Aotz 131

School of Computing
Department of Geographic Information Science

The Distribution of
Geographic Information Systems Data

in a Computer Communications Network

Bert Veenendaal

This thesis is presented as part of the
requirements for the award of the
Degree of Doctor of Philosophy of
Curtin University of Technology

January 1999



Abstract

Geographic information systems (GIS) are developing in a rapidly expanding distributed
environment. With the ever-increasing growth of computer networks and the Internet in
particular, it is imperative that GIS take advantage of distributed data technologies to provide
users and applications with shared and improved access to geographic data.

Geographic data distribution design is concerned with determining what data gets placed at
which computer network sites and involves the issues of data partitioning, allocation and
dynamic migration. Partitioning is concerned with how data, or fragments of the data, are
apportioned to partitions. These partitions must then be assigned to network sites in an
allocation process. Because data usage and access changes by applications in a dynamic
environment, migration strategies are necessary to redistribute the data. In order for data
distribution to reflect current usage patterns of applications, the design process must obtain
and accumulate data usage information from applications.

This dissertation first details the predicate fragmentation (PF) model. The core of the model
is the PF tree that has been developed and implemented to store and maintain usage
information. User predicates, obtained from application queries, are inserted into the tree and
primitive predicates can be identified from the tree. These primitive predicates define the
fragmentation from which a data distribution can be determined. Predicate insertion and
pruning operations are essential to the maintenance of the tree structure.

A methodology that uses the PF model to obtain a partitioning, allocation and migration
strategy is then outlined. The fragments identified from the PF trees are aggregated into
partitions that are then assigned to individual network sites using a site access allocation
strategy. A dynamic migration strategy then uses changes in the PF trees to identify the data
that must be migrated to a new site in order to accommodate the changing application
environment.

The implementation of the geographic data distribution methodology is referred to as
GEODDIS. The methodology was tested and evaluated using a mineral occurrence
application called GEOMINE which was developed with the ArcInfo GIS. The results
indicate that geographic data distribution performs well when successive applications have
similar data usage requirements. For applications with very different data usage patterns, the
performance decreases to the worst case scenario where all the data must be transferred to the
site where it is used. The tree pruning and data migration operations are essential to
maintaining a PF tree structure and distribution that reflects the current data usage of
applications.
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1 Introduction

1.1 Geographic and Distributed Systems

As different technologies develop and progress, their integration must also ensue in order to
consolidate the benefits of each. This is true for both geographic information systems (GIS)
and distributed data systems. While both technologies have developed considerably in the
past decade and much effort has been expended on their integration, further work is yet
required in merging the technologies and capitalising on the benefits of their integration.
Geographic data and systems must be taken into account in distributed computing
environments, and distributed data systems technology must be embraced by developments
in GIS. Distributed geographic information systems are not yet fully matured and many

research issues and problems have yet to be addressed.

Managing data that is both geographic in nature and dispersed throughout a communications
network presents many challenges to the database designer. Geographic data consists of
spatial and attribute components and relationships that must be retained irrespective of
where the data is placed in the network. GIS are required to handle large amounts of spatial
and non-spatial data in a geographic database. Much time, effort and resources are
necessary for managing and manipulating such data; database design is therefore of

paramount importance.

Distributed systems and distributed databases are being developed as computer
communications networks and open systems environments evolve. Database design
methodologies must be adapted to accommodate both geographic and distributed
environments. How should such geographic data be distributed within a distributed
environment? In other words, how can distributed systems take advantage of geographic
data and their properties and how can GIS databases take advantage of distributed systems
developments? Such problems require a detailed examination of the issues, requirements,
and solutions for geographic data distribution. An integrated approach to deal with the
distribution of geographic data is referred to as geographic data distribution design and

forms the focus of this dissertation.



1.2 Distributing Geographic Data

In most applications there is a relationship between the data and where it is used. This is
due to different users and applications at various geographic locations accessing and
querying different types of data in varying ways. To simplify access to the data by
applications, the data ideally should be placed where it is being used. So in a computer
network environment, the data would simply be placed at the site that uses it. However, data
is usually not exclusively used by one user or one application. Rather, some data may be
shared by multiple users and applications that are geographically dispersed throughout a
communications network (Zwart and Coleman 1992, Coleman and Zwart 1992b; Bishr
1997). Determining the ideal location for the data may not be an easy process. A number of

examples may make this clearer.

Consider a large forestry department with regional offices that are all linked onto one
communications network. Each regional office manages the data within their respective
regional boundaries. If the data within each region are not accessed by other regions then a
data distribution strategy might be to allocate each region’s data to the corresponding
regional office. Each data feature in the database would be partitioned according to the
regional boundaries and each data partition would be assigned to a different regional office
(Figure 1.1). The partitioning used is a simple spatial partitioning based on location and

usage.
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Figure 1.1 Partitioning by spatial boundary: a) before partitioning b) after partitioning

Now consider a second example of a planning organisation that consists of several
departments, each with a computer connected onto the organisation’s communications
network. Assume that four departments exist, all dealing with different applications: roads
and transportation, parks and reserves, urban industrial planning, and demographic analysis.

If each application deals with a different set of data then a distributton strategy may be to



a)

allocate each dataset to the site within the department that uses it (Figure 1.2). The database

is therefore partitioned according to feature type of the dataset.
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Figure 1.2 Partitioning by geographic dataset type: a) before partitioning b) after

partitioning

In the latter example, data is partitioned according to a non-spatial attribute while in the first
example spatial criteria were used. These examples represent the two extremes of data
distribution and are generally not reflective of actual situations. In the forestry example,
access to the data for a region is usually not limited to the corresponding regional office.
Rather, access may also be required by other regional offices or by a head office that may
require each region’s data for summaries, reports, and planning. In the example concering
the planning organisation, there may be base datasets such as topography, cadastral
boundaries, and administrative boundaries that are commonly used by all departments, In
addition to the data that may be used exclusively by one or two departments. In such
instances, a data distribution strategy is not intuitive and may be rather complex.
Information regarding the usage of the data by applications and users could assist in

determining a distribution strategy.

1.3 Overview of Geographic Data Distribution Design

Geographic data distribution design (GDDD) involves the structure and placement of
geographic data within a distributed communications network environment. In other words,

the problem is concerned with whar data should be placed where. This, in turn, raises a



number of issues involving the identification of the data to be distributed, determining the

criteria for distribution, and making a decision for placement.

Often data distribution is performed in an ad hoc manner without any defined methodology.
The data is placed on a local or most convenient site without any consideration for where the
processing operations are located, where the data will be used, or what its frequency of
access will be. In many cases, the only criterion used for the placement of data is the
availability of storage space, often ignoring any consideration for future expansion. As the
database grows in size and eventually exceeds existing storage limits then some or all of the

database is redistributed, often again in an ad hoc manner.

A data distribution design methodology is necessary to identify and analyse the distribution
requirements and produce an efficient distribution strategy (Figurel.3). Metadata involving
application and database information must be used to determine the units of data to be

distributed, and how these data units should be placed in a distributed network.

Database

information Geographic Data Data
Distribution T " distribution

Application —" Design

information

Figure 1.3 Geographic data distribution design

GDDD raises a number of issues. Firstly, the unit of data that is to be distributed must be
determined. Should this unit of data be an entire database, a file, a complete entity or a
fragment of an entity? Applications do not necessarily access an entire entity but often just
a portion of it. It is therefore logical to expect that the distribution be based on fragments of

the data related to their usage.

Different applications may access different, but possibly overlapping, data fragments. Thus
a fragment will not necessarily have usage properties that are homogeneous within the
fragment. Such a fragment must be further fragmented so that only those with homogeneous
usage properties are identified. These properties can then be used to identify fragments that
have similar usage properties and that can be aggregated into the same partition. Identifying

the partitions of data is the second distribution design issue.



Horizontal and vertical partitioning are well-established techniques in database physical
design (see Section 2.4.2). A partitioning should be based on the structure and usage of the
data rather than be done in an arbitrary and ad hoc manner. For geographic data, entities can
be partitioned according to spatial, attribute, or even a combination of spatial and attribute
properties and relationships. The problem is to identify and incorporate these properties into

the partitioning strategies.

Finally, the resulting partitions must be allocated to network sites. Data allocation should be
based on site usage. A further consideration may be to aliocate copies of the data to
multiple sites. Some replication may already occur in the partitioning stage where common
spatial primitive objects may be duplicated in multiple partitions (eg. endpoints of a line,
common polygon boundaries). Further replication occurs in generating the multiple copies

of data.

These issues have to be addressed as part of a data distribution design strategy. With
geographic data, the problems increase in difficulty since the types of data and relationships,
which must inevitably involve spatial properties, are more complex. Spatial data and spatial

relationships must be considered when determining fragments, partitions, and allocations.

1.4 Significance of Data Distribution for GIS

GIS have developed rapidly over the past decade with a number of trends involving client-
server and Internet technology leading towards distributed GIS. While traditional
information systems handle textual data, GIS additionally incorporate spatial data along with
attribute data and their inter-relationships. The manipulation, management and analysis of
spatial data are much more complex than for textual data, involving greater volumes, more
complex structures and additional operations. A distributed environment must be able to

handle such spatial data.

Although storage space and processing speeds have improved dramatically, the demands of
GIS have also increased since larger volumes of data, as well as enhanced and additional
functionality, are sought by users and applications. The increasing storage and processing
requirements of a GIS bring with it the need to share and optimise the use of computing
resources. A distributed environment, providing the interconnection of geographically

dispersed resources, allows access to resources previously inaccessible or under-utilised.

Data ts a core component of GIS involving considerable effort and resources to capture and

maintain it. It is not uncommon that well over fifty percent of time and resources required



for a specific application involve building and maintaining a suitable geographic database
(Devereaux et al. 1992). Much of the data maintained by GIS is multipurpose (eg. base data
such as topography and thematic data such as soils and landuse) and can be used by many
different users and applications. Data exchange and data sharing are therefore important
aspects of GIS (Bishr 1997). Distributed network technology provides the potential for
making data accessible and sharing it among those connected to the network. In addition,
because such shared data can be made accessible from a non-local site, it need not be
duplicated at every local site. A single copy or limited copies of the data can be accessed by
all users irrespective of their location on the network, thereby improving the usage of

storage resources and the management and maintenance of the data.

Considerable developments have occurred in the area of distributed systems and databases
(Silberschatz ef al. 1995; Adam et al. 1997; Waight 1997). Computer networking technology
has evolved so that both local area and wide area networks are commonplace, enabling
access to remote data and resources (see for example Newton et al. 1992, Alexandria 1996,
and Adam and Gangopadhyay 1997). Distributed database management systems (DDBMS)
are being developed to manage the distributed storage of data, access to data, and the
transactions being performed on the data (Leigh and Burgess 1987; Ingres 1995; Oracle
1995a; Oracle 1995b; Smallworld 1994).

A significant development has been the World Wide Web (simply referred to as the web)
taking advantage of the Internet interconnecting millions of computer sites across the world.
The result has been an ever-increasing expansion of the Internet, servicing not only
academic and governmental institutions, but also commercial and private interests. There are
currently many tens of millions of users connected via more than 36 million host computers,
and demand is expected to increase dramatically with over 100 million users before the year
2000 (Network Wizards 1998; Lewis 1996). By bringing the Internet and the web directly
into households, the "distributed” community has been markedly broadened and exposed to
a diversity of interests, requiring access to a vast array of data and information including
geographic information (Vincent 1995). With such a development comes the need to manage
and share data in an increasingly complex environment. More emphasis will be placed on

the management of such data and systems as distributed technology continues to expand.

The developments in both GIS and distributed systems lead to further integration in these
areas. Both technologies have much to offer and both can benefit from incorporating the
other. Such developments include, for example, using a centralised data server to support

several clients to handle spatial data processing (Zwart and Greener 1994), and extending



existing GIS to support links to web-based applications and tools (see for example
Dangermond 1996 and Roy et al. 1997). By making provision for spatial data and its
properties, distributed systems are open to a wider array of applications for which
geographic data is an important component. Using distributed technology within GIS can
serve to improve the management and manipulation of what are often large volumes of

geographic data that need to be shared among applications and users.

In considering the merger of GIS and distributed system technologies, geographic data

distribution offers the following advantages (Ozsu and Valduriez 1991b}):

Local Autonomy. GIS databases are often managed and maintained by either the
data owner or a designated data custodian. In a distributed environment, the data
can be placed on sites where the owner or custodian has complete control.

Individual organisations can therefore maintain autonomy as regards their data.

Accessibility. Access to data is important, particularly for GIS users who require
current data and for data commonly accessed by multiple users. By providing
distributed access, the data can be placed on a site and shared by many users at

different sites.

Expandability. The increasing volumes of GIS data can be readily handled in a
distributed system. The data can be stored at sites where there is available storage
space, and additional storage and processing resources can be added to the computer

network as required,

Improved performance. Rather than deal with entire large datasets that often
contain more information than is required, applications need only access the
necessary subsets of data when they are required. A decrease in the amount of data
being transferred results in an improvement in performance. Performance can
further be enhanced since data distribution results in some parallelisation of

processing; access to subsets of data at different sites can be executed concurrently.

Data distribution is not without disadvantages. There is a considerable amount of overhead
involved in determining a data distribution design. Not only do the partitioning, replication,
and allocation alternatives need to be considered, but also information for evaluating
strategies must be obtained. Gathering such information may be difficult when predicting
future data usage in a dynamic environment where applications and users are diverse and

constantly changing. Yet such difficulties must be challenged and the obstacles hurdled as



new strategies are researched and developed. The challenge of this research is to explore

alternatives and determine strategies for GDDD (Veenendaal 1994c).

1.5 Research Objectives

The objectives of this research are as follows:

1. Identify the factors that affect geographic data distribution.

2. Find appropriate units of fragmentation for geographic data.

3. Produce a methodology for performing a geographic data distribution.

4. Evalunate the methodology by implementing and testing it.

1.6 Implementation

The methodology and solutions for a geographic data distribution strategy, as described in
this dissertation, have been implemented in the GEODDIS (GEOgraphic Data DIStribution)
system. GEODDIS is a suite of programs developed using the C programming language and
ArcInfo Advanced Macro Language (AML) to test the methodology described in this
dissertation. The programs have been tested using mineral occurrence data from a GIS

application called GEOMINE and developed using the ArcInfo GIS software package.

Since it is impossible to exhaustively test the distribution strategies for every possible GIS
dataset and application, a reasonable choice had to be made for the purposes of this research.
Arclnfo is chosen as the GIS environment because it is one of the most popular and widely
used commercial GIS, and because it incorporates a good transaction logging facility from
which usage statistics can be obtained. The datasets and applications used in this research
were chosen because of their availability, because they encompass a range of data and
operation types and because they are typical of many applications. While it is difficult to
define a “representative” GIS dataset and application, it is assumed that benefits of

distribution design can be extended to many other GIS applications.

The GEOMINE project has been developed within the Department of Geographic
Information Science at Curtin University of Technology and involves a mineral occurrence
database and applications that operate on it. It provides a data integration tool and query
interface for the database containing all the known mineral occurrences and mine sites in

Western Australia (Veenendaal et af, 1995). The database presently consists of more than



8000 mineral occurrence locations along with relevant topographic information for the
entire State stored in a geo-relational database within the ArcInfo GIS. A query interface
tool has been developed for both ArcInfo, using the AML macro language, and ArcView,
using the AVENUE programming language.

The entities of primary interest in the GEOMINE database are mineral occurrences referred
to simply as mines in the entity-relationship diagram (ER diagram) shown in Figure 1.4.
Note that the attributes of each entity include a spatial data type (eg. point, line, polygon or
non-spatial), represented by a square box, and other attributes, represented by circles. Each
mine point is related to a 1:250000 scale map sheet, of which there are 198 in Western
Australia, a mine type (underground, bedrock or surface), status {developing or abandoned),
and one or more minerals (primary, secondary or accessory). In addition, each mine point is
related spatially by “nearness” to topographic features, such as roads. Other topographic
features such as highways, towns, lakes, rivers, and national parks are included in the
database but are not shown in the ER diagram. Additional features obtained for local areas

of interest include native title regions, flora and fauna coverage and geology.
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Figure 1.4 Part of GEOMINE data model

1.7 Thesis Structure

This dissertation is structured into six chapters. Chapter One introduces the problem of

geographic data distribution and defines the goals of this research.



Chapter Two provides background information and reviews the literature regarding the data
distribution problem. The distributed and geographic environments, the development of the

problem and the issues affecting its solution are detailed.

A linked tree model, referred to as the PF tree, is described in Chapter Three and provides
the data structure and operations to maintain the required information based on data usage

and access patterns and used to determine a data distribution strategy.

Chapter Four details the methodology used to accomplish a geographic data distribution.
The information obtained from the PF model is used in performing fragmentation and

allocation of data to network compulter sites. The testing methods are also discussed.

Chapter Five presents and analyses the results of geographic data distribution using the

given methodology and provides conclusions.

Finally, a summary and further research directions are given in Chapter Six.
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2 Background and Review of Data Distribution

2.1 Introduction

Many of the issues in data distribution have been in the research domain for over two
decades. Early solutions involved only the allocation of files. As the problem further
developed it became more complex, embracing issues such as data fragmentation, data

allpcation and dynarmnic data migration.

Even though the topic of geographic data distribution has not been extensively examined in
the research literature, many related problems touch on the same or similar issues. These
problems and solutions are considered in exploring data distribution and efficient access to

geographic information.

The background of the data distribution problem and how it relates to geographic
information are discussed in the following sections. The distributed data environment is first
discussed with respect to its architecture, distribution design and the factors affecting and
information required for data distribution design. Then the development of the distribution
problem is explained before considering geographic data and the distribution issues related
to both the attribute and spatial components. Predicates and selection operations, used to
identify data fragments, are then described. Finally, the methodology for distribution design

and a summary of the problem are synthesised.

2.2 Distributed Data Environment

The distribution of data is determined by various requirements and constraints that identify
information about data, applications and network sites (Figure 2.1). Information such as data
structure, usage patterns and location of applications indicate what data is to be distributed
and where such data can be placed. Information regarding available storage, processing
facilities, and how communication takes place between network sites may constrain the
distribution, preventing data from being placed at particular sites because of lack of storage

space or the high cost of transferring data.

Of course, the distribution strategies aim to provide an optimal data placement which
achieves the distribution objectives. The objectives can include improving reliability and

access to the data, reducing the costs of data access. and increasing performance by

i1



decreasing processing and response times. Importantly, to compare various design

alternatives, there must also exist a means of determining the cost of data distribution based

on the stated ohjectives (see Section 1.5).

Distribution Requirements
*  data structure and usage

* application locations

partitioning

Distribution replication

Constraints Distribution
s storage Costs
*  processing

«  communications —
data
*—5\  migration

Objectives

® improve accessibility & reliability
®  reduce costs
® increase performance

Figure 2.1 Aspects of data distribution design

2.2.1 Types of distributed data systems

Many types of distributed data systems exist involving database management systems that
need not be the same at each site and with differing levels of autonomy. The various types
of distributed data systems are distinguished by the manner in which data are accessed and
managed. A system that allows data to be stored at more than one network location 1s
generally referred to as a distributed data system. Location, functionality, and control are the
three main factors that are used to identify distributed data systems (Wah 1981; Ceri and
Pelagatti 1984; Ozsu and Valduriez 1991b; Bell and Grimson 1992).

Location refers to the network site where the data resides within a distributed system. The
data is managed by one or more DBMS that can execute from one or more sites. The
functionality provided by each DBMS at each network site indicates where the data may be
processed. This information is used to determine which data must be transferred from the
site where it 1s stored to the site where it will be processed (ie. a data retrieval) and which
data must be transferred from the site where it is processed to the site where it is to be stored

(ie. a data update).



Control of the data is an important factor as it indicates how data and access to the data are
governed. Control can be either local or global. If control is local, each DBMS is
autonomous and can keep track of its own data schemas and share the data with other DBMS
when requested. If control is global, then the local DBMS has no autonomy but must

cooperate in maintaining a global data schema as part of a global database.

Figure 2.2 illustrates a taxonomy of distributed data systems divided into homogeneous and
heterogeneous types and further subdivisions based on the level of autonomy of a local site
(Bell and Grimson 1992). Homogeneous systems are those where the same DBMS is present
at each of multiple sites in the network, whereas heterogenous distributed data systems
involve different DBMS at individual sites. Autonomy refers to the distribution of control
and should not be confused with the distribution of data. Distributed database systems are a
specific class of homogeneous non-autonomous systems that are tightly-coupled since the
local DBMS are globally controlled (Kuspert and Rahm 1990; Hurson and Bright 1991;
Orlowska et al, 1992). It should be noted here that the term distributed database systems 1s
sometimes used ambiguously to refer to the general class of distributed data systems {(Bell

and Grimson 1992},

Distributed data systems
/ \
homogeneous heterogeneous
autonomous nonautonomous  integration via systems integration via gateways
/ \
full DBMS functionality partial DBMS functionality
/ \
federated unfederated
/ \
loose integration tight integration
)z

single \multi

Figure 2.2 Taxonomy of distributed data systems (Bell and Grimson 1992, p. 45)

Heterogeneous systems integrated via gateways include distributed file systems (eg. NFS -
SUN’s Network File System) that share files across multiple networked hardware platforms.
A gateway simply facilitates the transfer of a file from one platform to another. In such

systems the local DBMS are completely autonomous and are not integrated at all since they
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know nothing about the existence of DBMS on other network sites. The method used to
communicate data between DBMS is through data exchange. Often the DBMS incorporates
some local tools to produce one or more files of data which can subsequently be transferred
to a remote site and be imported into and interpreted by the remote DBMS (Thomas e al.
1990; Sondheim and Menes 1991; Satyanarayanan 1993).

Heterogeneous databases, where the DBMS functionality is partially integrated, are known
as multidatabase systems (Hurson and Bright 1991) and can be classified into federated and
unfederated systems. Local DBMS have no autonomy in unfederated systems while in
federated systems the DBMS maintain their autonomy and yet participate in a federation to
allow some global control of data sharing. Federated systems can be further classified to
distinguish between interoperable database systems which use export schemas to provide a
loosely-integrated federation, and tightly-coupled federated systems which allow the creation

of single or multiple federated schemas (Sheth and Larson 1990).

The type of distributed data system influences the DBMS functionality available at each site
and, hence, has an impact on where data can be transferred and stored. A more tightly
integrated system with less local autonomy allows for better global control of the data
distributed across a computer network. Such global control includes the aspect of deciding
where the data is to be placed. For autonomous DBMS, the decision for data distribution is
made locally and must involve interaction between the local DBMS to come to a mutual
agreement. Stonebraker er al. (1996) propose to use an economic paradigm for the Mariposa
distributed DBMS where autonomous sites negotiate by buying and selling data and bidding

on queries which access the data.

2.2.2 Distributed architecture

Data modelling is the process of determining which entities and relationships are important
and how they should be structured. The user or application views the data at a higher level
of abstraction than the manner in which it is physically stored in a database. For example, an
entity viewed externally by an end-user may be a road or mineral deposit. Internally, within
the database, the data may appear quite differently - the road may be represented as a

sequence of line segments and the mineral deposit as a single point.

Within relational DBMS, data modelling is often based on the ANSI-SPARC three-level
approach as depicted in Figure 2.3 (Date 1982). The external level defines the model as the
users and applications observe it. This is the view that most closely matches a specific user

or application. At the conceptual level, a common or global view is defined on the data that



incorporates all the data models as defined for the various external views. The internal view

defines how the conceptual view is mapped onto a physical representation in a computer.

Extfamal Extfemal Extgmal External
View View View
Level
Conceptual Conceptual

View Level

Internal
Internal Level
View eve

Figure 2.3 ANSI-SPARC data model framework

With distributed systems the architecture must be modified to incorporate the internal views
at each local site. Many architectures have been proposed for distributed systems (Ceri and
Pernici 1985; Ozsu and Valduriez 1991b). Ceri and Pernici (1985) present a model where a
new level known as the logical level is placed between the conceptual and internal levels
(Figure 2.4.). This level defines how the conceptual data model is mapped to each site in a
distributed data system, At the internal level, this logical model is mapped onto a physical

model at each computer network site.

External

View External

Level
Conceptual Conceptual
View Level
Logical Logical

few Level

: : Physical
Physical Physical Physical Level

View View View

Figure 2.4 Distributed architecture with a Logical Level
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An alternative architecture provides for different conceptual views at the local level, each of
which is mapped directly to the local physical view (Figure 2.5). A global conceptual view
is derived from these local conceptual views. The external view can be either global or

local.

Global

External View Level

Global Global Global External
External View External View

Glabal Conceptual Global Conceptual
View Level

Local External
View

Local External
View
Local Conceptual Local Conceptual
View View

Local External
View

Local External
View

Local External
Level

Local Conceptual
Level

Local Physical Local Physical Local Physical
View View Level

Figure 2.5 Distributed architecture

The effect of a data distribution is that a physical view is provided at each individual
network site. The use of the data by users and applications at the external level must
therefore translate to a distribution at the logical level that is implemented in multiple views,

one at each site, at the physical level.

2.2.3 Objectives of data distribution design

The objective of data distribution design is to determine an optimal allocation of data to
computer network sites, An optimal distribution can be measured in a number of ways,
namely: improved performance, reduced costs, and increased availability. While a
distribution strategy that achieves all three objectives is ideal, it is not always possible since

these objectives are sometimes in conflict. A balanced solution will then have to be found.
Performance

Two of the common performance objectives are minimising response time and

maximising system throughput {Dowdy and Foster 1982). For data distribution, the
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response time may be improved by reducing the time required to access the data.
Ideally, all the data should reside at the site where it is being processed. However
this is difficult if not impossible to achieve when the same data is being used by
multiple applications on different sites. Rather, the data should be stored as close as
possible to where it is being used (Ozsu and Valduriez 1991a}. The “closest” that
data can be stored is directly at the site where it is used. The next “closest” refers to

a site from which the data can be accessed with minimal time.

The locality of reference or simply locality of the data refers to the site(s) where the
data is frequently accessed by user applications over a given period of time (Ceri and
Pemnici 1985; Copeland et al. 1988; Gavish and Liu Sheng 1990). Ceri and Pelagatu
(1984) refer to this as processing locality. If only part of the data is accessed, then
the frequency is multiplied by the fraction of data being accessed to determine the
locality. A measure that can be used to determine the locality is polarisation which
indicates the deviation from a uniformity assumption (Ceri and Pernici 1985).
Polarisation is measured as the percentage of data accesses that are addressed to a
data fragment at a particular site. Data can be distributed based on its maximal
locality which indicates that the data is assigned to the site where it is most often
processed (Ceri and Pernici 1985). The result is that fewer remote data references

are required leading to faster data access and improved performance.

By distributing data fragments over multiple sites, the workload in accessing and
processing the data can be shared. Data fragments required by an application and
stored at different sites may be accessed concurrently. Further, it may be possible to
process these fragments in parallel at multiple sites by one or more applications,
thereby improving the level of concurrency (Wong and Katz 1983; Ceri and
Pelegatti 1984; Ozsu and Valduriez 1991b). The result is that system throughput can

be increased.
Costs

Another way of optimising data distribution is by minimising costs. Data
distribution involves a number of costs: communication, processing, concuriency
control and integrity constraint checking. Communication costs are incurred for data
fragments that must be retrieved from remote sites and processed by an application
on a local site. Similarly, any updates that must be propagated back to the remote

sites where the data are stored will incur communication costs. These costs depend



on the amount of data being transmitted and the network characteristics (Ceri and

Pernici 1983).

Multiple data fragments that have been retrieved from several sites may need to be
merged before being processed at a local site. For an update operation the data may
have to be split up into fragments before being transferred back to the remote sites
on which they reside. CPU and IO processing costs are involved in this process of

merging and splitting of fragments.

