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Abstract

Certain linear combinations of the GPS-observables play a
prominant role in the problem of ambiguity fixing. In
particular "wide-laning" techniques have proven to be very
successful. At present, however, the various integer linear
combinations that are considered, are restricted to the
single-channel dual-frequency case. In this contribution this
class is generalized to the multi-channel case. First the two
dimensional case is considered. It is shown how to infer
which of the different integer ambiguities can be paired. It
turns out, for instance, that one is not allowed to pair the
narrow-lane ambiguity to the wide-lane ambiguity. The two
dimensional case is then generalized to higher dimensions.
And it is shown that admissible ambiguity transformations
need to be integer and volume-preserving.

1. Introduction

The GPS observables are (P or C/4) code-derived
pseudorange measurements and carrier phase measurements,
which can be available on both of the two frequencies L,
(£,=1575.42 Mhz) and L, (f,=1227.6 Mhz). In particular the
very low noise behaviour of the carrier phase measurements
makes high precision relative positioning possible.
However, since the GPS-receivers only provide
measurements of fractional phase plus the total number of
cycle counts since the start of tracking, the carrier phase
measurements are ambiguous by an unknown integer
number of cycles, the so-called phase ambiguities. A pre-
requisite for obtaining high precision relative positioning
results, based on carrier phase data, is therefore that the
phase ambiguities become sufficiently separable from the
baseline coordinates. Different approaches are in use and
have been proposed to ensure a sufficient separability
between these two groups of parameters. They are either
based on the use of carrier phase data only, or make use of
the combination of carrier phase data and code-derived

pseudorange data. One approach for static applications is
to simply make use of carrier phase data that corresponds
to sufficiently differing receiver-satellite geometries. But
since GPS satellites are in very high altitude orbits, their
relative position with respect to the receiver changes
slowly, which implies that long timespans between the
first and the last collected carrier phase data are necessary
so as to ensure separability. A significant reduction in the
timespan is possible, if one explicitly aims at resolving for
the integer-values of the ambiguities. The inclusion of fast
ambiguity resolution algorithms has made rapid static
surveying with GPS possible, in particular for the
relatively short baselines and when dual frequency carrier
phase measurements are used, see e.g. [1] and [2].

Approaches that have been in use for kinematic surveying
and that ensure separability between the baseline
coordinates and ambiguities, are based on the use of
carrier phase data of which the integer ambiguities have
been estimated at an earlier, so-called initialization stage.
Ways to initialize are either to start the survey from a
known baseline of sufficient precision, or, if this is not
possible, to use a static GPS-survey through which the
baseline is determined, or to use the antenna-swap
technique, see e.g. [3]. Reinitialization is needed however
if continuous signal tracking is not maintained on a
sufficient number of satellites.

The need for either long observational timespans or static
initialization techniques is absent, if in addition to the
carrier phase data, sufficiently precise ranging information
can be included in the solution. Much faster integer
ambiguity resolution is namely possible, both for static as
well as kinematic applications, when L, and L, carrier
phase data is used in combination with L, and L, P-code
pseudoranges, see e.g. [4-8]. But, it is still questionable
whether the P-code observables will remain available in
the future for civilian users.
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In all of the above mentioned approaches a prominant role
is played by certain linear combinations of the original
carrier phase and/or pseudorange observables. Depending
on the application, derived observables can be formed with
certain desirable properties, such as for instance geometry-
free and ionosphere-free linear combinations. And in
particular in relation to ambiguity fixing, well-known
examples are the narrow-lane, the wide-lane and extra
wide-lane combinations, see e.g. [9-12]. But also other
wide-lane combinations have been studied [13].

For the purpose of ambiguity fixing one usually only
considers those integer linear combinations of value that
produce a phase observable which has a relatively long
wavelength, a relatively low noise behaviour and a
reasonable small ionospheric delay. And these properties
are indeed very beneficial to the integer ambiguity fixing
process. But what about the relative receiver-satellite
geometry? For instance, the reason for aiming at a low
noise behaviour for the derived phase observable is not to
have a small standard deviation for this observable per se,
but because the noise in the estimated ambiguities gets
reduced when the noise in the observables reduces. The
point is, that it is the noise in the estimated ambiguities, or
better still, it is the complete variance-covariance matrix of
the estimated ambiguities which becomes decisive for the
ambiguity fixing process. And it is also at this level where
the relative receiver-satellite geometry plays its prominant
role. This observation suggests that it is of interest to
generalize the current single channel integer linear
combinations to multi-channel integer linear combinations.
The topic of the present contribution is therefore the
identification of such integer linear combinations. It will be
shown, both for the single channel case as well as for the
multi-channel ~ case, which conditions an invertible
ambiguity transformation needs to fulfill. And for both
cases examples of admissible ambiguity transformations
will be given. '

