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Abstract 

To investigate the role of putrescine (PUT) in ethylene biosynthesis and fruit 

softening of plum (Prunus salicina Lindl. cv. Angelino), fruit on trees were sprayed 

one week before anticipated commercial harvest or after harvest dipped in an aqueous 

solution containing different concentrations of PUT (0.0, 0.1, 1.0 and 2.0 mM), and 

‘Tween 20’ (0.01%) as a surfactant. Following PUT treatments fruit were stored at 0 

± 1oC and 90 ± 5% RH for 0, 3 and 6 weeks. Ethylene production, activities of 1-

aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-aminocyclopropane-1-

carboxylic acid oxidase (ACO) enzymes, and 1-aminocyclopropane-1-carboxylic acid 

(ACC) content, fruit firmness and fruit softening enzymes including exo-

polygalacturonase (exo-PG), endo-polygalacturonase (endo-PG), pectin esterase (PE) 

and endo-1,4-β-D-glucanase were estimated after 0, 3 and 6 week of storage. Pre and 

postharvest PUT application reduced the ethylene production in ‘Angelino’ plum after 

3 and 6 weeks of storage as compared to untreated fruit. Preharvest spray application 

of higher PUT concentrations substantially reduced ethylene production as compared 

to lower PUT concentrations and postharvest PUT treatments. Activities of ACS 

enzymes and ACC contents during storage decreased with increased concentration of 

PUT applied irrespective of method of its application both in skin and pulp tissues. 

While, preharvest PUT-sprayed fruit exhibited lower ACO activities than postharvest 

PUT-treated skin and pulp tissues. The preharvest spray application of higher 

concentrations of PUT (2.0 and 1.0) significantly reduced the activities of fruit 

softening enzyme (exo-PG, endo-PG, PE and EGase) in skin and pulp tissues during 

storage. In conclusions, pre-storage application of PUT retarded plum fruit softening 

during low temperature storage through suppressed ethylene biosynthesis and reduced 
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activities of fruit softening enzymes such as PE, EGase, exo and endo-PG in skin and 

pulp tissues.   
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1. Introduction 

Polyamines (PAs) are a class of positively charged small aliphatic amines that 

are ubiquitous in living organisms. Putrescine (PUT), spermidine and spermine are the 

major forms of PAs found in plants and have been reported to affect fruit ripening and 

softening (Cohen, 1998; Pandey et al., 2000; Perez-Vicente et al., 2002; Malik and 

Singh, 2004; Malik and Singh, 2005).  

PAs inhibit ethylene biosynthesis (Smith, 1985) by competing with ethylene 

for common precursor S-adenosyl methionine (SAM) (Pandey et al., 2000). Ethylene 

and PAs have been found to exhibit opposite effects in fruit ripening and senescence. 

Reduced level of PAs have been correlated with increased ethylene production 

(Kumar et al., 1996; Walden et al., 1997). Exogenous application of PAs inhibit 

ethylene production (Bregoli et al., 2002; Perez-Vicente et al., 2002; Serrano et al., 

2003) and inhibition of polyamine biosynthesis enhanced ethylene production 

(Paksasorn et al., 1995). A possible explanation of the competitive relationship 

between PAs and ethylene could be the competitive demand for limited pool of their 

common precursor SAM and feed back inhibition of enzyme action system. During 

climacteric fruit ripening a burst in ethylene production is concomitant with increased 

activities of ACS and ACO enzymes (Lelievre et al., 1997). 

The ripening process in fruit is associated with enzymatic changes leading to 

fruit softening (Huber, 1983). Polygalacturonase (PG) has been reported to play 
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central role in fruit softening during fruit ripening process (Mithcham et al., 1991), 

while other enzymes involved in fruit softening include pectin methyl esterase (PME) 

(Zhou et al., 2000) and cellulases (Abu-Goukh and Bashir, 2003). Changes in the 

activities of cell wall softening enzymes have been investigated in some fruits during 

fruit ripening including apple (Knee, 1978), avocado (Jeong et al., 2002), cherry 

(Barrett and Gonzalez, 1994), papaya (Paull and Chen, 1983), pear (Hiwasa et al., 

2003) and tomato (Lashbrook et al., 1994). PG is a key enzyme involved in the 

hydrolytic cleavage of α-(1-4) galacturonan linkage (Fischer and Bennett, 1991) and 

is responsible for pectin disassembly during fruit ripening (Sitrit and Bennett, 1998). 