Concurrency control involves synchronising access to the database while
maintaining its integrity (Ceri and Pelagatti 1984; Ozsu and Valduriez 1991b). For a
distributed database system this includes managing access to multiple copies of the
data. Integrity constraint checking involves maintaining consistent database states
where information on data relationships and seimantics are used to ensure data
correctness. Integrity constraint checking is costly and even more so in a distributed

system where data fragments to be checked must be accessed from multiple sites.
Availability

An objective of distribution design may be to improve availability and reliability.
This can be achieved by introducing replication of data fragments across multiple
sites. Thus, applications requesting data can access alternate copies if a specific
copy is unavailable due to some network or other failure. Additionally, if a copy of
the data becomes corrupted due to some hardware or software failure, alternative

copies of the data can be accessed and used to maintain data reliability.

Ideally, all these objectives should be aimed for in a geographic distribution design strategy
since they are all important. A design strategy should result in reduced costs, improved
performance, and increased availability, They are also often interrelated. For example, by
placing data on a site according to its maximal data locality, the communication costs may
be reduced resulting in faster response times and hence improved performance. Also, by
replicating data on an additional site, multiple applications can access the data concurrently,
improving system throughput and also ensuring data are available it a failare occurs or data

becomes inaccessible at one of these sites (Chu and Hurley 1982).

These objectives can also sometimes conflict with each other. For example, by replicating
data to improve data availability, further communications costs may be incurred due to a
high occurrence of updates. As another example, data may be further fragmented and

allocated to as many sites as possible to achieve a high level of concurrent data accesses and



a faster response time. However, the costs involved in merging and splitting the fragments

for processing may be substantially increased.

To manage the conflicts, all these objectives must be balanced with respect to one another.
Often, during the design stages of an information system, cost measures are used to evaluate
the system and performance is a sccondary issue. Once the system is operational, more
information is known about the workload so that more emphasis can be placed on
performance (Dowdy and Foster 1982). All these objectives should of course be included in
an optimisation model for data distribution design. However, in practice this is difficult to
achieve due to the complexity of integrating them (Ozsu and Valduriez 1991b). Such a
model essentially would involve integrating the partitioning, allocation, and replication

problems rather than treating them as separate issues to be tackled consecutively.

2.2.4 Factors Affecting Data Distribution

A data distribution design is influenced by many factors involving organisations, users and
applications. Factors may include organisational structures and policies, inter- and intra-
organisational data flows, the GIS project implementation stages (eg. data capture, query,
analysis), GIS application types {eg. project-based or inventory-based) and types of users
(eg. developer, end-user, professional, manager, planner). These factors are identified in

Figure 2.6 as high-level factors relating to external elements which contribute to data usage.

organisational data flows project application types of high
siructures (inter-, intra-) stages types users level
data operations site
accessed executed activities
spatial data data data usage operation site low
data type attnibutes relationships  properties frequencies usage level

Figure 2.6 Various levels of factors affecting data distribution

For example, departments within the same organisation but involved in different applications
may access a common database from different computer network sites in the organisation.

Projects at a data capture stage will require different access to those focussed on spatial
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analysis. Managers requiring summary and statistical information use very different
applications than do database developers involved in editing data and verifying data
relationships. Data flows between organisations may lead to specific data entities being
accessed more frequently than other entities. Organisational policies may place constraints
on how a database can be distributed by dictating where certain databases must be placed or

maintained {eg. within a particular branch or regional office).

The high-level factors affecting data distribution determine the "what, how and where" of
data access. It is important to determine what data is being accessed since it is this data that
will have to be fragmented and allocated to network sites. How the data is accessed by
operations from users and applications will determine how the fragmentation is to take place
and where the data is accessed is necessary to decide at which site(s) the fragments are to be

allocated.

Figure 2.6 also shows some low-level factors that identify usage information regarding data,
applications and sites. These factors specify information that may be too difficult to
determine directly from the high level factors. As an example, suppose that information on a
collection of mines is required by a mining organisation. The data, operations and sites
involved depend on a number of high-level factors including: who requires access, for what
stage of the project the data was used and which department has control of the data. It would
be very difficult (if not impossible) to use the high-level factors directly in determining a
data distribution. Rather, low-level factors such as the frequency of access of mines at each
site, the operations executed on the mines and the computer site(s) at which the mine data are

located, can be used directly by the data distribution process.

Ozsu and Valduriez (1991b) correctly point out that too many factors contribute to an
optimal design. Goodchild and Rizzo (1986) indicate the difficulty with obtaining high-level
information concerning profiles of GIS users and applications. Obtaining and modelling such
information and relating it to data usage patterns over time could be the subject of further
research. Identifying all the high-level factors and using them to determine a distribution
strategy is virtually impossible. Instead, low-level factors, which are much easier to identify,
should be used in the data distribution process (Veenendaal 1994a; Coleman et. al. 1992}
Information contained in the high-level factors is implicit in the low-level factors. This
research uses information at the low-level to decide on a data distribution. The low-level

factors are detailed in Section 2.4.6.
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2.2.5 Data and query distribution

The location of data among the sites of a distributed data system depends on the locations at
which the data is required for queries generated by users and applications. However, the
queries themselves can also be distributed so that the location at which processing occurs
depends on the location of the data being accessed. Data and queries are so closely related
that the distribution of one affects the distribution of the other (Apers 1982; Ceri and Pernici
1985; Goyal et al. 1993; Wilschut 1994). However, finding an optimal solution in

simultaneously distributing both data and queries is a difficult problem.

Obviously the placement of data and the location at which processing occurs will influence
the cost of data access. If the required data and the queries being executed are both located
on the same local site where the corresponding user application resides, then we assume here
that there is no cost involved since there is no non-local data being accessed. However,
when data and/or queries are located at one or more sites other than the local site, then costs
relating to the transfer of data between sites are incurred. Figure 2.7 depicts various

scenarios involving different locations for data and queries.

data & data &

queries data \ queries \
/ \ / o & / data &

/ queries ot & / yueries

queries queries data l\— queries

User

User User
la) (b) (c)

Figure 2.7 Scenarios for data and query distribution

Figure 2.7a represents the typical client/server architecture where the data resides at a central
server. When a user application located at one of the client sites makes a request, only the
required data is extracted from the database by server operations and retrieved from the
server. The result is then transferred to the client where it is used and updates, if any, are
returned to the server. Such an architecture was trialed by Zwart and Greener (1994) for GIS
data over a wide-area network and is being implemented in GIS products (Waight 1997).

Because all the data is centrally stored at one location, data distribution is not an issue.

Another scenario involves data that 1s not centrally stored. Such an environment may
involve local query execution where the data is found at multiple locations and the query
gets executed only at the focal site where the user has initiated it (Figure 2.7b). This is

similar to many current networked workstation environments where users execute the
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queries at their own workstations and access data found at various network locations through
distributed file system services such as SUN NFS (Sandberg et al. 1985; Bishr 1997). In
such a case, all the requested data must first be transferred to the local user site before the
query gets executed, and any updates, if required, are transferred back to the appropriate
sites. With distributed file systems, the data are actually entire files. Other than for file
retrieval and update, no further processing is required at the remote sites. Such systems are
contained in the class of loosely-coupled, heterogeneous distributed data systems (Section

2.2.1).

Each site can also function as a client/server as illustrated in Figure 2.7c so that both data
and queries can be found on any site in the network. The question now concerns what
queries can be exccuted at cach site and who controls where the queries are executed; in
other words, what database management system functions occur at each site and how their
execution is controlled. In the simplest case, when an application is initiated at the local site,
the required subset of data is retrieved from each of the remote sites at which it resides and is
transferred to the user site where it is executed. Any updates and changes must be

transferred back to the appropriate sites where the database is maintained.

A more complex situation is where the application queries execute on multiple sites and
transfer the results back to the local user site (see, for example, the Virtual Database
proposed by Abel et al. 1994). This involves query processing where a query execution plan
must be constructed based on the location of the data and the nature of the query (Chu and
Hurley 1982; Kriegel er al. 1991). A change in location of the data may result in a different
query execution strategy. The control of the query processing may be global or local,
depending on the autonomy of the DBMS at each site. These systems range from
homogeneous distributed database systems to heterogeneous multidatabase and federated

systems.

Formulating a problem to combine data and query distribution, and obtaining an optimal
solution is difficult. The problem can be simplified into two problems: the data distribution
problem where the location of the queries are known, and the query distribution problem
where the data locations are known (Apers 1982; Ceri and Pernici 1985; Goyal et al 1993;
Ozsu and Valduriez 199]b; Wilschut 1994), In this dissertation we deal with the data

distribution problem and assume that the query locations are known or can be determined.

One further aspect that should be noted is that data distribution and query distribution often
occur at very different time intervals. For each query being executed, the query distribution

must occur before the query can be completed. In contrast, data distribution need not be
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done for every query and would normally occur at much less frequent intervals, Data
migration is expensive, particularly for large databases, and therefore would occur only after

many queries, or even applications, have been executed.

2.3 Development of the Distribution Problem

The data distribution problem has developed in relation to the unit of data to be distributed.
This unit can be a file, a database entity or a fragment of data. In this section the

development of the problem is reviewed.

2.3.1 File allocation problem

The original data distribution problem is known as the file allocation problem (FAP) and
involves the allocation of complete files to computer network sites. The FAP was first
identified by Chu (1969) who used mathematical programming techniques to define a
solution. The criteria for determining an allocation included file size, storage capacity on
each site, and data transmission costs. The unit of data being allocated is the entire file

irrespective of its contents and the organisation of data that is contained within.

One early simplified model was developed by Casey (1972). The objective was to minimise
the cost of satisfying all queries from all nodes and the cost of storing and updating the file.
File retrievals were distinguished from file updates. Because file replication was allowed,

the number of copies and their locations also had to be determined.

Laning and Leonard (1983) extended this approach by allowing multiple files with the
constraints of a fixed number of file copies and equivalent location costs for each site.
However, not all files need to be considered since Laning and Leonard postulated that
usually about 20% of the files account for 80% of the storage, and of these 20%, many have
obvious locations due to security or usage reasons. Therefore only relatively few files need
be included in the file allocation problem. More recently, others have extended the FAP for
multiple copies so that consistency is maintained among the replicated data (Tewari and

Adam 1992).

Morgan and Levin (1977) extended the FAP to include the dependencies between files and
programs. The file storage, program storage, and communications costs are considered as
well as the file retrieval and update costs. The retrievals and updates originate from the
request site, are executed at the program site, and access the data at the file site (Figure 2.8).
So for a retrieval, the file must be transferred from the file site to the program site. If an

update occurs, then the file must be transferred back to the file site. If copies of files are
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found at multiple sites, then the update cost must include the transfer of the file to each of
these sites. Using this model, the placement of the data can be related to where the query is
executed. Once again the unit of transfer is the file, irrespective of the contents and
organisation of the data contained. If even only a very small portion of a file is being
queried or updated, the entire file must be transferred to the program site and then back

again to the file site for the update.

User File

retrieve
\:“H /
request
a update

Program

Figure 2.8 Dependency between files and programs

Further heuristic algorithms to solve the problem as identified by Morgan and Levin have
been developed (Fisher and Hochbaum 1980). In addition to the dependency between files
and programs, Yu et al. (1984; 1985) considers the dependence between files due to retrieval
and update queries, although they limit their work to star topology computer networks
involving a central node and regional sites, Gavish (1987) considers the locations of data
sources, of end users, and of reports generated for end users and that require access to the
database. This information is used to determine the locations of databases and how data

sources are to be assigned to those sites.

The file allocation problem has been proven to be an NP-complete problem (Eswaran 1974).
NP-complete problems have the characteristic that as the size of the problem increases
linearly, the complexity of the optimal solution increases exponentially (Hevner and Rao
1988, Sedgewick 1988). Some of the classical problems such as the warehouse location
problem and the knapsack problem are NP-complete (Wah 1981; Ramamoorthy and Wah
1983; Ozsu and Valduriez 1991b). Because of the difficulty in obtaining an optimal solution,
efficient heuristic approaches have to be used to obtain reasonable solutions (Fisher and
Hochbaum [980). The literature provides some good surveys of the file allocation problem
and heuristic solutions {Wah 1981; Wah 1984; Dowdy and Foster 1982; Hevner and Rao
1988; Boffey 1992).

An extension to the file allocation problem is the re-allocation of data as the file access

environment changes over time. This is referred to as dynamic file allocation, in contrast to
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static file aflocation, and involves using information about changes in data access rates to
determine a new file location (Morgan and Levin 1977; Yu et al. 1985). Gavish and Liu
Sheng (1990) distinguish between dynamic file allocation and file migration. The former
refers to a system-wide file re-allocation that applies to problems with long time horizons of
months or years and incurs a high cost. The latter refers to the re-allocation of a single file
copy that incurs relatively little system interruption and can be performed frequently. These
dynamic allocation problems, similar to their static counterpart, are NP-hard in their
complexity. Good reviews of the dynamic FAP and file migration problems are provided in

Hevner and Rao {1988) and Gavish and Liu Sheng (1990).

2.3.2 Database allocation problem

In a distributed environment, data access cannot simply be equated to remote file access;
rather, access is based on the data entities and their interrelationships. Thus the allocation
problem, referred to as the database allocation problem (DAP), is based on a logical data
unit such as an entity set rather than being based on a physical data unit such as a file. The

solutions for the FAP can, in general, be applied to the DAP (Hevner and Rao 1988).

An entity is a real-world phenomenon of interest that can be represented and stored in a
database (Chen 1976; Laurini and Thompson 1992; NCGIA 1990). In this dissertation the
word ebject is referred to as the representation of that phenomenon in the database. Such an
object is not to be confused with an object in the "object-oriented" sense of the word.
Entities can be classified into entity sets that can be represented as a table or relation in a
database. A specific entry in an entity set is referred to as an entity instance. For the sake of
simplicity and where the meaning is obvious or unambiguous, the term "entity” will be used

in this dissertation to refer to "entity set”.

Chang and Liu (1982) recognise that the allocation should be performed on a relation rather
than simply a file. Relations are allocated to sites based on access probabilities that are
obtained from usage statistics associated with a user’s view. A fully connected network with
identical transmission costs between sites is assumed. Transmission cost is therefore a
function of the amount of data being transmitted. Both retrieval and update costs are
considered. Constraints such as storage limitations at each site and a maximum allowable
limit on the number of data copies are imposed. The problem is transferred to a network
flow problem where relations and sites, represented as network nodes, are fully
interconnected. The cost of allocating the relation to a site, based on usage, is associated
with the network edges. The cost of the flows from relations to sites is then minimised to

obtain a selution.
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The database allocation problem is considered by Gavish and Pirkul (1986) with regards to
applications involving banks with branches dispersed over a geographic area. Transactions
by customers exhibit a strong locality of reference since most occur in the vicinity of the
branch where the customer’s account is located. The database is therefore partitioned
according to bank branches. Essentially, the database is partitioned into smaller databases
each representing all the customer accounts at a specific branch. These databases are then

assigned to networked computer sites located within the branches.

These DAP solutions fragment a database to the level of an entity. Chang and Liu (1982} in
dealing with the allocation of relations, recognise that databases can be vertically or
horizontally fragmented. They use the term database decomposition which was first
introduced by Chang (1972). Decomposition, more commonly referred to as partitioning,

extends the DAP problem by introducing fragmentation of entities.

2.3.3 Data distribution problem

Rather than requiring access to an entire entity, application programs often access only a
subset of the entity. This smaller subset could be a group of records (eg. rows in a relation),
a group of attributes (eg. columns in a relation) or some combination of entity instances and
attributes. Therefore, when distributing the data, it is logical to deal with fragments of entity
sets that more closely correspond to the manner in which data are accessed and used. This is

the basis of the data distribution problem (DDP).

Unlike the FAP and DAP, which deal with fixed units of distribution (file and entity
respectively), the DDP must consider strategies to fragment a database and determine the
unit of distribution. Solutions to the DDP are therefore more complex and involve a number
of issues (see Figure 2.9) that must be properly handled in the design of a solution (Ceri and
Pelagatti 1984; Ceri et al. 1987; Hevner and Rao 1988; Veenendaal 1990). These issues are

explained in Section 2.4,
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Figure 2.9 Data distribution design tssues

A substantial amount of research has been expended into developing solutions for the DDP
{Navathe et al. 1984; Sacca and Wiederhold 1985; Ceri and Pernici 1985; Cornell and Yu
1990: Ozsu and Valduriez 1991b; Wolfson and Jajodia 1992). Further information and
reviews of research into data distribution design can be found in Wah (1981), Dowdy and

Foster (1982), Hevner and Rao (1988) and Ozsu and Valduriez (1991b).

2.4 Overview of Geographic Data Distribution

The first issue to be addressed in data distribution design is deciding on the unit of data to be
distributed. The unit of data is termed the cell and involves the largest subset of data that is
handled as a unit by any user application (Hua er al. 1993). A cell can be a file, a relational
table, an individual entity, or a fragment of an entity that can eventually be assigned to a
partition of data on a network site. A fragment refers to a subset of an entity (or relation) and
the process of dividing an entity into multiple subsets is termed fragmentation. Figure 2.10
illustrates the relationship of data entities to cells, partitions, and sites. A cell can contain

one or more entities or fragments of entities.
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Figure 2.10 Partitioning and aliocation

The whole process of building partitions from entities is known as partitioning. The end
result is a subset of data referred to as a partition. A partition can consist of one or more cells
aggregated together. The constructed partitions can then be assigned to a site. This latter

step is known as data allocation or placement.

A further issue involves the possible replication of data among the sites of a network.
Providing copies of the data on multiple network sites 1s sometimes desirable to improve
data access from different locations within the network. Improved reliability is also a result
since, if the data are unavailable from one site due to a site failure, another copy is available
at another site. Some data replication is inevitable in the distribution process, as is the case

with vertical fragmentation (see Section 3.3.2).

The final site allocation of partitions is based on how the entities are accessed. For many
types of applications, data usage will change over time as different applications and users
access the data from various network sites. Thus, this “final” allocation will have to be
modified from time to time using data migration strategies to incorporate changes in usage

patterns.

These distribution problems are further detailed in the following sections. This dissertation
addresses the fragmentation, allocation and data migration problems in a methodology for
geographic data distribution.  Although they are referred to, data replication and its
associated issues are not addressed here in full but require further research to effectively

incorporate them into the methodology.
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2.4.1 Geographic data

Data that has some spatial property is referred to as geographic data. Geographic data may
consist of both spatial and non-spatial data. Often geographic data are ambiguously referred
to as spatial data. However, there is a distinction between spatial and non-spatial data, and
both are used to represent a geographic entity. Therefore, throughout this dissertation, the
distinction is maintained by referring to the spatial component as spatial data and the non-

spatial component as attribute data (Figure 2.11). The term geographic data will encompass

Geographic
Data

both aspects (Veenendaal 1997).

Spatial Artribute
Data Data
Locational Topological Descriptive Cartographic

(Geometry)

Figure 2.11 Geographic data components

Spatial data refers to the spatial component of the data with properties such as location
and/or topology. Location refers to a geographic location usually in two or more
dimensions, thereby defining the geometry (position and shape) of a spatial data entity. A
spatial data entity is represented using spatial data primitives such as points, lines, polygons
or raster cells. Topology refers to the relationships between spatial data primitives and is
based on properties such as connectivity (adjacency and incidence), enclosure and
orientation (Laurini and Thompson 1992; Adam and Gangopadhyay 1997). Two types of

data structures are used primarily for representing spatial data: vector and raster.

For the vector data structure the basic primitives used for representing entities are points,
lines, and polygons. In essence the spatial primitive is the /ine, with a point being a O-
dimensional line and a polygon being a closed set of adjacent lines. Within a layered
architecture, different geographic entities, also referred to as geographic objects or features,
are represented in different layers. The spatial data component of vector data is closely
linked to any associated attributes of the entities. In the geo-relational model, the spatial
database is linked to a relational database containing the attributes. Because of the close link

required in spatial analysis, some GIS store the spatial data with the attribute data in an
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extended relational database. Some vector GIS explicitly store topology (eg. ArcInfo) while

others simply calculate topology when required (eg. MaplInfo).

The raster structure consists of a regular tessellation of geographic space for which values
are defined to represent the presence or absence of an entity or its attribute value, or some
continuous thematic value. The basic unit of data on which the tessellation is based is the
grid cell. Different types of entities and different attributes for entities are usually
represented in different layers. Both the spatial and attribute components of raster data are

linked to the tessellated structure.

A good overview of vector and tessellated data structures is provided by Peuquet (1984) and
further detail may be obtained from Burrough (1986), Laurini and Thompson (1992),
Worboys (1995) and DeMers (1997). This dissertation is concerned with the topological
vector structure where both entities and their relationships must be maintained in a data

distribution strategy.

2.4.2 Fragmentation

Partitioning deals with the fragmentation of data entities. Most of the work on data
fragmentation has been developed for textual and numeric data in relational databases (Ceri

et al 1983; Ozsu and Valduriez 1991b), in other words, for attribute data.

When dealing with geographic entities, both the spatial and attribute components must be
considered in the fragmentation (Veenendaal and Hudson 1992). For attribute data stored in
relational tables, horizontal and vertical fragmentation strategies can be used'. However,
such fragmentation cannot be performed in isolation from the spatial data that is often stored
in a separate database and linked to the attribute component. In addition, topological
relationships must be maintained in any fragmentation of a topological vector database. The
spatial entity instances and their interrelationships must be retained for applications that
query them. One solution is to replicate the entities that fall across the boundary of two or
more fragments (Patel et al. 1997). An alternative is to split the spatial entity instances across
the fragments, in effect generating additional entities.® In order to handle spatial data,
additional fragmentation strategies, referred to as spatial fragmentation, are necessary.
Horizontal, vertical and spatial fragmentation can be combined to provide a mixed
fragmentation solution for geographic data. These strategies are detailed in the sections that

follow.

! See section 2.4.2.2 for horizontal fragmentation and section 2.4.2.1 for vertical fragmentation.
* This is further explained with examples in Sections 2.4.2.3 and 2.4.2.4.
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In determining the correctness of a fragmentation, the following rules are defined (Ceri and

Pelagatti 1984; Ozsu and Valduriez 1991b):

1. Completeness. If an entity E is decomposed into fragments E;, E;, ..Ex, then
each entity instance e; that is found in E must also be found in one or more E;’s.

This ensures that there is no data loss in the fragmentation process.

2. Reconstruction. If an entity E is decomposed into fragments E;, E,, ..E,, then it

is possible to reconstruct E from the E;’s.

3. Disjointness. If an entity E is decomposed into fragments E;, E;, ...E,, then an
entity instance e; that is found in fragment E; is not found in any other fragment

E. (k#)).

For geographic data these rules apply to the spatial and attribute components as well as to
their interrelationships. The completeness rule ensures that all points, lines, polygons,
relationships and attributes are retained in the fragmentation. The second rule concerning
reconstruction ensures that these fragments can be combined to reconstruct the original
entity. For spatial data, this is accomplished with a union spatial overlay operation. The
disjoininess rule avoids data redundancy among fragments. For vertical and spatial data
fragmentation this rule cannot always be strictly maintained. In particular the spatial
fragmentation of topologically encoded lines and polygons may result in nodes and hnes
being replicated so that the spatial entities can be maintained in individual fragments. For
vertical fragmentation, the key fields are replicated across fragments so that entities can still

be accessed.

2.4.2.1 Vertical fragmentation

Vertical fragmentation involves fragmenting an entity based on the usage of the attribute
fields (eg. the columns in a relational table). One or more fields that are accessed together
with a high probability can be vertically separated from the other fields. Some replication is
introduced since each new table must duplicate the primary key required to facilitate access.
For this reason, as mentioned in the previous section, the disjointness rule of fragmentation

can not be strictly maintained,

A GIS attribute table can be vertically fragmented resulting in two or more new tables. All
tables would have identical primary keys and would refer to the same geographic entities.
Figure 2.12b indicates an example of a vertical fragmentation of the attribute table of the

dataset of Figure 2.12a.
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Figure 2.12 Types of data fragmentation: a) the original geographic dataset, b) vertical

fragmentation, ¢) horizontal fragmentation and d) spatial fragmentation

Ceri and Pernici (1985) addressed the vertical fragmentation problem by considering the
usage of the attributes of a relational table. Different operations may access different and not
necessarily disjoint sets of attributes for the same entity. A potential vertical fragmentation
is evaluated for two disjoint sets of attributes of an entity by determining the number of
accesses requiring only one of the two fragments and the number of accesses that require
both fragments. If their difference is positive, then a vertical fragmentation is potentially

advantageous.

An early use of vertical fragmentation was to improve access to data in memory. The
attributes of data that are most heavily accessed were stored separately from those attributes
least accessed (Hoffer and Severance 1975). Such fragmentation was designed for single-
site systems and involved fragments that could be overlapping. Navathe er al. (1984) later
extended this work to include non-overlapping fragmentation for distributed database

systems where multiple networked sites are involved.

The approach used by Navathe et al. (1984) is a top-down methodology involving the
splitting of an entity (Ceri and Navathe 1983; Navathe and Ceri 1985; Ozsu and Valduriez
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1991b). The atiributes of an entity are initially grouped together as a fragment and then split
as new fragments are generated. Such an approach is in contrast to the bottom-up
methodology where the individual attributes initially form separate fragments that are then
grduped to obtain the final vertical fragmentation. The splitting approach is preferred to the
grouping approach because the final solution is much closer to the set of all attributes than to

sets containing single attributes (Navathe et al. 1984).

The splitting technique for vertical fragmentation requires information such as individual
attribute usage for each transaction, site accesses per time period and size of each attribute in
the record. Navathe et al. (1984} includes the type of access to distinguish between a
retrieval and an update access. An attribute affinity matrix is generated and shows the
frequency of accesses of attributes accessed in conjunction with each of the other attributes.
An iterative binary partitioning algorithm, referred to as the Bond Energy Algorithm (BEA)
and developed by McCormick et al. (1972), is used to cluster the matrix so that large values
are grouped with large values and small values are grouped with small values (Navathe er al.
1984; Ozsu and Valduriez 1991b). A splitting algorithm is employed on the clustered
affinity matrix to generate non-overlapping fragments by selecting a point on the diagonal of
the clustered affinity matrix to separate the top-left cluster from the bottom-right cluster.

The algorithm is recursively applied until the desired level of fragmentation is obtained.

Cornell and Yu (1987 and 1990) extend some of this work and develop a binary partitioning
algorithm that applies vertical fragmentation to improve disk accesses for a relational
database. The algorithm takes into account the specific query access plan chosen by the
query optimiser and minimises the average number of disk accesses. Similar techniques
have been adopted by Oracle to improve the performance of join operations in their
relational database {Oracle 1999). Vertical fragmentation results in significant performance

improvements particularly for disk input/output bound situations.

Rather than use the binary partitioning algorithm, Navathe and Ra (1989) have implemented
a graph algorithm which identifies partitions from a graph. The affinity matrix is used to
construct an affinity graph from which affinity cycles are identified to form the basis of
vertical fragments. This algorithm can be used for both single-site memory level partitioning

and multiple-site distributed data partitioning,

2.4.2.2 Horizontal fragmentation

Horizontal fragmentation occurs when instances of an entity are fragmented based on one or
more attribute values (fe. rows or tuples are fragmented). Figure 2.12¢ indicates horizontal

fragmentation of the attributes of the geographic dataset shown in Figure 2.12a. The
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attribute records have been fragmented into two different tables. For geographic data each

attribute record is linked to one or more spatial features while each spatial feature is linked to

only one attribate record.

Ceri and Navathe (1983) developed an algorithm for horizontal fragmentation by considering
all candidate partitionings of a given entity (see also Ceri and Pernici 1985; Navathe and
Ceri 1985). Each candidate partition is identified with a list of predicates on the given entity.
All possible conjunctions of predicates (one from each candidate partition), referred to as
minterm fragments, are then identified. The authors recognise that the computational
complexity of obtaining minterm fragments is very high. The number of accesses for each
site are evaluated for each minterm fragment which is then allocated to the site associated
with the highest number of accesses. When the fragmentation is completed the allocation of
fragments is used as the starting point in a post-optimisation step to introduce redundancy.
The database designer uses operation frequency information to iteratively identify candidate
redundant allocations and evaluate them using the same criteria as for fragmentation. The

last step is to take the allocation of fragments and produce the local schema for each site.