2, Linear combinations of the phase observables

In the following we will restrict our attention to the carrier
phase measurements only. Since it is not uncommon in the

processing of phase data to difference the carrier phase

measurements between satellites and between receivers to
eliminate the satellite and receiver clock offsets, we will
work with the double-difference phase observables. When
expressed in units of range (rather than cycles) the double-

difference carrier phase observables on L, and L,, ®, and
®,, can be represented as

@, =p-(A, /) [+A N, +¢,

M @,=p~(A, /) I+L N, +€,

where:

p : double-difference form of the range
from receliver to satellite,

A wavelength of the L, -carrier
(A, =19cm, A,=24cm),

c : speed of light in vacuum,

(WJeyl : double-difference form of the
ionospheric phase advance on L,

N, : integer double-difference L, phase
ambiguity,

£ : L, measurement noise plus remaining

unmodelied errors.

Depending on the application, various linear combinations
of the phase observables @, and @, can be taken to obtain
derived observables with certain desirable properties. By
taking the linear combination a®,/A,+f®,/X,, we obtain
from (1)

ol +BA, oA +BA
p —

oad /A +PD. /A, =
1 IBZ 2 xlxz cz}

2 I+(aN, +BN ) +€ .

@

The ionospheric term, I, can be eliminated by choosing
B=-(A,/A)c.. This choice leads to the so-called ionosphere-
free phase observable (L;-phase)

3) d. =p+

3

A A,
(N,-—N_)+¢,.
2 2 1 x 2 3
A=Ay 2

Instead of eliminating the ionospheric delay, one can also
choose to eliminate the geometric term p in (2). The
geometric term gets eliminated by choosing B=-(A,/A )c.
This choice leads then to the so-called geometry-free
phase observable (L,-phase) ’

AT-AS A
) ®,=- lcz 2 IR A (N, —_)\_Z.Nz)+s4.
1

It will be clear that other combinations can be taken as
well, also by including the code-observables into the linear



combinations. But, since our prime interest is to study
linear combinations of the phase ambiguities, we will
restrict our attention to the phase observables only.

It follows from (3) and (4) that the ambiguities of @, and
@, N-(A /AN, and N-(A,/X)N,, are generally non-integer
since the coefficients A,/A, and A,/A, are non-integer. There
does exist, however, a whole suit of linear combinations of
®, and D,, for which the integer-nature of the ambiguities
is retained [13]. By defining

al, BA,

&) D ;= D, + D,
*ak,+BA, ah, +BA,

>

we obtain from (1) the derived phase observation equation

M, ak, +BA, AA,
I+ (0N, +BN,) + "
c? al+BA,  ak,+BA @

©) @ =p-

And the ambiguity of ®; is clearly integer when a and f
are chosen to be integer. Two well-known examples are the
so-called narrow-lane and wide-lane phase observables, see
e.g. [9-12]. The narrow-lane phase observable is obtained
by setting a=f=1. Its wavelength is approximately 11 cm,
its ionospheric delay equals -(A,A,/c?)], and its variance is
approximately half of that of ®, (assuming that @, and ®,
are uncorrelated and have equal variance). The wide-lane
phase observable, also known as L,-phase, is obtained by
setting a=-f=1. Its wavelength is approximately 86 cm, its
ionospheric delay equals, apart from a change of sign,that
of the narrow-lane phase, and its variance is about 33 times
that of ®,.

