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Abstract

Tensors are simply generalisation of matrices. Many properties of matrices have

been generalised to tensors. Over the past few years, the spectral theory of tensors

has been developed. The Perron-Frobenius Theorem and the minimax theorem

are two examples of the property of nonnegative matrices which have been ex-

tended to nonnegative tensors. This leads to extension of the Collatz method for

finding the largest eigenvalue of nonnegative matrices to nonnegative tensors. In

this thesis, we study the methods for finding the largest eigenvalue of square ten-

sors and rectangular tensors. We also study the convergence of the methods and

show that the method for rectangular tensors is Q-linear convergence under weak

irreducibility condition. We further generalise the method to nonnegative polyno-

mial eigenvalue problems. The method is convergent for irreducible nonnegative

polynomials. We explore the case for both homogeneous and nonhomogeneous

polynomials. We also present a convergent method for solving the optimisation

problem where the objective function is a nonnegative general polynomial with

spherical constraint.
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Chapter 1

Introduction

1.1 Background

The theory of nonnegative matrices emerged in the early 20th century when

Frobenius [17, 18, 19] extended some properties of positive square matrices which

were introduced by Perron [48] to irreducible nonnegative square matrices. The

Perron-Frobenius Theorem for matrices is the fundamental property of nonnega-

tive matrices. Its applications are not only in mathematics but also in Leontief’s

Input-Output Economic Model [40], demography (Leslie population age distribu-

tion model)[40] and in the ranking of football teams [26]. Since then, the study

of nonnegative matrices has become one of the most important fields in linear

algebra.

Almost a century after the astonishing discovery of the Perron-Frobenius theorem,

Chang et al. [8] generalised this theorem to nonnegative tensors. The term

”tensor” is basically applied to data in three or more dimensions. It is also

referred to as higher-order tensor, or as a multi-dimensional, multi-way or n-way

array. A matrix is a tensor of order two. An article by Qi, et al. [52] presented

a survey on tensors and their applications.

One of the vital components in the study of tensors is spectral theory. This

research area has seen rapid development in the past few years. In 2012, Qi

[50] presented another survey, this time on the spectral theory of tensors, and

categorised the spectral theory of tensors to 18 research topics. The spectral
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theory of tensors has applications in a wide range of fields such as in measuring

higher order connectivity in linked objects [36], medical resonance imaging [5, 54],

higher-order Markov chains [43], positive definiteness of even-order multivariate

forms in automatic control [44], and best rank one approximation in data analysis

[34, 53].

1.2 Literature Review

1.2.1 Nonnegative Matrices

Since most spectral theories of nonnegative tensors are generalised from nonneg-

ative matrices, it is reasonable that we look at nonnegative matrices first.

Matrix A = (aij) is said to be nonnegative if aij ≥ 0. A vector x is called the

eigenvector of matrix A and a scalar λ is called the eigenvalue of matrix A if the

following equation is satisfied

Ax = λx ,

where A is a square matrix. The spectral radius of A is an eigenvalue of matrix

A.

Definition 1. [60] Let A = (ai,j) be an n× n complex matrix with eigenvalues

λi, 1 ≤ i ≤ n. Then

ρ(A) ≡ max
1≤i≤n

|λi| (1.1)

is the spectral radius of the matrix A.

In some eigenvalue problems, we want to find all the eigenvalues of matrices.

For this kind of problem, we can use QR method [14, 15, 33, 21]. However,

in some problems we only want to find the largest eigenvalue. For example in

Input-Output Analysis (in Economic) [65], in order to prove the unique solution

of a system, we need to find the largest eigenvalue of a nonnegative matrix. The

methods that can be used for this purpose are the Collatz method [66, 10], power

method [61, 21] and Arnoldi method [2, 21].

We focus on the Collatz method. In 1942, Collatz [10] wrote that if A is a real

symmetric n× n square matrix and u = (ui, ..., un) is a positive vector, then the
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matrix A has at least one eigenvalue between the interval

min
xi>0

(Ax )i
xi

≤ λ ≤ max
xi>0

(Ax )i
xi

.

Later, in 1950, Wielandt [63] improved the result of Collatz and presented the

following well known minimax theorem.

Theorem 1. [10] Let A = (ai,j) be an irreducible1 nonnegative n × n matrix.

Then,

min
x∈R>0

max
xi>0

(Ax )i
xi

= λ0 = max
x∈R>0

min
xi>0

(Ax )i
xi

, (1.2)

where λ0 is the unique positive eigenvalue corresponding to the positive eigenvec-

tor.

Based on Theorem 1, the following Collatz method for finding the largest eigen-

value of irreducible nonnegative square matrices is produced [66]:

Theorem 2. [66] Let A ≥ 0 be an irreducible n× n matrix, and let x (1) be an

arbitrary column vector with n positive components. Defining

x (k) = Ax (k−1) = ... = A(k)x (1), k ≥ 2, (1.3)

let

λ̄k = max
1≤i≤n

(
x
(k+1)
i

x
(k)
i

)
and λk = min

1≤i≤n

(
x
(k+1)
i

x
(k)
i

)
. (1.4)

Then

λ1 ≤ λ2 ≤ ... ≤ ρ(A) ≤ ... ≤ λ̄2 ≤ λ̄1. (1.5)

This method is similar to the power method in terms of generating the sequence

of x (k). A comparison was made in [66] between the two methods. One of the

differences is how the sequence λ(k) is determined. For the Collatz method, the

spectral radius is bounded and squeezed. Initially, upper bound λ̄1 and lower

bound λ1 are produced in first iteration. As the iterative process continued,

λ̄k ≤ λ̄k−1 and λk−1 ≤ λk. Eventually, we will get ρ(A).

A matrix A is primitive if it is nonnegative and its kth power is positive for some

natural number k. For primitive matrix A, this method is convergent but we

cannot say the same for power method.

1A square n×n matrix A = aij is called reducible if the indices 1, 2, ..., n can be divided into

two disjoint nonempty sets i1, i2, ..., iµ and j1, j2, ..., jν , with µ+ ν = n, such that aiαjβ = 0 for

α = 1, 2, ..., µ and β = 1, 2, ..., ν. A square matrix that is not reducible is said to be irreducible.
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Theorem 3. [60] In Theorem 2 both the sequences {λk} and {λ̄k} converge to

ρ(A), from an arbitrary initial positive vector x (0), if and only if the irreducible

nonnegative matrix A is primitive.

For an irreducible matrix, this algorithm is not guaranteed to be convergent.

Fortunately, we can fix this by shifting the diagonal of the matrices as suggested

in [66].

Theorem 4. [66] If the nonnegative matrix A is an n×n irreducible matrix then

the matrix ϵI +A, where ϵ > 0, is primitive.

If we apply the Collatz method to the matrix B = ϵI +A, it is guaranteed to be

convergent for the irreducible matrix A. If λ0 is the largest eigenvalue of matrix

B , the largest eigenvalue of matrix A is λ0 − ϵ and both matrix A and B have

the same associated eigenvector.

Another version of this method was introduced in [66] by applying the Collatz

method to the matrix (ϵI−A)−1. This alternative was claimed to have a superior

rate compared to the original Collatz method if ϵ is chosen sufficiently close to the

spectral radius of A. The matrix (ϵI −A)−1 is primitive hence it is convergent.

This version is similar to the inverse power method; however, it is better because

it is proven to be convergent for any irreducible nonnegative matrix A.

However, the Collatz method is not guaranteed to be convergent for all reducible

matrices. In order to overcome this problem, Wood and O’Neill [66] suggested

adding the following matrix:

E =


0 ε 0 · · · 0
... 0

. . . 0

0
. . . ε

ε 0 · · · 0


with small ε > 0 to the reducible matrix A. Now we have an irreducible matrix

A+E and this matrix can be applied to the Collatz method. The effects of the

perturbation of matrix A were discussed in [66] and it can be concluded that if
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the value of ε is appropriately small, the largest eigenvalue of A is not greatly

affected.

In [64, 66], a comparison was made between the methods for finding the largest

eigenvalue of a nonnegative matrix. The Collatz method [66] was compared

to the power method [21], Arnoldi method [2], Orthogonal Iteration [21] and

Simultaneous Iteration [59]. We focus in detail here on the power method.

Power Method

Step 1: Choose initial vector x (0) and set k = 0.

Step 2: Calculate

x (k+1) =
Ax (k)

∥Ax (k)∥2
.

Step 3: Set k=k+1 and go to Step 2.

In [66], two ways were used to determine the largest eigenvalue using the power

method:

1. Compute λ(k) = uTAx (k)/uTx (k), where u is chosen such that uTx (0) ̸= 0.

2. The differences of two corresponding nonzero components of x (k+1) and

x (k).

Wood and O’Neill [66] tested the power method using some 2 × 2, 3 × 3 and

4× 4 irreducible matrices. They showed the cases where power method performs

poorly. Depending on the convergent criterion and how the λ(k) is obtained,

the power method does not converge, converges very slowly or converges to the

incorrect value for some of the test matrices. In the experiment, the test matrix

is set as A. When the the Collatz method is applied to the matrix (ϵI −A)−1,

this method converges.

Both the power method and the Collatz method have the rate of convergence

λ1/λ0, where λ0 is the largest eigenvalue and λ1 is a subdominant eigenvalue of

matrix A. However if we apply the Collatz method to the matrix (ϵI − A)−1,

the convergence rate is |(ϵ − λ0)/(ϵ − λ1)| and obviously, this is the best rate of

convergence if ϵ is selected close enough to λ0 [66].
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Another test by Wood and O’Neill [64] showed that the Collatz method has a

lower number of flops (count floating-point operations) compared to the Arnoldi

method, Orthogonal Iteration, Simultaneous Iteration, and the eig and eigs func-

tions in MATLAB which use the Implicitly Restarted Arnoldi Algorithm and

QR method, respectively. The test matrix used for these comparisons is from a

Markov model of a random walk on a (k + 1) × (k + 1) triangular grid which

usually denotes Mark(k+1). The irreducible matrix Mark(25) which contains

351-dimension and 123201 nonzero entries is used. All the methods are tested

using matrix Mark(25)+ I 351. The Arnoldi method, eigs and eig are also tested

with matrix Mark(25). In terms of the number of flops, the Collatz method is

superior than all these methods.

However, when tested for very large matrices, matrix Mark(50) with dimensions

1326 and matrix Mark(100) with dimensions 5151, Collatz methods perform

about the same as the other methods. For the case when the Collatz method

converges slowly, Wood and O’Neill [64] suggested the Hybrid method, that is, to

perform several steps of the Collatz method to the matrix A then set the ϵ as the

latest upper bound of the spectral radius, λ̄(k), and apply (ϵI−A)−1 to the Collatz

method. However, for very large matrices, the Hybrid method performed less

effectively compared to the Collatz method. One of the advantages of the Collatz

method is that, when (ϵI − A)−1 is applied, it is guaranteed to be convergent

for an irreducible matrix A. For methods such as the Arnoldi and eig function

in MATLAB, they have the advantage of providing the other eigenvalues of the

matrix.

1.2.2 Nonnegative Tensors

Nonnegative tensors are usually referred to as nonnegative square tensors unless

defined differently. The definitions of the eigenvalue and eigenvector of the tensor

were first introduced by Qi [49] and Lim [35] independently. Qi [49] studied

the real and complex eigenvalue and eigenvector of the symmetric tensor. The

definitions were then generalised by Chang et al. [6]. Not long after that, Chang

et al. extended the Perron-Frobenius Theorem to nonnegative square tensors

[8]. With the introduction of the eigenvalue and eigenvector of the tensor, and
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then the generalisation of the Perron-Frobenius Theorem to nonnegative square

tensors, the research for eigenvalue problems of tensors was triggered. Yang

and Yang [67, 68] further generalised the other results of the Perron-Frobenius

Theorem and other properties of matrices to square tensors including the minimax

theorem.

Nonnegative square tensors can be classified as strictly nonnegative tensors [25],

weakly irreducible nonnegative tensors [16], weakly primitive tensors [16], irre-

ducible nonnegative tensors [8], primitive tensors [9], weakly positive tensors [75]

and essentially positive tensors [47]. In order to clearly see the relationship be-

tween these classes, Hu et al. [25] illustrated a diagram showing the connections

between the classes of tensors.

Consequently, with the existance of the Perron-Frobenius Theorem for nonnega-

tive square tensors and the minimax theorem, Ng et al. [43] presented an iterative

method for calculating the largest eigenvalue and the associated eigenvector for

nonnegative square tensors. This method is extended from the Collatz method

[10, 64, 60] for finding the largest eigenvalue of matrices, which has some fea-

tures that are similar to the power method [60]. Because of the similarity, the

Ng-Qi-Zhou method and its updates and extension are sometimes called power

algorithm or power method in the literatures. The numerical results in [43] show

that the Ng-Qi-Zhou method is efficient however not always convergent, for ir-

reducible tensors. Later, this method was proven to be convergent for primitive

nonnegative square tensors in [9]. In [16], the convergence of the method under

weakly primitive square tensors was established. An irreducible tensor is primi-

tive but not vice versa. Zhang and Qi [74] showed that the method has a linear

convergence rate for essentially positive tensors. An essentially positive tensor is

primitive but the reverse is not valid.

The method of [43] was improved in [38] and was proven to be convergent for

an irreducible nonnegative tensor. This improved method resembled a version of

the Collatz method by Wood and O’Neill [66] for nonnegative matrices. Zhang

et al. [75] established the linear convergence of the improved method for weakly

positive tensors and Zhou et al. [78] established the Q-linear convergence of the
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improved method under weak irreducibility condition. A new discovery was made

recently in [79]; some spectral properties of symmetric nonnegative tensors were

studied and one of the finding was that the minimax theorem does not require

the weakly irreducible condition, just the symmetric alone.

Other methods that can be used for finding the spectral radius of nonnegative

square tensors were presented by Hu et al. [25] and Yang [70]. Hu et al. [25] pro-

posed a modified version of [16] and proved that the modified method was R-linear

convergent. Hu et al. also gave a convergent algorithm for a general nonnegative

square tensor. Meanwhile, Yang presented an extension of the smoothing method

for finding the largest eigenvalue of a nonnegative matrix [72].

Besides the class of square tensors, there are also rectangular tensors. The class of

real rectangular tensors can be found in the strong ellipticity condition problem

in solid mechanics [28, 29, 56, 58, 71] and the entanglement problem in quantum

physics [11, 13]. Qi et al. [51] introduced the definition of M-eigenvalues of

rectangular tensors and Wang et al. [62] proposed a method to compute the

largest M-eigenvalue of a fourth-order tensor.

The study of the properties of singular values of non-square tensors can be found

in [35, 7]. In 2005, Lim [35] introduced the singular values of non-square ten-

sors and extended the Perron-Frobenius theorem to singular values of non-square

tensors. Later, the Perron-Frobenius theorem for singular values of nonnega-

tive rectangular tensors was given in [7]. As a result, an algorithm for finding the

largest singular value of a nonnegative rectangular tensor was also proposed in [7].

Yang and Yang [69] established the convergence of the algorithm for nonnegative

primitive rectangular tensors. The method was updated in [76] and this modified

method was shown to be convergent for any irreducible nonnegative rectangular

tensor. Another modified version of the algorithm was given by Zhang in [73].

Discussions of other methods for rectangular tensors can be found in [23, 37].

The Perron-Frobenius theorem also has been extended to homogeneous and mono-

tone functions [20], nonnegative multilinear forms [16] and nonnegative polyno-

mial maps [16].
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1.3 Overview of the Thesis

In Chapter 2, we focus on finding the largest eigenvalue of irreducible nonnegative

square tensors. The Perron-Frobenius Theorem for tensors, which is an exten-

sion of the Perron-Frobenius Theorem for matrices, provides the path to suitable

methods of finding the largest eigenvalue of irreducible nonnegative square ten-

sors. We study the iterative methods by [43, 38] under irreducibility condition,

primitivity condition, and also weak irreducibility condition. We also show the

application of the method for testing the positive definiteness of a class of multi-

variate forms and the numerical results.

In Chapter 3, we consider nonnegative rectangular tensors and study the iterative

methods by [7, 76] for finding the largest singular value of irreducible nonnegative

rectangular tensors. These methods are similar to the methods for square tensors

[43, 38]. The method of [76] is convergent under weakly irreducible condition

and we show that the method is Q-linear convergent under weakly irreducible

condition.

Chapter 4 is devoted to the eigenvalue problem of nonnegative polynomial. The

problems considered in the previous chapters were related to homogeneous poly-

nomials. In this chapter, we not only focus on the eigenvalue problem of nonneg-

ative homogeneous polynomials, but also of nonnegative nonhomogeneous poly-

nomials. We present a convergent iterative method for finding the largest eigen-

value of nonhomogeneous nonnegative polynomials. We also expand the concept

of primitivity to polynomials.

Chapter 5 is concerned with the optimisation problem whereby the objective

function is a nonnegative polynomial and the constraint is spherical. We consider

both homogeneous and nonhomogeneous nonnegative polynomials and present a

convergent method to solve the problem whereby the objective function is an

irreducible nonnegative polynomial.

Finally in Chapter 6, we conclude this thesis.
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Chapter 2

Nonnegative Square Tensors

2.1 Introduction

In this chapter, we study some properties of irreducible nonnegative square ten-

sors and the methods for finding the largest eigenvalue of irreducible nonnegative

square tensors. We focus in particular on the methods in [38, 43] and the conver-

gence analysis. Throughout this chapter, when the term ”nonnegative tensor” is

used, it refers to nonnegative square tensors.

We denote R+ = [0,∞) as the set of nonnegative numbers, R>0 = (0,∞) as the

set of positive numbers, Rn
+ as the cone of nonnegative vectors and Rn

>0 as the

cone of positive vectors.

2.2 Nonnegative Matrices

We start this chapter with some properties related to nonnegative square matrices

which are useful in this chapter.

Let A be an n×n nonnegative matrix. The graph associated to A = (aij), G(A),

is the directed graph with vertices 1, 2, ..., n and an edge from i to j if and only

if aij ̸= 0 [60] (p.19, [60]). A directed graph is strongly connected if there is a

directed path between any two distinct vertices (p.20, [60]).

Theorem 5. (p.20,[60]) An n× n complex matrix A is irreducible if and only if

its directed graph G(A) is strongly connected.
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Theorem 6. (p.51,[60]) Let A be an irreducible matrix, with G(A) as the asso-

ciated directed graph. If the greatest common divisor (g.c.d.) of the lengths of

its closed paths is equal to one, then A is primitive.

The converse of Theorem 6 also holds.

We state here the Perron-Frobenius Theorem for nonnegative matrices.

Theorem 7. (Chapter 2,[60]) If A is an irreducible nonnegative square matrix,

then

(1) ρ(A) > 0 is an eigenvalue;

(2) there exists a nonnegative vector x 0 > 0, i.e. all components of x 0 are positive,

such that Ax 0 = ρ(A)x 0;

(3) (uniqueness) if λ is an eigenvalue with a nonnegative eigenvector, then λ =

ρ(A);

(4) ρ(A) is a simple eigenvalue of A;

(5) if λ is an eigenvalue of A, then |λ| ≤ ρ(A).

Furthermore, if a nonnegative matrix M is primitive, then

ρ(M ) > |λ|, ∀λ ∈ σ(M ) \ {ρ(M )}, (2.1)

where σ(M ) is the spectrum of M .

Corollary 1. [41] An irreducible matrix with a nonzero main diagonal is primi-

tive.

Spectral norm of a matrix is defined as follows.

Definition 2. (p.9,[60]) If A = (ai,j) is an n× n complex matrix, then

||A|| = sup
x ̸=0

||Ax ||
||x ||

is the spectral norm of the matrix A where || · || denotes a vector norm on the

vector space Rn.

11



Proposition 1. [21, 24] The spectral radius of an n×n matrix A is characterized

by the equality

ρ(A) = inf
||·||∈N

||A||

where N denotes the set of all possible spectral norms of A. For any ϵ > 0, there

exists a spectral norm || · ||ϵ ∈ N such that

||A|| ≤ ρ(A) + ϵ.

2.3 Nonnegative Tensors

Let R be the real number field. We consider an m-order n-dimensional tensor A

consisting of nm entries in R,

A = (ai1···im), ai1···im ∈ R, 1 ≤ i1 · · · im ≤ n. (2.2)

If ai1···im ≥ 0, A is called nonnegative real square tensor and if ai1···im > 0, A is

called positive real square tensor. When m = 2, tensor A is reduced to a square

matrix. Let Axm−1 be a vector in Rn such that(
Axm−1

)
i
=

n∑
i2,··· ,in=1

aii2···imxi2 · · · xim , i = 1, 2, · · · , n. (2.3)

We use the definition of eigenvalue and eigenvector of tensor which was given in

[8].

Definition 3. [8] Let A be an m-order n-dimensional tensor and C be the set

of all complex numbers. Assume that Axm−1 is not identical to zero. We say

(λ,x ) ∈ C× (Cn\{0}) is an eigenvalue-eigenvector of A if

Axm−1 = λx [m−1], (2.4)

where, x [α] = [xα
1 , x

α
2 , ..., x

α
n]

T .

The definition of spectral radius of tensor was given in [67].

Definition 4. [67] Let A be an m-order n-dimensional real tensor.

ρ(A) = max{|λ| : λ is an eigenvalue of A}. (2.5)

We call ρ(A) the spectral radius of A.
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The associated graph of an m-order n-dimensional nonnegative tensor A, is the

directed graph G(A), with vertices 1, 2, ..., n and an edge from i to j if and only

if aii2···im ̸= 0 for some il = j, l = 2, 3, ...,m. This definition can be found in [78].

Definition 5. [16] An m-order n-dimensional square tensor A is called weakly

irreducible if G(A) is strongly connected. If G(A) is strongly connected and the

greatest common divisor (gcd) of the lengths of its circuits is equal to one, then

A is called weakly primitive.

Definition 6. [8] An m-order n-dimensional tensor A is called reducible if there

exists a nonempty proper index subset I ⊂ {1, 2, . . . , n} such that

Ai1i2...im = 0, ∀i1 ∈ I, ∀i2, . . . , im /∈ I. (2.6)

If A is not reducible, then we call A irreducible.

Proposition 2. [16] If nonnegative tensor A is irreducible, then A is weakly

irreducible. For matrix (when m = 2), A is irreducible if and only if A is weakly

irreducible.

Let I be the m-order n-dimensional unit tensor whose entries are

Ii1i2...im =

 1 if i1 = i2 = ... = im,

0 otherwise.
(2.7)

Proposition 3. [25] If nonnegative tensor A is weakly irreducible, then A + I

is weakly primitive.

Define the sequence {A(k)x} for any vector x ∈ Rn
+ as:

A(1)x = A (x )m−1 , z (1) =
(
A(1)x

)[ 1
m−1 ] ,

A(2)x = A
(
z (1)
)m−1

, z (2) =
(
A(2)x

)[ 1
m−1 ] ,

...

A(k)x = A
(
z (k−1)

)m−1
, z (k) =

(
A(k)x

)[ 1
m−1 ] , k ≥ 2.

Definition 7. [9] A nonnegative tensor A is primitive if there exists a positive

integer k such that A(k)x ∈ Rn
+ for any nonzero x ∈ Rn

>0. Furthermore, we call

the least value of such k the primitive degree.