PAs have been reported to bind with negatively charged phospholipids 

component or other anionic sites on membrane and thus affect membrane fluidity and 

indirectly modulate the activities of membrane associated enzymes (Slocum et al., 

1984). PAs have been claimed as anti-senescent agent and their application reduced 

the softening with delayed senescence in several fruits (Kramer et al., 1991). PAs 

retard the senescence by stabilizing cell membrane (Borrell et al., 1997). Application 

of spermidine (0.1, 1.0 and 5.0 mM), spermine (2.0 mM) and PUT (10 mM) 

significantly delayed the fruit softening in peach fruit (Bregoli et al., 2002). 

Apparently no information is available on the role PUT in regulating the activities of 

ethylene biosynthesis and fruit softening enzymes in plum during low temperature 

storage and warrants further investigations. This study investigate the role of pre- and 

postharvest application of PUT on the activities of ethylene biosynthetic enzymes 

such as ACS, ACO and ACC content, as well as fruit softening enzymes including 

exo-PG, endo-PG, PE and EGase in skin and pulp tissues of ‘Angelino’ plum during 

low temperature  storage. 
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2 Materials and methods 

2.1 Plant materials 

The experiment was conducted on 15-year old plum (Prunus salicina Lindl. 

cv. Angelino) trees at Casuarina Valley Orchard (lat. 34o15´S; long. 116o09´E), 

Manjimup, South Western region of Western Australia. Trees were grafted on 

myrobalan (Prunus cerasifera Ehrh.) rootstock with row distances of 4.25 m x 4.25 m 

and plant distances of 2 m x 2 m, and were trained as palmette training system. 

Uniform trees free from pests and diseases were selected and all the experimental 

trees received similar cultural practices except the experimental treatments.  

2.2 Pre- and postharvest application of putrescine (PUT) 

Whole trees including fruit and leaves were sprayed with an aqueous solution 

containing different concentrations of PUT (0.0, 0.1, 1.0 and 2.0 mM) and ‘Tween 20’ 

(0.01%) as a surfactant till run-off, on March 11, 2004 about one week before 

anticipated commercial harvest. Five trees represented an experimental unit and were 

replicated three times. At a random total 288 fruit (24 per experimental unit) were 

harvested on March 17, 2004, at commercial maturity (TSS 13.85  1.1% and 

firmness 36.82  2.2N). Fruit free from visual symptoms of any disease or blemishes 

were harvested and immediately transported to the laboratory using an air-conditioned 

car. 

For postharvest PUT treatments, 288 fruit (24 per experimental unit) were 

harvested randomly from 60 unsprayed trees at commercial maturity (as explained 

above) were divided into four lots. Each lot of fruit was dipped in an aqueous solution 

containing different concentrations of PUT (0.0, 0.1, 1.0 and 2.0 mM) and surfactant 
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‘Tween 20’ (0.01%) for 6 minutes. Following pre- and postharvest PUT treatments 

fruit were stored for 0, 3 and 6 weeks at 0 ± 1oC and 90 ± 5% RH. Ethylene 

production and fruit firmness were recorded after 0, 3 and 6 weeks of storage. 

Activities of ethylene biosynthesis enzymes including 1-aminocyclopropane-1-

carboxylic acid synthase (ACS), 1-aminocyclopropane-1-carboxylic acid oxidase 

(ACO) and of 1-aminocyclopropane-1-carboxylic acid (ACC) content; fruit softening 

enzymes exo-polygalacturonase (exo-PG), endo-polygalacturonase (endo-PG), pectin 

esterase (PE) and endo-1,4-β-D-glucanase (EGase), were determined in fruit skin (1 

mm thick) and pulp tissues at 0, 3, and 6 weeks of storage.  

2.3 Determination of ethylene production  

Ethylene production from plum fruit was determined by using Gas 

Chromatograph (Agilent Technologies, 6890 N Network GC system, Palo Alto, 

California, USA) fitted with a 2 m long stainless steel Supelco column (Porapack-Q 

1/8", mesh size 80/100) and a flame ionization detector (FID). A detailed method for 

estimation of ethylene form plum fruit has been reported earlier by Khan and Singh 

(2007). Ethylene concentration was expressed as pmol kg-1 h-1.  

2.4 Determination of activities of ethylene biosynthesis enzymes and ACC content 

in fruit skin and pulp tissues 

Activities of ACS and ACO enzymes and ACC contents from fruit skin and 

pulp tissues  were determined as detailed by Khan and Singh (2007) and were 

expressed as pmol ACC mg protein-1 h-1, nmol C2H4 mg protein-1 h-1 and pmol g-1 FW 

respectively. 

