Faculty of Engineering and Computing Department of Civil Engineering

Climate Change and Water Management Impacts on Land and Water Resources

Syed Mahtab Ali

This thesis is presented for the Degree of Doctor of Philosophy Of Curtin University of Technology

July 2007

Declaration

To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university.

Signature:

Date:

ABSTRACT

This study evaluated the impacts of shallow and deep open drains on groundwater levels and drain performance under varying climate scenarios and irrigation application rates. The MIKE SHE model used for this study is an advanced and fully spatially distributed hydrological model. Three drain depths, climates and irrigation application rates were considered. The drains depths included 0, 1 and 2 m deep drains. The annual rainfall and meteorological data were collected from study area from 1976 to 2004 and analysed to identify the typical wet, average and dry years within the record. Similarly three irrigation application rates included 0, 10 and 16 ML/ha-annum. All together twenty seven scenarios (3 drains depths, 3 climates and 3 irrigation application rates) were simulated.

The observed soil physical and hydrological data were used to calibrate and validate the model. Mean square error (R^2) of the simulated and observed water table data varied from 0.7 to 0.87. Once validated the MIKE SHE model was used to evaluate the effectiveness of 1 and 2 metre deep drains. The simulated water table depth, unsaturated zone deficit, exchange between unsaturated and saturated zones, drain outflow and overland flow were used to analyse their performance.

The modeling results showed that the waterlogging was extensive and prolonged during winter months under the no drainage and no irrigation scenario. In the wet climate scenario, the duration of water logging was longer than in the average climate scenario during the winter months. In the dry climate scenario no waterlogging occurred during the high rainfall period. The water table reached soil surface during the winter season in the case of wet and average climate. For the dry climate, the water table was about 0.9 metres below soil surface during winter. One and 2 metre deep drains lowered the water table up to 0.9 and 1.8 metres in winter for the wet climate when there was no irrigation application.

One metre deep drains proved effective in controlling water table during wet and average climate without application of irrigation water. One metre deep drains were more effective in controlling waterlogging a in wet, average and dry years when the irrigation application rate was 10 ML/ha-annum. With 16 ML/ha-annum irrigation

application, 1 metre deep drains did not perform as efficiently as 2 metre deep drains in controlling the water table and waterlogging. In the dry climate scenario, without irrigation application, 1 metre deep drains were not required as there was not enough flux from rainfall and irrigation to raise the water table and create waterlogging risks.

Two metre deep drains lowered the water table to greater depths in the wet, average and dry climate scenarios respectively when no irrigation was applied. They managed water table better in wet and average climate with 10 and 16 ML/ha-annum irrigation application rate. Again in the dry climate, without irrigation application 2 metre deep drains were not required as there was a minimal risk of waterlogging.

The recharge to the groundwater table in the no drainage case was far greater than for the 1 and 2 metre deep drainage scenarios. The recharge was higher in case of 1 metre deep drains than 2 metre deep drains in wet and average climate during winter season. There was no recharge to ground water with 1 and 2 metre deep drains under the dry climate scenarios and summer season without irrigation application as there was not enough water to move from the ground surface to the unsaturated and saturated zones.

When 10 ML/ha-annum irrigation rate was applied during wet, average and dry climate respectively, 1 metre deep drains proved enough drainage to manage the recharge into the groundwater table with a dry climate. For the wet and average climate scenarios, given a 10 ML/ha-annum irrigation application rate, 2 metre deep drains managed recharge better than 1 metre deep drains. Two metres deep drains with a 10 ML/ha-annum irrigation rate led to excessive drainage of water from the saturated zone in the dry climate scenario.

Two metres deep drains managed recharge better with a 16 ML/ha-annum irrigation application rate in the wet and average climate scenarios than the 1 metre deep drains. Two metres deep drains again led to excessive drainage of water from the saturated zone in dry climate.

In brief, 1 metre deep drains performed efficiently in the wet and average climate scenarios with and without a 10 ML/ha-annum irrigation application rate. One metre deep drains are not required for the dry climate scenario. Two metre deep drains

performed efficiently in the wet and average climate scenarios with 16 ML/ha-annum irrigation application rate. Two metre deep drains are not required for the dry climate scenario.

ACKNOWLEDGEMENTS

All praises goes to Allah Almighty, Who provided me this opportunity to contribute a drop in the sea of knowledge which He blessed to the human being.

It is my great honor to acknowledge the efforts of many peoples involved in this research to make it possible. First of all, I extend my sincere gratitude to Dr. Hamid Nikraz, Associate Professor, Department of Civil Engineering, Curtin University of Technology, Western Australia, for his extra-ordinary help and timely inputs for this study. His supervision played a vital role to improve the quality and scientific vision of this research. His encouragement, guidance and trust on my ability boosted my motivation and enthusiasm which resulted in the completion of this dissertation.

I also extend my heartiest gratitude to Dr. Riasat Ali who always pointed me in the right direction when I was in need during this research. His guidance, assistance, encouragement and interest throughout the study period were a great help. I am greatly indebted to his moral and technical support during the difficult times of this research. His comments and suggestions provided me directions for completing this study in the limited time.

I am also very thankful to Mr. Michael Loenborg of DHI, Water Environment Health, Denmark, for helping me to calibrate and setup MIKE SHE for this study. Without his check and help, it was difficult to get these results in this limited time. I pay my thankful gratitude to Douglas Graham, Project Manager for MIKE SHE, DHI Water and Environment, Denmark, for his valuable help and material he provided to me to learn MIKE SHE for the modelling of this study. I pay my sincere gratitude to Mark Britton, State Manager, Western Australia, DHI Water Environment Health, Graeme Cox and Robert Carr of DHI, Denmark for their valuable help in this research.

I also extend my gratitude to Dr. Neil Coles and Dr. Bob Nulsen for their contribution into this research. Their suggestions and comments improved my synopsis and this thesis. I also acknowledge their contribution for getting scholarship from Australian Research Council for this study. Many other people have contributed in this research. I wish to thank to all of them, particularly, Mr. Geoff Hodgson and Natalie Smart of CSIRO to help me in GIS and field work. The soil sampling and GIS support for setting up MIKE SHE was great contribution. I also acknowledge the valuable help of Jim Prince of Agriculture Department, WA for his help in collecting the field data for this research.

I am thankful to many of my friends at University of Western Australia and Curtin University of technology for their moral support and friendly environment during this study to boost my determination to achieve this goal.

It would be unfair not to mention the contribution of Dr. Jorg Imberger, Professor at Centre for Water Research, University of Western Australia, for providing me his valuable time and encouragement for pursuing my PhD all along the last six years.

I would like to record the role of my mother and late father in achieving this destination. Their prayers, encouragement, love and affection was a brilliant help to keep me focused during this study. I heartily acknowledge the prayers of my brothers, sisters and all other relatives as they played a vital role in the completion of this dissertation. I also extend my sincere gratitude to my wife and children who allowed me to spend extra time on this research. Their patience and support was very valuable during the course of this study.

TABLE OF CONTENTS

Declarationi
ABSTRACTii
ACKNOWLEDGEMENTSv
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVATIONS xxii
LIST OF ABBREVATIONS xxii
CHAPTER 11
INTRODUCTION
1.1 STUDY AREA
1.2 OBJECTIVES
CHAPTER 2
THEORY AND LITERATURE REVIEW
2.1 CAUSES OF WATERLOGGING AND SALINITY
2.2 IMPACT OF DRAINAGE
2.3 DRAINAGE EXPERIENCE IN WESTERN AUSTRALIA11
2.4 HYDROLOGICAL MODELS
2.4.1 Physically Based Hydrological Models13
2.4.2 Classical Models17
2.4.3 Deterministic and Stochastic Models
2.4.4 Analytical Models

2.5 ADVANCED COMPUTER BASED MODELS	20
2.6 APPLICATION OF GIS IN HYDRLOGICAL MODELLING	23
2.7 CHAPTER'S SUMMARY	28
CHAPTER 3	30
DESCRIPTION OF MIKE SHE	30
3.1 RICHARDS EQUATION	33
3.1.1 Numerical Solution of Richard Equation	35
3.2 EVAPOTRANSPIRATION	36
3.2.1 Leaf Area Index (LAI)	37
3.2.2 Kristensen and Jensen method	37
3.2.3 Canopy Interception	37
3.2.4 Evaporation from the Canopy	
3.2.5 Plant Transpiration	
3.3 ROOT DISTRIBUTION FUNCTION, RDF	
3.3.1 AROOT	40
3.4 SOIL EVAPORATION	41
3.4.1 Evapotranspiration Coefficients C1, C2 and C3	41
3.4.2 Canopy Interception	42
3.4.3 Soil Moisture	43
3.5 INFILTRATION	45
3.6 EVAPOTRANSPIRATION	46
3.6.1 ET from the Canopy	47
3.6.2 ET from Ponded Water	47
3.6.3 ET from the Unsaturated Zone	47
3.6.4 ET from the Saturated Zoneviii	48

3.6.5 Actual ET	
3.7 RECHARGE TO THE SATURATED ZONE	48
3.8 SATURATED FLOW	49
3.9 SOLUTION OF THREE DIMENSIONAL FLOW EQUATION	49
3.9.1 The Preconditioned Conjugate Gradient (PCG) Solver	49
3.10 LINEAR RESERVOIR METHOD	51
CHAPTER 4	55
MATERIAL AND METHOD	55
4.1 PHASE 1	55
4.2 PHASE 2	57
4.3 CALIBRATION OF MIKE SHE	
4.3.1 Defining the model domain and grid	59
4.3.2 Defining the Topography	60
4.3.3 Defining Precipitation	60
4.3.4 Defining the Geologic Model	60
4.3.5 Defining the Vertical numerical discretisation	61
4.3.6 Defining the Initial Groundwater Level	61
4.3.7 Defining Boundary Conditions	61
4.3.8 Hydraulic Conductivity values	62
4.3.9 Groundwater Drainage	62
4.4 SIMULATIONS FOR CALIBRATING MIKE SHE FOR	
SATURATED ZONE	62
4.4.1 Calibration Statistics	63
4.5 SETTING UP UNSATURATED FLOW MODULE	65

ZONE	66
4.7 RESULTS OF CALIBRATION	66
4.8 VALIDATION OF MIKE SHE	71
4.9 CLASSIFICATION OF CLIMATE	74
4.10 DRAINAGE DEPTHS	74
4.11 IRRIGATION APPLICATIONS	74
4.12 NUMBER OF SCENARIOS	75
CHAPTER 5	76
SIMULATED RESULTS OF GROUNDWATER FLUCTUATIONS	76
5.1 DESCRIPTION OF SIMULATIONS' SCENARIOS	76
5.2 IMPACT OF DRAINS ON LAND AND WATER RESOURCES	78
5.3 WATER TABLE DEPTH WITHOUT IRRIGATION AND	
DRAINAGE IN THREE CLIMATES	80
5.4 WATER TABLE DEPTH WITH 1 M DEEP DRAIN WITHOUT	
IRRIGATION	86
5.4.1 Wet Climate	86
5.4.1.1 Impact of one metre Deep Drains in Wet Climate	88
5.4.2 Average Climate	88
5.4.2.1 Impacts of one metre Deep Drains in Average Climate	89
5.4.3 Dry climate	89
5.4.3.1 Impacts of one metre Deep drains in Dry Climate	90
5.5 WATER TABLE DEPTH WITH 2 M DEEP DRAINS AND NO	
IRRIGATION	90
5.5.1 Wet climate	91

4.6 COUPLING BETWEEN UNSATURATED AND SATURATED

5.5.1.1 Impacts of two metre Deep Drains in Wet Climate	92
5.5.2 Average climate	92
5.5.2.1 Impacts of two metre Deep Drains in Average Climate	94
5.5.3 Dry climate	94
5.5.3.1 Impacts of two metre deep Drains in Dry Climate	96
5.7 WATER TABLE DEPTH WITH DRAINS AND IRRIGATION IN	
THREE CLIMATES	96
5.7.1 Water Table Depth with 10 ML/ha-annum Irrigation	96
5.7.1.1 One metre Deep Drains in Wet Climate:	97
5.7.1.2 Impacts of Drains with 10 ML/ha-annum Irrigation	98
5.7.2 One metre Deep Drains in Average Climate	99
5.7.2.1 Impacts of one metre Deep Drain in Wet Climate	101
5.7.3 Two metres	101
5.7.3.1 Impacts of 2 m Deep Drains in Wet Climate	103
5.7.4 Two metres Deep Drains in Average Climate	103
5.7.5 Water Table Depth with 16 ML/Y per Hectare Irrigation	104
5.7.5.1 One and 2 m Deep Drain Wet Climate	104
5.7.5.2 Impacts of 16 ML/ha-annum Irrigation in Wet Climate	107
5.7.6 One and 2 m Deep Drain in Average Climate	107
5.7.6.1 Impacts of 16 ML/ha-annum Irrigation in Average Climate	110
5.8 CHAPTER'S SUMMARY	110
5.8.1 Impacts of Drains Without Irrigation	110
5.8.2 Impacts of 1 and 2 M Deep Drains	111
CHAPTER 6	113
SIMULATED RESULTS OF RECHAGE TO GROUNDWATER	113

6.1 RECHARGE WITHOUT DRAINAGE AND IRRIGATION114
6.2 RECHARGE WITH 1 M DEEP DRAINS AND 10 ML/HA-
ANNUM IRRIGATION
6.3 RECHARGE WITH 1 M DEEP DRAINS AND 16 ML/HA-
ANNUM IRRIGATION
6.4 RECHARGE WITH 2 M DEEP DRAINS AND 10 ML/HA-
ANNUM IRRIGATION
6.5 RECHARGE WITH 2 M DEEP DRAINS AND 16 ML/HA-
ANNUM IRRIGATION
6.2 CHAPTER'S SUMMARY
CHAPTER 7
SIMULATED RESULTS OF OVERLAND FLOW
7.1 DAILY OVERLAND FLOW AND FLOODING RISK
7.1.1 Daily Overland flow in Wet Climate without Irrigation134
7.1.2 Daily Overland flow in Average Climate without Irrigation135
7.1.3 Daily Overland flow in Dry Climate without Irrigation136
7.1.4 Daily Overland flow with 10 ML/ha-annum Irrigation in Wet
Climate
7.1.5 Daily Overland flow with 10 ML/ha-annum Irrigation in
Average Climate
7.1.6 Daily Overland flow with 10 ML/ha-annum Irrigation in
Average Climate
7.1.7 Daily Overland flow with 16 ML/ha-annum Irrigation in Wet
Climate

7.1.8 Daily Overland flow with 16 ML/ha-annum Irrigation in
Average Climate
7.1.10 Daily Overland flow with 16 ML/ha-annum Irrigation in Dry
Climate
7.2 MONTHLY AND ANNUAL VOLUMES OF OVER LAND FLOW142
7.2.1 Monthly and Annual Overland Flows without Drains143
7.2.2 Monthly and Annual Overland Flows with 1 m Deep Drains145
7.2.3 Monthly and Annual Overland Flows with 2 m Deep Drains148
7.3 AMOUNT OF WATER DRAINED151
CHAPTER 8154
CONCLUSIONS:
8.1 INTRODUCTION154
8.2 PERFORMANCE OF DRAINAGE WITH OR WITHOUT
IRRIGATION154
8.3 SUGGESTION FOR FUTURE RESEARCH155
REFERENCES157
APPENDIX 1176
(WATER TABLE DEPTHS IN METRE)176
APPENDIX 2198
(UNSATURATED ZONE DEFICIT IN MELLI METRES)198
APPENDIX 3220
(EXCHANGE BETWEEN UNSATURATED AND SATURATED
ZONE)
APPENDIX 4242
(DEPTH OF OVER LAND FLOW IN METRE)242 xiii

APPENDIX 5	262
(DRAIN OUT FLOW IN MILLI METRES)	262
APPENDIX 6	270
(RAINFALL POTENTIAL ET AND IRRIGATION DATA)	270
APPENDIX 7	278
(PARAMETERS USED IN CALIBRATION)	278

LIST OF TABLES

Table 4.1 Calibrated Parameters from the Last Simulation
Table 4.2: Calibrated and Observed Data for Yarloop Catchment for Bores 2844 and
2929 (m)
Table 4.2: Calibrated and Observed Data for Yarloop Catchment for Bores 2846 and
2930 (m)70
Table 4.3: Correlation between Observed and Simulated Water Table Depths.
Table 4.4: Validated and Observed Data for Yarloop Catchment for Bores 2841 and
2937
Table: 4.5 Correlation between Water Table Depths Predicted by Calibrated model and
Observed Data
Table 5.1: Description of Scenarios with no Drains, D0 (Drain depth = 0 M)
Table 5.2: Description of Scenarios with One Metre Deep Drains, D1 (Drain depth =
1M)77
Table 5.3: Description of Scenarios with Two Metres Deep Drains, D2 (Drain depth =
2M)77
Table 5.4: Extent of Waterlogging without Irrigation and Drainage in three Climates. 82
Table 5.5: Monthly Rainfall, Potential Evapotranspiration and Average Water Table
Depths for Wet, Average and Dry Climates without Irrigation and Drainage85
Table 5.6: Extent of Waterlogging with and without 1 m deep drains in Wet Climate
Table 5.7: Extent of Waterlogging with and without 1 m deep drains in Average
Climate
Table 5.8: Water Table Depth with and without 1 m Deep Drains in Dry Climate

Table 5.9: Water Table Depth with 1 and 2 m Deep Drains in Wet Climate
Table 5.10: Water Table Depth with 1 and 2 m Deep Drains in Wet Climate
Table 5.11: Water Table Depth with and without 1 m Deep Drains in Dry Climate
Table 5.12: Water Table Depths in Wet, Average and Dry Climates with and without 1
and 2 Metres Deep Drains
Table 5.13: Water Table Depth with and without 1 m Deep Drains in Wet Climate with
10 ML/ha-annum Irrigation
Table 5.14: Water Table Depth with and without 1 m Deep Drains in Wet Climate with
10 ML/ha-annum Irrigation100
Table 5.15: Water Table Depth with and without 2 m Deep Drains in Wet Climate with
10 ML/ha-annum Irrigation103
Table 5.16: Water Table Depth with and without 1 and 2 m Deep Drains in Wet Climate
with 16 ML/ha-annum Irrigation106
Table 5.17: Water Table Depth with and without 1 and 2 m Deep Drains in Average
Climate with 16 ML/ha-annum Irrigation109
Climate with 16 ML/ha-annum Irrigation109 Table 6.1: Monthly Rainfall, Potential Evapotranspiration and Recharge/Discharge Wet,
Climate with 16 ML/ha-annum Irrigation

Table 7.2: Monthly Overland Flow for 1 m Deep drained scenarios	146
Table 7.3: Monthly Overland Flow for 1 m Deep drained scenarios	149
Table 7.4 Annual Volumes of Overland Flow for all Twenty Seven Scenarios	150
Table 7.5: Drain outflow (Discharge) from the area (mm)	152

LIST OF FIGURES

Figure 1.1: Location of the Study area	4
Figure 2.1: Impact of overland flow, Irrigation and Land use on Groundwater	r
Recharge	8
Figure 2.2: Textural Contrast Soils with Sand over Clay.	9
Figure 2.3: Typical open Drain in Wheatbelt area of Western Australia	12
Figure 3.1: Flow chart Diagram of MIKE SHE	
Figure 3.2: Interception, Evaporation and Transpiration process	
Figure 3.3: Schematic Diagram of Linear Reservoir Module of MIKE SHE	
Figure 4.1: Basic steps in Building a Model	55
Figure 4.2: Schematic Integration of different Modules in MIKE SHE	
Figure 4.3: Yarloop Catchment and location of Bores used for Calibration an	d
Validation of MIKI SHE.	58
Figure 4.4: Location of Calibrated and Validated Bores in the Yarloop catchr	nent 65
Figure 4.5: Observed and Simulated Water Table Depths.	71
Figure 5.1: Water Table Depth during Wet, Average and Dry Climates	
Figure 5.2: Daily Rainfall during Wet, Average and Dry Climate	
Figure 5.3: Potential Evapotranspiration during Wet, Average and Dry Clima	ıte
Figure 5.4: Rainfall during May to October in Wet, Average and Dry Climate	e 84
Figure 5.5: Potential Evapotranspiration during May-October for Wet, Avera	ige and
Dry Climates	
Figure 5.6: Water Table Depths with and without 1 m Deep Drains, no Irriga	tion in
Wet Climate	
Figure 5.7: Water Table Depths with and without 1 m Deep Drains and no Irr	rigation
in Average Climate	89
Figure 5.8: Water Table Depths with and without 1 m Deep Drains and no Im	rigation
in Dry Climate	
Figure 5.9: Water Table Depths with 1 and 2 m Deep Drains and no Irrigation	n in Wet
Climate.	
Figure 5.10: Water Table Depths with 1 and 2 m Deep Drains and no Irrigation	on in
Average Climate	

Figure 5.11: Water Table Depths with 1 and 2 m Deep Drains and no Irrigation in	
Dry Climate	95
Figure: 5.12: Water Table Depths with and without 1 m Deep Drains and 10 ML/ha-	
annum Irrigation in Wet Climate	98
Figure: 5.13: Water Table Depths with and without 1 m Deep drains and 10 ML/ha-	
annum Irrigation in Average Climate	100
Figure: 5.14: Water Table Depths with and without 2 m Deep drains and 10 ML/ha-	
annum Irrigation in Wet Climate	102
Figure: 5.15: Water Table Depths with 1 and 2 m Deep drains and 10 ML/ha-annum	
Irrigation in Wet Climate	102
Figure: 5.16: Water Table Depths with and without 2 m Deep drains and 10 ML/ha-	
annum Irrigation in Average Climate	104
Figure: 5.17: Water Table Depths with and without 1 m Deep drains and 16 ML/ha-	
annum Irrigation in Wet Climate	105
Figure: 5.18: Water Table Depths with and without 2 m Deep drains and 16 ML/ha-	
annum Irrigation in Wet Climate	106
Figure: 5.19 Water Table Depths with and without 1 m Deep drains and 16 ML/ha-	
annum Irrigation in Average Climate	108
Figure: 5.20 Water Table Depths with and without 2 m Deep drains and 16 ML/ha-	
annum Irrigation in Average Climate	109
Figure 6.1: Conceptual Model of Exchange in Saturated and Unsaturated Zones	114
Figure 6.2: Daily Recharge without Irrigation and Drainage in Wet, Average and Dry	
Climate.	115
Figure 6.4: Monthly Recharge/Discharge without Irrigation and Drainage in Wet,	
Average and Dry Climate	116
Figure 6.5: Recharge with 1 m Deep Drains and 10 ML/ha-annum Irrigation in Wet,	
Average and Dry Climate	119
Figure 6.6: Rate of Recharge with 1 m Deep Drains and 10 ML/ha-annum Irrigation	
in Wet, Average and Dry Climate.	119
Figure 6.8: Daily Recharge with 1 m Deep Drains and 16 ML/ha-annum Irrigation in	
Wet, Average and Dry Climate.	122
Figure 6.9: Daily Rate of Recharge with 1 m Deep Drains and 16 ML/ha-annum	
Irrigation in Wet, Average and Dry Climate.	123

Figure 6.10: Monthly Recharge/Discharge with 16 ML/ha-annum Irrigation and 1 m	
deep Drains in Wet, Average and Dry Climate.	124
Figure 6.11: Rate of Recharge with 2 m Deep Drains and 10 ML/ha-annum Irrigation	
in Wet, Average and Dry Climate.	126
Figure 6.12: Rate of Recharge with 2 m Deep Drains and 10 ML/ha-annum Irrigation	
in Wet, Average and Dry Climate.	127
Figure 6.13: Monthly Recharge/Discharge with 10 ML/ha-annum Irrigation and 2 m	
deep Drains in Wet, Average and Dry Climate	128
Figure 6.14: Daily Rate of Recharge with 2 m Deep Drains and 10 ML/ha-annum	
Irrigation in Wet, Average and Dry Climate.	130
Figure 6.15: Daily Rate of Recharge with 2 m Deep Drains and 16 ML/ha-annum	
Irrigation in Wet, Average and Dry Climate.	131
Figure 6.16: Monthly Recharge/Discharge with 16 ML/ha-annum Irrigation and 2 m	
deep Drains in Wet, Average and Dry Climate	132
Figure 7.1: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Wet	
Climate.	134
Figure 7.2: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Average	
Climate	135
Figure 7.3: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Wet	
Climate and 10 ML/ha-annum Irrigation.	137
Figure 7.4: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Average	
Climate and 10 ML/ha-annum Irrigation.	138
Figure 7.5: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Dry	
Climate and 10 ML/ha-annum Irrigation.	139
Figure 7.6: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Wet	
Climate and 16 ML/ha-annum Irrigation.	140
Figure 7.7: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Average	
Climate and 16 ML/ha-annum Irrigation	141
Figure 7.8: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Dry	
Climate and 16 ML/ha-annum Irrigation.	142
Figure 7.9: Monthly Volumes of Overland Flow Un-drained Scenarios	143
Figure 7.10: Annual Volumes of Overland Flow for Un-Drained Scenarios.	145
Figure 7.10: Monthly Volumes of Overland Flow for 1 m Deep Drained Scenarios	147

Figure 7.11: Annual Volumes of Overland Flow for 1 m Deep Drained Scenarios...... 147 Figure 7.12: Monthly Volumes of Overland Flow for 2 m Deep Drained Scenarios..... 148 Figure 7.13: Annual Volumes of Overland Flow for 2 m Deep Drained Scenarios...... 149

LIST OF ABBREVATIONS

k	Time constant
K _{inf}	Infiltration rate (mm/h)
∂h	Partial derivative of hydraulic head
∂z	Partial derivative of gravitational head
Δh	Change in hydraulic head (m)
AROOT	Parameter that describes the root mass distribution
C1	Empirical parameters
C2	Empirical parameters
C3	Empirical parameters
Cint	Defines the interception storage capacity of the vegetation (mm)
Cm	Iteration coefficient
Cn	Iteration coefficient
D0	Zero metre drain depth (No drain scenario)
D1	One metre drain depth
D2	Two metres drain depth
Eat	Actual Evapotranspiration (mm/d)
Ecan	Canopy evaporation (mm/d)
Ep	Potential Evapotranspiration by crops (mm/d)
f1(LAI)	Function based on the leaf area index
$f2(\theta)$	Function based on the soil moisture content in the root zone
Н	Hydraulic head (m)
H _c	ET Surface Elevation (m)
Ι	Inflow rate to the reservoir
Iact	Actual Interception

- I0 Zero Mega Litres per annum per hectare irrigation
- I10 Ten Mega Litres per annum per hectare irrigation
- I16 Sixteen Mega Litres per annum per hectare irrigation
- Imax Canopy storage (mm)
- Inf_k Maximum amount of infiltration (mm/h)
- K Hydraulic conductivity (m/s)
- Kh Horizontal hydraulic conductivity (m/s)
- Km Iteration coefficient
- Kn Iteration coefficient
- K_o Time constant for the overflow outlet
- k_p Time constant for the percolation outlet
- LAI Leaf Area Index
- MAE Mean Absolute error
- ME Mean error
- Obs_{i.t} observed measurement
- P Precipitation (mm)
- Q Volumetric flux in m² per second
- Q Source/sink term
- Q Outflow rate from the reservoir
- Q_o Outflow from the overflow outlet and
- Q_p Percolation of water
- R Correlation constant
- RDF Root Distribution Function
- RMES Root mean square error
- Ro Root extraction at the soil surface

S	Storage in the reservoir
SA	Average climate scenario
SD	Dry climate scenario
SW	Wet climate scenario
Sim _{i,t}	Simulated measurement
STDres	Standard residual error
SZ	Saturated zone
t	Time
Thd	Threshold value for the overflow outlet
UZ	Unsaturated Zone
Z	Gravitational head component (m)
Z	Depth below ground surface [m]
Zd	Equal to the root depth (m)
Z _{ext}	Extinction depth(m)
Δt	Change in time (t)
Θ	Volumetric water content
θ_{FC}	Volumetric moisture content at field capacity
Θmax	Maximum water content
Θmin	Minimum water content
Θsat	Saturated water content
$\theta_{\rm W}$	Volumetric moisture content at the wilting point
Ψ	Pressure component (m)

CHAPTER 1 INTRODUCTION

The change in global climate is impacting on every aspect of our life. Our limited agricultural land and water resources are under severe pressure. In the Southwest of Western Australia the average annual rainfall is decreasing and extreme rainfall events and flooding are becoming more frequent. This changing environment is one of the major challenges in the irrigated and non-irrigated agricultural catchments of Southwest of Western Australia. It has major implications for our current water resources and engineering water management strategies. It demands a deep understanding of these changes for a sustainable use of our land and water resources.

Excessive clearing of native vegetation in the Southwest of Western Australia for agricultural production has had a number of environmental consequences including salinity, waterlogging, flooding, declining water quality and increased emission of green house gases. In addition to this, engineering strategies aimed at boosting agricultural production, like irrigation and drainage are, in general, poorly planned and engineered leading to further environmental degradation and inefficient water use. Before clearing most of the rainfall was being accounted for by interception and transpiration by vegetation with relatively small amounts recharging groundwater systems. Removal of much of the native vegetation has had major impacts on the carbon and water balances. In the absence of the native deep-rooted perennial vegetation more water now enters the soil and evapotranspiration has been reduced. Water that is not used by annual crops and pastures recharges the groundwater system and mobilises salts stored in the profile. Rising groundwater can then lead to seepage, waterlogging during winter and salt deposition at the surface when water is evaporated during summer.

One of the major causes of localised waterlogging and salinity in Western Australia is texture contrast or "duplex" soils. Two thirds of the agricultural land in the Southwest region has a duplex soil profile with sandy loam surface soils overlying sandy clay subsoils. A common morphological feature of these soils is a strong texture-contrast between the A and B horizons; however, chemical, mineralogical and physical properties can vary. A lack of vertical flow capacity in the B horizon causes ponding above the boundary between the A and B horizons and as a result waterlogging develops in the topsoil.

Second most important cause of waterlogging and salinity in the agricultural catchments is the role of topography specifically in upper and middle part of the catchemnts. On sloping duplex soils, lateral saturated flow occurs above the B-horizon. The amount of flow and its duration depends on the slope angles and length, soil depth, and the hydraulic conductivity of the topsoil and subsoil. Interflow may contribute to waterlogging further down the slope and create a watertable at or near the ground surface. In the Southwest of Western Australia some form of artificial drainage network (engineering earthwork) especially interceptor drains are increasingly being used to manage waterlogging and salinity. The change in natural drainage pattern with one developed by man's activities, mostly through open shallow and deep drainage is a subject of much debate in WA. The artificial drainage network may take many forms e.g., graded banks, contour banks, interceptor and reverse interceptor banks, w-drains and simple open and closed ditches.

To deal with waterlogging and salinity in the southwest of Western Australia, understanding the rainfall-runoff (surface and subsurface) process is a fundamental requirement and is the basis of this study. It is important to investigate what happens to the rain when it falls on drained or undrained agricultural areas as well as what impact drains have on surface and subsurface flow. We will investigate these issues with the use of physical based modelling and compare the hydrological processes involved, in terms of surface and subsurface runoff, in drained and undrained agricultural areas.

1.1 STUDY AREA

The Harvey Water Irrigation Areas (HWIA) is an important irrigated dairying and horticulture area situated in Southwest of Western Australia. The area supplys Perth and surrounding areas with more than 40 per cent of its milk demand. The history of irrigated agriculture in HWIA started with the establishment of a weir in 1916. Since that time, pastures and horticultural crops have been irrigated through surface (flood) irrigation. Irrigated agriculture is the community's major source of income. HWIA consists of three Irrigation Districts (IDs); Waroona, Harvey and Collie. The northern edge of the HWIA is approximately 100 kilometres south of Perth. The clearing of native vegetation with the replacement of shallow rooted crops and pastures, construction of dams, irrigation by flooding and the construction of a drainage network, has modified the water balance of Harvey, Collie and Waroona Irrigation Districts of the Southwest of Western Australia. More water is recharging the groundwater system and discharge has decreased. As a consequence improving irrigation efficiency, managing seasonal waterlogging and salinity are key issues which are being faced by the farming communities in HWIA.

Prolonged waterlogging has reduced the number of cropping days per year and, as a result, farm profit has declined in recent years. The fluctuation of the water table during summer, winter and irrigation times has led to surface and sub-surface salinity and which in turn reduces crop production per unit area. Once severely affected, areas may be out of production permanently. To manage excessive water and to reclaim the salt affected areas, a number of drains have been constructed throughout the IDs with little success.

We hypothesise that appropriate application of irrigation and drainage to waterlogged and salt affected soil can reclaim agricultural land in short period of time. This study employed a physical based hydrological model (MIKE SHE) to assess the effectiveness of irrigation and drainage in reclaiming the affected land. For this purpose, MIKE SHE was calibrated and validated by using actual field observations from selected catchments in IDs. The validated model was then used to run scenarios with varying drains depths, irrigation applications and climate

scenarios to analyse the role of drainage in managing waterlogging and salinity in IDs.

Figure 1.1: Location of the Study area.

1.2 OBJECTIVES

Although reforestation and drainage are two major tools to tackle the problem of waterlogging and salinity, in this study the impact and role of drainage was evaluated for managing water table depth and water balance of IDs agricultural catchments. It aimed to provide a deeper understanding of how different fluxes (e.g. recharge, discharge, overland flow and subsurface runoff) are exchanged and modified after the installation of drainage. The study also provides a better understanding of the role of irrigation and drainage in modifying the saturated zone and unsaturated zone

moisture contents under drained and un-drained scenarios in wet average and dry climates. The objectives of study were:

- 1. To calibrate and validate MIKE SHE model with actual rainfall, meteorological, land use, water table depth and stream flow data from HWIA agricultural catchment in the Southwest of Western Australia.
- To use the calibrated model to assess the impact of drainage on overland flow, drain outflow, saturated and unsaturated zones moisture content in wet average and dry climates.
- 3. The impact of a wet, average or dry climate on the water table depth with and without irrigation and drainage. The performance of drains with different depths to manage the water table were compared to understand the role of drain depth under wet, average and dry climates
- 4. To gain understanding of the effect of climate on un-drains and drained, irrigated and non- irrigated areas. MIKE SHE a fully distributed hydrological model will be used to gain the understanding of the soil, vegetation, topographic and land use factors that control the water balance of typical irrigated agricultural catchments in the Southwest region of Western Australia. The implementation of various drainage schemes in the model will provide a thorough understanding of its impact on the overall water balance, specifically, the volume of recharge, discharge from the unsaturated and saturated zones, rate of exchange in unsaturated and saturated zones and volumes drains and overland flows.
- 5. To evaluate the role of drainage to cope the waterlogging and salinity problem in the irrigated and non-irrigated area. The extent of waterlogging and rate of recharge during irrigation will be estimated and the drains performance will be compared with non-irrigated and undrained areas.

- 6. To quantify different fluxes in saturated and unsaturated zones with different drainage designs and their role in managing waterlogging and salinity. The calibrated MIKE SHE will be used to run different scenarios with different irrigation application rates to understand the change in moisture contents in saturated and unsaturated zones.
- 7. To understand the interaction between the generation of overland flow and flooding risk with and without drainage and irrigation. For this purpose, the impact of overland flow would be estimated in term of depth of flow with and without irrigation under wet, average and dry climate scenarios.

<u>CHAPTER 2</u> THEORY AND LITERATURE REVIEW

The main objective of this chapter was to review the literature for getting a comprehensive knowledge of past work done locally and internationally to address the problem and causes of water logging and salinity. The strategies adopted to tackle this problem and the hydrological models used to understand and evaluate the impact of these strategies were also reviewed. Application of GIS based hydrological models has also been explored as these models have made a great progress in the field of hydrology in recent history.

There is wealth of knowledge available in the literature about causes of waterlogging, salinity, hydrological models, strategies adopted to reclaim the affected soil locally and internationally. It is not possible to cover all of that only the material related to this research is being repeated here form the literature. This chapter is divided in to following sub heading:

- Causes of waterlogging and salinity
- Impact of drainage to reclaim the affected land
- Hydrological models used to assess the problem
- Application of GIS in Hydrological Modelling

2.1 CAUSES OF WATERLOGGING AND SALINITY

Farming community of Western Australia is facing the worst environmental problem of waterlogging and salinity in the recent history. Approximately 1.8 million hectares of productive land is already affected by waterlogging and salinity (Ferdowsian *et al.*, 1996; George *et al.*, 1997) and further 3-6 millions of hectares may be affected by 2020-2050 respectively (George *et al.*, 2001; Short, R. and McConnell, C., 2001).

The clearing of native vegetation in southwest of Western Australia has altered the water balance of agricultural catchments (Peck and Williamson, 1987). More water now enters the soil and evapotranspiration has been reduced. Water that is not used by cereal crops and pastures contributes to loss of crop yield (McFarlane and Cox, 1992;

McFarlane *et al.*, 1992). Also, this water may recharge saline groundwater causing them to rise and seep out at the land surface (dryland salinity; Nulsen and Henschke, 1981). Figure 2.1 shows the impact of overland flow, irrigation and land use on groundwater recharge.

Figure 2.1: Impact of overland flow, Irrigation and Land use on Groundwater Recharge.

Almost two thirds of the agricultural land in this region has a duplex soil profile with sandy loam surface soils overlying sandy clay subsoils (Northcote, 1979). A common morphological feature of these soils is strong texture-contrast between the A and B horizons; however, chemical, mineralogical and physical properties can vary (McFarlane and Cox, 1987). Texture-contrast soils are also common in other parts of the world (Chittleborough, 1992). A lack of vertical flow capacity in the B horizon causes pounding above the boundary between the A and B horizons and waterlogging develops (McFarlane and Cox, 1987). Field observations, aerial photography and remote sensing confirm that waterlogging is common throughout year in the areas of low relief in southwest of Western Australia (McFarlane *et al.*, 1992). Figure 2.2 shows the different soil horizons which are major factor in the soil water movement.

Figure 2.2: Textural Contrast Soils with Sand over Clay.

Before European settlement, the whole South West agricultural area in Western Australia was covered with very thick native forests. Theses native forest had many stories of large and long trees undercover by medium large trees and small bushes as well as a thick layer of dead leaves, broken branches and trunks. These native forests were playing a very important role in the hydrology and water balance of the agricultural catchments of Western Australia (Ali and Coles, 1999). Almost 20-30% of the rainfall was being intercepted by trees and thick floor of leaves, and was being evaporated without touching the soil surface. Deep-rooted trees could use the rest of the 70-80% after rainfall events (Ali and Coles, 1999). The increase in runoff and recharge is a direct consequence of the clearing of native vegetation in southwest of Western Australia, and it has altered the water balance of agricultural catchments (Peck and Williamson, 1987).

More water now enters the soil as interception and evapotranspiration has been reduced. Water that is not used by cereal crops and pastures contributes to loss of crop yield (McFarlane and Cox, 1992; McFarlane *et al.*, 1992) in addition to waterlogging and salinity. Also, this water may recharge saline groundwater causing them to rise and seep out (discharge) at the land surface (Nulsen and Henschke, 1981).

On sloping duplex soils, lateral saturated flow occurs above the subsoil (Chow, 1964; Whipkey and Kirkby, 1978). The amount of flow and its duration depends on the slope angles and length, soil depth, and the hydraulic conductivity of the topsoil and subsoil (Hammermeister *et al.*, 1982; Lehman and Ahuja, 1985). Ahuja and Ross (1982, 1983) have shown that even a relatively low leakage rate through the subsoil greatly reduces the length of contributing slope (i.e. the soil volume traversed by the interflow). Interflow may contribute to waterlogging further down the slope and create a watertable at or near the ground surface (Lowery *et al.*, 1982).

2.2 IMPACT OF DRAINAGE

Literature review indicates that when drains are installed, they modify the hydrological regime and as consequence, the surface and sub-surface flows leaving the drained area are also modified. However, the nature of these changes has not always followed a consistent pattern. In a recent study completed by Dunne *et al.* (1996), a simple hill slope model has been used to analyse how a network of open drainage affects the hydrology of an area. The results from the model simulation showed that the most significant effect of the drains is to increase the sub-surface runoff. This occurs because of the large active area for sub-surface exchange flow into the channel network, and the head difference that is generated by the forced lowering of the water level in the drains.

In many cases, drains have increased the level of peak flow (e.g. Robinson, 1986; Nicholson *et al.*, 1989), but in other instances the level of the peak flow has been seen to reduce (e.g. Iritz *et al.*, 1994, Dunn *et al* 1996). Different mechanisms have been proposed to account for the observed changes. In case of increased peak flows, the theory is that the increased canalization creates a smoother and faster flow path which acts to increase the rate of surface and sub-surface runoff. In case of reduced peak flows, it is assumed that the drainage has lowered the water table and hence reduced the surface and sub-surface runoff.

Perhaps because of the lack of clear explanation of the hydrological processes involved, the presence of artificial drainage is frequently neglected in hydrological analysis. A recent attempt to understand the hydrological process has been made by Iritz (1994). In this study, three techniques were applied to different catchment in Sweden to try to establish whether or not forest drainage increased peak flows. The techniques involved using a paired catchment approach, a conceptual modelling approach and a distributed modelling approach. The results not only showed slightly different effects for different catchments, but also highlighted the difficulties of prediction by showing slightly different results from the different techniques used. One of the problems here was in having a sufficient understanding of the complex heterogeneous catchment to allow the effects of the drainage to be interpreted. However, the results did allow an important observation to be made, which was that the effect of the drains on lowering the groundwater level had a greater influence on the formation of the peak flows than the increased channel conveyance capacity.

Drainage systems are generally installed to improve crop yields. Although most studies related to crop yields have simply focused on removing water by finding the proper depth-spacing of drains, some early researchers also realized that drainage is potentially a general water management tool. For example, King (1931) envisioned a time "in the not distant future when systems of ditches will be designed and installed as a part of a system for controlling soil water supply, not simply as a means of removing excess water....". Although this vision has yet to be successfully implemented on more than a demonstration scale, it continues to be actively pursued in controlled drainage research projects around the world. These projects have shown promise in not only improving crop yields but also in reducing the nitrogen losses through drainage systems (Zucker and Brown, 1998).

2.3 DRAINAGE EXPERIENCE IN WESTERN AUSTRALIA

There have been reviews of the role of the drains by George and Nulsen 1985, and reports on specific drainage case studies (e.g. Ferdowsian *et al.* 1997, Speed and Simon 1993, Green 1990, Silberstien 1989). Nulsen (1982), concluded that the design of earthwork or engineered drainage solution to ameliorate salinity and/or waterlogging be subtle different depending on whether areas are suffering from saline encroachment resulting from rising water tables (or capillary action); affected by waterlogging; or affected by both.
In areas where soils are affected by saline groundwater, drainage is principally designed to manage the depth of the water table. In the wheat belt area of southwestern Australia, critical depth to water table to avoid salinisation of the soil profile is considered to be around 1.5 to 2.0 metres (Talsma 1963, Peck 1978, Nulsen 1982, George and Nulsen 1985). The critical depth varies with soil type; water table salinity; and plants cover. For example, in coarse to medium sands and some heavy clays the critical depth may be <1.0 to 1.2 metres but for some loamy soils it can be 3.0 to 4.0 metres (George and Nulsen 1985). Figure 2.3 shows typical open drain in Wheatbelt area of Western Australia.

Figure 2.3: Typical open Drain in Wheatbelt area of Western Australia.

The Department of Agriculture of Western Australia was involved in implementing a series of trial in the Moora and Narrogin districts in the early eighties (Coles *et al.*, 1999). The contention at the time was that through monitoring the impact of drains on groundwater levels, soil salinity and ground cover, data will be collected to develop more accurate and inclusive measure of drain effectiveness in different landscapes; and that these measures will thereby be more cost effective and transferable to other areas. Four sites near Watheroo and two near Wubin were chosen for the initial drainage studies and five sites near Yealering were developed. The Department of Agriculture

concluded that deep drains will not be effective in the Yearling district owing to the clayey nature of the subsoils.

2.4 HYDROLOGICAL MODELS

The impact of any engineering earth work to mange surface, subsurface and ground water requires the understanding of physical process of water movement within and on land surface. The most important parameters which control water flow within and over the land surface are topography, soil texture, soil structure, soil roughness, and soil conductivities in x, y and z directions, infiltration rate, storage capacity, specific yield, crop roots and their rate of water use in saturated and unsaturated soil zones.

There are many physically based models available in literature which describes surface, subsurface and ground water flow. The aim of this section is to identify the main components of soil water models, compare differences in approaches to their modelling, and assess which approaches were best suited for the modelling of soil water dynamics in Irrigation Districts of Southwest of Western Australia.

2.4.1 Physically Based Hydrological Models

Physical hydrology has produced sophisticated models of water flow through variable soil structures providing accurate methods of simulating infiltration and redistribution. There is a claim that these approaches do not lend themselves to ecological modelling as processes work at different scales, necessitating considerable abstraction before contrarieties may be nullified. Even if this claim could not be supported, the knowledge about rooting patterns is insufficient to resolve water uptake with delivery at the scale hydrological models. The association between competition and rooting depth has effected a stratification of the soil profiles into layers that are equivalent to rooting zones. The need to estimate rates of transpiration have necessitated estimation of water loss to processes other than percolation, such as runoff, soil surface evaporation, crack flow and deep drainage.

MODFLOW and HYDRUS-2D is most widely used hydrological model throughout the world. They are not fully distributed and can not model irrigation and drainage management strategies along with overland flow. MODFLOW is good to simulate the saturated zone. HYDRUS-2D is best to simulate unsaturated and saturated zones. MIKE SHE can be used to simulate unsaturated, saturated, and overland flows as well as

irrigation and drainage management strategies. HYDRUS-2D and MIKE SHE use similar routines and numerical techniques to simulate saturated zone as used in MODFLOW.

A complete overview of MIKE SHE is given in next chapter. HYDRUS-2D will be reviewed in this chapter in detail. MODFLOW is not discussed here as the saturated zone modelling in HYDRUS-2D and MIKE SHE is similar to the MODFLOW modelling and discussed in detail in this dissertation. Only important difference in case of MODFLOW and HYDRUS-2D are being written here. For details readers are referred to Technical Manuals and User Guides (Harbough, A.W 2005 and Genuchten, V. 1987).

HYDRUS-2D is a software package for simulating water, heat and solute movement in two-dimensional variably saturated media and was developed by the George E. Brown Jr., Salinity Laboratory, USDA, ARS, Riverside, California (Van Genuchten and M.Th., 1987). HYDRUS-2D may be used to simulate two-dimensional water flow, heat transport, and the movement of solutes involved in consecutive first-order decay reactions in variably saturated soils. HYDRUS-2D uses the Richards' equation for simulating variably-saturated flow and Fickian-based convection-dispersion equations for heat and solute transport. The water flow equation incorporates a sink term to account for water uptake by plant roots. The heat transport equations consider transport due to conduction and convection with flowing water. The solute transport equations consider convective-dispersive transport in the liquid phase, as well as diffusion in the gaseous phase. The transport equations also include provisions for nonlinear non equilibrium reactions between the solid and liquid phases, linear equilibrium reactions between the liquid and gaseous phases, zero-order production, and two-first-order degradation reactions, one which is independent of other solutes, and one which provides coupling between solutes involved in the sequential first-order decay reactions. Data pre-processing involves specification of a flow region of arbitrary continuous shape by means of lines, arcs and splines, discretization of domain boundaries, and subsequent automatic generation of an unstructured finite element mesh. An alternative structured mesh for relatively simple transport domains defined by four boundary lines can also be considered. Graphical presentation of the output results consists of simple twodimensional x-y graphs, contour and spectral maps, velocity vectors, as well as

animation of both contour and spectral maps. Graphs along any cross-sections or boundaries can be readily obtained. A small catalogue of soil hydraulic properties was made part of the interface. HYDRUS-2D does not handle preferential flow. HYDRUS-2D may fail for extremely nonlinear flow and transport problems. Numerical instabilities may develop for convection-dominated transport problems when no stabilizing options are used. The effect of air phase on water flow is neglected.

The boundary of the flow region may consist of different curves such as lines, circles, arcs and splines. Internal boundaries, as well as internal curves can be specified. The program also discretizes the two-dimensional flow region into an unstructured triangular mesh. The MESHGEN2D module is part of the extended version of the HYDRUS-2D interface. The GEOMETRY and MESHGEN modules of version 1.0 of the HYDRUS-2D were combined into one module for the current version of HYDRUS-2D. There is an option for automatic mesh generation, or for a user-defined sequence of mesh generation steps. The user using a smoothing factor, which influences the permitted changes in size between two adjacent triangles, controls the smoothness of the finite element mesh.

The Domain and Boundary Parameters command calls the external BOUNDARY module which helps a user to (1) specify boundary and initial conditions for both water flow and solute transport, and (2) define the spatial distribution of other parameters characterizing the flow domain (e.g., spatial distribution of soil materials, hydraulic scaling factors, root-water uptake parameters, and possible hydraulic anisotropy) and/or observation nodes. The program controls the logical correspondence between the water flow and solute transport boundary conditions. Other parameters characterizing the flow domain (initial condition, material distribution) are defined in a similar way. The user must first select that part of the transport domain to which user wants to assign a particular value of the selected variable. It is possible to select the entire transport domain, part of it, or only individual nodes or elements. When specifying the initial condition, users have the option of assigning either a constant value to a selected domain, or a unit-gradient distribution for the pressure head and associated water content. All variables are assigned to nodal points, except for those defining anisotropy angles, first and second components of the anisotropy, and sub region numbers, which are all assigned to elements.

Effective surface and subsurface water management leading towards sustainable agriculture production in arid and semi-arid regions will stem from effective soil water management (Snyman, 1998) and comprehension of the hydrological properties of the soil (Sharma, 1998). However, in such areas, there is great complexity of interaction between the soil, climate and vegetation. Highly variable climates can give rise to extended dry periods in which the majority of rain that does fall is lost to surface evaporation (*e.g.*, Opperman *et al.*, 1977 cited in Bate *et al.*, 1982; Walker & Langridge, 1996).

Soil water dynamics are a function of soil physical processes and the competition between plant species and individuals for soil water and space (*e.g.*, Knoop & Walker, 1985). Spatial distribution of canopy and rooting patterns dictate the outcome of this competition, and the subsequent stability of the vegetation structure (Skarpe, 1992). However, rainfall infiltration and the spatial redistribution of runoff water are the predominant factors determining patterns in semi-arid vegetation (Friedel, 1990; Maestre *et al.*, 2003), with grazing impacts and fire also contributing to the generation and maintenance of spatial heterogeneity (*e.g.*, Higgins *et al.*, 2000; Adler *et al.* 2001).

Physically based hydrological models assist us in identifying the gaps in our knowledge by integrating mathematical representations of processes operating at local scales in order to simulate larger scale natural phenomena. However, because of the differences between scientific disciplines, and the bias on investigation that different interests support, true fusion of knowledge is hard to achieve. It is difficult to make comparisons between the approaches taken by hydrologists to predict the water content of the soil profile. Hydrologists consider the physical laws that determine water flow between locations in the soil body available for plant use during transpiration. Hydrologists imagine a net throughput that ends with accumulation in an aquifer, the rate of which is dictated by soil morphology. Hence, plants are considered to bridge the water-potential gradient between soil and air (Larcher, 1995), with resistance to this movement of water present in the soil body and in the atmosphere. Consequently, some models describe the same processes, but in very different ways, with emphasis being placed on the subject of interest. The relationship between climate and primary productivity in precipitationdriven systems is well established (e.g., Kelly & Walker, 1976), along with the system level amelioration of water uptake by soil texture (Dye & Spear, 1982).

2.4.2 Classical Models

Micro pore volume is assumed to be a continuous function in space. A series of differential and partial differential equations based on mass, momentum and energy conservation, are used to describe water flow. A widely used formulation is Richards' equation (Richards, 1931).

Clemente *et al.* (1994) compared three unsaturated soil water flow models (Soil Water and Actual Transpiration Rate, Extended (SWATRE), Belmans *et al.*, (1993); Leaching Estimation and Chemistry Model (LEACHM), Hutson & Wagenet (1992) and Soil Water Simulation (SWASIM), Hayhoe & de Jong (1982)), each using a form of Richards' equation. Differences between model predictions were found to arise from differing approaches to modelling soil evaporation and plant transpiration.

Classical approaches fail to adequately describe infiltration via macropores (Feyen et al., Microscopic heterogeneity in soil structure concerns the inclusion of a 1998). macropore network, contrasted with exclusively a micropore network. Macroscopic heterogeneity refers to the effect of differential soil structure on flow throughout the soil Macropore flow can account for three-fold increases in water content, as body. measured by time-domain reflectometry (TDR) probes, spaced a few centimeters apart, but at an equal depth. Various techniques have been introduced to model water flow through heterogeneous porous media. Dual-porosity models apply the classical approach to a second macropore network. Micropore and macropore networks are considered continuous, and solutions are found that best describe flow within and between these two regions. Typically, bimodal functions are employed to describe differential water retention characteristics and hydraulic conductivities of pore networks (e.g., Zhang & van Genuchten, 1994). Expedited water flow via macropores leads to deeper infiltration and a different spatial redistribution of water than found in macropore-deficient soil. Other microscopic heterogeneous approaches include explicit description of channeling and gravitational flow through macropores.

2.4.3 Deterministic and Stochastic Models

Modelling of macroscopic heterogeneity has been tackled in two ways, deterministically and stochastically. Deterministic models may use an exact representation of an observed heterogeneity at a given study site. Alternatively, a homogeneous model is parameterized using the scaled-up averages of local site data. Stochastic forms introduce elasticity into soil properties to generate the levels of variability expected for local heterogeneity in a porous medium (i.e., the variance in pore size). For example, stream tube models (e.g., Mallants *et al.*, 1996), typically use a probability density function to determine the variance and covariance of the model parameters for the pore series that constitute flow tubes at a given location, but ignore spatial heterogeneity between locations by ignoring flow between tubes. Random space functions extend stochastic forms to account for spatial heterogeneity between locations by generating a covariance between the hydraulic properties of soil at different locations. The remaining 'Stochastic continuum' models are largely distinct by the mathematical techniques used to provide input values and to analyze their output. These techniques include bootstrapping (resampling) of soil properties within a Monte-Carlo framework, and Perturbation-Spectrum Analysis. The latter uses a random space form of Richards' equation to apply stochastic water flow.

The main effect of 'channelling flow' is to accelerate infiltration, redistributing water to lower in the soil profile. There is no automatic increase in gravitational through-flow unless the macropore structure is specified to extend uninterrupted to the zone of saturation (groundwater). At the working scale of population (i.e., not individual) plant models, microscopic heterogeneity has no bearing on the calculation of evapotranspiration. Macroscopic heterogeneity will influence estimates of evaporation and transpiration by models that treat the soil profile in terms of layers, and allocate roots to these soil layers. The consequence for plant growth models that do not use layers or rooting depth, therefore, is negligible.

2.4.4 Analytical Models

Hatton *et al.*, (1997) proposed use of Eagleson's statistical-dynamic model of equilibrium water balance. This analytical formulation assumes equilibrial dynamics between the hydrological and biological components of an ecosystem. Vegetation growth is modelled in terms of water alone. The equilibrium state would not be possible without the dampening influence of steady-state water flow on the effects of a stochastic climate. Thus unsaturated flow, which includes [upward] capillarity, suppresses

variability in rainfall. Water flow is modeled by an adaptation of Richards' equation and uptake is an externally defined proportion of the bare-soil potential evaporation rate.

The optimal solution for the model is assumed to equate to the maximal value for soil water balance, under a stochastic climate. Optimality in this relationship will eventuate via short-term shifts in vegetation composition to maximize transpiration efficiency, and therefore net soil water. These compositional changes seek to equilibrate canopy density with climate and soil. Over a longer time scale, the vegetation will generate changes in soil hydrological properties connected with saturated flow, to maximize biomass growth, whilst maintaining the equilibrium. Essentially, macropores become populated and divided by root systems, giving an increase in micropore density. Growth is assumed proportional to canopy density and canopy rain use efficiency.

Eagleson's statistical-dynamic model provides an estimate of soil water without the use of hydrological relevant parameters such as, soil depth, field capacity and rooting pattern, which are difficult to quantify. Therefore, the model requires only a minimal set of field parameters, which is an advantage, but at the cost of an estimate for evapotranspiration. A complementary algorithm needed to compute the species- and climate-dependent evapotranspiration rate, particularly in the case of patchy savanna, probably would be complex.

Soil Water Infiltration & Movement (SWIM, Ross, 1990) Hydrological model is an extension of the Richards' equation, by simple addition of a vegetation component. A rare example is which exhibits reasonable performance (Singleton *et al.*, 1998), but only after parameterization with generally unavailable specialized hydrological data (Walker & Langridge, 1996). Some hydrological models restate soil water flow in terms of the entire flow path between soil and plant.

The theory of water movement in soils and plant in the analytical models (and their modern adaptations) that have attempted to represent soil hydrology is widely available in literature. The attitude that plants are an interface between soil and the atmosphere leads to a more process-oriented interpretation in place of the general analytical forms like the Richard's equation. Processes combine to define components of the system; delivery of water (precipitation) to the soil surface, redistribution according to

topography (runoff), loss to evaporation, infiltration through the soil profile, uptake and transport, photosynthesis and transpiration, growth and assimilation.

2.5 ADVANCED COMPUTER BASED MODELS

With the invent of personal computer in early 1980's, it become much easier to convert classical and physical based models into more comprehensive and fast processing advanced hydrological model to model complex processes such as flow in macro pores. Soil Water, Energy and Transpiration (SWEAT), Daamen & Simmonds, (1994) contains a set of rules defining the conditions for infiltration via cracks. These are; rainfall must be greater than 10 mm, infiltration via cracks is limited to 10 mm of rainfall, the upper profile must be at less than 50% of field capacity, cracks can extend throughout regions which are at less than 50% of field capacity, cracks are filled from the bottom up, and any crack flow can only introduce water up to 50% of field capacity. Simulation of Daily Water Dynamics (WATDYN, Walker & Langridge, 1996) adopts the same crack flow routine.

Evaporation is a two stage process. Immediate evaporation of infiltration is followed by long-term evaporation at a rate proportional to the square root of time, constrained by soil water deficit in the topsoil. Transpiration is the minimum of potential extraction rate and potential transpiration rate, which is derived from Leaf Area Index (LAI, a measure of cover expressed as m^2 total leaf area per m^2 of ground). LAI has been widely adopted as a measure of the mean attenuation of incident solar radiation by interception by leaf surfaces. This depends largely on structural aspects of the canopy such as the density of foliage and, the arrangement and inclination of the leaves (Larcher, 1995).

In the modelling of LAI, leaf area is often assumed directly related to green leaf biomass (e.g., WATDYN and Savanna - Landscape and Regional Ecosystem Model (SAVANNA, Coughenour, 1993), or is a user-measured input (e.g., *Productivity, Erosion and Runoff Functions to Evaluate Conservation Techniques* (PERFECT) and Soil Water, Energy and Transpiration (SWEAT), Daamen & Simmonds, (1994)). LAI measurements vary according to the choice of criteria used in estimation. Assuming LAI to be maximal when further increases in LAI have an insignificant effect on evapotranspiration is notionally distinct from LAI is maximal when evaporation is nullified as a contributor to evapotranspiration. Other treatments of LAI relate

fluctuation in leaf area to ambient temperature and light interception (e.g., Acock *et al.*, 1979 cited in Johnson & Thornley, 1983). However, as Johnson & Thornley (1983) state, such dependencies of LAI on environmental conditions and biomass are limited because two canopies concurrent in their LAIs do not necessarily have identical structures. Additionally, environmental variation often exceeds that observed in associated vegetation growth. Johnson and Thornley's (1983) solution was to treat LAI as an independent state variable in their model. Vegetation structure was generated independent of biomass by allocation of predicted daily growth to a carbon storage pool, and fluxes from there to other compartments representing differential turnover of leaf, sheath and stem material. The result was an independent estimate for LAI buffered from environmental variation, and provision of a mechanism that may be extended by inclusion of known species phonology and plant part allometry (Illius *et al.*, 1996).

The Penman-Monteith equation (Monteith, 1965) is a modified expression for soil surface evaporation that assumed the soil and canopy to be a single damp surface separated from a reference height by aerodynamic resistances. Inclusion of the canopy and boundary layer conductance allowed transpiration to be determined as a function of solar radiation (net reflection), vapour pressure and several temperature-dependent physical quantities (Thornley & Johnson, 1990). Models such as WATDYN use the Penman-Monteith equation to their advantage in separately estimating transpiration and evaporation.

Soil Water, Energy and Transpiration, SWEAT is a two source, crop-based model specializing in the calculation of transpiration for sparse canopies furnishing low aerial cover, a condition associated with droughts in particular. LAI is used to estimate canopy condition, and thus canopy photosynthetic activity. Flux of water and heat are evaluated for soil surface, leaf surface, in air canopy and air at a reference height, each a node within the network of resistances.

Transpiration is often converted into plant growth by use of a coefficient of efficiency, (e.g., Dye, 1983; PERFECT; Stroosnijder, 1996). PERFECT, (Productivity, Erosion and Runoff Functions to Evaluate Conservation Techniques), constrains crop growth for saturated soils, by scaling plant biomass down by a wetness factor. WATDYN adds the proviso that soil water should exceed 15% of field capacity before growth can

commence at 10 kg ha-1 per mm of transpiration. WATDYN additionally modifies growth with respect to soil fertility, temperature, vapour pressure deficit, and fire history. Hobbs *et al.*, (1994) constructed an analytical model that predicts growth directly from a negative exponential function expressed in terms of soil water storage capacity (field capacity minus wilting point). This simple approach proved effective, predicting a near constant rate of growth per unit of, 0.33 g mm⁻¹ m⁻², throughout the growth season, but was validated across a limited range of sites in central Australia.

Soil-Vegetation-Atmosphere Transfer (SVAT) models are conceptually-based constructs of typically large scale (> 50 km) interactions between the atmosphere and the terrestrial biosphere (Menenti et al., 2004). The broad aim of the SVAT schemes is to estimate the exchange of water, energy and carbon between vegetation and atmosphere over multiple seasonal cycles and diverse climates (Moehrlen, 1999) by the coupling of land surface models (LSM) to large-scale general circulation (climate) models (GCM). SVAT schemes range from single tipping bucket models (to represent the soil-plantatmosphere interface) to those that incorporate multiple layers for vegetation, soil, and snow (Warrach *et al.*, 2002). They can assume that the biome (the spatial distribution of plant species) is either static or dynamic (Menenti et al., 2004), where most current SVAT schemes and hydrological models do not parameterize vegetation as a dynamic component (Arora, 2002), although a recent approach has included variable root density related to predictions of vegetation biomass (Arora & Boer, 2003). Equilibrial water balance is assumed for most SVAT models such that transpiration is assumed to be equal to root water uptake. Whilst microscopic soil structure (macropores) and vegetation canopy space (aerial cover) are represented, there is often a conflict between the successful integration of processes operating at these small scales with the larger scale processes at the landscape level and those resulting from atmospheric conditions (e.g., air temperature and humidity that are assumed to only vary by height, Menenti et al., 2004).

Extensions to SVAT schemes that introduce spatial variability for runoff and infiltration, to account for spatial heterogeneity in soil moisture, perform best when compared with homogeneous alternatives (Warrach *et al.*, 2002). Also, the accuracy of heat fluxes predictions by a SVAT scheme have been shown to be improved (Yang & Friedl, 2003) by introducing more temporal (diurnal variation) and spatial (3D plant architecture)

detail into the atmosphere-canopy interactions (a 'canopy interception reservoir' (Koster & Suarez, 1994), comparable to the hydraulic conductance approaches for modelling transpiration. Further improvements have been possible by using LAI to estimate spatially heterogeneous transpiration and rainfall interception by the canopy (e.g., Mo *et al.*, 2004; Wattenbach *et al.*, 2005). Alternatively, the terrestrial biosphere is not explicit in the model, but instead root water uptake is represented by a term for potential [evapo] transpiration, often within the expression for soil water transfer (e.g., Richard's equation), but transpiration can be underestimated when calculated from potential evapotranspiration in this way. Improved accuracy of SVAT models can result from more spatial detail, but this carries the cost of needing a large number of spatial parameters (Pachepsky *et al.*, 2004).

A total system grazing model tends to involve integration of separate climate, soil, plant and animal mechanistic modules that attempt to synthesize ecological theory and empirical evidence, to give a compound estimate of the system's dynamics. Vegetation dynamics (competition for soil resources, transpiration and primary production) tend to be expressed in terms of plant functional groups, although varieties (species) may often be parameterized.

2.6 APPLICATION OF GIS IN HYDRLOGICAL MODELLING

In this section the main focus was given to the water balance modules of the three most comprehensive, spatially-explicit (in these cases by using grids of cells), process-oriented (mechanistic) systems models currently applicable to semi-arid savanna, SAVANNA and Simulation Model for Australian Savannas (SAVANNA.AU, Liedloff *et al.*, 2004), a version extensively modified for Australia, and Simulation of Semi-arid Grazing Systems (SimSAGS, Illius *et al.*, 1998; Illius & Gordon, 1999; Illius *et al.*, 2000; Derry, 2004).

In SAVANNA soil profiles are divided into three layers, with grass roots reaching into the second layer and shrub and tree roots exclusively occupying the third layer. The middle layer is shared. Layer thickness, field capacity, wilting point and an index of porosity are used to calculate soil water holding capacities for each layer. Runoff is calculated by a similar method to that used in PERFECT and Simulation of Production and Utilization of Rangelands (SPUR, Wight & Skiles, 1987), such that runoff depends on daily rainfall, the quantity and distribution of water in the soil relative to water holding capacity, and the condition curve number for the soil according to vegetation cover (i.e., the USDA curve number method, United States Soil Conservation Service, 1964). The range of LAI allowed is between 0 and 4. Grid cells are also partitioned laterally into sub areas which captures within cell heterogeneity of topography and soils. Total runoff can therefore be distributed among all run-on sub areas according to the proportion of the landscape that they occupy.

The components modelling the soil moisture balance in SimSAGS are based the nonspatial WATDYN. To introduce spatial interactions into the processes that determine soil water dynamics, landscape topography is used to move surface water around the landscape from high to low regions in a similar manner to the other models, except that runoff is not partitioned between run-on sub areas nor neighboring cells, but is delivered entirely to the next highest cell in the sequence of decreasing altitude. Rainwater and runoff that does not soak into the soil or is not evaporated from the soil surface effectively runs across the surface as rivers and streams. Hydrology is modelled and is important in determining higher soil moisture and the increased plant growth in run-on areas that gives rise to the characteristic heterogeneity of savanna vegetation, however the adoption of Dye's (1983) simple relationship for infiltration limits WATDYN's ability to accurately predict runoff for a large range of soil type, slope and soil surface conditions (Walker & Langridge,1996), which is more possible using the family of curves in the USDA curve number method.

After runoff, changes in soil moisture are predicted as a function of losses to deep drainage, evaporation and transpiration, using a modified version of WATDYN for each grid cell in a variable number of layers, and sub-layers therein. Layers allow for accurate estimation of soil water and vegetation species dynamics from the ratios between layers. Sub-layers enable more accurate processing of small changes in local soil moisture. The minimal data set for WATDYN requires daily rainfall, wind speed, atmospheric pressure, radiation, temperature and relative humidity plus soil/plant properties including soil depth, proportional root distribution per layer and an index of soil fertility. Soil nutrient budgets are not explicitly modelled; however accurate estimates of soil moisture are possible using this fertility index which encapsulates soil capacity for primary production as a function of the concentration of cations and

phosphate (Walker & Langridge, 1997). Additionally soil type (texture) is used to specify clay and sand content.

The determination of flow at ungauged locations is a common problem in hydrology. A simple approach to this problem is to eliminate time as a dimension by restricting the computation to mean annual flows. The analysis can then be constructed by using the cells of a DEM grid as the computational units. One begins with a mean annual precipitation grid over the landscape, which for the United States has been constructed by Daly et al. (1994) and for Africa by Hutchinson et al. (1995), both using approximately 3' cells. The precipitation for each DEM cell is determined from the climate grid. The watersheds of each of the stream gauging stations in the region are delineated and the mean annual precipitation, P, for the drainage areas determined. The longest stream flow record in the basin is used as an anchor record, a long period of analysis is chosen (such as 1961-1990), and the mean annual flow per unit of drainage area, Q, is determined for each gage. If some of the gages have incomplete records, the long term estimate of the mean annual flow can be found by: long term flow at a sample gage = long term flow at the anchor gage x (flow at sample gage / flow at anchor gage) where the ratio in parentheses is constructed using the means of the common period of record at the two gages. In dry areas, the greater is the precipitation, the greater is the percentage of the precipitation which becomes runoff. By multiplying the mean annual precipitation grid by this runoff coefficient, a mean annual runoff per unit area can be determined for each DEM cell. This quantity can be used as a weight and a weighted flow accumulation performed in the same manner as the regular flow accumulation is done when constructing the watershed boundaries. The weighted flow accumulation of each DEM cell, when multiplied by the cell area, gives the mean annual flow for each cell. Thus a mean annual flow map can be derived with estimates of the flow at every stream location in the landscape. This is a very simplified method of hydrologic analysis but one that is faithful to the gauged data in the region and can be applied to large regions in a consistent manner.

A *water balance model* is a representation of the mass balance of water within a particular control volume. It is a physical statement of the law of conservation of mass which states that matter cannot be created or destroyed. As a result, the rate of change of storage of water within the control volume is equal to the difference between its rates of inflow and outflow across the control surface. One may distinguish in constructing a

spatial hydrology model between the surface defining the outer boundary of the study region, and the surface defining the boundary of the spatial units within that region. A spatially distributed water balance model applies the law of conservation of mass to describe the mass balance within each spatial unit, and to this must be coupled a momentum equation (such as Darcy's law for groundwater flow) which defines how quickly water can move between units. Different sizes and shapes of spatial units are needed to deal with the different phases of the hydrologic cycle.

Most water that falls on the land surface is derived from oceanic evaporation carried inland by atmospheric circulation, so it is appropriate to study of hydrology by examining the motion of atmospheric water. The most useful way of doing this in a GIS context is to use the results of GCM modelling, where the acronym GCM means here General Circulation Model (this was the original meaning of this acronym before the more popular Global Climate Model came into vogue). In the United States, the National Meteorological Centre in Maryland maintains a global GCM in continuous operation for numerical weather forecasting, which is updated each 12 hours with data from atmospheric soundings obtained from a global network of balloon-borne sensors released from weather stations, called the Global Data Assimilation System. The condition of the atmosphere (temperature, density, wind velocity, air pressure, and moisture content) is calculated on a geographic grid of 2 degree cells covering the earth, using a very short time interval of the order of a few minutes, for a time horizon of a few days ahead.

The recent emergence of a satellite derived net radiation balance of the earth (Darnell *et al.* 1992) provides net radiation estimates for the soil water balance, an important new data source. The product of a soil water balance is a time history on a daily or a monthly basis of soil moisture content, evaporation and "water surplus" which is the water flowing from the soil to form surface runoff and groundwater recharge. Given the same input data, computation on a daily basis will always yield more water surplus than will computation on a monthly basis because daily precipitation is an episodic process, zero on most days, but when a precipitation event occurs, the soil moisture storage can be quickly filled up, thus producing a water surplus; if the same data are averaged over a monthly interval, it is as if the precipitation falls as a gentle mist, which may evaporate back to the atmosphere before the soil moisture capacity is filled. Interpolation of daily precipitation onto a grid is an uncertain undertaking because the spatial variation in daily

precipitation is large. There is thus a challenge in constructing a GIS hydrology model for soil water balance in choosing the appropriate time interval for calculation.

In constructing a groundwater balance model, there are two computations to be performed: first, a water balance on each spatial unit in which all the inflows and outflows of the unit are used to determine the change in water storage and thus of the piezometric head within the unit; second, a flow computation between each pair of spatial units in which Darcy's law is used to determine the rate of groundwater flow as a function of the difference in head and the flow properties of the aquifer in the units. In a map-based groundwater modelling system, the first computation is done over all the polygons making up the aquifer, while the second is done over all the boundary lines of those polygons. Interaction between surface water in streams and underlying groundwater can be similarly determined by applying Darcy's law to the difference in piezometric head between the stream passing through an aquifer unit and the surrounding aquifer. All these computations need to be done on reasonably small units not more than say 20 km in cell size, because otherwise the head gradients in space become very small. Groundwater aquifers are usually quite confined in area and do not extend over the whole landscape, so unlike surface water flow which takes place everywhere, groundwater flow is more of a localized problem and a regional study needs to take into account each aquifer in the region individually, rather than considering groundwater flow to be a regional phenomenon.

Surface water is water in streams, lakes, wetlands and reservoirs. This water system is in some ways the most complex of all the phases of the hydrologic cycle, because it interacts with the other three phases, namely atmospheric water, soil water and groundwater, because the flow velocity is large compared to the velocity of groundwater flow, and because the flow environment is complicated, depending in part on the characteristics of the land surface and in part on the characteristics of the stream system. Fortunately, this is the area where GIS helps the most because of the detailed description of land surface features which can be presented in GIS. As described earlier, by making a suitable terrain analysis using DEM data, a conceptual model of the surface drainage system can be built up in which each watershed has one and only one stream draining it, and each watershed and stream pair can be assigned the same identification number. The watersheds so constructed are of two types: a source or head watershed in which the stream originates within the watershed, and an intermediate watershed where the stream flows both into and out of the watershed.

The stream network is manipulated so that each stream is represented by a single arc, and the arcs are flow ordered so that the "from node" is upstream and the "to node" is down stream. Each stream arc is enclosed within its associated watershed polygon. Watershed boundaries are delineated from each stream junction so at most a node can have two streams flowing into it and one flowing out of it. Three flow variables can be associated with each watershed: "From Flow", "To Flow", and "Polygon Flow". From Flow is that stream discharge at the "from node"; To Flow is the corresponding discharge at the "to node"; and Polygon Flow is that discharge which comes into the stream by drainage from the surrounding watershed. Polygon Flow is computed by applying a unit hydrograph to the water surplus computed by the soil water balance model, and it may also include a component representing exchange of water between the stream and the underlying groundwater aquifer. This implies that the soil water surplus data may have to be spatially transferred from the soil water balance spatial units to the watershed units by using polygon overlay functions.

In time-varying flow, the computation is more complex and stream routing methods such as the Muskingum method (Fread, 1993) are appropriate for computing the time distribution of the To Flow given the time distribution of the From Flow and the Polygon Flow. The time table structure is used to record the results of these calculations with a separate table being used for each of the three flow variables, a separate field for each watershed, and time on the vertical axis of the table.

2.7 CHAPTER'S SUMMARY

There are many hydrological models available to simulate surface, subsurface and groundwater flows separate or combined and linked with each other. There are some advantages and some disadvantage in using them for a particular and site specific hydrological conditions. MIKE SHE (described in next chapter) has combined many models (like surface, subsurface, groundwater, drainage, irrigation, river network etc) with the integration of GIS capability to process nearly all the hydrological process in the landscape. The integration of GIS in MIKE SHE provides an excellent opportunity to establish a good over-view and understanding of the characteristics and associated attributes of the area under study. They can interpret the spatial variability and

topographical changes in agricultural catchments and provide better opportunities to integrate overland, subsurface and groundwater flows. MIKE SHE is a comprehensive numerical modeling system, and can deal with large amounts of spatially and temporal distributed data by integrating GIS applications. Therefore, in this study MIKE SHE has been used and inputs files have been generated by Arc GIS.

CHAPTER 3

DESCRIPTION OF MIKE SHE

Mike SHE is one of the most advanced, fully distributed and integrated hydrological models available in the hydrological modelling industry at present. It is spatially distributed model with GIS capabilities to spread hydrological data in the modelling domain to capture the variability in soil, vegetation, rainfall, irrigation, drainage and other hydrological process which controls water movement in x, y and z directions. Hence MIKE SHE can be used to simulate all of the processes in the land phase of the hydrologic cycle, including overland flow, channel flow, groundwater flow in the saturated and unsaturated zone. MIKE SHE allows simulating all processes in the land phase of the hydrologic cycle. That is, all of the process involving water movement after the precipitation leaves the clouds. Precipitation falls as rain or snow depending on air temperature. Initially, rainfall is either intercepted by leaves (canopy storage) or falls through to the ground surface. Once at the ground surface, the water can now either evaporate, infiltrate or runoff as overland flow. If it evaporates, the water leaves the system. However, if it infiltrates then it will enter the unsaturated zone, where it will be either extracted by the plant roots and transpired, added to the unsaturated storage, or flow downwards to the water table. If the upper layer of the unsaturated zone is saturated, then additional water cannot infiltrate and overland flow will be formed. This overland flow will follow the topography downhill until it reaches an area where it can infiltrate or until it reaches a stream where it will join the other surface water. Groundwater will also add to the base flow in the streams, or the flow in the stream can infiltrate back into the groundwater. All these hydrological process can be integrated with each other by using MIKE SHE.

The second best model in the hydrological modelling being used now-a-day is MODFLOW. MODFLOW is restricted to simulating flow only in the saturated groundwater zone. Although many of the processes simulated in MIKE SHE are used in a similar way when simulating groundwater flow with MODFLOW, they are not actually "simulated" by MODFLOW. For example, in case of groundwater recharge, MODFLOW allows to include recharge as an upper boundary condition to the groundwater model, where recharge is defined as the amount of water reaching the

groundwater table after accounting for evapotranspiration, surface runoff and changing storage in the unsaturated zone. In MODFLOW, the modeller has to account for these processes him or herself usually by applying a constant rule-of-thumb fraction to the measured precipitation data. In most cases, the model results are very sensitive to this fraction and since the modeller has little data on this fraction, user will assume an initial value and use this parameter as a calibration parameter. Thus, user will adjust the amount of recharge during the calibration process until the measured groundwater levels match the calculated values.

However, the fraction of precipitation reaching the groundwater table is constant in neither space nor time. The actual amount of precipitation reaching the groundwater table depends strongly on the maximum rate of infiltration, which is a characteristic of the soil and will vary spatially over the model domain. Further, since the maximum rate occurs when the soil is saturated, different amounts of water will infiltrate during the wet periods compared to dry periods. To complicate matters further, the length of the preceding dry period will determine the amount of available storage in the unsaturated zone. For example, if there has been a long dry summer period, evapotranspiration may have created a large deficit of water in the unsaturated zone that must be satisfied before any water reaches the water table.

This example shows that infiltration of precipitation is a very dynamic process. It depends on a complex interaction between precipitations, unsaturated zone soil properties and the current soil moisture content, as well as vegetation properties. In MIKE SHE, the saturated zone is only one component of an integrated groundwater/surface water model (figure 3.1). The saturated zone interacts with all of the other components like, overland flow, unsaturated flow, channel flow, and evapotranspiration.

In comparison, MODFLOW only simulates the saturated flow. All of the other components are either ignored (e.g. overland flow) or are simple boundary conditions for the saturated zone (e.g. evapotranspiration). The Flow chart diagram for MIKE SHE is shown in Figure 3.1.

Figure 3.1: Flow chart Diagram of MIKE SHE.

There are three options in MIKE SHE for calculating vertical flow in the unsaturated zone (figure 3.1):

- the full Richards equation, which requires a tabular or functional relationship for both the moisture-retention curve and the effective conductivity,
- a simplified gravity flow procedure, which assumes a uniform vertical gradient and ignores capillary forces, and
- a simple two-layer water balance method for shallow water tables.

The full Richards equation is the most computationally intensive, but also the most accurate when the unsaturated flow is dynamic. The simplified gravity flow procedure provides a suitable solution when we are primarily interested in the time varying recharge to the groundwater table based on actual precipitation and evapotranspiration and not the dynamics in the unsaturated zone. The simple two-layer water balance method is suitable when the water table is shallow and groundwater recharge is primarily influenced by evapotranspiration in the root zone.

Richard equation requires soil zone assigned to each cell in the model domain, for which a soil profile is defined. In this way, the unsaturated zone can be nominally 'lumped', in so far as the soil profile that is defined for each soil zone represents some sort of average soil profile in the zone. MIKE SHE divides the depth to the water table into zones of equal depth. Therefore, MIKE SHE estimate unsaturated flow only once for each area with the same soil profile and water table depth. Such lumping can decrease the computational burden considerably. However, when the water table is very dynamic and spatially variable, there may be no choice but to solve the unsaturated flow equations for each cell in the model using the full Richards solution.

The main objective of this study was to determine the soil moisture distribution in saturated and unsaturated zone of the model domain along with the dynamic fluctuation of ground water table with and without drains. Other objective was to model variability in moisture content in saturated and unsaturated zones with and without drain in place, therefore a full Richard solution was selected during the MIKE SHE setup. The theoretical background and description of the Richard equation is given below:

3.1 RICHARDS EQUATION

The deriving force for transport of water in the unsaturated zone is the gradient of the hydraulic head, h, which includes gravitational potential component, z, and pressure component, ψ , therefore,

$$h = z + \psi \tag{3.1}$$

The gravitational head at a point is the elevation of the point above the datum (z is positive upward). Thus reference level for the pressure head component is the atmospheric pressure. Under unsaturated condition the pressure head, ψ is negative due to capillary forces and short range adsorptive forces between the water molecules and the soil matrix. These forces are responsible for the retention of water in the soil. As these two forces are difficult to separate, they are incorporated in the same term.

Although the physical phenomena creating the pressure head under unsaturated and saturated conditions are very different, the pressure head is considered to be a continuous function across the water table, with the pressure being negative above and positive below the water table.

For vertical flow, the driving force for the transport of water is the vertical gradient of the hydraulic head. Hence,

$$\Delta h = \frac{\partial h}{\partial z} \tag{3.2}$$

The volumetric flux is then obtained from Darcy's law:

$$q = -K(\theta)\frac{\partial h}{\partial z}$$
(3.3)

where $K(\theta)$ is the unsaturated hydraulic conductivity. Assuming that the soil matrix is incompressible and the soil water has a constant density, the continuity equation will be:

$$\frac{\partial \theta}{\partial t} = -\frac{\partial q}{\partial z} - S(z) \tag{3.4}$$

Where, θ is the volumetric soil moisture and S is the root extraction sink term. Combining Equations (3.1), (3.3), and (3.4) yields

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left(K(\theta) \frac{\partial \psi}{\partial z} \right) + \frac{\partial K(\theta)}{\partial z} - S(z)$$
(3.5)

The dependent variables, θ and ψ , in Equation (3.5) are related to the hydraulic conductivity function, K(θ), and the soil moisture retention curve, $\psi(\theta)$.

Equation (3.5) is general, in the sense it is equally valid in both homogeneous and heterogeneous soil profiles, and there are no constraints on the hydraulic functions.

Introducing the concept of soil water capacity

$$C = \frac{\partial \theta}{\partial \psi} \tag{3.6}$$

which is the slope on the soil moisture retention curve, then the tension based version of Equation (3.5) is

$$C\frac{\partial\psi}{\partial t} = \frac{\partial}{\partial z} \left(K(\theta) \frac{\partial\psi}{\partial z} \right) + \frac{\partial K(\theta)}{\partial z} - S$$
(3.7)

This equation is usually referred to as Richard equation, which is named after L.A. Richards who first used it in 1931. It still applies when ψ becomes positive, in which case the equation degenerates to the Laplace equation. The sink term in Equation (3.7) are calculated from the root extraction for the transpiration in the upper part of the unsaturated zone. The integral of the root extraction over the entire root zone depth equals the total actual evapotranspiration. Direct evaporation from the soil is calculated only for the first node below the ground surface.

3.1.1 Numerical Solution of Richard Equation

MIKE SHE uses a fully implicit formulation in which the space derivatives of Equation (3.7) are described by their finite difference analogues at time level (n+1). The values of $C(\theta)$ and $K(\theta)$ are referred to at time level ($n+\frac{1}{2}$). These are evaluated in an iterative procedure averaging *Cn*, *Kn* with *Cm*, *Km* respectively. *Cm* and *Km* are calculated as a running average of the coefficients found in each iteration.

This solution technique has been found to eliminate stability and convergence problems arising from the non-linearity of the soil properties. For an interior node, the implicit scheme yields the following discrete formulation of the vertical flow:

$$q_{J+1/2}^{n+1} = -K_{J+1/2}^{n+1/2} \left(\frac{\Psi_{J+1/2}^{n+1/2} - \Psi_{J}^{n+1}}{\Delta Z_{J+1}}\right)$$
(3.8)

where the subscript J refers to the spatial increment and the superscript n refers to the time increment. Similar to Equation (3.8) the discrete form of Equation (3.1) gives

$$C_{J}^{n+1} \frac{\Psi_{J}^{n+1} - \Psi_{J}^{n}}{\Delta t} = \left| -K_{J+1/2}^{n+1/2} \left(\frac{\Psi_{J+1/2}^{n+1/2} - \Psi_{J}^{n+1}}{\Delta Z_{J+1}} \right) - K_{J-1/2}^{n+1/2} \left(\frac{\Psi_{J}^{n+1} - \Psi_{J-1}^{n+1}}{\Delta Z_{J}} \right) \left| \frac{1}{1/2(\Delta Z_{J+1} + \Delta Z_{J})} \right|$$
(3.9)

The soil property *K* is centred in space using the arithmetic mean:

$$K_{J+1/2}^{n+1/2} = \left(\frac{K_{J+1}^{n+1/2}}{2}\right)$$
(3.10)
$$K_{J-1/2}^{n+1/2} = \left(\frac{K_{J-1}^{n+1/2}}{2}\right)$$
(3.11)

3.2 EVAPOTRANSPIRATION

The calculation of evapotranspiration uses meteorological and vegetative data to predict the total evapotranspiration and net rainfall due to:

- Interception of rainfall by the canopy,
- Drainage from the canopy to the soil surface,
- Evaporation from the canopy surface,
- Evaporation from the soil surface, and
- Uptake of water by plant roots and its transpiration, based on soil moisture in the unsaturated root zone.

In MIKE SHE, the ET processes are split up and modelled in the following order:

A proportion of the rainfall is intercepted by the vegetation canopy, from which part of the water evaporates. The remaining water reaches the soil surface, producing either surface water runoff or percolating to the unsaturated zone. Part of the infiltrating water is evaporated from the upper part of the root zone or transpired by the plant roots. The remainder of the infiltrating water recharges the groundwater in the saturated zone.

The primary ET model is based on empirically derived equations that follow the work of Kristensen and Jensen (1975), which was carried out at the Royal Veterinary and Agricultural University in Denmark.

In addition to the Kristensen and Jensen model, MIKE SHE also includes a simplified ET model that is used in the Two-Layer UZ/ET model. The Two-Layer UZ/ET model

divides the unsaturated zone into a root zone, from which ET can occur and a zone below the root zone, where ET does not occur. The Two-Layer UZ/ET module is based on a formulation presented in Yan and Smith (1994). Its main purpose is to provide an estimate of the actual evapotranspiration and the amount of water that recharges the saturated zone. It is primarily suited for areas where the water table is shallow, such as in wetland areas.

3.2.1 Leaf Area Index (LAI)

The area of leaves above a unit area of the ground surface is defined by the leaf area index, LAI. Usually, generalised time varying functions of the LAI for different crops have been established. Thus, in MIKE SHE, user must specify the temporal variation of the LAI for each crop type during the growing seasons to be simulated. Different climatic conditions from year to year may require a shift of the LAI curves in time but will generally not change the shape of the curve. Typically, the LAI varies between 0 and 7.

3.2.2 Kristensen and Jensen method

The primary ET model is based on empirically derived equations that follow the work of Kristensen and Jensen (1975), which was carried out at the Royal Veterinary and Agricultural University (KVL) in Denmark. In this model, the actual evapotranspiration and the actual soil moisture status in the root zone is calculated from the potential evaporation rate, along with maximum root depth and leaf area index for the plants. The empirical equations in the model are based on actual measurements. In the following sections, the theory and principles behind the Kristensen and Jensen (1975) evapotranspiration model are presented in detail.

3.2.3 Canopy Interception

Interception is defined as the process whereby precipitation is retained on the leaves, branches, and stems of vegetation. This intercepted water evaporates directly without adding to the moisture storage in the soil. The interception process is modelled as an interception storage, which must be filled before stem flow to the ground surface takes place. The size of the interception storage capacity, *Imax*, depends on the vegetation type and its stage of development, which is characterised by the leaf area index, *LAI*. Thus,

$$I_{\rm max} = C_{\rm int} - LAI$$

where *Cint* is an interception coefficient [L] and *LAI* is leaf area index [-].

The coefficient *Cint* defines the interception storage capacity of the vegetation. A typical value is about 0.05 mm but a more exact value may be determined through calibration.

(3.12)

3.2.4 Evaporation from the Canopy

The evaporation from the canopy storage is equal to the potential evapotranspiration, if sufficient water has been intercepted on the leaves, that is

$$E_{can} = \min(I_{\max}, E_p \Delta t)$$
(3.13)

where *Ecan* is the canopy evaporation $[LT^{-1}]$, *Ep* is the potential evapotranspiration rate $[LT^{-1}]$ and Δt is the time step length for the simulation.

3.2.5 Plant Transpiration

The transpiration from the vegetation, *Eat*, depends on the density of the crop green material, (i.e. the leaf area index, LAI) the soil moisture content in the root zone and the root density. Thus,

$$E_{at} = f_1(LAI) \bullet f_2(\theta) \bullet f_2(\theta) \bullet RFD \bullet E_P$$
(3.14)

.

where

Eat	= actual transpiration [LT ⁻¹],
fl(LAI)	= function based on the leaf area index,
$f2(\theta)$	= function based on the soil moisture content in the root zone,
RDF	= root distribution function.

f₁(LAI)

The function, $f_I(LAI)$, expresses the dependency of the transpiration on the leaf area of the plant by

$$f_1(LAI) = C_2 + C_1 LAI$$
(3.15)

where

$$C1$$
 and $C2$ = empirical parameters.

f2(θ)

The second function, $f^{2}(\theta)$, is given by

$$f_2(\theta) = 1 - \left(\frac{\theta_{FC} - \theta}{\theta_{FC} - \theta_W}\right)^{\frac{C_3}{E_P}}$$
(3.16)

where

 θ_{FC} = volumetric moisture content at field capacity,

 θ_W =volumetric moisture content at the wilting point,

 θ = actual volumetric moisture content and C3 is an empirical parameter [LT⁻¹].

3.3 ROOT DISTRIBUTION FUNCTION, RDF

Water extraction by the roots for transpiration varies over the growing season. In nature, the exact root development is a complex process, which depends on the climatic conditions and the moisture conditions in the soil.

MIKE SHE allows for a user-defined, time-varying root distribution determined by the root depth (time varying) and a general, vertical root density distribution, .The root extraction is assumed to vary logarithmically with depth

 $log R(z) = log R_0 - AROT \bullet z$ where Ro = root extraction at the soil surface, AROOT = parameter that describes the root mass distribution,(3.17)

= depth below ground surface [L].

The value of the Root Distribution Function, RDF, in each layer is then calculated by dividing the amount of water extracted in the layer by the total amount of water extracted by the roots. Thus,

$$RDF_{i} = \frac{\int_{0}^{z^{2}} R(z)dz}{\int_{0}^{z^{1}} R(z)dz}$$
(3.18)

where the numerator is the total amount of water extracted in layer I bounded above by ZI and below by Z2 and the denominator is the total amount of water extracted by the roots between the ground surface and the maximum root depth, LR.

3.3.1 AROOT

Ζ

Water extraction is distributed with depth and depends on the *AROOT* parameter. Assuming that the transpiration is at the potential rate with no interception loss (*Cint=0*) and no soil evaporation loss (C2=0). The root distribution, and the subsequent transpiration, becomes more uniformly distributed as *AROOT* approaches zero. During simulations, the total actual transpiration tends to become smaller for higher values of *AROOT* because most of the water is drawn from the upper layer, which subsequently dries out faster. The actual transpiration, therefore, becomes more dependent on the ability of the soil to conduct water upwards (capillary rise) to the layers with high root density.

The effect of the root depth, given the same value of *AROOT*. A shallower root depth will lead to more transpiration from the upper unsaturated zone layers because a larger proportion of the roots will be located in the upper part of the profile. However, again, this may lead to smaller actual transpiration, if the ability of the soil to conduct water upwards is limited. Thus, the factors *AROOT* and root depth are important parameters for estimating how much water can be drawn from the soil profile under dry conditions.

3.4 SOIL EVAPORATION

Soil evaporation, *Es*, occurs from the upper part of the unsaturated zone and consists of a basic amount of evaporation, *Ep* .*f3* (θ), plus additional evaporation from excess soil water as the soil saturation reaches field capacity. This can be described by the following function:

$$E_{s} = E_{P} \cdot f_{3}(\theta) + (E_{P} - E_{at} - E_{P} \cdot f_{3}(\theta)) \cdot f_{4}(\theta) \cdot (1 - f_{1}(LAI))$$
(3.19)

where

After combining and solving Equation (3.14), (3.15) and the functions $f3(\theta)$ and $f4(\theta)$ we get following expression:

$$f_{3} = C_{3} \text{ for } \theta \ge \theta_{W}, C_{3}(\theta/\theta_{W}) \text{ for } \theta_{r} \le \theta \le \theta_{W}, 0 \text{ for } \theta \le \theta_{r}$$
(3.20)
$$f_{4} = \theta_{FC} - (\theta_{W} + \theta_{FC})/2, \quad \theta - (\theta_{W} + \theta_{FC})/2 \text{ for } = \theta \ge (\theta_{W} + \theta_{FC})/2, 0 \text{ for } \theta < (\theta_{W} + \theta_{FC})/2$$
(3.21)

In the absence of vegetation fI(LAI) can be set to zero and E_{at} in Equation (3.20) goes to zero. This allows us to see how E_s varies in relation to E_p for different values of θ . Thus, Equation (3.20) can be simplified to:

$$\frac{E_s}{E_P} = f_3(\theta) + f_4(\theta) - f_3(\theta) \cdot f_4(\theta)$$
(3.22)

In the MIKE SHE, soil evaporation is restricted to the upper node in the unsaturated zone, which, generally, should be about 10 centimetres deep, or less.

3.4.1 Evapotranspiration Coefficients C1, C2 and C3

The equations for actual transpiration, Equation (3.15), and soil evaporation, Equation (3.20), contain three empirical coefficients, C_1 , C_2 , and C_3 . The coefficients C_1 and C_2

are used in the transpiration function. C_3 is also part of Equation (15.14), but is only found in the soil moisture function, Equation (3.16).

Coefficient C₁

 C_1 is plant dependent. For agricultural crops and grass, C_1 has been estimated to be about 0.3. C_1 influences the ratio soil evaporation to transpiration. For smaller C_1 values the soil evaporation becomes larger relative to transpiration. For higher C_1 values, the ratio approaches the basic ratio determined by C_2 and the input value of LAI.

Coefficient C₂

For agricultural crops and pasture, grown on clayey loamy soils, C_2 has been estimated to be about 0.2. Similar to C_1 , C_2 influences the distribution between soil evaporation and transpiration. For higher values of C_2 , a larger percentage of the actual ET will be soil evaporation. Since soil evaporation only occurs from the upper most nodes (closest to the ground surface) in the UZ soil profile, water extraction from the top node is weighted higher. Thus, changing C_2 will influence the ratio of soil evaporation to transpiration, which in turn will influence the total actual evapotranspiration possible under dry conditions. Higher values of C_2 will lead to smaller values of total actual evapotranspiration because more water will be extracted from the top node, which subsequently dries out faster. Therefore, the total actual evapotranspiration will become sensitive to the ability of the soil to draw water upwards via capillary action.

Coefficient C₃

 C_3 has not been evaluated experimentally. Typically, a value for C_3 of 20 mm/day is used, which is somewhat higher than the value of 10 mm/day proposed by Kristensen and Jensen (1975). C_3 may depend on soil type and root density. The more water released at low matrix potential and the greater the root density, the higher should the value of C_3 be.

3.4.2 Canopy Interception

Interception is defined as the process whereby precipitation is retained on the leaves, branches, and stems of vegetation. This intercepted water evaporates directly without adding to the moisture storage in the soil. The interception process is modelled as an interception storage, which must be filled before stem flow to the ground surface takes place. The size of the interception storage capacity, *Imax*, depends on the vegetation type and its stage of development, which is characterised by the leaf area index, *LAI*. Thus,

$$I_{\max} = C_{\inf} . LAI \tag{3.23}$$

where

C_{itt}	= interception coefficient [mm] and
LAI	= leaf area index.

The coefficient, C_{int} , defines the interception storage capacity of the vegetation. A typical value is about 0.05 mm but a more exact value may be determined through calibration. The area of leaves above a unit area of the ground surface is defined by the leaf area index, *LAI*. Usually, generalised time varying functions of the LAI for different crops have been established. Thus, in MIKE SHE, the user must specify the temporal variation of the LAI for each crop type during the growing seasons to be simulated. Different climatic conditions from year to year may require a shift of the LAI curves in time but will generally not change the shape of the curve. Typically, the LAI varies between 0 and 7.

The actual interception storage, I_{act} , is then calculated as

$$I_{act} = \min(I_{\max}, P \cdot \Delta t) \tag{3.24}$$

where

P = amount of precipitation and Δt = calculation time-step.

3.4.3 Soil Moisture

The ET surface (ETsurf) is defined as the ground surface less the thickness of the capillary fringe. If the water table is above the ET surface, then ET will not reduce the moisture content of the soil, since any water deficit will be replaced by water drawn up from the saturated zone via capillary action. The ET extinction depth is the maximum depth to which water can be removed by transpiration. It is defined as the depth of the

root zone plus the thickness of the capillary fringe. Thus, if the water table is below the ET extinction depth, then water removed from the root zone by ET cannot be replaced by water drawn up by capillary action, since the roots do not reach the top of the capillary fringe. The depth of the root zone is specified in MIKE SHE's crop database and can vary in time and space.

The simplified ET module assumes that the unsaturated zone can consist of one or two layers. The upper layer extends from the ground surface to the higher of the water table or the ET extinction depth. The second layer extends from the bottom of first layer to the water table, if the water table is below the ET extinction depth. Thus, if the water table is above the ET extinction depth, the thickness of the lower layer is zero. If the water table is at the ground surface then the thickness of the upper layer is also zero. ET is only allowed from the upper of the two ET layers, if the lower layer exists.

If the water table is at the ground surface then the moisture content equals the saturated moisture content, θ_{sat} , and all ET is taken from the saturated zone. If the water table is below the ground surface, but above the ET surface, then the average moisture content of the ET layer is a linear function of the depth of the water table. That is, the average moisture content in the ET layer is lower when the water table is lower. If the water table is above the ET surface, the capillary fringe reaches the ground surface. Thus, the water content is not dependent on ET and any water lost to ET will be replaced from the groundwater table through capillary action. If the water content will vary between a minimum, θ_{min} , and a maximum, θ_{max} . θ_{max} is the water content that would be present if no ET occurred. θmin is the minimum water content that can exist in the upper ET layer when ET is active. Both θmin and θmax vary linearly with the depth to the water table. That is, θ_{min} and θ_{max} are lower when the water table is lower.

The difference between θ_{max} and the actual moisture content is the storage capacity of the unsaturated zone. Vertical infiltration to the saturated zone will only occur when the water content is equal to θ_{max} . If the water table is below the ET extinction depth, then a lower ET layer exists. The moisture content of the lower ET layer is equal to the field capacity, which is the minimum water content when ET does not exist. The average moisture content of the upper ET layer can range between the field capacity, θ_{FC} , and the

wilting point, θ_{WP} , which is the minimum water content at which the plants can remove water from the soil.

3.5 INFILTRATION

In MIKE SHE, at the beginning of each computational time step, rainfall first fills the interception storage. If I_{max} is exceeded, the excess water is added to the amount of ponded water on the ground surface, doc, which is the height of surface ponding before infiltration is subtracted. Next, the maximum infiltration volume is limited by the rate of infiltration. Thus,

$$Inf_k = K_{inf} \cdot \Delta t \tag{3.25}$$

where

 Inf_k = maximum amount of infiltration allowed during the time step due to the infiltration rate,

K _{inf}	= infiltration rate and
Δt	= calculation time-step.

The maximum infiltration volume is also limited by the available storage volume in the unsaturated zone, which is calculated by:

$$Inf_{v} = (\theta_{sat} - \theta_{t-1}) \cdot z_{wt}$$
(3.26)

where

θ_{sat}	= saturated water content,
θ_{t-1}	= water content at the end of the previous time-step and
Z _{wt}	= depth of the water table.

The actual infiltration to the unsaturated zone, Inf_{actual} , is then calculated as the minimum of the amount of ponded water before infiltration, the rate limited amount of infiltration or the maximum volume of infiltration. Thus,

 $Inf_{actual} = \min(d_{oc}, Inf_{k}, Inf_{v})$ (3.27)

Subsequently doc and θ act are updated

$d_{oc} = d_{oc}^* - I_{act}$	[mm]	(3.28)

 $\theta_{act} = \theta_{act}^* - (I_{act}/(zd \cdot 1000))$ (3.29)

where

* refers to the parameter value before updating

3.6 EVAPOTRANSPIRATION

Actual evapotranspiration is calculated from the reference evapotranspiration rate (E_p) . The reference rate is typically described as a time-series, which may be derived from pan-measurements or calculated using, for example, the Penman-Monteith equations. The reference ET is satisfied in the following order:

- Evaporation is first deducted from the interception storage assuming the potential ET rate.
- If the interception storage cannot satisfy the potential ET, water is evaporated from the ponded water, doc, until the ponded water is exhausted or the potential ET is satisfied
- If the potential ET has not yet been satisfied, water is ET is removed from the unsaturated zone until the potential ET is satisfied or the water content of the upper ET layer is reduced to θ_{min} .

If the potential evapotranspiration demand is still not satisfied water is extracted from the saturated zone. The amount that can be extracted is expressed as a function of the depth to the ground water table as described by the MODFLOW ET package. The actual evapotranspiration is calculated as the sum of the above 4 processes (figure 3.2).

Figure 3.2: Interception, Evaporation and Transpiration process.

3.6.1 ET from the Canopy

Evapotranspiration is deducted from the canopy storage assuming potential evapotranspiration rate. The actual evapotranspiration from canopy, E_{can} is given as minimum of potential evapotranspiration rate multiplied with the time step and actual interception storage:

$$\mathbf{E}_{can} = \min(\mathbf{INT}_a, \mathbf{E}_p \,.\Delta \mathbf{t}) \qquad [mm] \tag{3.30}$$

 INT_a is subsequently updated by deducting E_{can}

$$INT_a = INT_a^* - E_{can} \qquad [mm] \qquad (3.31)$$

3.6.2 ET from Ponded Water

If the interception water storage cannot satisfy potential evapotranspiration rate, water is extracted, to the extent possible, from the ponded water storage, d_{oc} . (* refers to the parameter value before updating).

 $E_{pon} = \min (d_{oc}, (E_p - E_{can})) \Delta t \text{ [mm]}$ (3.32) and d_{oc} is updated

 $\mathbf{d}_{oc} = \mathbf{d}_{oc}^* - \mathbf{E}_{pon} \qquad [mm] \tag{3.33}$

3.6.3 ET from the Unsaturated Zone

If the potential evapotranspiration demand is still not satisfied water is extracted from the unsaturated zone (if available).

$$\mathbf{E}_a = \mathbf{E}_a + \min(\mathbf{V}_{uz} / \mathrm{dt}, \mathbf{E}_p - \mathbf{E}_a) \tag{3.34}$$
where

 V_{uz} = available water in the unsaturated zone given as:

$$V_{uz} = (\theta_{act} - \theta_{min}(zd)) . zd$$
(3.35)

3.6.4 ET from the Saturated Zone

If the potential evapotranspiration demand is still not satisfied water is extracted from the saturated zone. The amount that can be extracted is expressed as a function of the depth to the ground water table.

$$E_{SZ} = E_p \cdot \Delta t - E_{can} - E_{pon} - E_{UZ} \quad \text{for} \qquad z_d < H_c \tag{3.36}$$

$$E_{SZ} = \max\left(E_{p} \cdot \Delta t - E_{can} - E_{pon} - E_{UZ}, \Delta t \frac{(h_{c} + z_{ext} - z_{d})}{z_{ext}}\right)$$
(3.37)

where

z_{ext} extinction depth [m]

H_c- ET surface elevation [m]

 z_d is considered equal to the root depth. Thus z_d may be time variant.

3.6.5 Actual ET

Finally, the actual evapotranspiration can be computed as the sum of the above contributions:

 $\mathbf{E}_{\mathbf{a}} = \mathbf{E}_{\mathbf{can}} + \mathbf{E}_{\mathbf{pon}} + \mathbf{E}_{\mathbf{uz}} + \mathbf{E}_{\mathbf{sz}} \qquad [mm] \tag{(3.38)}$

3.7 RECHARGE TO THE SATURATED ZONE

If the average water content θ_{act} exceeds the maximum water content (θ_{max}) groundwater recharge (Q_R) is produced.

 $Q_{\mathbf{R}} = \max((\theta_{\mathbf{act}} - \theta_{\mathbf{max}}(\mathbf{zd})), \mathbf{zd}), 0)$ [mm] (3.39)

3.8 SATURATED FLOW

The saturated zone component determines the saturated subsurface component in hydrological modeling of a catchment. The governing flow equation for threedimensional saturated flow in a saturated porous media is:

$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) - Q = S \frac{\partial h}{\partial t}$$
(3.40)

where

 K_{xx} , K_{yy} , K_{zz} = the hydraulic conductivities along x, y and z axes, which are assumed to be parallel to the principle axes of hydraulic conductivity tensor

h =	the hydraulic head
Q =	source/sink term

S = specific storage coefficient

Two special features of this apparently straightforward elliptic equation should be noted. First, the equations are non-linear when flow is unconfined; second, the storage coefficient is not constant but switches between the specific storage coefficient for confined conditions and the specific yield for unconfined conditions.

3.9 SOLUTION OF THREE DIMENSIONAL FLOW EQUATION

3.9.1 The Preconditioned Conjugate Gradient (PCG) Solver

Groundwater component is computed by the pre-conditioned conjugate solver, PCG, (Hill, 1990). The PCG solver includes an inner iteration loop, where the head dependent boundaries are kept constant, and an outer iteration loop where the (non-linear) head dependent terms are updated. The PCG solver includes a number of additional solver options that are used to improve convergence of the solver. The PCG solver is identical to the one used in MODFLOW (McDonald and Harbaugh, 1988).

The potential flow is calculated using Darcy's law

$$Q = \Delta hC \tag{3.41}$$

where

- $\Delta h =$ the piezometric head difference
- C = is the conductance of water in soil

The horizontal conductance in Equation (3.41) is derived from the harmonic mean of the horizontal conductivity and geometric mean of the layer thickness. Thus, the horizontal conductance between node I and node *i*-1 will be:

$$C_{i-\frac{1}{2}} = \frac{KH_{i-1,j,k} KH_{i,j,k} (\Delta z_{i-1,j,k} + \Delta z_{i,j,k})}{(KH_{i-1,j,k} + KH_{i,j,k})}$$
(3.42)

where, KH is the horizontal hydraulic conductivity of the cell and Δz is the saturated layer thickness of the cell.

The vertical conductance between two cells is computed as a weighted serial connection of the hydraulic conductivity, calculated from the middle of layer k to the middle of the layer k+1. Thus,

$$C_{\nu} = \frac{\Delta x^2}{\frac{\Delta z_k}{2K_{z,k}} + \frac{\Delta z_{k+1}}{2K_{z,k+1}}}$$
(3.43)

In dewatering condition the actual flow between cell k and k+1 is calculate by

$$q_{k+\frac{1}{2}} = Cv_{k+\frac{1}{2}}(z_{top,k+1} - h_k)$$
(3.44)

The above equation can also be written in the following form if we substitute h for z:

$$q_{k+\frac{1}{2}} = Cv_{k+\frac{1}{2}}(h_{k+1} - h_k)$$
(3.45)

Subtracting Equation (3.44) from Equation (3.45) gives the correction term

$$q_c = Cv_{k+\frac{1}{2}}(h_{k+1} - z_{top,k+1})$$
(3.46)

Which is added to the right-hand side of the finite difference equation using the last computed head? A correction must also be applied to the finite difference equation if the cell above becomes dewatered.

Thus the flow from cell k-1 to k is:

$$q_{k-\frac{1}{2}} = Cv_{k-\frac{1}{2}}(h_{k-1} - z_{top,k})$$
(3.47)

where again the computed flow is:

$$q_{k-\frac{1}{2}} = Cv_{k-\frac{1}{2}}(h_{k-1} - h_k)$$
(3.48)

Subtracting Equation (38) from (39) gives the correction term:

$$q_{c} = Cv_{k-\frac{1}{2}}(z_{top,k} - h_{k})$$
(3.49)

Which is added to the right-hand side of the finite difference equation using the last computed head?

3.10 LINEAR RESERVOIR METHOD

A single linear reservoir is a special case of the Muskingum model, Chow (1988). The theory behind linear reservoir method has been developed for the solution of saturated zone to provide an alternative to the physically based, fully distributed model approach. In many cases, the complexity of natural catchment area poses a problem with respect to data availability, parameter estimation and computational requirements. Most of the time very limited information on catchment characteristics is available. Satellite data may increasingly provide surface data estimates for vegetation cover, soil moisture, and evaporation in a catchment. However, subsurface information is generally very sparse. In many cases, subsurface flow can be described satisfactorily by a lumped conceptual approach such as the linear reservoir method.

Linear reservoir module for the saturated zone may be viewed as a compromise between limitation on data availability, the complexity of hydrological response at the catchment scale, and the advantages of model simplicity. The combined lumped/physically distributed model was primarily developed to provide a reliable, efficient instrument in the following field of application:

- Assessment of water balance and simulation of ungauged catchment
- · Prediction of soil moisture distribution with land use changes
- Estimation of change in saturated and unsaturated zone as well as fluctuation of water table

A linear reservoir is one, whose storage is linearly related to output by storage constant with the dimension time, also called a time constant as follow:

Figure 3.3: Schematic Diagram of Linear Reservoir Module of MIKE SHE

S =	kQ
-----	----

(3.50)

Where

S = is storage in the reservoir,

- k = is the time constant
- Q = is the outflow rate from the reservoir

The continuity equation for a single, linear reservoir with one outlet can be written as:

$$\frac{dS}{dt} = I - Q \tag{3.51}$$

where,

t = is time, I = is the inflow rate to the reservoir

Combining Equations (3.47) and (3.48) yields a first order, linear differential equation which can be solved explicitly:

$$\frac{dQ}{dt} + \frac{1}{k}Q_{(t)} = \frac{1}{k}I_{(t)}$$
(3.52)

If the inflow (I) to the reservoir is assumed constant, the outflow (Q) at the end of a time step dt can be calculated by the following expression:

$$Q_{(t+dt)} = Q_t e^{-dt/k} + I(1 - e^{-dt/k})$$
(3.53)

The outflow from a linear reservoir with two outlets can also be calculated explicitly. In this case storage is merely, is given by:

$$S = k_p Q_p = k_o Q_o + thd \tag{3.54}$$

where,

 k_p = is the time constant for the percolation outlet Q_p = is percolation

- $K_o =$ is time constant for the overflow outlet
- Q_0 = is outflow from the overflow outlet and
- thd= is the threshold value for the overflow outlet

Combining Equations (3.52) and (3.54) yields a solution for S, still assuming I is constant in time, the expression for Q_p and Q_o at time (t+dt):

$$Q_{p} = Q_{pt} e^{\frac{k_{o} + k_{p}}{k_{p} k_{o}}} + \frac{k_{o}}{k_{p} + k_{o}} (I + \frac{thd}{k_{o}}) \left[1 - e^{\frac{k_{o} + k_{p}}{k_{p} k_{o}}} \right]$$
(3.55)

$$Q_o = \frac{k_p Q_p - thd}{k_o} \tag{3.56}$$

The Linear Reservoir method is not as accurate as the 3D Finite Difference (Darcy Flow). Therefore, saturated zone modelling in this study was accomplished by using 3D Finite Difference method. Similarly for unsaturated zone, Richard Equation was selected.

CHAPTER 4

MATERIAL AND METHOD

This study has been carried out in two phases. Both phases used Physical Based Modelling. The first phase used idealised parameters whilst the second phase actual data from the field. Mike SHE fully distributed hydrological model was selected for both phases. The objective of the first phase was to learn MIKE SHE in depth and evaluate the different component of water balance fluxes in case of drained and un-drained scenarios. It was tried to replicate the actual filed conditions (in term of soil physical and hydraulic properties, land use, irrigation, crops and meteorological data etc.) in first phase of study to make it as close to the actual modelling scenarios later on in the second phase of the study.

4.1 PHASE 1

The main objective of this phase was to run MIKE SHE with a learning objective. In this phase MIKE SHE was run without calibration on an idealized irrigated and nonirrigated catchment under different scenarios. In this phase the basic steps of building a model were used as shown in Figure 4.1. The main focus of discussion in this phase was restricted to the open drains, mainly considering conditions typical of the Southwest region of the agricultural catchment in Western Australia. Idealized catchments with homogeneous soil type and depth was used for modelling with and without drain installed in irrigated and non irrigated catchments.

Figure 4.1: Basic steps in Building a Model.

Physically based modelling is a useful technique for analyzing the effect of physical changes to a system, because the required change can be imposed directly on the model. An interpretation of the relevant hydrological processes can be made and comparison can be carried out between model predictions before and after changes have been imposed. This is difficult to achieve by other modelling approaches, because generally the change cannot be directly imposed and some assumptions must be made about how to incorporate them. Using a physically based approach, it is not necessary to make a priori assumptions about how the changes may affect the system. The aim of this study was to model the changes in the soil moisture distribution and groundwater fluctuations with and without drainage system installed in an idealized irrigated and non- irrigated catchments. MIKE SHE was used to carry out the modelling of two different scenarios, i.e., with and without drainage system in an idealized catchment (homogeneous and uniform soil depth). The following components of water balance were compared with and without drainage system is a material of the modelling approach were compared with and without drainage system is a material of the modelling of two different scenarios.

- Actual transpiration from crops
- Actual evaporation from crops
- Actual soil evaporation
- Actual evaporation from interception
- Actual evaporation from ponded water
- Canopy interception storage
- Evaporation from saturated zone
- Depth of overland flow
- Infiltration to unsaturated zone
- Exchange between saturated and unsaturated zones
- Unsaturated zone deficit
- Water content in unsaturated zone
- Head elevation in saturated zone

Each simulation produced very large files for the above mentioned water balance components. The results of this phase have not been documented into this manuscript as the sole objective of this phase was to be master in using MIKE SHE for the later phase of the study.

4.2 PHASE 2

In Phase 2, Groundwater, Unsaturated, Cropping, Irrigation, Drainage, Overland Flow, and Water Balance Modules of MIKE SHE were calibrated and validated. Figure 4.2 shows the schematic integration of these modules.

Figure 4.2: Schematic Integration of different Modules in MIKE SHE.

The model was calibrated by collecting actual field data from the Southwest Irrigation Area Project (SWIA) of Western Australia. For this purpose one sub catchment of about 8000 hectares was selected (Fig 4.3). The groundwater table data was available for six sites from 1983 to 2005 (Table 4.1). The meteorological data from 1976 to 2004 was collected from adjacent 11 meteorological stations (Appendix 6). Meteorological data was averaged for all 11 stations and the average values of the data were used in the hydrological modelling. This data was used to classify climate into wet, average and dry.

4.3 CALIBRATION OF MIKE SHE

The calibration of the model is important to remove the uncertainties and errors during the actual modelling phase. There are some confusion and difference in the opinion among the hydrologist in the literature about model calibration and validation of the hydrological models. Oreskes, 1994; Konikow and Bredehoeft, 1992 have documented these confusions and differences in detail. The main point in their discussion are the uncertainties in term of the algorithms used by the model and how well they describe the physical processes, the error in data used for calibration, the mismatch in model calibration and extrapolation of results. This uncertainty dictates how well the model answers the question that is being asked.

Figure 4.3: Yarloop Catchment and location of Bores used for Calibration and Validation of MIKI SHE.

There are some basic steps to set up MIKE SHE properly for calibration. These steps were carried out in sequence as they are interlinked with each other. The first step is to setup MIKE SHE for saturated zone. The second step is to setup for unsaturated zone. The third step is to link (couple) saturated and unsaturated zone model with each other. The modelling of saturated and unsaturated zones in MIKE SHE is approximately similar to the HYDRUS2D hydrological model. Its mean to setup MIKE SHE saturated

and unsaturated zone module is equal to the same effort if someone is using HYDRUS2D hydrological model.

In this study, the Overland flow, Crop, Irrigation, Drainage and Water Balance Modules of MIKE SHE were also calibrated. The procedure of calibrating MIKE SHE for all of these Modules is very lengthy to document in this dissertation. Only the important steps of calibration have been included in this section. For further details, readers are referred to the MIKE SHE Reference Guide (2007) and Technical Manual (2007). The brief procedure of the important steps to calibrate MIKE SHE's Saturated Zone (Groundwater) Module is given below:

- Defining the model domain and grids
- Defining the topography
- Specifying the recharge (precipitation)
- Defining the geological model,
- Defining the vertical numerical discretisation,
- Defining the initial conditions, and
- the boundary conditions.

In the MIKE SHE graphical user interface, the geological model and the vertical discretisation are essentially independent, while the initial conditions are defined as a property of the numerical layer. Similarly, subsurface boundary conditions are defined based on the numerical layers, while surface boundary conditions such as drains were defined independently of the subsurface numerical layers.

The use of grid independent geology and boundary conditions provided a great deal of flexibility in the development of the saturated zone model for calibration. The same geological model and many of the boundary conditions were re-used for different model discretisation and different model parameterization scenarios during calibration. The description of each step in setting up groundwater model for calibration is given below:

4.3.1 Defining the model domain and grid

The first step in setting up the model for calibration is to define the model area. On a catchment scale, the model boundary is typically a topographic divide, a groundwater

divide or some combination of the two. In general, there are no constraints on the definition of the model boundaries. The topographic divide was selected as the model boundary in the calibration of MIKE SHE in this study. A shape file for the Yarloop catchment was generated using Arc GIS program and was imported into the MIKE SHE during calibration setup for saturated zone. A grid cell size varying from 50 x 50 to 500 x 500 metres were selected for defining the domain of the model. Grid cells inside the model domain were assigned a value of 1. Grid cells on the model boundary were assigned a value of 2. This distinction between interior grid cells and boundary cells was to facilitate the definition of boundary conditions.

4.3.2 Defining the Topography

In MIKE SHE, the topography defines the upper boundary of the model. The topography is used as the top elevation of both the unsaturated zone model and the saturated zone model. The topography also defines the drainage surface for overland flow. Many of the elevation parameters were defined relative to the topography, including depth parameters, such as ET Surface Depth. Topography was typically defined from a digital elevation map (DEM), defined from a point theme shape file generated by Arc GIS computer package.

4.3.3 Defining Precipitation

The precipitation rate is the measured rainfall. Precipitation rate were specified as mm/day. The daily meteorological data (from 1976 to 2004) from 11 adjacent stations was collected and an average value of daily rainfall was estimated and used in the calibration of the model.

4.3.4 Defining the Geologic Model

The development of the geological model for calibration is the most time consuming part of the initial model development. The geological properties of the study area was obtained from the data collected from different sources and Arc GIS shape file were prepared to specify sub-surface geology. MIKE SHE allows specifying subsurface geologic model independent of the numerical model. The parameters for the numerical grid were interpolated from the grid independently during the pre processing. The use of Arc GIS point and line files facilitated the process of defining geological model in MIKE SHE. Since lines are simply a set of connected points, the .shp file is essentially identical to the case of distributed point values. Thus, geological properties were interpolated into the numerical model during the pre process stage of the model according to the soil profile and its properties defined in the geological model.

4.3.5 Defining the Vertical numerical discretisation

The vertical discretisation of the soil profile was accomplished so that the upper layer contains small cells near the ground surface and increasing cell thickness with depth. However, the soil properties were averaged if the cell boundaries and the soil boundaries were not aligned. The discretisation was tailored to the profile description and the required accuracy of the simulation. Full Richards's equation was used in the simulation so the vertical discretisation was varying from 1-5 cm in the uppermost grid points to 10-50 cm in the bottom of the profile.

4.3.6 Defining the Initial Groundwater Level

The important step in calibration of MIKE SHE was to define the initial ground water levels to start the simulation process. The initial ground water level was obtained from the measured/observed data in the field (Table 1). During the simulation process, MIKE SHE determines the dynamic depth of the groundwater for each time step of simulation. MIKE SHE has a geological and computation model to carry out these calculations.

4.3.7 Defining Boundary Conditions

In MIKE SHE we can select one out of the following three types of boundary conditions:

- Dirichlet conditions, (Type 1) where the hydraulic head is prescribed on the boundary
- Neumann conditions, (Type 2) where the gradient of the hydraulic head (flux) across the boundary is prescribed
- Fourier conditions, (Type 3) where the head dependent flux is prescribed on the boundary.

The Type 2, Neumann conditions, was used in calibration. The upper boundary of the top layer was either the infiltration/exfiltration boundary, which in MIKE SHE is

calculated by the unsaturated zone. The lower boundary of the bottom layer was considered as impermeable.

4.3.8 Hydraulic Conductivity values

Hydraulic conductivity can vary by many orders of magnitude over a space of a few metres or even centimetres. MIKE SHE has got special tools to deal with spatial variability of hydraulic conductivity. In this calibration a uniform values of hydraulic conductivities were selected from the literature according to the soil type for the first simulation. The initial values for horizontal and vertical hydraulic conductivities were 0.000015 m/s and 0.0000015 m/s respectively. The hydraulic conductivities values were varied in order of 0.000001 m/s for horizontal hydraulic conductivity and 0.000001 m/s for vertical hydraulic conductivity during the calibration process.

4.3.9 Groundwater Drainage

Drainage is a special boundary condition in MIKE SHE used to defined natural and artificial drainage. In calibration process, drainage was applied to the layer of the Saturated Zone model containing the drain level. Water that was removed from the saturated zone by surface drainage was routed to local surface water bodies. Drainage flow was simulated using an empirical formula, which requires, for each cell, a drainage level and a time constant (leakage factor) that were used for routing the water out of the element. Both drain levels and time constants were assumed uniform spatially. For first simulation for calibration the leakage factor was assumed equal to 0.00005/sec was used and varied in the range of plus minus 0.000005/sec.

4.4 SIMULATIONS FOR CALIBRATING MIKE SHE FOR SATURATED ZONE

After completing all above steps, the calibration of Groundwater Module of MIKE SHE was carried out by using the actual field data, which include, land use, crop, irrigation application, metrological, soil physical properties, soil hydraulic properties, stream flow and water table depths. Appendices 6 and 7 show all of this data in different tables used in the calibration of MIKE SHE.

Water table depths were extracted from the results of each simulation. These simulated (Sim) depths were compared with the observed (Obs) data. After each simulation the standard calibration statistics were calculated based on differences between the measured observation (Bore data in this case) and simulated values at the same time and location (Figure 4.). The error or residual for an observation and simulated calculation pair was found by:

4.4.1 Calibration Statistics

$$E_{i,t} = Obs_{i,t} - Sim_{i,t} \tag{4.1}$$

Where

 $E_{i,t}$ = the difference between the observed and simulated values at location i and time t.

 $Obs_{i,t}$ = the observed values at location i and time t.

 $Sim_{i,t}$ = the simulated values at location i and time t.

The mean error at location "i" where "n" observations were made was calculated by:

$$ME_{i} = \bar{E}_{i} = \frac{\sum_{t} (Obs_{i,t} - Sim_{i,t})}{n}$$
(4.2)

The mean Absolute Errors at location "i" where "n" observations were taken was calculated by:

$$MAE_{i} = \left| \bar{E}_{i} \right| = \frac{\sum_{t} \left| Obs_{i,t} - Sim_{i,t} \right|}{n}$$

$$(4.3)$$

Root Mean Square Errors (RMSE) were estimated by:

$$RMSE_{i} = \frac{\sqrt{\sum (Obs_{i,t} - Sim_{i,t})^{2}}}{n}$$
(4.4)

Standard Deviation of the Residuals (STDres) was estimated by:

$$STDres_{i} = \sqrt{\frac{\sum_{t} ((Obs_{i,t} - Sim_{i,t}) - \bar{E_{i}})^{2}}{n}}$$
(4.5)

Correlation Coefficient (R) was calculated by:

$$R_{i} = \sqrt{\frac{\sum_{t} (Sim_{i,t} - O\overline{bs_{i,t}})^{2}}{\sum_{t} (Obs_{i,t} - O\overline{bs_{i,t}})^{2}}}$$
(4.6)

where:

$$Obs_i$$
 is the mean of the observed values at location "i".

The outputs of MIKE SHE simulations during the calibration of the Saturated Zone Model were very large. The results of these simulations have been burnt on a DVD and are available at the Department of Civil Engineering, Curtin University of Technology, WA, Australia.

Figure 4.4: Location of Calibrated and Validated Bores in the Yarloop catchment.

4.5 SETTING UP UNSATURATED FLOW MODULE

Calibration of unsaturated flow was one of the central processes in calibration process. The unsaturated zone is usually heterogeneous and characterized by cyclic fluctuations in the soil moisture as water is replenished by rainfall and removed by evapotranspiration and recharge to the groundwater table. Unsaturated flow is primarily vertical since gravity plays the major role during infiltration. Therefore, unsaturated flow in MIKE SHE was calculated only vertically in one-dimension. However, this may limit the validity of the flow description in some situations, such as on very steep hill slopes with contrasting soil properties in the soil profile. MIKE SHE includes an iterative coupling procedure between the unsaturated zone and the saturated zone to compute the correct soil moisture and the water table dynamics in the lower part of the soil profile.

The steps in setting up unsaturated zone model in MIKE SHE are nearly similar as for saturated zone. These steps are listed below:

- Defining the topography,
- Specifying precipitation,
- Specifying evapotranspiration,
- Specifying a soil profile
- Defining the geological model,
- Defining the vertical numerical discretisation,
- Defining the lower boundary conditions.

The unsaturated zone was setup using the same procedure as described for saturated zone. After the setup, it was coupled with saturated zone as described below:

4.6 COUPLING BETWEEN UNSATURATED AND SATURATED ZONE

The following procedure was used to ensure that the unsaturated zone didn't drop below the bottom of the first calculation layer of the saturated zone:

After a simulation, a map of grid statistics of the potential head was created in the first calculation layer of the saturated zone and was subtracted from the map of the minimum potential head from the map of the bottom level of the first calculation layer of the saturated zone. If the difference was very small in some areas of the map (e.g. <0.5 m), it was moved to the bottom level of the first calculation layer of the saturated zone downwards. This procedure was repeated until there were no small differences (the maximum difference of 0.5 mm). The water balance program was used to get an overview of errors due to a bad setup of the unsaturated zone.