13



Definition 8. [47] A nonnegative m-order n-dimensional tensor A is essentially

positive if Axm−1 ∈ Rn
>0 for any nonzero x ∈ Rn

+.

Positive tensors and essentially positive tensors are primitive.

Definition 9. [9] For any vector x ∈ Rn
+, we define x [1/(m−1)] = ((x

1/(m−1)
1 ), ...,

(x
1/(m−1)
1 )). Let A be nonnegative m-order n-dimensional tensor. We define its

associated nonlinear map TA : Rn
+ → Rn

+ by TAx = (Axm−1)[1/(m−1)]. The

polynomial TA possesses the following immediate properties:

(i) (Positively 1-homogeneous)For t ≥ 0, we have TA(tx ) = tTAx .

(ii) (Increasing) If x ≤ y , then TAx ≤ TAy for x ,y ∈ Rn
+.

(iii) The map x 7−→ TAx is continuous and bounded. Namely, there exists

C = CA > 0 such that ||TAx || ≤ C||x || for x ∈ Rn
+, where || · || denotes the

standard Euclidean norm on Rn.

2.4 Perron-Frobenius Theorem for Tensors

Perron-Frobenius Theorem is important in the study of spectral radius of nonneg-

ative square tensors. The theorem was generalised to nonnegative square tensors

by [8] and continued by [67, 68]. The following is Perron-Frobenius weak version

for tensors:

Theorem 8. [8] If A is a nonnegative tensor of order m dimension n, then there

exist λ0 ≥ 0 and a nonnegative vector x 0 ̸= 0 such that

Axm−1 = λ0x
[m−1]
0 . (2.8)

In the theorem above, λ0 is a real number and x 0 is a real vector. The theorem

below is generalised Perron-Frobenius Theorem for nonnegative tensors strong

version:

Theorem 9. [8] If A is an irreducible nonnegative tensor of order m and dimen-

sion n, then there exist λ0 > 0 and x 0 > 0,x 0 ∈ Rn such that

Axm−1
0 = λ0x

[m−1]
0 . (2.9)

Moreover, if λ is an eigenvalue with nonnegative eigenvector, then λ = λ0. If λ

is an eigenvalue of A, then |λ| ≤ λ0.
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Perron-Frobenius Theorem for matrices states that the spectral radius is simple.

However for tensor, this theorem does not guarantee the simplicity of the λ0. The

Geometric multiplicity of eigenvalue of tensor can be defined as follows:

Definition 10. [8] Let λ be an eigenvalue of tensor A of order m and dimension

n. It has geometric multiplicity q if the maximum number of linearly independent

eigenvectors corresponding to λ equals q. If q = 1, then λ is called geometrically

simple.

The following minimax theorem for irreducible nonnegative tensors was extended

from Collatz minimax theorem for irreducible nonnegative matrices.

Theorem 10. [8] Assume that A is an irreducible nonnegative tensor of order

m and dimension n. Then

min
x∈R>0

max
xi>0

(Axm−1)i

xm−1
i

= λ0 = max
x∈R>0

min
xi>0

(Axm−1)i

xm−1
i

, (2.10)

where λ0 is the unique positive eigenvalue corresponding to the positive eigenvec-

tor.

We also have the following lemmas:

Lemma 1. [8] If an m-order n-dimensional nonnegative tensor A is irreducible,

then
n∑

i2,...,im=1

aii2...im > 0 ∀1 ≤ i ≤ n. (2.11)

Lemma 2. [43] If an m-order n-dimensional nonnegative tensor A is irreducible,

then for any positive vector x > 0, x ∈ Rn, Axm−1 is a positive vector; i.e.,

Axm−1 > 0. (2.12)

Lemma 3. [43] Suppose that A is a nonnegative tensor of orderm and dimension

n, x and y are two nonnegative column vectors, and t is a positive number. Then,

we have the following.

(i) If x ≥ y , then Axm−1 ≥ Aym−1;

(ii) A(tx )m−1 = tm−1A(x )m−1.
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From the lemmas above, [43] presented the following theorem. An iterative

method for finding a lower bound and upper bound of the largest eigenvalue

of an irreducible nonnegative tensor was derived from this result. The algorithm

will be given in the next section.

Theorem 11. [43] Let A be an irreducible nonnegative tensor of order m and

dimension n and let x (0) ∈ Rn be an arbitrary positive vector. Let y (0) =

A(x (0))m−1. Define

x (1) =
(y (0))[

1
m−1

]

∥(y (0))[
1

m−1
]∥
, y (1) = A(x (1))m−1,

x (2) =
(y (1))[

1
m−1

]

∥(y (1))[
1

m−1
]∥
, y (2) = A(x (2))m−1,

...

x (k+1) =
(y (k))[

1
m−1

]

∥(y (k))[
1

m−1
]∥
, y (k+1) = A(x (k+1))m−1, k ≥ 2 (2.13)

...

and let

λk = min
x
(k)
i >0

(A(x (k))m−1)i

(x
(k)
i )m−1

, λ̄k = max
x
(k)
i >0

(A(x (k))m−1)i

(x
(k)
i )m−1

, k = 1, 2, ....

(2.14)

Assume that λ0 is the unique positive eigenvalue corresponding to a nonnegative

eigenvector. Then,

λ1 ≤ λ2 ≤ ... ≤ λ0 ≤ ... ≤ λ̄2 ≤ λ̄1. (2.15)

Theorem 12. [9] A primitive nonnegative tensor A is irreducible.

An example that shows the converse is false was given in [9].

Theorem 13. [9] IfA is an irreducible nonnegativem-order n-dimensional tensor

with aii...i > 0, i = 1, 2, ..., n, then A is primitive.

Corollary 2. If A is an essentially positive tensor of m-order and n-dimensional,

then A is primitive.

Corollary 3. [49] Suppose that B = a(A + bI), where a and b are two real

numbers. Then λB is an eigenvalue of B if and only if λB = a(λ+ b) and λ is an

eigenvalue of A. In this case, they have the same eigenvectors.
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By Theorem 9, Theorem 13 and Corollary 8, we have the following theorem:

Theorem 14. [38] Suppose A is an irreducible nonnegative tensor. For any

ρ > 0, let B = A+ ρI. Then, we have

(i) B is primitive;

(ii) If λ is the largest eigenvalue of B, then λ− ρ is the largest eigenvalue of A.

Theorem 15. [9] Let A be primitive. If λ is an eigenvalue with |λ| = ρ(A), then

λ = ρ(A), i.e., cyclic index, k = 1.

2.5 Algorithm

Based on Theorem 11, we have the following algorithm for calculating the largest

eigenvalue of an irreducible nonnegative tensor. This method is extension of a

Collatz method [66].

Algorithm 1. [43]

Step 0: Choose x (0) > 0, x (0) ∈ Rn. Set k = 0

Step 1: Compute

y (k) = A
(
x (k)

)m−1
,

λk = min
x
(k)
i >0

(
y (k)

)
i(

x
(k)
i

)m−1 ,

λ̄k = max
x
(k)
i >0

(
y (k)

)
i(

x
(k)
i

)m−1 .

Step 2: If λ̄k = λk, then let λ = λ̄k and stop. Otherwise, compute

x (k+1) =

(
y (k)

)[ 1
m−1 ]∥∥∥(y (k))[
1

m−1 ]
∥∥∥ ,

replace k by k + 1 and go to Step 1.

For Algorithm 1, by Theorem 11, we have the theorem below:
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Theorem 16. [43] Let A be an irreducible nonnegative tensor of order m and

dimension n. Assume that λ0 is the unique positive eigenvalue corresponding

to a nonnegative eigenvector. Then, Algorithm 1 produces the value of λ0 in

a finite number of steps or generates two convergent sequences {λk} and {λ̄k}.

Furthermore, let λ = limk→+∞ λk and λ̄ = limk→+∞ λ̄k. Then, λ and λ̄ are a

lower bound and an upper bound, respectively, of λ0. If λ = λ̄, then λ0 = λ = λ̄.

We can say the limit exists because λ is a monotonically increasing sequence and

has an upper bound. Hence it implies {x (k)} converges to a vector x . However,

Algorithm 1 only produce a convergent sequence but it doesn’t prove that {λ̄k}

and {λk} converge to λ0 if tensor A is irreducible. If tensor A is primitive,

Algorithm 1 is convergent [9]. Recall that TAx = (Axm−1)
1

(m−1) .

Proposition 4. [9] For the notation used in Algorithm 1, the following state-

ments hold:

(i) For all k ∈ N, λk ≤ λk+1 and λ̄k ≥ λ̄k+1.

(ii) If A is irreducible, then λk+1 ↗ λ, λ̄k+1 ↘ λ̄, and λ ≤ ρ(A) ≤ λ̄.

(iii) There exists a subsequence x (kj) −→ x ∗ with ||x ∗|| = 1.

(iv) (λk)
1

m−1x (k) ≤ (y (k))
[ 1
m−1

]
= TAx

(k) ≤ (λ̄k)
1

(m−1)x (k); hence, λ
1

(m−1)x ∗ ≤

TAx
∗ ≤ λ̄

1
(m−1)x ∗.

(v) For all k ∈ N, there exists 1 ≤ i0 ≤ n such that (T k+1
A x ∗)i0 = λ

1
(m−1) (T k

Ax
∗)i0 .

Proof. [9]

(i) From the Algorithm 1, by the definition of λk, for each k = 1, 2, ...

A(x (k))m−1 ≥ λk(x
(k))[m−1],

and since we choose initial x (0) > 0,

A(x (k))m−1 ≥ λk(x
(k))[m−1] > 0.

We have from (2.13), y (k) = A(x (k))m−1.

(y (k))[
1

m−1
] = (A(x (k))m−1)[

1
m−1

] ≥ (λk(x
(k))[m−1])[

1
m−1

] = λ
[ 1
m−1

]

k x (k) > 0.
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Also from (2.13),

x (k+1) =
(y (k))[

1
m−1

]

||(y (k))[
1

m−1
]||

≥ λ
[ 1
m−1

]

k x (k)

||(y (k))[
1

m−1
]||

> 0. (2.16)

By Lemma 3,

A(x (k+1))m−1 ≥ A

 λ
[ 1
m−1

]

k x (k)

||(y (k))[
1

m−1
]||

m−1

=
λkA(x (k))m−1

||(y (k))[
1

m−1
]||[m−1]

,

=
λky

(k)

||(y (k))[
1

m−1
]||[m−1]

=

λk

(
(y (k))

[ 1
m−1 ]

)[m−1]

||(y (k))[
1

m−1
]||[m−1]

,

= λk(x
(k+1))[m−1].

Thus we have A(x (k+1))m−1 ≥ λk(x
(k+1))[m−1], that is, for each i = 1, 2, ..., n,

λk ≤
(
A(x (k+1))m−1

)
i

(x
(k+1)
i )[m−1]

.

We know that λk+1 =
(
A(x (k+1))m−1

)
i
/(x

(k+1)
i )[m−1], then we can conclude

λk ≤ λk+1.

Similarly, we can show λ̄k+1 ≤ λ̄k.

(ii) We have proved that λk ≤ λk+1 and λ̄k+1 ≤ λ̄k. By Theorem 10,

λk ≤ λ0 ≤ λ̄k,

λk ≤ λk+1 ≤ ... ≤ λ ≤ λ0 ≤ λ̄ ≤ ... ≤ λ̄k+1 ≤ λ̄k,

λ ≤ λ0 = ρ(A) ≤ λ̄.

(iii) Since each of x (k) is a unit vector, then the sequence {x (k)} is bounded. Every

bounded sequence in Rn has a convergent subsequence.

(iv) We have from Algorithm 1

y (k) = A(x (k))m−1 ≥ λk(x
(k))[m−1],(

y (k)
)[ 1

m−1
]
=
(
A(x (k))m−1

)[ 1
m−1

] ≥ λ
[ 1
m−1

]

k (x (k)).

From Definition 9, TAx
(k) =

(
A(x (k))m−1

)[ 1
m−1

]
,
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λ
[ 1
m−1

]

k (x (k)) ≤
(
y (k)

)[ 1
m−1

]
= TAx

(k),

and using the same argument, we can get

λ̄
[ 1
m−1

]

k (x (k)) ≥
(
y (k)

)[ 1
m−1

]
= TAx

(k).

As x (k) → x ∗,

λ
[ 1
m−1

]

k (x ∗) ≤ TAx
∗ ≤ λ̄

[ 1
m−1

]

k (x ∗).

(v) We prove this statement by contradiction. Suppose that there is a positive

integer k such that

T k+1
A x ⋆ > λ[ 1

m−1
]T k

Ax
⋆.

Then there exists x (p) close enough to x ⋆ such that

T k+1
A x (p) > λ[ 1

m−1
]T k

Ax
(p).

Now we consider for all i,

(T k+1
A x (p))i

(T k
Ax

(p))i
> λ[ 1

m−1
].

However, we can show that

(T k+1
A x (p))i

(T k
Ax

(p))i
=

(
y
(p+k)
i

(x
(p+k)
i )[m−1]

)[ 1
m−1

]

. (2.17)

From Algorithm 1,
y
(k)
i

(x
(k)
i )[m−1]

≥ λk. This means that there exist some i0 such that

(T k+1
A x (p))i0

(T k
Ax

(p))i0
=
(
λ(p+k)

)[ 1
m−1

]
.

This contradicts the assumption T k+1
A x ⋆ > λ[ 1

m−1
]T k

Ax
⋆.

To show (2.17) in details; from Algorithm 1, at k-th iteration, we have

y (k) = A(x (k))m−1,

x (k+1) =
(y (k))

[ 1
m−1

]

||(y (k))
[ 1
m−1

]||
,

y (k+1) = A(x (k+1))m−1,

...
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From the above equation,

x (k+1) =
(y (k))

[ 1
m−1

]

||(y (k))
[ 1
m−1

]||
,

||(y (k))
[ 1
m−1

]||x (k+1) = (y (k))
[ 1
m−1

]
. (2.18)

Now we put (2.18) as x into Axm−1 and we will have

A(||(y (k))
[ 1
m−1

]||x (k+1))m−1 = A((y (k))
[ 1
m−1

]
)m−1,

||(y (k))
[ 1
m−1

]||[m−1]A(x (k+1))m−1 = A((y (k))
[ 1
m−1

]
)m−1,

||(y (k))
[ 1
m−1

]||[m−1]y (k+1) = A((y (k))
[ 1
m−1

]
)m−1. (2.19)

We also have TAx
(p) = [A(x (p))m−1]

[ 1
m−1

]
= (y (p))[

1
m−1

] and

T 2
Ax

(p) = TA(TAx
(p)),

= TA((y
(p))[

1
m−1

]),

= (A((y (p))[
1

m−1
])m−1)

[ 1
m−1

]
,

= (||(y (p))
[ 1
m−1

]||[m−1]y (p+1))[
1

m−1
],

= ||(y (p))
[ 1
m−1

]||(y (p+1))[
1

m−1
].

Using the same argument as above,

T 3
Ax

(p) = TA(T
2
Ax

(p)),

= ||(y (p))
[ 1
m−1

]|| ||(y (p+1))
[ 1
m−1

]||(y (p+2))[
1

m−1
],

and

T k
Ax

(p) = ||(y (p))
[ 1
m−1

]|| ||(y (p+1))
[ 1
m−1

]|| · · · ||(y (p+k−2))
[ 1
m−1

]||(y (p+k−1))[
1

m−1
],

(2.20)

T k+1
A x (p) = ||(y (p))

[ 1
m−1

]|| ||(y (p+1))
[ 1
m−1

]|| · · ·

||(y (p+k−2))
[ 1
m−1

]|| ||(y (p+k−1))
[ 1
m−1

]||(y (p+k))[
1

m−1
].

From Algorithm 1, we have x (k+1) = (y (k))[
1

m−1
]/||(y (k))[

1
m−1

]||. Shift the indices

so that x (k) = (y (k−1))[
1

m−1
]/||(y (k−1))[

1
m−1

]||. Then x (p+k) = (y (p+k−1))[
1

m−1
]/

||(y (p+k−1))[
1

m−1
]|| and
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(y (p+k−1))[
1

m−1
] = ||(y (p+k−1))[

1
m−1

]||x (p+k). (2.21)

By (2.21), equation (2.20) becomes

T k
Ax

(p) = ||(y (p))
[ 1
m−1

]|| ||(y (p+1))
[ 1
m−1

]||...||(y (p+k−2))
[ 1
m−1

]|| ||(y (p+k−1))[
1

m−1
]||x (p+k).

Thus we have the ratio

(T k+1
A x (p))i

(T k
Ax

(p))i

=
||(y (p))

[ 1
m−1

]|| ||(y (p+1))
[ 1
m−1

]||...||(y (p+k−2))
[ 1
m−1

]|| ||(y (p+k−1))
[ 1
m−1

]||(y (p+k))
[ 1
m−1

]

i

||(y (p))
[ 1
m−1

]|| ||(y (p+1))
[ 1
m−1

]||...||(y (p+k−2))
[ 1
m−1

]|| ||(y (p+k−1))[
1

m−1
]||x(p+k)

i

=
(y (p+k))

[ 1
m−1

]

i

x
(p+k)
i

=

(
(y (p+k))i

(x (p+k))
[m−1]
i

)[ 1
m−1

]

.

Chang et al. [9] gave the following results for primitive tensors. These results

show that the Algorithm 1 is convergent for primitive tensors.

Let X be a Banach space.

Definition 11. [9] A mapping T : X → X is called strongly increasing if x ≤ y

and x ̸= y imply Tx < Ty .

Theorem 17. [9] Let A be a nonnegative tensor of order m and dimension n. A

is primitive if and only if there exists r ∈ N such that T r
A is strongly increasing.

Theorem 18. [9] If A is primitive, then λ = ρ(A) = λ̄ and x (k) → x ∗, i.e., x (k)

converges to the positive eigenvector with respect to ρ(A).

Proof. [9] For the first step, we are going to show that λ = ρ(A) = λ̄. We

have TAx = (Axm−1)[
1

m−1
] and we know that (λ)

1
m−1x ∗ ≤ TAx

∗. Suppose

(λ)
1

m−1x ∗ ̸= TAx
∗. By Theorem 17, since A is primitive, there exists r ∈ N

such that T r
A is strongly increasing. By Definition 11, (λ)

1
m−1x ∗ ≤ TAx

∗ and

(λ)
1

m−1x ∗ ̸= TAx
∗ imply T r

A((λ)
1

m−1x ∗) < T r
A(TAx

∗). From Definition 9,

T 2
Ax = TA(TAx ),

...

T r
Ax = TA(T

r−1
A x ).
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Thus we have (λ)
1

m−1T r
Ax

∗ < T r+1
A x ∗. However this contradicts statement (5)

of Proposition 4 which states for all k ∈ N, there exists 1 ≤ i0 ≤ n such that

(T k+1
A x ∗)i0 = λ

1
(m−1) (T k

Ax
∗)i0 . Hence we must have (λ)

1
m−1x ∗ = TAx

∗. Simi-

larly, we can show (λ̄)
1

m−1x ∗ = TAx
∗. Then,

(λ)
1

m−1x ∗ = TAx
∗ = (λ̄)

1
m−1x ∗,

λ = λ̄.

Thus ρ(A) = λ = λ̄.

For the next step, we are going to prove x (k) → x ∗ by contradiction. Suppose

there exists {rk} such that x (rk) → y∗ with ||y∗|| = 1 and y∗ ̸= x ∗. Using the

same approach as previous step,

λ
1

m−1y∗ = TAy
∗ = y∗λ̄

1
m−1y∗,

λ = λ̄ = ρ(A).

Hence

ρ(A)
1

m−1y∗ = TAy
∗,

ρ(A)
1

m−1y∗ = (A(y∗)m−1)[
1

m−1
],

ρ(A)(y∗)[m−1] = A(y∗)m−1,

which means by the definition of eigenvector and eigenvalue of tensors, y∗ is

the associated eigenvector of ρ(A). However, by the uniqueness of the positive

eigenvector with eigenvalue ρ(A) in Perron-Frobenius Theorem, it means y∗ =

x ∗.

Consequently, the following result was produced.

Corollary 4. [9] If A is an essentially positive tensor of order m and dimension

n, then the Algorithm 1 converges.

Later, Algorithm 1 was modified so that it is convergent if A is an irreducible

nonnegative tensor [38]. The modified algorithm is as follows:
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Algorithm 2. [38]

Step 0: Choose x (1) > 0, x (1) ∈ Rn and ρ > 0. Let B = A+ ρI, and set k := 1.

Step 1: Compute

y (k) = B
(
x (k)

)m−1
,

λk = min
x
(k)
i >0

(
y (k)

)
i(

x
(k)
i

)m−1 ,

λ̄k = max
x
(k)
i >0

(
y (k)

)
i(

x
(k)
i

)m−1 .

Step 2: If λ̄k = λk, then let λ = λ̄k and stop. Otherwise, compute

x (k+1) =

(
y (k)

)[ 1
m−1 ]∥∥∥(y (k))[
1

m−1 ]
∥∥∥ ,

replace k by k + 1 and go to Step 1.

Theorem 19. [38] Suppose A is an irreducible nonnegative tensor. Let B =

A + ρI, where ρ > 0. Assume that λ is the largest eigenvalue of B. Then,

Algorithm 2 produces a value of λ in a finite number of steps, or generates two

sequences {λk} and {λ̄k} which converge to λ. Furthermore, λ− ρ is the largest

eigenvalue of A.

Algorithm 1 may not converge for some irreducible nonnegative tensors, but Al-

gorithm 2 always converges for irreducible nonnegative tensors.

2.6 Convergence Rate

In this section, we further study the convergence rate of Algorithm 2. For sim-

plicity, we can take ρ = 1. Thus we have B = A + I. Under weak irreducibility

condition, Algorithm 2 is Q-linear convergent [78].

Theorem 20. [78] Suppose nonnegative tensor A is weakly irreducible. Let

B = A + I and assume that λ is the largest eigenvalue of B. Then, Algorithm

2 produces a value of λ and a corresponding eigenvector u in a finite number of

steps, or generates three convergent sequences {λk}, {λ̄k} and {x (k)} such that
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limk→∞ λk = limk→∞ λ̄k = λ and limk→∞ x (k) = u . Furthermore, λ − 1 is the

largest eigenvalue of A associated with the eigenvector u .

If we let

F(x ) = Bxm−1,

G(x ) = F (x )[
1

m−1
], (2.22)

H (x ) =
G(x )

ϕ(G(x ))
,

where ϕ : Rn
+ → R+ is defined by

ϕ(x ) = ||x ||1 = Σn
i=1xi, (2.23)

for any nonnegative x ∈ Rn. We can see that sequence {x (k)} in Theorem 20 is

generated by

x (k+1) = H (x (k)), k = 1, 2, ... (2.24)

and ϕ(x (k)) = 1 for all k = 1, 2, ....

Lemma 4. [78] Let A and B as in Theorem 20. For any x ∈ Rn
>0, F

′(x ), the

Jacobian of F at x , is a primitive matrix.