Ozsu and Valduriez (1991b) detail an algorithm for defining minterm predicates for a
relation given a set of simple predicates. These minterm predicates refer to horizontal
fragments and are derived from information on how the application accesses the relation.
The algorithm assumes that it is possible to identify the access probability of each tuple for
each application under consideration and that relevant simple predicates can be identified.
While the determination of the minterm predicates is straightforward the computational time
involved is not, since the set of minterm predicates can be quite large, in fact, exponential on

the number of simple predicates.

The last part of the algorithm involves eliminating minterm predicates that are conflicting
(ie. would result in an empty fragment) and are therefore meanihgless. The authors do not
specify how relevant simple predicates and meaningless minterm predicates are to be
identified. Because this requires a considerable amount of work, even if it is possible to
obtain such information for all the applications, the authors, rather, appeal to the common

sense and experience of the database designer.

Two types of horizontal fragmentation are identified by Ozsu and Valduriez (1991b):
primary and derived. A primary horizontal fragmentation is defined by a selection of tuples
on a relation while a derived horizontal fragmentation is defined on another relation related
to the first relation with a join operation. Section 2.5.1 further discusses primary and derived

predicates.
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2.4.2.3 Fragmentation for geographic data

Fragmentation is not a new issue for geographic data since it occurs already in the
construction of analog maps as well as digital databases. Tiling methods and spatial
indexing techniques use fragmentation to improve storage and access of information. These
fragmentation strategies are discussed before additional ones for data distribution are

considered.

The traditional means of geographic data storage, the analog thematic map, is a form of
fragmentation. The division of data across several maps is determined by thematic
information and the level of detail required by map users. For example, one map may
contain land use and planning zone boundaries while another contains topography, both at a
level of detail of a 1:75 000 cartographic scale (Figure 2.13). This essentially represents a
vertical fragmentation. Further fragmentation is evident in that these maps are tiled into map
sheets (Goodchild 1989). The level of tiling is dependent on the scale of detail. The
example of Figure 2.13 depicts a thematic map tiled into 1:25 000 scale map sheets. Tiling

is a form of horizontal fragmentation.

These forms of fragmentation have been extended into digital geographic databases. Tiling
need not be concerned only with a regular rectangular partitioning, but irregular tiles based
on administrative or other units can be used (as in the spatial Librarian system in ArcInfo
(ESRI 1989)). Fragmentation, either overlapping or disjoint, is also used in spatial indexing
methods to organise and/or access data on local storage devices (Frank 1981; Frank 1988;
Noronha 1988; Li and Laurini 1991; Droge and Schek 1993). Some indexing methods, such
as those based on a region quadtree {Samet 1990), use a regular fragmentation across the
data, while disregarding the structure of the data, to determine each entry in the index. Other
indexing methods such as the R-tree (Guttman 1984), K-D-B tree (Robinson 1981) and Cell
tree (Gunther 1988} use the structure of the data (data-driven) to determine each entry in the

index.

Land use and / / / / / /
Planning Zones e
1:25000
) { f l / Z / map sheets
Topography
Geology / ;‘ / / / /

Figure 2.13 Fragmentation of analog maps
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Whereas many of the fragmentation strategies for spatial access methods are data-driven,
Droge (1994) presents a query-adaptive method called Patchwork that dynamically
determines storage clusters suited to a set of spatial queries. The clusters are essentially
spatial fragments based on irregular rectangular patches that are disjoint and cover the entire
data space. Extended objects that span patches are clipped and stored as separate parts in
separate clusters, thereby avoiding object duplication. Spatial objects are also clipped at
query range boundaries. A user query is constructed by using an index directory to obtain
the relevant clusters and by checking all objects and parts of objects for intersection with the
query. The cost involves a composition cost for reconstructing an object from its parts and a
false-drop cost associated with discarding unwanted objects or parts of objects. Heuristic
algorithms are used to maintain a balance between a fine and coarse fragmentation. This

work does not address attribute data but only addresses spatial data and its fragmentation.

Although Droge’s work is focussed on indexing the concept is adapted and used for data
fragmentation in this research. The query-adaptive approach, although more complex, lends
itself to a changing data usage environment. Most current GIS are either single site or use a
replication strategy. A data-adaptive approach to the distribution of data would consider the
structure of the database. A query-adaptive method would additionally consider the queries
and associated usage of the dataset. The advantage of such an approach would be
improvements in efficiency of data access and reduction in data redundancy, since the data

can be located to cater for the data access requirements of particular queries.

In this research fragmentation is being used for the purpose of data distribution. A pumber

of strategies can be considered:

Random - Entity instances for all entity types are randomly assigned to fragments.
The number of fragments required must be determined prior to the assignment. This
scheme is by far the simplest since no information regarding the data or the

applications needs to be considered.

Tiling - Data space is divided, using spatial and/or attribute properties, into files.
Entity instances that lie within a particular tile are all assigned to the same fragment.
The tiling may be regular or irregular. For example, a regular tile for the attribute
data space could be an equal-intervals classification, or a rectangle (range of
coordinates) for the spatial data space. A irregular tile could be based on an
administrative unit (spatial} or on an attribute such as a "time period” (eg.
occurrences between 1988 and 1998). Such a scheme is relatively straightforward

and only uses information about the data properties. However, because it does not
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consider the frequency of distribution of entity instances among the tiles, the
fragments may be unevenly balanced with some containing almost all of the data and
others containing very little or none. Further, no information about the applications

that use the data is considered.

Quantile - Given some ordering on an entity, based on either spatial or attribute
properties, the entity instances are assigned to fragments with an equal number of
instances in each fragment. This scheme does consider the distribution of instances
within the data space and equally divides the data among the available fragments.
Chang and Cheng (1980) use a hashing technique to uniformly distribute data values
of a relation among fragments. Whang et al. (1994} uses a nested approach where a
directory is used to maintain a nested rectangular partitioning of the domain space. A
lower level of the directory provides a finer granularity of fragmentation and a
higher one coarse granularity. Once again, however, information about the

applications is not considered in this approach.

Usage-based - Since applications do not normally access a database wniformly, it
would be sensible to distribute data among fragments based on usage properties.
Recall from Section 2.2.4 that data usage properties are low-level factors that
contain information useful for data distribution. Rather than have one fragment with
all the high-usage data being accessed frequently, the high-usage data could be
dispersed among the fragments to avoid data access bottlenecks occurring. Such a
strategy will involve more complex methods such as horizontal, vertical and spatial
fragmentation (see Section 2.4.2.4) which are based on the usage properties of

entities and instances.

Of these methods, the Tiling and Quantile methods are data-adaptive, the Usage-based
method is query-adaptive, and the Random method is neither. Because of the advantages of
query-adaptive methods, as discussed above, this dissertation focuses on usage-based
fragmentation strategies. For geographic data where the spatial and attribute components are
stored together in a relational structure, horizontal and vertical fragmentation methods can be
used. However, these methods do not consider the spatial properties of geographic data. In
a fragmentation spatial entities have to be maintained by either replicating or adding data

(Kriegel et al. 1991).

For example, consider a spatial entity represented as a polygon. The polygon could be
stored across three tables, a pelygon table indicating which lines make up the polygon

boundary, a line table indicating the nodes (ie. end points), vertices, and topelogy of the
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lines, and a points table providing the coordinates of the nodes (Laurini and Thompson
1992). Treating this polygon as a fragment of a larger dataset would involve identifying one
or more records in each of the three tables, these records being interdependent. Further, this
polygon may be associated with other neighbouring polygons (fe. common lines and nodes).
In order to maintain the polygons in a fragmentation, the common lines and nodes would be
duplicated in each fragment. In a topological vector database, such duplication would also
be necessary to maintain topology in each fragment. This is different from horizontal
fragmentation that deals with each record as an independent atomic unit and is more akin to

the primary key repetition found in vertical fragmentation.

A further example involves the fragmentation of a polygon. Such a fragmentation may result
in separating the points or lines of a polygon boundary and placing them in two different
fragments. However, the concept of “polygon” would be lost since only portions of the
polygon are found in each fragment. Maintaining these portions as complete polygons is
essential if they are to be used as individual entities in different fragments. Therefore, for
the purpose of fragmentation, the one original polygon may have to be split into two separate
polygons that are placed in separate fragments. In this process, the two resulting polygons
will have to be reconstructed by adding or replicating points and lines to form a complete

boundary. This is further explained in Section 2.4.2.4.

As already stated in Section 2.4.2, because of the need to maintain spatial relationships and
because a fragmentation ray result in additional spatial data being generated, the traditional
horizontal and vertical fragmentation strategies are not sufficient in themselves. Rather, they

must be extended with a spatial fragmentation strategy for geographic data.

2.4.2.4 Spatial fragmentation

Spatial fragmentation strategies are used to fragment spatial data according to various spatial
and/or attribute criteria. This fragmentation can be based on specific properties of the spatial
dataset, some pre-determined fragmentation such as a regular tiling or some mapsheet
boundary, or some other spatial boundary or feature from another dataset. In conjunction
with spatial fragmentation, horizontal and vertical strategies, based on spatial and/or attribute

criteria, can be used on the corresponding attribute data,

For raster data, consisting of a regular tessellation of cells, spatial fragmentation can take
advantage of the regular size and shape of each cell and its neighbouring cells. Fragmenting
the data space based on nested or hierarachical tessellations such as quadtrees or using

various cell orderings such as the Morton order are already used for spatial indexing and
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storage of raster data (Orenstein and Manola 1988; Samet 1990, Laurini and Thompson

1992).

Point datasets are the simplest vector data types to fragment since each spatial object is a
single atomic point representing an instance of an entity. Spatial fragmentation of the entity
is a matter of allocating cach separate point to a fragment. There are no explicit topological
relationships that need to be maintained and hence this fragmentation is akin to the

horizontal strategy.

Whereas point features are topologically independent and not related by adjacency, lines can
be adjacent and share common nodes. Fragmenting line data, such as rivers or contours,
may not only involve splitting up an entire data entity (eg. an individual river or contour),
but may also involve the splitting of adjacent lines at their common node, or splitting up of

line segments themselves (Figure 2.14a) resulting in the creation of additional nodes.

The fragmentation of polygon data is more complex since polygons share common lines and
nodes. These lines and nodes may have to be replicated in the various fragments (as
described by Patel et al. 1997) or the lines may have to be split to create additional nodes and
lines as illustrated in Figure 2.14b. This may result in generating multiple polygons from
one original polygon and allocating the newly generated polygons to different fragments.
Access to the original polygon requires reconstructing it from the associated individual
polygons in each fragment. The creation and management of additional data increases the

complexity of such a fragmentation.

a}  pasphit lines b) unsplit polygons

split at node / split at nodes

'r
split lines / split polygons

Figure 2.14 Fragmenting lines and polygons
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2.4.25 Mixed fragmentation

Very little research has been done for simultaneously handling multiple fragmentation
methods. Ra and Park (1993) describe a hybrid vertical and horizontal fragmentation
technique using the graphical technique of Navathe and Ra (1989) for vertical fragmentation.
Both horizontal and vertical candidate fragments are identified and placed in a grid. The
grid is then optimised by merging grid cell fragments based on their access frequencies
obtained from the most important application transactions. The remaining mixed fragments

are then allocated to sites based on the usage information.

A combination of not only horizontal and vertical strategies but also spatial strategies can be
used to fragment geographic data. Both the spatial and attribute components of geographic
data should be considered in the fragmentation process. For example, it would be quite
common to spatially fragment the spatial component and horizontally fragment the
corresponding attribute data to keep the spatial and attribute components together in the

same fragment (Figure 2.15).

If there is a one-to-many relationship between attribute instances and spatial entities, then
replication must occur in the fragmentation process. For example, if a particular attribute is
associated with two polygons placed in separate fragments, then the attribute must be
replicated in each fragment. This occurs in addition to any line and nede replication caused

by adjacent polygons in separate fragments.

NMMHEE

Figure 2.15 Spatial and horizontal fragmentation to retain spatial-attribute linkage

It is possible that the spatial and attribute data are accessed independently. In such a case the

spatial and the attribute data must be dealt with separately in the fragmentation and may be
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allocated to different fragments. No replication need occur among the attribute data. Any
access to the entity involving both the spatial and attribute data requires retrieving the two
components from different fragments. The link between the two components must be

maintained so that the entity can be reconstructed.

GIS handle the link between the spatial and attribute data in various ways. The ArcInfo GIS
handles it by using an identification number (ID) which relates a spatial entity (fe. point, line
or polygon) to an artribute table (ESRI 1994). This attribute table, which may be a point,
line or polygon attribute table, has a one-to-one relationship with the spatial data primitives
themselves and can then be linked to other user-defined attribute tables on a one-to-one or |
one-to-many basis. In such a case, spatial fragmentation must consider both the spatial data
and the artribute table associated with it (ie. a polygon attribute table related to polygons).
Because of the one-to-one relationship, no replication resulting from the fragmentation is
necessary. The user-defined attribute tables can then be handled separately in a
fragmentation strategy that would consider their access characteristics apart from that of the

spatial component.

2.4.2.6 Levels of abstraction

When considering data distribution for GIS it is important to determine at what level of
granularity the fragmentation takes place. Should fragmentation occur at a low level of
abstraction among the simple spatial primitives, or should it occur for the spatial data entities

at a higher level of abstraction?

At the internal level of a data model (see Section 2.2.2) vector geographic data are stored as
simple spatial primitives in the form of points, lines, and polygons. Complex spatial
primitives, such as dynamic segments (ie. complex lines) and regions (ie. complex
polygons), can be constructed from one or more of these spatial primitives. At the external
level, users and applications deal with spatial entities which themselves are constructed from
complex or simple spatial primitives. The level of abstraction increases up the pyramid as
shown in Figure 2.16. Note that the components of the data must be maintained from the

external level through to the internal level in a geographic database.

To illustrate with an example, an application may deal with a network of roads. A road
segment between two intersections could be represented as a simple spatial primitive (ie. a
line). A street could be represented as a number of these road segments (whether connected
or not) which would form a complex spatial pnimitive. Multiple complex primitives

representing streets could be associated to form a spatial entity such as a route. Note that
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some spatial entities can be simple rather than complex (eg. a route is made up of a line

segment).

Increasing
lavel of
abstraction

Figure 2.16 Levels of abstraction for geographic data

Part of the data distribution problem, then, is to determine at what level of abstraction the
fragmentation of data should be considered. Applications access data at the external level.
Fragmentation must occur at the internal level where the spatial primitives are stored.
Therefore the problem, addressed in this dissertation, becomes one of translating usage

information at the external level of a data model to a data distribution at the physical level.

2.4.3 Allocation

The allocation of data to sites is not an arbitrary decision but could be based on the usage
pattern of the data. The data partitions can be constructed from data that is related by usage.
Information on data locality can then be used to allocate the partition to the site “closest” to
where it is being used or primarily being used. In determining a data allocation
consideration is to be given to the costs involved in accessing and maintaining partitions on
various sites. Such costs may include the cost of transfer, processing, and storage of

partitions.

Most of the early data allocation models do not include the dependence between data but
rather assume that data fragments are placed independently of each other. In reality, data
fragments are often used in conjunction with each other by operations within applications
and their interrelated usage patterns will affect their distribution. Apers (1982) uses a
graphing strategy and heuristics to assign both data fragments and operations (queries and

updates) to sites in order to minimise data communications costs and response time. In such
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a model the dependencies between data partitions are recognised, based on how they are

accessed by user applications.

2.4.4 Replication

Data replication involves determining the number of data copies, if any, that should be
placed among the sites of a distributed network. The purpose of replication is to improve
performance of access to data by multiple applications on different sites and to improve
reliability of access in the event of site failures (Andleigh and Gretzinger 1992). Replication
also provides parallelism by allowing simultaneous access to different copies of the same

data stored at separate sites (Wong and Katz 1983; Hevner and Rao 1988).

Replication of data in a distributed network is a result of allocating multiple copies of
partitions to different sites. Access is often required for only some of the data in a partition,
in particular for the cells which make up the partition. Thus, rather than replicating the
entire partition, it may be more efficient to assign copies of cells to separate partitions. Such
a placement would be determined by analysing data access patterns for each cell rather than

for the partitton as a whole.

Replication may also be required to maintain information during the partitioning process.

This has already been explained in Sections 2.4.2.1 and 2.4.2.3.

A disadvantage of replication relates to the cost of updating the data copies and maintaining
consistency among these copies. If access to the data involves only retrieval, then of course
there is no further cost and the replication may indeed be beneficial. When a copy of the
data is modified or updated, then it is important to ensure that replicates of the data reflect
these changes. Related to this are the problems of providing concurrency control, integrity
of data, recovery from system failures and transaction abortions, and measures of security
(Bernstein and Goodman 1981; Hevner and Rao 1988; Ozsu and Valduriez 1991a and
1991b). Replication is a complex issue and, other than the replication necessary to prevent

information loss, 1s not dealt with in this dissertation.

2.45 Data migration

Data distribution occurs in a dynamic environment where data and applications change over
time. This is particularly so within a GIS environment where applications are dynamic and
varied (Coleman and Zwart 1992a; Goodchild and Rizzo 1986). Data distribution therefore
cannot be a static process but must be monitored and modified to reflect changes regarding

the access and usage of the data within the distributed environment.
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An initial data distribution must therefore be followed by a data migration strategy (Figure
2.17). The initial distribution would normally be determined in the design stages of a system
and applied as datasets are obtained in the implementation phase of an application. For an
existing system, an initial (but often ad hoc) distribution is already in place but may need to
change to reflect current usage of the data. Information obtained from the design of the data
and operation schema as well as information regarding the predicted usage of the data can be

used as input to the initial distribution design.

Information on data
changes and usage

Initial Data 4;[ Data

data and Distribution Migration
predicted usage

information

Figure 2.17 Stages of dynamic data distribution

As further information about data usage and schema modifications becomes available, the
dynamic data migration strategy can be used to redistribute the data. This is an iterative
process that must be executed at appropriate intervals. The frequency of data migration 1s an
important choice and must reflect the application environment. Too frequent migration
means the overhead costs of redistribution may exceed the advantages and too infrequent
migration may result in the data distribution not reflecting the application changes in data
usage (Sacca and Wiederhold 1985; Stonebraker et al. 1996). An explanation of how data
migration is incorporated into the data distribution methodology is presented in Section

4.2.4.

2.4.6 Database and application information

The information required to effect a data distribution varies widely, ranging from
information on the overall structure of the data to details on the usage of data at each
individual network site. Obviously the amount of information available will determine the
effectiveness of the resulting distribution. A good distribution should adapt to a changing
environment. However, this will involve a considerable amount of information about the

database and applications being continually monitored, collected, analysed and acted upon.

Even if all the criteria necessary for a distribution design are identified, much information

may not be available when it is needed. This is especially true when considering usage data.
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Of course usage data are not available before the applications are run. Therefore usage data
from previously-executed applications are gathered and used to predict how future
applications will use the data. Ozsu and Valduriez (1991b) suggest that if it is not possible
to analyse all of the user applications, one should at least investigate the most “important”
ones. The 80/20 rule suggests that as a rule of thumb, 80 percent of data accesses are
initiated from 20 percent of the most active application queries (Wiederhold 1982).
Collecting such information assumes that previously-executed applications indicate how
future applications may use the data. Information that is available is better than no

information at all as long as the user of that information understands its limitations.

Situations may arise where information such as usage data from previously-run applications
are unavailable. Information concerning the entity schema and operation schema as well as
any distribution requirements must be obtained during the requirements analysis stage. The
entity schema identifies the structure of the database whereas the operation schema identifies
the operations and the data they access. Other required information, such as operation
frequencics and data access frequencies, will have to be predicted in the absence of any
usage data. An initial data distribution can then be determined from the given information

(Ceri et al. 1983; De Antonellis and Di Leva 1985).

The information required for distribution design can be categorised as database information
and application information. Database information, sometimes also referred to as metadata,
deals with the structure and size of the data whereas application information identifies how

the data is used among network sites by applications and users.
Database information

For data distribution design both the structure and size of a geographic database must be
known. Such information is obtained from the entity schema and from the conceptual design
stage (eg. from an Entity-Relationship model) (Batini et al. 1992). For geographic entities,
information must be provided for both the spatial and attribute components (Firns 1992).
Figure 1.4 illustrates an Entity-Relationship diagram for the GEOMINE application. The
entities and their attributes are identified. For spatial entities, the spatial data type (which is

point, line or polygon for a vector database) is provided.

Further information relating to the size of the entities must be obtained from the physical
design stage when the size of the spatial and attribute components is known. Size
information is used to determine the volume and cost of moving data from one site to

another.
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Application information

Information on applications and how they interact with geographic data are more difficult to
determine than for database information. It is expected in the design stages of an application
that an initial estimate of application information is known so that an initial data distribution
can be determined. Further information can be obtained later when the applications are

executed.

The representation of an operation schema is difficult because of the potentially large
number of operations and their complexity, particularly for spatial operations and data.
Depending on the spatial operation, the spatial and attribute components may be treated
differently and the number of spatial and attribute records accessed may be different. Ceri
and Pernici (1985) use an operation ER model for non-spatial operations that includes a
means of recording the number of instances of a record, how many records were accessed
and the type of operation (keyed access, retrieval, output, write, etc.). For geographic data,
an operation ER model must provide this information for both the attribute and spatial
components. The number of instances recorded for spatial components is supplied using

number of points (for the reason already discussed above for database information).

Figure 2.18a illustrates an Operation ER diagram (based on that of Ceri and Pernici 1985)
for an operation "located within" which finds all mines located within the Laverton map
sheet area. The mapsheet_id and mapsheet_name attribute fields in the mapsheet entity are
accessed through an index on the key field (access type = K) and one field (where
mapsheet_name = Laverton) read (access type R = retrieval) from a total of 98 instances of
map sheets. Four (defining the 4 corners of the Laverton map sheet) of the 422 points which
make up the map sheet polygons are accessed by this operation. Of the mines entity, 8333
records are accessed sequentially (access type = S) by mine_id and 503 records are selected.
The mine_name attributes as well as the spatial locations for the selected mines are retrieved
for output (access type = O). Note that in this case where the spatial data type is point, the
number of spatial records accessed is equivalent to that of attribute records since each point

has one attribute record associated with it.

(5) mine_id

(O mine_natnc .—— M . —. mapsheel_id {K)
develop (O—— Mines 1 l(‘):,::.}ﬁd MapShEEE ——@ mupshect_name (R)
(0 point B {7 nulygon

503 | 8333 ! kL]
503 §333 4 422

Figure 2.18 (a) Operation ER diagram for the operation: "Identify all mines located within

Laverion"
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Figure 2.18 (b) Operation ER diagram for the operation: "Display mines located within

Laverton and containing ‘Au’ as primary mineral"

Figure 2.18b illustrates an Operation ER diagram where the same operation is further
constrained to gold mines. The minerals entity is accessed sequentially to retrieve the record
where symbol = ‘Au’. From the mines entity, 48 mines entities are retrieved that match the
selection criteria. Four line segments of the Laverton map sheet polygon and 150 mine
points are accessed for output. The Operation ER diagram also shows that the Laverton map
sheet is retrieved for output. In general, the information contained in the Operation ER

model] must be obtained for all operations across all applications.
Site information

Information about computer network sites is necessary to determine any requirements and
constraints for placing data. Organisational policy may dictate that certain data must or may
not be placed on a particular site. Further, the storage constraints must be known for each
site. Such information can be identified by a Database Administrator (DBA) and must be
updated as requirements and constraints change (see Sockut and Goldberg 1979 for issues

that the DBA must consider).

2.5 Predicates and Selections

Applications that access an entity often do not require the whole entity but simply a fragment
of it. This fragment can be a spatial subset referring to the data within a window defined
over a geographic area or it can be an attribute subset referring to only the data with the
specified properties. For every application, there must exist a means of specifying the

fragment of data required by the application operations. This is achieved using various
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operations that incorporate the use of predicate expressions to specify the data. These
operations are often based on the fundamental SQL relational algebra operators: select,
project and join (Date 1982; Aho and Ullman 1992; Korth and Silberschatz 1991). The
predicate expressions and the associated selection operations are used in the data distribution

design methodology detailed in this dissertation.

To illustrate the use of predicates and selections, the following selection example, based on
the relational algebra “select” operator, contains an expression identifying a subset of an

entity called mines.
sefect * from mines where (mineral = ‘Au’) and (production > 0)

(The expression “(mineral = ‘Au’) and (production > 0)" is used to specify the condition
that only mines which are producing gold are being accessed.) The condition is referred to

as a predicate (ie. horizontal fragmentation).

Rather than select all attributes for entity instances that satisfy the condition, it may be
desirable to select only a subset of attributes. This can be achieved using a projection
operation to identify the attributes to be retrieved. For example, the above “select” operation

could be extended as follows.

select mine_name,production from mines where {mineral = ‘Au’} and {production >
0)
In this case, only the attribute fields mine_name and production are retrieved for the

instances identified by the given predicate. This projection essentially defines a vertical

fragment of the entity mines.

The selection and projection operations indicated above operate on one entity. A join
operation provides a means of relating entities together. The example above can be extended

to include a join operation as follows.

select mines.mine_name, minetype.fype_name from mines,minelype
where { mines.type_id = minetype.type_id) and (mines.production > 0}
Here the entity mines is joined to the entity minetype by the field named rype_id from each
entity. A selection operation (using the predicate "mines.production > (') and a projection
operation (identifying attributes mine_name from entity mines, and type_name from entity

minetype) further specify the fragment of data being selected.

Other operations for selecting data exist and include the union, intersection and difference
set operations between entities.  These three operations together with the selection,

projection and join operations provide a foundational basis which applications can use to
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select entities and subsets of entities. The predicates and fields specified within these
operations can be used to identify the fragments of data being accessed by user applications.
Because these operations are used to select subsets of entities, they will be collectively
referred to as selection operations (not to be confused with the selection operation in

relational algebra) for the purposes of this dissertation.

The operators and operands of an expression can be represented by a tree structure which is
sometimes called an expression tree (Aho and Ullman 1992). The tree specifies a way of
associating operands with operators and relating the operators together in an expression.

This concept is used in the Predicate Fragmentation tree outlined in Chapter 3.

The selection operations can be implemented in various ways. As an example, consider the
GIS which is used in this research (ESRI 1992; ESRI 1994). ArcInfo uses the INFO
database management system which pre-dates the SQL standard. INFO implements three
operations known as “reselect”, “aselect” and “nselect”, which further restrict a selection,
add to a selection, and negate a selection, respectively. Within the first two of these
operations, a predicate may be specified. A “relate” provides the information for joining two
tables and can be specified within the predicate using the *//" operator. Further operations
are available to insert and delete record instances, as well as insert, delete, and retrieve
(selected) attributes of an entity. All these operations can be used together by an Arclnfo
application to access subsets of a database in a manner equivalent to the SQL operations

described above. Because ArcInfo is used in this research, the three INFO operators are used

in examples throughout the dissertation.

A predicate identifies a subset of an entity that is being referred to. These predicates are
specified using rules that combine operators and operands. The following Extended Backus
Naur Form {EBNF) syntax describes, in some detail, how predicates can be constructed in
Arclnfo:

predicate = simple_predicate | compound_predicate

simple_predicate = relational_expression | boolean_constant | boolean_function
compound_predicate = {simple_predicate} boolean_operator simple_predicate
relational_expression

relational_operand relational_operator relational_operand
relational_operand = local_field | foreign_field | constant

The constants, functions, and operators are further defined according to the rules of a
specific GIS database management system. For example, the following definitions for

boolean operators, relational operators and foreign fields would apply for ArcInfo:

boolean_cperator = "AND” | “OR" | “NOT”
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relational_operator = “<" | “>* | “<=" | “>=" | “<>“ | “IN"

foreign_field = relate_name “/" [ local_field | foreign_field ]
In this example, relate_name is the name of a relate (ie. a relation defined between two
tables), whereas local_field and foreign_field are the names of fields (attributes) in a local
and foreign entity respectively, through which the join is performed (see below in Section
2.5.1 for explanations of local and foreign). A relate refers to the information that specifies
how a logical join operation is to be performed. A relate is first defined and then referred to

in subsequent operations which require a logical join.