Apart from the narrow-lane and wide-lane phases, there are
of course infinitely many other linear combinations that one
might consider. For instance, a longer wavelength then that
of the wide-lane is obtained by setting a=4 and B=-5. The
corresponding phase observable has a wavelength of
approximately 178 cm, but an ionospheric delay that is 18
times larger then that of the wide-lane, and a variance that
is 2744 times larger then that of ®,. Alternatively, if one
wants a smaller ionospheric delay then that of the wide-
lane, one might choose a=5 and B=-4, see e.g. [9]. The
corresponding phase observable has then an ionospheric

delay that is 1/18 times that of the wide-lane, but a

wavelength of about 10 cm, and a variance that is about 10
times larger then that of ®,.
The above given examples show that the wavelength, the
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noise behaviour and the ionospheric delay of the phase
observable ®,; are to a great extent dependent on the
integer choice made for o and B. It is generally believed
that, for the purpose of ambiguity fixing, only those
integei‘ linear combinations are of value that produce a
phase observable which has a relatively long wavelength,
a relatively low noise behaviour and a reasonable small
ionospheric delay. And indeed, these properties are
beneficial to the integer ambiguity fixing process. There
are, however, two important additional aspects which have
so far not been taken into consideration. These are the
invertibility of the linear combinations and the single-
channel dual-frequency restriction.

In the study of integer linear combinations one always
seems to work from two phase observables, namely @,
and ®,, towards one single derived phase observable. But
why not start from two and end with two? It will be clear
that the original two phase observables contain more
information then the single phase observable derived from
them, despite the fact that the derived phase observable
may posses certain desirable properties. This observation
suggests to study integer linear combinations that preserve
the information content of the original two phase
observables @, and ®,. This idea will be taken up in the
next section and will automatically imply that we have to
consider integer linear combinations in pairs.

The second aspect which has so far not been taken into
consideration when studying the integer linear
combinations, has to do with the receiver-satellite
geometry. It is true that a low noise behaviour of the
phase observables benefits the ambiguity fixing process.
One should recognize however that this is only due to the
effect the phase observation noise has on the noise of the
least-squares estimated ambiguities. The noise in the
estimated ambiguities gets reduced when the noise in the
phase observables reduces. Hence, the point is, that not
the noise of phase, but the noise of the ambiguities, or
better still, the complete variance-covariance matrix of the
estimated ambiguities becomes the decisive quantity for
the ambiguity fixing process. And it is also at this level
where the receiver-satellite geometry plays its prominent
role. This being recognized, the logical next step is to
study integer linear combinations that may influence the
effect the receiver-satellite geometry has on the noise
behaviour of the estimated ambiguities. This implies,
however, the need to study integer linear combinations at
the level of the complete system of observation equations.
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This idea will be taken up in section four and as we will
see, generalizes the results of section three.

3. Invertible integer linear combinations

In this section we will study integer linear combinations of
the ambiguities in pairs. That is, instead of considering the
single integer linear combination oN,+BN,, we will start
from the following two dimensional linear transformation

%) Neg| fo B M
N, y & N,

These transformed ambiguities are the ambiguities of the
derived phase observables

|
(Daﬂ = a}‘z (Dl + B)\l (DZ
@) { ak,+BA, ad, +BA,
YA, oA, )
D, = O + o
L ® oA, S, YA, +8A,

With these derived phase observables, the phase
observation equations take, instead of (1), the form

9 Dog =P~ (/e mp I+A  Nog+Eyg
Q,=p- (7Lz/c)zm76 T+h g N+
where:
A, o, +BA, ) . . .
Mg == T : the ionospheric amplification factor
1 2 1 of q)ag
A, ol +BA, . . . .
m,=— —— " the ionospheric amplification factor
™A, oA, +BA
2 2 1 of (Dyﬁ
}\'I}“Z

= : the wavelength of @
ap a}\.2+BKl & ab

A,

A= : the wavelength of @ ..
» YA, +OA, & 1

Note that the structure of the above transformed phase
observation equations resembles that of the original
observation equations (1). However, if the objective is to
use these transformed phase observation equations for
ambiguity fixing, there are three additional conditions that
the ambiguity transformation (7) needs to fulfill. Firstly, in