Proof. [78] Let x ∈ Rn
>0 and M = F ′(x). We know that F (x ) = Bxm−1. Since

xi > 0 for all i = 1, 2, ..., n, M depends on B. The matrix Mi,j > 0 for any

i, j = 1, 2, ..., n if and only if bii2...im ̸= 0 for some il = j, l = 2, 3, ...,m. From

definition of graph of tensor, G(M ) = G(B). Since B is primitive and by Theorem

12, B is irreducible. Since B is irreducible then B is weakly irreducible. By

Definition 5, G(B) is strongly connected since B is weakly irreducible. Hence

graph of matrix M is also strongly connected and therefore M is irreducible.

B = A+ I which means bii...i ̸= 0 for i = 1, 2, ..., n. Thus we have Mii ̸= 0. Since

M is an irreducible matrix with nonzero main diagonal , it is primitive.

Lemma 5. [78] Let A, B, λ and u be as in Theorem 20, and let H ′(u) be the

Jacobian of the function H at u . Then,

ρ(H ′(u)) < 1. (2.25)
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Proof. [78] Let λ be the largest eigenvalue of B and u be the corresponding

eigenvector. We have H (u) = G(u)/ϕ(G(u)). We want to show

ρ(H ′(u)) = ρ(
G ′(u)ϕ(G(u))−G(u)ϕ′(G(u))

ϕ2(G(u))
) < 1.

We have F (u) = Bum−1 = λu [m−1] and ϕ(u) = 1. Hence, from (2.22), G(u) =

(F (u))[
1

m−1
] = λ[ 1

m−1
]u . Let λ1 = λ[ 1

m−1
] so we have

G(u) = λ1u . (2.26)

Now we compute G ′(u), the Jacobian of G at u .

G(u) = (F (u))[
1

m−1
],

=


(F1(u))

[ 1
m−1

]

(F2(u))
[ 1
m−1

]

...

(Fn(u))
[ 1
m−1

]

 ,

∇((F1(u))
[ 1
m−1

]) =
1

m− 1
(F1(u))

[ 2−m
m−1

]∇F1(u).

By the same method, we can get

∇((Fi(u))
[ 1
m−1

]) =
1

m− 1
(Fi(u))

[ 2−m
m−1

]∇Fi(u) for i = 1, 2, ..., n.
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Thus the Jacobian of G at u ,

G ′(u) = ∇((F (u))[
1

m−1
]) =


∇((F1(u))

[ 1
m−1

])

∇((F2(u))
[ 1
m−1

])
...

∇((Fn(u))
[ 1
m−1

])



=


1

m−1
(F1(u))

[ 2−m
m−1

]∇F1(u)

1
m−1

(F2(u))
[ 2−m
m−1

]∇F2(u)
...

1
m−1

(Fn(u))
[ 2−m
m−1

]∇Fn(u)



=


1

m−1
(F1(u))

[ 2−m
m−1

] 0
. . .

0 1
m−1

(Fn(u))
[ 2−m
m−1

]




∇F1(u)

∇F2(u)
...

∇Fn(u)


= diag(

1

m− 1
(F (u))[

2−m
m−1

])F ′(u)

= diag(
1

m− 1
(λu [m−1])[

2−m
m−1

])F ′(u)

=
1

m− 1
diag((λu [m−1])[

2−m
m−1

])F ′(u)

=
1

m− 1
diag((λ

1
[m−1]u)[2−m])F ′(u),

=
1

m− 1
diag((λ1u)

[2−m])F ′(u).

Notice that 1
m−1

diag((λ1u)
[2−m]) is a constant with λ1 > 0 and u is a positive

vector. Thus G(G ′(u)) = G(F ′(u)). By Lemma 4, G ′(u) is a primitive matrix.

Since G ′(u) is a primitive matrix, by Theorem 7 , the eigenvalues v1, v2, ..., vn of

G ′(u) can be ordered in such a way that

v1 = ρ(G ′(u)) > |v2| ≥ |v3| ≥ ... ≥ |vn|. (2.27)

For all t > 1, we expand G(tu) about u using Taylor’s Series,
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tλ1u = G(tu)

= G(u) +G ′(u)(tu − u) + o(||tu − u ||)

= G(u) + (t− 1)G ′(u)u + o(||(t− 1)u ||)

= G(u) + (t− 1)G ′(u)u + o(t− 1)

= λ1u + (t− 1)G ′(u)u + o(t− 1),

tλ1u − λ1u = (t− 1)G ′(u)u + o(t− 1),

(t− 1)λ1u = (t− 1)G ′(u)u + o(t− 1),

which implies G ′(u)u = λ1u . Since G ′(u) is primitive and u > 0, by Theorem

7, u is an eigenvector of G ′(u) associated with the largest eigenvalue λ1 = v1.

We have from (2.23) and (2.26),

ϕ(G(u)) = ϕ(λ1 u)

=
n∑

i=1

(λ1ui)

= λ1

n∑
i=1

(ui)

= λ1ϕ(u)

= λ1(1)

= λ1,

and

ϕ(G(u)) = G1(u) +G2(u) + ...+Gn(u),

ϕ′(G(u)) = G′
1(u) +G′

2(u) + ...+G′
n(u)

=
(

1 1 · · · 1
)


G′
1(u)

G′
2(u)
...

G′
n(u)


= eG′(u),

where e is the n-dimensional row vector of all ones.
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Thus, from (2.22),

H (u) =
G(u)

ϕ(G(u))
,

H ′(u) =
G ′(u)ϕ(G(u))−G(u)ϕ′(G(u))

ϕ2(G(u))

=
G ′(u)λ1 −G(u)ϕ′(G(u))

λ2
1

=
G ′(u)λ1 −G(u)eG ′(u)

λ2
1

=
G ′(u)

λ1

− G(u)eG ′(u)

λ2
1

=
G ′(u)

λ1

− λ1ueG
′(u)

λ2
1

=
G ′(u)− ueG ′(u)

λ1

.

Let M = G ′(u) and Q = M − ueM . Now we have H ′(u) = (Q/λ1). In this

proof, we want to show

ρ(H ′(u)) = ρ(
Q

λ1

) < 1.

First, we show that the spectral radius of Q is equal to |v2|. In order to do this,

it is enough to show that the spectrum of Q is σ(Q) = {0, v2, v3, ..., vn}.

Since

ϕ(u) = 1

= u1 + u2 + ...+ un

=
(

1 1 · · · 1
)


u1

u2

...

un


= eu ,
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hence eu = 1, therefore

Q = M − ueM ,

QTeT = (M − ueM )TeT

= MeT −M TeTuTeT

= MeT −M TeT (eu)T

= MeT −M TeT (1)

= 0.

Now we can say eT is an eigenvector of QT associated with the eigenvalue 0.

We consider two cases for MT .

Case 1: The matrix M T = G ′(u)T is diagonizable, which means, M T is semisim-

ple. For i = 2, 3, ..., n, let assume M Tw i = viw
i, that is w i is an eigenvector of

M T associated with the eigenvalue vi, and the set {w i : i = 2, 3, ..., n} is linearly

independent. Thus, for i = 2, 3, ..., n,

viu
Tw i = uTviw

i = uTM Tw i.

We have previously G ′(u)u = Mu = λ1u . So

(M u)T = (λ1u)
T ,

uTM T = λ1u
T . (2.28)

Hence,

viu
Tw i = uTM Tw i = λ1u

Tw i,

(vi − λ1)u
Tw i = 0.

It is either vi = λ1 or uTw i = 0 for i = 2, 3, ..., n. However, vi ̸= λ1 for

i = 2, 3, ..., n by (2.27). So we must have uTw i = 0.

Now we have

QTw i = (M − ueM )Tw i

= (M T −M TeTuT )w i

= M Tw i −M TeTuTw i

= M Tw i − 0.
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Since we assume M Tw i = viw
i, we have QTw i = viw

i, w i is an eigenvector

of QT associated with the eigenvalue vi for i = 2, 3, ..., n. Now we prove the

set {eT ,w i, i = 2, 3, ..., n}, which is eigenvectors of Q is linearly independent.

Assume

α1e
T + α2w

2 + ...+ αnw
n = 0, (2.29)

and vi ̸= 0 for i = 2, 3, ..., p and vj = 0 for j = p+ 1, ..., n. We have

QTeT = 0eT ,

QTw i = viw
i, i = 2, 3, ..., n.

Therefore

QTeT +QTw 2 + ...+QTwn = 0eT + v2w
2 + ...+ vpw

p,

α1Q
TeT + α2Q

Tw 2 + ...+ αnQ
Twn = α2v2w

2 + ...+ αpvpw
p. (2.30)

From (2.29),

QT (α1e
T + α2w

2 + ...+ αnw
n) = 0,

α1Q
TeT + α2Q

Tw 2 + ...+ αnQ
Twn = 0.

Hence (2.30) became,

0 = α2v2w
2 + ...+ αpvpw

p.

Since set {w i, i = 2, 3, ..., n} is linearly independent, we obtain α2 = α3 = ... =

αp = 0. Hence, by (2.29),

α1e
T + αp+1w

p+1 + ...+ αnw
n = 0, (2.31)

M T (α1e
T + αp+1w

p+1 + ...+ αnw
n) = 0,

α1M
TeT + αp+1M

Tw p+1 + ...+ αnM
Twn = 0.

Since M Tw i = viw
i and vj = 0 for j = p+ 1, ..., n,

α1M
TeT + αp+1vp+1w

p+1 + ...+ αnvnw
n = 0, (2.32)

α1M
TeT = 0. (2.33)
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We have α1 = 0 since M TeT > 0 because M is diagonalizable. Hence by (2.31),

αp+1w
p+1 + ...+ αnw

n = 0. (2.34)

The set {w i, i = p + 1, ..., n} is linearly independent, hence we get αp+1 = ... =

αn = 0. Now we have α1 = α2 = ... = αn = 0 which implies that the set

{eT ,w i, i = 2, 3, ..., n} is linearly independent. Therefore the spectrum of Q is

σ(Q) = {0, v2, v3, ..., vn}.

Case 2: The matrix M T is not diagonalizable or defective. Defective matrix

has less than n distinct eigenvalues. Suppose M T has distinct eigenvalues v1 =

λ1, v2, ..., vq, q < n, and these eigenvalues can be ordered as follow.

v1 = λ1 > |v2| ≥ |v3| ≥ ... ≥ |vq|. (2.35)

Then, M T has the form M T = XJX−1, where J = diag{J 1,J 2, ...,J q} is in

canonical form. Let the square matrices J i where i = 1, 2, ..., q be the Jordan

blocks with various sizes in the form of

J i =



vi 1

vi 1

vi
. . .

. . . 1

vi


,

where vi is an eigenvalue of M T . Let J 1 = [λ1] and X i is the i-th column vector

of X , i = 1, 2, ..., n. For each Jordan block J i, i = 2, ..., q, we assume the size of

J i is li. We have M T = XJX−1, hence

M TX = XJ ,

MT
(

X 1 X 2 X 3 X 4 · · ·
)
=

(
X 1 X 2 X 3 X 4 · · ·

)


λ1 1

v2 1

v2
. . .

v2 1
. . .


.
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Since we consider the J i where i = 2, ..., q,

M TX 2 = X 1 + v2X 2,

M TX 3 = X 2 + v2X 3,

M TX 4 = X 3 + v2X 4,

...

M TX l2+1 = X l2 + v2X l2+1,

M TX l2+2 = v3X l2+2,

M TX l2+3 = X l2+1 + v3X l2+2,

...

Same as in Case 1, since we have M TX 2 = v2X 2 and (2.28), then

v2u
TX 2 = uTv2X 2 = uTM TX 2 = λ1u

TX 2,

(v2 − λ1)u
TX 2 = 0.

By (2.35), v2 ̸= λ1. Thus, u
TX 2 = 0. Hence,

QT = (M − ueM )T ,

QTX 2 = (M − ueM )TX 2

= (M T −M TeTuT )X 2

= M TX 2 −M TeTuTX 2

= M TX 2 − 0

= v2X 2,

which means X 2 is an eigenvector of QT associated with eigenvalue v2. Since

M TX 3 = v2X 3 +X 2,

v2u
TX 3 = uTv2X 3

= uT (M TX 3 −X 2)

= uTM TX 3 − uTX 2

= uTM TX 3 − 0,

and by (2.28), v2u
TX 3 = (λ1u

T )X 3. Now we get (v2 − λ1)u
TX 3 = 0. We have
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uTX 3 = 0 since v2 ̸= λ1 by (2.35). Hence,

QT = (M − ueM )T ,

QTX 3 = (M − ueM )TX 3

= (M T −M TeTuT )X 3

= M TX 3 −M TeTuTX 3

= M TX 3 − 0

= v2X 3 +X 2.

Similarly, v2u
TX 4 = uTv2X 4 = uT (M TX 4 − X 3) = uTM TX 4 − uTX 3. By

uTX 3 = 0 and (2.28,) we have v2u
TX 4 = uTM TX 4 = (λ1u

T )X 4. Thus (v2 −

λ1)u
TX 4 = 0. Since (2.35), uTX 4 = 0. Then,

QT = (M − ueM )T ,

QT X4 = (M − ueM )TX 4

= (M T −M TeTuT )X 4

= M TX 4 −M TeTuTX 4

= M TX 4 − 0

= v2X 4 +X3.

Therefore, we have

QTX 2 = v2X 2,

QTX 3 = v2X 3 +X 2,

QTX 4 = v2X 4 +X 2,

...

QTX l2+1 = X l2 + v2X l2+1,

QTX l2+2 = v3X l2+2,

QTX l2+3 = X l2+1 + v3X l2+2,

...

Using the same argument as in Case 1, we can show that the set {eT ,X i, i =

2, 3, ..., n} is linearly independent. Let Y = [eT ,X i, i = 2, 3, ..., n]. Therefore,
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QTY = Y diag{[0], J2, ..., Jq}. Hence the spectrum of Q is σ(Q) = σ(QT ) =

{0, v2, v3, ..., vq}. This means the spectral radius of Q , ρ(Q) = |v2| and

ρ(H ′(u)) = ρ(
Q

λ1

) =
|v2|
λ1

< 1,

since λ1 > |v2|.

Now by Lemma 4 and Lemma 5, we can show that Algorithm 2 is Q-linear

convergent.

Theorem 21. [78] Let A, B, {x (k)} and u as in Theorem 20. Then the conver-

gence rate of sequence {x (k)} is Q-linear , i.e., there exists a vector norm || · ||

such that

lim sup
k→∞

||x (k+1) − u ||
||x (k) − u ||

< 1. (2.36)

Proof. [78] By Proposition 1, there exist an ϵ > 0 and a spectral norm || · ||ϵ ∈ N

such that

||H ′(u)||ϵ ≤ ρ(H ′(u)) + ϵ.

Then, by Lemma 5,

||H ′(u)||ϵ ≤ ρ(H ′(u)) + ϵ < 1 (2.37)

From (2.24), we have x k+1 = H (x k) for k = 1, 2, ... and u = H (u), therefore,

x (k+1) − u = H (x (k))−H (u). (2.38)

Expand x k at x using Taylor expansion,

H (x (k)) = H (u) +H ′(u)(x (k) − u) + o(||x (k) − u ||ϵ),

H (x (k))−H (u) = H ′(u)(x (k) − u) + o(||x (k) − u ||ϵ). (2.39)

Now we have

x (k+1) − u = H (x (k))−H (u) = H ′(u)(x (k) − u) + o(||x (k) − u ||ϵ),
x (k+1) − u

x (k) − u
= H ′(u),

||x (k+1) − u ||ϵ
||x (k) − u ||ϵ

= ||H ′(u)||ϵ.
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By (2.37),

lim sup
k→∞

||x k+1 − u ||ϵ
||x (k) − u ||ϵ

< 1,

hence the convergence rate of the sequence {x (k)} is linear.

2.7 Application

Algorithm 2 can be used for testing positive definiteness of a class of multivariate

forms. We denote f(x ), a homogeneous polynomial of mth degree and n variables

as

f(x ) = Axm =
n∑

i1,i2,...,m=1

ai1,i2,...,mxi1xi2 ...xim . (2.40)

The polynomial f(x ) is called positive definite if

f(x ) > 0, ∀x ∈ Rn, x ̸= 0. (2.41)

In this case, m must be even. We call A supersymmetric if its entries ai1,i2,...,m are

invariant under any permutation of their indices {i1, i2, ...,m}. The supersym-

metric tensor A is called positive definite if f(x ) is positive definite. For an even

order real supersymmetric tensor A, the eigenvalues exist [49]. Furthermore, A

is positive definite if and only if all of its real eigenvalues are positive. Therefore,

the smallest real eigenvalue of A determines the positive definiteness of tensor A.

If the smallest eigenvalue is positive, then A is positive definite.

Theorem 22. [49] The eigenvalues of supersymmetric tensor A lie in the follow-

ing n disks:

|λ− ai i...i| ≤
∑

{|ai i2...im | : i2, ..., im = 1, 2, ..., n, Ii i2...im = 0},

for i = 1, 2, ..., n.

Theorem 23. [49] Suppose that B = a(A + bI), where A is a supersymmetric

tensor, and a and b are two real numbers. Then µ = a(λ+ b) is an eigenvalue of

B if and only if λ is an eigenvalue of A.
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For any supersymmetric tensor A, let

LA = min{ai i...i − Ci : i = 1, ..., n}, (2.42)

UA = max{ai i...i + Ci : i = 1, ..., n}, (2.43)

where

Ci =
∑

{|ai i2...im| : i2, ..., im = 1, ..., n, Ii i2...im = 0}, i = 1, 2, ..., n.

By Theorem 22, LA and UA are respectively the lower and upper bounds of real

eigenvalues of A. For Algorithm 3 that will be introduced in this section, we only

consider the following type of real supersymmetric tensor A satisfying

ai1i2...im =

 > 0 if i1 = i2 = ... = im,

≤ 0 otherwise.
(2.44)

The tensor A reduces to a matrix when m = 2. The study of this form for matrix

can be found in [60].

For a real supersymmetric tensor A satisfying (2.44), let

C = UAI − A, (2.45)

where UA is defined in (2.43). Obviously, C is a nonnegative tensor. Now let λ

be the largest eigenvalue of C.

Cxm−1 = λx [m−1],

(UAI − A)xm−1 = λx [m−1].

For any eigenvalue λA of A,

Axm−1
A = λAx

[m−1]
A ,

UAx
m−1
A −Axm−1

A = −λAx
[m−1]
A + UAx

m−1
A ,

(UAI − A)xm−1
A = (UA − λA)x

[m−1]
A .

Therefore we have

λ ≥ UA − λA,

λA ≥ UA − λ.
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We know that λA is any eigenvalue of A, hence (UA−λ) is the smallest eigenvalue

of A could be.

A method was suggested in [38] for computing the smallest eigenvalue of the

tensor A which satisfies (2.44). Tensor A is positive definite if the smallest

eigenvalue is positive. Otherwise, A is not positive definite.

Algorithm 3. [38]

Step 0: If aii...i ≤ 0 for some 1 ≤ i ≤ n, then A is not positive definite. Compute

the upper bound of real eigenvalues, UA by the formula (2.43) and let C =

UAI − A.

Step 1: By using Algorithm 2, compute λ, the largest eigenvalue of C.

Step 2: Let µ = UA − λ. If µ > 0 then A is positive definite. Otherwise, A is

not positive definite.

It was shown in [38] that Algorithm 3 performed well and is promising. Three

problems were generated randomly and tested to show the efficiency of Algorithm

3.

Problem 1. [38] f(x ) = Axm is defined as

f(x ) = −

(
n∑

i=1

bixi

)m
2
(

n∑
i=1

cixi

)m
2

+
n∑

i=1

aix
m
i ,

where, bi and ci are random numbers in [0, 1] for all i = 1, 2, ..., n, ai = (bici)
m
2 +Ad

for i = 1, 2, ..., n, and Ad is a positive number. Obviously, aii...i = Ad for all

i = 1, 2, ..., n.

Problem 2. [38] f(x ) = Axm is defined as

f(x ) = −

(
n∑

i=1

bixi

)m
2
(

n∑
i=1

x
m
2
i

)
+

n∑
i=1

aix
m
i ,

where, bi is a random number in [0, 1] for all i = 1, 2, ..., n, ai = b
m
2
i + Ad for all

i = 1, 2, ..., n, and Ad is a positive number. For this problem, aii...i = Ad for all

i = 1, 2, ..., n.

Problem 3. [38] f(x ) = Axm is defined as

f(x ) = −

(
n∑

i=1

bix
m
2
i

)m
2

+
n∑

i=1

aix
m
i ,
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where, bi and ai are generated in the same way as in Problem 2.

The following tables are the numerical results of the test. In these tables, n is

the dimension and m is the order of the randomly generated problem, meanwhile

Ad is a parameter. For each (m,n,Ad), a total of 100 test problem was generated

for Problem 1, 2 and 3.. The Yes column shows the number of problems which

are positive definite and the No column shows the number of problems which are

not positive definite. Based on the numerical results, we can say that Algorithm

3 is efficient.