A predicate is often based on one or more propetties of the entity. In the example of the
relational algebra selection operation given above, the mines are selected based on their
attributes: mineral type (Au) and production rate (>0). This is essentially a horizontal
fragmentation. For geographic data the selection can also be based on spatial properties. For
example, the following predicate indicates that only mines found north of 32 degrees latitude

are to be selected.
select mines where Y-coord > 32.00

Here the selection is based on a spatial property, the Y-coordinate value. A spatial query
may also involve a spatial operation. The following example selects all mines in the

‘Laverton’ mapsheet.
sefect mines where mines. XY _coord ~ (mapsheet.mapsheet_name = ‘Laverton’)

The operator "M" represents a spatial intersection overlay operation. These selections,
involving spatial properties, essentially result in a spatial fragmentation on the mine points in

addition to a horizontal fragmentation for the mine properties.

The selection operations and the predicates that they apply to within an application form the
basis by which usage information is obtained and from which a fragmentation can be
determined. They are crucial to the data distribution design and methodology outlined in this

dissertation,.

2.5.1 Primary and derived predicates

The primary predicates of an entity are based on the properties of that entity, whereas
derived predicates are based on the properties of other related entities. The entity for which
the predicate is being defined is referred to as the locaf entity whereas a related entity is
referred to as a foreign entity. For geographic data, spatial and/or attribute properties of both
local and foreign entities may be used in the predicate expressions. Table 2.1 lists some

examples of primary predicates defined for various entities.
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Table 2.1: Examples of Primary Predicates

Eniity Predicate

a) | mapsheet mapsheet_name = 'Laverton’
mapsheet_name = 'Albany’
NOT (mapsheet_name [N {Laverton’, 'Albany'})

b) | mine status = 'Developing’
status = 'Abandoned’
¢y | mine Y-coordinate <= 32

Y-coordinate > 32

For the mapsheet entity the predicates are based on its attribute mapsheer_name (Table 2.1a).
The starus of a mine is used to define the predicates in Table 2.1b. Table 2.1c¢ provides an
example where a spatial property, the location of mine points above or below the 32nd

parallel {degrees latitude), is used to define the predicates.

The predicates need not be defined on some property of the local entity, but can involve the
property of a foreign entity that is joined via some attribute field to the local entity. Table
2.2 lists some derived candidate predicates for the mine entity. For example, the predicates
in Table 2.2a are based on the symbol attribute of the minerals entity which is joined to the
entity mine via the mine_id attribute field. In Table 2.2b the predicate for mine is based on a

field in the minetype entity.

Table 2.2: Examples of Derived Predicates

Entity Foreign Entity | Association | Predicate
a) { mapsheet | mine mine_id symbol = 'Au’
symbo! <> 'Au’
b} | mine minetype mine_id type = 'Underground’

type = 'Bedrock’
type = 'Surface’

c) | mine mapsheet location XY-coord m mapsheet_name = Laverton’
XY-coord ! n mapsheet_name = Laverton’

As with primary predicates, a derived predicate can be based on a spatial relationship. Table
2.2c shows an example involving the spatial location of the mine entity related to the spatial
location of a foreign entity called mapsheet. The predicate involves the intersection ( M)
of mine locations (XY-coordinates) with the 'Laverton' map sheet. In this case, a spatial
overlay operation (je. intersection) is required to obtain the fragment defined by the
predicate. A selection involving such a predicate is obtained by executing a spatial overlay
operation followed by the selection operation. In this case the overlay operation would result

in attaching a map sheet name to each mine point by incorporating the mapsheet_name
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attribute, The subsequent selection operation would then simply use the mapsheet_name

attribute to identify the required mine points.

2.,5.2 Primitive predicates

A predicate expression is used to specify the subset of an entity. A predicate specified
within an application query is referred to as a user predicate. Often different user predicates
defined by applications on the same entity will result in selections that may not be disjoint.
This happens, for example, when one query on an entity overlaps with another query. Figure
2.19 shows an example where there is no data in common with Query 3 and Query I (or
Query 2) whereas the data identified by "B" are commeon to both Query 1 and Query 2.

Clearly, user predicates do not necessarily identify unique and disjoint fragments.

For data distribution, we would like to identify fragments where all the data in the fragment
are always accessed together in a homogeneous manner. In other words, we want to identify
disjoint atomic fragments, Predicates that define such fragments are referred to in this
dissertation as primitive predicates. As indicated in Section 2.4.2.2, they are also referred to
in the literature as minterm predicates (Ceri and Navathe 1983). The data identified by "A",

"B", "C" and "D" in Figure 2.19 are primitive predicates.

Query 1 Query 2 Query 3

Figure 2.19 Venn diagram showing disjoint and overlapping data queries

To illustrate the concept of a primitive predicate with an example, suppose that an
application selects some entities from an entity called mines based on the following user

predicate expression.
mapsheet = Laverton’

Suppose that an application requests a selection on the entity mines based on a different user

predicate expression.

type = ‘Bedrock’
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Suppose that the fragments defined by these two predicates are non-disjoint as illustrated in
Figure 2.20. The data represented by group B is selected by both applications while the data
represented by groups A and C are only selected by one of the applications. In addition,
there exists a fourth fragment of data represented by D that consists of the data that was not
selected for either of these applications. Tt is important to also consider this latter group of
data since, according to the fragmentation rules specified in Section 2.4.2, all the instances of

an entity have to be accounted for among the fragments produced by a data distribution.

C D

type = ‘Bedrock’

Figure 2.20 Venn diagram showing overlapping data selections defined by two user

predicates

For the two user predicates shown in the example of Figure 2.20, four primitive predicates

would result (defined by A, B, C and D). They are:

(Mapsheet = ‘Laverton’) and (type <> ‘Bedrock’)
(Mapsheet = Laverton') and (type = '‘Bedrock’)
(Mapsheet <> ‘Laverton’) and (type = ‘Bedrock’)
(Mapsheet <> ‘Laverton’} and (type <> ‘Bedrock’)

These four primitive predicates define four disjoint fragments and contain all the instances of
data for the entity mines. Their union would result in the original entity. Thus, these

primitive predicates define a fragmentation that adheres to all three correctness rules given in

Section 2.4.2.

2.6 Methodology for Data Distribution Design

Ceri and Pernici (1985), De Antonellis and Di Leva (1985) and Ceri ef al. (1987) describe a
methodology for data distribution, used in their DATAID project. This project was
undertaken with the objective of developing a methodology to support the specification,

design and implementation of databases and tools for the designer. The distribution
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methodology involves two phases: analysis of distribution requirements and distribution
design (Figure 2.21). The distribution requirements analysis is implemented in a step
separate from that of the general requirements analysis step in the overall data design
methodology. For the distribution requirements phase, the first task is to collect usage and
frequency of access information and determine the distribution predicates based on both
primary and derived predicates. For the second task these predicates are associated with
quantitative values which identify their polarisation, that is the difference with respectto a
homogeneous distribution of accesses. The partitioning tables identify the possible

fragmentations derived from the predicates.

The distribution design phase uses the information gathered in the first phase to perform
iterative horizontal and vertical fragmentation, redundant data allocation and the

reconstruction of the logical schema at each of the local sites (Ceri et al. 1987).

The problems of horizontal partitioning, vertical partitioning, replication, and allocation have
been independently addressed in the DATAID methodology. This is due to the complexity
of modelling their interdependencies and solving for such a difficult problem (Navathe and
Ceri 1985).

Distribution requirements

Global data schema Global operations
schemata

Analysis of
Distribution
Requirements

) ) Pclarisation tables
Global logical design Partitioning tables

\ Frequency tables

Distribution

Design

VAN

Lagical Legical
schemata at access tables
each site at each site

Figure 2.21 Data distribution design methodology (Ceri and Pernici 1985)
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Hevner and Rao (1988) have used a data distribution design methodology similar to that of
Ceri and Pernici. The distribution requirements are identified from the general requirements
analysis step and analysed in a distribution analysis step. This step together with a data
allocation design step make up the data distribution design stage in their methodology
(Figure 2.22). The data allocation design involves data partitioning, placement, replication
and dynamic migration. The data distribution design also includes a local conceptual design
stage which uses the global conceptual schema and the allocation design to determine the

local conceptual schema for each site.

Global logical design Distribution requirements

\ ; l ....................................................

Data | N . l
Distribution Distribution Analysis
Design /

Data Allocation Design
« Data partitioning
« Data placement
+ Data replication
+ Dynamic data design

Local Conceptual Design I

Logical
schemata at
each site

Figure 2.22 Data distribution design {Hevner and Rao 1988)

Both methodologies include a distribution analysis phase, to identify what the data and usage
properties are, and a distribution design phase to determine how the data is to be partitioned
and allocated based on these properties. These two steps are crucial and form the basis for

the methodology used in this research and detailed in Chapter 4.

2.7 Conclusions and Probliem Definition

This chapter provides the background information for the geographic data distribution

problem. The distributed data environment was described and the development of the
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distribution problem was traced from simple file allocation to more complex data
distribution. Many high-level factors affect data distribution but they are hard to identify, so
low-level factors based on database and application information will be used to determine an

appropriate distribution strategy.

The distribution design problem involves fragmentation, allocation and migration of data. A
number of fragmentation and allocation solutions are outlined in the literature. However,
they are oriented to non-spatial data and do not provide an integrated solution involving both
entities and their interrelationships in a dynamic environment. Partitioning strategies for
spatial data involve the duplication of existing primitives or the addition of new primitives to
maintain spatial entities and topological relationships among the fragments. This research
incorporates spatial fragmentation methods and aims to provide an integrated solution where
a data distribution is query-adaptive, based on the dynamic usage properties of geographic
data, rather than being simply data-adaptive and based only on the relatively static properties
of the data. These usage properties are obtained from the predicates and data selections
identified from application queries and are the basis from which a data distribution can be

derived.

Having now defined the background material, the geographic data distribution problem can

be more precisely stated as follows:

1. To develop and implement a model to store, access and maintain information
required for the distribution of geographic data based on a topological vector
structure. The PF model and its implementation are described in Chapter 3. The
factors that affect the distribution, based on usage information, and the data
fragments used in the distribution process must be identified from the PF model

(refer to objectives 1 and 2 in Section 1.5).

2. To develop and implement a geographic data distribution methodology. The
methodology must outline how the data fragments and usage properties are used to
perform a data distribution. Chapter 4 outlines the methodology and its

implementation (refer to objectives 3 and 4 in Section 1.5).

3. To develop procedures to evaluate the methodology. The testing procedures and
measures are explained in Chapter 4 and the results are provided and discussed in

Chapter 5 (refer to objective 4 in Section 1.5),
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3 Predicate Fragmentation Model

3.1 Introduction

The predicate fragmentation (PF) model is designed and developed to identify geographic
data fragments and determine their usage based on log information obtained from GIS
applications. The basis of the model is a tree data structure defined for each entity set in the
GIS database. Each tree is constructed from user-defined predicates that specify data
selections from the database on which subsequent GIS aperations are to be performed.
Associated usage information is accumulated in the nodes of the tree. From the PF tree,

primitive predicates defining cell fragments can be identified.

The tree can be pruned to eliminate predicates that are redundant or produce empty or
undesired fragments. The resulting primitive predicates identify the fragmentation that
forms the basis for data distribution. The PF tree is logically equivalent to an expression tree
using the AND, OR, and NOT operators, but is more efficient in its implementation because

it takes advantage of some simple heuristics.

3.2 Overview of Geographic Data Fragmentation

The geographic data fragmentation problem involves the use of information about
application queries to obtain fragments from the entity sets of a GIS database (see Section
2.4.2.3). Because queries overlap, a perfect fragmentation cannot be obtained from the
queries alone. Rather a fragmentation should be based on cells that identify disjoint
fragments. The solution adopted here is a predicate fragmentation model (PF model) that
provides a means of manipulating user predicates so that primitive predicates can be

determined to identify fragmentation cells (Section 2.4).

The PF model must:

*  maintain query predicates and associated usage information obtained from
application sessions,

+ provide a means of identifying primitive predicates and associated usage
information,

*  be able to handle horizontal, vertical and spatial fragmentations,

* be able to deal with compound predicates involving the AND, OR and NOT

operators,

57



« be dynamically re-configurable to adapt to a changing application environment,
+ provide operations to add new user predicates,
+  provide an operation to delete predicates at both leaf and non-leaf nodes, and

» have provision to remove fragments that are not required.

3.3 Description of the PF Model

The PF model is implemented using a PF free. A binary tree structure was chosen as the

basis for the PF tree for the following reasons:

I. the binary tree is relatively easy to implement,

2. it has well-known operations (eg. insert, delete) defined on it (Aho and Ullman
1992),

3. the tree can be dynamically altered by adding or deleting nodes and therefore can
adapt to a dynamic environment where fragmentation is changing, and

4. the hierarchical nature of a tree is well snited for accumulating information up or

down the branches.

A PF tree may represent the fragmentation of an entity. A separate tree is defined for each
entity being fragmented. The root node of a tree represents an entire entity set and each non-
root node is associated with a predicate that defines a subset of the entity set. A primitive
predicate is identified as the conjunction of prediéates along the path from the root node to a
leaf node identifying a unique fragment of the entity set. Therefore there are as many
primitive predicates as leaf nodes. The leaf nodes are connected in a linked-list structure to

facilitate processing of the primitive predicates (Figure 3.1).

free \
T

ke Fa 1 Fa N L
Y i

Figure 3.1 PF tree structure and linked list

The PF tree is constructed from predicates obtained from user applications. Compound

predicate expressions are broken down into multiple simple predicate expressions so that
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they can easily be manipulated in the PF implementation.” Each simple predicate is then
associated with a node and is inserted into the tree according to specified insertion rules (see

Section 3.3.1).

It is possible to leave a compound predicate expression without breaking it down only if it is
never broken down further or the terms comprising the predicate expression are afways used
together. For example, consider the following compound predicate expression that defines a

rectangular geographic area of interest:
X >= 430000 AND X <= 440000 AND Y >= 6355000 AND Y <= 6365000

Although this predicate could be broken down into four simple predicates, the X and Y
coordinates are often used together. Further, in specifying the rectangular region, the upper
and lower limits in both the X and Y directions are always specified together. In such a case
the compound expression can be treated as a simple expression for the purposes of the PF

tree implementation.

The PF tree structure can be illustrated by an example. Consider the following user predicate

defined on an entity called mines:
mapsheet = Laverton’ AND mineral = ‘Au’ [1]
This compound predicate can be broken into two simple predicates as follows:

mapsheet = Laverton’
mineral = ‘Au’

The PF tree corresponding to these two is shown in Figure 3.2, Section 3.3.1 explains how
the tree is constructed from such predicates. Note that two nodes are defined for each
predicate; one node associated with the predicate itself and represents the entity instances
selected, and the other node associated with the converse of the predicate and represents the
entity instances not selected. By including the converse nodes, all entity instances are
accounted for in the PF tree as required by the fragmentation rules (Section 2.4.2). All non-

leaf nodes must therefore have two children, one child being the converse of the other.

The converse nodes introduce more splitting and more nodes into the tree. It is possible to
implement the PF tree without inserting the converse nodes. Essentially the nodes in the tree
would then represent only predicates that were actually used in the applications. The
children of a node could then be associated with two different and unrelated predicates.

Also, the size of the tree could be reduced somewhat, although optimisation strategies do this

* Note that even though simple predicate expressions cannot be broken down further, the data that they
define yet may be overlapping with that of other predicates (see Section 2.4.2).
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anyway by removing redundancy and unwanted fragments (see Section 3.3.2). However, the
linked list implementation would become more complex since non-leaf nodes (fe. nodes
with only one child) must then be included to identify the primitive predicates. More
importantly, the converse nodes are used to maintain application usage information, in
particular the size of the (unaccessed) fragment, which is necessary to determine which
fragments are (not) required (see Section 3.4.5). For these reasons it is better to explicitly

place the converse node in the PF tree.

mines

N
e
N

mapsheet = "Laverton’ mapsheet <> 'Laverton’

mineral = 'Au’ mineral <> "Au’

Figure 3.2 Example of a PF tree for mines

The predicates of parent-child nodes are joined by the AND operator. In the example of

Figure 3.2 the three primitive predicates obtained for the entity mines are:

(mapsheet = ‘Laverton’) AND (mineral = ‘Au’)
(mapsheet = ‘Laverton’) AND (mineral <> ‘Au’)
{mapsheet <> Laverfon’)

The construction of the PF tree is dependent on the order in which the predicates are added
to the tree. The result is a different fragmentation for data that is not accessed by the user
applications or a further fragmentation to identify the data being accessed. This can be

shown through a number of examples.
Suppose that the predicates in the example of [1] were given in reverse order as follows:
mineral = ‘Au’ AND mapsheet = ‘Laverton’ 2]

The primitive predicates obtained would be:

(mineral = ‘Au’) AND (mapsheet = Laverton’)
(mineral = 'Au’) AND (mapsheet <> Lavertor’)

{mineral <> ‘Au’)

Because of the AND operation, the order of the predicates in the primitive predicate

expression does not affect the fragment being accessed. It is the other two fragments
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involving the converse nodes that have been affected. Because they are not accessed by the

user query of [2] the effect of the revised fragmentation is minimal.

As another example, consider two independent user queries as follows:

mapsheet = ‘Laverton’ 31

mineral = ‘Au’ [4]
The resulting PF tree would contain the following primitive predicates:

(mapsheet = Laverton’}) AND (mineral = ‘Au’)
(mapsheet = ‘Laverton’) AND (mineral <> ‘Au’)
(mapsheet <> ‘Laverion’) AND (mineral = 'Au’)
{mapsheet <> ‘Laverton’) AND (mineral <> ‘Au’)

Now if the order of insertion for the predicates [3] and [4] were reversed, then the resulting

PF tree would have the primitive predicates:

(mineral = ‘Au’) AND (mapsheet = ‘Laverton’)
(mineral = ‘Au’) AND (mapsheet <> ‘Laverton’)
(mineral <> ‘Au’} AND (mapsheet = ‘Laverion’)
(mineral <> ‘Au’} AND (mapsheet <> ‘Laverion’}

Although the predicates are placed differently within a PF tree, the primitive predicates and

the fragments they define are the same.

A final example involves a predicate that may happen to already exist in the tree. Suppose
that the following (independent) user query occurred after that of [1] (fe. the PF tree of
Figure 3.2):

(mapsheet = ‘Laverton’)

A predicate associated with this query already exists and no modification is required to the
PF tree. Now suppose that this query occurred after that of [2] where the predicates are
inserted into the tree in reverse order. Now the primitive predicate "mineral <> ‘Au’ will be

replaced with two primitive predicates:

(mineral <> ‘Au’) AND (mapsheet = ‘Laverton’)

{mineral <> ‘Au’) AND (mapsheet <> ‘Laverton’)

Because of the order of insertion, one or more fragments may require splitting to
accommodate the new predicate. If the fragments contain no data, the fragmentation will be
removed in the pruning stages (Section 3.3.2). Note that this fragment splitting only occurs

when a user predicate happens to equate with one or more existing primitive predicates.
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The effects of the insertion order of predicates are further investigated in Chapter 5 where
user queries are randomised and the resulting PF trees are examined. The effects are
expected to be marginal since either only non-accessed data is affected or the existing
primitive predicates happen to coincide with a new user query. To deal with this, an
optimisation strategy would have to anticipate the best likely ordering based on previous (or

future) queries. Such a strategy could be a topic of further research.

The primitive predicates collectively define all of the entity instances of the original entity
mines. Furthermore the fragments defined by these primitive predicates are disjoint. The
only exceptions to the "disjoint" rule are key fields and spatial primitives as explained in
Sections 2.4.2.1 and 2.4.2.3. The original entity can be reconstructed by taking the union of
all the fragments (defined by the disjunction of all the primitive predicates). The PF tree

defines a correct fragmentation since all the fragmentation rules are adhered to.

The PF tree has similarities with both a query execution tree and a fragmentation tree. A
query execution tree is an established method for describing operations on an entity set (Cert
and Pelagati 1984; Yu and Chang 1984; Ozsu and Valduriez 1991b; Adam and
Gangopadhyay 1997). Both trees are similar in that the nodes represent a predicate and are
related to other nodes through a set operator. The difference lies in that a query execution
tree is used to represent a compound predicate expression based on multiple simple
expressions for the purpose of query execution planning, while a PF tree is used to build
compound predicate expressions (primitive predicates) from simple expressions (user
predicates) to identify a fragmentation. A fragmentation tree defines how an entity set is
partitioned based only on horizontal and vertical fragmentation (Ozsu and Valduriez 1991b}.
The nodes define the fragment and the operations relating nodes are horizontal and vertical
fragmentation operations. The PF tree extends the concept of the fragmentation tree to

encompass spatial data and provide a means of maintaining application usage properties.

3.3.1 PF tree construction

A PF tree is constructed from the predicates of user applications. The predicates are
specified within selection operators that indicate how the data is to be selected. The PF
model must use this selection information to construct the tree (by node insertion). Three
selection operators are recognised by the PF model: reselect, aselect and nselect. See
Section 2.5 for details on these operators. The use of these operators makes the PF tree

simple to implement and maintain.

In order to understand how these operators are used by the PF model, the concept of an

active node is introduced. Recall that these operators only execute on the current selection of
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data for a particular entity set and that the current selection is altered only with another
selection operation on that same entity. An active node indicates that the data defined by a
primitive predicate is contained in the current selection of data. Conversely, an inactive
node indicates that this data is not found in the current selection. Only leaf nodes are
considered active or inactive since all of the primitive predicates can be identified from

them.

Figure 3.3 illustrates the effect of these operations on both a data entity and its associated PF
tree. Active nodes are indicated with an asterisk. Note that the tree does not increase in size
with the nselect operation whereas the reselect and aselect operations may result in tree
growth. For the reselect operation, tree growth occurs only on nodes associated with the
current selection whereas for the aselect operation tree growth occurs at nodes not associated
with the current selection. Growth only occurs when a predicate needs to be inserted into the

tree.

a)

b)

c)

d

Figure 3.3 Effect of the selection operations when inserting predicates in a PF tree: a) the

current selection on an entity set, b) nselect, c) aselect, and d) reselect.

Predicates are only inserted into the tree for active primitive predicates. For each primitive
predicate, the predicate to be inserted must not already exist. If it does already exist, all that
needs to be done is to update the usage information in the predicate nodes. To determine if a

predicate already exists within a primitive predicate, all the predicates comprising the
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primitive predicate must be searched. The predicate exists if either an identical or an
equivalent predicate is found. An equivalent predicate is one that doesn look the same
(usually because different or inverse operators are used) but refers to the same data. The

following examples provide predicates that are equivalent:

mapsheet = Laverton’ is equivalent to NOT (mapsheet <> 'Laverton’)
production > 45 is equivalent to NOT (production <= 45)

Note that it is not possible to identify all equivalent predicates from simply analysing the
predicate expressions. Two completely different queries can still refer to identical data. For
example the predicates "production > 45" and "status = ‘Developing™ may both refer to the
same data. This information is only possible to determine by querying the data and
comparing outcomes. This is done in the pruning stage explained in Section 3.3.2 and

implemented in Section 4.4.3.

When compound predicates are broken down into simple predicates, the appropriafc
selection operations must be used so that the predicates are properly inserted into the tree.
Recall Section 2.5 which describes the relationship between the three selection operations
used by the PF tree and the relational SQL operators. The NOT operator corresponds
directly with the nselect operator. The AND operator in a compound expression is
equivalent to two reselect operations and the OR operator corresponds with one reselect and

one aselect operation.

For example, the compound predicate (mapsheetr = Laverton’) AND (mineral = 'Au’) would

be translated to the following operations with simple predicates:

reselect mapsheet = Laverton’

resefect mineraf = 'Au’
and the predicate (mapsheet = Laverton’} OR (mineral = "Au’) would be translated to:

reselect mapsheet = ‘Laverton’

aselect mineral = 'Au’

The cells that are identified in a geographic data fragmentation are potentially a combination
of horizontal, vertical and spatial fragmentations and therefore the PF model must allow for
all possibilities. Horizontal and spatial fragmentation are catered for in the PF model
through the use of the selection operators. A selection identifies entity instances that include

both the rows of an attribute table and the spatial entities from the spatial data table.



3.3.2 Predicate pruning

Not all primitive predicates produced by a PF tree identify fragments that will be used in a
data distribution. Some primitive predicates may have to be altered or removed by deleting
predicates. This process is referred to as pruning. Praning may be necessary to discard
predicates that refer to fragments that are either redundant, too small, empty, infrequently

accessed, outdated or are allocated to the same site.

An important advantage of pruning is that the tree is not allowed to expand unchecked. Tree
growth is potentially explosive as the number of predicates being inserted increases. A large
tree will result in slower processing time. Pruning is important to remove predicates that are

not necessary to be maintained in the tree and as a means of tree optimisation.
A PF tree may require pruning in the following situations:

Predicate expression redundancies and conflicts. If a predicate is equivalent
{Section 3.3.1) to another predicate in a primitive predicate, then it is redundant and
does not need to be inserted in the PF tree for that primitive predicate. A predicate
conflicts with another predicate when it is impossible for an entity instance to be
identified by both predicates. Often it can be obvious from examining the predicate
expressions that a conflict occurs. For example, the predicate mapsheet = ‘Laverton’
is in conflict with mapsheet = ‘Augusta’ since it is impossible for a map sheet to
have two names. As another example, the predicate production > 50 obviously

conflicts with the predicate production <= 25.

Redundancies and conflicts, which can be identified from the predicate expressions,
can be resolved, using character string manipulation techniques, before the relevant
predicates are inserted into the tree. However, redundancies and conflicts can also

occur where the corresponding predicate expressions give no indication of this. As

explained in Section 3.3.1, this can be achieved by comparing query outcomes.

Primitive predicates that result in small or empty fragments. Even when two
predicates do not conflict, it is possible that a valid primitive predicate defines an
empty fragment. Some fragments may also contain such a small number of entity
instances that the cost of maintaining the fragmentation exceeds the benefits. To
determine the size of a fragment, a query involving the primitive predicate must be
executed on the entity set. Any fragmentation that results in empty fragments or in
fragments with fewer instances than a given minimum threshhold can be removed

from the PF tree. The threshhold is related to the fragment size and frequency of
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accesses and is the point at which the cost of maintaining the fragment becomes
greater than the additional cost involved had the fragmentation not occurred. The

calculation of this threshhold value is detailed in Section 4.3.

Primitive predicates that are infrequently accessed. Certain fragments may be
accessed very infrequently so that the cost of maintaining such a fragmentation
exceeds the benefits. Of course a fragmentation may occur simply to isolate the
frequently accessed data from the infrequently accessed data. Therefore both the
predicate and its converse predicate in the PF tree must be considered when
determining the frequency of access. If both are infrequently accessed, then the
fragmentation is not beneficial and the leaf node of the primitive predicate can be
deleted. The threshhold value referred to above relates the fragment size to the

frequency of accesses and can be used to determine when infrequent access OCcurs.

Predicates that are not recently accessed. As more new user predicates are
obtained from the application logs, the PF tree will continue to grow. However,
after some time, certain predicates within each primitive predicate may not be
referred to anymore in the selection operations of current or most recent applications
and hence are not relevant to specifying the primitive predicate. These predicates
are often not the leaf nodes in the PF tree since they were previously obtained from
logs of earlier applications. Both the predicate and its converse must be considered
since the fragmentation may be valid if the converse predicate has been recently
accessed but the predicate itself has not. When both the predicate and its converse
have not recently been accessed, they can be removed from the tree, thereby

simplifying the affected primitive predicate clauses and reducing the tree size.

Primitive predicates that are allocated to the same site. When the primitive
predicates have been allocated to computer network sites in the data distribution
process, it is possible that two primitive predicates are allocated to the same site.
Because no inter-site transfer is required, it is assumed that such a fragmentation is
not necessary and can be eliminated if the leaf nodes of the affected primitive
predicates are siblings in a PF tree. Pruning can be carried out recursively until no

more sibling nodes are allocated to the same site.