4.7 RESULTS OF CALIBRATION

When saturated and unsaturated zone were linked properly, MIKE SHE simulations were carried out to calibrate the parameters shown in Table 1. After each simulation, the simulated water table depths were extracted and compared with the actual water table depth data. The actual water table depth data was collected from the field. The actual data of four observation wells (bores) was used in the calibration of MIKE SHE model.

Figure 4.4 shows the location of the bores used in calibration. Table 4.2 shows water table depth data from bores 2844, 2929, 2930 and 2846 used in calibration process.

The simulations were repeated many times by adjusting the parameters shown in Table 4.1. The water table depths produced by each simulation were compared with the actual water table depths. The statistics calculations were used to estimate the correlations between observed and simulated water table depths. When correlation between actual and simulated data was about 0.7, no further simulations were carried out.

MIKE SHE generated very large outputs for each simulation process. All the simulation run for calibration and their outputs have been burnt on a DVD and may be accessed from the Department of Civil Engineering, Curtin University, WA, Australia.

The last setup of MIKE SHE for calibration was posted on the Danish Hydraulic Institute (DHI), Denmark International Shared Web Site for verification of the calibration process. One expert of MIKE SHE from DHI, Denmark checked the setup and its results. The final values of the calibrating parameters used for the last simulation are shown below. The values for few other simulations are given in Appendix 7.

Table 4.1 Calibrated Parameters from the Last Simulation

Parameter	Maximum	Minimum	Increments	Final Value
	Value	Value		
Vertical Hydraulic Conductivity (m/s)	0.000003	0.0000007	0.0000005	0.000001
Horizontal Hydraulic Conductivity (m/s)	0.00002	0.000008	0.000005	0.00001
Specific Yield	0.5	0.1	0.05	0.2
Saturated Moisture contents	0.45	0.35	0.05	0.38
Residual Moisture contents	0.02	0.03	0.005	0.01
Coefficient Alpha (1/cm)	0.1	0.008	0.0011	0.067
Capillary pressure at field capacity (m)	5	1	0.25	2
Capillary pressure at wilting (m)	8	2	0.5	4.2
Saturated Hydraulic conductivity (m/s)	0.0001	0.00001	0.00001	0.0002
Leakage factor	0.00001	0.0000001	0.000002	0.000056
ET parameter C1	0.35	0.2	0.05	0.3
ET parameter C2	0.15	0.25	0.05	0.2
ET parameter C3	30	15	1	20
ET parameter Cint	0.08	0.04	0.01	0.05
Parameter Aroot	0.35	0.15	0.05	0.25
Leaf Area Index (LAI)	7	1	1	2.5
Rooting depths (m)	2	0.2	0.1	0.4

Tables 4.2 shows the observed and calibrated water table levels for the four bores used for the calibration of MIKE SHE.

Table 4.2: Calibrated and Observed Data for Yarloop Catchment for Bores 2844 and2929 (m).

WATER TA	BLE DEPTH BO	RE 2844 (m)	WATER TABLE DEPTH BORE 2929		RE 2929 (m)
Date	Observed	Simulated	Date	Observed	Simulated
15/9/83	0.84	1.9	15/09/83	1.9	1.52
2/8/88	1.67	1.5	2/08/88	2.1	1.9
6/12/88	2.6	1.98	6/12/88	2.6	2.5
8/3/89	3.1	3.15	9/03/89	2.25	2.8
4/7/89	1.6	2.01	4/07/89	1.3	1
16/10/89	1.7	1.81	12/10/89	2.4	2.5
16/1/90	3.1	2.95	16/01/90	2.7	2.95
5/4/90	3.4	3.82	5/04/90	2	1.9
16/7/90	2.5	2.48	18/07/90	1.4	1.48
17/10/90	1.88	1.9	17/10/90	2.5	2.4
15/1/91	3.3	2.99	15/01/91	3.1	3.2
4/4/91	3.6	3.25	8/04/91	1.9	2.02
10/7/91	1.7	1.6	10/07/91	1.3	1.2
18/9/91	1.35	2.8	17/09/91	2.95	2.85
16/4/92	3.56	3.21	21/04/92	1.45	1.5
24/9/92	1.7	2.1	24/09/92	2.57	2.6
24/3/93	3.4	2.9	25/03/93	1.65	1.74
14/9/93	1.46	1.3	13/09/93	2.8	2.7
7/4/94	3.7	3.52	7/04/94	2.18	2.41
24/11/94	2.97	3.11	24/11/94	2.93	2.9
10/4/95	3.78	3.59	10/04/95	2.08	2.22
10/11/95	2.65	2.68	10/11/95	3.2	3.1
17/5/96	3.77	3.85	21/05/96	1.875	1.98
17/10/96	1.945	2.01	17/10/96	2.83	2.91
3/6/97	3.65	3.59	3/06/97	2.95	3.05
24/5/98	4.37	4.1	24/05/98	1.48	1.25
8/12/98	3.17	4.25	23/09/98	2.08	2.41
19/5/99	4.46	4.24	8/12/98	2.95	3.01
5/10/00	1.95	2.5	6/05/99	1.5	1.4
14/3/01	4.12	3.97	4/10/00	2.78	2.58
25/9/01	1.91	1.8	14/03/01	2.03	2.02
4/4/02	4.24	4.01	25/09/01	3.05	3.04
17/9/02	1.58	1.92	17/09/02	1.56	1.92
10/4/03	4.08	3.94	14/05/03	2.93	2.52
2/9/03	1.7	1.88	2/09/03	2.93	2.88
5/4/04	3.74	3.6	6/04/04	1.82	1.92
7/9/04	1.5	1.6	6/09/04	2.98	3.01
5/4/05	3.68	3.54	4/04/05	1.74	1.7
			18/10/05	2.89	3.54

WATER TABLE DEPTH BORE 2846 (m)		WATER TABLE DEPTH BORE 2930 (m)			
Date	Observed	Simulated	Date	Observed	Simulated
6/12/88	2.1	1.82	2/8/88	8	6.9
9/3/89	2.6	2.05	21/9/88	7.1	6.72
4/7/89	2.25	2.8	6/12/88	7.6	6.95
12/10/89	1.3	1.8	10/3/89	9.2	8.84
17/1/90	2.4	1.81	29/6/89	9.4	9.55
10/4/90	2.7	2.95	12/10/89	7.1	7.8
18/7/90	2	2.01	16/1/90	8.5	8.6
17/10/90	1.4	1.48	5/4/90	9.5	9.8
15/1/91	2.5	2.4	17/10/90	8.54	8.6
5/4/91	3.1	2.99	15/1/91	9.3	9.5
9/7/91	1.9	1.8	12/4/91	9.5	9.2
18/9/91	1.3	1.2	10/7/91	8.8	8.4
7/4/92	2.95	2.72	18/9/91	5.85	6
24/9/92	1.45	1.54	15/4/92	9.45	8.9
24/3/93	2.57	2.1	24/9/92	6.36	6.5
13/9/93	1.65	1.74	24/3/93	9.5	9.25
6/4/94	2.8	2.88	14/9/93	9.02	9.1
22/11/94	2.18	2.41	7/4/94	10.09	9.5
10/4/95	2.93	3.11	24/11/94	9.21	9.4
10/11/95	2.08	2.22	10/4/95	10.56	9.9
21/5/96	3.2	3.41	10/11/95	8.88	9.1
24/10/96	1.875	1.98	17/5/96	10.46	9.95
3/6/97	2.83	2.91	17/10/96	7.005	7.54
24/5/98	2.95	3.05	29/5/97	10.43	9.87
24/9/98	1.48	1.25	24/5/98	10.42	9.95
8/12/98	2.08	2.41	19/5/99	9.89	9.54
6/5/99	2.95	3.01	5/10/00	7.4	8.01
4/10/00	1.5	2.01	14/3/01	9.7	9.2
13/3/01	2.78	2.58	17/9/02	9.71	9.55
25/9/01	2.03	2.02	2/9/03	9.79	9.82
4/4/02	3.05	3.04	5/4/04	10.6	9.86
17/9/02	1.56	1.92	7/9/04	9.2	9.45
10/4/03	2.93	2.52	5/4/05	10.4	9.82
10/4/03	2.93	2.88	20/10/05	8.65	8.85
2/9/03	1.82	1.92			
5/4/04	2.98	3.01			
7/9/04	1.74	1.7			
5/4/05	2.89	3.54			
20/10/05	1.46	1.65			

 Table 4.2: Calibrated and Observed Data for Yarloop Catchment for Bores 2846 and 2930 (m).

Figure 4.5: Observed and Simulated Water Table Depths.

Table 4.3: Correlation between (Observed and Simulated	Water T	Fable De	pths.
----------------------------------	-------------------------------	---------	-----------------	-------

Correlation	Bore 2844	Bore 2929	Bore 2934	Bore 2930
R	0.83	0.85	0.93	0.87
\mathbb{R}^2	0.69	0.73	0.87	0.76

Figure 4.5 shows the observed and simulated water table depth. Table 4.3 shows the correlation between the simulated and observed data. The correlation between observed and simulated data was between 0.7 and 0.87 basis, therefore, no further simulation was carried out to improve the average correlation.

4.8 VALIDATION OF MIKE SHE

The procedure adopted for calibration and validation was nearly same. The calibrated MIKE SHE was used for a set of another two bores' water table data set to verify that the calibrated model is simulating water table depths close to the observed one. For this purpose the calibrated parameters from Table 4.1 were used and water table depths were generated by calibrated MIKE SHE. Table 4.4 shows the simulated and observed data in bore 2841 and 2937.

WATER TABLE DEPTH BORE 2841 (m)		WATER TABLE DEPTH BORE 2937 (m)			
Date	Observed	Simulated	Date	Observed	Simulated
4/8/88	2.505	2.52	2/8/88	8	7.8
9/12/88	2.05	1.98	21/9/88	7.1	7.4
8/3/89	2.4	2.45	6/12/88	7.6	7.5
17/1/90	2.4	2.95	12/10/89	7.1	7.5
11/7/90	2.2	2.15	16/1/90	8.5	8.54
17/10/90	2.18	2.2	5/4/90	9.5	9.52
15/1/91	2.2	2.32	17/10/90	8.54	8.56
5/4/91	2.8	2.99	15/1/91	9.3	9.38
10/7/91	2.15	2.22	12/4/91	9.5	9.25
24/9/91	2.05	1.98	10/7/91	8.8	8.54
7/4/92	2.35	2.45	18/9/91	5.85	6.05
24/9/92	2.06	2.15	15/4/92	9.45	9.34
24/3/93	1.95	1.92	24/9/92	6.36	6.48
13/9/93	1.97	1.9	24/3/93	9.5	9.56
6/4/94	2.28	2.35	14/9/93	9.02	9.02
3/6/97	1.83	1.92	7/4/94	10.09	10.5
24/5/98	2.77	2.8	24/11/94	9.21	9.25
24/9/98	1.94	1.87	10/4/95	10.56	10.25
8/12/98	2.55	2.52	10/11/95	8.88	8.75
5/5/99	3.02	3.08	17/5/96	10.46	10.25
4/10/00	2.06	2.01	17/10/96	7.005	6.98
13/3/01	2.31	3.28	29/5/97	10.43	9.89
25/9/01	2.02	2.05	24/5/98	10.42	10.26
4/4/02	2.71	2.78	19/5/99	9.89	10.12
17/9/02	1.97	1.85	5/10/00	7.4	7.8
10/4/03	2.94	2.88	14/3/01	9.7	9.4
2/9/03	1.98	2.02	17/9/02	9.71	9.54
5/4/04	2.28	2.25	2/9/03	9.79	9.85
7/9/04	1.95	1.94	5/4/04	10.6	10.5
5/4/05	2.42	2.38	7/9/04	9.2	9.52
20/10/05	2.01	1.96	5/4/05	10.4	10.5

Table 4.4: Validated and Observed Data for Yarloop Catchment for Bores 2841and 2937.

The correlations between the simulated data using calibrated model and the observed data were very encouraging. The calibrated model generated a little better correlation during validation as compare to calibration.

Table: 4.5 Correlation between Water Table Depths Predicted by Calibrated model and Observed Data.

Correlation	Bore 2841	Bore 2937
R	0.87	0.91
\mathbb{R}^2	0.75	0.82

Table 4.5 shows that the correlation between the observed and simulated water table depth for bore 2937 were better than bore 2841. The square of correlations for both bores was more than 0.7. These correlations showed that MIKE SHE has been properly calibrated and validated. These results verified that MIKE SHE has been calibrated for the Yarloop catchment and is ready to be used in scenarios based study.

To further strengthen this confidence, the results of simulation produced during validation of MIKE SHE were used to run the WATER BALANCE MODULE of MIKE SHE to check the water balance errors. The water balance errors were less than one percent. This was another check for making sure that MIKE SHE is properly calibrated. The outputs of WATER BALANCE MODULE are very large and have been burnt on DVD as mentioned earlier.

The validated MIKE SHE set up and results files were sent to the Danish Hydraulic Institute, Denmark for checking. One expert of MIKE SHE checked all the file and results.

Calibrated and validated MIKE SHE was used for actual simulation for the three different types of climate, drain depths and irrigation applications. Climates were defined as wet, average and dry. Drain depths were selected from 0, 1 and 2 metres (0 = un-drained/no drain, 1 and 2 m deep drain). Three type of irrigation rates were chosen as zero (no irrigation), ten and sixteen mega litres per hectare per year. In Southwest Irrigation Areas (SWIA), farmers have no drains, 1 and 2 m deep drains. They usually apply irrigation from 0 to 16 ML per hectares per year. Before scenarios based simulations the rainfall data from 1976-2004 was processed to find out the wet, average and dry years. The following procedure was used for these classifications:

4.9 CLASSIFICATION OF CLIMATE

The daily rainfall and meteorological data from 1976 to 2004 was collected from 11 meteorological stations nearby the study area. The daily effective rainfall was estimated by ignoring the daily rainfall less than two millimeters. The effective average annual rainfall of all meteorological station was estimated. This average effective annual rainfall from 1976 to 2004 was arranged in descending order. Then it was grouped into three equal parts. The upper, middle and lower part's averages were calculated and found to be equal to 839, 738 and 596 mm respectively. Year 1982 had effective annual rainfall close to 839 and was selected as wet rainfall year. All the meteorological data for 1982 was also classified as wet climate data and used in this study for MIKE SHE simulations for wet climate.

Similarly, the year 1995 and 2001 had effective annual rainfall values closer to 738 and 596 mm respectively. Therefore, 1995 and 2001 were selected as average and dry years. Appendix 6 shows the meteorological data used for these classifications. All meteorological data for year 1982, 1995 and 2001 was used from the Appendix 6 into MIKE SHE simulations for the second phase. Table A7.13 in Appendix 7 shows the rainfall data used to classify climate into wet, average and dry climates.

4.10 DRAINAGE DEPTHS

The main objective of this study was to investigate the distribution and interaction of water flux in saturated and unsaturated zones with and without drained installed in three climate conditions. Three drains depths were selected for this comparison. The first drain depth was zero meter. This depth was used as untreated or un-drained scenario. Second and third depth was 1 and 2 m deep drains respectively. Most of the farmers in the study area have drains varying in depth from 1 to 2 m.

4.11 IRRIGATION APPLICATIONS

Three different irrigation rates were selected for comparing the impact of irrigation on water table depth, unsaturated zone deficit, overland flow and flooding and waterlogging risk. The first application rate was zero mega litres per year per hectare. This irrigation rate was selected to represent untreated or non-irrigated scenario. The second and third irrigation rate was 10 and 16 mega litres per year per hectare. Nearly eighty five percent

farmers in SWIA grow pasture and use flood irrigation method to apply irrigation water to the pasture. The ten mega litres per year per hectare is the most common irrigation rate applied to the pasture crop by the farmers in SWIA. Sixteen mega litres per year per hectare irrigation rate was selected to represent the over irrigation scenario. Few farmers apply irrigation at this rate in SWIA.

4.12 NUMBER OF SCENARIOS

There were three set of drain scenarios, three types of climate scenarios and three types of irrigation application. The total numbers of combination were twenty seven (3x3x3=27). MIKE SHE was calibrated for irrigated and non-irrigated catchments with and without drained installed and used to simulate all above mentioned scenarios to achieve the objective of this study.

<u>CHAPTER 5</u>

SIMULATED RESULTS OF GROUNDWATER FLUCTUATIONS

5.1 DESCRIPTION OF SIMULATIONS' SCENARIOS

Calibrated MIKE SHE was used to simulate twenty seven (3 x 3 x 3) scenarios for three climates, drain depths and irrigation application rates. The actual meteorological data for 1982, 1995 and 2001 was used as an input into MIKE SHE for wet, average and dry climates. Soil physical and hydraulic properties data used in MIKE SHE was collected from field and literature. The cropping pattern and irrigation application data was also collected from the field. All twenty seven simulations were divided in three sets of nine for each drainage depth. The first set of nine scenarios was defined for no drain depth. In MIKE SHE the no drain depth scenarios were simulated by assuming zero metre depth in the drain level dialog and it is represented in this study as D0. Similarly, for second and third set of nine scenarios drain depth was selected as 1 and 2 m deep and represented in this study as D1 and D2 respectively. The climate scenarios were defined as wet, average and dry and represented by SW, SA, and SD respectively. The irrigation rates were defined as no irrigation (0 ML/Y/H), ten mega litres per years per hectare (10 ML/Y/H) and sixteen mega litres per year per hectare (16 ML/Y/H). In this study 0, 10 and 16 ML/Y/H irrigation scenarios have been mentioned as IO, I10 and I16 For example Scenario one has been mentioned as SWD0I0, which respectively. indicates that it was simulated for wet climate without irrigation and drainage.

Tables 5.1, 5.2 and 5.3 show the description of the each set of nine scenarios which were simulated for zero metre drain depth (D0), 1 m drain depth (D1) and 2 m drain depth (D2) respectively.

IRRIGATION	TYPE OF CLIMAT					
(ML/Y/H)	WET (W)	AVERAGE (A)	DRY (D)			
0	S1 = SW-D0-I0	S2 = SA-D0-I0	S3 = SD-D0-I0			
10	S4 = SW-D0-I10	S5 = SA-D0-I10	S6 = SD-D0-I10			
16	S7 = SW-D0-I16	S8 = SA-D0-I16	S9 = SD-D0-I16			

Table 5.1: Description of Scenarios with no Drains, D0 (Drain depth = 0 M).

(Note Subscripts SW=Wet, SA=Average, SD= Dry, 0 = no drain, 10, 110 and 116 = 0, 10 and 16 mega litres/year irrigation)

Table 5.2: Description of Scenarios with One Metre Deep Drains, D1 (Drain depth = 1M).

IRRIGATION	TYPE OF CLIMAT					
(ML/Y/H)	WET (W)	AVERAGE (A)	DRY (D)			
0	S10 = SW-D1-I0	S11 = SA-D1-I0	S12 = SD-D1-I0			
10	S13 = SW-D1-I10	S14 = SA-D1-I10	S15 = SD-D1-I10			
16	S16 = SW-D1-I16	S17 = SA-D1-I16	S18 = SD-D1-I16			

(Note Subscripts SW=Wet, SA=Average, SD= Dry, 0 = no drain, I0, I10 and I16 = 0, 10 and 16 mega litres/year irrigation)

Table 5.3: Description of Scenarios with	Two Metres Deep	p Drains, D2	(Drain	depth
$= 2\mathbf{M}$).				

IRRIGATION	TYPE OF CLIMAT				
(ML/Y/H)	WET (W)	AVERAGE (A)	DRY (D)		
0	S19 = SW-D2-I0	S20 = SA-D2-I0	S21 = SD-D2-I0		
10	S22 = SW-D2-I10	S23 = SA-D2-I10	S24 = SD-D2-I10		
16	S25 = SW-D2-I16	S26 = SA-D2-I16	S27 = SD-D2-I16		

(Note Subscripts SW=Wet, SA=Average, SD= Dry, 0 = no drain, I0, I10 and I16 = 0, 10 and 16 mega litres/year irrigation)

Calibrated MIKE SHE was used to run the simulation for all the 27 scenarios as described in above mentioned tables. MIKE SHE produces a wide range of results of soil water movement above and below the ground surface for each simulation. The movement of water out of the domain produced by MIKE SHE is actual evapotranspiration, actual transpiration, actual evaporation from interception, actual evaporation from ponded water, canopy interception storage, evapotranspiration from saturated zone, depth of overland flow in x and y directions, root water uptake, groundwater flow in x, y and z-directions and groundwater abstraction. MIKE SHE requires the initial groundwater depth to start the simulations for each scenario. The initial groundwater table depth was taken from the calibration results and was kept same for each scenario's simulation. The similar boundary conditions were applied to the

MIKE SHE during the twenty seven simulations as were selected in calibration process. These boundary conditions have already been discussed in previous chapters. Actual rainfall and reference evapotranspiration data was used for wet, average and dry year as described above.

The results of twenty seven simulations were about 14 GB and have been burnt on two DVDs and are available from the Department of Civil Engineering, Curtin University of Technology, Bentley, WA, Australia.

From each simulation's outputs the following components were extracted:

- Depth of water table (Appendix 1),
- Water deficit in unsaturated zone (recharge/discharge) (Appendix 2),
- Exchange between saturated and unsaturated zones (Appendix 3),
- Depth of overland flow (Appendix 4)
- Drains outflow (Appendix 5).

These extracted results were used to analyse:

- The impact of different drain depth on land and water resources in different climate.
- The impact of 10 and 16 ML/ha-annum irrigation as compare to zero irrigation (no irrigation) on waterlogging and salinity.
- Impact of recharge and discharge from unsaturated zone on land productivity.
- Amount of overland flow and risk of flooding in drained and un-drained scenarios.
- Annul volume of drain outflow and its impact on downstream flooding.

5.2 IMPACT OF DRAINS ON LAND AND WATER RESOURCES

Drains are commonly used in the SWIA to mange waterlogging and salinity hence to improve the agricultural land productivity. The basic objectives of the drains are to remove excessive surface, sub-surface and groundwater. The depth of drains and hydraulic properties of soil are the main factors in the performance of the drains. Drains are like blood vessels for the land and play a significant role in maintaining its health. If these vessels are clogged or blocked, the land health would deteriorate. In some sever

cases land may become completely unproductive. The major sign of poor land drainage is the development of waterlogging and salinity.

To evaluate the impact of drains with and without irrigation on land and water resources the following comparison were made to understand their role in managing waterlogging and salinity. The simulation results are discussed in current and next two chapter as described below:

• Comparison of water table depths in different scenarios as described below (CHAPTER 5):

- o Water table depths without irrigation and drainage in three climates.
- Water table depths with 1 m deep drains and without irrigation in three climates.
- Water table depths with 2 m deep drains and without irrigation in three climates
- Water table depths with 1 m deep drain and 10 ML/ha-annum irrigation in three climates.
- Water table depths with 2 m deep drains and 10 ML/ha-annum irrigation in three climates
- Water table depths with 1 m deep drain and 16 ML/ha-annum irrigation in three climates.
- Water table depths with 2 m deep drains and 16 ML/ha-annum irrigation in three climates.
- Comparison of recharge and discharge in different scenarios as described below (CHAPTER 6):
 - o Recharge and discharge without irrigation and drainage in three climates.
 - Recharge and discharge with 1 m deep drains in three climates.
 - o Recharge and discharge with 2 m deep drains in three climates
 - Recharge and discharge with 1 m deep drain and 10 ML/ha-annum irrigation in three climates.
 - Recharge and discharge with 2 m deep drains and 10 ML/ha-annum irrigation in three climates

- Recharge and discharge with 1 m deep drain and 16 ML/ha-annum irrigation in three climates.
- Recharge and discharge with 2 m deep drains and 16 ML/ha-annum irrigation in three climates
- Comparison of overland flow in different scenarios as described below (CHAPTER 7):
 - Overland flow without irrigation and drainage in three climates.
 - Overland flow with 1 m deep drains in three climates.
 - Overland flow with 2 m deep drains in three climates
 - Overland flow with 1 m deep drain and 10 ML/ha-annum irrigation in three climates.
 - Overland flow with 2 m deep drains and 10 ML/ha-annum irrigation in three climates
 - Overland flow with 1 m deep drain and 16 ML/ha-annum irrigation in three climates.
 - Overland flow with 2 m deep drains and 16 ML/ha-annum irrigation in three climates

The effectiveness of drains with different irrigation rates will be evaluated by following the above mentioned procedure. For this purpose the twenty seven scenarios will be compared with each other according to the sequence defined above.

The results of each scenario's simulation will be extracted from Appendix 1 to 5 and plotted in the figures against each other and the results will be discussed with the help of tables. The following section compares the water table depths in different scenarios:

5.3 WATER TABLE DEPTH WITHOUT IRRIGATION AND DRAINAGE IN THREE CLIMATES

The depth of water table is most significant indication of the land health. If water table is close to the surface, the land would become waterlogged and salinity will start to develop in the upper unsaturated zone. To compare the impact of drains on water table we will compare the scenarios SW-D0-I0, SA-D0-I0 and SD-D0-I0 with each other to see how water table would fluctuate without irrigation and drainage in this section.

The results of simulations produced by MIKE SHE for scenarios SW-D0-I0, SA-D0-I0 and SD-D0-I0 were used as base line because no drainage and irrigation applications were intervened during these scenarios simulation. The results of simulations for water table depth for scenario SW-D0-I0, SA-D0-I0 and SD-D0-I0 were extracted from Appendix 1 and compared with each other in Figure 5.1.

WATER TABLE DEPTH (m) (NO IRRIGATION AND DRAINAGE, WET, AVERAGE AND DRY YEAR)

Figure 5.1: Water Table Depth during Wet, Average and Dry Climates.

Figure 5.1 indicates that water table depth during the wet climate (scenario SW-D0-I0) was close to the ground level on 20th of July, during winter rainfall season. In average climate (scenario SA-D0-I0) there was about 5 days delay in the water table level to reach the ground surface as compare to the wet climate. It is important to note that for scenarios SW-D0-I0, SA-D0-I0 and SD-D0-I0, no irrigation was applied (see Table 5.1) therefore; rainfall was the only factor to recharge the groundwater. The amount of rainfall, its intensity, infiltration rate of soil, overland flow, groundwater inflow and outflow are the main factors which play a role in groundwater recharge. All these parameters except rainfall and potential evapotranspiration were same in scenario SW-D0-I0, SA-D0-I0.

Figure 5.2 and 5.3 shows the rainfall and potential evapotranspiration for wet, average and dry climates. It can be noticed that there was more rainfall and less potential

evapotranspiration in winter season. Therefore, in winter, crops will not be using enough water and as a result most of the rainfall water would recharge the ground water table. Once the water table reaches the ground surface, any additional water from rainfall starts to pond on the ground surface. When water table is close to the ground surface the land is defined as waterlogged. The duration of waterlogging depends on many factors, the important one are rainfall intensity and duration, potential evapotranspiration by crop, evaporation from ground surface and runoff out of the area.

Figure 5.1 shows that during dry climate (SD-D0-I0) the water table depths was always below the ground surface. The water table stayed at an average depth of 1.75 and 1.35 metres during the summer and winter season in the dry climate. The maximum and minimum water table depths for dry climate were 2.0 and 0.9 metre respectively. This indicates that without drains and irrigation water table was deep enough in dry climate and there was no waterlogging.

The water table depths data from Appendix 1 was analysed for SW-D0-I0, SA-D0-I0 and SD-D0-I0 to estimate the extent of waterlogging. The numbers of days when water table was at the ground surface, 0 to 0.5, between 0.5 and 1.0 and below 1 metre depth were estimated for scenarios SW-D0-I0, SA-D0-I0 and SD-D0-I0 and listed in Table 5.4.

SCENARIOS	WATER TABLE DEPTH OUT OF 365 DAYS (m)				
	0	0.5 < 0	1.0 < 0.5	≥1	
SW-D0-I0	55	44	78	188	
SA-D0-I0	43	49	55	218	
SD-D0-I0	0	0	19	346	

 Table 5.4: Extent of Waterlogging without Irrigation and Drainage in three Climates.

Table 5.4 indicates that the number of days when the water table depth was at ground surface for SW-D0-I0, SA-D0-I0 and SD-D0-I0 was 55, 43 and 0 respectively. This indicates that during wet climate the water table depth was close to the ground surface for almost two months during winter rainy season. During average climate the water table was close to ground surface for one and a half month. If we compare the number

of days when water table depth was between 0 and 0.5 metre depths for wet and average climate, we see a difference of seven days in favour of average climate.

It has been earlier mentioned that rainfall and potential evapotranspiration is the major parameter which were changed during the MIKE SHE model setup for wet, average and dry climate. Therefore, Rainfall intensity duration and pattern during the winter time will have the impact on groundwater recharge. The increase or decrease in water table depth is directly related with recharge or discharge from the unsaturated zone.

Figure 5.2: Daily Rainfall during Wet, Average and Dry Climate.

Figure 5.3: Potential Evapotranspiration during Wet, Average and Dry Climate.

Figure 5.2 and 5.3 shows the daily rainfall and potential evapotranspiration pattern during the wet, average and dry climate. Figure 5.2 shows that most of the rainfall came during 1^{st} of May to 30^{th} of October for wet, average and dry climate. The reason for seven days difference between the numbers of day when water table was at 0.5 metre for wet and average year can be explained as follow:

- The study area is close to the coastal plain and groundwater inflow and outflow may be considered at equilibrium. Hence, the influence of groundwater inflow and outflow on water table depth may also be considered negligible. Therefore, it can be inferred that the increase in water table level was directly related to the recharge from the rainfall.
- If we zoom in and plot the rainfall and potential evapotranspiration data for the month of May to September (Figure 5.4 and 5.5), we see that there is nearly same rainfall and potential evapotranspiration during wet and average climate.
- Table 5.5 indicates that the total amount and pattern of rainfall and potential evapotranspiration during May to October (winter season) was nearly same for wet and average climate

Figure 5.4: Rainfall during May to October in Wet, Average and Dry Climate.

Figure 5.5: Potential Evapotranspiration during May-October for Wet, Average and Dry Climates.

Figure 5.2 shows that there was bout 90 and 0 mm of rainfall in January for wet and average climates respectively. This is the big difference in the rainfall amount during summer times for wet and average climates. Appendix 6 shows the daily rainfall and potential evapotranspiration for wet, average and dry climates. The monthly rainfall, potential evapotranspiration and average water table for wet, average and dry climates are given in Table 5.5.

 Table 5.5: Monthly Rainfall, Potential Evapotranspiration and Average Water

 Table Depths for Wet, Average and Dry Climates without Irrigation

 and Drainage

	and Dramage.								
	POTENTIAL EVAPOTRANSPIRATION (mm)		POTENTIAL EVAPOTRANSPIRATION (mm) RAINFALL (mm)		WATER TABLE DEPTH (m)				
MONTH	WET	AVERAGE	DRY	WET	AVERAGE	DRY	WET	AVERAGE	DRY
JAN	170	201	186	186	1	0	1.35	1.40	1.40
FEB	165	171	158	13	1	1	1.15	1.65	1.65
MAR	136	161	150	9	4	2	1.28	1.82	1.82
APR	92	96	100	0	21	5	1.45	1.90	1.90

MAY	57	62	57	71	163	138	1.56	1.86	1.82
JUN	44	42	47	193	122	50	1.38	1.41	1.72
JUL	46	43	50	188	275	92	1.15	1.16	1.54
AUG	62	61	55	109	99	142	0.24	0.26	1.24
SEP	82	76	69	106	84	100	0.12	0.12	1.05
OCT	120	118	112	49	76	26	0.15	0.26	0.98
NOV	142	139	154	8	24	38	0.74	0.76	1.23
DEC	166	172	164	15	27	42	1.13	1.14	1.45

Table 5.5 gives in detail the distribution of water table depth during each month for wet average and dry climates without drains. The depth of water table is considered an indication of waterlogging for the agricultural land. If the depth is close to the ground surface, the potential of waterlogging and salinity is higher. The salinity risk will increase if the quality of the irrigation and/or groundwater is saline. When water table comes close to the ground surface, it mobilise salt into the unsaturated zone. The water is transpired and/or evaporates from the unsaturated zone leaving salt behind. The fluctuation of water table results in the increased concentration of the salt in the unsaturated zone. The unsaturated zone is the best host of the crops roots, if the health of this zone is not good, the crop productivity of the agricultural land will reduce. The combination of waterlogging and salinity may become more dangerous for agricultural land productivity.

5.4 WATER TABLE DEPTH WITH 1 M DEEP DRAIN WITHOUT IRRIGATION

In this section the impact of 1 m deep drains on water table depths without irrigation in three climates will be discussed.

5.4.1 Wet Climate

The impact of drains on agricultural land productivity was analysed by extracting the water table depth outputs generated by MIKE SHE for the scenarios SW-D1-I0, SA-D1-I0 and SD-D1-I0 from Appendix 1. In the simulations of these scenarios, 1 m deep drains were introduced. All parameters like rainfall, evapotranspiration, soil hydraulic conductivities, topography, soil physical properties, land use, and crops parameters were kept same as for un-drained scenario.

Figures 5.6 compare the water table depths with and without 1 m deep drains in wet climate.

Figure 5.6: Water Table Depths with and without 1 m Deep Drains, no Irrigation in Wet Climate.

Figure 5.6 shows that depth of water table with 1 m deep drains scenario was always lower than the un-drained scenario. Specifically in winter season the water table was on ground surface in un-drained scenario. With 1 m deep drains the water table dropped at an average depth of about 0.85 metre. Table 5.6 shows the extent of water logging with and without 1 m deep drains in wet climate.

01	mater						
SCENARIOS	WATER TABLE DEPTH OUT OF 365 DAYS (m)						
	0	0.5 < 0	1.0 < 0.5	≥1			
SW-D0-10	63	44	78	188			
SW-D1-I0	0	0	102	263			

 Table 5.6: Extent of Waterlogging with and without 1 m deep drains in Wet Climate.

From Table 5.6 it can be concluded that extent of waterlogging was nearly negligible with the introduction of 1 m deep drains in wet climate. The water table was always more than 0.5 metre deep in 1 m deep drain scenario. The waterlogging will occurs if

water table depth is less than 0.5 metre deep. The extent of waterlogging was at least 107 days more in case of un-drained scenario as compare to 1 m deep scenarios.

5.4.1.1 Impact of one metre Deep Drains in Wet Climate

- The average water table depth with 1 m deep scenario was always lower than un-drained scenario.
- The depth of water table during summer season with 1 m deep drains was 1.75m from ground surface.
- The depth of water table during winter season with 1 m deep drains was 0.8 m from ground surface.
- The extent of water logging was 107 days less with 1 m deep drains.

5.4.2 Average Climate

Figure 5.7 shows the water table depth with 1 m deep drains in average climate. The water table depth was same with and without 1 m deep drain in summer season from 1st of Jan to 15th of Jun. The water table rose sharply after 15th of Jun in case of un-drained scenario. With 1 m deep drains it rose about 0.25m and was still below the ground surface at a depth of 0.75m. The depth of water table was varying from 0.75 to 1.0 m in winter season with 1 m deep drains. Table 5.7 shows the extent of waterlogging with and without 1 m drains in average climate.

Figure 5.7: Water Table Depths with and without 1 m Deep Drains and no Irrigation in Average Climate.

 Climate.

 SCENARIOS
 WATER TABLE DEPTH OUT OF 365 DAYS (m)

 0
 0.5 < 0 1.0 < 0.5 ≥ 1

 SA-D0-I0
 43
 49
 55
 218

71

294

0

 Table 5.7: Extent of Waterlogging with and without 1 m deep drains in Average Climate.

Table 5.7 reveals that water table depth with 1 m deep drains in average climate was more than 1 m deep for 294 days. The explanation for deeper water table in average climate is the distribution of rainfall. Figure 5.2 and Table 5.5 showed the daily rainfall for average climate was 1, 1, 4 and 21 mm for the month of Jan, Feb, Mar and April respectively. There was less rainfall during these months, therefore, there was no recharge in to the groundwater table and because of high evapotranspiration there was more discharge. Similarly, there was less rainfall in winter season during average climate as compare to wet climate which resulted in less recharge and as a result deeper water table.

5.4.2.1 Impacts of one metre Deep Drains in Average Climate

- The water table was deeper with 1 m deep drains in average climate as compare to wet climate.
- The extent of water logging was negligible with 1 m deep drains.
- There was less rainfall during summer season in average climate which resulted in less recharge.
- The water table depth with and without 1 m deep drains was same during the summer season in average climate.
- In winter season, 1 m deep drains kept water table at a depth of 0.75 m from ground surface.

5.4.3 Dry climate

SA-D1-I0

0

Figure 5.7 show the water table depth with and without 1 m deep drains in dry climate. The water table depth was nearly same with and without 1 m deep drain during the dry climate. Table 5.8 shows the extent of waterlogging with and without 1 m deep drains in dry climate.

Figure 5.8: Water Table Depths with and without 1 m Deep Drains and no Irrigation in Dry Climate.

SCENARIOS	WATE	OUT OF 365 DAYS (r	n)	
	0	0.5 < 0	1.0 < 0.5	≥1
SD-D0-I0	0	0	19	346
SD-D1-I0	0	0	9	356

Table 5.8: Water Table Depth with and without 1 m Deep Drains in Dry Climate.

5.4.3.1 Impacts of one metre Deep drains in Dry Climate

- In dry climate 1 m deep drains were ineffective. The recharge from the rainfall during summer and winter season was not creating the problem of waterlogging.
- The water table depth with and without 1 m deep drains was about 1 m deep during winter time.
- There was absolutely no waterlogging throughout the year in dry climate.

5.5 WATER TABLE DEPTH WITH 2 M DEEP DRAINS AND NO IRRIGATION

Most of the farmers have 1 m deep drains in the SWIA. Few farmers have 2 m deep drains in the study area. Therefore, in this section the impact of 2 m deep drains on controlling water table depth would be discussed in wet and average climate.

5.5.1 Wet climate

The impact of one and 2 m deep drain to control waterlogging and associated salinity was evaluated by comparing the SW-D1-I0 with SW-D2-I0 in Figure 5.9.

Figure 5.9: Water Table Depths with 1 and 2 m Deep Drains and no Irrigation in Wet Climate.

Figure 5.9 shows that the water table depth was deeper with 2 m deep drains as compare to 1 m deep drains. The maximum depth of water table during summer season with 2 m deep drain was about 2.25. In winter season there was an increase of about 0.4 m in water table depth. Its mean the water table was closer to ground surface during winter time as compare to summer time with 1 and 2 m deep drains. Whereas, without 1 and 2 m deep drains water table was at ground surface during winter season.

The 2 m deep drains were removing more water as compare to 1 m deep drains from the saturated zone. Therefore, there was more recharge into the groundwater table with 1 m deep drains as compare to 2 m deep drains. It should be kept in mind that there was no irrigation applied in the simulation of these scenarios. Therefore, the water table was deep with 2 m deep drains. This might effect on land productivity as crops were have less opportunity to use the water stored by rainfall into the saturated and unsaturated

zone. Two metres deep drains were discharging and removing this water from saturated and unsaturated zones.

SCENARIOS	TOTAL NO. OF DAYS WATER TABLE DEPTH (m)					
	0	0.5 < 0	1.0 < 0.5	≥1		
SW-D1-I0	0	0	102	263		
SW-D2-I0	0	0	0	365		

 Table 5.9: Water Table Depth with 1 and 2 m Deep Drains in Wet Climate.

Table 5.9 shows that the water table was always deeper than 1 with 2 m deep drains in wet climate. The water table depth with 1 m deep drain was between 0.5 to 1 m for 102 day. This shows that 2 m deep drain were more effective in removing water from groundwater table. As a result water table was deeper with 2 m deep drains as compare to 1 m deep drains.

5.5.1.1 Impacts of two metre Deep Drains in Wet Climate

- Figure 5.9 and Table 5.9 revealed that with the 2 m deep drain the water table depth was deeper than 1 m throughout the year in wet climate.
- Two metres deep drains are not suitable for non-irrigated agricultural land under the similar hydrological and land use parameters as in the study area.
- Excessive drain flow was resulted with 2 m deep drain and the moisture contents in unsaturated zone were very low. Therefore, the availability of water to the crop was affected. This will result in poor crop productivity.
- The water table was always deeper than 1.5 m in wet climate during winter season.

5.5.2 Average climate

Figure 5.10 shows the water table depth simulated with and without 2 m deep drain in average climate. The major difference in water table depths with 2 m deep drains in average and wet climate was seen in summer season. In wet and average climate the water table depth on 18th of January was 1.7 and 2.1m respectively. This difference was due to the recharge from the 90mm thunder storm in wet climate on 17th of January.

This heavy rainfall recharged water table and the depth of water table was closer to the ground surface in wet climate as compare to average climate with 2 m deep drains.

In winter season during average climate 2 m deep drains were effectively discharging the rainfall water. Therefore, the water table rose by 0.35 m during winter season as compare to the summer season with 2 m deep drains. The water table depth during winter season with 2 m deep drains was always more than 1.61 m.

Table 5.10 shows the extent of waterlogging with one and 2 m deep drains in average climate.

Figure 5.10: Water Table Depths with 1 and 2 m Deep Drains and no Irrigation in Average Climate.

SCENARIOS	WATER TABLE DEPTH OUT OF 365 DAYS (m)				
	0	0.5 < 0	1.0 < 0.5	≥1	
SA-D1-I0	0	0	71	294	
SA-D2-I0	0	0	0	365	

Table 5.10: Water Table Depth with 1 and 2 m Deep Drains in Average Climate.

Table 5.10 compares the water table depth with 1 and 2 m deep drains in average climate. With 1 m deep drain the water table was between 0.5 and 1 m deep for 71 days.

With 2 m deep drains the depth of water table was more than 1 m throughout the year in average climate.

The minimum depth of water table during winter season in wet and average climate was 1.50 and 1.61 m respectively with 2 m deep drains (Appendix 1). This shows that the water table was deeper in average climate as compare to wet climate with 2 m deep drains. In other words water table was closer to the ground surface in wet climate as compare to average climate with 2 m deep drains. This can be explained from Table 5.5 and Figure 5.2. Table 5.5 and Figure 5.2 show that there was more rainfall during wet climate as compare to the average climate. Therefore, more water was recharging to groundwater table in wet climate as compare to average climate as compare to average climate as compare to average climate. This had resulted in shallower water table in wet climate as compare to average climate.

5.5.2.1 Impacts of two metre Deep Drains in Average Climate

- Two metres deep drains discharged more water than the 1 m deep drains in average climate.
- Two metres deep drains discharged less water in average climate as compare to the wet climate.
- No waterlogging was observed with 2 m deep drain during winter season.
- The water table was always deeper than 1.61 metre in average climate with 2 m deep drains.

5.5.3 Dry climate

Figure 5.11 shows that the maximum water table depths during summer season for 1 and 2 m deep drain is shown as 2.0 and 2.25 metres respectively. During winter rainfall the maximum water table depth for scenario (SD-D1-I0) and (SD-D2-I0) was 0.95 and 1.8 metres respectively. This reveals that 1 and 2 m deep drains were effective in lowering the water table during winter rainfall. There was no waterlogging observed as water table were deep enough during the summer and winter seasons. The 2 m deep drains in dry climate lowered the groundwater table up to 2.25 metres. This would have created the less moisture in the unsaturated zone. Therefore, crop productivity would have been affected negatively in the presence of 2 m deep drains.

Figure 5.11: Water Table Depths with 1 and 2 m Deep Drains and no Irrigation in Dry Climate.

Table 5.11 shows the extent of waterlogging with 1 and 2 m deep drains in dry climate. It shows that there was no waterlogging with 1 m deep drains in dry climate. Therefore, 2 m deep drains are not required for the dry climate with similar hydrological and land use parameters as in the study area. It should be noticed that the initial ground water level for dry climate was 1.5 m deep. Therefore, the recharge from dry climate rainfall was not raising the groundwater table. In addition to this the groundwater inflow was also negligible for this particular condition.

In wheat belt agricultural catchment the water table is near to the ground surface in valley floors. There is also groundwater and subsurface water inflow due to the topographic effect into the valley floors. In these particular conditions 1 and 2 m deep drains may discharge subsurface and ground water effectively even in dry climate from the valley floors. Therefore, it is strongly emphasized that the conclusion drawn from this study are site specific and can't be used in other sites with different set of boundary and initial conditions.

Table 5.11: Water Table Depth with and without 1 m Deep Drains in Dry Climate.

SCENARIOS	TOTAL NO. OF DAYS WATER TABLE DEPTH (m)					
	0	0.5 < 0	1.0 < 0.5	≥1		
SD-D1-I0	0	0	9	346		
SD-D2-I0	0	0	0	356		

5.5.3.1 Impacts of two metre deep Drains in Dry Climate

- Two metre deep drains are not required for this particular environment.
- They excessively discharge the rainfall water and crops were not able to use it.
- The crop productivity will reduce in the presence of 2 m deep drains in this particular environment.

5.7 WATER TABLE DEPTH WITH DRAINS AND IRRIGATION IN THREE CLIMATES

In previous section the drains performance was analysed without irrigation in wet, average and dry climate. In this section, the irrigation water would be applied with two different rates during summer season of wet, average and dry climates. The 10 and 16 ML/ha-annum irrigation was divided into twenty equal parts. For 10 and 16 ML/ha-annum 50 and 80 mm per day irrigation was applied after a fortnight during summer season. Appendix 6 shows the distribution and application dates for 10 and 16 ML/ha-annum irrigations for wet, average and dry climates.

5.7.1 Water Table Depth with 10 ML/ha-annum Irrigation

There is an urgent need to understand that how engineering interventions in term of drainage and irrigation can help in improving the use of the limited agricultural land and water resources. Sprinkler and drip irrigation, dams, bank, evaporation pond, siphon and vertical drainage may also help to improve the use of land and water resources. It is out of the scope of this study to investigate the role of all engineering interventions in improving the use of agricultural land and water resources. The main focus of this study is to gain understanding about the role of drains and irrigation application rates in wet and average climates to improve the use of agricultural land and water resources.

The role of drains in dry climate is not significant and has been discussed in detail in previous sections. Therefore, this section will discuss the role of 1 and 2 m deep drains scenarios when 10 ML/ha-annum irrigation were applied in wet and average climate.

The main cause of waterlogging is due to the over irrigation and/or poor drainage in the SWIA. Most of the farmers in Southwest Irrigation Areas (SWIA) apply irrigation to the pasture at a rate of 10 ML/ha-annum. The impact of this irrigation on water table depth with and without 1 m deep drain is shown Figure 12. These results have been plotted from the outputs of MIKE SHE simulation of Scenario SW-D0-I10 against SW-D1-I10 in which 10 ML/ha-annum irrigation was applied. For un-drained scenario SW-D0-I10, it can be seen from Figure 12 that water table was at an average depth of about 0.48 metre during summer season and very close to ground surface during winter rainfall seasons. This indicates that nearly for half of the year there would be no aeration into the root zone and the production of the crop would be severely affected. If the ground water quality is saline, then the impact of high water table would be more adverse on agricultural land productivity.

5.7.1.1 One metre Deep Drains in Wet Climate:

In Scenario SW-D1-I10 1 m deep drains were introduced and simulated by using calibrated MIKE SHE. During the simulation of scenario SW-D1-I10 and SW-D1-I0, all parameters except the irrigation were same. Fig 12 shows the comparison between the water table depths for the un-drained and 1 m deep drained scenarios SW-D0-I10 and SW-D1-I10. For the 1 m deep drained scenario, it can be noticed that the average depth of water table during summer and winter seasons were 1.1 and 0.8 metre respectively. The average increase in water table depth during winter rainfall was 0.3 metre with 1 m deep drained scenario.

Figure: 5.12: Water Table Depths with and without 1 m Deep Drains and 10 ML/ha-annum Irrigation in Wet Climate.

Table 5.12 show the extent f water logging with and without 1 m deep rains with 10 ML/ha-annum irrigation in wet climate. The water table was at ground surface for 101 days without 1 m deep drains after applying 10 ML/ha-annum irrigation. When 1 m deep drains were installed the depth of water table was always deeper than 0.5 m. The water table stayed between 0.5 and 1.0 metre for 217 days with 1 m deep drains. This is ideal water table depth for the crops roots to use water as sub-surface irrigation. The only concern is the quality of irrigation and groundwater. In SWIA the irrigation water is delivered from Harvey Dam. The quality of this water is excellent (less than 200 ppm). The groundwater quality in the Harvey catchment is also better than the Collie catchment. Therefore, it can be concluded that water quality will not be issue in the study area.

 Table 5.12: Water Table Depth with and without 1 m Deep Drains in Wet Climate

 with 10 ML/ha-annum Irrigation.

SCENARIOS	TOTAL NO. OF DAYS WATER TABLE DEPTH (m)					
	0	0.5 < 0	1.0 < 0.5	≥1		
SW-D0-I10	101	92	151	21		
SW-D1-I10	0	0	217	148		

5.7.1.2 Impacts of Drains with 10 ML/ha-annum Irrigation

• Without on metre deep drains there was sever waterlogging with 10 ML/ha-annum irrigation.

- One metre deep drains were very effective in controlling waterlogging.
- Water table stayed at an ideal depth for sub-surface irrigation for more than seven months during wet climate with 10 ML/ha-annum irrigation.
- Water table never reached to the ground surface with 1 m deep drains.
- Water table was deeper than 1 m only during the summer season with 1 m deep drains.

5.7.2 One metre Deep Drains in Average Climate

Figure 5.13 shows the water table depth with and without 1 m deep drains in average climate with 10 ML/ha-annum irrigation. It can be noticed that the water table was fluctuating with the application of irrigation. This fluctuation was due to the recharge from the irrigation water into the water table. The water table depth was nearly same till 15th March with and without 1 m deep drain. After 15th of March water table was sharply rose and reached at ground surface on 31st of May. In case of 1 m deep drained it was 0.8 m deep on 31st of May. This indicates that 1 m deep drained controlled water table effectively.

Water table stayed at ground surface for most of the winter season with 10 ML/haannum irrigation. The reason for this was more recharge from irrigation water but less discharge in the absence of 1 m deep drains. When 1 m deep drains were installed, they discharged the excessive recharge from the groundwater table. Hence, the water table didn't rise as sharply as in case of un-drained scenario.

Figure: 5.13: Water Table Depths with and without 1 m Deep drains and 10 ML/ha-annum Irrigation in Average Climate.

Table 5.13 shows the extent of waterlogging with and without 1 m deep drains for average climate.

 Table 5.13: Water Table Depth with and without 1 m Deep Drains in Wet Climate with 10 ML/ha-annum Irrigation.

SCENARIOS	TOTAL NO. OF DAYS WATER TABLE DEPTH (m)					
	0	0.5 < 0	1.0 < 0.5	≥1		
SA-D0-I10	87	103	40	135		
SA-D1-I10	0	0	173	192		

Table 5.13 reveals that the water table was at ground surface for 87 days without 1 m deep drains. When 1 m deep drains were installed the water table never reached to the ground surface. Water table stayed more than 1 m depth for 192 days with 1 m deep drains. It was at an ideal depth range of 0.5 to 1.0 metre for about six months. This depth range is ideal because crops roots can use water stored in saturated and unsaturated zone as sub-surface irrigation. It will improve crop productivity.

5.7.2.1 Impacts of one metre Deep Drain in Wet Climate

- Without on metre deep drains there was sever waterlogging with 10 ML/ha-annum irrigation in average climate.
- One metre deep drains were very effective in controlling waterlogging in average climate.
- Water table stayed at an ideal depth for sub-surface irrigation for more than seven months during wet climate with 10 ML/ha-annum irrigation.
- Water table never reached to the ground surface with 1 m deep drains.

5.7.3 Two metres Deep Drains in Wet Climate

Scenario SW-D2-I10 was simulated by implementing 2 m deep drains and 10 ML/haannum irrigation application. The simulation results generated by MIKE SHE have been plotted in Figure 5.14. Figure 5.14 compare the water table depth with and without 2 m deep drains. Figure 5.15 compares the water table depths with 1 and 2 m deep drains. The comparison of water table depths with and without 2 m deep drains shows that there was a significant impact of drains on water table depths though out the year. The average water table depths with 2 m deep drain during summer and winter seasons were 2.05 and 2.15 metres respectively. The maximum heights of water table during summer and winter time with 2 m deep drains were 1.5 and 1.65 metres respectively. This indicates that the water table was comparatively deeper than the root zone of the clover pasture. The implication of deeper water table will be on the moisture availability in the unsaturated zone. The root zone is usually located in the unsaturated zone of the soil.

Figure: 5.14: Water Table Depths with and without 2 m Deep drains and 10 ML/ha-annum Irrigation in Wet Climate.

Figure 5.14 shows the water table depths with and without 2 m deep drains in wet climate. The minimum and maximum water table depth with 2 m deep drains was 1.49 and 2.01 m (Appendix 1). The waterlogging extent is shown in Table 5.14 with and without 2 m deep drains.

Figure: 5.15: Water Table Depths with 1 and 2 m Deep drains and 10 ML/ha-annum Irrigation in Wet Climate.

SCENARIOS	TOTAL NO. OF DAYS WATER TABLE DEPTH (m)				
	0	0.5 < 0	1.0 < 0.5	≥1	
SW-D0-I10	101	92	151	21	
SW-D2-I10	0	0	0	365	

Table 5.14: Water Table Depth with and without 2 m Deep Drains in Wet Climate with 10 ML/ha-annum Irrigation.

Table 5.14 shows that the water table depth with 2 m deep drains was always greater than 2 m. Therefore, it can be concluded that 2 m deep drains were not suitable for average climate. It has been already discussed the consequences of excessive drainage on crop productivity.

5.7.3.1 Impacts of 2 m Deep Drains in Wet Climate

- Two metres deep drains excessively discharged water from the saturated and unsaturated zones.
- The crop productivity would have been affected negatively.

5.7.4 Two metres Deep Drains in Average Climate

Scenario SA-D2-I10 was simulated by implementing 2 m deep drains. The simulation results generated by MIKE SHE have been plotted in Figure 5.16. The comparison of water table depths with and without 2 m deep drains shows that there was a significant impact of 2 m deep drains on water table depths though out the year. The average water table depths with 2 m deep drain during summer and winter seasons were 1.95 and 1.9 metres respectively. The maximum depths of water table during summer and winter time with 2 m deep drains were 1.9 and 1.82 metres respectively.

Figure: 5.16: Water Table Depths with and without 2 m Deep drains and 10 ML/ha-annum Irrigation in Average Climate.

5.7.5 Water Table Depth with 16 ML/Y per Hectare Irrigation

Few farmers in Southwest Irrigation Areas (SWIA) apply irrigation to the pasture at a rate of 16 ML/ha-annum. The impact of this irrigation with and without 1 and 2 m deep drains was simulated for wet and average climate.

5.7.5.1 One and 2 m Deep Drain Wet Climate

Scenario SW-D1-I16 was simulated by applying 16 ML/ha-annum irrigation. Figure 5.17 indicates that the depth of the water table was almost near to the ground level in case of scenario SD-D0-I16. In Scenario SW-D1-I16, 1 m deep drains with 16 ML/ha-annum irrigation rate was introduced and simulated by using calibrated MIKE SHE. All other parameters of simulation were similar to scenario SD-D0-I16. The average depth of water table during summer and winter seasons for scenarios SW-D1-I16 were 1.17 and 0.84 metre respectively. The average increase in water table depth during winter rainfall was 0.43 metre.

Figure: 5.17: Water Table Depths with and without 1 m Deep drains and 16 ML/ha-annum Irrigation in Wet Climate.

Figure 5.18 shows the water table depth with and without 2 m deep drains for wet climate. This figure shows that 2 m deep drains were discharging excessive water and kept water table well below the ideal zone of 0.5 to 1 metre depth. Table 6.1 shows the extent of waterlogging with 2 m deep drains in wet climate with 16 ML/ha-annum irrigation.

Figure: 5.18: Water Table Depths with and without 2 m Deep drains and 16 ML/ha-annum Irrigation in Wet Climate.

Figure 5.18 shows the comparison of water table depths for un-drained and 2 m deep drains with 16 ML/ha-annum irrigation during wet climate. The water table was on ground surface 1.75 m depth in the first week of May in case of un-drained and 2 m deep drained scenarios.

SCENARIOS	TOTAL NO. OF DAYS WATER TABLE DEPTH (m)					
	0	0.5 < 0	1.0 < 0.5	≥1		
SW-D0-I16	152	181	15	17		
SW-D1-I16	0	3	269	92		
SW-D2-I16	0	0	0	365		

 Table 5.15: Water Table Depth with and without 1 and 2 m Deep Drains in Wet

 Climate with 16 ML/ha-annum Irrigation.

Table 5.15 shows the extent of waterlogging with and without 1 m deep drains with 16 ML/ha-annum irrigation application in wet climate. It can be seen that water table was at the ground surface for more than five months without 1 m deep drains with 16 ML/ha-annum irrigation. When 1 m deep drains were installed the water table was effectively

controlled. Most of the year water table stayed between 0.5 and 1 m. This depth is considered as the ideal depths for crop roots to use water as sub-irrigation.

5.7.5.2 Impacts of 16 ML/ha-annum Irrigation in Wet Climate

- The impact of 16 ML/ha-annum irrigation resulted in sever water logging in un-drained scenarios.
- The water table was between 0 and 0.5 metre for about eleven months with 16 ML/ha-annum irrigation without one or 2 m deep drains.
- With 1 m deep drains water table was between 0.5 and 1.0 metre for 269 days.
- Two metres deep drains excessively discharged water from the saturated and unsaturated zones.
- The crop productivity would have been affected negatively in the presence of 2 m deep drains.

5.7.6 One and 2 m Deep Drain in Average Climate

Figure 5.19 shows the comparison of water table depth with and without 1 m deep drain impact in average climate when 16 ML/ha-annum irrigation were applied. Scenario SA-D1-I10 was simulated with the similar parameters as for SA-D0-I10 except the irrigation rate. Figure 5.19 shows that the introduction of 1 m deep drains have a significant impact on water table depths throughout the year. When there was no drainage, the water table in summer was at 1.25 metres deep on 1st of January. The first and second irrigation was applied on 1st and 15th of January respectively. On 16th of January water table depth with and without drains was about 0.5 and 0 metre respectively. Just before the irrigation on 1st of February the water table dropped to 0.95 and 0.35 metre with and without 1 m deep drains. This indicates that 1 m deep drains were able to lower the water table up to 0.6 metre more as compare to un-drained scenario. 16 ML/ha-annum irrigation was applied in 20 equal amounts of 80mm each. One metre deep drains were more effective in summer as compare to winter season.

Figure: 5.19 Water Table Depths with and without 1 m Deep drains and 16 ML/ha-annum Irrigation in Average Climate.

Figure 5.20 shows the water table depth with and without 2 m deep drains in average climate and with 16 ML/ha-annum irrigation. The average water table depths with 2 m deep drain during summer and winter seasons were 2.21 and 2.35 metres respectively. The maximum depths of water table during summer and winter time with 2 m deep drains were 1.85 and 1.55 metres respectively. This indicates that the water table was comparatively deeper than the 1 m deep drains.

Figure: 5.20 Water Table Depths with and without 2 m Deep drains and 16 ML/ha-annum Irrigation in Average Climate.

Table 5.16 shows the extent of waterlogging with and without 1 and 2 m deep drains in average climate with 16 ML/ha-annum irrigation. It can be noticed that extent of waterlogging without 1 and 2 m deep drain was less in average climate as compare to wet climate (Table 5.15).

Average Chinate with 10 ML/ha-annum Irrigation.							
SCENARIOS	TOTAL NO. OF DAYS WATER TABLE DEPTH (m)						
	0	0.5 < 0	1.0 < 0.5	≥1			
SA-D0-I16	135	115	72	43			
SA-D1-I16	0	0	257	108			
SA-D2-I16	0	0	0	365			

 Table 5.16: Water Table Depth with and without 1 and 2 m Deep Drains in

 Average Climate with 16 ML/ha-annum Irrigation.

One metre deep drains were very effective in controlling water table between 0.5 and 1.0 m depth which is considered as ideal depth of water table for subsurface irrigation. In previous sections it has been described that this is the best depth for crop roots to grow vigorously in the presence of suitable soil moisture environment.

5.7.6.1 Impacts of 16 ML/ha-annum Irrigation in Average Climate

- There was severe waterlogging without 1 and 2 m deep drains and with 16 ML/ha-annum irrigation. The extent of waterlogging was less as compare to wet climate.
- The water table was between 0 and 0.5 metre for about nine months with 16 ML/ha-annum irrigation without one or 2 m deep drains.
- With 1 m deep drains water table was between 0.5 and 1.0 metre for 257 days.
- Two metres deep drains excessively discharged water from the saturated and unsaturated zones.
- The crop productivity would have been affected negatively in the presence of 2 m deep drains.

5.8 CHAPTER'S SUMMARY

5.8.1 Impacts of Drains Without Irrigation

The water table depths with and without 1 and 2 m deep drains under wet, average and dry climate are compared in Table 5.17.

	DEPTH OF	WATER TABLE DEPTHS (m)							
	DRAINS	WET CLIMATE		AV. CLI	MATE	DRY CLIMATE			
(m)		END OF	MID WINTER	END OF	MID	END OF	MID		
		SUMMER		SUMMER	WINTER	SUMMER	WINTER		
	0	1.55	0	2.0	0	2	1.1		
	1	1.62	0.8	2.0	0.8	2	1.05		
	2	2.25	1.88	2.05	1.79	2.29	1.89		

 Table 5.17: Water Table Depths in Wet, Average and Dry Climates with and without 1 and 2 Metres Deep Drains.

Table 5.17 indicates that the water table was at 1.55 metre depth before the winter rain for the un-drained scenario (SW-D0-I0). It started to rise on 1^{st} of Jun and reached at ground surface on 25^{th} of July (Figure 5.1). In case of 1 m deep drain it started to rise on 3^{rd} of June from 1.62 metre depth and reached at 0.8 metre depth on 15^{th} of July (Figure 5.6). This indicates that the increase in water table depth was less when 1 m deep drains were installed in the scenario SW-D1-I0. In addition to this there was no waterlogging during winter season with 1 m deep drains.

It is very interesting to note that the impact of 1 m deep drain scenario (SD-D1-I0) is negligible when compared with un-drained scenario (SD-D0-I0) for dry climate (Figure 5.8). Similarly the impact of 2 m drain scenario (SW-D2-I0) was not as significant when compared with 1 m deep drain scenario (SW-D1-I0) for the dry climate (Figure 5.9). Two metres deep drains were more effective in wet climate as compare to the average and dry climates. In case of dry climate the performance of 1 and 2 m deep drains was almost negligible if we compare it with the un-drained scenario SD-D0-I0.

It can be concluded that the drains depth has a great impact in removing water from the waterlogged soils during winter time and during wet climate as compare to the dry climate. The timely removal of the excessive water from the root zone of the crops would have a significant impact on the productivity and would reduce the salinity of the root zone soil profile during the wet years. The leaching of the salts from the top layer of the soil during the drain flow would also improve the productivity of the waterlogged soils.

5.8.2 Impacts of 1 and 2 M Deep Drains

The comparison of the average water table depth between un-drained and 1 m deep drained scenarios during summer and winter season revealed a difference of 0.6 and 0.8 metre respectively.. Its mean water table was 0.6 and 0.8 metre deeper in case of 1 m deep drains. It has been mentioned before that most of the farmer in SWIA grow pasture (clover). The rooting depth of clover varies from 0.2 to 0.4 metre. During summer season, the existence of water table close to the root zone may prove very productive if the ground water quality is not saline. Similarly, during winter time the depth of water table below the ground surface and close to the root zone may increase land productivity by increasing sub-surface irrigation and aeration into the root zone. Therefore, it can be concluded that the implementation/intervention of 1 m deep drain is very important in the efficient use of agricultural land and water resources during 10 ML/ha-annum irrigation application. Without 1 m deep drains, the application of 10 ML/ha-annum had resulted in sever waterlogging during winter rainfall in wet climate.

Two metres deep drains excessive discharged saturated and unsaturated zone in wet and average climate. The crop productivity would have affected negatively.

Further investigation and research may lead the cost effective and viable methods to harvest the water from the drains. MIKE SHE has got a Water Balance Module which can be used to estimate the amount of drain flow from the drained area. These calculations have been done for wet and dry scenarios with 1 and 2 m deep drains and 10 and 16 ML/ha-annum irrigation application rate and are shown in chapter 7.

CHAPTER 6

SIMULATED RESULTS OF RECHAGE TO GROUNDWATER

Excessive recharge into the groundwater is the main cause of waterlogging and salinity. During each irrigation and rainfall event, the recharge may take place into the unsaturated zone and then into the saturated zone. When rainfall or irrigation water is applied, it may recharge to unsaturated and saturated zones. The amount of recharge will depend on amount of rainfall and irrigation water, unsaturated zone deficit, infiltration rate, rainfall intensity and irrigation rate. MIKE SHE results for each simulation have produced the daily rate and amount of recharge. In this section we will discuss the role of drains in managing recharge to the groundwater by plotting daily results in figures for wet, average and dry climate. The total monthly amount of recharge will be shown in tabular form for wet, average and dry climate for comparison. These figures will show the daily comparison and table will show the overall picture for three climates.

The results of unsaturated zone deficit can be used to analyse the recharge by the rain and irrigation For example, if unsaturated zone on a given time (t_1) is -200 mm and after a rain or irrigation it is -150 mm at time (t_2) , we would say that the unsaturated zone was recharged by 50 mm. Similarly if at time (t_1) the exchange between unsaturated and saturated zone was -3 mm/h we would say that unsaturated zone was recharged at a rate of 3 mm/h into saturated zone.

Keeping in view above mentioned theory we will analyse the impact of drains on land productivity by using unsaturated zone deficit and rate of exchange between unsaturated and saturated zones data generated by MIKE SHE in the simulations of different scenarios.

Water table close to the ground surface is the indication that unsaturated zone is fully saturated due to excessive recharge from rainfall or irrigation water. For example if water table is at 0.5 metre depth, its mean we have unsaturated zone from ground surface to 0.5 metre depth and below 0.5 metre we have fully saturated zone. This particular situation is explained as a conceptual model in Figure 6.1.

Figure 6.1: Conceptual Model of Exchange in Saturated and Unsaturated Zones.

This conceptual model shows us that how the change in one component of water balance will affect to others. For example, if we construct drains and drains discharge/remove x cubic metre of water in a given time, this discharge would impact on other components. Before seeing the impact of drains on recharge, we will discuss the recharge without the drains and irrigation applications during winter and summer season. Scenario SW-D0-I0, SA-D0-I0 and SD-D0-I0 were simulated without the drainage and irrigation application. In next section we will discuss that how the recharge from unsaturated and saturated zone interact with each other in these three scenarios.

6.1 RECHARGE WITHOUT DRAINAGE AND IRRIGATION

Scenario SW-D0-I0, SA-D0-I0 and SD-D0-I0 were simulated without the drainage and irrigation application for wet, average and dry climate respectively. The daily unsaturated zone deficit and exchange rate between saturated and unsaturated zones

results were extracted from Appendix 2 and 3 for these scenarios and plotted in Figure 6.2 and 6.3 respectively.

Figure 6.2: Daily Recharge without Irrigation and Drainage in Wet, Average and Dry Climate.

Figure 6.3: Daily Recharge Rate without Irrigation and Drainage in Wet, Average and Dry Climate.

Figure 6.3 and 6.4 show the daily unsaturated zone deficit and rate of exchange between saturated and unsaturated zone respectively. These Figures show the maximum and minimum recharge and rate of recharge in wet average and dry climate without irrigation and drainage. To understand Figure 6.3, we should keep in mind the explanation of recharge and discharge as given in previous section. For a given value t_1 , if the unsaturated zone deficit was -200 mm and at time t_2 , if it is -150 mm, its mean that there was a recharge of 50 mm. If at time t_3 it is -175 mm, its mean there was discharge of 25 mm. This mean discharge is a positive value and recharge is the negative value.

The daily unsaturated zone deficit data for all twenty seven scenarios was further analysed by using above definition of recharge and discharge. The daily net recharge/discharge was estimated and monthly values were calculated for all twenty seven scenarios. Figure 6.4 shows the monthly recharge/discharge for wet, average and dry climate without irrigation and drainage.

Figure 6.4: Monthly Recharge/Discharge without Irrigation and Drainage in Wet, Average and Dry Climate.

In Figure 6.4, the positive values indicate recharge and negative value indicates discharge. Recharge indicates that water was stored into the unsaturated and saturated

zone by rainfall and irrigation. Discharge reveals that water was discharged from the unsaturated zone into the atmosphere by evapotranspiration through crops and/or direct evaporation from ground surface. These monthly values would be used as a base line for comparing the impact of irrigation and drainage in wet, average and dry climate. In addition to this, recharge and discharge values would also be compared with monthly rainfall and potential evapotranspiration. These values are given in Table 6.1.

It is more convenient if we compare Figure 6.4 and Table 6.1 together for the comparison of recharge/discharge with rainfall and potential evapotranspiration for wet, average and dry climate.

	POTENTIAL EVAPOTRANSPIRATION (mm)			RAINFALL (mm)			RECHARGE/DISCHARGE (mm)		
MONTH	WET	AVERAGE	DRY	WET	AVERAGE	DRY	WET	AVERAGE	DRY
JAN	170	201	186	186	1	0	98	-66	-64
FEB	165	171	158	13	1	1	-62	-43	-44
MAR	136	161	150	9	4	2	-55	-38	-37
APR	92	96	100	0	21	5	-25	-18	-26
MAY	57	62	57	71	163	138	5	115	94
JUN	44	42	47	193	122	50	158	84	16
JUL	46	43	50	188	275	92	122	213	41
AUG	62	61	55	109	99	142	1	-8	90
SEP	82	76	69	106	84	100	-8	-33	37
OCT	120	118	112	49	76	26	-71	-36	-53
NOV	142	139	154	8	24	38	-91	-82	-32
DEC	166	172	164	15	27	42	-69	-44	-94

 Table 6.1: Monthly Rainfall, Potential Evapotranspiration and Recharge/Discharge

 Wet, Average and Dry Climates without Irrigation and Drainage

Table 6.1 reveals that in wet climate in January, there were 170 and 186 mm of potential evapotranspiration and rainfall respectively. There was 98 mm of recharge into the unsaturated zone. Its means out of 186 mm of rainfall 98 mm was stored into the unsaturated zone leaving 88 mm for evapotranspiration. This is nearly half of the potential evapotranspiration. This is due to the reason that pasture crop was at stage one

and roots were not developed and the value of leaf area index was also lowest for the first stage of the crop. In chapter 3 it has been discussed that how root depth and leaf area index contribute in evapotranspiration of the crops.

In July the potential evapotranspiration and rainfall were 46 and 188 mm respectively. The recharge was 122 m, this shows that there was 168 mm of water flux used out of 188 mm of rainfall and 20 mm of water was either overland flow or was error in water balance calculations. If we see the monthly overland flow in Table 7.1, for the month of July we find it is 33.28 mm. This shows that the evapotranspiration by crops was not at potential rate, instead it was 13.28 mm less. We can compare each month in similar way and can see how different fluxes were distributed in a particular month.

6.2 RECHARGE WITH 1 M DEEP DRAINS AND 10 ML/HA-ANNUM IRRIGATION

Scenario SW-D1-I10, SA-D1-I10 and SD-D1-I10 were simulated with 10 ML/ha-annum irrigation for wet, average and dry climate respectively. Figure 6.5 and 6.6 shows the amount of recharge and rate of recharge respectively for the wet, average and dry climate.

Figure 6.5: Recharge with 1 m Deep Drains and 10 ML/ha-annum Irrigation in Wet, Average and Dry Climate.

Figure 6.6: Rate of Recharge with 1 m Deep Drains and 10 ML/ha-annum Irrigation in Wet, Average and Dry Climate.

The comparison of recharge in wet, average and dry climate shown in Figure 6.5 indicates that there was same amount of recharge during summer season in average and dry climate. The explanation for this is that there was nearly same rainfall during summer season in average and dry climate. In wet climate there was more recharge in summer due to the 90 mm rainfall event.

Figure 6.6 shows the rate of recharge during summer (18th of Jan) was about 5.7 mm/h. In Figure 6.3 the rate of recharge for same day was 3.9 mm/h. The increase in rate of recharge was due to the irrigation application and the presence of 1 m deep drain. The rate of recharge from unsaturated zone into saturated zone depends on the discharge from the saturated zone. One metre deep drains were discharging water from the saturated zone and providing a gradient for water to flow at a faster rate from unsaturated zone into saturated zone. The recharge from irrigation water was also providing more flux of water to flow from unsaturated zone to saturated zone.

Figure 6.7: Monthly Recharge/Discharge with 10 ML/ha-annum Irrigation and 1 m deep Drains in Wet, Average and Dry Climate.

Figure 6.7 shows recharge (positive) and discharge (negative) for wet, average and dry climate with 1 m deep drains and 10 ML/ha-annum irrigation. We can see that the recharge and discharge values have been modified by the inclusion of 10 ML/ha-annum irrigation and 1 m deep drains. Table 6.2 shows the recharge and discharge during wet, average and dry climate with irrigation and drainage in place.

 Table 6.2: Monthly Recharge/Discharge with 10 ML/ha-annum Irrigation and with and without 1 m Deep Drains in Wet, Average and Dry Climates.

	RECHARO IRRIGATI	GE/DISCHARGE ON AND DRAIN	E WITH NO NAGE (mm)	RECHARGE/DISCHARGE 1 M DEEP DRAINS AND 10 ML/ha-annum IRRIGARION (mm)				
MONTH	WET CLIMATE	AVERAGE CLIMATE	DRY CLIMATE	WET CLIMATE	AVERAGE CLIMATE	DRY CLIMATE		
JAN	98	-66	-64	108	21	24		
FEB	-62	-43	-44	-13	-3	-6		
MAR	-55	-38	-37	4	-1	-2		
APR	-25	-18	-26	22	39	25		
MAY	5	115	94	13	85	96		
JUN	158	84	16	-25	-47	-37		
JUL	122	213	41	-12	37	-1		
AUG	1	-8	90	-3	-41	38		
SEP	-8	-33	37	-6	-17	13		
OCT	-71	-36	-53	-58	-32	-42		
NOV	-91	-82	-32	22	18	19		
DEC	-69	-44	-94	-12	17	-35		

Table 6.2 shows that the recharge during the month of Jan for wet, average and dry climate was 108, 21 and 24 mm respectively. In Table 6.1 the recharge for wet, average and dry climate for the same month was 98, -66 and -64 mm respectively. In January, 150 mm of irrigation was applied (Appendix 6). This indicates that with the application of 150 mm of irrigation and 1 m deep drains, the recharge and discharge component were modified. For wet climate, the recharge was slightly increased from 98 to 108 mm. For average and dry climate without irrigation there was discharge from the unsaturated zone. With 150 mm of irrigation, this was changed from discharge to recharge. Instead of 66 and 64 mm of discharge, it was modified to 21 and 24 mm of recharge respectively.

For the month of July, the recharge with 0 mm of irrigation (Appendix 6) in wet, average and dry climate was -12, 37 and -1 mm with 1 m deep drains. It should be kept in mind that no irrigation was applied during winter rainfall season especially in July and August (Appendix 6) for 10 ML/ha-annum irrigation scenarios. If we compare these values with the scenarios in previous section (no irrigation and drainage), there was recharge of 122, 213 and 41 mm in wet, average and dry climate respectively in the moth of July. This shows that with the inclusion of 1 m deep drains the recharge of 122 mm was modified to discharge of 12 mm in wet climate. For average and dry climate, 213 and 41 mm of recharge was modified into 37 mm recharge and 1 mm discharge respectively.

The impact of 1 m deep drains and 10 ML/ha-annum irrigation can be easily seen by comparing Table 6.1 and 6.2 and Figure 6.4 and 6.7 for any month and climate.

We can see the impact of 10 ML/ha-annum irrigation and 1 m deep drains on overland flow in Table 6.3. It can be noticed that the overland flow for the month of January was 7.09, 7.08 and 10.62 mm for wet, average and dry climate respectively. Without irrigation and drainage these values were 0.01, 0 and 0 mm respectively. This reveals that how overland flow was modified in January for wet, average and dry climate with and without irrigation and drainage. Table 6.1 and 6.2 can be compared to see the modification of recharge, discharge and overland flow with and without irrigation for all three climates in each month.

6.3 RECHARGE WITH 1 M DEEP DRAINS AND 16 ML/HA-ANNUM IRRIGATION

Figure 6.8 shows the impact of 16 ML/ha-annum irrigation with 1 m deep drains for wet, average and dry climate. It can be noticed that the pattern of recharge was same in this case as compare to pattern of recharge with 10 ML/ha-annum irrigation. Specifically the recharge in average and dry climate during summer and winter was nearly same.

Figure 6.8: Daily Recharge with 1 m Deep Drains and 16 ML/ha-annum

Irrigation in Wet, Average and Dry Climate.

Figure 6.9: Daily Rate of Recharge with 1 m Deep Drains and 16 ML/haannum Irrigation in Wet, Average and Dry Climate.

The rate of recharge was higher in wet climate with 16 ML/ha-annum irrigation as compare to 10 ML/ha-annum irrigation. The interesting point to note in Figure 6.9 is the rate of recharge in average and dry climate. The rate of recharge in dry climate is more than average climate with 16 ML/ha-annum irrigation. The reason for this is the higher flux of irrigation water was moving with the high gradient generated by 1 m deep drains due to the discharge from the saturated zone. In previous section the irrigation flux was less than the 16 ML/ha-annum irrigation flux.

Figure 6.10: Monthly Recharge/Discharge with 16 ML/ha-annum Irrigation and 1 m deep Drains in Wet, Average and Dry Climate.

Figure 6.10 shows the monthly recharge and discharge with 16 ML/ha-annum irrigation and 1 m deep drains in wet, average and dry climate. It can be seen by comparing Figure 6.7 and 6.10 that the monthly recharge and discharge were modified with the increase in irrigation from 10 to 16 ML/ha-annum. Many comparisons can be made to see the change in recharge/discharge during winter and summer season with and without 10 and 16 ML/ha-annum irrigation and with and without 1 m deep drains from Figure 6.4, 6.7 and 6.10.

The comparison of monthly recharge and discharge with 16 ML/ha-annum irrigation for wet, average and dry climate with and without 1 m deep drains is given in Table 6.3.

	and without		5 DT anns m	it eg men ug	e and Dry Ci	mates	
	RECHARGE IRRIGATIO	E/DISCHARGE	WITH NO AGE (mm)	RECHARGE/DISCHARGE 1 M DEEP DRAINS AND 16 ML/ha-annum IRRIGARION (mm)			
MONTH	WET CLIMATE	AVERAGE CLIMATE	DRY CLIMATE	WET CLIMATE	AVERAGE CLIMATE	DRY CLIMATE	

 Table 6.3: Monthly Recharge/Discharge with 16 ML/ha-annum Irrigation and with and without 1 m Deep Drains in Wet, Average and Dry Climates.

JAN	245	101	110	143	102	107
FEB	-7	39	42	-21	23	11
MAR	3	33	30	4	-7	-3
APR	8	67	56	31	26	13
MAY	-4	7	6	-2	6	30
JUN	-3	-8	-4	-45	-55	-59
JUL	-1	10	-1	-12	36	-2
AUG	1	-9	10	-3	-42	61
SEP	-8	-24	5	-7	-16	20
OCT	-57	-44	-3	-85	-57	-24
NOV	45	33	-1	58	45	11
DEC	86	112	75	-22	6	-48

For the month of January, the discharge was 245, 101 and 110 mm for wet, average and dry climate, respectively, with 16 ML/ha-annum irrigation and without drainage. With 1 m deep drains this was modified to 143, 102 and 107 mm in wet, average and dry climate respectively. This indicates that 1 m deep drains had reduced recharge in wet and dry climate whereas in average climate it was same. We should keep in mind that in the January which is hot month of summer, 240 mm of irrigation was applied under the 16 ML/ha-annum irrigation rate (Appendix 6). Therefore, the total flux of water applied by irrigation and rainfall was 240 mm higher incase of 16 ML/ha-annum irrigation rate as compare to non-irrigated scenario.

In the month of July (winter season) no irrigation was applied under 16 ML/ha-annum irrigation rate. The recharge without irrigation and drains for this month was -1, 10 and -1 mm for wet, average and dry climate respectively. With 1 m deep drains it was-12, 36 and -2 mm respectively. The higher recharge with 1 m deep drains in case of average climate may be due to the discharge of water by the drains from the saturated zone. If saturated zone is discharged by the drains, then there would be flux movement from unsaturated zone to saturated zone. Its mean water flux would move from unsaturated zone toward the saturated zone. In other words unsaturated zone would recharge saturated zone in this particular hydrologic condition.

6.4 RECHARGE WITH 2 M DEEP DRAINS AND 10 ML/HA-ANNUM IRRIGATION

Figure 6.11 shows the impact of 2 m deep drains with 10 ML/ha-annum irrigation on groundwater recharge. It can be noticed that 2 m deep drains were discharging excessive water and unsaturated zone deficit was higher due to this reason. The recharge pattern in wet, average and dry was closer to each other. 10 ML/ha-annum irrigation in the presence of 2 m deep drains were recharging less water into the groundwater table as compare to 1 m deep drains.

Figure 6.11: Rate of Recharge with 2 m Deep Drains and 10 ML/ha-annum Irrigation in Wet, Average and Dry Climate.

Figure 6.12: Rate of Recharge with 2 m Deep Drains and 10 ML/ha-annum Irrigation in Wet, Average and Dry Climate.

Figure 6.12 shows the rate of recharge with 2 m deep drains and 10 ML/ha-annum irrigation. The maximum rate of recharge during summer season in wet climate after 90 mm rainfall event was 3.75 mm/h as compare to 5.7 mm/h with 1 m deep drains. The rate of recharge was less with 2 m deep drains as compare to 1 m deep drains. In dry and average climate the rate of recharge was also less with 2 m deep drains as compare to 1 m deep drains as compare to 1 m deep drains. Table 6.4 shows the monthly recharge and discharge with 10 ML/ha-annum irrigation and with and without 2 m deep drains in wet average and dry climate.

Figure 6.13: Monthly Recharge/Discharge with 10 ML/ha-annum Irrigation and 2 m deep Drains in Wet, Average and Dry Climate.

Figure 6.13 shows monthly recharge and discharge with 10 ML/ha-annum irrigation and 2 m deep drains. Table 6.4 shows the monthly recharge and discharge with 10 ML/Y irrigation and with and without 2 m deep drains.

	RECHA IRRIGA	RGE/DISCHARGE TION AND DRAIN	E WITH NO NAGE (mm)	RECHARGE/DISCHARGE 1 M DEEP DRAINS AND 10 ML/ha-annum IRRIGARION (mm)			
MONTH	WET CLIMATE	AVERAGE CLIMATE	DRY CLIMATE	WET CLIMATE	AVERAGE CLIMATE	DRY CLIMATE	
JAN	98	-66	-64	-140	-189	-188	
FEB	-62	-43	-44	-50	-25	-25	
MAR	-55	-38	-37	-24	-22	-24	
APR	-25	-18	-26	-3	-13	-16	
MAY	5	115	94	6	118	93	
JUN	158	84	16	103	1	17	
JUL	122	213	41	-4	61	8	
AUG	1	-8	90	-15	-64	3	
SEP	-8	-33	37	-4	-35	7	
OCT	-71	-36	-53	-42	5	-53	
NOV	-91	-82	-32	-28	-31	-1	
DEC	-69	-44	-94	-253	-232	-251	

 Table 6.4: Monthly Recharge/Discharge with 10 ML/ha-annum Irrigation and with and without 2 m Deep Drains in Wet, Average and Dry Climates.

Table 6.4 shows that in January the recharge was modified into the discharge due to the presence of 2 m deep drains. It was 140, 189 and 188 mm for wet, average and dry climate respectively. This indicates that 2 m deep drains were discharging water from the saturated zone and there was not enough flux of water to refill the saturated zone from the unsaturated zone. Due to this reason, water table depth and unsaturated zone deficit was increased.

In July there was no irrigation was applied and recharge was reduced from 122, 213 and 41 mm to -4, 61 and 8 mm for wet, average and dry climate respectively without and with 2 m deep drains respectively. This shows that 2 m deep drains discharge 126, 217 and 205 mm of water in wet, average and dry climate respectively.

6.5 RECHARGE WITH 2 M DEEP DRAINS AND 16 ML/HA-ANNUM IRRIGATION

Figure 6.14 shows the daily recharge with 2 m deep drains and 16 ML/ha-annum irrigation in wet, average and dry climate. It can be seen that the net amount of recharge was higher with 16 ML/ha-annum irrigation as compare to 10 ML/ha-annum irrigation.

In both cases drains depth was 2 m deep. The higher rate of irrigation resulted in higher flux to recharge the groundwater table. Appendix 2 shows the daily discharge for 10 and 16 ML/ha-annum irrigation with 2 m deep drains. If we compare the daily rainfall data and fortnightly irrigation application rate in appendix 6 with recharge data in appendix 2, it is easy to understand the jump in recharge on any particular day. The increase in recharge to the groundwater was directly related to the amount of rainfall and irrigation ion a particular day. Similarly any drop in the recharge curve was directly related to the depth of drain, evapotranspiration by crop, direct evaporation from ground surface and unsaturated zone.

Figure 6.14: Daily Rate of Recharge with 2 m Deep Drains and 10 ML/haannum Irrigation in Wet, Average and Dry Climate.

Figure 6.15: Daily Rate of Recharge with 2 m Deep Drains and 16 ML/haannum Irrigation in Wet, Average and Dry Climate.

Figure 6.15 show the daily rate of recharge with 2 m deep drains and 16 ML/ha-annum irrigation. If we compare Figure 6.9 with 6.11, we can conclude that the rate of recharge was slightly higher for 16 ML/ha-annum irrigation as compare to 10 ML/ha-annum with 2 m deep drains during summer season in wet climate. For dry and average climate it was significantly lower. During winter season the maximum rate of recharge with 10 and 16 ML/ha-annum was nearly same for all three climates. This shows that 2 m deep drains were nearly equally affected for 10 and 16 ML/ha-annum irrigation in winter season.

Figure 6.16 shows the monthly recharge and discharge with 16 ML/ha-annum irrigation and with 2 m deep drains. Table 6.5 shows the monthly rate of recharge with and without 2 m deep drains and 16 ML/ha-annum irrigation.

Figure 6.16: Monthly Recharge/Discharge with 16 ML/ha-annum Irrigation and 2 m deep Drains in Wet, Average and Dry Climate.

Table 6.5: Monthly Recharge/Discharge with 16 ML/ha-annum	Irrigation and	l with
and without 2 m Deep Drains in Wet, Average and	Dry Climates.	

	RECHAI IRRIGA	RGE/DISCHARGE W FION AND DRAINAG	ITH NO GE (mm)	RECHARGE/DIS/CHARGE WITH 1 M DEEP DRAINS AND 16 ML/ha-annum IRRIGARION (mm)			
MONTH	WET CLIMATE	AVERAGE CLIMATE	DRY CLIMATE	WET CLIMATE	AVERAGE CLIMATE	DRY CLIMATE	
JAN	245	101	110	-75	-116	-114	
FEB	-7	39	42	-21	17	11	
MAR	3	33	30	0	-3	-3	
APR	8	67	56	22	15	11	
MAY	-4	7	6	8	43	48	
JUN	-3	-8	-4	-39	-76	-81	
JUL	-1	10	-1	-7	52	-7	
AUG	1	-9	10	-15	-65	64	
SEP	-8	-24	5	2	-21	28	
OCT	-57	-44	-3	-89	-58	-47	
NOV	45	33	-1	59	50	24	
DEC	86	112	75	-238	-225	-272	

The comparison of Figure 6.16 and Table 6.5 reveals that how the recharge and discharge were modified with the inclusion of 2 m deep drains during wet, average and

dry climate scenarios. In January the discharge by 2 m deep drains was 75, 114 and 116 mm for wet, average and dry climate respectively with 16 ML/ha-annum irrigation. Without 2 m deep drains and with 16 ML/ha-annum irrigation there was 245, 101 and 110 mm of recharge into the groundwater table during wet, average and dry climate respectively. This reveals that 2 m deep drains had a total discharge of 320, 215 and 226 mm in wet, average and dry climate respectively.

In July, 2 m deep drains discharged 7mm from groundwater table in wet and dry climate, whereas there was a recharge of 52 mm during average climate. It is important to note that no irrigation was applied during the month of July for any scenarios because of winter season.

6.6 CHAPTER'S SUMMARY

- The impact of 1 m deep drains in managing the recharge was very significant with 10 and 16 ML/ha-annum irrigation rates.
- Two metres deep drains excessively discharged groundwater table and the rate of recharge was higher in 10 ML/ha-annum irrigation rate as compare to 16 ML/ha-annum irrigation rate.
- The recharge to the groundwater was directly related to the amount of rainfall and irrigation water applied on a particular day as well as with the drain depth.
- One metre deep drains discharged more water from unsaturated zone whereas 2 m deep drains discharged more water from the saturated zone.
- Rate of recharge were higher during heavy rainfall events with and without 1 and 2 m deep drains.
- The drains performance was not effective in dry climate as compare to wet climate.
- Two metres deep drains were not discharging water during dry climate and therefore it can be concluded that 2 m deep drains are not required for dry climate with similar land use and hydrological condition.

CHAPTER 7

SIMULATED RESULTS OF OVERLAND FLOW

7.1 DAILY OVERLAND FLOW AND FLOODING RISK

Temporal distribution of daily overland flow throughout wet, average and dry climate was used as an indication of the effectiveness of the drains in reducing overland flow and/or waterlogging and flooding. For this purpose the data for all twenty seven scenarios was extracted from Appendix 4 and plotted in a logical manner so that the impact of drains under same irrigation application rate and climate can be estimated.

7.1.1 Daily Overland flow in Wet Climate without Irrigation

The risk of overland flow and flooding is most common during wet climate in winter rainfall in SWIA. Therefore, the impact of drains in controlling overland flow and flooding was estimated by comparing the scenarios with and without 1 and 2 m deep drains. Figure 7.1 shows the daily overland flow with and without 1 and 2 m deep drains during wet climate without irrigation application.

Figure 7.1: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Wet Climate.

Figure 7.1 shows that overland flow was generated during winter rainfall varied from 6 to 14 mm in the absence of 1 and 2 m deep drains. For the scenario SW-D1-I0, 1 m deep drains were installed; the overland flow was generated only for two days. The depth of overland flow for those days was about 0.5 mm. In scenario SW-D2-I0, drains depth was increased to 2 m, no overland flow was observed though out the winter season. This shows that during winter rainfall in wet climate 1 m deep drain were as effective as 2 m deep drains.

Figure 7.2: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Average Climate.

7.1.2 Daily Overland flow in Average Climate without Irrigation

Figure 7.2 compares the overland flow with and without 1 and 2 m deep drains for average climate. It can be seen that the maximum depth of overland flow was 12 mm with out drains. It can also be seen that the duration of overland flow in average climate was less than the wet climate.

With 1 m deep drains the maximum depth of overland flow was about 0.7mm. The overland flow also occurred for seven days with 1 m deep drains. In case of wet climate, it occurred only for three days. The depths of overland flow during wet and average

climate are dependent on the rainfall amount, duration and intensity. Therefore, we can conclude that the rainfall amount, duration and intensity during winter season were higher in average climates as compared to wet climate.

No overland flow was observed with 2 m deep drains. The comparison of overland flow generated by 1 and 2 m deep drains during winter season in average climate reveals that 1 m deep drains were as effective as 2 m deep drains in controlling overland flow.

The depth of overland flow is a clear indication of flooding. It may reveal that the unsaturated zone is fully saturated (in case of Saturation Excess hydrological process) and water is standing on the ground surface and is ready to flow toward the lower slope. Therefore, Figure 7.1 and 7.2 shows the potential risk of flooding once the overland flow depth is over two millimeter in depth at any particular day. We can conclude that by having 1 and 2 m deep drains in wet and average climate the risk of flooding due to overland flow was reduced considerably.

7.1.3 Daily Overland flow in Dry Climate without Irrigation

No overland flow generated in dry climate for all three scenarios simulated for drain depth D0, D1 and D2. It is important to mention here the two different hydrological processes which generate overland flow. The first hydrological process (Infiltration Excess) generates overland flow when infiltration rate is less then irrigation rate or rainfall intensity. The second hydrological process (Saturation Excess) generates overland flow when the unsaturated zone is fully saturated; any rainfall or irrigation water applied will result in overland flow. Waterlogging is dependent on the unsaturated zone moisture deficit. For example if unsaturated zone's moisture deficit is only 5%, it would not have any overland flow but it might be waterlogged. The reason is that the water table will be very close to ground surface and unsaturated zone is 95% filled with water.

7.1.4 Daily Overland flow with 10 ML/ha-annum Irrigation in Wet Climate

Most of the farmers in SWIA apply irrigation at a rate of 10 ML/ha-annum using flood irrigation method. Figure 7.3, 7.4 and 7.5 shows the temporal impact of 10 ML/ha-annum irrigation with and without 1 and 2 m deep drains in wet, average and dry climate respectively.

Figure 7.3: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Wet Climate and 10 ML/ha-annum Irrigation.

Figure 7.3 shows a sharp jump in the overland flow in winter season with 10 ML/haannum irrigation with no drains. If we compare the result of overland flow without irrigation for same climate we see the overland flow was less. The Maximum overland flow in SW-D0-I10 was 16 millimeter. There was reasonable overland flow under 1 and 2 m deep drain scenario with 10 ML/ha-annum irrigation. Important outcome in Figure 7.3 is that with 1 and 2 m deep drains the overland flow was nearly same throughout the irrigation application time. The amount of overland flow in case of SW-D1-I10 and SW-D2-I10 was about 3 millimeters. These results indicate that the irrigation rates were higher and unsaturated zone was fully saturated. This would have resulted in excessive wastage of irrigation water. The optimum rate of irrigation would have been somewhere between 6 to 8 ML/Y per hectare instead of 10 ML/ha-annum. The overland flow is generated when either the unsaturated zone is fully saturated or the rainfall or irrigation application is higher than the infiltration rate. Excessive irrigation was resulted in overland flow as well as excessive recharge to the water table. Therefore waterlogging was observed after irrigation which would have impacted the crop productivity.

7.1.5 Daily Overland flow with 10 ML/ha-annum Irrigation in Average Climate

Figure 7.4 shows the depth of daily overland flow for average climate under un-drained and 1 and 2 m deep drain. The pattern of overland flow for wet and average climate is nearly same except the scenarios SW-D0-I0 and SW-D0-I10. The maximum depth of overland flow in SW-D0-I0 and SA-D0-I10 was 16 and 9.5 millimeters respectively. This shows the difference of 6.5 millimeter of overland flow in both scenarios mentioned above. This increase in the overland flow depth is the effect of wet climate.

Figure 7.4: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Average Climate and 10 ML/ha-annum Irrigation.

7.1.6 Daily Overland flow with 10 ML/ha-annum Irrigation in Average Climate Figure 7.5 shows the impact of un-drained and one and 2 m deep drains performance during dry climate with 10 ML/ha-annum irrigation rate. It can be seen that due to the irrigation applications, the maximum overland flow with un-drained scenarios was about 6.5 millimeters. With 1 and 2 m deep drains the maximum overland flow depth was

about 5.5 and 3.5 millimeters respectively. There was no overland flow during dry climate when no irrigation was applied.

Figure 7.5: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Dry Climate and 10 ML/ha-annum Irrigation.

7.1.7 Daily Overland flow with 16 ML/ha-annum Irrigation in Wet Climate

Few farmers apply irrigation water to the pasture crop at a rate of 16 ML/ha-annum in the SWIA using flood irrigation method.

Figure 7.6, 7.7 and 7.8 shows the performance of 1 and 2 m deep drain as compare to un-drained scenario with 16 ML/ha-annum irrigation in wet, average and dry climates respectively.

Figure 7.6: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Wet Climate and 16 ML/ha-annum Irrigation.

Figure 7.6 show that the maximum depth of overland flow with 16 ML/ha-annum irrigation was 17 millimeters in un-drained scenario. The maximum overland flow in case of 1 and 2 m deep drains scenarios was 5.7 and 4.6 millimeter respectively. These results infer that the 16 ML/ha-annum irrigation always generated overland flow. The amount of overland flow generated by 16 ML/ha-annum irrigation was more than 10 ML/ha-annum irrigation rate. With 16 ML/ha-annum irrigation resulted in the wastage of water resource and poor crop productivity. Waterlogging would also be more with 16 ML/ha-annum irrigation than 10 ML/ha-annum irrigation rate.

7.1.8 Daily Overland flow with 16 ML/ha-annum Irrigation in Average Climate

Figure 7.7 shows the impact of 16 ML/ha-annum irrigation on the drains performance in average climate. If we compare the results shown in Figure 7.2 with Figure 6.12, we can conclude that 16 ML/ha-annum irrigation had generated significant overland flow. The overland flow was maximum during winter time in average climate. The duration of overland flow was more in case of 16 ML/ha-annum irrigation as compare to the scenario in which no irrigation was applied.

Overland flow was also observed with 1 and 2 m deep drains. The reason for this is the amount of irrigation applied at a particular day when overland flow took place. For example on 15th of February 80mm of irrigation water was applied in average climate. This irrigation resulted in 5.5 mm of overland flow on that particular day. Therefore it can be concluded that over irrigation will result in overland flow.

Figure 7.7: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Average Climate and 16 ML/ha-annum Irrigation.

7.1.10 Daily Overland flow with 16 ML/ha-annum Irrigation in Dry Climate

Figure 7.8 shows the daily overland flow with 16 ML/ha-annum irrigation for dry climate. Without irrigation no overland flow was observed. The maximum overland flow was occurred during winter rainfall. It can be noticed that the duration and amount of overland flow was less as compare to the wet and average climate.

The impact of one and 2 m deep drains was similar in dry climate as it was in wet and average climate. The only difference was the amount of overland flow. In dry climate, the overland flow was less as compare to wet and average climate.

Figure 7.8: Impact of 1 and 2 m Deep Drains on Daily Overland Flow in Dry Climate and 16 ML/ha-annum Irrigation.

7.2 MONTHLY AND ANNUAL VOLUMES OF OVER LAND FLOW

Drains are constructed in waterlogged and saline areas to reclaim the affected agricultural land for optimum productivity. During winter seasons and irrigation drains usually remove a considerable amount of water. In previous sections of this chapter it was concluded that the moisture in the presence of drain in unsaturated zone was less as compare to un-drained scenarios. The implications of less moisture content in unsaturated zone on overland flow are negative. The presence of 1 or 2 m deep drains resulted in less overland flow. Therefore, less runoff would generate. This would reduce the amount of water flowing into the stream and river which would reduce the flooding and environmental risk in the down stream areas. But on the other hand the increased amount of drained volumes during rainfall and irrigation will increase the risk of flooding in the downstream environment.

The combined quantity and quality of overland and drained flow will determine the risk of flooding in the downstream areas. In this section we will analyse the annual volumes of overland flow from Appendix 4.

7.2.1 Monthly and Annual Overland Flows without Drains

Figure 7.9 and 7.10 show monthly depth and annual volume of overland flow for nine sets of un-drained scenarios respectively with and without 10 and 16 ML/ha-annum irrigation applications.

Figure 7.9: Monthly Volumes of Overland Flow Un-drained Scenarios.

From Figure 7.9 and Table 7.1, it can be seen that for the first three scenarios SW-D0-I0, SA-DO-I0 and SD-D0-10, without irrigation and drainage, monthly overland flow was negligible as compare to the scenarios in which 10 and 16 ML/Y irrigation was applied.

	OVERLAND FLOW IN SCENARIOS WITHOUT DRAINS (mm)										
MONTH	S1	S2	S3	S4	S5	S6	S7	S8	S9		
JAN	0.01	0.00	0.00	7.63	7.07	10.61	13.13	3.85	6.49		
FEB	0.02	0.00	0.00	8.92	7.08	7.08	13.94	0.57	2.64		
MAR	0.02	0.00	0.00	11.38	5.08	5.20	16.93	7.96	5.88		
APR	0.02	0.00	0.00	3.83	0.91	4.44	12.25	2.92	6.17		
MAY	0.03	0.02	0.01	17.19	7.74	2.17	55.47	70.99	63.93		
JUN	0.15	0.01	0.02	118.44	41.97	14.48	82.77	62.01	30.81		
JUL	33.28	21.23	0.01	175.18	133.38	18.35	150.39	166.01	19.37		
AUG	66.13	86.93	0.02	120.31	90.42	39.63	67.81	90.97	39.46		
SEP	49.49	57.35	0.02	137.63	85.68	37.43	98.44	93.03	52.65		
0CT	10.13	0.73	0.00	54.97	27.25	16.05	51.23	45.30	28.01		
NOV	0.00	0.00	0.00	8.07	10.96	12.14	17.28	25.09	31.35		
DEC	0.00	0.00	0.00	4.84	7.71	3.91	12.80	12.89	19.41		

 Table 7.1: Monthly Overland Flow for Un-drained scenarios.

Table 7.1 shows that more overland flow was generated during winter rainfall and with scenarios S4 to S9 in which 10 and 16 ML/ha-annum irrigation was applied. This shows that during winter rainfall and with irrigation applications, more overland flow may cause risk of flooding as compare to non-irrigated scenarios. Therefore, the role of drains is important to reduce the overland flow. This is discussed in detail in next section.

Figure 7.10: Annual Volumes of Overland Flow for Un-Drained Scenarios.

Figure 7.10 shows the annual volume of overland flow in Giga litres (GL) calculated by multiplying the depth of overland flow with the area. It can be seen that 54 GL of water can flow on the land surface annually during 10 ML/ha-annum irrigation applications. Without 10 ML/ha-annum irrigation rate it is only 8 GL during wet climate. In dry climate there was no overland flow. With 16 ML/Y irrigation application rate the overland flow was about 48 GL during wet climate. The reason for less overland flow with 16 ML/Y irrigation rate as compare to 10 ML/Y irrigation is not clear. MIKE SHE probably could not handle some of the heavy flux of water during 16 ML/Y irrigation rate along with heavy rainfall events. This could be verified by running Water Balance Module of MIKE SHE to see the water balance errors during the days when irrigation and rainfall events were happening simultaneously.

7.2.2 Monthly and Annual Overland Flows with 1 m Deep Drains

Figure 7.10 and 7.11 shows the monthly depth and annual volume of overland flow for the 1 m deep drains scenarios respectively. The comparison of Figure 7.9 and 7.11 without drains and with drains reveal that there was significant decrease in overland flow depths in irrigated and non-irrigated scenarios. It can be seen that the monthly

overland flow in January with and without 1 m deep drains was same (7mm) in wet climate. In July, it was 1.49 and 174.00mm with and without 1 m deep drains respectively. This indicates very strong influence of 1 m deep drains in managing overland flow and local flooding/waterlogging risk.

	OVERLAND FLOW IN SCENARIOS WITH ONE METER DEEP_DRAINS (mm)										
MONTH	S10	S11	S12	S13	S14	S15	S16	S17	S18		
JAN	0.01	0.00	0.00	7.09	7.08	10.62	5.97	5.97	8.84		
FEB	0.02	0.00	0.00	7.08	7.08	7.08	6.21	5.74	5.74		
MAR	0.02	0.00	0.00	10.62	10.62	7.09	16.11	11.11	5.74		
APR	0.02	0.00	0.00	3.54	3.54	7.09	5.37	3.40	6.47		
MAY	0.03	0.02	0.01	10.71	11.54	7.77	12.18	8.04	6.53		
JUN	0.02	0.00	0.02	6.44	5.31	3.61	5.23	5.24	3.15		
JUL	1.28	2.98	0.01	1.49	3.28	0.05	1.43	3.81	0.04		
AUG	0.01	0.17	0.02	0.01	0.17	0.93	0.01	0.17	0.66		
SEP	0.02	0.26	0.02	5.92	7.07	7.11	7.79	7.02	2.98		
0CT	0.01	0.01	0.00	7.50	7.66	3.54	8.18	3.95	5.38		
NOV	0.00	0.00	0.00	7.08	7.08	10.62	5.74	6.47	8.61		
DEC	0.00	0.00	0.00	7.08	7.09	3.54	3.62	3.25	2.87		

 Table 7.2: Monthly Overland Flow for 1 m Deep Drained Scenarios.

Table 7.2 clearly indicates that 1 m deep drains performed efficiently in managing overland flow hence localized waterlogging and flooding for wet, average and dry climates with and without 10 and 16 ML/ha-annum irrigation application rates.

Table 7.2 shows that there was no overland flow for scenarios S10 (SW-D1-I0), S11 (SA-D1-I0) and S12 (SD-D1-I0) in the month of January. In July the overland flow was 1.28, 2.98 and 0.01 mm for scenarios S10 (SW-D1-I0), S11 (SA-D1-I0) and S12 (SD-D1-I0) respectively. This result indicates that there was nearly no overland flow after the installation of 1 m deep drains.

For the scenarios in which 10 and 16 ML/ha-annum irrigation was applied, overland flow was varying from 0.04 to 16.11 mm for wet average and dry climate. This reveals that 1 m deep drains were equally efficient in managing overland flow/waterlogging and flooding in wet, average and dry climate with 10 and 16 ML/ha-annum irrigation application rate.

Figure 7.10: Monthly Volumes of Overland Flow for 1 m Deep Drained Scenarios.

Figure 7.11: Annual Volumes of Overland Flow for 1 m Deep Drained Scenarios.

7.2.3 Monthly and Annual Overland Flows with 2 m Deep Drains

Figure 7.12 and 7.13 shows the monthly depth and annual volume of overland flow with 2 m deep drains and with and without 10 and 16 ML/ha-annum irrigation applications.

Figure 7.12: Monthly Volumes of Overland Flow for 2 m Deep Drained Scenarios.

Figure 7.12 shows the depth of overland flow with 2 m deep drains with and without 10 and 16 ML/ha-annum irrigation application rate. It can be noticed that the depth of overland flow was much less than the un-drained scenarios (Figure 7.9). There is not much difference in the overland flow depth with 1 and 2 m deep drains (Figure 7.11 and 7.13). Therefore, it can be conclude that 1 m deep drains were sufficient to manage the overland flow with and without irrigation application in SWIA.

Figure 7.13: Annual Volumes of Overland Flow for 2 m Deep Drained Scenarios.

Similarly, the comparison of Figure 7.11 and 7.13 for the annual overland flow volumes reveals that the performance of 1 and 2 m deep drains was nearly similar. Specifically during wet and average climate with 10 and 16 ML/ha-annum irrigation, the annual overland flow volume was same for 1 and 2 m deep drains.

inste in the interior of the beep dramed sector tost												
	0	OVERLAND FLOW IN SCENARIOS WITH TWO METER DEEP DRAINS (mm)										
MONTH	S19	S20	S21	S22	S23	S24	S25	S26	S27			
JAN	0.00	0.00	0.00	7.10	7.08	10.62	5.97	5.97	11.34			
FEB	0.01	0.00	0.00	7.08	7.08	7.08	8.24	8.24	5.74			
MAR	0.01	0.00	0.00	10.62	10.62	7.08	8.61	8.61	5.74			
APR	0.01	0.00	0.00	3.54	3.54	7.08	2.87	5.38	5.74			
MAY	0.02	0.01	0.01	10.63	10.64	7.10	11.80	13.63	8.70			
JUN	0.02	0.01	0.01	3.56	3.55	3.55	3.11	3.12	3.11			
JUL	0.02	0.03	0.02	0.02	0.03	0.02	0.02	0.03	0.02			
AUG	0.01	0.02	0.01	0.01	0.02	0.01	0.01	0.02	0.01			
SEP	0.01	0.01	0.02	7.09	7.11	7.10	6.43	6.22	8.49			
0CT	0.00	0.01	0.01	7.09	7.09	3.55	8.24	8.25	2.87			
NOV	0.00	0.00	0.01	7.09	7.08	10.62	5.75	5.97	11.12			
DEC	0.00	0.00	0.00	7.08	7.08	3.54	5.74	5.74	2.87			

Table 7.3: Monthly Overland Flow for 1 m Deep drained scenarios

Table 7.3 shows the monthly depth of overland flow for 2 m deep drains with and without 10 and 16 ML/Y irrigation application rate. If we compare the values in Table

7.2 and 7.3, we conclude that the performance of one and tow metre deep drains in controlling overland flow was nearly similar.

Table 7.4 shows the annual volumes of overland flow for all twenty seven scenarios for wet, average and dry climate with zero, ten and sixteen mega litres per year per hectare irrigation application.

IRRIGATION	ANNUAL VOLUME OF OVERLAND FLOWS (GL)								
(ML/Y/H)	,	WET CLIMAT	ſΕ	AVI	ERAGE CLIM	ATE	DRY CLIMATE		
	NO	1 M	2 M	NO	1 M	2 M	NO	1 M	2 M
	DRAIN	DRAIN	DRAIN	DRAIN	DRAIN	DRAIN	DRAIN	DRAIN	DRAIN
0	12.74	0.11	0.1	13.3	0.28	0.01	0.01	10.52	0.01
10	53.47	5.96	5.67	34.02	6.2	5.67	14.46	5.81	5.67
16	47.4	6.23	5.51	46.54	5.14	5.69	25.58	4.81	5.51

Table 7.4 Annual Volumes of Overland Flow for all Twenty Seven Scenarios.

Table 7.4 reveals very interesting results for the effectiveness of the surface water management for overland flow and downstream flooding. It can be seen in Table 7.4 and confirmed from Figure 7.8 to 7.11 that the difference in 1 and 2 m deep drains in removing overland flow during wet, average and dry climate is not significant. This shows that if waterlogging and overland flooding is the problem in poor land productivity and downstream flooding, 1 m deep drains are one of the option to address the problem.

The annual volume of overland flow depends on the rainfall intensity and duration as well as use of irrigation water during wet, average and dry climates. Higher rainfall intensity and duration during winter time in any climate would generate more overland flow as compare to less intense and short rainfall events. The overland flow is generated by two different phenomena of infiltration and saturation excess. If unsaturated zone deficit is more and rainfall intensity is less, the volume of overland flow will also be less. The opposite is true for the generation of more overland flow. Therefore the pattern, intensity and duration of rainfall in all three climates are also important to understand the potential of overland flow volume generated in a particular climate.

These results reveal that if the rainfall pattern, intensity and duration were supposed to be similar, in all three climates, the effectiveness of 1 m deep drains was more than the 2 m deep drains in controlling the flooding and waterlogging as compare to 2 m deep

drains during wet and average climate. By increasing drains depth up to 2 m, a negligible difference was observed. Therefore, it is recommended that the depth of drain should be decided very carefully according to the problem nature and severity. It should be examined carefully in which climate they are going to be designed. In wet and irrigated areas we definitely need drains and in dry and non irrigated area we may live without drains.

7.3 AMOUNT OF WATER DRAINED

Increased drain flow from the drained area can also provide a viable water resource if its water quality is suitable for domestic, agricultural or industrial use. The amount of the drained water from a given area can easily be estimated by using the Water Balance Module of the MIKE SHE family. A comprehensive procedure for using the Water Balance Module is given in MIKE SHE Reference Guide and Technical Manual. In this study, the Water Balance Module has not been used for all twenty seven scenarios as it is out of the scope of this study. However, Water Balance Modules was run for calibration and validation of MIKE SHE for checking the water balance errors. The water balance errors of a particular simulation represent the accuracy of the MIKE SHE results. If the accumulated water balance errors were more than one percent, the simulations results were not accepted and a new simulation was run by adjusting the soils hydraulic properties parameters.

Water Balance Module was also used for SW-D1-I0, SD-D1-I0, SW-D1-I16, SW-D2-I16, SD-D1-I16 and SD-D2-I16 scenarios to check the water balance outputs and errors produces by MIKE SHE simulations during the second phase of the study. The outputs of Water Balance Module for above mentioned scenarios are very large. Therefore, the results of Water Balance Module have been burnt on a DVD and are available from the Civil Engineering Department of Curtin University, WA, Australia.

Water Balance results were analysed for above mentioned scenarios to extract drain outflow from the area. The drain outflows of theses scenarios from the area were compared with each other in a sequential way to understand the possibility that how much water would be harvested and what would be flooding risk in the downstream environment under each scenario. The next section describes the importance of these results in assessing flooding risks. Scenarios SW-D0-I0 and SD-D0-I0 were selected as a base line to compare the drain outflow with 1 and 2 m deep drains during wet and dry climate. It has been mentioned above that scenarios SW-D0-I0 and SD-D0-I0 had no drainage, therefore would have zero drain outflow. The results of drain outflow from the Water Balance Module of MIKE SHE were extracted for SW-D1-I0, SD-D1-I0, SW-D1-I16, SW-D2-I16, SD-D1-I16 and SD-D2-I16 and analysed.

The comparison of the above mentioned scenario analysis was used to estimate drains outflow generated by 1 and 2 m deep drain during wet and dry climate with and without 16 ML/ha-annum irrigation. The comparison is shown in Table 7.5.

Irrigation rate		Drain Depth							
ML/Y/H	1 me	etre	2 m	etres					
	Wet	Dry	Wet	Dry					
0	298	59	623	337					
16	566	312	886	596					

Table 7.5: Drain outflow (Discharge) from the area (mm).

Table 7.5 revealed very interesting results about the effectiveness of the 1 and 2 m deep drains in wet and dry climate with and without 16 ML/ha-annum irrigation application. The depth of drained water in wet and dry year without irrigation for 1 m deep drain was 298 and 59mm respectively. This indicates that the 1 m deep drain removed nearly five times more water from the area during wet climate as compare to the dry climate. On other hand when 16 ML/ha-annum irrigation was applied, the 1 m deep drains removed 312mm of water during dry climate.

This is very important conclusion, which shows that even in dry climate; drains would be working effectively under 16 ML/ha-annum irrigation. The 16 ML/ha-annum irrigation is considered as heavy/excessive irrigation. Therefore, in over irrigated area, 1 m deep drain would be required to remove excessive water even in dry climate. Another interesting result can be seen in Table 7.5 is the amount of water removed by 2 m deep drain without any irrigation application in wet and dry climates. This was 623 and 337 mm in wet and dry climates respectively. This result indicates that 2 m deep drains were removing water from the area even in dry climate. The amount of water removed by 1 and 2 m deep drains during dry climate without irrigation application was 59 and 337 mm. Its mean by increasing the depth of drain from 1 to 2 m the amount of water removed was nearly five and a half times more during dry climate. Most of this water was coming from the saturated zone. This shows that the 2 m deep drains lower the water table in the dry climate.

CHAPTER 8

CONCLUSIONS

8.1 INTRODUCTION

MIKE SHE was calibrated on a set of four observation wells and stream flow data from the SWIA catchment. The calibrated MIKE SHE was validated on a set of two observations well data. The correlation between simulated and observed water table data was varying from 0.7 to 0.87.

The calibrated MIKE SHE was used to simulate twenty seven scenarios with different drains depth, irrigation application and climates. The effectiveness of the 1 and 2 m deep drains was compared with un-drained scenarios. The results of simulation for water table depth, unsaturated zone deficit, exchange between unsaturated and saturated zones, drain outflow and overland flow were used to analyse the performance of 1 and 2 m deep drains.

8.2 PERFORMANCE OF DRAINAGE WITH OR WITHOUT IRRIGATION

Overall performance of 2 m deep drains was better than 1 m deep drains during winter rainfall season. The 1 m deep drains were more effective in wet and average climate as compare to dry climate.

The recharge in case of un-drained scenarios was very high as compare to the 1 and 2 m deep drains scenarios. The recharge in case of 1 m deep drains was higher than 2 m deep drains. Recharge in case of un-drained, 1 and 2 m deep drains scenarios during dry climate and in summer season was almost same. This indicated that the performance of one and 2 m deep drains during dry climate and summer season was negligible.

The extent of waterlogging in un-drained scenarios was consistently observed during wet and average scenarios in winter rainfall season. In wet climate the duration of water logging was higher than the average climate in winter season. There was no waterlogging during winter rainfall for dry climate. The water table during winter season for wet and average climate was on ground level. For dry climate, during winter rainfall water table was about 0.9 metre deep.

One and 2 m deep drains were more effective during 10 and 16 ML/ha-annum irrigation applications in wet, average and dry years. One metre deep drains performed better with 10 ML/ha-annum than 16ML/Y per hectare irrigation application. Two metres deep drains excessively removed water from the unsaturated zone and water deficit was higher as compare to 1 m deep drain during summer season. In winter season, 2 m deep drains didn't resulted in unsaturated zone deficit as compare to summer season. Therefore, it can be concluded that the performance of the 2 m deep drains was better during winter season in wet climate.

In nutshell, the performance of 1 and 2 m deep drains depends on the dynamic of recharge. If there is excessive recharge because of heavy irrigation or rainfall, 2 m deep drains will perform better. The recharge is a dynamic process and existence of deep drains during no recharge and lower water table will affect the unsaturated zone. The unsaturated zone deficit would increase and crops productivity would be affected. Therefore, before deciding and designing any drainage project a careful analysis is required to estimate the amount of recharge supposed to be removed by the drains. It has been mentioned that recharge is not a constant parameter instead it is dynamic in nature so this is a great challenge to estimate its value for correct drain depth.

8.3 SUGGESTION FOR FUTURE RESEARCH

MIKE SHE is an advance integrated model. It was out of the scope of this study to use all of the capabilities of MIKE SHE integrations. Therefore, there are many suggestions for future research, some of them are listed below:

- 1. MIKE SHE can be integrated with river network by using MIKE 11. The linkage between MIKE SHE and MIKE 11 will include the river network for better estimation of over bank flooding.
- Unsaturated zone modelling in this study has been accomplished by using Richard Equation. There are two other options available in MIKE SHE i.e. Gravity and Two Layer Unsaturated Zone models. For future study it is
suggested that either of these methods may be used and the difference in the simulation results may be analysed.

- 3. The spatial distribution of the soil properties is very challenging. In this study a uniform soil properties were used for modelling MIKE SHE. It is suggested that for future study spatial distributions of the soil properties may be considered if data is available.
- 4. In this study the lenses of soil were also not taken into account. For future study it is suggested that if data is available on lenses of soil it should be included in the modelling.
- 5. In this study Finite Difference Method was used for ground water modelling. Linear Reservoir method is also available as an alternate and may be considered for future study.

REFERENCES

Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rasmussen, J. (1986): An introduction to the European Hydrological System - Système Hydrologique Européen, SHE, 2: Structure of a physically-based, distributed modelling system. J. Hydrol., 87, 61-77.

Abbott, M.B. and Cunge, J.A.(1982): Engineering Applications of Computational Hydraulics, Vol. I. Pitman Advanced Publ. Program,London.

Acock, B., Charles-Edwards. D.A. & Sawyers, S. (1979) Growth response of a Chrysanthenum crop to the environment. III Effects of radiation and temperature on dry matter partitioning and photosynthesis. Annals of Botany, 44, 289-300.

Adler, P.B., Raff, D.A. & Lauenroth, W.K. (2001) The effect of grazing on the spatial heterogeneity of vegetation. Oecologia, 128, 465-479.

Ahuja, L.R. and Ross, J.D., (1982). Interflow of water through a sloping soil with seepage face. Soil Sci. Soc. Am. J., 46: 245-250.

Ali S. Mahtab and N.A. Coles (1999). Application of Surface Water Management Strategies for Landcare. WA BankWest Landcare Conference, Esperance WA, 18-10th September 1999.

Ammentorp, H.C., A. Refsgaard (1991): Operationalizing a threedimensional solute transport model (in Danish). Report M4/7. Landfill project. Danish Environmental Protection Agency.

Arora, V.K. & Boer, G.J. (2003) A Representation of Variable Root Distribution in Dynamic Vegetation Models. Earth Interactions, 7, 1-19.

Arora, V.K. (2002) Modeling vegetation as a dynamic component in soil-vegetationatmosphere transfer schemes and hydrological models. Reviews Of Geophysics, 40, 3.1-3.26.

Bate, G.C., Furniss, P.R. & Pendle, B.G. (1982) Water relations of Southern African savannas. In Ecology of Tropical Savannas. (Huntley, B.J. and Walker, B.H., eds.). Ecological Studies 42, Springer-Verlag. Pp336-358.

Bear, J (1979): Hydraulics of groundwater. McGraw-Hill Inc., 567pp. /5/ Boesten, J.J.T.I. & van der Linden, A.M.A., 1991. Modelling the influence of sorption and transformation on pesticide leaching and persist-ence. J. Environ. Qual., 20, 425-435.

Bear, J. and A. Verruijt (1987): Modeling Groundwater Flow and Transport. D. Reidel Pub. Com., Dordrecht, Holland. /8/ Burnett, R.D. and E.O. Frind (1987): Simulation of contaminant transport in three dimensions. 2. Dimensionality Effects. Water Resour. Res., 23(4), 695-705.

Belmans, C., Wesseling, J.G. & Feddes, R.A. (1993) Simulation model of the water balance of a cropped soil: SWATRE. Journal of Hydrology, 63, 271-286.

Brusseau, M. L., (1995): The effect of nonlinear sorption on the trans-formation of contaminants during transport in porous media. Journal of Contaminant Hydrology, 17, p 277-291.

Chittleborough, D.J., (1992). Foundation and pedology of duplex soils. Aust. J. Exp. Agric., 32: 815-23.

Chow, T. C., Maidment, D. R. and Mays, L.W., (1988). Applied Hydrology, McGraw-Hill Series in Water Resources and Environmental Engineering, pp.201-210, 257-263.

Chow, ven T., (1964). Runoff. In: T. ven Chow (Editor), Handbook of Applied Hydrology. McGraw Hill, New York.

Clemente, R.S, de Jong, R., Hayhoe, H.N., Reynolds, W.D. & Hares, M. (1994) Testing and comparison of 3 unsaturated soil-water flow models. Agricultural Water Management, 25, 135-152.

Coles N.A., George R.J. and Bathgate A.D., (1999). An Assessment to the efficacy of deep drains construction in the wheat belt of Western Australia. Bulletin: 4391. Agriculture Western Australia.

Coles, N.A. and Ali, S.M (2000). Implication for Surface Water Management on Recharge and Catchment Water Balance. Hydro 2000, 3rd International Hydrology and .Water Resource symposium of The Institute of Engineers, Australia, Perth, WA, Australia. Coughenour, M.B., (1993) Savanna-Landscape and Regional Ecosystem Model. Natural Resource Ecology Laboratory, Colorado State University, Fort Collins.

Daamen, C.C. & Simmonds, L. (1994) Soil water energy and transpiration. A numerical model of water and energy fluxes in soil profiles and sparse canopies. SWEAT user guide. NRI, UK.

Crawford, N.H., and Linsley, R.K., (1966), Digital simulation in hydrology: the Stanford Watershed Simulation Model IV: Technical Report no. 39, Department of Civil Engineering, Stanford University, Stanford, CA, 210p.

Daly, C., Neilson, R.P. and Phillips, D.L. (1994) A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain, Journal of Applied Meteorology, 33(2), 140-158.

Darnell, W.L., Staylor, W.F., Gupta, S.K., Ritchey, N.A. and Wilder, A.C. (1992) Seasonal Variation of Surface Radiation Budget Derived from Internatial Satellite Cloud Climatology Project C1 Data, Jour. Geophys. Res., 97 (D14), 15741-15760.

Derry, J.F. (2004) Piospheres in semi-arid rangeland: consequences of spatially constrained plant-herbivore interactions. PhD thesis, University of Edinburgh. Available online http://hdl.handle.net/1842/600.

Dunn, S.M. and Mackay, R., (1996). Modelling the hydrological impact of open ditch drainage. Journal of Hydrology, 179: 37-66.

Dunne, T., (1983). Relation of field studies and modelling in the prediction of storm runoff. J of Hydrology Vol. 65:25-48.

Dye, P.J. & Spear, P.T. (1982) The effects of bush clearing and rainfall variability on grass yield and composition in South-West Zimbabwe. Zimbabwe Journal of Agricultural Research, 20, 103-118.

Dye, P.J. (1983) Prediction of variation in a semi-arid induced grassland. Unpublished PhD Thesis, University of the Witwatersrand, Johannersburg.

Ekebjærg, L. and Justesen, P. (1991): An explicit scheme for advection-diffusion modelling in two dimensions. Computer Methods in References 377 Applied Mechanics and Engineering, 88 (3), 287-297.

FAO, (1979). Yield response to water. FAO irrigation and drainage paper no. 33. FAO, Rome Italy.

Feddes, R.A., de Rooij, G.H. & van Dam, J.C. (eds.) (2004). Papers for the Frontis Workshop on Unsaturated-Zone Modeling: Progress, Challenges and Applications. Wageningen, The Netherlands 3-5 October 2004.

Ferdowsian, R., George, R., Lewis, R., McFarlane, D., Short, R. and Speed, R. (1996). The Extent of Dryland Salinity in Western Australia. In: Proceeding 4th national Workshop on the Productive Use and Rehabilitation of Saline Lands, Albany March 1996, 88-89. Ferdowsian, R., Ryder, A.T. and Kelly, J., (1997). Evaluation of deep, open drains in North Stirling area. Agric. WA, Resource Mange. Tech. Rep. 161. Perth, WA, 19 pp.

Fetter, C.W., (1992): Contaminant Hydrogeology. Macmillan Pub. Com., New York, New York.

Feyen, J., Jacques, D., Timmerman, A. & Vanderborght, J. (1998) Modelling water flow and solute transport in heterogeneous soils: A review of recent approaches. Journal of Agricultural Engineering Research, 70, 231-256.

Fleming G., (1975). *Computer Simulation Techniques in Hydrology*, Elsevier Environmental Science Series.

Fread, D.L. (1993) Flow Routing, in Handbook of Hydrology, ed. by D.R. Maidment, McGraw-Hill, New York, pp. 10.5-10.13.

Freeze, R.A., Cherry, J.A. (1979): Groundwater, Prentice-Hall, Inc., Englewood Cliffs, N.J.

Friedel, M.H. (1990) Where the creeks run dry or ten feet high: pastoral management in arid Australia. Proceedings of the Ecological Society of Australia, 16, 185-194.

George, P.R. and Nulsen, R.A., (1985). Saltland drainage: case studies. J. Agric. W. Aust (4th series) 26: 115-118.

George, R.J. and Nulsen, R.A., (1985). Saltland Drainage: Case studies. J. Agric. W. Aust. (4th Series) 26: 115-118.

George, R.J. Clarke, C.J. and Hatton, T. (2001). Computer modelled groundwater response to recharge management for dryland salinity control in Western Australia. Advances in Environmental Monitoring and Modelling 2, No.1 pp. 3-35.

George, R.J., Weaver, D.A., and Terry, J.P. (1997). Environment Water Quality Manual, Miscellaneous Publication, Agriculture WA, ISSN 1326-4168, 38pp.

Green, JEP. (1990). Catchment Three-Three case studies. Div. Resource. Manage. Tech. Rep. 117. Perth. WA. 23 pp.