order for the transformed ambiguities N,, and N to be
integers, the four scalars o, B, y and & of (7) need to be
integers as well, since the original ambiguities N, and ¥,
are already integers. Secondly, the transformation matrix
of (7) will have to be invertible in order to guarantee a
one-to-one correspondence between the original and
transformed ambiguities. And finally, but most
importantly, the entries of the inverse of the
transformation matrix of (7) need to be integers as well.
The reason for including this last condition can be made
clear as follows. If the scalars o, (3, y and & are integers,
then so are the transformed ambiguities NaB and N,
when the original ambiguities N, and N, are integers.
However, the converse of this statement is not necessarily
true. That is, when the ambiguities N, and N are
integers, then the ambiguities N, and N, need not be
integers, even when the scalars a, B, v and § are integers.
But this situation is not acceptable, since it could imply
that an integer fixing of the ambiguities of (9) corresponds
to a fixing of the original ambiguities N, and N, on non-
integer values. We therefore need to ensure that integer
values of N, and N correspond to integer values of N,
and N,. And this is only possible by enforcing the
condition that the entries of the inverse of the
transformation matrix of (7) are integers as well. The
important conclusion that is reached, reads therefore that
both the transformation matrix of (7) and its inverse must
have entries that are integer.

With the above stated conditions, it is now possible to
infer which of the different integer ambiguities can be
taken as pairs. This is illustrated in the following three
examples.

example 1

The transformation from the L,-and L,-ambiguities, N, and
N,, to the narrow-lane and wide-lane ambiguities reads

11
11 -1

It will be clear that the integer values in the above matrix
ensure that the ambiguities N,, and N, are integer,
whenever the ambiguities N, and N, are integer. Note,
however, that with N, and N, being integer, the range of
the above transformation is not sufficient to cover all

N

1

N.

2

Ny
N

1,-1

integer-pairs N,, and ¥, . For instance, the above two



linearly independent equations are inconsistent when N,,=1
and N,_,=0. That is, when N,=1 and N, =0, no integer
values for N, and N, can be found as a solution to the
above equations. And this also happens, for instance, when
N, =0 and N, ;=1 or when N,;=2 and N, ,=1. The reason for
this situation becomes clear when we consider the inverse
of the above transformation. The inverse is given as

N, b %
N % ow

And this result clearly shows that the non-integer entries of

Nll
Nl,-l

the inverse are causing the original two equations to be
inconsistent for certain integer-values of N, and N, ; The
interesting conclusion is therefore reached, that one cannot
pair the narrow-lane ambiguity to the wide-lane ambiguity.
Because, if one would use the narrow-lane phase together
with the wide-lane phase, instead of ®, and ®,, for
ambiguity fixing, the outcome could be that by integer-
fixing N,, and N, one in fact is fixing N, and N, to non-
integer values.

example 2

The transformation from N, and N, to N,, and N, ¢ reads

N, _ 1 1 N,
N4'_5 4 -5 N,

5
Nl 79 Nu
N. 4 1 N
2 3 3 4,-§

This shows that it is also not possible to pair the narrow-
lane ambiguity to N, ;.

example 3

The previous example showed that N,  could not be paired
to the narrow-lane ambiguity. But, this example will show
that N, s can be paired to the wide-lane ambiguity. The
transformation from N, and N, to N, and N, ; reads
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Noa| |1 -1] (M
Nl 14 -5) |V,

The inverse of this transformation is given as

Ny
N,

4,-5

N,
N,

2

5 -1
4 -1

Hence, whenever N, , and N,  are integer, so are N, and
N,, and vice versa.

In the above examples the inverse of the ambiguity
transformation was explicitly given in order to check
whether the entries of the inverse are integer or not. It
would be more convenient, however, if we could do
without the inverse and base our verification on the
elements of the original transformation matrix only. This
would then in particular be helpful for the higher
dimensional cases.

Consider the inverse of the ambiguity transformation

matrix of (7),
apl 1 |8 -B
75| o8By (v af

This shows that the entries of the inverse are integer,
whenever the entries of the ambiguity transformation
matrix are integer and in addition the condition
ad-Py==1 holds. The condition ad-By=+1 is therefore
a sufficient condition. But is it also a necessary condition?
The answer to this question is in the affirmative, as the
following shows. If the ambiguity transformation matrix
and its inverse have integer entries, then both their
determinants, a8-yB and ad-yB, are integer as well and
(08-yB)(@d-yB)=1. From this follows then that
a8 -By=+1 must hold. Hence with this result, we are now
in the position to rephrase our earlier conclusion. That is,
the condition that the entries of both the ambiguity
transformation matrix and its inverse must be integers, can
now be replaced by the condition that the entries of the
transformation matrix need to be integers and that its
determinant needs to equal 1. This shows that instead of
considering the inverse explicitly, it suffices to check the

<2
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value of the determinant of the ambiguity transformation
matrix.