The predicates to be pruned are identified in a fragmentation filter process (Figure 3.4). The
result is that some primitive predicates will merge to form new primitive predicates. Some

application information is required for this process, in particular the fragment size, the
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frequency of usage for the fragment, and the time in which the fragment was last accessed.

This information is used in executing the pruning methods described above.

fragment fragment time last
usage size used

Al fragments defined F .
by the primitive sy raan"_l:etntatlon — Valid
predicates Hiter fragments

Figure 3.4 Fragmentation filtering process for identifying valid fragments

To implement pruning a delete operation is required for the PF tree. The delete operation
executes on a particular predicate that is to be removed from the tree. The pruning of a
primitive predicate does not mean that every predicate which comprises the primitive
predicate needs to be removed. Rather, only the leaf node should be removed since the
remaining predicates may still be used in other primitive predicates. The details of the delete
operation are further discussed in Section 3.4.4 and some examples of pruning are provided

in Section 3.4.5.

3.3.3 PF model extension

An extension to the PF model incorporates vertical fragmentation where the attributes of an
entity are grouped into different fragments. In addition to allowing a tree node to refer to a
predicate, it can also refer to a set of attributes that identify the vertical fragment. The
addition of a vertical fragment to the tree results in two new nodes being inserted under an
active leaf node. One node contains the attributes identified from a vertical fragment; the
other node contains the remaining attributes. The structure of the rest of the tree and all
other operations remain unchanged. A primitive predicate may now refer to both a
conjunction of predicates (e. a spatial/horizontal fragment) and a set of attributes (fe. a
vertical fragment). Because the project operator is not adequately catered for within

ArclInfo, this extension was not tested in this research.
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Figure 3.5 uses the example from Figure 3.2 to insert a vertical fragment after the predicate
mapsheet = ‘Laverton’ (which was then active - it is assumed that no other predicates have
yet been inserted). The fragment was identified from a user application and refers to the

attributes mine_id and mineral.

mines

N
~

mapsheet = Laverton’ mapsheet <> Laverton’

A(mine_id,mineral) * A{mine_id,production,development)

Figure 3.5 PF tree showing vertical fragmentation of attribute mineral from other attributes

of entity mines

After the insertion, the node referring to this fragment becomes active. Note that the key
field (mine_id) is replicated in the two new vertical fragments. Subsequent tree insertions,

whether due to selection operations or vertical fragments, can continue to be made as usual.

3.4 Implementation of the PF Linked Tree

The PF model is implemented in the C programming language and uses dynamic storage to
maintain the PF trees. One tree is generated for each entity used by the applications. For
each tree, a tree pointer that identifies the root node and a list pointer that identifies the left-
most leaf node is maintained. Each node in the tree is associated with a predicate and
contains usage information about either the predicate or the primitive predicate with which it

is associated. The general structure of a node is indicated in Figure 3.6.

t predicate expression id
parent site allocation

activity status | predicate access

no. of records last accessed

site access frequencies for
primitive predicate

< previous next -

left right

Figure 3.6 Structure of a PF tree node
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A number of pointer fields are required to facilitate the implementation of the linked tree.
The left, right and parent fields are pointers used for connecting the nodes in a binary tree
structure. The previous and next fields are pointers used for maintaining a linked list of the
leaf nodes. The linked list facilitates sequential access to the primitive predicates. The two

latter fields are not required for non-leaf nodes.

The information associated with the predicate in each node consists of the following:

« predicate id which is used to identify the predicate from a separate predicate list,
»  frequency of access for the predicate (ic. where predicate was explicitly referred
to in selection), and

» time at which the predicate was last accessed.

The predicate access frequency information relates to predicates that are explicitly referred to
in a selection operation. Note that the information at the root node is associated with the
entire entity set (ie. selections containing a/f the entity instances). This usage information
along with the time indicating when the predicate was last accessed is used in the pruning

process to determine whether or not a predicate should be retained in a PF tree.

The following information is associated with each primitive predicate:

 frequency of access for the primitive predicate at each computer network sife,
» size of fragment defined by the primitive predicate,
= site to which the fragment is allocated, and

* activity status

Apart from the access frequencies, this information is contained in the leaf node for each
primitive predicate. As the tree grows through insertions of predicates, the appropriate
information is transferred to the new leaf nodes. The size of a fragment is obtained by
actually executing a selection operation, which uses the appropriate primitive predicate, on
the entity set and observing how many entity instances are selected. The site at which the
fragment is placed is determined in the site allocation process that is further described in

Section 4.2.3.

The access frequency for each primitive predicate and for each site is maintained among all
the nodes comprising the primitive predicate. The access frequency simply refers to the
number of times a particular fragment of data (a primitive predicate in this case) is accessed.
If only one primitive predicate is accessed, its usage is updated in the leaf node associated
with that primitive predicate. If multiple primitive predicates are accessed together, then the
access frequencies are updated in the node which is highest in the tree and whose associated

primitive predicates are all active (ie. were all accessed together). Therefore the total
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number of accesses for a primitive predicate are obtained by summing the access frequencies

in each of the nodes comprising the primitive predicate.

As an example the PF tree in Figure 3.7 contains the access frequencies for the primitive
predicates for one particular site. In this example 42 accesses were made to all the entity
instances in the entity set (ie. where all primitive predicates were concurrently active) and
the fragmentation defined by "mapsheet = 'Laverton™ was accessed 25 times. Because the
entity instances of this fragment were accessed as a fragment as well as together with all the
entity instances, the total number of accesses to the fragment "mapsheet = Laverton™ is 67
(25+42). Similarly, the total number of accesses to the fragment "(mapsheet = 'Laverton’)

AND (mineral = ‘Au’)" is 135 (68+25+42).

mines
42

"
>

mapsheet = 'Laverton’ 25 14 | mapsheet <> 'Laverton’

mineral ="An' | 68 18 | mineral <> "Aw’

Figure 3.7 Access frequencies for primitive predicates

As predicates are inserted into and deleted from the PF tree, it is important to maintain the
usage information. For node insertions, the access frequency information is maintained in
the existing nodes, but for deletion operations this information is transferred to the parents of
deleted nodes. The assumption is that had the fragmentation not occurred, the fragment
identified by the parent would have been accessed instead. The insertion and deletion

operations are further detailed in the following sections.

3.4.1 Reselect operation

Given that all or some (or even no) entity instances are contained in a current selection, the
reselect operation defines a selection on the current selection. Therefore, only the active
primitive predicates in the tree need to be traversed. For each active node, a reselect
operation will result in two new child nodes, one defining the new selection, and the other
defining the converse. The node defining the new selection will be tagged as active and the

other as inactive.
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Consider the example in Figure 3.8. Assume that there was only one active primitive
predicate for the entity mines, namely, "(mapsheet = "Laverton ') & (mineral = "‘Au’})". A

reselection operation such as:
resefect mines production >10

will only affect the one node that is active. Two child nodes result, the left one with the

predicate "production > 10" and the right one with the inverse predicate “production <=
10",

mines \
1
mapsheet = "Laverton’ mapsheet <> "Laverton’
I
mineral = *Au’ mineral <> "Au’
L 1
production > 16 | #* production <= 10

Figure 3.8 Reselection operation with predicate “productivity > 107

Therefore two new primitive predicates, the one active and the other inactive, replace the

former active primitive predicate. For this example the two new primitive predicates are:

(mapsheet = ‘Laverton’) & (mineral = ‘Au’) & (productivity > 10)
(mapsheet = Laverton’) & (mineral = ‘Au’) & (productivity <= 10)

These two primitive predicates are disjoint. They are also complete since they include all of

the data instances of the primitive predicate just replaced.

The procedure to insert into a PF tree based on a reselection operator is outlined in the

following pseudo-code:

procedure insert_resel(list,pred)
while list  NULL
iflist->active
ifNOT conflict(pred,list) or redundant(pred,list)
insert_node(list->left, pred)
insert_node(list->right, NOT pred)

endif
update_usage(pred,list)
endif
list = list->next
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endwhile
endprocedure

The variable Jist refers to the linked list connecting the leaf nodes of the PF tree while pred
refers to the new predicate to be inserted into the tree. For each primitive predicate, the new
predicate must be checked to determine if any conflicts or redundancies are evident among
the predicates comprising the primitive predicate. This is achieved by using simple string
manipulation techniques to identify the operators and operands, and checking for possible
equivalence (Section 3.3.1) or a conflict (Section 3.3.2). If a conflict or redundancy occurs,
then the usage information for the existing predicate and primitive predicate must be updated
and the primitive predicate must be activated. Otherwise, two new nodes are inserted and
the usage statistics initialised for each. Initialisation involves setting the predicate access and
primitive predicate access (for the appropriate site) counts to 1 and inserting the time of
access. The size of the fragment does not have to be obtained until later when the
fragmentation filtering process is executed. Of course, the site at which the fragment is

placed cannot be determined until the allocation process is conducted.

3.4.2 Aselect operation

The “add-to-selection” or aselect operator adds, to the current selection, instances from the
set of entities that are not selected and which are defined by a given predicate expression. If
no expression is given in the aselect command then all the remaining unselected instances of
an entity are added to the current selection or, in other words, @/ instances are selected.
Therefore, when updating a PF tree based on an aselect operation, only the inactive nodes
need to be considered. If all the entity instances are to be selected, then no further primitive

predicates need to be formed and all need to be activated.

If, however, a predicate expression is supplied with the aselect operator, then the predicate
will specify a subset of the unselected instances to be added to the current selection.
Therefore, all inactive primitive predicates must be replaced with two new primitive
predicates in a manner similar to that for the reselect operation. The node(s) associated with
the new predicate is tagged as active while the node(s) containing the inverse predicate is
tagged as inactive. In effect, a reselect operation takes place for each inactive primitive

predicate.

As an example, consider the PF tree of Figure 3.9 and assume that only the node containing

"production > 10" is active. Then suppose that the following aselect operation occurs:

aselect mines
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which indicates that all instances of the entity mines are to be selected. All that needs to be

done to the PF tree is to activate all inactive leaf nodes as shown in Figure 3.9.

mines

™
~

mapsheet = "Laverton’ % | mapsheet <> 'Laverton’
/ PH |
mineral = 'Au’ mineral <> "Au’| ¥
Z LY I
X\
production > 10 * * | production <= 10
1

Figure 3.9 Aselect operation with no predicate expression

If the aselect operation includes a predicate expression as in the following:
aselect mines type = ‘Developed’

then the insertion of a new predicate is applied to each inactive node. Assume, once again,
that only the node containing "production > 10" is initially active, the result is that three
inactive primitive predicates are replaced with three active and three inactive primitive
predicates as shown in Figure 3.10. Note that not all these primitive predicates may define
valid fragments and could therefore be pruned (sce sections 3.3.2 and 3.4.4) resulting in a

simpler tree.

mines

™~
~

mapsheet = "Laverton’ mapsheet <> 'Laverton’
LN
mineral = A mineral <> "Au’ * type <> 'Developed’
PR Y . PR ™ T
ST N s
production > 10 * * 'Developed’
1 oL, 1 I Jtype <> ’Developed’
/ \ type =
% "Developed’
y 1 liype <> 'Developed’

type = 'Developed”

Figure 3.10 Aselect operation with predicate “rype= ‘Developed’™
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In a more general logical expression tree the appearance of an aselect operation would mean
the inclusion of an OR term in each predicate clause resulting in a more complex predicate
expression. By generating children from only inactive parents, the clause remains a simple

conjunctive clause and the insertion process is simplified.

The procedure for implementing a PF tree insertion based on the aselect operator 15 as

follows:

procedure insert_asel(list,pred)
while list 2 NULL
FNOT list->active
if pred is empty expression
if NOT conflict(pred list) or duplicate{pred,ist)
insert_node(list->left, pred)
insert_node(list->right, NOT pred)

endif
else
list->active = TRUE
endif
update_usage(pred,list)
endif
list = list->next
endwhile
endprocedure

As with the reselection operator, before a predicate can be inserted, the primitive predicate
must be checked to determine if any conflicts or redundancies occur. If not, the predicate is
inserted. The usage information is updated for the predicate and associated primitive

predicate (as for the reselect operation) and the primitive predicate is activated.

3.4.3 Nselect operation

The nselect operator negates the selected instances of the entities; that is, all the selected
instances become unselected and the previously unselected instances now form the current
selection. For the PF tree, this simply requires activating all the inactive leaf nodes and
deactivating all the active nodes. The result of applying the nselect operation to the PF tree

of Figure 3.10 is the tree as shown in Figure 3.11.

In a more general logical expression tree the appearance of an nselect operation would mean
the inclusion of a NOT operator which would need to be applied over the current predicate
clause resulting in a more complex predicate expression. By simply switching the active

status of the leaves the clause remains a simple conjunctive.
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mapsheet = "Laverton’ mapsheet <> 'Laverion’
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mineral =" Au’ mineral <> 'Au’ * |type <> ’'Developed’
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production _
S NN s
. * 'Developed’
production > 10
| z 1. 1 L Jtype <> 'Developed
' type =
* 'Developed’
L_1type <> 'Devecloped’

type = "Developed’

Figure 3.11 The effect of the nselect operation on the entity mines

The procedure for implementing the nselect operation is shown using pseudo code as

follows:

procedure insert_nsel(list)

whife list = NULL
list->active = NOT list->active
update_usage(list)
list = list->next

endwhile

endprocedure

The nselect operation does not involve the insertion of new nodes and hence does not affect

tree growth.

3.4.4 Delete operation

The deletion of a node in the PF tree is the removal of a predicate from one or more
primitive predicates. Because the inverse predicate is inserted as a sibling node when a
predicate is inserted, this sibling node must also be removed when the predicate is deleted.
A deletion implies that the fragmentation between data instances defined by the predicate
and its inverse is no longer necessary. For example, if the predicate “fype = ‘Developed’ is
being removed, then the inverse predicate “type <> ‘Developed’ found in the sibling node

also needs to be removed.
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The deletion operation involves much more than simply removing two nodes from the tree.
The subtrees of any non-leaf nodes must be maintained since they define further predicate
expressions within the primitive predicates. In addition, usage information for the remaining

predicates and primitive predicates must be retained.

If the node and its sibling node being removed are both leaf nodes, the deletion operation
simply requires adjusting the tree and linked list pointers (Figure 3.12). If both nodes being
removed are active, then the parent node, which is now the leaf node, will become active.

Similarly if both nodes are inactive, then the parent node should be inactive.

a) mines \
/ \

mapsheet = "Laverton’ mapsheet
<> 'Laverton’

mineral ="Au’ mineral <> "Au’
P Y producti PH IS
roduction
/ \<= 19 / \ type <>
production | * * 'Developed”
> 10
| z L, | 1
/ \ type =
type = " Developed
"Developed’
1 L _Jype <> 'Developed’

b) mines

A"
T

mapsheet = 'Laverton’ mapsheet
<> 'Laverton’
2 1 1

mineral = 'Au’ | * | mineral <>’Au’

21 P TN

L LN e

production % * * 'Developed’
> 10
T | 1 1
type =
'Developed’

Figure 3.12 Deletion of one instance of predicate “type = ‘Developed™ a) before deletion,

and b) after removing two leaf nodes

If however only one of the nodes is active, then it is not directly obvious as to what the status

of the parent node should be. If one child node is active, this implies that a subset (defined
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by the predicate of the active child) of the data instances defined by the parent is being
accessed while the remainder is not. If this predicate is no longer necessary, then it can be
assumed that the parent node will retain its (former) child’s active status, since it is now
associated with the data instances previously associated with its (former) child. Of course,
the entity instances associated with the (former) inactive child are also now included with the
parent node. The effect of the delete operation is to deal with the parent node as if no further
fragmentation had occurred. The result of a deletion is that one primitive predicate is
removed and the other one that is affected has one predicate removed. Given the example in
Figure 3.12, the primitive predicates that are affected by the delete operation (of only the left

most instance of the predicate} are as follows:

(mapsheet = ‘Laverton’) & (mineral = ‘Au’) & (production > 10)

(mapsheet = ‘Laverton’) & (mineral = ‘Au’) & (production <= 10} & (type =
‘Developed’)

(mapsheet = ‘Laverton’) & (mineral = ‘Au’) & (production <= 10) & (type <>
‘Developed’)

After the delete operation is applied, the primitive predicates that exist are:

(mapsheet = Laverton’) & (mineral = ‘Au’) & (production > 10)
{mapsheet = ‘Laverton’) & (mineral = ‘Au’} & (production <= 10)

Now consider the situation where one of the pair of nodes being removed has child nodes.
These child nodes now become children to the parent of the nodes being removed. Suppose
for example, in Figure 3.13, that the node “production > 10" is to be deleted. The sibling
node “production <= 107, which will also be removed, has two child nodes. These child

m

nodes will now be linked to the parent “mineral = 'Au

The effect is that one primitive predicate is dropped whereas the other primitive predicates
affected have one predicate expression removed. The two modified primitive predicates now

appear as follows:

(mapsheet = Laverton’) & (mineral = ‘Au’) & (type = ‘Developed’)
(mapsheet = Laverion’) & (mineral = ‘Au’) & (type <> ‘Developed’)

During this process, the number of leaf nodes does not change. The only difference is that
the associated primitive predicates have one less predicate clause. Therefore that acrive
status of the associated primitive predicates does not change. Leaf nodes that were active
remain active, and inactive ones remain inactive. The status of the leaf node that was
removed is not relevant any more and therefore need not be retained, since the associated

predicate clause has now been removed.
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The entity instances, and therefore also the associated usage information, defined by the
removed leaf node (ie. the primitive predicate that was dropped) are now associated with the
new primitive predicates. Therefore it is assumed that the access counts of the removed
primitive predicate are added to each new primitive predicate, in addition to the usage
information they already contain. The exception is when the deletion is due to predicates that
have not recently been accessed.* In such a case the usage information is outdated and can

be discarded by not revising the usage information for the new resultant primitive predicates.

a) mines

N

T~

mapsheet = "Laverton’ mapsheet
<> 'Laverton’

2 1
mineral ="Aw’ mineral <> 'Au’
PR Y ducti Pl N
7 production
/ <= 10 \ [ype <om
production * * 'Developed’
> 10
1 Pl N 1 1
/ \ type =
type = * Developed
*Developed’
I_ltype <> 'Developed’
b) mines \
1
mapsheet = "Laverton’ mapsheet
<> 'Laverton’
FH \ 1
mineral = 'Au’ mineral <> "An’
Fe N r) I;

\ / \ type <>
type = * * "Developed’
'Developed’ ped
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type <> type =
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Figure 3.13 Deletion of predicate “production > 10" a) before deletion, and b) after

removing a leaf and a non-leaf node

Finally consider the situation where the pair of nodes to be removed both have child nodes.
Both subtrees of the pair of nodes define further reselections that must be maintained. The

subtree from one of the child nodes being deleted can now become the subtree of the parent

4 Note that this is one of the pruning methods discussed in Section 3.3.2.
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node. To retain the predicate clauses associated with the other child being removed, the

subtree must be inserted under each of the leaf nodes of the first subtree.

For example, suppose that the node containing “mineral = ‘Au" were to be deleted in Figure
3.14. This node, as well as its sibling node containing the inverse predicate, have child
nodes which themselves define subtrees. Suppose that the two subtrees of the node “mineral
= ‘Au’” are placed under its parent “mapsheet = ‘Laverton™. Then the subtrees of the
sibling node “mineral <> ‘Au’" can be placed under each leaf node of those subtrees. The
process is illustrated in Figure 3.14 where the subtrees are identified with different shading
patterns to identify their placement in the tree. Note that for the purposes of illustrating this
deletion, this example does not consider redundant and conflicting predicates (which are

evident and explained below).
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Figure 3.14 Deletion of predicate “mineral = ‘Au’ a) before deletion, and b) after removing

two non-leaf nodes
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All leaf nodes which were also leaf nodes before the deletion operation took place will
remain active or inactive as they were previously. The exception is where one of its
ancestors was previously an active leaf node. In such a case the leaf node represents a
fragment of an already selected fragment of data and therefore must be active to reflect the

fact that it already belongs to the current selection.

For example, in Figure 3.14 the primitive predicate “mineral = ‘Au’ and production > 107
was selected before the deletion operation. By removing the predicate “mineral = ‘Au’”, the
redefined primitive predicate “production > 10" remains selected. Thus any further
fragmentation caused by adding predicates (due to the deletion operation) should reflect the
fact that this whole fragment is already selected. All leaf nodes under this subtree should
therefore have an active status. As indicated by the example, both “rype = ‘Developed™ and

“type <> ‘Developed’™ nodes are active.

The primitive predicates affected by the deletion in this example are:

(mapsheet = ‘Laverton’) & (mineral = ‘Au’) & (production > 10)

{mapsheet = ‘Laverton’} & (mineral = ‘Au’) & (production <= 10} & (type =
‘Developed’)

(mapsheet = ‘Laverton’) & (mineral = ‘Au’) & {production <= 10) & (type <>
‘Developed’)

(mapsheet = ‘Laverton’) & (mineral = ‘Au’) & (type = ‘Developed’)
(mapsheet = Laverton’) & (mineral = ‘Au’) & (type <> ‘Developed’)

The result of the deletion are the following primitive predicates:

{mapsheet = Laverton’) & (production > 10) & (type = ‘Developed’)

(mapsheet = Laverton’) & (production > 10) & (type <> ‘Developed’)

(mapsheet = ‘Laverton’) & (production <= 10} & (type = ‘Developed’) & (type =
‘Developed)

(mapsheet = ‘Laverton’} & (production <= 10} & (type = ‘Developed’) & (type <>
Developed)

(mapsheet = ‘Lavertor’) & (production <= 10) & (type <> Developed’) & (type =
‘Developed)

{mapsheet = Laverton’) & (production <= 10) & (type <> ‘Developed’) & (type <>
‘Developed)

In this example, the number of primitive predicates has increased. This number is very

dependent on the size of the subtrees of the pair of nodes being removed.

The deletion is not yet necessarily complete. Some pruning may be required and would lead

to more nodes being removed and hence a decrease in the number of resulting primitive
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prediéates. Notice that in this example the resulting primitive predicates contain redundant
and conflicting predicates. Leaf nodes containing such redundancies or conflicts are pruned

resulting in the tree illustrated in Figure 3.15. The primitive predicates now are:

{mapsheet = Laverton’) & (production > 10) & (type = ‘Developed’)
(mapsheet = Laverton’) & (production > 10} & (type <> ‘Developed’)
(mapsheet = Laverton’) & (production <= 10) & (type = ‘Deveioped’)
{mapsheet = ‘Laverton’) & (production <= 10) & (type <> ‘Developed’)

Obviously there is a decrease in both the number of primitive predicates and corresponding

size of the PF tree.
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Developed” veloped”

Figure 3.15 Pruning of predicates for a further reduction in tree size

Further pruning methods, as detailed in Section 3.3.2, may result in even further reductions

in the number of primitive predicates and corresponding tree size.

The delete operation is shown in pseudo code as follows:

procedure delete_predlist,node)
p = node (which must be a left sibling)
q = p->parent->right
ifboth p and g have no children
make p->parent a leaf node - modify tree and list structure
p->parent->active = p.active
efseif only p has no children
connect subtree of q onto p->parent - modify tree and list structure
s = leftmost leaf node under p->parent
foreach s
s->usage = s-> Usage + p->usage
s = s->next
endfor
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elseif only g has no children
connect subtree of p onto p->parent - modify tree and list structure
5 = leftmost leaf node under p->parent
foreach s
s->usage = $-> usage + g->usage
5 =s->next
endfor
else /* both p and q have children */
connect subtree of p onto p->parent - modify tree and list structure
for each node r under p
r->usage = r->usage + q->usage

endfor
r = leftmost leaf node under p
foreachr
insert subtree of q under r - modify tree and list structure
if r->active
s = leftmost leaf node under r
foreach s
s->active = TRUE
s = s->next
endfor
endif

for each node s under r
s->Usage = §->usage + ->usage

endfor
->usage = r->usage + g->usage
r = r->next
endfor
endif
free{p,q)
endprocedure

Note that when both of the nodes being removed have subtrees, the nodes of one subtree are
inserted under each leaf of the other subtree. In this process, the normal pruning methods of
checking for predicate redundancies and conflicts must take place. Note also that if the leaf
node r under which the subtree is being inserted has an active status, then all the new leaves

will also be activated.

The usage information for the primitive predicates must be maintained in the deletion
operation. For the pair of predicates being removed, their individual usage statistics are no
longer necessary. Therefore the access frequency of the predicate and time of last access can
be deleted. However the primitive predicate usage must be retained. This is achieved by

adding the usage counts of each of the nodes being removed to the parent node. The
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assumption is that the parent fragment would have been accessed in place of the two

fragments, had the fragmentation not occurred.

3.4.5 Using the PF tree operations

The use of the PF tree operations can be illustrated with a simple example. Consider the
following selection operations and the number of associated accesses obtained from three

application user sessions for the entity mines:

User Session 1 User Session 2 User Session 3

reselect mapsheet = “Laverton”  reselect mapsheet = “Laverton”  reselect mapsheet = “Albany”

12 accesses 12 accesses 38 accesses
reselect mineral = “Au” reselect mineral = “An” nselect

22 accesses 22 accesses 10 accesses
aselect status = “Operating” teselect production > 20

18 accesses 45 accesses

The number of accesses to each selection of entity instances is shown following each
selection operation. Assume that the PF tree for mines is initially empty (ie. only the root
node exists) and that the user sessions are processed in the order: User Session 1, User
Session 2, User Session 3. Also assume that the predicates are inserted in the PF tree in the
order in which the selection operations appear in the user session. Note that all nodes are
active at the start of processing a new user session since we assume that all entity instances

are contained in the current selection.

The result of processing User Session 1 is the PF tree illustrated in Figure 3.16. Five
primitive predicates are created of which three are active ("*" = active; otherwise it is

inactive).
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Figure 3.16 PF tree generated as a result of User Session 1
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In addition to the activity status shown at the leaf nodes, each node shows the associated
primitive predicate access frequency for a particular site. Note how the access count
associated with the predicate "mineral = 'Au™ reflects the accesses which occurred after both

the associated reselect operation and the aselect operation (ie. 22+18).

Because the first two reselection operations in User Session 2 are identical to those in User
Session 1, the effect is simply to update the usage information and activate the one primitive
predicate. The third reselection involving a new predicate causes an insertion into the tree.

The result is six primitive predicates of which only one is active (see Figure 3.17).
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Figure 3.17 PF tree after processing User Session 2

The reselect operation in User Session 3 involves the mapsheet attribute but with a different
value. The existing predicate "mapsheet = Laverton™ is in conflict with the new predicate
and therefore its entire subtree can be disregarded in the insertion process, despite the fact
that all primitive predicates are active. Because no predicates in the subtree "mapsheet <>
Laverton™ are in conflict, the new predicates can be inserted at the corresponding leaf
nodes. The result is eight primitive predicates of which two are active. The nselect
operation in User Session 3 then causes the activity status of each leaf node to be inversed

resulting in six active primitive predicates as shown in Figure 3.18.

Note how the primitive predicate usage information has been updated. The two active
primitive predicates generated from the reselect operation have identical usage counts as
would be expected. After the nselect operation, the other six primitive predicates are active
and their usage counts are updated. Note that the usage count was updated for the predicate
"mapsheet = Laverton’ rather than at each leaf nodes, since each of the corresponding

primitive predicates is active.
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Figure 3.18 PF tree after processing User Session 3

The tree is not yet complete since some primitive predicates may define fragments that are
not valid. Pruning operations may be necessary to filter out fragments according to the
various pruning techniques described in Section 3.3.2. Consider an example where pruning
is based on small and infrequently accessed primitive predicates. Assume that the size of the
fragments defined by the six primitive predicates is determined to be 130, 0, 1, 25, 0, 572, 13
and 2340 entity instances’, respectively from left to right. The total number of entities
accessed” for each primitive predicate is therefore 5850, 0, 18, 0, 0, 5720, 494 and 23400,
respectively. Assume also that for each of these primitive predicates the threshold value is

calculated as equivalent to accessing 20 entity instances.