2.8 Conclusion

In this chapter, we discussed some properties of nonnegative real square tensors

and the methods for finding the largest eigenvalue of an irreducible tensor. The

improved method, Algorithm 2 is convergent for irreducible tensor and has Q-

linear rate of convergence under weak irreducible condition. We also provided an

example of the application which is to determine the positive definiteness of a

class of multivariate form. There are a few other methods in literature for finding

the spectral radius of nonnegative square tensors. Interested reader can find them

in [25, 70].
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Problem Problem 1 Problem 2 Problem 3

m n Ad Yes No CPU(s) Yes No CPU(s) Yes No CPU(s)

4 20 10 0 100 0.0017 0 100 0.0033 100 0 0.0037

4 20 102 0 100 0.0020 43 57 0.0033 100 0 0.0036

4 20 103 96 4 0.0020 100 0 0.0034 100 0 0.0037

4 20 104 100 0 0.0016 100 0 0.0034 100 0 0.0036

4 20 105 100 0 0.0020 100 0 0.0031 100 0 0.0039

4 40 10 0 100 0.0022 0 100 0.0042 7 93 0.0044

4 40 102 0 100 0.0020 0 100 0.0047 100 0 0.0045

4 40 103 0 100 0.0023 100 0 0.0045 100 0 0.0044

4 40 104 100 0 0.0022 100 0 0.0045 100 0 0.0045

4 40 105 100 0 0.0023 100 0 0.0042 100 0 0.0044

4 60 10 0 100 0.0030 0 100 0.0053 0 100 0.0050

4 60 102 0 100 0.0027 0 100 0.0063 100 0 0.0047

4 60 103 0 100 0.0030 69 31 0.0045 100 0 0.0052

4 60 104 1 99 0.0023 100 0 0.0052 100 0 0.0047

4 60 105 100 0 0.0025 100 0 0.0053 100 0 0.0053

4 80 10 0 100 0.0030 0 100 0.0055 0 100 0.0056

4 80 102 0 100 0.0028 0 100 0.0061 100 0 0.0056

4 80 103 0 100 0.0031 0 100 0.0058 100 0 0.0052

4 80 104 0 100 0.0025 100 0 0.0059 100 0 0.0058

4 80 105 100 0 0.0034 100 0 0.0056 100 0 0.0059

4 100 10 0 100 0.0031 0 100 0.0067 0 100 0.0063

4 100 102 0 100 0.0033 0 100 0.0077 100 0 0.0064

4 100 103 0 100 0.0034 0 100 0.0067 100 0 0.0063

4 100 104 0 100 0.0036 100 0 0.0066 100 0 0.0058

4 100 105 100 0 0.0036 100 0 0.0066 100 0 0.0064

6 20 10 0 100 0.0019 0 100 0.0039 99 1 0.0041

6 20 102 0 100 0.0017 0 100 0.0041 100 0 0.0037

6 20 103 0 100 0.0020 35 65 0.0042 100 0 0.0041

6 20 104 1 99 0.0020 100 0 0.0041 100 0 0.0036

6 20 105 95 5 0.0023 100 0 0.0041 100 0 0.0041

6 40 10 0 100 0.0023 0 100 0.0053 6 94 0.0042

6 40 102 0 100 0.0027 0 100 0.0050 100 0 0.0047

6 40 103 0 100 0.0025 0 100 0.0052 100 0 0.0045

6 40 104 0 100 0.0027 66 34 0.0053 100 0 0.0042

6 40 105 0 100 0.0025 100 0 0.0070 100 0 0.0039

Table 2.1: Output of Algorithm 3 for Problems 1-3 [38].
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Problem Problem 1 Problem 2 Problem 3

m n Ad Yes No CPU(s) Yes No CPU(s) Yes No CPU(s)

6 60 10 0 100 0.0028 0 100 0.0064 0 100 0.0047

6 60 102 0 100 0.0034 0 100 0.0061 100 0 0.0041

6 60 103 0 100 0.0028 0 100 0.0059 100 0 0.0047

6 60 104 0 100 0.0027 0 100 0.0063 100 0 0.0048

6 60 105 0 100 0.0028 100 0 0.0061 100 0 0.0048

6 80 10 0 100 0.0030 0 100 0.0072 0 100 0.0056

6 80 102 0 100 0.0031 0 100 0.0067 100 0 0.0052

6 80 103 0 100 0.0030 0 100 0.0070 100 0 0.0055

6 80 104 0 100 0.0037 0 100 0.0067 100 0 0.0053

6 80 105 0 100 0.0033 98 2 0.0070 100 0 0.0127

6 100 10 0 100 0.0036 0 100 0.0078 0 100 0.0055

6 100 102 0 100 0.0036 0 100 0.0081 100 0 0.0055

6 100 103 0 100 0.0034 0 100 0.0081 100 0 0.0055

6 100 104 0 100 0.0037 0 100 0.0081 100 0 0.0053

6 100 105 0 100 0.0037 4 96 0.0080 100 0 0.0058

8 20 10 0 100 0.0019 0 100 0.0044 100 0 0.0033

8 20 102 0 100 0.0017 0 100 0.0039 100 0 0.0034

8 20 103 0 100 0.0020 0 100 0.0041 100 0 0.0034

8 20 104 0 100 0.0019 47 53 0.0037 100 0 0.0033

8 20 105 0 100 0.0022 100 0 0.0039 100 0 0.0034

8 40 10 0 100 0.0025 0 100 0.0056 6 94 0.0034

8 40 102 0 100 0.0028 0 100 0.0053 100 0 0.0031

8 40 103 0 100 0.0025 0 100 0.0053 100 0 0.0033

8 40 104 0 100 0.0027 0 100 0.0053 100 0 0.0031

8 40 105 0 100 0.0023 8 92 0.0048 100 0 0.0036

8 60 10 0 100 0.0033 0 100 0.0064 0 100 0.0036

8 60 102 0 100 0.0041 0 100 0.0067 100 0 0.0034

8 60 103 0 100 0.0031 0 100 0.0066 100 0 0.0034

8 60 104 0 100 0.0031 0 100 0.0066 100 0 0.0036

8 60 105 0 100 0.0034 0 100 0.0061 100 0 0.0036

8 80 10 0 100 0.0037 0 100 0.0080 0 100 0.0037

8 80 102 0 100 0.0036 0 100 0.0078 100 0 0.0039

8 80 103 0 100 0.0036 0 100 0.0078 100 0 0.0041

8 80 104 0 100 0.0036 0 100 0.0080 100 0 0.0037

8 80 105 0 100 0.0045 0 100 0.0072 100 0 0.0033

Table 2.2: Output of Algorithm 3 for Problems 1-3 [38].
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Problem Problem 1 Problem 2 Problem 3

m n Ad Yes No CPU(s) Yes No CPU(s) Yes No CPU(s)

8 100 10 0 100 0.0042 0 100 0.0089 0 100 0.0042

8 100 102 0 100 0.0039 0 100 0.0091 100 0 0.0041

8 100 103 0 100 0.0041 0 100 0.0089 100 0 0.0041

8 100 104 0 100 0.0044 0 100 0.0088 100 0 0.0044

8 100 105 0 100 0.0042 0 100 0.0088 100 0 0.0042

10 20 10 0 100 0.0016 0 100 0.0041 99 1 0.0023

10 20 102 0 100 0.0022 0 100 0.0045 100 0 0.0030

10 20 103 0 100 0.0019 0 100 0.0042 100 0 0.0025

10 20 104 0 100 0.0019 0 100 0.0041 100 0 0.0023

10 20 105 0 100 0.0020 44 56 0.0042 100 0 0.0025

10 40 10 0 100 0.0025 0 100 0.0056 11 89 0.0017

10 40 102 0 100 0.0025 0 100 0.0055 100 0 0.0020

10 40 103 0 100 0.0027 0 100 0.0052 100 0 0.0022

10 40 104 0 100 0.0028 0 100 0.0053 100 0 0.0022

10 40 105 0 100 0.0028 0 100 0.0055 100 0 0.0022

10 60 10 0 100 0.0033 0 100 0.0066 0 100 0.0006

10 60 102 0 100 0.0034 0 100 0.0067 100 0 0.0006

10 60 103 0 100 0.0036 0 100 0.0069 100 0 0.0005

10 60 104 0 100 0.0042 0 100 0.0066 100 0 0.0005

10 60 105 0 100 0.0034 0 100 0.0067 100 0 0.0005

10 80 10 0 100 0.0036 0 100 0.0078 0 100 0.0008

10 80 102 0 100 0.0041 0 100 0.0075 100 0 0.0006

10 80 103 0 100 0.0041 0 100 0.0078 100 0 0.0009

10 80 104 0 100 0.0034 0 100 0.0080 100 0 0.0006

10 80 105 0 100 0.0039 0 100 0.0080 100 0 0.0006

10 100 10 0 100 0.0047 0 100 0.0089 0 100 0.0006

10 100 102 0 100 0.0047 0 100 0.0086 100 0 0.0008

10 100 103 0 100 0.0047 0 100 0.0091 100 0 0.0005

10 100 104 0 100 0.0042 0 100 0.0089 100 0 0.0009

10 100 105 0 100 0.0044 0 100 0.0091 100 0 0.0008

Table 2.3: Output of Algorithm 3 for Problems 1-3 [38].
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Chapter 3

Nonnegative Rectangular Tensors

3.1 Introduction

The class of real rectangular tensor was introduced in [7] and can be found in

the strong ellipticity condition problem in solid mechanics [28, 29, 56, 71] and

the entanglement problem in quantum physics [11, 13]. In this chapter, we study

some of the properties of real rectangular tensors and the methods for finding

the largest singular value of rectangular tensors. Most of the properties are

generalisations of those for real square tensors.

3.2 Nonnegative Rectangular Tensor

Let p, q,m and n be positive integers, and m,n ≥ 2. We call A a real (p, q)-th

order (m× n) dimensional rectangular tensor, where

A = (ai1···ipj1···jq), ai1···ipj1···jq ∈ R, 1 ≤ i1, · · · , ip ≤ m 1 ≤ j1, · · · , jq ≤ n.

(3.1)

If ai1···ipj1···jq ≥ 0 , A is called a nonnegative real rectangular tensor. If ai1···ipj1···jq >

0, A is called a positive real rectangular tensor. If m = n, A is a square tensor,

which we have discussed in previous chapter. When p = q = 1, a rectangular

tensor is reduced to an m× n rectangular matrix. Let (Ax p−1y q) ∈ Rm, where

(
Ax p−1y q

)
i
=

m∑
i2,··· ,ip=1

n∑
j1,··· ,jq=1

Aii2···ipj1,··· ,jqxi2 · · · xipyj1 · · · yjq , i = 1, 2, ...,m,
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and let (Ax py q−1) ∈ Rn, where(
Ax pyq−1

)
j
=

m∑
i1,··· ,ip=1

n∑
j2,··· ,jq=1

Ai1···ipjj2,··· ,jqxi1 · · · xipyj2 · · · yjq , j = 1, 2, ..., n.

For rectangular tensor, we set M = p+ q and N = m+ n. Let

Ax p−1y q = λx [M−1],

Ax py q−1 = λy [M−1].
(3.2)

Let C be the set of all complex numbers. We call λ ∈ C a singular value of A,

x ∈ Cm \ {0} and y ∈ Cn \ {0} are left and right eigenvectors of A, associated

with the singular value λ if λ,x and y satisfy equation (3.2). The spectral radius

of A is defined as ρ(A) = {max|λ| : λ is a singular value of A}.

For any j = 1, 2, ..., n, let A•,j = (ai1···ip,j···j) be a p-th order m-dimensional

square tensor. For any i = 1, 2, ...,m, let Ai,• = (ai···i,j1,··· ,jq) be a q-th order

n-dimensional square tensor.

Definition 12. [7, 76] A nonnegative rectangular tensor A is irreducible if all

the square tensors A•,j, j = 1, ..., n, and Ai,•, i = 1, ...,m, are irreducible.

Let A be a (p, q)th order (m × n) dimensional nonnegative rectangular tensor.

The graph G(A) = (V,E(A)) is the associated graph of tensor A. The vertex

set is V = ∪p
j=1Vj + ∪M

j=p+1Vj, with Vj = {1, 2, ...,m} for j = 1, 2, ..., p and

Vj = {1, 2, ..., n} for j = p+ 1, ...,M , M = p+ q. An edge (ik, il) ∈ Vk × Vl exists

if and only if ai1···ipj1···jq > 0 for some M−2 indices {i1, · · · , ip, j1, · · · , jq}\{ik, il}.

A tensor A is called weakly irreducible if the graph G(A) is connected [16].

Lemma 6. [7] If A is irreducible, then all the tensors A•,j, j = 1, ..., n, and Ai,•,

i = 1, ...,m, do not have eigenvalue 0.

Lemma 7. [7] If A is irreducible, then for any (x ,y) ∈ (Rm\{0})× (Rm\{0}) ,

Ax p−1y q ̸= 0 and Ax py q−1 ̸= 0.

Lemma 8. [7] Let A be nonnegative and irreducible, and let (λ, (x ,y)) ∈ R+ ×

(Rm
>0 ×Rn

>0) be a solution of (3.2). If (µ, (u , v)) ∈ R+ × ((Rm
+\{0})× (Rn

+\{0}))

satisfies

Aup−1v q ≥ (or ≤)µu [M−1], and Aupv q−1 ≥ (or ≤)µv [M−1],

then µ ≤ (or ≥)λ.
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The following is the Perron-Frobenius theorem for nonnegative rectangular tensor

which was extended in [7].

Theorem 24. [7] [35] Let A be an irreducible nonnegative rectangular tensor of

order (p, q) and dimension (m × n), then there exist λ0 > 0 and x 0 ∈ Rm
>0 and

y0 ∈ Rn
>0 such that

Ax p−1
0 y q

0 = λ0x
[M−1]
0 ,

Ax p
0y

q−1
0 = λ0y

[M−1]
0 .

(3.3)

Moreover, if λ is a singular value with strong positive left and right eigenvectors,

then λ = λ0. The strong positive left and right eigenvectors are unique up to a

multiplicative constant. |λ| ≤ λ0 for all singular values λ of A.

The minimax theorem also was extended in [7] to nonnegative rectangular tensors.

Theorem 25. [7] Assume that A is an irreducible nonnegative rectangular tensor

of order (p, q) and dimension (m× n), then

λ0 = min
(x ,y)∈(Rm

+ \{0})×(Rn
+\{0})

max
i,j

(
(Ax p−1y q)i

xM−1
i

,
(Ax py q−1)i

yM−1
j

)

= min
(x ,y)∈(Rm

+ \{0})×(Rn
+\{0})

min
i,j

(
(Ax p−1y q)i

xM−1
i

,
(Ax py q−1)i

yM−1
j

),

where λ0 is the unique positive singular value corresponding to strongly positive

left and right eigenvectors.

3.3 Algorithms

An algorithm for finding the largest singular value of irreducible nonnegative

rectangular tensor was proposed in [7]. This algorithm is an extension of the

Algorithm 1 for finding the largest eigenvalue of an irreducible nonnegative square

tensor in the previous chapter. We will study this algorithm and one of its update.

For any two vectors x ∈ Rn and y ∈ Rn,x ≥ y means that x − y ∈ Rn
+ and

x > y means x − y ∈ Rn
>0.

Lemma 9. [7] Suppose that A is a nonnegative rectangular tensor of order (p, q)

and dimension (m× n), x ∈ Rm
+ , x̄ ∈ Rm

+ ,y ∈ Rn
+, and ȳ ∈ Rn

+ are four nonneg-

ative column vectors, and t is a positive number. Then, we have
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(i) If x ≥ x̄ ≥ 0 and y ≥ ȳ ≥ 0, then Ax p−1y q ≥ Ax̄p−1ȳ q and Ax py q−1 ≥

Ax̄ pȳ q−1.

(ii) A(tx )p−1(ty)q = tM−1Ax p−1y q and A(tx )p(ty)q−1 = tM−1Ax py q−1.

Lemma 10. [7] Suppose that A is a nonnegative irreducible rectangular tensor

of order (p, q) and dimension (m×n). Then, for any two strongly positive vectors

x ∈ Rm
>0 and y > 0,x ∈ Rn

>0, Ax p−1y q > 0 and Ax py q−1 > 0, which means

Ax p−1y q and Ax py q−1 are strongly positive vectors.

The Theorem 26 below will be the foundation for Algorithm 4.

Theorem 26. [7] Suppose that A is a nonnegative irreducible rectangular tensor

of order (p, q) and dimension (m × n). Let x (0) ∈ Rm
>0 and y (0) ∈ Rn

>0 are

two arbitrary strongly positive vectors. Let ξ(0) = A(x (0))p−1(y (0))q and η(0) =

A(x (0))p(y (0))q−1. Define

x (1) =

(
ξ(0)
)[ 1

M−1 ]

∥ (ξ(0),η(0))[
1

M−1 ] ∥
,

y (1) =

(
η(0)

)[ 1
M−1 ]

∥ (ξ(0),η(0))[
1

M−1 ] ∥
,

ξ(1) = A(x (1))p−1(y (1))q,

η(1) = A(x (1))p(y (1))q−1,

...

x (k+1) =

(
ξ(k)
)[ 1

M−1 ]

∥ (ξ(k),η(k))[
1

M−1 ] ∥
,

y (k+1) =

(
η(k)

)[ 1
M−1 ]

∥ (ξ(k),η(k))[
1

M−1 ] ∥
,

ξ(k+1) = A(x (k+1))p−1(y (k+1))q,

η(k+1) = A(x (k+1))p(y (k+1))q−1,

...

for k ≥ 1 and let

λk = min
x
(k)
i >0,y

(k)
j >0

(
ξ
(k)
i

(x
(k)
i )M−1

,
η
(k)
j

(y
(k)
j )M−1

)
,

λ̄k+1 = max
x
(k)
i >0,y

(k)
j >0

(
ξ
(k)
i

(x
(k)
i )M−1

,
η
(k)
j

(y
(k)
j )M−1

)
,
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for k = 1, 2, ... . Assume that λ0 is the unique positive singular value of A. Then,

λ1 ≤ λ2 ≤ · · · ≤ λ0 ≤ · · · λ̄2 ≤ λ̄1. (3.4)

We state here the algorithm for calculating the largest singular value of nonneg-

ative irreducible rectangular tensor [7].

Algorithm 4. [7]

Step 0: Choose x (0) ∈ Rm
+ ,x

(0) ̸= 0, and y (0) ∈ Rn
+,y

(0) ̸= 0. Let ξ(0) =

A(x (0))p−1(y (0))q and η(0) = A(x (0))p(y (0))q−1. Set k = 0.

Step 1: Compute

x (k+1) =

(
ξ(k)
)[ 1

M−1 ]

∥(ξ(k),η(k))[
1

M−1 ]∥
,

y (k+1) =

(
η(k)

)[ 1
M−1 ]

∥(ξ(k),η(k))[
1

M−1 ]∥
,

ξ(k+1) = A(x (k+1))p−1(y (k+1))q,

η(k+1) = A(x (k+1))p(y (k+1))q−1.

Let

λk+1 = min
x
(k+1)
i >0,y

(k+1)
j >0

(
ξ
(k+1)
i

(x
(k+1)
i )M−1

,
η
(k+1)
j

(y
(k+1)
j )M−1

)
,

λ̄k+1 = max
x
(k+1)
i >0,y

(k+1)
j >0

(
ξ
(k+1)
i

(x
(k+1)
i )M−1

,
η
(k+1)
j

(y
(k+1)
j )M−1

)
.

Step 2: If λ̄k+1 = λk+1, then stop. Otherwise, replace k by k+1 and go to Step

1.

Theorem 27. [7] Suppose that A is a nonnegative irreducible rectangular tensor

of order (p, q) and dimension (m × n). Assume that λ0 is the unique positive

singular value ofA. Then, Algorithm 4 produces the value of λ0 in a finite number

of steps, or generates two convergent sequences {λk} and {λ̄k}. Furthermore, let

λ = limk→+∞ λk and λ̄ = limk→+∞ λ̄k. Then, λ and λ̄ are lower bound and upper

bound of λ0, respectively. If λ = λ̄, then λ0 = λ = λ̄.
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However, Theorem 27 only states that Algorithm 4 produces two convergent

sequences {λk} and {λ̄k}. It does not show that {λk} and {λ̄k} converge to λ0. A

modified version of Algorithm 4 was presented in [76] and it was proven that the

modified algorithm converged for any nonnegative irreducible rectangular tensor.

For a rectangular tensor A, let ρ > 0,x ∈ Rm
+ , y ∈ Rn

+ and

Bx (x ,y) = Ax p−1y q + ρx [M−1], (3.5)

By(x ,y) = Ax py q−1 + ρy [M−1]. (3.6)

By Theorem 24 and Theorem 25 , we can get the following result [76]:

Theorem 28. [76] If A is a irreducible nonnegative rectangular tensor of order

(p, q) and dimension (m × n), then there exist µ0 > 0,x 0 ∈ Rm
>0 and y0 ∈ Rn

>0

such that

Bx (x 0,y0) = µ0x
[M−1]
0 ,

By(x 0,y0) = µ0y
[M−1]
0 .

(3.7)

Moreover, µ0 satisfies the following equalities:

µ0 = min
(x ,y)∈(Rm

+ \{0})×(Rn
+\{0})

max
i,j

(
Bx (x ,y)i

x
[M−1]
i

,
By(x ,y)j

y
[M−1]
j

)

= max
(x ,y)∈(Rm

+ \{0})×(Rn
+\{0})

min
i,j

(
Bx (x ,y)i

x
[M−1]
i

,
By(x ,y)j

y
[M−1]
j

)
,

and µ0 − ρ is the largest singular value of A.

The polynomials (3.7) are monotone and homogeneous.

Lemma 11. [76] For any x , x̄ ∈ Rm
+ ,y , ȳ ∈ Rn

+ and t > 0, we have the following

results:

(i) If x ≥ x̄ and y ≥ ȳ , then Bx (x ,y) ≥ Bx (x̄ , ȳ) and By(x ,y) ≥ By(x̄ , ȳ). Fur-

thermore, if xi > x̄i for some 1 ≤ i ≤ m, then Bx (x ,y)i > Bx (x̄ , ȳ)i. Similarly,

if yj > ȳj for some i ≤ j ≤ n, then By(x ,y)j > By(x̄ , ȳ)j.

(ii) Bx (tx , ty) = tM−1Bx (x ,y) and By(tx , ty) = tM−1By(x ,y)

Lemma 12. [76] For any x ∈ Rm
+ ,y ,∈ Rn

+ and ρ > 0, Bx (x ,y) and By(x ,y) are

strongly positive vectors.
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For all vectors x ∈ Rm
+ \ {0} and y ∈ Rn

+ \ {0}, define the sequences {B(k)
x (x ,y)}

and {B(k)
y (x ,y)} as

B(1)
x (x ,y) = Bx (x ,y), B(1)

y (x ,y) = By(x ,y),

a(1) =
(
B(1)
x (x ,y)

)[ 1
M−1 ], b(1) =

(
B(1)
y (x ,y)

)[ 1
M−1 ],

B(2)
x (x ,y) = Bx (a

(1), b(1)), B(2)
y (x ,y) = By(a

(1), b(1))

...

a(k) =
(
B(k−1)
x (x ,y)

)[ 1
M−1 ], b(k) =

(
B(k−1)
y (x ,y)

)[ 1
M−1 ], k ≥ 1,(3.8)

B(k+1)
x (x ,y) = Bx (a

(k), b(k)), B(k+1)
y (x ,y) = By(a

(k), b(k)), k ≥ 1

The following useful results are given by [76]:

Theorem 29. [76] Suppose that A is an irreducible nonnegative (p, q)th order

(m × n) dimensional rectangular tensor. Then there exists a positive integer s

such that B(s)
x (x ,y) ∈ Rm

>0 and B(s)
y (x ,y) ∈ Rn

>0 for any x ∈ Rm
+ \ {0} and

y ∈ Rn
+ \ {0}.

Theorem 30. [76] Let A be an irreducible nonnegative (p, q)th order (m × n)

dimensional rectangular tensor. Suppose x 1,x 2 ∈ Rm
+ \ {0}, x 1 ≥ x 2, and

y1,y2 ∈ Rn
+ \ {0}, y1 ≥ y2. If x1

i0
< x2

i0
for some 1 ≤ i0 ≤ m, or y1j0 < y2j0 for

some 1 ≤ j0 ≤ n, then there exists a positive integer s such that B(s)
x (x 1,y1) <

B(s)
x (x 2,y2) and B(s)

y (x 1,y1) < B(s)
y (x 2,y2).

We state here the modified algorithm for finding µ0, the largest singular value of

an irreducible rectangular tensor.

Algorithm 5. [76]

Step 0: Choose ρ > 0, x (1) > 0, and y (1) > 0. Set k := 1.

Step 1: Compute
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ξ(k) = Bx (x
(k),y (k)),

η(k) = By(x
(k),y (k)).

Let

µ
k

= min
x
(k)
i >0,y

(k)
j >0

(
ξ
(k)
i

(x
(k)
i )M−1

,
η
(k)
j

(y
(k)
j )M−1

)
,

µ̄k+1 = max
x
(k)
i >0,y

(k)
j >0

(
ξ
(k)
i

(x
(k)
i )M−1

,
η
(k)
j

(y
(k)
j )M−1

)
.

Step 2: If µ̄k = µ
k
, then stop. Otherwise, compute

x (k+1) =

(
ξ(k)
)[ 1

M−1 ]

∥(ξ(k),η(k))[
1

M−1 ]∥
,

y (k+1) =

(
η(k)

)[ 1
M−1 ]

∥(ξ(k),η(k))[
1

M−1 ]∥
,

replace k by k + 1 and go to Step 1.