4. The class of ambiguity transformations

In the previous section we have looked at the transformed
phase observation equations (9), having as ambiguities the
integers Nub and N 4+ 1t is, however, not really necessary to
work explicitly with the derived phase observables @_; and
®,. One might work as well with the original phase
observation equations (1) and then use the ambiguity
transformation (7) simply to reparametrize the ambiguities
from N, N, to N, Ns. This would then give the
observation equations

~(AJef I+ A BN - +A BN, +€,

10
(10) o

/c)zl —EA YN r AN, +sz.'

2

The signs of the coefficients of the ambiguities depend on
the sign of ad-Py=*I1.

Up till now we have only considered the two-dimensional
ambiguity transformation (7). This transformation operates
on a single channel basis and transforms each time a pair
of L,-and L,-ambiguities into two new ambiguities. But,
when we consider (10) for each channel and look at the
problem from the point of view of an ambiguity
reparametrization, there seems to be no reason why each of
the two observables @, and @, should depend on only two
transformed ambiguities and not on more then two. That is,
there is no reason a priori to restrict the transformation to
single channels only and there is also no need to assume
that we need the phase observables per se on both of the
two frequencies L, and L,. The objective of this section is
therefore to consider the multi-channel case and to show
how the results of the previous section can be generalized
to higher dimensions.

Let a be an m-vector, which has as its entries integer
double-difference ambiguities. Then aeZ”, with Z” being
the m-space of integers. The entries of ¢ may be
ambiguities of the L -type only, of the L,-type only or of
both types. Let Z be an m-by-m matrix of full rank. Then,
if we transform a with Z, we would like the result b=Za to
be integer whenever a is integer. The following result
shows when this is the case:

VYaelZ™" b=Z2Za e Z™ iff Z has integer entries.

The "if" part of the proof is trivial, because if the entries
of Z are integer and aeZ ™, then clearly b=ZacZ™. The
"only if" part of the proof will be given by contradiction.
Let the (ij)-th element of matrix Z be non-integer. One
can then always find a vector aeZ™, a=(0,.,1,0,..)" for
instance, such that b=ZagZ™. This shows that all the
entries of matrix Z need to be integers.

Using the above result we are now in the position to
characterize the whole class of admissible ambiguity
transformations. Since we do not only want b=Za to be
integer whenever a is integer, but also that a=Z7'6 is
integer whenever & is integer, it follows that both matrix
Z and its inverse Z' must have entries which are integers.
Note that this is in agreement with the results of the
previous section. And as it was the case in the previous
section for two dimensions, one can also replace the
condition that the entries of Z' must be integers, by the
condition that the determinant of Z must equal £1. This is
shown as follows. First we will proof that, if Z and Z*
have integer entries, then det.Z=+1. Since the determinant
of a matrix is a sum of products of the matrix entries, it
follows that, if Z and Z' have integer entries, then also
det.Z and det.Z" are integers. From this follows then with
(det.Z) (det.Z"' )=1, that det.Z=+1. Now, we will proof the
converse, namely that, if Z has integer entries and its
determinant equals *1, then also the inverse Z* has integer
entries. For the inverse of Z we may write, see e.g. [14],

Z' = adjoint(Z)/det.Z .

Since the adjoint of matrix Z has elements which are,
apart from a possible change of sign, determinants of
submatrices of Z, it follows from the above equation that
Z' has integer entries whenever det.Z=t1 and Z itself has
integer entries. The conclusion we reach reads therefore
that matrix Z is an admissible ambiguity transformation if
and only if matrix Z has integer entries and det.Z=+1. This
last property of Z implies, since the volume of the
ambiguity confidence-ellipsoid is uniquely determined by
the determinant of the ambiguity variance-covariance
matrix, that an ambiguity reparametrization with Z leaves
the volume of the confidence-ellipsoid invariant. Hence,
Z is a volume-preserving transformation. And in fact, it is
this property which enables one to make the confidence-
ellipsoid more sphere-like, when aiming at smaller
variances for the transformed ambiguities.