2.5 Fruit firmness 
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Fruit firmness was determined by using electronic pressure tester (model EPT-

1 pressure tester, Lake City Technical Products Inc, Kelowna, BC, Canada) fitted with 

an 8 mm tip. After removing a thin slice of fruit skin, firmness was recorded from two 

sides of each fruit and means were expressed as newtons (N). 

2.6 Determination of activities of fruit softening enzymes in fruit skin and pulp 

tissues 

Activities of fruit softening enzymes including exo-PG, endo-PG, PE and 

EGase were determined from fruit skin and pulp as explained earlier by Khan and 

Singh (2007). The activities of exo-PG, endo-PG, PE and EGase enzymes were 

expressed as μg galacturonic acid mg protein-1 h-1, viscosity changes mg protein-1 h-1, 

mM NaOH mg protein-1 h-1 and viscosity changes mg protein-1 h-1 respectively.  

2.7 Protein determination 

Protein contents from fruit skin and pulp tissues were determined by using the 

method of  Bradford (1976) and were expressed as mg g-1 FW. 

2.8 Statistical Analysis 

Data were subjected to analysis of variance (ANOVA), using Genstat 9 release 

(Lawes Agricultural Trust, Rothamsted Experimental Station, Rothamsted, UK). 

Experimental data were analysed by using three factor factorial ANOVA including 

PUT concentrations, method of application and storage time. The effects of various 

treatments were assessed within ANOVA and least significance differences (Fisher’s 

LSD) were calculated following significant F test (P < 0.05). All the assumptions of 

analysis were checked to ensure validity of statistical analysis. Pearson correlations 

were calculated using SPSS package V.14.0 for windows, USA, to determine the 
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relationship between ethylene production and ethylene biosynthesis and fruit 

softening enzymes; fruit firmness and ethylene biosynthesis and fruit softening 

enzyme at P < 0.05. 

3. Results 

3.2 Ethylene production and activities of ethylene biosynthesis enzymes 

Pre- and postharvest application of PUT reduced the ethylene production in 

plum fruit after 3 and 6 weeks of storage as compared to untreated fruit. Reduction in 

ethylene production was concentration dependent and progressively decreased with 

increased concentrations of PUT applied (Fig. 1A and 1B). Mean ethylene production 

in postharvest PUT-treated fruit was 1.4-fold and 1.7-fold higher than preharvest PUT 

treatments after 3 and 6 weeks of storage respectively (Fig. 1C). 

Pre- and postharvest PUT treatments significantly (P ≤ 0.05) affected the 

activities of ACS, ACO enzymes as well as ACC content in fruit skin and pulp tissues 

after 3 and 6 weeks of storage (Fig. 2A-F). During storage, methods of PUT 

application did not show any difference in the activities of ACS enzymes in the skin 

as well as in pulp tissues. All PUT treatments reduced the ACS activities in fruit skin 

and pulp tissues as compared to untreated fruit, whilst no significant difference was 

observed among the PUT concentrations. Pulp tissues exhibited lower mean ACS 

activities than skin tissues (Fig. 2C and 2F). PUT treatments also significantly 

reduced the activities of ACO enzyme during storage both in fruit skin and pulp 

tissues (Fig. 3A-F). Reduction in the ACO activities with exogenous PUT treatments 

were concentration dependant, higher PUT concentration (2.0 mM) significantly 

reduced ACO activities in skin and pulp tissues compared to other PUT 

concentrations. Preharvest PUT-sprayed fruit exhibited 1.2-fold lower mean ACO 
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activity before storage and maintained it even after 3 and 6 weeks storage in both skin 

and pulp tissues respectively (Fig. 3C and 3F). Method of PUT application did not 

affect the ACC contents in the skin and pulp tissues after 3 and 6 weeks of storage. 

Higher PUT concentrations (1.0 mM and 2.0 mM) reduced ACC contents during 

storage as compared to 0.5 mM PUT-treated and control fruit (Fig. 4A-F). Mean ACC 

contents were higher in skin tissue as compared to pulp tissues irrespective of method 

of PUT application. In pulp tissues mean ACC contents in preharvest PUT-treated 

fruit before storage were about 1-fold lower than postharvest PUT-treated fruit, after 6 

weeks of storage  both pre- and postharvest PUT treatments did not show any 

difference between their mean ACC contents in pulp tissues (Fig. 4F). 