Hammermeister, D.P., Kling, G.F. and Vomicil, J.A., (1982). Perched water tables on hillsides in western Oregon: 1. Some factors affecting their development and longevity. Soil Sci. Soc. Am. J., 46: 811-818.

Harbaugh, A.W., (2005). Modflow 2005, the U.S. Geological Survey Modular Ground-Water Model-the Ground-Water Flow Process. Book 6. Modelling Techniques, Section A. Ground Water. U.S. Department of the Interior.

Hatton, T.J., Salvucci, G.D. & Wu, H.I. (1997) Eagleson's optimality theory of an ecohydrological equilibrium: quo vadis? Functional Ecology, 11, 665-674.

Hayhoe, H.N. & de Jong, R. (1982) Computer Simulation Model of Soil Water Movement and Uptake by Plant Roots. Agriculture and Agri-Food Canada Technical Bulletin 95. 74pp.

Higgins, SI, Bond WJ, Trollope WSW (2000) Fire, resprouting and variability: a recipe for tree-grass coexistence in savanna. Journal of Ecology, 88, 213-229.

Hill, M.C. (1990): Pre-conditioned conjugate gradient 2 (PCG2), a computer program for solving groundwater flow equations: U.S. Geological Survey Water Resources Investigations Report 90-4048,43 p.

Hobbs, T.J., Sparrow, A.D. & Landsberg, J.J. (1994) A model of soil moisture balance and herbage growth in the arid rangelands of central Australia. Journal of Arid Environments, 28, 281-298.

Hutchinson, M.F., Nix, H.A., McMahon, J.P. and Ord, K.D. (1995) A Topographic and Climatic Data Base for Africa - Version 1, CD-ROM available from Centre for Resource and Environmental Studies, Australian National University, Canberra ACT 2000, Australia.

Hutson, J.L. & Wagenet, R.J. (1992) LEACHM: Leaching estimation and chemistry model: A process-based model of water and solute movement, transformations, plant uptake and chemical reactions in the unsaturated zone. Version 3.0.

Illius, A.W. & Gordon, I.J. (1999) Scaling up from functional response to numerical response in vertebrate herbivores. In Herbivores: Between Plants and Predators. Olff, H., Brown, V.K. & Drent, R.H. (eds.). Blackwell Science.

Illius, A.W., Derry, J.F. & Gordon, I.J. (1996) Modelling the dynamics of semi-arid grazing systems. Report to NRI, UK. University of Edinburgh. pp 64.

Illius, A.W., Derry, J.F. & Gordon, I.J. (1998) Evaluation of strategies for tracking climatic variation in semi-arid grazing systems. Agricultural Systems, 57, 381-398.

Illius, A.W., Derry, J.F. & Gordon, I.J. (2000) Evaluation of strategies for tracking climatic variation in semi-arid grazing systems (vol 57, pg 381, 1998). Agricultural Systems, 63, 73-74.

Iritz, L., Johansson, B. and Lundin, L., (1994). Impacts of forest drainage on floods. Hydrol. Sci., 39(6): 637-661.

Jarvis, N., (1991). MACRO - A model of water movement and solute transport in macroporous soil. Monograph, Reports and dissertations, 9. Dept. of Soil Science, Swedish Univ. of Agrig. Sci., Uppsala, Sweden.

Jensen, K.H., (1983). Simulation of water flow in the unsaturated zone including the root zone. Institute of Hydrodynamics and hydraulic engineering. Technical University of Denmark. Series Paper no. 33, 259pp.

Jensen, K.H., H.C. Ammentorp and T. Sevel (1984): Modelling solute transport in the unsaturated zone. Nordic Hydrology 15(4/5), 223-234.

Johnson, I.R. & Thornley, J.H.M. (1983) Vegetative crop growth model incorporating leaf area expansion and senescence, and applied to grass. Plant, Cell and Environment, 6, 721-729.

Kelly, R.D. & Walker, B.H. (1976) The effects of different forms of land use on the ecology of a semi-arid region in south-eastern Rhodesia. Ecology, 64, 553-576.

King, J.E. 1931. Tile Drainage. Mason City Brick and Tile Company, Mason City, IA.

Klein, M., (1995). PELMO - Pesticide Leaching Model, version 2.01. Users Manual. Frauenhofer-Institut für Umweltche-mie und Ökotoxiko- logie, 57392 Schmallenberg.

Knudsen, J., (1985a). WATBAL User's Guide. Danish Hydraulic Institute, Denmark
/22/ Knudsen, J., 1985b. WATBAL Hydrological Modelling System A Short
Description. Danish Hydraulic Institute, Denmark.

Konikow, L.F. and D.B. Grove (1977): Derivation of Equations describing Solute Transport in Groundwater, US.G.S. Water Resour. 378 MIKE 21 Invest. 77-19.

Knoop, W.T. & Walker, B.H. (1985) Interactions of woody and herbaceous vegetation in southern African savanna. Journal of Ecology, 73, 235-253. de Marsily, G., Combes, P. and Goblet, P. (1992). Comments on 'Ground-water models cannot be validated', by L. F. Konikow and J. D. Bredehoeft. Adv. Water Resour.,15:367–9

Konikow, L. F. and Bredehoeft, J. D. (1992). Ground-water models cannot be validated. Adv.Water Resour., 15: 75–83.

Koster, R.D. & Suarez, M.J. (1994) The components of a 'SVAT' scheme and their effects on a GCM's hydrological cycle. Advances in Water Resources, 17, 61-78.

Kristensen, K. J. and S.E. Jensen, 1975. A model for estimating actual evapotranspiration from potential evapotranspiration. Royal Veterinary and Agricultural University, Nordic Hydrology 6, pp.170-188.

Larcher, W. (1995) Physiological Plant Ecology. Third Edition. Springer-Verlag, pp506.

Lehman, O.R. and Ahuja, L.R., (1985). Interflow of water and tracer chemical on sloping field plots with exposed seepage faces. J. Hydrol., 76: 307-317.

Leonard, B.P. (1979): A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Engrg., Vol. 19, pp. 59-98.

Leonard, B.P. (1988): Simple high-accuracy resolution program for convective modelling of discontinuities, Int. Journal for Numerical Methods in Fluids, Vol. 8, pp. 1291-1318.

Liedloff, A.C., Ludwig, J.A. & Coughenour, M.B. (2004) SAVANNA.AU - Simulation Model for Australian Savannas. Draft Model Description. Tropical Savannas Management Cooperative Research Centre, CSIRO Sustainable Ecosystems, PMB 44, Winnellie 0822, Darwin, Australia.

Lowery, B., Kling, G.F. and Vomicil, J. A., (1982). Overland flow from sloping land: effect of perched water tables and subsurface drains. Soil. Sci. Soc. Am. J., 46: 93-99.

Maestre, F.T., Cortina, J., Bautista, S., Bellot, J. & Vallejo, R. (2003) Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semiarid degraded ecosystem. Ecosystems, 6, 630-643.

Mallants, D., Jacques, D., Vanclooster, M., Diels, J. & Feyen, J. (1996) A stochastic approach to simulate water flow in a macroporous soil. Geoderma, 71, 299-324.

McDonald, M.C., and A.W. Harbaugh (1988): A modular three dimensional finite difference groundwater flow model: U.S. Geological Survey Techniques of Water Resources Investigations, book 6, chap.A.1, 586 p.

McFarlane, D.J. and Cox, J.W., (1992). Management of excess water in duplex soils. Aust. J. Exp. Agric., 32: 857-864. McFarlane, D.J., Engel, R. and Ryder, A.T. (1987). Investigation of a saline valley on Allendale Research Farm. DRM Technical Report 58.

McFarlane, D.J., Wheaton, G.A., Negus, T.R. and Wallace, J. F., (1992). Effect of waterlogging on crop growth and pasture production in the Upper Great Southern, Western Australia. Tech. Bull. No. 86, Western Australia Department of Agriculture, South Perth.

Menenti, M., Jia, L. & Bastiaanssen, W.G.M. (2004) Energy and water flow through the soil-vegetation-atmosphere system: the fiction of measurements and the reality of models. In Unsaturated-Zone Modeling: Progress, Challenges and Applications.

Miljøstyrelsen, (1981). The surface water component of an integrated hydrological model. The Danish committee for hydrology. Suså report no. 12. The Danish Environmental Protection Agency, Copenhagen.

Mo, X., Liu, S., Lin, Z. & Zhao, W. (2004) Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. Journal of Hydrology, 285, 125-142.

Moehrlen, C. (1999) Literature review of current used SVAT models. Internal Report, Department of Civil & Environmental Engineering, University College Warrach, K.

Monteith, J.L. (1965) Evaporation and the environment. In The Movement of Water in Living Organisms. pp205-234. XIXth Symposium. Society of Experimental Biology, Swansea, Cambridge University Press. Nicholson, I.A., Robertson, R.A. and Robinson, M., (1989). The effect of drainage on the hydrology of a peat bog. Int. Peat J., 3: 59-83.

Northcote, K.H., (1979). A factual key for recognition of Australian Soils, 4th edn. Rellim Tech., Glenside, South Australia.

Nulsen, R.A. (1982). Review of current drainage investigations in Western Australia. Div. Resource. Mange. Tech. Rep. 8 Perth, WA 51 pp.

Nulsen, R.A. and Henschke, C.J., (1981). Groundwater systems associated with secondary salinity in Western Australia. In: J.W. Holmes and T. Talsma (Editors), Land and Stream Salinity. Elsevier, Amesterdam, pp. 173-186.

Nulsen, R.A. and Henschke, C.J., (1981). Groundwater systems associated with secondary salinity in Western Australia. In: J.W. Holmes and T. Talsma (Editors), Land and Stream Salinity. Elsevier, Amesterdam, pp. 173-186.

Opperman, D.P.J., Human, J.J. & Viljoen, M.F. (1977) Evapotranspirasiestudies op Themeda triandra Forsk onder veldtoestande. Handboek Weidingsvereniging van Suid-Afrika, 12, 71-76.

Oreskes, N., Shrader-Frechette, K. and Belitz, K. (1994). Verification, validation and confirmation of numerical models in the earth sciences. Science, 264: 641–6.

Pachepsky, Y.A., Smettem, K.R.J., Vanderborght, J., Herbst, M., Vereecken, H. & Wösten, J.H.M. (2004) Reality and fiction of models and data in soil hydrology. In

Unsaturated-Zone Modeling: Progress, Challenges and Applications. Feddes, R.A., de Rooij, G.H. & van Dam, J.C. (eds.). Papers for the Frontis Workshop on Unsaturated-Zone Modeling: Progress, Challenges and Applications. Wageningen, The Netherlands 3-5 October 2004.

Peck, A.J. and Williamson, D.R., (1987). Effect of forest clearing on groundwater. J. Hydrol., 94: 47-65.

Plauborg, F. and J.E. Olesen, (1991). Development and validation of the model MARKVAND for irrigation scheduling in agriculture. Tidsskrift for Planteavls Specialserie, Beretning S 2113. Danish Institute of Plant and Soil Science. Foulum, Denmark. (In Danish).

Refsgaard, A., Refsgaard, J.C., Clausen, T. (1993): A three-dimensional module for groundwater flow and solute transport in SHE. Danish Hydraulic Institut - Internal Note.

Refsgaard, J.C. and J. Knudsen, (1996). Operational validation and intercomparison of different types of hy7drological models, *Water Resources Research*, **32**(7): pp2189-2202.

Refsgaard, J.C., T.H. Christensen and H.C. Ammentorp (1991): A Model for oxygen transport and consumption in the unsaturated zone. Journal of Hydrology, 129, 349-369.

Richards, L. A (1931). Capillary conduction of liquids through porous mediums. Physics, 1, 318-333.

Robinson, M., (1986). Changes in the catchment runoff drainage and afforestation. J. Hydrol., 86: 71-84.

Ross, P.J. (1990) SWIM: A simulation model for soil water infiltration and movement. Reference manual, CSIRO, Aust. Division of Soils, Townsville.

Sharma, K.D. (1998) The hydrological indicators of desertification. Journal of Arid Environments, 39, 121-132.

Scheidegger, A.E. (1961): General theory of dispersion in porous media. Jour. of Geophys. Research, Vol. 66, no. 10.

Short, R. and McConnell, C. (2001). Extent and impacts of dryland salinity. Resource ManagementTechnical Report 202, Department of Agriculture, Western Australia.

Silberstien, R.P. (1989). Report on the use of drainage to alleviate saline watelogged land in the catchment of Six Mile Creek, Gnowangerup Shire, Wesern Australia. Draft report. Unpublished.

Singleton, P.L., Painter, D.J., Brown, T.N. & Barkle, G.F. (1998) Hydrology models DRAINMOD and SWIM applied to large soil lysimeters with artificial drainage. Australian Journal of Soil Research, 36, 783-97.

Skarpe, C. (1992) Dynamics of savanna ecosystems. Journal of Vegetation Science, 3, 293-300.

Snyman, H.A. (1998) Dynamics and sustainable utilization of rangeland ecosystems in arid and semi-arid climates of southern Africa. Journal of Arid Environments, 39, 645-666.

Speed, R.J. and Simons, J.A., (1992). Deep drains- acase study and discussion. Dept. Agric. WA, Div. Resource Mange. Tech. Rep. 133. Perth, WA, 12 pp.

Stieglitz, M., Mengelkamp, H.-T. & Raschke, E. (2002) Advantages of a Topographically Controlled Runoff Simulation in a Soil-Vegetation-Atmosphere.

Stroosnijder, L. (1996) Modelling the effect of grazing on infiltration, runoff and primary production in the Sahel. Ecological Modelling, 92, 79-88.

Talsma, T. (1963). The control of saline groundwater. Meded. Landbouwhogesch, Wangeningen 63(10):1-68.

Thomas, R.G. (1973): Groundwater models. Irrigation and drainage. References 379 Spec. Pap. Food Agricultural Organis. No. 21, U.N., Rome.

Thornley, J.H.M. & Johnson, I.R. (1990) Transpiration by a crop canopy. In: Plant and Crop Modelling. Clarendon Press, Oxford. pp 669.

Toride, N., F.J. Leij and M. Th. van Genuchten (1995). The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.0. Research report No. 137. U.S. Salinity Lab-oratory. Agricultural Research Service. USDA, Riverside, California.

United States Soil Conservation Service (1964) National Engineering Handbook, Section 4: Hydrology. Water Resources Publications, Colorado.

Van Genuchten, M.Th., 1987. A numerical model for water and solute movement in and below the root zone. Research Report No.121, U.S. Salinity Laboratory, USDA, ARS, Riverside, California

Vested, H.J., Justesen, P. and Ekebjærg, L. (1992): Advection-dispersion modelling in three dimensions. Appl. Math. Modelling, Vol. 16, pp 506-519.

Villholth, K., (1994). Field and Numerical Investigation of Macropore Flow and Transport Processes. Series Paper no. 57. Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, 230 pp.

Walker, B.H. & Langridge, J.L. (1996) Modelling plant and soil water dynamics in semi-arid ecosystems with limited site data. Ecological Modelling, 87, 153-167.

Walker, B.H. & Langridge, J.L. (1997) Predicting savanna vegetation structure on the basis of plant available moisture (PAM) and plant available nutrients (PAN): A case study from Australia. Journal of Biogeography, 24, 813-825.

Wattenbach, W., Hattermann, F., Weng, R., Wechsung, F., Krysanova, V. & Badeck, F. (2005) A simplified approach to implement forest eco-hydrological properties in regional hydrological modelling. Ecological Modelling, in press.

Whipkey, R.Z. and Kirkby, M.J., (1978). Flow within the soil. In: M.J. Kirkby (Editor), Hillslope Hydrology. Wiley-Interscience, London, pp. 121-144.

Wight, J.R. & J.W. Skiles (eds.) (1987) SPUR: Simulation of production and utilization of rangelands. Documentation and user guide. U.S. Dept. of Agriculture, Agricultural Research Services, ARS 63. pp372.

Yan J.J. and K.R. Smith, (1994): Simulation of Integrated Surface Water and Ground Water Systems - Model Formulation. Water Resources Bulletin, Vol. 30, No. 5, pp 1-12.

Yang, R.Q. & Friedl, M.A. (2003) Modeling the effects of three-dimensional vegetation structure on surface radiation and energy balance in boreal forests. Journal Of Geophysical Research-Atmospheres, 108, article 8615.

Zhang, R. & van Genuchten, M. Th. (1994) New models for unsaturated soil hydraulic properties. Soil Science, 158, 77-85.

Zucker, L.A. and L.C. Brown. (1998). Agricultural drainage: Water quality impacts and subsurface drainage studies in the Midwest. Ohio State University Extension Bulletin.

APPENDIX 1 (WATER TABLE DEPTHS IN METRE)

				WATER T	ABLE DEP	THS (m)			
DATE	S1	S2	S3	S4	S 5	S6	S7	S8	S 9
01-01	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4
02-01	-1.39871	-1.39872	-1.39871	-1.39788	-1.39807	-1.39799	-1.38116	-1.38839	-1.38099
03-01	-1.39682	-1.39686	-1.39681	-1.34146	-1.35262	-1.3434	-1.19633	-1.20763	-1.19236
04-01	-1.39578	-1.39608	-1.39588	-1.29344	-1.3076	-1.3035	-1.15686	-1.16504	-1.15319
05-01	-1.38949	-1.39643	-1.39595	-1.27168	-1.29402	-1.28279	-1.14493	-1.15416	-1.1423
06-01	-1.39	-1.39777	-1.39697	-1.2681	-1.29163	-1.28098	-1.14278	-1.1539	-1.14232
07-01	-1.39055	-1.39993	-1.39891	-1.26002	-1.29148	-1.28095	-1.1422	-1.1557	-1.14432
08-01	-1.39142	-1.40274	-1.40155	-1.25994	-1.29293	-1.28247	-1.14299	-1.15903	-1.1477
09-01	-1.39279	-1.41243	-1.4047	-1.26081	-1.29557	-1.28515	-1.14496	-1.16943	-1.15763
10-01	-1.40106	-1.41566	-1.41436	-1.26251	-1.299	-1.29477	-1.14783	-1.17407	-1.16824
11-01	-1.40304	-1.4253	-1.42433	-1.27182	-1.30867	-1.2983	-1.15122	-1.18465	-1.18791
12-01	-1.40564	-1.42897	-1.42762	-1.27352	-1.3129	-1.30826	-1.16086	-1.20163	-1.18417
13-01	-1.41472	-1.43889	-1.43756	-1.27678	-1.32353	-1.31258	-1.16517	-1.20621	-1.20097
14-01	-1.41786	-1.44887	-1.44123	-1.2864	-1.34122	-1.32277	-1.1764	-1.21758	-1.19996
15-01	-1.42735	-1.45251	-1.45091	-1.29621	-1.3441	-1.31663	-1.17484	-1.22029	-1.02828
16-01	-1.43778	-1.46222	-1.45475	-1.28028	-1.34116	-1.29272	-1.0143	-1.09981	-1.01123
17-01	-1.44073	-1.46627	-1.46434	-1.24853	-1.31934	-1.28175	-0.99761	-1.07374	-1.01082
18-01	-1.45051	-1.47659	-1.47503	-1.24378	-1.30827	-1.28047	-0.99686	-1.07246	-1.01328
19-01	-1.45428	-1.47987	-1.47837	-1.23632	-1.30708	-1.281	-0.99867	-1.07412	-1.01729
20-01	-1.46408	-1.49644	-1.49476	-1.23693	-1.30772	-1.28277	-1.002	-1.07755	-1.02839
21-01	-1.46715	-1.5001	-1.49772	-1.1885	-1.30981	-1.2855	-0.82486	-1.088	-1.04608
22-01	-1.03383	-1.51081	-1.5012	-0.55848	-1.31299	-1.2952	0.00309	-1.09919	-1.0502
23-01	-0.82033	-1.5141	-1.51116	-0.46319	-1.32304	-1.29849	0.00137	-1.11074	-1.06201
24-01	-0.80919	-1.52377	-1.51436	-0.46574	-1.32693	-1.30829	-0.00557	-1.12215	-1.06655
25-01	-0.81038	-1.52719	-1.524	-0.48485	-1.34317	-1.31216	-0.16505	-1.12697	-1.07728
26-01	-0.82055	-1.53684	-1.52712	-0.51916	-1.34668	-1.32232	-0.22401	-1.13832	-1.08801
27-01	-0.83314	-1.54019	-1.53662	-0.54244	-1.35048	-1.32639	-0.27557	-1.14844	-1.09895
28-01	-0.84553	-1.54956	-1.53972	-0.56521	-1.36004	-1.34265	-0.31545	-1.15225	-1.11067
29-01	-0.85796	-1.5526	-1.54904	-0.59849	-1.37067	-1.34637	-0.35551	-1.16343	-1.12239
30-01	-0.87171	-1.56194	-1.55219	-0.62138	-1.37339	-1.35784	-0.38692	-1.17499	-1.12696
31-01	-0.89184	-1.56508	-1.56169	-0.64471	-1.38341	-1.36068	-0.42848	-1.19281	-1.11565
01-02	-0.89792	-1.57446	-1.56499	-0.59178	-1.38695	-1.35708	0.00547	-1.17919	-0.93484
02-02	-0.91756	-1.57763	-1.57423	-0.52703	-1.39079	-1.33303	0.0014	-1.00196	-0.92078
03-02	-0.93144	-1.5867	-1.58413	-0.53241	-1.3669	-1.32039	-0.01622	-0.99247	-0.92067
04-02	-0.94435	-1.58995	-1.58642	-0.55511	-1.35423	-1.31153	-0.20976	-0.98553	-0.92316
05-02	-0.95765	-1.59881	-1.59628	-0.59281	-1.35157	-1.31124	-0.25907	-0.98721	-0.93452
06-02	-0.97034	-1.60206	-1.59862	-0.61487	-1.35002	-1.31229	-0.30002	-0.99731	-0.93888
07-02	-0.98307	-1.61091	-1.60199	-0.638	-1.3504	-1.31436	-0.34101	-1.00115	-0.9504
08-02	-0.99504	-1.61421	-1.61107	-0.66097	-1.35195	-1.31713	-0.38141	-1.01266	-0.96195
09-02	-1.00749	-1.62398	-1.61438	-0.67786	-1.35451	-1.32662	-0.41308	-1.02535	-0.97389
10-02	-1.02032	-1.62716	-1.62403	-0.70133	-1.35777	-1.33014	-0.4541	-1.04423	-0.98585
11-02	-1.02646	-1.64347	-1.62715	-0.71888	-1.36773	-1.34619	-0.48876	-1.05008	-0.99823
12-02	-1.04465	-1.64564	-1.64339	-0.7408	-1.37874	-1.34992	-0.51257	-1.06228	-1.01052
13-02	-1.05769	-1.64863	-1.64544	-0.76117	-1.38169	-1.36143	-0.54489	-1.07444	-1.0233
14-02	-1.06083	-1.6518	-1.64831	-0.77258	-1.39161	-1.36423	-0.54951	-1.08638	-0.97825
15-02	-1.06344	-1.66118	-1.65136	-0.70478	-1.39537	-1.36163	-0.01334	-1.06558	-0.81015
16-02	-1.06621	-1.66415	-1.66091	-0.60813	-1.40037	-1.34578	-0.01338	-0.88549	-0.8083
17-02	-1.06949	-1.67323	-1.66372	-0.60803	-1.37901	-1.32813	-0.15603	-0.88163	-0.81055
18-02	-1.07961	-1.67609	-1.67295	-0.61349	-1.36706	-1.32608	-0.21463	-0.88349	-0.81464
19-02	-1.08378	-1.68506	-1.67567	-0.63284	-1.36519	-1.32566	-0.25312	-0.88811	-0.82647
20-02	-1.09432	-1.68791	-1.68491	-0.64738	-1.36488	-1.32642	-0.2835	-0.90643	-0.83929
21-02	-1.1052	-1.69695	-1.68747	-0.66909	-1.36595	-1.32819	-0.32434	-0.9196	-0.85279
22-02	-1.11643	-1.69977	-1.69675	-0.68554	-1.36811	-1.33075	-0.36549	-0.93209	-0.87306
23-02	-1.12764	-1.70929	-1.69907	-0.70791	-1.37105	-1.34692	-0.40583	-0.94468	-0.87918

				WATER T	ABLE DEF	PTHS (m)			
DATE	S1	S2	S 3	S4	S5	S6	S 7	S8	\$9
24-02	-1.13944	-1.71205	-1.70184	-0.73711	-1.38073	-1.34983	-0.43778	-0.95766	-0.89746
25-02	-1.14305	-1.72108	-1.71082	-0.74193	-1.39108	-1.35327	-0.45384	-0.96938	-0.90904
26-02	-1.15172	-1.72377	-1.71355	-0.75959	-1.3936	-1.36343	-0.47287	-0.98073	-0.92146
27-02	-1.1547	-1.73297	-1.72237	-0.78114	-1.40363	-1.36684	-0.50586	-0.99203	-0.93368
28-02	-1.16494	-1.73535	-1.725	-0.78716	-1.40692	-1.37668	-0.52872	-1.00354	-0.85577
01-03	-1.1695	-1.73817	-1.73397	-0.76262	-1.41663	-1.37356	-0.12893	-0.95601	-0.69944
02-03	-1.1803	-1.74662	-1.73643	-0.67695	-1.4143	-1.35071	-0.11392	-0.78442	-0.69986
03-03	-1.19735	-1.74931	-1.7392	-0.67613	-1.38977	-1.33231	-0.16651	-0.77427	-0.71127
04-03	-1.20132	-1.75802	-1.74763	-0.67919	-1.37631	-1.33042	-0.21337	-0.77593	-0.72578
05-03	-1.21308	-1.7605	-1.75039	-0.69088	-1.36631	-1.33029	-0.24329	-0.78658	-0.74682
06-03	-1.21627	-1.76319	-1.75923	-0.70388	-1.36508	-1.33158	-0.28136	-0.79862	-0.76796
07-03	-1.22658	-1.77215	-1.76179	-0.71715	-1.36512	-1.33443	-0.30965	-0.81152	-0.78255
08-03	-1.23729	-1.77476	-1.76469	-0.73712	-1.36618	-1.34963	-0.33894	-0.82436	-0.79562
09-03	-1.24098	-1.7774	-1.77377	-0.74445	-1.36809	-1.35256	-0.36882	-0.83742	-0.8084
10-03	-1.25144	-1.7953	-1.7765	-0.76441	-1.37069	-1.35593	-0.39809	-0.85114	-0.82184
11-03	-1.26206	-1.7956	-1.77868	-0.77866	-1.37982	-1.36586	-0.42809	-0.86467	-0.83528
12-03	-1.26603	-1.7978	-1.79454	-0.80028	-1.38307	-1.36937	-0.45796	-0.87854	-0.84854
13-03	-1.27659	-1.80019	-1.79666	-0.81425	-1.39278	-1.3794	-0.49	-0.89758	-0.86809
14-03	-1.28696	-1.80264	-1.79904	-0.82772	-1.40379	-1.38357	-0.51018	-0.91127	-0.75923
15-03	-1.29108	-1.8113	-1.80149	-0.80252	-1.40643	-1.37098	-0.02126	-0.82343	-0.60152
16-03	-1.301	-1.81356	-1.80398	-0.7105	-1.40403	-1.34255	-0.08002	-0.68115	-0.59903
17-03	-1.31093	-1.8225	-1.80645	-0.7092	-1.38	-1.32085	-0.16434	-0.67402	-0.60203
18-03	-1.31506	-1.82438	-1.81495	-0.71273	-1.36686	-1.31652	-0.21361	-0.68558	-0.62112
19-03	-1.32568	-1.82671	-1.81716	-0.71933	-1.36397	-1.31483	-0.26348	-0.69799	-0.62807
20-03	-1.34446	-1.83514	-1.82598	-0.73796	-1.35611	-1.31465	-0.27906	-0.71295	-0.64798
21-03	-1.34562	-1.83733	-1.82771	-0.74119	-1.357	-1.31552	-0.26814	-0.73398	-0.66864
22-03	-1.34804	-1.83972	-1.82986	-0.74224	-1.3586	-1.31724	-0.26555	-0.75486	-0.67638
23-03	-1.34977	-1.84803	-1.83839	-0.75798	-1.36727	-1.31972	-0.2835	-0.76243	-0.69046
24-03	-1.3513	-1.85029	-1.84026	-0.76101	-1.36984	-1.32277	-0.31174	-0.77545	-0.70405
25-03	-1.35301	-1.85902	-1.8424	-0.76596	-1.37277	-1.32612	-0.34064	-0.78678	-0.71722
26-03	-1.36163	-1.86098	-1.8511	-0.77862	-1.37574	-1.34182	-0.36935	-0.79944	-0.73005
27-03	-1.36374	-1.86315	-1.85292	-0.7917	-1.38548	-1.34472	-0.39772	-0.81195	-0.74935
28-03	-1.36658	-1.87132	-1.85504	-0.80504	-1.38829	-1.3482	-0.42618	-0.8248	-0.76925
29-03	-1.37583	-1.87321	-1.86344	-0.82552	-1.39798	-1.35842	-0.44624	-0.83754	-0.78311
30-03	-1.38606	-1.87529	-1.86536	-0.83802	-1.40126	-1.36187	-0.47401	-0.85025	-0.62375
31-03	-1.38836	-1.88333	-1.86747	-0.8112	-1.41099	-1.35735	0.00499	-0.73441	-0.50601
01-04	-1.39825	-1.88516	-1.87581	-0.70802	-1.40844	-1.33207	0.00255	-0.59067	-0.5083
02-04	-1.40108	-1.88722	-1.87778	-0.70514	-1.38442	-1.31814	5.64E-04	-0.59107	-0.52636
03-04	-1.4108	-1.89558	-1.87996	-0.70683	-1.37122	-1.30919	-0.01304	-0.59482	-0.54615
04-04	-1.4138	-1.8972	-1.88799	-0.71103	-1.36118	-1.30839	-0.16921	-0.61324	-0.5669
05-04	-1.42349	-1.89928	-1.88996	-0.72313	-1.35998	-1.30881	-0.20515	-0.6329	-0.58638
06-04	-1.42661	-1.90144	-1.89214	-0.74323	-1.35973	-1.31016	-0.22185	-0.64048	-0.60589
07-04	-1.43599	-1.90929	-1.90027	-0.74614	-1.36032	-1.31211	-0.24859	-0.66091	-0.61209
08-04	-1.43913	-1.91134	-1.90217	-0.76594	-1.36167	-1.31449	-0.27484	-0.67532	-0.63111
09-04	-1 44824	-1.91351	-1.9043	-0.76865	-1.36364	-1.32365	-0.30099	-0.68659	-0.65212
10-04	-1 45137	-1.92211	-1.91258	-0.77368	-1.36568	-1.32641	-0.3174	-0.69018	-0.65649
11-04	-1 46044	-1.92395	-1.91425	-0.78473	-1.36762	-1.32951	-0.33312	-0.70116	-0.67611
12-04	-1,46342	-1.92595	-1.91633	-0,79573	-1.37622	-1.34505	-0.34968	-0,71328	-0.68348
13-04	-1.47352	-1.92782	-1.91847	-0.81335	-1.37797	-1.34819	-0,37562	-0,72616	-0.69676
14-04	-1.47609	-1.93659	-1.92066	-0.81779	-1.38037	-1.35134	-0.39196	-0.72945	-0.44293
15-04	-1.47895	-1.938	-1.92289	-0,77857	-1.38175	-1.32718	0.00576	-0,44893	-0.34792
16-04	-1.49446	-1.93961	-1.92512	-0.67803	-1.34538	-1.28925	0.00299	-0.36316	-0.35146
17-04	-1.49677	-1.94123	-1.93462	-0.6762	-1.2986	-1.27389	6.65E-04	-0.35771	-0.36734
18-04	-1.49954	-1.94917	-1.9359	-0.67877	-1.28106	-1.26417	-0.01304	-0.35824	-0.38349
							. = = +		

				WATER 1	ABLE DEP	PTHS (m)			
DATE	S1	S2	S 3	S4	S5	S6	\$7	S8	S 9
19-04	-1.50252	-1.95035	-1.93768	-0.68357	-1.26968	-1.26281	-0.15919	-0.3742	-0.40946
20-04	-1.51204	-1.95156	-1.93954	-0.69505	-1.26092	-1.2626	-0.18375	-0.39088	-0.42679
21-04	-1.51486	-1.95274	-1.948	-0.70643	-1.26038	-1.26318	-0.20916	-0.41721	-0.44508
22-04	-1.52401	-1.95389	-1.94962	-0.71786	-1.2606	-1.26447	-0.23479	-0.43409	-0.4735
23-04	-1.52664	-1.96127	-1.95137	-0.72279	-1.26144	-1.26645	-0.24979	-0.45042	-0.49223
24-04	-1.53557	-1.96216	-1.95967	-0.73946	-1.26278	-1.26892	-0.26495	-0.46807	-0.50953
25-04	-1.53796	-1.9632	-1.96108	-0.74367	-1.26457	-1.27167	-0.29009	-0.48595	-0.51367
26-04	-1.54778	-1.96433	-1.96279	-0.7606	-1.27304	-1.2745	-0.30608	-0.50441	-0.52864
27-04	-1.54926	-1.96555	-1.96455	-0.76488	-1.27524	-1.27733	-0.32291	-0.50755	-0.53373
28-04	-1.55179	-1.96683	-1.96635	-0.77663	-1.27744	-1.28612	-0.35004	-0.50933	-0.55095
29-04	-1.56058	-1.97408	-1.97539	-0.78879	-1.27935	-1.28906	-0.37745	-0.52413	-0.56921
30-04	-1.56309	-1.9752	-1.9759	-0.79331	-1.2813	-1.29753	-0.39333	-0.5289	-0.19378
01-05	-1.57236	-1.9764	-1.97749	-0.64154	-1.28858	-1.27085	0.00903	-0.06037	-0.08509
02-05	-1.57433	-1.97763	-1.97918	-0.5229	-1.24949	-1.23551	0.00554	-0.00169	-0.13316
03-05	-1.57582	-1.97889	-1.98719	-0.50255	-1.20728	-1.22223	0.00359	-0.10246	-0.15328
04-05	-1.57609	-1.98607	-1.98849	-0.50167	-1.1883	-1.21964	0.00202	-0.14433	-0.18821
05-05	-1.57558	-1.98716	-1.9901	-0.50381	-1.18622	-1.2124	0.00105	-0.17756	-0.21452
06-05	-1.57485	-1.98837	-1.99178	-0.50793	-1.1857	-1.20878	-0.00187	-0.20414	0.0065
07-05	-1.5742	-1.98964	-1.9994	-0.5244	-1.18606	-1.10004	-0.12135	-0.23999	0.00469
08-05	-1.57374	-1.99097	-2.0002	-0.52424	-1.18704	-1.04029	-0.04162	-0.25702	0.0041
09-05	-1.57344	-1.99826	-1.99833	-0.52195	-1.18857	-1.01523	-0.01242	-0.28272	0.00221
10-05	-1.57315	-1.9995	-1.98598	-0.52336	-1.19022	-1.00265	-0.09979	-0.21512	0.00299
11-05	-1.57285	-2.00089	-1.97164	-0.52561	-1.18901	-0.98918	-0.10144	-0.03306	0.00172
12-05	-1.57259	-2.00232	-1.95708	-0.52639	-1.16133	-0.97561	-0.10062	-1.06E-04	0.00316
13-05	-1.57239	-2.01024	-1.93473	-0.52808	-1.09456	-0.93377	-0.12971	-1.64E-04	0.00346
14-05	-1.57223	-2.01015	-1.91959	-0.54281	-1.06655	-0.82129	-0.16081	-1.58E-04	0.01145
15-05	-1.57213	-2.00808	-1.89666	-0.36858	-1.01222	-0.69833	0.01043	0.00705	0.00619
16-05	-1.57213	-1.99741	-1.88042	-0.28262	-0.8778	-0.68777	0.00611	0.00402	0.00368
17-05	-1.57225	-1.98594	-1.85907	-0.26786	-0.86282	-0.68754	0.00446	0.0031	0.00232
18-05	-1.57244	-1.97461	-1.8469	-0.27032	-0.83384	-0.68921	0.00284	0.00539	0.00117
19-05	-1.57266	-1.97039	-1.83528	-0.27586	-0.75286	-0.69201	0.00167	0.00313	7 78E-05
20-05	-1.57289	-1.95752	-1.83283	-0.30061	-0.75058	-0.69306	4 85E-04	0.00182	0.00119
21-05	-1.57316	-1.93455	-1.823	-0.31552	-0.75028	-0.6911	-0.005	0.00101	0.00107
22-05	-1.57352	-1.92078	-1.8221	-0.33024	-0.73551	-0.69041	-0 1139	0.00369	-1 64E-04
23-05	-1 57401	-1.90738	-1.82049	-0.34466	-0.54556	-0.69173	-0.14027	0.00753	-0 1048
24-05	-1 57465	-1.86112	-1.81907	-0 34549	-0.46025	-0.6916	-0.14035	0.00473	-0.03234
25-05	-1 57543	-1 77728	-1.81098	-0.34401	-0.4553	88888 D-	-0.13888	0.00306	9.72E-04
26-05	-1.57627	-1 72311	-1.81043	-0.34255	-0.44452	-0.6822	-0.13792	0.00000	4 49E-04
27-05	-1.57709	-1.69655	-1 8093	-0.31524	-0.45657	-0.67448	0.00145	8 76E-04	-0.00279
28-05	-1 57777	-1.68085	-1 80795	-0.26782	-0.42453	-0.6753	0.00140	0.102.04	-0.09741
20-05	-1.57787	-1.66773	-1.80654	-0.20702	-0.42455	-0.67283	0.0022	0.00020	0.00741
30-05	-1.57662	-1.6/009	-1.79834	-0.22001	-0.38/33	-0.37126	0.00210	0.00203	0.00130
31-05	-1.56779	-1.63316	-1.79673	0.00862	0.00400	-0.37120	0.00104	0.0011	0.01202
01-05	-1.56534	-1.62079	-1.77912	0.00002	0.00227	-0.20137	0.01032	0.01000	0.00465
02-06	-1.56305	-1.61075	-1.77345	0.00325	0.00130	-0.2010	0.00342	0.00003	0.00403
02-00	1 65/10	1 6071	1.76051	0.00323	0.00200	0.20004	0.000000	0.00367	0.00007
0.100	1 E/1EE	1 EQG/Q	1 7/70/	0.00037	6 02E 04	0.27131	0.00007	0.00007	0.00221
04-00	1 60596	1 5959	1 7/39/	0.00007	0.020-04	0.27041	0.00415	0.00222	0.00100
00-00	-1.00000	-1.5050	-1.74304	0.00371	0.00117	-0.27 140	0.00235	0.00238	5 12 = 04
	-1.40243	-1.50200	-1.73307	0.00222	0.00204	-0.20475	0.00101 Q /1⊏ 04	0.0037	-0.00120
	1.40927	1 5/114	1 70010	0.00197	0.0041	-0.20015 0.27064	0.41E-04 0.0000	0.00403	-0.00150 1 50⊏ 04
	1 40901	1.04072	1 70024		0.00494	0.27204	0.0039	0.00520	-1.50E-04 € Q0⊏ 04
10.00	1 20027	1 40209	1 710/12	0.00594	0.00000	0.24995	0.00401	0.00577	0.99E-04
10-06	1.09937	1.20740	1 70000	0.00540	0.00322	-0.22959	0.0042	0.00362	0.00117
11-06	-1.36117	-1.36719	-1.70988	0.00518	0.00186	-0.21951	0.00353	0.00212	9.33E-04

				WATER 1	ABLE DEF	PTHS (m)			
DATE	S1	S2	S 3	S4	S5	S6	S7	S8	S 9
12-06	-1.32625	-1.34481	-1.70768	0.0042	0.00104	-0.21815	0.00278	0.00128	8.64E-04
13-06	-1.30054	-1.32676	-1.70512	0.00631	4.15E-04	-0.22323	0.00418	6.63E-04	-1.74E-04
14-06	-1.24943	-1.32438	-1.69645	0.00627	-9.65E-04	0.00584	0.00401	1.20E-04	0.00538
15-06	-1.20247	-1.32282	-1.69431	0.01357	0.00372	0.00334	0.01262	0.00975	0.00336
16-06	-1.15377	-1.32203	-1.68527	0.01189	0.00226	0.00183	0.009	0.00561	0.00198
17-06	-1.08327	-1.32173	-1.68504	0.00811	0.00114	0.00217	0.00514	0.00332	0.0024
18-06	-1.0421	-1.32178	-1.68411	0.00701	1.66E-04	9.97E-04	0.00468	0.00211	0.00125
19-06	-1.01665	-1.32214	-1.68331	0.00473	-0.00626	7.95E-04	0.00311	0.00109	0.00107
20-06	-1.00365	-1.32276	-1.68262	0.00321	-0.082	-6.84E-04	0.00209	0.00117	2.05E-04
21-06	-1.00097	-1.32349	-1.68202	0.00233	-0.08134	-0.10426	0.00138	9.57E-04	-0.00779
22-06	-0.9998	-1.32417	-1.68152	0.00137	-0.08225	-0.13856	5.18E-04	7.16E-04	-0.1168
23-06	-0.99956	-1.32461	-1.68114	0.001	0.00297	-0.16185	2.46E-04	0.00335	-0.13703
24-06	-0.99169	-1.32104	-1.67459	0.00386	0.00254	-0.15804	0.00272	0.00277	-0.13401
25-06	-0.96712	-1.30652	-1.67487	0.00427	0.00325	-0.16371	0.00321	0.00341	-0.14915
26-06	-0.94281	-1.2827	-1.675	0.00286	0.00227	-0.18741	0.00206	0.00238	-0.16466
27-06	-0.93935	-1.25968	-1.67517	0.0019	0.00161	-0.21217	0.00124	0.0017	-0.18883
28-06	-0.93598	-1.24769	-1.67541	0.00336	9.12E-04	-0.22719	0.0026	9.88E-04	-0.2134
29-06	-0.92105	-1.24492	-1.67573	0.0033	2.89E-04	-0.20629	0.00268	3.73E-04	-0.18749
30-06	-0.90155	-1.24321	-1.67613	0.00216	-0.00278	-0.1082	0.00169	-0.00195	-0.06318
01-07	-0.89654	-1.23607	-1.6765	0.00337	-0.0859	0.00119	0.00279	-0.05214	0.00135
02-07	-0.87667	-1.23606	-1.67637	0.00216	-0.08775	0.00139	0.00174	-0.08633	0.00155
03-07	-0.87082	-1.23606	-1.67502	0.0034	-0.11418	0.00216	0.00292	-0.11273	0.00229
04-07	-0.85748	-1.23621	-1.67201	0.00381	-0.14857	0.00174	0.00381	-0.14721	0.00185
05-07	-0.83454	-1.23656	-1.66102	0.00408	-0.15012	7.33E-04	0.00449	-0.14881	8.59E-04
06-07	-0.80698	-1.2362	-1.64931	0.00459	0.00428	-0.00241	0.00569	0.00431	-0.00124
07-07	-0.77267	-1.21069	-1.63048	0.00328	0.00301	-0.00332	0.00442	0.00303	-0.00325
08-07	-0.76886	-1.16335	-1.62946	0.0023	0.00654	0.00285	0.00323	0.00677	0.00295
09-07	-0.7605	-1.02273	-1.62457	0.0038	0.00666	0.00241	0.0055	0.0069	0.00259
10-07	-0.73685	-0.94843	-1.60219	0.0028	0.00418	0.00139	0.00427	0.00458	0.00154
11-07	-0.72586	-0.92243	-1.58623	0.00175	0.00366	0.00107	0.00292	0.00394	0.00121
12-07	-0.72593	-0.88499	-1.57242	0.00101	0.00424	0.00234	0.00195	0.00585	0.00245
13-07	-0.72479	-0.84396	-1.55269	0.00201	0.00329	0.00124	0.00319	0.00508	0.00134
14-07	-0.72035	-0.82387	-1.54088	0.00219	0.00385	5.92E-04	0.00345	0.00672	7 18E-04
15-07	-0.60326	-0.77888	-1.53615	0.002.10	0.00285	-0.00139	0.01341	0.00571	-3.21E-04
16-07	-0.45676	-0.77	-1.52636	0.01111	0.00271	-0.08794	0.01363	0.00559	-0.04735
17-07	-0.40966	-0.75122	-1.52384	0.00928	0.00161	-0.1211	0.00947	0.00399	-0.11398
18-07	-0.39933	-0.74623	-1 51588	0.00745	0.00238	-0.14906	83300.0	0.00523	-0 14168
19-07	-0.39415	-0.73091	-1 51495	0.00140	0.00200	-0 17432	0.00684	0.00646	-0 16445
20-07	-0.27681	-0.55959	-1 51441	0.00002	0.00000	-0.19862	0.00004	0.00040	-0.18805
20-07	-0.20237	-0 43725	-1 5142	0.01238	0.01053	-0 1341	0.00895	0.0138	-0 1246
27-07	0.20207	-0.40606	-1 51413	0.01525	0.00746	-0 1374	0.00000	0.0100	-0 12673
23-07	0.0027	-0.40639	-1 51399	0.01366	0.00140	-0.15801	0.01124	0.0000	-0.14886
24-07	0.00423	-0.38694	-1.51379	0.01300	0.00000	-0.13001	0.00763	0.00724	-0.179/9
24-07	0.000.04	-0.30034	-1.51364	0.01102	0.00730	-0.20747	0.00745	0.00000	-0.20/83
25-07	0.0040	-0.10795	-1.5136	0.01102	0.01177	-0.20747	0.00743	0.01232	-0.20403
20-07	22200.0	-0.10700	-1 51371	0.00000	0.00845	-0.23201	0.00020	0.00844	-0.22000
27-07	0.00000	0.00303	-1 51/01	0.00001	0.00040	-0.24774	0.00575	0.00044	-0.24403
20-07	0.00356	0.00104	-1.51401	0.00004	0.00740	-0.23410	0.00073	0.00731	-0.22001
20-07	0.00000	0.00765	1 51/70	0.0071	0.01273	0.22074	0.00413	0.01270	0.21300
31_07	0.00229	0.00703	-1.51473	0.00007	0.00301	-0.00230	0.00279	0.00304	7.66E-04
01_02	0.00117	0.00047	-1.504/6	0.00002	100000	-0.00000	0.00109	0.0001	-6.48E-04
01-00	0.00136	0.00491	-1.50445	0.0037	0.00004	-0.00304	0.00173	0.00007	-0.40E-04
02-00	0.00097	0.00337	-1.30214	0.00002	0.00423	0.10211	0.00622	0.00425	0.09407
03-08	0.00445	0.00214	1 40342	0.00717	0.00202	0.00211	0.00464	0.00203	0.00217
04-08	0.00294	9.92E-04	-1.40313	0.00528	0.00158	0.0027	0.00309	0.0016	0.00275

				WATER 1	TABLE DEF	PTHS (m)			
DATE	S1	S2	\$ 3	S4	S 5	S6	S 7	S8	S 9
05-08	0.00166	-0.00153	-1.46989	0.00368	3.85E-04	0.00189	0.00178	3.98E-04	0.00194
06-08	7.67E-04	-0.10673	-1.45459	0.00254	-0.00642	0.00295	8.99E-04	-0.00632	0.003
07-08	0.00329	-0.1427	-1.43831	0.0052	-0.13076	0.00206	0.00338	-0.13068	0.00211
08-08	0.00548	-0.17562	-1.41559	0.00762	-0.16268	0.00163	0.00557	-0.1626	0.00168
09-08	0.00657	0.00612	-1.40126	0.00919	0.00632	0.00615	0.00665	0.00633	0.00615
10-08	0.00448	0.00609	-1.33583	0.00714	0.00623	0.00379	0.00453	0.00625	0.00362
11-08	0.00305	0.00499	-1.28673	0.00543	0.00509	0.00332	0.00307	0.00511	0.00327
12-08	0.0019	0.00618	-1.26072	0.00403	0.00626	0.0023	0.00192	0.00628	0.00226
13-08	0.00114	0.00867	-1.24642	0.003	0.00875	0.00184	0.00115	0.0088	0.00183
14-08	6.63E-04	0.00603	-1.2345	0.00228	0.00611	0.00363	6.71E-04	0.00616	0.00335
15-08	-0.00326	0.00438	-1.19328	0.00117	0.00446	0.00437	-0.00319	0.0045	0.00423
16-08	-0.12215	0.00294	-1.15326	-0.0017	0.00301	0.00275	-0.12209	0.00305	0.00269
17-08	-0.14257	0.00491	-1.13608	-0.10388	0.00496	0.00169	-0.14236	0.00501	0.00165
18-08	-0.14512	0.00343	-1.12574	-0.10558	0.00348	7.31E-04	-0.14508	0.00352	6.89E-04
19-08	-0.0484	0.00257	-1.12398	0.00171	0.00262	-2.30E-04	-0.04986	0.00264	-5.25E-04
20-08	3.37E-04	0.00544	-1.11724	0.00185	0.00548	-0.09478	2.25E-04	0.00551	-0.0948
21-08	-0.00731	0.00421	-1.11761	5.71E-04	0.00425	-0.13018	-0.00832	0.00428	-0.13581
22-08	-0.11442	0.00481	-1.1183	-0.00159	0.00485	-0.15824	-0.11531	0.00487	-0.15778
23-08	0.01254	0.00455	-1.11936	0.01524	0.0046	-0.18076	0.01263	0.00461	-0.18016
24-08	0.00887	0.0055	-1.12024	0.01237	0.00555	-0.01315	0.00901	0.00557	-0.01343
25-08	0.00608	0.0045	-1.11745	0.00946	0.00456	-0.00147	0.0062	0.00458	-0.00143
26-08	0.00418	0.00517	-1.11434	0.00718	0.00522	-0.10114	0.00428	0.00523	-0.1011
27-08	0.00261	0.00335	-1.11295	0.00527	0.0034	-0.13591	0.0027	0.00342	-0.13583
28-08	0.00231	0.002	-1.11265	0.00468	0.00204	-0.16574	0.00238	0.00205	-0.16566
29-08	0.00323	0.00144	-1.11284	0.00547	0.00148	-0.13351	0.0033	0.00149	-0.133
30-08	0.00243	7.00E-04	-1.11205	0.00453	7.33E-04	0.0016	0.00249	7.40E-04	0.00159
31-08	0.00203	-0.00126	-1.10125	0.00395	-0.00101	0.00618	0.00209	-9.51E-04	0.00898
01-09	0.00131	-0.09693	-1.09165	0.01125	-5.31E-04	0.00352	0.01133	-5.25E-04	0.00508
02-09	0.00128	-0.09423	-1.0901	0.009	0.00171	0.00203	0.00837	0.00215	0.00303
03-09	2.10E-04	0.0103	-1.08954	0.00657	0.01204	0.00145	0.00567	0.01072	0.00219
04-09	-0.00152	0.00868	-1.08948	0.00512	0.00983	2.98E-04	0.00417	0.00904	9.69E-04
05-09	-0.10348	0.00589	-1.08968	0.00346	0.0067	0.00114	0.00257	0.00636	0.00165
06-09	-0.14635	0.00999	-1.08789	0.00195	0.01056	0.0031	0.00111	0.0103	0.00355
07-09	-0.17883	0.00892	-1.06477	6.07E-04	0.00929	0.00239	-0.00176	0.00915	0.00274
08-09	-0.20432	0.0063	-1.03739	-0.00537	0.00658	0.00154	-0.11445	0.00648	0.00181
09-09	-0.23213	0.00563	-1.03359	-0.14026	0.00584	0.00218	-0.16189	0.00578	0.00249
10-09	-0.26015	0.00386	-1.02142	-0.18519	0.00403	0.00217	-0.19895	0.00398	0.00256
11-09	-0.28692	0.00239	-1.00875	-0.2122	0.00252	9.57E-04	-0.22632	0.00249	0.00135
12-09	-0.31377	0.00367	-1.00654	-0.23972	0.00379	8.19E-04	-0.25368	0.00377	0.00116
13-09	-0.32955	0.00338	-1.00489	-0.26471	0.00344	3.89E-04	-0.27841	0.00343	6.94E-04
14-09	-0.34108	0.00271	-1.00409	-0.26543	0.00276	0.0063	-0.27948	0.00276	0.00933
15-09	0.00358	0.00154	-1.00408	0.01666	0.00841	0.00395	0.01744	0.01159	0.00591
16-09	0.00726	-8.09E-04	-1.0045	0.0175	0.00512	0.00263	0.01551	0.00733	0.00411
17-09	0.00534	-0.12174	-1.00526	0.01322	0.00327	0.00147	0.01065	0.00483	0.00259
18-09	0.00391	-0.13564	-1.00644	0.01033	0.00215	7.61E-04	0.00787	0.00328	0.00169
19-09	0.00197	-0.13528	-1.0079	0.00725	0.00186	-9.62E-04	0.00497	0.00282	7.99E-04
20-09	9.61E-04	-0 14027	-1.00973	0.00537	0.00125	-0 11948	0.00335	0.00202	-0.00616
21-09	0.0122	-0.16542	-1.0122	0.00572	1.57E-04	-0.15657	0.00386	9.34E-04	-0.13292
22-09	0.00457	-0.19111	-1.01412	0.00817	-0.00993	0.00182	0.00597	-0.00358	0.00229
23-09	0.00558	-0 2177	-1 01187	0.00904	-0 13475	0.00156	0.00653	-0 11615	0.00220
2000	0.00082	-0.25583	-1.00824	0.01412	-0 18694	0.00126	0.00000	-0.16365	0.00202
24 00	0.00745	-0.28314	-1.00535	0.01165	-0.21429	7.72E-04	0.01040	-0.20023	0.00174
25.09	0.00140	-0.20074	-1.00385	0.0087	-0.24048	-0.00891	0.00535	-0.22635	-0.00505
20.00	0.00313	-0.32509	-1.00389	0.00638	-0.25704	-0.13236	0.00343	-0.25208	-0.12312
2, 50	2.200.0	2.22000		2.20000	2.20,04	2	2.200.0	2.20200	

				WATER 1	ABLE DEP	THS (m)			
DATE	S1	S2	S 3	S4	S5	S6	S7	S8	S 9
28-09	0.00156	-0.34124	-1.00474	0.00434	-0.28241	-0.15229	0.00182	-0.26862	-0.14316
29-09	-0.00536	-0.35693	-0.99665	0.00212	-0.2979	0.00328	-0.00314	-0.29342	0.00431
30-09	-0.15947	-0.37198	-0.95848	-0.00219	-0.32274	0.00916	-0.15898	-0.30855	0.01326
01-10	-0.18537	-0.38801	-0.9342	-0.00434	0.0016	0.00515	0.01049	0.0092	0.00871
02-10	-0.21146	-0.41448	-0.92318	8.26E-04	6.29E-04	0.00312	0.00608	0.00486	0.00626
03-10	-0.23548	-0.43195	-0.92136	-7.12E-04	-0.01101	0.00134	0.00355	0.00222	0.00379
04-10	-0.12009	-0.43543	-0.92151	0.00373	-0.10381	-0.00691	0.00629	0.00206	0.00168
05-10	0.00548	-0.44575	-0.92309	0.01073	-0.10048	-0.15341	0.01014	0.00131	-0.00303
06-10	0.00381	-0.44623	-0.92588	0.00845	-0.10342	-0.18976	0.00687	0.00109	-0.14168
07-10	0.00274	-0.44897	-0.93617	0.00673	-0.12775	-0.22834	0.00515	-7.89E-04	-0.18725
08-10	5.76E-04	-0.46542	-0.9402	0.00421	-0.16675	-0.25337	0.00271	-0.12134	-0.21214
09-10	-0.01414	-0.47023	-0.95065	0.00198	-0.17973	-0.26815	4.73E-04	-0.13419	-0.22669
10-10	-0.16013	-0.48589	-0.96122	4.38E-04	-0.20523	-0.2841	-0.00855	-0.16553	-0.2528
11-10	-0.18523	-0.47991	-0.96461	-0.00781	-0.12236	-0.29912	-0.14014	-0.04825	-0.26778
12-10	-0.22285	-0.46232	-0.96859	-0.13479	-0.13616	-0.31366	-0.1859	-0.03573	-0.28204
13-10	-0.25295	-0.46626	-0.9733	-0.18746	-0.18927	-0.33917	-0.22434	-0.14921	-0.29821
14-10	-0.2907	-0.49723	-0.98393	-0.22573	-0.23954	-0.01708	-0.26292	-0.21404	0.00934
15-10	-0.31964	-0.51711	-0.99489	0.00743	0.00557	1.16E-04	0.00929	0.00992	0.00543
16-10	-0.34913	-0.53531	-0.99825	0.00385	0.00304	-0.0166	0.00458	0.0054	0.00242
17-10	-0.36386	-0.53648	-1.00864	0.00281	0.00307	-0.17177	0.00297	0.0045	4.12E-04
18-10	-0.37963	-0.43894	-1.02009	8.45E-04	0.006	-0.21967	0.00109	0.00687	-0.01703
19-10	-0.40655	-0.39392	-1.02549	-0.01021	0.00306	-0.25834	-0.00806	0.00391	-0.1815
20-10	-0.42545	-0.39937	-1.04314	-0.16972	7.06E-04	-0.27538	-0.1598	0.00131	-0.20704
21-10	-0.45408	-0.42707	-1.04656	-0.21783	-0.01398	-0.25551	-0.2079	-0.00868	-0.158
22-10	-0.48722	-0.45614	-1.04769	-0.25852	-0.18193	-0.21244	-0.25755	-0.17074	-0.09362
23-10	-0.50696	-0.47689	-1.04728	-0.28443	-0.22043	-0.21345	-0.2741	-0.20931	-0.11495
24-10	-0.52404	-0.50977	-1.04716	-0.29814	-0.26115	-0.24142	-0.2874	-0.25871	-0.16743
25-10	-0.52543	-0.53096	-1.04789	-0.29001	-0.29856	-0.27974	-0.28212	-0.28708	-0.21534
26-10	-0.52732	-0.55206	-1.04964	-0.2934	-0.32763	-0.30609	-0.29649	-0.3163	-0.23233
27-10	-0.54391	-0.57321	-1.05848	-0.321	-0.35762	-0.32398	-0.31484	-0.35538	-0.26009
28-10	-0.56283	-0.59471	-1.06146	-0.34787	-0.38592	-0.35241	-0.3414	-0.37466	-0.29764
29-10	-0.57003	-0.61535	-1.07161	-0.3664	-0.41381	-0.38146	-0.36923	-0.4025	-0.32711
30-10	-0.58887	-0.61839	-1.08276	-0.39474	-0.41182	-0.41089	-0.38842	-0.4004	-0.35744
31-10	-0.6107	-0.61709	-1.09439	-0.4251	-0.40231	-0.24477	-0.42778	-0.39231	0.00646
01-11	-0.63148	-0.61418	-1.09901	-0.22809	0.00376	-0.19387	0.00595	0.00769	0.00293
02-11	-0.64466	-0.61297	-1.11078	-0.15068	0.0019	-0.24305	0.00313	0.00411	9.86E-06
03-11	-0.6636	-0.6157	-1.12283	-0.18645	-0.00175	-0.27023	0.00128	0.00165	-0.01295
04-11	-0.66907	-0.6344	-1.12837	-0.20108	-0.15893	-0.28391	3.31E-04	-0.0086	-0.12839
05-11	-0.68068	-0.64259	-1.1338	-0.22522	-0.2165	-0.31119	-0.00556	-0.18389	-0.17717
06-11	-0.69269	-0.66285	-1.14531	-0.25343	-0.23266	-0.34038	-0.14648	-0.19769	-0.22525
07-11	-0.70572	-0.67522	-1.15672	-0.28189	-0.24496	-0.37027	-0.19231	-0.20974	-0.26537
08-11	-0.71942	-0.67808	-1.16879	-0.32127	-0.24158	-0.39996	-0.23247	-0.20589	-0.30464
09-11	-0.74089	-0.68751	-1.17417	-0.35369	-0.24527	-0.4302	-0.28341	-0.21034	-0.33596
10-11	-0.76278	-0.69035	-1.19201	-0.40463	-0.27374	-0.46083	-0.33521	-0.24829	-0.37676
11-11	-0.77094	-0.70198	-1.19726	-0.43454	-0.31107	-0.49532	-0.3651	-0.27701	-0.40814
12-11	-0.79146	-0.71486	-1.20902	-0.45342	-0.33991	-0.53021	-0.39347	-0.31482	-0.4493
13-11	-0.81146	-0.7347	-1.22091	-0.48585	-0.37042	-0.55452	-0.42285	-0.34546	-0.48527
14-11	-0.81885	-0.75593	-1.23259	-0.50725	-0.40132	-0.47243	-0.44315	-0.37715	-0.01428
15-11	-0.83932	-0.76398	-1.24371	-0.37647	-0.23568	-0.41268	0.00518	0.00673	-0.02724
16-11	-0.85255	-0.78431	-1.25515	-0.31656	-0.18348	-0.41792	0.00183	0.00337	-0.14242
17-11	-0.86655	-0.79868	-1.26653	-0.34824	-0.23229	-0.4361	-0.01181	5.20E-04	-0.18755
18-11	-0.88711	-0.81891	-1.27079	-0.39031	-0.27314	-0.46665	-0.19921	-0.0209	-0.23675
19-11	-0.9084	-0.8331	-1.28105	-0.43246	-0.30197	-0.40592	-0.25806	-0.19035	0.00292
20-11	-0.91587	-0.84639	-1.28113	-0.46656	-0.34204	-0.36917	-0.29947	-0.23068	9.29E-04

				WATER 1	ABLE DEF	PTHS (m)			
DATE	S1	S2	S 3	S4	S5	S6	S7	S8	S 9
21-11	-0.93663	-0.86063	-1.27783	-0.48794	-0.38326	-0.37661	-0.32769	-0.28192	-0.01136
22-11	-0.94937	-0.87548	-1.27571	-0.50735	-0.41515	-0.4048	-0.34547	-0.32339	-0.17114
23-11	-0.95391	-0.89568	-1.27499	-0.5258	-0.44617	-0.4328	-0.37146	-0.36394	-0.20797
24-11	-0.96514	-0.9156	-1.27516	-0.545	-0.47721	-0.45007	-0.38921	-0.39392	-0.23366
25-11	-0.97663	-0.91328	-1.27572	-0.56532	-0.49652	-0.47037	-0.41704	-0.41089	-0.27403
26-11	-0.98821	-0.92045	-1.27708	-0.58376	-0.51384	-0.50329	-0.43495	-0.42612	-0.31444
27-11	-0.99328	-0.92029	-1.27893	-0.6012	-0.53065	-0.53853	-0.4481	-0.43931	-0.35645
28-11	-0.99777	-0.92531	-1.28272	-0.60565	-0.53423	-0.56155	-0.4645	-0.45314	-0.3889
29-11	-1.00868	-0.9377	-1.29349	-0.62472	-0.5514	-0.5841	-0.48361	-0.47042	-0.42991
30-11	-1.01385	-0.94956	-1.2983	-0.64469	-0.55848	-0.47664	-0.50514	-0.48809	0.00643
01-12	-1.02638	-0.96135	-1.30771	-0.56992	-0.47236	-0.32158	-0.0642	-0.00721	0.00601
02-12	-1.04506	-0.97332	-1.30915	-0.49883	-0.4042	-0.30161	-0.10842	-0.02033	0.00261
03-12	-1.05817	-0.98561	-1.30927	-0.50426	-0.42089	-0.31932	-0.18777	-0.15752	9.65E-04
04-12	-1.07086	-0.9983	-1.30906	-0.53665	-0.45064	-0.24375	-0.23707	-0.21658	0.00323
05-12	-1.08279	-1.01144	-1.30564	-0.55802	-0.48521	-0.23455	-0.27807	-0.26808	0.00106
06-12	-1.09534	-1.02501	-1.29444	-0.579	-0.52078	-0.27245	-0.31746	-0.31937	-0.00831
07-12	-1.10758	-1.04437	-1.29197	-0.60184	-0.54381	-0.30077	-0.34953	-0.35112	-0.16011
08-12	-1.11986	-1.05765	-1.29089	-0.62388	-0.56588	-0.33158	-0.38815	-0.39045	-0.20898
09-12	-1.13207	-1.07015	-1.29105	-0.64412	-0.59928	-0.3715	-0.40718	-0.42079	-0.2584
10-12	-1.13699	-1.0822	-1.29242	-0.66457	-0.62243	-0.4018	-0.42149	-0.4524	-0.29893
11-12	-1.13982	-1.09443	-1.29501	-0.6647	-0.64589	-0.43339	-0.42069	-0.48796	-0.34013
12-12	-1.14096	-1.10716	-1.29868	-0.66615	-0.66927	-0.47601	-0.42249	-0.52287	-0.37257
13-12	-1.14146	-1.11941	-1.30869	-0.66942	-0.68603	-0.49954	-0.43735	-0.54515	-0.41309
14-12	-1.14292	-1.13149	-1.32003	-0.68082	-0.70137	-0.42047	-0.45489	-0.56585	0.00584
15-12	-1.15234	-1.13653	-1.32461	-0.61362	-0.64891	-0.35769	0.0049	-0.23959	0.00214
16-12	-1.16321	-1.14469	-1.34191	-0.53659	-0.56602	-0.38763	0.00199	-0.15064	-0.01055
17-12	-1.16827	-1.14786	-1.34619	-0.53992	-0.56642	-0.41874	-0.01099	-0.21055	-0.18932
18-12	-1.17979	-1.15991	-1.35764	-0.56105	-0.58421	-0.44902	-0.1983	-0.26126	-0.22621
19-12	-1.19734	-1.17239	-1.36173	-0.58383	-0.60572	-0.47647	-0.2491	-0.30077	-0.24095
20-12	-1.20288	-1.17818	-1.36588	-0.62054	-0.61212	-0.49561	-0.29917	-0.31447	-0.2707
21-12	-1.21484	-1.18172	-1.37632	-0.64326	-0.62888	-0.51573	-0.32948	-0.31722	-0.30869
22-12	-1.22649	-1.19769	-1.3801	-0.65139	-0.63417	-0.53707	-0.35782	-0.34486	-0.33865
23-12	-1.23769	-1.20031	-1.39029	-0.67242	-0.65407	-0.55938	-0.3869	-0.37488	-0.3787
24-12	-1.24905	-1.20378	-1.40093	-0.6871	-0.66663	-0.59539	-0.41401	-0.38881	-0.4092
25-12	-1.26093	-1.20572	-1.40476	-0.70114	-0.67024	-0.61666	-0.43359	-0.39238	-0.43973
26-12	-1.2646	-1.20719	-1.41507	-0.72879	-0.68203	-0.63953	-0.46281	-0.41887	-0.47198
27-12	-1.27561	-1.21602	-1.42557	-0.73742	-0.69556	-0.66256	-0.49762	-0.44814	-0.50627
28-12	-1.28685	-1.21903	-1.42954	-0.75885	-0.70792	-0.67158	-0.53208	-0.4667	-0.52836
29-12	-1.29775	-1.22684	-1.43957	-0.77977	-0.71906	-0.69383	-0.55443	-0.47167	-0.54978
30-12	-1.30247	-1.22825	-1.44995	-0.79438	-0.73931	-0.70887	-0.57599	-0.50299	-0.57112
	-1.31338	-1.23156	-1.45371	-0.80854	-0.74491	-0.72516	-0.59764	-0.52532	-0.60426

				WATER T	ABLE DEP	PTHS (m)			
DATE	S10	S11	S12	S13	S14	S15	S16	S17	S18
01-01	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4
02-01	-1.39871	-1.39872	-1.39871	-1.39804	-1.39807	-1.39799	-1.38116	-1.38839	-1.38099
03-01	-1.39682	-1.39686	-1.39681	-1.34452	-1.35262	-1.3434	-1.19633	-1.20763	-1.19236
04-01	-1.39578	-1.39608	-1.39588	-1.30432	-1.3076	-1.3035	-1.15686	-1.16504	-1.15319
05-01	-1.38949	-1.39643	-1.39595	-1.28948	-1.29402	-1.28279	-1.14493	-1.15416	-1.1423
06-01	-1.39	-1.39777	-1.39697	-1.27975	-1.29163	-1.28098	-1.14278	-1.1539	-1.14232
07-01	-1.39055	-1.39993	-1.39891	-1.278	-1.29148	-1.28095	-1.1422	-1.1557	-1.14432
08-01	-1.39142	-1.40274	-1.40155	-1.2776	-1.29293	-1.28247	-1.14299	-1.15903	-1.1477
09-01	-1.39279	-1.41243	-1.4047	-1.27829	-1.29557	-1.28515	-1.14496	-1.16943	-1.15763
10-01	-1.40106	-1.41566	-1.41436	-1.27986	-1.299	-1.29477	-1.14783	-1.17407	-1.16824
11-01	-1.40304	-1.4253	-1.42433	-1.28208	-1.30867	-1.2983	-1.15122	-1.18465	-1.18791
12-01	-1.40564	-1.42897	-1.42762	-1.28488	-1.3129	-1.30826	-1.16086	-1.20163	-1.18417
13-01	-1.41472	-1.43889	-1.43756	-1.29407	-1.32353	-1.31258	-1.16517	-1.20621	-1.20097
14-01	-1.41786	-1.44887	-1.44123	-1.2977	-1.34122	-1.32277	-1.1764	-1.21758	-1.20039
15-01	-1.42735	-1.45251	-1.45091	-1.30736	-1.3441	-1.31663	-1.17516	-1.21871	-1.03914
16-01	-1.43778	-1.46222	-1.45475	-1.30116	-1.34116	-1.29272	-1.01924	-1.0727	-1.01531
17-01	-1.44073	-1.46627	-1.46434	-1.27823	-1.31934	-1.28175	-0.99809	-1.04776	-1.01467
18-01	-1.45051	-1.47659	-1.47503	-1.26714	-1.30827	-1.28047	-0.99781	-1.04662	-1.01704
19-01	-1.45428	-1.47987	-1.47837	-1.26583	-1.30708	-1.281	-0.99941	-1.04864	-1.02104
20-01	-1.46408	-1.49644	-1.49476	-1.26614	-1.30772	-1.28277	-1.00275	-1.05241	-1.04048
21-01	-1.46715	-1.5001	-1.49772	-1.22467	-1.30981	-1.2855	-0.85902	-1.06357	-1.04304
22-01	-1.03383	-1.51081	-1.5012	-0.65684	-1.313	-1.2952	-0.29278	-1.07535	-1.04796
23-01	-0.85316	-1.5141	-1.51116	-0.62749	-1.32304	-1.29849	-0.45415	-1.08708	-1.05947
24-01	-0.85137	-1.52377	-1.51436	-0.72188	-1.32693	-1.30828	-0.61399	-1.0986	-1.07063
25-01	-0.88168	-1.52719	-1.524	-0.75129	-1.34317	-1.31216	-0.65488	-1.10998	-1.08172
26-01	-0.9165	-1.53684	-1.52712	-0.81771	-1.34668	-1.32232	-0.74876	-1.11478	-1.09249
27-01	-0.93935	-1.54019	-1.53662	-0.87488	-1.35049	-1.32638	-0.82735	-1.125	-1.09697
28-01	-0.96533	-1.54956	-1.53972	-0.9107	-1.36004	-1.34265	-0.87889	-1.13488	-1.1083
29-01	-0.97891	-1.5526	-1.54904	-0.94897	-1.37066	-1.34637	-0.92543	-1.14701	-1.11949
30-01	-0.99563	-1.56194	-1.55219	-0.97095	-1.37339	-1.35784	-0.94852	-1.15159	-1.13095
31-01	-1.00775	-1.56508	-1.56169	-0.98409	-1.38341	-1.36068	-0.96801	-1.1627	-1.11966
01-02	-1.02034	-1.57446	-1.56499	-0.99676	-1.38695	-1.35708	-0.93018	-1.16024	-0.94945
02-02	-1.03297	-1.57763	-1.57423	-0.95233	-1.39078	-1.33303	-0.82275	-0.99048	-0.95227
03-02	-1.05101	-1.5867	-1.58413	-0.94789	-1.3669	-1.32039	-0.8555	-0.97849	-0.95061
04-02	-1.06384	-1.58995	-1.58642	-0.95805	-1.35423	-1.31153	-0.86546	-0.97434	-0.96191
05-02	-1.07627	-1.59881	-1.59628	-0.96998	-1.35157	-1.31124	-0.90202	-0.98304	-0.97415
06-02	-1.0879	-1.60206	-1.59862	-0.98734	-1.35002	-1.31229	-0.93589	-0.99261	-0.99083
07-02	-1.09267	-1.61091	-1.60199	-0.99862	-1.3504	-1.31436	-0.96135	-1.00328	-1.0016
08-02	-1.10449	-1.61421	-1.61107	-1.01006	-1.35196	-1.31713	-0.97967	-1.01547	-1.01346
09-02	-1 11599	-1.62398	-1.61438	-1.02195	-1.35451	-1.32662	-0.9975	-1.02797	-1.02544
10-02	-1.12738	-1.62716	-1.62403	-1.03386	-1.35777	-1.33014	-1.01025	-1.04735	-1.04433
11-02	-1 1391	-1.64347	-1.62715	-1.05197	-1.36773	-1.34618	-1.02272	-1.05184	-1 04911
12-02	-1 1506	-1.64564	-1.64339	-1.05752	-1.37874	-1.34992	-1.04199	-1.06423	-1.06141
13-02	-1 16232	-1 64863	-1 64544	-1.0691	-1 38169	-1 36141	-1.04651	-1.07616	-1.07369
14-02	-1 16647	-1.6518	-1.64831	-1.07335	-1 39161	-1 36421	-1.05062	-1.08816	-1 04976
15-02	-1 16877	-1.66118	-1.65136	-1 0714	-1 39537	-1 36161	-0.97921	-1.06611	-0.89818
16-02	-1 1704	-1 66415	-1.66091	-0.9929	-1 40037	-1.34577	-0.83867	-0.90896	-0.91356
17-02	-1 17913	-1.67323	-1.66372	-0.97949	-1.37794	-1.32812	-0.86367	-0.92256	-0.91559
18-02	-1 1822	-1.67609	-1 67295	-0.97504	-1.37316	-1.32608	-0.86932	-0.92393	-0.93615
19-02	-1 1983	-1.68506	-1.67567	-0.98355	-1.3645	-1.32565	-0.9046	-0.94433	-0.95531
20-02	-1 20185	-1 68791	-1 68491	-0.98766	-1.36422	-1.32641	-0.92798	-0.96967	-0.97931
20.02	-1 20594	-1 69695	-1 68747	-0.99767	-1.36531	-1.32818	-0 9592	-0.98812	-0.99122
27.02	-1 21639	-1 69977	-1 69675	-1.00857	-1.36749	-1.33075	-0.9735	-1.00515	-1 00245
22-02	-1 22698	-1 70929	-1 69907	-1.02005	-1.37756	-1.34692	-0.99096	-1.01815	-1 01569
20.02			1.00001		1.011.00	1.04002	0.00000		

				WATER 1	ABLE DEP	PTHS (m)			
DATE	S10	S11	S12	S13	S14	S15	S16	S17	S18
24-02	-1.2381	-1.71205	-1.70184	-1.03221	-1.37991	-1.34983	-1.00309	-1.03091	-1.0275
25-02	-1.24211	-1.72108	-1.71082	-1.03736	-1.38952	-1.35327	-1.00941	-1.04958	-1.04493
26-02	-1.25249	-1.72377	-1.71355	-1.04127	-1.39276	-1.36343	-1.01365	-1.05258	-1.04939
27-02	-1.25446	-1.73297	-1.72237	-1.05776	-1.4026	-1.36685	-1.02446	-1.05741	-1.06135
28-02	-1.26461	-1.73535	-1.725	-1.06221	-1.40605	-1.37668	-1.04238	-1.06881	-1.0236
01-03	-1.26804	-1.73817	-1.73397	-1.0642	-1.41575	-1.37356	-1.0164	-1.04288	-0.88257
02-03	-1.27824	-1.74662	-1.73643	-1.01399	-1.41363	-1.3507	-0.89327	-0.88605	-0.8995
03-03	-1.28928	-1.74931	-1.7392	-0.99897	-1.38996	-1.3323	-0.89124	-0.90072	-0.90165
04-03	-1.29267	-1.75802	-1.74763	-0.99318	-1.37706	-1.33042	-0.91142	-0.90771	-0.92869
05-03	-1.30299	-1.7605	-1.75039	-0.99439	-1.36709	-1.33029	-0.93227	-0.92239	-0.9549
06-03	-1.30704	-1.76319	-1.75923	-0.99692	-1.36619	-1.33158	-0.95605	-0.94837	-0.97413
07-03	-1.31708	-1.77215	-1.76179	-1.00554	-1.36626	-1.33443	-0.96962	-0.96876	-0.9919
08-03	-1.32809	-1.77476	-1.76469	-1.01559	-1.36732	-1.34963	-0.98159	-0.98172	-1.00918
09-03	-1.33143	-1.7774	-1.77377	-1.01995	-1.36922	-1.35256	-0.99742	-0.99823	-1.02262
10-03	-1.34792	-1.7953	-1.7765	-1.03098	-1.37826	-1.35593	-1.00937	-1.01069	-1.02721
11-03	-1.35116	-1.7956	-1.77868	-1.04851	-1.38083	-1.36586	-1.02128	-1.02309	-1.04486
12-03	-1.35496	-1.7978	-1.79454	-1.05326	-1.39042	-1.36937	-1.02658	-1.04178	-1.04997
13-03	-1.36529	-1.80019	-1.79666	-1.06532	-1.39357	-1.3794	-1.04432	-1.04689	-1.06174
14-03	-1.37593	-1.80264	-1 79904	-1.07664	-1.40349	-1.38957	-1.04926	-1.05958	-1.03499
15-03	-1.37876	-1.8113	-1 80149	-1.07771	-1 40714	-1.3861	-1.02479	-1.03519	-0.8786
16-03	-1.38856	-1.81356	-1.80398	-1.01921	-1 4126	-1.35386	-0.89445	-0.88404	-0.88613
17-03	-1.39203	-1.8225	-1.80645	-0.99777	-1.39159	-1.33369	-0.89309	-0.90038	-0.88793
18-03	-1 40184	-1.82438	-1.81495	-0.99739	-1.38579	-1.33013	-0.91086	-0.90809	-0.92097
19-03	-1 41211	-1.82671	-1.81716	-0.99877	-1.37688	-1.32859	-0.93675	-0.92927	-0.93686
20-03	-1.41539	-1.83514	-1.82598	-1.00169	-1.37593	-1.32837	-0.95696	-0.95467	-0.95562
21-03	-1.42515	-1.83733	-1.82771	-1.00457	-1.37623	-1.3291	-0.96914	-0.97375	-0.97354
22-03	-1.4279	-1.83972	-1.82986	-1.01251	-1.37758	-1.33064	-0.98329	-0.99185	-0.99022
23-03	-1.43004	-1.84803	-1.83839	-1.0125	-1.3798	-1.33284	-0.98657	-1.00312	-1.00081
24-03	-1.43743	-1.85029	-1.84026	-1.01414	-1.38263	-1.3503	-0.99459	-1.00933	-1.01146
25-03	-1.43895	-1.85902	-1.8424	-1.01683	-1.38555	-1.35056	-0.99743	-1.01432	-1.02222
26-03	-1.44083	-1.86098	-1.8511	-1.02665	-1.38848	-1.35333	-1.00662	-1.02597	-1.02682
27-03	-1.44918	-1.86315	-1.85292	-1.03058	-1.39745	-1.35649	-1.01816	-1.03077	-1.04377
28-03	-1.45132	-1.87132	-1.85504	-1.0471	-1.40062	-1.3666	-1.02204	-1.04809	-1.04862
29-03	-1.45423	-1.87321	-1.86344	-1.05154	-1.41031	-1.36991	-1.03305	-1.05318	-1.06068
30-03	-1.46307	-1.87529	-1.86536	-1.06283	-1.4201	-1.37956	-1.05059	-1.06477	-1.0222
31-03	-1.46625	-1.88333	-1.86747	-1.06322	-1.42311	-1.37565	-1.01611	-1.05093	-0.88302
01-04	-1.4758	-1.88516	-1.87581	-0.98959	-1.42118	-1.35082	-0.88306	-0.91634	-0.89158
02-04	-1.47867	-1.88722	-1.87778	-0.98236	-1.40359	-1.33147	-0.87655	-0.90698	-0.89351
03-04	-1.48167	-1.89558	-1.87996	-0.97719	-1.38302	-1.32836	-0.89742	-0.92512	-0.92046
04-04	-1.49748	-1.8972	-1.88799	-0.97969	-1.38023	-1.32069	-0.92885	-0.93941	-0.946
05-04	-1.50031	-1.89928	-1.88996	-0.98814	-1.37856	-1.32196	-0.94452	-0.9572	-0.96585
06-04	-1.50336	-1.90144	-1.89214	-0.9966	-1.37144	-1.3233	-0.96225	-0.97432	-0.97857
07-04	-1.51285	-1.90929	-1.90027	-1.00598	-1.37247	-1.32522	-0.97877	-0.99141	-0.98949
08-04	-1.51555	-1.91134	-1.90217	-1.00934	-1.37382	-1.32791	-0.98938	-1.00142	-1.00489
09-04	-1.52492	-1.91351	-1.9043	-1.01918	-1.37567	-1.34271	-0.99871	-1.00625	-1.01
10-04	-1.52744	-1.92211	-1.91258	-1.02283	-1.38319	-1.34502	-1.00872	-1.00941	-1.02062
11-04	-1.5366	-1.92395	-1.91425	-1.04	-1.38459	-1.34788	-1.01269	-1.01287	-1.02527
12-04	-1.53891	-1.92595	-1.91633	-1.04234	-1.38632	-1.35112	-1.02271	-1.02291	-1.04224
13-04	-1.54161	-1.92782	-1.91847	-1.04577	-1.39462	-1.36064	-1.02646	-1.02708	-1.04669
14-04	-1.55043	-1.93659	-1.92066	-1.05617	-1.39663	-1.36383	-1.04265	-1.04313	-1.02026
15-04	-1.55304	-1.938	-1.92289	-1.05487	-1.3983	-1.35573	-1.0034	-0.94591	-0.84671
16-04	-1.56208	-1.93961	-1.92512	-0.98161	-1.36635	-1.31314	-0.87343	-0.81123	-0.87276
17-04	-1.5646	-1.94123	-1.93463	-0.96522	-1.32739	-1.29773	-0.86255	-0.837	-0.8818
18-04	-1.57381	-1.94917	-1.9359	-0.96664	-1.30444	-1.28721	-0.8956	-0.83583	-0.90375

				WATER T	ABLE DEP	THS (m)			
DATE	S10	S11	S12	S13	S14	S15	S16	S17	S18
19-04	-1.57615	-1.95035	-1.93768	-0.97605	-1.29232	-1.28595	-0.91845	-0.87271	-0.92986
20-04	-1.57895	-1.95156	-1.93954	-0.98548	-1.2897	-1.2856	-0.94327	-0.90837	-0.94883
21-04	-1.58772	-1.95274	-1.948	-0.98914	-1.28862	-1.28606	-0.96198	-0.92976	-0.9663
22-04	-1.59055	-1.95389	-1.94962	-0.99769	-1.28855	-1.28721	-0.97376	-0.95075	-0.98353
23-04	-1.59924	-1.96127	-1.95137	-1.0067	-1.28919	-1.28907	-0.98394	-0.96337	-0.99405
24-04	-1.6019	-1.96216	-1.95967	-1.00991	-1.29038	-1.29147	-0.99306	-0.97964	-1.00401
25-04	-1.6114	-1.9632	-1.96108	-1.01931	-1.29203	-1.29417	-1.00113	-0.99028	-1.00825
26-04	-1.61312	-1.96434	-1.96279	-1.02239	-1.29415	-1.29695	-1.01076	-0.99954	-1.01198
27-04	-1.61572	-1.96555	-1.96455	-1.02598	-1.29664	-1.30589	-1.01401	-1.00375	-1.01573
28-04	-1.62492	-1.96683	-1.96634	-1.04176	-1.29892	-1.30824	-1.02438	-1.00637	-1.02613
29-04	-1.62712	-1.97408	-1.9754	-1.04539	-1.30092	-1.31125	-1.02815	-1.01457	-1.02981
30-04	-1.62959	-1.9752	-1.9759	-1.05692	-1.30903	-1.32001	-1.04482	-1.01704	-0.99587
01-05	-1.64678	-1.9764	-1.97749	-1.0227	-1.30998	-1.29641	-0.88796	-0.9442	-0.86857
02-05	-1.64711	-1.97763	-1.97918	-0.89052	-1.27404	-1.26056	-0.80236	-0.81996	-0.85807
03-05	-1.64864	-1.97889	-1.98719	-0.86803	-1.23739	-1.24759	-0.78518	-0.84187	-0.89152
04-05	-1.64942	-1.98607	-1.98849	-0.88685	-1.22372	-1.24471	-0.79724	-0.84158	-0.91327
05-05	-1.64946	-1.98716	-1.9901	-0.91841	-1.21451	-1.23732	-0.83139	-0.87891	-0.93375
06-05	-1.64913	-1.98838	-1.99178	-0.93268	-1.21399	-1.23328	-0.87338	-0.91184	-0.91116
07-05	-1.64871	-1.98964	-1.9994	-0.9511	-1.21421	-1.12412	-0.90662	-0.9338	-0.82343
08-05	-1.64836	-1.99097	-2.0002	-0.96234	-1.21501	-1.07651	-0.93693	-0.95229	-0.8146
09-05	-1.6481	-1.99826	-1.99833	-0.97135	-1.21634	-1.0382	-0.9493	-0.96959	-0.84033
10-05	-1.64786	-1.9995	-1.98598	-0.97438	-1.21786	-1.03244	-0.95952	-0.9844	-0.86282
11-05	-1.64759	-2.00089	-1.97164	-0.9822	-1.217	-1.0185	-0.96918	-0.97573	-0.88036
12-05	-1.64735	-2.00232	-1.95708	-0.98994	-1.19161	-0.99939	-0.97788	-0.93049	-0.89554
13-05	-1.64714	-2.01024	-1.93473	-0.99133	-1.13142	-0.97656	-0.98075	-0.89241	-0.89186
14-05	-1.64696	-2.01015	-1.91959	-0.99287	-1.0953	-0.89133	-0.98826	-0.88162	-0.67919
15-05	-1.64683	-2.00808	-1.89666	-0.97535	-1.04808	-0.7957	-0.88067	-0.72293	-0.7374
16-05	-1.63178	-1.99741	-1.88042	-0.88979	-0.93593	-0.81389	-0.78649	-0.74465	-0.73329
17-05	-1.646	-1.98594	-1.85907	-0.87996	-0.9227	-0.85193	-0.80727	-0.7475	-0.74935
18-05	-1.6461	-1.97461	-1.8469	-0.89672	-0.9111	-0.88712	-0.80654	-0.70565	-0.80383
19-05	-1.64624	-1.97039	-1.83528	-0.91625	-0.86842	-0.91889	-0.83927	-0.72633	-0.85482
20-05	-1.6464	-1.95751	-1.83283	-0.93566	-0.88066	-0.94269	-0.8754	-0.7805	-0.8899
21-05	-1.6466	-1.93455	-1.823	-0.94837	-0.90182	-0.9534	-0.90821	-0.83166	-0.9144
22-05	-1 64686	-1.92078	-1.8221	-0.96448	-0.9103	-0.96263	-0.93315	-0.85553	-0.93141
23-05	-1.64721	-1.90738	-1 82049	-0.97512	-0.81424	-0.97175	-0.95101	-0.76508	-0.94834
24-05	-1.64768	-1.86112	-1.81906	-0.98442	-0.75473	-0.97493	-0.96735	-0.72224	-0.95948
25-05	-1 64742	-1 77728	-1.81098	-0.9874	-0.78816	-0.98049	-0.9777	-0.77139	-0.96735
26-05	-1.64723	-1.72311	-1.81043	-0.99425	-0.83773	-0.97976	-0.98591	-0.81612	-0.96752
27-05	-1 64788	-1.69655	-1 8093	-0.99494	-0.86848	-0.97996	-0.9872	-0.8578	-0.96891
28-05	-1 64849	-1.68086	-1.80796	-0.99054	-0.89699	-0.98144	-0.98328	-0.88795	-0.97155
29-05	-1.64876	-1.66773	-1.80655	-0.97273	-0.89582	-0.98284	-0.97104	-0.88799	-0.97905
30-05	-1 64809	-1.64009	-1 79834	-0.96289	-0.9129	-0.88079	-0.95734	-0.90482	-0.7166
31-05	-1.63149	-1.63315	-1 79673	-0.91339	-0.88069	-0.7669	-0.84248	-0.82605	-0.6987
01-06	-1.63098	-1.62079	-1 77911	-0.82951	-0.8068	-0 79148	-0.73033	-0 71164	-0.72939
02-06	-1.62918	-1.61075	-1 77344	-0.83922	-0.8097	-0.82887	-0.75775	-0.76162	-0 73749
03-06	-1.62743	-1.60709	-1.76052	-0.83395	-0.82569	-0.86991	-0.7602	-0.75566	-0.78969
00.00	-1 62187	-1 59649	-1 74794	-0.79855	-0.84944	-0.89237	-0.75538	-0 79468	-0.83932
05-06	-1.58812	-1 5858	-1 74384	-0.82145	-0.88323	-0.91737	-0 78844	-0.83823	-0.88002
30-30	-1.56358	-1.58206	-1 73387	-0.85699	-0.89657	-0.93131	-0.83889	-0.86135	-0.90281
00-00	-1 54966	-1 57087	-1 7308	-0.89139	-0.88341	-0.94804	-0.88024	-0.85185	-0.00201
80-90 80-80	-1 53842	-1.53834	-1 72218	-0 90109	-0.84772	-0.95827	-0.89385	-0.82858	-0.027.02
30-00 30_PD	-1 52441	-1 47563	-1 72031	-0.87977	-0.80712	-0.97047	-0.86824	-0.79176	-0.95313
10-06	-1 48292	-1 40423	-1 718/3	-0.07377	-0.78635	-0.07047	-0.00024	-0.778/5	-0.00010
11_06	-1 4/951	-1 36519	-1 70988	-0.85667	-0.81617	_0.97032	-0.8/91/	_0 80979	-0.00470
00-11	-1.44001	-1.50510	-1.r0300	-0.00007	-0.01017	-0.57027	-0.04914	-0.00979	-0.00007

				WATER T	ABLE DEP	PTHS (m)			
DATE	S10	S11	S12	S13	S14	S15	S16	S17	S18
12-06	-1.41303	-1.33483	-1.70768	-0.86065	-0.85371	-0.97059	-0.85486	-0.851	-0.9628
13-06	-1.38811	-1.33167	-1.70512	-0.86564	-0.88816	-0.97182	-0.86453	-0.88564	-0.96501
14-06	-1.33792	-1.32892	-1.69645	-0.85217	-0.92488	-0.9397	-0.85107	-0.91694	-0.83827
15-06	-1.29858	-1.32734	-1.69431	-0.72504	-0.90822	-0.85543	-0.55036	-0.8046	-0.73342
16-06	-1.25068	-1.32075	-1.68527	-0.6172	-0.83313	-0.85762	-0.4839	-0.76314	-0.78589
17-06	-1.16883	-1.32078	-1.68504	-0.64243	-0.84247	-0.88501	-0.54531	-0.77369	-0.79698
18-06	-1.13763	-1.32093	-1.68411	-0.70532	-0.86785	-0.90442	-0.60251	-0.78321	-0.8343
19-06	-1.10419	-1.32134	-1.68331	-0.75471	-0.90051	-0.91841	-0.68279	-0.82988	-0.86624
20-06	-1.0903	-1.32198	-1.68262	-0.8053	-0.92584	-0.93558	-0.76124	-0.87304	-0.89852
21-06	-1.0804	-1.32272	-1.68202	-0.85206	-0.94301	-0.95222	-0.81763	-0.9053	-0.91968
22-06	-1.07913	-1.32341	-1.68152	-0.8866	-0.95441	-0.96357	-0.86133	-0.92651	-0.93825
23-06	-1.07863	-1.32385	-1.68115	-0.91791	-0.95944	-0.97376	-0.89493	-0.93491	-0.9555
24-06	-1.07748	-1.32026	-1.67458	-0.93073	-0.9385	-0.98291	-0.91826	-0.91523	-0.97122
25-06	-1.05542	-1.30524	-1.67487	-0.92653	-0.92254	-0.99111	-0.91547	-0.90981	-0.98062
26-06	-1.0317	-1.28183	-1.675	-0.91842	-0.91274	-0.99308	-0.9138	-0.89543	-0.98936
27-06	-1.02008	-1 25865	-1.67517	-0.9276	-0.91574	-0.99507	-0.91848	-0.90574	-0.99134
28-06	-1.01673	-1 25372	-1.67541	-0.93748	-0.93285	-1.00222	-0.92939	-0.92282	-0.99873
29-06	-1.00355	-1 24416	-1.67573	-0.93768	-0.94432	-1.00434	-0.93062	-0.94051	-1.00035
30-06	-0.99108	-1 24249	-1.67613	-0.93836	-0.9552	-1.00394	-0.93708	-0.95209	-0.99993
01-07	-0.98372	-1 24162	-1.6765	-0.94053	-0.96562	-0.99721	-0.93974	-0.96213	-0.9941
07-07	-0.97455	-1 24125	-1.67637	-0.94112	-0.97438	-0.97879	-0.94042	-0.97648	-0.97592
02-07	-0.9671	-1 24114	-1.67502	-0.94799	-0.98265	-0.96696	-0.94728	-0.98013	-0.95999
04-07	-0.95658	-1 23525	-1.67201	-0.9458	-0.99121	-0.95162	-0.94515	-0.98777	-0.94917
05-07	-0.9458	-1 23576	-1.66102	-0.94099	-0.99271	-0.95067	-0.94042	-0.99026	-0.94885
06-07	-0.93403	-1 23544	-1.64932	-0.9295	-0.9897	-0.95378	-0.92882	-0.98758	-0.95218
07-07	-0.92411	-1 21021	-1.63049	-0.9202	-0.94548	-0.96274	-0.91988	-0.94848	-0.96142
08-07	-0.92656	-1 1616	-1.62947	-0.92291	-0.89271	-0.95974	-0.92268	-0.89129	-0.95852
09-07	-0.93556	-1.02225	-1.62458	-0.92701	-0.79331	-0.93079	-0.93274	-0.79322	-0.92992
10-07	-0.93576	-0.95815	-1.6022	-0.93304	-0.76634	-0.91863	-0.93253	-0.76624	-0.91788
11-07	-0.93853	-0.93483	-1 58625	-0.93647	-0.78805	-0.92795	-0.93554	-0.78807	-0.92702
12-07	-0.94864	-0.92485	-1 57244	-0.94694	-0.8035	-0.93708	-0.94592	-0.80354	-0.93647
13-07	-0.96321	-0.8928	-1.5527	-0.96165	-0.81382	-0.93726	-0.96072	-0.81326	-0.93672
14-07	-0.96569	-0.88842	-1 54088	-0.96428	-0.82975	-0.94042	-0.96347	-0.82927	-0.94527
15-07	-0.91434	-0.88663	-1.53616	-0.91288	-0.84074	-0.95033	-0.91267	-0.84595	-0.95512
16-07	-0.82412	-0.89068	-1.52636	-0.82283	-0.86634	-0.96531	-0.82258	-0.86672	-0.96514
17-07	-0.79569	-0.90663	-1.52385	-0 79447	-0.89062	-0.9753	-0.79426	-0.88609	-0.97469
18-07	-0.81925	-0.92363	-1 51588	-0.81815	-0.00002	-0.9788	-0.81797	-0.90474	-0.97778
19-07	-0.01020	-0.02000	-1.51300	-0.85/18	-0.0004	-0.0700	-0.85/05	-0.00474	-0.98603
20-07	-0.85976	-0.84806	-1 51442	-0.8592	-0.83589	-0.99528	-0.85907	-0.83477	-0.99418
20-07	-0.83639	-0.76591	-1 5142	-0.83614	-0.75652	-0.99717	-0.83609	-0.7556	-0.99616
22-07	-0.83337	-0.77263	-1 51414	-0.83347	-0 76484	-0.99725	-0.83344	-0.76429	-0.99633
22.07	-0.82925	-0.81104	-1 514	-0.82927	-0.80997	-0.99729	-0.82928	-0.80931	-0.99647
20.07	-0.84269	-0.84498	-1 5138	-0.84188	-0.84428	-0.99787	-0.84267	-0.84335	-0.99714
24-07	-0.86285	-0.83847	-1.51364	-0.86289	-0.83788	-0.00101	-0.86284	-0.04000	-1.00/37
26-07	-0.89251	-0.81207	-1 5136	-0.89254	-0.81148	-1 00594	-0.8925	-0.81177	-1.00511
27-07	-0.89624	-0.81842	-1 51372	-0.89628	-0.82165	-1.00799	-0.89623	-0.82247	-1.00695
28-07	-0.89742	-0.84518	-1 51401	-0.89744	-0.84306	-1.00984	-0.89741	-0.84368	-1.00886
29-07	-0.91416	-0.83952	-1 51442	-0.91418	-0.83848	-1 01074	-0.91416	-0.83904	-1 00975
30-07	-0.9279	-0.80491	-1 51479	-0.92803	-0.80408	-1.00966	-0.92791	-0.80458	-1.00867
31-07	-0.94504	-0.82461	-1.51452	-0.94515	-0.82867	-0.99344	-0.94504	-0.82433	-0.993
01-08	-0.96111	-0.85912	-1 50445	-0.96121	-0.85739	-0.98301	-0.96111	-0.85905	-0.98301
07-08	-0.96941	-0.89223	-1 50214	-0.96945	-0.8907	-0.98141	-0.96942	-0.89218	-0.98135
02.00	-0.95339	-0.91762	-1 48479	-0.95343	-0.92188	-0.9806	-0.95339	-0.91764	-0.98054
04-08	-0.95301	-0.93632	-1.48314	-0.95305	-0.93666	-0.9613	-0.95301	-0.93632	-0.96176
0.00				2.20000	2.20000	2.00.0			2.20110

				WATER T	ABLE DEP	PTHS (m)			
DATE	S10	S11	S12	S13	S14	S15	S16	S17	S18
05-08	-0.96167	-0.95349	-1.46989	-0.96169	-0.95556	-0.94446	-0.96168	-0.9535	-0.94483
06-08	-0.9712	-0.9699	-1.45459	-0.97122	-0.96666	-0.9407	-0.9712	-0.96991	-0.93648
07-08	-0.97444	-0.98009	-1.43831	-0.97446	-0.97732	-0.93034	-0.97445	-0.9801	-0.92695
08-08	-0.97851	-0.98932	-1.4156	-0.97851	-0.98701	-0.93114	-0.97851	-0.98932	-0.92851
09-08	-0.9601	-0.99016	-1.40067	-0.9601	-0.99303	-0.9043	-0.9601	-0.99016	-0.90269
10-08	-0.94887	-0.96491	-1.32833	-0.94887	-0.96274	-0.84489	-0.94887	-0.96491	-0.84594
11-08	-0.94997	-0.94844	-1.28695	-0.94998	-0.94651	-0.85104	-0.94998	-0.94844	-0.85168
12-08	-0.95996	-0.93691	-1.26083	-0.95996	-0.94025	-0.86556	-0.95996	-0.93691	-0.8716
13-08	-0.96942	-0.93011	-1.24649	-0.96942	-0.9332	-0.89612	-0.96942	-0.93011	-0.89147
14-08	-0.97272	-0.91229	-1.23456	-0.97272	-0.91436	-0.90026	-0.97272	-0.91229	-0.90432
15-08	-0.98079	-0.91542	-1.19327	-0.98079	-0.91746	-0.8876	-0.98079	-0.91542	-0.88007
16-08	-0.98909	-0.93276	-1.15325	-0.9891	-0.93002	-0.86967	-0.98909	-0.93276	-0.86726
17-08	-0.99203	-0.94459	-1.13609	-0.99203	-0.94186	-0.87728	-0.99203	-0.94458	-0.88544
18-08	-0.99918	-0.95253	-1.12575	-0.99918	-0.95524	-0.90812	-0.99918	-0.95253	-0.90616
19-08	-1.0009	-0.96134	-1.124	-1.0009	-0.95896	-0.92403	-1.0009	-0.96134	-0.92506
20-08	-1.00037	-0.96362	-1.11726	-1.00037	-0.96639	-0.94183	-1.00037	-0.96362	-0.94279
21-08	-0.99953	-0.96152	-1.11763	-0.99954	-0.96417	-0.9585	-0.99954	-0.96152	-0.95937
22-08	-0.99962	-0.96086	-1.11832	-0.99962	-0.96325	-0.96947	-0.99962	-0.96086	-0.96981
23-08	-0.97094	-0.96007	-1.11938	-0.97094	-0.95678	-0.98419	-0.97094	-0.96007	-0.98449
24-08	-0.89242	-0.95885	-1.12026	-0.89242	-0.95567	-0.98715	-0.89242	-0.95885	-0.98741
25-08	-0.89637	-0.95673	-1.11747	-0.89638	-0.95385	-0.98425	-0.89637	-0.95673	-0.98447
26-08	-0.91028	-0.95097	-1.11436	-0.91029	-0.95375	-0.98302	-0.91028	-0.95096	-0.98323
27-08	-0.92903	-0.95132	-1.11297	-0.92904	-0.95405	-0.98397	-0.92904	-0.95132	-0.98415
28-08	-0.94672	-0.9603	-1.11267	-0.94673	-0.95696	-0.98589	-0.94673	-0.9603	-0.98604
29-08	-0.96251	-0.96383	-1.11286	-0.96251	-0.96679	-0.98789	-0.96251	-0.96383	-0.98803
30-08	-0.97178	-0.97285	-1.11207	-0.97178	-0.97056	-0.98786	-0.97177	-0.97284	-0.98797
31-08	-0.97465	-0.98139	-1.10126	-0.97465	-0.97934	-0.92831	-0.97465	-0.98139	-0.84827
01-09	-0.98198	-0.98949	-1.09166	-0.94816	-0.96262	-0.83965	-0.85372	-0.87844	-0.7193
02-09	-0.98428	-0.99184	-1.09011	-0.85645	-0.87956	-0.84195	-0.77507	-0.78387	-0.78394
03-09	-0.99089	-0.98581	-1.08955	-0.85645	-0.82119	-0.87586	-0.78906	-0.72562	-0.79643
04-09	-0.99266	-0.91977	-1.08949	-0.88354	-0.77662	-0.89887	-0.79687	-0.68167	-0.83714
05-09	-0.99426	-0.91385	-1.08969	-0.91109	-0.80986	-0.92333	-0.84158	-0.7355	-0.87919
06-09	-1.00104	-0.91296	-1.0879	-0.93162	-0.8291	-0.93082	-0.87975	-0.77862	-0.89382
07-09	-1.00343	-0.89248	-1.06479	-0.94939	-0.82877	-0.91956	-0.91487	-0.78729	-0.89117
08-09	-1.01251	-0.89291	-1.03741	-0.96168	-0.8488	-0.92051	-0.93029	-0.82182	-0.89562
09-09	-1.01463	-0.91069	-1.0336	-0.97752	-0.87733	-0.92993	-0.9489	-0.85768	-0.91205
10-09	-1.0184	-0.92397	-1.02143	-0.98811	-0.89889	-0.93163	-0.96662	-0.89082	-0.92495
11-09	-1.02884	-0.94212	-1.00876	-0.9976	-0.92414	-0.93935	-0.98322	-0.91286	-0.92803
12-09	-1.04598	-0.95313	-1.00656	-1.00812	-0.94141	-0.94299	-0.99363	-0.93665	-0.93784
13-09	-1.04935	-0.96221	-1.00491	-1.01276	-0.95616	-0.95291	-1.0046	-0.94776	-0.94831
14-09	-1.05327	-0.96505	-1.00412	-1.01711	-0.95989	-0.92684	-1.00933	-0.95719	-0.85841
15-09	-1.03814	-0.97287	-1.00412	-0.86858	-0.9326	-0.85017	-0.7206	-0.81921	-0.72713
16-09	-0.95991	-0.98136	-1.00454	-0.77931	-0.85042	-0.8517	-0.65495	-0.72729	-0.78951
17-09	-0.92548	-0.98418	-1.00532	-0.76262	-0.85388	-0.88028	-0.68385	-0.7817	-0.80216
18-09	-0.92208	-0.99204	-1.0065	-0.76562	-0.88837	-0.903	-0.69853	-0.79709	-0.84211
19-09	-0.93341	-0.99459	-1.00798	-0.82227	-0.91036	-0.92803	-0.75809	-0.83825	-0.87852
20-09	-0.95028	-1.00124	-1.00981	-0.85998	-0.93448	-0.94575	-0.82318	-0.88004	-0.91116
21-09	-0.96696	-1.00275	-1.01229	-0.9056	-0.94655	-0.96252	-0.86645	-0.90677	-0.93653
22-09	-0.96947	-1.00429	-1.01422	-0.91978	-0.96254	-0.97299	-0.89736	-0.9321	-0.95339
23-09	-0.9663	-1.00645	-1.01198	-0.92082	-0.97335	-0.97244	-0.90968	-0.94994	-0.95449
24-09	-0.93756	-1.01503	-1.00837	-0.91031	-0.98252	-0.9711	-0.9002	-0.96684	-0.95488
25-09	-0.90348	-1.01883	-1.00549	-0.87639	-0.99218	-0.97116	-0.87163	-0.98271	-0.96257
26-09	-0.90669	-1.0293	-1.004	-0.88849	-1.00133	-0.97276	-0.88351	-0.99294	-0.9647
27-09	-0.92512	-1.0463	-1.00406	-0.90893	-1.01163	-0.98135	-0.90418	-1.00266	-0.97325

	WATER TABLE DEPTHS (m)								
DATE	S10	S11	S12	S13	S14	S15	S16	S17	S18
28-09	-0.93868	-1.04927	-1.00492	-0.93539	-1.01564	-0.98372	-0.92491	-1.00701	-0.98215
29-09	-0.96156	-1.05302	-0.99611	-0.94964	-1.02607	-0.98337	-0.9451	-1.01657	-0.98211
30-09	-0.96821	-1.06348	-0.96642	-0.96251	-1.0445	-0.8751	-0.96398	-1.02749	-0.71667
01-10	-0.98489	-1.06678	-0.94942	-0.9665	-1.02737	-0.77788	-0.89293	-0.99227	-0.72622
02-10	-0.99504	-1.0767	-0.94464	-0.90257	-0.96677	-0.78969	-0.77187	-0.83814	-0.7347
03-10	-1.00483	-1.087	-0.9479	-0.89463	-0.95228	-0.83911	-0.82352	-0.86688	-0.73901
04-10	-1.00764	-1.09061	-0.95817	-0.90421	-0.94993	-0.87487	-0.81864	-0.87693	-0.80381
05-10	-0.99902	-1.08745	-0.97359	-0.88936	-0.95919	-0.90822	-0.80672	-0.89831	-0.84942
06-10	-0.9616	-1.09061	-0.98411	-0.8618	-0.96768	-0.93492	-0.79914	-0.92349	-0.89654
07-10	-0.94935	-1.09333	-0.99401	-0.86954	-0.97607	-0.95943	-0.83473	-0.93709	-0.92945
08-10	-0.95208	-1.09607	-1.004	-0.90139	-0.98452	-0.97326	-0.87748	-0.95377	-0.95485
09-10	-0.96261	-1.09916	-1.00834	-0.92337	-0.98714	-0.98448	-0.90161	-0.96941	-0.96842
10-10	-0.978	-1.10262	-1.01787	-0.94251	-0.99469	-0.99479	-0.93284	-0.97921	-0.98457
11-10	-0.98837	-1.11272	-1.02178	-0.9605	-0.99639	-1.00429	-0.95178	-0.98249	-0.99495
12-10	-0.99809	-1.11252	-1.02579	-0.97725	-0.99575	-1.00821	-0.96914	-0.988	-0.99898
13-10	-1.00171	-1.11279	-1.04409	-0.98855	-0.99553	-1.01143	-0.98593	-0.98886	-1.00303
14-10	-1.01262	-1.1137	-1.04565	-1.00461	-0.99671	-1.01529	-0.99668	-0.99079	-0.97316
15-10	-1.02471	-1.11574	-1.04952	-1.00502	-0.99226	-0.93637	-0.96947	-0.91144	-0.83806
16-10	-1.04457	-1.11781	-1.05995	-0.94914	-0.91797	-0.92977	-0.85272	-0 79828	-0.84118
17-10	-1.04579	-1 12465	-1.06384	-0.93692	-0.90536	-0.94064	-0.84929	-0.82546	-0.86758
18-10	-1.04873	-1.12312	-1.07436	-0.9406	-0.87513	-0.95252	-0.8839	-0.77026	-0.90151
19-10	-1.06031	-1.087	-1.08564	-0.95203	-0.83953	-0.96927	-0.90652	-0.76039	-0.93314
20-10	-1.06494	-1.07178	-1.09713	-0.96825	-0.85494	-0.98072	-0.93229	-0.80015	-0.95794
21-10	-1.07636	-1.0635	-1 10065	-0.97978	-0.89	-0.99062	-0.95139	-0.85052	-0.96986
22-10	-1.08824	-1.06392	-1.10214	-0.99091	-0.92239	-0.9972	-0.97596	-0.89816	-0.98307
23-10	-1.10007	-1.06575	-1.10214	-1.00766	-0.94454	-0.99635	-0.98838	-0.92326	-0.98388
24-10	-1.105	-1.0689	-1.10208	-1.01364	-0.9635	-0.99615	-0.99741	-0.94942	-0.98496
25-10	-1.10759	-1.0794	-1.10927	-1.0164	-0.9817	-0.99715	-0.99882	-0.97377	-0.98717
26-10	-1.11526	-1.09039	-1.11017	-1.01822	-0.99839	-0.99914	-1.00635	-0.99051	-0.99532
27-10	-1.11765	-1.10181	-1.11222	-1.02136	-1.01103	-1.00201	-1.00905	-1.00203	-0.9982
28-10	-1.12729	-1.11364	-1.12223	-1.02535	-1.02371	-1.01133	-1.01985	-1.01464	-1.0073
29-10	-1.1306	-1.11853	-1.12484	-1.04172	-1.04227	-1.02265	-1.02322	-1.02721	-1.01827
30-10	-1.14074	-1.12879	-1.1354	-1.046	-1.04589	-1.02759	-1.04083	-1.03135	-1.02327
31-10	-1.15161	-1.13077	-1.14696	-1.05779	-1.04764	-1.02812	-1.04527	-1.03359	-0.98084
01-11	-1.15654	-1.13171	-1.15157	-1.05932	-1.01974	-0.97518	-1.00211	-0.91785	-0.84782
02-11	-1.16726	-1.13199	-1.16314	-0.99861	-0.91688	-0.9703	-0.85347	-0.80431	-0.87186
03-11	-1.17841	-1.13917	-1.17555	-0.97992	-0.90719	-0.97249	-0.87491	-0.82996	-0.88127
04-11	-1.18245	-1.13899	-1.1806	-0.97896	-0.92518	-0.97622	-0.87301	-0.83057	-0.90393
05-11	-1.18485	-1.14089	-1.18508	-0.98085	-0.94548	-0.98486	-0.9056	-0.87432	-0.92996
06-11	-1.20016	-1.1433	-1.20201	-0.9835	-0.95777	-0.99373	-0.9272	-0.90917	-0.96054
07-11	-1.20355	-1.14437	-1.20633	-0.99199	-0.96792	-1.00357	-0.94679	-0.94053	-0.97358
08-11	-1.20817	-1.14475	-1.21761	-0.99539	-0.97693	-1.01522	-0.96466	-0.95852	-0.98523
09-11	-1.21955	-1.14493	-1.22973	-1.00554	-0.98009	-1.02036	-0.98216	-0.96928	-1.00114
10-11	-1.23097	-1.15223	-1.23374	-1.018	-0.98891	-1.03259	-0.99884	-0.97906	-1.014
11-11	-1.24239	-1.15566	-1.24514	-1.03106	-0.99851	-1.05119	-1.01262	-0.98852	-1.02717
12-11	-1.25403	-1.16614	-1.25656	-1.04901	-1.00901	-1.06423	-1.02563	-0.9976	-1.04639
13-11	-1.25863	-1.17861	-1.26819	-1.05453	-1.02101	-1.07729	-1.04419	-1.00771	-1.05294
14-11	-1.26987	-1.18246	-1.2797	-1.0666	-1.03329	-1.08729	-1.04977	-1.01957	-1.02352
15-11	-1.28068	-1.1997	-1.29083	-1.07536	-1.03582	-1.0329	-1.01991	-0.97925	-0.8799
16-11	-1.29174	-1.20473	-1.29552	-1.021	-0.98198	-1.01753	-0.88309	-0.84035	-0.89593
17-11	-1.30308	-1.21652	-1.30635	-1.00626	-0.97627	-1.01008	-0.89274	-0.87424	-0.90242
18-11	-1.30733	-1.22755	-1.3171	-1.00582	-0.97765	-1.01093	-0.89708	-0.87376	-0.91815
19-11	-1.31828	-1.23856	-1.32143	-1.0085	-0.98137	-1.01005	-0.92482	-0.90774	-0.93406
20-11	-1.32982	-1.25069	-1.32838	-1.01368	-0.99113	-0.98531	-0.95702	-0.93447	-0.92128

	WATER TABLE DEPTHS (m)								
DATE	S10	S11	S12	S13	S14	S15	S16	S17	S18
21-11	-1.34833	-1.25465	-1.32574	-1.02584	-1.00154	-0.97217	-0.97608	-0.95997	-0.92484
22-11	-1.35106	-1.26613	-1.31698	-1.04367	-1.01393	-0.97381	-0.99338	-0.97919	-0.94232
23-11	-1.35534	-1.27719	-1.3171	-1.04843	-1.027	-0.98263	-1.00415	-0.99722	-0.95996
24-11	-1.36582	-1.28812	-1.31722	-1.05981	-1.04593	-0.991	-1.01591	-1.01666	-0.97157
25-11	-1.3761	-1.28543	-1.3177	-1.07101	-1.05056	-0.99442	-1.02774	-1.0214	-0.98213
26-11	-1.37955	-1.29196	-1.31891	-1.08307	-1.05206	-1.00234	-1.04557	-1.02247	-0.9962
27-11	-1.3834	-1.30145	-1.3206	-1.08559	-1.05243	-1.01407	-1.04799	-1.02273	-1.00199
28-11	-1.39271	-1.30395	-1.33024	-1.08793	-1.06276	-1.03428	-1.05025	-1.03234	-1.02251
29-11	-1.39573	-1.31301	-1.33379	-1.09777	-1.067	-1.04117	-1.05415	-1.05004	-1.04291
30-11	-1.40503	-1.31687	-1.35203	-1.1089	-1.07829	-1.049	-1.06543	-1.05469	-0.98611
01-12	-1.40837	-1.32702	-1.35348	-1.1117	-1.08626	-0.94447	-1.04218	-1.04864	-0.80511
02-12	-1.418	-1.34557	-1.3551	-1.07357	-1.02286	-0.90052	-0.89345	-0.89324	-0.80719
03-12	-1.42814	-1.347	-1.35551	-1.0523	-1.01408	-0.9156	-0.90943	-0.90918	-0.81247
04-12	-1.43195	-1.35095	-1.3555	-1.05116	-1.01295	-0.91907	-0.91671	-0.92194	-0.84019
05-12	-1.44193	-1.362	-1.35311	-1.05247	-1.01469	-0.91611	-0.93694	-0.93659	-0.85052
06-12	-1.45221	-1.36606	-1.3363	-1.05551	-1.01879	-0.92731	-0.95775	-0.96183	-0.8846
07-12	-1.45596	-1.37674	-1.33395	-1.06601	-1.03932	-0.93981	-0.97654	-0.98077	-0.91882
08-12	-1.46613	-1.38748	-1.33274	-1.0774	-1.04303	-0.95758	-0.99414	-0.99826	-0.93402
09-12	-1.47023	-1.39897	-1.33262	-1.08924	-1.05596	-0.97479	-1.00674	-1.01157	-0.95325
10-12	-1.48056	-1.40225	-1.33358	-1.09424	-1.06817	-0.98719	-1.01325	-1.02495	-0.97725
11-12	-1.48374	-1.41281	-1.33563	-1.09712	-1.08069	-1.00534	-1.01774	-1.04409	-0.99394
12-12	-1.48585	-1.42359	-1.33755	-1.09823	-1.09332	-1.0187	-1.02069	-1.05727	-1.00712
13-12	-1.50071	-1.42754	-1.35411	-1.09875	-1.10585	-1.03197	-1.01733	-1.07015	-1.02081
14-12	-1.50181	-1.43801	-1.35794	-1.10048	-1.11835	-1.0348	-1.02069	-1.08205	-0.99263
15-12	-1.50317	-1.44225	-1.3684	-1.10817	-1.12192	-0.99251	-1.00307	-1.05823	-0.84581
16-12	-1.5051	-1.45161	-1.37258	-1.0597	-1.07909	-0.98287	-0.85652	-0.89765	-0.88148
17-12	-1.5075	-1.45447	-1.38325	-1.03795	-1.05587	-0.97917	-0.88383	-0.90352	-0.89124
18-12	-1.51685	-1.46333	-1.39387	-1.03678	-1.04071	-0.98819	-0.89428	-0.90586	-0.91424
19-12	-1.51957	-1.46688	-1.39811	-1.03867	-1.04178	-0.99718	-0.92364	-0.93207	-0.93959
20-12	-1.52918	-1.47084	-1.40225	-1.04287	-1.04986	-0.99953	-0.95158	-0.95085	-0.95845
21-12	-1.5323	-1.48079	-1.4124	-1.06057	-1.05034	-1.01003	-0.97139	-0.96259	-0.97674
22-12	-1.542	-1.48342	-1.42258	-1.06577	-1.05176	-1.02235	-0.98967	-0.97375	-0.99393
23-12	-1.54529	-1.48577	-1.42605	-1.07728	-1.05505	-1.04275	-1.00744	-0.99123	-1.00624
24-12	-1.55522	-1.50093	-1.43615	-1.08896	-1.05929	-1.04661	-1.02046	-0.995	-1.0191
25-12	-1.5585	-1.50296	-1.44009	-1.10057	-1.06284	-1.05915	-1.03896	-1.00112	-1.03191
26-12	-1.56799	-1.50469	-1.45015	-1.11266	-1.06633	-1.07154	-1.04405	-1.00382	-1.05054
27-12	-1.57129	-1.50635	-1.46053	-1.12497	-1.07715	-1.08381	-1.05674	-1.01455	-1.06336
28-12	-1.58071	-1.50825	-1.46442	-1.13675	-1.0801	-1.09595	-1.06932	-1.01786	-1.07597
29-12	-1.58415	-1.51652	-1.47515	-1.14218	-1.08121	-1.10834	-1.08157	-1.01877	-1.08808
30-12	-1.59335	-1.51775	-1.47896	-1.15441	-1.08978	-1.11994	-1.09406	-1.02809	-1.10048
31-12	-1.6033	-1.51928	-1.49512	-1.16604	-1.10143	-1.13193	-1.10629	-1.04691	-1.1129