This algorithm is proven to be convergent [76]. First, we give some results which

are important in proving the convergence of Algorithm 5.

Lemma 13. [76] Suppose {x (k)}, {y (k)}, {ξ(k)}, {η(k)} are the sequences pro-

duced by Algorithm 5. Then,

(i) For any k ≥ 1,x (k) > 0, y (k) > 0 ,ξ(k) > 0 ,η(k) > 0.

x (k+1)[M−1]
=

(
ξ(k)
)

∥(ξ(k),η(k))∥
,

y (k+1)[M−1]
=

(
η(k)

)
∥(ξ(k),η(k))∥

(ii) For any positive integer s,

B(s)
x (x (k),y (k)) = ∥(ξ(k),η(k))∥ · · · ∥(ξ(k+s−2),η(k+s−2))∥ξ(k+s−1),

B(s)
y (x (k),y (k)) = ∥(ξ(k),η(k))∥ · · · ∥(ξ(k+s−2),η(k+s−2))∥η(k+s−1),

B(s)
x (e (k), f (k)) = ∥(ξ(k),η(k))∥ · · · ∥(ξ(k+s−1),η(k+s−1))∥ξ(k+s),

B(s)
y (e (k), f (k)) = ∥(ξ(k),η(k))∥ · · · ∥(ξ(k+s−1),η(k+s−1))∥η(k+s),

where e (k) = ξ(k)
[ 1
M−1 ], f (k) = η(k)[

1
M−1 ], and B(s)

x and B(s)
y are defined in (3.8).
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Theorem 31. [76] Assume that (µ0,x 0,y0) is a solution of (24). Then,

ρ < µ
1
≤ µ

2
≤ · · · ≤ µ

0
≤ · · · ≤ µ̄2 ≤ µ̄1.

We can see that the sequence {µ
k
} is monotonically increasing. Since the se-

quence has an upper bound, the limit exists. Similarly, the sequence {µ̄k} is

monotonically decreasing. Since it has a lower bound, the limit also exists. Sup-

pose µ = limk→∞ µ
k
and µ̄ = limk→∞ µ̄k, then ρ < µ ≤ µ0 ≤ µ̄ by Theorem

31.

Theorem 32. [76] Let {x (k)}, {y (k)}, {ξ(k)}, {η(k)} be the sequences produced

by Algorithm 5. Then,

(i) {x (k)} and {y (k)} have convergent subsequences which converges to x ∗ and y∗,

respectively. Moreover, x ∗ ∈ Rm
+ \ {0} and y∗ ∈ Rn

+ \ {0}

(ii) Bx (x
∗,y∗) ≥ µ(x ∗)[M−1] and By(x

∗,y∗) ≥ µ(y∗)[M−1]

(iii) µ = µ̄.

We have the following convergence result of Algorithm 5.

Theorem 33. [76] Suppose that a nonnegative (p, q)-th order (m×n) dimensional

rectangular tensor A is irreducible. Assume that (µ0,x 0,y0) is a solution of

(24). Then, Algorithm 5 produces the value of µ0 in a finite number of steps,

or generates two convergent sequences {µ
k
} and {µ̄k}, both of which converge to

µ0. Furthermore, µ0 − ρ is the largest singular value of A.

Now we show that Algorithm 5 converges under weak irreducibility condition.

This is the main contribution of this chapter.

Theorem 34. Suppose that a nonnegative (p, q)-th order (m × n) dimensional

rectangular tensor A is weakly irreducible. Assume that (µ0,x 0,y0) is a solution

of (24). Then, Algorithm 5 produces the value of µ0 in a finite number of steps,

or generates two convergent sequences {µ
k
} and {µ̄k}, both of which converge to

µ0. Furthermore, µ0 − ρ is the largest singular value of A.

Define the polynomial map P = (P1, ..., PN)
T : RN

+ → RN
+ by

P(z ) =

 Ax p−1y q

Ax py q−1

 , (3.9)
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with N = m+n, z =

 x

y

. Let Pi be a polynomial of degree di ≥ 1 , and the

coefficient of each monomial in Pi is nonnegative.

The associated graph of P is the directed graph G(P) = (V,E(P)), where V =

{1, 2, ..., N} and (i, j) ∈ E(P) if the coefficient of variable zj appears in the

expression of Pi, or if this expression contains a monomial with degree less than

di.

Definition 13. [16] Let P = (P1, ..., PN)
T : RN → RN be a polynomial map,

where each Pi a homogeneous polynomial of degree d ≥ 1 with nonnegative

coefficients. We say P is weakly irreducible if G(P) is strongly connected. If the

directed graph G(P) is strongly connected and the great common divisor (g.c.d.)

of the lengths of its circuits is equal to one then we say P is weakly primitive.

Another way to check the g.c.d. of the lengths of a graph is by observing the

diagonal of its associated matrix. An irreducible matrix has a nonzero main

diagonal entry if and only if the associated directed graph has a loop, a closed

path of length one.

We can show P is weakly primitive by proving the associated matrix of its graph

is primitive. Let M (G(P)) be the associated matrix of graph G(P). We say

M (G(P)) is primitive if the graph G(P) is strongly connected and its g.c.d. of

the lengths is equal to one.

Definition 14. We say A is weakly irreducible if P is weakly irreducible.

Define

B(z ) =

 Ax p−1y q + ρx [M−1]

Ax py q−1 + ρy [M−1]

 , (3.10)

and let

I(z ) =

 ρx [M−1]

ρy [M−1]

 . (3.11)

Now B(z ) = P(z ) + I(z ).
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Lemma 14. If A is a weakly irreducible nonnegative (p, q)-th order (m × n)

dimensional rectangular tensor then B(z ) is weakly primitive.

Proof. SinceA is weakly irreducible thenP(z ) is a weakly irreducible polynomial.

By Definition 13, the graph of P(z ), G(P(z )) is strongly connected. By Theorem

5, the matrix of G(P(z )) is irreducible. We know that G(I(z )), graph of I(z ) is

a graph with self-loop at each vertices. Then, the matrix of G(I(z )) is a diagonal

matrix. Hence, by Corollary 1, the matrix of G(B(z )) is primitive. By Theorem

6, G(B(z )) is strongly connected and has g.c.d. equals to 1. This implies B(z ) is

weakly primitive by Definition 13.

Now we can prove Theorem 34.

Proof. By Lemma 14 and Corollary 5.1 [16], Algorithm 5 converges.

3.4 Rate of convergence

In this section, we show that Algorithm 5 is Q-linear convergent when A is a

nonnegative weakly irreducible rectangular tensor of order (p, q) and dimension

(m× n). We use the same argument as in [78].

Define

F (z ) = B(z ) =

 Ax p−1y q + ρx [M−1]

Ax py q−1 + ρy [M−1]

 , (3.12)

G(z ) = F (z )[
1

M−1
], (3.13)

H (z ) =
G(z)

ϕ(G(z ))
, (3.14)

where ϕ : RN
+ → R+ is defined by

ϕ(z ) = ||z ||1 =
N∑
i=1

zi, (3.15)

for any nonnegative z ∈ RN
+ . We can see that the sequence {z (k)} in Algorithm

5 is generated by

z (k+1) = H (z (k)), k = 1, 2, ..., (3.16)

and ϕ(z(k)) = 1 for all k = 1, 2, ...
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Lemma 15. Let A, µ0, x 0 and y0 be as in Theorem 34, and let H ′(z 0) be the

Jacobian of the function H at z 0. Then,

ρ(H ′(z 0)) < 1.

Proof. Let µ0 be the largest singular value of B and z 0 be the corresponding

eigenvector. We have H (z 0) = G(z 0)/ϕ(G(z 0)). We want to show

ρ(H ′(z 0)) = ρ(
G′(z 0)ϕ(G(z 0))−G(z 0)ϕ

′(G(z 0))

ϕ2(G(z 0))
) < 1.

We haveF (z 0) = B(z 0) = µ0z
[M−1]
0 and ϕ(z 0) = 1. Hence,G(z 0) = (F (z 0))

[ 1
M−1

] =

µ
[ 1
M−1

]

0 z 0. Let µ1 = µ
[ 1
M−1

]

0 so we have

G(z 0) = µ1z 0. (3.17)

Now we compute G ′(z 0), the Jacobian of G at z 0. Let

G(z 0) = (F (z 0))
[ 1
M−1

]

=


(F1(z 0))

[ 1
M−1

]

(F2(z 0))
[ 1
M−1

]

...

(FN(z 0))
[ 1
M−1

]

 ,

∇((F1(z 0))
[ 1
M−1

]) =
1

M − 1
(F1(z 0))

[ 2−M
M−1

]∇F1(z 0).

By the same method, we can get

∇((Fi(z 0))
[ 1
M−1

]) =
1

M − 1
(Fi(z 0))

[ 2−M
M−1

]∇Fi(z 0) for i = 1, 2, ..., N.
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Thus the Jacobian of G at z 0,

G ′(z 0) = ∇((F (z 0))
[ 1
M−1

]) =


∇((F1(z 0))

[ 1
M−1

])

∇((F2(z 0))
[ 1
M−1

])
...

∇((FN(z 0))
[ 1
M−1

])



=


1

M−1
(F1(z 0))

[ 2−M
M−1

]∇F1(z 0)

1
M−1

(F2(z 0))
[ 2−M
M−1

]∇F2(z 0)
...

1
M−1

(FN(z 0))
[ 2−M
M−1

]∇FN(z 0)



=


1

M−1
(F1(z 0))

[ 2−M
M−1

] 0
. . .

0 1
M−1

(FN(z 0))
[ 2−M
M−1

]




∇F1(z 0)

∇F2(z 0)
...

∇FN(z 0)


= diag(

1

M − 1
(F (z 0))

[ 2−M
M−1

])F ′(z 0)

= diag(
1

M − 1
(µ0z

[M−1]
0 )[

2−M
M−1

])F ′(z 0)

=
1

M − 1
diag((µ0z

[M−1]
0 )[

2−M
M−1

])F ′(z 0)

=
1

M − 1
diag((µ

1
[M−1]

0 z 0)
[2−M ])F ′(z 0)

=
1

M − 1
diag((µ1z 0)

[2−M ])F ′(z 0),

where 1
M−1

diag((µ1z 0)
[2−M ]) is a constant with µ1 > 0 and z 0 is a positive vector.

Thus G(G ′(z 0)) = G(F ′(z 0)). By Theorem 29, G ′(z 0) is a primitive matrix.

Since G ′(z 0) is a primitive matrix, the eigenvalues v1, v2, ..., vN of G ′(z 0) can be

ordered as follows.

v1 = ρ(G ′(u)) > |v2| ≥ |v3| ≥ ... ≥ |vN |. (3.18)

Note that v1 = µ1. For all t > 1, we expand G(tz 0) about z 0 using the Taylor’s

Series,
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tµ1z 0 = G(tz 0)

= G(z 0) +G ′(z 0)(tz 0 − z 0) + o(||tz 0 − z 0||)

= G(z 0) + (t− 1)G ′(z 0)z 0 + o(||(t− 1)z 0||

= µ1z 0 + (t− 1)G ′(z 0)z 0 + o((t− 1)||z 0||),

= µ1z 0 + (t− 1)G ′(z 0)z 0 + o(t− 1),

tµ1z 0 − µ1z 0 = (t− 1)G ′(z 0)z 0 + o(t− 1),

(t− 1)µ1z 0 = (t− 1)G ′(z 0)z 0 + o(t− 1),

which implies G ′(z 0)z 0 = µ1z 0. Since G ′(z 0) is a primitive matrix and z 0 >

0, by Theorem 7, z 0 is an eigenvector of G ′(z 0) associated with the largest

eigenvalue µ1 = v1. From (3.15) and (3.18),

ϕ(G(z 0)) = ϕ(µ1z 0)

=
N∑
i=1

(µ1(z 0)i)

= µ1

N∑
i=1

((z 0)i)

= µ1ϕ(z 0)

= µ1(1)

= µ1.

We also have

ϕ(G(z 0)) = G1(z 0) +G2(z 0) + ...+GN(z 0),

ϕ′(G(z 0)) = G′
1(z 0) +G′

2(z 0) + ...+G′
N(z 0)

=
(

1 1 · · · 1
)


G′
1(z 0)

G′
2(z 0)
...

G′
N(z 0)


= eG ′(z 0),

56



where e is the row vector of all ones with N -dimension. Thus, from (3.14),

H (z 0) =
G(z 0)

ϕ(G(z 0))
,

H ′(z 0) =
G ′(z 0)ϕ(G(z 0))−G(z 0)ϕ

′(G(z 0))

ϕ2(G(z 0))

=
G ′(z 0)µ1 −G(z 0)ϕ

′(G(z 0))

µ2
1

=
G ′(z 0)µ1 −G(z 0)eG

′(z 0)

µ2
1

=
G ′(z 0)

µ1

− G(z 0)e G ′(z 0)

µ2
1

=
G ′(z 0)

µ1

− µ1z 0eG
′(z 0)

µ2
1

=
G ′(z 0)− z 0e G ′(z 0)

µ1

.

Let M = G ′(z 0) and Q = M − z 0eM . Now we have H ′(z 0) = (Q/µ1). In this

proof, we want to show

ρ(H ′(z 0)) = ρ(
Q

µ1

) < 1.

In order to do that, first, show that the spectral radius of Q is equal to |v2|. How-

ever, it is enough to prove that the spectrum of Q is σ(Q) = {0, v2, v3, ..., vN}.

We have

ϕ(z 0) = 1

= (z0)1 + (z0)2 + ...+ (z0)N

=
(

1 1 · · · 1
)


(z0)1

(z0)2
...

(z0)N


= ez 0,
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hence ez 0 = 1, therefore

Q = M − z 0eM ,

QTeT = (M − z 0eM )TeT

= MeT −M TeTz T
0 e

T

= MeT −M TeT (ez 0)
T

= MeT −M TeT (1)

= 0.

Now we can say eT is an eigenvector of QT associated with the eigenvalue 0.

We consider two cases for M T .

Case 1: The matrixM T = G ′(z 0)
T is diagonizable, which means,M T is semisim-

ple. For i = 2, 3, ..., N , we suppose M Tw i = viw
i, that is w i is an eigenvector

of M T associated with the eigenvalue vi. We also assume the set of eigenvector

{w i : i = 2, 3, ..., N} is linearly independent. Therefore, for i = 2, 3, ..., N,

viz
T
0w

i = z T
0 viw

i = z T
0M

Tw i.

We have previously G ′(z 0)z 0 = Mz 0 = µ1z 0. So,

(Mz 0)
T = (µ1z 0)

T ,

z T
0M

T = µ1z
T
0 . (3.19)

Hence,

viz
T
0w

i = z T
0M

Tw i = µ1z
T
0w

i,

(vi − µ1)z
T
0w

i = 0.

It is either vi = µ1 or z T
0w

i = 0 for i = 2, 3, ..., N . However, vi ̸= µ1 for

i = 2, 3, ..., N by (3.18). So we must have z T
0w

i = 0.

Now we have

QTw i = (M − z 0eM )Tw i

= (M T −M TeTz T
0 )w

i

= M Tw i −M TeTz T
0w

i

= M Tw i − 0.
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Since we assume M Tw i = viw
i, we have QTw i = viw

i. The vector w i is an

eigenvector of QT associated with the eigenvalue vi for i = 2, 3, ..., N . Now we

prove the set {eT ,w i, i = 2, 3, ..., N}, which is the set of eigenvectors of Q is

linearly independent. We assume

α1e
T + α2w

2 + ...+ αnw
N = 0, (3.20)

and vi ̸= 0 for i = 2, 3, ..., p and vj = 0 for j = p+ 1, ..., N . We have

QTeT = 0eT ,

QTw i = viw
i, i = 2, 3, ..., N.

Therefore,

QTeT +QTw 2 + ...+QTwN = 0eT + v2w
2 + ...+ vpw

p,

α1Q
TeT + α2Q

Tw 2 + ...+ αNQ
TwN = α2v2w

2 + ...+ αpvpw
p. (3.21)

From (3.20),

QT (α1e
T + α2w

2 + ...+ αnw
N) = 0,

α1Q
TeT + α2Q

Tw 2 + ...+ αNQ
TwN = 0.

Hence the right side of (3.21) became,

0 = α2v2w
2 + ...+ αpvpw

p.

Since set {w i, i = 2, 3, ..., N} is linearly independent, α2 = α3 = ... = αp = 0. By

(3.20),

α1e
T + αp+1w

p+1 + ...+ αNw
N = 0, (3.22)

M T (α1e
T + αp+1w

p+1 + ...+ αNw
N) = 0,

α1M
TeT + αp+1M

Tw p+1 + ...+ αNM
TwN = 0.

Since M Tw i = viw
i and vj = 0 for j = p+ 1, ..., N ,

α1M
TeT + αp+1vp+1w

p+1 + ...+ αNvNw
N = 0, (3.23)

α1M
T eT = 0. (3.24)
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We have α1 = 0 since M TeT > 0 because M is diagonalizable. Hence, by (3.22),

αp+1w
p+1 + ...+ αNw

N = 0. (3.25)

We know that the set {w i, i = p + 1, ..., N} is linearly independent, therefore

αp+1 = ... = αN = 0. Now we have, α1 = α2 = ... = αN = 0 which means the set

of eigenvectors of Q , {eT ,w i, i = 2, 3, ..., N} is linearly independent. Hence the

spectrum of Q is σ(Q) = {0, v2, v3, ..., vN}.

Case 2: The matrix M T is not diagonalizable or defective. A defective N × N

matrix has less than N distinct eigenvalues. Suppose M T has q < N distinct

eigenvalues v1 = µ1, v2, ..., vq, and these eigenvalues can be ordered as follows.

v1 = µ1 > |v2| ≥ |v3| ≥ ... ≥ |vq|. (3.26)

Then, M T has the form M T = XJX−1, where J = diag{J 1,J 2, ...,J q} is in

canonical form. Let the square matrices J i, i = 1, 2, ..., q be the Jordan blocks

with various sizes in the form of

J i =



vi 1

vi 1

vi
. . .

. . . 1

vi


,

where vi is an eigenvalue of M T . Set J 1 = [µ1] and X i is the i-th column vector

of X , i = 1, 2, ..., N. Let li be the size of J i for each Jordan block Ji, where

i = 1, 2, ..., q. We have M T = XJX−1, hence

M TX = XJ ,

M T
(

X 1 X 2 X 3 X 4 · · ·
)
=

(
X 1 X 2 X 3 X 4 · · ·

)


µ1 1

v2 1

v2
. . .

v2 1
. . .


.
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Since we consider J i, where i = 1, 2, ..., q,

M TX 2 = X 1 + v2X 2,

M TX 3 = X 2 + v2X 3,

M TX 4 = X 3 + v2X 4,

...

M TX l2+1 = X l2 + v2X l2+1,

M TX l2+2 = v3X l2+2,

M TX l2+3 = X l2+1 + v3X l2+2,

...

Same as in Case 1, since we have M TX 2 = v2X 2 and (3.19), then,

v2z
T
0X 2 = z T

0 v2X 2 = z T
0M

TX 2 = µ1z
T
0X 2,

(v2 − µ1)z
T
0X 2 = 0.

By (3.26), v2 ̸= µ1. Thus, z
T
0X 2 = 0. Hence,

QT = (M − z 0eM )T ,

QTX 2 = (M − z 0eM )TX 2

= (M T −M TeTz T
0 )X 2

= M TX 2 −M TeTz T
0X 2

= M TX 2 − 0

= v2X 2,

which means X 2 is an eigenvector of QT associated with eigenvalue v2. Since

M TX 3 = v2X 3 +X 2,

v2z
T
0X 3 = z T

0 v2X 3

= z T
0 (M

TX 3 −X 2)

= z T
0M

TX 3 − z T
0X 2

= z T
0M

TX 3 − 0,
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and by (3.19), v2z
T
0X 3 = (µ1z

T
0 )X 3. Now we get (v2 − µ1)z

T
0X 3 = 0. We have

z T
0X 3 = 0 since v2 ̸= µ1 by (3.26). Hence,

QT = (M − z 0eM )T ,

QTX 3 = (M − z 0eM )TX 3

= (M T −M TeTz T
0 )X 3

= M TX 3 −M TeTz T
0X 3

= M TX 3 − 0

= v2X 3 +X 2.

Similarly, v2z
T
0X 4 = z T

0 v2X 4 = z T
0 (M

TX 4 − X 3) = z T
0M

TX 4 − z T
0X 3. But

we have shown z T
0X 3 = 0 and we also have (3.19). Therefore v2z

T
0X 4 =

z T
0M

TX 4 = (µ1z
T
0 )X 4. Thus (v2 − µ1)z

T
0X 4 = 0. By (3.26), z T

0X 4 = 0.

Then,

QT = (M − z 0eM )T ,

QTX 4 = (M − z 0eM )TX 4

= (M T −M TeTuT )X 4

= M TX 4 −M TeTz T
0X 4

= M TX 4 − 0

= v2X 4 +X 3.
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Hence,

QTX 2 = v2X 2,

QTX 3 = v2X 3 +X 2,

QTX 4 = v2X 4 +X 2,

...

QTX l2+1 = X l2 + v2X l2+1,

QTX l2+2 = v3X l2+2,

QTX l2+3 = X l2+1 + v3X l2+2,

...

Same as in Case 1, we show that the set {eT ,X i, i = 2, 3, ..., N} is linearly inde-

pendent. LetY = [eT ,X i, i = 2, 3, ..., N ]. Therefore,QTY = Y diag{[0],J 2, ...,J q}.

Now we have the spectrum ofQ , σ(Q) = σ(QT ) = {0, v2, v3, ..., vq}, which means,

we have the spectral radius of Q , ρ(Q) = |v2|. Hence,

ρ(H ′(z 0)) = ρ(
Q

µ1

) =
|v2|
µ1

< 1,

since µ1 > |v2|.

Now we can prove that Algorithm 5 is Q-linear convergent if A is a weakly

irreducible nonnegative rectangular tensor.

Theorem 35. Let A and {z (k)
0 } be as in Theorem 34. Then the convergence

rate of sequence {z (k)
0 } is Q-linear , i.e., there exists a vector norm || · || such that

lim sup
k→∞

||z (k+1) − z 0||
||z (k) − z 0||

< 1. (3.27)

Proof. By Proposition 1, there exist an ϵ > 0 and a spectral norm || · ||ϵ ∈ N such

that

||H ′(z 0)||ϵ ≤ ρ(H ′(z 0)) + ϵ.

Then, by Lemma 15,

||H ′(z 0)||ϵ ≤ ρ(H ′(z 0)) + ϵ < 1. (3.28)
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Therefore, by equation (3.16), z k+1 = H (z k) for k = 1, 2, ... and z 0 = H (z 0).

Hence,

z (k+1) − z 0 = H (z (k))−H (z 0). (3.29)

Expand z k at z 0 using Taylor expansion,

H (z (k)) = H (z 0) +H ′(z 0)(z
(k) − z 0) + o(||z (k) − z 0||ϵ),

H (z (k))−H (z 0) = H ′(z 0)(z
(k) − z 0) + o(||z (k) − z 0||ϵ), (3.30)

and we have

z (k+1) − z 0 = H (z (k))−H (z 0) = H ′(z 0)(z
(k) − z 0) + o(||z (k) − z 0||ϵ),

z (k+1) − z 0

z (k) − z 0

= H ′(z 0),

||z (k+1) − z 0||ϵ
||z (k) − z 0||ϵ

= ||H ′(z 0)||ϵ.