3.2.1 Fruit softening and fruit softening enzymes 

Pre- and postharvest PUT treatments to plum fruit markedly retarded the fruit 

softening during 3 and 6 weeks of storage period at 0 ± 1oC and 90 ± 5% RH (Table 

1). The methods of PUT application did not show any significant (P ≤ 0.05) effect on 

fruit firmness (Table 1). After 3 weeks of storage, the delay in fruit softening in 

preharvest PUT-treated fruit was concentration dependent and fruit treated with 

preharvest 2.0 mM PUT were 9.4% more firm as compared to other treatments, whilst 

after 6 weeks of storage no significant differences were observed among preharvest 

PUT concentrations (Table 1). Postharvest PUT (1.0 mM and 2.0 mM) treated fruit 

maintained higher fruit firmness (14.3% and 16.5%) than control fruit after 3 and 6 

weeks of low temperature storage respectively. 

Methods of PUT application and its concentrations significantly affected the 

exo-PG activities in fruit skin and pulp tissues during storage. Preharvest PUT-treated 

fruit skin tissue exhibited lower exo-PG activities than postharvest PUT treatments 
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after 0, 3 and 6 weeks of low temperature storage (Fig. 5A-C). Postharvest PUT-

treated fruit skin tissue exhibited lower exo-PG activities than control fruit; however 

no significant differences were recorded among the PUT concentrations applied. 

Mean activities of exo-PG enzymes were lower in fruit pulp tissues than skin tissues 

during storage period. Pulp tissues of preharvest PUT-sprayed fruit before storage 

showed lower exo-PG activities, whilst after 3 and 6 weeks of storage no significant 

differences were recorded between control and preharvest PUT-sprayed fruit pulp 

tissues (Fig. 5D). Pulp tissues of postharvest PUT-treated fruit irrespective of PUT 

concentrations applied had significantly reduced the exo-PG activities compared to 

untreated fruit (Fig. 5E). Mean exo-PG activities in preharvest PUT-treated fruit skin 

tissues were lower than postharvest PUT application (Fig. 5C and 5F). 

The endo-PG activities were reduced in the skin of preharvest PUT-sprayed 

fruit with increased storage period and concentration of PUT applied. Whilst, 

postharvest PUT dip treatments did not show any change in activities of endo-PG 

enzymes in fruit skin tissues up to 3 weeks of storage. Later on it decreased with 

increase in the concentrations of PUT applied (Fig. 6A-C). Similarly, higher 

concentrations of pre- and postharvest application of PUT reduced the activities of 

endo-PG enzyme in pulp tissues as compared to pulp tissues of control fruit (Fig. 6D-

E). Mean endo-PG activities were higher in postharvest PUT treated fruit skin and 

pulp tissues than preharvest spray application (Fig. 6C and 6F). 

Pre- and postharvest PUT treatments and storage time significantly affected 

the PE activities in plum fruit skin and pulp tissues (Fig. 7A-F). Fruit sprayed with 

higher PUT concentrations (1.0 mM and 2.0 mM) exhibited lower PE activities in 

fruit skin tissues after 3 and 6 weeks of storage than 0.1 mM PUT-treated and 
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untreated fruit (Fig. 7A). Postharvest PUT-treated fruit skin tissues resulted in reduced 

activities of PE after 3 and 6 weeks of storage as compared to control fruit (Fig. 7B). 

Activities of PE enzymes in postharvest PUT-treated fruit pulp tissues increased after 

3 and 6 weeks of storage and fruit treated with higher PUT concentration (2.0 mM) 

exhibited 27.4% and 25.6% lower PE activities in pulp tissues after 3 and 6 weeks of 

storage as compared to untreated fruit respectively (Fig. 7E). Storage period did not 

affect the PE activities in preharvest PUT-sprayed fruit pulp tissue, whilst PE 

activities in control fruit pulp tissues increased with extended storage period (Fig. 

7D). Postharvest PUT-treated fruit pulp tissues exhibited higher mean PE activity than 

preharvest PUT-sprayed fruit pulp tissues (Fig. 7F). 

PUT treatments did not affect the EGase activities before storage in both pre- 

and postharvest PUT-treated fruit skin tissues (Fig. 8A and 8B). After 3 and 6 weeks 

of storage, pre- and postharvest PUT-treated fruit skin tissues exhibited reduced 

EGase activities with increased concentration of PUT applied as compared to control 

fruit (Fig. 8A and 8B). Mean EGase activity was higher in postharvest PUT-treated 

fruit skin tissue than preharvest PUT-sprayed fruit skin tissue (Fig. 8C). Similarly, 

pre- and postharvest PUT treatments reduced the EGase activities in pulp tissues 

during 3 and 6 weeks of storage compared to untreated fruit (Fig. 8D and 8E). 

However, postharvest PUT-treated fruit pulp tissues exhibited higher activities than 

preharvest PUT-treated pulp tissues (Fig. 8C).  