	WATER TABLE DEPTHS (m)									
DATE	S19	S20	S21	S22	S23	S24	S25	S26	S27	
01-01	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	-1.4	
02-01	-1.50859	-1.50859	-1.50859	-1.50804	-1.50806	-1.508	-1.46618	-1.46626	-1.46565	
03-01	-1.52136	-1.52162	-1.52158	-1.49332	-1.49438	-1.48805	-1.58445	-1.58815	-1.59517	
04-01	-1.60933	-1.60969	-1.60959	-1.5539	-1.55179	-1.55032	-1.53093	-1.53934	-1.53313	
05-01	-1.69051	-1.69647	-1.69602	-1.62943	-1.63302	-1.62555	-1.5273	-1.53666	-1.52811	
06-01	-1.75696	-1.76128	-1.76074	-1.69543	-1.69829	-1.69096	-1.60246	-1.61517	-1.60122	
07-01	-1.81143	-1.81527	-1.8095	-1.74784	-1.76076	-1.75619	-1.68788	-1.68708	-1.68669	
08-01	-1.84565	-1.8471	-1.84456	-1.79642	-1.80888	-1.80521	-1.74996	-1.75007	-1.74551	
09-01	-1.8719	-1.87445	-1.87786	-1.83095	-1.83917	-1.83653	-1.79949	-1.79973	-1.80069	
10-01	-1.89695	-1.90007	-1.89882	-1.85859	-1.86611	-1.86411	-1.83386	-1.84675	-1.83582	
11-01	-1.91392	-1.92033	-1.91784	-1.88414	-1.89211	-1.89055	-1.86128	-1.87047	-1.8636	
12-01	-1.93279	-1.93881	-1.93474	-1.90328	-1.91118	-1.90974	-1.88734	-1.89605	-1.89025	
13-01	-1.94376	-1.95016	-1.95302	-1.92128	-1.92834	-1.93408	-1.90587	-1.9141	-1.91537	
14-01	-1.95417	-1.96013	-1.96273	-1.93722	-1.94123	-1.94018	-1.92989	-1.93304	-1.94388	
15-01	-1.96384	-1.96936	-1.96637	-1.94828	-1.95856	-1.95096	-1.94966	-1.95095	-1.94466	
16-01	-1.97336	-1.97797	-1.97533	-1.95825	-1.96837	-1.96139	-1.94966	-1.95834	-1.93456	
17-01	-1.97557	-1.98078	-1.98346	-1.96701	-1.97068	-1.96878	-1.94124	-1.95196	-1.90217	
18-01	-1.98328	-1.98814	-1.98592	-1.96863	-1.97776	-1.96941	-1.91316	-1.92596	-1.88968	
19-01	-1.98556	-1.9904	-1.99295	-1.96906	-1.97821	-1.96956	-1.89948	-1.91651	-1.89704	
20-01	-1.99271	-1.99721	-1.99476	-1.96933	-1.9783	-1.97001	-1.90072	-1.91664	-1.90707	
21-01	-1.9948	-1.99879	-1.99628	-1.97005	-1.97854	-1.9709	-1.91131	-1.91963	-1.91788	
22-01	-1.9621	-2.00011	-2.00326	-1.85917	-1.9791	-1.9722	-1.74301	-1.9241	-1.92835	
23-01	-1.66768	-2.00805	-2.00486	-1.54681	-1.98003	-1.9788	-1.46841	-1.93867	-1.93926	
24-01	-1.60622	-2.00918	-2.00622	-1.52846	-1.98125	-1.98041	-1.47603	-1.94943	-1.94936	
25-01	-1.65302	-2.01071	-2.00774	-1.59216	-1.98766	-1.98194	-1.56043	-1.95311	-1.95897	
26-01	-1.7044	-2.01241	-2.0156	-1.66521	-1.989	-1.9885	-1.64515	-1.96212	-1.96221	
27-01	-1.76074	-2.02084	-2.01705	-1.73098	-1.99022	-1.99003	-1.7108	-1.97093	-1.97022	
28-01	-1.79756	-2.022	-2.01863	-1.78183	-1.99158	-1.99135	-1.76818	-1.9739	-1.97849	
29-01	-1.83782	-2.02368	-2.02031	-1.82362	-1.99783	-1.99775	-1.81555	-1.98182	-1.98081	
30-01	-1.86474	-2.02547	-2.0281	-1.8633	-1.99902	-1.99879	-1.84954	-1.98419	-1.98811	
31-01	-1.89024	-2.03346	-2.02967	-1.88023	-1.99992	-1.99968	-1.87666	-1.99094	-1.98982	
01-02	-1.9092	-2.03502	-2.03144	-1.90484	-2.00104	-2.00077	-1.91066	-1.99271	-1.99125	
02-02	-1.93299	-2.03676	-2.03326	-1.92944	-2.00863	-2.00186	-1.93149	-1.99408	-1.98993	
03-02	-1.93901	-2.03857	-2.04099	-1.93385	-2.00935	-2.00226	-1.9122	-1.99809	-1.97817	
04-02	-1.94955	-2.04622	-2.04267	-1.94281	-2.00978	-2.00166	-1.88206	-1.98738	-1.96605	
05-02	-1.96081	-2.0479	-2.04449	-1.945	-2.00938	-2.00034	-1.87663	-1.97037	-1.95716	
06-02	-1.97007	-2.04973	-2.05255	-1.95263	-2.00833	-1.99884	-1.8807	-1.96068	-1.94984	
07-02	-1.97858	-2.0583	-2.05389	-1.95446	-2.00699	-1.99777	-1.89757	-1.95915	-1.95022	
08-02	-1.98707	-2.05908	-2.05566	-1.95663	-2.0057	-1.99683	-1.90923	-1.9592	-1.95201	
09-02	-1.98853	-2.06083	-2.05752	-1.96457	-2.00462	-1.9963	-1.93185	-1.96026	-1.95978	
10-02	-1.99033	-2.06269	-2.06535	-1.96719	-1.99797	-1.99613	-1.93588	-1.96207	-1.96231	
11-02	-1.997	-2.07055	-2.06688	-1.97498	-1.99807	-1.99626	-1.94621	-1.9644	-1.96985	
12-02	-1.99857	-2.07192	-2.06869	-1.97737	-1.99816	-1.99666	-1.95616	-1.972	-1.97232	
13-02	-1.99985	-2.07376	-2.07061	-1.98424	-1.99857	-1.99728	-1.96553	-1.97462	-1.97959	
14-02	-2.00746	-2.07568	-2.07828	-1.98625	-1.99918	-1.99807	-1.96865	-1.98213	-1.98733	
15-02	-2.00873	-2.08349	-2.07996	-1.99296	-1.99992	-1.99896	-1.977	-1.99049	-1.98779	
16-02	-2.01009	-2.08503	-2.08177	-1.99435	-2.00091	-1.99977	-1.97917	-1.99103	-1.97768	
17-02	-2.01163	-2.08686	-2.08367	-1.99495	-2.00187	-2.00003	-1.97415	-1.9806	-1.95073	
18-02	-2.01318	-2.08877	-2.09188	-1.99383	-2.00224	-1.99948	-1.95242	-1.9593	-1.93803	
19-02	-2.02094	-2.09792	-2.09351	-1.99121	-2.00177	-1.99858	-1.93379	-1.94153	-1.93027	
20-02	-2.02224	-2.0992	-2.09535	-1.98291	-2.00072	-1.99752	-1.9264	-1.93888	-1.93093	
21-02	-2.02367	-2.10099	-2.09726	-1.9812	-1.99954	-1.99664	-1.92719	-1.93917	-1.93345	
22-02	-2.02514	-2.10272	-2.0992	-1.98033	-1.99869	-1.99602	-1.92991	-1.94114	-1.94216	
23-02	-2.03282	-2.10449	-2.10801	-1.98007	-1.99802	-1.99571	-1.93912	-1.94411	-1.95116	
	WATER TABLE DEPTHS (m)									
-------	------------------------	----------	----------	----------	----------	----------	----------	----------	----------	--
DATE	S19	S20	S21	S22	S23	S24	S25	S26	S27	
24-02	-2.03405	-2.11297	-2.10951	-1.98035	-1.99772	-1.9957	-1.94865	-1.95284	-1.9604	
25-02	-2.03553	-2.1145	-2.11114	-1.98111	-1.99775	-1.99598	-1.95209	-1.96198	-1.96259	
26-02	-2.03712	-2.11614	-2.11993	-1.98222	-1.99807	-1.99648	-1.96085	-1.96506	-1.97068	
27-02	-2.04513	-2.12457	-2.12097	-1.98358	-1.99859	-1.99716	-1.96926	-1.97323	-1.97324	
28-02	-2.04625	-2.12583	-2.12248	-1.98505	-1.99927	-1.99797	-1.97192	-1.98179	-1.98165	
01-03	-2.04777	-2.12737	-2.12407	-1.98657	-2.00006	-1.99887	-1.97975	-1.98323	-1.98205	
02-03	-2.04936	-2.12898	-2.13223	-1.99293	-2.00109	-1.99964	-1.99712	-2.00077	-1.97115	
03-03	-2.05097	-2.13682	-2.13342	-1.99389	-2.00196	-1.99974	-1.96878	-1.97989	-1.93622	
04-03	-2.05834	-2.13812	-2.13487	-1.99364	-2.00202	-1.99898	-1.93976	-1.95013	-1.93077	
05-03	-2.05981	-2.13962	-2.13641	-1.99243	-2.00092	-1.99775	-1.92377	-1.93154	-1.92916	
06-03	-2.06143	-2.1412	-2.14432	-1.99088	-1.99914	-1.99651	-1.92225	-1.92419	-1.92557	
07-03	-2.06312	-2.149	-2.14553	-1.98951	-1.9976	-1.99552	-1.92384	-1.92535	-1.93525	
08-03	-2.07071	-2.15032	-2.14703	-1.98331	-1.99613	-1.99492	-1.92702	-1.9283	-1.93811	
09-03	-2.07204	-2.15179	-2.1486	-1.98315	-1.99513	-1.99471	-1.93696	-1.93769	-1.94747	
10-03	-2.07367	-2.15328	-2.15629	-1.98358	-1.99455	-1.99484	-1.94648	-1.94724	-1.95652	
11-03	-2.07538	-2.16079	-2.15745	-1.9843	-1.99436	-1.99526	-1.94978	-1.95633	-1.96521	
12-03	-2.07715	-2.16203	-2.1589	-1.98527	-1.99452	-1.99589	-1.95835	-1.95937	-1.96807	
13-03	-2.08445	-2.16347	-2.16041	-1.98644	-1.99497	-1.99669	-1.96704	-1.96771	-1.97589	
14-03	-2.0861	-2.16499	-2.16835	-1.99273	-1.99565	-1.99762	-1.96992	-1.97609	-1.98521	
15-03	-2.08782	-2.1726	-2.16935	-1.99389	-1.9965	-1.99861	-1.98441	-1.98441	-1.98561	
16-03	-2.08962	-2.17375	-2.17078	-1.99484	-1.99747	-1.99945	-1.98396	-1.98482	-1.97421	
17-03	-2.09827	-2.17517	-2.17228	-1.99562	-1.99835	-1.99942	-1.96634	-1.97537	-1.94301	
18-03	-2.09975	-2.17664	-2.17379	-1.99547	-1.99863	-1.99821	-1.9369	-1.95358	-1.92348	
19-03	-2.10141	-2.18491	-2.18106	-1.99425	-1.9981	-1.99631	-1.92025	-1.93535	-1.91135	
20-03	-2.10308	-2.18532	-2.1824	-1.9926	-1.99707	-1.9944	-1.91917	-1.92816	-1.91298	
21-03	-2.11285	-2.18668	-2.18382	-1.99109	-1.99597	-1.98798	-1.92122	-1.929	-1.92191	
22-03	-2.11308	-2.18812	-2.18528	-1.99	-1.99507	-1.98715	-1.9249	-1.93174	-1.93149	
23-03	-2.11452	-2.18962	-2.19272	-1.98932	-1.99449	-1.98704	-1.93501	-1.94117	-1.94149	
24-03	-2.11603	-2.19718	-2.1939	-1.98897	-1.99426	-1.98728	-1.94473	-1.95055	-1.95097	
25-03	-2.12439	-2.19848	-2.19526	-1.98398	-1.99435	-1.98782	-1.95369	-1.95989	-1.95428	
26-03	-2.12531	-2.19991	-2.19666	-1.98435	-1.99469	-1.98861	-1.95634	-1.96217	-1.96262	
27-03	-2.12663	-2.20138	-2.19807	-1.98519	-1.9952	-1.9896	-1.9643	-1.97007	-1.97079	
28-03	-2.128	-2.20917	-2.2057	-1.98615	-1.99584	-1.99073	-1.96677	-1.97264	-1.97334	
29-03	-2.12939	-2.21025	-2.20692	-1.99295	-1.99658	-1.99198	-1.97415	-1.98001	-1.98062	
30-03	-2.13692	-2.21159	-2.20828	-1.99302	-1.99742	-1.99813	-1.97626	-1.98216	-1.98891	
31-03	-2.13806	-2.21301	-2.20968	-1.99361	-1.99833	-1.99919	-1.98412	-1.98996	-1.98891	
01-04	-2.13929	-2.21445	-2.21753	-1.99441	-1.99928	-1.99979	-1.98377	-1.99015	-1.97195	
02-04	-2.14059	-2.22182	-2.21841	-1.99497	-2.00006	-1.99955	-1.96978	-1.97829	-1.94228	
03-04	-2.149	-2.22305	-2.21972	-1.99431	-2.00002	-1.99827	-1.93226	-1.94993	-1.92509	
04-04	-2.14917	-2.22439	-2.2211	-1.99238	-1.99882	-1.99645	-1.91346	-1.9319	-1.92289	
05-04	-2.1504	-2.22578	-2.22252	-1.99002	-1.99733	-1.99472	-1.91269	-1.92932	-1.92421	
06-04	-2.15171	-2.22717	-2.22975	-1.98293	-1.99562	-1.98829	-1.91503	-1.92997	-1.92719	
07-04	-2.15306	-2.2342	-2.23092	-1.98186	-1.99426	-1.98766	-1.91902	-1.93224	-1.93691	
08-04	-2.16054	-2.23546	-2.23226	-1.98157	-1.98828	-1.98769	-1.92858	-1.9355	-1.94052	
09-04	-2.16153	-2.23681	-2.23366	-1.98173	-1.98796	-1.988	-1.93876	-1.9447	-1.95009	
10-04	-2.1628	-2.23821	-2.23509	-1.98223	-1.98829	-1.98858	-1.94809	-1.95381	-1.95923	
11-04	-2.16414	-2.23965	-2.24215	-1.983	-1.98885	-1.98937	-1.95683	-1.96242	-1.96844	
12-04	-2.16552	-2.24662	-2.2434	-1.984	-1.98955	-1.99032	-1.96546	-1.96487	-1.9702	
13-04	-2.17276	-2.24789	-2.24478	-1.98518	-1.99034	-1.9914	-1.968	-1.97263	-1.97844	
14-04	-2.17393	-2.24923	-2.24618	-1.98647	-1.99122	-1.99764	-1.97561	-1.97474	-1.97975	
15-04	-2.17524	-2.25059	-2.2476	-1.9927	-1.99218	-1.99845	-1.98336	-1.98262	-1.99703	
16-04	-2.17659	-2.25195	-2.24901	-1.99381	-1.99794	-1.99871	-1.98294	-1.9824	-1.95888	
17-04	-2.17794	-2.2588	-2.25044	-1.99427	-1.99756	-1.99755	-1.96133	-1.95996	-1.92657	
18-04	-2.18506	-2.25993	-2.25187	-1.99338	-1.99399	-1.99483	-1.92629	-1.92917	-1.90762	

	WATER TABLE DEPTHS (m)									
DATE	S19	S20	S21	S22	S23	S24	S25	S26	S27	
19-04	-2.18626	-2.26117	-2.25331	-1.99119	-1.98302	-1.98657	-1.91365	-1.90968	-1.90154	
20-04	-2.18756	-2.26243	-2.26053	-1.98874	-1.97187	-1.9841	-1.90715	-1.90361	-1.90422	
21-04	-2.18891	-2.26368	-2.26162	-1.98159	-1.96381	-1.97775	-1.90976	-1.90556	-1.91369	
22-04	-2.19672	-2.26491	-2.26296	-1.98042	-1.96259	-1.97717	-1.91942	-1.9147	-1.92423	
23-04	-2.19757	-2.27158	-2.26436	-1.98016	-1.96275	-1.97742	-1.9345	-1.93112	-1.93485	
24-04	-2.19881	-2.27253	-2.26577	-1.98036	-1.96366	-1.97807	-1.93859	-1.93362	-1.94477	
25-04	-2.20013	-2.27356	-2.26718	-1.98091	-1.96505	-1.97904	-1.94779	-1.93733	-1.95398	
26-04	-2.20146	-2.2746	-2.26856	-1.98172	-1.96677	-1.98025	-1.95761	-1.94704	-1.95692	
27-04	-2.20936	-2.27564	-2.27545	-1.98272	-1.96873	-1.98159	-1.95985	-1.95622	-1.96519	
28-04	-2.21013	-2.27669	-2.27663	-1.98389	-1.97591	-1.988	-1.96772	-1.96482	-1.9679	
29-04	-2.21135	-2.27778	-2.27795	-1.98517	-1.97783	-1.9892	-1.97026	-1.96724	-1.97517	
30-04	-2.21265	-2.28477	-2.27931	-1.98654	-1.98471	-1.99018	-1.97763	-1.97484	-1.98325	
01-05	-2.214	-2.28532	-2.28069	-1.99293	-1.98581	-1.99123	-1.98585	-1.98217	-1.98263	
02-05	-2.2215	-2.2863	-2.28208	-1.99394	-1.98679	-1.99186	-1.9679	-1.98064	-1.96098	
03-05	-2.22247	-2.28735	-2.28958	-1.99012	-1.98695	-1.99096	-1.89777	-1.9427	-1.92363	
04-05	-2.2237	-2.28843	-2.29075	-1.96866	-1.98475	-1.98863	-1.8504	-1.91161	-1.90705	
05-05	-2.22496	-2.28951	-2.29202	-1.94152	-1.98116	-1.98602	-1.83887	-1.89605	-1.90108	
06-05	-2.2262	-2.2906	-2.2933	-1.93131	-1.97248	-1.97787	-1.84903	-1.89207	-1.90388	
07-05	-2.23352	-2.2917	-2.29464	-1.93042	-1.96427	-1.97642	-1.86192	-1.901	-1.91023	
08-05	-2.23406	-2.29984	-2.29598	-1.93175	-1.96466	-1.95574	-1.88009	-1.91091	-1.88973	
09-05	-2.23489	-2.30058	-2.29711	-1.93426	-1.96537	-1.9243	-1.89789	-1.92186	-1.86307	
10-05	-2.23567	-2.30145	-2.29737	-1.94289	-1.96648	-1.89948	-1.915	-1.93336	-1.85362	
11-05	-2.23639	-2.3024	-2.29589	-1.95221	-1.96795	-1.89078	-1.92593	-1.94315	-1.85518	
12-05	-2.23704	-2.3034	-2.29252	-1.95396	-1.97457	-1.89118	-1.93668	-1.94652	-1.86449	
13-05	-2.23761	-2.30442	-2.28758	-1.96165	-1.97508	-1.89335	-1.9465	-1.95393	-1.8745	
14-05	-2.23812	-2.3054	-2.27588	-1.96353	-1.97167	-1.89458	-1.95584	-1.95128	-1.88242	
15-05	-2.23856	-2.31281	-2.26263	-1.96541	-1.95342	-1.8722	-1.9698	-1.93165	-1.78458	
16-05	-2.23895	-2.31275	-2.24858	-1.97222	-1.92975	-1.82063	-1.95027	-1.86032	-1.71824	
17-05	-2.2393	-2.3118	-2.23438	-1.97008	-1.88156	-1.80692	-1.89611	-1.78227	-1.72451	
18-05	-2.2396	-2.30993	-2.21405	-1.95075	-1.85143	-1.81726	-1.85103	-1.76503	-1.75534	
19-05	-2.23988	-2.30057	-2.20142	-1.93833	-1.84101	-1.83682	-1.83939	-1.76832	-1.79117	
20-05	-2.24012	-2.29742	-2.19013	-1.92925	-1.83143	-1.86171	-1.84911	-1.77656	-1.82462	
21-05	-2.24592	-2.28732	-2.18595	-1.92861	-1.83241	-1.87659	-1.86684	-1.7948	-1.85671	
22-05	-2.24594	-2.27582	-2.17634	-1.93008	-1.84332	-1.89474	-1.88012	-1.81556	-1.87307	
23-05	-2.24604	-2.26376	-2.16692	-1.93267	-1.86131	-1.91268	-1.89796	-1.83969	-1.89177	
24-05	-2.24617	-2.24929	-2.16456	-1.94165	-1.8399	-1.92402	-1.90967	-1.81842	-1.90937	
25-05	-2.24631	-2.1985	-2.1622	-1.95075	-1.79168	-1.93512	-1.92107	-1.78193	-1.92093	
26-05	-2.24647	-2.14236	-2.1539	-1.9533	-1.789	-1.94488	-1.93606	-1.7779	-1.93571	
27-05	-2.24665	-2.10004	-2.15215	-1.96104	-1.8016	-1.948	-1.94672	-1.79673	-1.94553	
28-05	-2 24685	-2.06561	-2 15033	-1.96342	-1.82673	-1.95593	-1.95015	-1.82284	-1 9484	
29-05	-2 24707	-2.04205	-2 14196	-1.97062	-1 84642	-1.95817	-1.95861	-1.8432	-1.95621	
30-05	-2 2473	-2.0264	-2 14055	-1.97192	-1.86398	-1.96516	-1.96653	-1.86102	-1.9616	
31-05	-2 24748	-2.00371	-2 1389	-1.97228	-1.87998	-1.95495	-1.96726	-1.8786	-1.88225	
01-06	-2 24757	-1.99089	-2 13682	-1.97035	-1.88134	-1 89774	-1 94424	-1 84438	-1 78439	
02-06	-2 24748	-1 98163	-2 12718	-1 94616	-1 859	-1.85841	-1.86605	-1 77796	-1 74815	
02-00	-2 24719	-1 97257	-2 11589	-1 91636	-1.83986	-1.85512	-1.8355	-1.76322	-1 76382	
03-06	-2.24671	-1.97065	-2 11137	-1.88996	-1.83139	-1.85864	-1 81948	-1.76736	-1 7919	
05-06	-2.24581	-1.96922	-2.09951	-1.86196	-1.83425	-1.86965	-1.80203	-1 78759	-1.8308	
80-80 80-80	-2 2375	-1.96275	-2 08898	-1 84734	-1 85093	-1 88649	-1 8039	-1 81386	-1 8468	
00-00	-2 23356	-1.96205	-2.07852	-1 84931	-1.86315	-1 89863	-1 82229	-1 83917	-1 87201	
30-70 20-80	-2.20000	-1 96069	-2.07002	-1.86104	-1.87662	-1 90966	-1.83673	-1.85/17	_1 8800	
30-00 20_00	-2 21072	-1 9/875	2.07400	-1 87339	1.86692	-1 92525	-1.86116	-1 85159	-1 90638	
10-06	-2.21072	-1 91218	-2.00000	-1.88662	-1.839052	-1.93618	-1.86586	-1.82535	-1 91761	
11_06	-2.13033	-1.87712	2.003	-1.88/38	-1.82013	-1 93952	-1.86502	-1 80831	-1.977/7	
11-00	-2.10400	- Lorriz	-2.000JZ	1.00400	1.02013	-1.0000Z	-1.0000Z	1.00001	1.04(4(

	WATER TABLE DEPTHS (m)								
DATE	S19	S20	S21	S22	S23	S24	S25	S26	S27
12-06	-2.15981	-1.86656	-2.05188	-1.87536	-1.81582	-1.94782	-1.86252	-1.8097	-1.93702
13-06	-2.12661	-1.86239	-2.04934	-1.86838	-1.82749	-1.95019	-1.86213	-1.8223	-1.9455
14-06	-2.09893	-1.87267	-2.04014	-1.86793	-1.85183	-1.9575	-1.86282	-1.84691	-1.95426
15-06	-2.06288	-1.8847	-2.03799	-1.85899	-1.87131	-1.95814	-1.84223	-1.88408	-1.93171
16-06	-2.02426	-1.90179	-2.03553	-1.7702	-1.88212	-1.94463	-1.6846	-1.86523	-1.85152
17-06	-1.9854	-1.91282	-2.02702	-1.68102	-1.87705	-1.92293	-1.60685	-1.78812	-1.8103
18-06	-1.93593	-1.92388	-2.02527	-1.67174	-1.86617	-1.90744	-1.56961	-1.75283	-1.80919
19-06	-1.90517	-1.93341	-2.02362	-1.69443	-1.86151	-1.90607	-1.6205	-1.7678	-1.82801
20-06	-1.88824	-1.94398	-2.02215	-1.73126	-1.8712	-1.9078	-1.6726	-1.80171	-1.84706
21-06	-1.87657	-1.95299	-2.01466	-1.77258	-1.88289	-1.91106	-1.72371	-1.83581	-1.87156
22-06	-1.88403	-1.96172	-2.01368	-1.80611	-1.90008	-1.92038	-1.77185	-1.86757	-1.88896
23-06	-1.89411	-1.96421	-2.01274	-1.83309	-1.91112	-1.92979	-1.80686	-1.88203	-1.90107
24-06	-1.90453	-1.97171	-2.01189	-1.85951	-1.92179	-1.93972	-1.84528	-1.90008	-1.9176
25-06	-1.91451	-1.97325	-2.01116	-1.87905	-1.93022	-1.9431	-1.86812	-1.91026	-1.92884
26-06	-1.92426	-1.9737	-2.01055	-1.89619	-1.93121	-1.95185	-1.8821	-1.91256	-1.93936
27-06	-1.9265	-1.97281	-2.00416	-1.90592	-1.93009	-1.96021	-1.89775	-1.91285	-1.9488
28-06	-1.92778	-1.97075	-2.00393	-1.91433	-1.92868	-1.96268	-1.90214	-1.9129	-1.95211
29-06	-1.93508	-1.96845	-2.0037	-1.91724	-1.92816	-1.97023	-1.91136	-1.91924	-1.96069
30-06	-1.93639	-1.9613	-2.00354	-1.92527	-1.92899	-1.97209	-1.92016	-1.9212	-1.96897
01-07	-1.93722	-1.96058	-2.00343	-1 92744	-1.93093	-1.97377	-1.92282	-1 92409	-1.97079
02-07	-1.93808	-1.96093	-2.00334	-1.93535	-1 93944	-1.98043	-1.93003	-1.93258	-1.9724
02-07	-1 94461	-1 96184	-2.0031	-1 93644	-1 9422	-1 98143	-1 93189	-1 94196	-1 97867
03-07	-1 94524	-1.96316	-2.0001	-1 9374	-1.95025	-1 98145	-1 93938	-1 95074	-1 97896
05-07	-1 9454	-1 96474	-2.00242	-1 93826	-1.95922	-1.98062	-1 94003	-1.95316	-1 9781
06-07	-1 94492	-1 97153	-1 99265	-1 93849	-1.96071	-1 97899	-1 93997	-1.96086	-1 97642
07-07	-1 9/3/7	-1 97302	-1 99152	-1.93776	-1.96262	-1 97712	-1 93898	-1 96299	-1 96902
07-07	-1 9/119	-1.97345	-1.98396	-1 93591	-1.9689	-1.97031	-1.93703	-1.96404	-1.96806
00-07	-1.93335	-1.96951	-1.98259	-1.93/13	-1.95947	-1.96938	-1 92987	-1.00404	-1.9675
10-07	-1 93239	-1.91521	-1.98052	-1.93344	-1.93347	-1.96771	-1.92908	-1.91126	-1.96581
11-07	-1.93261	-1.86911	-1.97181	-1.933/8	-1.85813	-1.95879	-1.02020	-1.86011	-1.95711
12-07	-1 93319	-1.84581	-1.962/6	-1 93392	-1.84104	-1 9/909	-1.93068	-1.83714	-1.9478
12-07	-1.93/28	-1.83845	-1.96395	-1 93/93	-1.83/23	-1 9/799	-1.93207	-1.835/2	-1.94613
14.07	1 03610	1 939043	1.050/06	1 03667	1 93/20	1 0/701	1 0/061	1.93567	1.04605
14-07	1 039/	1 93037	1 QE1EX	1 03901	1 93500	1.04639	1 0/101	1 93700	1 0//61
16.07	1 0//02	1 9/169	1.051104	1 0//00	1 93961	1 94630	1 0/133	1 93977	1 0//60
17.07	1 01163	1 951	1.05156	1 006/0	1 9/915	1 0/710	1 00967	1 9/000	1 94403
17-07	1.963/6	1 96175	1.05065	1.90042	1.96/69	1 0/966	1,90007	1 95091	1 94709
10-07	1 95133	1 97060	1.05/00	1.95026	1 97561	1 05065	1 9511	1.00501	1 9/913
20.07	1.95217	1 99901	1.05600	1.95/07	1 99570	1.05000	1 95069	1 996/17	1.05151
20-07	1 00100	1 07015	-1.30023 1.000025	-1.00404 1.05000	1.00072	1.00200	1 00000	1 00047	1.050.40
21-07	1 05000	1.0/015	1.0057	1 001	1 015 4	-1.9009Z	1 050 / 5	1 01 470	1.00100
22-07	-1.00990	-1.010/9	1.9007	1.001	-1.01542	-1.96335	-1.05945	-1.014/0	1.00017
23-07	-1.00147	1.79462	-1.97203	-1.05200	1.00000	-1.97041	-1.00049	1.79564	-1.96917
24-07	1 04041	1 00104	1.07540	1 044902	1 00233	1.07000	1.04/02	1 00055	1.97107
25-07	-1.04022	1.02101	-1.97540	-1.04442	1.02142	-1.97922 4.00040	-1.04090	-1.02300	-1.97775
26-07	-1.05129	-1.03003	-1.97603	-1.04/52	-1.03090	-1.90010	-1.05019	-1.03277	-1.9/000
27-07	-1.00197	-1.03300	-1.96314	-1.00422	-1.02000	-1.96107	-1.00040	-1.03020	-1.97963
28-07	-1.87245	-1.82758	-1.98426	-1.87434	-1.8285	-1.98206	-1.87093	-1.8297	-1.98085
29-07	-1.88224	-1.8305	-1.98509	-1.88345	-1.8317	-1.98312	-1.8806	-1.83284	-1.98192
30-07	-1.89163	-1.83/38	-1.98596	-1.89247	-1.83845	-1.9893	-1.88989	-1.83445	-1.98/98
31-07	-1.90125	-1.83409	-1.98685	-1.90183	-1.8293	-1.98997	-1.89937	-1.83102	-1.98875
01-08	-1.910/1	-1.83349	-1.99286	-1.91116	-1.8295	-1.99035	-1.90907	-1.83083	-1.98917
02-08	-1.92097	-1.83751	-1.9927	-1.92134	-1.83935	-1.99042	-1.91939	-1.83521	-1.98926
03-08	-1.92501	-1.85015	-1.99205	-1.92533	-1.85166	-1.99008	-1.92915	-1.85308	-1.98893
04-08	-1.9345	-1.86817	-1.99117	-1.93476	-1.86988	-1.98945	-1.93855	-1.86687	-1.9883

	WATER TABLE DEPTHS (m)								
DATE	S19	S20	S21	S22	S23	S24	S25	S26	S27
05-08	-1.943	-1.88633	-1.98996	-1.94314	-1.88697	-1.98842	-1.94074	-1.88481	-1.98727
06-08	-1.9447	-1.90281	-1.98279	-1.94483	-1.90378	-1.98648	-1.94879	-1.90227	-1.98533
07-08	-1.94638	-1.91449	-1.97998	-1.94649	-1.91504	-1.97826	-1.94958	-1.91375	-1.97714
08-08	-1.95365	-1.92555	-1.97141	-1.95372	-1.92546	-1.96924	-1.95116	-1.92911	-1.96803
09-08	-1.95557	-1.93671	-1.96233	-1.95564	-1.93651	-1.96601	-1.95832	-1.94035	-1.96481
10-08	-1.9568	-1.94736	-1.95204	-1.95687	-1.9472	-1.95643	-1.95943	-1.95	-1.95493
11-08	-1.96215	-1.95527	-1.92957	-1.9622	-1.95516	-1.92828	-1.95939	-1.95276	-1.92734
12-08	-1.9615	-1.95658	-1.90857	-1.96154	-1.95648	-1.90713	-1.95873	-1.95922	-1.90624
13-08	-1.9606	-1.95637	-1.8939	-1.96064	-1.95628	-1.89268	-1.95817	-1.95895	-1.89182
14-08	-1.96027	-1.95491	-1.89314	-1.9603	-1.95483	-1.89204	-1.95812	-1.95726	-1.89117
15-08	-1.96063	-1.95187	-1.8951	-1.96066	-1.9518	-1.89411	-1.95871	-1.94815	-1.89317
16-08	-1.96157	-1.94266	-1.89506	-1.9616	-1.94267	-1 8942	-1.95985	-1.93856	-1.89325
17-08	-1.96295	-1.94062	-1.89216	-1.96298	-1.94063	-1 89142	-1.96141	-1.93725	-1.89041
18-08	-1 96462	-1 94034	-1.89055	-1 96465	-1 94035	-1.88989	-1.96859	-1 93742	-1.88891
19-08	-1 96646	-1 94121	-1 89177	-1 96648	-1 94121	-1.89118	-1.97003	-1 93859	-1.89023
20-08	-1.97353	-1.94764	-1.89549	-1 97352	-1 94264	-1 89495	-1.97148	-1.94038	-1 89397
20-00	-1.9751	-1.94451	-1.9055	-1.97508	-1.94452	-1.00400	-1.07140	-1.94832	-1.00007
21-00	1 97675	1 0/6/2	1 01550	1.076/3	1 0/6/2	1 01570	1 07032	1 0/09	1 01/07
22-00	1 09306	1.05305	1 006	1 09306	1 05300	1 00007	1 09035	1 05000	1 00888
23-00	1 00055	1.05/100	1 00000	1 00055	1.05/05	1 0/1/	1 00111	1.05100	1.02000
24-00	1 00100	1.05420	1.04600	1.00100	1.05420	1 0442	1.0700/	1.05705	1.04022
20-00	-1.90100	1.05401	1.94629	1.00040	1.0547.3	-1.9443	-1.97094	-1.997.09	1.05174
26-00	-1.96946	-1.95491	1.90019	-1.90940	-1.95469	-1.9520	-1.90/12	-1.95793	-1.95174
27-08	-1.95071	-1.9548	-1.95755	-1.95071	-1.95478	1.96119	-1.95578	-1.95749	-1.96015
28-08	-1.94809	-1.95464	-1.96476	-1.94809	-1.95462	-1.96265	-1.94669	-1.95703	-1.96182
29-08	-1.94749	-1.95463	-1.96628	-1.94749	-1.95461	-1.96437	-1.94603	-1.95676	-1.96333
30-08	-1.94811	-1.96508	-1.96/66	-1.94811	-1.96606	-1.97116	-1.94681	-1.96694	-1.97013
31-08	-1.94966	-1.96602	-1.97451	-1.94956	-1.96601	-1.97243	-1.94842	-1.95/6/	-1.9/1/1
01-09	-1.96162	-1.963	-1.97535	-1.95151	-1.96267	-1.97201	-1.96691	-1.96466	-1.95009
02-09	-1.96373	-1.96418	-1.97685	-1.95278	-1.96368	-1.94979	-1.93418	-1.96046	-1.8/483
03-09	-1.96126	-1.96556	-1.97622	-1.93962	-1.95942	-1.92046	-1.86363	-1.88144	-1.84279
04-09	-1.96338	-1.96704	-1.97657	-1.91907	-1.91661	-1.90915	-1.82015	-1.80813	-1.83813
05-09	-1.97052	-1.9/19	-1.97704	-1.90919	-1.8/069	-1.90274	-1.81824	-1.76867	-1.84942
06-09	-1.972	-1.96313	-1.97763	-1.90836	-1.84678	-1.90518	-1.83128	-1.7663	-1.86743
07-09	-1.97337	-1.95293	-1.9783	-1.91055	-1.84599	-1.91372	-1.85083	-1.78509	-1.88457
08-09	-1.98005	-1.94108	-1.98401	-1.91447	-1.84635	-1.9166	-1.87523	-1.7977	-1.89482
09-09	-1.98104	-1.93002	-1.98312	-1.92453	-1.84811	-1.92362	-1.8939	-1.81507	-1.90301
10-09	-1.98199	-1.92176	-1.98159	-1.93498	-1.85803	-1.92471	-1.9105	-1.83443	-1.90586
11-09	-1.98309	-1.92129	-1.97456	-1.94449	-1.86929	-1.92582	-1.92266	-1.85365	-1.91328
12-09	-1.98431	-1.92279	-1.97294	-1.94798	-1.88616	-1.92715	-1.93815	-1.86721	-1.91596
13-09	-1.99049	-1.92564	-1.97162	-1.95705	-1.89767	-1.93471	-1.94302	-1.88532	-1.92388
14-09	-1.99165	-1.93474	-1.9706	-1.96572	-1.91321	-1.93641	-1.95319	-1.90271	-1.93917
15-09	-1.99258	-1.94448	-1.96482	-1.96904	-1.92369	-1.93687	-1.96652	-1.93243	-1.8993
16-09	-1.99356	-1.9463	-1.96499	-1.96422	-1.9265	-1.92315	-1.88631	-1.89666	-1.82209
17-09	-1.99394	-1.95422	-1.96589	-1.89615	-1.91949	-1.90247	-1.77819	-1.83392	-1.78355
18-09	-1.9914	-1.95627	-1.9671	-1.84808	-1.90169	-1.88871	-1.72718	-1.79482	-1.79937
19-09	-1.97977	-1.95839	-1.96853	-1.83467	-1.89436	-1.88981	-1.74224	-1.80127	-1.82057
20-09	-1.96945	-1.96585	-1.97501	-1.83864	-1.8959	-1.89906	-1.77684	-1.82216	-1.84269
21-09	-1.96623	-1.96798	-1.97644	-1.85676	-1.90002	-1.90941	-1.81098	-1.84818	-1.86799
22-09	-1.95948	-1.9751	-1.97766	-1.87661	-1.91014	-1.92002	-1.83886	-1.87342	-1.88626
23-09	-1.95905	-1.97656	-1.98421	-1.88954	-1.92113	-1.93529	-1.86544	-1.89222	-1.90487
24-09	-1.95943	-1.97787	-1.98496	-1.90624	-1.93551	-1.93921	-1.88412	-1.90508	-1.91608
25-09	-1.95905	-1.97925	-1.98561	-1.91525	-1.93982	-1.94804	-1.89969	-1.92915	-1.93086
26-09	-1.94896	-1.98569	-1.98619	-1.91431	-1.94918	-1.95028	-1.90031	-1.9332	-1.9415
27-09	-1.93758	-1.98697	-1.98668	-1.91165	-1.95805	-1.95781	-1.89898	-1.94321	-1.94359

DATE S19 S20 S21 S22 S23 S24 S25 S26 S3 28-09 -1.93547 -1.98802 -1.98708 -1.91115 -1.96101 -1.95921 -1.89981 -1.95296 -1.9 29-09 -1.935 -1.98917 -1.98745 -1.91292 -1.96914 -1.96072 -1.90278 -1.95647 -1. 30-09 -1.93603 -1.9951 -1.98782 -1.91642 -1.97171 -1.96756 -1.91193 -1.96531 -1.9 01-10 -1.93619 -1.99618 -1.92762 -1.92574 -1.97171 -1.96756 -1.91293 -1.97454 -1.8 92-19 4.9444 4.99724 4.92724 4.92724 4.92724 -1.92574 -1.95695 -1.92224 -1.927454 -1.8	27 95167 .9539 96205
28-09 -1.93547 -1.98802 -1.98708 -1.91115 -1.96101 -1.95921 -1.89981 -1.95296 -1.9 29-09 -1.935 -1.98917 -1.98745 -1.91292 -1.96914 -1.96072 -1.90278 -1.95647 -1. 30-09 -1.93603 -1.9951 -1.98782 -1.91642 -1.97171 -1.96756 -1.91193 -1.96531 -1.9 01-10 -1.93619 -1.99618 -1.98785 -1.92574 -1.97921 -1.96286 -1.92454 -1.9 01-10 -1.93619 -1.99618 -1.92774 -1.97921 -1.92639 -1.92232 -1.97454 -1.9	95167 .9539 96205
29-09 -1.935 -1.98917 -1.98745 -1.91292 -1.96914 -1.96072 -1.90278 -1.95647 -1. 30-09 -1.93603 -1.9951 -1.98782 -1.91642 -1.97171 -1.96756 -1.91193 -1.96531 -1.9 01-10 -1.93819 -1.99618 -1.98785 -1.92574 -1.97921 -1.95669 -1.92232 -1.97454 -1.8 92 -1.9444 -1.98785 -1.92574 -1.97921 -1.92689 -1.92454 -1.8	.9539 96205
30-09 -1.93603 -1.9951 -1.98782 -1.91642 -1.97171 -1.96756 -1.91193 -1.96531 -1.9 01-10 -1.93819 -1.99618 -1.98785 -1.92574 -1.97921 -1.95669 -1.92232 -1.97454 -1.8 9249 -4.9444 -4.99774 -4.99762 -4.99745 -4.99762 -4.	96205
01-10 -1.93819 -1.99618 -1.98785 -1.92574 -1.97921 -1.95669 -1.92232 -1.97454 -1.8	
	37515
02-10 -1.9411 -1.99701 -1.96673 -1.93562 -1.98125 -1.9003 -1.92863 -1.99278 -1.7	79138
03-10 -1.94984 -1.99791 -1.98443 -1.93604 -1.98747 -1.86639 -1.8984 -1.95483 -1.7	75449
04-10 -1.9587 -1.99886 -1.98172 -1.93283 -1.98655 -1.85453 -1.87209 -1.92426 -1.7	7511
05-10 -1.96153 -2.00618 -1.97417 -1.92485 -1.98418 -1.86366 -1.86483 -1.90802 -1.7	79804
06-10 -1.96925 -2.00688 -1.97292 -1.91523 -1.97675 -1.87578 -1.86205 -1.90262 -1.8	32622
07-10 -1.97086 -2.00778 -1.97267 -1.90273 -1.97496 -1.89308 -1.85186 -1.90532 -1.8	35309
08-10 -1.97091 -2.00883 -1.97297 -1.89275 -1.97413 -1.90497 -1.84658 -1.91441 -1.8	37865
09-10 -1.97025 -2.00989 -1.97375 -1.88821 -1.96874 -1.92162 -1.85642 -1.9246 -1.8	39745
10-10 -1.96962 -2.01094 -1.97489 -1.89154 -1.96916 -1.93348 -1.86882 -1.93482 -1.9	91528
11-10 -1.96939 -2.01199 -1.97631 -1.90221 -1.97025 -1.94383 -1.88723 -1.94465 -1.9	92672
12-10 -1.9697 -2.01938 -1.97793 -1.91391 -1.97155 -1.95333 -1.89931 -1.94769 -1.9	94367
13-10 -1.97048 -2.02013 -1.98461 -1.92889 -1.97789 -1.96244 -1.91624 -1.956 -1.9	95406
14-10 -1.97164 -2.021 -1.98615 -1.9399 -1.97906 -1.96542 -1.93254 -1.95872 -1.9	96363
15-10 -1.97817 -2.0219 -1.98742 -1.94956 -1.97991 -1.97289 -1.95059 -1.96657 -1.9	97465
16-10 -1.97958 -2.02277 -1.99381 -1.95288 -1.98066 -1.97457 -1.94893 -1.96674 -1.9	93638
17-10 -1.98093 -2.02362 -1.9948 -1.96031 -1.9796 -1.97374 -1.91815 -1.94084 -1.9	90018
18-10 -1.98776 -2.02444 -1.99566 -1.96041 -1.9749 -1.97159 -1.89079 -1.90794 -1.	.8904
19-10 -1.98888 -2.02522 -1.99663 -1.95921 -1.95452 -1.96962 -1.87785 -1.87549 -1.8	39145
20-10 -1.99002 -2.03178 -1.99766 -1.95831 -1.92406 -1.9685 -1.88014 -1.84873 -1.8	39582
21-10 -1.99129 -2.03144 -2.00438 -1.95816 -1.90508 -1.96823 -1.89054 -1.83663 -1.9	90641
22-10 -1.99751 -2.03035 -2.00552 -1.95881 -1.8928 -1.96867 -1.90767 -1.84602 -1.9	91722
23-10 -1.99856 -2.02874 -2.00653 -1.96013 -1.89998 -1.96964 -1.91868 -1.86389 -1.9	93221
24-10 -1.99941 -2.02025 -2.00768 -1.96199 -1.90974 -1.97087 -1.93443 -1.88194 -1.9	94266
25-10 -2.0004 -2.01917 -2.00885 -1.96952 -1.91995 -1.97221 -1.93916 -1.89949 -1.9	95183
26-10 -2.00159 -2.01796 -2.00997 -1.9715 -1.92505 -1.9736 -1.94876 -1.91127 -1.9	95448
27-10 -2.00934 -2.01699 -2.01726 -1.97337 -1.94226 -1.975 -1.95819 -1.92734 -1.9	96231
28-10 -2.00992 -2.01636 -2.01807 -1.98034 -1.95257 -1.98151 -1.96139 -1.93899 -1.9	96462
29-10 -2.01097 -2.01605 -2.01892 -1.98203 -1.95552 -1.98267 -1.96967 -1.94914 -1.9	97192
30-10 -2.01208 -2.01605 -2.01979 -1.98344 -1.96421 -1.98366 -1.97827 -1.95918 -1.9	97372
31-10 -2.01323 -2.01633 -2.02068 -1.98971 -1.97273 -1.9848 -1.97949 -1.96751 -1.9	8122
01-11 -2.01444 -2.01682 -2.02163 -1.99104 -1.97542 -1.99112 -1.98702 -1.97728 -1.9	98052
02-11 -2.022 -2.01745 -2.02911 -1.99212 -1.98272 -1.9917 -1.98699 -1.97309 -1.9	96068
03-11 -2.02303 -2.01813 -2.02969 -1.99293 -1.98186 -1.99102 -1.96813 -1.922 -1.9	3088
04-11 -2.02432 -2.01882 -2.03076 -1.99253 -1.97103 -1.98942 -1.93219 -1.88113 -1.	.9183
05-11 -2.02572 -2.01949 -2.032 -1.99085 -1.9595 -1.98762 -1.92002 -1.86835 -1.9	91169
06-11 -2.02717 -2.02014 -2.03335 -1.98869 -1.95099 -1.98104 -1.91832 -1.87156 -1.9	91396
07-11 -2.03457 -2.02076 -2.03477 -1.98677 -1.9499 -1.98032 -1.91985 -1.88325 -1.9	92339
08-11 -2.03584 -2.02137 -2.03625 -1.98538 -1.95053 -1.98037 -1.92303 -1.90077 -1.9	93453
09-11 -2.03724 -2.02197 -2.03778 -1.97956 -1.95209 -1.98083 -1.93357 -1.91219 -1.9	93768
10-11 -2.0387 -2.02253 -2.0454 -1.97946 -1.95417 -1.98163 -1.93721 -1.92365 -1.9	94676
11-11 -2.04651 -2.02306 -2.04665 -1.98012 -1.95656 -1.98272 -1.94669 -1.93838 -1.9	95603
12-11 -2.04752 -2.02358 -2.04818 -1.98113 -1.96422 -1.98408 -1.95576 -1.94924 -1.9	96484
13-11 -2 04899 -2 02414 -2 04981 -1 98244 -1 96662 -1 99066 -1 96446 -1 95209 -1 9	96784
14-11 -2 05057 -2 02479 -2 05829 -1 98893 -1 97396 -1 99193 -1 96746 -1 96046 -1 9	97562
15-11 -2.05224 -2.03159 -2.05893 -1.99027 -1.97605 -1.99311 -1.98076 -1.96989 -1.9	98399
16-11 -2.05968 -2.03222 -2.06057 -1.99149 -1.98306 -1.99419 -1.98111 -1.98144 -1.9	98109
17-11 -2.06122 -2.03313 -2.06233 -1.99256 -1.98429 -1.9945 -1.97014 -1.96132 -1.9	96305
18-11 -2.06293 -2.03422 -2.06413 -1.99285 -1.98419 -1.9938 -1.93381 -1.92617 -1.9	94524
19-11 -2.06468 -2.03542 -2.07145 -1.9922 -1.98314 -1.9926 -1.9286 -1.91547 -1.9	34224
20-11 -2.0721 -2.03673 -2.07316 -1.99117 -1.98191 -1.99136 -1.9273 -1.91026 -1.9	94169

	WATER TABLE DEPTHS (m)									
DATE	S19	S20	S21	S22	S23	S24	S25	S26	S27	
21-11	-2.07366	-2.04417	-2.07496	-1.99023	-1.98099	-1.98985	-1.92863	-1.91294	-1.94137	
22-11	-2.07543	-2.04529	-2.07672	-1.98963	-1.98059	-1.98766	-1.93161	-1.92296	-1.93542	
23-11	-2.07728	-2.04673	-2.08388	-1.98947	-1.98072	-1.98011	-1.94135	-1.934	-1.93554	
24-11	-2.08479	-2.04829	-2.08512	-1.98972	-1.98135	-1.97838	-1.95114	-1.94403	-1.93695	
25-11	-2.08636	-2.04992	-2.08628	-1.99031	-1.98239	-1.97758	-1.95456	-1.95343	-1.93925	
26-11	-2.08812	-2.05755	-2.08729	-1.99115	-1.98375	-1.97734	-1.96293	-1.96303	-1.94778	
27-11	-2.08999	-2.05892	-2.08819	-1.99218	-1.98528	-1.97757	-1.97131	-1.9655	-1.95638	
28-11	-2.09882	-2.06058	-2.089	-1.99334	-1.98685	-1.9782	-1.97416	-1.9734	-1.95862	
29-11	-2.10021	-2.06231	-2.08977	-1.99455	-1.99315	-1.97921	-1.98177	-1.97589	-1.96647	
30-11	-2.10184	-2.07003	-2.09058	-2.00077	-1.99435	-1.98055	-1.98402	-1.98311	-1.97523	
01-12	-2.10348	-2.07109	-2.09802	-2.00198	-1.99524	-1.98213	-1.99129	-1.98501	-1.97358	
02-12	-2.10512	-2.07257	-2.09878	-2.00285	-1.99616	-1.98228	-1.9917	-1.99095	-1.92456	
03-12	-2.11355	-2.07413	-2.09971	-2.00368	-1.99687	-1.97061	-1.98731	-1.97942	-1.86299	
04-12	-2.1149	-2.07572	-2.10069	-2.0039	-2.00185	-1.95802	-1.96447	-1.94941	-1.85401	
05-12	-2.11634	-2.08297	-2.10157	-2.00324	-2.00025	-1.94648	-1.9456	-1.93108	-1.85586	
06-12	-2.11782	-2.0843	-2.10237	-2.00201	-1.99195	-1.93639	-1.93112	-1.92448	-1.85991	
07-12	-2.12579	-2.08585	-2.10295	-2.00061	-1.99152	-1.92899	-1.93142	-1.92584	-1.8698	
08-12	-2.12709	-2.08749	-2.10322	-1.99938	-1.99037	-1.92891	-1.93955	-1.92902	-1.88588	
09-12	-2.12856	-2.08918	-2.10318	-1.99863	-1.98999	-1.93066	-1.94879	-1.93882	-1.89773	
10-12	-2.13009	-2.09743	-2.10293	-1.99812	-1.99008	-1.93349	-1.95172	-1.94849	-1.90864	
11-12	-2.13781	-2.09892	-2.10258	-1.99799	-1.99056	-1.94282	-1.96033	-1.95769	-1.92015	
12-12	-2.13906	-2.10061	-2.10224	-1.99286	-1.99136	-1.95167	-1.96348	-1.96669	-1.93523	
13-12	-2.14047	-2.10224	-2.10199	-1.99367	-1.9924	-1.96037	-1.97148	-1.9695	-1.94613	
14-12	-2.14193	-2.10392	-2.1019	-1.99466	-1.9936	-1.96308	-1.97976	-1.97729	-1.96159	
15-12	-2.14958	-2.10559	-2.10199	-1.99557	-1.9949	-1.97104	-1.98074	-1.98693	-1.96169	
16-12	-2.15065	-2.10728	-2.10228	-1.99639	-1.99625	-1.97335	-1.99974	-1.98755	-1.95311	
17-12	-2.15194	-2.10896	-2.10277	-1.99685	-2.00272	-1.97947	-1.96226	-1.97701	-1.91862	
18-12	-2.15325	-2.11065	-2.10344	-2.0012	-2.00282	-1.9792	-1.93214	-1.94607	-1.90446	
19-12	-2.15454	-2.1189	-2.10427	-1.9989	-2.00134	-1.97856	-1.91406	-1.92828	-1.90502	
20-12	-2.1617	-2.12032	-2.10521	-1.99166	-1.99921	-1.97823	-1.91324	-1.9261	-1.91369	
21-12	-2.1628	-2.1219	-2.11314	-1.98972	-1.99253	-1.97831	-1.9161	-1.92261	-1.92381	
22-12	-2.16402	-2.12351	-2.11393	-1.98874	-1.99115	-1.97877	-1.92612	-1.92575	-1.92792	
23-12	-2.16532	-2.1313	-2.11499	-1.9834	-1.99046	-1.97962	-1.93671	-1.93519	-1.93881	
24-12	-2.16666	-2.13271	-2.11615	-1.98377	-1.9901	-1.98078	-1.94657	-1.944/2	-1.94869	
25-12	-2.17379	-2.13415	-2.11738	-1.98488	-1.99003	-1.9822	-1.96673	-1.95359	-1.95743	
26-12	-2.17499	-2.13561	-2.12555	-1.98624	-1.99021	-1.98384	-1.95959	-1.95662	-1.9661	
27-12	-2.17632	-2.14326	-2.12625	-1.99272	-1.99056	-1.99043	-1.96/94	-1.96451	-1.9/444	
28-12	-2.177b7	-2.1443/	-2.12742	-1.99403	-1.99103	-1.99204	-1.9/629	-1.97242	-1.9/6/6	
29-12	-2.18525	-2.14564	-2.12872	-1.99514	-1.99161	-1.9934	-1.97887	-1.97424	-1.98429	
30-12	-2.18618	-2.14693	-2.13011	-1.99635	-1.99229	-1.999/4	-1.98619	-1.97602	-1.98627	
31-12	-2.18746	-2.1482	-2.13793	-2.00288	-1.99303	-2.00105	-1.98833	-1.98276	-1.98809	

APPENDIX 2

(UNSATURATED ZONE DEFICIT IN MELLI METRES)

		UNSATUR	RATED ZON	IE DEFICIT	RECHAR	SE AND DIS	SCHARGE	
DATE	S1	S2	S3	S4	S5	S6	S7	S8
01-01	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07
02-01	-244.358	-244.613	-243.765	-204.145	-207.473	-206.201	-174.844	-176.118
03-01	-247.244	-248.74	-247.269	-205.219	-211.188	-207.458	-176.423	-180.41
04-01	-249.649	-251.723	-250.332	-209.84	-216.746	-214.183	-182.156	-186.926
05-01	-244.671	-254.121	-253.423	-206.888	-220.9	-218.833	-179.804	-190.642
06-01	-247.264	-256.501	-255.851	-211.781	-224.978	-222.675	-184.466	-194.462
07-01	-250.017	-258.545	-257.691	-215.013	-228.094	-225.376	-188.77	-197.325
08-01	-252.34	-260.078	-259.484	-218.044	-230.377	-227.876	-191.736	-199.413
09-01	-254.102	-262.561	-261.038	-220.119	-232.23	-229.949	-193.671	-202.364
10-01	-256.53	-264.004	-263.577	-221.524	-234.01	-232.7	-194.945	-204.173
11-01	-258.115	-266.741	-265.993	-224.286	-237.061	-234.335	-196.655	-207.166
12-01	-259.821	-268.232	-267.336	-226.469	-238.8	-236.95	-199.814	-211.112
13-01	-262.91	-270.542	-269.613	-228.613	-241.335	-238.238	-202.056	-212.368
14-01	-264.646	-273.04	-270.817	-231.701	-245.032	-204.991	-205.455	-215.119
15-01	-267.195	-274.549	-273.557	-196.092	-212.182	-209.922	-141.72	-155.106
16-01	-269.789	-277.161	-275.101	-200.653	-216.878	-216.326	-146.117	-162.315
17-01	-271.059	-278.622	-277.515	-204.959	-222.871	-220.035	-152.242	-169.561
18-01	-273.207	-281.439	-279.895	-209.543	-227.067	-223.196	-156.155	-174.767
19-01	-274.626	-282.896	-280.988	-212.302	-230.451	-225.492	-159.761	-177.837
20-01	-276.205	-286.087	-284.416	-213.568	-233.254	-227.93	-160.624	-180.258
21-01	-192.06	-287.328	-285.395	-130,448	-235.661	-229.532	-76.7612	-183.588
22-01	-104.808	-289.469	-286.483	-40,9067	-237.454	-232.369	3.59221	-186.389
23-01	-108.134	-290.335	-288.523	-45,9409	-240.068	-233.789	1.58955	-188.75
24-01	-111.652	-292.497	-289.387	-49.3193	-241.639	-236.093		-191.363
25-01	-116.313	-293.534	-291.497	-54,7022	-245.197	-237.377	-6.05225	-192.939
26-01	-121.379	-295.98	-292.616	-62,1968	-246.757	-240.048	-13.0571	-195.897
27-01	-125.286	-296.622	-295.095	-67,145	-247.647	-241.757	-20.0361	-198.38
28-01	-128.13	-298.526	-296.228	-71.0151	-249.769	-245.329	-25.5601	-199.542
29-01	-131.007	-299.418	-298.796	-77.0981	-251.841	-246.921	-31.9565	-201.887
30-01	-134.338	-301.723	-300.134	-82.0425	-253.328	-249.459	-37.6782	-204.624
31-01	-138.618	-302,905	-302,105	-87.5479	-255.875	-214.263	-45.4175	-208.375
01-02	-140.896	-305.071	-302.802	-53.875	-220.96	-215.543	6.3564	-138,494
02-02	-145 11	-306 144	-304 894	-58 0366	-224 721	-220.655	1 62743	-143 318
02-02	-147 645	-308.323	-307 118	-63,3926	-229.4	-225.66	1.02110	-150 297
04-02	-151.03	-309.26	-308.608	-69 7417	-232 985	-228 898	-10 5752	-153.074
05-02	-153 873	-311.557	-310 801	-76 1167	-236.99	-231 915	-17 6216	-156 521
06-02	-156 59	-312,838	-311 634	-80.9668	-240 122	-233.613	-23 4946	-160.416
07-02	-159 387	-315 397	-312 605	-85 6748	-243 134	-235 539	-29.8662	-163 171
08-02	-162 118	-316 733	-314 981	-90 2822	-245 583	-237 584	-36 4146	-166 535
00.02	-165 127	-319.312	-316 247	-94 146	-247 633	-240 907	-42 481	-169.84
10-02	-168 206	-320.667	-318 805	-99 1665	-249 477	-242 599	-49 8823	-173 987
11-02	-170 163	-323 752	-320.014	-103.021	-252 125	-246.385	-56 6621	-175 545
12-02	-173 73	-324 826	-323.01	-107 149	-254 463	-247.649	-61 3218	-178 089
13-02	-175 257	-325 777	-324 136	-110.037	-255.98	-249 921	-65 8647	-180 866
14-02	-171 834	-326 54	-325 183	-107.46	-258 271	-216 175	-62 7466	-183 409
14-02	-174 136	-328.688	-326 279	-69 5278	-200.271	-210.173	-02.7400	-115 801
16-02	-175 501	-329 754	-328.496	-69 4116	-223.00	-226.004	-0.0459	-122 248
17-02	-177 414	-332.088	-329 114	-74 7632	-234 491	-228.443	-5 73193	-129 792
18-02	-180 /422	-333 255	-331 210	-79 0/35	-239.021	-220.23	-11 7/12	-13/ /8
19-02	-181 71	-335 52	-332 182	-83.03/7	-242 749	-234 724	-16 5117	-137 /17
20_02	-18/ /97	-336 623	-33/ 362	14503-38-	-242.743	-234.724	-10.0117	-142.043
20-02	-187 515	-338 847	-335 379	-00.0334	-240.000	-207.201	-20.0020	-142.043
21-02	-107.010	-330.047	-337 397	-91.7000	-240.040	-208.080	-27.2202	-140.077
22-02	102.000	240.070	220 210	100 200	200,433	-241.100 D <i>ME</i>		151 151
23-02	-193,196	-34Z.07Z	-330,319	-100.300	-202.275	-245	-40.0096	-191.191

	UNSATUR	ATED ZON	E DEFICIT	RECHAR	SE AND DIS	SCHARGE	
S1	S2	S 3	S4	S5	S6	S7	S8
-196.039	-342.283	-338.875	-106.271	-253.999	-246.072	-47.0542	-152.478
-192.722	-344.19	-340.962	-103.613	-256.314	-247.457	-46.7573	-155.188
-196.273	-344.953	-341.943	-109.346	-257.693	-250.108	-52.7578	-157.731
-198.429	-346.828	-344.201	-113.907	-260.113	-251.683	-59.4097	-160.34
-201.402	-347.741	-345.017	-116.566	-261.391	-217.818	-64.082	-162.98
-203.221	-348.49	-347.262	-80.2056	-223.282	-221.252	-0.1875	-99.6484
-205.848	-350.302	-348.356	-82.5249	-227.317	-227.006	-2.46973	-101.07
-209.063	-351.177	-349.513	-86.9395	-232.248	-230.731	-6.75195	-105.356
-210.141	-353.21	-351.701	-90.1748	-236.594	-234.491	-11.3887	-109.521
-212.404	-354.188	-352.813	-94.0176	-239.422	-237.67	-15.3413	-113.726
-213.76	-355.163	-354.942	-97.3472	-242.577	-240.134	-20.2451	-117.459
-216.1	-357.364	-355.535	-100.459	-245.174	-241.595	-24.4189	-120.628
-218.612	-358.333	-356.23	-104.803	-247.47	-245.316	-29.1187	-123.745
-220.122	-359.267	-358.317	-106.963	-249.421	-246.825	-34.1367	-126.716
-222.735	-362.359	-359.26	-111.188	-251.242	-248.275	-39.1494	-129.943
-225.318	-363.544	-360.33	-114.591	-253.981	-250.833	-44.7754	-132.936
-226.852	-364.492	-363.164	-119.173	-255.568	-252.168	-50.4941	-136.205
-229.134	-365.343	-364.015	-121.747	-258.216	-254.714	-55.6763	-140.066
-231.185	-366.296	-364.754	-124.165	-260.792	-214.084	-59.1768	-143.138
-232.275	-368.431	-364.456	-86.0273	-221.945	-213.53	-0.14209	-79.5527
-234.855	-369.184	-365.091	-88.5474	-226.455	-218.395	-0.60254	-83.1152
-237.406	-371.016	-365.891	-93.8784	-231.587	-222.236	-6.45703	-87.1567
-238.938	-371.912	-367.861	-97.981	-235.791	-226.159	-11.7056	-92.2998
-241.839	-372.728	-368.494	-101.293	-239.823	-228.826	-18.0278	-96.4863
-243.786	-374.792	-370.414	-103.726	-241.975	-231.359	-19.6738	-100.536
-238.417	-375.612	-371.328	-98.5576	-244.494	-233.726	-16.4019	-104.956
-238.683	-376.391	-371.997	-99.7642	-246.683	-235.535	-17.8032	-109.05
-240.313	-378.274	-373.771	-104.931	-249.529	-237.019	-20.5581	-110.632
-242.217	-375.823	-374.407	-107.66	-248.834	-238.311	-24.7671	-110.539
-244.079	-378.157	-375.045	-109.985	-250.579	-239.699	-29.3013	-114.231
-247.01	-379.172	-377.078	-113.329	-252.128	-243.4	-33.9429	-117.496
-248.66	-380.09	-378.066	-116.484	-254.782	-245.126	-38.6953	-120.547
-250.104	-382.121	-378.936	-119.519	-256.287	-246.633	-43.5649	-123.525
-252.865	-382.895	-380.932	-123.799	-258.647	-249.217	-47.8101	-126.115
-254.535	-383.636	-381.588	-125.626	-259.84	-213.325	-51.4951	-128.811
-255.684	-385.522	-382.163	-86.5493	-225.331	-214.372	5.79297	-65.3672
-257.834	-386.36	-384.174	-87.126	-226.851	-219.845	2.96863	-66.9316
-258.906	-387.076	-384.957	-91.0244	-230.943	-223.688	0.65524	-71.0405
-261.275	-388.722	-385.614	-94.8306	-233.843	-225.873		-73.5425
-262.505	-389.522	-387.593	-97.5156	-236.191	-228.991	-6.53076	-78.2368
-264.673	-390.332	-388.166	-100.509	-239.324	-230.921	-10.4448	-82.7388
-265.441	-391.141	-388.496	-103.383	-242.026	-231.994	-12.5015	-84.959
-267.496	-393.054	-390.189	-105.197	-244.247	-233.487	-15.8423	-88.9541
-268.417	-393.782	-390.885	-108.304	-246.18	-235.04	-19.248	-91.7939
-270.478	-390.428	-391.553	-109.93	-243.668	-237.84	-22.7505	-89.646
-271.357	-393.047	-393.347	-111.043	-245.406	-239.45	-25.1919	-92.4941
-273.153	-394.067	-394.113	-113.036	-246.861	-240.802	-27.459	-95.4404
-274.141	-395.127	-394.948	-115.53	-249.624	-244.637	-30.2505	-98.6231
-276.48	-395.933	-395.363	-119.202	-251.262	-245.368	-34.2822	-101.773
-277.568	-390.811	-395.725	-120.499	-245.057	-202.051	-36.9629	-95.648
-278.412	-391.946	-396.214	-81.2666	-203.41	-203.532	6.69823	-29.6997
-281.73	-393.113	-396.585	-81.7114	-205.81	-206.271	3.47758	-30.8267
-283.007	-390.271	-398.341	-86.1016	-204.189	-209.727	0.77316	-28.7495
-284.233	-392.733	-398.969	-89.8628	-207.686	-211.557		-31.1577
				200			

		UNSATUR	ATED ZON	IE DEFICIT	RECHARG	E AND DIS	SCHARGE	
DATE	S1	S2	S3	S4	S5	S6	S7	S8
19-04	-285.163	-394.142	-399.614	-91.9004	-210.501	-214.355	-5.8125	-33.9648
20-04	-287.014	-395.556	-400.261	-94.0874	-212.381	-216.834	-8.35205	-37.002
21-04	-287.701	-396.852	-402.252	-96.4038	-214.931	-219.169	-11.0151	-41.2998
22-04	-289.635	-397.917	-403.018	-98.813	-216.881	-221.347	-13.9473	-44.1777
23-04	-290.128	-400.074	-403.447	-99.5889	-218.355	-222.545	-15.8179	-46.8882
24-04	-291.878	-401.056	-404.967	-102.669	-219.856	-223.315	-17.8633	-50.1001
25-04	-292.751	-402.052	-404.923	-103.883	-221.476	-223.832	-21.1128	-53,6353
26-04	-294.653	-403.017	-405,434	-107.327	-224.279	-224.641	-23.5356	-57.3506
27-04	-295.829	-399,793	-406.047	-108.794	-221.67	-225.794	-26,1504	-54,1758
28-04	-296.946	-400,666	-406.675	-111.653	-222.528	-228,306	-30,4346	-55,9131
29-04	-299 251	-402 913	-408.343	-114 472	-223.663	-229 73	-34 7183	-59 3564
30-04	-299 888	-403 805	-409 089	-115 235	-224 675	-193 971	-36 8276	-60 7134
01-05	-283.316	-404 626	-409 686	-53 1411	-184 855	-193 972	10 4948	-0.09863
02-05	-280 293	-405 563	-410 219	-50 2622	-188 323	-196 532	6 43693	-0.00342
02-05	-281.064	-406 331	-411 735	-51 6938	-190.323	-198 427	4 16632	-1 89258
04-05	-282 583	-408.354	-412 348	-53 5576	-191 873	-201.16	2 3/257	-4 7251
04-05	-202.000	_/00.004	-412.040	-55.0070	-194 634	-201.10	1.22534	-7.7/609
05-05	-204.134	-400.100	-412.007	-55.0045	-196.97	-202.000	1.22004	-10 5332
00-05	-200.100	-410.001	-363 348	-50.752	-100.07	-153 652	5N933 C.	-14 4775
07-05	200.204	410.751	357 473	-00.1515 E4 7E79	200 797	146 664	0.60100	17 0307
00-05	-202.077 100 517	411.021 410.411	260.077	-04.7070 56 0050	200.707	1/0 277	0.02103	20 1051
10.05	-203.327 105.307	413.411	-300.077 วิธา ดา	-00.2000 50 0000	100 104	143.377	1 77500	-20,1001
10-05	-200.004	-400.147	-352.92	-30.309Z	179,036	-142.200	1.01400	-0.9034
11-05	-200.004 	-300.417 270.0	-304.370	-00.2070 57 0000	-170.030	100 400	1 057400	-0.59063
12-00	-204.04Z	-370.0 200 300	-344.100 005.0	-07.0002 20.0002	101.411	103.403	-1.0074Z	
13-05	-200.242	-300.003	220.014	-59.2939	-100.900	-124.7	-3.01572	
14-05	-207.001	-307.900	-330.014	-62.6226	-150.010	-03.0753	-6.24023	0.40074
15-05	-289,162	-370.361	-339.3	-22.2061	-116.405	-84.2764	12.125	0.10071
10-05	-209.440	-372.407	-342.004	-19,4070	-110.347	-00.0001	7.10009 E 4004	4.07.374
17-05	-200.903	-370.293	-342.735	10 4070	-110.040	-00.1019	0.1001	0.00104
10-05	-200.020 200.207	-347.015	-344.352	10.40/0	-95.4351	-90.0196	3.29001	0.20020
19-05	-209.207	-350,194	-345.662	-19.2017	-95,4551	-91.667	1.94526	3.63919
20-05	-290.762	-352.519	-340.709	-22,4604	-90.3020	-00.3066	0.56307	2.11230
21-05	-292.096	-353.2	-339,491	-24.6431	-100.01	-86.0249	0.07007	1.16974
22-05	-293.253	-334,105	-341.487	-26.7544	-01.7627	-00.2000	-2.37207	4.2003
23-05	-294.228	-296.904	-343.524	-28.7793	-45.085	-90.3262	-4.4292	8.75377
24-05	-293.792	-295.708	-338.364	-28.2788	-43.0195	-85.0357	-4.4/168	5.49217
25-05	-292.849	-296.015	-334.273	-27.8208	-44.5825	-82.4355	-4.36084	3.55859
26-05	-292.356	-296.927	-335.265	-27.7158	-44.4893	-84.0562	-4.29688	2.16891
27-05	-283.837	-299.293	-337.02	-19.897	-47.1211	-84.7124	1.68508	1.01781
28-05	-277.945	-284.24	-338,658	-14.686	-31.9482	-86.3164	2.55618	3.81167
29-05	-2/4.9/3	-285.075	-331.005	-11.73	-33.0664	-78.9419	2.50645	2.43096
30-05	-275.83	-285.174	-315.712	-12.2163	-34.7803	-19.4692	1.5596	1.27909
31-05	-276.303	-288.75	-316.339	10.0126	2.64345	-19.397	12.2249	11.9994
01-06	-278.616	-289.801	-315.258	6.27205	1.60456	-19.6172	6.29549	7.00346
02-06	-280.9	-277.14	-314.701	3.78112	3.40015	-17.7915	3.86683	6.78802
03-06	-247.746	-278.393	-315.729	10.4182	2.0938	-18.4883	7.97819	4.2598
04-06	-248.873	-280.273	-314.81	6.823	0.69992	-18.0078	4.82412	2.58224
05-06	-250.75	-276.914	-316.048	4.31286	1.35742	-18.4058	2.72716	2.73667
06-06	-253.464	-265.2	-316.776	2.57421	3.30143	-20.0068	1.17082	4.298
07-06	-253.131	-251.436	-318.459	2.29414	4.76346	-20.792	1.09292	5.38539
08-06	-232.406	-237.293	-311.893	6.57585	5.73577	-16.3003	4.52765	6.13757
09-06	-223.799	-219.325	-310.586	6.90694	6.22811	-14.7261	4.66245	6.70314
10-06	-214.305	-219.152	-308.371	7.06653	3.74552	-12.7896	4.88448	4.20461
11-06	-211.209	-221.407	-307.373	6.02373	2.15637	-11.957	4.10005	2.46375

		UNSATUR	ATED ZON	E DEFICIT	/RECHARG	E AND DIS	SCHARGE	
DATE	S1	S2	S3	S4	S5	S6	S7	S8
12-06	-209.856	-222.667	-307.237	4.88152	1.20975	-11.7705	3.23013	1.48777
13-06	-194.164	-222.81	-309.446	7.33661	0.48191	-12.5713	4.85856	0.76996
14-06	-184.238	-224.071	-310.533	7.28808		6.78565	4.66494	0.13905
15-06	-176.392	-225.452	-311.792	15.7722	4.32242	3.88679	14.6692	11.3343
16-06	-156.375	-226.739	-312.398	13.8129	2.62225	2.13205	10.4553	6.51844
17-06	-155.932	-228.061	-308.488	9.42333	1.33037	2.52212	5.96997	3.86309
18-06	-146.622	-229.425	-310.063	8.1423	0.19291	1.15823	5.44018	2.44704
19-06	-147.534	-230,693	-309.952	5,50013		0.92393	3.6107	1.26938
20-06	-148.624	-229,699	-311.399	3.7245	-0.86182		2.42571	1.35775
21-06	-150.019	-228,968	-313.246	2.70405	-0.9082	-1.80859	1.6003	1.11177
22-06	-151.907	-228,803	-314.911	1.59514	-0.95117	-4.27881	0.60246	0.83145
23-06	-152.41	-211.705	-316.071	1.16533	3.4489	-6.18066	0.2853	3.89257
24-06	-138 716	-209 875	-313 778	4 48089	2 9506	-5 99707	3 1657	3 22366
25-06	-132 875	-202 207	-314 825	4 95662	3 77558	-6 49414	3 72827	3 96703
26-06	-134 005	-201.681	-315 974	3 32595	2 64033	-8 69971	2 39899	2 76503
20.00	-136 193	-201.479	-317 236	2 2053	1 87577	-11.0806	1 44099	1 97781
28-06	-128 823	-202 592	-318.607	3 90103	1.05982	-13.0679	3 0155	1.01101
20-00	-126.023	-202.002	-313.614	3,83682	0.33598	-9.59912	3 11577	0.43367
30-06	-126.122	-204.000	-305 226	2.50/21	0.00000	-2.05273	1 95999	0.40007
01-07	-120.434	-205.023	-303.220	3 9139	-1 00879	1 37969	3.24006	-0.62256
01-07	-120.702	-205.441	-200.470	2.51/25	-1 19873	1.57505	2.01624	-0.02230
02-07	-115 7/9	-205.011	-207.140	3 95399	-2 59717	2.51183	3 39287	-2.51074
0.07	-111.085	-200.034	-201.400	4 42501	-5.09/2/	2.01/03	4.42574	-4.98242
04-07	-105 931	-200.334	-201.024	4.42301	-5.00424	0.85207	5 213/5	-4.30242
05-07	-103.331	-183 /12	-202.47	5 33106	-3.20314 A GEGAA	0.03207	6.61357	5.00777
07-07	-98.8018	-182,813	-204.207	3,80869	3 49564		5 1/165	3.52428
07-07	100 537	161 608	203.432	2.00003	7 60008	3 30670	3 7/903	7 96004
00-07	-100.537 00.1700	120.2	272.000	Z.0031 A A1009	7.00000	3,30073	6 20 <i>4</i> 633	0.000004
10.07	-32.17.33 00.4954	100.0	-271.201 071.0	2 3/003	1.95002	1 61575	1 OCECE	5 20/10
11.07	92.4004	123.037	271.5	0.02051	4.00221	1.01070	2 20700	J.JZ41Z A E000
12-07	-94.0003	-124.003	-272.000	1 172/18	4.20100	2 71386	2.26453	6 70304
12-07	93.4131	100 556	204.004	2 337	3,91009	1 /3931	3 70779	5 Q0031
14.07	91.7207	100.000	200.000	2.337	J.01320	0.68909	1 00070	7.910/0
14-07	-03.3170 E0.0E7E	-100.703 09.6016	169 005	2.04044	9.4030Z	0.00000	4.00340	6 62207
10-07	-30,8373	-30,0010 00,5002	-200.990 hen oho	11.0207	2.31370	1.02467	15.5779	0.00007
10-07	-00.4229 DC 5105	-30.3233 DC 704	-203.020 171.005	12.3132	1.00717	2 0100407	11.0400	4 60120
17-07	2010100	-90.791	271.000	0 65010	1.00714	-3.02001 5.1.4000	7 76114	4.0313 C 077C0
10-07	-30,9023	-92.3402 05.4000	-272.305	0.00213	2.70090	-0.14000	7.70114	7.50670
20.07	11 0075	44 7040	274.007	16 0527	11 0060	0 60010	12 20/7	10,10075
20-07	10 1070	25 2420	100 000	1/ 2012	10.0000	2 7015	10.2047	16,0262
21-07	-10.1273 0.10000	-00.0420 DC 5100	-200.000 DC0 574	14.3013	0 0 0 7 1 7 1	4 10500	10.0007	11 20102
22-07	3.13230	2010/01/02	-209.971	1E 07 AE	5.0/1/1	-4.20000 c npozz	11 1452	0 /110
23-07	4.34307	-30.2324 00.2524	271.102	10.0740	0.51242	-0.03037 0.10555	0.001	10 4022
24-07	4.07000 5.50000	-20.3521	-272.503	10.2440	0.07091	-0.10000 10.0505	0.001	10.4900
25-07	5.50232	-0.05723 0.1077	-274.42	12.0039	13.0741	10.0525	0.00937	14.5539
20-07	0.2/04/ 7.70409	-2.1377	-270.007	12 1034	0.01047	15.0077	0.17030	11.0407 g ons/7
27-07	T.TZ490	1 004 40	277.300	10 5104	9.01317	10.0710	9.14039 6.6774.4	9.00347
20-07	0.70011 / 100	10,6054	273,300	0.5101	14.70	12.0031	0.07714 A 90044	1/ 05102
29-07	4.132	0.00204	-273.394	0.20242 C 04474	14.79	-15.0493	9.00341	14.0019
30-07	2.00440	0.00000	-200.309	0.24171	0.27000	0.00016	3.23091 1.05000	0 40070
31-07	1.30400	7.522 E 70404	-200.074	4.43702	3.3/920 7.00000	-0.02032	1.05208	9.4097Z
01-08	1.00319	0.70121 0.04505	-209.279	4.29527	1.02369	1.04040	2.01116	7.04001 4.04054
02-08	0.9334 E 17000	3.91535	-201.473	0 33000	4.92037	-1.91943 0.45475	7.23194 £ 3040	2 20007
03-08	0.17636 0.44450	2.4072	-240.725	0.32998	3.27444	2.45175	0.5916	3.29097
04-08	3.41156	1.15238	-242.716	0.13629	1.84093	3.13775	3.58/41	1.85448

		UNSATUR	ATED ZON	E DEFICIT	RECHARG	E AND DIS	SCHARGE	
DATE	S1	S2	S3	S4	S5	S6	S7	S8
05-08	1.92392		-243.055	4.27453	0.44759	2.19195	2.06668	0.46285
06-08	0.89181	-1.8877	-234.899	2.94898		3.42786	1.04456	
07-08	3.82806	-4.58984	-235.196	6.0478	-3.4751	2.39392	3.92924	-3.4668
08-08	6.36319	-7.58398	-234.196	8.84979	-6.42334	1.89005	6.47002	-6.41699
09-08	7.63721	7.10783	-202.866	10.6764	7.34368	7.14855	7.72438	7.3595
10-08	5.20334	7.08148	-203.251	8.30116	7.2398	4.40742	5.2647	7.25982
11-08	3.53887	5,79553	-199.218	6.3083	5.91652	3.85756	3,56952	5,93344
12-08	2.21044	7.18378	-199.174	4.6773	7.27969	2.67028	2.22609	7.29676
13-08	1.32894	10.0706	-198,958	3.4825	10.1732	2.14124	1.34148	10.2199
14-08	0.77028	7.00208	-185.056	2.64642	7.09649	4.21718	0.78004	7.16017
15-08		5.09399	-171.946	1.35833	5.17785	5.08302		5,23466
16-08	-2 81885	3 42159	-173.34		3 49216	3 19099	-2 81543	3 54211
17-08	-4 59131	5 70458	-175.93	-1 68994	5 76351	1.96824	-4 58984	5 81705
18-08	-4 8623	3 98737	-177 52	-2 12646	4 04509	0.84953	-4 8584	4 08677
19-08	-0.07178	2 98521	-179 233	1 9864	3.04076	0.04000	-0.63916	3.06988
20-08	0.01110	6 3225	-179.606	2 14536	6 37068	-1 30518	0.26166	6 40088
20.00	0.002	4 89039	-181 465	0.6638	4 94236	-3.64014	0.20100	4 96905
21-00	-2 //3018	5 59275	-183.027	0.0000	5.64103	-6.06152	-2 50537	5 66389
22-00	14 5767	5 28922	-183 747	17 7066	5.04103	-7.96387	14 6771	5.36171
23-00	10 3001	6 3873	-169,836	1/ 3719	6.44666	-0.26074	10.4652	6 47022
24-00	7 06589	5 2321	-172 516	10 9956	5 29867	-0.200r 4	7 20239	5 31896
25-00	1.85137	6.00225	175 300	8 3/33/	6 062007	1 8667	/ 06077	6 09099
20-00	3.03390	3 89/15	177.65	6 12581	3 95/72	4 07400	3 133/6	3 96967
27-00	2 68184	2 32117	-170 351	5.12001 5.13985	0.30472	-4.07422	2 76928	2,38084
20-00	2.00104	1.67606	175 106	6 35/63	1 71715	4 04440	2,70320	1 70635
23-00	2,91066	0.91333	166 055	5 06056	0.95131	1 95675	2,00440	0.95969
21.00	2.01900	0.01333	100.900	0.20000 A 2020	0.00131	7 10/17	2.09020	0.00000
01.00	4 5103	1 44007	100.040	4.0000		/.1041/	2.43070	
01-03	1.0201	1 51052	171 202	10.0740	1 09950	1 25200	13.17	2 40292
02-03	0.144/0	11.01000	171.000	7 62010	12 00/	2.00000 1.00405	0.7224J C 20070	11 4540
03-09	0.24449	10.0029	170.00	7.0391Z	11 /100	0.2400	0.00079 4 04710	12.4040
04-03	1 00014	C 04624	100 000	3.34707	7 70110	1 20044	4.04713	7 20040
00-09	-1.09014 4 00000	11 CO4	-109.020	4.02211	10 0000	2 COE 4C	2.90277	11.00049
00-09	-4.00000	10.2051	-107.071 455.000	2.20497	12.2090	3.00340	1.29520	10,0000
07-09	-7.87061	7.00540	-155,603	0.70591	7.05407	2.78121	2.25625	7,50503
08-09	-10.48	7.32549	-154.000	4.07.474	7.65107	1.79467	-2.25635	7.53522
09-09	-13.8262	0.54148	-150.997	-4.07471	6.79093	2.537.27	-6.23975	6.71709
10-09	-17.585	4.49064	-148.229	-8.36475	4.67928	2.52712	-9.99463	4.62921
11-09	-21.0537	2.78036	-150.087	-11.4238	2.93114	1.11206	-13.0801	2.89427
12-09	-24.8369	4.26633	-150.347	-14.7661	4.40802	0.95201	-16.7451	4.38624
13-09	-26,936	3.92798	-151.364	-17.7095	3.99904	0.45147	-19.5361	3.98926
14-09	-21.112	3.14626	-153.457	-17.5786	3.21068	7.31946	-19.3369	3.20493
15-09	4.15653	1.79396	-154.139	19.3548	9.77098	4.58664	20.265	13.4638
16-09	8.43504	0.50000	-155.284	20.3349	5.95284	3.05518	18.0265	8.52144
17-09	6.20595	-2.52832	-156.73	15.3624	3.79469	1.71368	12.3795	5.61727
18-09	4.54349	-4.05859	-157.579	12.0081	2.50001	0.88467	9.14147	3.80923
19-09	2.28749	-4.0/568	-158.652	8.42336	2.15994	0.00007	5.77642	3.28079
20-09	1.11707	-4.44287	-160.586	6.23704	1.455	-2.63867	3.89357	2.41879
21-09	1.99809	-6.48584	-162.19	6.6479	0.18223	-5.80176	4.47972	1.08515
22-09	5.30746	-9.12402	-149.52	9.49128	0.70000	2.11179	6.94172	0.05500
23-09	6.48245	-12.0415	-148.95	10.5102	-3.79883	1.81831	7.5876	-2.35596
24-09	11.4063	-16.9199	-149.01	16.4092	-8.57275	1.45879	12.1813	-6.52881
25-09	8.65581	-20.3418	-150.09	13.541	-11.667	0.89749	9.18651	-10.146
26-09	5.79824	-22.7603	-153.871	10.1122	-14.7339		6.2191	-13.0352
27-09	3.6423	-26.1538	-155.695	7.41749	-17.0449	-3.46387	3.98319	-16.3315

DATE S1 S2 S3 S4 S5 S6 S7 S8 28-09 181746 -28.0076 -16.68.09 50.442 22.2735 50.0362 2.1166 -16.404 30-09 -5.5712 -33.4482 -131.012 -25.6444 10.6403 -5.14644 30-10 -11.3291 -40.9243 -31.167 -18.6754 5.06677 1.2125 2.57444 04-10 -2.74268 -42.3271 136.571 4.33496 -18.2813 -7.30865 2.39341 05-10 6.36941 -44.2047 14.333 12.4637 1.82814 -4.83164 11.7826 1.51903 06-10 -4.4264 -4.3937 14.333 12.4637 1.82814 -8.3198 1.4181 -13.4077 5.9824 08-10 -4.4264 -4.409 -16.533 0.40333 9.8144 -9.8185 -9.7275 1.8168 0.4104 0.7178 08-10 -5.53987 1-16.833 0.5034 -0.6186 -0.7178		UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE							
28-09 18.1156 -28.8076 -156.889 5.0442 20.2739 -5.60382 2.1156 14.4805 29-09 -31.489 -34.481 2.46271 -22.4053 3.81156 -21.5444 30-09 -5.57129 -33.4482 -131.012 -25.6494 10.6403 -5.14453 -23.7681 02-10 -11.3291 40.9243 -31.547 0.9600 7.3088 5.6257 1.02152 2.57544 04-10 -2.74268 4.23271 1.43.339 9.14274 1.82644 -4.83987 -1.02162 1.51031 06-10 4.4264 43.9937 -143.533 9.81448 -1.83398 -9.0107 7.97886 1.26144 07-10 -3.1864 -4.6564 -14.676 7.82165 -3.4007 5.98924 -26544 08-10 -6.66399 -4.93937 -147.476 4.89269 -6.77881 1-6.3169 3.14631 -2.68044 09-10 -4.9638 -4.93937 -16.76 1.52344 10.6244 -20.5132	DATE	S1	S2	S3	S4	S5	S6	S7	S8
29-09 -31 1689 -134 481 2.46271 -22.6633 381156 -21.5444 30-09 -5.57129 -33 4483 -131 012 -25.6494 10.6403 -5.1443 -23.7681 01-10 -11.3291 -40.9243 -131.672 0.9009 0.73089 3.5254 7.0583 5.64931 03-10 -13.9639 -44.3257 -135.004 -1.55671 4.1215 2.57544 04-10 -2.74268 -42.3281 -138.571 4.33466 -1.82313 7.30852 2.39341 05-10 6.36941 -44.264 -43.9337 147.474 4.89269 -0.0717 7.97881 1.51903 06-10 -44.688 -148.576 7.82165 -3.4707 -13.4077 5.98224 06-10 -46.68937 -147.478 4.92924 -2.45142 -4.10343 -2.66611 -3.97841 1.8312 -5.66639 11-10 -15.6733 -15.2536 -2.96947 -2.25146 -4.11084 -0.07178 11-10 -16.8242	28-09	1.81746	-28.8076	-156.889	5.04642	-20.2739	-5.60352	2.1156	-18.4805
30-09 -5.57129 -33.442 -131.012 -26.6494 10.6403 -5.14453 -23.7681 01-10 -8.5542 -36.6463 -131.547 0.96009 0.73089 3.6254 7.0383 5.64931 03-10 -13.9639 -44.3257 -135.004 1.55671 4.12215 2.27544 04-10 -2.74288 4.23281 -138.571 4.33496 -18.6313 7.0383 5.4237 06-10 4.4264 -43.9397 -14.5339 9.81448 -19.9399 -9.01074 7.97888 1.26144 07-10 3.16861 -45.564 -14.8676 7.82165 -13.4077 5.99924 08-10 0.66908 -49.5732 -62.9997 -15.563 0.50934 -10.6284 -20.513 -666309 11-10 -5.5732 -62.9997 -15.683 0.50934 -10.6284 -20.513 -666309 11-10 -25.6746 -61.1333 4.4749 3.55531 -5.15869 11-10 -12.6744 4.62554	29-09		-31.1689	-134.481	2.46271	-22.4053	3.81155		-21.5444
01-10 -86.642 -36.4663 -131.679 1.6774 5.9687 1.21807 10.6905 02-10 -11.3913 -44.9257 -135.004 1.56671 1.1215 2.57644 04-10 -27.2288 -42.3281 -138.571 4.3346 -1.82813 7.30885 2.93341 05-10 6.36941 -42.0241 -141.533 9.81446 -1.98339 -9.01077 7.97888 1.26144 07-10 3.1866 -45.8664 -146.876 7.82165 -3.4707 -13.4077 5.98924 08-10 0.66908 +05.327 -14.4774 4.99299 -7.9725 -18.166 0.65011 -3.98801 10-10 -5.75732 -52.9897 -15.1533 0.5034 -10.8244 -0.07178 -6.66309 11-10 -16.8242 -50.179 -16.8641 -0.0178 -16.8942 -51.5783 -2.9547 -2.2546 -4.1084 -0.07178 11-10 -12.6867 -57.334 -164.161 3.271 3.66443 -0.2022	30-09	-5.57129	-33.4482	-131.012		-25.6494	10.6403	-5.14453	-23.7681
02-10 -11.3.931 -40.9243 -135.044 0.96009 0.73069 3.6254 7.06332 5.64931 03-10 -13.9639 -44.3257 -135.071 4.33496 -182813 T.30665 2.37644 04-10 -2.74268 -42.3281 -136.571 4.33496 -182813 T.56449 4.33154 11.7826 2.39841 05-10 -4.3264 -43.9937 -143.533 9.81444 -19.8399 9.01074 7.97868 1.266064 08-10 0.66908 -49.5327 -147.478 4.89209 -6.77881 -16.51619 3.96621 -3.4707 -13.4077 5.98924 08-10 -45.6391 -44.9373 2.29994 -7.9275 -18.166 -6.65019 -0.92641 11-10 -5.5732 -52.9997 -15.1630 0.50934 -10.6224 -20.5126 -4.11084 -0.07781 -13.9231 12-10 -12.6714 -44.2564 -16.4371 -3.72494 -4.93463 -7.08227 -5.16389 -6.27142 1.53234	01-10	-8.5542	-36,4863	-131.678		1.85754	5.98687	12,1907	10.6905
03-10 -13.9639 -44.3257 -135.004 1.55671 4.12215 2.57544 04-10 -2.74268 -42.3281 -136.571 4.3346 -1.82813 7.30865 2.39341 05-10 6.36941 -44.2041 -141.339 12.4637 -1.85449 -4.83154 1.17826 1.5193 06-10 4.42641 -43.9637 -147.478 4.89269 -6.77881 -6.63694 -2.66064 09-10 -49.688 -149.373 2.29997 -51593 -0.5934 -10.624 -2.614 -6.6309 11-10 -5.5732 -5.9997 -151.593 -0.5934 -10.624 -2.6449 -8.4604 -0.07178 12-10 -15.62174 -46.2564 -164.571 -3.7294 -4.99424 -24.5049 -8.46094 -0.07178 13-10 -16.8044 -0.1079 15.6501 -8.64307 -9.992531 -5.1638 6.27142 14-10 -21.6867 -7.7334 -164.161 3.271 3.565431 -7.08252 3.45038 <td>02-10</td> <td>-11.3291</td> <td>-40.9243</td> <td>-131.547</td> <td>0.96009</td> <td>0.73089</td> <td>3.6254</td> <td>7.06383</td> <td>5.64931</td>	02-10	-11.3291	-40.9243	-131.547	0.96009	0.73089	3.6254	7.06383	5.64931
04+10 -2.74268 -42.3281 -138.571 4.33496 -1.82813	03-10	-13 9639	-44 3257	-135 004			1.55671	4 12215	2 57544
05:10 6.36941 -44.2041 -141.339 12.4637 -1.85449 -4.83154 11.7826 1.51903 06-10 4.4264 -43.9937 -143.533 9.81448 -1.98389 -9.01074 7.97868 1.26144 07-10 3.1866 -44.9573 2.29989 -7.9725 -18.166 0.5017 -3.9801 08-10 0.66908 -49.5327 -147.476 4.89269 -6.77881 -16.3169 3.14631 -2.66064 09-10 -49.688 -164.373 2.29989 -7.92725 -18.166 0.65011 -3.660309 11-10 -5.75732 -52.9897 -152.631 -2.25146 -4.11084 -0.07178 11-10 -16.82764 -154.501 -8.64070 -9.98636 -17.7578 -11.5923 11-10 -30.7954 -62.7861 -164.333 -4.7449 -5.3531 -5.31638 6.27142 17-10 -31.7663 -5.77334 -164.151 3.271 3.56443 -7.08252 3.46038 5.21831 <tr< td=""><td>04-10</td><td>-2 74268</td><td>-42.3281</td><td>-138 571</td><td>4 33496</td><td>-1.82813</td><td></td><td>7.30885</td><td>2 39341</td></tr<>	04-10	-2 74268	-42.3281	-138 571	4 33496	-1.82813		7.30885	2 39341
06-10 4.4264 43.9937 -1.43.533 9.81448 -1.90399 -9.01074 7.97888 1.26144 07-10 3.1866 -45.6564 -146.876 7.82165 -3.4707 -13.4077 5.9924 08-10 0.66908 -49.5327 -147.476 4.89299 -67.7818 1-6.3184 1-6.3464 -0.5512 -2.66044 09-10 -49.688 -149.373 2.29989 -7.92725 -18.166 0.55011 -3.95801 10-10 -5.75732 -52.9897 -151.533 0.50934 -10.5244 -20.5132 -6.63194 -2.65644 -11.0844 -0.07178 11-10 -5.75732 -52.9897 -151.561 -8.93652 -2.8.3764 -11.6923 -5.758 -11.5923 1410 -21.6877 -57.335 -157.6 +12.9561 +4.81375 -5.6388 -6.4705 0.13464 10.7926 11.5322 16-10 -30.7944 -52.7817 -165.448 0.99139 6.96663 -12.2002 1.2.6345 -17.109	05-10	6 36941	-44 2041	-141 339	12 4637	-1 85449	-4 83154	11 7826	1 51903
07:10 3.1866 45.8564 1.46.876 7.82185 -3.4707 13.4077 5.98924 08-10 0.68908 49.5327 1.47.478 4.89289 6.77881 16.3169 3.14631 2.66084 09-10 49.688 1.49.373 2.29989 7.92725 -18.166 0.56011 3.98601 10-10 5.75732 5.2.9897 -151.593 0.50934 -10.6284 -20.5132 -6.66309 11-10 8.50391 4.44.209 -152.351 2.95947 -22.5146 4.10494 -0.07184 12.11 11.68242 -50.1079 -155.601 8.64307 8.93652 -28.3764 -12.8936 5.31638 6.77763 11.6322 14.10 -26.0864 -60.1426 -159.314 8.63806 4.7707 0.13484 10.7926 11.6322 16-10 -30.7964 -62.7861 -161.333 4.47449 3.55542 -17.1709 4.54355 11-10 -31.7653 -57.7334 164.134 -12.0175 -14.9777	06-10	4 4264	-43 9937	-143 533	9.81448	-1 98389	-9.01074	7 97888	1.26144
08-10 0.66308 -49.5327 -147.478 4.89269 -6.77881 -16.169 3.14631 -2.66064 09-10 -49.688 -149.373 2.29998 -7.92725 -18.166 0.5011 3.96601 10-10 -5.75732 -52.9897 -155.351 -2.95947 -22.5146 -4.11084 -0.07178 11-10 -8.6309 -152.351 -2.95947 -22.5146 -4.11084 -0.07178 12-10 -12.6714 -46.2554 -155.61 -3.83052 -2.83784 -12.9925 -5.15869 14.10 -21.6874 -57.3335 -157.6 -12.9561 -14.8136 0.5325 -5.15869 14.10 -21.6874 -50.3733 4.47449 3.5551 -5.13868 -17.578 -11.5232 16.10 -30.0664 -60.1426 -159.313 4.47449 3.55643 -70.8252 3.46038 5.2131 17.0 -31.758 -11.5718 -11.5718 -11.5238 -20.007 -17.3242 1.52342 10.10	07-10	3 1866	-45,8564	-146.876	7 82185	-3 4707	-13 /077	5 98924	1.20144
09-10 -49-688 -149-373 -29989 -7.9272 -18.168 0.5011 -3.96801 10-10 -5.75732 -52.9897 -151.533 0.50934 -10.6284 -20.5132 -6.66309 11-10 -8.50391 -44.4209 -152.351 -2.95947 -22.5146 -4.11084 -0.07178 12-10 -12.6714 -46.2554 -154.571 -3.72949 -4.09424 -24.6049 -8.4004 -2.9561 -14.8315 -0.56836 -17.578 -11.5923 15-10 -26.0664 60.1426 -159.334 -164.151 3.277 3.56443 -7.08252 3.45038 5.23131 16-10 -30.7964 -62.7861 -161.33 0.98139 6.96663 -12.2002 1.26733 7.97802 19-10 -39.9043 -35.4965 -169.203 -5.5542 -17.1709 4.5355 21-10 -45.5751 -49.2051 -19.324 -17.5459 -14.1777 -11.062 22-10 -56.751 -49.2051 -162.396 -23	07-10	80933.0	-40.0004	-140.070	1 89269	-6 77881	-16 3169	3 1/631	-2 66064
03-16 -45.053 24.2303 -47.3242 -10.163 23.16 -5.0533 -5.6539 11-10 -5.7573 -52.9897 -151.593 0.05934 -10.284 -20.514 -4.1084 -0.0718 11-10 -12.6714 -46.2564 -156.501 -6.46307 -8.9362 -28.974 -12.892 -5.16869 11-10 -2.1687 -57.3336 -157.6 -12.9551 -14.8315 -0.56836 -17.758 -11.532 16-10 -30.7564 -62.7861 -151.333 -4.7449 -553531 -5.31638 6.27142 17-10 -31.7563 -57.7334 -164.151 3.271 3.56443 -7.0252 3.45038 6.23131 18-10 -35.2748 -32.484 -32.6524 -17.1709 -4.54355 -27142 1.52345 12-10 -43.756 -36.602 -172.302 -6.48193 0.82073 -19.3745 -5.73242 1.52345 21-10 -49.5761 -49.2061 -172.302 -6.48193 0.82073	00-10	0.00500	40.0027	1/0 373	2 20200	7 92725	18 166	0.55011	-2.00004
1010 -0.5132 -0.2333 -10.233 0.2334 -0.2334 -0.2034 11:10 -0.6033 -0.44.203 -155235 -2.9344 -2.9374 -1.1304 -0.07178 12:10 -12.6714 -46.2554 -154.571 -3.72949 -4.09424 -24.6049 -8.4094 -0.2651 14:10 -21.687 -57.335 -157.6 -12.9551 -14.8315 -0.56366 -7.7578 -11.5923 15:10 -26.0864 -60.1426 -159.314 8.63698 6.47705 0.13484 10.7926 -15.322 16:10 -30.7954 -62.7836 -164.151 3.271 3.5643 -7.08252 3.4538 -2.2131 17:10 -3.5248 -32.5622 -167.346 0.96139 6.96663 -12.002 1.26733 7.27802 19:10 -39.9043 -35.6965 -169.213 -14.1777 -11.052 -14.1777 -11.052 21:10 -45.5751 -49.2051 -159.324 -17.5459 -7.64209 -9.93067	10-10	.5 75732	-40.000	-140.070	0.50037	-10.6284	-20 5132	0.00011	PD5233 3-
11-10 -0.30391 -4.4205 -12.531 -2.39140 -2.29140 -2.4049 -2.4049 -0.29541 13-10 -16.8242 -50.1079 -155.601 -8.64307 -8.93652 -28.3784 -12.8926 -5.15869 14-10 -21.667 -57.3335 -157.6 -12.9551 -14.8315 -0.56836 -17.7576 -11.5923 15-10 -20.0974 -62.7861 -161.333 4.47449 3.53531 5.31638 6.27142 17-10 -31.7663 -57.7334 -164.151 3.271 3.56542 -17.1709 4.54355 20-10 -43.75 -38.6602 -172.302 -6.48193 0.82073 -19.3747 -11.062 22-10 -55.751 -49.2051 -159.324 -17.5459 -14.1777 -11.062 22-10 -55.61 -49.2051 -159.324 -17.5459 -14.4996 -17.3281 -6.51953 23-10 -58.0483 -53.6563 -12.9776 -32.632 -22.207 -25.6406 24-10 -59.676 -67.9351 -170.217 -22.0176 -27.2566 -23.4	11 10	0.70702	44 4000	150 051	0.00004	2 05047	-20.010Z	A 1100A	0.000000
12-10 -12.00/14 24.503 -13.71 -3.7293 -4.0932 -24.3003 -0.40034 -12.8024 -12.8024 -12.8024 -5.15869 14-10 -21.687 -57.3335 -157.6 -12.9551 -14.8315 -0.56836 -17.7578 -11.5923 15-10 -20.0864 -60.7661 -161.333 4.47449 3.53531 5.31638 6.27781 -11.5322 16-10 -33.7563 -57.7334 -164.151 3.271 3.56443 -7.08252 3.45038 6.23131 18-10 -35.2148 -32.5522 -167.348 0.98139 6.96663 -12.2002 1.26733 7.97002 20-10 -43.75 -38.6602 -172.302 -6.48139 0.62073 -19.3745 -5.73242 1.52345 21-10 -49.5288 -43.8643 -164.39 -12.8726 -7.64209 9.93074 -17.3281 -6.51953 23-10 -56.7397 -53.6392 -168.652 -19.3711 -22.6563 -20.7007 -17.4497 <td< td=""><td>12.10</td><td>10.00031</td><td>44.4203 AC 0554</td><td>154 571</td><td>2 72040</td><td>4.00404</td><td>22.0140</td><td>-4.11004 0.40004</td><td>0.007170</td></td<>	12.10	10.00031	44.4203 AC 0554	154 571	2 72040	4.00404	22.0140	-4.11004 0.40004	0.007170
13-10 -16.0242 -57.335 -157.6 -12.9561 -14.8315 -0.56836 -17.7578 -11.5922 15-10 -26.0864 -60.1426 -159.314 8.63698 6.47705 0.13484 10.7926 11.5322 16-10 -30.7954 -57.7334 -164.151 3.271 3.56443 -7.08252 3.45038 6.27142 17-10 -31.7563 -57.7334 -164.151 3.271 3.56542 -17.1709 4.54356 20-10 -43.75 -38.6602 -172.302 -6.48193 0.62073 -19.3745 5.73242 1.52345 21-10 -45.751 -49.2051 -159.324 -17.5459 -7.64209 9.93067 -17.3281 -6.51953 22-10 -55.751 -49.2051 -159.324 -17.9375 -14.9966 -0.7077 -17.3281 -6.51953 23-10 -50.4483 -53.6527 -17.517 -27.2656 -23.4165 -22.207 -25.606 27-10 -64.5254 -72.1172 -173.446 -26.0	12-10	10 01/14	-40.2004	-104.07 I 455 CO4	-3.72343 0.04207	-4.034Z4	-24.0040 no provi	-0.40034 11 0010	-0.20041 5 15000
14+10 -21,807 -57,8 -12,958 -14,835 -0,3028 -17,737 -11,9323 15-10 -26,084 -60,1426 -60,1426 -63028 6,3705 0,13484 10,7326 11,5323 16-10 -30,7954 -62,7861 -161,333 4,4749 3,5531 5,31638 6,27142 17-10 -31,7563 -57,7334 -164,151 3,271 3,66433 -7,0822 3,45038 5,23131 18-10 -32,9148 -32,5522 -167,348 0,98139 6,96663 -12,7709 4,54355 20-10 -43,75 -38,6602 -172,302 -6,48193 0,82073 -19,3745 -5,73242 1,52345 21-10 -49,5265 -49,2051 -159,324 -12,17549 -14,1777 -11,621 -11,323 22+10 -58,652 -60,2111 -166,35 -21,877 -12,9375 -14,9966 -02,0707 -17,4497 25-10 -59,9766 -67,9351 -170,217 -22,0176 -22,6623 -20,207 -25,6406 27-10 -64,5254 -72,1172 -17,346	13-10	-10.0242	-50,1079	-100.001 457.0	-0.04307	-0.93002	-20.37.04	-12.0920	-0.10009
15-10 -28.0064 +0.1426 -193.14 0.83036 0.17405 11.5322 16-10 -30.7954 -62.7861 -161.333 4.47449 3.55531 5.31638 6.27142 17-10 -31.7563 -57.7334 -164.151 3.271 3.66443 -7.08252 3.45038 5.23131 18-10 -35.2148 -32.5522 -167.348 0.98139 6.96663 -12.2002 1.26733 7.97802 20-10 -43.75 -38.6602 -172.302 -6.48193 0.82073 -19.3745 -5.73242 1.52345 21-10 -49.5288 -43.8643 -164.434 -12.0195 -14.1777 -11.062 22-10 -55.751 -49.2051 -159.324 -17.5459 -7.64209 -9.93067 -17.3281 -6.51953 23-10 -56.7397 -63.6392 -168.652 -19.3711 -22.656 -23.4165 -22.070 -25.6466 27.10 -65.7397 -63.6392 -168.652 -19.371 -22.6565 -12.533 -23	14-10	-21.007	-07.0000	107.0	-12.9001	-14.0315	-0.55035	-17.7570	44,5000
16-10 -30.7954 +6.7601 +16.451 3.271 3.5643 -7.08252 3.45038 5.23131 18-10 -35.2148 -32.5522 -167.348 0.98139 6.96663 -12.2002 1.2073 7.97802 19-10 -39.9043 -35.6496 -169.203 3.55542 -17.1709 4.5355 21-10 -49.5288 -43.8643 -164.434 +12.0195 -14.1777 -11.062 22-10 -55.751 -49.0051 -165.3294 -17.5459 -7.64209 -9.93067 -17.3281 -6.51953 23-10 -58.0483 -53.6553 -162.398 -20.3257 -12.4736 -11.5718 -19.1548 -11.2012 24-10 -59.98521 -60.1211 -166.552 -19.3711 -22.6523 -20.1068 -18.816 -21.1338 25-10 -57.9028 -78.8267 -175.517 -29.7776 -35.6815 -31.2632 -28.8921 -34.8652 29-10 -70.033 -79.236 -178.916 -33.4287 -41.2603 -66.1147 -33.6274 -39.566 29-10 -70.033	15-10	-26.0664	-60.1426	-159.314	0.03090	0.47705	0.13484	TU.7926	0.07442
17-10 -31.7653 -57.7334 -164.161 3.2/7 3.56443 -7.08243 3.49036 5.2313 18-10 -39.9043 -35.4965 -169.203 3.55542 -17.1709 4.54355 20-10 -43.75 -38.6602 -172.302 -6.46193 0.82073 -19.3745 -5.73242 1.52345 21-10 -49.5288 -43.663 -164.434 -12.0195 -14.1777 -11.062 22-10 -55.751 -49.2051 -159.324 -17.5459 7.64209 -9.93067 -17.346 -11.2012 24-10 -59.8521 -60.1211 -165.35 -21.877 -17.9375 -14.9956 -20.7007 -17.4497 25-10 -56.7397 63.6392 -168.652 -19.3711 -22.6523 -20.1066 -23.4165 -22.007 -25.6406 27.10 -64.5254 -7.1172 -17.3446 -26.0713 -32.3032 -26.523 -25.207 -31.7651 28-10 -67.9028 -75.8267 -175.517 -29.7778 -36.5815 -31.2632 -28.8921 -34.8652 20-10 -70	16-10	-30.7954	-62.7861	-161.333	4.47449	3.53531	7.00050	5.31638	6.27142
18-10 -35.2188 -32.5522 -167.348 0.98139 5.96653 -12.2002 1.26733 7.97802 19-10 -33.75 -38.6602 -172.302 -6.48193 0.82073 -19.3745 -5.73242 1.52345 21-10 -49.5288 -43.8643 -164.434 -12.0195 -14.1777 -11.062 22-10 -56.751 -49.2051 -159.324 -17.5459 -7.64209 -9.93067 -17.3281 -6.51953 23-10 -58.0483 -53.6653 -162.398 -20.3267 -12.3736 -11.9718 -9.9076 -67.9351 -170.217 -22.0766 -23.4165 -22.207 -25.6406 27-10 -64.5264 -72.1172 -173.446 -33.2032 -26.523 -25.207 -31.7651 28-10 -70.903 -79.726 -175.517 -29.7778 -36.614 -31.2632 -28.8921 -34.6652 29-10 -70.903 -79.726 -176.916 -33.4287 -41.203 -6.114 -33.6274 -39.566 -34.4662 -44.772 -33.4565 29-10 -70.9033 -79.7236	17-10	-31.7563	-57.7334	-164.151	3.271	3.56443	-7.08252	3.45038	5.23131
19-10 -39.9043 -36.4986 -169.203 -6.48193 0.82073 -19.3745 -5.73242 1.52345 21-10 -49.5288 -43.86602 -172.302 -6.48193 0.82073 -19.3745 -5.73242 1.52345 21-10 -45.5751 -49.2051 -159.324 -17.5459 -7.64209 -9.93067 -17.3281 -6.51953 23-10 -58.0483 -53.6653 -162.398 -20.3257 -12.4736 -11.5718 -19.1548 -11.2017 24-10 -59.8521 -60.1211 -165.35 -21.877 -17.375 -14.966 -22.070 -7.74497 25-10 -67.9351 -170.217 -22.0176 -27.2666 -23.4165 -22.207 -31.7651 28-10 -67.9028 -75.8267 -175.517 -29.7778 -36.815 -31.632 -38.921 -34.8652 29-10 -70.9033 -79.7236 -178.916 -33.4287 -41.203 -36.147 -33.6274 -39.5064 30-10 -74.8071 -73.6557 -182.167 -38.2998 -36.0854 -41.4248 -37.3457 -34.5667	18-10	-35.2148	-32.6622	-167.348	0.98139	6.96663	-12.2002	1.26733	7.97802
20-10 -43.76 -38.6602 -172.302 -6.48193 0.82073 -19.3745 -5.7342 1.52345 21-10 -55.78 -43.8643 -164.434 -12.0195 -14.1777 -11.062 22:10 -55.751 -49.2051 -159.324 -17.5459 -7.64209 -9.93067 -17.3281 -6.51953 23:10 -56.0483 -53.6553 -162.398 -20.3257 -12.4736 -11.5718 -19.1548 -11.2112 24:10 -59.9566 -67.9377 -63.6392 -168.652 -19.3711 -22.6523 -22.077 -25.6406 27.10 -64.5254 -72.1172 -173.346 -26.0713 -32.3032 -26.523 -22.207 -31.7661 28-10 -67.9028 -75.8267 -175.517 -29.7778 -36.5815 -31.2632 -28.8921 -34.8652 29-10 -70.9033 -79.7236 -182.167 -38.2989 -36.0854 -41.2428 -37.3457 -34.5667 31-10 -80.0044 -72.3135 -185.167 -44.5347 -34.5693 -9.26622 -44.772 -33.4565 <tr< td=""><td>19-10</td><td>-39,9043</td><td>-35.4985</td><td>-169.203</td><td></td><td>3.55542</td><td>-17.1709</td><td></td><td>4.54355</td></tr<>	19-10	-39,9043	-35.4985	-169.203		3.55542	-17.1709		4.54355
21-10 -49.5288 -43.8643 -164.334 -12.0195 -14.1777 -11.052 22-10 -55.751 -49.2051 -159.324 -17.5459 -7.64209 -9.93067 -17.3281 -6.51553 23-10 -58.0483 -53.65653 -162.398 -20.3257 -12.4736 -11.5718 -19.1548 -11.2017 24-10 -59.8521 -60.1211 -165.35 -21.877 17.9375 -14.9956 -20.7007 -17.4497 25-10 -56.7397 -63.6392 -168.652 -19.3711 -22.6523 -20.1968 -18.981 -21.1338 26-10 -59.9766 -67.9351 -170.217 -22.0176 -27.2656 -23.4165 -22.207 -31.6652 28-10 -70.9033 -79.7736 -175.517 -29.778 -36.5615 -31.2632 -28.8921 -34.652 30-10 -74.8071 -73.6357 -182.167 -38.2998 -36.0854 -41.4248 -37.3457 -34.5967 31-10 -80.0044 -72.3135 -165.167 -44.5347 -34.5693 -9.28662 -44.772 -33.6524 4.7	20-10	-43.75	-38.6602	-172.302	-6.48193	0.82073	-19.3745	-5.73242	1.52345
2210 -55.751 -49.2051 -159.324 -17.5459 -7.64209 -9.93067 -17.3281 -6.51953 23-10 -56.0483 -63.6553 -162.398 -20.3257 -12.4736 -11.5718 -19.1548 -11.21497 24-10 -59.8521 -60.1211 -165.55 -21.877 -17.9375 -14.9956 -20.7007 -17.4497 25-10 -56.7397 -63.6392 -188.652 -19.3711 -22.6523 -20.1968 -18.981 -21.1338 26-10 -59.9766 -67.9351 -170.217 -22.0176 -27.2656 -23.4165 -22.07 -25.6406 27-10 -64.5254 -72.1172 -17.3446 -26.0713 -32.3032 -26.523 -25.207 -31.7651 28-10 -70.903 -79.7236 -178.916 -33.4287 -41.2603 -36.1147 -33.627 -34.8552 31-10 -80.0044 -72.3135 -182.167 -44.5347 -34.5693 -9.28662 -44.772 -33.4585 01-11 -82.911 -70.5991 -187.084 -70.2979 4.36966 -9.5127 6.90872<	21-10	-49.5288	-43.8643	-164.434	-12.0195		-14.1777	-11.062	
23-10 -58.0483 -53.6563 -162.398 -20.3257 -12.4736 -11.5718 -19.1548 -11.2012 24-10 -59.8621 -60.1211 -165.35 -21.877 17.9375 -14.9956 -20.7007 -17.4397 25-10 -56.7397 -63.6392 -168.652 -19.3711 -22.6523 -20.1968 -18.981 -21.1338 26-10 -59.9766 -67.9351 170.217 -22.0176 -27.2666 -23.4165 -22.207 -31.7651 28-10 -67.9028 -75.8267 -175.517 -29.7778 -36.5815 -31.2632 -28.8921 -34.8652 29-10 -70.9033 -79.7236 -178.916 -33.4287 -41.2603 -36.1147 -33.6274 -39.5064 30-10 -74.8071 -73.6367 -182.167 -38.2998 -36.0654 -41.4248 -37.3457 -34.5665 011-11 -80.0044 -72.3135 -187.084 -7.02979 4.36956 -9.5127 6.90872 8.93907 02-11 -84.9912 -73.9932 -190.021 -5.22412 2.02065 -15.3389 3.63	22-10	-55.751	-49.2051	-159.324	-17.5459	-7.64209	-9.93067	-17.3281	-6.51953
2410 -59.8521 -60.1211 -165.35 -21.877 -17.9375 -14.9966 -20.7007 -17.4497 25-10 -56.7397 -63.6392 -168.652 -19.3711 -22.6523 -20.1968 -18.981 -21.1338 26-10 -59.9766 -67.9351 -170.217 -22.0176 -27.2656 -23.4165 -22.07 -31.7651 27.10 -64.5254 -72.172 -175.517 -29.7778 -36.5815 -31.2632 -28.8921 -34.8652 29-10 -70.9033 -79.7236 -178.916 -33.4287 -41.2603 -36.1147 -33.6274 -39.5064 30-10 -74.8071 -73.6367 -182.167 -38.2998 -36.0854 -41.4248 -37.3457 -34.5967 31-10 -80.0044 -72.3135 -185.167 -44.5347 -34.5693 -9.28662 -44.772 -33.4585 01-11 -82.6211 -70.5991 -187.084 -70.2979 4.36966 -9.5127 6.90872 8.93907 02-11 -88.9108 -192.201 -2.220265 -15.3380 3.6352 4.77241	23-10	-58.0483	-53.6553	-162.398	-20.3257	-12.4736	-11.5718	-19.1548	-11.2012
25-10 -56.7397 -63.6392 -168.652 -19.3711 -22.6523 -20.1968 -18.961 -21.1338 26-10 -59.9766 -67.9351 -170.217 -22.017 -27.2666 -23.4165 -22.207 -25.6406 27-10 -64.5254 -72.1172 -173.446 -26.0713 -32.3032 -26.523 -22.207 -31.7651 28-10 -67.9028 -75.8267 -175.517 -29.7778 -36.5815 -31.2632 -28.8921 -34.8652 29-10 -70.9033 -79.7236 -178.916 -33.4287 -41.2603 -36.1147 -33.6274 -39.5064 30-10 -74.8071 -73.6357 -182.167 -38.2998 -36.0854 -41.4248 -37.3457 -34.5967 31-10 -80.0044 -72.3135 -185.167 -44.5347 -34.5693 -9.28662 -44.772 -33.4585 01-11 -82.6211 -70.5991 -187.084 -70.2979 4.36956 -9.5127 6.90872 8.9307 02-11 -84.9912 -73.9932 -190.021 -52.2412 2.0266 -15.3389 3.6352<	24-10	-59.8521	-60.1211	-165.35	-21.877	-17.9375	-14.9956	-20.7007	-17.4497
26-10 -59.9766 -67.9351 -170.217 -22.0176 -27.2656 -23.4165 -22.207 -25.6406 27-10 -64.5254 -72.1172 -173.446 -26.0713 -32.3032 -26.523 -25.2207 -31.7651 28-10 -67.9028 -75.8267 -175.517 -29.7778 -36.5815 -31.2632 -28.8921 -34.8652 29-10 -70.9033 -79.7236 -178.916 -33.4287 -41.2603 -36.1147 -33.6274 -39.5064 30-10 -74.8071 -73.6357 -182.167 -48.2998 -36.0854 -41.4248 -37.3457 -34.5967 31-10 -80.0044 -72.3135 -185.167 -44.5347 -34.5956 -9.5127 6.90872 8.93907 02-11 -84.9912 -73.9932 -190.021 -5.22412 2.20265 -15.3389 3.6352 4.77241 03-11 -88.7148 -83.0908 -192.03 -8.58594 -18.6265 1.4895 1.9222 04-11 -88.7148 -83.0908	25-10	-56.7397	-63.6392	-168.652	-19.3711	-22.6523	-20.1968	-18.981	-21.1338
27-10 -64.5254 -72.1172 -173.446 -26.0713 -32.3032 -26.523 -25.2207 -31.7661 28-10 -67.9028 -75.8267 -175.517 -29.7778 -36.5815 -31.2632 -28.8921 -34.8652 29-10 -70.9033 -79.7236 -178.916 -33.4297 -41.2603 -36.1147 -33.6274 -39.5064 30-10 -74.8071 -73.6357 -182.167 -44.5347 -34.6963 -9.2662 -44.772 -33.4595 01-11 -80.0044 -72.3135 -185.167 -44.5347 -34.6963 -9.5127 6.90872 8.9307 02-11 -84.9912 -73.9932 -190.021 -5.22412 2.20265 -15.3389 3.6352 4.77241 03-11 -88.3516 -77.4185 -192.03 -8.58594 -18.6265 1.4895 1.9222 04-11 -88.7148 -83.0908 +193.447 -10.1567 -5.04883 -20.1929 0.38412 05-11 -90.7012 -86.292 -194.804 +12.7495 -11.895 -24.4629 -7.57959 06-11 <	26-10	-59.9766	-67.9351	-170.217	-22.0176	-27.2656	-23.4165	-22.207	-25.6406
28-10 -67.9028 -75.8267 -175.517 -29.7778 -36.5815 -31.2632 -28.8921 -34.8652 29-10 -70.9033 -79.7236 -178.916 -33.4287 -41.2603 -36.1147 -33.6274 -39.5064 30-10 -74.8071 -73.6357 -182.167 -38.2998 -36.0654 -41.4248 -37.3457 -34.5967 31-10 -80.0044 -72.3135 -185.167 -44.5347 -34.5693 -9.28662 -44.772 -33.4585 01-11 -82.6211 -70.5991 -187.084 -7.02979 4.36966 -9.5127 6.90872 8.93907 02-11 -84.9912 -73.9932 -190.021 -5.22412 2.0265 -18.6265 1.4895 1.9222 04-11 -88.7148 -83.0908 -193.447 -10.1567 -5.04883 -20.1929 0.38412 - 05-11 -90.7012 -86.292 -194.804 -12.7495 -11.895 -24.4629 -7.57959 06-11 -94.0718 -88.7236 -197.636 -16.6743 -13.7588 -29.1663 -4.68213 -9.81787	27-10	-64.5254	-72.1172	-173.446	-26.0713	-32.3032	-26.523	-25.2207	-31.7651
29-10 -70.9033 -79.7236 -178.916 -33.4287 -41.2603 -36.1147 -33.6274 -39.5064 30-10 -74.8071 -73.6357 -182.167 -38.2998 -36.0654 -41.4248 -37.3457 -34.5957 31-10 -80.0044 -72.3135 -185.167 -44.5347 -34.5693 -9.28662 -44.772 -33.4585 01-11 -82.6211 -70.5991 -187.064 -7.02979 4.36956 -9.5127 6.90872 8.93907 02-11 -84.9912 -73.9932 -190.021 -5.22412 2.20265 -15.3389 3.6352 4.77241 03-11 -88.5168 -77.4185 -192.03 -8.58594 -118.95 -24.4629 -7.57959 05-11 -90.7012 -86.292 -194.804 -12.7495 -11.895 -24.4629 -7.57959 06-11 -94.0718 -88.736 -197.636 -16.6743 -13.7568 -29.1663 -4.68213 -9.81787 07-11 -97.3198 -89.364 -20.653 -20.4907 -15.0903 -34.3911 -9.1254 -10.9912	28-10	-67.9028	-75.8267	-175.517	-29.7778	-36.5815	-31.2632	-28.8921	-34.8652
30-10 -74.8071 -73.6357 -182.167 -38.2998 -36.0854 -41.4248 -37.3457 -34.5967 31-10 -80.0044 -72.3135 -185.167 -44.5347 -34.5693 -9.28662 -44.772 -33.4585 01-11 -82.6211 -70.5991 -187.084 -7.02979 4.36956 -9.5127 6.90872 8.93907 02-11 -84.9912 -73.9932 -190.021 -5.22412 2.20265 -15.3389 3.6352 4.77241 03-11 -88.3516 -77.4185 -192.03 -8.58594 -18.6265 1.4895 1.9222 04-11 -88.7148 -83.0908 -193.447 -10.1667 -5.04883 -20.1929 0.38412 05-11 -90.7012 -86.292 -194.804 -12.7495 -11.895 -24.4629 -7.57959 06-11 -94.0718 -88.7236 -197.636 -16.6743 -13.7586 -29.1563 -46.8213 -9.81787 07-11 -97.3198 -89.3384 -200.653 -20.4907	29-10	-70.9033	-79.7236	-178.916	-33.4287	-41.2603	-36.1147	-33.6274	-39.5064
31-10 -80.0044 -72.3135 -185.167 -44.5347 -34.5693 -9.28662 -44.772 -33.4585 01-11 -82.6211 -70.5991 -187.084 -7.02979 4.36956 -9.5127 6.90872 8.93907 02-11 -84.9912 -73.9932 -190.021 -5.22412 2.20265 -15.3389 3.6352 4.77241 03-11 -88.3516 -77.4185 -192.03 -8.58594 -18.6265 1.4895 1.9222 04-11 -88.7148 -83.0908 -193.447 -10.1567 -5.04883 -20.1929 0.38412 05-11 -90.7012 -86.292 -194.804 -12.7495 -11.895 -24.4629 -7.57959 06-11 -94.0718 -88.7236 -197.636 -16.6743 -13.7588 -29.1563 -4.68213 -9.81787 07-11 -97.3198 -89.3384 -200.653 -20.4907 -15.0903 -34.3911 -9.12354 -10.9912 08-11 -101.39 -87.2935 -203.609 -26.3345	30-10	-74.8071	-73.6357	-182.167	-38.2998	-36.0854	-41.4248	-37.3457	-34.5967
01-11-82.6211-70.5991-187.084-7.029794.36956-9.51276.908728.9390702-11-84.9912-73.9932-190.021-5.224122.20265-15.33893.63524.7724103-11-88.3516-77.4185-192.03-8.58594-18.62651.48951.922204-11-88.7148-83.0908-193.447-10.1567-5.04883-20.19290.3841205-11-90.7012-86.292-194.804-12.7495-11.895-24.4629-7.5795906-11-94.0718-88.7236-197.636-16.6743-13.7588-29.1563-4.68213-9.8178707-11-97.3198-89.3384-200.653-20.4907-15.0903-34.3911-9.12354-10.991208-11-101.39-87.2935-203.609-26.3345-14.354-39.5029-14.0137-10.406709-11-106.567-89.7861-205.568-32.3794-15.2764-45.2456-20.9463-11.137710-11-111.888-93.1025-209.697-41.2265-19.4272-51.3516-29.2769-15.89511-11-112.672-96.4619-211.475-44.9175-24.4307-58.0542-32.8521-19.767112-11-116.861-99.9043-217.511-55.2183-34.394-69.7163-43.3833-30.43914-11-123.009-109.628-219.758-59.3814-40.2827-36.4365-47.1929-36.091315-11-127.174-111	31-10	-80.0044	-72.3135	-185.167	-44.5347	-34.5693	-9.28662	-44.772	-33.4585
02-11-84.9912-73.9932-190.021-5.224122.20265-15.33893.63524.7724103-11-88.3516-77.4185-192.03-8.58594-18.62651.48951.922204-11-88.7148-83.0908-193.447-10.1567-5.04883-20.19290.3841205-11-90.7012-86.292-194.804-12.7495-11.895-24.4629-7.5795906-11-94.0718-88.7236-197.636-16.6743-13.7588-29.1563-4.68213-9.8178707-11-97.3198-89.3384-200.653-20.4907-15.0903-34.3911-9.12354-10.991208-11-101.39-87.2935-203.609-26.3345-14.354-39.5029-14.0137-10.406709-11-106.567-89.7861-205.568-32.3794-15.2764-45.2456-20.9463-11.137710-11-111.888-93.1025-209.697-41.2285-19.4272-51.3516-29.2769-15.89511-11-112.672-96.4619-211.475-44.9175-24.4307-58.0542-32.8521-19.767112-11-116.861-99.9043-214.46-49.1152-28.9966-64.7842-37.9185-25.075713-11-12.319-104.921-217.511-55.2183-34.394-69.7163-43.3833-30.43914-11-12.3009-109.628-219.758-59.3814-40.2827-36.4365-47.1929-36.091315-11-12.7174-1	01-11	-82.6211	-70.5991	-187.084	-7.02979	4.36956	-9.5127	6.90872	8.93907
03-11-88.3516-77.4185-192.03-8.58594-18.62651.48951.922204-11-88.7148-83.0908-193.447-10.1567-5.04883-20.19290.3841205-11-90.7012-86.292-194.804-12.7495-11.895-24.4629-7.5795906-11-94.0718-88.7236-197.636-16.6743-13.7588-29.1563-4.68213-9.8178707.11-97.3198-89.3384-200.653-20.4907-15.0903-34.3911-9.12354-10.991208-11-101.39-87.2935-203.609-26.3345-14.354-39.5029-14.0137-10.406709-11-106.567-89.7861-205.568-32.3794-15.2764-45.2456-20.9463-11.137710-11-111.888-93.1025-209.697-41.2285-19.4272-51.3516-29.2769-15.89511-11-112.672-96.4619-211.475-44.9175-24.4307-58.0542-32.8521-19.767112-11-116.861-99.9043-214.46-49.1152-28.9966-64.7842-37.9185-25.075713-11-121.319-104.921-217.511-55.2183-34.394-69.7163-43.3833-30.43914-11-123.009-109.628-219.758-59.3814-40.2827-36.4365-47.1929-36.091315-11-127.174-111.762-222.191-23.1528-83.5986-38.60356.019497.8148516-11-130.616 <td< td=""><td>02-11</td><td>-84.9912</td><td>-73.9932</td><td>-190.021</td><td>-5.22412</td><td>2.20265</td><td>-15.3389</td><td>3.6352</td><td>4.77241</td></td<>	02-11	-84.9912	-73.9932	-190.021	-5.22412	2.20265	-15.3389	3.6352	4.77241
04-11-88.7148-83.0908-193.447-10.1567-5.04883-20.19290.3841205-11-90.7012-86.292-194.804-12.7495-11.895-24.4629-7.5795906-11-94.0718-88.7236-197.636-16.6743-13.7588-29.1563-4.68213-9.8178707-11-97.3198-89.3384-200.653-20.4907-15.0903-34.3911-9.12354-10.991208-11-101.39-87.2935-203.609-26.3345-14.354-39.5029-14.0137-10.406709-11-106.567-89.7861-205.568-32.3794-15.2764-45.2456-20.9463-11.137710-11-111.888-93.1025-209.697-41.2285-19.4272-51.3516-29.2769-15.89511-11-112.672-96.4619-211.475-44.9175-24.4307-58.0542-32.8521-19.767112-11-116.861-99.9043-214.46-49.1152-28.9966-64.7842-37.9185-25.075713-11-121.319-104.921-217.511-55.2183-34.394-69.7163-43.3833-30.43914-11-123.009-109.628-219.758-59.3814-40.2827-36.4365-47.1929-36.091315-11-127.174-111.762-222.191-23.1528-83.5986-38.60356.019497.8148516-11-130.616-115.504-224.472-25.3643-83.3936-41.57572.125583.9158217-11	03-11	-88.3516	-77.4185	-192.03	-8.58594		-18.6265	1.4895	1.9222
05-11-90.7012-86.292-194.804-12.7495-11.895-24.4629-7.5795906-11-94.0718-88.7236-197.636-16.6743-13.7588-29.1563-4.68213-9.8178707-11-97.3198-89.3384-200.653-20.4907-15.0903-34.3911-9.12354-10.991208-11-101.39-87.2935-203.609-26.3345-14.354-39.5029-14.0137-10.406709-11-106.567-89.7861-205.568-32.3794-15.2764-45.2456-20.9463-11.137710-11-111.888-93.1025-209.697-41.2285-19.4272-51.3516-29.2769-15.89511-11-112.672-96.4619-211.475-44.9175-24.4307-58.0542-32.8521-19.767112-11-116.861-99.9043-214.46-49.1152-28.9966-64.7842-37.9185-25.075713-11-121.319-104.921-217.511-55.2183-34.394-69.7163-43.3833-30.43914-11-123.009-109.628-219.758-59.3814-40.2827-36.4365-47.1929-36.091315-11-127.174-111.762-222.191-23.1528-83.5986-38.60356.019497.8148516-11-130.616-115.504-224.472-25.3643-83.3936-41.57672.125583.9158217-11-134.153-118.712-226.858-31.0522-13.7354-45.31490.6040918-11	04-11	-88.7148	-83.0908	-193.447	-10.1567	-5.04883	-20.1929	0.38412	
06-11 -94.0718 -88.7236 -197.636 -16.6743 -13.7588 -29.1563 -4.68213 -9.81787 07-11 -97.3198 -89.3384 -200.653 -20.4907 -15.0903 -34.3911 -9.12354 -10.9912 08-11 -101.39 -87.2935 -203.609 -26.3345 -14.354 -39.5029 -14.0137 -10.4067 09-11 -106.567 -89.7861 -205.568 -32.3794 -15.2764 -45.2456 -20.9463 -11.1377 10-11 -111.888 -93.1025 -209.697 -41.2285 -19.4272 -51.3516 -29.2769 -15.895 11-11 -112.672 -96.4619 -211.475 -44.9175 -24.4307 -58.0542 -32.8521 -19.7671 12-11 -116.861 -99.9043 -214.46 -49.1152 -28.9966 -64.7842 -37.9185 -25.0757 13-11 -121.319 -104.921 -217.511 -55.2183 -34.394 -69.7163 -43.3833 -30.439 14.11 -123.0	05-11	-90.7012	-86.292	-194.804	-12.7495	-11.895	-24.4629		-7.57959
07-11-97.3198-89.3384-200.653-20.4907-15.0903-34.3911-9.12354-10.991208-11-101.39-87.2935-203.609-26.3345-14.354-39.5029-14.0137-10.406709-11-106.567-89.7861-205.568-32.3794-15.2764-45.2456-20.9463-11.137710-11-111.888-93.1025-209.697-41.2285-19.4272-51.3516-29.2769-15.89511-11-112.672-96.4619-211.475-44.9175-24.4307-58.0542-32.8521-19.767112-11-116.861-99.9043-214.46-49.1152-28.9966-64.7842-37.9185-25.075713-11-121.319-104.921-217.511-55.2183-34.394-69.7163-43.3833-30.43914-11-123.009-109.628-219.758-59.3814-40.2827-36.4365-47.1929-36.091315-11-127.174-111.762-222.191-23.1528-83.5986-38.60356.019497.8148516-11-130.616-115.504-224.472-25.3643-83.3936-41.57672.125583.9158217-11-134.153-118.712-226.858-31.0522-13.7354-45.31490.6040918-11-139.082-123.294-228.565-38.4614-19.3857-51.4907-9.1489319-11-143.663-125.711-204.753-46.397-23.3467-28.4937-17.5938-8.5281120-11 <td>06-11</td> <td>-94.0718</td> <td>-88.7236</td> <td>-197.636</td> <td>-16.6743</td> <td>-13.7588</td> <td>-29.1563</td> <td>-4.68213</td> <td>-9.81787</td>	06-11	-94.0718	-88.7236	-197.636	-16.6743	-13.7588	-29.1563	-4.68213	-9.81787
08-11 -101.39 -87.2935 -203.609 -26.3345 -14.354 -39.5029 -14.0137 -10.4067 09-11 -106.567 -89.7861 -205.568 -32.3794 -15.2764 -45.2456 -20.9463 -11.1377 10-11 -111.888 -93.1025 -209.697 -41.2285 -19.4272 -51.3516 -29.2769 -15.895 11-11 -112.672 -96.4619 -211.475 -44.9175 -24.4307 -58.0542 -32.8521 -19.7671 12-11 -116.861 -99.9043 -214.46 -49.1152 -28.9966 -64.7842 -37.9185 -25.0757 13-11 -121.319 -104.921 -217.511 -55.2183 -34.394 -69.7163 -43.3833 -30.439 14-11 -123.009 -109.628 -219.758 -59.3814 -40.2827 -36.4365 -47.1929 -36.0913 15-11 -127.174 -111.762 -222.191 -23.1528 -83.5986 -38.6035 6.01949 7.81485 16-11 -130.616	07-11	-97.3198	-89.3384	-200.653	-20.4907	-15.0903	-34.3911	-9.12354	-10.9912
09-11-106.567-89.7861-205.568-32.3794-15.2764-45.2456-20.9463-11.137710-11-111.888-93.1025-209.697-41.2285-19.4272-51.3516-29.2769-15.89511-11-112.672-96.4619-211.475-44.9175-24.4307-58.0542-32.8521-19.767112-11-116.861-99.9043-214.46-49.1152-28.9966-64.7842-37.9185-25.075713-11-121.319-104.921-217.511-55.2183-34.394-69.7163-43.3833-30.43914-11-123.009-109.628-219.758-59.3814-40.2827-36.4365-47.1929-36.091315-11-127.174-111.762-222.191-23.1528-8.35986-38.60356.019497.8148516-11-130.616-115.504-224.472-25.3643-8.33936-41.57572.125583.9158217-11-134.153-118.712-226.858-31.0522-13.7354-45.31490.6040918-11-139.082-123.294-228.565-38.4614-19.3857-51.4907-9.1489319-11-143.663-125.711-204.753-46.397-23.3467-28.4937-17.5938-8.5288120-11-145.521-129.271-208.443-52.2354-29.7607-32.1743-23.1841-13.8355	08-11	-101.39	-87.2935	-203.609	-26.3345	-14.354	-39.5029	-14.0137	-10.4067
10-11 -111.888 -93.1025 -209.697 -41.2285 -19.4272 -51.3516 -29.2769 -15.895 11-11 -112.672 -96.4619 -211.475 -44.9175 -24.4307 -58.0542 -32.8521 -19.7671 12-11 -116.861 -99.9043 -217.511 -55.2183 -34.394 -69.7163 -43.3833 -30.439 13-11 -121.319 -104.921 -217.511 -55.2183 -34.394 -69.7163 -43.3833 -30.439 14-11 -123.009 -109.628 -219.758 -59.3814 -40.2827 -36.4365 -47.1929 -36.0913 15-11 -127.174 -111.762 -222.191 -23.1528 -83.5986 -38.6035 6.01949 7.81485 16-11 -130.616 -115.504 -224.472 -25.3643 -83.3936 -41.5767 2.1258 3.91582 17-11 -134.153 -118.712 -226.858 -31.0522 -13.7354 -45.3149 0.60409 18-11 -139.082 -123.294 <td>09-11</td> <td>-106.567</td> <td>-89.7861</td> <td>-205.568</td> <td>-32.3794</td> <td>-15.2764</td> <td>-45.2456</td> <td>-20.9463</td> <td>-11.1377</td>	09-11	-106.567	-89.7861	-205.568	-32.3794	-15.2764	-45.2456	-20.9463	-11.1377
11-11 -112.672 -96.4619 -211.475 -44.9175 -24.4307 -58.0542 -32.8521 -19.7671 12-11 -116.861 -99.9043 -214.46 -49.1152 -28.9966 -64.7842 -37.9185 -25.0757 13-11 -121.319 -104.921 -217.511 -55.2183 -34.394 -69.7163 -43.3833 -30.439 14-11 -123.009 -109.628 -219.758 -59.3814 -40.2827 -36.4365 -47.1929 -36.0913 15-11 -127.174 -111.762 -222.191 -23.1528 -8.35986 -38.6035 6.01949 7.81485 16-11 -130.616 -115.504 -224.472 -25.3643 -8.33936 -41.5757 2.12558 3.91582 17-11 -134.153 -118.712 -226.858 -31.0522 -13.7354 -45.3149 0.60409 18-11 -139.082 -123.294 -228.565 -38.4614 -19.3857 -51.4907 -9.14893 19-11 -143.663 -125.711 -204.753 -46.397 -23.3467 -28.4937 -17.5938 -8.52881	10-11	-111.888	-93.1025	-209.697	-41.2285	-19.4272	-51.3516	-29.2769	-15.895
12-11 -116.861 -99.9043 -214.46 -49.1152 -28.9966 -64.7842 -37.9185 -25.0757 13-11 -121.319 -104.921 -217.511 -55.2183 -34.394 -69.7163 -43.3833 -30.439 14-11 -123.009 -109.628 -219.758 -59.3814 -40.2827 -36.4365 -47.1929 -36.0913 15-11 -127.174 -111.762 -222.191 -23.1528 -8.35986 -38.6035 6.01949 7.81485 16-11 -130.616 -115.504 -224.472 -25.3643 -8.33936 -41.5757 2.12558 3.91582 17-11 -134.153 -118.712 -226.858 -31.0522 -13.7354 -45.3149 0.60409 18-11 -139.082 -123.294 -228.565 -38.4614 -19.3857 -51.4907 -9.14893 19-11 -143.663 -125.711 -204.753 -46.397 -23.3467 -28.4937 -17.5938 -8.52881 20-11 -145.521 -129.271 -208.443 -52.2354 -29.7607 -32.1743 -23.1841 -13.8355 <	11-11	-112.672	-96.4619	-211.475	-44.9175	-24.4307	-58.0542	-32.8521	-19.7671
13:11 -121.319 -104.921 -217.511 -55.2183 -34.394 -69.7163 -43.3833 -30.439 14:11 -123.009 -109.628 -219.758 -59.3814 -40.2827 -36.4365 -47.1929 -36.0913 15:11 -127.174 -111.762 -222.191 -23.1528 -8.35986 -38.6035 6.01949 7.81485 16:11 -130.616 -115.504 -224.472 -25.3643 -8.33936 -41.5757 2.12568 3.91582 17:11 -134.153 -118.712 -226.858 -31.0522 -13.7354 -45.3149 0.60409 18:11 -139.082 -123.294 -228.565 -38.4614 -19.3857 -51.4907 -9.14893 19:11 -143.663 -125.711 -204.753 -46.397 -23.3467 -28.4937 -17.5938 -8.52881 20:11 -145.521 -129.271 -208.443 -52.2354 -29.7607 -32.1743 -23.1841 -13.8355	12-11	-116.861	-99.9043	-214.46	-49.1152	-28.9966	-64.7842	-37.9185	-25.0757
14-11 -123.009 -109.628 -219.758 -59.3814 -40.2827 -36.4365 -47.1929 -36.0913 15-11 -127.174 -111.762 -222.191 -23.1528 -8.35986 -38.6035 6.01949 7.81485 16-11 -130.616 -115.504 -224.472 -25.3643 -8.33936 -41.5757 2.12558 3.91582 17-11 -134.153 -118.712 -226.858 -31.0522 -13.7354 -45.3149 0.60409 18-11 -139.082 -123.294 -228.565 -38.4614 -19.3857 -51.4907 -9.14893 19-11 -143.663 -125.711 -204.753 -46.397 -23.3467 -28.4937 -17.5938 -8.52881 20-11 -145.521 -129.271 -208.443 -52.2354 -29.7607 -32.1743 -23.1841 -13.8355	13-11	-121.319	-104.921	-217.511	-55.2183	-34.394	-69.7163	-43.3833	-30.439
15-11 -127.174 -111.762 -222.191 -23.1528 -8.35986 -38.6035 6.01949 7.81485 16-11 -130.616 -115.504 -224.472 -25.3643 -8.33936 -41.5757 2.12558 3.91582 17-11 -134.153 -118.712 -226.858 -31.0522 -13.7354 -45.3149 0.60409 18-11 -139.082 -123.294 -228.565 -38.4614 -19.3857 -51.4907 -9.14893 19-11 -143.663 -125.711 -204.753 -46.397 -23.3467 -28.4937 -17.5938 -8.52881 20-11 -145.521 -129.271 -208.443 -52.2354 -29.7607 -32.1743 -23.1841 -13.8355	14-11	-123.009	-109.628	-219.758	-59.3814	-40.2827	-36.4365	-47.1929	-36.0913
16-11 -130.616 -115.504 -224.472 -25.3643 -8.33936 -41.5757 2.12558 3.91582 17-11 -134.153 -118.712 -226.858 -31.0522 -13.7354 -45.3149 0.60409 18-11 -139.082 -123.294 -228.565 -38.4614 -19.3857 -51.4907 -9.14893 19-11 -143.663 -125.711 -204.753 -46.397 -23.3467 -28.4937 -17.5938 -8.52881 20-11 -145.521 -129.271 -208.443 -52.2354 -29.7607 -32.1743 -23.1841 -13.8355	15-11	-127.174	-111.762	-222.191	-23.1528	-8.35986	-38.6035	6.01949	7.81485
17-11 -134.153 -118.712 -226.858 -31.0522 -13.7354 -45.3149 0.60409 18-11 -139.082 -123.294 -228.565 -38.4614 -19.3857 -51.4907 -9.14893 19-11 -143.663 -125.711 -204.753 -46.397 -23.3467 -28.4937 -17.5938 -8.52881 20-11 -145.521 -129.271 -208.443 -52.2354 -29.7607 -32.1743 -23.1841 -13.8355	16-11	-130.616	-115.504	-224.472	-25.3643	-8.33936	-41.5757	2.12558	3.91582
18-11 -139.082 -123.294 -228.565 -38.4614 -19.3857 -51.4907 -9.14893 19-11 -143.663 -125.711 -204.753 -46.397 -23.3467 -28.4937 -17.5938 -8.52881 20-11 -145.521 -129.271 -208.443 -52.2354 -29.7607 -32.1743 -23.1841 -13.8355	17-11	-134.153	-118.712	-226.858	-31.0522	-13.7354	-45.3149		0.60409
19-11 -143.663 -125.711 -204.753 -46.397 -23.3467 -28.4937 -17.5938 -8.52881 20-11 -145.521 -129.271 -208.443 -52.2354 -29.7607 -32.1743 -23.1841 -13.8355	18-11	-139.082	-123.294	-228.565	-38.4614	-19.3857	-51,4907	-9.14893	
20-11 -145.521 -129.271 -208.443 -52.2354 -29.7607 -32.1743 -23.1841 -13.8355	19-11	-143.663	-125.711	-204.753	-46.397	-23.3467	-28,4937	-17.5938	-8.52881
	20-11	-145.521	-129.271	-208.443	-52.2354	-29.7607	-32.1743	-23.1841	-13.8355