From equation (3.28), we obtain

lim sup
k→∞

||z k+1 − z 0||ϵ
||z (k) − z 0||ϵ

< 1,

therefore, the sequence {z (k)} has the convergence rate of Q-linear.

3.5 Conclusion

In this chapter, we studied the rectangular tensors and its largest singular value.

Algorithms for finding the largest singular value of rectangular tensors were also

discussed. We also proved that the modified algorithm as proposed in [76] was

convergent under weak irreducibility condition and has Q-linear rate of conver-

gence. The study of rectangular tensor is relatively new. The latest development,

a variant of Algorithm 4 has emerged and it was presented in [73] and proven to

be convergent under some assumption.
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Chapter 4

Nonnegative Polynomial

Eigenvalue Problem

4.1 Introduction

In this chapter, we consider the polynomial eigenvalue problem [4], which has a

wide range of applications such as in higher-order Markov chains [43], spectral

hypergraph theory [36], medical resonance imaging [54, 5], positive definiteness

of even-order multivariate forms in automatical control [44], best-rank one ap-

proximation in data analysis [34, 30, 53], population biology [46], mathematical

economics [8, 42], discrete event systems [3, 22], idempotent analysis [12, 32],

stochastic control [31] and game theory [57].

In Chapter 2, we studied a method for computing the largest eigenvalue of a

nonnegative square tensor and its version which is convergent for irreducible

tensors. This method was an extension of the Collatz method for finding the

largest spectral radius of an irreducible nonnegative matrix [10, 60, 64], which we

have discussed in Chapter 1. The methods in Chapter 2 also were extended to

irreducible nonnegative rectangular tensors which were discussed in Chapter 3.

However, all the methods in the previous chapters are for homogeneous polyno-

mials, it is unknown if these methods can be used to solve the eigenvalue problem

of nonhomogeneous polynomials. In this chapter, we propose an algorithm for

finding the largest eigenvalue of a nonhomogeneous nonnegative polynomial.
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4.2 Nonnegative Polynomials

Let P = (P1, ..., Pn)
T : Rn → Rn be a polynomial map

Pi(x ) =
∑
α∈Rn

+

aiαx
α, i = 1, ..., n, (4.1)

where α = (α1, · · · , αn) is a multi-index, aiα = aiα1···αn , x
α = xα1

1 · · · xαn
n and

the degree of each monomial is |α| = α1 + α2 + ... + αn. For each Pi, if di is

the maximum degree of its monomials, then di is the degree of Pi . We call P a

nonnegative polynomial if aiα ≥ 0 for each aiα. The associated graph of P is the

directed graph G(P) = (V,E(P)), where V = {1, 2, ..., n} and (i, j) ∈ E(P) if

the variable xj appears in the expression of Pi or if Pi contains a monomial with

degree less than di.

Definition 15. [16] P is weakly irreducible if the graph G(P) is strongly con-

nected. If the graph G(P) is strongly connected and the greatest common divider

(g.c.d.) of the length of the circuits is equal to one, P is weakly primitive.

Let I ⊂ {1, 2, ..., n} where part QI = {x ∈ Rn
+ : xi > 0, i ∈ I}. The polynomial

map P is irreducible if there is no part of Rn
+ that is invariant by P , except parts

Q∅ and Q{1,2,...,n}. Part QI is invariant by P if for all x ∈ QI ,P(x ) ∈ QI .

Let δ = max(d1, ..., dn).We call a number λ ∈ C an eigenvalue of P and a nonzero

vector x ∈ Cn the associated eigenvector if they satisfy the following equations:

Pi(x) = λxδ
i , ∀i = 1, ..., n. (4.2)

Now we recall some previous results of eigenvalue and eigenvector of homogeneous

and monotone maps on Rn
+. A polynomial map F : Rn

>0 → Rn
>0 is said to be

homogeneous and monotone if;

1. (Homogeneous) ∀t ∈ R>0 and ∀x ∈ Rn
>0, F (tx ) = tF (x ), and

2. (Monotone) ∀x ,y ∈ Rn
>0, x ≤ y ⇒ F (x ) ≤ F (y).

For better understanding, we give a simple example of a nonhomogeneous poly-

66



nomial,

P̌ (x ) =


2x1x2 + x3x4

5x2x4 + 3x1x3x4

x4 + x4
3

x1

 .

In the above polynomial,

P̌1(x ) = 2x1x2 + x3x4, a11100 = 2, a10011 = 1, d1 = 2,

P̌2(x ) = 5x2x4 + 3x1x3x4, a20101 = 5, a21011 = 3, d2 = 3,

P̌3(x ) = x4 + x4
3, a30001 = 1, a30040 = 1, d3 = 4

P̌4(x ) = x1, a41000 = 1, d4 = 1.

Notice that P̌ (x ) is nonhomogeneous.

For x > 0 and λ > 0, we call (x , λ) an eigenvector-eigenvalue pair of F if F (x ) =

λx . For c ∈ (0,∞) and Γ ⊆ {1, 2, ..., n}, we define ūΓ = (ū1, ū2 · · · , ūn)
T > 0 by

ūi = {
c, if i ∈ Γ,

1, if i /∈ Γ.
(4.3)

The associated graph of F is defined as the directed graph G(F ) with vertices

{1, 2, ..., n} and an edge from i to j if and only if

lim
c→∞

Fi(ū{j}) = ∞. (4.4)

Theorem 36. [20] Let F : Rn
>0 → Rn

>0 be homogeneous and monotone. If G(F )

is strongly connected then F has an eigenvector in Rn
>0.

Theorem 36 provides a sufficient condition for the existence of a positive eigenvec-

tor of F and the Theorem 37 below gives a sufficient condition for the uniqueness

of a positive eigenvector of F . We let u be a positive eigenvector of F and

DF (u) =
(

∂Fi

∂xj
(u)

)n
i=1,j=1

. Since we assume F is monotone, obviously DF (u)

is a nonnegative square matrix.

Theorem 37. [45] Let F : Rn
>0 → Rn

>0 be homogeneous and monotone. Assume

that u > 0 is an eigenvector of F . Suppose that F is C1 in some open neighbor-

hood of u . Assume that matrix A = DF (u) is either nilpotent or has a positive
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spectral radius ρ which is a simple root of the characteristic polynomial of A.

Then u is a unique eigenvector of F in Rn
>0.

When A is primitive, we have the following theorem.

Theorem 38. [45] Let F : Rn
>0 → Rn

>0 be homogeneous and monotone. Assume

that u > 0 is an eigenvector of F . Suppose that F is C1 in some open neigh-

borhood of u . Assume that A = DF (u) is primitive. Let ψ > ̸= 0 and assume

that ψTu = 1. Then u > 0 is the unique eigenvector of F in Rn
>0 satisfying the

condition ψTu = 1. Define G : Rn
>0 → Rn

>0 as

G(x ) =
1

ψTF (x )
F (x ). (4.5)

Then limκ→∞G◦κ(x ) = u for each x ∈ Rn
>0.

We state here the Perron-Freobenius theorem for polynomial map for reference.

Theorem 39. [16] Let P = (P1, ..., Pn)
T : Rn → Rn be a polynomial map,

where each Pi is a polynomial of degree di ≥ 1 with nonnegative coefficients. Let

δ1, · · · , δn ∈ (0,∞) be given and assume that δi ≥ di, i ∈ {1, 2, ..., n}. Consider

the system

Pi(x ) = λxδi
i , i ∈ {1, 2, ..., n}, x ≥ 0. (4.6)

Assume that P is weakly irreducible. Then for each a, p > 0 there exists a

unique positive vector x > 0, depending on a, p, satisfying (4.6) and the condition

||x ||p = a. Suppose furthermore that P is irreducible. Then the system (4.6) has

a unique solution, depending on a, p, satisfying ||x ||p = a, and all the coordinates

of this solution are positive.

Proof. [16] We can write P as

Pi(x) =
∑
α∈Rn

+

aiαx
α, (4.7)

where α = (α1, · · · , αn) is a multi-index, xα = xα1
1 · · · xαn

n and aiα ≥ 0. Set

|α| = α1 + α2 + ...+ αn.

Now let δ = max(δ1, ..., δn) and let F = (F1, ..., Fn)
T : Rn

+ → Rn
+ be the following

homogeneous monotone map

Fi(x ) =

( ∑
α∈Rn

+
aiαx

δ−δi
i

(
||x ||p
a

)δi−|α|
xα

) 1
δ

, i ∈ {1, 2, ..., n}. (4.8)

68



For every variable xk effectively appears in the expression of Pi, there exists a

directed edge from i to k in G(P) and also in G(F ). The term ||x ||p in Fi ensures

there exists a directed edge from i to every k ∈ {1, 2, ..., n} when monomial aiαx
α

of degree |α| < δi appears in the expression. Because of the term xδ−δi
i in Fi,

there exists a directed edge from i to i in G(F ) if δ > δi. Therefore we can say

G(F ) is identical to G(P) except G(F ) will have more loops.

Hence, since P is weakly irreducible, by definition, G(P) is strongly connected.

Since G(F ) is identical to G(P), G(F ) is also strongly connected. By Theorem 36,

F has an eigenvector in Rn
>0. Consider F (x ) = µx . Since aij is nonnegative, for

x > 0, the associated eigenvalue µ > 0. We may normalize x so that ||x ||p = a

since F is positively homogeneous. Therefore, the equation (4.8) becomes

[Fi(x )]
δ =

∑
α∈Rn

+

aiαx
δ−δi
i xα = µδxδ

i . (4.9)

For x > 0, when we multiply both sides by xδi−δ
i ,

∑
α∈Rn

+

aiαx
α = µδxδi

i = Pi(x ), λ = µδ. (4.10)

This shows that x satisfies equation (4.6) . Any solution of (4.6) which satisfies

condition ||x ||p = a is also an eigenvector of F . Consider any solution x > 0. Let

A = DF (x ). The directed graph of matrix A, G(A) coincides with G(F ) and as

mentioned before, G(F ) coincides with G(pP ). Since G(P) is strongly connected,

G(A) is also strongly connected. This also implies A is irreducible. By Perron-

Frobenius theorem for matrix, there is positive spectral radius of A. According to

Theorem 37, F has a unique positive eigenvector up to a multiplicative constant.

Then, the system (4.6) also has a unique solution x > 0.

Now we prove the second part of the theorem. Let x ≥≠ 0 be a solution of (4.6)

such that ||x ||p = a, and let I = {i ∈ {1, ..., n}|xi ̸= 0}. By the definition of

irreducible polynomial, if P is irreducible then Part QI is invariant by P where

I = {1, ..., n}. This implies (4.6) only has positive solutions. In the first part we

have proved that (4.6) has a unique positive solution. Hence, (4.6) has a unique

solution which is positive.
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4.3 Homogeneous Nonnegative Polynomials

For homogeneous polynomials with nonnegative coefficients, we have the following

results.

Corollary 5. [16] Let P = (P1, ..., Pn)
T : Rn → Rn be a polynomial map,

where each Pi is a homogeneous polynomial of degree d ≥ 1 with nonnegative

coefficients. Assume that P is weakly irreducible. Then, the unique scalar λ such

that there is a positive vector u with Pi(u) = λud
i for all i ∈ {1, 2, ..., n} satisfies

inf
x∈Rn

>0

max
i∈{1,2,...,n}

Pi(x )

xd
i

= λ = sup
x∈Rn

+\{0}
min

i∈{1,2,...,n},xi ̸=0

Pi(x )

xd
i

. (4.11)

Corollary 6. [16] Let P , d and λ be as in Corollary 5. If ν ∈ C and v =

(v1, ..., vn)
T ∈ Cn \ {0} such that Pi(v) = νvdi , for all i ∈ {1, 2, ..., n}, then

|ν| ≤ λ.

We can find the vector x in (4.6) using a simple power type algorithm when P(x )

is homogeneous. Assume that each polynomial Pi is homogeneous of degree d with

nonnegative coefficients.

Algorithm 6.

Step 0: Choose x (1) ∈ Rn
>0. Set k = 1.

Step 1: Compute

P
(k)
i =

∑
α∈Rn

+

aiαx
α, i = 1, 2, ..., n,

λk = min
i∈{1,2,...,n},x(k)

i >0

P
(k)
i

(x
(k)
i )d

,

λ̄k = max
x
(k)
i >0

P
(k)
i

(x
(k)
i )d

.

Step 2: If λ̄k = λk, then let λ = λ̄k and stop. Otherwise, compute

x (k+1) =

(
P (k)

)[ 1
d
]∥∥∥∥(P (k)

)[ 1
d
]
∥∥∥∥
1

,

replace k by k + 1 and go to Step 1.
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When P is weakly primitive, the Algorithm 6 converges to a positive vector [16].

Corollary 7. [16] Let P and d be as in Corollary 5, and assume in addition

that P is weakly primitive. Then, the sequence {x (k)} produced by the Algo-

rithm 6 converges to the unique vector u ∈ Rn
>0 satisfying Pi(u) = λud

i , for

i ∈ {1, 2, ..., n}, and ψTu = 1.

Corollary 8. [16] Let P , d, u and λ be as in Corollary 7, F as in (4.8), let

M := F ′(u), and let r denote the maximal modulus of the eigenvalues of M

distinct from λ. Then, the sequence {x (k)} produced by the Algorithm 6 satisfies

lim
k−→∞

sup ||x (k) − u ||1/k ≤ λ−1r. (4.12)

4.4 Nonhomogeneous Nonnegative Polynomials

We can also use power method to compute the largest eigenvalue of nonhomo-

geneous nonnegative polynomials. From the proof of Theorem 39, it is clear

that any eigenvalue of homogeneous map F subject to ||x ||p = a is also an

eigenvalue of nonhomogeneous nonnegative polynomial P . Since the character

of power method will normalize the sequence {x (k)} such that ||x (k)||p = 1, we

can directly use the method to find the largest eigenvalue of nonhomogeneous

nonnegative polynomials.

Let P = (P1, ..., Pn)
T : Rn → Rn be a nonhomogeneous polynomial map, where

each Pi is a polynomial of degree di ≥ 1 with nonnegative coefficients. Let

δ = max(d1, ..., dn). We define λ ∈ C as an eigenvalue of P and a nonzero vector

x ∈ Cn is the associated eigenvector as follows:

Pi(x ) = λxδ
i , ∀i = 1, ..., n, (4.13)

||x ||p = a, p, a > 0.

We need the constraints of ||x ||p = a, where p, a > 0 since the solutions of P are

in the sphere. We give the minimax theorem when P is nonhomogeneous.

Corollary 9. Let P = (P1, ..., Pn)
T : Rn → Rn be a polynomial map, where

each Pi is a polynomial of degree di ≥ 1 with nonnegative coefficients. Let
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δ = max(d1, ..., dn) and ||x ||p be the ℓp-norm where ||x ||p = a for a, p > 0.

Assume that P is weakly irreducible. Then, the unique scalar λ such that there

is a positive vector u with Pi(u) = λudi
i for all i ∈ {1, 2, ..., n} satisfies

λ = inf
x∈Rn

>0,||x ||p=a
max

i∈{1,2,...,n}

Pi(x )

xδ
i

(4.14)

= sup
x∈Rn

+\{0},||x ||p=a

min
i∈{1,2,...,n},xi ̸=0

Pi(x )

xδ
i

.

Proof. Let F : Rn
+ → Rn

+ be a homogeneous monotone map, and ρ(F ) be the

largest eigenvalue of F .

µ∗(x ) = min
i∈{1,2,...,n},xi ̸=0

Fi(x )

xi

, µ∗(x ) = max
i∈{1,2,...,n}

Fi(x )

xi

.

r∗ = sup
x∈Rn

+\{0}
µ∗(x ) = sup

x∈Rn
+\{0}

min
i∈{1,2,...,n},xi ̸=0

Fi(x )

xi

.

r∗ = inf
x∈Rn

>0

µ∗(x ) = inf
x∈Rn

>0

max
i∈{1,2,...,n}

Fi(x )

xi

.

By Theorem 3.1 [45],

ρ(F ) = r∗. (4.15)

Then, by Lemma 2.8 [1], we can deduce that

r∗ = r∗. (4.16)

Define F as in the proof of Theorem 39, so that Fi(x ) = [Pi(x )]
1
δ . By Theorem

39, F has a positive eigenvector. Let µ be the associated eigenvalue. By definition

of ρ(F ) and r∗, ρ(F ) ≥ µ ≥ r∗. From (4.15), we can say µ = r∗. Hence,

µ = r∗ = inf
x∈Rn

>0,||x ||p=a
max

i∈{1,2,...,n}

Fi(x )

xi

= inf
x∈Rn

>0,||x ||p=a
max

i∈{1,2,...,n}

Pi(x )
1
δ

xi

,

λ = µδ = inf
x∈Rn

>0,||x ||p=a
max

i∈{1,2,...,n}

Pi(x )

xδ
i

.

We prove another expression in (4.14) using the same reasoning. By definition of

r∗ and r∗, r∗ ≥ µ ≥ r∗. By (4.16), r∗ = µ . Now we can conclude

µ = r∗ = sup
x∈Rn

+\{0},||x ||p=a

min
i∈{1,2,...,n},xi ̸=0

Fi(x )

xi

= sup
x∈Rn

+\{0},||x ||p=a

min
i∈{1,2,...,n},xi ̸=0

Pi(x )
1
δ

xi

.

λ = µδ = sup
x∈Rn

+\{0},||x ||p=a

min
i∈{1,2,...,n},xi ̸=0

Pi(x )

xδ
i

.
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Corollary 10. Let P = (P1, ..., Pn)
T : Rn → Rn be a polynomial map with Pi

being a polynomial of degree di ≥ 1 and the coefficient of each monomial in Pi

nonnegative. Let δ = max(d1, ..., dn). Suppose that Q(x ) = P(x ) + x [δ]. Then

λ + 1 is an eigenvalue of Q(x ) if and only if λ is an eigenvalue of P(x ). In

this case, they have the same eigenvector. If P is weakly irreducible, then Q is

weakly primitive.

Proof. Let λ be an eigenvalue of P and x be the associated eigenvector. By

definition,

P(x ) = λx [δ].

Q(x ) = P(x ) + x [δ] = λx [δ] + x [δ] = (λ+ 1)x [δ].

By definition, λ+ 1 is an eigenvalue of Q(x ) associated with eigenvector x .

For the second part, let P be a weakly irreducible polynomial. Then, the graph

of P , G(P) is strongly connected. The term x [δ] in Q contributes the loops for

each vertices in the graph of Q , G(Q). Hence, G(Q) is strongly connected and

contains loops at each vertices. By Definition 15, Q is weakly primitive.

Theorem 40. Let P = (P1, ..., Pn)
T : Rn → Rn be an irreducible polynomial

map with Pi is a polynomial of degree di ≥ 1 and the coefficient of each monomial

in Pi is nonnegative. Let δ = max(d1, ..., dn) and Q(x ) = P(x ) + x [δ]. Let

x (0) ∈ Rn
>0 be an arbitrary vector.

Define

x (1) =
(Q(x (0)))[

1
δ
]

∥(Q(x (0)))[
1
δ
]∥p

,x (2) =
(Q(x (1)))[

1
δ
]

∥(Q(x (1)))[
1
δ
]∥p

, ...,x (k+1) =
(Q(x (k)))[

1
δ
]

∥(Q(x (k)))[
1
δ
]∥p

, k ≥ 2.

Let

λk = min
x
(k)
i >0

Qi(x
(k))

(x
(k)
i )δ

, λ̄k = max
x
(k)
i >0

Qi(x
(k))

(x
(k)
i )δ

, k = 1, 2, ... .

Assume that λ0 is the unique positive eigenvalue of Q corresponding to a non-

negative eigenvector. Then,

λ1 ≤ λ2 ≤ ... ≤ λ0 ≤ ... ≤ λ̄2 ≤ λ̄1.
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Proof. Obviously, by Corollary 9, for k = 1, 2, ..., λk ≤ λ0 ≤ λ̄k. Now we only

need to prove that for any k ≥ 1, λk ≤ λk+1 and λ̄k+1 ≤ λ̄k. Let F be as in the

proof of Theorem 39 and

µ
k
= min

Fi(x
(k))

x
(k)
i

= min
Qi(x

(k))
1
δ

x
(k)
i

= λ
1
δ
k .

Any solution of F is also a solution of Q . We have

µ
k
≤ Fi(x

(k))

x
(k)
i

,

0 ≤ µ
k
x (k) ≤ F (x (k)).

Now we have

x (k+1) =
Q(x (k))

1
δ

∥Q(x (k))
1
δ ∥p

=
F (x (k))

∥F (x (k))∥p
≥

µ
k
x (k)

∥F (x (k))∥p
> 0,

and since we F is monotone and homogeneous,

F (x (k+1)) ≥ F
(

µ
k
x (k)

∥F (x (k))∥p

)
= µ

k

(
F (x (k))

∥F (x (k))∥p

)
= µ

k
x (k+1),

which means, for each i = 1, 2, ..., n, Fi(x
(k+1))

x
(k+1)
i

≥ µ
k
. This implies µ

k
≥ µ

k+1
and

λk+1 = (µ
k+1

)δ ≥ (µ
k
)δ = λk.

Similarly, let,

µ̄k = max
Fi(x

(k))

x
(k)
i

= max
Qi(x

(k))
1
δ

x
(k)
i

= λ̄
1
δ
k ,

and

µ̄kx
(k) ≥ F (x (k)).

Then, we have

x (k+1) =
Q(x (k))

1
δ

∥Q(x (k))
1
δ ∥p

=
F (x (k))

∥F (x (k))∥p
≤ µ̄kx

(k)

∥F (x (k))∥p
,

and

F (x (k+1)) ≤ F
(

µ̄kx
(k)

∥F (x (k))∥p

)
= µ̄k

(
F (x (k))

∥F (x (k))∥p

)
= µ̄kx

(k+1),

which means, for each i = 1, 2, ..., n, Fi(x
(k+1))

x
(k+1)
i

≤ µ̄k. Hence, µ̄k+1 ≤ µ̄k and

λ̄k+1 = µ̄δ
k+1 ≤ µ̄δ

k = λ̄k.
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4.5 Primitive Polynomials

In this section, we give some results that are important to prove that our pro-

posed algorithm in the next section is convergent. These results are obtained by

following the same argument as in [9]. First, we state some useful definitions.

We define the map TPx : Rn
+ → Rn

+as

TPx = (P(x ))
1
δ .

Let X be a Banach space. A map T : X → X is called strongly positive if 0 ≤ x

and x ̸= 0 imply 0 < Tx . It is called strongly increasing if x ≤ y and x ̸= y

imply Tx < Ty .

Definition 16. An irreducible nonnegative polynomial P is primitive if TP does

not have an invariant set S on the boundary of Rn
+, {Rn

+ \Rn
>0} except the trivial

invariant set {0}.

Lemma 16. Let nonnegative polynomial P be irreducible, then∑
α∈Rn

+

aiα > 0, for all 1 ≤ i ≤ n.