3.2.2 Role of PUT regulated  ethylene biosynthesis and fruit softening enzymes in 

fruit softening 

Pre- and postharvest applications of PUT to plum fruit reduced ethylene 

production and activities of ethylene biosynthesis enzymes (ACS and ACO) and as 
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well as fruit softening enzymes in skin and pulp tissues during low temperature 

storage (Fig. 1-8). The activities of exo-PG and PE enzymes in PUT-treated skin and 

pulp tissues were negatively correlated to changes in fruit firmness and positively 

correlated to ethylene production regulated with PUT application during low 

temperature storage (Table 2). Fruit firmness showed significant negative correlation 

(P ≤ 0.01) with ACS activities in fruit skin (r = -0.590) and pulp (r = -0.457) tissues. 

ACO activities in fruit skin (r = -0.502) and pulp (r = -0.537) tissues exhibited 

significant (P ≤ 0.01) negative correlation with fruit firmness. Fruit firmness showed a 

significant (P ≤ 0.01) negative correlation with ACC content in fruit skin (r = -0.42) 

and pulp (r = -0.564) tissues, as regulated with pre- and postharvest PUT treatments.  

Plum fruit firmness showed significant negative (P ≤ 0.01 and P ≤ 0.05) 

correlation with exo-PG activities in fruit skin (r = -0.67) and pulp (r = -0.726) tissues 

respectively, while ethylene production regulated with pre- and postharvest PUT 

treatments showed a significant (P ≤ 0.01) positive correlation with exo-PG activities 

in fruit skin (r = 0.614) and pulp (r = 0.6) tissues (Table 2). PE activities in skin and 

pulp tissues of PUT-treated fruit showed significant (P ≤ 0.01) negative correlations (r 

= -0.386 and -0.369) with fruit firmness respectively, while the activities of PE in the 

skin and pulp tissues of PUT-treated fruit showed significant (P ≤ 0.01) positive 

correlations with ethylene production (r = 0.429 and 0.467) respectively. There were 

no significant correlations between ethylene and endo-PG activities in fruit skin as 

well as in pulp tissues. Similarly no significant correlations were found between fruit 

firmness and EGase activities in skin and pulp tissues, and between fruit firmness and 

endo-PG activities in pulp tissues.  

4. Discussion 
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4.1 Ethylene production and activities of ethylene biosynthesis enzymes  

Pre- and postharvest PUT treatments reduced the ethylene production during 

storage in ‘Angelino’ plum fruit. There was inverse relationship between 

concentrations of PUT applied and ethylene production. The reduction in ethylene 

production with PUT treatment may be attributed to competitive biosynthesis 

mechanism between ethylene and polyamines (Cohen, 1998) and may also be argued 

to the reduction of ACS and ACO activities as evident from our experimental data 

(Fig. 1-2) and also reported earlier (Apelbaum et al., 1981; Even-Chen et al., 1982; Ke 

and Romani, 1988; Kakkar and Rai, 1993; Lee et al., 1997). Similarly, reduction in 

ethylene  production following PAs treatments has been reported in apricot (Martinez-

Romero et al., 2001), kiwifruit (Petkou et al., 2004), Mango (Malik and Singh, 2005), 

peach (Bregoli et al., 2002), and some plum cultivars (Perez-Vicente et al., 2001; 

Serrano et al., 2003).  

To the best of our knowledge it is the first time that effects of pre- and 

postharvest PUT treatments on the activities of ethylene biosynthesis enzymes (ACS 

and ACO) and ACC contents in plum have been investigated. Our experimental data 

show that exogenous PUT treatments reduced ACS and ACO activities in fruit skin 

and pulp tissues after 3 and 6 weeks of storage which resulted in suppressed ethylene 

production. Possibly PUT induced reduction in ACS activity seems to be associated 

with the competition of ethylene and PAs biosynthesis pathways for their common 

precursor SAM. The reduction in ACS activities resulted in the production of 

markedly reduced ACC contents and activities of ACO enzymes which consequently 

suppressed the endogenous ethylene production. PAs induced reduction of ACS 

activities have also been reported in pear and avocado (Kakkar and Rai, 1993). PAs 
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have been reported to inhibit conversion of SAM into ACC in orange (Even-Chen et 

al., 1982). Similarly exogenous application PAs has been claimed to reduce ethylene 

production in variety of plant tissues by reducing activity of ACS and ACO enzymes 

(Ke and Romani, 1988; Lee et al., 1997) and by changing the flux of SAM leading to 

PAs synthesis (Even-Chen et al., 1982; Lee et al., 1997).  Thus it may be argued that 

PUT influences the ethylene production by competing for the common precursor 

SAM as well as suppressing the activities of ethylene biosynthesis enzymes. 