Both the predicate and its converse must be considered in determining whether the
fragmentation is valid or not. Therefore any pair (predicate and its converse) of fragments
where the combined number of entities accessed is smaller than the threshhold value must be
deleted. The resulting tree is shown in Figure 3.19. Note that the number of primitive

predicate accesses have been retained by the parents of the deleted nodes.

As information from further application user sessions are obtained the PF tree can be
modified to reflect the usage of the entity set by these applications. This example
demonstrates how the PF operations can be used to maintain both the tree structure and the

usage information.

* Note that for the purpose of this example the size of the fragment is measured in entity instances,
assuming each entity instance is of the same size.

¢ Calculated as the number of primitive predicate accesses for the leaf node multiplied by the size of
the fragment.
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Figure 3.19 PF tree after pruning

3.5 Conclusions

The PF model provides an elegant and efficient means for capturing and maintaining
application information. Such information is obtained from user sessions and used to
construct a PF tree for each entity set in the database. The basis for the PF tree is a predicate.
Predicates associated with usage information are identified from the applications and
inserted into the PF tree. Primitive predicates can be identified from the tree and define the

cells which are used in the fragmentation process.

A pruning process is used to identify and remove fragments that are not valid and provides a
means of optimising the tree. To manipulate the PF tree, insertion and pruning operations
are necessary. These operations - reselect, aselect, nselect and delete - are described and
algorithms presented for their implementation. An example was provided which
demonstrated how the PF operations are used to maintain both the tree structure and the

usage information.
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4 Geographic Data Distribution Methodology

4.1 Introduction

A methodology for geographic data distribution design is outlined in this chapter. The
methodology follows a three-stage process to identify the distribution requirements,
determine the fragmentation scheme and allocate the fragments to partitions at computer
sites. The implementation of the methodology and the testing strategy is then outlined for

the GEODDIS system.

Data distribution is not a static process. As application tasks and data access patterns change
within a dynamic environment, data will have to be redistributed across sites. A strategy for

dynamic data migration is detailed in the methodology.

4.2 Overview of the Distribution Methodology

The process of geographic data distribution takes a database as input and for output produces
data partitions assigned to computer sites. It involves a sequence of decomposition,
aggregation and placement as depicted in Figure 4.1. Entity sets are decomposed using
fragmentation methods into fragments. The PF tree (see Chapter 3) is the basis for
performing the decomposition. The fragments are then aggregated to form partitions and
finally the partitions are placed at computer sites. The process requires database, application

and site information (see Section 2.4.6).

The methodology used to perform the distribution of geographic data is based on a three-
phase process that takes a global schema and produces a local schema for each computer site
(Figure 4.2). The first phase is distribution requirements analysis and is concerned with
obtaining and analysing the necessary database, application and site information. This
information is used in the fragmentation design stage to identify valid fragments along with
their associated usage information. In the allocation design phase the fragments are assigned

to partitions and allocated to produce a local schema for each site.

The local schemas can change as the global schema and distribution requirements are altered.
Therefore this methodology involves an iterative process to incorporate dynamic data
distribution. As new information is obtained in the first phase a new fragmentation and

allocation design are generated. The local schema is then modified at each site using a
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dynamic data migration strategy to reflect the new data distribution. The following sections

expand on the details of the three phases of the methodology.
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Figure 4.1 Process of geographic data distribution
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Figure 4.2 Geographic data distribution design methodology
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4.2.1 Distribution requirements analysis
The first phase involves the identification and collection of database, application and site
information. The database information is obtained from the entity schema as well as the
entity sets themselves (Section 2.4.6). It is obtained prior to the design, and must be updated
when the entity schema or entity sets are modified. Information about entities that are
created, deleted or modified can be gleaned from the application logs. This information is
used to trigger the fact that the database information may need to be updated.
The database information required is:

¢ Number of entities,

¢ Relationships between entities, and

¢ Size of each point - in bytes.

For each entity the following information is required:
¢ Entity name - The name is used to identify the entity within application queries.
e Type of entity - The entity type is defined as either non-spatial, point, line or polygon.
¢ Cardinality - number of instances in the entity,

e Number of points in entity (for spatial entities) - This may be different from the
cardinality if the spatial data type is not peints. For example, the cardinality of a

polygon entity would refer to the number of polygons.

» Number of attributes.

For each attribute, the information required is;
¢ Name of attribute - The name is used by applicatioh queries to specify the attribute.

» Size of attribute - in bytes.

In some cases, usage information is provided in terms of the number of entities accessed.
For spatial data this may mean number of points, number of lines or number of polygons
since the different spatial entity types occupy different amounts of storage. The number of
points (of which each entity is comprised), which can then be easily translated into bytes,
would be a better measure of the size of the spatial component of the entities (Sloan et al.
1992). However, if the number of points is unavailable then the number of entities multiplied

by the average number of points per entity type, can be used as an estimate of the entity size.
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Note that the size of an entity is determined by both the size of the spatial component and the

size of the attribute component.

Application information (see Section 2.4.6) is extracted from session logs of users and
applications. These logs keep track of the operations executed, entities affected, parameters
used, type of entity access (ie. retrieval, update or both) time of operation and site at which
operations occur. Parameters may involve a predicate expression to identify the entity
instances required or it may involve some values obtained by user interaction. User
interaction is often used especially with graphic and map data and involves mouse clicks and
movements to identify such information as entity instances and geographic coordinates. For
example, the user may click on two coordinate locations that identify a rectangular area
defining the geographic data of interest. The coordinates identifying the geographic extent
of the data must be recorded in the logs. This information can then be used in defining a
selection of the entity set.

In particular, the following application information is required:

e Number of operations used, and

e Number of application sessions.

For each application session, the following information is necessary:
« Number of operations executed,
¢ Frequency of execution of each operation,

e Site at which session is run.

For each operation, the information required consists of:
s Name of operation,
¢ The number of entity sets accessed by the operation,
¢ The number of entity instances selected for each entity,
¢ The number and names of attributes accessed,

e Specification of which entity instances are accessed (ie. defined by a primary and/or

derived predicate(s)),
e Site at which operation is executed (if different to the site at which the session is run),
e Type of access for each entity set (ie. retrieval, update), and

¢ Timestamp - records when operation is executed and data accessed.
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Site information concerning data storage requirements and constraints must be identified by
the Database Administrator before data distribution and updated as changes occur (Section

2.4.6). Site information is comprised of:
¢ Identification of sites that may contain data,
e Storage capacity at each site, and
¢ Any limitations or storage requirements for specific data at each site.

If specific data is limited to storage on one site only, then it is not included in the distribution
design process. If it is limited to more than one site, then it is included in the process but the

sites to which it (or its fragments) is to be allocated will be limited.

4.2.2 Fragmentation design
The second stage involves fragmentation design and encompasses the decomposition step
shown in Figure 4.2. The database and application information obtained in the first stage 1s

used to transform entity sets into cells. This is accomplished using the PF model as shown in

Figure 4.3.
Entity
sets
User predicales Bulld/modlfy
PI tree
Obtain user Cells
session logs
v
I Fragmentation
filter

l l Valid fragments

Figure 4.3 Using the PF model for fragmentation design

The primitive predicates and associated operations and usage information are extracted from
user logs using simple string manipulation methods. Simple predicates are identified from
the user predicates and inserted into the PF tree for the appropriate entity using the relevant
tree insertion operations {see Section 3.3.1). The usage information is maintained in the PF

tree for the predicates and primitive predicates (see Section 3.4).

The fragments identified by the primitive predicates may be empty, small, infrequently

accessed or not recently accessed, and would therefore constitute invalid fragments as
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explained in Section 3.3.2. A fragmentation filter step (also explained in Section 3.3.2) is
used to prune the tree so that only valid fragments are identified. These fragments can then

be used in the aggregation step identified in Figure 4.1.

The fragmentation design is iterative as additional user session logs are identified, the PF
trees are modified and the filtering process is executed. The user session logs should be
processed in the order in which they actually were generated so as to reflect the usage by the
applications. The fragmentation filter step need not be executed after every tree modification
or even after every user session log is processed. It depends on how often the data usage

patterns of the applications change which in turn influences tree growth.

Of course tree growth is dependent on the number of new predicates being inserted, as
explained in Section 3.3.2. A tree grows particularly fast for selections made on a current
selection containing the entire entity set. Much of the growth is often attributed to empty
cells. This is because new cells are created with the assumption that a new predicate may
involve portions of every existing fragment. However since user predicates are used to
narrow down a selection of entity instances to only a subset of an entire entity set, only a
subset of fragments will be affected. The cells associated with the remaining fragments are

therefore empty and the corresponding nodes in the tree can be pruned.

After substantial tree growth, pruning is used to reduce the tree size and improve efficiency
in maintaining the tree. Substantial tree growth refers to the addition of between 500 to 1000/
or more primitive predicates after which the processing time for manipulating a PF tree
increases dramatically, in fact, a potentially exponential growth if no pruning occurs (see
Section 5.2 for detail on tree performance). If it is assumed that a user session results in a
substantial tree growth, it is reasonable to prune the tree after every user session. It is also
logical to prune between processing user sessions since a user session would generally refer
to the same predicates and same fragments numerous times. However, because of variations
in the number of different predicates used within user sessions, pruning may be done after a
number of small sessions are processed, or even in the middle of processing a large user
session. Empirical evidence used in this research suggests that pruning should occur after
processing a typical user session of approximately 350 commands consisting of 30 user

predicates in 60 selection operations.®

7 After the addition of from 500 to 1000 nodes, the tree can potentially grow very quickly, running
into the thousands and tens of thousands of nodes. Empirical evidence, based on the tests performed
for this research, indicate a substantial decrease in performance in processing trees of this size.

® This estimate is obtained from a series of randomised user sessions that were used in the testing
process. The actual user sessions contained an average of 336 operations consisting of 30 user
predicates in 55 seleclion operations (see Section 5.2).
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4.2.3 Allocation design

The valid fragments identified from the fragmentation design stage do not constitute the final
fragmentation but mmst be aggregated into partitions to be placed at computer network sites.
This is accomplished by the allocation design stage that identifies the partitions and the sites
to which they are assigned (Figure 4.4). An allocation strategy determines an optimal site
placement for each valid fragment. All the fragments assigned to a particular site are then

aggregated to form a partition for that site.

Valid fragments

l

Determine site
placement

Allocated fragments

\J

Aggregate

Allocated partitions

hd

Placed partitions Migrate
——————
Obtain current Placed partitions

data distribution I

Figure 4.4 Aggregating and partitioning for allocation design

The final step is to migrate the data according to the partitioning strategy. This requires
obtaining the current data placement and using it to obtain a data migration strategy. This

process is detailed in Section 4.2.4,

In defining an allocation method, a known allocation strategy referred to as locality
allocation was first considered in the context of geographic data. This strategy identified the
data and method required for allocating fragments to sites based on data locality and using
polarisation information for each operation (see following section). This is then compared to

site access allocation where the PF model is used to provide the information for allocation
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based on frequencies of accesses at the various sites. Both methods are based on data
locality and produce the same result but differ in the methods for arriving at an allocation.
The PF model provides an eloquent and effective means of determining an allocation based

directly on usage information obtained from user applications.

4.2.3.1 Locality allocation

" The locality allocation strategy is based on how the data usage is polarised towards the
network sites. This method has been defined by Ceri and Pernici (1985) for textual data and
has been adapted for geographic data allocation in this research. Veenendaal 1994b also

reviews this method. The information required as input to this allocation consists of:

+ polarisation - the relative frequency of accesses to each fragment by each

operation at each site,
+ predicate selectivity of the fragment,
» number of records being accessed for the fragment, and

« frequency at which each operation accesses each entity at each of the network

sites.

Polarisation refers to the relative frequencies of the data fragments of an entity being
accessed by each individual operation at each network site (see Section 2.2.3). This
information must be gathered for each fragment that has been identified from predicates
defined on the entities of a database. The result is a 3-dimensional matrix that is aggregated
by summing the values for each operation to produce a table showing the relative number of

accesses of each predicate at each site.

Table 4.1 provides an example of the polarisation information of MAPSHEET by
MAPSHEET _NAME for the ARCS operation’. The "Laverton" mapsheet is the predicate
accessed primarily (80%) at Site 1 whereas Site 3 and Site 4 do not access this mapsheet at
all. The "Albany" mapsheet is accessed mostly at Site 2. The third entry in the polarisation
table indicates that all the mapshects (represented as "*") are accessed 60% of the time at
Site 4.

In addition to the polarisation data, information regarding the frequency of occurrence of
each operation instance is required. Table 4.2 gives an example of frequencies for some GIS
operations at four sites. Note that the operations are qualified by the entities that they deal

with.

* The ARCS operation displays the lines of a given dataset, in this example the mapsheet boundaries.
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Table 4.1: Polarisation of MAPSHEET by MAPSHEET_NAME

Predicate Operation ARCS
Site 1 (%) | Site2 (%) | Site3(%) | Site 4 (%)
mapsheet_name = Laverton’ 80 20 0 0
mapsheet_name = 'Albany’ 10 60 30 0
mapsheet_name = * 10 30 0 60

Table 4.2: Frequency of occurrence of some operations on four sites

Frequency of Occurrence
Site 1 (%) | Site 2 (%) | Site 3 (%) | Site 4 (%)
points rivers 25 25 30 20
polygonshades mapsheets 30 30 20 20
intersection mines mapsheets new 50 20 10 20
build new 25 30 20 25

Further information required for the locality allocation is the predicate selectivity which
indicates the relative size of the predicate with respect to the entity, and the number of
records accessed by each operation on the entity. This information is obtained in the

distribution requirements analysis stage.

The allocation is based on the number of relative accesses for each operation on each
fragment at each site. The relative access values are calculated as follows (Ceri and Pernici
1985):

Rijk =PS§; * OFijk *PAij * Po,-jk .

where Rjjp = relative access value for operation j on predicate { at site £,
PS; = predicate selectivity for predicate ,

OFjj) = frequency of operation j on predicate | at site k,
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PA;i= number of record accesses of operation j on predicate i, and

Poz'jk = polarisation of predicate i for operation j at site £.

The relative access value Rijk is calculated for each predicate (which forms a cell) with each

operation on each site resulting in a 3-dimensional matrix. The effective locality access
values for each cell on each site can then be calculated:
n
L= p Rijk ,
j=1

where L;;, = locality access value for predicate i on site £.

Each cell can then be assigned to the site with the highest locality access value.

A;= maxy { Li } (see footnote %),
where A; = site allocation for predicate (cell) i .

Given the site allocations for each cell, the partitions can then be determined for each site.

The locality allocation method was implemented and an important drawback was identified.
The problem is the difficulty in acquiring the large amount of usage data that must be
collected. For every combination of operator, predicate, and site, the information to be
collected and stored includes polarisation and frequency of occurrence, the predicate
selectivity for each predicate for each entity, and the number of record accesses for each
combination of operation and predicate. For n operations, m sites, and p predicates, the

amount of information required to be stored as observed as:
I=2nmp+p+np,
where I refers to the number of records of usage information.

Often many operations access the same data or data fragment. Collecting information for
each operation means that for a particular data fragment, usage data is dispersed across the
information for each operation that executes on that fragment. Only when a data partitioning
occurs is that data aggregated to determine the usage of that fragment. The amount of usage

information maintained overall is therefore quite high and therefore also difficult to manage.

To overcome these difficulties, the distribution methodology uses the site access allocation

method to determine an allocation based on the usage properties of predicates in the PF tree.

'We use max { Ny ] to refer to the maximum value of the & values in the set.
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Only the predicates that define valid fragments are maintained and only usage information
pertaining to these fragments at each site are accumulated. Information about individual
operations need not be maintained; instead, the resulting usage properties are accumulated in
the PF tree structures. Therefore the amount of information required is substantially reduced

and for m sites and p predicates is estimated as:
I'=mp

The site access allocation method is further discussed in the following section.

4.2.3.2 Site access allocation

Using the site access allocation strategy, fragments are assigned to the site at which they are
most frequently accessed. The PF tree is used to identify the cells and obtain site access
frequency information for each. The allocation is determined by the highest frequency of

access as follows.
Aj=j,
where max; ( SE;; } .

A; = site allocation for fragment 7 , and

SEj; = site access frequency for fragment / at site j .

To aggregate the fragments, the associated primitive predicates must be combined into one
predicate expression to identify the resulting partition. This is accomplished by taking the

disjunction'' of the primitive predicates.

n

PC; =V PP, forA;=j,

i=1l
where PC; = predicate clause defining the partition at site j , and

PP, = primitive predicate describing cell i .

A situation may arise where two or more fragments are allocated to the same site because of
similar usage properties. For such a case the aggregation process would effectively result in
undoing the fragmentation. This may mean that some predicates defining these fragments

can be discarded and some primitive predicates may be merged to form a new one. This is

"' The notation used to represent the disjunction is the V' operator used as follows:

H

V PP, =PP, V PP,V, ...,V PP,

97



essentially one of the pruning methods, namely, the pruning of fragments allocated to the

same site (Section 3.3.2).

As an example, consider the PF tree of Figure 4.5 (a) obtained from user information for
entity mapsheets. Three fragments are defined by the primitive predicates and have been
allocated to sites 2 and 5. However, two of the cells defined by the primitive predicates
“mapsheet = ‘Laverton’ AND mineral = ‘Au’” and “mapsheet = ‘Laverton’ AND mineral =
‘Au’” have been allocated to site 2. These fragments will therefore be merged. Further, the
predicates defined in the leaf nodes share the same parent. By removing these predicates, the
two primitive predicates can be merged to form one, namely, “mapsheet = ‘Laverton " as

shown in Figure 4.5 (b).

a ] b .
) mines \ ) mines \
| / I \
/ \ A‘:S
mapsheet = mapsheet <> mapsheet = Ay=2 mapsheet <>
Laverton® L Laverton’ | Laverton 1 Laverton’ =y
A3=5
. A A=2 ; A1t
mireral = "Au mineral <> "Au
I 1 A=z

Figure 4.5 Using the PF tree for aggregating fragments: a) before aggregation b) after
aggregation

In general, any nodes whose left and right subtrees are allocated to the same partition can be
pruned using the PF delete operation. The remaining parent receives the site allocation
instead. For each site, the disjunction of the resultant primitive predicates allocated to the

site define the partition for that site.

4.2.4 Dynamic data migration

Data placement is certainly not a static process but changes over time as data usage and
locality changes. Data migration essentially involves a reorganisation of fragments among
partitions. However the fragments themselves may be altered, old fragments may be deleted
and new ones may be defined. In addition, some partitions may be removed and additional

ones created.

Recall that a partition P; is a set of fragments:

P, =F, UF,\U, ..., Fu,where F; is fragment j found in partition { .
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The result of the migration process is a new set of partitions P defined from the old set P
where the number of partitions in each set may be different. This difference is due to
changing circumstances such as adding new computer sites that provide storage space for

more partitions. The migration strategy used is outlined with the following pseudo code.

foreach P
foreach P,
i1
for each fragment F'p in partition P’;
for each fragment Fj; in partition P;
I=FpnFy
ifl# NULL
move | to partition P’;
endif
endfor
endfor
enaif
endfor
endfor

The algorithm essentially involves comparing all N old fragments with all M new fragments

and is therefore of order M*N in complexity.

What makes the migration process more complex is the fact that the fragments themselves
may be re-fragmented by splitting and/or merging. The intersection (I) between the old and
new fragment is used to identify the portion of the old fragment that must be migrated to the
new partition as part of a new fragment. There may be a number of such portions of
fragments (ie. fragment of a fragment) which make up the new fragment F,-p*. Note that these

portions may come from different fragments in the old partition.

For example, in Figure 4.6 a new fragment F*J,z in the new partition is constructed from all of
fragments F;; and F, and from portions of fragments F,; and F; from the old partition. Of
course (portions of) fragments from different partitions may be combined into one fragment

in the new partition,

The PF model is used to identify the new fragments F'j, and their corresponding partitions
P’,. As usage and data information are accumulated by the applications, the PF tree is altered
to reflect the changes. Not only are the partitions altered by an aggregation of fragments,

caused by pruning, but fragments themselves may be altered due to additional predicates
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being used within subsequent applications. The PF trec that contains this information is

therefore used to identify the new partitions.

Partition P; Partition P’;

*

i

Figure 4.6 Constructing a new partition by re-fragmenting an old partition

When a data placement is performed a snapshot of the current PF tree configuration indicates
the current placement for an entity set. This information, along with a snapshot of a revised
PF model reflecting subsequent usage information, is used to determine a data migration
strategy based on the algorithm shown above. This new placement then becomes the current

placement in a subsequent migration operation (Figure 4.7).

Current Data

Revised Data Placement at .

Placement at time T;

time Ti+l 7\“.
.\1.
\.\
.

Data
Migration

New
Placement

Operation

Figure 4.7 Data migration process using current and revised placernents

The current placement of an entity is maintained as a PF tree. Thus two trees are maintained
for each entity, one which identifies how the entities are currently placed and another which
is accumulating more recent application information. When a data migration occurs the
current data placement subsequently becomes the new data placement which now reflects the

current PF tree structure.
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A further issue involves the frequency at which data migration should occur. Because it is
an expensive operation, it should not occur too frequently (see Section 2.4.5). However it
must occur often enough to ensure that the data distribution does not become out of touch

with the current applications and their usage. The migration frequency depends on the

amount of change in data access patterns.

Data migration should be undertaken when the benefits of the new data placement exceed the
costs of performing the data migration. The benefits of the new data placement are
determined by the redistribution cost plus the difference in cost of applications accessing
data using the old placement (which is the current placement) versus the cost of applications
accessing the data using the new placement. This difference can only be quantified by
querying the database to obtain the cost of data access. The applications used must be
representative of current applications and may involve different entities and predicates than
were accessed from a previous placement, The data required by the application queries must
be identified from both the old and the new placements by executing the queries on the
fragments of these placements. The cost of access for each of these placements can then be
determined and the reduction in cost (if any) identified. The manner in which data access

costs are determined is explained in Section 4.3,

This reduction in cost, which identifies the benefit of the new data placement, can then be
combined with the cost of redistributing the data. The entities and predicates for the new
placement must be compared to the entities and predicates for the old placement. Once again
this is accomplished by querying the database. The queries involving the predicates must be
executed on the database and the entity instances contained in their intersection identified.
The data migration cost is determined from those entity instances that will reside on a new
site according to the new placement. If the data migration cost is less than the reduction in
cost based on the new placement then the data migration process can be executed. Note that
there are substantial overhead costs involved in querying the database for determining both

the data access and migration costs.

Quantifying the costs involved in data access and migration assists in determining whether or
not migration should take place, but it does not determine the frequency of migration. Even
worse, it does not consider the frequency at which a potential data migration should occur
and hence it is difficult to determine how often 1o obtain the costs for evaluating a migration.
Of course the costs could simply be obtained at regular intervals, but the high overheads in
obtaining these costs make that prohibitive. An alternative would be to monitor the
performance of actual queries, but this would mean that additional log information regarding

processing and communication costs would need to be captured. Determining the frequency
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of data migration must therefore involve a Database Administrator who will have to use
his/her experience and knowledge of data, usage properties of data, and hardware/software
(eg. regarding costs of access). Note that the latter may change with advances in hardwate
and software technology (Strand 1999). The Database Administrator may effect a data

migration in the following situations:

« There is a marked or known change in data usage and access characteristics,

»  After a series of application user sessions which have similar data usage
characteristics, or

»  When the cost of improvement in data access exceeds the cost of data migration.

Such costs can be obtained infrequently at regular or random intervals.

4.3 Measures of distribution

In order to compare distribution strategies, metrics must be developed to account for the

costs and benefits of each strategy.

To understand the costs associated with data distribution, consider the example in Figure 4.8.
Entity mines is distributed across three partitions at three sites: A, B and C. Suppose an
operation called build_topology is executed by an application at site C and performs an

update operation on the entire entity.

Site A

Partition Mines! Site B
RETRIEVE \ \ Partition Mines2
/ RETRIEVE
Partition Mines3

UPDATE
SieC L

User

UPDATE

Figure 4.8 Retrieval and update costs associated with data distribution

Since not all the data required by the operation is found at the local site (site C) where the
operation is being executed, some data transfer operations will first have to be initiated to
retrieve the required data from remote sites. In this example, the fragments for entity mines
at sites A and B must be transferred to site C where the operation is being executed. This

retrieval involves a transfer cost based on the amount of data to be transferred. Similarly, if
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the data (and hence the partitions) require updating, then an update cost is incurred. The data

pC, =Y, Y (RC,+UC,), 4, #B,,
P
distribution cost for executing an operation can be formulated as follows:

where DG, is the data distribution cost for operation p,
RCj; is the cost of retrieving fragment j of entity set 7,
U/C; is the cost of updating fragment j of entity set 7,
Aj is the site allocation of fragment j of entity set 7, and

B, is the site at which operation p is executed.

Further costs are incurred by the data distribution. Before an operation can execute on an
entity set, the individual fragments that have been retrieved may first have to be merged
(Figure 4.9) involving processing costs. Similarly, when the entity set is updated the
partitions will have to be re-created by splitting the entity set. The total cost associated with
an application operation therefore depends on whether the operations involve retrievals and

merges, updates and splits, or both.

Updated
Fragment { of Fragment 1 of
Mines \ / Mines
Reconstructed Updated
Entity — Entity
Mines operation Mines
/ execution \ Updated
Fragment 2 of Fragment 2 of
Mines Mines
MERGE SPLIT

Figure 4.9 Merging and splitting costs associated with data distribution

These retrieval/update and merge/split costs are related to the number of data instances of an
entity. For spatial point data these costs are correlated directly with the number of entity
instances (Ze. points) for that entity. However, line and polygon entity instances vary in
complexity with polygons containing a variable number of lines and lines constructed from a
variable number of points. Rather than being related to the number of entity instances, a
better measure of cost would be the number of points that make up the line or polygon entity

{Sloan er al. 1992).

Both the spatial data and their attributes must be considered in determining the size of a

fragment. The attributes are associated with the entity instances which means that the
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number of attributes and number of entity instances must be known in addition to the number

of points. The size of a fragment can therefore be determined in bytes as follows:
Size(F;} = Numpts( F}; )* Point_ size+ Numents( £} )= Att_ size ,

where Numpts(F;) is the number of points in fragment 7 of entity j ,
Point_size is the number of bytes used to store each point,
Numents(F}) is the number of entity instances in fragment / of entity j , and
Att_size is the number of bytes required to store the attributes for one entity

instance.

Using the number of points as the basic measure of size for spatial data fragments, the
retrieval/merge and update/split operations involving data transfer and processing costs can

be estimated as follows'”:

RC; = (1+c,)Size(F,) ,

UC, = (1+¢,)Size(F,) ,
where c, is a constant relating the processing cost to the data transfer cost. This constant
value is a means of normalising the costs so that they both can be estimated from the
fragment size. The value is, of course, dependent on the data transfer speed over the
computer network relative to the processing speeds at the site where the data is processed. It
is estimated by a Database Administrator using knowledge about the given hardware
specifications and from empirical evidence. It is assumed that this value can be estimated
and the estimate is known. Note that a fragment that is accessed and subsequently updated

incurs both a retrieval cost and an update cost.

Application operations may, of course, involve more than one fragment. The costs
associated with retrieving and/or updating are incurred for each fragment accessed by the
operation. These costs, however, are only an estimate. For small fragments the costs would
likely be higher relative to the fragment size and due to the overheads of data distribution.
For multiple and consecutive operations accessing the same fragment, these costs may be

lower due to buffering and caching which may reduce the amount of data being retrieved.

For application operations that require access to only one fragment, it is obvious that

merging and splitting costs are not incurred. This means that the processing costs do not

2 Note that because the number of data points is used as the basis, the retrieve and update costs are
estimated to be equivalent. However, rather than using one variable to refer to both costs, we will
coatinue to identify them separately so as to make clear the nature of the costs involved.
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need to be factored into the retrieve/update costs. This is achieved by setting the constant

value ¢ to be zero (0).