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARG								
DATE	S1	S2	S 3	S4	S 5	S6	S7	S8	
21-11	-148.605	-133.109	-213.282	-55.2715	-37.0059	-35.145	-26.9697	-20.9316	
22-11	-150.69	-136.551	-217.177	-58.3862	-42.7129	-40.0317	-29.7212	-27.1191	
23-11	-151.678	-140.553	-220.152	-61.543	-48.2476	-44.6621	-33.4844	-33.3657	
24-11	-154.501	-144.59	-221.583	-65.9604	-53.9297	-47.0913	-37.1397	-38.5234	
25-11	-157.404	-143.532	-224.702	-70.145	-55.7056	-52.3154	-41.9819	-40.0313	
26-11	-159.618	-145.935	-227.216	-73.0513	-58.5366	-59.023	-44.773	-42.5317	
27-11	-159.21	-145.687	-229.698	-73.1631	-59.7056	-65.8472	-44.8882	-43.7397	
28-11	-161.204	-146.606	-231.776	-76.5762	-62.1006	-70.7686	-49.7583	-47.2105	
29-11	-164.197	-148.494	-234.808	-81.1255	-65.791	-75.4775	-53.9897	-50.4707	
30-11	-166.827	-150.816	-232.112	-86.3823	-67.8438	-36.6685	-59.523	-53.9966	
01-12	-170.619	-154.083	-217.167	-46.8794	-36.5493	-18.9199	-0.08496	-0.53809	
02-12	-174.717	-157.416	-221.53	-52.8833	-37.8555	-23.4004	-2.27539	-0.09961	
03-12	-177.716	-160.404	-223.663	-57.978	-42.6602	-25.4463	-8.72022	-5.99902	
04-12	-180.563	-163.768	-208.556	-64.6157	-48.9556	-11.125	-14.4175	-12.0918	
05-12	-183.523	-167.294	-212.836	-69.4307	-55.9673	-14.1548	-20.0557	-18.8589	
06-12	-186.355	-170.855	-216.482	-73.5195	-62.9692	-18.9341	-25.6763	-26.4326	
07-12	-189.482	-174.711	-220.142	-78.3506	-66.8247	-23.0063	-31.4355	-31.6201	
08-12	-191.979	-177.417	-224.28	-82.0649	-71.0186	-28.2954	-36.9199	-37.7012	
09-12	-194.472	-180.436	-227.518	-85.813	-77.374	-34.521	-40.3823	-43.418	
10-12	-193.341	-183.614	-230.372	-86.0303	-82.3604	-40.085	-40.7451	-49.8799	
11-12	-189.787	-186.914	-232.948	-83.2188	-87.7822	-46.2339	-38.8945	-57.0073	
12-12	-191.252	-189.662	-235.101	-85.7002	-91.9429	-53.6875	-41.313	-63.0596	
13-12	-192.822	-192.21	-238.178	-87.9399	-94.9194	-59.1104	-44.5366	-66.7534	
14-12	-195.257	-194.59	-241.176	-91.9292	-97.6802	-28.9058	-48.9526	-70.2056	
15-12	-198.66	-195.741	-242.999	-56.5679	-62.458	-31.5439	5.69238	-6.50049	
16-12	-201.757	-197.327	-246.84	-58.2627	-61.7153	-37.6528	2.30715	-5.5376	
17-12	-203.973	-199.458	-248.294	-63.9331	-67.6372	-43.3086		-11.2842	
18-12	-207.333	-202.517	-250.566	-70.2705	-73.8794	-48.5	-8.93945	-17.8462	
19-12	-211.555	-205.241	-250.434	-75.6826	-78.1856	-51.4893	-16.4292	-23.1914	
20-12	-213.086	-204.669	-251.792	-81.9727	-77.1548	-56.291	-23.126	-24.1191	
21-12	-215.55	-203.401	-254.264	-86.021	-79.5532	-60.4985	-27.7349	-24.709	
22-12	-217.721	-207.902	-255.73	-87.2847	-82.752	-65.2788	-31.8262	-29.9287	
23-12	-220.528	-210.151	-258.561	-91.9844	-87.8042	-69.9741	-37.1626	-35.1074	
24-12	-222.493	-207.483	-261.223	-93.9331	-86.8564	-75.9146	-40.6958	-35.1899	
25-12	-225.335	-207.173	-262.656	-97.9678	-87.8862	-80.8208	-45.6001	-36.4429	
26-12	-227.105	-209.746	-265.307	-103.607	-92.2642	-85.7246	-51.1548	-42.2544	
27-12	-230.368	-213.28	-267.877	-106.867	-96.2949	-90.4107	-58.8413	-48.0171	
28-12	-232.909	-212.355	-268.898	-110.584	-96.6602	-91.8311	-64.4785	-49.2607	
29-12	-235.593	-213.344	-271.23	-115.103	-98.3384	-96.1738	-68.8618	-50.3398	
30-12	-236.949	-216.227	-273.649	-117.848	-104.153	-99.7466	-72.8101	-58.1152	
	-239.425	-218.552	-275.172	-120.669	-107.608	-103.733	-76.5684	-63.7017	

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE										
DATE	S9	S10	S11	S12	S13	S14	S15	S16	S17		
01-01	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07		
02-01	-173.987	-244.358	-244.613	-243.765	-207.087	-206.853	-206.201	-174.844	-176.118		
03-01	-176.445	-247.244	-248.74	-247.269	-207.378	-209.69	-207.458	-176.423	-180.41		
04-01	-183.343	-249.649	-251.723	-250.332	-212.552	-216.172	-214.183	-182.156	-186.926		
05-01	-188.459	-244.671	-254.121	-253.423	-210.764	-220.242	-218.833	-179.804	-190.642		
06-01	-192.052	-247.264	-256.501	-255.851	-214.506	-224.314	-222.675	-184.466	-194.462		
07-01	-194.451	-250.017	-258.545	-257.691	-218.954	-227.402	-225.376	-188.77	-197.325		
08-01	-196.761	-252.34	-260.078	-259.484	-222.022	-229.65	-227.876	-191.736	-199.413		
09-01	-199.915	-254.102	-262.561	-261.038	-224.135	-231.469	-229.949	-193.671	-202.364		
10-01	-202.696	-256.53	-264.004	-263.577	-225.584	-233.216	-232.7	-194.945	-204.173		
11-01	-206.216	-258.115	-266.741	-265.993	-227.382	-236.132	-234.335	-196.655	-207.166		
12-01	-206.911	-259.821	-268.232	-267.336	-229.366	-237.886	-236.95	-199.814	-211.112		
13-01	-210.398	-262.91	-270.542	-269.613	-232.608	-240.353	-238.238	-202.056	-212.368		
14-01	-145.718	-264.646	-273.04	-270.817	-234.584	-241.949	-204.991	-205.455	-215.119		
15-01	-148.998	-267.195	-274.549	-273.557	-201.996	-209.374	-209.922	-141.842	-151.825		
16-01	-156.642	-269.789	-277.161	-275.101	-207.074	-214.154	-216.326	-147.089	-156.715		
17-01	-160.97	-271.059	-278.622	-277.515	-211.906	-220.347	-220.035	-152.379	-163.964		
18-01	-163.794	-273.207	-281.439	-279.895	-215.098	-225.671	-223.196	-156.305	-169.195		
19-01	-165.662	-274.626	-282.896	-280.988	-218.902	-227.929	-225.492	-160.001	-172.222		
20-01	-169.186	-276.205	-286.087	-284.416	-220.137	-230.658	-227.93	-160.839	-174.576		
21-01	-172.57	-192.06	-287.328	-285.395	-136.768	-233.013	-229.532	-77.625	-177.919		
22-01	-174.338	-104.808	-289.469	-286.483	-58.5088	-235.874	-232.369	-18.0146	-180.749		
23-01	-176.689	-108.134	-290.335	-288.523	-78.7471	-237.239	-233.789	-54.1353	-183.183		
24-01	-177.886	-118.898	-292.497	-289.387	-85.4248	-239.898	-236.093	-60.8823	-185.898		
25-01	-180.305	-131.051	-293.534	-291.497	-104.166	-241.372	-237.377	-84.6445	-188.51		
26-01	-183.042	-141.8	-295.98	-292.616	-121.682	-245.155	-240.048	-107.662	-190.29		
27-01	-186.005	-148.585	-296.622	-295.095	-135.013	-246.124	-241.759	-125.171	-192.831		
28-01	-188.677	-154.538	-298.526	-296.228	-142.607	-246.987	-245.329	-135.656	-195.092		
29-01	-191.593	-157.871	-299.418	-298.796	-151.217	-249.194	-246.92	-145.529	-197.322		
	-193.592	-162.449	-301.723	-300.134	-156.09	-250.467	-249.459	-151.082	-198.933		
31-01	-125.093	-165.443	-302.905	-302.105	-159.893	-253.011	-214.263	-156.274	-201.735		
01-02	-129.21	-168.774	-305.071	-302.802	-130.942	-218.555	-215.543	-96.5166	-137.366		
02-02	-134.54	-171.858	-306.144	-304.894	-134.609	-221.271	-220.655	-110.848	-140.424		
03-02	-139.689	-175.496	-308.323	-307.118	-142.587	-225.257	-225.66	-117.768	-146.293		
04-02	-143.519	-178.378	-309.26	-308.608	-150.144	-228.356	-228.898	-130.305	-150.249		
05-02	-146.983	-181.117	-311.667	-310.801	-154.993	-231.884	-231.915	-140.471	-155.563		
06-02	-148.144	-183.703	-312.838	-311.634	-159.849	-235.097	-233.613	-148.407	-169.87		
07-02	-150.984	-185.329	-315.397	-312.605	-162.918	-238.027	-235.539	-154.214	-163.675		
08-02	-154.034	-188.029	-316.733	-314.981	-165.518	-242.202	-237.584	-168.688	-166.913		
09-02	-157.195	-190.818	-319.312	-316.247	-168.689	-244.808	-240.908	-163.04	-170.231		
10-02	-160.263	-193.608	-320.667	-318.805	-171.512	-246.722	-242.599	-165.858	-174.007		
11-02	-163,193	-196.454	-323.752	-320.014	-175.491	-248.145	-246.386	-168.872	-175.857		
12-02	-165.81	-199.009	-324.826	-323.01	-176.88	-260.619	-247.65	-172.513	-178.421		
13-02	-168.706	-200.806	-325.777	-324.136	-178.552	-251.935	-249.919	-173.212	-181.163		
14-02	-101.36	-196.697	-326.54	-325,183	-174.851	-254.23	-216.176	-169.561	-183.698		
15-02	-108.092	-198.032	-328,688	-326.279	-139.341	-220.404	-220.004	-102.161	-119.697		
16-02	-114.433	-199.65	-329.754	-328,496	-140.099	-223.902	-226.444	-111.171	-126.769		
17-02	100.002	-203.021	-332.000	-329,114	-146.231	-229.876	-228.23	100,440	-134.188		
18-02	-120.092	-204,959	-333.255	-331.219	-150.646	-233,646	-231.050	-120.448	-142.162		
19-02	-123.675	-208.459	-335.52	-332.182	-154.94/	-237.063	-234.723	-130,105	150 004		
20-02	120.008	-210.033	-330.623	-334.352	-10/.//5	-240,107	-237.231	-144.051	100.394		
21-02	124,225	-211.753	-330.04/	-335.3/8	-101.775	-242.515	-239.392	-153.005	-101.021 105.007		
22-02	136.225	-214.525	242.072	-337.30/	-104.045	-240.000 047.000	-241.105 DMC	100.704	167.03/		
23-02	-139.932	-217.314	-34Z.07Z	-330.319	-107.099	-247.023	-245	-101.30	-107.92		

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S9	S10	S11	S12	S13	S14	S15	S16	S17	
24-02	-139.009	-220.11	-342.283	-338.875	-171.076	-249.312	-246.072	-164.521	-169.368	
25-02	-141.83	-216.993	-344.19	-340.962	-168.933	-250.58	-247.456	-162.402	-172.722	
26-02	-144.731	-220.184	-344.953	-341.943	-171.204	-252.972	-250.108	-164.895	-174.43	
27-02	-147.835	-222.3	-346.828	-344.201	-175.488	-255.312	-251.684	-168.197	-175.833	
28-02	-83.4297	-225.14	-347.741	-345.017	-177.272	-256.625	-217.818	-172.203	-178.566	
01-03	-87.3125	-226.862	-348.49	-347.262	-143.504	-221.738	-221.252	-117.89	-114.706	
02-03	-93.5776	-229.403	-350.302	-348.356	-146.307	-222.656	-227.006	-117.632	-119.74	
03-03	-99.2139	-231.521	-351.177	-349.513	-150.915	-227.589	-230.731	-127.618	-126.048	
04-03	-103.343	-232.715	-353.21	-351.701	-153.276	-230.761	-234.491	-136.102	-134.987	
05-03	-108.069	-235.156	-354.188	-352.813	-156.635	-234.757	-237.67	-143.348	-141.862	
06-03	-112.413	-236.373	-355.163	-354.942	-159.035	-237.901	-240.134	-150.091	-149.6	
07-03	-114.5	-238.71	-357.364	-355.535	-162.071	-240.457	-241.595	-153.843	-154.905	
08-03	-117.168	-241.28	-358.333	-356.23	-164.907	-242.71	-245.316	-157.478	-158.498	
09-03	-120.06	-242.668	-359.267	-358.317	-166.835	-244.619	-246.824	-161.971	-162.91	
10-03	-123.131	-246.143	-362.359	-359.26	-169.712	-246.383	-248.275	-164.536	-165.623	
11-03	-126.152	-247.646	-363.544	-360.33	-173.716	-247.884	-250.833	-167.575	-168.568	
12-03	-129.078	-248.996	-364,492	-363.164	-175.451	-250.656	-252.168	-169.542	-172.601	
13-03	-133.07	-251.168	-365,343	-364.015	-177.784	-253.154	-254.715	-172.884	-174.31	
14-03	-69.3525	-253.028	-366.296	-364.754	-179.875	-254.733	-220.791	-173.811	-177.334	
15-03	-66.7222	-254.167	-368.431	-364,456	-144.395	-221.547	-218.87	-118,449	-114.676	
16-03	-71.0132	-256.634	-369,184	-365.091	-146.82	-223.664	-221.787	-120.74	-121.111	
17-03	-75.1729	-257.95	-371.016	-365.891	-151.341	-228.402	-225.421	-127.405	-126.941	
18-03	-80.1123	-260.511	-371.912	-367.861	-155.706	-233.303	-229.411	-137.411	-136.549	
19-03	-81.8223	-262.977	-372.728	-368,494	-159.273	-235,185	-232.128	-145.979	-144.3	
20-03	-86.2031	-263.306	-374,792	-370.414	-159.977	-238.402	-234.672	-150.021	-151.712	
21-03	-90 4644	-258.68	-375.612	-371.328	-154 884	-240.941	-237 021	-146 711	-156.68	
22-03	-92 021	-258 713	-376 391	-371.997	-156 642	-244 069	-238 773	-150 477	-161 182	
23-03	-94 6055	-260 279	-378 274	-373 771	-159 329	-245.971	-240 181	-153 223	-163 788	
24-03	-97, 1997	-263.331	-375.823	-374,407	-161.879	-243,986	-243.25	-157.228	-163.382	
25-03	-99.9697	-265.209	-378,157	-375.045	-164,119	-247.055	-244.943	-159.562	-165.266	
26-03	-103.192	-266.948	-379.172	-377.078	-167.35	-248.776	-246.477	-162.721	-168.306	
27-03	-107 608	-269.613	-380.09	-378.066	-168 974	-251.375	-248 132	-165 479	-169 913	
28-03	-111.88	-271.17	-382.121	-378.936	-172.774	-253.049	-250.834	-167.303	-173.745	
29-03	-114.838	-272.681	-382,895	-380.932	-174.479	-255.271	-252.291	-170.195	-174.964	
30-03	-50,7803	-274.575	-383.636	-381.588	-176.172	-256.637	-217.55	-172.829	-177.47	
31-03	-52 4644	-275 587	-385 522	-382 163	-140 269	-221 464	-218 456	-116.032	-123 274	
01-04	-56 9863	-277 921	-386.36	-384 174	-139.59	-223 178	-223.665	-114 096	-122.2	
02-04	-61 8818	-278 865	-387 076	-384 957	-145 224	-226.37	-226.61	-123 127	-130 255	
03-04	-66.0547	-280.408	-388.722	-385.614	-148.74	-229.295	-230.118	-132.454	-138.13	
04-04	-70 6353	-283 519	-389 522	-387 593	-152 398	-232 839	-232 313	-141 785	-143 675	
05-04	-73.6787	-284,462	-390.332	-388,166	-156,114	-235,719	-234,109	-146.401	-149.874	
06-04	-76.4624	-285,118	-391.141	-388.495	-158.685	-238,268	-235.19	-150.987	-155.217	
07-04	-78 0054	-287 123	-393 054	-390 189	-161 152	-240 454	-236 813	-155 301	-159 544	
08-04	-81 8662	-287 976	-393 782	-390.885	-162,382	-242.34	-238 412	-157 939	-162 246	
09-04	-85 4507	-289.983	-390 428	-391 553	-164 791	-239 807	-242 146	-160.385	-159 844	
10-04	-87 4121	-290.811	-393.047	-393 347	-165 892	-241 498	-243.639	-162 455	-161 819	
11-04	-91 4077	-292 556	-394 067	-394 114	-168 809	-242 913	-245 037	-163 204	-163 309	
12-04	-93 5703	-293 484	-395 127	-394 948	-170.063	-244 494	-246 529	-165.657	-166 226	
13-04	-95 3911	-294 443	-395 933	-395 364	-171 256	-245 965	-248 442	-167.064	-167 829	
14-04	-28 5239	-296 533	-390.811	-395 725	-173 326	-240 924	-209 999	-170 226	-163 929	
15-04	-28 3374	-297 361	-391 946	-396 215	-137 451	-203 365	-210.019	-112 725	-95 9292	
16-04	-30 186	-299.56	-393 113	-396 585	-137 397	-202.000	-211 458	-111 866	-104 981	
17-04	_32 959	-300.50	-390.27	-398 3/1	-141 971	-201.816	-214 96	-120 727	-104 221	
18-04	-35 5737	-302 999	-392 733	-398 969	-147 239	-204 117	-216 833	-132.67	-114 456	
10.04	00.0101	002.000	002.100	000.000			2.0.000	102.01	111.400	

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S9	S10	S11	S12	S13	S14	S15	S16	S17	
19-04	-39.937	-304.021	-394.142	-399.614	-151.695	-206.838	-219.601	-139.369	-126.379	
20-04	-43.2554	-304.65	-395.556	-400.262	-154.643	-209.89	-222.092	-145.518	-135.559	
21-04	-46.9297	-306.519	-396.852	-402.252	-156.204	-211.21	-224.45	-150.194	-142.045	
22-04	-52.1172	-307.268	-397.917	-403.018	-158.949	-213,105	-226.666	-153,194	-147.47	
23-04	-54.8286	-308.924	-400.075	-403.447	-160.715	-214.541	-227.912	-155.537	-150.866	
24-04	-57.3721	-309.57	-401.056	-404.967	-161.541	-216.001	-228.73	-157.775	-155.309	
25-04	-56.8731	-311.412	-402.052	-404.923	-163.945	-217.589	-229.268	-160.016	-158.222	
26-04	-60.0645	-312.432	-403.017	-405.434	-165.182	-220.413	-230.129	-162,181	-160.957	
27-04	-61 9746	-313 404	-399 793	-406.047	-166 584	-217 713	-232 422	-163 562	-158.092	
28-04	-65 7598	-315 757	-400 666	-406 675	-170 322	-218 524	-233.842	-166 414	-159 109	
20.04	-69.75	-316 955	-402.000	-408 343	-171 825	-219.606	-235 278	-168.059	-161 589	
30-04	-3 46777	-317 504	-403 804	-409.040	-173 341	-221 568	-199.617	-170 806	-162 723	
01-05	-0.92822	-301.832	-404 626	-409.686	-117 473	-184 114	-199 136	-83 1436	-95 9224	
07.05	-3.80566	-299 111	-405 562	-410.22	-112 125	-183 //8	-201 865	-89.624	-105 579	
02.05	-5.67773	-299.836	-406 331	-411 735	-117 126	-186 383	-203.974	-93.0929	-109.0/6	
03-03	-8.73682	-200.000	-408.354	-412 348	-125 /95	-189 162	-205.074	-106 373	-118 114	
04-03	-11.6362	-302.647	-400.004	-412.340	-123.400	-190.702	-200.707	-116 476	-179.736	
05-05	7 66136	307.047	403.134	367,005	130 199	100.700	163 500	107 697	137 534	
00-03	7.00100 E //E100	206,620	410.001	-307.223 363 349	-135.100 144.0E4	105,005	159 506	127.007	1/2 212	
07-03	4 76006	201.044	410.752	267 472	1/1 205	106 752	152,502	135,077	1/0 252	
00-03	4.76230	201.044	417.321	360.077	141.333	109.700	154.094	120 212	160 771	
10.05	2.0710	2001.007	400 147	-300.077 251.01	144.470	105 154	1/0 1/2	142.05	1/10/2.741	
11.05	1.00005	202.707	200.147	-JUZ.3Z 354 370	140,200	174 070	140.24J	-140.00 140.10	101 550	
11-05	1.33320	-303.90Z	-300.410 270.0	-304.370 244.400	-149.30Z	-174.07Z	-149.009 100 /00	-140.12	11/ 005	
12-03	3.007.30 4.01000	-302.003 204.645	-370.0	-344,100 005 0	151 000	157,000	101 070	1/0 277	114.000	
13-03	4.01003	-304.343 206.146	-300.003 207.000	-333.0 220.01 <i>1</i>	150.022	154 100	-131.070 05.0100	150 000	100 005	
14-03	7 10000	-300,140 207 AEC	-307.300 270.201	-330.014 000 0	116 774	-104.209 116 EAE	-35.6133	-102.003	-120.200 C1 C01C	
10-00	1.13030	-307.430 205.000	-370.361	240.004	115 017	115,040	-37.0074	-00.109Z	01.0010	
17.05	2,2003	305.003	370,203	342.004	118.253	117 610	120 735	90.0300	93 6533	
17-03	1.000002	200.00	-370.293	244.250	106.200	102.107	100 707	100.4000	70 1700	
19.05	0.00036	307 393	350 104	345 682	132 050	110 362	137 633	117 28/	99 6597	
20.05	1 39/60	200.000	252,510	240,700	120.000	110.302	126 644	107 2/0	104 904	
20-03	1.00403	210 201	-332,019	220 /01	-133.237 173.560	109 712	139 /13	125.26	116 765	
21-00	1.24313	-J10.201 044-07	224 105	-333.431 074 707	140,000	11/070	1/10.413	1/1 201	105 /00	
22-03	1 771	-311.37 241.201	-334,105 106,004	-341.407 373 514	151 002	-114.070 01.1001	142.991	-141.301 145.7CE	75 0 / 67	
23-05	-1.771	-312.362	-296,904	-343.524	-151.003	-02.1392	147.009	-145.765	-/ 0.040/	
24-03	-0.43652	-311.905	-295.700	-330.304	150,701	103.0033	144.233	-147.317	100 001	
25-05	0.50010	200.001	-296.015 DOC 007	-334.273 335 166	151 642	114 102	141.041	-140.000	111 00	
20-03	0.52212	201 477	-230.327 nagingo	-335.200 227.00	1/12/101	104 040	145.000	143.413	100 576	
27-03	1 51074	-301.477 DOE EOX	-299.293	-337.0Z	120 077	-124.043 115 EC	140.02	107 000	114 52	
20-03	1 01074	-200.004	-204.24 DOE 070	-330.035 334.005	100.077	101 500	140.232	137.300	100 500	
29-03	1/ 0017	-282.572	-205.076	-331.005	107.005	107.005	-140.900 00 0050	100.092	100 070	
30-03	7 00001	-283.331 nopinera	-200.174 100.75	-315.711	101 207	05 0050	00.3052	-130.00	-120.379 70 hono	
01.00	7.00001	-293.053	-200.70	-316.330	101.397	-95.0059	-90.0749	-00.0249	-70.2003	
01-06	2.40441	-294.794	-209.0	-315.257	-104.047	-99.3002 AC 2000	111 201	00.0171	03.3100	
02-06	3.91991	-230,303	-277.14	-314.701	-114.730	-90.5303	101.001	-99.209	01.0000	
03-06	2.97210	-200.004 nec ons	-270.383 100 172	-315.73	100 400	1107.202	1121.000	-70.9497	107.007	
04-06	2.10/00	200.925	-200.273	-314.01	-100.423	101 000	120.903	-53.0001 105.005	112 504	
	1.40707	-200.003	-270,914 Dec o	216 770	100.467	-121.090 115 AAT	136 504	110.235	100 501	
	0.59635	-270.71b	-205.2	-310.776 310 AEO	109 540	100 450	1/1 704	100.022	102.042	
		-270.041	-201.447 - 000 0.40	211 002	112 0.042	00.109	127.000	-120.320	-103.04Z	
	0.91010	243.301	-230.249 010 <i>ME</i>	310 200	110 557	-39.0359 QN 0016	1/0 100	109 /17	90.2405	
10.00	1.001219	-241.173	-210.45 019.010	309 374	107.057	-90.0016 08.0074	120 07	-100.417 105.000	-07./393 07./017	
10-06	1.30427	-201.400	-210.013	207.271	110.000	-30.007 l	1/0.07	100.996	100 057	
1 11-06	1.0044	-223.041	-221.171	-307.373	-110.069	1 (0, 17	-140.Z9Z	-105.164	-100.33/	

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S 9	S10	S11	S12	S13	S14	S15	S16	S17	
12-06	1.00408	-227.301	-221.67	-307.237	-114.783	-120.387	-141.139	-113.84	-119.808	
13-06		-212.001	-223.521	-309,446	-107.066	-128.582	-144.018	-106.808	-127.964	
14-06	6.24746	-201.815	-225.002	-310,533	-105.14	-135.783	-107.616	-104.879	-135.131	
15-06	3.90757	-195.033	-226,478	-311.792	-65,7139	-101.125	-109.019	-38,7139	-73,1768	
16-06	2,30633	-174.79	-226.637	-312,398	-55 7725	-103 538	-117.431	-37,2397	-89,9297	
17-06	2 78995	-172 659	-227 917	-308 488	-72 9707	-113 111	-121 151	-50 2754	-92 3525	
18-06	1 4566	-165.359	-229 264	-310.063	-82 5811	-122.976	-128 217	-63 5737	-105 155	
19-06	1 24002	-165.024	-230 526	-309 952	-96 0366	-131.57	-131 746	-83 5303	-117 562	
20-06	0.23776	-166 496	-229 528	-311 399	-108 797	-135 291	-137 683	-100.678	-124 912	
20.00	0.20110	-166 916	-228 795	-313 246	-119 764	-138 411	-143 253	-112 752	-130.668	
22-06	-2 60938	-168.865	-228.628	-314 911	-128 212	-141 824	-147 091	-123 225	-134 898	
22.00	-4 18115	-169 359	-211 527	-316.071	-134 934	-126 593	-150.077	-130.095	-121 912	
23.06	-3 99/17	-156 702	-209 704	-313 777	-125 293	-126.82	-150.316	-122 822	-127.012	
24-00	-5.14551	-150.762	-200.704	-314 825	-123.200	-120.02	-152.849	-122.022	-118 78	
25-00	-6.67861	-151 785	-201.536	-315 974	-123.07	-124.403	-154 205	-126.963	-121 718	
20-00	9.96079	153.10	201.320	317,036	133 3/9	124.013	166 666	131 //8	107 100	
27-00	11 4014	1/6 616	201.420	210 607	100.740	120.744	150.000	100 100	100 017	
20-00	7 01160	140.010	203.330	212 614	100 700	120,005	150.270	100 000	100 /00	
23-00	-7.31162	-143.733	-204,100	205 205	123.733	-139.095	144 710	120.230	140 0400	
01.07	-0.22000 1 56560	100 570	-205.007	-JUJ.220 100.40	100.047	-142.007 1 AC EC	144.712	100.700	144.241	
01-07	1.00000	1/0.070	-200.400	-200.40	124 040	-140.00	-140.J01 107.50	123.002	144.000	
02-07	1.79040	105 140	-200.720	-297.143	104.242	150 104	107.08	104.000	-140.200	
03-07	2.00240	100.140	-207.971 nno nn4	-231.47	100 /05	150,104	-100.20 100.004	101.429	150 010	
04-07	2,1000	100 007	-200.291 207 co2	291.024	123.400	153.073	107 /004	125.33	152.013	
05-07	0.55072	104 501	102 17	-232.47 T	1127.443	102.074	1/1 005	1127.02	102.000	
00-07		100 110	103.27	-234.233 100 404	107 140	129.140	120 203	107 100	110 050	
07-07	2 4004	120.110	151 710	-203.434 171.00	-127.140 101.540	-129.009 00 C/07	105.052	121.122	100 702	
00-07	3.00//8	102.000	130.072	272.03	106 31/	94 5990	123.355	107.002	95 3257	
10.07	1 70397	131 597	100.072	-271.200 071.001	131 005	-04.0003 03.4070	124.000	130,966	-00.0207 03.377	
11.07	1 /1193	135 7/8	128,750	-271.301 272.600	135 325	-33.4272 08.7088	132 610	135 113	-33.377 QQ 1.475	
12.07	2.84858	1/0 030	118 36	272.003	130.020	90.7900	102.013	139,639	93.1475	
12-07	1 55070	-130.235	-117 //8	-204.000	-139.001	-103 658	-120.304	-139.000	-37.4000	
14-07	0.83472	-138 905	-11/ 662	-266 571	-138,603	-103.030	-136 268	-138 /31	-103.745	
14-07	0.03472	-100.505	-114.002	-200.071	-101.861	-110.526	-140.668	-101.831	-103.304	
16-07	-0.46729	-102.00	-110.022	-200.007	-91 5884	-116 229	-146.630	-91 4727	-116 /66	
17-07	-0.40725	-31.0432	-120.075	-203.025	-100.034	-124 505	-143.005	-31.4727	-173,806	
17-07	-4.53369	-110.252	-127.004	-271.000	-100.034	-124.000	-140.000	-110.005	-123,000	
10-07	-4.55555	-115 569	-127.423	-272.000	-115 /9/	-124.20	-153 797	-115 /68	-123.000	
20.07	-0.30003	-101 715	-87 5215	-274.000	-101 669	-85 8193	-156 173	-101.665	-122.173	
20-07	-3.086/13	-106.982	-85 /209	-268 039	-106.958	-84.0303	-1/8 629	-106.954	-84 3857	
21-07	3 /1797	100.002	97 7603	200.000	100.000	C305.40-	150.46	100.004	96.5596	
22-07	-5.41757	-100.032	-110 111	-203.372	-100.032	-109 7/18	-152 396	-100.000	-109.000	
23-07	7 71631	112 261	108 875	272.584	112.06	108.469	153 975	112 258	109.000	
24-07	-10 3364	-112.201	95 6597	-272.004	-115 529	95 2266	-155.575	-115.200	-100.201	
25-07	-10.0004	-1122 365	-100.055	-276.068	-122.37	-99.6563	-158 584	-110.407	-100.005	
20-07	-14 9746	-122.303	-105.337	-270.000	-122.37	-105 528	-150.004	-122.303	-105.005	
28-07	-11 7/66	-123.76	-112 189	-273 367	-123 765	-103.320	-155.000	-123.76	-103.043	
20-07	-12 0161	-120.70	-95 6676	-273 304	-123.703	-95 3037	-155.000	-120.70	-95 6074	
20-07	-12.0101	-136 326	-100.66	-270.004	-136 367	-101 309/	-1/2 65	-136 329	-100 507 4	
31_07	0.00074	-142 165	-100.00	-200.01	-1/0.007	-109.503	-141.006	-1/2 166	-100.007	
01-07	0.00000	-144 361	-119 29	-255.075	-144 383	-118 927	-143.083	-144 363	-119 285	
01-00	-1 28711	-132.845	-128.57	-205.20	-132.854	-10.527	-146 100	-132.8/6	-10.200	
02-00	2.51633	-134 531	-135 5/9	-248 727	-134 538	-135 708	-135 833	-134 532	-135 553	
03-08	3,19991	-139.096	-141.059	-242.717	-139.103	-140.255	-130.114	-139.097	-141.061	

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S 9	S10	S11	S12	S13	S14	S15	S16	S17	
05-08	2.25297	-144.116	-146.175	-243.056	-144.12	-145.523	-131.7	-144.117	-146.177	
06-08	3.49141	-147.59	-150.611	-234.9	-147.593	-150.111	-125.872	-147.591	-150.612	
07-08	2.45389	-140.945	-153.856	-235.196	-140.948	-153.396	-128.599	-140.945	-153.857	
08-08	1.95448	-136.554	-156.843	-234.198	-136.556	-156.442	-131.498	-136.554	-156.843	
09-08	7.15081	-130.656	-132.796	-202.965	-130.656	-133.525	-103.814	-130.655	-132.796	
10-08	4.20869	-134.897	-131.63	-202.568	-134.898	-131.304	-108.244	-134.898	-131.631	
11-08	3.80208	-139.134	-133.083	-199.221	-139.135	-132.849	-111.747	-139.135	-133.083	
12-08	2.62834	-143.387	-128.088	-199.178	-143.387	-127.847	-118.179	-143.387	-128.088	
13-08	2.12634	-146.539	-120.649	-198.961	-146.539	-120.399	-125.642	-146.539	-120.648	
14-08	3.89378	-147.93	-125.611	-185.058	-147.929	-125.279	-115.712	-147.929	-125.611	
15-08	4.91005	-151.305	-130.896	-171.949	-151.304	-130.559	-110.213	-151.304	-130.896	
16-08	3.12469	-154.706	-137.602	-173.343	-154.706	-137.213	-115.961	-154.706	-137.602	
17-08	1.91298	-155.575	-133.982	-175.932	-155.576	-133.656	-122.614	-155.575	-133.981	
18-08	0.80047	-156.872	-138,498	-177.521	-156.872	-138.313	-131.875	-156.872	-138,498	
19-08		-149.475	-141.99	-179.236	-149.475	-141.771	-136.413	-149.475	-141.989	
20-08	-1.31299	-149,709	-134,393	-179.61	-149,709	-134.17	-141.769	-149,709	-134.392	
21-08	-4.06689	-152.496	-137.347	-181.468	-152.497	-137.13	-146.867	-152.497	-137.347	
22-08	-6.0249	-153,815	-135.98	-183.03	-153.817	-135,758	-150.209	-153.816	-135.98	
23-08	-7.94434	-114,403	-136.346	-183.75	-114.404	-136,122	-153,802	-114,403	-136.347	
24-08	-0.26514	-118 098	-133.64	-169.84	-118 099	-133 414	-140 103	-118 099	-133.64	
25-08	0.20011	-126 293	-136.026	-172 519	-126 294	-135 808	-143 495	-126 293	-136.026	
26-08	-1.86475	-132 685	-133 281	-175.312	-132 686	-133.006	-146 741	-132 686	-133 281	
27-08	-4 07031	-139 085	-137 975	-177 554	-139.086	-137 745	-149 466	-139.085	-137 975	
28-08	-6.63916	-142 239	-142 899	-179.354	-142.24	-141 664	-151 591	-142 239	-142 899	
29-08	-4 00586	-142.003	-144 708	-175 13	-142 004	-144 738	-147 654	-142.200	-144 708	
30-08	1 8485	-144 766	-147 926	-166 959	-144 766	-147 814	-139.925	-144 766	-147 927	
31-08	10 4383	-145 581	-150 893	-168.35	-145 581	-150 736	-103.095	-145 581	-150 893	
01-09	5 9086	-148.631	-153.68	-169.302	-109 415	-113 854	-105 972	-80 2798	-85,3096	
07-09	3 52631	-148 615	-152 481	-171.393	-108 133	-111.963	-114 418	-92 2607	-95 0064	
02-00	2 55011	-152.034	-124 227	-171.988	-117 278	-87 3926	-123 771	-95 6675	-66 2432	
04-09	1 12551	-152 793	-121.15	-173.822	-125 544	-93 7505	-130.82	-106 748	-76 8022	
05-09	1.91509	-154 621	-128.366	-169 829	-133 551	-107 084	-132 079	-119 413	-94 9107	
06-09	4 12054	-157 858	-116 736	-157 073	-140.083	-100.677	-122 779	-129.28	-91 792	
07-09	3 17909	-159.325	-116 877	-155.606	-145 469	-105 509	-125 183	-137 605	-97 7632	
08-09	2 09784	-161 691	-123,969	-154 891	-149.21	-115 688	-129 783	-142.04	-110 806	
00-00	2 89659	-163.814	-128 462	-151	-154 51	-121 207	-129.032	-148.001	-118 355	
10-09	2 9763	-165.647	-133 982	-148 231	-157.97	-130 203	-128.99	-153 128	-127 493	
11-09	1.56762	-168.377	-140.395	-150.09	-160 787	-136 854	-134 709	-157 498	-134 431	
12-09	1.34376	-171.83	-138.637	-150.351	-163.37	-136 423	-136 608	-160 228	-134 948	
13-09	0.80646	-172 598	-140.353	-151.369	-164 043	-138 315	-140.26	-162 277	-137.07	
14-09	10.8366	-173 286	-141 852	-153 463	-164 899	-140 042	-105 459	-162.869	-140.07	
15-09	6 87039	-134 828	-146 204	-154 146	-82 3838	-105 124	-108 156	-56.001	-76 5645	
16-09	4 77946	-123	-150.661	-155 292	-84 9014	-108.692	-116.032	-58 4189	-92 7261	
17-09	3 01363	-126 999	-153.028	-156 742	-87 231	-117 951	-125 578	-69 8809	-95 8999	
18-09	1 96805	-131 47	-155 271	-157 592	-99.6167	-126 652	-131 707	-87 168	-108 884	
19-09	0.92797	-138 714	-154 209	-158 668	-116 33	-132 541	-138.438	-103.679	-117 563	
20-09	0.02101	-144.059	-155 476	-160.605	-125 253	-136 73	-144 267	-118 185	-126.62	
20-00	-3 49561	-144.000	-156 881	-162 211	-120.200	-142 385	-149.207	-123.23	-133.74	
21-03	2 65561	-136.8	-158 688	-149 543	-105.747	-147 5/3	-138.625	-123.23	-140 935	
22-03	2.00001	-133 911	-160.500	-148 976	-120.02	-151 /3/	-139.025	-127.000	-146.000	
23-03	2.047.00	-117 966	-16/ 073	-1/9 039	-124.337	-155 759	-140 175	-122.402	-150.0	
24-03 25_00	1 /1000	-121 366	-165 709	-140.000	-115 033	-158 973	-1/0.170	-115 109	-156 592	
20-03	1.40033	-121.000	-168 1/2	-153 002	-105 507	-161 307	-146.934	-17/ 319	-150.002	
20-03 27_00	-2 73389	-136 812	-171 174	-155.503	-123.027	-162 277	-160 350	-124.010	-161 //63	
21-03	-2.10000	-100.01Z	- 1 F T . 1 F 4	-100.10	-100.000	-104.411	-100.000	-102.017	-101.403	

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S9	S10	S11	S12	S13	S14	S15	S16	S17	
28-09	-4.66064	-141.994	-172.376	-156.926	-141.266	-164.576	-152.017	-139.167	-162.523	
29-09	5.00885	-149.619	-173.132	-134.408	-146.781	-165.44	-131.141	-146.117	-164.57	
30-09	15.4033	-153.135	-175.137	-131.14	-151.945	-167.56	-89.8179	-152.276	-166.747	
01-10	10.1253	-157.698	-176.558	-133.758	-119,136	-131.552	-93,4946	-88.751	-103.62	
02-10	7.27373	-160.081	-179.312	-135.42	-120.065	-130.834	-102.972	-101.379	-113.043	
03-10	4,40053	-161.758	-181,984	-140.414	-125.644	-137.832	-117.842	-104.886	-117.971	
04-10	1.95517	-148.636	-180.658	-146.42	-118.433	-138.215	-128.753	-100.316	-123.244	
05-10		-132.388	-180,127	-152.453	-106.931	-141.44	-137.937	-92.3648	-129.011	
06-10	-3.81641	-134.613	-179.851	-156.27	-114.586	-143.507	-145.088	-103.261	-134.252	
07-10	-8 72363	-137 046	-180 886	-160.025	-121.056	-147 636	-151 974	-114 821	-139 496	
08-10	-11 0894	-143 059	-182 406	-161 821	-132.88	-150.615	-154 501	-127 882	-145 568	
09-10	-12 9648	-148 827	-183 776	-162 412	-140 441	-152 788	-156 853	-135 822	-148 928	
10-10	-16 2598	-153 859	-184 776	-164 793	-145 991	-154 725	-159 543	-143 829	-152 366	
11-10	-18.0674	-156 761	-175 572	-165 568	-150 707	-146 608	-161 42	-148.57	-143 277	
12-10	-19 9995	-160.166	-177.679	-167 //31	-155 809	-149.085	-162 701	-153 867	-143.211	
12-10	-10.0000	-162 354	-181 265	-170 377	-159.000	-143.603	-164.092	-153.007	-162.073	
14-10	10.8509	-165 /11	-185 144	-171 725	-163.871	-157,913	-129 386	-161.848	-156.6/9	
14-10	6 30763	169 616	196 69	170 373	100.071	107.313	128,500	107.038	an angg	
16 10	2,81328	172 244	187.3	175 204	130 0/7	122.472	13/ /80	107.000	101 503	
17.10	0.47951	170.010	102.001	176.065	100.047	110.071	141 445	115 959	07 0969	
17-10	0.47001	172.213	159 010	190,000	120 770	90 1011	147.400	107.000	90 1567	
10-10	7 00 / /7	-170.00Z	100.019	100.000	-139.77Z	100 101	147,400	127.909	00.1007	
19-10	-7.03447 40.7900	170.407	-101.149 4CE 00E	102.300	-143.031	-109.262	-103.307	-135.942	-30.0200	
20-10	-10.7090	-170.230	-100.000	-105.050	-152.01Z	121.400	-150.314	-144,100	105 000	
21-10	-5.7627	-101.399	-100.900	-177.100	-100.707	-131.007	-150.344	-100.017	125.009	
22-10	-1.33252	-104.507	-172.500 475.405	-171.931	-160.937	-141.419	-140.745	-107.047	-130.037	
23-10	-2.60742 C 7044	-100.270	-175,435	-174.003	-104.052	-149.913	-150	-109.420	-143.90	
24-10	-6.7041	-107.17	-1/0.101	-177.706	-165.519	-154.457	-153.43	-101.044	-151.304	
25-10	-11.000	-102.07 40C 447	104.013	102.132	101.403	-100.090	100.904	100.575	-100.000	
20-10	-13.771	-100.117	107.002	105.044	-165,695	-165,096	-150,693	-160.575	101-	
27-10	-17.5930	-100.10Z	-107.003	-105.009	-105.704	-165.000	-160.779	-102.002	-104.131	
28-10	-22.5669	-190,504	-189.624	-189.017	-167.103	-168,562	-164.037	-165,154	-166.647	
29-10	-27.2891	-192.531	-191.139	-191.431	-171.382	-172.239	-167.565	-167.361	-169.625	
30-10	-32.4341	-195.607	-185.558	-194.691	-173.325	-165.661	-169.895	-171.596	-163.077	
31-10	7.50942	-199.097	-183.037	-197.687	-176.938	-163.195	-135.913	-174.177	-160.796	
01-11	3.40956	-199.907	-180.508	-199.611	-140.251	-121.162	-137.828	-107.549	-90.2422	
02-11	0.01146	-202.16	-183.12	-202.622	-141.286	-121.502	-145.718	-113.939	-101.818	
03-11	0.4400	-204.45	-187.072	-204.963	-143.91	-129.265	-149.174	-117.892	-107.671	
04-11	-3.4126	-205.312	-190.705	-205.659	-147.08	-137.789	-150.432	-124.594	-119.083	
05-11	-7.7583	-205.976	-193.976	-206.99	-149.487	-146.268	-154.906	-133.916	-133.086	
06-11	-12.8535	-209.788	-194.972	-210.813	-152.894	-150.025	-159.068	-140.968	-140.051	
07-11	-18.2622	-211.377	-194.926	-212.607	-157.14	-153.429	-162.887	-147.368	-145.374	
08-11	-23.772	-213.115	-192.629	-215.329	-160.261	-161.867	-166.081	-163.632	-145.976	
09-11	-28.9536	-216.355	-193.818	-218.151	-164.58	-155.017	-168.547	-159.408	-149.047	
10-11	-35.6597	-219.699	-197.272	-220.103	-168.616	-158.919	-171.906	-164.582	-153.786	
11-11	-41.5376	-221.752	-199.096	-223.092	-170.866	-161.98	-176.252	-166.52	-157.698	
12-11	-49.2798	-224.321	-202.027	-226.058	-174.681	-164.856	-179.464	-169.717	-161.21	
13-11	-56.3257	-225.913	-205.249	-229.022	-176.557	-167.18	-182.815	-173.732	-164.752	
14-11	-0.58887	-228.484	-207.422	-231.238	-179.222	-170.845	-148.389	-175.295	-168.362	
15-11	-0.17969	-231.145	-211.3	-233.603	-145.876	-136.323	-149.534	-111.071	-104.095	
16-11	-4.5083	-233.951	-212.55	-234.787	-148.124	-137.412	-154.309	-119.588	-113.476	
17-11	-8.79492	-236.716	-215.3	-237.238	-154.504	-145.021	-157.037	-126.212	-120.04	
18-11	-14.418	-238.763	-218.164	-240.003	-160.023	-149.4	-160.913	-136.295	-129.389	
19-11	3.39031	-241.796	-220.494	-215.116	-164.165	-154.154	-137.249	-146.143	-139.426	
20-11	1.07913	-244.416	-223.359	-219.818	-166.726	-158.937	-141.553	-154.244	-147.358	

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S9	S10	S11	S12	S13	S14	S15	S16	S17	
21-11		-247.126	-225.415	-224.552	-169.355	-163.228	-145.457	-157.821	-154.679	
22-11	-6.68994	-248.232	-228.272	-227.315	-172.486	-167.9	-150.185	-161.383	-159.78	
23-11	-10.9058	-248.975	-230.876	-230.124	-173.41	-171.68	-154.805	-163.229	-164.186	
24-11	-13.7422	-251.428	-233.43	-231.555	-176.269	-174.729	-157.713	-166.111	-168.099	
25-11	-19.3921	-253.858	-233.645	-234.677	-179.131	-174.378	-160.838	-169.277	-167.727	
26-11	-25.3911	-254.844	-233.653	-237.205	-181.262	-175.408	-164.846	-172.355	-168.873	
27-11	-32.5435	-253.297	-233.651	-239.696	-179.495	-174.969	-168.349	-170.615	-168.504	
28-11	-38.3189	-256.117	-234.921	-242.917	-181.729	-176.207	-172.73	-172.878	-170.904	
29-11	-45.6187	-257.723	-237.253	-244.78	-184.931	-178.215	-174.657	-174.777	-173.914	
30-11	7.47618	-260.867	-238.496	-243.945	-188.542	-180.435	-135.304	-178.498	-175.041	
01-12	6.98907	-262.699	-241.641	-228.188	-155.301	-145.384	-116.569	-115.951	-115.889	
02-12	3.0286	-265.445	-245.136	-232.446	-158.608	-146.892	-123.814	-123.156	-124.037	
03-12	2 1.12136	-268.131	-247.07	-234.502	-164.04	-153.389	-132.45	-130.231	-130.032	
04-12	2 3.74748	-269.5	-248.708	-219.361	-168.458	-158.226	-120.165	-139.218	-140.12	
05-12	2 1.22797	-272.05	-251.596	-223.553	-172.068	-162.367	-128.542	-146.797	-147.097	
06-12	2	-274.401	-253.313	-226.035	-174.626	-165.685	-136.448	-152.877	-154.928	
07-12	2 -5.61328	-275.95	-255.813	-229.764	-178.489	-169.058	-142.805	-158.417	-159.683	
08-12	2 -11.126	-278.176	-258.312	-233.958	-181.306	-172.849	-150.242	-162.609	-164.11	
09-12	2 -17.3442	-279.267	-260.796	-237.238	-184.016	-175.223	-156.084	-165.066	-166.981	
10-12	2 -23.0474	-278.456	-262.46	-240.099	-183.301	-178.383	-160.31	-164.957	-170.459	
11-12	2 -29.7061	-274.56	-265.205	-242.637	-179.755	-181.727	-165.302	-162.156	-174.993	
12-12	2 -35.3096	-275.952	-267.547	-245.072	-181.307	-184.51	-168.59	-164.285	-177.665	
13-12	2 -42.3916	-279.039	-268.724	-248.947	-182.928	-187.095	-171.996	-164.864	-180.353	
14-12	6.78683	-281.125	-270.892	-250.647	-185.368	-189.422	-138.541	-167.19	-182.702	
15-12	2.4846	-283.203	-271.291	-253.4	-152.355	-152.832	-143	-107.233	-117.157	
16-12	2	-285.009	-272.113	-254.928	-154.813	-152.884	-149.626	-117.712	-120.871	
17-12	-7.729	-286.821	-273.701	-257.575	-160.758	-159.169	-153.568	-124.909	-127.405	
18-12	2 -12.9727	-289.797	-276.581	-259.951	-166.362	-163.398	-158.295	-135.67	-136.453	
19-12	2 -14.6733	-291.575	-277.964	-259.732	-170.582	-166.69	-159.496	-145.636	-145.276	
20-12	2 -19.0688	-294.046	-276.879	-261.044	-173.146	-166.021	-162.088	-152.734	-148.172	
21-12	2 -24.186	-295.16	-276.745	-263.446	-177.199	-165.871	-165.054	-157.428	-150.334	
22-12	2 -29.1768	-297.172	-278.533	-265.974	-178.412	-168.655	-168.378	-161.214	-155.118	
23-12	2 -35.8267	-298.402	-280.754	-267.605	-181.507	-173.4	-172.571	-165.574	-160.477	
24-12	2 -41.1665	-300.266	-280.026	-270.196	-183.46	-171.217	-174.874	-167.4	-158.353	
25-12	2 -46.9463	-301.575	-279.473	-271.636	-186.829	-171.394	-177.853	-171.974	-159.926	
26-12	2 -53.2026	-303.93	-281.717	-274.304	-189.823	-174.112	-181.001	-173.95	-162.594	
27-12	-59.8208	-305.469	-283.816	-276.844	-193.323	-176.43	-184.044	-177.58	-166.154	
28-12	-63.375	-307.697	-282.868	-277.904	-195.98	-176.828	-186.392	-180.27	-165.542	
29-12	-67.5435	-308.884	-283.546	-280.382	-197.92	-176.965	-189.12	-183.274	-165.813	
30-12	2 -71.8701	-311.021	-286.035	-281.668	-200.593	-179.954	-192.002	-185.955	-170.064	
	-78,3066	-312.975	-288.21	-285.219	-203.204	-183,494	-195.141	-188.588	-174,469	

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
01-01	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07	-239.07
02-01	-173.987	-244.358	-244.613	-243.765	-207.087	-207.473	-206.201	-188.547	-188.913	-187.691
03-01	-176.445	-269.802	-271.358	-269.883	-231.844	-234.853	-231.285	-228.749	-231.793	-229.226
04-01	-183.343	-295.057	-297.185	-295.788	-261.041	-264,309	-262.01	-234.854	-240	-236.481
05-01	-188.459	-309,894	-319.213	-318,433	-280.586	-290,985	-288.978	-255.748	-266.635	-264.76
06-01	-192 052	-328 146	-336 741	-336 013	-302 139	-311.36	-309.925	-282 217	-293 042	-292 234
07-01	-194 451	-343 409	-351 29	-349 493	-320 465	-330.59	-329.17	-306 997	-313 568	-312.019
08-01	-196 761	-354 462	-361.066	-360,333	-336.031	-344 536	-343 528	-325.058	-331 564	-330.26
09-01	-199 915	-363 444	-369,903	-370.42	-347 626	-354 894	-354 336	-339.23	-345 384	-345 688
10-01	-202.696	-371.606	-378 164	-377 463	-356 969	-364 428	-363 923	-350 227	-358 633	-356 572
11-01	-206 216	-378.042	-385.08	-384 141	-366.076	-373 483	-372 803	-359 775	-367 023	-366 935
12-01	-206.210	-384 541	-391 004	-389 804	-373 682	-380 571	-379 72	-368 932	-375 797	-375 227
13-01	-200.011	-389.679	-395 12	-395.004	-381.033	-386.612	-387 038	-376 386	-382.083	-381.81
14-01	-145 862	-394 365	-300.12	-398 729	-387 251	-300.012	-364 765	-384 512	-388 /61	-303,003
14-01	-140.002	-304.333	-402.863	-330.723	366,938	-362,865	-361 452	-304.312	370 100	-323.203
16.01	167 //6	402.036	402.000	401.33	362.000	369.03	370 6/6	331 697	336,964	330 334
17.01	161 900	402.030	400.203	400.221	270 705	-300.33	276 027	200 7/15	244 000	246 662
17-01	101.002	404.113	400.201	400.220	-370.703 375 375	-070.10 201 57	201 077	-330.743 DAE 470	-044.000 051 140	-040.000 050.010
10-01	-104.041 1CC 514	407.113	411.307	409.701	-375.375	-302.37 200 £77	-301.077	-343.470	-332,140	-353.010 200.140
19-01	170,007	-400.075	-412.03	412.294	-300.119	-300.577	-304.004	-352.429	-309.Z1Z	-300.140
20-01	170.007	-410.971	-410.407	-413.021	-302.020	-390.297	-300.002	-350.439	270,200	-307.003
21-01	-172.302	-327.151	-410.557	-414.501	-300.595	-393.7	-391.715	-279,000	-372.300	-374.100
22-01	-173.979	-230.362	417.444	-410.099	-213,907	-396.532	-394.71	-194.756	-377.410	-301.009
23-01	-170.421	-244.645	419.345	-417.627	-224.439	-398.905	-396.46	-212.083	-303.002	-365.904
24-01	-1/8./62	-264.027	-420.259	-418.36	-250.434	-401.235	-400.515	-241.204	-388,639	-390.122
25-01	-101.22	-289.329	-421.081	-419.089	-2/0.222	-404.569	-402.513	-271.013	-391.882	-393.112
26-01	-103.003	-309.516	-421.942	-421.168	-301.321	-406.503	-405.721	-297.173	-396,333	-397.207
27-01	-185.711	-327.896	-423,195	-422.148	-321.467	-407.82	-407.501	-316.484	-399.73	-400.914
28-01	-188.429	-340.084	-423.696	-422.964	-336,58	-408.976	-409.102	-333.53/	-401.496	-403.028
29-01	-191.421	-353.029	-424.357	-423.89	-349,405	-411.52	-411.972	-347.364	-404.767	-406.468
30-01	-194.430	-362.479	425.149	425,951	-301.40	-412.090	-413.407	-356.334	-406.514	-406.36
31-01	-129.255	-371.659	-427.147	426.484	-368,695	-413.948	-3/8.533	-367.722	-409,504	-354.886
01-02	-132.205	-379.127	-427.0	-426,956	-343.94	-379,401	-3/0.01/	-313,653	-355,059	-353.523
02-02	-138.64	-386.867	-428.515	-427.581	-353,459	-382.433	-383.377	-324,182	-355.296	-358.941
03-02	-145.21	-390.251	-429.145	-429.609	-361.283	-387.268	-387.866	-331.358	-362.366	-364.665
04-02	-151.682	-394.98	-430.909	-430.448	-369.458	-390.647	-391.661	-340.595	-366.496	-370.048
05-02	-156.214	-399.262	-431.659	-431.148	-3/4.654	-393.97	-394.758	-349.097	-370.123	-3/4.252
06-02	-160.117	-402.785	-432.439	-432.608	-380.483	-397.141	-396.83	-356.854	-374.601	-377.293
07-02	-162.732	-406.014	-434.239	-433.319	-384.599	-400.231	-399.144	-365.932	-379.943	-381.668
08-02	-165.761	-408.728	-435.158	-434.065	-388.319	-402.88	-401.561	-372.667	-384.525	-385.773
09-02	-169.208	-410.446	-435.885	-434.808	-393.13	-405.217	-403.835	-380.668	-388.558	-390.741
10-02	-1/3.1	-411.989	-436.601	-436.656	-396.07	-406.145	-405.919	-384.928	-392.204	-393.979
11-02	-174.926	-414.599	-438.257	-437.354	-400.163	-407.889	-407.752	-389.957	-395.279	-398.103
12-02	-177.419	-415.542	-438.9	-437.913	-402.304	-409.485	-409.276	-394.265	-399.228	-400.424
13-02	-180.096	-416.064	-439.606	-438.602	-405.101	-410.981	-410.727	-397.647	-401.648	-403.792
14-02	-116.847	-412.784	-440.015	-440.293	-401.294	-412.212	-377.399	-394.496	-404.898	-340.174
16-02	-124.542	-413.923	-441.753	-441.027	-366.687	-378.431	-380.639	-340.33	-342.082	-345.66
16-02	-131.43	-415.151	-442.477	-441.634	-366.853	-381.294	-385.834	-339.237	-346.115	-352.017
17-02	-138	-416.489	-443.172	-442.011	-372.269	-387.221	-388.554	-346.805	-353.041	-356.519
18-02	-145.651	-417.706	-443.859	-443.879	-377.167	-391.584	-391.647	-353.126	-359.183	-361.35
19-02	-151.543	-419.736	-445.786	-444.525	-380.692	-394.862	-394.531	-357.854	-364.341	-366.835
20-02	-157.681	-420.748	-446.535	-445.161	-383.275	-397.896	-397.314	-363.549	-370.93	-372.58
21-02	-160.932	-421.857	-447.126	-445.774	-387.333	-400.504	-399.851	-369.879	-376.443	-377.599
22-02	-163.76	-422.875	-447.663	-446.311	-390.903	-402.894	-402.025	-375.226	-381.303	-383.089
23-02	-166.498	-425.089	-448.148	-448.053	-394.17	-405.025	-403.97	-381.227	-385.521	-386.78

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
24-02	-168.793	-426.157	-449.437	-448.386	-397.157	-406.126	-405.47	-386.598	-389.539	-391.074
25-02	-172.455	-422.388	-449.978	-448.932	-394.956	-407.737	-407.165	-385.176	-393.796	-395.191
26-02	-174.271	-424.208	-450,404	-450.644	-398.072	-409,144	-408.817	-390,462	-396.375	-397.84
27-02	-177 253	-426 641	-452 036	-451 353	-400 629	-410 472	-410 411	-394 814	-400 113	-401.59
28-02	-111 77	-427 792	-452 586	-451 799	-402 856	-411 719	-375 837	-397 485	-403 19	-338
01-03	-120 917	-428 832	-453.012	-452 416	-369 722	-376 756	-378 483	-335.073	-338.086	-342 091
02-03	-128 133	-429.677	-453 354	-454 148	-372 852	-376 815	-384 108	-340 279	-341 694	-348.83
02-03	-136 921	-430.326	-455.068	-454 848	-377 113	-381 446	-388.657	-343 807	-346 619	-355 546
04-03	-145 877	-432 126	-455 655	-455 402	-380 531	-385 303	-392 043	-348 833	-351.556	-361.025
05-03	-152 889	-432 885	-456 192	-455 986	-384 125	-388 787	-395 333	-354 887	-357 412	-368.084
06-03	-157 741	-433 541	-456 726	-457 682	-387 238	-391.94	-398 164	-361 582	-363 302	-373 859
07-03	-161 282	-434 168	-458 445	-458 019	-390 172	-394 825	-400 155	-367.25	-369 503	-378 229
08-03	-164.822	-//36.018	-459.01	-458.434	-391 939	-397 577	-400.100	-372 591	-374 777	-383 463
00-03	167.36	436.949	400.01 450.504	450.454 759 QD7	201.000	400.027	402.107	378 638	390.647	397 110
10.02	160,204	400.040	403.024	400.504	207 5/0	400.027	404.107	202.020	295 0/1	201.000
11.02	172 007	407.000	400.00Z	400.007	400.043	402.333	403.340	207 010	-303.541 200.542	205 005
11-03	-173.007	430.303	401.707	401.120	400.044	404.307	407.022	-307.019 con noc	-350.543	200.500
12-03	-174.09	-439.007	402.340	461.623	404.304	400.303	410 547	-392.293	-393.724	-399.97Z
13-03	-177.29	-440.702	402.00	462.119	400,000	400.000	-410.547	-396,164	-397.07	-401.791
14-03	-113.014	-441.274	-403.433	-403.7	-406.696	-409.743	-376.054	-396.341	-401.541	-330.346
15-03	-116.055	-441.809	-465,133	-462.748	-371.013	-3/6.6/5	-373.283	-335.243	-339.524	-337.003
16-03	-120.464	-442.516	-465.626	-463.371	-373.139	-3/8.3/7	-3/6.828	-338.208	-342.58	-341.475
17-03	-130.001	-444.559	-466.074	-464.064	-378.152	-383.162	-380,998	-343.414	-348.202	-347.296
18-03	-140.08	-445.298	-466.565	-464.639	-382.401	-387.123	-384.45	-349.542	-354.411	-353.289
19-03	-145.059	-445.956	-468.051	-466.283	-386.319	-390.663	-387.284	-355.984	-369.812	-369.997
20-03	-150.798	-445.991	-468.794	-466.861	-388.086	-393.868	-390.333	-361.375	-365.83	-366.034
21-03	-155.801	-441.333	-469.29	-467.421	-383.864	-396.749	-392.107	-359.987	-371.749	-371.612
22-03	-159.863	-441.737	-469.78	-467.851	-385.336	-399.346	-394.817	-363.982	-376.874	-376.182
23-03	-162.082	-443.205	-470.179	-469.444	-388.327	-401.517	-397.119	-370.248	-382.495	-381.567
24-03	-164.072	-444.59	-468.944	-469.876	-391.304	-400.215	-399.189	-376.06	-384.028	-386.117
25-03	-166.541	-446.836	-470.196	-470.319	-392.901	-402.503	-401.155	-381.31	-388.687	-390.384
26-03	-168.339	-447.885	-471.05	-470.877	-395.756	-404.451	-403.166	-385.091	-391.933	-394.464
27-03	-172.484	-448.733	-471.756	-471.494	-398.249	-406.232	-405.164	-389.8	-396.073	-397.194
28-03	-174.224	-449.505	-473.481	-473.256	-400.496	-407.832	-406.948	-392.753	-398.516	-400.905
29-03	-177.084	-450.318	-474.026	-473.809	-403.642	-409.172	-408.553	-396.83	-401.908	-402.978
30-03	-110.957	-451.899	-474.528	-474.179	-405.026	-410.419	-374.624	-398.676	-403.715	-338.596
31-03	-118.125	-452.469	-475.006	-474.53	-369.328	-375.268	-374.506	-333.806	-339.396	-339.851
01-04	-123.796	-453.032	-475.509	-476.179	-369.308	-376.089	-379.305	-335.173	-341.46	-345.505
02-04	-132.34	-453.572	-477.152	-476.751	-372.842	-380.043	-382.939	-340.104	-346.276	-351.399
03-04	-140.876	-455.205	-477.521	-477.173	-376.811	-382.654	-386.016	-344.772	-350.118	-356.502
04-04	-148.361	-456.059	-478.007	-477.71	-380.491	-385.675	-389.39	-350.701	-355.448	-362.306
05-04	-153.055	-456.575	-478.548	-478.024	-383.657	-388.851	-391.931	-357.55	-362.344	-367.934
06-04	-155.553	-456.946	-479.071	-479.332	-385	-391.958	-392.557	-362.933	-368.241	-372.064
07-04	-158.399	-457.409	-480.706	-479.768	-387.874	-394.723	-394.988	-367.998	-373.34	-377.58
08-04	-162.335	-459.02	-481.188	-480.217	-390.501	-395.976	-397.298	-373.763	-377.885	-382.579
09-04	-163.527	-459.54	-477.866	-480.662	-392.976	-393.817	-399.459	-378.921	-378.473	-386.046
10-04	-166.204	-459.969	-479.172	-481.111	-395.213	-396.366	-401.481	-383.517	-383.475	-390.481
11-04	-167.755	-460.305	-480.037	-482.71	-397.119	-398.5	-403.363	-387.541	-387.76	-394.516
12-04	-171.761	-460.754	-481.975	-483.273	-399.106	-400.626	-405.216	-391.488	-390.795	-397.099
13-04	-172.326	-462.458	-482.655	-483.499	-401.041	-402.553	-406.447	-394.031	-394.821	-400.257
14-04	-107.76	-462.924	-476.395	-483.339	-402.722	-396.93	-369.732	-397.543	-389.752	-333.219
15-04	-113.873	-463.369	-477.594	-483.97	-368.003	-360.52	-367.924	-332.277	-334.515	-332.887
16-04	-117,108	-463.9	-478,839	-484.236	-368.032	-361.051	-370.23	-333,789	-332.727	-335.775
17-04	-126.765	-464.497	-477.216	-484.656	-372.223	-359.3	-373.546	-338.421	-331.967	-340.456
18-04	-134.118	-466.339	-478.558	-485.027	-376.362	-362.986	-376.561	-343.98	-336.984	-346.008

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
19-04	-141.674	-466.827	-479.948	-485.501	-379.725	-366.075	-378.797	-350.768	-342.886	-353.321
20-04	-147.343	-467.113	-481.252	-487.108	-382.335	-369.198	-382.421	-355.51	-349.609	-359.695
21-04	-152.619	-467.455	-482.352	-487.693	-383.642	-372.527	-384,663	-361.131	-356.323	-366.716
22-04	-157.359	-469.019	-483,196	-488.233	-386.39	-376.517	-388.216	-367.356	-363.074	-372.006
23-04	-159.574	-469.348	-485.032	-488,508	-388.543	-379,854	-390.762	-373,492	-369.669	-377.2
24-04	-161.313	-469.69	-485 769	-488.73	-390 706	-383 142	-392 875	-376 844	-374.061	-381 767
25-04	-161.874	-470 116	-486 523	-488 289	-393 021	-386 425	-393 526	-381 532	-378 197	-384 423
26-04	-162 713	-470.512	-487 261	-488 739	-395 248	-389 548	-395 498	-385 734	-383.374	-388,358
27-04	-163 924	-472.057	-484 064	-490 388	-397 441	-387 712	-397 599	-388 819	-383 216	-390 979
28-04	-166.671	-472.001	-485.001	-490.000	-399.643	-391 158	-400.868	-393 009	-386,805	-394 945
29-04	-167 989	-473 296	-485 988	-491 47	-401 691	-393 259	-402.642	-395 592	-389 314	-397 227
30-04	-111 603	-473 563	-487 883	-491.84	-403 138	-396 379	-366 422	-398 773	-392.82	-331.67
01-05	-110 532	-456.02	-488.635	-492 277	-3/8.8	-359 965	-366.015	-313 211	-326 939	-33/ 216
07-05	-118 445	-430.02	-400.000	-402.277	-342 706	-359 687	-368.996	-308 123	-328.00	-336.844
02-05	-178 //29	-454.255	405.415	-402.070	-345,003	100.000	-300.550	-300.123	-320.00	-340.259
03-05	135 371	400.120 AEG 199	400.007	-454.215 707 659	345.005	366 454	374 408	217 222	336 797	346,205
04-03	1/1 555	430,103	430.007	494.000	240,702	270 242	277 070	205 511	2/2/07	251 125
05-05	-141.000	-407.027 AE9.99	491.JUZ	-450.141 AAG EA	364 950	370.040	330 700	335,493	3/0 377	211 212
00-05	-35.5357	400.00	491.924	445.04	2004.002	372.314	200 547	244 107	-049.077 956.061	210 612
07-05	101.010	401.00 AEE 000	492.007	499.710	-300.340 257.04	270 241	-323.347 015 107	-344.127 245.204	-000.001 000 £ 44	210.012
00-05	114 200	-400.000 AEC 070	494.001	430.710	-307.94 201.005	-379.31Z	-323,137 200,702	250,394	-303.341 360 201	-310.374 917 956
10.05	-114.205	430.370	404.041	-440.707 400.015	-301.003	-302.303 974 059	-323.733 315 CM3	-352,437 050,017	-303.331 360.567	217.000
10-05	101 740	407.944	401.707	433.015	-307.113 270.000	-37 1.053 200.014	-323.643 001.500	200.007	-360.367 253 437	-317.009 204.054
11-05	117 010	-407.041 AEC COD	470.001 AED 404	434,303	-370.200 974.000	-300.314 345.000	-331,530	-303,302 200 400	-332.427 336.000	-324.034 200.110
12-00	115 704	400.000	402.404	424.005	-071.003	240.000	-JZ0.ZZ4	271 217	-330,300 -335,533	-JZU.11Z
13-05	-110.724 EE 4104	-400.101 AE0.EE1	447.434	410.014	-373.36Z	-342.274 346 AAE	-323.40Z	-371.317 -375.040	-333.33Z	-313.10Z
14-00	-00.4194	409.001	440.303	419.919	-370,949 940,796	-345.445	-290,949 105,000	-375.640 211 EQE	-339.944 104.046	-207.705 170.200
10-00	-00.2241	460.65	-401.017 AED CO	421.100	242.730	-303.114	200.000	210 109	-204.040 202.05	-270.300
17.05	98 459	-400.7 J /69.16	-400.00 #51.999	423,400	341.536	310 596	212 012	200,100	-203.03 199 717	202.102
17-05	112 /36	-400.10 AEQ 137	401.000	425.550	344.032	-012.000 005.070	30/ 978	315 775	203.727	-230.000
19.05	-112.430	-403.107	-425.770	-420.003	-348.676	-200.070	-324.570	-324.066	-270.557	-325 455
20.05	-124.237	-460.310	-430.010	-427.733	-363.663	-314 203	-338,638	-324.000	-203.668	-320.433
20-05	-120.000	-401.700	-433.02	-422.17	-358,888	-373 647	-343.44	-343 566	-316 093	-338 786
21-05	136,009	404.107	434.500	422.200	363,434	-323.047 311 Q	351 730	360,685	306.015	3/7 008
22-05	-1/1 021	-405.400	-415.555	-423.331	-367 367	-311.3	-359 128	-358.082	-300.015	-364,875
23-05	138 833	400.433	377.075	/10 200	370 391	202.572	357 707	361.946	270,103	354.075
24-03	138 1/10	403.070	377.038	-415.005	372 484	-200.000	358,285	364 942	-204.733	-355 699
25-05	1/0.509	404.000	370 017	A17.19A	373 669	200.740	362,463	369 093	204.101	360 170
20-05	1/3 /66	404.000	381.586	/10 037	368 145	310 500	365,900	200.000-	318 786	365,028
27-05	-145.400	-455.546	-365 241	-415.037	-363.674	-317.033	-305.035	-369,631	-313 209	-368.265
20-05	1/0.001	430.143	365 503	420.730 /11.05	363,203	300 /05	364.037	359,600	321 761	363 //8
20-05	59 2505	447.100	267 991	207 990	264 010	321 704	212 071	363,022	321.701	-303,440 090,13
21.05	70.2000	447.730	200,001	200.514	-304.313 010 104	201.724	211.055	205.007	200,570	-202.10 105 101
01.00	-72.3310 OD 4402	440.001	2003.401	200.014	-320.204 010 571	-301.322 205.102	-311.300 -314 h00	-303,373 305,433	-200.075 100 550	-200.202 100 144
01-00	00.4403	400,003	-370.733 320 773	206 772	-020.072 000 074	-303,103	-J14.2JJ - 217 020	200.100	-200.000 170 054	200.244
02-00	-32.1123 100-151	402.000	-300.77Z	-330.77Z	-333.241 202 CD4	-233.222 200.000	000.716-	10/100	-270.004 100.105	-200.242 200.040
03-00	115 75 /	420.04	200.000	207 606	200.024	210 200	-323.000	-204.20J	230.233	-JUU.045 017 CO
04-06	10/ 602	421.040	-304.101 pen o	-337.020	-300.11	201.002	-331.177	233.005	-303.357	-317.00 00.716
00-00	120.570	423.092	-362.9	-387.977	210.747	-321.038	-000.19	-303.721	200.400	-327.09
	107.075	424.939	220.1005	-390.707	-324.507	210 202	-340.430	212.079	201.000	246 614
07-06	12/ 750	-420.112	207.0444	-399,400	-001.02	202 070	-352.631	-323,132	-304.967	-340.014
00.00	100.005	-404.548	-327.214	-394.219	-317.52	-303.876	-301.397	-312.013	-290.030	-346.75
10.00	105,005	-080.454 200 car	-317.704	200.002	-314.01	-282.385	-300.107	-312.018 200 704	-203.233 DDC 474	-349.7
10-06	-100.000 107.044	-300.636	-314.219	-309.835 200.002	-313.017	-298.94	-300.097	-306.721	-298.171	-352.59/ 356.059
11-06	-157.211	-383.203	-319.858	-590.092	-315.642	-308.605	-358.127	-311.539	-306.262	-356.058

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE									
DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
12-06	-139.548	-381.737	-328.241	-388.788	-319.641	-317.785	-361.044	-317.219	-316.678	-357.852
13-06	-142.528	-365.621	-334.552	-390.923	-309.626	-327.453	-364.654	-308.483	-326.276	-363.076
14-06	-78.9839	-357.692	-342.156	-392.028	-307.615	-337.633	-330.93	-306.466	-336.562	-299.474
15-06	-92,4326	-348,908	-349.081	-393.25	-266.578	-307.023	-330,384	-237.677	-278,199	-301.229
16-06	-95.1524	-328,185	-356,448	-394,976	-248.838	-310.854	-334,762	-234,858	-287.048	-304.572
17-06	-102 426	-328 043	-362.05	-390 229	-259 297	-319 348	-333 876	-234 625	-289 204	-307.45
18-06	-114.053	-320.269	-367,638	-391.949	-266.591	-327,306	-338.556	-245.518	-300.984	-317.143
19-06	-121 229	-323,995	-372 232	-391 991	-281 773	-334 43	-343.378	-267.361	-314 051	-325 281
20-06	-129.818	-329 694	-374 547	-393 58	-297 982	-340.058	-349 243	-285 888	-324 523	-335 145
20.00	-136 298	-334 348	-376.862	-394 32	-312 965	-345 452	-354 904	-302 547	-334 271	-345 239
22-06	-141 727	-342 583	-379 444	-396.073	-325 384	-351 793	-361 253	-318 18	-343.14	-352 954
22-06	-146 133	-348 547	-363.626	-397 346	-334 71	-339 199	-366 384	-328 697	-331 374	-359 811
20.00	-147 72	-340 701	-363 583	-396 321	-329.961	-341 048	-368 715	-326.482	-334 931	-362.814
25-06	-150 427	-339 351	-356.459	-397 558	-330.56	-336 927	-371 935	-327 424	-331 /91	-368.955
25-06	-152 993	-344 939	-357 331	-398 839	-337 928	-339 741	-376 417	-334 112	-334 969	-372 239
20.00	-154 564	-349.472	-359 246	-398 988	-344 269	-3/3 781	-380 503	-342 227	-339.542	-376 906
28-06	-157 223	-345 578	-362 244	-400.45	-342.035	-348 705	-383 234	-338 994	-344 916	-381 156
20-00	-151 864	-343.570	-365.44	-400.40	-342.000	-353 /93	-380.662	-3/1 219	-351 329	-377 465
30-06	-143 704	-351 102	-367.22	-387 241	-348 552	-357 846	-373 328	-347 194	-355,856	-371 814
01-07	-139 3/6	-347.687	-369 928	-381 592	-345 327	-361 /18	-368 588	-344 157	-359 722	-367 105
02-07	-136 886	-351.996	-371 913	-379 247	-351.007	-365 415	-368 354	-349.98	-363,886	-367 014
02-07	-131.65	-349 585	-374 77	-373 349	-347 48	-368 826	-363.09	-346 509	-368 714	-361.861
03-07	-132 748	-347	-377 833	-372 423	-345 209	-373 658	-362 921	-345 474	-373 383	-361.8
05-07	-137.061	-344 442	-378 693	-374 403	-342 848	-375 834	-365 715	-343.066	-374 613	-364 705
06-07	-140 737	-340.385	-356 708	-375 718	-338.95	-352 924	-369 054	-339 161	-352 922	-368 16
07-07	-139.316	-343 819	-356 644	-372 419	-342 509	-353 291	-366.622	-342 713	-353 214	-365.82
08-07	-125.12	-348.347	-326.386	-355.44	-347.207	-324,605	-350,103	-347.378	-323.281	-350,601
09-07	-124,703	-342,595	-308,156	-353.9	-342.843	-305.52	-349,104	-341.876	-305.493	-349.496
10-07	-128.154	-346.373	-306.737	-356,443	-346.51	-306,681	-352,192	-345.725	-305.635	-351.266
11-07	-132,447	-351.32	-307.424	-357,174	-351.453	-305.048	-353,379	-350,764	-305.634	-352.745
12-07	-128.198	-355.866	-301.808	-350.296	-355.991	-301.019	-347.155	-355.351	-300.181	-347.583
13-07	-132.681	-354.885	-306.081	-353.154	-354.998	-305.171	-351.379	-354.413	-305.6	-350.6
14-07	-137.307	-355.521	-305.075	-356.975	-355.626	-304.265	-355.347	-356.077	-304.582	-354.761
15-07	-141.418	-319.33	-311.395	-360.973	-319.423	-310.681	-359.536	-319.92	-310.943	-359
16-07	-145.197	-308.119	-315.726	-364.729	-308.102	-315.082	-363.438	-307.359	-315.326	-362.942
17-07	-148.431	-311.86	-324.882	-368.45	-310.793	-324.337	-367.291	-311.521	-324.473	-366.835
18-07	-150.415	-316.038	-326.735	-371.937	-316.35	-327.2	-370.893	-316.598	-326.311	-370.474
19-07	-153.527	-319.338	-326.029	-375.311	-319.552	-326.491	-374.367	-319.143	-326.669	-375.15
20-07	-155.905	-304.23	-292.442	-378.225	-304.417	-291.647	-377.368	-304.116	-291.745	-378.047
21-07	-148.387	-310.373	-288.435	-373.573	-309.394	-289.115	-372.925	-310.25	-288.003	-372.235
22-07	-150.246	-303.481	-295.21	-376.275	-303.886	-294.86	-375.662	-303.378	-294.879	-376.37
23-07	-152.205	-306.034	-305.614	-380.088	-306.292	-306.526	-379.634	-307.027	-305.787	-378.956
24-07	-153.802	-313.563	-305.741	-382.465	-313.811	-305.348	-382.009	-313.137	-306.975	-382.707
25-07	-156.674	-317.033	-293.554	-385.178	-316.027	-293.41	-385.893	-316.761	-293.582	-385.31
26-07	-158.317	-322.252	-299.961	-387.64	-321.458	-298.816	-388.261	-322.021	-299.069	-387.755
27-07	-159.494	-320.839	-305.753	-390.968	-321.313	-304.851	-390.294	-320.594	-305.114	-390.967
28-07	-155.139	-328.501	-310.215	-387.493	-328.843	-310.598	-386.965	-328.233	-310.844	-387.524
29-07	-155.188	-336.407	-293.157	-388.157	-336.65	-293.413	-387.679	-336.13	-293.616	-388.195
30-07	-142.43	-344.178	-300.823	-375.663	-344.351	-301.028	-376.403	-343.966	-300.039	-375.7
31-07	-140.884	-351.201	-308.628	-373.834	-351.338	-307.785	-374.447	-351.094	-308.042	-373.867
01-08	-143.053	-355.053	-317.911	-377.191	-355.162	-317.121	-376.628	-355.019	-317.373	-376.094
02-08	-146.087	-345.738	-327.03	-379.244	-345.828	-327.4	-378.763	-345.745	-326.526	-378.275
03-08	-135.814	-349.913	-336.161	-368.342	-349.983	-336.396	-367.893	-350.885	-336.745	-367.445
04-08	-130.187	-356.029	-345.358	-362.481	-356.089	-345.592	-362.068	-356.763	-344.854	-361.658

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE										
DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	
05-08	-131.768	-361.873	-353.633	-363.039	-361.91	-353.699	-362.663	-361.351	-353.367	-362.295	
06-08	-125.675	-365.592	-360.982	-354.313	-365.626	-361.129	-355.194	-366.193	-361.034	-354.864	
07-08	-128.237	-360,597	-367.077	-355,639	-360.628	-367,155	-355.093	-361.221	-366.951	-356.067	
08-08	-131,108	-356.766	-372,869	-355.91	-356.789	-372.825	-355.612	-356,123	-373.711	-356.295	
09-08	-103.929	-352,101	-351.992	-325.225	-352.122	-351.943	-326.15	-352,767	-352.642	-325.558	
10-08	-108.618	-355 982	-352 318	-327 698	-356	-352.28	-328 422	-356 537	-352 713	-328.001	
11-08	-111 918	-361 229	-354 895	-326.45	-361 238	-354 866	-326.033	-360.499	-354 185	-326.651	
12-08	-119 427	-364 923	-350 975	-330.036	-364 933	-350 947	-329.741	-364 34	-351.634	-330 195	
13-08	-124.608	-368 132	-341.22	-333.078	-368 141	-3/1 196	-332.814	-367 599	-341 757	-333,238	
14-08	-116 584	-370.83	-345 742	-324.632	-370,839	-345.72	-32/ 397	-370 342	-346 213	-324 774	
14-00	-108.532	-37// 319	-360 618	-317 573	-374 325	-360 /08	-317 365	-373.876	-349.664	-317.7	
16.08	115 762	377 069	354.5	302.202	377 074	-550.450 364.6	302.202	377.566	363,867	303.51	
17.09	10/ 272	-377,300 290,49	251 444	220.000	200.404	251 443	220.200	290 114	350,007	220.01	
17-00	124.373	-300.40	-331.444 350.00	-330.792	-300.404	-301.443	-330.019	-300.114	-300.011	220.050	
10-00	100.770	-302,105	250,000	-330.27	-302.109	-300.079	-330.113	-302.994	-300.492	-330.30/	
19-00	-130.752	-3/6.209	-359,694	-344,634	-370.293	-359,694	-344,495	-370,900	-359,167	-344.719	
20-08	-141.969	-3/8.619	-353.285	-350.521	-3/8.614	-353.285	-350.398	-378.085	-352.792	-350.599	
21-08	-147.043	-381.627	-356.271	-357.501	-381.623	-356.271	-357.466	-382.211	-356.995	-357.582	
22-08	-160.262	-383.706	-355.064	-363.576	-383.702	-355.064	-363.546	-384.293	-355.708	-363.752	
23-08	-153.864	-346.453	-366.762	-368.588	-346.462	-366.747	-369.62	-345.881	-366.121	-368.704	
24-08	-140.158	-349.162	-353.796	-358.364	-349.161	-353.791	-358.967	-348.673	-353.307	-368.49	
25-08	-143.545	-352.674	-355.75	-363.772	-352.673	-355.746	-363.18	-352.226	-366.528	-363.809	
26-08	-146.785	-356.472	-354.081	-368.815	-356.471	-354.076	-368.436	-356.038	-354.721	-367.711	
27-08	-149.478	-359.078	-358.693	-372.141	-359.077	-358.689	-372.938	-359.966	-359.27	-372.44	
28-08	-151.601	-361.817	-363.219	-376.548	-361.817	-363.215	-376.053	-361.384	-363.742	-375.562	
29-08	-147.662	-361.068	-366.06	-373.651	-361.067	-366.057	-373.262	-360.767	-366.533	-374.025	
30-08	-139.932	-364.288	-369.284	-366.597	-364.287	-369.282	-367.423	-364.014	-369.724	-366.854	
31-08	-79.9531	-366.407	-372.551	-370.596	-366.406	-372.549	-331.037	-366.156	-372.956	-310.09	
01-09	-91.7749	-369.337	-376.913	-372.997	-330.464	-338.412	-330.335	-300.507	-307.854	-308.451	
02-09	-96.1914	-370.605	-377.22	-375.614	-328.626	-335.508	-333.97	-301.043	-306.417	-312.212	
03-09	-106.886	-375.224	-348.545	-377.147	-333.598	-308.306	-336.977	-305.212	-277.232	-319.227	
04-09	-118.352	-377.265	-347.697	-379.96	-337.663	-306.43	-343.659	-312.728	-281.814	-327.244	
05-09	-123.069	-381.477	-353.013	-376.946	-344.19	-313.769	-343.244	-322.831	-293.532	-333.031	
06-09	-115.182	-384.503	-337.997	-364.796	-351.173	-303.998	-334.394	-333.307	-287.751	-324.986	
07-09	-119.77	-387.269	-335.794	-364.476	-357.197	-307.709	-338.032	-343.226	-295.363	-330.756	
08-09	-124.807	-390.984	-340.184	-367.471	-362.536	-317.077	-342.467	-352.902	-306.993	-337.023	
09-09	-125.397	-393.859	-342.25	-363.745	-369.42	-323.053	-342.96	-361.324	-316.207	-337.69	
10-09	-127.55	-396.558	-347.315	-361.951	-375.422	-332.387	-343.262	-368.993	-327.184	-338.681	
11-09	-132.307	-398.852	-353.429	-364.046	-380.712	-341.061	-348.68	-375.105	-337.37	-345.709	
12-09	-135.585	-400.961	-352.764	-365.585	-384.433	-343.724	-351.814	-381.579	-339.301	-349.125	
13-09	-139.227	-403.8	-355.282	-367.979	-388.788	-348.054	-356.845	-384.649	-345.273	-354.694	
14-09	-81.5195	-403.793	-359.629	-371.344	-391.125	-353.953	-322.485	-387.607	-351.618	-291.813	
15-09	-92.749	-366.991	-364.899	-372.259	-315.996	-321.192	-322.852	-284.689	-291.352	-295.385	
16-09	-97.042	-355.213	-369.693	-375.094	-303.01	-323.844	-328.653	-274.69	-296.945	-298.129	
17-09	-108.816	-356.96	-374.838	-378.056	-306.277	-331.596	-334.378	-278.001	-301.613	-308.259	
18-09	-119.407	-359.441	-377.469	-380.422	-313.539	-336.831	-339.355	-289.378	-311.053	-319.002	
19-09	-128.343	-363.644	-378.218	-382.939	-324.246	-340.868	-346.053	-305.821	-319.568	-329.788	
20-09	-136.911	-366.303	-381.086	-387.31	-332.933	-346.288	-353.996	-320.342	-329.182	-341.18	
21-09	-143.489	-365.576	-383.717	-389.986	-337.946	-352.266	-360.946	-327.929	-339.919	-351.114	
22-09	-134.156	-358.282	-387.825	-378.301	-336.942	-359.309	-352.904	-328.438	-349.806	-344.756	
23-09	-135.154	-355.251	-390.603	-379.242	-336.976	-365.98	-356.862	-331.272	-358.035	-349.513	
24-09	-136.727	-339.537	-393 806	-379.269	-325.472	-373.522	-358 429	-319.905	-365.429	-354 894	
25-09	-140.1	-341.876	-396.385	-380.439	-330.354	-377.696	-362,303	-326.579	-373.822	-358.041	
26-09	-145 008	-346 724	-399 806	-384 032	-337 639	-382 764	-367 543	-334 253	-377 966	-363 739	
27-09	-148.845	-351.957	-401.526	-386.297	-345.105	-387.171	-372.349	-342.118	-382.844	-369.024	

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE										
DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	
28-09	-151.719	-357.99	-403.245	-388.082	-351.955	-390.039	-375.302	-349.298	-387.341	-373.423	
29-09	-130.798	-364.426	-404.699	-366.813	-359.087	-393.938	-355.118	-356.704	-390.068	-353.328	
30-09	-59.5972	-370.372	-407.258	-363.414	-365.651	-396.083	-314.725	-364.648	-394.017	-282.188	
01-10	-80.0391	-374.972	-408.536	-364,644	-334.069	-362,308	-313,778	-312.769	-329.406	-286.867	
02-10	-81.9321	-378.972	-409.847	-365.728	-337.121	-362,946	-315.694	-314.92	-333.186	-287.573	
03-10	-96.4917	-383,504	-411.051	-369,949	-342.125	-368,546	-324.046	-320.756	-336.442	-301.025	
04-10	-114.626	-373,495	-408.855	-374.7	-333.68	-367,999	-333.137	-313.044	-338.123	-316.896	
05-10	-125.877	-356,944	-410.023	-377,846	-318,776	-369,898	-343.52	-301.42	-342,168	-329.578	
06-10	-137.095	-361.863	-409.018	-381.951	-324.75	-369.937	-352.314	-311.108	-345.769	-341.51	
07-10	-145.299	-364.325	-410.244	-386.001	-330.8	-373.545	-361.657	-319.177	-352.099	-352.516	
08-10	-150.343	-369.706	-411.627	-388.586	-339.589	-377,419	-367.481	-329.419	-359.372	-361.272	
09-10	-152.91	-374.651	-411.663	-391.006	-347.285	-378,095	-374.29	-340.272	-364.47	-368.259	
10-10	-157.058	-378.38	-412.697	-393,588	-354,179	-381,384	-379,483	-348.875	-370.057	-375.215	
11-10	-159.12	-381.752	-402.576	-395,698	-361.384	-373,101	-383,935	-357.592	-363.96	-380.85	
12-10	-160.927	-385 641	-405 244	-397 274	-368 653	-376 482	-387 662	-364 828	-368.14	-384.87	
13-10	-162 128	-389.37	-408 156	-400 567	-376 267	-382 437	-391 71	-373 047	-374 885	-389 143	
14-10	-106 391	-392 613	-411 219	-402 217	-381 843	-387 247	-356 313	-380.029	-380,397	-324 336	
15-10	-104 173	-396 768	-412 723	-403 705	-350 164	-351 948	-357 221	-318 906	-326.678	-326 806	
16-10	-116 445	-399 246	-412.123	-406 731	-352 881	-351.612	-362 189	-323 377	-325 295	-331 637	
17-10	-126 765	-399.817	-407 697	-408 185	-356.69	-347 979	-367 132	-324 059	-323.17	-337.89	
18-10	-136 937	-402 982	-381 873	-409 715	-362 111	-324 625	-372 518	-333 306	-300 737	-345 684	
19-10	-145 522	-404.811	-384 813	-411.03	-367 537	-328.596	-377 362	-340,805	-307.696	-353 927	
20-10	-143.322	-406.605	-390 086	-411.03	-372 969	-335 201	-380 992	-349.503	-318 14	-361 131	
21-10	-145 254	-408 361	-393 817	-405 494	-378 298	-343 163	-375 287	-358 625	-328 165	-358 495	
27-10	-143.455	-411 182	-397 455	-399 935	-383 145	-349.837	-371 781	-367.83	-339.842	-357 888	
22-10	-146 997	-411.889	-400 814	-402 029	-386 275	-358 905	-375 882	-373 588	-350 706	-364 526	
23-10	-150 792	-412 19	-402.847	-404 35	-388 467	-366 845	-379 881	-379 208	-360 417	-370.656	
25-10	-154.63	-407 767	-405.05	-407 034	-387 034	-373 481	-384 245	-377 252	-368.488	-375 806	
26-10	-157 696	-409 545	-407 289	-408 553	-390 221	-378 54	-387.06	-382 564	-374 899	-380 759	
27-10	-159.828	-412 283	-409 338	-411.63	-393 302	-385 246	-390 316	-387 506	-381.967	-385.647	
28-10	-163 109	-413 504	-410 989	-413 343	-397.061	-389 779	-394 731	-390 403	-386.861	-389 209	
29-10	-166 459	-414 805	-412 518	-414 926	-399 496	-392 968	-397 572	-394 898	-391 336	-393 801	
30-10	-168 771	-416.003	-406 13	-416 361	-401 799	-389 144	-400 186	-398 574	-387 623	-396 752	
31-10	-104 21	-417 382	-403 721	-417.66	-405.421	-388 851	-366 658	-401 32	-387 364	-334 151	
01-11	-11/ 391	-417.966	-403.121	-418.845	-369 125	-348 442	-369.924	-335 867	-317.092	-337 3/2	
02-11	-120.169	-419 903	-403.22	-421 126	-369.04	-3/9 936	-375 453	-336 892	-319 281	-343.028	
03-11	-129.552	-420.632	-405 745	-421.128	-372 216	-354 963	-378 445	-340 114	-324 553	-347 563	
04-11	-135.026	-420.002	-408 679	-421.88	-374 452	-360 775	-379 973	-342 905	-332 958	-352 212	
05-11	-142 958	-420.771	-411 343	-422 901	-376 882	-366,828	-383,806	-348 726	-342 489	-358.066	
06-11	-151 169	-420.111	-412 243	-423.89	-380.818	-370.041	-386 431	-356 092	-349 703	-364 863	
07-11	-155.672	-423.56	-411 928	-424 904	-384 7	-372 923	-390.473	-362.692	-355 821	-372 241	
08-11	-159.627	-420.00	-409 352	-425.806	-388 875	-373.053	-393.86	-369 203	-359 925	-377 /16	
00-11	-164 181	-425.823	-400.002	-425.000	-391.643	-376 362	-396 958	-376 534	-365 553	-383 531	
10-11	-167 330	-423.023	-410.004	-420.700	-305.40	-380,838	-300.000	-381 791	-372 478	-388 704	
11-11	-170 891	-428.684	-412.107	-420.070	-397 867	-384 815	-402 317	-386 789	-379 269	-303.443	
12-11	-175 216	-420.004	-415.745	-420.002	-400.361	-389 752	-402.517	-300.703	-384 371	-397 787	
13-11	-177 335	-420.000	-415.204	-430.730	-400.001	-303.157	-404.000	-395 764	-388 /19	-400 546	
11.11	-111.844	-431.076	-418 322	-437.074	-402.030	-397 582	-373 089	-303.704	-303 305	-400.040	
15_11	-110 333	-431.070	-420.322	-433.060	-371 000	-364.66	-374 34	-336.42	-331 069	-347.332	
16.11	-124.535	-431.03	-420.772	-430.552	-374.254	-367 273	-378 396	-300.43	-335,236	-362 //66	
17-11	-124.000	-400.70	-421.000	-404.479 -/36.06	-380 134	-372 789	-381 967	-340.002	-341.076	-357 771	
10.11	-140 752	-404.020	-422.009	-400.00	-385 639	-378.04	386 001	-352 769	-347.001	-363 704	
10-11	-121.005	-400.010	-424.015	-400.700	-300.029	-381 916	-362.859	-361 797	-364,296	-303.734	
20_11	-121.055	-438.045	-424.707	-415 6/2	-393 801	-386.446	-367 223	-368 716	-361.083	-341.000	
20-11	-120.010	-400.000	-420.040	-410.04Z	-000.001	-500.440	-001.ZZJ	-500.710	-001.000	-0 4 0.2rJ	

	UNSATURATED ZONE DEFICIT/RECHARGE AND DISCHARGE										
DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27	
21-11	-135.981	-438.503	-428.114	-419.017	-396.332	-390.745	-372.327	-373.933	-368.373	-355.448	
22-11	-143.937	-438.869	-429.105	-421.984	-398.552	-394.273	-376.912	-378.366	-375.707	-361.956	
23-11	-149.891	-439.232	-429.908	-425.494	-400.559	-397.242	-379.709	-383.459	-381.781	-367.66	
24-11	-153.064	-440.966	-430.662	-426.602	-402.719	-399.871	-382.58	-388.35	-387.033	-371.706	
25-11	-157.873	-441.609	-429.533	-429.144	-404.675	-400.051	-387.004	-391.613	-389.486	-377.212	
26-11	-163.419	-442.01	-430.806	-430.969	-406.193	-401.294	-390.738	-395.516	-392.612	-381.908	
27-11	-165.786	-439.625	-429.618	-432.709	-404.95	-400.929	-394.2	-395.939	-393.032	-387.394	
28-11	-170.074	-442.302	-430.521	-434.315	-406.976	-402.673	-397.326	-398.629	-396.678	-391.14	
29-11	-174.29	-443.347	-431.299	-435.799	-408.642	-405.528	-400.147	-402.31	-398.772	-395.736	
30-11	-102.37	-444.364	-433.144	-433.007	-411.644	-406.915	-360.307	-404.542	-402.078	-326.649	
01-12	-93.5298	-445.295	-434.272	-418.681	-378.481	-372.765	-342.421	-342.277	-337.371	-310.422	
02-12	-99.3125	-446.013	-435.306	-422.849	-380.739	-374.832	-347.984	-345.681	-341.787	-316.569	
03-12	-111.307	-448.008	-436.168	-424.748	-386.27	-379.721	-351.856	-353.141	-347.846	-322.631	
04-12	-105.201	-448.648	-437.149	-409.387	-390.213	-385.688	-339.013	-358.215	-353.222	-312.961	
05-12	-115.954	-449.307	-439.277	-412.89	-393.907	-390.107	-344.944	-363.515	-359.964	-323.462	
06-12	-128.405	-449.861	-440.262	-416.267	-397.003	-392.919	-351.208	-367.768	-366.757	-333.349	
07-12	-138.211	-451.788	-440.959	-419.248	-400.013	-395.888	-357.096	-374.117	-373.006	-343.378	
08-12	-144.889	-452.256	-441.655	-422.89	-402.182	-398.75	-364.555	-380.156	-378.158	-354.342	
09-12	-151.47	-452.704	-442.397	-425.927	-404.106	-401.353	-370.799	-385.368	-384.083	-362.694	
10-12	-158.111	-450.285	-444.526	-428.577	-402.718	-403.791	-376.381	-385.635	-389.352	-370.293	
11-12	-162.847	-447.801	-445.372	-430.935	-399.787	-406.098	-382.777	-385.257	-394.163	-377.099	
12-12	-166.232	-448.91	-445.965	-432.955	-400.359	-407.884	-388.147	-387.918	-398.134	-384.048	
13-12	-169.546	-449.885	-446.417	-434.79	-402.102	-409.402	-392.873	-391.765	-400.518	-389.208	
14-12	-107.553	-451.433	-446.779	-436.439	-404.338	-410.665	-361.1	-395.783	-403.802	-329.208	
15-12	-116.477	-453.856	-447.344	-437.982	-370.365	-374.99	-366.474	-331.664	-339.233	-335.297	
16-12	-123.872	-454.944	-447.42	-439.362	-372.143	-373.793	-373.077	-336.675	-339.231	-342.386	
17-12	-134.391	-456.032	-448.168	-440.57	-378.123	-380.82	-379.608	-342.354	-346.089	-349.482	
18-12	-142.066	-457.103	-448.787	-441.527	-384.843	-385.555	-383.765	-350.305	-351.865	-355.229	
19-12	-147.163	-458.072	-450.473	-440.37	-389.561	-389.214	-385.117	-357.281	-358.009	-360.064	
20-12	-152.869	-459.976	-448.398	-441.65	-391.928	-389.134	-388.975	-364.976	-361.768	-366.649	
21-12	-157.633	-460.596	-446.954	-443.816	-395.122	-388.156	-392.265	-371.103	-363.811	-373.589	
22-12	-162.313	-461.034	-448.471	-444.88	-397.601	-391.815	-395.415	-377.272	-370.059	-380.807	
23-12	-165.561	-461.742	-450.853	-445.939	-399	-395.241	-398.366	-383.086	-376.818	-385.058	
24-12	-168.618	-462.031	-447.884	-446.831	-401.025	-393.766	-400.915	-387.584	-378.234	-390.105	
25-12	-171.81	-464.018	-447.143	-447.694	-403.41	-394.288	-403.249	-392.272	-381.253	-394.576	
26-12	-176.082	-464.655	-449.025	-449.702	-405.436	-397.435	-405.426	-395.407	-385.505	-398.544	
27-12	-179.073	-465.466	-451.65	-450.599	-408.864	-400.216	-408.602	-399.782	-390.657	-401.19	
28-12	-181.464	-465.933	-450.364	-451.118	-410.215	-399.925	-409.844	-403.126	-392.268	-404.373	
29-12	-184.216	-467.667	-449.555	-451.745	-411.696	-399.985	-411.198	-405.189	-392.962	-406.166	
30-12	-187.268	-468.2	-451.434	-452.405	-412.849	-402.767	-413.743	-408.132	-396.396	-409.145	
31-12	-190.374	-468.687	-452.852	-454.29	-415.117	-405.097	-414.869	-409.521	-400.541	-410.697	

APPENDIX 3

(EXCHANGE BETWEEN UNSATURATED AND SATURATED ZONE)

			EXCH	ANGE IN U	NSATURA	TED AND S	ATURATE	D ZONES (mm/hì	
DATE		S1	S2	\$3	S4	\$5	S6	S7	S8	S 9
	01-01									
	02-01	-0.01136	-0.01135	-0.01139	-0.01887	-0.01722	-0.0179	-0.1697	-0.10446	-0.1712
	03-01	-0.01685	-0.01654	-0.01693	-0.50866	-0.40968	-0.49217	-1.66698	-1.63021	-1.7012
	04-01	-0.00915	-0.00675	-0.00816	-0.43309	-0.406	-0.35979	-0.35642	-0.3846	-0.35384
	05-01	-0.05648	0.00338	8 26E-04	-0 19633	-0 12252	-0 18692	-0 10813	-0.09867	-0.09877
	06-01	0.00010	0.01226	0.00944	-0.03246	-0.02167	-0.01648	-0.02005	-0.00293	-4 57E-04
	07-01	0.00525	0.01220	0.00044	-0.07313	-0.001/9	-4 17E-04	-0.00578	0.00200	0.01744
	08-01	0.00020	0.07563	0.07/01	-0.07513	0.00140	0.01359	0.00570	0.01000	0.01744
	00-01	0.00002	0.02303	0.02401	0.00758	0.07263	0.01000	0.00001	0.02040	0.02002
	10.01	0.01203	0.007.02	0.02004	0.00730	0.02000	0.02402	0.01710	0.00020	0.00007
	11 01	0.07401	0.02343	0.0073	0.01313	0.03070	0.00000	n nagag	0.04122	0.00004
	12.01	0.01004	0.00712	0.03011	0.00372	0.00703	0.00100	0.02000	0.03407	0.1703
	12-01	0.02303	0.00020	0.0200	0.01017	0.03730	0.00300	0.00023	0.10207	-0.03430
	14-01	0.0021	0.00303	0.00300	0.02317	0.05071	0.00070	0.00020	0.04071	0.10030
	14-01	0.02059	0.09025	0.00355	0.000004	0.15943	0.09170	0.1007	0.10203	-0.00963
	10-01	0.00576	0.00303	0.00755	0.00021	0.02569	-0.05554	-0.01466	0.02300	-1.54916
	10-01	0.09433	0.08/81	0.03486	-0.14387	-0.02667	-0.21592	-1.44864	-1.08712	-0.15492
	17-01	0.02679	0.03673	0.08666	-0.28669	-0.19696	-0.09927	-0.15177	-0.23623	-0.00499
	18-01	0.0884	0.09331	0.09668	-0.04328	-0.10008	-0.01184	-0.00796	-0.01263	0.02093
	19-01	0.03428	0.02979	0.03035	-0.06773	-0.01104	0.00437	0.01499	0.01388	0.03488
	20-01	0.0886	0.14956	0.14805	0.005	0.00535	0.01548	0.02879	0.02978	0.09878
	21-01	0.02786	0.03328	0.02687	-0.4374	0.01853	0.02421	-1.59877	0.09317	0.15822
	22-01	-3.90665	0.09677	0.03163	-5.68191	0.02831	0.08706	-7.44509	0.09976	0.03592
	23-01	-1.92481	0.0299	0.09013	-0.86009	0.09023	0.02921		0.1031	0.10528
	24-01	-0.10024	0.08746	0.02904	0.02205	0.03465	0.08794		0.10183	0.03963
	25-01	0.011	0.03108	0.08719	0.17138	0.1461	0.03455	1.24337	0.04235	0.09551
	26-01	0.09193	0.08725	0.02833	0.30863	0.03131	0.09115	0.52984	0.10124	0.09556
	27-01	0.11379	0.03041	0.08596	0.20907	0.03391	0.03628	0.46321	0.09027	0.09748
	28-01	0.11202	0.08471	0.02814	0.20464	0.08582	0.14622	0.35807	0.03324	0.10444
	29-01	0.11231	0.02765	0.0843	0.29938	0.09545	0.03317	0.35973	0.09984	0.10451
	30-01	0.1243	0.08438	0.02865	0.20582	0.02424	0.10302	0.28183	0.10322	0.04005
	31-01	0.18178	0.02854	0.08592	0.20972	0.08996	0.02523	0.37337	0.15969	-0.10311
	01-02	0.0551	0.08482	0.02991	-0.47804	0.03162	-0.03291	-3.86943	-0.1238	-1.63212
	02-02	0.17727	0.02883	0.08357	-0.58494	0.0342	-0.21735		-1.59957	-0.12871
	03-02	0.12545	0.08197	0.08955	0.04736	-0.21581	-0.1146		-0.08724	-0.0029
	04-02	0.11672	0.02955	0.02088	0.20344	-0.11472	-0.08045	1.66152	-0.06431	0.02045
	05-02	0.12016	0.08007	0.08917	0.33887	-0.02446	-0.00326	0.44244	0.01336	0.10051
	06-02	0.11467	0.02956	0.02129	0.19793	-0.01453	0.00881	0.36722	0.08934	0.03744
	07-02	0.11505	0.08007	0.03064	0.20754	0.00286	0.01797	0.36768	0.03293	0.10191
	08-02	0.10821	0.02997	0.08211	0.20621	0.01344	0.02426	0.36248	0.10199	0.10223
	09-02	0.11251	0.08837	0.03009	0.1513	0.0224	0.08491	0.2838	0.11275	0.10583
	10-02	0.11602	0.02888	0.08728	0.21073	0.02879	0.03108	0.36826	0.16856	0.10594
	11-02	0.05554	0.14737	0.02834	0.15726	0.08926	0.14406	0.31091	0.05109	0.1098
	12-02	0 16427	0.0198	0 14671	0 19674	0.09869	0.03306	0.21317	0 10834	0 10904
	13-02	0.11783	0.0272	0.01876	0.18282	0.02601	0.10307	0.29003	0 10808	0 11343
	14-02	0.02865	0.0212	0.02615	0.10202	0.02001	0.02463	0.20000	0.10607	-0.40804
	15-02	0.02376	0.02002	0.02775	-0.61239	0.00000	-0.02403	-4 8367	-0.18925	-1 51821
	16-02	0.02570	0.00404	0.02010	-0.87285	0.04452	-0.14361	-0.04261	-1.62604	-0.01925
	17.02	0.02002	0.02007	0.0000	-0.07200	-0.1033	-0 15997	1.0625	-0.0371	0.01020
	18.02	0.02000	0.00219	0.02000	0.00207	-0.1000	-0.13337	0.52567	0.0371	0.01772
	19.02	0.00100	0.02000	0.00343	0.04701	-0.10035	_0.01020	0.32307	0.01407	0.03434
	20-02	0.00779	0.00113	0.02472	0.17000	-0.01702	0.0047	0.04440	0.00020	0.1041
	20-02	0.03020	0.02037	0.00000	0.12000	0.00003	0.00039	0.2714	0.10209	0.11004
	21-02	0.03033	0.00172	0.02000	0.13431	0.00007	0.01000	0.00000	0.11044	0.11014
	ZZ-0Z	0.1010	0.02009	0.00030	0.14030	0.01000	0.02224	0.00073	0.11039	L 0.1003Z

			EXCH	ANGE IN U	NSATURA	TED AND S	SATURATE	D ZONES (mm/h)	
DATE		S1	S2	S 3	S4	S5	S6	S7	S8	S9
	23-02	0.10129	0.08613	0.02113	0.20041	0.02572	0.14496	0.36158	0.11123	0.05274
	24-02	0.1067	0.02505	0.02521	0.2621	0.08652	0.02539	0.28607	0.11481	0.16239
	25-02	0.03281	0.0817	0.08122	0.04218	0.09253	0.03015	0.14276	0.10355	0.1021
	26-02	0.07844	0.02453	0.02485	0.15801	0.022	0.09072	0.16961	0.10019	0.10962
	27-02	0.02718	0.08319	0.07981	0.19312	0.08962	0.02996	0.29553	0.09969	0.10781
	28-02	0.09257	0.02178	0.02392	0.05311	0.02892	0.08787	0.2043	0.10172	-0.70489
	01-03	0.0414	0.02561	0.08121	-0.22255	0.08681	-0.02899	-3.60716	-0.43077	-1.41274
	02-03	0.09759	0.0765	0.02242	-0.7741	-0.02176	-0.20701	-0.27886	-1.54996	6.53E-04
	03-03	0.15412	0.02449	0.02521	-0.00898	-0.22203	-0.16694	0.35327	-0.09454	0.09966
	04-03	0.03604	0.07879	0.07627	0.02586	-0.12234	-0.01808	0.41942	0.01199	0.12775
	05-03	0.10635	0.0226	0.02511	0.10377	-0.09108	-0.00223	0.26673	0.09312	0.18658
	06-03	0.029	0.0245	0.07998	0.1155	-0.01205	0.01055	0.3404	0.1056	0.18762
	07-03	0.020	0.08107	0.02335	0 11801	-7.06E-04	0.02463	0.25221	0.11347	0.12857
	08-03	0.0969	0.0238	0.02631	0 17854	0.00855	0.13606	0.26136	0.1129	0.1149
	09-03	0.03348	0.02401	0.02001	0.0644	0.00000	0.02531	0.26678	0.11497	0.11234
	10-03	0.000464	0.02101	0.02483	0.0011	0.07245	0.02938	0.26135	0.12088	0.11828
	11-03	0.00404	0.00302	0.02400	0.12695	0.02240	0.02000	0.20100	0.12000	0.11832
	12.03	0.00000	0.00002	0.01002	0.12000	0.00120	0.0005	0.26686	0.112134	0.11669
	13-03	0.00000	0.02002	0.14004	0.10007	0.02020	0.03030	0.20000	0.12204	0.17351
	14-03	0.00000	0.02170	0.01002	0.12440	0.00000	0.00041	0.20034	0.100	-0.98444
	14-03	0.00077	0.02234	0.02177	-0.72002	0.0000	-0.1146	-4 41164	-0.7948	-0.00444
	16-03	0.03733	530C0.0	0.02234	-0.2200	-0.02202	-0.1140	0.45667	-0.7540	-0.02614
	17-03	0.00374	0.02003	0.02203	-0.03135	-0.02200	-0.23734	0.4007	-0.06774	0.02014
	12.03	0.00307	0.00032	0.02200	-0.01383	0.21702	-0.13031	0.57554	0.00774	0.02324
	10-00	0.00747	0.0172	0.07004	0.02303	0.11303	-0.04033	0.44072	0.10000	0.10043
	20.02	0.05000	0.02120	0.02017	0.0070	0.02719	0.01002	0.4404	0.10043	0.00000
	20-03	0.10909	0.0763	0.0790	0.10000	-0.07200	-0.00295	0.13721	0.13143	0.17000
	21-03	0.01075	0.02	0.01009	0.02714	0.0007	0.00001	-0.10101	0.10027	0.10272
	22-03	0.02213	0.02170	0.01969	0.00704	0.01310	0.01410	-0.02071	0.10492	0.00020
	23-03	0.01307	0.07517	0.07717	0.14003	0.07694	0.02104	0.15062	0.000000	0.12000
	24-03	0.01406	0.02004	0.01713	0.02537	0.02190	0.02010	0.25144	0.11409	0.11901
	25-03	0.0157	0.07896	0.0195	0.04279	0.02511	0.0200	0.25745	0.0989	0.11533
	26-03	0.07601	0.01795	0.07071	0.11225	0.02556	0.14020	0.25501	0.11094	0.11216
	27-03	0.01928	0.01983	0.01669	0.11608	0.08659	0.02486	0.25294	0.10968	0.17066
	28-03	0.02583	0.07391	0.01938	0.11847	0.02404	0.03002	0.25369	0.11264	0.17615
	29-03	0.08373	0.01734	0.076	0.18294	0.08618	0.09085	0.1781	0.11176	0.12167
	30-03	0.09251	0.01899	0.01757	0.11091	0.02838	0.0298	0.24/6/	0.11155	-1.44031
	31-03	0.02107	0.07271	0.0193	-0.24369	0.08656	-0.04207	-4.28198	-1.04/7	-1.06589
	01-04	0.08947	0.01686	0.07548	-0.93254	-0.02422	-0.22934		-1.30003	0.01642
	02-04	0.02579	0.01883	0.01806	-0.02818	-0.21793	-0.12/0/		-4.59E-04	0.1586
	03-04	0.0879	0.0756	0.01986	0.01292	-0.12032	-0.08221		0.02979	0.17429
	04-04	0.02732	0.01491	0.07269	0.03564	-0.09192	-0.00871	1.29032	0.16208	0.18291
	05-04	0.08772	0.019	0.01802	0.10683	-0.01223	0.00225	0.32027	0.17336	0.17162
	06-04	0.02843	0.01977	0.01987	0.17904	-0.00376	0.0106	0.14683	0.06439	0.17191
	07-04	0.08481	0.07104	0.07366	0.02405	0.00389	0.01599	0.23741	0.18044	0.05196
	08-04	0.02867	0.01874	0.01738	0.17634	0.01076	0.01988	0.23307	0.12611	0.16751
	09-04	0.08241	0.01981	0.01942	0.02228	0.01631	0.08103	0.23234	0.0978	0.18564
	10-04	0.02849	0.07782	0.075	0.04319	0.01691	0.02333	0.14448	0.02859	0.03551
	11-04	0.0821	0.01688	0.01532	0.09737	0.01602	0.02644	0.13832	0.0953	0.1731
	12-04	0.02711	0.01825	0.01901	0.09708	0.07613	0.13856	0.14592	0.10557	0.06263
	13-04	0.09141	0.01712	0.01951	0.15675	0.0143	0.0268	0.23057	0.11247	0.11603
	14-04	0.02345	0.07934	0.02003	0.03793	0.0202	0.02697	0.14413	0.02593	-2.29285
	15-04	0.02605	0.01302	0.0203	-0.35589	0.01099	-0.21948	-3.54237	-2.53344	-0.86169
	16-04	0.14017	0.01482	0.0204	-0.90912	-0.32949	-0.34367		-0.77835	0.02698