Proof. We know thatP is irreducible. Therefore, P is also weakly irreducible. By

definition, if P is weakly irreducible, G(P) is strongly connected. As mentioned

at the beginning of this chapter, a polynomial has the general form of Pi(x ) =∑
α∈Rn

+
aiαx

α, 1 ≤ i ≤ n. We prove this lemma by contradiction. Suppose there

exists i0 such that
∑

α∈Rn
+
ai0α = 0. This implies Pi0 = 0. By the definition

of graph of P , that means there is no edge from i0 to other vertices. This

contradicts the definition of strongly connected. It means
∑

α∈Rn
+
aiα > 0, for all

1 ≤ i ≤ n.

Lemma 17. Let nonnegative polynomial P be irreducible. If 0 ≤ x < y , then

TPx < TPy.

Proof. We know that since 0 ≤ x < y , there exist ϵ > 0 such that yi − xi ≥ ϵ for

all i ∈ {1, 2, ..., n}.
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We also know that

TPx < TPy,

(P(x ))[1/δ] < (P(y))[1/δ],

P(x ) < P(y),

0 < P(y)−P(x ).

Hence, it is enough to show that P(y)−P(x ) > 0. First, observe that

yα1
1 (xα2

2 ...x
αn−1

n−1 − yα2
2 ...y

αn−1

n−1 )xαn
n ≤ 0,

yα1
1 xα2

2 ...x
αn−1

n−1 xαn
n − yα1

1 yα2
2 ...y

αn−1

n−1 xαn
n ≤ 0.

Thus,

P(y)−P(x ) =
∑

aiα(y
α1
1 ...yαn

n − xα1
1 ...xαn

n ),

≥
∑

aiα(y
α1
1 ...yαn

n − xα1
1 ...xαn

n

+ yα1
1 xα2

2 ...x
αn−1

n−1 xαn
n − yα1

1 yα2
2 ...y

αn−1

n−1 xαn
n )

≥
∑

aiα(y
α1
1 ...yαn

n − yα1
1 yα2

2 ...y
αn−1

n−1 xαn
n

+ yα1
1 xα2

2 ...x
αn−1

n−1 xαn
n − xα1

1 ...xαn
n )

≥
∑

aiα(y
α1
1 ...y

αn−1

n−1 (yαn
n − xαn

n ) + (yα1
1 − xα1

1 )xα2
2 ...xαn

n )

≥
∑

aiαy
α1
1 ...y

αn−1

n−1 (yαn
n − xαn

n )

≥
∑

aiα(y
α1
1 − xα1

1 )...(yαn
n − xαn

n )

≥ ϵn
∑

aiα, for all i ∈ {1, 2, ..., n}.

By Lemma 16,
∑

aiα > 0, hence P(y)−P(x ) > 0.

Corollary 11. If the nonnegative polynomial P is irreducible, then for x > 0,

TPx > 0.

Proof. Assume x > 0. Lemma 16 states that
∑

aiα > 0, for all 1 ≤ i ≤ n. Hence

P(x ) > 0 and TP (x ) = (P(x ))1/δ > 0.

Theorem 41. Let P be a nonnegative polynomial. Then P is primitive if and

only if there exists r ∈ N such that T r
P(Rn

+ \{0}) ⊂ Rn
>0 (i.e. for x ≥ 0 and x ̸=

0, T r
Px > 0).
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Proof. (⇐) First we will show that P is irreducible by contradiction. Suppose

P is reducible. Then exists nonempty proper subset I ⊂ {1, ..., n}, where QI =

{x ∈ Rn
+|xi > 0, i ∈ I} and P(x ) ∈ QI . This means Pi = 0 for all i /∈ I.

Let x (J) = T
(J)
P x for J ∈ N, we have x

(J)
i = 0 for all i /∈ I. This contradicts

assumption T r
Px > 0. Hence, P must be irreducible.

Now we show that trivial invariant set {0} is the only invariant set of TP in

{Rn
+ \ Rn

>0}. Suppose S ⊂ {Rn
+ \ Rn

>0} be a TP -invariant set, then T r
PS = S ⊂

{Rn
+ \ Rn

>0}. Earlier we have assumed for x ≥ 0 and x ̸= 0, T r
Px > 0. Hence

S = {0} and this implies P is primitive.

(⇒) Let x > 0. By Corollary 11, T r
Px > 0 for all r ≥ 1.

Now we show there exist r ∈ N such that T r
P(Rn

+ \ {0}) ⊂ Rn
>0. It is suffice to

show T r
P({Rn

+ \Rn
>0}∩∂B1(0)) ⊂ Rn

>0, where ∂B1(0) is the unit sphere centered

at the origin. By definition of primitive polynomial, for x ∈ {Rn
+\Rn

>0}∩∂B1(0),

the set S(x ) = {x ,TPx,T
2
Px , ...} cannot be in {Rn

+ \Rn
>0}. This means for x ∈

{Rn
+\Rn

>0}∩∂B1(0), there exist a natural number associated to that particular x ,

r(x ), such that T
r(x )
P x ∈ Rn

>0. Since the mapping x → T k
Px is continuous for all

k ∈ N, there exist a neighborhood U(x ) of x such that T
r(x )
P (U(x )) ⊂ Rn

>0. Since

{Rn
+ \ Rn

>0} ∩ ∂B1(0) is compact, there exist finite covering {U(x 1), ..., U(x q)}

of {Rn
+ \ Rn

>0} ∩ ∂B1(0). This means for each x 1, ...,x q ∈ {Rn
+ \ Rn

>0} ∩ ∂B1(0),

there exist r(x 1), ..., r(x q) such that T
r(x1)
P (U(x 1)), ...,T

r(xq)
P (U(x q)) ⊂ Rn

>0. Let

r = max{r(x 1), ..., r(x q)}. By Corollary 11, T r
P({Rn

+\Rn
>0}∩∂B1(0)) ⊂ Rn

>0.

For any index subset I ⊂ {1, 2, ..., n}, let DI = {(x1, x2, ..., xn) ∈ Rn
+|xi = 0 for

all i ∈ I, xj ̸= 0 for all j /∈ I}.

Lemma 18. Let nonnegative polynomial P be irreducible. Suppose there exists

z ∈ {Rn
+ \Rn

>0} \ {0} and r ∈ N such that T r
Pz ∈ Rn

>0 and assume r is the least

positive integer such that T r
Pz ∈ Rn

>0. Then there exist proper nonempty index

subsets {IJ ⊂ {1, 2, ..., n}|0 ≤ J ≤ r − 1} and set KJ = {(α1...αn)| for all i ∈

IJ , αi = 0} such that∑
(α1...αn)∈KJ

aiα1...αn > 0 for all i /∈ IJ+1 where Ir = ∅.
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Proof. Since z ∈ {{Rn
+\Rn

>0}\{0}}, there exists a proper index subset I0 ̸= ∅ such

that z ∈ DI0 . Let z
(J) = T J

Pz , J = 1, ..., r−1. By the definition of r, z (J) /∈ Rn
>0,

so define IJ = {i|z(J)i = 0} and KJ = {(α1...αn)| for all i ∈ IJ , αi = 0}. Thus

for all k /∈ IJ+1,

z
(J+1)
k = (

∑
akα1...αn(z

(J)
1 )α1 ...(z(J)n )αn)[

1
δ
]

≤
∑

(α1...αn)∈KJ

akα1...αn(z
(J)
1 )α1 ...(z(J)n )αn

≤ ||z (J)||[δ]
∑

(α1...αn)∈KJ

akα1...αn .

Hence ||z (J)||[δ]
∑

(α1...αn)∈KJ
akα1...αn ≥ z

(J+1)
k > 0 for k /∈ IJ+1. Since ||z (J)||[δ] >

0,
∑

(α1...αn)∈KJ
aiα1...αn > 0 for all i /∈ IJ+1, where Ir = ∅.

Theorem 42. Let P be a nonnegative polynomial. The polynomial P is primi-

tive if and only if there exists r ∈ N such that T r
P is strongly increasing.

Proof. (⇒) Assume 0 ≤ x < y . By Lemma 17, TPx < TPy. Apply Lemma 17

repeatedly,

TP (TPx) < TP (TPy),

T 2
Px < T 2

Py ,

...

T r
Px < T r

Py .

Now we assume z = y − x ∈ DI0 for some proper nonempty subset I0. Ap-

ply Lemma 18 to z = y − x , we obtain a sequence of index subsets {IJ |0 ≤

J ≤ r}, where {IJ |0 ≤ J ≤ r − 1} are proper nonempty subsets such that∑
(α1...αn)∈KJ

aiα1...αn > 0 for all i /∈ IJ+1, J = 0, 1, ..., r − 1 and Ir = ∅.

Let ξ(J) = T J
Px and η(J) = T J

Py for J = 0, 1, ..., r. We claim

ξ
(J)
k < η

(J)
k for all k /∈ IJ , J = 0, 1, ..., r, (4.17)

and we are going to prove this by induction. At J = 0, ξ(0) = x and η(0) = y .

By assumption z = y − x ∈ DI0 , ξ
(0)
k < η

(0)
k for all k /∈ I0.

Suppose that (4.17) holds for J ≥ 1. Let ϵJ > 0 be such that η
(J)
k − ξ

(J)
k ≥ ϵJ , for

all k /∈ IJ . Now we want to show η
(J+1)
k > ξ

(J+1)
k for all k /∈ IJ+1. In order to do
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this, we use the same argument as in the proof of Lemma 17,

η
(J+1)
k − ξ

(J+1)
k =

∑
akα((η

(J)
1 )α1 ...(η(J)n )αn − (ξ

(J)
1 )α1 ...(ξ(J)n )αn)

≥
∑

akα((η
(J)
1 )α1 − (ξ

(J)
1 )α1)...((η(J)n )αn − (ξ(J)n )αn)

≥ ϵnJ
∑

(α1...αn)∈KJ

akα > 0 for all k /∈ IJ+1.

So now we have η
(J+1)
k > ξ

(J+1)
k for all k /∈ IJ+1. Thus (4.17) holds for J =

0, 1, ..., r. Since Ir is an empty set, this concludes η
(r)
i > ξ

(r)
i for all i, which means

T r
Py > T r

Px , T
r
P is strongly increasing.

(⇐) Suppose that there exists r ∈ N such that T r
P is strongly increasing, which

means for x ≤ y ∈ Rn
+ and x ̸= y implies T r

Px < T r
Py . By the definition of

strongly increasing, for any 0 ≤ z and 0 ̸= z implies 0 = T r
P(0) < T r

Pz . This

means for z ∈ Rn
+ \ {0}, T r

Pz ∈ Rn
>0. By Theorem 41 , P is primitive.

4.6 Algorithm

Based on Theorem 40, we present the following algorithm for finding the largest

eigenvalue of a nonhomogeneous nonnegative polynomial P .

Algorithm 7.

Step 0: Choose x (1) ∈ Rn
>0. Let Q(x ) = P(x ) + x [δ] and let k = 1.

Step 1: Compute

Qi(x
(k)) =

∑
α∈Rn

+

aiαx
α + x [δ], i = 1, 2, ..., n,

λk = min
i∈{1,2,...,n},x(k)

i >0

Qi(x
(k))

(x
(k)
i )δ

,

λ̄k = max
x
(k)
i >0

Qi(x
(k))

(x
(k)
i )δ

.

Step 2: If λ̄k = λk, then let λ = λ̄k and stop. Otherwise, compute

x (k+1) =

(
Q(x (k))

)[ 1
δ
]∥∥∥(Q(x (k)))

[ 1
δ
]
∥∥∥
p

,

replace k by k + 1 and go to Step 1.
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We define

TQx =
(

Q(x )
)[ 1

δ
]

,

T 2
Qx = TQ(TQx ),

T 3
Qx = TQ(T

2
Qx ),

...

T r
Qx = TQ(T

r−1
Q x ).

We obtain the following results by using the same argument as Proposition 5.1

[9].

Proposition 5. For the notation used in Algorithm 7, the following statements

hold:

1. If Q is irreducible, then λk+1 ↗ λ, λ̄k+1 ↘ λ̄, and λ ≤ λ̄.

2. There exists a subsequence x (kj) −→ x ∗ with ||x ∗|| = 1.

3. (λk)
1
δx (k) ≤ TQx

(k) ≤ (λ̄k)
1
δx (k); hence, λ

1
δx ∗ ≤ TQx

∗ ≤ λ̄
1
δx ∗.

4. For all k ∈ N, there exists 1 ≤ i0 ≤ n such that (T k+1
Q x ∗)i0 = λ

1
δ (T k

Qx
∗)i0 .

Proof. First, we prove Statement 1. By Theorem 40, λk+1 → λ, λ̄k+1 → λ̄ and

λ ≤ λ̄.

Now, we prove the second statement. At each iteration, x (k) is a normalized

vector, ||x (k)|| = 1, hence {x (k)} is bounded. Every bounded sequence has a

convergent subsequence that converges to a point in the same set; x (kj) −→ x ∗

with ||x ∗|| = 1.

For the next statement, from Algorithm 7,

Q(x (k)) ≥ λk(x
(k))[δ],

(Q(x (k)))[
1
δ
] ≥ λ

1
δ
k (x

(k)),

TQx
(k) ≥ λ

1
δ
k (x

(k)),

and

Q(x (k)) ≤ λ̄k(x
(k))[δ],

(Q(x (k)))[
1
δ
] ≤ λ̄

1
δ
k (x

(k)),

TQx
(k) ≤ λ̄

1
δ
k (x

(k)).
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Hence,

λ
1
δ
k (x

(k)) ≤ TQx
(k) ≤ λ̄

1
δ
k (x

(k)).

As x (k) → x ∗,

λ
1
δ
k (x

∗) ≤ TQx
∗ ≤ λ̄

1
δ
k (x

∗).

To prove Statement 4, since Q is nonhomogeneous, we substitute P in Q with F .

Let Q̄(x ) = (F (x ))[δ] + x [δ], where F (x ) is a homogeneous monotone function

as in the proof of Theorem 39. Then, the eigenvalue of Q̄ depending on a, p

satisfying ∥x∥p = a, a, p > 0 is also the eigenvalue of Q . From Algorithm 7,

λ
1
δ
kT

k
Q̄x ≤ T k+1

Q̄
x .

We prove Statement 4 by contradiction. Suppose that there is a positive integer

k such that

λ
1
δT k

Q̄x
∗ < T k+1

Q̄
x ∗. (4.18)

Then, there exists x (r) close enough to x ∗ such that

λ
1
δT k

Q̄x
(r) < T k+1

Q̄
x (r).

Hence, for all i, we have

λ
1
δ <

(T k+1
Q̄

x (r))i

(T k
Q̄x

(r))i
. (4.19)

However, from Algorithm 7,

x (k+1) =
(Q̄(x (k)))[

1
δ
]∥∥∥(Q̄(x (k)))[

1
δ
]
∥∥∥
p

,

∥∥∥(Q̄(x (k)))[
1
δ
]
∥∥∥
p
x (k+1) = (Q̄(x (k)))

[ 1
δ
]
. (4.20)

We put (4.20) as x in Q̄(x ),

Q̄(
∥∥∥(Q̄(x (k)))[

1
δ
]
∥∥∥
p
x (k+1)) = Q̄((Q̄(x (k)))

[ 1
δ
]
), (4.21)∥∥∥(Q̄(x (k)))[

1
δ
]
∥∥∥δ
p
Q̄(x (k+1)) = Q̄((Q̄(x (k)))

[ 1
δ
]
). (4.22)
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Now,

T Q̄x
(r) = (Q̄(x (r)))[

1
δ
],

T 2
Q̄x

(r) = T Q̄((Q̄(x (r)))[
1
δ
])

= (Q̄((Q̄(x (r)))[
1
δ
]))[

1
δ
]

=
∥∥∥(Q̄(x (r)))[

1
δ
]
∥∥∥
p
(Q̄(x (r+1)))[

1
δ
].

Using the same arguments,

T 3
Q̄x

(r) =
∥∥∥(Q̄(x (r)))[

1
δ
]
∥∥∥
p

∥∥∥(Q̄(x (r+1)))[
1
δ
]
∥∥∥
p
(Q̄(x (r+2)))[

1
δ
]

and

T k
Q̄x

(r) =
∥∥∥(Q̄(x (r)))[

1
δ
]
∥∥∥
p

∥∥∥(Q̄(x (r+1)))[
1
δ
]
∥∥∥
p
· · ·∥∥∥(Q̄(x (r+k−2)))[

1
δ
]
∥∥∥
p
(Q(x (r+k−1)))[

1
δ
].

(4.23)

We shift the indices,

T k+1
Q̄

x (r) =
∥∥∥(Q̄(x (r)))[

1
δ
]
∥∥∥
p

∥∥∥(Q̄(x (r+1)))[
1
δ
]
∥∥∥
p
· · ·∥∥∥(Q̄(x (r+k−1)))[

1
δ
]
∥∥∥
p
(Q̄(x (r+k)))[

1
δ
].

From Algorithm 7, we have

x (k+1) =

(
Q(x (k))

)[ 1
δ
]∥∥∥(Q(x (k)))

[ 1
δ
]
∥∥∥
p

.

Shift the indices so that

x (r+k) =

(
Q(x (r+k−1))

)[ 1
δ
]∥∥∥(Q(x (r+k−1)))

[ 1
δ
]
∥∥∥
p

,

∥∥∥∥(Q (r+k−1)
)[ 1

δ
]
∥∥∥∥
p

x (r+k) =
(
Q(x (r+k−1))

)[ 1
δ
]
. (4.24)

By (4.24), equation (4.23) becomes

T k
Q̄x

(r) =
∥∥∥(Q̄(x (r)))[

1
δ
]
∥∥∥
p

∥∥∥(Q̄(x (r+1)))[
1
δ
]
∥∥∥
p
· · · (4.25)∥∥∥(Q̄(x (r+k−2)))[

1
δ
]
∥∥∥
p

∥∥∥(Q(x (r+k−1))
)[ 1

δ
]
∥∥∥
p
x (r+k). (4.26)

Thus we have

(T k+1
Q̄

x (r))i

(T k
Q̄x

(r))i
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=
(
∥∥∥(Q̄(x (r)))[

1
δ
]
∥∥∥
p

∥∥∥(Q̄(x (r+1)))[
1
δ
]
∥∥∥
p
· · ·
∥∥∥(Q̄(x (r+k−1)))[

1
δ
]
∥∥∥
p
(Q̄(x (r+k)))[

1
δ
]))i

(
∥∥∥(Q̄(x (r)))[

1
δ
]
∥∥∥
p

∥∥∥(Q̄(x (r+1)))[
1
δ
]
∥∥∥
p
· · ·
∥∥∥(Q̄(x (r+k−1)))[

1
δ
]
∥∥∥
p
(x (r+k)))i

=
(Q̄(x (r+k))[

1
δ
])i

x
(r+k)
i

=

(
(Q̄(x (r+k)))i

(x
(r+k)
i )δ

)[ 1
δ
]

.

From Algorithm 7, (
(Q̄(x (k)))i

(x
(k)
i )δ

)[ 1
δ
]

≥ λ
[ 1
δ
]

k .

This means there exist some i0 such that

(T k+1
Q̄

x (r))i0

(T k
Q̄x

(r))i0
= λ

1
δ
r+k.

This contradicts with the assumption of equation (4.18).

Theorem 43. If nonnegative polynomial P is irreducible, then λ = λ0 = λ̄ and

x (k) → x ∗, which means x (k) converges to the positive eigenvector associated

with λ0.

Proof. From Algorithm 7, let Y = TQx
∗ ≥ λ

1
δx ∗ =X and suppose Y = TQx

∗ ̸=

λ
1
δx ∗ =X.

By Theorem 42, there exists r ∈ N such that T r
QX < T r

QY . Shift the index

and we have

T r−1
Q (λ

1
δx ∗) < T r−1

Q (TQx
∗),

T r−1
Q (λ

1
δx ∗) < T r

Qx
∗.

Since Q is nonhomogeneous, we substitute P in Q with F , Q̄ = (F (x ))[δ]+x [δ],

where F is as in the proof of Theorem 39. Then, the eigenvalue of Q̄ depending

on a, p satisfying ∥x∥p = a, a, p > 0 is also the eigenvalue of Q . Algorithm 7

satisfies this conditions. Now,

λ
1
δT r−1

Q̄
(x ∗) < T r

Q̄x
∗.
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However, this contradicts statement (4) of Proposition 5. Hence, we must have

T Q̄x
∗ = λ

1
δx ∗.

By using similar argument as above, we want to show TQx
∗ = λ̄

1
δx ∗. From

Algorithm 7, we have TQx
∗ ≤ λ̄

1
δx ∗. Now, let say TQx

∗ ̸= λ̄
1
δx ∗. By Theorem

42, there exists r ∈ N such that T r
Q(TQx

∗) < T r
Q(λ̄

1
δx ∗). Shift the index and

we have

T r−1
Q (TQx

∗) < T r−1
Q (λ̄

1
δx ∗),

T r
Qx

∗ < T r−1
Q (λ̄

1
δx ∗).

Since Q is nonhomogeneous, we use Q̄ = (F (x))[δ] + x [δ], where F is as in the

proof of Theorem 39. Now,

T r
Q̄x

∗ < λ̄
1
δT r−1

Q̄
(x ∗).

However, this contradicts statement (4) of Proposition 5. Hence, we must have

T Q̄x
∗ = λ̄

1
δx ∗.

Therefore, T Q̄x
∗ = λ

1
δx ∗ = λ̄

1
δx ∗. This means λ0 = λ = λ̄.

Next, we show that x (k) converges to x ∗. We are going to prove this by contra-

diction. Suppose there exists {rk} such that x (rk) → y∗ where ||y∗|| = 1 and

y∗ ̸= x ∗. By using the same argument as in the previous steps, we can easily show

TQy
∗ = λ

1
δy∗ and TQy

∗ = λ̄
1
δy∗. Hence, λ0 = λ = λ̄ and Q(y∗) = λ0(y

∗)[δ].

However, by Theorem 39, the eigenvector associated with eigenvalue λ0 is unique,

which means y∗ = x ∗.

4.7 Numerical Results

In order to show that Algorithm 7 is efficient, we use MATLAB R2010b to test

it on randomly generated nonhomogeneous polynomials.
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LetA be anm-order n-dimensional square tensor and B be a d-order n-dimensional

square tensor.

A = (ai1i2...im), ai1i2...im ∈ R, 1 ≤ i1, i2, ..., im ≤ n.

B = (bi1i2...id), bi1i2...id ∈ R, 1 ≤ i1, i2, ..., id ≤ n.

We define n-dimensional column vectors Axm−1 and Bx d−1 as

Axm−1 =

(
n∑

i2,...,im=1

ai i2...imxi2 · · · xim

)
1≤i≤n

.

Bx d−1 =

(
n∑

i2,...,id=1

bi i2...idxi2 · · · xid

)
1≤i≤n

.

Our test function P(x ) = Axm−1 + Bx d−1 is defined as follows.