As already discussed in Section 3.3.2 a threshold value needs to be set to determine when
pruning occurs for infrequent access and small fragments. A fragmentation is beneficial only
if the cost of fragmentation is less than a threshold value which is equivalent to the cost of

leaving the data unfragmented. The threshold value Tis estimated as follows:

1= RC,*(RF, + RF,

i+

+RE,,,) + UC,*(UF, +UF,, +UF, ;) |

where RC and UC are the retrieval and update costs,

F; is the fragment being considered for further fragmentation,

Fy.; and Fj,; are the resulting fragments of the potential fragmentation of

Fy, and

TF; is the total frequency of accesses for fragment i of entity j .
This threshold value is obtained from the PF tree by examining the access information of a
node (fe. the original fragment) and its two children (ie. the two fragments of the parent).
The cost of the fragmentation v can then be calculated as follows:

*UF,, ) +UC,,, +UC,

ij+k i+l §+2

2
v= (Z(ch+k *RF:)‘H ) + (UC
k=0

In this calculation both the retrieval and update access frequencies and fragment size
information are examined for the parent and two children nodes in a PF tree. The last two
terms in the expression take into account the cost of setting up the fragmentation in the first
place. This cost involves an "update” cost as the two new resulting fragments are placed at
their respective site locations. The fragmentation is beneficial if the cost of fragmentation is

less than the threshold value,

Consider the two examples of Figure 4,10 where the fragmentation of "mapsheer =
‘Laverton™ is being considered. The PF tree is constructed, assuming that the fragmentation
does take place, and the number of retrieval and update accesses (shown in the nodes in the
figures) are then accumulated for each fragment, Assume that the total retrieval and update
costs accumulated thus far are those as shown in the figure. Assume also that the processing
and transfer speeds used in obtaining the retrieval and update costs are equivalent (ie. ¢c; = 1).
This means that when considering the case where mapsheet = ‘Laverton’is not fragmented,
we can assume that the update and retrieval costs are halved (ie. equal to 140) since there are

no merge or split costs involved in accessing the data.

The threshold value and cost of fragmentation are calculated in example a) as:
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T=140*(18+93+35)+140*(5+32+8)=26740
0=280%18+280%5+90%93+90*32+190*35+190*8+90+190=26140

Because the cost of fragmentation is less than the threshold value, the fragmentation is
considered beneficial and therefore is maintained. For part b) the threshold value is
calculated as 7=23800 and the cost of fragmentation as v=33220. As a result the
fragmentation is not beneficial and pruning must be carried out to remove the relevant nodes

from the PF tree.

a) mines N b} mines N,
I I

mapsheet = 18,5 mapsheet <> mapsheet = K514 mapsheset <>
Laverton” [—— RC-280 Laverton” |= Taverton” {-—{ RC=280 Laverton’

UC=280 \U‘C=280
mineral = "Au’ [93,32] 35,8| mineral <> Au’ mineral = "Au’ |45.13 9,4 | mineral <> Au’

1 1 - 1
RC=90 RC=190 RC=50 RC=190
uc=90 UC=190 UC=920 UC=190

Figure 4.10 Examples for determining the cost of fragmentation

The amount of fragmentation can be measured as the average number of fragments per entity

and is calculated as:

(i)l

where FT is the fragmentation index,
f; is the number of fragments for entity / ,and

n is the number of entities in the database.

An index value of one (1) indicates that no fragmentation exists for any entity. The higher
the index the greater the average fragmentation among the entities in the database. The
fragmentation index, while providing a general measure of how much a database is
fragmented, does not indicate if the fragmentation is evenly distributed across all entities or

is concentrated on a small proportion of the entities.

The amount of fragmentation could also be due to a large number of cells identified from

overlapping application queries. This also means that many fragments may have to be
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accessed to satisfy one application query. The overhead incurred in accessing and merging
many fragments may dictate that the cost of fragmentation is too high and should be reduced.
The amount of overlap among application queries can be measured using the following

calculation:

2.1,
Zur‘ "

where O is the overlap index, and

Ol =

u; is the number of user fragments relating to entity i .

An overlap index value of one (1) indicates that the number of fragments for distribution is
equal to the number of user fragments. An increase in the index value means the user
fragments are further fragmented because of overlap and hence there will be an increase in

the cost of fragmentation.

These measures for data distribution provide an estimate of the costs involved in
fragmentation and allocation. They are used in Chapter 5 to evaluate the methodology being

proposed.

4.4 Implementation of Geographic Data Distribution

The implementation in the geographic data distribution system referred to as GEODDIS
(GEOgraphic Data DIStribution) involves building a data model and generating algorithms

for the steps of the distribution methodology. This is detailed in the following sections.

4.41 GEODDIS data model

The GEODDIS data model is constructed around the PF tree structure. Each node in a tree
refers to a user predicate. Each user predicate is defined on one or more entity sets (ie.
derived predicate - see Section 2.5.1) and is referred to by one or more application operations
that can execute on one or more sites. All this information is maintained in the GEODDIS
data model as illustrated in Figure 4.11. The arrows indicate the direction of the

relationships between the components of the data model.

Each entity set in a geographic database has an associated PF tree. The predicate expressions
that are associated with the tree nodes are contained in the predicate table. For each
predicate expression, being a simple expression (see Section 3.3}, the information maintained

is two operands and a relational operator. An operand may refer to an entity attribute.
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Information about the entity sets is provided in the entity table. The database information

identified in Section 2.2.6 is stored in this table.

For each unique occurrence of a predicate expression and an application operation that refers
to it, an entry is maintained in the operation-entity table. Because an operation may refer to
more than one entity, information about which entities are accessed and any associated
predicates is provided. Hence there are links from the operation-entity table to the entity and
predicate tables. The name, number of entities it refers to and the type of access for each
entity is maintained for each unique operation in the eperation table. The operation-entity
table also relates to the information contained in the site table by specifying the site(s) at

which the operation is executed.

Operation-

Entities
PF tree

_-_'—-—’
Entities
Predicates /

Figure 4.11 GEODDIS data model

Operations

Note that the operation and the operation-entity tables were maintained only to implement
the locality allocation method (Section 4.2.3.1}. They are not necessary for the site
allocation method which is the preferred method for reasons explained in Section 4.2.3. The

data model is more fully detailed in Appendix A.

As the application information is obtained, usage information for the predicates and entities

is accumulated and maintained in the PF trees (see Sections 3.4 and 4.2.1).

4.4.2 Capturing application information

During the initial database design stage of a GIS application the entities, operations, and their
schemas are identified and represented in GEODDIS. If the database is already in existence
then the existing information is entered into GEODDIS. This constitutes the data

information (see Section 4.2.1) required for data distribution.
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The application information is obtained from log files of user application sessions that have
been executed on the network sites. From this information GEODDIS produces a data
distribution scheme that is then applied to the geographic database (Figure 4.12).
Subsequent application sessions access the newly migrated data. As additional data and
application information become available, a new data distribution scheme can be obtained
and applied once again to the database. The process is iterative as would be expected in a

dynamic environment.

LOG
files

for Site 1 [} T~
) .. Data
Distribution
—
I.GIS Scheme
applications ==

LOG
Files
for Site n - [}

Geographic
Database

Figure 4.12 GEODDIS is linked to a GIS application

The GEOMINE application used to test the geographic data distribution methodologies of
this research was implemented using the ArcInfo GIS (see Section 4.5 which explains the
testing strategy). The entity schema information was obtained by executing ArcInfo
database commands to list the details of the entity sets and store them in text files. Simple
string manipulation techniques were then used to identify the entity names, geographic data
types, attribute names, field sizes and the number of point features and entity instances for
each entity set. The operation schema information could not be readily extracted from the

ArcInfo GIS and had to be mannally entered into GEGDDIS.

ArcInfo provides a logging facility which logs all commands and operands used by
application sessions. It also provides a watch facility which, when initiated, logs additional
detailed information involving individual queries, predicate expressions, coordinate
information entered either explicitly or through mouse or cursor operations and the number

of entity instances selected by the various data selection operations. Simple string
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manipulation techniques are used to extract the operation, predicate and associated usage

information necessary for data distribution,

The watch files in particular were very useful since they identified specific coordinate
information for spatial selection and query operations involving on-screen mouse clicks or
digitiser cursor input. For example, suppose a user wants to identify a rectangular
geographic area from some data being displayed on the screen. The geographic region can
be specified by placing and clicking the mouse on two opposite corners of the rectangle. The
actual X and Y coordinates identified by the mouse clicks are captured by the watch file.
GEODDIS can extract the coordinate information from the watch file and appropriately
insert it into the associated predicate expressions involving the spatial (ie. X and Y)
coordinates. In addition to identifying coordinate values the watch files also indicate the
number of entity instances selected by a selection operation. This has proven to be very

useful in determining the size of fragments identified by predicate expressions.

Information about entity sets and their schemas are also obtained from the log files.
Information is obtained from operations involving entity set additions and deletions and
schema modifications. The database information can therefore be dynamically updated as

the application information is obtained.

4.4.3 Using GEODDIS in partitioning and allocation

Once the database and site information is obtained the application information can be
extracted from the log files and inserted into the PF tree. This involves the tree building and
fragmentation filtering steps of fragmentation design (Section 4.2.2). At this point the PF
trees contain primitive predicates referring to potentially both valid and invalid fragments.
For reasons explained in Section 5.2.2 pruning can take place immediately after a user
session is processed. The primitive predicates defining empty fragments are therefore

pruned.

The process of pruning empty primitive predicates requires that fragment sizes are known.
They can only be obtained by using the primitive predicate expressions to query the
database. This is achieved by building a query file containing the primitive predicates and
executing the queries within the GIS database. The result is a file containing the number of
entity instances selected for each query. The corresponding primitive predicates in the PF
trees can then be updated with this fragment size before the pruning takes place. Note that in
the pruning step the fragment size of the (new) primitive predicates is maintained. However

in the case of insertions of new predicates this information is lost and therefore the database
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must be queried again, this time with the new primitive predicates, to obtain the sizes of the

new fragments.

When an opportunity for data migration occurs (Section 4.2.4), after some user sessions have
been processed, pruning using additional methods {Section 3.3.2) can occur. Predicates with
a last accessed time prior to the previous data migration are pruned. Note that the Database
Administrator can determine whether a time corresponding to a different time interval will
be used. For example, for data that is periodically accessed, the time interval may be set to
the second last data migration or an interval independent of previous data migration times.
Further pruning takes place for small and/or infrequently accessed fragments using the
threshold value as described in Section 4.3. The result is that only valid fragments remain as

identified by the remaining primitive predicates in the PF model.

The next step in implementing the data distribution methodology is to allocate the fragments
to sites based on their usage frequencies at each site. The result is that each primitive
predicate in the PF model has a site allocation. If there is a requirement for the fragment to
be stored on a limited number of sites, then that site with the highest usage frequency for that

fragment is chosen.

At this point in the distribution design a data migration can potentially occur. As explained
in Section 4.2.4, this process requires identifying the data based on the previous placement
that must be migrated to a new site. The data is then migrated to the new site and the new
placement details are stored by saving the primitive predicates of the PF trees along with
their site allocations. This placement becomes the "old" placement for a subsequent

migration operation.

The whole process can now iterate beginning with the processing of application logs. The
implementation of this entire process in GEODDIS is summarised in the following algorithm
using pseudo code,
loop for application
for each data migration interval
for each user session
read log file
update PF tree for each entity accessed
build list of queries for each primitive predicate
run list of queries in GIS to determine fragment sizes
update PF tree primitive predicates with fragment sizes
prune trees based on fragment size

endfor
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prune fragments from PF trees based on infrequent access, time last used
and fragment size
allocate fragments to sites
prune trees based on fragments allocated to the same site
generate list of data migrations based on allocation and previous placement
run list of data migrations for GIS
save data placement
enafor
endloop

GEODDIS consists of operations to manipulate the PF tree and interact with a GIS database
and applications. A detailed description and example of the syntax and command structure
for GEODDIS is provided in Appendix C. GEODDIS is implemented on a SUN UNIX
operating system platform using the C programming language and UNIX shell scripts.
Appendix D provides an example of a shell script from which the C-language programs and
the ArcInfo GIS are executed. The shell script uses the above algorithm to read in all
currently existing application logs and perform a site allocation and data migration.
Appendix E provides a structure chart of all the C-language program modules and their

relationships to each other.

4.5 Testing strategy

The methodology explained in this chapter and implemented in GEODDIS was tested using
the GEOMINE application developed in ArcInfo and introduced in Section 1.5.

User session information was obtained for the GEOMINE application. A series of nine
individual user sessions, representative of a range of typical sessions, were logged in ArcInfo
and used as the basis for evaluating the methodology. These user sessions were chosen since
they vary in terms of the number and range of operations executed and available from
GEOMINE. These operations access a range of spatial and attribute data available within the

GEOMINE database. Each individual user session is described in Appendix B.

The user sessions are used individually to test and evaluate the PF model then collectively to
test and evaluate the geographic data distribution methodology using the PF model. In order
to provide a comparison the operations in all nine user sessions were randomised across a
new set of nine user sessions. The same number of user sessions was chosen to maintain the
average size of each user session. It must be noted that the order of the selection operations

also changes in the randomised user sessions. This has the potential of generating very
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different results as explained in Section 3.3. The effect of ordering will therefore be tested by

observing the randomised user sessions.

A cross-validation testing strategy was used to test and evaluate the methodology. Cross-
validation involves using some of the data to train the system and using the remainder of the
data to validate its performance (Mitchell 1997). For k-fold cross-validation this occurs &
times using & disjoint subsets of the data. In this case some of the user sessions were used to
generate a data distribution strategy and the remainder of the user sessions were used to
evaluate this strategy. Rather than test with individual user sessions, it was decided to use a
group of user sessions as is done in the methodology™. A 3-fold cross-validation approach
was chosen involving three groups of three user sessions each. A data placement was
determined for 2 groups of sessions that constitute the training data. The remaining group,
the validation data, was then used to test the effectiveness of this placement (Figure 4.13).
This was repeated for ail combinations of the three groups. This testing strategy was used

for both the original user sessions as well as the randomised user sessions.

User session
validation set

User session
training set

Obtain a geographic
data distribution
strategy

Validats the
geographic data
distribution strategy

Figure 4.13 Testing strategy for data distribution methodology

These testing strategies are further described in Chapter 5 along with the results and

discussions.

" Within the methodology a data migration occurs after processing multiple user sessions although it
is possible to use a single user session before doing a data migration. As explained in Section 4.2.4 a
data migration operation should not be executed too frequently and would not normally occur after a
single user session was processed, but rather only when sufficient change in the data usage patterns
warrant 1.
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4.6 Summary and Conclusions

The geographic data distribution methodology outlined in this chapter builds on previous
work concerning data distribution. The query-adaptive approach, using information on
application queries and associated data usage properties, is incorporated into the

methodology in an effective manner using the elegant tree-based PF model designed for this

purpose.

The methodology follows a three-phase process of distribution requirements analysts,
fragmentation design and allocation design. The methodology handles geographic data and
produces a distribution strategy involving procedures and cost metrics that cater for the
spatial components of vector geographic data. The implementation in GEODDIS interacts
with a GIS and uses the PF model to provide an effective and elegant means of collecting

and maintaining information in supporting a geographic data distribution design strategy.

A number of cost measures have been developed so that the effectiveness of the
fragmentation, allocation and data migration strategies can be determined. The measures
developed are used to provide an estimate of costs which assist in determining whether or
not a fragmentation is beneficial or a migration operation should occur. Database
Administrator support is necessary to oversee these decisions and override them when

additional and often non-quantifiable factors must be taken into consideration.

The methodology is dynamic and incorporates changes in the database and application
environments. As application information becomes available and as the database changes,
the fragmentation and allocation schemes can be altered to reflect the changes. This is

important since GIS environments and data usage are not static.
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5 Results and Discussion

5.1 Introduction

In evaluating the methodology for geographic data distribution, a number of aspects must be
addressed. Firstly, the PF tree is the basis for the methodology and its performance and
effectiveness in maintaining data usage information must be evaluated. As detailed in
Section 5.2, pruning techniques are necessary for maintaining the efficiency of tree
implementation. Further, the implementation is invariant to the effects of the ordering of

user queries.

The second aspect involves the evaluation of the methodology itself and the use of the PF
model in implementing a geographic data distribution. This evaluation is described in
Section 5.2 and involves test results and conclusions for the various stages of the
methodology involving fragmentation, partitioning and allocation, and data migration.
Cross-validation testing is used to demonstrate that the distribution of data is improved over

single site and random allocation strategies.

5.2 PF Tree Performance and Evaluation

The performance of the PF tree is a factor of its size and shape. The types of selection
operations and their order determine the tree shape and size (Section 3.3). While tree
growth is, of course, unavoidable it can be and is constrained by the actual number of
fragments that arc produced. Any predicates and primitive predicates in the tree that result
in unnecessary fragments require pruning (Section 3.3.2). The use of pruning techniques for
the PF trees ensures that they perform efficiently and adequately for the data distribution

process.

A PF tree can potentially range from linear to exponential in growth. However, it is
expected and empirical evidence suggests that the average tree size is far from the worst
case. As a matter of fact the actual tree size is much closer to the actual number of
fragments being generated. This is to be expected since the number of fragments is based on

data usage and usage information is used to generate the growth in the PF trees.

The worst case scenario for tree growth is an almost complete binary tree with a depth equal

to the number of predicates issued (Figure 5.1a). Such a tree grows exponentially as
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predicates are inserted and where the current selection consists of all the entity instances of
the entity set associated with that tree'’. The best case scenario is a linear tree containing
the number of nodes equal to twice the number of predicates issued"® (Figure 5.1b). Such a
tree grows linearly when predicates are inserted into the tree through consecutive reselection
operations (fe. the primitive predicate identified by the left-most leaf node comprises the

current selection in each consecutive operation).

a) b)

tree . tree A

Figure 5.1 The two extremes of PF tree growth: a) exponential b) linear.

The type of selection operation, being either a reselect, aselect or nselect, will determine the
active status of resulting primitive predicates and the active status will determine whether or
not the leaf nodes of the PF tree will be expanded during a subsequent selection operation
(Section 4.3.1). The nselect has the least effect on tree growth while the aselect operator
has potentially the greatest effect. The aselect operation may add more primitive predicates
to the current selection, thereby increasing the potential for additional predicates to be
inserted.'® Processing a new user session also has the potential of increasing tree growth

since at the beginning of each new session all primitive predicates are made active.

A PF model was constructed for each individual user session to compare the user sessions
and the trees generated from them (see Appendix B for a description of the user sessions and
Section 3.4.5 for the tree generation operations). For each user session the number of

primitive predicates and nodes generated and the maximum depth of a PF tree were

14 The actual number of nodes is calculated as 2911 where d=depth of tree (root node is at d=0).

1 This is excluding the root node which is associated with all the instances of an entity set. The actual
number of nodes, including the root node, is calculated as 2n+1 where n= number of primitive
predicates.

1% Recall from Section 3.3.1 that new predicates are obtained from the reselect and aselect operations
and inserted only under active nodes.
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accumulated across all 56 entities in the GEOMINE database. The results are provided in

Table 5.1. Note that the figures for the PF trees do not include any pruning.

Table 5.1: Summary of GEOMINE user sessions and associated PF model

GEOMINE Total number | Number of Number of Number of Number of Maximum
user session | of operations | selection user primitive nodes for all | depth of
operations predicates predicates PF treast PF tree
for all PF
frees!
1 38 19 10 61 66 5
2 325 32 19 69 82 5
3 889 93 38 152 248 9
4 1133 115 60 171 286 10
5 161 25 14 90 124 6
6 41 19 11 137 218 9
7 46 1 9 62 68 3
8 33 11 9 62 68 3
9 358 169 104 148 240 15

* The number of primitive predicates and nodes includes the root node maintained for each of the 56 entity sets in the

GEOMINE database.

The application user sessions vary in size ranging from 33 to 1133 operations being
executed per session. The number of selection operations refers to all selection operations
executed within the user session. The number of user predicates was obtained from all the
reselect operations and from the aselect operations that contain a predicate. From the table
it is evident that the number of selection operations constitutes from 9.8% (for GEOMINE
user session 2) to 50% (for user session 1) of the total number of operations and that there is
very little correlation between these percentages and session size (R’=0.36). Similarly, user
predicates are found in anywhere from 40.9% (for user session 3) to 81.8% (for user
sessions 7 and 8) of selection operations indicating very little correlation between these
percentages and the number of selection operations (R’=0.16). It is obvious that the number
of selection operations and user predicates can vary widely within a user session. More
important is the number of primitive predicates which, as explained in Section 2.5.2, are

derived from the user predicates and are used to build the PF trees.
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A PF model was created for each individual user session and the number of primitive
predicates and nodes accumulated across the PF trees for all the entity sets in the database.
The number of primitive predicates generated is dependent, not only on the number of user
predicates, but also on the order of the selection operations. As already discussed above, the
order of the selection operations determines the number of active primitive predicates which
in turn directly affects the number of primitive predicates created as new user predicates are
inserted in the tree. Note that the number of nodes is directly related to the number of

primitive predicates.17

As an example, consider the tree sizes for user sessions 3 and 9. Although user session 9
contains more user predicates than user session 3 the number of primitive predicates
generated is much less. This is because user session 9 involves a sequence of reselect
operations for the same entity whereas user session 3 involves more aselect operations. The
resulting size of the PF tree for user session 9 is closer to linear than that for user session 3.
The tree depth provides an indication of the tree shape (ie. tending towards exponential or
linear growth). In Figure 5.2 the depth of the PF tree with the maximum depth in each user
session is plotted versus the number of primitive predicates in that tree'®. This is compared

1o the two extreme tree sizes of linear and exponential.”

1200
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—— GEOMINE PF tree
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- Exponential

Number of primitive
predicates
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0 3 5 6 9 10 15
Maximum tree depth

Figure 5.2 Comparison of PF tree sizes for the maximum depth tree in each user session

A PF model was also constructed for nine user sessions containing operations randomised

from the original GEOMINE user sessions. The results are provided in Table 5.2. These

" For n primitive predicates (ie. leaf nodes) in a PF tree the number of nodes can be calculated as 2n-
1. Note that the figures in the Table 5.1 refer to all 56 PF wees.

18 Where two or more user sessions contained PF trees with the same maximum depth, the number of
primitive predicates is calculated as the average of those trees,
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user sessions are much closer in size™ (fe. number of operations) to each other than the
original user sessions simply because the operations were distributed quite evenly among the
different user sessions. The number of user predicates still varies among the user sessions
but the range of variation has been reduced (17-54) relative to the original user sessions (9-
104). Both sets of data are representative of typical GEOMINE user sessions. As explained
in Section 4.2.2 empirical evidence based on the GEOMINE application suggests that a

typical user session size would consist of under 350 commands consisting of 30 user

predicates in 60 selection operations.

Table 5.2: Summary of randomised user sessions obtained for the GEOMINE application

GEOMINE Total Number of | Numberof | Numberof | Numberof | Maximum
randomised | number of selection user primitive nodes for depth of
test session | operations | operations | predicates | predicates all PF PF tree
for all PF trees*
trees?
T1 401 52 24 73 90 4
T2 401 42 21 68 80 4
T3 180 70 42 106 156 8
T4 402 52 23 97 138 6
T5 432 37 17 84 112 5
T6 213 88 54 133 210 9
T7 358 38 19 77 08 5
T8 429 38 23 85 114 7
T9 208 77 51 110 164 7

# _— . . s . .
The number of primitive predicates and nodes includes the root node maintained for each of the 56 entity sets in the

GEOMINE database.

The PF trees constructed for the original and randomised user sessions shown above are not
pruned at all. Some of the fragments identified from the resulting PF trees may not be valid
because they are empty. As explained in Section 3.3.2 pruning is an important step for both

identifying valid fragments and restricting excessive tree growth. The bar charts in Figure

' The number of primitive predicates for a linear tree is calculated as n+/ and for an exponential tree
as 2" where n is the tree depth. Note that the root node is at a depth of zero,

% Note that the randomised user sessions are not egual in size. The randomisation is based on all the
GIS commands including those for "house-keeping” purposes. The table shows only operations that
execute on the data.
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5.3 show the effects of pruning for the original and randomised user sessions of GEOMINE.

The pruning is performed on primitive predicates that define empty fragments.

a) Original GEOMINE user sessions

180
140
Number of 120
primitive 138 .
predicates 60 B Before pruning
38 M After pruning

o

1 2 3 4 5 6 7 & 9

User session

b) Randomised GECMINE user sessions

Number of 108
primitive
predicates

B Before pruning
B After pruning

i 2 3 4 5 6 7 8 @
User session

Figure 5.3 Effect of pruning while processing a} original and b) randomised GEOMINE

user sessions

Note particularly for large PF trees how pruning causes a marked reduction in the number of
primitive predicates. This is expected as explained in Section 4.2.2 since many of the
fragments produced from user predicates would not overlap with those of other user
predicates and therefore the resulting empty fragments can be pruned. The average number
of primitive predicates per user session dropped, as a result of pruning, from 105.8 to 87.7
for the original set of data and from 92.5 to 78.3 for the randomised set of data. These
results show a similar reduction in primitive predicates across the two data sets, the
reduction being 17.1% for the original data and 15.4% for the randomised data. A
comparison between the original and randomised data also reveals that, as expected,
randomising the order of insertion of predicates results in no noticeable increase in the

number of primitive predicates in the PF tree (see Section 3.3).

The improvements indicated here are based purely on an average across the user sessions

which, in Figure 5.3, are dealt with independently from each other. Of course, consecutive
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user sessions are very much interdependent, often referring to the same entities and the same
user predicates (Coleman et al. 1992). This is explored in the following sections where they

are collectively considered in the distribution methodology.

5.3 Evaluation of Geographic Data Distribution Methodology

The geographic data distribution methodology involves a number of stages as explained in
Section 4.2. The distribution requirements analysis and fragmentation design stages result
in a fragmentation of a geographic database based on user applications. Such a
fragmentation is evaluated in Section 5.3.1. The partitioning and allocation strategies
involving the aggregation of these fragments and the assignment of the resulting partitions to
computer network sites are evaluated in Section 5.3.2. The final part of the methodology

involving data migration is then evaluated in Section 5.3.3.

5.3.1 Evaluation of fragmentation

User sessions cannot simply be treated individually and handled in isolation from each
other, but are collectively handled in the data distribution methodology which more closely
reflects their occurrence within an application. According to the methodology explained in
Section 4.2.2 the PF trees are constructed by processing each user session consecutively and
accumulating any new primitive predicates identified in the user sessions. Empty fragments
are then pruned after processing each individual user session. Figure 5.4 shows the marked
effect of pruning the primitive predicates as they are accumulated for both the original and

randomised GEOMINE user sessions.
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Figure 5.4 Effect of pruning for consecutive processing of application user sessions
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The addition of predicates from the user sessions can result in substantial tree growth as
appears evident, for example, for the original user sessions 4 and 5, and the randomised user
sessions 6 and 9. These user sessions involve a greater number of queries specifying user
predicates that identify data not already referenced by previous user sessions. For example,
the original user sessions 4 and 5 access a range of topographic and mineral occurrence data
across many different regions not previously accessed (see Appendix B). This data is
identified with new predicates that arc inserted in the tree and result in tree growth and an
increase in primitive predicates. However, many of these primitive predicates relate to
empty fragments and are therefore pruned. Only those fragments containing the data from
the regions accessed during the user session are nonempty. As expected (see comments in
Section 5.2) pruning has a dramatic effect in reducing tree size and is therefore an important

step in limiting tree growth.

a) Original GEOMINE user sessions
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b} Randomised GEOMINE user sessions
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Figure 5.5 Comparison of cumulative numbers of user and primitive predicates for a)

original and b) randomised user sessions

The number of primitive predicates is related to the number of unique user predicates

obtained from the user sessions. Figure 5.5 displays plots of the cumulative number of user
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and primitive predicates for both the original and randomised GEOMINE user sessions.

Both the fotal number and the nurmber of unigue user predicates are displayed.