			EXC	HANGE IN	UNSATUR	ATED AND	SATURAT		(mm/b)	
DATE	\$1		\$2	S3	SA	S5	SATURAT	S7	S8	59
17	04 C	1 02114	0.01/91	0 09507	0 n n1ana	0 40350	0.1/028	31	0.05412	0 13919
17-	04 C	1 02524	0.07407	0.00007	0.01000	-0.42332	-0.14020		-0.03412	0.13010
10-	04 C D4	02324	0.07107	0.01102	0.02031	-0.10007	-0.00343	1 19206	0 13889	0.14000
20-	04 D4	0.0272	0.01002	0.01032	0.04003	-0.08086	-0.01411	0.217/2	0.13005	0.22007
20-	04 DA C	1.02568	0.01123	0.01057	0.10004	8300.0-	0.003/1	0.21742	0.14000	0.15144
21-	04 U DA C	1.02000	0.01052	0.07000	0.05557	9 10E 05	0.0034	0.22313	0.2323	0.16022
22-	04 U DA C	1.00202	0.01007	0.01400	0.10032	0.00571	0.00570	0.2272	0.14745	0.25100
23-	04 U DA C	1.02402	0.00003	0.01000	0.04100	0.00071	0.01034	0.1314	0.14234	0.10423
24-	04 U DA C	1 00002	0.0000	0.07010	0.14772	0.01012	0.02000	0.13209	0.15440	0.10144
20-	04 U DA C	0.02100	0.00004	0.01200	0.00047	0.01424	0.02230	0.22255	0.10004	0.03200
20-	04 U D4 U	0.0127	0.01040	0.01003	0.10014	0.07400	0.02303	0.14032	0.10132	0.13037
27-	04 D4 C	0.0137	0.01122	0.01017	0.03605	0.01794	0.02300	0.14000	0.02373	0.0414
20-	04 U DA C	1.02300 1.07056	0.01170	0.01047	0.10349	0.01794	0.07733	0.24111	0.01151	0.10091
29-	04 U DA C	07996	0.0007	0.00100	0.10719	0.01537	0.02400	0.24300	0.12902	2 20002
30-	04 U 07 U	0.0020	0.01037	0.00401	1.0711	0.01505	0.07456	0.13905	0.03052	-3.39002
01-	יסט מיד ר	0.0009	0.01112	0.01464	-1.3711	0.00370	-0.24242	-3.55367	-4.22905	-1.04596
02-	יסט בט מיד ביט	01799	0.01150	0.01553	-1.07316	-0.35442	-0.32074		-0.54962	0.31405
03-	05 L	0.00000	0.01155	0.07251	-0.18693	-0.38269	-0.1218		0.81125	0.12568
04-	U5	0.0028	0.06503	0.01204	-0.01143	-0.17337	-0.02552		0.26345	0.30912
05-	U5 -L	J.UU432	0.01016	0.01477	0.01578	-0.02102	-0.06/3/		0.27443	0.2315
06-	U5 -L	J.UU632	0.01122	0.01544	0.03367	-0.00692	-0.03481	0.05050	U.234	-1.94254
07-	U5 -L	1.00559	0.01165	0.06896	0.14508	0.00104	-0.98299	0.95653	0.31769	
08-	U5 -L	J.UU385	0.01231	0.0075	-0.00491	0.00657	-0.54153	-0.72652	0.14805	
09-	U5 -L	J.UU239	0.06597	-0.01666	-0.02404	0.01146	-0.22877	-0.28099	0.22631	
10-	U5 -L	J.00229	0.01148	-0.11113	0.00932	0.01263	-0.11623	0.68786	-0.61609	
11-	05 -0	J.00242	0.01284	-0.12894	0.01687	-0.01316	-0.12425	-0.00467	-1.65E+00	
12-	05 -0	0.00204	0.01318	-0.13102	0.00371	-0.2519	-0.12514	-0.06021	-3.04E-01	
13-	05 -0	0.00155	0.07173	-0.20118	0.01178	-0.6046	-0.38012	0.16741	-6.01E-03	
14-	05 -0	J.00116	-5.54E-04	-0.13619	0.12954	-0.25528	-1.01728	0.20782	-0.00653	
15-	05 -5.	70E-04	-0.01836	-0.20651	-1.57495	-0.49266	-1.11217	-1.45669	-0.00968	
16-	05 3.	22E-04	-0.09589	-0.14607	-0.77927	-1.21519	-0.09876			
17-	D5 C	0.00133	-0.10311	-0.19224	-0.13731	-0.13832	-0.00548			
18-	D5 C	0.00205	-0.10193	-0.10938	0.01793	-0.26467	0.01156			
19-	05 0	0.00224	-0.03771	-0.10449	0.04565	-0.73374	0.02187			
20-	05 0).00237	-0.11577	-0.02181	0.219	-0.0241	0.00611			
21-	05 0).00278	-0.2068	-0.08836	0.1303	-0.00613	-0.02101			
22-	05 0).00352	-0.12382	-0.00785	0.12862	-0.13669	-0.00966	0.8965		
23-	05 0	0.00472	-0.12048	-0.01414	0.12608	-1.71652	0.00864	0.16307		0.84732
24-	05 0	0.00611	-0.41676	-0.01256	0.00354	-0.77335	-0.0045	-0.04196		-6.62E-01
25-	05 0	0.00736	-0.7556	-0.07267	-0.01739	-0.04856	-0.04608	-0.05167		-2.98E-01
26-	05	0.0079	-0.48816	-0.00462	-0.01713	-0.10103	-0.04528	-0.02603		
27-	05	0.0077	-0.23914	-0.00989	-0.25034	0.105	-0.07301	-1.25345		
28-	05 0).00653	-0.14118	-0.01184	-0.43174	-0.29253	0.00412			0.77851
29-	05 0	0.00124	-0.11799	-0.0124	-0.36327	-0.37363	-0.0256			-0.88665
30-	05 -0	0.01099	-0.24885	-0.07366	-0.06615	0.00361	-2.72298			
31-	05 -0).07928	-0.06226	-0.01424	-2.00118	-3.47675	-0.80973			
01-	06 -0).02177	-0.11119	-0.15854			-0.00614			
02-	06 -0	0.02029	-0.09021	-0.05083			-0.11699			
03-	06 -0	0.07318	-0.03259	-0.11629			0.01326			
04-	06 -0).12009	-0.09533	-0.11304			-0.01264			
05-	06 -0).32145	-0.09606	-0.03663			0.00515			
06-	06 -0	0.21089	-0.03339	-0.08957			0.11537			
07-	06 -0).11833	-0.09812	-0.02739			0.02623			
08-	06 -0	0.09219	-0.22883	-0.07739			-0.14419			-1.66E-02

			EXC	HANGE IN	UNSATUR	ATED AND	SATURAT	ED ZONES	(mm/h)	
DATE		S1	S2	\$3	S4	S5	S6	S 7	S8	S 9
	09-06	-0.13559	-0.56885	-0.01655			-0.20904			-0.00617
	10-06	-0.40148	-0.69156	-0.01664			-0.18806			
	11-06	-0.34404	-0.34827	-0.07681			-0.09549			
	12-06	-0.31451	-0.20139	-0.01947			-0.01671			
	13-06	-0.23142	-0.16253	-0.02273			0.04129			
	14-06	-0.46049	-0.02107	-0.07783			-2 02062			-0.01573
	15-06	-0.42307	-0.01373	-0.0119		-0.02119	2.02002			0.01010
	16-06	-0.43874	-0.00683	-0.08119		0.02110				
	17-06	-0.63526	-0.00000	-0.00173						
	18-06	-0.37092	8.50E-04	-0.00113						
	19-06	-0.22906	0.002.04	-0.0001						
	20-06	-0.11691	0.00589	-0.00589		0.67619				
	20.00	-0.02371	Pann n	-0.00507		-0.03397	0.83321			
	27-00	-0.02371	0.0005	-0.00307		-0.0000728	0.00021			0.88857
	22-00	-0.01013	0.0003	-0.00413		-0.00720	0.21205			0.00007
	23-00	0.0010	0.00420	0.00004		-0.74004	0.10113			0.05494
	24-00	0.07000	0.13056	0.00004			0.03030			-0.03404
	20-00	0.2212	0.13030	0.00207			0.04000			0.00735
	20-00	0.21004	-0.21430	0.00103			0.20910			0.125
	27-00	0.00000	-0.20722	0.00104			0.21000			0.2100
	20-06	-0.02990	-0.10779	0.00243			0.13090			0.21914
	29-06	-0.1342	-0.02457	0.00318			-0.19287			-0.23606
	30-06	-0.17547	-0.01502	0.00394		0 74000	-0.88919		0.44744	-1.12355
	01-07	-0.04478	-0.06404	0.00362		0.71392	-0.98412		0.41744	-0.57553
	02-07	-0.17875	2.53E-04	-8.28E-04		-0.00647			0.2869	
	03-07	-0.05236	3.04E-04	-0.01179		0.17124			0.17166	
	04-07	-0.11992	0.00166	-0.02683		0.22049			0.2218	
	05-07	-0.2065	0.00365	-0.09871		-0.03782			-0.04133	
	06-07	-0.24807	-0.00295	-0.10525		-1.35927			-1.34887	
	07-07	-0.30892	-0.22956	-0.16945			-0.00309			0.00977
	08-07	-0.03391	-0.4265	-0.00892			-0.03483			-0.034
	09-07	-0.07503	-1.26745	-0.04374						
	10-07	-0.21283	-0.66944	-0.20144						
	11-07	-0.09872	-0.234	-0.14351						
	12-07	0.00104	-0.33727	-0.12415						
	13-07	-0.00988	-0.36955	-0.17758						
	14-07	-0.03973	-0.1807	-0.10614						
	15-07	-1.05528	-0.4053	-0.04218						
	16-07	-1.32044	-0.07963	-0.08796			0.70976			0.35513
	17-07	-0.42411	-0.16902	-0.02228			0.21743			0.52097
	18-07	-0.09269	-0.04459	-0.07147			0.16914			0.16839
	19-07	-0.04625	-0.13771	-0.00801			0.21676			0.18132
	20-07	-1.05735	-1.54427	-0.00451			0.21546			0.21072
	21-07	-0.67049	-1.1026	-0.00157			-0.58557			-0.57433
	22-07	-1.82912	-0.28076	-2.25E-04			-0.02716			-0.03599
	23-07		0.0035	-9.10E-04			0.12959			0.11853
	24-07		-0.17485	-0.00144			0.21398			0.26753
	25-07		-1.71989	-0.00102			0.22473			0.22649
	26-07		-0.7942	-1.51E-06			0.22322			0.13792
	27-07		-0.94539	0.0014			0.13295			0.22023
	28-07		-0.03234	0.00302			-0.12589			-0.16775
	29-07			0.00407			-0.05235			-0.06463
	30-07			0.00375			-1.31823			-1.53E+00
	31-07			-0.00212			-0.71929			-4.55E-01

01-08			-0.09042			-0.03805			
07-00			-0.03042			0.81064			0 77579
02-00			-0.02040			0.01004			-0.8613
0.1-00			0.01455			-0.52777			-0.0015
04-00			-0.01400						
00-00		0.04004	-0.119						
00-00		0.04091	-0.13761		4.00000			4,0000	
07-08		0.21211	-0.14637		1.00906			1.0093	
08-08		0.27762	-0.20442		0.22002			0.21997	
09-08		-1.58/77	-0.12886		-1.4/118			-1.47039	
10-08			-0.58949						
11-08			-0.4423						
12-08			-0.23409						
13-08			-0.12852						
14-08			-0.10704						
15-08			-0.37137						
16-08	0.95574		-0.36041				0.95578		
17-08	0.10115		-0.15447	0.83913			0.09971		
18-08	-0.00166		-0.09286	-0.00918			-1.26E-04		
19-08	-8.81E-01		-0.01539	-0.96232			-8.67E-01		
20-08	-0.441		-0.06042			0.77449	-0.454		0.77216
21-08			0.00368			0.21348			0.26436
22-08	0.89894		0.00663			0.17958	0.89807		0.13289
23-08	-1.03812		0.00994	-0.01828		0.20161	-1.04612		0.20052
24-08			0.00825			-1.513			-1 50491
25-08			-0.02472			-0 12324			-0.12576
26-08			-0.02762			0.80581			0.80585
20.08			-0.02702			0.00001			0.00000
27-00			0.01213			0.22000			0.2204
20-00			0.00220			0.2210			0.22100
23-00			0.00210			1 20050			1 20/06
30-00			-0.0007			-1.20303			-1.20400
31-00		0 70000	-0.09699		0.014			0.0104	
01-09		0.76069	-0.06615		-0.011			-0.0104	
02-09		-0.06157	-0.01356		-0.00928			-0.00922	
03-09		-0.86065	-0.00466						
04-09			-7.72E-05						
05-09	0.82207		0.00223						
06-09	0.26637		-0.01565						
07-09	0.27435		-0.20801						
08-09	0.23013		-0.24652				0.90887		
09-09	0.25102		-0.03392	1.06248			0.29952		
10-09	0.25292		-0.10927	0.36579			0.33442		
11-09	0.24164		-0.11389	0.24379			0.24703		
12-09	0.24236		-0.01949	0.24831			0.24687		
13-09	0.14255		-0.01445	0.22558			0.2233		
14-09	0.10426		-0.00679	0.00677			0.00984		
15-09	-3.07954		4.28E-04	-2.39756			-2.5242		
16-09			0.00414						
17-09		0.9744	0.00736						
18-09		0.03405	0.01101						
19-09		-0.04876	0.01366						
20-09		-0.0213	0.01687			0.93826			
21-09		0.17281	0.02268			0.21242			1.02182
22-09		0.23192	0.0177			-1.41748			-1.20668

			EX	HANGE IN	UNSATU	RATED AND	SATURATE	D ZONES (mm/h)	
DATE		S1	S2	S 3	S 4	S5	S6	S7	S8	S 9
	23-09		0.24004	-0.0199		0.99644			0.88618	
	24-09		0.34417	-0.03224		0.41114			0.30909	
	25-09		0.24647	-0.02567		0.24679			0.33002	
	26-09		0.14898	-0.01306		0.23635			0.23572	
	27-09		0.22989	8.50E-04		0.14954	1.01636		0.23228	0.96919
	28-09		0.14593	0.00809		0.22892	0.11216		0.14935	0.10833
	29-09		0.14178	-0.07254		0.13993	-1.37842		0.22386	-1.29917
	30-09	1.20669	0.13606	-0.34367		0.22419		1.20564	0.13673	
	01-10	0.23384	0.14476	-0.2185	8.00E-03	-2.92E+00		-1.43767	-2.78633	
	02-10	0.23543	0.23904	-0.09888	-4.37E-02					
	03-10	0.21689	0 15778	-0.0159						
	04-10	-1 04	0.03165	0.00179	-0.01338	0 79952				
	05-10	-1.08713	0.00100	0.001172	0.01000	-0.06397	1 1/935			
	06-10	-1.00r13	0.00042	0.07472		-0.00307	0 3268			1 08808
	07 10		0.0047	0.02302		0.00021	0.3200			0.36436
	07-10		0.02455	0.00020		0.12000	0.34037		0.95361	0.30420
	00-10		0.14074	0.00000		0.27353	0.22475		0.33301	0.2247
	10 10	1 107/7	0.0430	0.03403		0.11000	0.13243		0.03223	0.13147
	10-10	1.10/4/	0.14155	0.09969		0.22900	0.14299	4.000.44	0.22679	0.23574
	11-10	0.22003	-0.05350	0.03090	0.07447	-0.75427	0.13450	1.06641	-1.05795	0.13531
	12-10	0.33942	-0.15829	0.0363	0.97447	0.04438	0.13035	0.3702	-0.16124	0.12892
	13-10	0.27164	0.03578	0.04295	0.41131	0.41321	0.22922	0.34687	0.82703	0.14597
	14-10	0.34066	0.27958	0.09623	0.34527	0.45298	-2.91E+00	0.34823	0.56358	-2.69303
	15-10	0.26115	0.17954	0.09924	-2.03961	-2.16468	-0.159	-2.3/484	-1.93454	
	16-10	0.26616	0.16449	0.0307						
	17-10	0.13312	0.01085	0.09409			1.30044			
	18-10	0.14244	-0.87911	0.10368			0.43067			
	19-10	0.24298	-0.40554	0.0491			0.34751			1.40448
	20-10	0.17069	0.04945	0.15959	1.29422		0.15234	1.20819		0.22999
	21-10	0.2584	0.25005	0.03126	0.43355		-0.18043	0.43345		-0.4426
	22-10	0.29902	0.26244	0.01056	0.36673	1.4103	-0.38973	0.44747	1.32272	-0.58095
	23-10	0.17821	0.18746	-0.00324	0.23343	0.34699	0.00778	0.14907	0.3479	0.08801
	24-10	0.15429	0.2968	-7.06E-04	0.12354	0.36704	0.25097	0.11969	0.44558	0.35933
	25-10	0.01278	0.19139	0.00705	-0.07351	0.33724	0.34432	-0.04781	0.256	0.43174
	26-10	0.01737	0.19059	0.01616	0.03031	0.26198	0.23641	0.12946	0.26366	0.15291
	27-10	0.14979	0.19097	0.0801	0.24871	0.27034	0.1602	0.16529	0.35262	0.25004
	28-10	0.17103	0.19413	0.02728	0.24222	0.2551	0.25532	0.2393	0.17396	0.3384
	29-10	0.06514	0.18643	0.09193	0.16691	0.2515	0.26092	0.2509	0.25121	0.26555
	30-10	0.17015	0.02771	0.10096	0.25537	-0.01799	0.26437	0.17293	-0.0187	0.27326
	31-10	0.1971	-0.01139	0.10526	0.27372	-0.08579	-1.49939	0.35478	-0.07274	-3.22808
	01-11	0.18764	-0.02591	0.04204	-1.77715	-3.63265	-0.46076	-3.86211	-3.54236	
	02-11	0.11909	-0.01059	0.10649	-0.80201		0.44164			
	03-11	0.17103	0.02493	0.10908	0.32152		0.24341			
	04-11	0.04965	0.1689	0.05032	0.13075	1.19394	0.1217			0.91961
	05-11	0.10494	0.07411	0.0494	0.21662	0.51827	0.24443		1.45091	0.36785
	06-11	0.10858	0.18304	0.10419	0.25345	0.14497	0.26161	1.10578	0.12395	0.43269
	07-11	0.1178	0.11178	0.10325	0.25572	0.11009	0.26807	0.36838	0.10815	0.36095
	08-11	0.12382	0.0261	0.10926	0.35422	-0.03129	0.26628	0.36109	-0.03511	0.35334
	09-11	0.19387	0.08541	0.04889	0.29151	0.03244	0.27131	0.4584	0.03969	0.2817
	10-11	0.19764	0.02584	0.16127	0.45855	0.25592	0.27482	0.46627	0.3417	0.3672
	11-11	0.07382	0.10516	0.04768	0.26907	0.336	0.30973	0.26873	0.25866	0.28239
	12-11	0.18534	0.1165	0.10638	0.16955	0.25945	0.31345	0.25504	0.34055	0.37047
	13-11	0.1806	0.17919	0.10759	0.29186	0.27443	0.21801	0.26421	0.27606	0.32388
	14-11	0.06687	0.19173	0.10569	0.19233	0.2781	-0.74169	0.18229	0.28535	-4.24818

		EX	CHANGE IN	UNSATU	RATED AND	SATURATE	D ZONES (mm/h)	
DATE	S1	S2	\$3	S4	S5	S6	S7	S8	S 9
15-11	0.18493	0.07288	0.10066	-1.18025	-1.49478	-0.5404	-4.00137	-3.40563	0.06391
16-11	0.11952	0.18365	0.10357	-0.54148	-0.47208	0.04552			0.87039
17-11	0.12658	0.12986	0.10298	0.28437	0.43874	0.16216			0.37599
18-11	0.18566	0.18269	0.03878	0.37804	0.3671	0.27379	1.61193		0.44204
19-11	0.19225	0.12825	0.09285	0.3789	0.25867	-0.54936	0.52899	1.48293	-2.14E+00
20-11	0.06763	0.12017	0.00111	0.3064	0.36016	-0.33328	0.37189	0.36257	
21-11	0.18752	0.12874	-0.02931	0.19173	0.37066	0.0651	0.25292	0.46105	
22-11	0.11517	0.13412	-0.01871	0.17398	0.28649	0.25247	0.15884	0.37307	1.31205
23-11	0.0412	0.18248	-0.00609	0.16531	0.2787	0.25072	0.23291	0.36474	0.33047
24-11	0.10148	0.17995	0.00189	0.17217	0.27892	0.15412	0.15869	0.26946	0.23015
25-11	0.10392	-0.02065	0.00551	0.18237	0.17326	0.1814	0.2496	0.15226	0.36254
26-11	0.1047	0.06494	0.01268	0.16534	0.15532	0.29531	0.16022	0.13654	0.3631
27-11	0.04598	-0.00113	0.01706	0.15639	0.1508	0.31633	0.11726	0.11825	0.37755
28-11	0.04077	0.04556	0.03458	0.03924	0.03146	0.20614	0.14662	0.12398	0.29135
29-11	0.09867	0.11204	0.0975	0.17105	0.15405	0.20202	0.17107	0.15512	0.36872
30-11	0.04687	0.10718	0.04369	0.1793	0.06309	-0.97068	0.19298	0.15864	-3.88229
01-12	0.1132	0.10669	0.08527	-0.6752	-0.77762	-1.40019	-3.97771	-4.33752	
02-12	0.16876	0.10817	0.01338	-0.64235	-0.61589	-0.1824	0.27345	0.04744	
03-12	0.11846	0.11112	0.00147	0.04754	0.14914	0.15748	0.58425	1.04018	
04-12	0.11475	0.11476	-0.00155	0.29068	0.26694	-0.68387	0.4422	0.53067	
05-12	0.1079	0.11874	-0.03044	0.19135	0.31042	-0.08539	0.36742	0.46266	
06-12	0.11346	0.12266	-0.10059	0.18793	0.31959	0.33942	0.35308	0.46097	
07-12	0.11069	0.17483	-0.02185	0.20463	0.20654	0.25315	0.2872	0.28477	1.19385
08-12	0.11104	0.12011	-0.00938	0.19747	0.19788	0.27566	0.34628	0.35326	0.43929
09-12	0.1104	0.113	0.00188	0.18135	0.30006	0.35796	0.16961	0.27229	0.44441
10-12	0.04466	0.10898	0.01272	0.18321	0.20777	0.27128	0.12714	0.2837	0.36429
11-12	0.02575	0.11058	0.02379	9.56E-05	0.21059	0.283	-0.00914	0.31933	0.37041
12-12	0.01054	0.11512	0.03345	0.0119	0.20988	0.38257	0.01432	0.31362	0.29147
13-12	0.0048	0.11079	0.09063	0.02835	0.1502	0.21045	0.13218	0.1998	0.36434
14-12	0.01343	0.10916	0.10266	0.10168	0.13739	-0.71488	0.15639	0.1855	-3.73034
15-12	0.08531	0.04572	0.04164	-0.60724	-0.47414	-0.56819	-4.10792	-2.94341	
16-12	0.09831	0.0739	0.15635	-0.69624	-0.74879	0.26777		-0.90593	
17-12	0.0459	0.02892	0.03901	0.0283	0.00209	0.27841		0.5377	1.54749
18-12	0.10412	0.10899	0.10363	0.18887	0.159	0.27092	1.61206	0.45493	0.33076
19-12	0.15858	0.11282	0.03725	0.20382	0.1926	0.24558	0.45535	0.35407	0.13097
20-12	0.05016	0.0525	0.03788	0.32947	0.05636	0.17068	0.44894	0.12141	0.26641
21-12	0.10817	0.03214	0.09444	0.20334	0.14975	0.17958	0.27085	0.02263	0.34087
22-12	0.1053	0.14435	0.03445	0.07188	0.04639	0.19054	0.25308	0.24718	0.26848
23-12	0.10124	0.02398	0.09222	0.18808	0.17812	0.19934	0.25986	0.26864	0.35955
24-12	2 0.10276	0.03157	0.09638	0.13087	0.11198	0.32302	0.24221	0.12362	0.27357
25-12	0.10743	0.01777	0.0348	0.1252	0.03131	0.19019	0.1743	0.03023	0.27384
26-12	0.0334	0.01358	0.09335	0.24792	0.10511	0.20462	0.2613	0.23692	0.2894
27-12	0.09953	0.07995	0.09505	0.07645	0.12075	0.20604	0.3118	0.2622	0.3079
28-12	0.10169	0.02745	0.0362	0.19187	0.11023	0.07974	0.30869	0.16562	0.19783
29-12	0.09859	0.07072	0.09077	0.18736	0.09939	0.19903	0.19959	0.04303	0.19188
30-12	0.04281	0.01301	0.09396	0.13044	0.18146	0.13409	0.19247	0.28074	0.19117
31-12	2 0.09866	0.03012	0.03424	0.1264	0.04934	0.14535	0.19332	0.19974	0.29769
		EX	CHANGE IN	UNSATU	RATED AND	SATURATE	D ZONES (mm/h)	
------	-------------	----------	-----------	----------	---------------------	----------	-----------	----------	----------
DATE	S9	S10	S11	S12	S13	S14	S15	S16	S17
01-0	11								
02-0	11 -0.1712	-0.01136	-0.01135	-0.01139	-0.01741	-0.01722	-0.0179	-0.1697	-0.10446
03-0	11 -1.7012	-0.01685	-0.01654	-0.01693	-0.48259	-0.40968	-0.49217	-1.66698	-1.63021
04-0	1 -0.35384	-0.00915	-0.00675	-0.00816	-0.36253	-0.406	-0.35979	-0.35642	-0.3846
05-0	1 -0.09877	-0.05648	0.00338	8.26E-04	-0.13389	-0.12252	-0.18692	-0.10813	-0.09867
06-0	1 -4.57E-04	0.00477	0.01226	0.00944	-0.08788	-0.02167	-0.01648	-0.02005	-0.00293
07-0	0.01744	0.00525	0.01968	0.01775	-0.01589	-0.00149	-4.17E-04	-0.00579	0.01565
08-0	0.02982	0.00802	0.02563	0.02401	-0.00375	0.01298	0.01359	0.00652	0.02943
09-0	0.08897	0.01263	0.08752	0.02864	0.00608	0.02363	0.02402	0.01719	0.09325
10-0	0.09504	0.07481	0.02943	0.0873	0.01398	0.03076	0.08659	0.02522	0.04122
11-0	0.1769	0.01804	0.08712	0.09011	0.01992	0.08703	0.03159	0.02999	0.09487
12-0	1 -0.03438	0.02365	0.03326	0 0299	0.02505	0.03798	0.08968	0.08629	0 15257
13-0	1 0 15095	0.0821	0.08969	0.08986	0.08273	0.09571	0.03875	0.03828	0.04071
14-0	1 -0.00963	0.02859	0.09025	0.0333	0.03253	0 15943	0.09178	0 10071	0.10203
15-0	1 -1 54916	0.02000	0.03303	0.08755	0.08693	0.02589	-0.05554	-0.01183	0.00964
16-0	1 -0 15492	0.00070	0.08781	0.03486	-0.05608	-0.02667	-0 21592	-1 40697	-1 3175
17-0		0.00400	0.00707	33780.0	-0.00000	-0.02007	-0.21002	-0.19322	-0.22605
18-0	1 0.00400	0.02010	0.00010	0.00000	-0.10032	-0.10009	-0.01184	-0.00824	-0.01144
19-0	1 0.02000	0.0004	0.00001	0.03035	-0.10032	-0.10003	0.00436	0.00024	0.01696
20.0	1 0.03400	0.03420	0.02070	0.03035	0.00241	0.00636	0.00430	0.01100	0.01000
20-0	1 0.05070	0.0000	0.14000	0.14003	0.00241	0.00000	0.01347	1 59199	0.03270
21-0	1 0.13022	3 90665	0.00020	0.02007	-0.37433 E 66949	0.01032	0.02422	6 34035	0.03507
22-0	1 0.00002	1 00/70	0.00077	0.00100	-3.03040	0.02032	0.00703	-0.34233	0.10307
23-0		0.21570	0.0235	0.03013	0.29014	0.03023	0.02321	0.0007	0.10434
24-0	1 0.00550	-0.01049	0.00740	0.02304	0.23014	0.03403	0.00755	0.00230	0.10275
20-0	0.09001	0.03494	0.03100	0.00713	-0.23644	0.1401	0.03433	-0.32767	0.10146
20-0		0.14004	0.00729	0.02033	0.23135	0.03131	0.09117	0.33973	0.04214
27-0	0.09740	0.00402	0.03041	0.00090	0.26329	0.03391	0.0362	0.36041	0.091
20-0	0.10444	0.16466	0.00471	0.02014	0.14291	0.0050	0.02210	0.22047	0.00796
29-0	0.10451	0.08006	0.02765	0.0843	0.24237	0.09545	0.03316	0.26934	0.10827
30-0	0.04005	0.14225	0.08438	0.02005	0.13979	0.02423	0.10304	0.10451	0.04022
31-0		0.10963	0.02854	0.08592	0.08652	0.08998	0.02522	0.11134	0.09905
01-0	2 -1.63212	0.11374	0.08482	0.02991	0.10789	0.03162	-0.03291	-0.43012	-0.02329
02-0	0.12871	0.114	0.02883	0.08357	-0.49674	0.03418	-0.21735	-1.3325	-1.54886
03-0	2 -0.0029	0.16295	0.08197	0.08955	-0.1451	-0.2158	-0.1146	0.0035	-0.1533
04-0	0.02045	0.11598	0.02966	0.02088	0.0069	-0.114/1	-0.08046	-0.18185	-0.09096
05-0	0.10051	0.11226	0.08007	0.08917	0.04696	-0.02447	-0.00326	0.13175	0.04243
06-0	12 0.03744	0.10512	0.02966	0.02129	0.13095	-0.01453	0.00881	0.1759	0.06962
07-0	0.10191	0.04328	0.08007	0.03064	0.09888	0.00286	0.01797	0.15152	0.09618
08-0	0.10223	0.10674	0.02997	0.08211	0.10317	0.01344	0.02426	0.12394	0.10817
09-0	0.10583	0.10397	0.08837	0.03009	0.10717	0.0224	0.08493	0.15568	0.111
10-0	0.10594	0.10289	0.02888	0.08728	0.10727	0.02879	0.03108	0.11494	0.17307
11-0	0.1098	0.10598	0.14737	0.02834	0.16325	0.08925	0.14401	0.11231	0.03884
12-0	0.10904	0.10393	0.0198	0.14671	0.05003	0.09867	0.03304	0.17367	0.11008
13-0	0.11343	0.10589	0.0272	0.01876	0.10434	0.02601	0.10294	0.04065	0.1059
14-0	2 -0.40804	0.03769	0.02882	0.02615	0.03826	0.08891	0.02467	0.03689	0.10659
15-0	12 -1.51821	0.02095	0.08484	0.02775	-0.01761	0.03329	-0.02412	-0.66531	-0.20046
16-0	2 -0.01925	0.01494	0.02697	0.0863	-0.72246	0.04448	-0.14355	-1.59291	-1.58305
17-0	0.01772	0.07894	0.08219	0.02563	-0.16266	-0.20289	-0.15996	-0.05025	-0.03576
18-0	0.03434	0.028	0.02598	0.08349	-0.09085	-0.04378	-0.01926	-0.21332	-0.14336
19-0	0.1041	0.14545	0.08113	0.02472	0.04311	-0.07881	-0.00469	0.12505	0.06949
20-0	0.11304	0.03225	0.02597	0.08358	0.01175	-0.00328	0.00599	0.06496	0.16523
21-0	0.11914	0.03705	0.08172	0.02335	0.08516	0.00902	0.01509	0.1987	0.14036
22-0	0.18032	0.09451	0.02569	0.08396	0.0997	0.01891	0.02225	0.07493	0.15152

			EX	CHANGE IN	UNSATUR	ATED AND	SATURATE	D ZONES (nm/h)	
DATE		S 9	S10	S11	S12	S13	S14	S15	S16	S17
	23-02	0.05274	0.09573	0.08613	0.02113	0.10309	0.09002	0.14497	0.13873	0.11526
	24-02	0.16239	0.10052	0.02505	0.02521	0.10918	0.02035	0.0254	0.10882	0.11308
	25-02	0.1021	0.03641	0.0817	0.08122	0.04603	0.08591	0.03015	0.05652	0.16639
	26-02	0.10962	0.09391	0.02453	0.02485	0.03482	0.02844	0.09077	0.03768	0.02511
	27-02	0 10781	0.01801	0.08319	0.07981	0 1483	0.08796	0.02996	0.09696	0.04158
	28-02	-0 70489	0.09178	0.02178	0.02392	0.03978	0.03029	0.08784	0.16118	0.10083
	01-03	-1 41274	0.03113	0.02561	0.08121	0.01754	0.08671	-0.02899	-0 23482	-0.23581
	02-03	6.53E-04	0.00110	0.02001	0.00121	-0.45336	-0.01985	-0.20701	-1.32644	-1 64408
	02-00	0.09966	0.00220	0.0700	0.02521	-0.13671	-0 21431	-0 16694	-0.23861	-0.0705
	04-03	0.00000	0.03077	0.02440	0.02627	-0.06663	-0.11726	-0.01807	0.00242	-0 1255
	05-03	0.18658	0.00011	0.0726	0.02511	-0.00121	-0.09087	-0.00223	0.05045	-0.02663
	06-03	0.18762	0.03679	0.0245	0.02011	0.00121	-0.00913	0.00220	0.00040	0.02000
	07-03	0.10102	0.00010	0.0240	0.07335	0.07822	-3 14E-04	0.07004	0.02400	0.12101
	08-03	0.12037	0.000.0	0.00107	0.02000	0.07022	0.00854	0.02400	0.00020	0.07764
	00-03	0.1140	0.0000	0.0200	0.02001	0.00007	0.00034	0.02531	0.00002	0.07704
	10.03	0.11234	0.03033	0.02401	0.0022	0.00000	0.01003	0.02001	0.10715	0.14234
	11.03	0.11020	0.14002	0.10170	0.02403	0.00070	0.00000	0.02000	0.10663	0.1102
	12.03	0.11032	0.02340	0.00002	0.01332	0.1073	0.02212	0.00052	0.10003	0.10503
	12-03	0.11003	0.03451	0.02002	0.14334	0.04213	0.00002	0.03036	0.047	0.10029
	14.00	0.17331	0.05000	0.02173	0.01332	0.1001	0.027.30	0.00541	0.10921	0.04001
	14-03	-0.90444	0.09629	0.02234	0.02177	0.10133	0.00040	0.09067	0.04379	0.11223
	10-03	-1.42572	0.02570	0.07037	0.02234	0.009	0.03109	-0.03221	-0.22100	-0.22209
	10-03	-0.02014	0.00000	0.02063	0.02203	-0.52041	0.04022	-0.29103	-1.3595	-1.09001
	17-03	0.02324	0.0316	0.06092	0.02255	-0.19565	-0.19047	-0.1831	-0.22905	-0.05626
	18-03	0.16843	0.08868	0.0172	0.07684	-0.0097	-0.05334	-0.03337	-0.02082	-0.11864
	19-03	0.05696	0.09291	0.02126	0.02017	0.00893	-0.08149	-0.01513	0.10464	0.04575
	20-03	0.17588	0.02986	0.0763	0.0798	0.02558	-0.00973	-0.00323	0.09429	0.13498
	21-03	0.18272	0.08827	0.02	0.01589	0.02492	0.00156	0.0053	0.04643	0.1165
	22-03	0.06628	0.02506	0.02178	0.01969	0.07052	0.01102	0.01258	0.09283	0.14432
	23-03	0.12336	0.01951	0.07517	0.07717	-0.0011	0.01879	0.01849	0.00133	0.09972
	24-03	0.11901	0.06688	0.02064	0.01713	0.01371	0.02433	0.15626	0.06027	0.05348
	25-03	0.11533	0.01398	0.07896	0.0195	0.02317	0.02511	0.00112	0.01934	0.04249
	26-03	0.11216	0.01/2/	0.01795	0.07871	0.08/44	0.02519	0.02366	0.0833	0.10264
	27-03	0.17066	0.07551	0.01983	0.01669	0.03434	0.0797	0.02722	0.10295	0.04076
	28-03	0.17615	0.01968	0.07391	0.01938	0.14801	0.02737	0.08992	0.03395	0.16371
	29-03	0.12167	0.02649	0.01734	0.076	0.03895	0.0862	0.02861	0.09826	0.04348
	30-03	-1.44031	0.08002	0.01899	0.01757	0.10081	0.08713	0.08571	0.15716	0.10213
	31-03	-1.06589	0.02896	0.07271	0.0193	0.00247	0.02599	-0.03647	-0.31202	-0.1272
	01-04	0.01642	0.08633	0.01686	0.07548	-0.68619	-0.01857	-0.22518	-1.43698	-1.38506
	02-04	0.1586	0.02616	0.01883	0.01806	-0.10201	-0.15979	-0.17588	-0.30924	-0.27496
	03-04	0.17429	0.02728	0.0756	0.01986	-0.09403	-0.18678	-0.02952	-0.02022	0.00972
	04-04	0.18291	0.14288	0.01491	0.07268	-0.01972	-0.02656	-0.07065	0.13844	0.00387
	05-04	0.17162	0.0257	0.019	0.01802	0.05086	-0.01636	0.00998	0.02798	0.0712
	06-04	0.17191	0.02774	0.01977	0.01987	0.06812	-0.06558	0.01058	0.08234	0.09982
	07-04	0.05196	0.08588	0.07104	0.07366	0.08457	0.00788	0.01576	0.10481	0.1341
	08-04	0.16751	0.02461	0.01874	0.01737	0.02892	0.01076	0.02271	0.07289	0.08787
	09-04	0.18564	0.08479	0.01981	0.01943	0.08738	0.01524	0.13201	0.0802	0.04087
	10-04	0.03551	0.02294	0.07782	0.07501	0.03163	0.0664	0.01939	0.0909	0.02579
	11-04	0.1731	0.08294	0.01689	0.01532	0.15354	0.0112	0.02429	0.03439	0.0285
	12-04	0.06263	0.02104	0.01824	0.01901	0.01983	0.01421	0.02773	0.08909	0.08785
	13-04	0.11603	0.02465	0.01711	0.01951	0.02957	0.07351	0.08431	0.0325	0.03488
	14-04	-2.29285	0.07982	0.07934	0.02003	0.0925	0.01665	0.02728	0.14476	0.14212
	15-04	-0.86169	0.02373	0.01302	0.0203	-0.01303	0.01368	-0.0745	-0.35535	-0.93435
	16-04	0.02698	0.0818	0.01482	0.0204	-0.69918	-0.2895	-0.38564	-1.42884	-1.61008

DATE S1 S10 S11 S12 S13 S14 S15 S16 S17 17.04 0.13818 0.02330 0.01481 0.06958 0.2196 0.32084 0.014950 0.03941 0.014950 0.02084 0.014950 0.02084 0.01152 0.03497 0.03414 19.04 0.21547 0.01192 0.01632 0.03441 0.01131 0.0377 0.0238 0.00660 0.01154 0.00238 0.00660 0.01154 0.00238 0.00661 0.00238 0.00660 0.01772 0.00395 0.00861 0.00239 0.00660 0.10772 0.00395 0.01666 0.10772 0.00231 0.00951 0.00756 0.00395 0.01722 0.02741 0.00395 0.07667 0.00236 0.00751 0.00236 0.00751 0.00236 0.00742 0.00236 0.00752 0.00338 0.00660 0.10772 0.01348 0.01779 0.01240 0.00738 0.00221 0.07746 0.00332 0.01763 0.01274 0.01332 0.01				FX	HANGE IN	UNSATUR	ATED AND	SATURATE	D ZONES (r	nm/hì	
17.04 0.14059 0.0230 0.04481 0.06968 -0.2168 0.03524 -0.14069 0.03776 0.03576 18.04 0.14059 0.0237 0.01092 0.06362 0.03467 0.1113 0.00317 0.03977 0.07269 2.044 0.16124 0.02545 0.00446 0.01154 0.00230 0.09043 0.04819 2.204 0.1622 0.07565 0.00446 0.01154 0.00230 0.09043 0.04819 2.204 0.1622 0.07665 0.06689 0.00986 0.01023 0.07151 0.00386 2.304 0.16429 0.02576 0.00380 0.0716 0.00238 0.01721 0.00266 0.1727 0.06680 0.01272 0.02261 0.01732 0.02281 0.07176 0.00279 0.03937 0.02079 2.604 0.1507 0.01890 0.06661 0.0122 0.01618 0.03077 0.02264 0.07284 0.01729 0.07236 0.01384 0.01949 0.02265 0.01326 0.0128	DATE		S 9	S10	S11	S12	S13	S14	S15	S16	S17
18.44 0.1489 0.08334 0.0182 0.09665 0.09675 0.04444 19.04 0.22937 0.0137 0.01092 0.07657 0.00447 0.01154 0.02767 0.01365 2.040 0.15144 0.027657 0.01066 0.00767 0.00239 0.0066 0.01572 0.008897 2.2404 0.15142 0.07665 0.00767 0.00239 0.0066 0.01572 0.008897 2.404 0.15142 0.07665 0.00767 0.00239 0.0066 0.0172 0.02380 0.00861 0.10272 2.404 0.15142 0.07665 0.02616 0.01732 0.02251 0.07151 0.07346 2.604 0.1627 0.01893 0.0049 0.03270 0.02264 0.07844 0.02779 0.02480 0.0716 0.03832 0.03746 0.01499 0.09210 0.03239 2.804 0.15021 0.02256 0.01139 0.01522 0.02258 0.03246 0.0716 0.04949 0.032210 0.01533		17-04	0 13818	0.02303	0.01481	0.08598	-0.2196	-0.35294	-0 14059	-0.37716	-0.0996
19-04 0.2337 0.01392 0.01632 0.01632 0.01637 0.013977 0.013977 0.013977 21-04 0.16124 0.02546 0.01143 0.0023 0.09041 0.03977 0.013977 21-04 0.16120 0.07567 0.00246 0.00239 0.0066 0.09172 0.0666 21-04 0.16129 0.07666 0.0689 0.00397 0.01502 0.05764 0.03397 23-04 0.16124 0.02459 0.00383 0.07766 0.02396 0.01592 0.07614 0.03397 0.02256 0.01716 0.0377 0.02261 0.01717 0.01662 0.0279 0.03262 0.01749 0.02256 0.01393 0.0144 0.03270 0.0264 0.07772 0.04633 0.0172 0.02772 0.1483 0.02797 0.02246 0.07116 0.01444 0.03102 0.01672 0.01728 0.02246 0.0716 30.04 0.16529 0.0117 0.11647 0.14607 0.01672 0.02256 0.01032 <td< td=""><td></td><td>18-04</td><td>0.14069</td><td>0.08334</td><td>0.07188</td><td>0.01182</td><td>-0.05605</td><td>-0.20864</td><td>-0.09665</td><td>0.08576</td><td>-0.34494</td></td<>		18-04	0.14069	0.08334	0.07188	0.01182	-0.05605	-0.20864	-0.09665	0.08576	-0.34494
20.04 0.15144 0.02545 0.01692 0.07657 0.00245 0.01154 0.0023 0.00243 0.04813 21-04 0.2575 0.11066 0.01465 0.00236 0.0066 0.05774 0.00897 23-04 0.15144 0.02429 0.0085 0.07766 0.00395 0.0066 0.01172 24-04 0.15144 0.02429 0.00833 0.07766 0.00395 0.01623 0.07786 0.03977 24-04 0.01564 0.01149 0.01699 0.01722 0.06630 0.07719 0.01723 0.02252 0.00327 0.02261 0.0732 0.02279 0.03533 28-04 0.16029 0.01172 0.01647 0.14677 0.01629 0.01716 0.01647 0.14677 0.01623 0.02282 0.02282 0.02282 0.02282 0.02282 0.02282 0.02146 1.53918 0.01991 0.02016 0.05666 0.01169 0.01632 1.01448 0.01627 0.01628 0.01163 0.01665 0.01244		19-04	0.22937	0.02137	0.01092	0.01632	0.03487	-0.11113	-0.0131	0.03977	0.07269
21-04 0.16022 0.07937 0.01932 0.07957 0.00946 -0.01154 0.0023 0.09043 0.04819 22-04 0.25166 0.02575 0.01066 0.01146 0.00039 0.00162 0.05172 0.0666 23-04 0.16129 0.07865 0.06893 0.0064 0.01244 0.00396 0.01932 0.07161 0.03274 0.00396 0.01242 0.07161 0.03251 0.07171 0.01644 0.03261 0.01172 0.01679 0.03261 0.01779 0.03693 28-04 0.16021 0.021618 0.03077 0.02261 0.07772 0.02246 0.07772 0.01849 0.03277 0.02246 0.07772 0.14833 0.01794 0.032246 0.07772 0.14833 0.01349 0.01444 -0.31022 0.02246 0.07726 0.14843 0.03246 0.11499 0.05243 0.02772 0.14833 0.01349 0.01444 -0.31022 0.02246 0.07726 0.4303 0.01446 0.01161 0.01474 0.07726 <t< td=""><td></td><td>20-04</td><td>0.15144</td><td>0.02548</td><td>0.01002</td><td>0.01698</td><td>0.05415</td><td>-0.02535</td><td>-0.00491</td><td>0 10778</td><td>0.13366</td></t<>		20-04	0.15144	0.02548	0.01002	0.01698	0.05415	-0.02535	-0.00491	0 10778	0.13366
22.04 0.25166 0.02575 0.01066 0.07078 -0.00239 0.0086 0.06774 0.06867 23.04 0.161429 0.07866 0.06689 0.01616 0.00311 0.00236 0.006744 0.0387 24.04 0.032260 0.06530 0.00716 0.00395 0.01712 0.06681 0.01722 25.04 0.03267 0.01634 0.01149 0.01639 0.01722 0.06623 0.07771 0.02261 0.07228 0.06231 0.07779 0.01939 0.06201 0.00779 0.03931 0.01623 0.01716 0.01679 0.01949 0.02251 0.02279 0.03228 0.03228 0.03216 0.0279 0.03218 0.01163 0.01647 0.01629 0.01140 0.01647 0.01629 0.0122 0.02261 0.0228 0.03216 0.0279 0.03216 0.0279 0.03216 0.0279 0.03216 0.0279 0.03216 0.0279 0.03216 0.0279 0.03216 0.0279 0.03216 0.02799 0.03216 0.02799		21-04	0.16022	0.07937	0.01092	0.07657	0.00945	-0.01154	0.0023	0.09043	0.04819
23-04 0.16429 0.07865 0.06669 0.01006 0.0031 0.00396 0.01502 0.05764 0.03897 24-04 0.15144 0.0249 0.00853 0.00964 0.01244 0.00856 0.01221 0.07161 0.01326 0.01221 0.07716 0.01221 0.07737 25-04 0.01307 0.01884 0.01049 0.02616 0.07722 0.02231 0.07737 0.02384 0.01797 0.03387 28-04 0.15091 0.02321 0.01178 0.01647 0.14867 0.01729 0.01243 0.02256 0.02726 0.14883 0.01979 29-40 0.15029 0.01111 0.01447 0.14067 0.01263 0.02726 0.14883 0.01765 10-055 0.01365 0.01265 0.02761 0.02780 0.32516 -1.2398 -15858 03-05 0.12589 0.01112 0.01656 0.02761 -0.03843 0.02792 -0.03141 0.03914 0.03914 0.03914 0.03914 0.03914 <t< td=""><td></td><td>22-04</td><td>0.75166</td><td>0.02575</td><td>0.01056</td><td>0.01486</td><td>0.07078</td><td>-0.00239</td><td>0.0086</td><td>0.05172</td><td>0.08697</td></t<>		22-04	0.75166	0.02575	0.01056	0.01486	0.07078	-0.00239	0.0086	0.05172	0.08697
24.0 0.1514 0.0223 0.0083 0.07516 0.02274 0.00895 0.01983 0.00736 0.00227 25-04 0.03226 0.01884 0.01124 0.00831 0.0133 0.02328 0.09233 0.00736 28-04 0.11884 0.01149 0.01699 0.02328 0.09201 0.02079 28-04 0.16931 0.06132 0.01647 0.14067 0.01899 0.09201 0.02079 28-04 0.16028 0.0216 0.06569 0.06191 0.01244 0.07129 0.0246 0.07119 0.01480 0.01220 0.02428 0.03246 0.01148 01-055 0.14168 0.01265 0.01244 0.07129 0.02792 0.30241 0.1263 0.0248 0.11898 0.59043 0.1462 03-05 0.12568 0.01418 0.01120 0.06561 0.1223 0.02792 0.30241 0.02792 0.30241 0.02792 0.30241 0.02792 0.30241 0.02792 0.30241 0.02792 0.30241<		23.04	0.16429	0.02865	P8330.0	0.01606	0.01010	0.00396	0.01502	0.05784	0.03697
25:44 0.0326 0.0327 0.0327 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0326 0.0775 0.0775 226-04 0.10367 0.01889 0.01049 0.01699 0.02616 0.01732 0.02281 0.00797 27-04 0.01410 0.03231 0.01176 0.01647 0.14067 0.01679 0.01249 0.03246 0.03246 0.03246 0.03246 0.03246 0.03246 0.03246 0.03246 0.01249 0.01233 0.01253 0.01483 0.01449 0.01233 0.01253 0.01446 0.03256 0.13466 0.03366 0.12656 0.01146 0.03125 0.01263 0.02661 -0.2136 0.02766 0.32516 -1.2397 0.05656 0.01267 0.03346 0.12321 0.00747 0.11802 0.06677 -0.03841 0.1192 0.0676 0.3246 0.32146 0.3246 0.31496 0.06777 0.03840 0.11232 0.01645 0.068671 0.01977 0.03846 0.027		20.04	0.15144	0.07000	0.00000	0.07516	0.0011	0.00000	0.01983	20100.0	0.00001
26-04 0.13087 0.01884 0.01049 0.01668 0.02161 0.01722 0.02238 0.08231 0.07791 27-04 0.01414 0.02320 0.01220 0.01647 0.14067 0.01832 0.01178 0.01647 0.14067 0.01832 0.01118 0.01647 0.14052 0.01230 0.02266 0.01763 0.02265 0.01366 0.0048 0.01221 0.01623 0.02726 0.14883 0.01949 0.03274 0.01663 0.01481 0.01726 0.14863 0.01949 0.03772 0.02461 0.15585 0.01111 0.01464 -0.3102 0.00662 -0.2146 1.53918 -0.71651 0.0205 0.01486 0.01205 0.016056 -0.32248 0.03211 0.03911 0.03241		25.04	0.03286	0.02420	0.00004	0.01294	0.0214	0.00000	0.07251	0.07151	0.07346
22:04 0.0435 0.01329 0.01122 0.011618 0.00077 0.01726 0.02789 0.02789 0.03593 28:04 0.15091 0.03286 0.01178 0.01647 0.10167 0.01172 0.01726 0.01489 0.09210 0.00279 0.03246 0.07116 30:04 -3.39002 0.02255 0.01130 0.01651 0.01662 0.02786 0.14883 0.01948 0:0-0 0.14396 0.0326 0.01130 0.01553 1.41488 0.32296 0.32216 -1.53916 -0.71651 0:0-0 0.1418 0.01139 0.01553 1.41488 0.32296 0.32216 -1.2967 1.51683 0:0-0 0.00732 0.06505 0.01265 -0.01253 -0.02972 0.30321 0.03216 0.02792 0.30321 0.32549 0:0-0 0.01162 0.06966 -0.01651 -0.01657 -0.06876 -0.0343 0.12213 0.05739 0:0-0 0.0184 0.01121 0.01477 0.01147 0		26-04	0.00200	0.00503	0.00004	0.01269	0.02616	0.01732	0.02201	0.08523	0.07977
22:0-0 0.15091 0.03321 0.01147 0.01647 0.14067 0.01824 0.01949 0.09201 0.02079 22:0-4 0.15002 0.02256 0.0136 0.0046 0.10122 0.01623 0.0228 0.03246 0.01949 0.07726 0.14883 0.01948 01-05 1.04596 0.15599 0.01111 0.01464 -0.3102 0.00682 -0.2146 -1.53918 -0.71651 02:05 0.11486 0.01350 0.01724 0.41480 0.03259 -0.32549 -0.32549 -0.32549 -0.32549 -0.32549 -0.32549 -0.32549 -0.2316 6.56244 0.01017 0.01477 0.11802 -0.00517 -0.03843 0.12230 0.06749 0.02361 -0.4319 0.14460 0.06749 0.02361 -0.4319 0.14460 0.06749 0.02361 -0.03843 0.12230 0.01645 -0.02675 0.00287 0.03816 0.2417 0.14060 -0.03814 0.0277 0.03814 0.0277 0.03814 0.0277 0.03814		20-04	0.10007	Parch n	0.01040	0.01618	0.02010	102000	0.02320	0.00323	0.07577
29-04 0.160/0 0.02016 0.0211 0.0111 0.0148 0.0122 0.01012 0.02268 0.03246 0.07116 30-04 -3.39002 0.02265 0.01036 0.0048 0.10244 0.07128 0.01488 0.01346 0.01116 0.01444 -0.3102 0.00726 0.14883 0.01326 0.01111 0.01444 -0.3102 0.00728 0.02216 -1.53918 0.71651 02-05 0.31485 0.00326 0.01115 0.01444 -0.31248 -0.12972 -0.30214 -0.3244 -0.12972 -0.30211 0.0341 0.03214 0.0321 0.03216 0.00677 -0.03843 0.12123 0.1156 06-05 1.94254 -0.00237 0.01211 0.00749 0.02611 -0.00677 -0.03843 0.1213 0.14156 07-05 -0.00237 0.002361 0.00166 0.00216 0.00140 0.0977 0.0991 04-05 -0.00202 0.00266 -0.01666 0.02161 0.00156 0.01310 0.0477		27-04	0.0414	0.02303	0.01122	0.01647	0.03077	0.02004	0.07004	0.02770	0.00000
30-04 0.10226 0.02256 0.01036 0.0048 0.10224 0.07226 0.14883 0.01948 01-05 1.04596 0.16529 0.01139 0.01653 1.41486 0.32268 0.322616 1.12967 1.51883 02-05 0.12668 0.01149 0.011550 1.01477 0.1189 0.02723 0.02722 0.03211 0.32461 0.01241 0.02723 0.03211 0.02565 0.01147 0.01148 0.02316 0.00516 0.04318 0.00271 0.00867 0.09911		20-04	0.10001	0.00021	0.01170	0.01047	0.14007	0.01073	0.01545	0.03201	0.02075
01-05 0.03402 0.02230 0.01111 0.01464 -0.01244 0.01226 0.01726 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728 0.1728 0.01728 0.01465 0.02598 0.032516 1.1267 1.53918 0.059043 0.12462 0.405 0.030912 0.00326 0.01117 0.01125 0.06666 0.01283 0.01272 0.03244 0.02878 -0.03241 0.02874 0.6055 1.2454 0.00289 0.01122 0.01656 0.02161 -0.03843 0.12123 0.11569 0.705 -0.00237 0.01121 0.00749 0.02361 0.00166 0.04319 0.04319 0.04319 0.04319 0.04319 0.04319 0.04319 0.04319 0.04319 0.04319 0.04316 0.00749 0.0331 0.00677 0.03843 0.01277 0.03314 0.01381 0.00749 0.0317 0.03311 0.02280 0.000666 0.01587 0.0687		20-04	2 20002	0.02010	0.00000	0.00131	0.03122	0.01023	0.02320	0.03240	0.07110
01-05 1-04358 0.01139 0.011653 1.41428 -0.3248 -1.2148 1.12967 1.51683 03-06 0.12568 0.01139 0.01153 0.11418 -0.32248 -0.32248 -0.32218 -1.2967 1.51683 03-06 0.12568 0.011418 0.01155 -0.47105 -0.32248 -0.03221 -0.32211 -0.32248 -0.03221 -0.32211 -0.03221 -0.03421 -0.02421 -0.01471 -0.11147 -0.11471 -0.11471 -0.11141 -0.02616 -0.4318 0.00749 0.02717 -0.03211 -0.01616 -0.43181 0.00749 0.02717 -0.2312 -0.17538 0.03217 -0.5513 11-05 -0.00191 0.01241 -0.13619 -0.02280 -0.00966		01.05	1.045002	0.02200	0.01030	0.0040	0.10244	0.07123	0.07720	1 52010	0.01540
02-05 0.31465 0.00326 0.01155 0.017248 0.417105 0.32348 0.11298 0.5003 0.02724 0.047105 0.03214 0.012724 0.047105 0.02724 0.047105 0.02724 0.047105 0.02724 0.047105 0.00677 0.00878 0.01212 0.01153 0.00902 0.00677 0.03843 0.12132 0.01155 07-05 -0.00287 0.01221 0.00749 0.02361 0.00577 0.03843 0.11432 0.01674 08-05 -0.00287 0.01231 0.00749 0.02159 0.00579 0.34318 0.00749 0.09371 09-05 -0.00205 0.01284 0.02159 0.00231 0.0231 0.01316 0.0231 0.0231 0.01316 0.0231 0.01317 0.11303 0.1237 0.0231 0.0231 0.01316 0.0231 0.01316 0.0231 0.01316 0.0231 0.01331 0.0124 0.03289 0.02312 0.12538 0.02312 0.12538 0.03217 0.0531 0.32852 0		01-05	-1.04090	0.10029	0.01110	0.01404	-0.3102	0.00602	-0.2140	1.0007	-0.71001
03-05 0.12966 0.01416 0.01126 0.006066 -0.1253 0.01292 0.006066 0.1253 0.02792 0.03243 0.12462 04-05 0.2316 6.56E-04 0.01017 0.01477 0.11802 -0.06878 -0.03421 0.08916 06-05 1.94254 -0.00268 0.01122 0.01643 -0.000667 -2.04E-04 0.98667 0.03433 0.11213 0.11546 07-05 -0.00287 0.01231 0.00749 0.02361 0.00516 -0.4319 0.14436 0.066739 09-05 -0.00202 0.06566 -2.01154 -0.05489 0.00877 0.09917 10-05 -0.00205 0.01284 -0.12691 0.00979 -0.3231 -0.13008 12-05 -0.00191 0.01136 -0.13131 -0.0266 -0.66512 -0.2312 -0.1538 0.03217 -0.5513 13-05 -0.00119 0.01136 -0.21366 -0.20228 -0.32825 -0.99046 -0.0424 -0.33932 14-05		02-05	0.31405	0.00320	0.01159	0.01000	-1.41400	-0.32590	-0.32910	-1.2907	-1.51063
04-05 0.03912 0.00732 0.08058 -0.01293 -0.02732 -0.02731 -0.0274 0.02731 -0.0274 0.02741 0.02861 0.02861 0.02861 0.02861 0.03843 0.12123 0.011952 0.06145 06-05 -1.94254 -0.00269 0.01123 0.01764 0.02861 0.08686 0.06661 -2.41E-04 0.98667 0.10952 0.06145 08-05 -0.00202 0.06596 -0.01655 0.02169 0.00979 -0.34818 0.00749 0.0917 10-05 -0.00205 0.01284 -0.12894 0.03289 -0.01286 0.02311 -0.12837 0.02311 -0.12837 0.03231 -0.1538 0.03231 -0.1538 0.03231 -0.1538 0.03231 -0.1538 0.03231 -0.1538 0.03231 -0.1538 0.03231 -0.5538 0.01461 -0.56351 14.05 -0.001198 0.0776 0.20116 -0.00282 -0.2324 -0.42744 1.0524 -0.33322 15.05 -8.74E-04		03-05	0.12560	0.01410	0.01155	0.07240	-0.47105	-0.33240	-0.11090	-0.59043	-0.12462
06-05 0.2315 0.536-04 0.01017 0.0117 0.0117 0.01017 0.01027 0.00834 0.01231 0.00902 07-05 -0.00343 0.01165 0.06896 0.00651 -2.41E-04 -0.98667 0.10952 0.06145 08-05 -0.00287 0.01231 0.00749 0.02361 0.00579 -0.34818 0.0749 0.0917 10-05 -0.00186 0.01147 -0.11113 -0.0261 0.01154 -0.05469 0.00877 0.0991 11-05 -0.00205 0.01284 -0.12944 0.03289 -0.00979 0.34818 0.0747 0.2311 -0.1531 12-05 -0.00191 0.01318 -0.13619 -0.0228 -0.2568 -0.0141 -0.5531 13-05 -0.01192 5.65E-04 -0.13619 -0.0228 -0.32825 -0.99046 0.4241 -0.3392 16-05 -0.13645 -0.05652 -0.2032 -0.2143 -1.33974 -0.51186 17-05 0.12853 -0.10398 <t< td=""><td></td><td>04-05</td><td>0.30912</td><td>0.00732</td><td>0.06505</td><td>0.01205</td><td>-0.06056</td><td>-0.1253</td><td>-0.02792</td><td>-0.30231</td><td>-0.32549</td></t<>		04-05	0.30912	0.00732	0.06505	0.01205	-0.06056	-0.1253	-0.02792	-0.30231	-0.32549
06-05 -1.94/254 -0.00249 0.01122 0.01143 -0.00343 0.12123 0.01645 07-05 -0.00237 0.01231 0.00749 0.02361 0.00516 -0.4319 0.14436 0.06739 09-05 -0.00202 0.06596 -0.01555 0.02159 0.00974 -0.34818 0.00749 0.0911 10-05 -0.00186 0.01147 -0.11113 -0.0231 -0.12331 -0.1308 11-05 -0.00158 0.01284 -0.12894 0.03289 -0.0186 -0.0231 -0.15018 12-05 -0.00158 0.01776 -0.20166 -0.5451 -0.2525 -0.9984 -0.0424 -0.33932 15-05 -8.74E-04 -0.01836 -0.02652 -0.2939 -0.42645 -1.27744 -1.10528 -1.83428 16-05 -0.13545 -0.09569 -0.14608 -0.99572 -1.14345 -0.2143 -0.33924 -0.34276 -0.27844 -0.13934 -0.4470 -0.3864 -0.97455 19-05 0.001		05-05	0.2315	6.56E-04	0.01017	0.01477	0.11802	-0.08517	-0.06878	-0.03421	0.08916
00-05 -0.00237 0.01765 0.00296 0.02861 -0.241E-04 0.98667 0.01852 0.00578 08-05 -0.00202 0.06596 -0.01265 0.02159 0.00979 -0.34818 0.00749 0.0917 10-05 -0.00186 0.01147 -0.11113 -0.0261 0.01154 -0.05489 0.00377 0.02331 -0.13091 11-05 -0.00191 0.0138 0.13103 0.0477 -0.2312 -0.17538 0.02317 -0.5513 13-05 -0.00191 0.01386 -0.20116 -0.00666 -0.54512 -0.25688 -0.01461 -0.65351 14-05 -0.00129 -5.56E-04 -0.13619 -0.0228 -0.32825 -0.99046 0.2424 -0.33922 15-05 -8.74E-04 -0.01869 -0.2028 -0.27824 0.04151 -0.2142 -1.8345 16-05 0.12653 -0.13938 -0.99572 -1.4345 -0.2743 -1.33974 -0.51186 17-05 0.12653 -0.0377 -0.1449<		06-05	-1.94254	-0.00269	0.01122	0.01543	-0.00902	-0.00677	-0.03843	0.12123	0.11596
08-05 -0.0028 0.01231 0.00749 0.02361 0.00156 -0.4319 0.14435 0.00749 10-05 -0.00126 0.01124 -0.01155 0.02159 0.00979 -0.34818 0.00749 0.0917 11-05 -0.001205 0.01124 -0.12894 0.03289 -0.00366 -0.12337 0.02311 -0.10568 12-05 -0.00191 0.01318 -0.2016 -0.00226 -0.2312 -0.17538 0.03217 -0.5613 13-05 -0.00129 -5.56E-04 -0.13619 -0.00226 -0.23825 -0.99046 0.0424 -0.33323 15-05 -8.74E-04 -0.01836 -0.20150 -0.27824 -0.27824 -0.2143 -1.33974 -0.51186 17-05 0.12653 -0.0311 -0.19224 -0.3327 1.1234 -0.33284 -0.97824 -0.33289 0.08693 -0.39884 -0.97455 19-05 0.00176 -0.0377 -0.10449 0.00527 -0.63322 0.12344 -0.31339 0.09654 <		07-05		-0.00343	0.01165	0.06896	0.06561	-2.41E-04	-0.98667	0.10952	0.06145
109-05 -10.00202 0.06856 -10.01655 0.02165 0.00179 -10.34618 0.00077 0.0991 110-05 -0.00166 0.01147 -0.11113 -0.0226 0.01287 0.02331 -0.13008 12-05 -0.00191 0.01318 -0.13013 0.0477 -0.2312 -0.17538 0.03217 -0.5513 13-05 -0.00129 -5.56E-04 -0.13619 -0.00268 -0.32825 -0.99046 0.0424 -0.33932 15-05 -8.74E-04 -0.01386 -0.20529 -0.22845 -0.2724 -1.133974 -0.51186 17-05 0.12653 -0.10311 -0.19224 -0.33276 -0.27824 0.04151 -0.20342 -0.4877 18-05 0.00124 -0.10313 -0.10328 -0.02869 0.08693 -0.39884 -0.3742 20-05 0.00176 -0.11579 -0.02181 0.0433 -0.13339 0.09654 0.07253 0.04243 21-05 0.00267 -0.12836 0.007718 -0.10735 <t< td=""><td></td><td>08-05</td><td></td><td>-0.00287</td><td>0.01231</td><td>0.00749</td><td>0.02361</td><td>0.00516</td><td>-0.4319</td><td>0.14436</td><td>0.06739</td></t<>		08-05		-0.00287	0.01231	0.00749	0.02361	0.00516	-0.4319	0.14436	0.06739
10.05 -0.0018b 0.01147 -0.0215 0.01184 -0.0184 0.01284 0.01281 0.01184 -0.12837 0.02331 -0.13037 11-05 -0.00191 0.011318 -0.13103 0.0477 -0.2312 -0.17538 0.03217 -0.5513 13-05 -0.00191 0.011318 -0.13103 0.0477 -0.2312 -0.17538 0.03217 -0.5513 14-05 -0.00129 -5.65E-04 -0.13619 -0.00228 -0.32825 -0.99046 0.0424 -0.33322 15-05 -8.74E-04 -0.01360 -0.20522 -0.20939 -0.42845 -1.27744 -1.1528 -1.83428 16-05 -0.13545 -0.99589 -0.1493 -0.33276 -0.27824 0.04151 -0.20342 -0.48707 18-05 0.00176 -0.0137 -0.02181 0.0433 -0.13339 0.09654 0.07253 0.04243 21-05 0.00267 -0.2383 -0.0736 -0.01041 1.62E-04 0.11887 0.11877 22-0		09-05		-0.00202	0.06596	-0.01655	0.02159	0.00979	-0.34818	0.00749	0.0917
11-05 -0.00215 0.01284 -0.12894 0.03289 -0.00986 -0.12837 0.02311 -1.13008 12-05 -0.00119 0.01318 -0.13103 0.0477 -0.2512 -0.17538 0.03217 -0.5513 13-05 -0.00129 -5.56E-04 -0.13619 -0.00228 -0.32825 -0.99046 0.0424 -0.33332 15-05 -8.74E-04 -0.01366 -0.20522 -0.20399 -0.42845 -1.27744 -1.10528 -1.83428 16-05 -0.13545 -0.09639 -0.14608 -0.93972 -1.14345 -0.2143 -0.33974 -0.61186 17-05 0.12853 -0.1011 -0.19224 -0.33276 -0.27824 0.04151 -0.23974 -0.68393 19-05 0.00176 -0.1179 -0.0218 0.0433 -0.13339 0.07263 0.11877 22-05 0.00267 -0.1283 -0.0786 0.00873 -0.10044 1.62E-04 0.10829 0.0731 22-05 0.84732 0.00262 -0.		10-05		-0.00186	0.01147	-0.11113	-0.0261	0.01164	-0.06469	0.00877	0.0991
12:05 -0.00191 0.01318 -0.13103 0.04/7 -0.2312 -0.17538 0.03277 -0.6513 13:05 -0.00129 -5.56E-04 -0.13619 -0.00228 -0.23225 -0.99046 0.0424 -0.33332 15:05 -8.74E-04 -0.01836 -0.2052 -0.2039 -0.42845 -1.27744 -1.10528 -1.83428 16:05 -0.13545 -0.09589 -0.14608 -0.99572 -1.14345 -0.2143 -1.33974 -0.51186 17:05 0.12653 -0.10111 -0.19244 -0.03276 -0.27824 0.04161 -0.20342 -0.48077 18:05 0.00177 -0.10377 -0.10449 0.00527 -0.62822 0.12034 -0.03104 -0.36833 20:05 0.00176 -0.11579 -0.02181 0.0433 -0.13339 0.09654 0.07253 0.04243 21:05 0.00267 -0.20578 -0.08866 0.00733 -0.01044 1.62E-04 0.10887 0.11877 22:05 0.00267 <td< td=""><td></td><td>11-05</td><td></td><td>-0.00205</td><td>0.01284</td><td>-0.12894</td><td>0.03289</td><td>-0.00986</td><td>-0.12837</td><td>0.02331</td><td>-0.13008</td></td<>		11-05		-0.00205	0.01284	-0.12894	0.03289	-0.00986	-0.12837	0.02331	-0.13008
13-05 -0.00158 0.07176 -0.21116 -0.00228 -0.54512 -0.25688 -0.01461 -0.5633332 14-05 -0.00129 -5.56E-04 -0.13619 -0.02293 -0.42845 -1.27744 -1.10528 -1.83428 16-05 -0.13545 -0.09589 -0.14608 -0.99972 -1.14345 -0.2143 -1.33974 -0.51186 17-05 0.12853 -0.10111 -0.19224 -0.33276 -0.27824 0.04151 -0.20342 -0.48707 18-05 0.00124 -0.10377 -0.10499 0.00527 -0.66322 0.12034 -0.03984 -0.97455 19-05 0.00176 -0.11779 -0.02181 0.0433 -0.13339 0.09654 0.07253 0.04243 21-05 0.00267 -0.12383 -0.0765 0.07178 -0.10735 0.00544 0.08829 -0.0791 22-05 0.00267 -0.12383 -0.0763 -0.01718 -0.10244 0.08045 -1.29249 24-05 -6.2E-01 -0.00266		12-05		-0.00191	0.01318	-0.13103	0.0477	-0.2312	-0.17538	0.03217	-0.6613
14-05 -0.00129 -5.56E-04 -0.13619 -0.00228 -0.32825 -0.99046 0.0424 -0.33932 15-05 -8.74E-04 -0.01836 -0.20652 -0.20939 -0.42845 -1.27744 -1.10528 -1.83428 16-05 -0.13645 -0.09589 -0.14086 -0.99572 -1.14345 -0.2143 -1.33974 -0.51186 17-05 0.12853 -0.10113 -0.19224 -0.32276 -0.27824 0.04151 -0.20342 -0.48707 18-05 0.00127 -0.0377 -0.10449 0.00527 -0.65322 0.12034 -0.03104 -0.36893 20-05 0.00176 -0.11579 -0.02181 0.0433 -0.13339 0.09654 0.07253 0.04243 21-05 0.00267 -0.12383 -0.07183 -0.01075 0.00544 0.08829 -0.0791 22-05 0.84732 0.00268 -0.7556 -0.07263 -2.01E-04 -0.12847 0.00841 0.04669 -0.02254 24-05 -6.82E-01 0.00456 -0.41675 -0.01257 0.05669 0.01733 -0.02635		13-05		-0.00158	0.07176	-0.20116	-0.00665	-0.54512	-0.25588	-0.01461	-0.56351
15-05 -8,74E-04 -0.01836 -0.20652 -0.209379 -0.42845 -1.27744 -1.10528 -1.83428 16-05 -0.13545 -0.09589 -0.14608 -0.99572 -1.14345 -0.2143 -1.33974 -0.51186 17-05 0.12853 -0.10311 -0.19224 -0.33276 -0.27824 0.04151 -0.20342 -0.48707 18-05 0.00157 -0.0377 -0.10449 0.00527 -0.65322 0.12034 -0.03104 -0.36893 20-05 0.00176 -0.11579 -0.02181 0.0433 -0.13399 0.09654 0.07253 0.04243 21-05 0.00267 -0.12383 -0.0785 0.07183 -0.10736 0.00544 0.08829 -0.0791 22-05 0.84732 0.00352 -0.12048 -0.01414 0.04396 -1.24376 0.02289 0.06045 -1.29249 24-05 -6.62E-01 0.00456 -0.11675 -0.01257 0.0562 -1.03431 -0.0243 -0.0154 0.04396 0.03008 25-05 -2.98E-01 -0.00268 -0.11278 -0.0569 <t< td=""><td></td><td>14-05</td><td></td><td>-0.00129</td><td>-5.56E-04</td><td>-0.13619</td><td>-0.00228</td><td>-0.32825</td><td>-0.99046</td><td>0.0424</td><td>-0.33932</td></t<>		14-05		-0.00129	-5.56E-04	-0.13619	-0.00228	-0.32825	-0.99046	0.0424	-0.33932
16-05 -0.13545 -0.09589 -0.14608 -0.99572 -1.134345 -0.2143 -1.33974 -0.51186 17-05 0.12653 -0.10311 -0.19224 -0.33276 -0.27824 0.04151 -0.20342 -0.48707 18-05 0.00124 -0.10377 -0.10449 0.00527 -0.65322 0.12034 -0.39884 -0.97455 19-05 0.00176 -0.11579 -0.02181 0.0433 -0.13339 0.09664 0.07253 0.04243 21-05 0.00267 -0.20678 -0.08836 0.00873 -0.01004 1.62E-04 0.10887 0.11877 22-05 0.00267 -0.12048 -0.01414 0.04336 -1.24376 0.02289 -0.00445 -1.29249 24-05 6.62E-01 0.00456 -0.1257 0.0562 -1.03431 -0.02421 0.07985 -0.09448 25-05 -2.98E-01 -0.04467 -0.0462 -0.1487 -0.04431 -0.02439 -0.02054 26-05 -0.00141 -0.48817 <t< td=""><td></td><td>15-05</td><td></td><td>-8.74E-04</td><td>-0.01836</td><td>-0.20652</td><td>-0.20939</td><td>-0.42845</td><td>-1.27744</td><td>-1.10528</td><td>-1.83428</td></t<>		15-05		-8.74E-04	-0.01836	-0.20652	-0.20939	-0.42845	-1.27744	-1.10528	-1.83428
17-05 0.12863 -0.10311 -0.19224 -0.33276 -0.27824 0.04151 -0.20342 -0.48707 18-05 0.00124 -0.10193 -0.10938 -0.05913 -0.2869 0.06693 -0.33084 -0.97455 19-05 0.00176 -0.0177 -0.10449 0.00527 -0.65322 0.12034 -0.03104 -0.36893 20-05 0.00176 -0.11579 -0.02181 0.0433 -0.13339 0.09654 0.07253 0.04243 21-05 0.00267 -0.2678 -0.08836 0.00785 -0.10735 0.00544 0.08829 -0.0791 23-05 0.84732 0.00257 -0.1267 0.05062 -1.03431 -0.02481 0.04683 -1.29249 24-05 -6.62E-01 0.00456 -0.7556 -0.07263 -2.01E-04 -0.12847 0.00841 0.04669 -0.0254 26-05 -0.0141 -0.48817 -0.00462 0.04838 0.11739 -0.02635 -0.0771 0.04869 0.03008 27-05<		16-05		-0.13545	-0.09589	-0.14608	-0.99572	-1.14345	-0.2143	-1.33974	-0.51186
18-05 0.00124 -0.10193 -0.10938 -0.05913 -0.2869 0.08693 -0.39884 -0.97455 19-05 0.00157 -0.0377 -0.10449 0.00527 -0.65322 0.12034 -0.03104 -0.36893 20-05 0.00176 -0.11579 -0.02181 0.00433 -0.13339 0.09654 0.07253 0.04243 21-05 0.00267 -0.12088 -0.00781 -0.01075 0.002644 0.08829 -0.0791 23-05 0.84732 0.00352 -0.12048 -0.01414 0.04396 -1.24376 0.02289 0.06045 -1.29249 24-05 -6.62E-01 0.00456 -0.41675 -0.01257 0.5062 -1.03431 -0.02421 0.07985 -0.94948 25-05 -2.98E-01 -0.00208 -0.7556 -0.07263 -2.01E-04 -0.12847 0.00841 0.04669 -0.02054 26-05 -0.00141 -0.48817 -0.00462 0.0438 0.11739 -0.04969 0.04396 0.03088		17-05		0.12853	-0.10311	-0.19224	-0.33276	-0.27824	0.04151	-0.20342	-0.48707
19-05 0.00157 -0.0377 -0.10449 0.00527 -0.65322 0.12034 -0.03104 -0.36893 20-05 0.00176 -0.11579 -0.02181 0.0433 -0.13339 0.09654 0.07253 0.04243 21-05 0.00267 -0.20678 -0.08836 0.00873 -0.01004 1.62E-04 0.10887 0.11877 22-05 0.00267 -0.12383 -0.00785 0.00783 -0.10735 0.00544 0.08829 -0.0791 23-05 0.84732 0.00352 -0.1248 -0.01414 0.04966 -1.24376 0.02289 0.06045 -1.29249 24-05 -6.62E-01 0.00456 -0.41675 -0.01257 0.05062 -1.03431 -0.02421 0.07985 -0.94948 25-05 -2.98E-01 -0.00208 -0.7556 -0.07263 -2.01E-04 -0.12847 0.00499 -0.03798 -0.00469 0.04939 -0.01574 0.08681 27-05 0.00619 -0.23913 -0.009689 -0.00772 -0.04639		18-05		0.00124	-0.10193	-0.10938	-0.05913	-0.2869	0.08693	-0.39884	-0.97455
20-05 0.00176 -0.11579 -0.02181 0.0433 -0.13339 0.09654 0.07253 0.04243 21-05 0.00207 -0.20678 -0.08836 0.00873 -0.01004 1.62E-04 0.10887 0.11877 22-05 0.00267 -0.12383 -0.00785 0.07183 -0.10735 0.00544 0.08829 -0.0791 23-05 0.84732 0.00352 -0.12048 -0.01414 0.04396 -1.24376 0.02289 0.06045 -1.29249 24-05 -6.62E-01 0.00456 -0.41675 -0.01257 0.05062 -1.03431 -0.0241 0.07985 -0.94948 25-05 -2.98E-01 -0.00248 -0.7556 -0.0763 -2.01E-04 -0.12847 0.00841 0.04669 -0.02042 26-05 -0.00141 -0.48817 -0.00462 0.04838 0.11739 -0.04939 -0.01693 -0.01764 0.06861 28-05 0.77851 0.00585 -0.11183 -0.06042 0.04726 -0.02435 -0.07071		19-05		0.00157	-0.0377	-0.10449	0.00527	-0.65322	0.12034	-0.03104	-0.36893
21-05 0.00207 -0.20678 -0.08836 0.00873 -0.01004 1.62E-04 0.10887 0.11877 22-05 0.00267 -0.12383 -0.00785 0.07183 -0.10735 0.00544 0.08829 -0.0791 23-05 0.84732 0.00352 -0.12048 -0.01414 0.04396 -1.24376 0.02289 0.06045 -1.29249 24-05 -6.62E-01 0.00456 -0.41675 -0.01257 0.05062 -1.03431 -0.02421 0.07985 -0.94948 25-05 -2.98E-01 -0.00208 -0.7556 -0.07263 -2.01E-04 -0.12847 0.00841 0.04669 -0.02054 26-05 -0.00141 -0.48817 -0.00462 0.04838 0.11739 -0.04993 -0.01574 0.08681 27-05 0.00619 -0.23913 -0.00989 -0.0669 0.00979 -0.04933 -0.01764 -0.2435 28-05 0.77851 0.00586 -0.14116 -0.0124 -0.2174 -0.2269 -0.02423 -0.1704		20-05		0.00176	-0.11579	-0.02181	0.0433	-0.13339	0.09654	0.07253	0.04243
22:05 0.00267 -0.12383 -0.00785 0.07183 -0.10735 0.00544 0.08829 -0.0791 23:05 0.84732 0.00352 -0.12048 -0.01414 0.04396 -1.24376 0.02289 0.06045 -1.29249 24:05 -6.62E-01 0.00456 -0.41675 -0.01257 0.05062 -1.03431 -0.02421 0.07985 -0.94948 25:05 -2.98E-01 -0.00208 -0.7556 -0.07263 -2.01E-04 -0.12847 0.00841 0.04699 -0.02054 26:05 -0.00141 -0.48817 -0.00462 0.0438 0.11739 -0.04993 -0.01574 0.08681 27:05 0.00619 -0.23913 -0.00989 -0.0669 0.00979 -0.04933 -0.01574 0.08681 28:05 0.77851 0.00585 -0.11179 -0.0124 -0.2173 -0.2269 -0.02433 -0.1704 -0.22756 30:05 -0.01868 -0.0777 -0.16532 -0.02433 -1.16309 -0.21128 -0.04211		21-05		0.00207	-0.20678	-0.08836	0.00873	-0.01004	1.62E-04	0.10887	0.11877
23-05 0.84732 0.00352 -0.12048 -0.01414 0.04396 -1.24376 0.02289 0.06045 -1.29249 24-05 -6.62E-01 0.00456 -0.41675 -0.01257 0.05062 -1.03431 -0.02421 0.07985 -0.94948 25-05 -2.98E-01 -0.00208 -0.7556 -0.07263 -2.01E-04 -0.12847 0.00841 0.04669 -0.02054 26-05 -0.00141 -0.48817 -0.00462 0.04838 0.11739 -0.04969 0.04396 0.03008 27-05 0.00619 -0.23913 -0.00989 -0.0669 0.00979 -0.04093 -0.01574 0.0681 28-05 0.77851 0.00565 -0.14116 -0.01183 -0.06042 0.04726 -0.02635 -0.0771 0.04389 29-05 -0.88665 0.00274 -0.11799 -0.0124 -0.2173 -0.22499 -0.2423 -0.1704 -0.22756 30-05 -0.00568 -0.24888 -0.0737 -0.16532 -0.02433 -1.16309		22-05		0.00267	-0.12383	-0.00785	0.07183	-0.10735	0.00544	0.08829	-0.0791
24-05 -6.62E-01 0.00456 -0.41675 -0.01257 0.05062 -1.03431 -0.02421 0.07985 -0.94948 25-05 -2.98E-01 -0.00208 -0.7556 -0.07263 -2.01E-04 -0.12847 0.00841 0.04669 -0.02054 26-05 -0.00141 -0.48817 -0.00462 0.04388 0.11739 -0.04969 0.04396 0.03008 27-05 0.00619 -0.23913 -0.00989 -0.00569 0.00979 -0.04093 -0.01574 0.06881 28-05 0.77851 0.00585 -0.14116 -0.01183 -0.06042 0.04726 -0.02635 -0.0701 0.04389 29-05 -0.88665 0.00274 -0.11799 -0.0124 -0.21743 -0.22269 -0.02423 -0.1704 -0.22756 30-05 -0.00568 -0.24888 -0.0737 -0.16532 -0.02433 -1.16309 -0.21128 -0.04211 31-05 -0.14941 -0.06225 -0.01424 -0.62281 -0.53299 -1.49989 -1.35525<		23-05	0.84732	0.00352	-0.12048	-0.01414	0.04396	-1.24376	0.02289	0.06045	-1.29249
25-05 -2.98E-01 -0.00208 -0.7556 -0.07263 -2.01E-04 -0.12847 0.00841 0.04669 -0.02054 26-05 -0.00141 -0.48817 -0.00462 0.04838 0.11739 -0.04969 0.04396 0.03008 27-05 0.00619 -0.23913 -0.00989 -0.00569 0.00979 -0.04093 -0.01574 0.08681 28-05 0.77851 0.00585 -0.14116 -0.01183 -0.60042 0.04726 -0.02635 -0.0771 0.04389 29-05 -0.88665 0.00274 -0.11799 -0.0124 -0.21743 -0.2269 -0.02423 -0.1704 -0.22756 30-05 -0.00568 -0.24888 -0.0737 -0.16532 -0.02343 -1.16309 -0.21128 -0.04211 31-05 -0.14941 -0.06225 -0.01424 -0.62281 -0.53299 -1.49989 -1.35525 -1.07402 01+06 -0.01434 -0.11118 -0.15854 -1.10228 -1.05805 -0.20155 -1.55731 -1.58941		24-05	-6.62E-01	0.00456	-0.41675	-0.01257	0.05062	-1.03431	-0.02421	0.07985	-0.94948
26-05 -0.00141 -0.48817 -0.00462 0.04838 0.11739 -0.04969 0.04396 0.03008 27-05 0.00619 -0.23913 -0.00989 -0.00569 0.00979 -0.04093 -0.01574 0.08681 28-05 0.77851 0.00585 -0.14116 -0.01183 -0.06042 0.04726 -0.02635 -0.07071 0.04389 29-05 -0.88665 0.00274 -0.11799 -0.0124 -0.21743 -0.22269 -0.02423 -0.1704 -0.22756 30-05 -0.00568 -0.24888 -0.0737 -0.16532 -0.02343 -1.16309 -0.21128 -0.04211 31-05 -0.14941 -0.06225 -0.01424 -0.62281 -0.53299 -1.49989 -1.35525 -1.07402 01+06 -0.00434 -0.11118 -0.15854 -1.10228 -1.05805 -0.20155 -1.55731 -1.58941 02-06 -0.01537 -0.09022 -0.05083 -0.2387 -0.35963 -0.0105 -0.24353 -0.03222		25-05	-2.98E-01	-0.00208	-0.7556	-0.07263	-2.01E-04	-0.12847	0.00841	0.04669	-0.02054
27.05 0.00619 -0.23913 -0.00989 -0.00569 0.00979 -0.04093 -0.01574 0.08681 28-05 0.77851 0.00585 -0.14116 -0.01183 -0.06042 0.04726 -0.02635 -0.07071 0.04389 29-05 -0.88665 0.00274 -0.11799 -0.0124 -0.21743 -0.22269 -0.02423 -0.1704 -0.22756 30-05 -0.00568 -0.24888 -0.0737 -0.16532 -0.02343 -1.16309 -0.21128 -0.04211 31-05 -0.14941 -0.06225 -0.01424 -0.62281 -0.53299 -1.49889 -1.35525 -1.07402 01-06 -0.00434 -0.11118 -0.15854 -1.10228 -1.05805 -0.20155 -1.55731 -1.58941 02-06 -0.01593 -0.09022 -0.0583 -0.2387 -0.35963 -0.0105 -0.24353 -0.03222 03-06 -0.01547 -0.0326 -0.11624 -0.3844 -0.20935 0.1053 -0.64868 04-06		26-05		-0.00141	-0.48817	-0.00462	0.04838	0.11739	-0.04969	0.04396	0.03008
28-05 0.77851 0.00585 -0.14116 -0.01183 -0.06042 0.04726 -0.02635 -0.07071 0.04389 29-05 -0.88665 0.00274 -0.11799 -0.0124 -0.21743 -0.22269 -0.02423 -0.1704 -0.22756 30-05 -0.00568 -0.24888 -0.0737 -0.16532 -0.02343 -1.16309 -0.21128 -0.04211 31-05 -0.14941 -0.06225 -0.01424 -0.62281 -0.53299 -1.49989 -1.35525 -1.07402 01-06 -0.00434 -0.11118 -0.15854 -1.10228 -1.05805 -0.20155 -1.55731 -1.58941 02-06 -0.01593 -0.09022 -0.05083 -0.2387 -0.35963 -0.0105 -0.24353 -0.03222 03-06 -0.01597 -0.0326 -0.11624 -0.3844 -0.20935 0.1053 -0.46362 -0.54858 04-06 -0.04981 -0.09531 -0.11308 -0.72757 -0.01685 -0.53871 -0.06426 05-06		27-05		0.00619	-0.23913	-0.00989	-0.00569	0.00979	-0.04093	-0.01574	0.08681
29-05 -0.88665 0.00274 -0.11799 -0.0124 -0.21743 -0.22269 -0.02423 -0.1704 -0.22756 30-05 -0.00568 -0.24888 -0.0737 -0.16532 -0.02343 -1.16309 -0.21128 -0.04211 31-05 -0.14941 -0.06225 -0.01424 -0.62281 -0.53299 -1.49989 -1.35525 -1.07402 01-06 -0.00434 -0.11118 -0.15854 -1.10228 -1.05805 -0.20155 -1.55731 -1.58941 02-06 -0.01593 -0.09022 -0.05083 -0.2387 -0.35963 -0.0105 -0.24353 -0.03222 03-06 -0.01547 -0.0326 -0.11624 -0.3844 -0.20935 0.1053 -0.46362 -0.54858 04-06 -0.04981 -0.09531 -0.11308 -0.72757 -0.01685 -0.53871 -0.06426 05-06 -0.30402 -0.03663 -0.15536 0.0674 0.05661 -0.13029 0.06462 05-06 -0.22092 -0.3339		28-05	0.77851	0.00585	-0.14116	-0.01183	-0.06042	0.04726	-0.02635	-0.07071	0.04389
30-05 -0.00568 -0.24888 -0.0737 -0.16532 -0.02343 -1.16309 -0.21128 -0.04211 31-05 -0.14941 -0.06225 -0.01424 -0.62281 -0.53299 -1.49989 -1.35525 -1.07402 01-06 -0.00434 -0.11118 -0.15854 -1.10228 -1.05805 -0.20155 -1.55731 -1.58941 02-06 -0.01593 -0.09022 -0.05083 -0.2387 -0.35963 -0.0105 -0.24353 -0.03222 03-06 -0.01547 -0.0326 -0.11624 -0.3844 -0.20935 0.1053 -0.46362 -0.54858 04-06 -0.04981 -0.09531 -0.11308 -0.72757 -0.09135 -0.01685 -0.53871 -0.06426 05-06 -0.30402 -0.09607 -0.03663 -0.15536 0.0674 0.05661 -0.13029 0.06462 06-06 -0.22092 -0.03339 -0.89555 0.03035 -0.08999 -0.01506 0.1284 -0.0728 07-06 -0.12518		29-05	-0.88665	0.00274	-0.11799	-0.0124	-0.21743	-0.22269	-0.02423	-0.1704	-0.22756
31-05 -0.14941 -0.06225 -0.01424 -0.62281 -0.53299 -1.49989 -1.35525 -1.07402 01-06 -0.00434 -0.11118 -0.15854 -1.10228 -1.05805 -0.20155 -1.55731 -1.58941 02-06 -0.01593 -0.09022 -0.05083 -0.2387 -0.35963 -0.0105 -0.24353 -0.03222 03-06 -0.01547 -0.0326 -0.11624 -0.3844 -0.20935 0.1053 -0.46362 -0.54858 04-06 -0.04981 -0.09531 -0.11624 -0.3844 -0.20935 -0.01685 -0.53871 -0.06426 05-06 -0.30402 -0.09607 -0.03663 -0.15536 0.0674 0.05661 -0.13029 0.06462 06-06 -0.22092 -0.03339 -0.08955 0.03035 -0.08999 -0.01506 0.1284 -0.0728 07-06 -0.12518 -0.10051 -0.02739 0.08952 -0.35541 0.04409 0.12992 -0.38619 08-06 -1.66E-02		30-05		-0.00568	-0.24888	-0.0737	-0.16532	-0.02343	-1.16309	-0.21128	-0.04211
01-06 -0.00434 -0.11118 -0.15854 -1.10228 -1.05805 -0.20155 -1.55731 -1.58941 02-06 -0.01593 -0.09022 -0.05083 -0.2387 -0.35963 -0.0105 -0.24353 -0.03222 03-06 -0.01547 -0.0326 -0.11624 -0.3844 -0.20935 0.1053 -0.46362 -0.54858 04-06 -0.04981 -0.09531 -0.11308 -0.72757 -0.09135 -0.01685 -0.53871 -0.06426 05-06 -0.30402 -0.09607 -0.03663 -0.15536 0.0674 0.05661 -0.13029 0.06426 06-06 -0.22092 -0.03339 -0.08955 0.03035 -0.08999 -0.01506 0.1284 -0.0728 07-06 -0.12518 -0.10051 -0.02739 0.08952 -0.35541 0.04409 0.12992 -0.38619 08-06 -1.66E-02 -0.10101 -0.29296 -0.07739 -0.07151 -0.63057 0.00597 -0.09274 -0.5571		31-05		-0.14941	-0.06225	-0.01424	-0.62281	-0.53299	-1.49989	-1.35525	-1.07402
02-06 -0.01593 -0.09022 -0.05083 -0.2387 -0.35963 -0.0105 -0.24353 -0.03222 03-06 -0.01547 -0.0326 -0.11624 -0.3844 -0.20935 0.1053 -0.46362 -0.54858 04-06 -0.04981 -0.09531 -0.11624 -0.3844 -0.20935 -0.01685 -0.53871 -0.06426 05-06 -0.30402 -0.09607 -0.03663 -0.15536 0.0674 0.05661 -0.13029 0.06462 06-06 -0.22092 -0.03339 -0.08955 0.03035 -0.08999 -0.01506 0.1284 -0.0728 07-06 -0.12518 -0.10051 -0.02739 0.08952 -0.35541 0.04409 0.12992 -0.38619 08-06 -1.66E-02 -0.10101 -0.29296 -0.07739 -0.07151 -0.63057 0.00597 -0.09274 -0.5571		01-06		-0.00434	-0.11118	-0.15854	-1.10228	-1.05805	-0.20155	-1.55731	-1.58941
03-06 -0.01547 -0.0326 -0.11624 -0.3844 -0.20935 0.1053 -0.46362 -0.54858 04-06 -0.04981 -0.09531 -0.11308 -0.72757 -0.09135 -0.01685 -0.53871 -0.06426 05-06 -0.30402 -0.09607 -0.03663 -0.15536 0.0674 0.05661 -0.13029 0.06462 06-06 -0.22092 -0.03339 -0.08955 0.03035 -0.08999 -0.01506 0.1284 -0.0728 07-06 -0.12518 -0.10051 -0.02739 0.08952 -0.35541 0.04409 0.12992 -0.38619 08-06 -1.66E-02 -0.10101 -0.29296 -0.07739 -0.07151 -0.63057 0.00597 -0.09274 -0.5571		02-06		-0.01593	-0.09022	-0.05083	-0.2387	-0.35963	-0.0105	-0.24353	-0.03222
04-06 -0.04981 -0.09531 -0.11308 -0.72757 -0.09135 -0.01685 -0.53871 -0.06426 05-06 -0.30402 -0.09607 -0.03663 -0.15536 0.0674 0.05661 -0.13029 0.06462 06-06 -0.22092 -0.03339 -0.08955 0.03035 -0.08999 -0.01506 0.1284 -0.0728 07-06 -0.12518 -0.10051 -0.02739 0.08952 -0.35541 0.04409 0.12992 -0.38619 08-06 -1.66E-02 -0.10101 -0.29296 -0.07739 -0.07151 -0.63057 0.00597 -0.09274 -0.5571		03-06		-0.01547	-0.0326	-0.11624	-0.3844	-0.20935	0.1053	-0.46362	-0.54858
05-06 -0.30402 -0.09607 -0.03663 -0.15536 0.0674 0.05661 -0.13029 0.06462 06-06 -0.22092 -0.03339 -0.08955 0.03035 -0.08999 -0.01506 0.1284 -0.0728 07-06 -0.12518 -0.10051 -0.02739 0.08952 -0.35541 0.04409 0.12992 -0.38619 08-06 -1.66E-02 -0.10101 -0.29296 -0.07739 -0.07151 -0.63057 0.00597 -0.09274 -0.5571		04-06		-0.04981	-0.09531	-0.11308	-0.72757	-0.09135	-0.01685	-0.53871	-0.06426
06-06 -0.22092 -0.03339 -0.08955 0.03035 -0.08999 -0.01506 0.1284 -0.0728 07-06 -0.12518 -0.10051 -0.02739 0.08952 -0.35541 0.04409 0.12992 -0.38619 08-06 -1.66E-02 -0.10101 -0.29296 -0.07739 -0.07151 -0.63057 0.00597 -0.09274 -0.5571		05-06		-0.30402	-0.09607	-0.03663	-0.15536	0.0674	0.05661	-0.13029	0.06462
07-06 -0.12518 -0.10051 -0.02739 0.08952 -0.35541 0.04409 0.12992 -0.38619 08-06 -1.66E-02 -0.10101 -0.29296 -0.07739 -0.07151 -0.63057 0.00597 -0.09274 -0.5571		06-06		-0.22092	-0.03339	-0.08955	0.03035	-0,08999	-0.01506	0.1284	-0.0728
08-06 -1.66E-02 -0.10101 -0.29296 -0.07739 -0.07151 -0.63057 0.00597 -0.09274 -0.5571		07-06		-0.12518	-0.10051	-0.02739	0.08952	-0.35541	0.04409	0.12992	-0.38619
		08-06	-1.66E-02	-0.10101	-0.29296	-0.07739	-0.07151	-0.63057	0.00597	-0.09274	-0.5571

		EXC	HANGE IN	UNSATUR	ATED AND	SATURATE	D ZONES (n	nm/h)	
DATE	S 9	S10	S11	S12	S13	S14	S15	S16	S17
09-06	6 -0.00617	-0.12599	-0.56518	-0.01655	-0.47045	-0.7566	0.04859	-0.498	-0.75338
10-06	6	-0.37379	-0.64336	-0.01663	-0.43423	-0.6195	-0.05655	-0.42967	-0.56812
11-06	3	-0.3009	-0.35176	-0.07682	-0.34305	-0.10294	-0.06777	-0.34449	-0.10202
12-06	- 6	-0.32853	-0.27333	-0.01947	-0.2462	0.04245	-0.05829	-0.24207	0.0702
13-06	- 6	-0.22435	-0.02816	-0.02273	-0.22703	0.08417	-0.04763	-0.18682	0.0809
14-00	0.01573	-0 45224	-0.0245	-0.07782	-0.42054	0 17889	-0.41316	-0 42244	0 11405
15-06	3	-0.35435	-0.01387	-0.019	-1 70181	-0.33608	-1.05358	-3.38971	-1 286
16-0	3	-0.43151	-0.05907	-0.0812	-1 74552	-1.01455	-0.26962	-1.65043	-0.96945
17-06	- 6	-0.73762	5.29E-04	-0.00174	-0.49441	-0.23437	0.01305	-0.36433	-0.36234
18-06	- 3	-0.28089	0.00173	-0.0081	-0.02782	-0.03849	-0.01977	-0.28665	-0.35241
19-06	- 6	-0.30116	0.00396	-0.00691	-0.04975	0.0931	-0.04041	0.08361	0.07678
20-06	3	-0.12492	0.00611	-0.0059	0.04317	0.07809	0.02295	0.22546	0.13237
20.0	3	-0.08897	0.00702	-0.00507	0.00011	0.03921	0.05187	0.14052	0.10201
27-0	5 0.88857	-0.01103	0.00657	-0.00416	0.08263	0.03021	0.02707	0.14002	0.00022
22.00	5 0.00007 5 0.11352	-0.00422	0.00001	-0.00410	0.00200	-0.0371	0.03711	0.09095	-0.05617
23-00	5 -0.05484	-0.00422	-0.032	-0.00303	-0.02418	-0.037	0.04624	0.03055	-0.00017
24-00	0.06735	-0.01	-0.032	0.00007	-0.02410	-0.31037	0.04024	-0.19556	-0.34033
23-00	0.00733	0.13033	0.1001	0.00207	0.000751	0.36070	0.00400	0.10000	0.23124
20-00	0.120	0.21343	0.21005	0.00102	0.23731	-0.20470	0.00200	-0.10000	-0.34100
27-00	0.2100	0.10444	-0.20000	0.00104	0.00000	-0.14334	0.0003	-0.12200	-0.03755
20-00		0.02301	-0.04407 n nozon	0.00242	-0.03004	0.01049	0.00320	-0.04391	0.00191
29-00	-0.23000	0.11001	-0.00002	0.00310	-0.12363	-0.00923	0.01736	-0.12000	0.03929
01.0	7 0 E7EE2		-0.01473	0.00393	-0.11001	0.00706	-0.00533	-0.06041	0.00706
01-0	r -0.97993 7	-0.09000	-0.00741	0.00362	-0.10015	0.02439	-0.06410	-0.09735	0.01304
02-07	7	-0.13371	-0.003	-0.33E-04	-0.11323	0.02705	-0.21071	-0.11381	0.08178
03-07	7	-0.13322	-0.49E-04	-0.0110	-0.04269	0.03934	-0.17504	-0.04419	-0.00737
04-07	7	-0.10222	-0.05271	-0.0260	-0.12070	0.05936	-0.23750	-0.12962	0.04411
05-07	7	-0.20623	0.00493	-0.09669	-0.16209	-0.00134	-0.10966	-0.16253	0.00267
06-07	7 0.00077	-0.23878	-0.00258	-0.10523	-0.2455	-0.04809	-0.0669	-0.24785	-0.04947
07-07	7 0.00977	-0.24219	-0.22715	-0.16945	-0.24448	-0.50889	0.00401	-0.24183	-0.4565
08-0	/ -0.034	-0.1257	-0.43787	-0.00892	-0.1307	-0.69223	-0.10987	-0.13037	-0.73505
09-0,	7	-0.04859	-1.25602	-0.043/4	-0.11001	-1.31315	-0.40227	-0.04472	-1.30118
10-0,	7	-0.12737	-0.66193	-0.20144	-0.08036	-0.71423	-0.27536	-0.13/66	-0.71455
11-0,	/ -	-0.09881	-0.34126	-0.14343	-0.09696	-0.23162	-0.06284	-0.10257	-0.23047
12-0,	-	-0.01214	-0.24118	-0.12413	-0.01235	-0.2567	-0.04596	-0.01622	-0.25653
13-0,	-	0.05745	-0.50485	-0.17762	0.05554	-0.28225	-0.12628	0.05446	-0.28872
14-0,	/	-0.04658	-0.26414	-0.1062	-0.048	-0.19939	-0.0931	-0.04867	-0.19963
15-07	7	-0.63536	-0.24449	-0.04218	-0.63886	-0.22178	-0.01203	-0.63376	-0.15998
16-07	7 0.35513	-1.16786	-0.18353	-0.08796	-1.16888	-0.03847	0.06389	-1.16972	-0.08117
17-07	7 0.52097	-0.66792	-0.0442	-0.02228	-0.66975	-0.00141	0.03897	-0.66995	-0.0549
18-07	7 0.16839	-0.15175	-3.75E-04	-0.07147	-0.15297	-0.01308	-0.01238	-0.15293	-0.02364
19-03	0.18132	0.0296	-0.14824	-0.00801	0.03118	-0.1618	0.04785	0.03127	-0.06542
20-07	7 0.21072	-0.23902	-0.99185	-0.00452	-0.23833	-1.01028	0.06295	-0.23854	-1.06709
21-07	7 -0.57433	-0.54032	-1.2124	-0.00158	-0.53802	-1.20621	0.01019	-0.5374	-1.20632
22-07	7 -0.03599	-0.36288	-0.39757	-2.27E-04	-0.35955	-0.39884	-0.00594	-0.35949	-0.39663
23-07	0.11853	-0.38116	-0.03439	-9.12E-04	-0.38185	0.02409	-0.00622	-0.38143	0.02181
24-07	0.26753	-0.19567	-0.00624	-0.00144	-0.20481	-0.00442	-1.45E-04	-0.19614	-0.00864
25-07	0.22649	-0.09452	-0.38412	-0.00103	-0.08678	-0.38427	0.00582	-0.09449	-0.37688
26-07	0.13792	0.05097	-0.61658	6.06E-06	0.05093	-0.61786	0.06376	0.05096	-0.61394
27-07	0.22023	-0.1753	-0.30867	0.0014	-0.17513	-0.26765	0.01739	-0.17531	-0.26112
28-07	7 -0.16775	-0.19595	-0.0705	0.00302	-0.19606	-0.12307	0.01566	-0.19595	-0.12369
29-07	7 -0.06463	-0.02184	-0.37431	0.00406	-0.02184	-0.36673	0.00699	-0.02185	-0.36605
30-07	7 -1.53E+00	-0.02121	-0.70519	0.00375	-0.02001	-0.70491	-0.01078	-0.02108	-0.7045
31-07	7 -4.55E-01	0.0439	-0.17569	-0.00211	0.04404	-0.12345	-0.15182	0.04392	-0.17585

		FXC	HANGE IN	UNSATUR	ATED AND	SATURATE	D ZONES (n	nm/h)	
DATE	\$9	S10	S11	S12	\$13	S14	S15	S16	S17
01-08		0.06675	0.02733	-0.09037	88880 D	-0.02828	-0 12947	0.06675	0.02915
02-08	0 77579	0.01345	0.08157	-0.02046	0.01297	0.08024	-0.05299	0.01345	0.08158
02.08	-0.8613	-0.23822	0.06308	-0 15618	-0.23819	0.12391	-0.04744	-0.23823	0.06376
03.08	0.0013	-0.0022	0.00000	-0.01455	-0.0979	0.00575	-0.2532	-0.09792	0.00070
05-08		0.00100	0.04041	-0.01400	9 78E-04	0.08111	-0.2002	0.00109	0.04034
80-30		0.02807	0.08757	-0.113759	0.702-04	0.03306	-0.20430	0.00100	0.08756
07-08		0.02007	0.007.07	-0.13733	0.02000	83030.0	0.13444	0.02000	0.00730
02-00		0.02204	0.00100	0.0443	0.02201	0.05000	0.13257	0.02202	0.00100
00-00		-0.00044	-0.012	-0.20445	-0.00047	0.00144	-0.13237	-0.00040	-0.0010
10.08		-0.24017	-0.012	-0.13417	-0.2402	-0.34807	-0.4004	-0.24013	-0.01100
11.08		0.20411	0.25014	0.037066	0.20413	0.04007	0.0454	0.20412	0.25015
17-00		0.05005 0.0000	0.20220	0.07200	0.00004	0.25551	0.24004	0.03084	0.23220
12-00		0.0000	0.2000/	0.20011	0.00362	-0.17007	-0.14005	0.00301	-0.23000
13-00		0.02300	0.20201	-0.12093	0.02300	-0.13734	0.06560	0.02304	-0.202
14-00		-0.02004	-0.3373	-0.10713	-0.02003	-0.34236	-0.16422	-0.02503	-0.3373
10-00		0.03434	-0.14207	0.37191	0.03432	-0.13011	-0.34100	0.03436	-0.14206
16-08		0.05309	0.02102	-0.3604	0.0531	-0.02764	-0.42473	0.05307	0.02101
17-08		0.01063	-0.00482	-0.15434	0.01063	-0.01024	-0.17898	0.01063	-0.00484
18-08		0.06301	-0.02384	-0.09278	0.063	0.03063	0.09262	0.06303	-0.02385
19-08	0.77040	0.01594	0.00175	-0.01538	0.01594	-0.04897	-0.0097	0.01594	0.00177
20-08	0.77216	-0.00451	-0.05256	-0.06038	-0.00451	-4.61E-04	0.04311	-0.00451	-0.05257
21-08	U.26436	-0.00/64	-0.09624	0.00368	-0.00/64	-0.09203	0.06669	-0.00/64	-0.09625
22-08	0.13289	1./8E-04	-0.08465	0.00661	1.92E-04	-0.08212	0.03736	1.80E-04	-0.08465
23-08	0.20052	-0.31695	-0.0874	0.00994	-0.31694	-0.14531	0.10095	-0.31695	-0.08/4
24-08	-1.50491	-0.9246	-0.09374	0.00825	-0.92461	-0.0991	8.02E-04	-0.92461	-0.09373
25-08	-0.12576	-0.173	-0.1061	-0.02472	-0.173	-0.10924	-0.05788	-0.173	-0.10609
26-08	0.80686	-0.06628	-0.16067	-0.02763	-0.06626	-0.09391	-0.04518	-0.05526	-0.1506
27-08	0.2204	0.02626	-0.09476	-0.01215	0.02626	-0.08963	-0.02373	0.02626	-0.09475
28-08	0.22193	0.05232	0.00121	-0.00228	0.05233	-0.06028	-0.01104	0.05233	0.0012
29-08	-0.29573	0.067	-0.04087	0.00216	0.06701	0.02191	-0.00623	0.067	-0.04088
30-08	-1.20486	0.0269	0.02678	-0.00669	0.02688	-0.02516	-0.02471	0.02687	0.02679
31-08		-0.02495	0.03974	-0.09707	-0.02495	0.03774	-0.68155	-0.02495	0.03977
01-09		0.02998	0.05213	-0.08614	-0.34326	-0.22603	-1.12296	-1.26109	-1.07071
02-09		-0.0107	0.00494	-0.01356	-1.11645	-0.99185	-0.29829	-1.25975	-1.35208
03-09		0.04153	-0.08268	-0.00467	-0.28958	-0.88704	0.05525	-0.29955	-1.07895
04-09		0.00137	-0.75705	-7.30E-05	0.00932	-0.85241	0.00342	-0.33958	-1.03861
05-09		0.00311	-0.22685	0.00222	0.06911	-0.08373	0.06594	0.08356	-0.04827
06-09		0.06157	-0.18322	-0.01566	0.04726	-0.17103	-0.07197	0.1016	-0.05766
07-09		0.02179	-0.40117	-0.20799	0.05833	-0.34815	-0.26366	0.14492	-0.35079
08-09		0.08216	-0.21173	-0.24652	0.03367	-0.12413	-0.15167	-0.00151	-0.04786
09-09		0.01935	-0.01955	-0.03393	0.0976	0.0101	-0.05625	0.06485	0.03647
10-09		0.03419	-0.03328	-0.10928	0.07165	-0.00933	-0.12243	0.09248	0.07889
11-09		0.09434	0.04725	-0.1139	0.08088	0.07492	-0.05243	0.116	0.02319
12-09		0.15481	0.00495	-0.01951	0.09675	0.03781	-0.08201	0.08104	0.08693
13-09		0.03064	0.00594	-0.01448	0.04193	0.0448	-0.00531	0.10007	-0.00489
14-09		0.03554	-0.04468	-0.00683	0.03939	-0.04696	-0.3825	0.04276	-0.00115
15-09		-0.13614	0.01605	3.83E-04	-1.47299	-0.38185	-0.99355	-2.91089	-1.45252
16-09		-0.78586	0.03928	0.00408	-1.34455	-1.04274	-0.28538	-1.42568	-1.39153
17-09		-0.46043	-0.00624	0.0073	-0.62936	-0.26365	0.01624	-0.37736	0.05003
18-09		-0.18756	0.05504	0.01094	-0.44568	0.08588	0.00925	-0.47596	-0.27077
19-09		-0.03188	0.01234	0.01356	0.15231	0.01752	0.08059	0.04898	0.04481
20-09		0.05211	0.06044	0.01678	0.05773	0.08538	0.05047	0.23027	0.13473
21-09	1,02182	0.08403	0.01387	0.02261	0.22109	0.00116	0.07569	0,12083	0.05297
22-09	-1.20668	-0.03862	0.01413	0.01765	-0.03384	0.06876	0.04008	0.07168	0.09155

		EXC	HANGE IN	UNSATUR	ΔΤΕΌ ΔΝΟ	SATURATE	D ZONES (n	um/hì	
DATE	S 9	S10	S11	S12	S13	S14	S15	S16	S17
23-09	3	-0.09627	0.01965	-0.01998	-0.15018	0.0439	-0.06037	-0.07092	0.0599
24-09	3	-0.38477	0.07762	-0.03232	-0.27545	0.04752	-0.07024	-0.28655	0.08572
25-09	3	-0.50165	0.03453	-0.02576	-0.55484	0.07146	-0.05744	-0.51624	0.10829
26-09	3	-0 15898	0.09465	-0.01315	-0 11553	0.08295	-0.04031	-0.12753	0.07813
27-09	0.96919	0.01553	0.15353	7.68E-04	8.97E-04	0.09307	0.0401	-0.00667	0.08842
28-04	0.00010	-0.00114	0.10000	0.00801	0.012.04	0.03635	-0.01127	0.03579	0.03928
20.00	-1 29917	0.00114	0.03411	-0.08178	0.02719	0.09415	-0.03645	0.07155	0.08636
30-04	a 1.20011	-0.00389	0.00411	-0.3352	0.04062	0.00410	-1 2281	0.01100	0.00000
01-10	י ו	0.00000	0.00400	-0.0002	-0.0313	-0.15434	-1 32471	-0.76636	-0.31811
07-10	, 1	0.08175	0.02000	-0.25455	-0.0313	-0.13434	-0.31776	-1.54543	-1 69886
02-10	, 1	0.00173	0.00007	-0.13431	-0.77207	-0.01347	0.12118	0 10955	-0.0000
04-10	י ז	0.000000	0.03281	0.07342	-0.20403	-0.22701	0.12110	-0.41009	-0.0007
04-10	י ז	-0.02333	-0.03201	0.00040	-0.10000	0.12234	0.11577	-0.41005	-0.13760
06-10	, 1 1 08808	-0.07017	0.02023	0.00001	-0.53705	0.00104	0.11077	-0.43743	0.07246
07-10	036436	0.41400	0.02070	0.00312	-0.32710 0.1032	0.0773	0.10903	0.47333	0.07240
07-10	0.00420	0.2123	0.02475	0.07733	0.1332	0.02723	0.13334	0.01249	-0.00442
00-10	0.2247	-0.07103	0.02455	0.03120	0.00030	0.04432	0.07092	0.13049	0.05705
10.10	0.13147	0.01979	0.02011	0.03933	0.04373	-0.00246	0.07000	0.01921	0.07914
11.10	0.23574	0.09471	0.0314	0.00017	0.00000	0.0373	0.00261	0.14634	0.0464
11-10		0.07019	0.09130	0.03052	0.00207	0.00795	0.0007	0.0737	-0.00592
12-10	0.12092	0.00405	-0.00157	0.03632	0.10539	-0.01441	0.03009	0.09443	0.02030
13-10	0.14597	0.03323	0.00273	0.16537	0.07889	-0.01108	0.02921	0.12322	-0.01479
14-10	J -2.69303	0.09859	0.00844	0.0143	0.14605	0.0039	0.03489	0.09036	-0.00134
15-10	J	0.10924	0.01859	0.03512	0.00395	-0.05593	-0.84	-0.30681	-0.81454
16-10		0.17936	0.01894	0.09425	-0.60646	-0.83552	-0.20127	-1.35	-1.45568
17-10	1	0.01117	0.06191	0.03527	-0.23/44	-0.30495	-0.02177	-0.33508	-0.10752
18-10	J	0.02676	-0.01347	0.09516	-0.08667	-0.52486	0.01125	0.07769	-0.96175
19-10	J 1.40448	0.10464	-0.32537	0.10194	0.00624	-0.64496	0.08886	0.01527	-0.57273
20-10	0.22999	0.04201	-0.13697	0.10383	0.08225	-0.15392	0.06435	0.09562	-0.04504
21-10	J -U.4426	0.10321	-0.07437	0.03196	0.06312	0.09418	0.07024	0.07412	0.15248
22-10	J -0.58095	0.10733	0.00397	0.01365	0.08191	0.13543	0.05359	0.17299	0.22398
23-10	J U.U8801	0.10693	0.0168	2.33E-04	0.15265	0.08788	-0.01609	0.08845	0.0/144
24-10	0.35933	0.04469	0.02865	-3.25E-04	0.05393	0.0973	-0.00966	0.07617	0.13381
25-10	0.43174	0.02356	0.09494	0.06518	0.02479	0.12723	0.00325	0.01029	0.16669
26-10	0.15291	0.06933	0.09932	0.00836	0.0164	0.14726	0.01608	0.06923	0.13187
27-10	0.25004	0.02181	0.10331	0.01874	0.02824	0.11415	0.0262	0.0243	0.10389
28-10	0.3384	0.08722	0.10688	0.09049	0.03593	0.11438	0.08395	0.09736	0.11369
29-10	0.26555	0.03006	0.04436	0.02375	0.14765	0.16734	0.10206	0.03029	0.11336
30-10	0.27326	0.09162	0.09283	0.09554	0.03845	0.03273	0.04443	0.15881	0.03738
31-10	-3.22808	0.09831	0.01806	0.10449	0.10632	0.01579	0.00462	0.03994	0.0202
01-11	1	0.04469	0.0087	0.04179	0.01371	-0.25156	-0.52763	-0.38926	-1.12728
02-11	1	0.09687	0.00274	0.10453	-0.55043	-1.09542	-0.10425	-1.63241	-1.48204
03-11	1	0.10077	0.06505	0.11216	-0.20934	-0.27488	-0.03608	-0.0596	-0.11225
04-11	0.91961	0.0367	-0.00136	0.04579	-0.05155	0.01101	-0.01464	-0.27391	-0.33675
05-11	0.36785	0.02187	0.01744	0.04068	-0.02192	0.07281	0.04702	0.10289	0.14052
06-11	0.43269	0.1383	0.02195	0.15287	-0.0098	0.02543	0.06689	0.04739	0.13074
07-11	0.36095	0.03083	0.00991	0.03922	0.05999	0.0266	0.08916	0.06885	0.16255
08-11	0.35334	0.0419	0.0037	0.10193	0.02094	0.03447	0.10468	0.0894	0.07833
09-11	0.2817	0.10284	0.00181	0.10961	0.09229	-0.0118	0.04592	0.1214	0.03481
10-11	0.3672	0.10324	0.06616	0.03637	0.11196	0.05696	0.1099	0.1476	0.0458
11-1	0.28239	0.1032	0.03117	0.10306	0.1173	0.08336	0.16731	0.12394	0.06197
12-11	0.37047	0.1052	0.0948	0.10322	0.16148	0.09648	0.11728	0.11688	0.07683
13-11	0.32388	0.04165	0.1127	0.10507	0.04943	0.10809	0.11738	0.16695	0.09263
14-1	-4.24818	0.10161	0.03499	0.10411	0.10843	0.11059	0.08987	0.04987	0.1067

		EXC	HANGE IN	UNSATUR	ATED AND	SATURATE	D ZONES (n	nm/h)	
DATE	S9	S10	S11	S12	S13	S14	S15	S16	S17
15-1	1 0.06391	0.09773	0.15575	0.10063	0.07855	0.02267	-0.49099	-0.26967	-0.38304
16-1	0.87039	0.10001	0.04561	0.04253	-0.49074	-0.52219	-0.13921	-1.49422	-1.56623
17-1	0.37599	0.10252	0.10654	0.09789	-0.13354	-0.09971	-0.06777	-0.13021	0.05128
18-1	0.44204	0.03854	0.09973	0.09721	-0.0047	-0.03304	0.00693	-0.16941	-0.25968
19-1	1 -2.14E+00	0.099	0.09957	0.03922	0.02342	-0.00455	-0.00868	0.09754	0.11967
20-1	1	0.10431	0.10965	0.06294	0.04601	0.06968	-0.25345	0.20274	0.10822
21-1	1	0.16715	0.03601	-0.02352	0.10888	0.0937	-0.17545	0.12281	0.1486
22-1	1.31205	0.02485	0.10375	-0.07873	0.16005	0.11126	-0.0389	0.14171	0.1307
23-1	1 0.33047	0.03887	0.10004	0.00135	0.04222	0.11734	0.04376	0.09721	0.15643
24-1	0.23015	0.09476	0.09883	0.00135	0.1019	0.17025	0.05655	0.10515	0.17502
25-1	1 0.36254	0.09293	-0.02401	0.00463	0.10026	0.0413	0.01885	0.10588	0.04215
26-1	1 0.3631	0.03135	0.05905	0.01112	0.10811	0.01305	0.07121	0.15995	0.00913
27-1	1 0.37755	0.03492	0.08586	0.01551	0.02202	0.00291	0.10506	0.02106	0.00176
28-1	0.29135	0.08422	0.02283	0.08721	0.02043	0.09267	0.18156	0.0196	0.08612
29-1	1 0.36872	0.02747	0.08201	0.03231	0.0881	0.03774	0.06142	0.03434	0.15908
30-1	1 -3.88229	0.0841	0.03496	0.16476	0.09961	0.10137	0.07001	0.10092	0.04138
01-1	2	0.03041	0.09184	0.01336	0.0246	0.07147	-1.05554	-0.2105	-0.05506
02-1	2	0.08706	0.16759	0.01487	-0.34459	-0.57231	-0.59793	-1.55496	-1.60426
03-1	2	0.09167	0.01322	0.00393	-0.19274	-0.07992	-0.03536	-0.03985	-0.04046
04-1	2	0.03459	0.03586	1.41E-04	-0.01117	-0.01094	-0.13297	-0.10373	-0.04337
05-1	2	0.09022	0.09992	-0.02114	0.01087	0.01498	-0.19688	0.0539	0.00317
06-1	2	0.093	0.03683	-0.15137	0.02641	0.03618	-0.04656	0.10117	0.1497
07-1	2 1.19385	0.03405	0.09658	-0.02097	0.09365	0.18437	-0.00961	0.12082	0.13104
08-1	2 0.43929	0.09202	0.09716	-0.01065	0.10173	0.03262	0.0738	0.14569	0.15332
09-1	2 0.44441	0.03718	0.10389	-7.71E-04	0.10584	0.11588	0.10352	0.11248	0.11926
10-1	2 0.36429	0.09342	0.02986	0.00892	0.0442	0.10936	0.0852	0.05751	0.11976
11-1	2 0.37041	0.02886	0.09547	0.01874	0.02496	0.11213	0.16404	0.0392	0.1718
12-1	2 0.29147	0.01931	0.09747	0.01755	0.00904	0.11323	0.11978	0.02542	0.118
13-1	2 0.36434	0.13432	0.03591	0.14954	0.00375	0.1123	0.11897	-0.03151	0.11533
14-'	2 -3.73034	0.01022	0.0947	0.03487	0.01453	0.11198	0.02471	0.02904	0.10653
15-1	2	0.01247	0.03841	0.09455	0.06843	0.03153	-0.3972	-0.16016	-0.21566
16-1	2	0.01762	0.08473	0.03794	-0.43814	-0.38703	-0.12247	-1.59477	-1.65654
17-1	2 1.54749	0.02196	0.02597	0.09651	-0.19729	-0.21031	-0.07634	0.01031	-0.1431
18-1	2 0.33076	0.08457	0.08023	0.09603	-0.01182	-0.13771	0.05654	-0.1206	-0.17017
19-1	2 0.13097	0.02471	0.03221	0.0385	0.0158	0.00857	0.0745	0.10912	0.09803
20-1	2 0.26641	0.08696	0.03606	0.03758	0.03663	0.07184	0.01922	0.15275	0.06879
21-1	2 0.34087	0.02836	0.08995	0.09181	0.15835	0.00334	0.09585	0.11935	0.02916
22-*	2 0.26848	0.08771	0.02397	0.09203	0.04566	0.01171	0.1102	0.14257	0.04637
23-1	2 0.35955	0.02998	0.02149	0.03157	0.10258	0.02864	0.18299	0.15887	0.13866
24-1	2 0.27357	0.08974	0.13703	0.09136	0.10417	0.03718	0.03383	0.11597	0.02265
25-1	2 0.27384	0.02983	0.01856	0.03578	0.10348	0.03091	0.11222	0.16548	0.05417
26-1	2 0.2894	0.08588	0.01595	0.09102	0.10785	0.03034	0.11075	0.04454	0.02301
27-1	0.3079	0.02999	0.01529	0.09384	0.10994	0.09653	0.10982	0.11305	0.09552
28-1	0.19783	0.0852	0.01736	0.03534	0.10509	0.02657	0.10857	0.11211	0.02857
29-1	0.19188	0.03124	0.07479	0.09706	0.04/82	0.00903	0.11084	0.10916	0.00695
30-1	0.1911/	0.0832	0.01141	0.03462	0.10919	0.07623	0.10378	0.11133	0.08283
	0.29/69	0.08999	0.01407	0.14603	0.103/9	0.10406	0.10/2	0.10899	0.1685

DATE S18 S19 S20 S21 S22 S23 S24 S25 S26	S27
01-01	
02-01 -0.1712 -0.48588 -0.01135 -0.01139 -0.01741 -0.01722 -0.0179 -0.48588 -0.48	09 -0.48802
03-01 -1.7012 -0.08418 -0.84673 -0.84713 -1.15411 -1.14254 -1.21185 -0.08418 -0.04	61 0.01022
04-01 -0.35384 -1.42849 0.00746 0.00665 -0.35308 -0.38598 -0.34507 -1.42849 -1.36	97 -1.54808
05-01 -0.09877 -0.98597 0.17072 0.16673 -0.066 -0.00741 -0.07661 -0.98597 -0.95	58 -0.96088
06-01 -4.57E-04 -0.12404 0.10341 0.10146 -0.0189 -0.01971 -0.03327 -0.12404 -0.06	14 -0.04486
07-01 0.01744 0.14083 0.11462 0.05582 -0.03575 0.081 0.09671 0.14083 0.01	39 0.00997
08-01 0.02982 0.05562 -0.02109 0.00294 0.02759 0.04874 0.04936 0.05562 0.06	07 0.06148
09-01 0.08897 0.04242 -0.0063 0.05423 -0.02939 -0.0511 -0.047 0.04242 0.04	95 0.08269
10-01 0.09504 -0.025 0.02974 -0.01481 -0.03575 -0.02683 -0.02526 -0.025 0.11	15 -0.00612
11-01 0.1769 -0.03239 0.02225 0.00606 -0.00306 0.01697 0.01795 -0.03239 -0.04	17 0.03948
12-01 -0.03438 0.00796 0.04353 0.02112 -0.02229 -0.00698 -0.00882 0.00796 0.02	18 0.0197
13-01 0.15095 -0.02261 0.00205 0.07034 0.00376 0.01047 0.08675 -0.02261 -0.0	03 -0.00119
14-01 -0.00576 0.07541 0.00974 0.01264 0.01732 -0.00219 -0.06543 0.07541 0.03	86 0.12326
15-01 -1.45502 0.06579 0.02165 -0.03488 -0.00434 0.07299 -0.00155 0.06579 0.05	33 0.00993
16-01 -0.21609 -0.09285 0.03351 0.03136 0.00592 0.02489 0.0164 -0.09285 -0.01	65 -0.28048
17-01 -0.00702 -0.19436 -0.01328 0.04011 0.01259 -0.03817 0.00389 -0.19436 -0.15	27 -0.43517
18-01 0.02009 -0.42819 0.04269 -0.00601 -0.0484 0.01925 -0.05583 -0.42819 -0.38	64 -0.32868
19-01 0.03476 -0.32601 0.00122 0.04938 -0.0583 -0.03973 -0.05986 -0.32601 -0.25	49 -0.18961
20-01 0.1741 -0.18907 0.05603 0.00598 -0.05929 -0.04279 -0.05629 -0.18907 -0.1	69 -0.10027
21-01 0.02188 -0.08333 0.012 0.00637 -0.05381 -0.04094 -0.05051 -0.08333 -0.13	17 -0.07136
22-01 0.0431 -2.0361 0.01214 0.06395 -1.28373 -0.03691 -0.04421 -2.0361 -0.11	74 -4.73E-04
23-01 0.10251 -3.54803 0.07178 0.01458 -3.73012 -0.0318 0.01689 -3.54803 0.00	78 -0.01133
24-01 0.09941 -0.98776 0.01046 0.01248 -1.11613 -0.02658 -0.02477 -0.98776 -0.00	92 -0.00197
25-01 0.09878 -0.12523 0.01405 0.01389 -0.24786 0.03298 -0.02248 -0.12523 -0.06	31 -0.05981
26-01 0.09585 0.04848 0.01547 0.07118 -0.0161 -0.00996 0.03608 0.04848 0.00	96 0.00788
27-01 0.03922 0.00895 0.07623 0.01322 0.05079 -0.00851 -0.00619 0.00895 0.02	91 0.02426
28-01 0.10102 0.05014 0.01077 0.01453 0.01882 -0.00463 -0.00534 0.05014 -0.02	76 -0.0231
29-01 0.0997 0.05541 0.01533 0.01529 0.0214 0.05213 0.05333 0.05541 0.03	81 0.03469
30-01 0.1022 0.00329 0.01634 0.07053 0.08243 0.00891 0.00702 0.00329 -0.01	38 -0.00807
31-01 -0.10298 -0.0039 0.07227 0.01437 -0.08866 0.0081 0.00753 -0.0039 0.04	65 0.04813
01-02 -1.62709 0.10963 0.01432 0.01614 0.03028 0.01038 0.01016 0.10963 0.00	35 0.00165
02-02 -0.07252 0.03595 0.01584 0.0166 0.07976 0.06861 0.00996 0.03595 4.83E	04 -0.0249
03-02 -0.11639 -0.35083 0.01648 0.06995 -0.09343 0.00658 0.0037 -0.35083 0.03	46 -0.13736
04-02 0.02329 -0.50955 0.06928 0.01539 -0.03427 0.00405 -0.00534 -0.50955 -0.12	92 -0.16686
05-02 0.05634 -0.29767 0.01539 0.01666 -0.09098 -0.00352 -0.01183 -0.29767 -0.21	17 -0.17277
06-02 0 13013 -0 20388 0 01662 0 07282 -0 02648 -0 00939 -0 0142 -0 20388 -0 16	67 -0.1617
07-02 0.0954 -0.05444 0.07754 0.01233 -0.07521 -0.01196 -0.0141 -0.05444 -0.09	21 -0.09247
08-02 0.10519 -0.07788 0.00729 0.01621 -0.06767 -0.01157 -0.01478 -0.07788 -0.08	89 -0.07641
09-02 0 10635 0 0666 0 01604 0 01699 2 61E-04 -0 00968 -0 01218 0 0666 -0 0	06 -0.00649
10-02 0 16866 -0 09281 0 01697 0 07083 -0 04237 -0 06129 -0 00938 -0 09281 -0 06	26 -0.05045
11-02 0.04144 -0.01528 0.07112 0.01407 0.01991 -0.00299 -0.00631 -0.01528 -0.05	83 0.01357
	98 -0.03123
1302 0.10914 0.01508 0.01677 0.0175 0.0303 7.77E-04 7.53E-05 0.01508 -0.02	67 0.03129
	62 -0.01794
	07 0.01/18
	87 -0.12775
17.02 J. 15407 J. 09733 0.01677 0.01733 J. 00467 0.00862 0.00369 J. 09733 J. 017	25 -0.27093
	28 -0.28356
	26 _0.20000
20.02 0.00047 0.00143 0.00213 0.0143 0.0143 0.0043 0.01003 0.01003 0.0143 0.27	42 -0.2012 42 -0.12968
20102 0.03767 0.13974 0.01635 0.01746 0.05325 0.01108 0.01484 0.13974 0.13	28 -0.10813
22-02 0.09974 -0.11677 0.01589 0.01774 -0.04746 -0.01041 -0.01372 -0.11677 -0.10	12 -0.02725