4.2 Fruit softening and activities of  fruit softening enzymes 

Exogenous application of PUT either as preharvest spray or postharvest dip 

retarded fruit softening during storage (Table 1). The reduction in fruit softening with 

PUT treatments may be due to reduction in endogenous ethylene production as 

evident from a significant (P ≤ 0.01) negative correlation between fruit firmness and 

the activities of ethylene biosynthesis enzymes and ACC contents in both fruit skin 

and pulp tissues (Table 2). Moreover exogenous application of 1-methylcyclopropene 

(1-MCP, ethylene inhibitor) has been found to reduce fruit softening in plum (Khan 

and Singh, 2004). Similarly, exogenous applications of PAs have also been reported 

to maintain the fruit firmness during ripening and at low temperature storage in 

‘Frior’, ‘Black Star’ and ‘Santa Rosa’ plum cultivars (Abu-Kpawoh et al., 2002; 

Valero et al., 2002; Serrano et al., 2003). 

The cell wall softening enzymes play key role in cell wall degradation and 

fruit softening during fruit ripening. Delayed fruit softening in PUT-treated fruit may 

be ascribed to the reduction in the activities of fruit softening enzymes such as exo-

PG, endo-PG, PE and EGase. It has been reported that PG, PE and EGase enzymes 

are primarily responsible for ripening associated pectin degradation and fruit 
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softening (Huber, 1983; Brady, 1987). PE catalyses the softening process through de-

esterification of pectin followed by pectin depolymerisation, catalysed by PG (Roe 

and Bruemmer, 1981). Our experimental data show that softening of ‘Angelino’ plum 

fruit during storage is correlated with activities fruit softening enzymes (Table 2). The 

activities of exo-PG, endo-PG, PE and EGase enzymes were higher in untreated fruit 

skin and pulp tissues as compared to PUT-treated fruit (Fig. 5-8). Similarly in apricot, 

PAs applications retarded the senescence by stabilising the cell membrane and 

inhibiting the activities of PG and PME involved in the softening of enzymes 

(Martinez-Romero et al., 2002).  

The direct role of PUT in the reduction of activities of fruit softening enzymes 

is yet not well understood. This might be associated to the inhibitory effect of PUT on 

the endogenous ethylene production as the activities of exo-PG and PE enzymes in 

fruit skin and pulp tissues showed a significant (P ≤ 0.01) positive correlation with 

endogenous ethylene production (Table 2). Recently, reduced fruit softening and 

reduction in the activities of exo-PG, end-PG, PE and Egase enzymes with exogenous 

application of ethylene inhibitor (1-MCP) has been reported in plum (Khan and Singh, 

2007) further support this hypothesis. In ‘Songold’ plum, increased PG activity was 

found to be responsible for the increased rate of pectin degradation and fruit softening 

(Taylor et al., 1995). The cell wall softening enzymes were also reported to play key 

role in cell wall degradation in peach and nectarine (Ben-Arie and Sonego, 1980).  

In conclusion preharvest spray and postharvest dip application of PUT 

retarded plum fruit softening during low temperature storage due to suppressed 

ethylene production, reduced activities of ethylene biosynthesis enzymes (ACS, ACO) 
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and ACC contents, and as well as  fruit softening enzymes (PE, EGase, exo and endo-

PG) in skin as well as pulp tissues. 
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Table 1  1 

Effects of different concentrations of putrescine (PUT) applied as preharvest spray 2 

and postharvest dip application on fruit firmness in ‘Angelino’ plum.  3 

n = 24 (8 fruit x 3 replications). NS = not significant. 4 

PUT  concentrations Method Storage period (weeks) Mean
(mM) 0 3 6 

0.0 Preharvest 37.2 33.2 29.9 33.4
0.1 Preharvest 36.8 34.4 30.9 34.0 
1.0 Preharvest 36.4 35.1 30.8 34.1 
2.0 Preharvest 37.2 36.3 30.7 34.7 

      
Mean   36.8 34.7 30.5  

      
0.0  Postharvest 36.7 30.85 28.3 31.9 
0.1 Postharvest 34.7 33.13 31.1 33.0 
1.0 Postharvest 36.3 35.2 32.4 34.6 
2.0 Postharvest 36.6 36.0 33.0 35.2 

      
Mean   36.9 33.8 31.2  

      
LSD P ≤ 0.05      

     
PUT concentrations 0.65 0.64  0.66  0.65 
Method NS NS NS NS 
Storage period 0.56 0.56 0.54 0.55 
PUT concentrations x  storage period 1.11 1.12 1.10 1.09 
PUT concentrations x method 0.91 0.90 0.92 0.91 
PUT concentrations x  storage period x method NS NS NS NS 
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Table 2  1 

