F()\*) are defined in Appendix D.1.
Denote by
Fi = ofAl,..., AF}
the smallest o-algebra generated by the random variables 5\1, AR

Taking the square-norm and the conditional expectations with respect to Fj on both sides

of (D.3.1), we obtain
E(je** 31 7] = E[{VT'(A*)e* — %‘-p’(k*, AFye* — mF(A)|131 7]
= E[vVT'(\")e |31 F] + ihEEHIP’(/\*,ik)ekllglﬁ] + R E(IF (A 317%]
—hi B[eF VT(A* )/ (A, N)et| 7] — 2h Ble¥ VI (M) F(A")|Fe
+ALE[F' (A" ) (A%, A)e®| Fi]

EA

BITTO)BIA] + TR (00, 30t 317 + RBIIF ()37
+hi| Ble® VT(A")p (A", A¥)e* | Fil| + 2R E[eX VT )F(A*)| Fe)l
+hE| BIF (X")p' (A%, AF)e| 7| (D.3.2)
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In the sequel, we investigate each term on the right-hand side of (D.3.2).

For the first-term, we obtain

E||[VT'(A)e*|FlE] = ¥ BYT(A)VI(A7)|File®
ghi)lle® 13, (D.3.3)

I

where §(hi) = 1 = 2h4Nmin + h2O(0) and ©(o) is given in the proof of Theorem 7.3.2.

For the second-term, we note that the matrix P¥ is independent of A* (and hence e*). Thus,

2N
E[lg'(\, M)etFuld] = 3 Efle” Pef| 7l
W
> BBl 13 = Calle(13 (D.3.4)

i=1

IA

where C; = 32N E[||f’f||§] is a constant term. By (D.2.7), the third term is given by
BIF(A)I3] < %nzdzllD(A*)H%IIA*H%@HAH% +nlo?) =7*(o) (D.3.5)
For the fourth-term, we have
B[ VT()e' (0, M)ef |l < vCLL — hictmin) 1€ (D.3.6)

Similarly, the fifth-term is reduced to

|E[e¥ VTONFON)|F] = [e¥ B[VT(A)F()]]
< [le* | E[VTOFA)]||2
< haCa(o)lle®|l2, (D.3.7)

where the constant term Cq(o) satisfies 0 < Co(e) < VO(0)}V/F*{0).
For the last term, since E[F(A*)] = 0 and F(\*) is uncorrelated with e* (hence, p(\*, A¥)),

we obtain
E[F' (A (A%, AFYe® | Fi] = E[F (A )E(g (X", AF)| File* = 0. (D.3.8)
Combining (D.3.3)- (D.3.8) with (D.3.2) yields

- 1
Bl 31 7] < qh)le®F + 2hiCule ] + hev/Cr (1 — Aximin) lle* 5
+2h%Ca(o)|le®||2 + REF* (o)
= §(he)lle¥l[3 + hef(lle®13) + hE(2C2(0)|le¥]l2 +53%(0))  (D.3.9)

Fa
where f([|e*[3) = §hxCille® I3 + V1 (1 = Aetimin) lle¥]3.

129



Clearly, for each k,
F(le*11%)

lekliz—0 [le*||Z

Hence, for any ¢ > 0, there exists a § = 4(¢) such that, for each k&,

k2
fsil < for IeflE <6 (D:3.10)
2

Since € > 0 can be chosen arbitrarily small, it follows from (D.3.10) and {D.3.9) that

E[lle**317%] < (@(h) + ehs) lle*[3hE(2C2(0)VE +57(o))
= E[lle* 13| 7] < §(hw) Bl e*131Fx] + 1EC(0,6) (D.3.11)

where C{o,d) = (262(0)\/3 +ﬁ*(a)) is a constant term. Accordingly, it follows from (1D.3.11)
that
k k
Ele* M Z1F] < 1€l H a(hs) +>_hiC(0,8) ] ahy). (D-3.12)
i= J=i+l
(a) Mean Square Convergence

Define a real number sequence which is generated as follows:
A [o. =] 20
Z = g [T aha+ Y hIC(s,4) H (h
L=kl i=k+1 j=itl
Taking the conditional expectations of 2! with respect to F, it follows from (D.3.11) that

E[zk+11fk] = E[Hek+1||§|}_k] ﬁ glhi) + i h?C(U,é) H ﬁ(hj)

i=k+1 i=k+1 J=i+l

{amlet B+ w20} [ @)+ 3 808 I athy)

=kl i=k+1 ikl
oc e ]
= |le*}i3 [T atke) + Z h?C(o, ) H q(hy)
1=k tomk =i+l
= 25 (D.3.13)

IA

Let Ty = o{z!,...,z*} denote the smallest o-algebra generated by the random variables
z',...,zF. By the definition of 2*, we note that z7,j = 1,... k, are Fj-measurable. Thus,
it implies that T’y C F;. Taking conditional expectations of {D.3.13) with respect to I'x and

following from the commutative property of conditional expectations, we have

E[z**Y ] = E[E[*TIF] = BIEF R0k
E[2*|Ty] = 2*.

IA

== E[FYr,] < 2*
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Thus, the stochastic process {zk,k > 1} is a super-Martingale relative to the nonincreasing

family of the o-algebra generated by z!,...,2* and
< BN <ERFI<. Bl <>

By the super-Martingale convergence theorems [8, 50], it follows that, for the stochastic process
{25} |, limg_eo 2° exists with probability 1 and is finite. Making use of the assumption:
Y2, h2 < oo and the definition of z*, the product and sum-product terms are convergent.
Thus, it follows that limg_,o ||€*||3 exists w.p.1, and Ef||e*||?] is uniformly bounded. We note
that the sequence of step-sizes {hg }32 ) which satisfies by > 0, Y52, A = oo, and 372, hi < o0,
ensures hy — 0 as k& — oo. Therefore, for every sufficiently small hg, k = 0,1,..., such that
0 < G(hg) = 1 — 2h0min + AE||O(o)l2 < 1, we have
H g(he) =0 and lim glhe) =1. (D.3.14)
k=0
Taking the expectations of (D.3.12) and letting & — o0, it follows from (D.3.14) that
lim E[lefl3] < E(le"(l] g )+ §h2 7,4) J-IL a(hs)

Therefore, we obtain the convergence in the mean square (ms) sense, i.e,

lim E[jle*|3] = o. (D.3.15)
k—co :
Since
E[@*Af —u* = —-12-A’e"‘, (D.3.16)

it follows that by taking the square norms and expectations on (D.3.16), we obtain the conver-

gence in the mean square sense to the optimal filter u”, i.e,
. SEITR] _ e2] —
lim BIE[E3% - u'lF = o

(b) With Probability 1
From part (a) of the theorem, we note that the sequence {||ek [ }:0_0 is convergent, i.e, limg_.o [|€*|I3

exists w.p.1. By Fatous’s lemma [48] and (D.3.13), we obtain

E

. kN2 . N2y 1 k2
Jim |le ||g] < Jlim Effle”|)3] = lim Efjle®(l3] = 0.
Clearly,

: kiy2
B [ Jim 112

=0« lim "2 =0, (wp.1).
k—o0
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Thus,

Prob{ [AF — A%z = D} =L

lim
k—ro0
Making use of (D.3.16), we obtain the convergence with probability one to the optimal filter,

L.e,
P'rob{lim ||E[ﬁ"|;\’°]—u*||2=0} - 1
k-ro0

This completes the proof. |
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