			EXCHAN	SE IN LINS	ATURATED	AND SATUR	RATED ZON	ES (mm/h)		
DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
23-02	0.11741	-0.03978	0.01611	0.07967	-0.04244	-0.01006	-0.01157	-0.03978	-0.08614	-0.0757
24-02	0.10455	-0.01758	0.07672	0.01373	-0.03696	-0.00744	-0.0088	-0.01758	-0.01669	-0.00988
25-02	0.15518	-0.06571	0.01406	0.01497	-0.03122	-0.00438	-0.00576	-0.06571	0.00554	0.00832
26-02	0.03831	1.11E-04	0.01495	0.07954	-0.02575	-0.00123	-0.00269	1.11E-04	-0.04291	-0.03746
27-02	0.10593	0.0139	0.0763	0.00958	-0.02085	0.00172	2.47E-04	0.0139	0.01946	0.01813
28-02	-0.34232	-0.03266	0.01156	0.01384	-0.01681	0.00449	0.00311	-0.03266	0.04038	0.04406
01-03	-1.50818	0.02793	0.01417	0.01457	-0.01332	0.00699	0.00565	0.02793	-0.02258	-0.02578
02-03	-0.05246	0.12017	0.01471	0.07382	0.04314	0.00911	0.00604	0.12017	0.12888	-0.15329
03-03	-0.18145	-0.31855	0.07093	0.01102	-0.00363	0.00769	2.00E-04	-0.31855	-0.22905	-0.31596
04-03	0.09762	-0.38313	0.01197	0.0133	-0.01501	3.79E-04	-0.00907	-0.38313	-0.36914	-0.29869
05-03	0.14305	-0.29807	0.01376	0.01417	-0.0262	-0.0101	-0.01584	-0.29807	-0.30603	-0.16362
06-03	0.11885	-0.17069	0.01443	0.07157	-0.03231	-0.01683	-0.01839	-0.17069	-0.21954	-0.13036
07-03	0.14164	-0.1394	0.07058	0.01115	-0.03355	-0.019	-0.01818	-0.1394	-0.14047	-0.1098
08-03	0.15556	-0.11866	0.01219	0.01375	-0.0895	-0.02127	-0.0159	-0.11866	-0.11845	-0.02893
09-03	0.11904	-0.03761	0.0135	0.01438	-0.03553	-0.01913	-0.01282	-0.03761	-0.04135	-0.07566
10-03	0.03919	-0.02221	0.01367	0.06962	-0.02929	-0.01645	-0.00945	-0.02221	-0.0207	-0.00396
11-03	0.15698	-0.07167	0.06797	0.01069	-0.02518	-0.0133	-0.00605	-0.07167	-0.00639	0.00829
12-03	0.04393	-0.00679	0.01138	0.01325	-0.02101	-0.00989	-0.0028	-0.00679	-0.05495	0.02291
13-03	0.10402	0.01185	0.01324	0.0139	-0.01681	-0.00634	2.87E-04	0.01185	0.00977	-0.02798
14-03	-0.24338	-0.03485	0.0139	0.07186	0.04201	-0.00292	0.00329	-0.03485	0.02703	0.0422
15-03	-1.65679	0.08997	0.06891	0.00925	-0.002	3.02E-04	0.00587	0.08997	0.03479	-0.02499
16-03	-0.16445	-0.03383	0.01065	0.01315	-0.00182	0.00337	0.00608	-0.03383	-0.02475	-0.16148
17-03	-0.21256	-0.22691	0.013	0.0138	-0.00189	0.00428	-0.00163	-0.22691	-0.13522	-0.38466
18-03	0.13592	-0.39291	0.01351	0.01387	-0.01057	-5.47E-04	-0.01484	-0.39291	-0.29052	-0.31748
19-03	0.01331	-0.3112	0.07486	0.06575	-0.02268	-0.00895	-0.0249	-0.3112	-0.29515	-0.17855
20-03	0.07706	-0.17305	0.0039	0.01232	-0.02995	-0.01551	-0.02884	-0.17305	-0.21023	-0.14478
21-03	0.10566	-0.14058	0.01248	0.01311	-0.03163	-0.01837	-0.08254	-0.14058	-0.13607	-0.12211
22-03	0.12826	-0.11855	0.01327	0.01335	-0.03018	-0.01845	-0.03375	-0.11855	-0.11347	-0.1075
23-03	3 0.093	-0.04023	0.01373	0.0674	-0.02778	-0.01671	-0.02748	-0.04023	-0.0341	-0.02895
24-03	0.09356	-0.02406	0.06846	0.01087	-0.0255	-0.01403	-0.02388	-0.02406	-0.01565	-0.0203
25-03	0.09463	-0.01282	0.01198	0.01248	-0.07745	-0.01098	-0.02009	-0.01282	0.00289	-0.0053
26-03	0.03902	-0.06442	0.01307	0.01287	-0.02842	-0.00802	-0.01619	-0.06442	-0.05623	0.00915
27-03	0.15048	-3.57E-04	0.01348	0.01299	-0.02244	-0.00545	-0.01246	-3.57E-04	0.01045	-0.03808
28-03	0.04131	-0.04506	0.07059	0.06907	-0.01953	-0.00303	-0.00888	-0.04506	-0.03252	0.02015
29-03	0.10639	0.01425	0.00998	0.01126	0.04697	-5.99E-04	-0.00541	0.01425	0.02574	-0.02101
30-03	-0.34931	-0.02904	0.01235	0.01248	-0.01367	0.00192	0.05134	-0.02904	-0.01708	0.04622
31-03	-1.51627	0.03724	0.01298	0.01288	-0.00778	0.00444	0.00753	0.03724	0.04853	-0.02028
01-04	-0.14441	-0.03335	0.01326	0.071	-0.00419	0.0067	0.00453	-0.03335	-0.0169	-0.15703
02-04	-0.2002	-0.18736	0.06669	0.00821	-0.00531	0.00659	-0.00343	-0.18736	-0.15121	-0.31814
03-04	0.07972	-0.47524	0.01137	0.01207	-0.01768	-7.75E-04	-0.01553	-0.47524	-0.35722	-0.30588
04-04	0.11863	-0.34441	0.01235	0.01272	-0.03295	-0.01209	-0.02396	-0.34441	-0.30052	-0.22735
05-04	0.10733	-0.18344	0.01272	0.01301	-0.04166	-0.01931	-0.02669	-0.18344	-0.16643	-0.14201
06-04	0.06873	-0.1507	0.01283	0.06545	-0.09863	-0.02467	-0.08205	-0.1507	-0.13603	-0.11949
07-04	0.0746	-0.12771	0.06364	0.01081	-0.04653	-0.02435	-0.03103	-0.12771	-0.11681	-0.03803
08-04	0.13725	-0.05824	0.01156	0.01237	-0.04005	-0.07808	-0.02513	-0.05824	-0.10127	-0.01858
09-04	0.04344	-0.03216	0.01247	0.01288	-0.03569	-0.02762	-0.02185	-0.03216	-0.02919	-0.0711
10-04	0.09316	-0.02095	0.01286	0.01317	-0.03165	-0.02123	-0.01833	-0.02095	-0.01164	-0.00992
11-04	0.0393	-0.00856	0.0132	0.06389	-0.02767	-0.01794	-0.01487	-0.00856	0.00128	0.01127
12-04	0.15034	0.00778	0.06319	0.01159	-0.02353	-0.01531	-0.01146	0.00778	-0.0493	-0.03661
13-04	0.03755	-0.04192	0.01165	0.01269	-0.01958	-0.01288	-0.00805	-0.04192	0.01415	0.02191
14-04	-0.24088	0.01908	0.01234	0.01291	-0.01591	-0.01032	0.05098	0.01908	-0.03245	0.03934
15-04	-1.8572	0.02823	0.01249	0.01301	0.04109	-0.00769	0.00359	0.02823	0.03541	-0.02904
16-04	-0.0248	-0.03568	0.01248	0.01304	-0.00273	0.04723	-7.12E-04	-0.03568	-0.03799	-0.27623

			EXCHANG	E IN UNS	ATURATED	AND SATU	RATED ZON	ES (mm/h)		
DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
17-04	-0.16001	-0.27325	0.06206	0.01308	-0.00773	-0.00888	-0.01598	-0.27325	-0.2838	-0.475
18-04	7.68E-04	-0.465	0.01049	0.01318	-0.02176	-0.04484	-0.03543	-0.465	-0.42112	-0.35933
19-04	0.09103	-0.28864	0.01138	0.01326	-0.03778	-0.13372	-0.10214	-0.28864	-0.35868	-0.19437
20-04	0.06489	-0.24641	0.01163	0.06538	-0.04513	-0.15792	-0.05489	-0.24641	-0.24991	-0.16008
21-04	0.08669	-0.15907	0.01155	0.01004	-0.10195	-0.1463	-0.10276	-0.15907	-0.17364	-0.07063
22-04	0.11922	-0.07589	0.01132	0.01237	-0.05046	-0.08711	-0.05184	-0.07589	-0.09038	-0.1175
23-04	0.08	0.00344	0.06045	0.01289	-0.04271	-0.07436	-0.04391	0.00344	0.00838	-0.05047
24-04	0.08791	-0.08749	0.00882	0.01297	-0.03826	-0.06574	-0.03907	-0.08749	-0.11201	-0.02156
25-04	0.03538	-0.0228	0.00954	0.01296	-0.03396	-0.05865	-0.0341	-0.0228	-0.09368	-0.01609
26-04	0.03085	0.00257	0.00967	0.01274	-0.02998	-0.05215	-0.02959	0.00257	-0.02	0.00248
27-04	0.03101	-0.06121	0.0096	0.06233	-0.02623	-0.04606	-0.02562	-0.06121	-0.00623	-0.04547
28-04	0.09095	0.00541	0.00975	0.01094	-0.02241	0.01546	0.03298	0.00541	0.00601	0.01592
29-04	0.03043	-0.03755	0.01001	0.01219	-0.01872	-0.02802	-0.01162	-0.03755	-0.04492	-0.02943
30-04	-0.31728	0.02095	0.06331	0.01254	-0.01522	0.03051	-0.01161	0.02095	0.01708	0.02878
01-05	-1.41603	0.03782	0.00528	0.0127	0.04288	-0.01936	-0.00884	0.03782	0.02194	0.13827
02-05	-0.38426	-0.22294	0.00909	0.01272	-0.00356	-0.01838	-0.01135	-0.22294	-0.05017	-0.4138
03-05	0.07972	-0.83914	0.00974	0.0679	-0.05472	-0.02555	-0.02703	-0.83914	-0.45835	-0.47686
04-05	0.01808	-0.72961	0.00997	0.0109	-0.25725	-0.05126	-0.04452	-0.72961	-0.45948	-0.29701
05-05	0.04793	-0.42973	0.01001	0.01167	-0.36322	-0.07101	-0.05243	-0.42973	-0.35074	-0.29839
06-05	-0.38604	-0.21359	0.01007	0.01187	-0.2312	-0.13447	-0.11886	-0.21359	-0.25441	-0.11768
07-05	-1.15055	-0.16309	0.01023	0.01229	-0.14892	-0.1468	-0.06125	-0.16309	-0.12	-0.16536
08-05	-0.45699	-0.0787	0.07366	0.01231	-0.12622	-0.06848	-0.27649	-0.0787	-0.09119	-0.36681
09-05	-0.09339	-0.04611	0.00697	0.01049	-0.11056	-0.06424	-0.437	-0.04611	-0.0597	-0.51095
10-05	-0.07702	-0.01781	0.00816	0.00253	-0.03792	-0.0583	-0.42743	-0.01781	-0.03144	-0.36209
11-05	-0.08622	-0.05141	0.00884	-0.013	-0.0129	-0.0521	-0.29961	-0.05141	-0.02719	-0.27317
12-05	-0.07675	-0.03139	0.00924	-0.03017	-0.07762	0.00763	-0.2167	-0.03139	-0.07821	-0.24112
13-05	-0.25427	-0.01987	0.00946	-0.04425	-0.00862	-0.04636	-0.19636	-0.01987	-0.02686	-0.16557
14-05	-2.37633	-0.0054	0.00909	-0.10524	-0.05708	-0.08862	-0.20237	-0.0054	-0.12298	-0.16164
15-05	-0.24037	0.04975	0.06715	-0.11914	-0.05332	-0.25924	-0.4604	0.04975	-0.31561	-1.21806
16-05	-0.57805	-0.26942	-3.10E-04	-0.12638	0.00484	-0.35601	-0.82756	-0.26942	-0.92578	-1.17612
17-05	-0.36374	-0.6985	-0.00821	-0.12775	-0.08011	-0.67428	-0.51385	-0.6985	-1.14408	-0.54939
18-05	0.09273	-0.70769	-0.01662	-0.18304	-0.27424	-0.5723	-0.27619	-0.70769	-0.63047	-0.22406
19-05	0.16438	-0.42968	-0.08412	-0.11358	-0.23692	-0.41568	-0.15336	-0.42968	-0.43873	-0.09753
20-05	0.09163	-0.2175	-0.02807	-0.1015	-0.22521	-0.42728	-0.05511	-0.2175	-0.37744	-0.0487
21-05	0.04574	-0.10941	-0.09085	-0.03743	-0.1503	-0.3302	-0.11523	-0.10941	-0.25031	0.00782
22-05	0.01271	-0.12282	-0.10333	-0.08634	-0.12843	-0.21848	-0.0491	-0.12282	-0.18577	-0.06514
23-05	0.04607	-0.04561	-0.10852	-0.08463	-0.11305	-0.11832	-0.0147	-0.04561	-0.10651	-0.04417
24-05	0.01646	-0.07722	-0.13022	-0.02099	-0.03728	-0.51669	-0.05134	-0.07722	-0.55871	-0.01042
25-05	0.00287	-0.05704	-0.45764	-0.02103	-0.01789	-0.85567	-0.03106	-0.05704	-0.76942	-0.05113
26-05	-0.06627	0.00556	-0.50582	-0.07451	-0.07172	-0.45021	-0.0234	0.00556	-0.48482	-0.03097
27-05	-0.05243	-0.0119	-0.38132	-0.01548	-0.00934	-0.287	-0.07702	-0.0119	-0.24048	-0.02356
28-05	-0.03586	-0.0702	-0.31008	-0.01607	-0.05287	-0.12303	-0.01758	-0.0702	-0.12197	-0.07678
29-05	0.02313	-0.00768	-0.2122	-0.07526	0.00522	-0.1324	-0.0643	-0.00768	-0.13276	-0.01781
30-05	-2.71682	0.00342	-0.14076	-0.01241	-0.0454	-0.11601	-0.00746	0.00342	-0.11962	-0.02112
31-05	-0.90946	-0.06003	-0.20426	-0.01457	-0.05321	-0.09773	-0.18303	-0.06003	-0.08625	-0.95932
01-06	-0.27183	-0.32058	-0.12144	-0.01838	-0.07769	-0.22701	-0.72236	-0.32058	-0.62246	-1.27509
02-06	-0.45917	-0.97584	-0.12026	-0.08665	-0.32726	-0.48575	-0.64053	-0.97584	-1.04676	-0.83028
03-06	0.04403	-0.60806	-0.13675	-0.10148	-0.43796	-0.4956	-0.32218	-0.60806	-0.61067	-0.27624
04-06	0.12102	-0.50939	-0.07626	-0.04045	-0.4607	-0.41636	-0.25366	-0.50939	-0.43191	-0.2124
05-06	0.12279	-0.55741	-0.07462	-0.10656	-0.53159	-0.30861	-0.16379	-0.55741	-0.24617	-0.10829
06-06	0.00741	-0.3794	-0.13326	-0.09464	-0.44045	-0.15014	-0.07726	-0.3794	-0.1386	-0.0658
07-06	0.07237	-0.19329	-0.08253	-0.09403	-0.28678	-0.16585	-0.095	-0.19329	-0.09614	-0.03187
08-06	0.03324	-0.19967	-0.09132	-0.03152	-0.17511	-0.12729	-0.08286	-0.19967	-0.15907	-0.05214

				EXCHAN	GE IN UNSA	ATURATED	AND SATU	RATED ZON	ES (mm/h)		
DATE		S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
	09-06	-0.01229	-0.06027	-0.21069	-0.08414	-0.14458	-0.35571	-0.0102	-0.06027	-0.32216	-0.08022
	10-06	-0.07863	-0.22869	-0.50664	-0.02338	-0.10986	-0.57569	-0.03012	-0.22869	-0.58869	0.00269
	11-06	-0.08305	-0.2802	-0.56362	-0.02386	-0.25367	-0.53312	-0.09182	-0.2802	-0.54009	-0.04047
	12-06	-0.01257	-0.30004	-0.364	-0.07579	-0.33306	-0.41011	-0.03033	-0.30004	-0.37097	-0.09781
	13-06	-0.05253	-0.28188	-0.31475	-0.02261	-0.32867	-0.24247	-0.07902	-0.28188	-0.24455	-0.03739
	14-06	-1 32721	-0 27049	-0.16387	-0.08259	-0.27057	-0.07903	-0.01964	-0 27049	-0.08659	0.03694
	15-06	-1 49851	-0.47805	-0.12379	-0.0191	-0.36513	-0.08365	-0.07849	-0.47805	0.08572	-0.31576
	16-06	0.03904	-2 14656	-0.04364	-0.02188	-1 26/19	-0.14	-0.23339	-2 1/656	-0.49015	-1.01526
	17-06	-0.31167	-1.49441	-0.04504	-0.02100	-1.44775	-0.293/8	-0.20000	-1 /9//1	-1 12255	-0.75417
	18-06	1.64E-04	-1.20/19	-0.07003	-0.07050	-0.74586	-0.20040	-0.32633	-1.20441	-0.8168	-0.3861
	10-00	0.01624	0 3068	0.03333	0.01334	0.74300	0.30700	0.02000	0 3068	0.0100	0.3001
	20.00	0.01024	0.0000	0.04013	0.01440	0.41172	-0.32123	-0.20175	0.3000	0.0002	0.2020
	20-00	0.0044	0.13001	0.01730	0.01233	-0.20332	0.1723	-0.17031	0.13001	-0.03422	0.10001
	21-06	0.02090	0.03636	-0.01323	-0.06720	0.00091	-0.13063	-0.14990	-0.09636	-0.02369	-0.03762
	22-06	0.041	-0.02534	0.00176	-0.0005	-0.00034	-0.04641	-0.07645	-0.02094	0.01932	-0.07316
	23-06	0.00404	-0.07377	-0.04901	-0.00010	-0.09312	-0.07956	-0.0566	-0.07377	-0.10743	-0.04009
	24-06	0.06197	0.03457	0.01001	-0.00737	-0.04490	-0.06143	-0.03199	0.03457	-0.03072	-0.00540
	25-06	0.04394	-0.05961	-0.03963	-0.00627	-0.06744	-0.06459	-0.06411	-0.05961	-0.08904	0.00513
	26-06	0.05573	-0.11151	-0.0487	-0.00521	-0.05466	-0.12969	-0.01811	-0.11151	-0.15556	-0.06369
	27-06	-0.00127	-0.06495	-0.06269	-0.05735	-0.10177	-0.15092	-0.00474	-0.06495	-0.17307	-0.01822
	28-06	0.06238	-0.15758	-0.0773	-0.00188	-0.09663	-0.15636	-0.05284	-0.15758	-0.17508	-0.00/6/
	29-06	0.01305	-0.0954	-0.08413	-0.0018	-0.14047	-0.14941	0.00826	-0.0954	-0.10549	-0.05491
	30-06	-0.00552	-0.08137	-0.14226	-0.00127	-0.07803	-0.13559	-0.03935	-0.08137	-0.1411	0.00752
	01-07	-0.0661	-0.13149	-0.08579	-6.98E-04	-0.12654	-0.12164	-0.03761	-0.13149	-0.12685	-0.03919
	02-07	-0.21418	-0.07591	-0.07535	-5.56E-04	-0.05887	-0.04521	0.0208	-0.07591	-0.05926	0.01635
	03-07	-0.22609	-0.12029	-0.06849	-0.00191	-0.1181	-0.09142	-0.02824	-0.12029	-0.03231	-0.032/4
	04-07	-0.20181	-0.05447	-0.0622	-0.00591	-0.11736	-0.02754	-0.03701	-0.05447	-0.0199	-0.04141
	05-07	-0.10766	-0.114/9	-0.05664	-0.01303	-0.11646	-0.00119	-0.04636	-0.11479	-0.07243	-0.05081
	06-07	-0.06808	-0.12142	0.00404	-0.07956	-0.12171	-0.06557	-0.05686	-0.12142	-0.00932	-0.06166
	07-07	0.00388	-0.13168	-0.04068	-0.02/12	-0.13189	-0.05789	-0.06283	-0.13168	-0.05522	-0.06663
	08-07	-0.11133	-0.14435	-0.04942	-0.10022	-0.14572	-0.00588	-0.12109	-0.14435	-0.0628	-0.06647
	09-07	-0.40078	-0.2057	-0.09676	-0.04731	-0.14866	-0.16656	-0.06998	-0.2057	-0.11482	-0.0662
	10-07	-0.27571	-0.1477	-0.66036	-0.05771	-0.14018	-0.58576	-0.07992	-0.1477	-0.61981	-0.13658
	11-07	-0.06626	-0.13748	-0.67928	-0.13508	-0.13345	-0.78742	-0.16328	-0.13748	-0.74304	-0.17232
	12-07	-0.04428	-0.13097	-0.52071	-0.15973	-0.12904	-0.47434	-0.18992	-0.13097	-0.5352	-0.12006
	13-07	-0.12665	-0.12417	-0.39187	-0.16937	-0.12187	-0.39538	-0.11458	-0.12417	-0.34708	-0.17944
	14-07	-0.0346	-0.0425	-0.32937	-0.10908	-0.11178	-0.33334	-0.11553	-0.0425	-0.3292	-0.12332
	15-07	-0.00285	-0.10518	-0.31206	-0.10573	-0.1028	-0.3159	-0.11356	-0.10518	-0.31371	-0.11556
	16-07	0.01894	-0.12324	-0.29812	-0.10167	-0.06578	-0.30085	-0.10757	-0.12324	-0.30018	-0.10918
	17-07	0.0339	-0.47842	-0.21622	-0.09386	-0.52806	-0.21996	-0.09916	-0.47842	-0.22051	-0.10082
	18-07	-0.01807	-0.65364	-0.18158	-0.08535	-0.6539	-0.12339	-0.09009	-0.65364	-0.18509	-0.09156
	19-07	0.04516	-0.43514	-0.15855	-0.07716	-0.40442	-0.15206	-0.08134	-0.43514	-0.09902	-0.02012
	20-07	0.06067	-0.28255	-0.08682	-0.06989	-0.27893	-0.13905	-0.07348	-0.28255	-0.13813	-0.06978
	21-07	0.00901	-0.20709	-0.42257	-0.00674	-0.26274	-0.36782	-0.00706	-0.20709	-0.43202	-0.06458
	22-07	-0.00689	-0.29537	-0.85029	-0.05047	-0.24284	-0.89327	-0.05182	-0.29537	-0.85362	-0.00284
	23-07	-0.00696	-0.31573	-0.61372	0.00984	-0.36954	-0.5509	0.00429	-0.31573	-0.58422	-0.04481
	24-07	-7.98E-04	-0.38808	-0.31697	-0.03935	-0.3324	-0.37006	-0.03867	-0.38808	-0.25773	0.0121
	25-07	0.06515	-0.31321	-0.19301	-0.03777	-0.36036	-0.18766	0.02076	-0.31321	-0.22975	-0.03364
	26-07	0.00563	-0.27285	-0.20432	-0.03432	-0.27923	-0.25429	-0.03134	-0.27285	-0.25371	-0.03368
	27-07	0.01558	-0.18829	-0.3547	0.02315	-0.12288	-0.3639	-0.02976	-0.18829	-0.36462	0.02646
	28-07	0.01615	-0.16573	-0.40223	-0.02147	-0.16187	-0.34878	-0.02696	-0.16573	-0.34813	-0.02346
	29-07	0.00703	-0.15335	-0.31511	-0.02238	-0.15257	-0.31021	-0.02435	-0.15335	-0.30846	-0.02275
	30-07	-0.01081	-0.13795	-0.26557	-0.02029	-0.13529	-0.26465	0.03441	-0.13795	-0.319	-0.02027
	31-07	-0.1471	-0.11724	-0.36388	-0.01819	-0.11327	-0.4264	-0.01392	-0.11724	-0.37135	-0.0181

DATE S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 01-08 -0.12534 -0.09566 -0.3409 0.04002 -0.09472 -0.34174 -0.01585 -0.09566 -0.34257 -0.017 02-08 -0.05364 -0.06924 -0.29107 -0.01594 -0.06655 -0.2348 -0.01899 -0.05622 -0.13486 -0.0224 03-08 -0.04761 -0.0542 -0.18794 -0.02168 -0.11435 -0.18784 -0.02287 -0.05462 -0.13486 -0.0244 04-08 -0.24742 -0.0391 -0.10306 -0.02551 -0.04827 -0.0324 -0.09948 -0.14392 -0.0282 05-08 -0.24348 -0.09948 -0.06523 -0.03247 -0.0324 -0.09948 -0.07021 -0.0344 07-08 -0.2341 -0.04709 -0.09909 -0.09581 -0.04211 -0.04343 -0.0714 -0.0614 -0.0614 08-08 -0.13099 -0.08395 -0.051				EXCHAN	GE IN UNS	ATURATED	AND SATU	RATED ZON	ES (mm/h)		
01-08 -0.12534 -0.09566 -0.3409 0.04002 -0.09472 -0.34174 -0.01585 -0.09566 -0.34257 -0.017 02-08 -0.05364 -0.06924 -0.29107 -0.01594 -0.06655 -0.2348 -0.01839 -0.05642 -0.13486 -0.029248 -0.0214 03-08 -0.04761 -0.05462 -0.18794 -0.02551 -0.04829 -0.0287 -0.05462 -0.13486 -0.0228 05-08 -0.24742 -0.03914 -0.06523 -0.0399 -0.03887 -0.07359 -0.0324 -0.09948 -0.07021 -0.0394 06-08 -0.2438 -0.0304 -0.04709 -0.09909 -0.09581 -0.04211 -0.04456 -0.03944 -0.06014 -0.0460 07-08 -0.2341 -0.0304 -0.06552 -0.09271 -0.06953 -0.1172 -0.09434 -0.0714 -0.014 -0.0614 08-08 -0.13099 -0.08395 -0.0573 -0.15766 -0.0719 -0.02817 -0.09738 -0.01926 -0	DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
02-08 -0.05364 -0.06924 -0.29107 -0.01594 -0.06655 -0.2348 -0.01839 -0.06924 -0.29248 -0.0201 03-08 -0.04761 -0.05462 -0.18794 -0.02168 -0.11435 -0.18784 -0.02287 -0.05462 -0.13486 -0.0244 04-08 -0.24742 -0.03891 -0.10306 -0.02551 -0.04629 -0.09781 -0.0268 -0.03891 -0.14392 -0.0282 05-08 -0.26498 -0.09948 -0.06523 -0.03989 -0.07359 -0.0324 -0.09948 -0.03944 -0.04610 06-08 -0.2341 -0.04709 -0.09991 -0.09271 -0.04553 -0.11772 -0.09434 -0.07014 -0.06450 07-08 -0.2341 -0.04668 -0.0273 -0.13469 -0.02733 -0.02713 -0.02763 -0.02713 -0.0273 -0.07740 -0.02837 -0.01762 -0.01864 -0.1779 10-08 -0.82316 -0.07162 -0.00996 -0.1892 -0.07566 -0.07978	01-08	-0.12534	-0.09566	-0.3409	0.04002	-0.09472	-0.34174	-0.01585	-0.09566	-0.34257	-0.0175
03-08 -0.04761 -0.05462 -0.18794 -0.02168 -0.11435 -0.18784 -0.02287 -0.05462 -0.13486 -0.0244 04-08 -0.24742 -0.03891 -0.10306 -0.02551 -0.04629 -0.09781 -0.0268 -0.03891 -0.14392 -0.0282 05-08 -0.26498 -0.09344 -0.06623 -0.03891 -0.07359 -0.0324 -0.09948 -0.07021 -0.0394 06-08 -0.24438 -0.09434 -0.06668 -0.09551 -0.04211 -0.04456 -0.03944 -0.0460 07-08 -0.2341 -0.04668 -0.0552 -0.09271 -0.06953 -0.11772 -0.09434 -0.0460 -0.01416 -0.08395 -0.00417 -0.1344 08-08 -0.13299 -0.032673 -0.15766 -0.0719 -0.02817 -0.09738 -0.01926 -0.01864 -0.1579 10-08 -0.82316 -0.07162 -0.00996 -0.1892 -0.07566 -0.07938 -0.07162 -0.01364 -0.1579	02-08	-0.05364	-0.06924	-0.29107	-0.01594	-0.06655	-0.2348	-0.01839	-0.06924	-0.29248	-0.02012
04-08 -0.24742 -0.03891 -0.10306 -0.02551 -0.04629 -0.09781 -0.0268 -0.03891 -0.14392 -0.0282 05-08 -0.26498 -0.09948 -0.06523 -0.03089 -0.03887 -0.07359 -0.0324 -0.09948 -0.07021 -0.0339 06-08 -0.24438 -0.09434 -0.06666 -0.09521 -0.04211 -0.04456 -0.0304 -0.03944 -0.0606 07-08 -0.2341 -0.09434 -0.06666 -0.02783 -0.0561 -0.14316 -0.08395 -0.0714 -0.01414 08-08 -0.42989 -0.01267 -0.16766 -0.0719 -0.02817 -0.09348 -0.07162 -0.01866 -0.1579 10-08 -0.82316 -0.07162 -0.00996 -0.1892 -0.07566 -0.0099 -0.17396 -0.07162 -0.01364 -0.1657 11-08 -0.24796 -0.08203 -0.0186 -0.37345 -0.08325 -0.0756 -0.37768 -0.08877 -0.0237 -0.3453 11-08	03-08	-0.04761	-0.05462	-0.18794	-0.02168	-0.11435	-0.18784	-0.02287	-0.05462	-0.13486	-0.02445
05-08 -0.26498 -0.09948 -0.06523 -0.03089 -0.03887 -0.07359 -0.0324 -0.09948 -0.07021 -0.0339 06-08 -0.20438 -0.0304 -0.04709 -0.09909 -0.09581 -0.04211 -0.04456 -0.0304 -0.03944 -0.06046 07-08 -0.2341 -0.04395 -0.0552 -0.09271 -0.06953 -0.11772 -0.09434 -0.07014 -0.0611 08-08 -0.13099 -0.08395 -0.05019 -0.13469 -0.02817 -0.09738 -0.01926 -0.01476 -0.04476 0-08 -0.42389 -0.07627 -0.15766 -0.0791 -0.02817 -0.09738 -0.01262 -0.01364 -0.1579 10-08 -0.82316 -0.0762 -0.03345 -0.02794 -0.01841 -0.39822 -0.08033 -0.0166 -0.1579 11-08 -0.24796 -0.08887 -0.07552 -0.37345 -0.0825 -0.0756 -0.37768 -0.08887 -0.0237 -0.3454 12-08 -0.0774	04-08	-0.24742	-0.03891	-0.10306	-0.02551	-0.04629	-0.09781	-0.0268	-0.03891	-0.14392	-0.02828
06-08 -0.20438 -0.0304 -0.04709 -0.09909 -0.09581 -0.04211 -0.04456 -0.0304 -0.03944 -0.0460 07-08 -0.2341 -0.09434 -0.06686 -0.06552 -0.09271 -0.06953 -0.11772 -0.09434 -0.07014 -0.0611 08-08 -0.13099 -0.08395 -0.05019 -0.13469 -0.02783 -0.0561 -0.14316 -0.08395 -0.01417 -0.1344 09-08 -0.42989 -0.01267 -0.15766 -0.0719 -0.02817 -0.09338 -0.01926 -0.01866 -0.1579 10-08 -0.82316 -0.07162 -0.00996 -0.1892 -0.07566 -0.0099 -0.17396 -0.07162 -0.01846 -0.1657 11-08 -0.24796 -0.08203 -0.0186 -0.23436 -0.02794 -0.01841 -0.39202 -0.08203 -0.07162 -0.3443 12-08 -0.07974 -0.08887 -0.0752 -0.37455 -0.08272 -0.07868 -0.08979 -0.34649 -0.0817	05-08	-0.26498	-0.09948	-0.06523	-0.03089	-0.03887	-0.07359	-0.0324	-0.09948	-0.07021	-0.03394
07-08 -0.2341 -0.09434 -0.06686 -0.09552 -0.09271 -0.06953 -0.11772 -0.09434 -0.07014 -0.0611 08-08 -0.13099 -0.08395 -0.05019 -0.13469 -0.02783 -0.0561 -0.14316 -0.08395 -0.00417 -0.1344 09-08 -0.42989 -0.01926 -0.02673 -0.15766 -0.0719 -0.02817 -0.09738 -0.01926 -0.01866 -0.1779 10-08 -0.82316 -0.07162 -0.00996 -0.1892 -0.07566 -0.0099 -0.17396 -0.07162 -0.01364 -0.1857 11-08 -0.24796 -0.08203 -0.0186 -0.37435 -0.02794 -0.01841 -0.39862 -0.0237 -0.3750 11-08 -0.07974 -0.08887 -0.0752 -0.37451 -0.08273 -0.16841 -0.39862 -0.0823 -0.0875 -0.3750 13-08 -0.04008 -0.08997 -0.34609 -0.34609 -0.2211 -0.0827 -0.1039 -0.22317 -0.08465 <td< td=""><td>06-08</td><td>-0.20438</td><td>-0.0304</td><td>-0.04709</td><td>-0.09909</td><td>-0.09581</td><td>-0.04211</td><td>-0.04456</td><td>-0.0304</td><td>-0.03944</td><td>-0.04602</td></td<>	06-08	-0.20438	-0.0304	-0.04709	-0.09909	-0.09581	-0.04211	-0.04456	-0.0304	-0.03944	-0.04602
08-08 -0.13099 -0.08395 -0.05019 -0.13469 -0.02783 -0.0561 -0.14316 -0.08395 -0.00417 -0.1344 09-08 -0.42989 -0.01926 -0.02673 -0.15766 -0.0719 -0.02817 -0.09738 -0.01926 -0.01866 -0.1579 10-08 -0.82316 -0.07162 -0.00996 -0.1892 -0.07566 -0.0099 -0.17396 -0.07162 -0.01864 -0.1857 11-08 -0.24796 -0.08203 -0.0186 -0.34436 -0.02794 -0.01841 -0.38262 -0.08203 -0.07015 -0.3443 12-08 -0.07974 -0.08887 -0.07552 -0.37345 -0.08278 -0.0768 -0.08877 -0.0237 -0.3750 13-08 -0.04008 -0.08917 -0.08999 -0.34611 -0.08279 -0.34649 -0.08917 -0.085 -0.03750 13-08 -0.04008 -0.08917 -0.08265 -0.11242 -0.19352 -0.07565 -0.12428 -0.09465 -0.1117 -0.2214 <td>07-08</td> <td>-0.2341</td> <td>-0.09434</td> <td>-0.06686</td> <td>-0.06552</td> <td>-0.09271</td> <td>-0.06953</td> <td>-0.11772</td> <td>-0.09434</td> <td>-0.07014</td> <td>-0.06113</td>	07-08	-0.2341	-0.09434	-0.06686	-0.06552	-0.09271	-0.06953	-0.11772	-0.09434	-0.07014	-0.06113
09-08 -0.42989 -0.01926 -0.02673 -0.15766 -0.0719 -0.02817 -0.09738 -0.01926 -0.01866 -0.1579 10-08 -0.82316 -0.07162 -0.00996 -0.1892 -0.07566 -0.0099 -0.17396 -0.07162 -0.01364 -0.1857 11-08 -0.24796 -0.08203 -0.0186 -0.34436 -0.02794 -0.01841 -0.38822 -0.08203 -0.07015 -0.3443 12-08 -0.07974 -0.08807 -0.07552 -0.37345 -0.08278 -0.07668 -0.08807 -0.0237 -0.3760 13-08 -0.04008 -0.08917 -0.08699 -0.34611 -0.08278 -0.08979 -0.34649 -0.08917 -0.085 -0.3455 14-08 -0.04008 -0.08465 -0.138 -0.22211 -0.08267 -0.12428 -0.1945 -0.1242 -0.19352 -0.12428 -0.12428 -0.12428 -0.12428 -0.12428 -0.12428 -0.12428 -0.10775 -0.1865 -0.12428 -0.12424 -0.1946	08-08	-0.13099	-0.08395	-0.05019	-0.13469	-0.02783	-0.0561	-0.14316	-0.08395	-0.00417	-0.13446
10-08 -0.82316 -0.07162 -0.00996 -0.1892 -0.07566 -0.0099 -0.17396 -0.07162 -0.01364 -0.1857 11-08 -0.24796 -0.08203 -0.0186 -0.34436 -0.02794 -0.01841 -0.39822 -0.08203 -0.07015 -0.34436 12-08 -0.07974 -0.08887 -0.07552 -0.37345 -0.08225 -0.0756 -0.3768 -0.08887 -0.0237 -0.3450 13-08 -0.04008 -0.08465 -0.1038 -0.22211 -0.08278 -0.08979 -0.34649 -0.08917 -0.085 -0.345 14-08 -0.07747 -0.08465 -0.1038 -0.22211 -0.08287 -0.12428 -0.19465 -0.1177 -0.2214 15-08 -0.46071 -0.0742 -0.19362 -0.07686 -0.12428 -0.12428 -0.0747 -0.1865 -0.19362 -0.19465 -0.1946 -0.21245 -0.0742 -0.19461 -0.2176 -0.18688 -0.12428 -0.0742 -0.21011 -0.2113 -0.2113	09-08	-0.42989	-0.01926	-0.02673	-0.15766	-0.0719	-0.02817	-0.09738	-0.01926	-0.01866	-0.15795
11-08 -0.24796 -0.08203 -0.0186 -0.34436 -0.02794 -0.01841 -0.39822 -0.08203 -0.07015 -0.34433 12-08 -0.07974 -0.08887 -0.07552 -0.37345 -0.08325 -0.0756 -0.37768 -0.08897 -0.0237 -0.3750 13-08 -0.04008 -0.08917 -0.08969 -0.34601 -0.08728 -0.08979 -0.34649 -0.08917 -0.085 -0.3453 14-08 -0.07747 -0.08465 -0.1038 -0.2211 -0.08287 -0.1039 -0.22317 -0.08465 -0.10117 -0.2214 15-08 -0.46071 -0.07775 -0.1242 -0.19352 -0.07685 -0.12428 -0.1946 -0.07775 -0.1865 -0.1929 16-08 -0.38344 -0.07042 -0.19841 -0.21176 -0.06868 -0.19764 -0.21225 -0.07042 -0.21011 -0.2113 17-08 -0.06721 -0.06352 -0.13788 -0.24378 -0.24378 -0.24378 -0.26351 -0.1435 <	10-08	-0.82316	-0.07162	-0.00996	-0.1892	-0.07566	-0.0099	-0.17396	-0.07162	-0.01364	-0.18576
12-08 -0.07974 -0.08887 -0.07552 -0.37345 -0.08325 -0.0756 -0.37768 -0.08887 -0.0237 -0.3750 13-08 -0.04008 -0.08917 -0.08969 -0.34601 -0.08728 -0.08979 -0.34649 -0.08917 -0.085 -0.3455 14-08 -0.07747 -0.08465 -0.1038 -0.22211 -0.08287 -0.1039 -0.22317 -0.08465 -0.10117 -0.2214 15-08 -0.46071 -0.07775 -0.1242 -0.19352 -0.07685 -0.12428 -0.1946 -0.07775 -0.1865 -0.1929 16-08 -0.38344 -0.07042 -0.19841 -0.21176 -0.06868 -0.19764 -0.21225 -0.07042 -0.21011 -0.2113 17-08 -0.06721 -0.06352 -0.13788 -0.24328 -0.062 -0.13786 -0.24378 -0.06352 -0.13811 -0.2436 18-08 -0.00248 0.0159 -0.12254 -0.2501 -0.05604 -0.12256 -0.23551 0.00159 -	11-08	-0.24796	-0.08203	-0.0186	-0.34436	-0.02794	-0.01841	-0.39822	-0.08203	-0.07015	-0.34438
13-08 -0.04008 -0.08917 -0.08969 -0.34601 -0.08728 -0.08979 -0.34649 -0.08917 -0.085 -0.345 14-08 -0.07747 -0.08465 -0.1038 -0.22211 -0.08287 -0.1039 -0.22317 -0.08465 -0.10117 -0.2214 15-08 -0.46071 -0.07775 -0.1242 -0.19352 -0.07585 -0.12428 -0.1946 -0.07775 -0.1865 -0.1929 16-08 -0.38344 -0.07042 -0.19841 -0.21176 -0.06868 -0.19764 -0.21225 -0.07042 -0.19101 -0.2113 17-08 -0.06721 -0.06352 -0.13788 -0.24328 -0.062 -0.13786 -0.24378 -0.06352 -0.13811 -0.2430 18-08 -0.00248 0.0159 -0.12254 -0.23651 -0.0159 -0.12435 -0.2348	12-08	-0.07974	-0.08887	-0.07552	-0.37345	-0.08325	-0.0756	-0.37768	-0.08887	-0.0237	-0.37504
14-08 -0.07747 -0.08465 -0.1038 -0.22211 -0.08287 -0.1039 -0.22317 -0.08465 -0.10117 -0.2214 15-08 -0.46071 -0.07775 -0.1242 -0.19352 -0.07685 -0.12428 -0.01946 -0.07775 -0.1865 -0.1299 16-08 -0.38344 -0.07042 -0.19841 -0.21176 -0.06868 -0.19764 -0.21225 -0.07042 -0.21011 -0.2113 17-08 -0.06721 -0.06352 -0.13788 -0.24328 -0.062 -0.13786 -0.24378 -0.06352 -0.13811 -0.2430 18-08 -0.01248 0.0159 -0.12254 -0.23501 -0.05604 -0.12256 -0.23551 0.0159 -0.12435 -0.2348	13-08	-0.04008	-0.08917	-0.08969	-0.34601	-0.08728	-0.08979	-0.34649	-0.08917	-0.085	-0.3457
15-08 -0.46071 -0.07775 -0.1242 -0.07935 -0.07585 -0.12428 -0.01946 -0.07775 -0.1865 -0.1229 16-08 -0.38344 -0.07042 -0.19841 -0.21176 -0.06868 -0.19764 -0.21225 -0.07042 -0.21011 -0.2113 17-08 -0.06721 -0.06352 -0.13788 -0.24328 -0.062 -0.13786 -0.24378 -0.06352 -0.13811 -0.2430 18-08 -0.00248 0.00159 -0.12254 -0.25011 -0.05604 -0.12256 -0.23551 0.00159 -0.12435 -0.2348	14-08	-0.07747	-0.08465	-0.1038	-0.22211	-0.08287	-0.1039	-0.22317	-0.08465	-0.10117	-0.22144
16-08 -0.38344 -0.07042 -0.19841 -0.21176 -0.06868 -0.19764 -0.21225 -0.07042 -0.21011 -0.2113 17-08 -0.06721 -0.06352 -0.13788 -0.24328 -0.062 -0.13786 -0.24378 -0.06352 -0.13811 -0.2430 18-08 -0.00248 0.00159 -0.12254 -0.25011 -0.05604 -0.12256 -0.23551 0.00159 -0.12436 -0.2348	15-08	-0.46071	-0.07775	-0.1242	-0.19352	-0.07585	-0.12428	-0.1946	-0.07775	-0.1865	-0.19298
17-08 -0.06721 -0.06352 -0.13788 -0.24328 -0.062 -0.13786 -0.24378 -0.06352 -0.13811 -0.2430 18-08 -0.00248 0.00159 -0.12254 -0.23501 -0.05604 -0.12256 -0.23551 0.00159 -0.12435 -0.2348	16-08	-0.38344	-0.07042	-0.19841	-0.21176	-0.06868	-0.19764	-0.21225	-0.07042	-0.21011	-0.21135
18-08 -0.00248 0.00159 -0.12254 -0.23501 -0.05604 -0.12256 -0.23551 0.00159 -0.12435 -0.2348	17-08	-0.06721	-0.06352	-0.13788	-0.24328	-0.062	-0.13786	-0.24378	-0.06352	-0.13811	-0.24302
	18-08	-0.00248	0.00159	-0.12254	-0.23501	-0.05604	-0.12256	-0.23551	0.00159	-0.12435	-0.23483
i 19-081 0.01931 -0.04721 -0.11051 -0.206941 -0.050781 -0.110521 -0.207611 -0.04721 -0.113071 -0.2065	19-08	0.0193	-0.0472	-0.1105	-0.20694	-0.05078	-0.11052	-0.20761	-0.0472	-0.11307	-0.20654
20-08 0.04447 -0.0442 -0.10253 -0.17694 0.01022 -0.10254 -0.17755 -0.0442 -0.10385 -0.1766	20-08	0.04447	-0.0442	-0.10253	-0.17694	0.01022	-0.10254	-0.17755	-0.0442	-0.10385	-0.17661
21-08 0.06766 0.02486 -0.09474 -0.10007 -0.03591 -0.09474 -0.099 0.02486 -0.03235 -0.097	21-08	0.06766	0.02486	-0.09474	-0.10007	-0.03591	-0.09474	-0.099	0.02486	-0.03235	-0.0974
22-08 0.03321 -0.03651 -0.09067 -0.07894 -0.03513 -0.09066 -0.07911 -0.03651 -0.08761 -0.0723	22-08	0.03321	-0.03651	-0.09067	-0.07894	-0.03513	-0.09066	-0.07911	-0.03651	-0.08761	-0.07234
23-08 0 10116 -0 0312 -0 03242 -0 05512 0 02579 -0 03276 -0 00859 -0 0312 -0 08861 -0 0533	23-08	0.10116	-0.0312	-0.03242	-0.05512	0.02579	-0.03276	-0.00859	-0.0312	-0.08861	-0.05337
24-08 0.00107 -0.03107 -0.08271 -0.03446 -0.02847 -0.08272 -0.01492 -0.03107 -0.08838 -0.0308	24-08	0.00107	-0.03107	-0.08271	-0.03446	-0.02847	-0.08272	-0.01492	-0.03107	-0.08838	-0.03082
25-08 -0.05771 -0.06185 -0.08675 -0.01876 -0.06045 -0.08676 -0.08594 -0.06185 -0.03078 -0.0164	25-08	-0.05771	-0.06185	-0.08675	-0.01876	-0.06045	-0.08676	-0.08594	-0.06185	-0.03078	-0.01644
26-08 -0.04497 -0.17266 -0.08928 -0.00986 -0.16593 -0.0893 -0.01821 -0.17266 -0.08392 -0.0729	26-08	-0.04497	-0.17266	-0.08928	-0.00986	-0 16593	-0.0893	-0.01821	-0.17266	-0.08392	-0.07296
27-08 -0.0236 -0.19111 -0.0919 -0.064 -0.26826 -0.09194 -0.00241 -0.191111 -0.08935 -0.0136	27-08	-0.0236	-0.19111	-0.0919	-0.064	-0.26826	-0.09194	-0.00241	-0.19111	-0.08935	-0.01364
28-08 -0.01095 -0.18698 -0.0927 -0.00584 -0.12801 -0.09271 -0.05967 -0.18698 -0.09057 -0.0594	28-08	-0.01095	-0 18698	-0.0927	-0.00584	-0.12801	-0.09271	-0.05967	-0 18698	-0.09057	-0.05947
29-08 -0.00618 -0.11641 -0.09134 -0.05401 -0.11104 -0.09134 -0.05791 -0.11641 -0.08935 -0.0037	29-08	-0.00618	-0.11641	-0.09134	-0.05401	-0.11104	-0.09134	-0.05791	-0.11641	-0.08935	-0.00374
30-08 -0.02469 -0.09998 -0.08628 -0.05254 -0.09886 -0.08633 -0.00329 -0.09998 -0.08603 -0.04	30-08	-0.02469	-0.09998	-0.08628	-0.05254	-0.09886	-0.08633	0.00329	-0.09998	-0.08503	-0.048
31-08 -1 43643 -0 08924 -0 08 0 01054 -0 0884 -0 07998 -0 04394 -0 08924 -0 07855 -0 0434	31-08	-1 43643	-0.08924	-0.08	0.01054	-0.0884	-0.07998	-0.04394	-0.08924	-0.07855	-0.04341
01-09 -1 71097 -0 01255 -0 01145 -0 04189 -0 07991 -0 01496 -0 05998 -0 01255 -0 01722 -0 2154	01-09	-1 71097	-0.01255	-0.01145	-0.04189	-0.07991	-0.01496	-0.05998	-0.01255	-0.01722	-0.21544
02-09 0 14679 -0 3429 -0 06127 -0 04392 -0 0835 -0 06499 -0 30141 -0 3429 -0 23639 -0 9061	02-09	0 14679	-0.3429	-0.06127	-0.04392	-0.0835	-0.06499	-0.30141	-0.3429	-0 23539	-0.90617
03-09 -0.29825 -0.91221 -0.05676 -0.04445 -0.24032 -0.11911 -0.42485 -0.91221 -0.86142 -0.5951	02-09	-0.29825	-0.91221	-0.05676	-0.04445	-0.24032	-0 11911	-0.42485	-0.91221	-0.86142	-0.59511
	00.00	0.03836	-0.75401	-0.05297	-0.04384	-0 34838	-0.56512	-0.28511	-0.75401	-1.04811	-0.41821
05-09 0 13539 -0 38329 -0 01254 -0 0419 -0 27205 -0 66575 -0 25389 -0 38329 -0 82259 -0 0850	05-09	0.13539	-0.38379	-0.01254	-0.0419	-0.27205	-0.66575	-0.25389	-0.38379	-0.82259	-0.08505
06-09 -0.08222 -0.22284 -0.15321 -0.03952 -0.19226 -0.52462 -0.1692 -0.22284 -0.49289 -0.2087	06-09	-0.08222	-0.22284	-0 15321	-0.03952	-0 19226	-0.52462	-0.1692	-0 22284	-0 49289	-0.20879
07-09 -0.24344 -0.12469 -0.18671 -0.03745 -0.16053 -0.31773 -0.09691 -0.12469 -0.26407 -0.0744	07-09	-0 24344	-0.12469	-0.18671	-0.03745	-0 16053	-0.31773	-0.09691	-0 12469	-0.26407	-0.07442
08-09 -0.17036 -0.03164 -0.2554 0.01941 -0.13701 -0.30655 -0.14217 -0.03164 -0.29437 -0.1199	08-09	-0.17036	-0.03164	-0.2254	0.001941	-0.13701	-0.30655	-0.14217	-0.03164	-0 29437	-0.11992
	00.00	-0.02914	-0.04553	-0.2204	-0.04174	-0.06145	-0.29036	-0.0906	-0.04553	-0.21635	-0.12013
	10-09	-0.03486	-0.03078	-0.23198	-0.05073	-0.03672	-0 19669	-0 14188	-0.03078	-0 15934	-0.16165
11-09 -0.1718 -0.04634 -0.16272 -0.1146 -0.02612 -0.16197 -0.13953 -0.04634 -0.12169 -0.1039	11-09	-0.11718	-0.04634	-0.16272	-0.11446	-0.02612	-0.16197	-0.13953	-0.03676	-0.12169	-0.10399
	12.09	-0.03677	0.04004	-0.10272	-0.0689 0.0	-0.02012	-0.10101	-0.13476	0.04054	-0.12103	-0.10000
	12-00	1,1000.0-	-0.07092	-0.12399	-0.0003	-0.07323	-0.07720	-0.0633	-0.07092	-0.14341	-0.14202
	14-09	-0.00004	-0.07052	-0.12000	-0.000000	0.00472	-0.03463	-0.0000	-0.07052	-0.00703	0.07020
	14-00	-1 71576	0.00237	-0.04020	-0.00021	-0.00010	-0.05403	-0.11279	0.00237	0.00010	-0.51754
16.09 0 13763 0 96675 0 09685 0 0 06885 0 11555 0 0 12220 0 00682 0 0 06875 0 0 06855 0 0 0000 0 0 0000 0 0 0 0000 0 0 0 0	16-09	0 13763	-0.96675	-0.09167	-0.06885	-0 11552	-0 12272	-0.27857	-0.96675	-0.54665	-1 02246
17.09 J. 2851 J. 2055 B. D. 2056 B. D. 2056 B. J. 2212 B. 2057 B 4.505 B 4.506 B 4.505 B.	17-09	-0.2851	-1 42252	-0.02058	-0.000038	-0.82314	-0.225/1	_0.383	-1 42252		-0.77683
18.09 0.04162 -1.01058 -0.0695 -0.073904 -0.35855 -0.34877 -1.01058 -0.76645 -0.3647	18_00	0.2001	-1 01058	-0.02030	-0.05526	_0 73994	-0 35855	-0 3/8/7	-1 01059	-0.766/6	-0 35475
19 00 0.0817 J. 38/36 0.0800 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	10-03	0.04102	-0.38436	-0.06354	-0.00020	-0.75034	-0.00000	-0.34047	-0.38/36	-0.70040	-0.33475
20.09 0.11513 0.13827 0.0135 0.0057 0.08958 0.19609 0.12004 0.1225 0.05040 0.04279 0.04279 0.04279	20-03	0.00017	-0.30430	-0.00437	0.00023	-0.40409	-0.27504	-0.21229	-0.30430	-0.34273	-0.0200
21.09 0.10091 0.7352 0.00132 0.0024 0.12500 0.15002 0.16002 0.16003 0.17007 0.0004	20-00	0.11010	-0.07352	-0.04515	-0.00024	-0.20500	-0.16442	-0.12000	-0.10027	-0.17047	-0.00020
2:00 0,05803 -0.07358 -0.01421 -0.03388 -0.06981 -0.08986 -0.06553 -0.07358 -0.07555 -0.0551	22-09	0.05803	-0.07358	0.01421	-0.03388	-0.06981	-0.08986	-0.06553	-0.07358	-0.02765	-0.05611

DATE S18 S20 S24 S24 S24 S24 S25 S26 S27 24.08 0.0873 0.0366 0.0274 -0.06892 0.0073 -0.0483 0.02852 24.08 0.0673 0.06524 0.0237 0.02083 -2.0264 0.02571 0.02832 2.0264 0.06721 0.02682 0.0241 0.06624 0.0773 0.02682 0.02617 0.02633 0.22161 0.06624 0.02701 0.02833 2.02161 0.0665 0.02417 0.02833 0.05181 0.01126 0.02171 0.1583 0.05181 0.06841 0.02934 0.02644 0.04933 0.00644 0.01233 0.0656 0.16312 0.02211 0.02171 0.1584 0.0336 0.06657 0.0174 0.0586 0.02871 0.02841 0.02234 0.02241 0.0264 0.02934 0.02841 0.02274 0.06657 0.0174 1.1644 0.0276 0.16122 0.02632 0.02841 0.02214 0.02031 0.02241 0.02616 <				EXCHAN	GE IN LINS	ATURATED	AND SATU	RATED ZON	ES (mm/b)		
22-09 0.06173 0.03169 0.0336 0.02782 0.0073 0.06524 0.0337 0.06524 0.0337 0.06514 0.0337 0.0517 0.06524 0.0337 0.0211 0.06574 0.0337 0.0517 0.02217 0.0237 0.01853 0.02511 0.01736 0.02511 0.01856 0.0931 0.01864 0.02227 0.02011 0.01464 0.01337 0.02161 0.01839 0.01618 0.0933 0.01864 0.02237 0.02164 0.01339 0.01616 0.0266 0.01217 0.01839 0.01616 0.02667 0.1125 0.02711 0.01839 0.01646 0.02597 0.11824 0.02681 1.0211 0.010 0.03662 0.04440 0.0173 0.0267 0.11784 0.04281 0.02811 1.0211 0.10171 0.0362 0.04440 0.0173 0.0267 0.11784 0.0273 0.0373 0.06571 0.02671 0.01743 0.04282 0.02611 0.01027 0.01743 0.04282 0.02611 0.01773	DATE	S18	S19	S20	S21	S22	S23	S24	S25	S26	S27
24.09 -0.00733 -0.06754 0.00874 -0.06741 0.06754 0.06764 0.06277 0.01754 1.06656 0.06281 0.00764 0.06776 0.01764 1.06646 0.02297 0.1524 0.06677 0.01776 1.1764 1.16646 0.03295 0.06677 0.01776 1.1764 1.16646 0.03179 0.01675 0.07771 0.4733 0.03285 0.06677 0.01776 0.3232 0.26513 0.65717 0.4733 0.03429 0.26513 0.65719 0.4773 0.3334 0.26241 0.03252 0.06764 0.05444 0.35774 0.067	23-	09 -0.08173	-0.03169	-0.03386	0.02743	-0.10609	-0.05992	0.0073	-0.03169	-0.04783	-0.02822
25-09 -0.0595 -0.0597 -0.0297 -0.02941 -0.02511 -0.0517 -0.07431 -0.1075 -0.0793 -0.0932 -0.0293 -0.2195 -0.02417 -0.0393 -0.02417 -0.0393 -0.02417 -0.0393 -0.05616 -0.09444 -0.0443 -0.0163 -0.06614 -0.09444 -0.06614 -0.09443 -0.01614 -0.01417 -0.16942 -0.01339 -0.00544 -0.0628 -0.00281 -0.02216 01-10 -0.65626 -0.0222 -0.01392 -0.05644 -0.0628 -0.00281 -0.02216 -0.05624 -0.0628 -0.00281 -0.02216 -0.01217 -0.0320 -0.01244 -0.0328 -0.02216 -0.01217 -0.01231 -0.0526 -0.02216 -0.01244 -0.0323 -0.02216 -0.01241 -0.0323 -0.0217 -0.01317 -0.01351 -0.0217 -0.01317 -0.01323 -0.0217 -0.01317 -0.0131 -0.1251 -0.00316 -0.02417 -0.0232 -0.0266 -0.02377 -0.011141 -0.013333 -0.02117 </td <td>24-</td> <td>0.08733 -0.08733</td> <td>-0.06524</td> <td>-0.03257</td> <td>-0.02331</td> <td>-0.03833</td> <td>-2.20E-04</td> <td>-0.08705</td> <td>-0.06524</td> <td>-0.07541</td> <td>0.06896</td>	24-	0.08733 -0.08733	-0.06524	-0.03257	-0.02331	-0.03833	-2.20E-04	-0.08705	-0.06524	-0.07541	0.06896
26.09 -0.05187 -0.19536 0.02314 -0.02232 -0.10149 -0.10149 -0.10146 -0.12232 -0.1125 -0.00447 -0.01463 28.09 0.0445 -0.1952 -0.01245 -0.00249 -0.0664 -0.1952 -0.00649 -0.01691 -0.0664 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00649 -0.00278 -0.00667 -0.00781 -0.00664 -0.02597 -0.16677 -0.1774 -1.05646 0.44078 0.04778 0.00677 0.0177 -0.01625 -0.00677 0.01774 -1.01744 -1.01646 -0.01771 -0.3304 -0.33197 -0.01375 0.0433 -0.02656 -0.25763 0.11366 -0.1118 -0.0331 0.02641 -0.03577 0.47738 -0.33197 -0.1378 -0.4329 -0.26513 0.510 0.01751 -0.3370 0.00655 -0.16271 -0.3304 -0.33197 -0	25-	0.00595 -0.00595	-0.06175	-0.02917	-0.02297	-0.08954	-0.08243	-0.02511	-0.06175	0.07431	-0.10573
27.99 0.0237 0.21552 0.0145 0.02227 0.20201 0.00449 0.0176 0.21471 0.0683 0.00683 0.01683 0.00561 0.05844 0.14336 0.00683 0.01683 29.49 0.03525 0.19132 0.01130 0.00546 0.00349 0.09483 0.00261 0.00276 01-10 0.56566 0.06230 0.0022 0.02440 0.01529 0.05261 0.02111 02-10 0.45676 0.06677 0.0077 0.03662 0.04448 0.01924 0.03260 0.02767 0.1774 1.05320 0.52141 0.4100 0.46870 0.46771 0.47738 0.04320 0.25631 0.1366 0.05260 0.12841 0.33804 0.03179 0.13751 0.4776 0.11160 0.13751 0.33841 0.05751 0.33874 0.05806 0.25673 0.11168 0.03374 0.06674 0.05266 0.3397 0.16644 0.5237 0.7101 0.1589 0.03975 0.04617 0.0362	26-	09 -0.05187	-0.19536	0.02941	-0.02232	-0.18112	-0.01792	-0.0799	-0.19536	-0.09812	-0.09866
28-09 0.0445 0.19436 -0.00825 0.01613 0.0665 0.19436 0.00865 0.19436 0.00865 0.19436 0.00865 0.19436 0.00865 0.19436 0.00867 0.0173 01-10 0.54866 0.0622 0.02402 -0.06446 0.02979 -0.10624 0.0628 0.0228 1.1211 02-10 0.46862 0.0677 0.0171 0.0662 0.01923 0.0796 -0.0827 0.11764 1.18646 03-10 0.4478 0.4773 0.0446 0.06130 0.03526 0.0404 0.4322 0.22613 06-10 0.10751 0.3336 0.06610 0.05666 0.05666 0.02573 0.01367 0.04844 0.33014 0.03907 0.12644 -0.3303 0.05616 0.05666 0.05665 0.01376 0.04873 0.03826 0.02766 0.03974 0.01364 0.03714 0.03974 0.01375 0.04044 0.35704 0.02786 0.03271 0.01386 0.02276 0.01374 0.01386	27-	0.02337	-0.21552	-0.0145	-0.02227	-0.20201	-0.00449	-0.01706	-0.21552	-0.02417	-0.03493
29.409 -0.05225 0.16125 -0.02171 -0.15842 -0.01339 -0.06565 -0.19912 -0.06564 -0.00944 -0.00276 01-10 -0.65866 -0.0528 0.0022 -0.02402 -0.06546 0.02397 -0.16524 -0.06576 0.1474 -1.0211 02-10 -0.46892 -0.06647 0.01761 -0.05677 0.01767 -0.47738 -0.0414 -0.01396 -0.57717 -0.47738 -0.4329 -0.2628 -0.4014 -0.4951 -0.4289 -0.2628 -0.2626 -0.3007 -0.4627 -0.1751 -0.47738 -0.03165 -0.05717 -0.01751 -0.42929 -0.2631 -0.11751 -0.42724 -0.03923 -0.2656 -0.3307 -0.44514 -0.33031 -0.2646 -0.05296 -0.3307 -0.41644 -0.3307 -0.16526 -0.3007 -0.16326 -0.0171 -0.05626 -0.3271 -0.05646 -0.02716 -0.15296 -0.3307 -0.16257 -0.0176 -0.1529 -0.01761 -0.01975 -0.02814 -0.3571 <td< td=""><td>28-</td><td>0.0445</td><td>-0.19438</td><td>-0.0145</td><td>-0.02222</td><td>-0.18339</td><td>-0.05181</td><td>-0.06944</td><td>-0.19438</td><td>-0.00683</td><td>-0.0189</td></td<>	28-	0.0445	-0.19438	-0.0145	-0.02222	-0.18339	-0.05181	-0.06944	-0.19438	-0.00683	-0.0189
90.09 2.2.427 0.04383 0.02104 -0.03349 -0.00343 0.00341 0.00343 0.00341 0.00343 0.00341 0.00343 0.00341 0.00341 0.00341 0.00341 0.00341 0.00341 0.00341 0.00341 0.00341 0.01352 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01621 0.01631 0.01778 0.03361 0.03566 0.01666 0.05161 0.01365 0.01404 0.03361 0.04118 0.03361 0.04118 0.03361 0.04118 0.03361 0.04564 0.05237 0.011364 0.03361 0.05664 0.06164 0.03271 0.03644 0.03774 0.00364 0.06154 0.00371 0.06566 0.05677 0.05776 0.05849 0.06144 0.01313 0.03774 0.00382 0.06144 0.01313 0.03774 0.00382 0.06144 0.01313 0.03771 0.01684 0.01775 <	29-	0.03625	-0.16912	-0.01125	-0.02171	-0.15942	0.01133	-0.0655	-0.16912	-0.05601	-0.06981
01-10 -0.6366 -0.0628 0.0224 -0.02462 -0.06245 0.0237 -0.16524 -0.0628 0.02877 0.11764 -1.16544 03-10 -0.4678 -0.47738 0.0041 -0.0519 -0.12601 0.00395 -0.5777 -0.47738 -0.4332 -0.2534 04-10 0.18651 -0.01031 -0.16241 -0.3304 -0.0566 -0.25763 -0.11364 -0.3303 -0.26212 -0.0932 07-10 0.1563 -0.30627 -0.06667 -0.0566 -0.2076 -0.01694 -0.01522 08-10 0.13803 -0.35704 -0.00667 -0.06567 -0.0177 -0.00890 -0.0615 0-110 0.13833 -0.0666 -0.02763 -0.11186 -0.00981 -0.01276 -0.16289 -0.03371 -0.04657 -0.01375 -0.0288 -0.0288 -0.0288 -0.0288 -0.0288 -0.02816 -0.0276 -0.15289 -0.03311 -0.01466 -0.01976 -0.01375 -0.02284 -0.02810 -0.03284 -0.0281	30-	.2.7427	-0.09483	0.04383	-0.02104	-0.1368	-0.03379	-0.00349	-0.09483	0.00994	-0.00278
02-10 -0.46992 -0.06677 0.0017 -0.03682 -0.04048 -0.01231 -0.7095 0.06777 0.11764 -116564 03-10 -0.48978 -0.47738 0.0041 -0.05103 -0.16201 -0.03526 -0.4004 -0.44951 -0.4222 -0.26513 05-10 0.10761 -0.33804 0.05671 -0.03623 -0.1366 -0.03804 -0.33197 -0.1976 06-10 0.12542 -0.33970 0.00689 0.05655 -0.25763 -0.11361 0.03804 -0.33197 -0.16654 -0.08227 06-10 0.15459 0.39770 0.00684 -0.05177 -0.20089 -0.06144 -0.85704 -0.01252 09-10 0.15689 0.03971 -0.04667 -0.10837 -0.0177 -0.20089 -0.06141 -0.03331 -0.00764 -0.0171 11-10 0.01845 -0.01876 -0.00877 -0.01186 -0.01872 -0.00823 -0.02089 -0.02041 -0.06866 -0.0246 -0.01749 -0.06806 -0.0174	01-	10 -0.63566	-0.0628	0.0022	-0.02402	-0.06545	0.02597	-0.18524	-0.0628	0.02981	-1.0211
03-10 -0.4778 -0.47738 -0.4332 -0.82541 04-10 0.1885 -0.4951 -0.0645 -0.0613 -0.1621 -0.03256 -0.4004 -0.4951 -0.4332 -0.82541 05-10 0.10751 -0.3304 0.06656 -0.22763 -0.13366 -0.1444 -0.3333 -0.24512 -0.09596 -0.3304 -0.0377 -0.06576 -0.019766 -0.0277 -0.06676 -0.01976 -0.0616 -0.0277 -0.00616 -0.0278 09-10 0.16886 -0.02977 -0.00677 -0.02089 -0.06161 -0.0278 -0.01371 10-10 0.11457 0.0526 -0.0571 -0.06267 -0.0637 -0.01539 -0.02288 -0.0345 -0.0278 -0.01371 10-10 0.11589 0.02976 -0.01371 -0.06867 -0.0271 -0.06512 -0.00627 -0.0345 -0.02288 -0.03345 -0.02288 -0.03281 -0.0136 -0.0276 -0.0345 -0.02284 -0.01375 -0.00627 -0.03641 -0.0065	02-	10 -0.45892	-0.08677	0.0017	-0.03662	-0.04048	-0.01923	-0.7095	-0.08677	0.11764	-1.16546
04-10 0.1885 0.4881 0.06645 -0.0613 -0.16421 -0.0526 -0.4004 0.4822 0.2823 05-10 0.1751 -0.3030 0.06686 -0.0539 -0.1366 -0.3303 -0.24624 -0.3304 -0.3804 -0.0333 -0.24621 -0.0992 -0.0974 -0.09824 -0.0333 -0.24627 -0.0594 -0.05135 -0.03244 -0.3704 -0.0992 -0.0614 -0.03244 -0.3704 -0.0929 -0.06116 -0.02263 -0.02706 -0.12289 -0.06116 -0.03274 -0.01754 10-10 0.01355 0.00875 -0.04677 -0.26637 -0.01176 -0.0138 -0.02281 -0.01764 -0.01876 -0.01764 -0.01876 -0.01876 -0.01876 -0.01876 -0.01876 -0.01876 -0.01876 -0.01876 -0.01876 -0.01876 -0.01876 -0.01876 -0.01876 -0.02764 -0.01876 -0.02764 -0.01876 -0.02764 -0.01876 -0.0281 -0.01876 -0.0281 -0.01876 -0.0281 -0.	03-	10 -0.4878	-0.47738	0.0041	-0.0519	-0.12501	0.03095	-0.57517	-0.47738	-0.4332	-0.82541
05-10 0.10751 0.33804 0.06761 -0.11996 -0.2338 -0.0639 -0.1418 -0.3804 -0.3197 -0.119766 06-10 0.16429 0.3303 0.00666 -0.25763 -0.11366 -0.1418 -0.3303 -0.24512 -0.09822 07-10 0.15429 0.3307 0.00657 -0.05946 -0.03774 -0.009974 -0.01252 08-10 0.05380 -0.20089 0.00616 -0.0377 -0.11635 -0.00777 -0.2009 -0.06116 -0.03714 10-10 0.14557 -0.01667 -0.2637 -0.0177 -0.2009 -0.06116 -0.03714 11-10 0.0336 -0.02711 -0.06866 -0.0271 -0.06866 -0.0271 -0.06866 -0.0271 -0.06866 -0.0271 -0.06866 -0.0271 -0.06866 -0.0175 -0.0666 -0.0175 -0.0666 -0.0175 -0.0666 -0.0175 -0.0666 -0.0175 -0.0687 -0.0187 -0.01875 -0.0527 -0.0528 -0.01607 -0.0566	04-	10 0.1885	-0.4951	0.00645	-0.06103	-0.16421	-0.03526	-0.4004	-0.4951	-0.42829	-0.26513
06-10 0.21624 -0.0333 0.00686 -0.05666 -0.04118 -0.0313 -0.24512 -0.09822 07-10 0.15459 -0.3907 0.00844 -0.0513 -0.30627 0.018966 -0.3907 0.00844 -0.35704 -0.09074 -0.1523 08-10 0.15685 -0.2009 0.0971 -0.04667 -0.26637 -0.11153 -0.00776 -0.02039 -0.00341 11-10 0.01836 -0.06138 0.00976 -0.04667 -0.01827 -0.01776 -0.1528 -0.03381 -0.0776 11-10 0.03445 -0.09976 -0.04667 -0.01876 -0.0177 -0.00866 -0.02278 -0.01785 -0.0082 11-10 0.03445 0.01919 0.006812 -0.01366 -0.01367 -0.00237 0.01417 -0.01365 -0.02246 0.0177 -0.00369 -0.01375 -0.00237 -0.01365 -0.02278 -0.0527 -0.0537 -0.1144 -0.02374 -0.52378 -0.5338 17-10 -0.02244 0.46499 <td>05-</td> <td>10 0.10751</td> <td>-0.33804</td> <td>0.06761</td> <td>-0.11999</td> <td>-0.22338</td> <td>-0.05309</td> <td>-0.19264</td> <td>-0.33804</td> <td>-0.33197</td> <td>-0.19796</td>	05-	10 0.10751	-0.33804	0.06761	-0.11999	-0.22338	-0.05309	-0.19264	-0.33804	-0.33197	-0.19796
07.10 0.16469 0.0397 0.00865 0.05717 0.03673 0.00667 0.05844 0.3907 0.06273 08-10 0.13803 0.35704 0.00964 0.0513 0.30622 0.05949 0.008444 0.3704 0.00974 0.01252 09-10 0.14657 0.11653 0.00777 0.2009 0.00616 0.0341 11-10 0.03845 -0.03941 0.00966 -0.0376 0.11633 0.01775 0.01635 0.02288 0.0228 12-10 0.03445 -0.09412 0.00666 -0.0271 -0.06806 -0.0457 0.00827 -0.0137 -0.01656 -0.0137 13-10 0.03728 -0.01607 0.00612 -0.01366 -0.01276 -0.06266 -0.01097 -0.00527 14-10 -0.23246 0.10919 0.00812 -0.01386 -0.02174 -0.02292 0.0522 0.0523 -0.01327 0.0232 0.02689 -0.4249 -0.3527 -0.5333 15-10 -1.54509 0.00722 <td< td=""><td>06-</td><td>10 0.21624</td><td>-0.3033</td><td>0.00658</td><td>-0.06565</td><td>-0.25763</td><td>-0.11366</td><td>-0.14118</td><td>-0.3033</td><td>-0.24512</td><td>-0.09832</td></td<>	06-	10 0.21624	-0.3033	0.00658	-0.06565	-0.25763	-0.11366	-0.14118	-0.3033	-0.24512	-0.09832
08-10 0.13803 -0.35704 0.00974 -0.05627 -0.05849 -0.08444 -0.35704 -0.09074 -0.01252 09-10 0.05865 -0.20689 0.00071 -0.04657 -0.26337 -0.11153 -0.00777 -0.20689 -0.00331 -0.00754 11-10 0.01345 -0.03951 -0.00413 -0.18656 -0.0522 -0.0777 -0.00868 -0.0288 0.0256 12-10 0.03445 -0.03445 -0.03666 -0.04577 -0.00864 -0.01875 -0.0185 13-10 0.03728 -0.01607 0.00629 -0.02176 -0.03161 -0.04266 -0.0197 -0.06566 -0.0185 15-10 -0.22246 -0.10199 0.00621 -0.01365 -0.01244 -0.02373 -0.1227 -0.0528 -0.04249 -0.0234 -0.0234 -0.0234 -0.2276 -0.07549 -0.0281 -0.4689 -0.4226 -0.1199 -0.6645 -0.4226 -0.01919 -0.6645 -0.4261 -0.2234 -0.0224 -0.0234 0.02	07-	10 0.15459	-0.3907	0.00835	-0.05717	-0.30873	-0.06657	-0.05956	-0.3907	-0.16654	-0.05237
09-10 0.05895 -0.2089 0.00971 -0.0467 -0.26637 -0.011163 -0.00777 -0.2089 -0.06116 -0.03471 11-10 0.11457 -0.15289 0.00976 0.04013 -0.16856 0.06135 0.00286 0.02286 0.02286 0.02286 0.02286 0.02286 0.02286 0.02286 0.02286 0.01355 -0.01355 -0.01355 0.01614 0.04567 0.00842 0.01607 -0.01355 -0.01355 -0.01444 -0.02276 0.00564 0.01607 -0.01356 -0.01776 -0.00516 -0.04266 0.01109 -0.05866 -0.01315 -0.01276 -0.013122 -0.03239 -0.10199 -0.06564 -0.1019 -0.05866 -0.01277 -0.01312 -0.03239 -0.10199 -0.06645 -0.4775 -0.07549 -0.46649 -0.4775 -0.07549 -0.46649 -0.4776 -0.07549 -0.46649 -0.2776 -0.07341 -0.2211 -0.56564 -0.17691 -0.36304 -0.0521 -0.02945 -0.27546 -0.076491 -0.46649 <td>08-</td> <td>10 0.13803</td> <td>-0.35704</td> <td>0.00964</td> <td>-0.05153</td> <td>-0.30622</td> <td>-0.05949</td> <td>-0.08444</td> <td>-0.35704</td> <td>-0.09074</td> <td>-0.01252</td>	08-	10 0.13803	-0.35704	0.00964	-0.05153	-0.30622	-0.05949	-0.08444	-0.35704	-0.09074	-0.01252
10-10 0.11457 0.15289 0.00975 -0.04013 -0.18865 -0.0523 -0.02706 -0.15269 -0.03931 -0.00754 11-10 0.0636 -0.06135 0.02866 -0.04557 -0.09112 -0.01385 -0.02288 0.02281 13-10 0.03728 -0.01607 0.06899 0.02914 -0.00816 -0.044557 -0.09412 -0.01386 -0.01375 -0.0566 -0.044266 -0.01109 -0.05666 -0.01375 -0.0522 -0.00343 0.02977 16-10 -1.254509 0.0522 0.00821 -0.01365 -0.01444 -0.03273 0.0122 0.0523 -0.4775 -0.0528 -0.4278 -0.52328 17-10 -0.0294 -0.4249 0.00711 -0.0287 -0.07841 -0.03399 -0.10919 -0.6545 -0.4278 12-10 0.15614 -0.36204 0.00725 -7.67E-04 -0.07841 -0.0281 -0.42775 -0.07343 -0.2177 -0.48382 -0.21419 21-10 0.15646 -0.114343 </td <td>09-</td> <td>10 0.05885</td> <td>-0.20089</td> <td>0.00971</td> <td>-0.04567</td> <td>-0.26637</td> <td>-0.11153</td> <td>-0.00777</td> <td>-0.20089</td> <td>-0.06016</td> <td>-0.03471</td>	09-	10 0.05885	-0.20089	0.00971	-0.04567	-0.26637	-0.11153	-0.00777	-0.20089	-0.06016	-0.03471
11:10 0.0836 0.08135 0.00966 0.03476 0.10091 -0.0501 -0.01978 -0.06135 -0.02288 0.0258 13:10 0.03445 -0.09412 0.06866 -0.02497 -0.00813 0.011275 0.00827 -0.01376 -0.01375 -0.00521 -0.01376 -0.01376 -0.01376 -0.01376 -0.01376 -0.01343 0.02271 -0.0522 0.00522 0.00527 -0.01366 -0.01275 0.00522 0.00523 0.00731 -0.01376 -0.01373 0.01282 -0.0522 0.00527 -0.05449 -0.03212 -0.0529 -0.02343 0.02371 16-10 -0.0294 -0.44249 0.00761 -0.0131 -0.01289 -0.027546 -0.07631 -0.5228 -0.52328 18-10 0.10714 -0.36341 0.002925 -0.27546 -0.07631 -0.2270 -0.48632 -0.21077 -0.48632 -0.21077 -0.48633 -0.0277 -0.26614 -0.0552 -0.07343 -0.2211 -0.5664 -0.11747 -0.22611 -0.0552 </td <td>10-</td> <td>10 0.11457</td> <td>-0.15269</td> <td>0.00975</td> <td>-0.04013</td> <td>-0.18865</td> <td>-0.05823</td> <td>-0.02706</td> <td>-0.15269</td> <td>-0.03931</td> <td>-0.00754</td>	10-	10 0.11457	-0.15269	0.00975	-0.04013	-0.18865	-0.05823	-0.02706	-0.15269	-0.03931	-0.00754
12:10 0.03445 -0.09412 0.06686 -0.02971 -0.06806 -0.04557 -0.00827 -0.09412 -0.07806 -0.01835 13:10 0.03728 -0.01607 0.00899 0.02249 -0.00813 0.01276 -0.036161 -0.06466 0.011607 -0.01375 -0.00521 14:10 -1.54509 0.0522 0.00827 -0.01366 -0.01444 -0.03273 0.01282 0.0522 0.00343 0.02977 16:10 -1.29246 -0.19919 0.00811 0.04289 -0.03299 -0.103699 -0.4249 -0.35278 -0.52328 17:10 -0.0294 -0.4669 0.0072 -7.67E-04 -0.09287 -0.07649 -0.46699 -0.4242 -0.3507 18:10 0.10713 -0.4669 0.0072 -0.07241 -0.09287 -0.07343 -0.2211 -0.5664 -0.11439 20:10 0.15014 -0.36204 0.00211 -0.02237 -0.00281 -0.06564 -0.36726 -0.06366 -0.12707 -0.4383 -0.01422 20:10 0.02647 -0.01281 0.06616 -0.02911	11-	10 0.0836	-0.06135	0.00966	-0.03476	-0.10091	-0.0501	-0.01978	-0.06135	-0.02288	0.0256
13.10 0.03728 -0.01607 0.00699 0.02949 -0.00813 0.01275 0.00664 -0.01607 -0.01365 -0.0176 14-10 -0.32334 0.01109 0.00812 -0.01365 -0.01444 -0.03273 0.01626 0.0122 0.00329 -0.0529 0.003297 16-10 -0.22946 -0.10919 0.00811 0.04525 -0.03299 -0.01629 -0.05299 -0.0529 -0.0529 -0.05299 -0.0529 -0.05299 -0.0529 -0.05299 -0.04699 -0.46689 -0.4229 -0.35278 -0.52328 18-10 0.16714 -0.36304 0.00725 -7.67E-04 -0.07847 -0.09287 -0.07649 -0.46689 -0.4824 -0.3507 19-10 0.16614 -0.35304 0.00725 -0.0274 -0.07343 -0.2211 -0.54654 -0.1707 -0.2211 -0.54654 -0.1707 -0.0235 -0.06366 -0.12707 -0.43883 0.08518 22-10 0.06466 -0.01747 -0.00638 -0.12707 -0.	12-	10 0.03445	-0.09412	0.06686	-0.02971	-0.06806	-0.04557	-0.00827	-0.09412	-0.07806	-0.01835
14.10 -0.32334 0.01109 0.00812 -0.01386 -0.02176 -0.03161 -0.04266 0.01109 -0.0526 0.00333 0.02977 16-10 -0.29246 -0.01919 0.06811 0.04532 -0.06495 -0.03212 -0.03699 -0.1919 -0.05457 -0.0528 17-10 -0.0294 -0.44249 0.00762 -7.67E-04 -0.07847 -0.02926 -0.44249 -0.35278 -0.5238 18-10 0.15014 -0.36304 0.00725 -0.0211 -0.09295 -0.27546 -0.07849 -0.46898 -0.4332 -0.2614 20-10 0.15371 -0.2211 0.05441 -0.00211 -0.42775 -0.07343 -0.2211 -0.54832 -0.26164 21-10 0.04686 -0.12707 -0.00201 -0.0618 -0.06771 -0.0321 -0.05236 -0.06466 -0.11433 -0.3221 -0.0536 -0.1707 -0.2611 -0.06536 -0.12707 -0.02547 -0.0538 -0.04210 -0.01421 -0.0538 -0.04751	13-	10 0.03728	-0.01607	0.00699	0.02949	-0.00813	0.01275	0.00654	-0.01607	-0.01375	-0.0052
15:10 -1.54509 0.0522 0.00827 -0.01365 -0.01444 -0.03273 0.01282 0.0522 0.00343 0.02977 16:10 -0.2924 -0.10191 0.00811 0.04532 -0.06495 -0.03599 -0.10919 -0.06645 -0.4249 18:10 -0.0731 -0.46689 0.00725 -0.07149 -0.46689 -0.4249 -0.36304 -0.5378 -0.5338 19:10 0.15014 -0.36304 0.00725 0.0021 -0.09295 -0.27546 -0.07849 -0.46689 -0.4224 -0.3507 10:10 0.46686 -0.1277 -0.02881 -0.36304 -0.54382 -0.2164 21:10 0.04866 -0.03174 -0.0090 0.01043 -0.07711 -0.327 -0.05911 -0.03174 -0.22611 -0.05652 23:10 -0.0253 -0.06467 -0.01422 0.00932 -0.06838 -0.04333 -0.07752 -0.0254 24:10 -0.02657 -0.00962 -0.07639 -0.01677 -0.04833 <t< td=""><td>14-</td><td>10 -0.32334</td><td>0.01109</td><td>0.00812</td><td>-0.01386</td><td>-0.02176</td><td>-0.03161</td><td>-0.04266</td><td>0.01109</td><td>-0.05866</td><td>0.0108</td></t<>	14-	10 -0.32334	0.01109	0.00812	-0.01386	-0.02176	-0.03161	-0.04266	0.01109	-0.05866	0.0108
16-10 -0.29246 -0.10919 0.00811 0.04532 -0.06495 -0.03599 -0.10919 -0.06645 -0.40753 17-10 -0.0294 -0.44249 0.00761 -0.0131 -0.1228 -0.05057 -0.06028 -0.44249 -0.5238 18-10 0.10713 -0.46689 -0.0762 -7.67E-04 -0.07847 -0.09267 -0.07649 -0.46689 -0.4382 -0.21064 20-10 0.13871 -0.2211 0.05941 -0.00261 -0.27546 -0.07343 -0.2211 -0.54654 -0.1489 21-10 0.04666 -0.12707 -0.00261 0.06524 -0.6536 -0.12707 -0.4383 -0.0251 23-10 -0.0253 -0.06467 -0.1422 0.00932 -0.06838 -0.13708 -0.0535 -0.06467 -0.11343 -0.03258 24-10 -0.0257 0.0082 -0.0753 0.01057 -0.0698 -0.04751 0.00752 -0.0264 25-10 -0.06044 -0.0797 -0.00943 0.01077 <	15-	10 -1 54509	0.0522	0.00827	-0.01365	-0.01444	-0.03273	0.01282	0.0522	0.00343	0.02977
17.10 -0.0294 0.44249 0.00781 -0.01239 -0.05057 -0.06028 -0.44249 -0.35278 -0.52328 18.10 0.10713 -0.46699 0.00762 -7.67E-04 -0.07874 -0.09287 -0.07649 -0.46249 -0.53228 19.10 0.16014 -0.36304 0.00725 -0.0214 -0.09295 -0.7246 -0.07891 -0.36304 -0.54564 -0.2114 20.10 0.13871 -0.2211 0.05941 0.00618 -0.03256 -0.06636 -0.12707 -0.43883 -0.0251 21.10 0.04668 -0.01747 -0.00932 -0.06838 -0.13708 -0.05235 -0.06467 -0.11343 -0.03258 24.10 -0.0257 0.00942 -0.07539 0.01067 -0.06935 -0.04383 -0.07977 -0.04441 -0.07538 27.10 -0.02237 7.93E-04 -0.00464 0.06597 -0.03847 -0.01638 -0.0174 -0.0174 -0.03947 -0.01512 -0.04625 -0.01671 -0.02727 -	16-	10 -0 29246	-0 10919	0.00811	0.04532	-0.06495	-0.03212	-0.03599	-0 10919	-0.06545	-0.40753
18-10 0.00713 0.46689 0.00762 7.767E-04 0.07874 0.00287 0.07649 0.46689 0.4824 0.3507 19-10 0.15014 -0.36304 0.00725 0.0021 -0.09295 -0.27546 -0.07834 -0.2211 -0.54382 -0.21064 20-10 0.13871 -0.2211 0.05941 0.00465 -0.02775 -0.07333 -0.2211 -0.54564 -0.1149 21-10 0.04668 -0.12707 -0.00281 0.0618 -0.02771 -0.36262 -0.06636 -0.12707 -0.43883 -0.02611 -0.05652 23-10 -0.0253 -0.06467 -0.01422 0.00932 -0.06838 -0.13708 -0.05236 -0.06467 -0.11343 -0.03268 24-10 -0.0253 -0.06471 -0.0177 -0.06386 -0.03383 -0.07997 -0.02441 -0.0727 -0.0254 25-10 -0.00644 -0.07997 -0.00943 -0.03765 -0.0388 -0.03767 7.93E-04 -0.00167 -0.06339 -0.01671 <td>17-</td> <td>10 -0.0294</td> <td>-0 44249</td> <td>0.00781</td> <td>-0.00131</td> <td>-0.01289</td> <td>-0.05057</td> <td>-0.06028</td> <td>-0 44249</td> <td>-0.35278</td> <td>-0.52328</td>	17-	10 -0.0294	-0 44249	0.00781	-0.00131	-0.01289	-0.05057	-0.06028	-0 44249	-0.35278	-0.52328
19-10 0.15014 0.36304 0.00725 0.0021 0.0225 0.07361 0.36304 0.5322 0.2746 20-10 0.18871 -0.2211 0.06541 0.00465 -0.02211 0.54644 -0.11469 21-10 0.04658 -0.1277 -0.00281 0.0618 -0.03622 -0.06636 -0.1277 -0.3883 -0.08518 22-10 0.06466 -0.0174 -0.00990 0.01043 -0.0711 -0.3226 -0.06636 -0.12707 -0.3883 -0.0352 23-10 -0.0253 -0.06467 -0.01422 0.00932 -0.06838 -0.04751 -0.00982 -0.0752 -0.0254 24-10 -0.0259 -0.01671 -0.0174 0.01077 -0.06935 -0.04333 -0.0797 -0.04441 -0.0752 -0.0253 25-10 -0.02237 7.93E-04 -0.00650 -0.03675 0.0386 -0.03777 -0.04632 -0.01671 -0.0772 -0.00653 27-10 0.02223 7.93E-04 -0.00167 -0.0272 </td <td>18-</td> <td>10 0 10713</td> <td>-0.46689</td> <td>0.00762</td> <td>-7 67E-04</td> <td>-0.07874</td> <td>-0.09287</td> <td>-0.07649</td> <td>-0.46689</td> <td>-0.4824</td> <td>-0.3507</td>	18-	10 0 10713	-0.46689	0.00762	-7 67E-04	-0.07874	-0.09287	-0.07649	-0.46689	-0.4824	-0.3507
20-10 0.13871 -0.2211 0.05941 0.00485 -0.09201 -0.42775 -0.07343 -0.2211 -0.54654 -0.11469 21-10 0.04668 -0.0177 -0.00281 0.0618 -0.08554 -0.36262 -0.06336 -0.12707 -0.43883 -0.06512 23-10 0.02633 -0.06467 -0.01422 0.00932 -0.06838 -0.13708 -0.05235 -0.0647 -0.11343 -0.03526 24-10 -0.02637 0.00982 -0.0733 0.01057 -0.0598 -0.049402 -0.04751 0.00982 -0.0752 -0.0254 25-10 -0.06604 -0.0797 -0.00943 0.01077 0.00666 -0.06935 -0.04751 -0.01751 -0.0727 -0.00853 27-10 0.02223 7.93E-04 -0.0065 0.00755 -0.02342 -0.02486 0.02157 -0.04933 -0.0179 -0.04835 29-10 0.09892 -0.03262 -0.00755 -0.0209 -0.06306 -0.02477 -0.01493 -0.0179 -0.04833 </td <td>19-</td> <td>10 0.15014</td> <td>-0.36304</td> <td>0.00725</td> <td>0.0021</td> <td>-0.09295</td> <td>-0.27546</td> <td>-0.07891</td> <td>-0.36304</td> <td>-0.54382</td> <td>-0.21064</td>	19-	10 0.15014	-0.36304	0.00725	0.0021	-0.09295	-0.27546	-0.07891	-0.36304	-0.54382	-0.21064
21-10 0.04658 0.12707 0.00281 0.0618 -0.05254 -0.05262 -0.06636 -0.12707 -0.03883 -0.038518 22-10 0.08486 -0.03174 -0.0096 0.01043 -0.07711 -0.0257 -0.06467 -0.11343 -0.0258 23-10 -0.0257 0.00467 -0.01422 0.00932 -0.05888 -0.13708 -0.05255 -0.06467 -0.11343 -0.03268 24-10 -0.0257 0.00647 -0.01739 0.01057 -0.0598 -0.04751 0.00922 -0.07552 -0.0254 25-10 0.06399 -0.01671 -0.01074 0.01034 -0.03947 -0.10438 -0.0771 -0.04451 -0.001671 -0.0172 -0.00656 -0.0278 -0.01671 -0.0172 -0.00653 -0.0174 -0.01074 -0.01074 -0.0299 -0.0258 -0.02177 -0.04893 -0.0172 -0.00653 27-10 0.02223 7.93E-04 -0.0016 7.46E-04 -0.029 -0.0268 0.02157 -0.04893 -0.	20-	10 0.13871	-0.2211	0.05941	0.0021	-0.09201	-0 42775	-0.07343	-0.2211	-0.54654	-0.11469
22-10 0.08486 -0.03174 -0.0396 0.01043 -0.027711 -0.327 -0.05911 -0.03174 -0.02652 23-10 -0.0253 -0.06467 -0.01422 0.00932 -0.06838 -0.13708 -0.05235 -0.06467 -0.11343 -0.03258 24-10 -0.02057 0.00982 -0.07639 0.01057 -0.0598 -0.04751 0.00982 -0.07552 -0.0254 25-10 -0.06064 -0.07997 -0.00943 0.01077 0.00666 -0.04383 -0.07997 -0.04441 -0.07538 26-10 0.06399 -0.01671 -0.01074 0.01034 -0.03947 -0.0383 -0.07797 -0.04483 26-10 0.08359 -0.04846 0.06597 -0.03675 0.0388 -0.0377 -0.04893 -0.0179 -0.04433 29-10 0.09892 0.01362 -0.00252 0.00755 -0.0209 -0.05306 -0.02437 0.01362 -0.01110 0.14433 30-10 0.04949 0.03292 0.0384	21-	10 0.16611	-0 12707	-0.00281	0.00400	-0.08554	-0.36262	-0.06636	-0 12707	-0.43883	-0.08518
23-10 -0.0253 -0.06467 -0.01422 0.00332 -0.05838 -0.05235 -0.06467 -0.11343 -0.03258 24-10 -0.02057 0.00982 -0.07639 0.01057 -0.0598 -0.09402 -0.04751 0.00982 -0.0752 -0.0254 25-10 -0.06639 -0.01671 -0.01074 0.01034 -0.03947 -0.10512 -0.04622 -0.01671 -0.0727 -0.00853 27-10 0.02223 7.93E-04 -0.00846 0.06597 -0.03675 0.02388 -0.02157 -0.04893 -0.0119 -0.04853 29-10 0.09859 -0.04933 -0.00755 0.0224 -0.00258 0.02157 -0.02342 -0.02237 -0.04833 -0.01110 0.01443 30-10 0.04989 -0.00255 0.00755 0.02044 -0.02392 0.03388 0.00838 -0.03671 -0.02137 0.01362 -0.01110 0.01443 30-10 0.04498 0.03388 2.86E-04 0.00802 -0.02251 0.03166 -0.02123 </td <td>22-</td> <td>10 0.08486</td> <td>-0.03174</td> <td>-0.0096</td> <td>0.01043</td> <td>-0.07711</td> <td>-0.327</td> <td>-0.05911</td> <td>-0.03174</td> <td>-0.22611</td> <td>-0.05852</td>	22-	10 0.08486	-0.03174	-0.0096	0.01043	-0.07711	-0.327	-0.05911	-0.03174	-0.22611	-0.05852
2410 -0.02057 0.00382 -0.07639 0.01057 -0.0598 -0.04751 0.00382 -0.07552 -0.0254 2510 -0.06004 -0.07997 -0.00943 0.01077 -0.0598 -0.04751 0.0082 -0.07552 -0.0254 2510 -0.06004 -0.07997 -0.00441 -0.0753 -0.03947 -0.10512 -0.04062 -0.01671 -0.0727 -0.00853 2610 0.02237 7.93E-04 -0.00846 0.06975 -0.0388 -0.03767 7.93E-04 -0.0016 7.4E-04 28-10 0.08359 -0.04893 -0.00755 -0.0294 -0.00258 0.02157 -0.04933 -0.0179 -0.04833 29-10 0.08992 0.01382 -0.00755 -0.0294 -0.02392 0.03388 -0.0377 -0.0483 -0.01797 -0.0483 30-10 0.04498 0.03388 2.86E-04 0.00802 -0.0259 -0.02521 0.03298 0.00971 0.0321 11-11 -1.49947 0.03395 0.002	23-	10 -0.0253	-0.06467	-0.01422	0.01040	-0.06838	-0 13708	-0.05235	-0.06467	-0 11343	-0.03258
1 0.00004 0.07997 0.00943 0.01077 0.00656 0.06935 0.04383 0.07977 0.004441 0.07538 26-10 0.06399 -0.01671 -0.01074 0.01077 0.00656 -0.06935 -0.04383 -0.07977 -0.00462 27-10 0.02223 7.93E-04 -0.00846 0.06597 -0.03675 0.0388 -0.0377 7.93E-04 -0.0016 7.46E-04 28-10 0.03699 -0.04893 -0.00252 0.00755 0.02342 -0.00258 0.02157 -0.04893 -0.01101 0.04435 29-10 0.09892 0.01362 -0.00252 0.00765 -0.0209 -0.06366 -0.02437 0.01362 -0.01101 0.01443 30-10 0.04498 0.03388 2.86E-04 0.00802 -0.0255 0.00634 -0.02392 0.0329 0.00971 0.0321 31-10 -0.04227 -0.02425 0.00673 -0.0599 -0.02521 0.03916 0.03395 0.03973 -0.0348 02-111 <td>23</td> <td>10 -0.02057</td> <td>0.00407</td> <td>-0.07639</td> <td>0.00052</td> <td>-0.0598</td> <td>-0.09402</td> <td>-0.04751</td> <td>0.00407</td> <td>-0.07552</td> <td>-0.0254</td>	23	10 -0.02057	0.00407	-0.07639	0.00052	-0.0598	-0.09402	-0.04751	0.00407	-0.07552	-0.0254
2610 0.06399 0.01671 0.01034 0.03947 0.01521 0.01034 0.03947 0.01521 0.010671 0.00727 0.00653 27-10 0.02223 7.93E-04 -0.00846 0.06597 -0.03675 0.0388 -0.0377 7.93E-04 -0.00167 7.46E-04 28-10 0.08359 -0.04833 -0.00252 0.00755 0.02342 -0.00258 0.02157 -0.04893 -0.01101 0.01433 30-10 0.04498 0.03388 2.86E-04 0.00802 -0.0255 0.00634 -0.02232 0.03388 -0.0371 31-10 -0.04043 -0.0329 0.00277 0.00831 0.036 0.02196 -0.02222 -0.03029 0.00971 0.0311 11 -1.49947 0.03395 0.00647 0.0059 0.03117 -0.01136 -0.02425 -0.08823 -0.24496 03-11 -0.1552 -0.23428 0.0064 0.00539 -0.00595 0.03117 -0.01136 -0.23428 -0.61793 -0.4627	25-		-0.07997	-0.00943	0.01077	0.00656	-0.06935	-0.04383	-0.07997	-0.04441	-0.07538
2810 0.02223 7.93E-04 -0.00846 0.03675 0.03875 0.03862 -0.0161 -0.0167 7.46E-04 28-10 0.08239 -0.04893 -0.0055 0.02342 -0.00258 0.02157 -0.04893 -0.0179 -0.04835 29-10 0.09892 0.01362 -0.00252 0.00755 -0.0209 -0.06306 -0.02437 0.01362 -0.01101 0.01443 30-10 0.04498 0.03388 2.86E-04 0.00802 -0.02055 0.00634 -0.02392 0.03388 0.00838 -0.0371 31-10 -0.40043 -0.03295 0.00247 0.00831 0.036 -0.02196 -0.02022 -0.03029 0.00371 0.03395 0111 -1.49947 0.03395 0.00477 0.00831 0.00599 -0.02521 0.03916 0.03973 -0.0382 0.02425 0.08823 -0.24496 03-11 -0.12427 -0.02425 0.00644 0.00539 -0.00595 -0.03167 -0.2428 -0.61793 -0.4652	26-	0.0000	-0.01671	-0.01074	0.01034	-0.03947	-0 10512	-0.04062	-0.01671	-0.0727	-0.00853
1 0.08359 0.04833 0.00483 0.00483 0.00175 0.00258 0.02157 -0.04833 -0.0179 -0.04833 29-10 0.09892 0.01362 -0.00252 0.00755 -0.0209 -0.06306 -0.02437 0.01362 -0.011101 0.01433 30-10 0.04498 0.03388 2.86E-04 0.00802 -0.02055 0.00634 -0.02392 0.03388 0.00971 0.0321 31-10 -0.40043 -0.0329 0.00277 0.00831 0.0396 -0.02022 -0.03029 0.00971 0.0321 01-11 -1.49947 0.03395 0.00477 0.00876 -0.00599 -0.02521 0.03916 0.03973 -0.0388 02-11 -0.04227 -0.02425 0.00644 0.00599 -0.02511 -0.02408 -0.2428 -0.61793 -0.40657 04-11 0.0108 -0.46083 0.00649 0.00994 -0.01856 -0.03256 -0.46083 -0.66829 -0.26214 04-11 0.01086 -0.27105 <td>27-</td> <td>10 0.00000 10 0.02223</td> <td>7.93E-04</td> <td>-0.00846</td> <td>0.06597</td> <td>-0.03675</td> <td>0.0388</td> <td>-0.03767</td> <td>7 93E-04</td> <td>-0.0016</td> <td>7.46E-04</td>	27-	10 0.00000 10 0.02223	7.93E-04	-0.00846	0.06597	-0.03675	0.0388	-0.03767	7 93E-04	-0.0016	7.46E-04
2910 0.09892 0.01362 -0.00252 0.00785 -0.0209 -0.06306 -0.02437 0.01362 -0.01101 0.01443 30-10 0.04498 0.03388 2.86E-04 0.00802 -0.02055 0.00634 -0.02322 0.03388 0.00838 -0.0371 0.03391 0.03292 0.00371 0.03391 0.03395 0.00971 0.0321 01111 -1.49947 0.03329 0.00467 0.00837 -0.00599 -0.02521 0.033916 0.03395 0.03973 -0.0348 02-11 -0.04227 -0.02425 0.00640 0.06373 -0.00596 0.03117 -0.01166 -0.02428 -0.06173 -0.02468 -0.2428 -0.06173 -0.02468 -0.2428 -0.06173 -0.02459 -0.02428 -0.06173 -0.02468 -0.2428 -0.06173 -0.02459 -0.02428 -0.6173 -0.02468 -0.2428 -0.6173 -0.04686 -0.14057 -0.2428 -0.6173 -0.01856 -0.14088 -0.2428 -0.6173 -0.01856 -0.14088	28-	10 0.02220	-0.04893	-0.0055	0.00755	0.00010	-0.00258	0.02157	-0.04893	-0.0179	-0.04835
2010 0.04498 0.03388 2.86E-04 0.00802 0.02055 0.00634 -0.02353 0.03328 0.03388 0.03388 0.03371 31-10 -0.40043 -0.0329 0.03388 0.00831 0.036 0.02196 -0.02022 -0.03029 0.00971 0.03171 01-11 -1.49947 0.03395 0.00467 0.00876 -0.00599 -0.02521 0.03916 0.03395 0.03973 -0.0348 02-11 -0.04227 -0.02425 0.00584 0.06773 -0.00595 0.03117 -0.01136 -0.02425 -0.08823 -0.24496 03-11 -0.1552 -0.23428 0.00649 0.00539 -0.06866 -0.04416 -0.02408 -0.23428 -0.61793 -0.46027 04-11 0.01008 -0.46083 0.00649 0.009394 -0.01856 -0.03566 -0.04008 -0.23428 -0.61793 -0.46083 -0.60229 -0.26231 05-11 0.01908 -0.04219 -0.01856 -0.15593 -0.037105 -0.23147	20	10 0.00000	0.04000	-0.00252	0.00785	-0.02042	-0.06306	-0.02437	0.04000	-0.01101	0.04000
31-10 -0.40043 -0.03029 0.00277 0.00831 0.0359 -0.02192 -0.03029 0.00971 0.0321 01-11 -1.49947 0.03029 0.00277 0.00831 0.0369 -0.02022 -0.03095 0.03973 -0.0348 02-11 -0.04227 -0.02425 0.00584 0.06773 -0.00599 -0.02521 0.03916 -0.03395 0.03973 -0.0348 02-11 -0.04227 -0.02425 0.00584 0.06773 -0.00595 0.03117 -0.01136 -0.02425 -0.08823 -0.24496 03-11 -0.1552 -0.23428 0.00649 0.0994 -0.01856 -0.15593 -0.3566 -0.46083 -0.60829 -0.22147 04-11 0.01008 -0.46083 0.00632 0.01142 -0.03455 -0.04107 -0.27105 -0.23147 06-11 0.19566 -0.14096 -0.14219 -0.17554 -0.09749 -0.18009 -0.23147 06-11 0.07484 -0.12667 -0.04387 -0.10397	30-	10 0.00002	0.03388	2.86E-04	0.00100	-0.02055	0.00634	-0.02392	0.03388	0.00838	-0.03571
0110 0.10336 0.0047 0.00876 0.00599 0.02521 0.03225 0.03973 0.0348 02.11 -0.04227 0.02425 0.00467 0.00599 -0.02591 0.0316 0.03235 0.03973 -0.0348 02.11 -0.04227 -0.02425 0.00544 0.06773 -0.00599 -0.02521 0.0348 -0.02425 -0.08823 -0.24496 03.11 -0.1552 -0.23428 0.0064 0.00539 -0.01866 -0.04416 -0.02408 -0.23428 -0.61793 -0.40527 04.11 0.01008 -0.46083 0.00649 0.00994 -0.01856 -0.15593 -0.03566 -0.46083 -0.60829 -0.23147 05.11 0.09266 -0.1142 -0.03435 -0.16553 -0.04107 -0.27105 -0.38091 -0.23147 06.11 0.19566 -0.18009 0.00655 0.01302 -0.04387 -0.17554 -0.09749 -0.18009 -0.0419 07.11 0.06385 -0.1302 -0.04387 -0	31-		-0.03029	0.00277	0.00002	0.02035	0.00004	-0.02002	-0.03029	0.000000	0.00071
0111 0.04227 0.02425 0.00584 0.00595 0.0317 0.0136 0.02316 0.02312 0.01366 0.02312 0.02316 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02317 0.02325 0.01366 0.02425 0.08823 0.24496 03.11 0.01088 0.04083 0.00649 0.00994 -0.01866 -0.0416 -0.02428 -0.61793 -0.40527 04.11 0.01008 -0.46083 0.00649 0.00994 -0.01866 -0.14706 -0.27105 -0.38091 -0.23147 06-11 0.19566 -0.1809 0.00605 0.0124 -0.04387 -0.17554 -0.09749 -0.18009 -0.23016 -0.14796 07-11 0.06385 -0.1368 -0.04387 -0.11084 -0.04147 -0.14787 -0.02421 -0.0479 08-11 0.7484 -0.12667 <t< td=""><td>01-</td><td>11 -1 49947</td><td>0.03395</td><td>0.00211</td><td>0.000076</td><td>-0.0599</td><td>-0.02521</td><td>0.02022</td><td>0.03395</td><td>0.03973</td><td>-0.0348</td></t<>	01-	11 -1 49947	0.03395	0.00211	0.000076	-0.0599	-0.02521	0.02022	0.03395	0.03973	-0.0348
0.01 0.01 0.02 0.00 <th< td=""><td>02-</td><td>11 -0.04227</td><td>-0.02425</td><td>0.00401</td><td>0.06773</td><td>-0.00595</td><td>0.02321</td><td>-0.01136</td><td>-0.02425</td><td>-0.08823</td><td>-0.24496</td></th<>	02-	11 -0.04227	-0.02425	0.00401	0.06773	-0.00595	0.02321	-0.01136	-0.02425	-0.08823	-0.24496
0.1008 0.1008 0.1008 0.10094 0.00094 0.01856 0.01553 0.00366 0.04083 0.00829 0.22147 04.11 0.01008 -0.27105 0.00649 0.00994 -0.01856 -0.15593 -0.03566 -0.46083 -0.60829 -0.26211 05.11 0.09296 -0.27105 0.00645 0.01142 -0.03345 -0.16553 -0.04107 -0.27105 -0.33091 -0.23147 06-11 0.19566 -0.14009 0.00605 0.0124 -0.04219 -0.17554 -0.09749 -0.18009 -0.23016 -0.14796 07-11 0.06385 -0.14787 0.00565 0.01302 -0.04387 -0.11084 -0.04614 -0.14787 -0.13022 -0.06498 08-11 0.07484 -0.12667 0.00574 0.01358 -0.04191 -0.09397 -0.03902 -0.12667 -0.04211 -0.106 09-11 0.14312 -0.03892 0.00529 0.06897 -0.04228 -0.07355 -0.02983 -0.05067 -0.02	02-	11 -0.04227	-0.02423	0.00304	0.00773	-0.00333	-0.04416	-0.01130	-0.02423	-0.00023	-0.24430
0.5110 0.51335 0.00032 0.00142 0.00345 0.01855 0.01805 0.00032 0.00042 0.02347 06-11 0.09296 -0.27105 0.00632 0.01142 -0.03345 -0.18553 -0.03047 -0.2105 -0.23047 -0.23147 06-11 0.19666 -0.18009 0.00605 0.0124 -0.04219 -0.17554 -0.09749 -0.18009 -0.23016 -0.14796 07-11 0.06385 -0.14787 0.00585 0.01302 -0.04387 -0.11084 -0.04614 -0.14787 -0.13022 -0.06498 08-11 0.07484 -0.12667 0.00574 0.01358 -0.04191 -0.09397 -0.03902 -0.12667 -0.04211 -0.106 09-11 0.14312 -0.03892 0.0056 0.01397 -0.09397 -0.03404 -0.03892 -0.07422 -0.02713 10-11 0.11554 -0.03935 0.00529 0.06897 -0.04228 -0.07355 -0.02983 -0.09395 -0.05067 -0.02	04-	11 0.01008	-0.20420	0.000.0	0.00000	-0.00000	-0.04410	-0.02400	-0.20420	-0.60829	-0.40027
0511 0.0226 0.02713 0.00605 0.0142 0.004219 0.10533 0.019749 0.197103 0.00031 0.021476 06-11 0.19566 -0.18009 0.00605 0.0124 -0.04219 -0.17554 -0.09749 -0.18009 -0.201476 07-11 0.06385 -0.14767 0.00585 0.01302 -0.04387 -0.11084 -0.14767 -0.13022 -0.04484 08-11 0.07484 -0.12667 0.00574 0.01358 -0.04191 -0.03902 -0.12667 -0.04211 -0.166 09-11 0.14312 -0.03892 0.0056 0.01397 -0.09397 -0.03902 -0.12667 -0.04211 -0.166 09-11 0.14312 -0.03892 0.00529 0.06897 -0.09377 -0.08253 -0.03444 -0.03892 -0.07422 -0.02713 10-11 0.11554 -0.09395 0.00529 0.0152 -0.03406 -0.02685 -0.02983 -0.09395 -0.05067 -0.02 11-11 0.17291 -	04-	11 0.01000 11 0.09296	-0.40003	0.00040	0.00004	-0.01030	-0.13553	-0.03300	-0.27105	-0.00020	-0.20231
0011 0.15360 0.14787 0.00585 0.01302 0.04387 0.0334 0.04745 0.01302 0.04786 0711 0.06385 -0.14787 0.00585 0.01302 -0.04387 -0.04614 -0.14787 -0.13022 -0.06498 0811 0.07484 -0.12667 0.00574 0.01397 -0.03997 -0.03902 -0.12667 -0.04211 -0.166 09-11 0.14312 -0.03892 0.0056 0.01397 -0.09397 -0.03902 -0.12667 -0.04211 -0.166 09-11 0.14312 -0.03995 0.00529 0.06897 -0.04228 -0.07355 -0.02983 -0.09395 -0.05067 -0.02 11-11 0.11554 -0.09395 0.00502 0.01152 -0.03406 -0.02685 -0.02491 -0.02206 0.00862 -0.0078 12-11 0.17291 -0.00747 0.00430 0.01466 -0.02885 -0.00299 -0.01979 -0.00747 -0.00442 0.01282 13-11 0.05862 0.00603	-00-	11 0.00200	-0.27103	0.00002	0.01142	-0.03343	-0.10555	-0.04107	-0.27103	-0.30031	-0.23147
0.0741 0.07484 -0.12667 0.00574 0.01358 -0.04191 -0.03974 -0.03914 -0.03892 -0.04214 -0.04214 -0.03224 -0.03224 -0.03924 -0.13667 -0.04214 -0.03892 -0.04224 -0.04214 -0.03892 -0.04224 -0.04214 -0.03892 -0.07422 -0.02713 10-11 0.11554 -0.03935 0.00529 0.06897 -0.04228 -0.07355 -0.02983 -0.03935 -0.05067 -0.02 11-11 0.11554 -0.02206 0.00502 0.01152 -0.03406 -0.06605 -0.02491 -0.02206 0.00862 -0.00378 12-11 0.17291 -0.00747 0.00493 0.01466 -0.02885 -0.00299 -0.01779 -0.00442 0.01828 13-11 0.05682 0.00633 0.01485 -0.02885 -0.02999 -0.01979 -0.00747 -0.00442 0.01382 14-11 -0.56683 0.00503 0.01485 -0.02538 -0.04553 -0.004548 -0.03683 -0.07422	00-	11 0.15385	0.10003	0.00000	0.0124	-0.04213	0.17034	-0.03743	-0.10003	-0.23010	0.14750
0.011 0.01431 0.0207 0.00574 0.01303 0.03337 0.03357 0.03362 0.01207 0.04211 0.0100 09-11 0.14312 0.03892 0.0056 0.01397 -0.0937 -0.08357 -0.03444 -0.03892 -0.07422 -0.02713 10-11 0.11554 -0.09395 0.00529 0.06897 -0.0428 -0.07355 -0.02983 -0.09395 -0.05067 -0.02 11-11 0.11835 -0.02206 0.00502 0.01122 -0.02428 -0.07355 -0.02293 -0.09395 -0.05067 -0.02 11-11 0.11835 -0.02206 0.00502 0.01405 -0.02885 -0.0299 -0.01797 -0.000420 -0.0378 12-11 0.17291 -0.00747 0.00493 0.01485 -0.02285 -0.0299 -0.01797 -0.00442 0.01282 13-11 0.05862 0.00683 0.01485 -0.02385 -0.04553 0.0451 0.06683 -0.0778 -0.03493 14.11 -0.26568 <td>0/-</td> <td>11 0.00000</td> <td>-0.14707</td> <td>0.00503</td> <td>0.01369</td> <td>-0.04307</td> <td>_0.004</td> <td>-0.04014</td> <td>-0.14707</td> <td>_0.13022</td> <td>_0.00430</td>	0/-	11 0.00000	-0.14707	0.00503	0.01369	-0.04307	_0.004	-0.04014	-0.14707	_0.13022	_0.00430
0.011 0.14312 0.0032 0.0033 0.0337 0.0337 0.03444 0.03444 0.03422 0.07422 0.02713 10-11 0.11554 -0.09395 0.00529 0.06897 -0.04228 -0.07355 -0.02983 -0.09395 -0.05067 -0.02 11-11 0.11835 -0.02206 0.00502 0.01122 -0.03406 -0.06605 -0.02491 -0.02206 0.00882 -0.00378 12-11 0.17291 -0.00747 0.00493 0.01406 -0.02856 -0.00299 -0.01979 -0.00442 0.01282 13-11 0.05862 0.00683 0.01485 -0.02358 -0.04553 0.04051 0.00683 -0.07078 -0.03493 14-11 -0.26658 -0.03859 -0.03854 -0.04553 0.04051 0.00683 -0.07078 -0.03493	00-	11 0.07404	-0.12007	0.00074	0.01307	-0.04131	-0.03337	-0.00002	-0.12007	-0.04211	-0.100
10-11 0.11534 -0.0535 0.00525 -0.04226 -0.07555 -0.02565 -0.05355 -0.00747 -0.00422 -0.03433 12-11 0.05685 0.00683 0.0053 0.01485 -0.02455 0.04051 0.00683 -0.07078 -0.03493 14-11 -0.26568 -0.06390 0.01771 -0.00422 0.02311 -0.00422 0.02311	10	11 0.14312 11 0.14574	0.00002	0.0000	0.01397	-0.0307	-0.00255	-0.03444	-0.00032	-0.07422	0.02713
1111 0.1723 -0.0220 0.00202 0.0132 -0.02405 -0.02491 -0.02205 0.00082 -0.00376 12-11 0.17291 -0.00747 0.00493 0.01486 -0.02385 -0.00299 -0.01797 -0.00442 0.01282 13-11 0.05862 0.00683 0.0053 0.01485 -0.02358 -0.04553 0.00683 -0.00747 -0.03493 14-11 -0.56682 0.00683 0.0050 0.0777 0.03824 0.01371 -0.00683 -0.07078 -0.03493	10-	11 0.11004 11 Π.11005	-0.09395	0.00529	0.00037	-0.04220	-0.07333	-0.02903	-0.09399	0.00007	-0.02
12-11 0.07251 0.00747 0.00452 0.01460 -0.02358 -0.01575 0.01477 -0.00442 0.01262 13-11 0.05862 0.00683 0.0053 0.01485 -0.02358 -0.04553 0.014051 0.00683 -0.07078 -0.03493 14-11 -0.25658 -0.03859 -0.00597 0.03824 0.01371 -0.00478 -0.03859 -0.00422 0.02371	10	11 0.11030		0.00002	0.01132	-0.03400	-0.00005	-0.02431	-0.02200	-0.00002	0.00370
13-11 0.0262 0.0000 0.0003 0.0140 -0.0250 -0.0403 0.0403 0.0000 -0.0000 -0.03493 1.11 -0.0568 0.013493 0.01600 0.0767 0.03859 0.01042 0.0371	12-	11 0.17291	0.00747	0.00493	0.01400	-0.02000	-0.00299	0.01979	0.00747	-0.00442	-0.01202
	1.1-	11 -0.26568	-0.03859	0.0000	0.01400	0.02000	0.04000	-0.04001	-0.00000	-0.07070	0.03493

DATE	S18	S10	S20	S21	S22	S23	S24	s25	\$26	\$27
15-11	-1 53/86	0.07325	0.06166	0 00596	-0.007/6	323 	.0.00313	0.07325	0.02194	-0.01977
16-11	-0.06623	-0.07323	0.00100	0.00550	-0.00740	0.02929	-0.00313	-0.07325	0.02134	-0.01077
17-11	-0.00023	-0.15918	0.0000	0.01503	-0.0002	-0.02048	-0.00100	-0.05177	-0.25937	-0.03024
18-11	-0.13320	-0.13310	0.00040	0.01661	-0.00323	-0.02040	-0.00031	-0.15510	-0.25557	-0.17524
10-11	0.02413	-0.40113	0.01002	0.01001	-0.01102	-0.03285	-0.01074	-0.40113	-0.40370	0.19500
20.11	0.00343	0.15914	0.01107	0.00022	-0.02133	-0.04333	-0.02376	-0.1511	-0.20702	0.10002
20-11	0.27432	0.10044	0.01211	0.01007	-0.02712	-0.04732	-0.02005	-0.13044	-0.22002	-0.12034
21-11	0.12044	0.13203	0.007.30	0.01030	-0.02010	-0.04055	-0.03411	-0.13205	-0.15156	-0.11000
22-11	0.04047	0.03057	0.01034	0.01017	0.02020	-0.04203	-0.04405	0.03057	-0.00300	0.12207
23-1	0.07747	0.03037	0.01320	0.00477	0.02270	-0.03782	0.10020	0.03037	0.00007	0.10664
24-1	0.04030	0.01042	0.01420	0.01140	-0.01049	0.00100	-0.05325	0.01042	-0.0225	0.10004
20-11	0.03042	5 66E 04	0.01432	0.01003	-0.01420	-0.02000	-0.03242	-0.00033	-0.00915	0.03024
20-1	0.05192	0.01765	0.00312	0.00300	-0.01020	-0.02047	-0.04730	0.01755	0.01204	-0.0040
27-1	0.00192	0.01755	0.01209	0.00027	-0.00032	-0.01302	-0.04322	0.01755	-0.04738	-0.0127
20-1	0.10433	-0.02040	0.01523	0.00704	1 445 04	-0.01234	-0.03042	-0.02040	0.01704	0.00100
29-11	0.10327	0.03173	0.01577	0.00724	1.440-04	0.04301 5 20E 04	-0.0329	0.03173	-0.02010	0.00257
01.12	1 -0.52572 1 1 100024	-0.01202	0.0000070	0.00745	0.00022	-5.30E-04	-0.02710	-0.01202	0.03107	0.0100
01-12	0 0 0 0 0 1 40	0.04001	0.00979	0.00734	0.01004	-0.00140	-0.02103	0.04001	-0.01430	-0.00010 0.50001
02-12	0.37140	0.01170	0.01304	0.00712	0.00778	1.635-04	-0.03447	-0.01178	0.03644	-0.52001
04.12		-0.06534	0.01420	0.00001	0.00737	1.62E-04	-0.16466	-0.06534	-0.14000	-0.73040
04-12		0.27777	0.01457	0.00907	0.00109	0.04527	-0.19034	-0.27777	-0.37267	-0.40243
05-12	2 -0.20949	-0.20006	0.0057	0.000746	-0.00604	-0.01434	-0.21212	-0.20006	-0.30443	-0.20092
07.42	2 0.07349	-0.26961	0.01217	0.00746	-0.01123	-0.0803	-0.21952	-0.26961	-0.212	-0.24462
07-12	2 0.14397	-0.13591	0.01428	0.00548	-0.01274	-0.02102	-0.21009	-0.13591	-0.1374	-0.16572
08-12	2 0.00307	-0.04885	0.01503	0.00261	-0.01169	-0.02978	-0.14439	-0.04885	-0.11472	-0.07558
09-12	2 0.0782	-0.02024	0.01553	-1.35E-04	-0.00963	-0.02366	-0.12425	-0.02024	-0.03512	-0.10507
10-12	2 0.16975	-0.07126	0.07464	-0.00198	-0.00853	-0.01923	-0.1088	-0.07126	-0.0169	-0.0824
11-12	2 0.13753	-0.00262	0.01368	-0.0029	-0.00541	-0.01471	-0.03145	-0.00262	-0.00244	-0.06356
12-12	2 0.11822	-0.04549	0.01552	-0.00287	-0.06084	-0.01029	-0.01779	-0.04549	0.01384	0.00673
13-14	2 0.12267	0.01433	0.01496	-0.00201	-0.00567	-0.00604	-0.00159	0.01433	-0.03625	-0.01125
14-12	2 -0.26166	0.03357	0.01531	-6.28E-04	-0.00207	-0.00218	-0.05012	0.03357	0.02423	0.05566
15-12	2 -1.60437	-0.03155	0.01533	0.00108	-9.53E-04	0.00143	0.01322	-0.03155	0.05105	0.06111
10-12	2 0.08135	0.1354	0.01549	0.00287	-4.30E-05	0.00452	-0.033	0.1354	-0.01755	-0.29858
17-12	2 -0.13246	-0.41439	0.01536	0.00462	-0.00248	0.05882	0.01367	-0.41439	-0.14153	-0.40411
18-12	2 0.03324	-0.40879	0.01553	0.00631	0.0393	8.52E-04	-0.04452	-0.40879	-0.38799	-0.33334
19-12	2 0.1056	-0.336/8	0.07462	0.00764	-0.02171	-0.01338	-0.04909	-0.33678	-0.30528	-0.18268
20-12	2 0.0852	-0.18285	0.01308	0.00873	-0.08252	-0.01982	-0.04699	-0.18285	-0.16897	-0.146
21-12	2 0.11702	-0.14382	0.01452	0.0718	-0.03836	-0.07543	-0.04314	-0.14382	-0.18788	-0.0672
22-12	2 0.14165	-0.05909	0.014/6	0.00737	-0.03178	-0.03041	-0.03872	-0.05909	-0.12176	0.00858
23-12	2 0.11012	-0.03256	0.07048	0.00981	-0.08201	-0.02669	-0.03369	-0.03256	-0.0458	-0.07917
24-12	2 0.1149	-0.01923	0.01301	0.01078	-0.02966	-0.02337	-0.02844	-0.01923	-0.02581	-0.01551
25-12	2 0.11466	0.00394	0.01331	0.01134	-0.02081	-0.02094	-0.02313	0.00394	-0.01387	7.15E-04
26-12	2 0.16696	-0.05605	0.01338	0.07394	-0.0158	-0.0183	-0.01793	-0.05605	-0.06047	0.02384
27-12	2 0.11468	0.0102	0.06926	0.00653	0.0434	-0.01609	0.04001	0.0102	-7.05E-04	-0.03818
28-12	2 0.11284	0.02709	0.01031	0.01083	-5.26E-04	-0.01405	-0.00165	0.02/09	0.01651	0.02707
29-12	2 0.10831	-0.01961	0.0117	0.01204	-6.53E-05	-0.0118	-0.00114	-0.01961	-0.03581	-0.0158
30-12	2 0.1109	0.03771	0.01183	0.01271	0.00323	-0.0096	0.05648	0.03771	-0.03257	0.04411
	⊥ 0.111111	⊢ -0.00461	L 0.0117	0.07081	L 0.05919	L -0.00764	L 0.01199.	-0.00461	0.02576	⊢ -0 00202.