Now that the class of admissible ambiguity transformations
has been given, it is of interest to consider groups of
matrices that belong to this class. In the following examples
some members from the class of ambiguity transformations
are given.

example 4

The identity-matrix is of course a trivial example. But,
since a permutation of rows and/or columns leaves the
absolute value of the determinant unchanged, it follows that
also all permutation matrices belong to the class of
ambiguity transformations. This result is of course not too
surprising, since in fact it is implicitly already often used in
the existing ambiguity fixing algorithms. Because if one re-
orders the ambiguities so as to bring the most precise
ambiguity in the first slot of the ambiguity vector, one
implicitly applies a permutation transformation.

example 5

It will also not come as a surprise that all ambiguity
transformations that change the choice of reference satellite
in the double-difference ambiguities, are admissible. As a
simple example we assume that five satellites are tracked.
The single-difference ambiguity related to satellite i is
denoted as g, and the corresponding double-difference
ambiguity having satellite j as reference is denoted as
a,=a,-a,. The regular transformation from a,; to a, reads
then

(a“‘ -1 000 ’au’
a,| |-1 10 0f|a,
a,| |-1 01 0| |a,
) [0 00 1] a,]

The matrix of this transformation has integer elements and
it is easily verified that its determinant equals -1.

example 6

As a generalization of the rank-one update matrix of the
previous example, consider the m-by-m matrix

where all z, j=1,..,m, are integer. Also this matrix is an
admissible ambiguity transformation. This can be seen as
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z 1

\ J

follows. The above matrix Z can be reduced to an identity
matrix, by elementary operations of subtracting an integer
multiple of one column from another. And all these
operations leave the determinant unchanged. Hence
det.Z=+1.

example 7

Also the m-by-m matrix

( A’
1
z,, 1
z.. =z 1

31 32
Z’_:

zml zmz zm.i ]

. P

where all the z-elements are integers, can be taken as an
ambiguity transformation. The determinant of a triangular
matrix equals namely the product of the entries on the
main diagonal. For the single channel case this
immediately shows that one is allowed to pair the L, (or
L,) ambiguity with either the wide-lane ambiguity or with
the narrow-lane ambiguity.

example 8

Once certain ambiguity transformations are identified,
other ambiguity transformations can be derived from them
by performing certain matrix operations, like: inversion,
transposition and mulitiplication. For instance, when Z, and
Z, are two given ambiguity transformations, then so are
Z,',Z and Z,Z,.
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5. Concluding remarks

In this contribution the study of integer ambiguity
combinations has been extended from the single-channel
dual-frequency case to the multi-channel case. As a result
the class of admissible ambiguity transformations has been
identified. They need to be integer and volume-preserving.
As with the single-channel
combinations, the purpose of having multi-channel integer
combinations available is to be in a better position with
regard to the problem of resolving the integer ambiguities.
That is, members from the identified class of ambiguity
transformations can now be used to aid the ambiguity
fixing process, and in particular to reduce the effect that a
slowly changing receiver-satellite geometry has on the
condition of the ambiguity variance-covariance matrix. This
implies that the ambiguity transformations are used to
decorrelate the ambiguities. To give a brief outline of the
underlying ideas and also to understand what the ambiguity
transformation should achieve, it helps if we ask ourselves
the question what the structure of the ambiguity variance-
covariance matrix must be in order to be able to apply the
simplest of all integer estimation methods. The simplest
integer estimation method is clearly "rounding to the
nearest integer". This method should only be used however,
when the ambiguity variance-covariance matrix is diagonal.
Since this situation is the best one can hope for in any
ambiguity fixing problem, the idea is to search for

dual-frequency integer

ambiguity transformations that decorrelate the ambiguities
and therefore transform the ambiguity variance-covariance
matrix to a form that is as close as possible to a diagonal
matrix. As a synthetic two-dimensional example, assume
that the variance-covariance matrix of the ambiguities is

given as
0 3 261
¢ 1261 23555|°

The condition number of this variance-covariance matrix is
approximately 2.10°. It shows that the confidence ellipse of
the ambiguities is extremely elongated. Elongations of this
size can be expected for very short observational timespans
and are due to the slowly changing receiver-satellite
geometry. Also note that the two ambiguities are highly
correlated, since their correlation coefficient equals
0,~0.98. But a decorrelation and a diagonalization of the
variance-covariance matrix is possible if we use an
ambiguity transformation of the type of example 7 and

transform the original two ambiguities into the new

ambiguities b,=aq,

and b,=a,-87a,. And for this

transformed problem, the computation of the integer least-

squares estimates becomes rather straightforward.
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