The plots show that even though the number of primitive predicates increases with the
increase in unique user predicates, the growth is not exponential but closer to linear. This is
expected since the number of fragments, identified by a PF tree, should be proportional to

the number of accesses to an entity set by an application.

The fragmentation index identified in Section 4.3 provides an indication of how fragmented
a database is. Figure 5.6 shows how the fragmentation index is affected as the user sessions
are processed. As expected, the fragmentation increases as the number of user sessions are
added. The number of fragments generated is dependent on the overlap among fragments
identified by unique user predicates. As more predicates are obtained from the applications,
further overlap occurs resulting in additional fragments. The reduction in the number of
fragments, as shown at the end of each graph line in Figure 5.6, is due to the pruning of
predicates whose fragments are to be allocated to the same site. This again shows the

importance of the effect of pruning in the fragmentation process.
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Figure 5.6 Fragmentation resulting from GEOMINE user sessions

The amount of overlap relative to the number of user fragments identified from the
applications is measured using the overlap index as described in Section 4.3. The user
fragments are identified by the number of unique user predicates obtained from the user
sessions of an application. The overlap index is plotted in Figure 5.7 for both the original
and randomised user sessions where the user sessions were processed consecutively. Similar
to the previous figure, the reduction in the index at the end of the graph indicates the effects

of pruning fragments that are to be allocated to the same site.
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Figure 5.7 Overlap between user fragments identified from GEOMINE user sessions

The overlap between user fragments remains fairly constant as more unique user predicates
are identified from the application. Even though there is an increase in the number of
primitive predicates as more fragments are generated, the increase is proportional to the
number of user predicates obtained from the applications. Because the overlap index is
relatively stable, the number of fragments is predictable and the number of primitive

predicates in the PF model can be maintained at a manageable level.

Figure 5.7 indicates that the overlap index for the randomised user sessions is less than that
for the original user sessions. This is due to the randomisation of the user queries where
there is a greater potential of a sequence of queries resulting in no data being returned. For
the original user sessions, the user would not normally continue querying from a current
selection producing no data. With the randomised user sessions, further querics may result
on such a selection producing empty fragments that require pruning. The result is less

fragments overall (see also Figure 5.4) and a smaller overlap index.

5.3.2 Evaluation of partitioning and allocation strategy

After the user sessions are processed a data distribution strategy can be generated from the
fragmentation obtained from the PF model. Before the actual partitioning and allocation is
carried out further pruning may take place for predicates that are small, infrequently
accessed or not recently accessed, as discussed in Section 3.3.2. Such pruning ensures that
predicates and fragments that are not relevant are discarded. The remaining fragments are
then allocated to sites using the site frequency allocation method and a data migration occurs

according to the resulting distribution strategy (Sections 4.2.3.2 and 4.2.4).
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As explained in Section 4.5 the testing strategy used to evaluate the data distribution
methodology uses a 3-fold cross-validation approach. The data used for the cross-validation
approach was taken from both the original and randomised GEOMINE user sessions. The
original GEOMINE user sessions were divided into three groups: user sessions 1-3 in the
first group, 4-6 in the second group and 7-9 in the final group?'. The same thing was done
for the nine randomised user sessions. Then for each test run, two groups are used as the

training data and one group as the validation data. Table 5.3 lists the test runs.

In order to compare the methodology the training set of data was allocated using three

different methods:

1. All data allocated to site 4 - referred to as one-site allocation method.” The three
validation data user sessions were then allocated to sites 1, 2 and 3 respectively.
This represents the worst-case scenario where all the data will have to be transferred

to another site at which it is used.
2. Data randomiy allocated to sites.
3. Site frequency allocation method used in the methodology.

Table 5.3 List of test runs using cross-validation approach

Test Run Data set Training set Validation set
1 Original GEOMINE 1-3, 4-6 7-9
2 Original GEOMINE 1-3,7-9 4-6
3 Original GEOMINE 4-6,7-9 1-3
4 Randomised GEOMINE 1-3,4-6 79
5 Randomised GEOMINE 1-3,7-9 4-6
6 Randomised GEOMINE 4-6,7-9 1-3

P} . Lo . . . S

1t is logical to group the user sessions in the order in which they appear in the application since
consecutive user sessions are likely to contain more similarity than non-consecutive ones in the manner
in which they access data.
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For all these allocation methods, the three user sessions of the validation set were allocated
to three separate sites arbitrarily chosen. A distribution strategy using the site frequency
allocation method was then obtained for the validation set of data. The distributions of the
training set and validation set were then compared by determining the volume of data that
must be transferred and processed for the validation set given the site allocations for the
training set of data. The smaller the amount of data transferred the better the data
distribution performed for the validation set. By using different allocation methods for the
training set, the performance of the site frequency method could be compared relative to the

one-site and random allocation methods. The results™ are displayed in Figure 5.8.

The one-site allocation, as expected, is always worse than the site-frequency method since
all the data must be transferred to a new site to be used. The site-frequency method assumes
that some of the data, allocated based on the training set, is already correctly placed for the
validation set. The random allocation method performs well when the resulting data

allocation happens to be close to the data allocation for the validation set.

20
Data t torred 18 B One-site
ata transferre
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5 C Site frequency
V]
1 2 3 4 5 6
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Figure 5.8 Cross-validation results for testing data allocations

The results indicate that in all test cases the site frequency allocation method performs better
than the one-site allocation method. It also performs as well as, and in many cases better
than, the random allocation method. For test run 3, the random allocation method actually
performs better than that of site frequency. This is because the validation set involving the
original GEOMINE users sessions 1, 2 and 3 access different data than the training set.

Because the training set is a poor indication of data access for this particular validation set,

*2 Site 4 was arbitrarily chosen. It does not matter which site is chosen as long as none of the data in
the validation set is allocated to this particular site.

¥ Note that the results for test runs 4 and 6 were scaled down by 15 and 8 respectively for the purposes
of comparison with the other runs.
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the site frequency allocation doesn't improve the access and a random allocation happens to

perform better.

Test run 5 has a similar result where the random allocation performs better. To determine if
this was due to different access patterns between the training and validation sets, the user
sessions in the validation set were randomised to be assigned to different computer network
sites. The result was that the site frequency allocation method performed better than the
random allocation method indicating that the access of the former method happened to be a

better match for the placement resulting from the training set.

One further aspect to note from Figure 5.8 is that the last three test runs, which refer to the
randomised user sessions, generally involve more data movement between training and
validation sets. This is due to the randomisation of the user predicates among the user
sessions which therefore contain more variation in the predicates and hence more data being

accessed within each individual session.

5.3.3 Evaluation of dynamic data migration strategy

Once a data placement has been obtained and the data has been migrated to the new sites, a
dynamic data migration strategy will perform data migration on an ongoing basis. As
explained in Section 4.2.4 such a strategy involves the periodic migration of data after the
application information has been extracted from multiple user sessions. It was evaluated
using all eighteen original and randomised user sessions. The sessions were divided into
sets for which a data migration operation was issued. Three different test cases were
constructed using different sets of user sessions as shown in Table 5.3. A k-fold test case

refers to k sets of user sessions.

For each test case a data placement was determined for the first test set of user sessions and
a data migration initiated. Then the second test set of user sessions was processed by
GEODDIS and a new data placement obtained. A further data migration was issued and the

process repeated for all test sets.

In addition to pruning empty/small fragments and fragments destined for the same site,
pruning was carried out at the end of each test set of user sessions to remove predicates that
were not recently accessed. In particular, predicates accessed in a previous test set and not

in the current test set were pruned.
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Table 5.4 List of test cases constructed for evaluating dynamic data migration for the

GEOMINE application
Test set_af user 2-fold test case 3-fold test case 6-fold test case
sessions
| Original: 1-9 Original: 1-6 Original: 1-3
2 Randomised: 1-9 Original: 7-9 Original: 4-6
Randomised: 1-3
3 - Randomised; 4-9 Original: 7-9
4 - - Randomised: 1-3
5 - - Randomised: 4-6
6 - - Randomised: 7-9

Figure 5.9 plots the number of primitive predicates maintained in the PF trees during data
migration for each of the three test cases identified in Table 5.4. The test sets of user

sessions are processed in the order shown in the table.
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Figure 5.9 Dynamic data migration for three test cases of Table 5.4

The result shows a stabilising effect of the number of primitive predicates and hence of PF
tree sizes. This is due to the fact that only the most recent "history"” of data usage is

maintained in the PF trees. Pruning of predicates is an important part of the process in
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controlling tree growth and ensuring that the fragmentation identified by the PF trees reflect

the most recent usage of data by the applications.

Because data migration occurs more frequently in the 6-fold test case the variation among
the user sessions is more apparent than for the 2-fold or 3-fold cases, as is evident from
Figure 5.9. In addition, the total number of primitive predicates identified is less since fewer
user sessions make up the "history" of data usage. The advantage of more frequent
migration is then that the data distribution more closely reflects the data usage in each user
session and the PF tree sizes are reduced. However the cost of migration would be greater
as explained in Section 4.2.4. Further, even though fewer primitive predicates are
generated, there is a greater fluctuation where predicates, previously inserted and then
pruned from the PF tree, are used again by future (not necessarily consecutive) user sessions
and have to be reinserted. As indicated in Section 4.2.4, the DBA must use his/her
knowledge or prediction of data usage to determine the frequency of migration. Further
research is necessary to obtain (or predict) and use higher-level knowledge of data usage
patterns among current (and future) user sessions to establish a migration frequency which

reflects the current application environment.

5.4 Conclusions

The results outlined in this chapter indicate that the PF model, described in Chapter 3, can

effectively be used in the geographic data distribution methodology detailed in Chapter 4.

The first part of the problem as outlined in Section 2.7 was to develop and implement a
model to store, access and maintain information to be used for distribution. The PF model
uses PF trees to provide an elegant means of accumulating geographic data usage
information and translating user predicates to primitive predicates. From the
implementation in GEODDIS using the GEOMINE application, it is apparent that pruning
techniques are effective in limiting the size and shape of a PF tree and thereby controlling
the number of primitive predicates obtained. Comparing the results with a randomised
version of the GEOMINE user sessions indicates that changing the order of the selection
operations and user predicates has no apparent effect on the PF tree growth. The overlap
index indicates how the fragmentation is proportional to the number of user predicates and

hence is predictable and manageable.

The final part of the problem was to develop and test a methodology incorporating the PF

tree to obtain a distribution for geographic data. The fragmentation filter process effectively
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uses the pruning techniques on the PF tree to only maintain fragments that are relevant. The
result is that tree growth is not exponential but closer to linear as demonstrated by both the
original and randomised GEOMINE sessions. The cross-validation tests revealed that the
site frequency allocation method performs well for applications with similar data usage
patterns to those on which the allocation and placement were based; otherwise it performs
more like a random allocation. In either case, the allocation was much more efficient than

having all the data allocated to one separate site.

Data allocation is dependent on how the data is partitioned and conversely partitioning is
dependent on how the data will be allocated to network sites. While some methodologies
involve partitioning followed by an allocation stage (Ceri and Pernici 1985) the PF model

facilitates the simultaneous creation of partitions and their allocation to sites.

Dynamic data migration of the GEOMINE data for a series of test cases indicates that the
number of fragments generated by the distribution stabilises over a period of time. In
general, the peak number of fragments generated increases when the interval of migration is
increased. Once again, pruning is used to remove unnecessary predicates and to assist in
restricting tree growth, The DBA must be involved in determining the frequency of
migration that is dependent on the pattern of data usage among user sessions and on the cost

of performing a migration.

The geographic data distribution methodology detailed in this research is a great
improvement over the mostly-manual methods outlined in the literature and certainly over
the static and ad hoc methods commonly used for data placement. It is also very necessary
for GIS to take advantage of modern distributed data environments so that data can be

efficiently shared and accessed by the many and varied applications.
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6 Summary and Conclusions

The background of the data distribution design problem is detailed in Chapter 2. The
literature deals primarily with the file allocation and the fragmentation problems with little
work being done to incorporate geographic information. The fragmentation strategies are
extended to include spatial data and a query-adaptive solution is sought which integrates the
fragmentation, allocation and data migration solutions. Most solutions identified in the

literature deal with these problems independently of each other.

Chapter Three details the Predicate Fragmentation model. Insertion and deletion operations
are defined to add and prune predicates that are stored in a PF tree. The PF model provides
an elegant and efficient means of storing and maintaining predicates and usage information
obtained from user applications. Primitive predicates, identified from the PF trees, identify

the fragments that are used further in the data distribution process.

The methodology for geographic data distribution uses the PF model and is explained in
Chapter Four. Database, application and site information is obtained in the distribution
requirements stage and identifies the user predicate and usage information important for the
following stages. For the fragmentation stage, the PF trees are constructed and maintained
with this information. A fragmentation filter process involving pruning methods is used to
identify the fragments that are valid. The site access allocation method is based on the
fragment usage information and determines how the fragments are assembled into partitions
and assigned to computer network sites. Dynamic data migration is important to maintain

the currency of the placement,

The methodology was implemented in GEODDIS and the results and evaluation are
presented in Chapter Five. Results using the GEOMINE application indicate that PF tree
growth is closer to linear than it is to exponential. It is particularly the pruning process that
is important to restrict tree growth. The fragmentation index and overlap index indicate that
the number of fragments is related proportionally to the number of user predicates identified

from the applications.

The cross-validation tests revealed that the site frequency allocation method performs well
when applications have similar data usage patterns. For very dissimilar applications, the
performance is similar to a random atlocation. The dynamic data migration strategy,

involving the pruning of predicates which relate to previous data placements, ensures that

131



the PF trees and the data placement is current. Results show that the fragmentation becomes
relatively stable with fluctuations related to the different data usage patterns between
migration intervals. The DBA must maintain a role in determining the frequency of data

migration.

The contribution of this research to the geographic data distribution problem can be
summarised with respect to the objectives identified in Section 1.5 (and further detailed in

Section 2.7}

1. Geographic data distribution is affected by the data usage of applications. Because
high-level factors are difficult to identify and quantify, low-level usage information

identified from application logs are obtained for the distribution process.

2. The primitive predicate identified from a PF tree is the basic unit of fragmentation.
The PF tree provides a suitable data structure for maintaining user predicates and

associated usage information so that these basic unit fragments can be identified.

3. The methodology developed integrates the fragmentation, allocation and migration
stages in the geographic data distribution process. The methodology uses usage
information to determine how the data is decomposed into fragments, assembled
into partitions, allocated to computer network sites, and redistributed to reflect a

dynamic application environment.

4, The implementation of the methodology in GEODDIS and its testing with the
GEOMINE application indicates that it is effective in determining a geographic
data distribution. It incorporates the PF model efficiently and performs well

particularly when successive applications share similar data access patterns.

6.1 Future Research Directions

This research presents only a small beginning of the further integration of GIS and
distributed data systems. As GIS continue to evolve, further work is required to effectively
develop them to incorporate distributed technologies. A number of issues to be considered

in further research can be identified:

¢ The logging facilities of GIS need to be expanded to include query cost and performance

information. The information provided by the logs should be harmonised with the
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information necessary in the distribution requirements stage. Better distribution cost

information can then also be obtained and utilised.

Data replication strategies need to be explored and developed for geographic data and
incorporated into the distribution design problem. These must be integrated along with

the fragmentation, allocation and migration strategies.

GIS need to more efficiently implement and optimise queries and take advantage of
fragmentation strategies for spatial and attribute data. In particular, vertical
fragmentation and spatial fragmentation (both with and without stored topology) need to

be more effectively integrated into GIS queries.

The interval of data migration needs to be further explored so that fully automated
methods can be employed. Further information on data usage for, not just individual
user sessions, but groups of sessions may need to be examined to determine appropriate

intervals of migration.

Higher level usage information must be examined so that better decisions regarding
distribution and migration of geographic data can be made. This may involve
information on types of applications, user profiles, application project stages, and
organisational policy. Some of these issues have been identified by Goodchild and

Rizzo (1986).
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Appendix A - GEODDIS Data structure

The data structure used for the GEODDIS implementation is indicated in the following
diagram. Note that the square brackets "[]" are used to indicate the dimensionality of the

attribute - one pair of brackets is a one-dimensional array and two pairs of brackets is a two-

dimensional table.

Entity
Opent - Operation-Entity Table size
Table size Entity list []
Operationid [] ——— Entity type [}

Dead? ]

Number of entity predicates []
List of entity predicate ids {]{]
Number of entities accessed []

Number of attributes []
List of attributes [] [1

Attribute access frequency [] []

RAN Tree Node List of entity ids [J[] "1 e
i Number of sites accessed umber of records []
Opent-site frequency [] [] / . . .
i Site frequency [][] Number of points in entity []
Site frequency [] Access frequency []

Stte allocation []
Last-used time stamp

RAN Tree pointer []
Linked list tree pointer []

Predicate id

Negated? \
Active?

Number of records

Number of accesses
Tree pointers —

/

Entpred - Entity Predicate
Table size

Entity id []
Atribute id[] —~———— 1
Predicate string []

Number of records accessed [}
Frequency of accesses ]

Operation

Table size

Operation list []

Number of entities used []
Entity retrieved? [1{}
Entity updated? [J[]
Number of sites accessed
Site frequency [1[]
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Appendix B - GEOMINE User Sessions

The user sessions used in this research for testing the geographic data distribution

methodology are listed and briefly described as follows:

GEOMINE User Session 1

This user session accesses the mapsheets of Perth, Geraldton, Port Hedland, Albany and

Busselton and displays the map sheet boundaries and the mineral occurrences within them.

GEOMINE User Session 2

Queries are concentrated on the Albany region where developing "bedrock opencut” gold
mines are accessed. The area is defined by a rectangular window specified by the user using
the mouse. A number of queries regarding secondary minerals such as copper are made over
the same region. Other data accessed in this region include coastline, map sheet boundaries,

national park boundaries, rivers, lakes, cities and towns, railways, highways and roads

GEOMINE User Session 3

Data accessed in this user session concentrated on one region. Developing and abandoned
mines are accessed in the Laverton region. Several selections and queries are made based on
the type of mine (ie. opencut, underground) and on the mineral type found there (gold being
the primary mineral and copper the secondary). In addition a number of other features are
selected and accessed including map sheet boundaries, national park boundaries, rivers, lakes,
cities and towns, railways, highways and roads. Some of these queries occur on a smaller
area within the Albany region. For some queries, the smaller area was selected using the
mouse and placing a rectangular window over the area of interest. For other queries, the area

was selected by specifying the maximum and minimum coordinates.

GEOMINE User Session 4

The focus of this user session was to display general topographic and mineral occurrence
information for a number of regions and to access more specific regions with detailed queries.
The regions accessed involved Kalgoorlie, Ningaloo and Sandstone, Glengarry, Edjudina,
Lennard River and Laverton. The topographic information selected and displayed included
mapsheet boundaries, railways, cities and towns, highways and roads. The latter four regions
were accessed in greater detail with queries involving gold and copper deposits and mine

types. Smaller areas were identified within these regions and zoomed into. Further queries
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involved identifying and selecting specific mineral occurrence points and displaying their

properties.

GEOMINE User Session 5

The GEOMINES user session accesses primarily attribute information for various themes
such as coastline, 1:250 000 map sheets, mineral occurrences, and some of the attribute tables
containing mine types, mine development status and mineral types. A number of attributes
for particular features of mines, map sheets, cities and towns, lakes and highways are then

retrieved and updated. Most of the accesses refer to data in the Laverton region.

GEOMINE User Session 6

Some of the mine attributes were first accessed followed by all developing mines and then a
particular mine called "Radio Hill". The Edmund region was then selected and mines referred
to as "Mosquito Creek" and "Elsie Creek" were then queried. In addition, the rivers in the

Edmund region were queried.

GEOMINE User Session 7

Once again data in the Laverton region is selected and accessed and a particular area within
the region is selected. Geology is the main theme queried with a number of geology types
selected. Other themes used mainly for display include map sheets, national parks, lakes,

roads, railways and towns.

GEOMINE User Session 8

The Ravensthorpe region, adjacent to Laverton, is selected and queried. As for the previous
user session, most queries involve geology with references to map sheets, national parks,

lakes, roads, railways and towns.

GEOMINE User Session 9

Geology, roads and highways, railways, national parks, rivers and developed mines are the
themes accessed by this user session. Queries on all this data were executed for a number of
regions defined by their map sheets. The names of the map sheets accessed are Laverton,
Edjudina, Kalgoorlie, Rason, Leonora, Cundeelee, Kurnalpi, Esperance, Albany, Charniey,

Mount Elizabeth, Bremer Bay and Ravensthorpe.
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Appendix C - GEODDIS Commands and Syntax

The commands developed in GEODDIS to implement the geographic data distribution
methodology are listed and briefly explained below. Each command operates on a particular
application database which is specified.

WATCH

use <application> watch <watch_file> <site#t>

watch_file Given Arcinfo watch file containing log of a user session
site# Site at which user session was processed

Reads in each of the commands from the given ArcInfo watch file and
identifies the entities that are accessed and the user predicates
used to specify selections. The predicates are inserted intoc the PF
tree for the corresponding entity. Any accesses to entities are
identified and usage information is updated in the PF trees.

LoGg

use <application> log <log_file> <site#>

log_file Given ArcInfo watch file containing log of a user session
site# Site at which user session was processed

Reads in each of the commands from the given ArcInfo log file and
identifies the entities that are accessed and the user predicates
used to specify selections. The predicates are inserted into the PF
tree for the corresponding entity. Any accesses to entities are
identified and usage information is updated in the PF trees.

STATISTICS

use <application> [ stat | pfstat | allocstat ]

stat General statistics showing entities and properties
pistat Displays predicates and contents of PF trees
allocstat Displays site allocations for each fragment

Generates statistics showing the fragmentation and allocation
identified from the PF trees.

ALLOC

use <application> alloc [ sitefreq | locality | site <n> | random({11213] ]

sitefreq Site frequency allocation methed
locality Locality allocation method
site <n> One-site allocation method where site number is specified

random(11213] Random allocation where three different randomisations can be chosen
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Determines an allocation of fragments from the PF trees based on the
given method.

CLEAR

use <application> clear { <site#> }
site# Site at which usage information is cleared.

Clears the usage information at the specified site. If no site 1is
specified, then the information is cleared at all sites.

BUILDPRED

use <application> buildpred

Builds a list of ArcInfo queries using the primitive predicates of
the PF trees to define the fragments. Each fragment is to be queried
to determine its size.

UPDATE

use <application> update

Takes as input an ArcInfo watch file which has logged the ArcInfo
queries executed from the BUILDPRED operation. The PF trees are
updated with fragment sizes.

MIGRATE

use <application> migrate [ locality | sitefreq | site | random ]
locality | sitefreq | site | random The allocation method used

A new placement for data migration is determined. The old placement
is compared with the new PF model and an ArcInfo file of queries is
generated identifying the data that must be moved to a new site.
This file can then be executed in ArcInfo to effect the migration.
This command also produces a "usage" file which is used to determine
the costs (see the TEST command). Finally, the file containing the
current placement is updated to reflect the new placement.

PRUNE

use <application> prune [ fragsize <#records> | lowaccess <#accesses> | outdate <#minutes>
| samesite [ locality | sitefreq | site | random ]

fragsize <#records> All fragments with a size less than the given minimum are to be pruned

lowaccess <#accesses>  Specifies that fragments with fewer accesses than that given are to be
pruned

outdate <#minutes> Indicates that predicates that were last accessed beyond the given time {in

minutes} are to be pruned
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samesite [ locality | sitefreq | site | random | Indicates that fragments allocated to the same site
using the given allocation method are to be pruned

Prunes all the PF trees based on the pruning method specified.

TEST

use <application> test

Displays the costs associated with migrating data. The files
produced by the migration process are used as input to determining

the costs.
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Appendix D - UNIX Shell Script Example

The methodology was implemented using a UNIX shell script which calls C language
programs and the ArcInfo GIS to carry out the functions of geographic data distribution. The
script shown below captures the information from all available GEOMINE user sessions
(consecutively numbered to distinguish them), produces a data distribution, and then performs
a data migration operation to redistribute the data according to the newly derived data
placement. See Appendix C for further detail on each of the GEODDIS commands.

#/bin/csh

GEODDIS - Geographic Data Distribution System
Designed and implemented by B. Veenendaal 1998

Script to obtain usage information and generate a geographic
data distribution and migration operation.

Parameters:
app The application whose logs are being processed
outf The output file for logging the distribution process
updatef The Arcinfo commands for querying the database to obtain
fragment sizes
$app.migrating  The Arcinfo commands to migrate the data for the given application

o W ok ¥ W o W 3k 3 e 3 W W W

set app="geomine’

set outf="goTP.out’

set updatef='go.update’
date > Soutf

use $app clear >> $outf

Obtain the application watch files and build the PF trees. Prune empty fragments after each
user session is processed.

= = = I

@i=1

while {-e $app{T)$i.wat)
echo {$app{T)$i}: >> $outf
echo Processing {$app{T}$i} ...
use $app watch $app{T}$i.wat $i >> Soutt
use $app buildpred >> $outf
$ARCHOME/programs/arc arcplot < $updatef >> $outf
use $app update >> $outf
use $app prune fragsize 0 >> $outf
@i=%i+1

end
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Determine the allocation of fragments to partitions and sites using several
different methods. Then prune fragments destined for the same site based on
the site frequency allocation method {method 1).

3 I W Ik

use $app alloc sitefreq >> $outt

use $app alloc locality >> $outf

use $app alloc random1 >> $outf
use $app alloc site 1 >> $outf

use $app prune samesite 1 >> $outf
use $app allocstat >> $outf

#

# Now determine the data placement for a migration, effect
# the migration in Arcinfo and produce the results showing
# the migration costs.

#

echo Migrating and testing...

use $app migrate sitefreq >> Soutf
$ARCHOME/programs/arc arcplot < $app.migrating >> $outf

use $app test >> $outf
date >> $outf
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Appendix E - Structure Chart of GEODDIS Modules

The GEODDIS program modules are implemented using C-language. The following
structure chart lists the modules and their relationship to other modules. The hash ("#")
symbol indicates modules that are already expanded elsewhere in the chart. Note that
recursive calls to modules are not listed.

Further information on the modules and the associated source code can be obtained from the
GEQODDIS web page at www.cage.curtin.edu.aw/~bertveen/geoddis.html.
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GEODDIS Module Structure Chart

GEODDIS
—rad_PFioe find_op write_PFirze
¥init_PFree
b build_linikaa
init_piree Ldaleba_PFprad W_I— do_weich
update_opent - copy_info — build_predquery | #updak_opert |
chack_sninams — lefimost #print_enteat
#end_op [ nighimost l—print_sntfeat
chack_op b— accumulaie_accessas [—comoct_site
[— #righimost —build_rrigrae
— mirsen_PF
— find_opent
—insar_turpred [— #pfint_enteal
j— reinsert_sublree —prad_conlict
— nd_pradchangss
{#check_anname — save_placemant
— count_trae — chack_prevpred
—insan_resal — #efmost
p—"#rightmost — #comact_sie
— check_subtree — wiita_placement
chack_pravpred
}— searchback_pred
saamchback_prad — #rightmost
checkequal_prad — delole_subla
add_newselect
| inser_nsel
—inses_asel

b #ichock_prevprod
— ind_antpred

— find_atib
- incr_PF_access

w— enfity_active

— in¢r_PF_use
do_log Il_do_ailoc_tandom I
#update_opent — allo¢_ramiom
do_alioc_sitefraq Lbuild _pred
aloc_sitafreq b— print_pred
fotd_freq #prind_ontlaat
— #build_pmdquery
do_allec_site disp_alloc_stats
prune_smallfrag prune_lowaccess

accumuiale_racords
prune_smallfrag_subiree

#dsletls_PFprad
deleta_PFprec

|-—- prung_fraq

#delete_PFpred

update_predsize

shaw_opent

i cac_cost I
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do_altoe_locality —| clear_site |
b clgar PFiee_site
disp._PFlist disp_PFstats
botal freq —count_list
— count |evels
show_op show_ent
prune_outdate prune_samesits
L prune_dats prune_sike

#delete _PFpred

¥#delets PFpred
¥comect_site
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