Relationships between ethylene production, ethylene biosynthesis and fruit softening 2 

enzymes; and fruit firmness, ethylene biosynthesis and fruit softening enzymes in skin 3 

and pulp tissues of ‘Angelino’ plum treated with different concentrations of PUT as 4 

preharvest spray and postharvest dip applications. 5 

NS, *, ** = not significant or significant at P ≤ 0.05 or 0.01 respectively 6 

 7 

8 

Variable compared 
Pearson’s correlation

Skin Pulp 
Ethylene vs ACS 0.433** 0.341** 
Ethylene  vs  ACO 0.491** 0.504** 
Ethylene  vs  ACC 0.288* 0.386** 
Ethylene  vs  exo-PG 0.614** 0.600** 
Ethylene  vs  endo-PG NS NS 
Ethylene  vs  PE 0.429** 0.467** 
Ethylene  vs  EGase NS NS 
Firmness  vs  ACS -0.590** -0.457** 
Firmness  vs  ACO -0.502** -0.537** 
Firmness  vs  ACC -0.420** -0.564** 
Firmness  vs  exo-PG -0.670** -0.726* 
Firmness  vs  endo-PG -0.290* NS 
Firmness  vs  PE -0.386** -0.369** 
Firmness  vs  EGase NS NS 
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Fig. 1. 1 

Effects of different concentrations of PUT (T) applied as preharvest spray and 2 

postharvest dip applications on ethylene production in ‘Angelino’ plum stored for 0, 3 3 

and 6 weeks (SP). (A = preharvest, B = postharvest and C = mean ethylene 4 

production). n = 3 replicates. Vertical bars represent S.E. of means. LSD (P ≤ 0.05) 5 

for preharvest: T = 0.47, SP = 0.41, T x SP = 0.81. Postharvest: T = 0.46, SP = 0.4, T 6 

x SP = 0.81. Mean: T = 0.46, SP = 0.41, T x SP = 0.82. 7 

 8 

Fig. 2. 9 

Effects of different concentrations of PUT (T) applied as preharvest spray  and 10 

postharvest dip applications on the activities of ACS enzymes in skin and pulp tissues 11 

of ‘Angelino’ plum stored for 0, 3 and 6 weeks (SP).(A and D = preharvest, B and E = 12 

postharvest and C and F = mean ACS activities). n = 3 replicates. Vertical bars 13 

represent S.E. of means. LSD (P ≤ 0.05) for skin, preharvest: T = 0.062, SP = 0.05, T 14 

x SP = 0.11. Postharvest: T = 0.06, SP = 0.05, T x SP = 1.11. Mean: T = 0.06, SP = 15 

0.05, T x SP = 0.11. Pulp, preharvest: T = 0.06, SP = 0.05, T x SP = 0.09. Postharvest: 16 

T = 0.06, SP = 0.05, T x SP = 0.1. Mean: T = 0.06, SP = .0.05, T x SP = 0.1. 17 
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Fig. 3. 1 

Effects of different concentrations of PUT (T) applied as preharvest spray  and 2 

postharvest dip applications on the activities of ACO enzymes in skin and pulp tissues 3 

of ‘Angelino’ plum stored for 0, 3 and 6 weeks (SP). (A and D = preharvest, B and E 4 

= postharvest and C and F = mean ACO activities). n = 3 replicates. Vertical bars 5 

represent S.E. of means. LSD (P ≤ 0.05) for skin, preharvest: T = 0.6, SP = 0.52, T x 6 

SP = NS. Postharvest: T = 0.61, SP = 0.52, T x SP = NS. Mean: T = 0.61, SP = 0.53, 7 

T x SP = NS. Pulp, preharvest: T = 0.53, SP = 0.46, T x SP = NS. Postharvest: T = 8 

0.52, SP = 0.46, T x SP = NS. Mean: T = 0.53, SP = 0.45, T x SP = NS. NS = not 9 

significant.  10 

 11 

Fig. 4. 12 

Effects of different concentrations of PUT (T) applied as preharvest spray  and 13 

postharvest dip applications on the ACC content in skin and pulp tissues of 14 

‘Angelino’ plum stored for 0, 3 and 6 weeks (SP). (A and D = preharvest, B and E = 15 

postharvest and C and F = mean ACC contents). n = 3 replicates. Vertical bars 16 

represent S.E. of means. LSD (P ≤ 0.05) for skin, preharvest: T = 0.09, SP = 0.08, T x 17 

SP = NS. Postharvest: T = 0.093, SP = 0.08, T x SP = NS. Mean: T = 0.09, SP = 0.08, 18 