Pi(x ) =
n∑

i2,...,im=1

ai i2...imxi2 · · · xim +
n∑

i2,...,id=1

bi i2...idxi2 · · · xid , 1 ≤ i ≤ n,

Each entry of the tensors is randomly generated between 0 and 10. We choose

d > m so that P(x ) is a nonhomogeneous polynomial with degree d − 1. We

present the numerical results in the tables below. Table 4.1, 4.2, 4.3 and 4.4 show

the results when p = 1, p = 2, p = 3 and p = ∞, respectively. In the tables, n

denotes the dimension of the polynomials, d denotes the order of tensor B, Ite

denotes the number of iterations, λ̄ − λ and λ denote the value of λ̄k − λk and

0.5(λ̄k − λk), respectively at the final iteration. ||P(x ) − λx [d−1]||p denotes the

value of ||P(x (k))−λ(x (k))[d−1]||p at the final iteration. We use initial value x (0) =

(1, 1, ..., 1)T for all the computational experiments and terminate the iteration

when |λ̄−λ| ≤ 1×10−6 or ||P(x )−λx [d−1]||p ≤ 1×10−6. As shown in the tables,

the algorithm managed to produce the largest eigenvalue of all the randomly

generated polynomials.

4.8 Conclusion

An iterative method for finding the largest eigenvalue of nonhomogenous non-

negative polynomials was proposed in this chapter. This method was proven to

be convergent for irreducible nonhomogenous nonnegative polynomials. We also

extended the Collatz minimax theorem to nonhomogeneous polynomials and the

concept of primitivity to polynomials.
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(n, d) Ite λ̄− λ ||P(x )− λx [d]||1
(4,3) 8 1.20e-06 1.33e-07

(5,4) 8 5.71e-06 7.55e-08

(5,5) 7 1.93e-04 4.53e-07

(5,6) 5 5.17e-05 3.40e-08

(10,3) 7 1.27e-05 4.04e-07

(10,4) 7 7.12e-05 1.87e-07

(10,5) 7 7.47e-05 2.12e-08

(15,3) 8 6.04e-06 9.60e-08

(15,4) 6 1.52e-05 1.82e-08

(15,5) 5 5.31e-05 3.48e-09

(15,6) 4 4.86e-03 2.14e-08

(20,3) 7 2.48e-05 2.48e-07

(30,3) 7 2.58e-05 1.53e-07

(40,3) 7 2.36e-05 1.07e-07

(50,3) 7 1.31e-05 4.70e-08

(60,3) 7 1.46e-05 3.97e-08

(70,3) 7 1.35e-05 3.42e-08

(80,3) 7 1.04e-05 2.35e-08

(90,3) 7 1.24e-05 2.61e-08

(100,3) 7 9.83e-06 1.41e-08

Table 4.1: Numerical results of Algorithm 7 for randomly generated polynomials

when p = 1.
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(n, d) Ite λ̄− λ ||P(x )− λx [d]||2
(4,3) 7 3.26e-06 5.75e-07

(5,4) 6 2.38e-06 1.82e-07

(5,5) 6 6.93e-07 2.60e-08

(5,6) 5 1.29e-05 1.76e-07

(10,3) 7 1.98e-06 2.03e-07

(10,4) 6 7.48e-07 2.44e-08

(10,5) 5 1.31e-05 1.16e-07

(15,3) 7 1.61e-06 1.39e-07

(15,4) 6 5.71e-07 1.16e-08

(15,5) 5 6.13e-06 2.71e-08

(15,6) 4 4.88e-04 6.19e-07

(20,3) 6 1.69e-05 9.19e-07

(30,3) 6 4.45e-06 2.02e-07

(40,3) 6 7.17e-06 1.96e-07

(50,3) 6 3.84e-06 1.14e-07

(60,3) 6 2.19e-06 5.17e-08

(70,3) 6 1.15e-06 2.90e-08

(80,3) 6 1.15e-06 2.53e-08

(90,3) 6 6.61e-07 1.54e-08

(100,3) 6 4.96e-07 1.30e-08

Table 4.2: Numerical results of Algorithm 7 for randomly generated polynomials

when p = 2.
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(n, d) Ite λ̄− λ ||P(x )− λx [d]||3
(4,3) 7 3.26e-06 5.75e-07

(5,4) 6 2.38e-06 1.82e-07

(5,5) 6 6.93e-07 2.60e-08

(5,6) 5 1.29e-05 1.76e-07

(10,3) 7 1.98e-06 2.03e-07

(10,4) 6 7.48e-07 2.44e-08

(10,5) 5 1.31e-05 1.16e-07

(15,3) 7 1.61e-06 1.39e-07

(15,4) 6 5.71e-07 1.16e-08

(15,5) 5 6.13e-06 2.71e-08

(15,6) 4 4.88e-04 6.19e-07

(20,3) 6 1.69e-05 9.19e-07

(30,3) 6 4.45e-06 2.02e-07

(40,3) 6 7.17e-06 1.96e-07

(50,3) 6 3.84e-06 1.14e-07

(60,3) 6 2.19e-06 5.17e-08

(70,3) 6 1.15e-06 2.90e-08

(80,3) 6 1.15e-06 2.53e-08

(90,3) 6 6.61e-07 1.54e-08

(100,3) 6 4.96e-07 1.30e-08

Table 4.3: Numerical results of Algorithm 7 for randomly generated polynomials

when p = 3.
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(n, d) Ite λ̄− λ ||P(x )− λx [d]||∞
(4,3) 9 2.74e-07 1.25e-07

(5,4) 6 3.39e-07 1.69e-07

(5,5) 5 1.87e-06 9.36e-07

(5,6) 5 1.79e-08 8.95e-09

(10,3) 7 3.87e-07 1.81e-07

(10,4) 6 2.77e-08 1.35e-08

(10,5) 5 3.23e-08 1.61e-08

(15,3) 6 5.53e-07 2.76e-07

(15,4) 5 3.80e-07 1.90e-07

(15,5) 5 6.81e-09 3.38e-09

(15,6) 4 3.59e-07 1.80e-07

(20,3) 6 7.54e-07 3.67e-07

(30,3) 6 2.30e-07 1.10e-07

(40,3) 6 3.71e-08 1.79e-08

(50,3) 5 1.87e-06 9.07e-07

(60,3) 5 1.20e-06 5.96e-07

(70,3) 5 1.18e-06 5.90e-07

(80,3) 5 4.88e-07 2.42e-07

(90,3) 5 5.13e-07 2.52e-07

(100,3) 5 3.33e-07 1.64e-07

Table 4.4: Numerical results of Algorithm 7 for randomly generated polynomials

when p = ∞.
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Chapter 5

Nonnegative Polynomial

Optimisation

5.1 Introduction

In this chapter, we study optimisation problem where the objective function is a

nonnegative polynomial and the constraint is spherical. Polynomial optimisation

can be found in vast amount in literature. The application ranges are from

investment science [39, 27], control theory [55] to psychometrics and chemometrics

[30].

Let P : Rn → R,

P(y) =
∑
α∈Rn

+

aαx
α,

where α = (α1, · · · , αn), aα = (aα1 , · · · , aαn) and xα = (xα1
1 , · · · , xαn

n ), be a

generalised irreducible polynomial with nonnegative coefficients of degree h with

h ≤ p. Assume that P(y) is monotone. We are going to study the following

problem.

maxP(y) (5.1)

s.t. ∥y∥p = a, y ≥ 0, a > 0,

where ∥y∥p denotes p-norm. Recently, some kind of nonnegative polynomial

optimisation models was studied in [77]. The models have the following form:
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maxPB(x ) (5.2)

s.t. ∥x∥ = 1, x ∈ Rn,

where the notation ∥x∥ denotes Euclidean norm and

PB(x ) =
n∑

i1,i2,...,id=1

bi1i2...idxi1xi2 · · · xid .

The polynomial PB(x ) is formed from d-th order n-dimensional square tensor B,

where

B = (bi1i2...id), bi1i2...id ∈ R, 1 ≤ i1, i2, ..., id ≤ n.

This problem is a special case of Problem (5.1). The second polynomial problem

that was studied in [77] is

maxPC(x ,y) (5.3)

s.t. ∥x∥ = 1, x ∈ Rn,

∥y∥ = 1, y ∈ Rm,

where

PC(x ,y) =
n∑

i1,...,ip=1

m∑
j1,...,jq=1

ci1...ipj1...jqxi1 · · · xipyj1 · · · yjq .

The polynomial PC(x ,y) is formed from a (p, q)-th order (m,n)-dimensional

rectangular tensor C, where

C = (ci1...ipj1...jq), ci1...ipj1...jq ∈ R,

ik = 1, ..., n, k = 1, ..., p, and jl = 1, ...,m, l = 1, ..., q.

The polynomial PC(x ,y) has the order of d = p+q. Another polynomial problem

which was studied in [77] is

maxPA(x
1,x 2, ...,x d) (5.4)

s.t. ∥x i∥ = 1, x i ∈ Rni , i = 1, 2, ..., d,
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where

PA(x
1,x 2, ...,x d) =

∑
1≤i1≤n1,1≤i2≤n2,...,1≤id≤nd

ai1i2...idx
1
i1
x2
i2
· · · xd

id
.

The polynomial PA(x
1,x 2, ...,x d) is formed from a d-th order tensor A, where

A = (ai1i2...id), ai1i2...id ∈ R, 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2, ..., 1 ≤ id ≤ nd.

In the paper, Problem (5.2), (5.3) and (5.4) were shown to be NP-hard. It is

known that NP-hard problem is difficult to solve. In order to overcome the mat-

ter, the Problem (5.2), (5.3) and (5.4) were relaxed before solved using some

computational methods. The followings are some results related to the relax-

ations.

Lemma 19. [77] Suppose that x ∗ ∈ Rn is a global solution of Problem (5.2).

Then, |x ∗| = [|x∗
1|, |x∗

2|, ..., |x∗
n|]T is a global solution of Problem (5.2).

Lemma 20. [77] Suppose that x ∗ ∈ Rn is a global solution of the following

problem:

maxPB(x ) (5.5)

s.t. ∥x∥ ≤ 1,x ≥ 0,x ∈ Rn.

Then, x ∗ is a global solution of Problem (5.2).

Likewise, the following results are produced for Problem (5.3) and (5.4).

Lemma 21. [77] Suppose that (x ∗,y∗) is a global solution of the following prob-

lem:

maxPC(x ,y) (5.6)

s.t. ∥x∥ ≤ 1,x ≥ 0,x ∈ Rn,

∥y∥ ≤ 1,y ≥ 0,y ∈ Rm.

Then,(x ∗,y∗) is a global solution of Problem (5.3).

Lemma 22. [77] Suppose that ((x 1)∗, ..., (x d)∗) is a global solution of the follow-

ing problem:

maxPA(x
1,x 2, ...,x d) (5.7)

s.t. ∥x i∥ ≤ 1,x i ≥ 0,x i ∈ Rni , i = 1, 2, ..., d.

Here, d > 2. Then, ((x 1)∗, ..., (x d)∗) is a global solution of Problem (5.4).
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To continue the process of relaxation, we further relax the constraint of Problem

(5.5) from ∥x∥ ≤ 1 to ∥x∥d ≤ 1, constraints of Problem (5.6) from ∥x∥ ≤

1, ∥y∥ ≤ 1 to ∥x∥d ≤ 1, ∥y∥d ≤ 1 and constraints of Problem (5.7) from

∥x i∥ ≤ 1, i = 1, 2, ..., d to ∥x i∥d ≤ 1, i = 1, 2, ..., d. Now we have the relaxations

of Problem (5.5), (5.6) and (5.7).

maxPB(x ) (5.8)

s.t. ∥x∥d ≤ 1, x ≥ 0 x ∈ Rn,

maxPC(x ,y) (5.9)

s.t. ∥x∥d ≤ 1, x ≥ 1 x ∈ Rn

∥y∥d ≤ 1, y ≥ 1 y ∈ Rm,

maxPA(x
1,x 2, ...,x d) (5.10)

s.t. ∥x i∥d ≤ 1, x i ≥ 0 x i ∈ Rni , i = 1, 2, ..., d,

Three methods were proposed in [77] to solve (5.8), (5.9) and (5.10) which were

polynomial time algorithm by reformulating the relaxations into geometric pro-

gramming problem, smoothing Newton methods and power methods . These

power methods are a variation of the methods discussed in previous chapters.

Amongst the methods proposed to solve the relaxations, the power methods have

been proven the most efficient when tested numerically as reported in [77]. The

quality of the approximation solutions produced by solving the relaxations (5.8),

(5.9) and (5.10) using power method was also tested. The results indicate that

solutions produced are of high quality.

5.2 Optimisation of Nonnegative Generalised Poly-

nomials

We first introduce some useful notations and definitions. For p > 0, let Sn
p =

{x ∈ Rn :
∑

i |xi|p = 1} denote the ℓp unit sphere in Rn. Let set Sn
p,+ = Rn

+

∩
Sn
p
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and set Sn
p,>0 = Rn

>0

∩
Sn
p .

We can rewrite Problem (5.1) so that it is easier to solve. Observe that

∥y∥p = a,

(yp1 + yp2 + ...+ ypn)
1
p = a,(

1

ap

) 1
p

(yp1 + yp2 + ...+ ypn)
1
p = 1,((y1

a

)p
+
(y2
a

)p
+ ...+

(yn
a

)p) 1
p

= 1,

∥x∥p = 1, x =
y

a
.

Notice that

∥x∥p = 1

(xp
1 + xp

2 + ...+ xp
n)

1
p = 1

xp
1 + xp

2 + ...+ xp
n = 1

n∑
i=1

xp
i = 1.

Now Problem (5.1) becomes

maxP(x ) (5.11)

s.t.

n∑
i

xp
i = 1, xi ≥ 0, i = 1, ..., n,

The problem of maximizing nonnegative generalised polynomial under ℓp-constraints

where the degree of polynomial is at most p was discussed in [4] and we have the

following result.

Theorem 44. [4] If P has no proper homogeneous irreducible component of

degree p (in particular if P is irreducible), then Problem (5.11) has a unique

solution x ∗. Moreover, x ∗ ∈ Rn
>0 in this case, and is the unique critical point of

P on Sn
p,>0 = {x ∈ Rn

>0 :
∑

i |xi|p = 1}.

The theorem above states that if P(x ) is irreducible, the unique solution of

Problem (5.11) is the unique critical point of P on Sn
p,>0. We have the following

results for the optimal condition for Problem (5.11).
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Lemma 23. Suppose P(x ) is an irreducible generalised polynomial with non-

negative coefficients of degree h with h ≤ p. The Karush-Kuhn-Tucker conditions

for Problem (5.11) are

∇P(x̄ ) = λ0(x̄ )
[p−1],

n∑
i

(x̄i)
p = 1, x̄i > 0, i = 1, ..., n, λ0 > 0.

Proof. The Karush-Kuhn-Tucker conditions for (5.11) are

−∇P(x̄ ) + µp(x̄ )[p−1] − ν = 0, µ ∈ R, ν ∈ Rn

n∑
i

(x̄)pi − 1 = 0,

−x̄i ≤ 0, i = 1, ..., n,

−νix̄i = 0, ν ≥ 0, i = 1, ..., n.

By Theorem 44, x̄ > 0, hence, ν = 0. Now,

∇P(x̄ ) = λ0(x̄ )
[p−1], λ0 = µp, (5.12)

n∑
i

(x̄i)
p = 1, x̄i > 0, i = 1, ..., n, λ0 > 0. (5.13)

We know from Theorem 44 that x̄ is the unique positive critical point. Note

that ∇P(x̄ ) = λ0(x̄ )
[p−1] is similar to the definition of eigenvalue and eigenvec-

tor of polynomial ∇P(x ). By Theorem 39, the Perron-Frobenius Theorem for

polynomial, λ0 is the largest eigenvalue of polynomial ∇P(x ).

Solving Problem (5.11) is now reduced to solving

∇P(x ) = λ(x )[p−1] (5.14)

s.t.
n∑
i

(xi)
p = 1, xi ≥ 0, i = 1, ..., n.

The associated graph of P(x ) is G(P) whose vertices are the variables of P(x ).

An edge of G(P), (i, j) exists if aα1,··· ,αn ̸= 0 where αi ̸= 0 and αj ̸= 0. It means

if variable xi and xj appears in a monomial, there exists an edge between vertices

i and j. Polynomial P(x ) is irreducible if and only if the associated graph of

P(x ), G(P) is connected.
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Lemma 24. If polynomial P(x ) is irreducible, then the gradient of P(x ), poly-

nomial ∇P(x ) is weakly irreducible.

Proof. Let us say xi0 and xj0 appears in a monomial of P(x ). It implies there

exists an edge between i0 and j0 in G(P). Now consider the gradient of P(x ),

∇P(x ). Variable xj0 appears in the expression of ∇Pi0(x ) and variable xi0 ap-

pears in the expression of ∇Pj0(x ). Hence, there exists an edge between i0 and

j0 for both directions in the graph of ∇P(x ), G(∇P). Now we can say that if

G(P) is connected, then G(∇P) is strongly connected. This means ∇P(x ) is

weakly irreducible.

5.3 Algorithm

In this section, we give the algorithm for solving Problem (5.14) given that∇P(x )

is irreducible and monotone. The following iterative process was suggested for

solving Problem (5.14) in [4]. Select an initial value x (0), then compute

x (k+1) = α(k+1)
(

∇P(x (k))
)[ 1

p−1
]

, (5.15)

α(k+1) is adjusted so that

α(k+1) =
1

||(∇P(x (k)))
1

[p−1] ||p
. (5.16)

However, this method has not been proven convergent. The key to overcoming

this problem lies in [9]. A convergent method was given in [9] to solve the following

kind of problem.

P1(x ) = λ(x )[p] (5.17)

s.t. ∥x∥1 = 1, xi ≥ 0, i = 1, ..., n,

where P1 is a homogeneous and monotone polynomial of degree p. The problem

above deals with the constraint ∥x∥1 = 1. However, the problem we want to

solve has the constraint ∥x∥p = 1. Notice that if we let

z =
x

∥x∥p
,
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then

∥z∥p =

∥∥∥∥ x

∥x∥p

∥∥∥∥
p

=
∥x∥p
∥x∥p

= 1.

It means the condition ∥x∥p = 1 is satisfied. Therefore, we can conclude that

solving Problem (5.17) is equivalent to solving Problem (5.14). We give the

algorithm below to find the solution to Problem (5.17):

Algorithm 8.

Step 0: Choose x (1) ∈ Rn
>0. Set k = 1.

Step 1: Compute

Q(x (k)) = ∇P(x (k)) + x [p−1]

Step 2: Compute

x (k+1) =
Q(x )

1
[p−1]

||Q(x )
1

[p−1] ||1
If ∥x (k+1) − x (k)∥ ≤ ϵ then stop. Replace k by k + 1 and go to Step 1.

First, consider the case where P(x ) is homogeneous.

Theorem 45. Let polynomial P(x ) be as in Problem (5.17). Assume P(x ) is

homogeneous and irreducible. Then the sequence {x (k)} produced by Algorithm

8 converges to the unique vector x ∗ ∈ Rn
>0 satisfying ∇P(x ∗) = λ(x ∗)[p−1] and

ψTx ∗ = 1.

Proof. When P(x ) is homogeneous, clearly ∇P(x ) is also homogeneous. The

term x [p−1] is obviously homogeneous, hence, the polynomial Q(x ) is homoge-

neous. The irreducibility of polynomial P(x ) implies that ∇P(x ) is weakly

irreducible by Lemma 24. By Corollary 10, Q(x ) is weakly primitive and by

Corollary 7, this theorem holds.

Now for the case where P(x ) is nonhomogeneous, we have the following result.
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Theorem 46. Let polynomial P(x ) be as in Problem (5.17). Assume P(x ) is

irreducible. Then the sequence {x (k)} generated by Algorithm 8 converges to the

unique vector x ∗ ∈ Rn
>0 satisfying ∇P(x ∗) = λ(x ∗)[p−1] and ψTx ∗ = 1.

Proof. The irreducibility of polynomialP(x ) implies∇P(x ) is weakly irreducible

by Lemma 24. By Corollary 10, Q(x ) is weakly primitive. Since Q(x ) is non-

homogeneous, we substitute P(x ) in Q(x ) with F (x ), where F (x ) is as in

the proof of Theorem 39. Now Q̄(x ) = F (x )[p−1] + x [p−1]. F (x ) is homoge-

neous. Since x [p−1] is also homogeneous, Q̄(x ) is homogeneous. Now Q̄(x ) has

satisfied the conditions for Corollary (7), which are homogeneous and weakly

primitive. It follows that x (k) converges to the unique vector x ∗ ∈ Rn
>0 satisfy-

ing ∇P(x ) = λ(x ∗)[p−1] and ψTx ∗ = 1. Algorithm 8 satisfies ∥x∥p = a where

a, p > 0. Therefore, the solution of Q̄(x ) is also the solution of Q(x ).

5.4 Conclusion

In this chapter, with some modifications, we have applied the algorithm presented

in Chapter 4 to the optimisation problem whereby the objective function is a

nonnegative polynomial and the constraint is spherical.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Finding the largest eigenvalue of tensors was the main focus in this thesis. The

Collatz method was the base of our algorithms as discussed in the introductory

chapter. The method was later extended to square tensors, rectangular tensors

and the wider class; the general polynomials. We summarise this thesis in this

concluding chapter.

In Chapter 2, we studied the extended Collatz method for calculating the largest

eigenvalue of nonnegative tensors [43]. However the algorithm is proven to be

convergent only under primitive condition. The algorithm is modified so that it

is convergent under a wider class, that is irreducible. The convergence of the

method was discussed at length and proven to be Q-linear convergent [78].

In Chapter 3, we considered the method for rectangular tensors given by [7, 76]

which was an extension of the discussion in Chapter 2. This method was proven

to be convergent for irreducible rectangular tensors [76]. We showed that the

method of [76] was also convergent for weakly irreducible rectangular tensors and

we proved that it had a Q-linear rate of convergence.

In Chapter 4, we took the methods presented in Chapter 2 and 3 to a wider

class namely, nonhomogeneous polynomials. The methods in the previous chap-

ters only considered homogeneous polynomials. Another method for finding the

largest eigenvalue of polynomials was also proposed in [16], however that method
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is for homogeneous polynomials. We extended some properties of nonnegative

square tensors to nonnegative polynomials and presented a convergent method

for finding the largest eigenvalue of nonnegative polynomials. This method was

convergent under weakly irreducible condition for both homogenous and non-

homogeneous polynomials. The numerical results showed that the method was

efficient.

In Chapter 5, we studied the optimisation problem of nonnegative polynomials

subject to spherical constraint. This kind of problem whereby the polynomials

were induced by tensors was studied in [77]. The problem was relaxed and solved

by three methods: geometric programming problem, smoothing Newton method

and the power method. The power method used was a variation of the methods

in Chapters 2 and 3. When tested numerically, the power method was most

efficient. Motivated by this, we presented a convergent algorithm for solving the

optimisation problem of both homogeneous and nonhomogeneous nonnegative

general polynomials subject to spherical constraint.

6.2 Suggestions

In Chapters 2 and 3, we did not discuss the effect of the choice of ρ. In Chapters

4 and 5, we only considered ρ = 1. For matrices, the issue of the optimal shift was

discussed in [66]; however, it is unknown for the case of tensors and polynomials.

It might accelerate the rate of convergence.

Regarding the rate of convergence, a weaker condition might exist. This opens a

door to further research.

The methods in this thesis were proven to be convergent under irreducible con-

ditions. The case for matrices under reducible condition was discussed in [66]

and for square tensors in [25]. For general polynomials, interested readers should

refer to [4]. It is unknown whether the algorithms converge under a broader class

and this deserves further investigation.
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