T x SP = NS. Pulp, preharvest: T = 0.06, SP = 0.05, T x SP = NS. Postharvest: T = 19 

0.06, SP = 0.05, T x SP = NS. Mean: T = 0.06, SP = 0.053, T x SP = NS. NS = not 20 

significant. 21 
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Fig. 5. 1 

Effects of different concentrations of PUT (T) applied as preharvest spray  and 2 

postharvest dip applications on the activities of exo-PG enzymes in skin and pulp 3 

tissues of ‘Angelino’ plum stored for 0, 3 and 6 weeks (SP). (A and D = preharvest, B 4 

and E = postharvest and C and F = mean exo-PG activities). n = 3 replicates. Vertical 5 

bars represent S.E. of means. LSD (P ≤ 0.05) for skin, preharvest: T = 1.46, SP = 6 

1.27, T x SP = 2.53. Postharvest: T = 1.45, SP = 1.25, T x SP = 2.52. Mean: T = 1.47, 7 

SP = 1.26, T x SP = 2.53. Pulp, preharvest: T = 1.53, SP = 1.33, T x SP = NS. 8 

Postharvest: T = 1.54, SP = 1.34, T x SP = NS. Mean: T = 1.54, SP = 1.34, T x SP = 9 

NS. NS = not significant. 10 

 11 

Fig. 6. 12 

Effects of different concentrations of PUT (T) applied as preharvest spray  and 13 

postharvest dip applications on the activities of endo-PG enzymes in skin and pulp 14 

tissues of ‘Angelino’ plum stored for 0, 3 and 6 weeks (SP). (A and D = preharvest, B 15 

and E = postharvest and C and F = mean endo-PG activities). n = 3 replicates. Vertical 16 

bars represent S.E. of means. LSD (P ≤ 0.05) for skin, preharvest: T = 1.35, SP = 17 

1.17, T x SP = NS. Postharvest: T = 1.35, SP = 1.16, T x SP = NS. Mean: T = 1.35, 18 

SP = 1.17, T x SP = NS. Pulp, preharvest: T = 1.31, SP = 1.14, T x SP = 2.23. 19 

Postharvest: T = 1.32, SP = 1.15, T x SP = 2.28. Mean: T = 1.32, SP = 1.14, T x SP = 20 

2.28. NS = not significant. 21 
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Fig. 7. 1 

Effects of different concentrations of PUT (T) applied as preharvest spray  and 2 

postharvest dip applications on the activities of PE enzymes in skin and pulp tissues 3 

of ‘Angelino’ plum stored for 0, 3 and 6 weeks (SP). (A and D = preharvest, B and E 4 

= postharvest and C and F = mean PE activities). n = 3 replicates. Vertical bars 5 

represent S.E. of means. LSD (P ≤ 0.05) for skin, preharvest: T = 0.003, SP = 0.002, 6 

T x SP = NS. Postharvest: T = 0.003, SP = 0.002, T x SP = NS. Mean: T = 0.002, SP 7 

= .003, T x SP = NS. Pulp, preharvest: T = 0.003, SP = 0.002, T x SP = 0.005. 8 

Postharvest: T = 0.002, SP = 0.003, T x SP = 0.005. Mean: T = 0.002, SP = 0.003, T x 9 

SP = 0.005.NS = not significant. 10 

 11 

Fig. 8. 12 

Effects of different concentrations of PUT (T) applied as preharvest spray  and 13 

postharvest dip applications on the activities of EGase enzymes in skin and pulp 14 

tissues of ‘Angelino’ plum stored for 0, 3 and 6 weeks (SP). (A and D = preharvest, B 15 

and E = postharvest and C and F = mean EGase activities). n = 3 replicates. Vertical 16 

bars represent S.E. of means. LSD (P ≤ 0.05) for skin, preharvest: T = 2.26, SP = 17 

1.96, T x SP = 3.93. Postharvest: T = 2.27, SP = 1.97, T x SP = 3.94. Mean: T = 2.26, 18 

SP = 1.67, T x SP = 3.95. Pulp, preharvest: T = 2.45, SP = 2.12, T x SP = 4.25. 19 

Postharvest: T = 2.46, SP = 2.13, T x SP = 4.26. Mean: T = 2.46, SP = 2.13, T x SP = 20 

4.26. 21 
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Figure 2  Khan et al., 
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Figure 3  Khan et al., 
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Figure 4  Khan et al., 
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Figure 5  Khan et al., 
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Figure 6  Khan et al., 
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Figure 7  Khan et al., 
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Figure 8  Khan et al., 
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