APPENDIX 4

(DEPTH OF OVER LAND FLOW IN METRE)

OVERLAND FLOW (m)									
Date	S1	S2	S3	S4	S5	S6	S7	S 8	S 9
01-01									
02-01				0.0038137	0.0035363	0.0035363	0.0031014	0.0031014	0.0031016
03-01				5.77E-06	4.58E-11	4.33E-11		6.54E-13	
04-01					4.58E-11	4.33E-11		6.54E-13	
05-01					4.58E-11	4.33E-11		6.54E-13	
06-01					4.58E-11	4.33E-11		6.54E-13	
07-01					4.58E-11	4.33E-11		6.54E-13	
08-01					4.58E-11	4.33E-11		6.54E-13	
09-01					4.58E-11	4.33E-11		6.54E-13	
10-01					4.58E-11	4.33E-11		6.54E-13	
11-01					4.58E-11	4.33E-11		6.54E-13	
12-01					4.58E-11	4.33E-11		6.54E-13	
13-01					4.58E-11	4.33E-11		6.54E-13	
14-01					4.58E-11	0.0035364		6.54E-13	0.0031014
15-01				0.0038137	0.0035363		0.0031014	0.0007483	5.93E-13
16-01					6.39E-14			5.61E-13	5.93E-13
17-01					6.39E-14			5.61E-13	5.93E-13
18-01					6.39E-14			5.61E-13	5.93E-13
19-01					6.39E-14			5.61E-13	5.93E-13
20-01					6.39E-14			5.61E-13	5.93E-13
21-01	5.57E-08			1.42E-07	6.39E-14		1.52E-07	5.61E-13	5.93E-13
22-01	5.48E-07				6.39E-14		0.0060835	5.61E-13	5.93E-13
23-01	5.48E-07				6.39E-14		0.0008442	5.61E-13	5.93E-13
24-01	5.48E-07				6.39E-14			5.61E-13	5.93E-13
25-01	5.48E-07				6.39E-14			5.61E-13	5.93E-13
26-01	5.48E-07				6.39E-14			5.61E-13	5.93E-13
27-01	5.48E-07				6.39E-14			5.61E-13	5.93E-13
28-01	5.48E-07				6.39E-14			5.61E-13	5.93E-13
29-01	5.48E-07				6.39E-14			5.61E-13	5.93E-13
30-01	5.48E-07				6.39E-14			5.61E-13	5.93E-13
31-01	5.48E-07				6.39E-14	0.0035364		5.61E-13	0.0002912
01-02	5.48E-07			0.0044257	0.0035364	2.94E-07	0.0064999	0.0003692	
02-02	5.48E-07				1.02E-07	2.94E-07	0.0011343	3.51E-12	
03-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
04-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
05-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
06-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
07-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
08-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
09-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
10-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
11-02	5 48E-07				1.02E-07	2.94E-07		3.51E-12	
12-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
13-02	5.48E-07				1.02E-07	2.94E-07		3.51E-12	
14-02	5.48E-07			1.03E-13	1.02E-07	0.0035365	1 70E-11	3.51E-12	0.0002912
15-02	5.48E-07			0.0044897	0.0035382	6 18E-11	0.0063101	0.0002033	2.91F-12
16-02	5.48E-07			0.0044007	0.000002	6 18E-11	5.5556101	2 72F-12	2.91E-12
17-02	5.48E-07					6 18E-11		2.72E-12	2.91F-12
18-02	5.48E-07					6 18E-11		2.72E-12	2.91E-12
19-02	5.48E-07					6.18E-11		2.72E-12	2,91E-12
20-02	5.48E-07		1			6.18E-11		2.72E-12	2.91E-12
20-02	5.48E-07					6.18E-11		2.72E-12	2.91E-12
21-02	5.48E-07					6.18E-11		2.72E-12	2.91E-12
22-02	5.48E-07					6.18E-14		2.72E-12	2.01E-12
20-02	0.400-07					0.100-11		L 2.126-12	2.01L-1Z

OVERLAND FLOW (m)									
Date	S1	S2	S3	S4	S5	S6	S7	S8	S 9
24-02	5.48E-07					6.18E-11		2.72E-12	2.91E-12
25-02	5.48E-07			2.03E-06		6.18E-11		2.72E-12	2.91E-12
26-02	5.48E-07			8.53E-14		6.18E-11		2.72E-12	2.91E-12
27-02	5.48E-07			8.53E-14		6.18E-11		2.72E-12	2.91E-12
28-02	5.48E-07			8.53E-14		0.0035361		2.72E-12	0.0023491
01-03	5.48E-07			0.0037901	0.0002386	7.95E-12	0.0023065	0.0020737	
02-03	5.48E-07			6.38E-07		7.95E-12			
03-03	5.48E-07			6.38E-07		7.95E-12			
04-03	5.48E-07			6.38E-07		7.95E-12			
05-03	5.48E-07			6.38E-07		7.95E-12			
06-03	5.48E-07			6.38E-07		7.95E-12			
07-03	5.48E-07			6.38E-07		7.95E-12			
08-03	5.48E-07			6.38E-07		7.95E-12			
09-03	5.48E-07			6.38E-07		7.95E-12			
10-03	5.48E-07			6.38E-07		7.95E-12			
11-03	5.48E-07			6.38E-07		7.95E-12			
12-03	5.48E-07			6.38E-07		7.95E-12			
13-03	5.48E-07			6.38E-07		7.95E-12			
14-03	5.48E-07			6.38E-07		0.001666			0.0035636
15-03	5.48E-07			0.0037889	0.0013068	2.80E-08	0.0078472	0.0029137	1.45E-08
16-03	5.48E-07			1.46E-13	1.07E-14	2.80E-08		1.12E-12	1.45E-08
17-03	5.48E-07			1.46E-13	1.07E-14	2.80E-08		1.12E-12	1.45E-08
18-03	5.48E-07			1.46E-13	1.07E-14	2.80E-08		1.12E-12	1.45E-08
19-03	5.48E-07			1.46E-13	1.07E-14	2.80E-08		1.12E-12	1.45E-08
20-03	5.48E-07			1.46E-13	1.07E-14	2.80E-08		1.12E-12	1.45E-08
21-03	5.48E-07			1.46E-13	1.07E-14	2.80E-08	0.0003661	1.12E-12	1.45E-08
22-03	5.48E-07			1.11E-06	1.07E-14	2.80E-08	6.17E-07	1.12E-12	1.45E-08
23-03	5.48E-07			4.62E-14	1.07E-14	2.80E-08	6.17E-07	1.12E-12	1.45E-08
24-03	5.48E-07			4.62E-14	1.07E-14	2.80E-08	6.17E-07	1.12E-12	1.45E-08
25-03	5.48E-07			4.62E-14	1.07E-14	2.80E-08	6.17E-07	1.12E-12	1.45E-08
26-03	5.48E-07			4.62E-14	1.07E-14	2.80E-08	6.17E-07	1.12E-12	1.45E-08
27-03	5.48E-07			4.62E-14	1.07E-14	2.80E-08	6.17E-07	1.12E-12	1.45E-08
28-03	5.48E-07			4.62E-14	1.07E-14	2.80E-08	6.17E-07	1.12E-12	1.45E-08
29-03	5.48E-07			4.62E-14	1.07E-14	2.80E-08	6.17E-07	1.12E-12	1.45E-08
30-03	5.48E-07			4.62E-14	1.07E-14	0.0035363	6.17E-07	1.12E-12	0.0023141
31-03	5.48E-07			0.0037892	0.0035363	1.75E-11	0.0064061	0.0029732	5.33E-13
01-04	5.48E-07			5.68E-07		1.75E-11	0.0020777	1.92E-13	5.33E-13
02-04	5.48E-07			5.68E-07		1.75E-11	4.04E-05	1.92E-13	5.33E-13
03-04	5.48E-07			5.68E-07		1.75E-11		1.92E-13	5.33E-13
04-04	5.48E-07			5.68E-07		1.75E-11		1.92E-13	5.33E-13
05-04	5.48E-07			5.68E-07		1.75E-11		1.92E-13	5.33E-13
06-04	5.48E-07			5.68E-07		1.75E-11		1.92E-13	5.33E-13
07-04	5.48E-07			5.68E-07		1.75E-11		1.92E-13	5.33E-13
08-04	5.48E-07			5.68E-07		1.75E-11		1.92E-13	5.33E-13
09-04	5.48E-07			5.68E-07		1.75E-11		1.35E-13	5.33E-13
10-04	5.48E-07			5.68E-07		1.75E-11		1.35E-13	5.33E-13
11-04	5.48E-07			5.68E-07		1.75E-11		1.35E-13	5.33E-13
12-04	5.48E-07			5.68E-07		1.75E-11		1.35E-13	5.33E-13
13-04	5.48E-07			5.68E-07		1.75E-11		1.35E-13	5.33E-13
14-04	5.48E-07			5.68E-07		0.0009074		1.35E-13	0.0026441
15-04	5.48E-07		1.59E-12	0.0038205	0.0009075		0.0077002	0.0026449	
16-04	5.48E-07		1.59E-12	1.35E-13	5.01E-13		0.0023826	3.66E-13	
17-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07		4.77E-05	0.0002777	
18-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07				

	~ 1			OVERLAND	FLOW (m)				
Date	5 49E 07	S2	\$3 4.505.40	54	55	56	57	58	59
19-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07				
20-04	5.40E-07		1.59E-12	1.35E-13	1.02E-07				
21-04	5.40E-07		1.59E-12	1.35E-13	1.82E-07				
22-04	5.485.07		1.59E-12	1.35E-13	1.82E-07				
23-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07				
25-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07				
26-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07				
27-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07				
28-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07				
29-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07				
30-04	5.48E-07		1.59E-12	1.35E-13	1.82E-07	0.0035363			0.0035213
01-05	2.24E-13		1.59E-12	0.0011248	0.0002387	9.63E-11	0.0114731	0.0075441	7.11E-14
02-05	2.24E-13		1.59E-12	7.56E-07	2.74E-13	9.63E-11	0.0031474	4.65E-06	7.11E-14
03-05	9.17E-07		1.59E-12		2.74E-13	9.63E-11	0.0031171		7.11E-14
04-05	9.17E-07		1.59E-12		2.74E-13	9.63E-11	0.0001608		7.11E-14
05-05	9.17E-07		1.59E-12		2.74E-13	9.63E-11	7.56E-05		7.11E-14
06-05	9.17E-07		7.39E-07		2.74E-13	6.70E-08			0.0073216
07-05	9.17E-07		2.33E-06		2.74E-13	9.93E-07	0.004.5004		0.0037731
08-05	9.17E-07		7.82E-07	4.445.00	2.74E-13	1.21E-06	0.0015231		0.003009
10.05	1.172-06		7.02E-07	7.14E-06	2.74E-13	3.91E-14		0.0007541	0.0001362
11.05	7.95E.07		7.82E-07	7.11E-15	2.74E-13	3.91E-14	2.64E.07	0.0007341	0.0028823
12-05	7.95E-07	1.07E-07	7.82E-07	7.11E-15	3.10E-07	2.09E-06	5.95E-07	0.0027384	0.0029109
13-05	7.95E-07	8.66E-07	1.39E-08	7.11E-15	1.96E-06	2.002.00	5.95E-07	0.0026407	0.0029923
14-05	7.95E-07	8.66E-07	1.39E-08	7.11E-15	7.11E-14	0.0018791	5.95E-07	0.0002226	0.0118129
15-05	7.95E-07	8.66E-07	1.39E-08	0.003859	0.0004701		0.0112554	0.0097824	0.0041409
16-05	7.95E-07	8.66E-07	1.39E-08	1.16E-06	3.41E-13		0.0046391	0.0033342	0.0006257
17-05	7.95E-07	8.66E-07	1.39E-08	1.42E-14	6.65E-07		0.002187	0.0018752	0.0007016
18-05	7.95E-07		1.39E-08	1.42E-14	0.0007829		0.0008451	0.004741	8.40E-05
19-05	7.95E-07		1.39E-08	1.42E-14	3.09E-13		0.0003044	0.0004217	5.58E-06
20-05	7.95E-07		1.39E-08	1.42E-14	3.09E-13	7.96E-13	3.47E-05	0.0003075	0.0013052
21-05	7.95E-07		1.39E-08	1.42E-14	3.09E-13	3.67E-07		0.0001298	0.000983
22-05	7.95E-07	E 405 05	1.39E-08	1.42E-14	0.0007248	3.67E-07		0.0042069	
23-05	7.95E-07	5.42E-08	1.39E-08	1.42E-14	1.505.07	3.67E-07	1 205 07	0.0075757	0.0049740
24-05	7.955-07	3,090-00	1.39E-08	1.420-14	1.50E-07	0.0004947	2.605.07	0.0036354	0.0018/12
23-05	7.95E-07	0.332-06	1.39E-09	3.82E-07	1.81E-12	0.0001015	2.60E-07	0.0004502	3.22E-05
27-05	7,95E-07		1.39E-08	0.0007416	1.81F-13		0.0015283	6.28E-05	0.220-05
28-05	7,95E-07		1.39E-08	0.0008406	1.26E-05		0.0020678	0.0031388	
29-05	7.95E-07	2.32E-06	1.39E-08	0.0004997	2.32E-06		0.0019209	0.000659	0.001639
30-05	3.25E-06	9.95E-14	1.39E-08	3.99E-07		0.0001038	0.0003996	7.89E-05	0.013348
31-05	1.42E-14	9.95E-14	4.20E-06	0.0101215	0.0045571	1.30E-06	0.0107837	0.0106458	0.0032078
01-06	1.42E-14	9.95E-14	2.62E-06	0.004318	0.001097	7.52E-07	0.0023225	0.0047886	0.0040163
02-06	1.42E-14		4.34E-09	0.0006744	0.0027535	7.52E-07	0.0028783	0.0046325	0.0016812
03-06		1.18E-06	4.34E-09	0.0093647	0.0004936	7.52E-07	0.0067284	0.0009342	0.0007986
04-06		6.75E-14	4.34E-09	0.0049571	4.32E-05	7.52E-07	0.003435	0.0004568	0.0013679
05-06		6.75E-14	4.34E-09	0.0010748	0.0011766	7.52E-07	0.0001637	0.0020914	0.0004741
06-06		6.75E-14	4.34E-09	0.0004478	0.0026956	7.52E-07	7.23E-05	0.0033017	3.68E-05
07-06		2.33E-07	4.34E-09	0.001688	0.0035932	7.52E-07	0.0008759	0.0039257	
08-06		2.38E-07	4.34E-09	0.0055963	0.0041423	0.0005272	0.004397	0.0043847	0.002565
09-06	1.24E-07	2.38E-07	4.34E-09	0.0053282	0.0052557	0.0003251	0.0036113	0.0053629	0.0008218
10-06	8.83E-07	2.38E-07	4.36E-09	0.0054291	0.0024275	1.67E-05	0.0035543	0.0030325	0.001203
11-06	1.43E-06	2.38E-07	1.46E-06	0.0037858	0.0002276	1.81E-13	0.002395	0.0002884	0.0006822
12-06	7.73E-07	2.38E-07	8.36E-07	0.0028327	2.97E-05	1.81E-13	0.001899	4.75E-05	0.0008038
14-06	1.16E-06	2.38E-07	8.36E-07	0.0055666	2.512-05	0.0068946	0.0037455	8.58E-06	0.008497
15-06	6.19E-07	2.38E-07	7.50E-07	0.014061	0.0064224	0.0024879	0.0130051	0.0106294	0.002846
16-06	6.19E-07	2.38E-07	7.50E-07	0.0101605	0.0017477	0.0001282	0.0072036	0.0043361	0.000324
17-06	2.85E-06	2.38E-07	7.50E-07	0.0068882	8.21E-05	0.0019549	0.0041142	0.000487	0.0022407
18-06		2.38E-07	7.50E-07	0.0064975	1.19E-05	7.15E-05	0.0039757	0.000594	9.03E-05
19-06	4.93E-06	2.38E-07	7.50E-07	0.0038224		0.0006354	0.0010759	7.83E-05	0.0008533
20-06	1.99E-13	2.38E-07	7.50E-07	0.0012702	1.09E-06		0.0007839	0.001082	1.47E-05
21-06	1.99E-13	2.38E-07	7.50E-07	0.0012113	9.78E-08		0.0004917	0.0006949	
22-06	1.99E-13	2.38E-07	7.50E-07	0.0002185	2.49E-07		3.72E-05	0.000445	
23-06	6.51E-07	1.81E-13	7.50E-07	0.0005678	0.0029701	0.445.07	4.71E-05	0.0032165	1 0 15 07
24-06	6.51E-07	1.17E-06	7.50E-07	0.0039756	0.0018537	3.14E-07	0.0027596	0.0018765	1.64E-07
25-06		2.00E-06	7.50E-07	0.0039322	0.0028771	3.14E-07	0.0028819	0.0029878	1.64E-07
27-06		2.002.00	7.50E-07	0.0007072	0.0008004	3.14E-07	0.0002223	0.0008407	1.64E-07
28-06	8.72E-05		7.50E-07	0.0033266	9.96E-05	3.14E-07	0.0025199	0.000141	1.64E-07
29-06	4.68E-05		7.50E-07	0.0030185	2.07E-05	0.000602	0.0023955	2.68E-05	0.000693
30-06			7.50E-07	0.0007323		0.0008326	0.0004344		0.0007919
01-07	0.0001338		7.50E-07	0.0032968		0.0012576	0.0026365		0.0014374
02-07	1.63E-13	7.95E-07	1.26E-06	0.0006702	8.62E-07	0.0013059	0.0004065	2.09E-07	0.0014397
03-07	0.0001823	7.95E-07		0.0033319	8.62E-07	0.0020452	0.003097	2.09E-07	0.0021431
04-07	0.0001716	7.95E-07	1.17E-06	0.0035436	8.62E-07	0.0012311	0.0035544	2.09E-07	0.0012577
05-07	0.0002178	7.95E-07		0.0037548	2.55E-U7	5.26E-US	0.0041947	0.44E-07	0.16E-US
06-07	0.0003564	5 70E 07		0.0042203	0.0047748	0.0019902	0.0035271	0.0046016	0.0019550
07-07		2.09E-08	2.88E-12	0.0010541	0.0065794	0.0034246	0.0016419	0.0068284	0.0029571
09-07	0.0002489	4.57E-07	2.77E-06	0.003716	0.0061482	0.0020965	0.0055937	0.0064494	0.0019512
10-07	1.19E-06	1.20E-06		0.0014896	0.0028134	0.0002197	0.0025805	0.0034237	0.0002953
11-07		7.17E-05	1.76E-06	0.0004568	0.0031107	0.0007455	0.0011449	0.0034634	0.0008122
12-07	1.16E-06	1.68E-05		0.0001122	0.0041501	0.0022515	0.0006945	0.0060235	0.0023366
13-07	0.0002049	9.84E-05		0.0020672	0.0027665	8.88E-05	0.0032929	0.0045625	9.63E-05
14-07	0.0577	0.0004117		0.0020948	0.0033365	4.25E-05	0.0033637	0.0068006	5.15E-05
15-07	0.0002866	1.43E-06		0.0108313	0.001482		0.0149709	0.0041783	
16-07	1.20E-06	0.0001948		0.0109635	0.002267		0.013281	0.0051519	
17-07	7.996-13	3.91E-14		0.0082696	0.0002401		0.0078112	0.0018583	
10-07	1 97E 05	0.0004102		0.0049814	0.0022559		0.002981	0.00621229	
20-07	7,74E-09	0.0004658		0.0149403	0.011545		0.0113289	0.0172082	
21-07	7.98E-07	1.24E-06		0.0092495	0.0100379	0.0006163	0.0054697	0.0121514	0.0007124
22-07	0.003211	4.48E-13		0.0150384	0.0062647		0.0107846	0.0044555	
23-07	0.0042907	4.48E-13		0.0111242	0.0040185		0.0070544	0.0037636	
24-07	0.0033874	2.38E-07		0.008188	0.0072909		0.0048509	0.0086787	
25-07	0.004764	2.28E-05		0.0101382	0.0115853		0.0068159	0.0129715	
26-07	0.0040325	9.87E-06		0.0076056	0.0066729		0.0045146	0.008751	
27-07	0.0066987	0.0019474		0.011223	0.0064311		0.0076824	0.0060692	
28-07	0.0026776	0.0021199		0.0058982	0.0059206	0.0003781	0.0029165	0.0059809	0.0004403
29-07	0.0017177	0.0100123	7.72E-07	0.004495	0.0126051	6.45E-07	0.0021122	0.0126492	4.14E-07
30-07	0.0006673	0.0054251	0.005	0.0030787	0.0057594	0.0007048	0.0009693	0.0057604	0.0015257
31-07	8.42E-05	0.0047609	6.20E-07	0.0017952	0.0055324	0.0012683	0.000112	0.0055532	0.0008319
01-08	0.0013388	0.0027961	6.20E-07	0.0034562	0.0033038		0.0016818	0.0033188	
02-00	0.000472	0.0005637	6.20E-07	0.0062959	0.0009782	0.0021736	0.0025127	0,000000	0.0022257
03-08	0.0009712	7.11E-05	7.85E-07	0.0027996	0.000111	0.0024385	0.0010743	0.0001121	0.0024761
04-08	0.0001162		1,71E-08	0.0016023	2.76E-05	0.0009004	0.0001304	2.86E-05	0.0009091
80-80	5.50E-05		1.112-06	0.0010618	2.100-05	0.002702	6,45E-05	2.00L-05	0.0027408
00-08	5.50E-05			7/14	5	0.002702	0.402-05		0.0027400
				2 4 .	,				

OVERLAND FLOW (m)										
Date	S1	S2	S3	S4	S5	S6	S7	S8	S 9	
12-06	7.73E-07	2.38E-07	8.36E-07	0.0028327	0.0001114	1.81E-13	0.001699	0.0002749	0.0008098	
13-06	7.73E-07	2.38E-07	8.36E-07	0.0058866	2.97E-05	1.81E-13	0.0043404	4.75E-05		
14-06	1.16E-06	2.38E-07	8.36E-07	0.0055666		0.0068946	0.0037455	8.58E-06	0.008497	
15-06	6.19E-07	2.38E-07	7.50E-07	0.014061	0.0064224	0.0024879	0.0130051	0.0106294	0.002846	
16-06	6.19E-07	2.38E-07	7.50E-07	0.0101605	0.0017477	0.0001282	0.0072036	0.0043361	0.000324	
17-06	2.85E-06	2.38E-07	7.50E-07	0.0068882	8.21E-05	0.0019549	0.0041142	0.000487	0.0022407	
18-06		2.38E-07	7.50E-07	0.0064975	1.19E-05	7.15E-05	0.0039757	0.000594	9.03E-05	
19-06	4.93E-06	2.38E-07	7.50E-07	0.0038224		0.0006354	0.0010759	7.83E-05	0.0008533	
20-06	1.99E-13	2.38E-07	7.50E-07	0.0012702	1.09E-06		0.0007839	0.001082	1.47E-05	
21-06	1.99E-13	2.38E-07	7.50E-07	0.0012113	9.78E-08		0.0004917	0.0006949		
22-06	1.99E-13	2.38E-07	7.50E-07	0.0002185	2.49E-07		3.72E-05	0.000445		
23-06	6.51E-07	1.81E-13	7.50E-07	0.0005678	0.0029701		4.71E-05	0.0032165		
24-06	6.51E-07	1.17E-06	7.50E-07	0.0039756	0.0018537	3.14E-07	0.0027596	0.0018765	1.64E-07	
25-06			7.50E-07	0.0039322	0.0028771	3.14E-07	0.0028619	0.0029878	1.64E-07	
26-06		2.00E-06	7.50E-07	0.0010952	0.0010319	3.14E-07	0.0006284	0.0010468	1.64E-07	
27-06			7.50E-07	0.0007072	0.0008004	3.14E-07	0.0002223	0.0008407	1.64E-07	
28-06	8.72E-05		7.50E-07	0.0033266	9.96E-05	3.14E-07	0.0025199	0.000141	1.64E-07	
29-06	4.68E-05		7.50E-07	0.0030185	2.07E-05	0.000602	0.0023955	2.68E-05	0.000693	
30-06			7.50E-07	0.0007323		0.0008326	0.0004344		0.0007919	
01-07	0.0001338		7.50E-07	0.0032968		0.0012576	0.0026365		0.0014374	
02-07	1.63E-13	7.95E-07	1.26E-06	0.0006702	8.62E-07	0.0013059	0.0004065	2.09E-07	0.0014397	
03-07	0.0001823	7.95E-07		0.0033319	8.62E-07	0.0020452	0.003097	2.09E-07	0.0021431	
04-07	0.0001716	7.95E-07	1.17E-06	0.0035436	8.62E-07	0.0012311	0.0035544	2.09E-07	0.0012577	
05-07	0.0002178	7.95E-07		0.0037548	2.55E-07	5.26E-05	0.0041947	8.44E-07	6.16E-05	
06-07	0.0003584			0.0042203	0.0047748		0.0055271	0.0048016		
07-07		5.70E-07		0.0015781	0.0025099	0.0018893	0.0026779	0.0025323	0.0018556	
08-07		2.09E-08	2.88E-12	0.0010541	0.0065794	0.0034246	0.0016419	0.0068284	0.0029571	
09-07	0.0002489	4.57E-07	2.77E-06	0.003716	0.0061482	0.0020965	0.0055937	0.0064494	0.0019512	
10-07	1.19E-06	1.20E-06		0.0014896	0.0028134	0.0002197	0.0025805	0.0034237	0.0002953	
11-07		7.17E-05	1.76E-06	0.0004568	0.0031107	0.0007455	0.0011449	0.0034634	0.0008122	
12-07	1.16E-06	1.68E-05		0.0001122	0.0041501	0.0022515	0.0006945	0.0060235	0.0023366	
13-07	0.0002049	9.84E-05		0.0020672	0.0027665	8.88E-05	0.0032929	0.0045625	9.63E-05	
14-07		0.0004117		0.0020948	0.0033365	4.25E-05	0.0033637	0.0068006	5.15E-05	
15-07	0.0002866	1.43E-06		0.0108313	0.001482		0.0149709	0.0041783		
16-07	1.20E-06	0.0001948		0.0109635	0.002267		0.013281	0.0051519		
17-07	7.99E-13	3.91E-14		0.0082696	0.0002401		0.0078112	0.0018583		
18-07	7.99E-13	1.25E-05		0.0049814	0.0022559		0.002981	0.0051829		
19-07	1.97E-05	0.0004103		0.0077654	0.0028136		0.006442	0.0063131		
20-07	7.74E-09	0.0004658		0.0149403	0.011545		0.0113289	0.0172082		
21-07	7.98E-07	1.24E-06		0.0092495	0.0100379	0.0006163	0.0054697	0.0121514	0.0007124	
22-07	0.003211	4.48E-13		0.0150384	0.0062647		0.0107846	0.0044555		
23-07	0.0042907	4 48E-13		0.0111242	0.0040185		0.0070544	0.0037636		
24-07	0.0033874	2.38E-07		0.008188	0.0072909		0.0048509	0.0086787		
25-07	0.004764	2.00E-01		0.0101382	0.0115853		0.0068159	0.0129715		
26-07	0.0040325	9.87E-06		0.0076056	0.0066729		0.0045146	0.008751		
27-07	0.0066987	0.0019474		0.011223	0.0064311		0.0076824	0.0060692		
28-07	0.0026776	0.0021199		0.0058982	0.0059206	0.0003781	0.0029165	0.0059809	0 0004403	
20-01	0.0017177	0.0100123	7.72E-07	0.0000002	0.0126051	6.45E-07	0.0020100	0.0126492	4 14F-07	
30-07	0.0006673	0.0054251	1.120-07	0.0030787	0.0057504	0.402-07	0.0021122	0.0057604	0.0015257	
31_07	8.42E-05	0.0047609	6 20E-07	0.0017952	0.0055324	0.0012683	0.000112	0.0055532	0.0010207	
01_02	0.420-00	0.0047003	6 20E-07	0.0034562	0.00000024	5.0012003	0.000112	0.0033332	3.0000318	
07-08	0.0010000	0.0027301	6 20E-07	0.0004002	0.00000000		0.0066883	0.0018614		
02-00	0.000472	0.0005637	6 20E-07	0.0062054002	0.0010437	0.0021736	0.0025127		0 0000057	
00-00	0.0024220	7 115 05	7 855 07	0.0002353	0.0003703	0.0021730	0.0023127	0.000300	0.0022207	
04-00	0.0003r12	1.11E-03	1.000-07	0.0021030	0.000111	0.0024000	0.0010743	0.0001121	0.0024701	

OVERLAND FLOW (m)									
Date	S1	S2	S 3	S4	S5	S6	S7	S8	S 9
05-08	0.0001162		1.71E-06	0.0016023	2.76E-05	0.0009004	0.0001304	2.86E-05	0.0009091
06-08	5.50E-05			0.0010618		0.002702	6.45E-05		0.0027408
07-08	0.0036694		6.52E-07	0.0055909		0.0009656	0.0039627		0.0009741
08-08	0.0055706		1.40E-06	0.0078782		0.0010842	0.005538		0.0011046
09-08	0.006419	0.0070565	1.29E-07	0.0092193	0.0072601	0.0062643	0.0064139	0.0072816	0.0062469
10-08	0.0017425	0.0057351	1.29E-07	0.0043985	0.0057851	0.0031606	0.0017699	0.0058079	0.0026084
11-08	0.0011787	0.0034423	1.29E-07	0.0031657	0.0034997	0.0024433	0.001166	0.0035097	0.0025093
12-08	0.0004389	0.0061199	2.42E-06	0.0021841	0.0061924	0.0010056	0.000436	0.0062087	0.0009678
13-08	0.0001784	0.0086016	1.05E-06	0.0016486	0.0086889	0.0012262	0.0001852	0.0087409	0.0012226
14-08	5.95E-05	0.0025473		0.0013292	0.0026184	0.0033118	6.01E-05	0.0026903	0.0035908
15-08		0.0022081		8.38E-05	0.0022665	0.0037168		0.0023067	0.0040767
16-08		0.0010733	3.45E-06		0.0011179	0.0007057		0.0011525	0.0007561
17-08	6.74E-07	0.0050433		4.93E-07	0.0050907	0.0004021	9.54E-07	0.0051389	0.000367
18-08	1.65E-07	0.0014894		3.74E-07	0.0015378	5.24E-05	3.39E-07	0.0015577	4.94E-05
19-08	0.0014458	0.0014247		0.0019956	0.001469		0.0015177	0.00148	
20-08	0.0003821	0.005704		0.0018454	0.0057447		0.0002411	0.0057699	
21-08		0.0025297		4.10E-05	0.0025789			0.0025982	
22-08		0.0047193			0.00476			0.0047783	
23-08	0.0145208	0.0040423		0.0180492	0.0040911		0.0146324	0.0041073	
24-08	0.0078553	0.005424	9.39E-07	0.0113389	0.005478	0.0034447	0.0079908	0.0054989	0.0034331
25-08	0.0024201	0.0031054	9.39E-07	0.0055701	0.0031697		0.0025126	0.0031827	
26-08	0.0016837	0.0050637	9.39E-07	0.0041605	0.0051164		0.0017637	0.005131	
27-08	0.0006067	0.0010079	9.39E-07	0.0027681	0.0010582		0.0006681	0.0010654	
28-08	0.001858	0.0002824	9.39E-07	0.0038363	0.0003089		0.0019219	0.0003149	
29-08	0.0032783	0.0007054	9.39E-07	0.0054785	0.0007326	0.0006754	0.0033504	0.0007383	0.0006768
30-08	0.0013583	5.02E-05		0.0032432	5.25E-05	0.0016897	0.001413	5.31E-05	0.0016894
31-08	0.0014845			0.0031364		0.0071483	0.001536		0.0106071
01-09	0.0003831			0.0108191	0.0106585	0.0024537	0.0100198	0.0157619	0.0035765
02-09	0.0012067	9.33E-07		0.0059057	0.0019658	0.0001899	0.0043612	0.002443	0.0004746
03-09	1.51E-05	0.0120059	6.14E-07	0.0033268	0.0134578	0.0007177	0.0020646	0.0115611	0.0010716
04-09		0.007913	6.14E-07	0.0031436	0.0088896	2.14E-05	0.0021392	0.0064915	6.95E-05
05-09		0.0022514	6.14E-07	0.0013102	0.0026157	0.0011995	0.0005161	0.0028416	0.0016033
06-09		0.0100307	6.14E-07	0.0001382	0.0104875	0.002935	7.99E-05	0.0102936	0.0032793
07-09		0.0071271	1.07E-06	4.36E-05	0.0072265	0.0014033		0.0072315	0.0016089
08-09		0.0028415	3.68E-06		0.0029974	0.0004942		0.002958	0.000627
09-09		0.0045608	1.10E-13		0.0046804	0.002028		0.0046669	0.002361
10-09		0.0015513	1.56E-09		0.0016422	0.0019351		0.0016271	0.0023482
11-09		0.0005117	1.56E-09		0.0005948	6.86E-05		0.0005787	9.67E-05
12-09		0.0037554	1.46E-06		0.0038697	0.0006683		0.0038568	0.0008777
13-09		0.0029007	1.31E-06		0.0028848	7.01E-05		0.0028895	0.0001341
14-09		0.0017847			0.001831	0.0058333		0.0018311	0.008018
15-09	0.0049545	0.0001076	1.76E-06	0.0184791	0.0075601	0.0009613	0.0196362	0.0101474	0.0015484
16-09	0.0075914			0.0158926	0.0009304	0.0009287	0.013395	0.0018562	0.0016743
17-09	0.0027648			0.007475	0.0008585	0.0001039	0.0042461	0.0015159	0.0006616
18-09	0.0020176	1.09E-07	1.40E-06	0.0063835	0.0006961	5.60E-05	0.0040451	0.001209	0.0005494
19-09	0.0001399	1.74E-07	9.58E-07	0.0031969	0.0013569	1.17E-13	0.0012199	0.0021121	5.94E-05
20-09	6.89E-05	9.85E-07	9.58E-07	0.0028713	0.000461		0.0012177	0.0010889	
21-09	0.0018068	9.85E-07	9.58E-07	0.0055691	1.12E-05		0.0037133	6.70E-05	
22-09	0.0048194	9.85E-07		0.0083555		0.002048	0.006012		0.002359
23-09	0.0054731	9.85E-07	1.43E-06	0.0089118		0.0011415	0.0062778		0.0015943
24-09	0.0098961	9.85E-07	1.11E-06	0.0145015		0.0008324	0.0104699		0.0013053
25-09	0.0042257	9.85E-07	1.58E-06	0.0081792		0.0002002	0.0043993		0.0005232
26-09	0.001783	9.85E-07		0.0047991			0.0020135		
27-09	0.0007531	9.85E-07		0.0033348			0.0009477		

	OVERLAND FLOW (m)											
Date	S1	S2	\$3	S4	S5	S6	S7	S8	S 9			
21-11	6.29E-13			6.96E-13								
22-11	6.29E-13			6.96E-13								
23-11	6.29E-13			6.96E-13								
24-11	6.29E-13			6.96E-13		7.97E-07			1.31E-06			
25-11	6.29E-13			6.96E-13		7.97E-07						
26-11	6.29E-13			6.96E-13	8.02E-07	8.95E-07		5.88E-07	1.02E-06			
27-11	6.29E-13			2.31E-12	8.02E-07	8.95E-07	4.97E-14	5.88E-07				
28-11	6.29E-13			2.31E-12	8.02E-07	8.95E-07	4.97E-14	5.88E-07				
29-11	6.29E-13			2.31E-12	8.02E-07	8.95E-07	4.97E-14	5.88E-07				
30-11	6.29E-13			2.31E-12	8.02E-07	0.0037622	4.97E-14	5.88E-07	0.0089938			
01-12	6.29E-13			0.0002389	0.0041205	2.84E-07	0.0043485	0.0098488	0.0052699			
02-12	6.29E-13			8.74E-12		2.84E-07			0.0017532			
03-12	6.29E-13			8.74E-12		2.84E-07			6.92E-05			
04-12	6.29E-13			8.74E-12		3.70E-06			0.0030836			
05-12	6.29E-13			8.74E-12					7.58E-05			
06-12	6.29E-13			8.74E-12								
07-12	6.29E-13			8.74E-12								
08-12	6.29E-13			8.74E-12								
09-12	6.29E-13			8.74E-12								
10-12	6.29E-13			0.0001768								
11-12	6.29E-13			3.63E-11								
12-12	6.29E-13			1.77E-06			1.42E-06					
13-12	6.29E-13			5.83E-07			1.33E-06					
14-12	6.29E-13			5.83E-07		0.0039022			0.0080423			
15-12	6.29E-13			0.0044185	0.0035765		0.0071392	0.0030313	0.0011089			
16-12	6.29E-13				6.69E-06		0.0013053	7.11E-14				
17-12	6.29E-13				1.92E-13			7.11E-14				
18-12	6.29E-13				1.92E-13			7.11E-14				
19-12	6.29E-13				1.92E-13			7.11E-14	9.10E-07			
20-12	6.29E-13				1.92E-13			1.11E-06	9.10E-07			
21-12	6.29E-13				1.92E-13			9.57E-07	9.10E-07			
22-12	6.29E-13				1.92E-13			9.57E-07	9.10E-07			
23-12	6.29E-13				1.92E-13			9.57E-07	9.10E-07			
24-12	6.29E-13				5.46E-08			9.57E-07	9.10E-07			
25-12	6.29E-13				5.46E-07			1.86E-06	9.10E-07			
26-12	6.29E-13				5.46E-07			7.11E-14	9.10E-07			
27-12	6.29E-13				5.46E-07			7.11E-14	9.10E-07			
28-12	6.29E-13				5.46E-07			7.11E-14	9.10E-07			
29-12	6.29E-13				5.46E-07			2.38E-07	9.10E-07			
30-12	6.29E-13				5.46E-07			2.38E-07	9.10E-07			
31-12	6.29E-13				5.46E-07			2.38E-07	9.10E-07			

				W (m)					
Date	S10	S11	S12	S13	S14	S15	S16	S17	S18
01/01									
02/01				0.003536	0.003536	0.003536	0.003101	0.003101	0.003102
03/01				1.03E-05	4.58E-11	4.33E-11		6.54E-13	
04/01					4.58E-11	4.33E-11		6.54E-13	
05/01					4.58E-11	4.33E-11		6.54E-13	
06/01					4.58E-11	4.33E-11		6.54E-13	
07/01					4.58E-11	4.33E-11		6.54E-13	
08/01					4.58E-11	4.33E-11		6.54E-13	
09/01					4.58E-11	4.33E-11		6.54E-13	
10/01					4.58E-11	4.33E-11		6.54E-13	
11/01					4.58E-11	4.33E-11		6.54E-13	
12/01					4.58E-11	4.33E-11		6.54E-13	
13/01					4.58E-11	4.33E-11		6.54E-13	
14/01					4.58E-11	0.003536		6.54E-13	0.002868
15/01				0.003536	0.003536		0.002868	0.002868	1.39E-13
16/01					6.39E-14			5.61E-13	1.39E-13
17/01					6.39E-14			5.61E-13	1.39E-13
18/01					6.39E-14			5.61E-13	1.39E-13
19/01					6.39E-14			5.61E-13	1.39E-13
20/01					6.39E-14			5.61E-13	1.39E-13
21/01	5.57E-08			4.09E-09	6.39E-14		1.70E-07	5.61E-13	1.39E-13
22/01	5.48E-07			3.26E-07	6.39E-14		3.25E-07	5.61E-13	1.39E-13
23/01	5.48E-07				6.39E-14		3.25E-07	5.61E-13	1.39E-13
24/01	5.48E-07				6.39E-14		3.25E-07	5.61E-13	1.39E-13
25/01	5.48E-07				6.39E-14		3.25E-07	5.61E-13	1.39E-13
26/01	5.48E-07				6.39E-14		3.25E-07	5.61E-13	1.39E-13
27/01	5.48E-07				6.39E-14		3.25E-07	5.61E-13	1.39E-13
28/01	5.48E-07				6.39E-14		3.25E-07	5.61E-13	1.39E-13
29/01	5.48E-07				6.39E-14		3.25E-07	5.61E-13	1.39E-13
30/01	5.48E-07				6.39E-14		3.25E-07	5.61E-13	1.39E-13
31/01	5.48E-07				6.39E-14	0.003536	3.25E-07	5.61E-13	0.002868
01/02	5.48E-07			0.003536	0.003536	2.94E-07	0.003105	0.002868	4.94E-13
02/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
03/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
04/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
05/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
06/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
07/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
08/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
09/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
10/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
11/02	5.48E-07				1.02E-07	2.94E-07	1.95E-13		4.94E-13
12/02	5.48E-07				1.02E-07	2.94E-07	1.96E-13		4.94E-13
13/02	5.48E-07				1.02E-07	2.94E-07	1.96E-13		4.94E-13
14/02	5.48E-07				1.02E-07	0.003537	1.96E-13		0.002868
15/02	5.48E-07			0.003536	0.003538		0.003101	0.002868	6.93E-13
16/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
1//02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
18/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
19/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13

				OVER	LAND FLO	W (m)			
Date	S10	S11	S12	S13	S14	S15	S16	S17	S18
20/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
21/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
22/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
23/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
24/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
25/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
26/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
27/02	5.48E-07			4.21E-11	1.10E-10			8.56E-13	6.93E-13
28/02	5.48E-07			4.21E-11	1.10E-10	0.003536		8.56E-13	0.002868
01/03	5.48E-07			0.003536	0.003536	8.14E-12	0.005374	0.002868	2.59E-13
02/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
03/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
04/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
05/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
06/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
07/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
08/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
09/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
10/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
11/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
12/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
13/03	5.48E-07			1.03E-10	9.61E-11	8.14E-12		6.89E-13	2.59E-13
14/03	5.48E-07			1.03E-10	9.61E-11	0.003536		6.89E-13	0.002868
15/03	5.48E-07			0.003536	0.003536	5.45E-06	0.005374	0.002868	2.30E-08
16/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
17/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
18/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
19/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
20/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
21/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
22/03	5.48E-07			1.24E-06	5.44E-11		1.56E-06	9.70E-13	2.30E-08
23/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
24/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
25/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
26/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
27/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
28/03	5.48E-07				5.44E-11			9.70E-13	2.30E-08
29/03	5.48E-07				5.44E-11	0.000500		9.70E-13	2.30E-08
30/03	5.48E-07			0.000500	5.44E-11	0.003536	0.005074	9.70E-13	0.002868
31/03	5.48E-07			0.003536	0.003536	1.61E-10	0.0053/4	0.005374	1.78E-13
01/04	5.48E-07					1.61E-10	1.63E-10	1.12E-07	1.78E-13
02/04	5.48E-07					1.61E-10	1.63E-10	1.12E-07	1.78E-13
03/04	5.48E-07					1.61E-10	1.63E-10	1.12E-07	1.78E-13
04/04	5.48E-07					1.61E-10	1.63E-10	1.12E-07	1.78E-13
05/04	5.48E-07					1.61E-10	1.63E-10	1.12E-07	1.78E-13
05/04	5.40E-U/					1.010-10	1.030-10	1.12E-07	1.700-13
07704	5.40E-U/					1.010-10	1,030-10	1.12E-07	1.705-13
00/04	0.40E-U/ E 40⊑ 07					1.010-10	1.030-10	1.12E-07	1.700-13
10/04	5.40E-07					1.010-10	1.030-10	1.12E-07	1.700-13
10/04	5.48E-U/					1.01E-10	1.63E-10	1.12E-07	1.78E-13

	OVERLAND FLOW (m)								
Date	S10	S11	S12	S13	S14	S15	S16	S17	S18
11/04	5.48E-07					1.61E-10	1.63E-10	1.12E-07	1.78E-13
12/04	5.48E-07					1.61E-10	1.63E-10	1.12E-07	1.78E-13
13/04	5.48E-07					1.61E-10	1.63E-10	1.12E-07	1.78E-13
14/04	5.48E-07					0.003536	1.63E-10	1.12E-07	0.001102
15/04	5.48E-07		1.59E-12	0.003536	0.003536	9.57E-07	0.005374	0.003404	
16/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	9.24E-14	
17/04	5.48E-07		1.59E-12	1.49E-10	1.32E-06	9.57E-07	1.40E-07	1.95E-06	
18/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
19/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
20/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
21/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
22/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
23/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
24/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
25/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
26/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
27/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
28/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
29/04	5.48E-07		1.59E-12	1.49E-10		9.57E-07	1.40E-07	7.82E-14	
30/04	5.48E-07		1.59E-12	1.49E-10		0.003536	1.40E-07	7.82E-14	0.005374
01/05	1.12E-06		1.59E-12	0.003536	0.003536		0.003558	0.003444	1.04E-07
02/05	2.49E-14		1.59E-12	9.51E-05			7.28E-07		1.04E-07
03/05	2.62E-06		1.59E-12	2.77E-06			3.49E-07		1.04E-07
04/05	8.53E-14		1.59E-12	7.11E-15			3.49E-07		1.04E-07
05/05	8.53E-14		1.59E-12	7.11E-15			3.49E-07		1.04E-07
06/05	8.53E-14		7.38E-07	7.11E-15			3.49E-07		3.39E-10
07/05	8.53E-14		2.33E-06	7.11E-15		9.51E-07	3.49E-07		1.03E-06
08/05	8.53E-14		7.81E-07	7.11E-15		9.99E-07	5.89E-05		1.00E-06
09/05	1.95E-06		7.81E-07	1.68E-06		9.99E-07	8.99E-07		
10/05			7.81E-07		2.46E-07	9.99E-07	8.99E-07	3.55E-15	
11/05	9.21E-07		7.81E-07	4.52E-08	2.46E-07	9.99E-07	5.51E-09	6.58E-07	
12/05	9.21E-07	1.10E-07	7.81E-07	4.52E-08	2.46E-07	9.99E-07	5.52E-09	2.39E-06	1.50E-11
13/05	9.21E-07	8.70E-07	8.80E-09	4.52E-08	1.23E-06	9.50E-07	5.52E-09	0.000117	0.000138
14/05	9.21E-07	8.70E-07	8.80E-09	4.52E-08		0.004225	5.52E-09		0.00309
15/05	9.21E-07	8.70E-07	8.80E-09	0.003536	0.003536		0.003091	0.003087	
16/05	9.21E-07	8.70E-07	8.80E-09	1.49E-06	1.68E-10		9.04E-09		
17/05	9.21E-07	8.70E-07	8.80E-09	1.28E-06	9.55E-07		4.73E-07	4.33E-07	
18/05	9.21E-07		8.80E-09		0.000405		4.73E-07	0.000401	
19/05	9.21E-07		8.80E-09				4.73E-07		
20/05	9.21E-07		8.80E-09				4.73E-07		1.43E-11
21/05	9.21E-07		8.79E-09			6.75E-07	4.73E-07		2.54E-07
22/05	9.21E-07		8.79E-09		3.66E-06	6.75E-07	4.73E-07	9.95E-14	2.54E-07
23/05	9.21E-07	5.50E-08	8.79E-09		0.00049	6.75E-07	4.73E-07	0.000499	2.54E-07
24/05	9.21E-07	5.09E-06	8.79E-09		3.39E-06	6.75E-07	4.73E-07	3.32E-06	2.54E-07
25/05	9.21E-07	3.99E-06	8.76E-09	1.28E-11	1.94E-06	6.75E-07	4.73E-07	2.36E-06	2.54E-07
26/05	9.21E-07	1.42E-14	8.76E-09	1.28E-11		6.75E-07	4.73E-07	1.78E-14	2.54E-07
27/05	9.21E-07	1.42E-14	8.76E-09			6.75E-07	4.73E-07	1.78E-14	2.54E-07
28/05	9.21E-07	1.42E-14	8.76E-09	5.12E-11	5.49E-06	6.75E-07	4.73E-07	1.14E-13	2.54E-07
29/05	9.21E-07	2.32E-06	8.76E-09	4.09E-07	1.34E-06	6.75E-07	1.68E-06	1.48E-06	2.54E-07
30/05	2.24E-06	1.14E-13	8.76E-09	2.08E-06		0.003532	7.64E-07	2.84E-14	0.003301

				OVER	LAND FLO	W (m)			
Date	S10	S11	S12	S13	S14	S15	S16	S17	S18
31/05		1.14E-13	4.20E-06	0.003534	0.00355	6.02E-06	0.005457	0.000482	
01/06		1.14E-13	2.62E-06	2.62E-10	1.41E-12	1.18E-06			7.58E-07
02/06		1.42E-14	2.47E-09	2.62E-10	0.000255	4.66E-07		0.000409	9.55E-08
03/06	1.54E-07	1.18E-06	2.47E-09	0.000902	5.14E-06	4.66E-07		3.08E-06	9.55E-08
04/06	1.54E-07		2.47E-09	3.87E-13	1.14E-13	4.66E-07		1.56E-13	4.24E-07
05/06	1.54E-07		2.47E-09	3.87E-13		4.66E-07			4.24E-07
06/06	1.54E-07		2.47E-09	3.87E-13	8.16E-11	4.66E-07			4.24E-07
07/06	1.54E-07		2.47E-09	3.87E-13	0.000337	4.66E-07		0.000302	4.24E-07
08/06	1.54E-07		2.47E-09		0.00051	4.66E-07	9.17E-06	0.000491	4.24E-07
09/06	3.90E-07		2.47E-09	0.000238	0.000718	4.66E-07	0.000257	0.000614	8.21E-07
10/06	9.36E-07		2.49E-09	2.14E-06	3.98E-13	4.66E-07	0.000273		8.21E-07
11/06	1.07E-06		1.46E-06	5.78E-07	3.98E-13	1.27E-06	1.94E-06		1.38E-06
12/06	1.58E-06		8.34E-07	2.07E-06	3.98E-13	2.35E-07	1.76E-06		1.57E-06
13/06	7.97E-11		8.34E-07	0.000333	3.98E-13	2.35E-07	0.000334		3.55E-15
14/06	5.14E-07		8.34E-07	0.00028	3.98E-13	0.00351	0.000287		0.002961
15/06	6.46E-07		7.55E-07	0.003546	0.003484	7.18E-06	0.003618	0.003111	1.20E-07
16/06	6.46E-07		7.55E-07	0.000666			0.000331	4.12E-13	1.20E-07
17/06	4.32E-06		7.55E-07	3.71E-06		8.69E-05	1.91E-06	4.12E-13	0.000183
18/06			7.55E-07	0.000373			1.26E-05	4.12E-13	9.73E-07
19/06	2.12E-06		7.55E-07	2.11E-06		1.38E-06	2.46E-06	4.12E-13	1.35E-06
20/06			7.55E-07				2.84E-14	4.12E-13	5.68E-14
21/06			7.55E-07				2.84E-14	4.12E-13	5.68E-14
22/06			7.55E-07		3.84E-07		2.84E-14	4.78E-07	5.68E-14
23/06	5.02E-07		7.55E-07	1.03E-06			7.19E-07	0.000181	5.68E-14
24/06	5.02E-07	1.17E-06	7.55E-07	1.31E-13	2.53E-06		7.19E-07	1.63E-06	5.68E-14
25/06	6.66E-07		7.55E-07	8.46E-05	1.50E-06		9.93E-05	0.000131	5.68E-14
26/06	6.66E-07	2.02E-06	7.55E-07		2.03E-06		2.84E-14	3.14E-07	5.68E-14
27/06	6.66E-07		7.55E-07				2.84E-14	3.14E-07	5.68E-14
28/06	6.66E-07		7.55E-07	3.54E-07			2.84E-14	3.14E-07	5.68E-14
29/06	1.19E-06		7.55E-07	5.82E-07			5.14E-07	3.14E-07	5.68E-14
30/06			7.55E-07	5.82E-07			5.14E-07	3.14E-07	5.68E-14
01/07			7.55E-07	5.82E-07			6.01E-07	3.14E-07	5.68E-14
02/07		8.02E-07	1.26E-06	5.82E-07	1.13E-08	1.28E-06	6.01E-07	4.82E-07	1.36E-06
03/07		8.02E-07	2.13E-14	5.82E-07	1.13E-08		6.01E-07	4.82E-07	5.68E-14
04/07		8.02E-07	1.17E-06	5.19E-05	1.13E-08	7.88E-07	5.26E-05	4.82E-07	1.08E-06
05/07	4.88E-05	8.02E-07		5.88E-05	1.13E-08	7.88E-07	5.94E-05	4.82E-07	
06/07	1.52E-07	2.32E-07		9.68E-05	1.99E-13	7.88E-07	9.79E-05	3.03E-08	
07/07	1.52E-07	6.87E-07		7.11E-14	4.93E-07	7.88E-07	1.99E-13	6.78E-07	
08/07	1.52E-07	9.11E-08	2.88E-12	7.11E-14		7.88E-07	1.99E-13	0.000615	
09/07	1.52E-07	3.68E-07	2.77E-06	2.71E-07	0.000587	4.06E-05	1.99E-13	0.000606	4.12E-05
10/07	5.90E-07	1.24E-06		1.43E-06	4.72E-06		1.40E-06	3.31E-06	
11/0/	5.90E-07	3.82E-07	1.77E-06		9.02E-08	1.11E-06		8.81E-08	1.20E-06
12/07	2.21E-06	0.000184		7.12E-07	7.91E-06		7.74E-07	8.08E-06	
13/07	1.99E-13	1.97E-06		7.12E-07	1.06E-06		7.74E-07	9.98E-07	
14/07	1.99E-13	5.60E-06		7.12E-07	2.84E-14		7.74E-07		
15/07	0.0007.40	2.86E-06		7.64E-11	1.59E-06		0.000707	2.46E-U6	
16/07	0.000/49	4.91E-07		0.000801	9.52E-07		0.000/35	1.10E-06	
17/07	4.37E-13	4.91E-07			9.52E-07		8.53E-14		
18/0/	4.37E-13	7.39E-05					8.53E-14		
19/07	_ 3.23E-12								

	OVERLAND FLOW (m)									
Date	S10	S11	S12	S13	S14	S15	S16	S17	S18	
20/07	0.000475	0.00081		0.000466	0.000861		0.000469	0.00077		
21/07	1.94E-06	0.000336		2.00E-06	0.000262		1.93E-06	0.000264		
22/07	1.01E-10	1.07E-13		4.01E-06			4.08E-06			
23/07	1.27E-06	1.07E-13		2.64E-06			1.22E-06			
24/07	1.24E-06	1.52E-11		2.77E-06	1.69E-12		1.22E-06	1.00E-11		
25/07		0.00072		4.26E-14	0.000712			0.000691		
26/07	1.51E-06	0.000165		1.50E-06	0.00017		1.50E-06	0.000169		
27/07		1.50E-06		5.20E-11	1.14E-06		9.55E-12	1.11E-06		
28/07		1.39E-06		5.20E-11	1.27E-06		9.55E-12	1.21E-06		
29/07		0.000667	7.73E-07	5.20E-11	0.000669	1.79E-07	9.55E-12	0.000668	1.28E-07	
30/07		3.11E-06		5.20E-11	3.16E-06	6.52E-07	9.55E-12	2.97E-06		
31/07		1.62E-06	6.19E-07	5.20E-11	1.69E-06	1.02E-06	9.55E-12	1.58E-06	1.11E-06	
01/08		7.11E-15	6.19E-07	5.20E-11			9.55E-12	4.97E-14		
02/08		7.11E-15	6.19E-07	7.46E-14				4.97E-14		
03/08		7.11E-15	6.19E-07	7.46E-14				4.97E-14		
04/08		7.11E-15	7.83E-07	7.46E-14		8.07E-07		4.97E-14	8.03E-07	
05/08		7.11E-15	1.70E-06	7.46E-14		1.42E-06		4.97E-14	1.54E-06	
06/08		7.11E-15		7.46E-14		9.67E-05		4.97E-14	0.000102	
07/08		7.11E-15	7.24E-07	7.46E-14		4.20E-06		4.97E-14	6.85E-07	
08/08		7.11E-15	1.39E-06	7.46E-14		1.69E-06		4.97E-14	9.76E-07	
09/08		7.11E-15	7.59E-08	7.46E-14		0.000542		4.97E-14	0.000549	
10/08		2.12E-06	7.59E-08	7.46E-14	2.17E-06			2.12E-06	7.07E-13	
11/08		2.09E-06	7.59E-08	7.46E-14	2.13E-06			2.09E-06	7.07E-13	
12/08		7.11E-15	2.64E-06	7.46E-14		2.38E-06			2.28E-06	
13/08		0.000165	1.20E-06	7.46E-14	0.000157	7.61E-07		0.000165	7.12E-07	
14/08	7.84E-07			7.79E-07	2.86E-12		7.83E-07	3.91E-14	1.00E-07	
15/08	7.84E-07			7.79E-07	2.86E-12	0.000274	7.83E-07	3.91E-14	1.72E-11	
16/08	7.84E-07		3.53E-06	7.79E-07	2.86E-12	3.44E-06	7.83E-07	3.91E-14	2.40E-06	
17/08	5.38E-07		7.11E-15	1.18E-06	2.86E-12	9.24E-14	5.37E-07	3.91E-14		
18/08	5.38E-07		7.11E-15		2.86E-12	9.24E-14	5.37E-07	3.91E-14		
19/08	5.38E-07		7.11E-15		2.86E-12	9.24E-14	5.37E-07	3.91E-14		
20/08	1.38E-06		7.11E-15	1.37E-06	2.86E-12	9.24E-14	1.39E-06	3.91E-14		
21/08	8.53E-14		7.11E-15		2.86E-12	9.24E-14		3.91E-14		
22/08	8.53E-14		7.11E-15		2.86E-12	9.24E-14		3.91E-14		
23/08	3.30E-13	4.35E-07	7.11E-15	2.34E-13	3.52E-07	9.24E-14		4.37E-07		
24/08	3.30E-13	4.35E-07	8.11E-07	2.34E-13	3.53E-07			4.37E-07		
25/08	3.30E-13	1.32E-06	8.11E-07	2.34E-13	1.34E-06			1.32E-06		
26/08	3.30E-13		8.11E-07	2.34E-13	6.04E-14			3.91E-14		
27/08	3.30E-13		8.11E-07	2.34E-13	6.04E-14			3.91E-14		
28/08	3.30E-13		8.11E-07	2.34E-13	6.04E-14			3.91E-14		
29/08	3.30E-13		8.11E-07	2.34E-13	6.04E-14			3.91E-14		
30/08	2.03E-06		7.11E-15	2.03E-06	6.04E-14	5.74E-07	2.04E-06	3.91E-14		
31/08	1.38E-06		7.11E-15	1.38E-06	6.04E-14	0.003537	1.38E-06	3.91E-14	0.001506	
01/09			7.11E-15	0.003537	0.003536	6.32E-11	0.003772	0.003664	6.75E-14	
02/09			7.11E-15	5.37E-06	2.58E-06	6.32E-11	1.34E-08		6.75E-14	
03/09			6.17E-07	2.77E-13	1.00E-06	1.44E-06	1.34E-08	0.000363	1.83E-06	
04/09		2.54E-06	6.17E-07	2.77E-13	1.91E-06		1.34E-08	4.09E-06		
05/09		1.99E-13	6.17E-07	2.77E-13	1.49E-13		1.34E-08	3.34E-13	1.28E-11	
06/09		0.000245	6.17E-07	2.77E-13	4.05E-06	9.53E-07	1.34E-08			
07/09		2.00E-06	1.06E-06	2.77E-13	1.40E-06	3.95E-07	1.34E-08	7.02E-07	3.47E-06	

	OVERLAND FLOW (m)									
Date	S10	S11	S12	S13	S14	S15	S16	S17	S18	
08/09		6.39E-14	3.67E-06	2.77E-13	5.68E-14	1.15E-06	1.34E-08	7.02E-07	2.31E-06	
09/09		1.09E-06	1.85E-13	2.77E-13	3.45E-07		1.34E-08	1.03E-06		
10/09			2.05E-09	2.77E-13	3.45E-07	8.07E-08	1.34E-08	2.13E-14	4.13E-07	
11/09			2.05E-09	2.77E-13	3.45E-07	8.07E-08	1.34E-08	2.13E-14	4.13E-07	
12/09			2.02E-06	2.77E-13	3.25E-12	1.65E-06	1.34E-08		1.63E-06	
13/09		2.34E-07	1.33E-06	2.77E-13	7.39E-07	1.79E-06	1.34E-08	2.47E-07	5.96E-07	
14/09		1.65E-06	8.53E-14	2.77E-13	1.54E-06	0.003551	1.34E-08	2.20E-06	0.001445	
15/09	1.42E-14		1.77E-06	0.001987	0.003511	1.28E-06	0.003652	0.002991		
16/09	3.98E-07			3.48E-07	7.64E-13	7.11E-14		1.74E-13		
17/09	3.98E-07				7.64E-13	7.11E-14		1.74E-13		
18/09	4.94E-06	5.48E-07	1.40E-06	1.57E-06	1.65E-06	8.49E-07	3.85E-06	1.20E-06	1.52E-06	
19/09	2.06E-13	5.48E-07	9.35E-07			7.76E-07	7.11E-15		2.45E-06	
20/09	2.06E-13	5.48E-07	9.35E-07		1.86E-06	7.76E-07	7.11E-15	1.02E-06	6.39E-14	
21/09	2.06E-13	5.48E-07	9.35E-07	6.00E-05		7.76E-07			6.39E-14	
22/09	2.06E-13	5.48E-07				7.76E-07			6.39E-14	
23/09	2.06E-13	5.48E-07	1.42E-06			6.81E-07	1.53E-09		1.64E-06	
24/09	1.04E-05	5.48E-07	1.10E-06	0.000318		1.50E-06	0.000363		1.37E-06	
25/09	4.64E-06	5.48E-07	1.54E-06	2.82E-06		2.17E-06	1.27E-06		1.20E-06	
26/09		5.48E-07								
27/09		5.48E-07								
28/09		5.48E-07								
29/09		5.48E-07	1.09E-07			7.11E-15				
30/09		5.48E-07	6.34E-07			0.00358			0.003139	
01/10		5.48E-07	2.57E-06	0.003536	0.003536	1.79E-06	0.002349	0.000748	1.93E-08	
02/10		5.48E-07	1.34E-06		1.24E-10	2.83E-06			6.82E-07	
03/10		5.48E-07			1.24E-10				6.82E-07	
04/10	9.02E-07	5.48E-07			1.24E-10		2.84E-14	6.35E-05	6.82E-07	
05/10		5.48E-07		0.000411	1.35E-06		0.000456	2.07E-06	6.82E-07	
06/10		5.48E-07		6.93E-13	7.02E-08		2.13E-13	6.03E-07	6.82E-07	
07/10	4.20E-06	5.48E-07		4.05E-06	7.02E-08		3.45E-06	6.03E-07	6.82E-07	
08/10	9.95E-14	5.48E-07			7.02E-08		1.42E-14	6.03E-07	6.82E-07	
09/10	9.95E-14	5.48E-07			2.79E-07		1.42E-14	8.14E-07	6.82E-07	
10/10	9.95E-14	5.48E-07			2.79E-07		1.42E-14	8.14E-07	6.82E-07	
11/10	9.95E-14	5.49E-07			2.80E-07		1.42E-14	8.19E-10	6.82E-07	
12/10	9.95E-14	5.49E-07			2.80E-07		1.42E-14	8.19E-10	6.82E-07	
13/10	9.95E-14	5.49E-07			2.80E-07		1.42E-14	8.19E-10	6.82E-07	
14/10	9.95E-14	5.49E-07			2.80E-07	0.003536	1.42E-14	8.19E-10	0.005374	
15/10	9.95E-14	5.49E-07		0.003536	0.003536		0.005374	0.003134	4.26E-08	
16/10	9.95E-14	5.49E-07			9.32E-06		4.31E-11	4.99E-09	4.26E-08	
17/10	9.95E-14	5.49E-07		2.27E-06			1.56E-06	1.99E-06	4.26E-08	
18/10	9.95E-14	5.41E-07			0.000568				4.26E-08	
19/10	9.95E-14	4.09E-06			4.28E-06			5.68E-06	4.26E-08	
20/10	9.95E-14	2.24E-13						7.11E-14	4.26E-08	
21/10	9.95E-14	2.24E-13						7.11E-14	4.26E-08	
22/10	9.95E-14	2.24E-13						7.11E-14	4.26E-08	
23/10	9.95E-14	2.24E-13						7.11E-14	4.26E-08	
24/10	9.95E-14	2.24E-13						7.11E-14	4.26E-08	
25/10	9.95E-14	2.24E-13						7.11E-14	4.26E-08	
26/10	9.95E-14	2.24E-13						7.11E-14	4.26E-08	
27/10	9.95E-14	2.24E-13						7.11E-14	4.26E-08	

				OVER	LAND FLO	W (m)			
Date	S10	S11	S12	S13	S14	S15	S16	S17	S18
28/10	9.95E-14	2.24E-13						7.11E-14	4.26E-08
29/10	9.95E-14	2.24E-13						7.11E-14	4 26E-08
30/10	9.95E-14	2.24E-13						7 11E-14	4 26E-08
31/10	9 95E 14	2.24E 13				0.003536		7 11E 14	0.002868
01/10	0.05E-14	2.24E-13		0.002526	0.000500	0.0000000	0.000000	0.002500	C C 4E 12
01/11	9.95E-14	2.24E-13		0.003536	0.003536	8.66E-11	0.002868	0.003599	6.64E-13
02/11	9.95E-14	2.24E-13				8.66E-11	1.08E-12	5.97E-12	6.64E-13
03/11	9.95E-14	2.24E-13				8.66E-11	1.08E-12	5.97E-12	6.64E-13
04/11	9.95E-14	2.24E-13		8.04E-07		1.53E-06	1.89E-06	5.97E-12	1.26E-06
05/11	9.95E-14	2.24E-13		1.30E-06		3.20E-14	2.05E-06	5.97E-12	6.39E-14
06/11	9.95E-14	2.24E-13				3.20E-14	1.78E-13	1.06E-07	6.39E-14
07/11	9.95E-14	2.24E-13				3.20E-14	1.78E-13	1.06E-07	6.39E-14
08/11	9 95E-14	2 24E-13				3 20E-14	1 78E-13	1.06E-07	6.39E-14
09/11	9.95E-14	2.24E-13				3 20E-14	1.78E-13	1.44E-06	6 39E-14
10/11	9 95E 14	2.24E 13				3 20E 14	1.78E 13	8 17E 14	6 39E 14
11/11	0.05E-14	2.24E-13				3.200-14	1.700-13	0.17 E-14	0.33E-14
11/11	9.95E-14	2.24E-13				3.20E-14	1.70E-13	0.17 E-14	0.39E-14
12/11	9.95E-14	2.24E-13				3.20E-14	1.78E-13	8.17E-14	6.39E-14
13/11	9.96E-14	2.24E-13				3.20E-14	1.78E-13	8.17E-14	6.39E-14
14/11	9.95E-14	2.24E-13				0.003536	1.78E-13	8.17E-14	0.002868
15/11	9.95E-14	2.24E-13		0.003536	0.003536	3.16E-07	0.002868	0.002868	9.20E-13
16/11	9.95E-14	2.24E-13			8.90E-11	3.16E-07		1.78E-13	9.20E-13
17/11	9.95E-14	2.24E-13			8.90E-11	3.16E-07		1.78E-13	9.20E-13
18/11	9.95E-14	2.24E-13			8.90E-11	3.16E-07		1.78E-13	9.20E-13
19/11	9 95E-14	2 24E-13			8 90E-11			1 78E-13	
20/11	9 95E-14	2.24E-13			8 90E-11			1.78E-13	
21/11	9.00E-14	2.24E-13			8 90E-11			1.78E-13	
21/11	9.955-14	2.240-13			8 90E 11			1.70E-13	
22/11	9.95E-14	2.24E-13			0.30E-11			1.70E-13	
23/11	9.95E-14	2.24E-13			0.90E-11			1.70E-13	4 005 07
24/11	9.95E-14	2.24E-13			8.90E-11			1.78E-13	4.98E-07
25/11	9.95E-14	2.24E-13			8.90E-11			1.78E-13	4.98E-07
26/11	9.96E-14	2.24E-13			8.90E-11			1.78E-13	4.98E-07
27/11	9.95E-14	2.24E-13			8.90E-11			1.78E-13	4.98E-07
28/11	9.95E-14	2.24E-13			8.90E-11			1.78E-13	4.98E-07
29/11	9.95E-14	2.24E-13			8.90E-11			1.78E-13	4.98E-07
30/11	9.95E-14	2.24E-13			8.90E-11	0.003536		1.78E-13	0.002868
01/12	9.95E-14	2.24E-13	1.60E-12	0.003536	0.003536	2.36E-06	0.002868	0.000381	2.77E-07
02/12	9.95E-14	2.24E-13	1.60E-12			6.75E-14	4.09E-13	5.79E-13	
03/12	9.95E-14	2.24E-13	1.60E-12			6.75E-14	4.09E-13	5.79E-13	
04/12	9.95E-14	2.24E-13					4.09E-13	5.79E-13	
05/12	9 95E-14	2 24E-13					4 09E-13	5 79E-13	
06/12	9.95E-14	2.24E-13					4.09E-13	5 79E-13	
07/12	9.95E-14	2.24E-13					4.09E-13	5 79E-13	
00/12	0.05E-14	2.24E-13					4.00E-10	5.70E-13	
00/12	9.95E-14	2.24E-13					4.09E-13	5.79E-13	
09/12	9.95E-14	2.24E-13					4.09E-13	5.79E-13	
10/12	9.95E-14	2.24E-13					4.09E-13	5.79E-13	
11/12	9.95E-14	2.24E-13					4.09E-13	5.79E-13	
12/12	9.96E-14	2.24E-13					7.11E-15	6.79E-13	
13/12	9.95E-14	2.24E-13					7.11E-15	5.79E-13	
14/12	9.95E-14	2.24E-13				0.003536	7.11E-15	5.79E-13	0.002868
15/12	9.95E-14	2.24E-13		0.003536	0.003536	4.97E-11	0.000748	0.002868	
16/12	9.95E-14	2.24E-13		1.04E-10	7.78E-06	4.97E-11	2.58E-12	2.96E-08	
17/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
18/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
19/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
20/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4 97E-11	2.58E-12	2.96E-08	
21/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.00E-08	
21/12	9.05E 14	2.24E 13		1.04E 10	4.62E 14	4.01E11	2.50E 12	2.002.00	
22/12	9.95E-14	2.24E-13		1.04E-10	4.02E-14	4.57 E-11	2.50E-12	2.300-00	
23/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97 E-11	2.50E-12	2.965-00	
24/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
25/12	9.96E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
26/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
27/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
28/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
29/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
30/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	
31/12	9.95E-14	2.24E-13		1.04E-10	4.62E-14	4.97E-11	2.58E-12	2.96E-08	

	OVERLAND FLOW (m)								
Date	S19	S20	S21	S22	S23	S24	S25	S26	S27
20/02	4.24E-07				1.63E-10	6.62E-11	6.52E-11		2.95E-13
21/02	4.24E-07				1.63E-10	6.62E-11	6.52E-11		2.95E-13
22/02	4.24E-07				1.63E-10	6.62E-11	6.52E-11		2.95E-13
23/02	4.24E-07				1.63E-10	6.62E-11	6.52E-11		2.95E-13
24/02	4.24E-07				1.63E-10	6.62E-11	6.52E-11		2.95E-13
25/02	4 24E-07				1.63E-10	6.62E-11	6.52E-11		2.95E-13
26/02	4 24E-07				1.63E-10	6.62E-11	6.52E-11		2.95E-13
27/02	4 24E-07				1.63E-10	6.62E-11	6.52E-11		2.95E-13
28/02	4.24E-07				1.63E-10	0.003536	6.52E-11		0.002868
01/03	4 24E-07			0.003536	0.003538	0.000000	0.002868	0.002868	1.42E-14
02/03	4.24E-07			9.95E-14	1 27E-07		4 80E-13	0.002000	1.42E-14
03/03	4.24E-07			9.95E-14	1.27E-07		4.80E-13		1.42E-14
03/03	4.24E-07			9.95E-14	1.27E-07		4.80E-13		1.42E-14
04/03	4.24E-07			9.05E-14	1.27E-07		4.00E-13		1.42E-14
06/03	4.24E-07			9.95E-14	1.27E-07		4.00E-13		1.42E-14
07/03	4.24E-07			9.05E-14	1.27E-07		4.00E-13		1.42E-14
07703	4.24E-07			0.00E-14	1.27 E-07		4.00E-13		1.420-14
00/03	4.240-07			9.95E-14	1.27 - 07		4.00E-13		1.420-14
10/02	4.240-07			0.05E 14	1.27 E-07		4.00E-10		1.420-14
11/03	4.240-07			0.05E 14	1.27 E-07		4.00E-13		1.420-14
11/03	4.240-07			0.055 14	1.27 - 07		4.00E-10		1.420-14
12/03	4.24E-07			9.99E-14	1.27 E-07		4.00E-13		1.420-14
13/03	4.24E-07			9.95E-14	1.27 E-07	0.000500	4.00E-13		1.420-14
14/03	4.24E-07			9.95E-14	1.27 E-07		4.00E-13	0 000000	
10/03	4.24E-07			0.0000000		4.900-00	0.002000	0.002000	3.09E-00
10/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.090-00
17/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
10/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.695-00
19/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
20/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
21/03	4.24E-07			4.405.00	1.07E-10	1.24E-13	4 005 00	2.95E-13	3.69E-08
22/03	4.24E-07			1.13E-06	1.07E-10	1.24E-13	1.00E-06	2.95E-13	3.69E-08
23/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
24/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
25/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
26/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
27/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
28/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
29/03	4.24E-07				1.07E-10	1.24E-13		2.95E-13	3.69E-08
30/03	4.24E-07			0.000500	1.07E-10	0.003536	0.000000	2.95E-13	0.002868
31/03	4.24E-07			0.003536	0.003536	3.66E-11	0.002868	0.002868	3.55E-15
01/04	4.24E-07				1.U4E-11	3.66E-11		7.96E-13	3.55E-15
02/04	4.24E-07				1.04E-11	3.66E-11		7.96E-13	3.66E-16
03/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
04/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
05/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
06/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
07/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
08/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
09/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
10/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
11/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
12/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
13/04	4.24E-07				1.04E-11	3.65E-11		7.96E-13	3.55E-15
14/04	4.24E-07				1.04E-11	0.003536		7.96E-13	0.002868
15/04	4.24E-07		1.59E-12	0.003536	0.003536	4.30E-06	0.002868	0.005374	6.33E-08

	OVERLAND FLOW (m)								
Date	S19	S20	S21	S22	S23	S24	S25	S26	S27
16/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	1.09E-10	6.33E-08
17/04	4.24E-07		1.59E-12	1.31E-10	1.35E-06		1.74E-13	8.74E-07	6.33E-08
18/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
19/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
20/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
21/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
22/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
23/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
24/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
25/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
26/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
27/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
28/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
29/04	4.24E-07		1.59E-12	1.31E-10			1.74E-13	8.74E-07	6.33E-08
30/04	4.24E-07		1.59E-12	1.31E-10		0.003536	1.74E-13	8.74E-07	0.002868
01/05	7.01E-06		1.59E-12	0.003536	0.003537	4.92E-11	0.003323	0.002868	7.25E-13
02/05	3.55E-15		1.59E-12	5.02E-06	8.63E-12	4.92E-11		1.42E-14	7.25E-13
03/05	2.51E-06		1.59E-12	1.74E-06	8.63E-12	4.92E-11	2.11E-06	1.42E-14	7.25E-13
04/05			1.59E-12	6.04E-14	8.63E-12	4.92E-11		1.42E-14	7.25E-13
05/05			1.59E-12	6.04E-14	8.63E-12	4.92E-11		1.42E-14	7.25E-13
06/05				6.04E-14	8.63E-12	3.77E-08		1.42E-14	
07/05			2.52E-06	6.04E-14	8.63E-12	1.54E-06		1.42E-14	1.33E-06
08/05			1.51E-06	6.04E-14	8.63E-12	7.32E-07		1.42E-14	7.74E-07
09/05	1.00E-06			1.04E-06	8.63E-12	7.32E-07	2.29E-06	1.42E-14	7.74E-07
10/05				7.82E-14	6.36E-13	7.32E-07		4.61E-07	7.74E-07
11/05	1.65E-07			3.07E-07	6.36E-13	7.32E-07	1.39E-06	4.61E-07	7.74E-07
12/05	1.65E-07			3.07E-07	6.36E-13	7.32E-07	1.28E-11	8.00E-07	7.74E-07
13/05	1.65E-07	2.34E-06	4.66E-07	3.07E-07	2.00E-06	2.77E-07	1.28E-11	2.00E-06	2.89E-07
14/05	1.65E-07		4.66E-07	3.07E-07	3.55E-14	0.003536	1.28E-11	1.42E-14	0.005374
15/05	1.65E-07		4.66E-07	0.003536	0.003536		0.003101	0.005374	7.81E-08
16/05	1.65E-07		4.66E-07	6.43E-07	1.10E-10			2.04E-07	7.81E-08
17/05	1.65E-07		4.66E-07	1.70E-06	5.86E-07		1.43E-06	9.06E-07	7.81E-08
18/05	1.65E-07		4.66E-07		5.86E-07			2.17E-07	7.81E-08
19/05	1.65E-07		4.66E-07		5.86E-07			2.17E-07	7.81E-08
20/05	1.65E-07		4.66E-07		5.86E-07			2.17E-07	7.81E-08
21/05	1.65E-07		4.66E-07		5.86E-07	5.90E-07		2.17E-07	4.17E-07
22/05	1.66E-07		4.66E-07		4.58E-07	5.90E-07		2.52E-07	4.1/E-0/
23/05	1.65E-07	2.25E-07	4.66E-07		5.83E-07	5.90E-07		4.04E-07	4.17E-07
24/05	1.66E-07	4.98E-06	4.66E-07		5.08E-06	5.90E-07		5.08E-06	4.1/E-0/
25/05	1.66E-07	3.72E-06	4.66E-07	1.28E-11	4.14E-06	5.90E-07	1.28E-11	4.14E-06	4.1/E-U/
26/05	1.66E-07	9.95E-14	4.66E-07	1.28E-11	9.59E-14	5.90E-07	1.28E-11	1.42E-14	4.1/E-0/
27/05	3.70E-07	9.95E-14	4.66E-07		9.69E-14	5.90E-07		1.42E-14	4.1/E-0/
28/05	3.70E-07	0.005.00	4.66E-07	5.12E-11	5.92E-07	5.90E-07	5.12E-11	1.64E-07	4.1/E-U/
29/05	3.70E-07	2.32E-06	4.66E-07	7.54E-07	2.32E-06	5.90E-07	4.19E-07	2.32E-06	4.1/E-0/
30/05	2.79E-06	6.39E-14	4.66E-07	2.59E-06	0.000500	0.003536	3.58E-06	0.005074	0.003323
31/05	1.42E-14	6.39E-14	2.32E-U6	0.003536	0.003536	4.35E-06	0.005374	0.005374	7.11E-15
01/06	1.42E-14	6.39E-14	2.19E-06	1.23E-10	8.20E-12	3.42E-06	1.48E-07	4.98E-08	2.01E-06
02/06	1.42E-14	0.39E-14	1.48E-09	1.23E-10	0.20E-12	9.535-08	1.48E-0/	4.98E-08	1.07E-06
03/06		3.92E-06	1.48E-09		2.26E-06	9.53E-08	0.005-00	3.4/E-U6	0.405.07
04/06			2.57E-09		8.17E-14	6.77E-07	8.88E-08		2.12E-07

Date S19 S20 S21 S22 S23 S24 S25 S26 05/06 2.57E-09 8.17E-14 6.77E-07 8.88E-08 06/06 2.57E-09 8.17E-14 6.77E-07 8.88E-08 07/06 1.54E-07 2.57E-09 8.17E-14 6.77E-07 8.88E-08 6.301	S27 2.12E-07 -07 2.12E-07 -07 2.12E-07
05/06 2.57E-09 8.17E-14 6.77E-07 8.88E-08 06/06 2.57E-09 8.17E-14 6.77E-07 8.88E-08 6.301 07/06 1.54E-07 2.57E-09 8.17E-14 6.77E-07 8.88E-08 6.301	2.12E-07 -07 2.12E-07 -07 2.12E-07
06/06 2.57E-09 8.17E-14 6.77E-07 8.88E-08 6.30	-07 2.12E-07 -07 2.12E-07
	-07 2.12E-07
	07 2.120-07
08/06 1.54E 07 2.57E 09 7.03E 07 8 17E 14 6.77E 07 6.30	
	07 2.120-07
	-07 2.12E-07
10/06 8.76E-07 1.62E-07 2.60E-09 9.66E-07 8.17E-14 6.66E-07 6.65E-07 6.30	-07 2.12E-07
11/Ub 1.35E-Ub 1.62E-U7 1.48E-Ub 1.66E-Ub 8.17E-14 1.52E-Ub 1.37E-U6 6.3U	-U7 1.26E-U6
12/06 2.50E-06 1.62E-07 8.18E-07 9.91E-07 8.17E-14 4.42E-07 8.51E-07 6.30	-U7 1.41E-U6
13/06 4.12E-11 1.62E-07 8.18E-07 9.91E-07 8.17E-14 4.42E-07 8.51E-07 6.30	-07
14/06 1.41E-06 1.62E-07 8.18E-07 4.13E-07 8.17E-14 0.003536 4.19E-07 6.30	-07 0.003102
15/06 3.36E-07 1.62E-07 1.17E-06 0.003536 0.003536 3.11E-06 0.003101 0.003	02
16/06 3.36E-07 1.62E-07 2.13E-14 6.82E-07 2.13E-11 7.54E-07	
17/06 3.39E-06 1.62E-07 2.13E-14 9.35E-07 2.13E-11 1.14E-06	
18/06 1.62E-07 2.13E-14 9.35E-07 2.13E-11 2.31E-11	
19/06 2.52E-06 1.62E-07 2.13E-14 3.51E-06 2.13E-11 1.08E-06 3.94E-06	1.16E-06
20/06 1.62E-07 2.13E-14 2.13E-11 1.56E-13	
21/06 1.62E-07 2.13E-14 2.13E-11 1.56E-13	
22/06 1.62E-07 2.13E-14 6.36E-07 1.56E-13 3.37	-07
23/06 1.27E-06 2.13E-14 1.08E-06 6.36E-07 8.92E-07 1.07	-13
24/06 3.70E-07 1.41E-06 2.13E-14 2.46E-06 1.93	-06
25/06 4.50E-07 1.64E-07 2.13E-14 1.62E-07 7.11	-15
26/06 4 50E-07 2 02E-06 2 13E-14 1 62E-07 4 00E-06 4 52	-06
27/06 4 50E-07 2 13E-14 1 62E-07 7 11	-15
28/06 4 50E-07 2 13E-14 1 62E-07 7 11	-15
29/06 7 85E-07 2 13E-14 6 82E-07 7 30E-07 7 11	.15
30/06 7 85E-07 2 13E-14 6 82E-07 7 11	15
01/07 7 85E-07 2 13E-14 6 82E-07 7 11	15
	07 6 11 5 07
	07 6 11 - 07
	07 0.110-07
	07 1.910-00
	-07
07/07 7.85E-07 1.45E-06 2.13E-14 6.82E-07 2.32E-06 7.30E-07 2.850	-06
08/07 7.85E-07 2.90E-12 6.82E-07 1.52E-07 7.30E-07 5.50	-07
U9/U7 7.85E-U7 2.65E-U7 2.59E-U6 6.82E-U7 2.83E-U7 1.63E-U6 7.3UE-U7 2.69	-U7 1.72E-U6
10/07 2.01E-06 3.08E-06 2.18E-06 3.10E-06 2.16E-06 3.12	-06
11/U/ 9.95E-14 8.98E-U/ 5.63E-U/ 3.55E-15 9.07E-U/ 7.59E-U/ 1.92E-13 9.03	-U7 8.46E-U7
12/07 7.50E-07 8.98E-07 5.63E-07 7.47E-07 9.07E-07 7.59E-07 7.39E-07 9.03	-07 8.46E-07
13/07 7.50E-07 1.53E-06 5.63E-07 7.47E-07 1.98E-06 7.59E-07 7.39E-07 1.46	-06 8.46E-07
14/07 7.50E-07 5.63E-07 7.47E-07 7.59E-07 7.39E-07	8.46E-07
15/07 9.81E-07 2.33E-06 5.63E-07 7.84E-07 2.31E-06 7.59E-07 6.49E-07 2.29	-06 8.46E-07
16/07 1.22E-06 9.84E-07 5.63E-07 4.74E-07 9.86E-07 7.59E-07 1.20E-06 9.79	-07 8.46E-07
17/07 9.84E-07 5.63E-07 4.74E-07 9.86E-07 7.59E-07 9.79	-07 8.46E-07
18/07 9.84E-07 5.63E-07 4.74E-07 9.86E-07 7.59E-07 9.79	-07 8.46E-07
19/07 9.84E-07 5.63E-07 4.74E-07 9.86E-07 7.59E-07 9.79	-07 8.46E-07
20/07 8.80E-09 5.63E-07 1.29E-07 7.98E-09 7.59E-07 5.32	-09 8.46E-07
21/07 2.45E-06 4.72E-07 5.63E-07 2.61E-06 5.84E-07 7.59E-07 2.43E-06 5.88	-07 8.46E-07
22/07 1.99E-13 4.72E-07 5.63E-07 4.26E-14 5.84E-07 7.59E-07 5.88	-07 8.46E-07
23/07 1.58E-06 4.72E-07 5.63E-07 1.61E-06 5.84E-07 7.59E-07 1.60E-06 5.88	-07 8.46E-07
24/07 2.05E-06 4.72E-07 5.63E-07 2.08E-06 5.84E-07 7.59E-07 2.04E-06 5.88	-07 8.46E-07
25/07 9.77E-07 5.63E-07 1.42E-13 7.59E-07 9.95E-14	8.46E-07
26/07 1.18E-06 2.64E-06 5.63E-07 1.15E-06 2.62E-06 7.59E-07 1.14E-06 2.67	-06 8.46E-07
27/07 1.83E-06 5.63E-07 1.81E-06 7.59E-07 1.85	-06 8.46E-07
28/07 4.68E-07 5.62E-07 4.58E-07 7.59E-07 4.78	-07 8.45E-07
29/07 9.29E-07 9.89F-07	1.63E-07
30/07 4.07E-06 4.05E-06 4.05E-06 4.08E-06	-06
31/07 2.15E-06 1.06E-06 2.14E-06 1.11E-06 2.15	 -06 1.13E-06

	OVERLAND FLOW (m)								
Date	S19	S20	S21	S22	S23	S24	S25	S26	S27
01/08									9.95E-14
02/08	5.42E-09						2.53E-08		9.95E-14
03/08	5.42E-09						2.53E-08		9.95E-14
04/08	5.42E-09						2.53E-08		9.95E-14
05/08	5.42E-09		2.24E-06			2.33E-06	2.53E-08		2.38E-06
06/08	5.42E-09					1.99E-13	2.53E-08		
07/08	5.42E-09		2.95E-07			3.94E-07	2.53E-08		4.15E-07
08/08	5.42E-09		1.81E-06			1.92E-06	2.53E-08		1.97E-06
09/08	5.42E-09						2.53E-08		
10/08	5.42E-09	1.04E-06			1.04E-06		2.53E-08	1.04E-06	
11/08	5.42E-09	7.52E-07	4.30E-08		7.58E-07	4.15E-08	2.53E-08	7.44E-07	3.68E-08
12/08	5.42E-09	7.52E-07	2.03E-06		7.58E-07	1.95E-06	2.53E-08	7.44E-07	2.03E-06
13/08	5.42E-09	7.52E-07	1.24E-06		7.58E-07	1.16E-06	2.53E-08	7.44E-07	1.21E-06
14/08	1.72E-06	7.52E-07		1.73E-06	7.58E-07		1.71E-06	7.44E-07	
15/08		7.52E-07			7.58E-07			7.44E-07	
16/08		7.52E-07	1.96E-06		7.58E-07	1.95E-06		7.44E-07	2.01E-06
17/08		7.52E-07			7.58E-07	7.11E-15		7.44E-07	
18/08		7.52E-07			7.58E-07	7.11E-15		7.44E-07	
19/08		7.52E-07			7.58E-07	7.11E-15		7.44E-07	
20/08	5.90E-07	7.52E-07		5.92E-07	7.58E-07	7.11E-15	5.89E-07	7.44E-07	
21/08	5.90E-07	7.52E-07		5.92E-07	7.58E-07	7.11E-15	5.89E-07	7.44E-07	
22/08	5.90E-07	7.52E-07		5.92E-07	7.58E-07	7.11E-15	5.89E-07	7.44E-07	
23/08		1.32E-06		1.16E-12	1.32E-06	7.11E-15		1.35E-06	
24/08				1.16E-12	9.95E-14				
25/08		1.63E-06		1.16E-12	1.63E-06			1.56E-06	
26/08				1.16E-12					
27/08				1.16E-12					
28/08				1.16E-12					
29/08				1.16E-12					
30/08	2.07E-06			2.07E-06			2.07E-06		
31/08	2.54E-07			2.58E-07		0.003536	2.58E-07		0.005374
01/09	2.54E-07			0.003536	0.003536	1.31E-10	0.003102	0.003101	1.52E-07
02/09	2.54E-07			5.24E-06	4.55E-06	1.31E-10		1.68E-08	1.52E-07
03/09	2.54E-07	9.97E-08	1.19E-06	1.07E-13	9.94E-07	2.38E-06		1.78E-13	1.54E-06
04/09	2.54E-07	1.74E-06		1.07E-13	4.36E-06			4.49E-06	
05/09	2.54E-07		3.36E-07	1.07E-13				3.77E-13	
06/09	2.54E-07			1.07E-13	7.16E-07			3.77E-13	
07/09	2.54E-07	1.71E-06	1.32E-06	1.07E-13	1.17E-06	2.02E-06		1.52E-06	2.12E-06
08/09	2.54E-07		2.18E-06	1.07E-13		2.69E-06		7.82E-14	1.38E-06
09/09	2.54E-07	7.67E-07		1.07E-13	4.88E-07			9.23E-07	
10/09	2.54E-07	7.67E-07	5.09E-08	1.07E-13	4.88E-07	3.92E-07		9.23E-07	2.49E-07
11/09	2.54E-07	7.67E-07	5.09E-08	1.07E-13	4.88E-07	3.92E-07		9.23E-07	2.49E-07
12/09	2.54E-07	7.67E-07	1.36E-06	1.07E-13	4.88E-07	9.19E-07		9.23E-07	9.72E-07
13/09	2.54E-07	5.39E-07	1.01E-06	1.07E-13	7.77E-07	1.62E-06		2.18E-07	1.76E-06
14/09	2.54E-07	1.45E-06		1.07E-13	8.14E-07	0.003536		9.57E-07	0.003101
15/09			1.41E-06	0.003537	0.003536	5.79E-06	0.003323	0.003101	1.16E-08
16/09	1.34E-06			1.29E-06	7.32E-11		2.72E-08	2.91E-13	1.16E-08
17/09				7.11E-15	7.32E-11			2.91E-13	1.16E-08
18/09	4.35E-06		7.50E-07	3.42E-06	2.44E-06	1.52E-06	5.98E-07	3.40E-06	1.52E-06
19/09			7.50E-07	1.42E-14	1.07E-13	2.17E-06	5.98E-07		2.27E-06

	OVERLAND FLOW (m)									
Date	S19	S20	S21	S22	S23	S24	S25	S26	S27	
20/09			7.50E-07	1.42E-14	8.20E-07		5.98E-07	1.25E-06	8.88E-14	
21/09			7.50E-07	1.42E-14	8.20E-07		5.98E-07		8.88E-14	
22/09				1.42E-14	8.20E-07		5.98E-07		7.16E-07	
23/09			5.38E-07	1.42E-14	8.20E-07	5.65E-07	5.98E-07		1.33E-06	
24/09			4.78E-07	4.27E-07	8.20E-07	4.74E-07	5.98E-07		1.13E-06	
25/09	2.16E-06		2.12E-06	2.34E-06	8.20E-07	2.14E-06	2.40E-06		1.50E-06	
26/09				1.42E-14	8.20E-07		2.13E-14			
27/09				1.42E-14	8.20E-07		2.13E-14			
28/09				1.42E-14	8.20E-07		2.13E-14			
29/09				1.42E-14	8.20E-07		2.13E-14			
30/09			1.59E-06	1.42E-14	8.20E-07	0.003536	2.13E-14		0.003101	
01/10			3.13E-06	0.003536	0.003536	3.80E-06	0.005374	0.002868		
02/10			2.29E-06	6.13E-11		3.14E-06			2.51E-06	
03/10				6.13E-11						
04/10				6.13E-11						
05/10				1.50E-07	1.09E-06			1.62E-06		
06/10				1.50E-07	9.89E-07			5.34E-07		
07/10	2.95E-06			7.23E-07	9.89E-07		1.54E-06	5.34E-07		
08/10				7.23E-07	9.89E-07			5.34E-07		
09/10				7.23E-07	2.04E-06			1.03E-06		
10/10				7.23E-07				9.95E-14		
11/10		1.23E-09		7.23E-07	7.16E-10			1.07E-07		
12/10		1.23E-09		7.23E-07	7.16E-10			1.07E-07		
13/10		1.23E-09		7.23E-07	7.16E-10			1.07E-07		
14/10		1.23E-09		7.23E-07	7.16E-10	0.003536		1.07E-07	0.002868	
15/10		1.23E-09		0.003536	0.003537		0.002868	0.005374		
16/10		1.23E-09		4.23E-11	3.25E-06		8.60E-13	4.91E-06		
17/10		1.23E-09		5.16E-07			1.76E-06			
18/10		6.85E-07		5.16E-07						
19/10		8.22E-06		5.16E-07	4.21E-06			4.76E-06		
20/10				5.16E-07				1.85E-13		
21/10				5.16E-07				1.85E-13		
22/10				5.16E-07				1.85E-13		
23/10				5.16E-07				1.85E-13		
24/10				5.16E-07				1.85E-13		
25/10				5.16E-07				1.85E-13		
26/10				5.16E-07				1.85E-13		
27/10				5.16E-07				1.85E-13		
28/10				5.16E-07				1.85E-13		
29/10				5.16E-07				1.85E-13		
30/10				5.16E-07				1.85E-13		
31/10				5.16E-07		0.003536		1.85E-13	0.002868	
01/11				0.003536	0.003536		0.002868	0.003101		
02/11				7.69E-11	1.94E-10		4.33E-13	1.99E-13		
03/11				7.69E-11	1.94E-10		4.33E-13	1.99E-13		
04/11				3.82E-06	1.94E-10	3.86E-07	2.83E-06	1.99E-13	5.22E-07	
05/11				3.24E-06	1.94E-10	3.86E-07	6.19E-07	1.99E-13	5.22E-07	
06/11				1.63E-13	1.94E-10	3.86E-07	6.19E-07	1.99E-13	5.22E-07	
07/11				1.63E-13	1.94E-10	3.86E-07	6.19E-07	1.99E-13	5.22E-07	
08/11				1.63E-13	1.94E-10	3.86E-07	6.19E-07	1.99E-13	5.22E-07	

Date S19 S20 S21 S22 S23 S24 S26 S27 09/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 10/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 11/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 12/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 14/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 14/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 14/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 16/11 0.003565 0.003565 0.003565 0.002588 0.002688 0.002688 16/11 7.72E-07 4.22E-11 1.15E-10 2.66E-13 4.16E-13 2.56E-07 2/11 7.72E-07 </th <th></th> <th></th> <th></th> <th></th>										
09/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 10/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 11/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 12/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 13/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 14/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 14/11 1.63E-13 1.94E-10 0.003536 6.19E-07 1.99E-13 5.22E-07 14/11 0.003536 0.003536 1.16E-10 0.268E-13 4.16E-13 0.005374 16/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 2.66E-07 19/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.66E-07 20/11 7.72E-07 4.22E-11 2.66E-13	Date	S19	S20	S21	S22	S23	S24	S25	S26	S27
10/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 11/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 12/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 13/11 1.63E-13 1.94E-10 0.003536 6.19E-07 1.99E-13 5.22E-07 14/11 1.63E-13 1.94E-10 0.003536 6.19E-07 1.99E-13 5.02E-07 14/11 1.63E-13 1.94E-10 0.003536 6.19E-07 1.99E-13 5.02E-07 14/11 0.003536 0.003536 1.15E-10 2.66E-13 4.16E-13 0.002868 16/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 2.56E-07 19/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13	09/11				1.63E-13	1.94E-10	3.86E-07	6.19E-07	1.99E-13	5.22E-07
11/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 12/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 13/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 14/11 1.63E-13 1.94E-10 0.00356 6.19E-07 1.99E-13 5.22E-07 15/11 0.00356 0.19E-07 1.99E-13 5.22E-07 16/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 17/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 19/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-	10/11				1.63E-13	1.94E-10	3.86E-07	6.19E-07	1.99E-13	5.22E-07
12/11 1.63E-13 1.94E-10 3.86E-07 6.19E-07 1.99E-13 5.22E-07 13/11 1.63E-13 1.94E-10 3.66E-07 6.19E-07 1.99E-13 5.22E-07 14/11 1.63E-13 1.94E-10 0.003536 6.19E-07 1.99E-13 0.005374 15/11 0.003536 0.003536 1.15E-10 0.002868 0.002868 16/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 4.16E-13 18/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22	11/11				1.63E-13	1.94E-10	3.86E-07	6.19E-07	1.99E-13	5.22E-07
13/11 1.63E-13 1.94E-10 3.06E-07 6.19E-07 1.99E-13 5.22E-07 14/11 1.63E-13 1.94E-10 0.003536 6.19E-07 1.99E-13 0.00268 16/11 0.003536 1.15E-10 0.002688 0.00268 0.00268 16/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 4.16E-13 17/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-1	12/11				1.63E-13	1.94E-10	3.86E-07	6.19E-07	1.99E-13	5.22E-07
14/11 1.63E-13 1.94E-10 0.003366 6.19E-07 1.99E-13 0.005374 15/11 0.003536 0.003536 1.15E-10 0.002868 0.002868 16/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 17/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 18/11 4.22E-11 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11	13/11				1.63E-13	1.94E-10	3.86E-07	6.19E-07	1.99E-13	5.22E-07
15/11 0.003536 0.003536 1.15E-10 0.002868 0.002868 16/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 17/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 18/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 19/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07	14/11				1.63E-13	1.94E-10	0.003536	6.19E-07	1.99E-13	0.005374
16/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 17/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 18/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 19/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 27/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07	15/11				0.003536	0.003536	1.15E-10	0.002868	0.002868	
17/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 18/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 19/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11	16/11					4.22E-11	1.15E-10	2.66E-13	4.16E-13	
18/11 4.22E-11 1.15E-10 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56	17/11					4.22E-11	1.15E-10	2.66E-13	4.16E-13	
19/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003556 1.44E-06 0.00	18/11					4.22E-11	1.15E-10	2.66E-13	4.16E-13	
20/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003556 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.00356 0.002	19/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
21/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003536 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003586 0.00	20/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
22/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 27/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 0.00356 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.00356 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.00356 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-1	21/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
23/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003556 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.00356 0.002868 0.002868 9.80E-08 01/12 0.003536 0.003536 1.44E-06 0.002868 9.80E-08 02/12 2.84E-14 6.75E-14 2.31E	22/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
24/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 27/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003536 2.66E-13 4.16E-13 0.002668 01/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 03/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0 05/12 9.95E-14<	23/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
25/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 27/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003536 2.66E-13 4.16E-13 0.002868 01/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 03/12 2.84E-14 6.75E-14 2.31E-13 0 0 0.003536 1.44E-06 0.002868 9.80E-08 05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0 0 0 0 0 0 0 0 0	24/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
26/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 27/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.00356 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.00356 2.66E-13 4.16E-13 0.002868 01/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 03/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.001286 05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.001286 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.001286 </td <td>25/11</td> <td></td> <td></td> <td>7.72E-07</td> <td></td> <td>4.22E-11</td> <td></td> <td>2.66E-13</td> <td>4.16E-13</td> <td>2.56E-07</td>	25/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
27/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003536 2.66E-13 4.16E-13 0.02868 01/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 0.003536 0.003536 1.44E-04 0.002868 0.002868 9.80E-08 02/12 0.003536 0.003536 1.44E-04 0.002868 0.002868 9.80E-08 02/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.0011	26/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
28/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003536 2.66E-13 4.16E-13 0.002868 01/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 0.003536 0.003536 1.44E-04 6.75E-14 2.31E-13 0.002868 02/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 0.003536 0.003536 1.44E-04 0.002868 0.002868 9.80E-08 02/12 0.014 2.84E-14 6.75E-14 2.31E-13 0.002868 9.80E-08 02/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.002868 9.80E-08 05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.002868 9.95E-14 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.002868 9.95E-14	27/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
29/11 7.72E-07 4.22E-11 2.66E-13 4.16E-13 2.56E-07 30/11 7.72E-07 4.22E-11 0.003536 2.66E-13 4.16E-13 0.002868 01/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 2.84E-14 6.75E-14 2.31E-13 0.002868 9.80E-08 02/12 2.84E-14 6.75E-14 2.31E-13 0.002868 9.80E-08 02/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.002868 9.80E-08 03/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.002868 9.80E-08 05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.002868 9.80E-08 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.002868 9.80E-08 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.002868 9.95E-14 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 0.002868 9.95E-14 2.84E-14 </td <td>28/11</td> <td></td> <td></td> <td>7.72E-07</td> <td></td> <td>4.22E-11</td> <td></td> <td>2.66E-13</td> <td>4.16E-13</td> <td>2.56E-07</td>	28/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
30/11 7.72E-07 4.22E-11 0.003536 2.66E-13 4.16E-13 0.002868 01/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-08 02/12 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 03/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 04/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 10/12 </td <td>29/11</td> <td></td> <td></td> <td>7.72E-07</td> <td></td> <td>4.22E-11</td> <td></td> <td>2.66E-13</td> <td>4.16E-13</td> <td>2.56E-07</td>	29/11			7.72E-07		4.22E-11		2.66E-13	4.16E-13	2.56E-07
01/12 0.003536 0.003536 1.44E-06 0.002868 0.002868 9.80E-06 02/12 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 03/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 04/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 07/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 2.84E-14 6.75E-14 2.31E-13 10/12 9.95E-14 2.84E-14 </td <td>30/11</td> <td></td> <td></td> <td>7.72E-07</td> <td></td> <td>4.22E-11</td> <td>0.003536</td> <td>2.66E-13</td> <td>4.16E-13</td> <td>0.002868</td>	30/11			7.72E-07		4.22E-11	0.003536	2.66E-13	4.16E-13	0.002868
02/12 2.84E-14 6.75E-14 2.31E-13 03/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 04/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 07/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 10/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	01/12				0.003536	0.003536	1.44E-06	0.002868	0.002868	9.80E-08
03/12 2.84E-14 6.75E-14 2.31E-13 04/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 07/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 10/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	02/12						2.84E-14	6.75E-14	2.31E-13	
04/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 07/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 10/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	03/12						2.84E-14	6.75E-14	2.31E-13	
05/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 07/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 10/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	04/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
06/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 07/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 10/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	05/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
07/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 10/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	06/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
08/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 10/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	07/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
09/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 10/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	08/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
10/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13 11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	09/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
11/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	10/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
	11/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
12/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	12/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
13/12 9.95E-14 2.84E-14 6.75E-14 2.31E-13	13/12			9.95E-14			2.84E-14	6.75E-14	2.31E-13	
14/12 9.95E-14 0.003536 6.75E-14 2.31E-13 0.002868	14/12			9.95E-14			0.003536	6.75E-14	2.31E-13	0.002868
15/12 9.95E-14 0.003536 0.003536 9.32E-11 0.002868 0.002868 2.13E-14	15/12			9.95E-14	0.003536	0.003536	9.32E-11	0.002868	0.002868	2.13E-14
16/12 9.95E-14 2.67E-06 9.32E-11 7.60E-08 2.13E-14	16/12			9.95E-14		2.67E-06	9.32E-11		7.60E-08	2.13E-14
17/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	17/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
18/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	18/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
19/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	19/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
20/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	20/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
21/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	21/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
22/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	22/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
23/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	23/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
24/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	24/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
25/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	25/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
26/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	26/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
27/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	27/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
28/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	28/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
29/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	29/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
30/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	30/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14
31/12 9.95E-14 9.32E-11 7.60E-08 2.13E-14	31/12			9.95E-14			9.32E-11		7.60E-08	2.13E-14

APPENDIX 5 (DRAIN OUT FLOW IN MILLI METRES)

DATE	S10	S12	S16	S18	S19	S21	S25	S27		
01-01	0	0	0	0	0	0	0	0		
02-01	0	0	0	0	23.7755	23.7756	25.9037	25.9054		
03-01	0	0	0.000326	0.000398	23.148	23.1297	22.4917	22.5346		
04-01	0	0	0.004932	0.004605	18.831	18.8398	16.8506	16.8672		
05-01	0	0	0.005114	0.005326	14.8412	14.7656	16.9713	16.9758		
06-01	0	0	0.005873	0.00523	11.7328	11.6685	14.1424	14.101		
07-01	0	0	0.006601	0.00465	9.3168	9.24302	11.243	11.1837		
08-01	0	0	0.007497	0.003953	7.54794	7.35497	9.00828	8.92838		
09-01	0	0	0.007201	0.003261	6.16975	5.96779	7.36799	7.02289		
10-01	0	0	0.006095	0.002349	5.06953	4.87009	6.01022	5.80668		
11-01	0	0	0.005622	0.002089	4.19559	3.93276	4.93083	4.69437		
12-01	0	0	0.004635	0.001283	3.35326	3.10389	3.98347	3.7682		
13-01	0	0	0.003894	0.001185	2.67181	2.38972	3.24733	2.95101		
14-01	0	0	0.003067	0.027552	2.1671	1.90104	2.63224	2.1688		
15-01	0	0	0.031079	0.28418	1.77336	1.5216	1.98299	1.74522		
16-01	0	0	0.347393	0.268394	1.43079	1.21896	1.53388	1.51962		
17-01	0	0	0.328847	0.263223	1.16324	0.919465	1.47359	1.79975		
18-01	0	0	0.324104	0.193242	0.903209	0.685977	1.74659	1.80709		
19-01	0	0	0.249749	0.124088	0.714064	0.513307	1.72934	1.57146		
20-01	0	0	0.171592	0.072524	0.529698	0.401559	1.59662	1.3771		
21-01	0	0	1.3345	0.042914	0.348362	0.252354	1.27758	1.20471		
22-01	0.982947	0	6.93012	0.028005	1.69775	0.185507	4.31954	0.929597		
23-01	7.17311	0	12.1784	0.021025	15.8533	0.159298	18.4177	0.794701		
24-01	7.17064	0	9.20092	0.014986	18.8369	0.141538	20.5471	0.67867		
25-01	5.64124	0	8.42717	0.011412	16.8745	0.129577	18.1038	0.586736		
26-01	4.14518	0	6.33077	0.00904	14.2565	0.115662	15.0199	0.493885		
27-01	2.86325	0	4.42215	0.007271	11.6756	0.110858	12.3015	0.420233		
28-01	1.81737	0	2.88691	0.006006	9.60459	0.106274	9.93742	0.357084		
29-01	1.00775	0	1.79254	0.004976	7.83648	0.10124	8.13209	0.297276		
30-01	0.396722	0	0.977268	0.004596	6.46684	0.096436	6.66946	0.253356		
31-01	0.171016	0	0.491543	0.041666	5.28429	0.093457	5.46146	0.204789		
01-02	0.102475	0	0.618564	0.71269	4.35598	0.091868	4.19651	0.188047		
02-02	0.061285	0	2.07492	0.654528	3.41138	0.087752	3.31336	0.278924		
03-02	0.041475	0	1.61381	0.643052	2.86502	0.083323	2.78692	0.425003		
04-02	0.028157	0	1.51066	0.498975	2.35908	0.080954	3.2082	0.537901		
05-02	0.020855	0	1.1123	0.334954	1.8643	0.079225	2.93644	0.602091		
06-02	0.017239	0	0.743636	0.198543	1.45699	0.078079	2.5223	0.618485		
07-02	0.014964	0	0.457469	0.10552	1.11407	0.076805	2.16296	0.604046		
08-02	0.014218	0	0.262434	0.052311	0.806386	0.075879	1.76871	0.568175		
09-02	0.011883	0	0.11198	0.033177	0.658417	0.074678	1.4195	0.519943		
10-02	0.011028	0	0.046815	0.021054	0.546569	0.072657	1.16655	0.470532		
11-02	0.010192	1.42E-05	0.030696	0.015049	0.324026	0.068153	0.915203	0.416808		
12-02	0.009905	0.000228	0.021669	0.01026	0.242383	0.067789	0.70126	0.36747		
13-02	0.009866	0.000906	0.018688	0.008252	0.188965	0.067283	0.570293	0.316425		
14-02	0.011456	0.001508	0.019982	0.063729	0.155744	0.067312	0.467592	0.267049		
15-02	0.018855	0.002028	0.226726	1.08375	0.140303	0.067299	0.385802	0.236719		
16-02	0.024052	0.002462	1.82949	0.916494	0.133618	0.067228	0.367223	0.372676		
17-02	0.024994	0.002571	1.5145	0.873309	0.120601	0.066467	0.54368	0.589905		
18-02	0.024931	0.002706	1.45386	0.672321	0.112901	0.066112	0.758719	0.736812		
19-02	0.024082	0.002837	1.11871	0.470131	0.108893	0.065672	0.89021	0.779622		
20-02	0.023212	0.003232	0.810662	0.294705	0.103336	0.06507	0.918602	0.773368		
21-02	0.021904	0.003596	0.539247	0.1594	0.099474	0.064703	0.900658	0.73028		
22-02	0.02006	0.003619	0.331062	0.067568	0.0949	0.064459	0.844518	0.666438		
23-02	0.016642	0.003633	0.166632	0.036385	0.093218	0.064498	0.771565	0.598786		
DRAIN OUTFLOW (mm)										
--------------------	----------	-----------	----------	----------	-----------	-----------	-----------	----------	--	--
DATE	S10	S12	S16	S18	S19	S21	S25	S27		
24-02	0.015242	0.003662	0.066678	0.024127	0.092854	0.064517	0.689969	0.527024		
25-02	0.016658	0.003725	0.050718	0.019861	0.092273	0.064513	0.613717	0.464374		
26-02	0.018534	0.003776	0.046766	0.016549	0.090847	0.064501	0.538649	0.396753		
27-02	0.019168	0.003784	0.039767	0.012746	0.089406	0.064198	0.472273	0.338909		
28-02	0.018654	0.003777	0.03366	0.083022	0.088577	0.064195	0.410039	0.282334		
01-03	0.017778	0.003768	0.189529	1.27173	0.087568	0.064208	0.346513	0.249438		
02-03	0.016833	0.003738	1.2675	1.06857	0.086712	0.064211	0.315008	0.411885		
03-03	0.015531	0.003677	1.30059	1.00891	0.086208	0.064195	0.500654	0.662171		
04-03	0.015169	0.003584	1.06494	0.758134	0.08569	0.064161	0.777764	0.809852		
05-03	0.015052	0.003498	0.806255	0.50243	0.085112	0.063825	0.923648	0.841457		
06-03	0.01498	0.003421	0.590088	0.29954	0.084461	0.063767	0.945283	0.821725		
07-03	0.014952	0.003372	0.402786	0.147194	0.08376	0.063711	0.921418	0.771277		
08-03	0.014946	0.003404	0.255971	0.059713	0.082746	0.063926	0.863534	0.691106		
09-03	0.014249	0.003457	0.144152	0.035349	0.081713	0.063812	0.782493	0.607325		
10-03	0.014052	0.0035	0.075512	0.025196	0.080821	0.063672	0.694178	0.528149		
11-03	0.013449	0.003534	0.048089	0.01819	0.079916	0.063544	0.614876	0.457144		
12-03	0.012569	0.003559	0.036644	0.015677	0.079101	0.063133	0.536309	0.394461		
13-03	0.011888	0.003578	0.027194	0.012736	0.078466	0.06365	0.466512	0.337579		
14-03	0.011785	0.003595	0.023271	0.081458	0.077618	0.063577	0.409149	0.275932		
15-03	0.011976	0.00437	0.176126	1.36519	0.076376	0.064694	0.335144	0.244994		
16-03	0.012228	0.004636	1,18106	1.21625	0.07486	0.064536	0.303103	0.420225		
17-03	0.012311	0.004892	1.22462	1.19061	0.073748	0.06435	0.501806	0.705337		
18-03	0.012183	0.005286	1.06107	0.929196	0.073019	0.064252	0 785358	0.872417		
19-03	0.011202	0.005314	0 797916	0.688551	0.072356	0.064247	0.925782	0.926296		
20-03	0.011082	0.00534	0.564152	0.479565	0.072025	0.065205	0.952897	0.90707		
21-03	0.013137	0.005362	0.001102	0.312225	0.0711	0.065279	0.922217	0.853513		
22-03	0.017748	0.005372	0.30776	0.174615	0.070226	0.065643	0.859269	0.773895		
23-03	0.025047	0.000012	0.245354	0.081105	0.069373	0.065667	0.778249	0.684697		
24-03	0.026924	0.00546	0.189026	0.001100	0.068695	0.065677	0.68852	0.607211		
25-03	0.029186	0.00583	0.13062	0.034712	0.068874	0.065984	0.61323	0.534733		
26-03	0.02875	0.005896	0.10002	0.004112	0.069277	0.065638	0.549716	0.462697		
27-03	0.027725	0.005891	0.066577	0.023495	0.069865	0.066234	0.488914	0.402001		
28-03	0.026113	0.005816	0.000011	0.020400	0.0000000	0.000204	0.400014	0.347599		
20.03	0.023341	0.005682	0.00101	0.015217	0.071766	0.065803	0.387701	0.303686		
30-03	0.020541	0.005551	0.041404	0.013217	0.074356	0.0000000	0.345086	0.248133		
31-03	0.021070	0.005/95	0.002047	1 39599	0.07669	0.063422	0.040000	0.240100		
01-03	0.020432	0.005493	1 /02/6	1.00000	0.078117	0.064/64	0.237737			
07-04	0.019576	0.0054572	1 //909	1 15975	0.078244	0.064464	0.517802	0.400020		
02-04	0.019574	0.000072	1 19609	0.89885	0.078006	0.064404	0.317002	0.831048		
03-04	0.010024	0.00070	0.919314	0.651392	0.078015	0.004449	0.020002	0.001040		
04-04	0.013012		0.515514	0.031332	0.070013	0.004330	1 018/3	0.07020		
05-04	0.010110	0.000403	0.077073	0.407706	0.077336	0.004323	0.081835	0.002002		
07-04	0.017355	0.000074	0.332566	0.202730	0.077530	102300	0.901033	0.013045		
07-04	0.010104	0.007020	0.002000	0.101003	0.07034	40000.0	0.970376	0.755505		
00-04	0.010442	0.000014	0.211030	0.003207	0.070520	0.00000	0.023320	0.535000		
10.04	0.010750	0.000010	0.123710	0.030311	0.075702	0.063037	0.733000	0.505149		
11.04	0.019094	0.000773	0.001032	0.030204	0.075702	0.000140	0.040027	0.010079		
11-04	0.019503		0.001792	0.031061	0.075010	0.063204	0.00007	0.440002		
12-04	0.020298		0.000047	0.020931	0.07405	0.003274		0.391105		
13-04	0.021345	0.000002	0.040524	0.021740	0.073102	0.0000040	0.40002	0.004110		
14-04	0.021562	0.011127	0.04201	1 60076	0.072105	0.074157	0.30109	0.200531		
15-04	0.022065	0.012256	0.293011	1.02976	0.071074	0.070000	0.320184	0.203049		
10-04	0.022127	0.01413	1.53602	1.43451	0.07005	0.077243		0.0392/3		
17-04	0.021946	0.0138	1.0031/	1.30/3/	0.070707	0.07574		1 00407		
18-04	0.021469	0.013435	1.27432	1.09038	0.070779	0.074501	0.0000000	1.03197		

DRAIN OUTFLOW (mm)										
DATE	S10	S12	S16	S18	S19	S21	S25	S27		
18-04	0.021469	0.013435	1.27432	1.09038	0.070779	0.074501	0.886856	1.03197		
19-04	0.020792	0.013204	0.968753	0.822818	0.070173	0.073489	1.03778	1.06886		
20-04	0.020276	0.011775	0.722084	0.606459	0.070249	0.072653	1.05659	1.02882		
21-04	0.020181	0.011344	0.522656	0.421331	0.069641	0.071641	1.01264	0.952495		
22-04	0.02037	0.011194	0.368397	0.272053	0.06939	0.070399	0.935555	0.865442		
23-04	0.020745	0.011321	0.250556	0.153245	0.069445	0.069689	0.839491	0.762131		
24-04	0.021333	0.011294	0.160521	0.081557	0.069481	0.068466	0.742987	0.67352		
25-04	0.022277	0.013778	0.105044	0.063976	0.069497	0.071284	0.657973	0.592375		
26-04	0.023134	0.013909	0.078065	0.05612	0.068934	0.070798	0.577005	0.520181		
27-04	0.024132	0.01391	0.064659	0.047933	0.069002	0.070563	0.506796	0.458086		
28-04	0.024184	0.013872	0.054012	0.042552	0.069104	0.071031	0.445357	0.400904		
29-04	0.023904	0.013791	0.046122	0.036767	0.069205	0.070931	0.394478	0.354443		
30-04	0.023415	0.013775	0.039407	0.300676	0.069296	0.070532	0.347163	0.301572		
01-05	0.025506	0.014025	0.736458	1.55252	0.069367	0.070798	0.286785	0.290279		
02-05	0.045647	0.013997	2.91477	1.56998	0.070023	0.070479	0.467746	0.564739		
03-05	0.070756	0.014008	2.42428	1.28732	0.070117	0.069813	1.19271	0.895605		
04-05	0.087128	0.014127	2.38402	0.997807	0.070704	0.069601	1.67963	1.04934		
05-05	0.090742	0.01454	1.92943	0.7525	0.073969	0.069682	1.78608	1.07351		
06-05	0.091151	0.029821	1.49299	1.0491	0.077511	0.069458	1.70466	1.03551		
07-05	0.08887	0.098772	1.12861	1.97437	0.080606	0.068968	1.54867	1.00709		
08-05	0.086528	0.121187	0.86939	2.11259	0.083616	0.071853	1.38707	1.23852		
09-05	0.087249	0.127332	0.708205	1.89916	0.087305	0.090048	1.22366	1.55313		
10-05	0.088279	0.12309	0.580318	1.61512	0.090547	0.141647	1.07885	1.72758		
11-05	0.08852	0.119932	0.468379	1,41447	0.094155	0.204204	0.952874	1.7737		
12-05	0.087491	0.117231	0.383758	1.30047	0.098378	0.269355	0.83967	1.74155		
13-05	0.087625	0.128083	0.32311	1.36339	0.104971	0.323823	0.745005	1.67251		
14-05	0.086347	0.144309	0.264432	2.69098	0.111867	0.370145	0.673348	1.63858		
15-05	0.083701	0.14238	0.837372	4.24823	0.116455	0.429596	0.570748	2.75182		
16-05	0.081419	0.131934	2.73259	3.07451	0.127136	0.481127	0.709808	3.49344		
17-05	0.080073	0.119519	2.24314	2.93732	0.131493	0.508673	1.29689	3.50899		
18-05	0.081045	0.107963	2.24619	2.31569	0.132343	0.514747	1.75314	3.19672		
19-05	0.081159	0.096032	1.85318	1.75026	0.133806	0.511632	1.85251	2.81075		
20-05	0.080881	0.089167	1.44234	1.30621	0.135133	0.491383	1.77492	2.42156		
21-05	0.078694	0.087407	1.09914	1.0545	0.136916	0.465255	1.62581	2.08675		
22-05	0.074687	0.088352	0.842373	0.878999	0.138443	0.434529	1.45917	1.80202		
23-05	0.071816	0.087922	0.636009	0.71151	0.139422	0.402482	1.29216	1.5702		
24-05	0.069	0.086643	0.479167	0.575346	0.145884	0.38129	1.14207	1.36414		
25-05	0.068173	0.089513	0.361828	0.520321	0.15197	0.36036	1.0019	1.19671		
26-05	0.069363	0.098447	0.295721	0.51156	0.153549	0.338769	0.878668	1.0567		
27-05	0.072804	0.103287	0.267211	0.478003	0.151929	0.321127	0.773	0.949904		
28-05	0.097422	0.103585	0.332159	0.427626	0.150257	0.313055	0.685744	0.874704		
29-05	0.135845	0.104238	0.530448	0.373505	0.148816	0.305161	0.619719	0.799329		
30-05	0.167234	0.133322	0.66333	2.02232	0.148334	0.298455	0.565226	0.714787		
31-05	0.176994	0.207753	2.0274	4.31819	0.149921	0.294219	0.543049	1.72194		
01-06	0.173817	0.228835	3.29825	3.20245	0.153291	0.301386	0.927894	2.5793		
02-06	0.16275	0.219421	2.92907	3.14322	0.160953	0.328683	1.70593	3.1237		
03-06	0.204416	0.205012	3.00363	2.56432	0.169041	0.375286	2.05584	3.056		
04-06	0.383796	0.190824	3.33756	2.02047	0.178383	0.424935	2.26302	2.81999		
05-06	0.402005	0.17891	2.85439	1.58185	0.201912	0.448964	2.53791	2.55686		
06-06	0.354063	0.163978	2.25438	1.25199	0.271393	0.461919	2.62131	2.29297		
07-06	0.301165	0.151563	1.7343	0.988259	0.338176	0.471869	2.49912	2.06751		
08-06	0.302974	0.14207	1.55082	0.803268	0.383871	0.471856	2.29523	1.859		
09-06	0.460712	0.14453	1.94834	0.6945	0.418304	0.473498	2.08683	1.65956		
10-06	0.590299	0.151672	2.2714	0.671659	0.456138	0.466124	1.99773	1.48462		

DRAIN OUTFLOW (mm)										
DATE	S10	S12	S16	S18	S19	S21	S25	S27		
11-06	0.67692	0.16251	2.41285	0.662006	0.560539	0.452481	2.09773	1.34012		
12-06	0.689586	0.168082	2.33894	0.633987	0.682615	0.446537	2.31978	1.23836		
13-06	0.72437	0.169928	2.32213	0.582829	0.7959	0.445863	2.50684	1.1633		
14-06	0.851959	0.165226	2.641	1.1999	0.896744	0.452758	2.66655	1.02752		
15-06	0.953669	0.156222	4.81622	3.19085	1.03538	0.459742	2.80719	1.3639		
16-06	1.15419	0.144161	7.36623	2.5176	1.30865	0.466418	5.71521	2.04367		
17-06	1.39864	0.133565	7.3504	2.4564	2.13874	0.471606	6.88639	2.57274		
18-06	1.36045	0.130014	6.75518	2.06517	3.59778	0.470306	8.67759	2.57961		
19-06	1.27402	0.126515	5.72172	1.64817	4.60004	0.467706	8.80043	2.4185		
20-06	1.12271	0.123521	4.55419	1.30824	5.11911	0.454789	8.35673	2.21355		
21-06	0.939904	0.118496	3.54648	1.023	5.20535	0.445934	7.65021	1.99615		
22-06	0.773811	0.113146	2.74801	0.804474	5.0214	0.437482	6.85709	1.79611		
23-06	0.637001	0.105266	2.10645	0.614217	4.65649	0.428941	6.02287	1.60084		
24-06	0.567628	0.098665	1.74158	0.465165	4.19893	0.420863	5.25767	1.42919		
25-06	0.689669	0.094371	1.91564	0.364883	3.73734	0.409574	4.56271	1.26779		
26-06	0.882894	0.091257	2.16907	0.287331	3.33434	0.389404	4.02021	1.13281		
27-06	0.921138	0.087457	2.1211	0.218859	3.14734	0.368478	3.69445	1.00683		
28-06	0.900456	0.084539	1.91343	0.165036	3.07082	0.348739	3.52055	0.903481		
29-06	1.01963	0.080984	1.95391	0.133081	2.954	0.337429	3.33504	0.814214		
30-06	1.17805	0.085728	2.01097	0.137211	2.84702	0.320048	3.1677	0.721077		
01-07	1.25859	0.123212	1.96469	0.234331	2.7735	0.30644	3.03437	0.647775		
02-07	1.40836	0.180085	2.00721	0.482705	2.70789	0.294434	2.92364	0.591924		
03-07	1.48336	0.22602	1.98182	0.670422	2.63982	0.288566	2.82619	0.54595		
04-07	1.76934	0.277796	2.18519	0.842226	2.56723	0.294459	2.73223	0.545697		
05-07	2.15993	0.294086	2.5247	0.869713	2.52162	0.319127	2.66379	0.576729		
06-07	2.65749	0.284409	2.99832	0.821302	2.52995	0.398928	2.65959	0.665366		
07-07	3.1063	0.258929	3.46252	0.701033	2.59343	0.529528	2.71507	0.813472		
08-07	3.01592	0.279429	3.33408	0.74684	2.79668	0.637106	2.88972	0.919407		
09-07	2.73229	0.424682	2.98506	1.20757	2.95156	0.754235	3.04275	1.04069		
10-07	2.71651	0.466264	2.9355	1.33846	3.033	0.908764	3.11116	1.19992		
11-07	2.51948	0.43134	2.69749	1.226	3.0401	1.18694	3.11385	1.50406		
12-07	2.13772	0.410124	2.28041	1.10774	3.02083	1.47982	3.09171	1.79108		
13-07	1.7379	0.416987	1.83077	1.10568	2.97631	1.73516	3.04348	2.03189		
14-07	1.55162	0.398738	1.6442	1.01774	2.86386	1.88638	2.92322	2.16302		
15-07	3.60942	0.354979	3.80009	0.864935	2.69789	2.00383	2.74352	2.26012		
16-07	7.59801	0.310576	7.92071	0.697019	2.6613	2.04866	2.71148	2.28557		
17-07	8.79307	0.268825	9.15195	0.542696	4.19461	2.04378	4.2913	2.2636		
18-07	7.6375	0.234794	7.93237	0.462494	5.99243	2.00432	6.13139	2.19929		
19-07	6.21242	0.202708	6.44915	0.351633	6.57719	1.89744	6.73663	2.04644		
20-07	6.06804	0.171568	6.27701	0.243348	6.54315	1.7816	6.69728	1.88572		
21-07	7.15601	0.157432	7.37061	0.20869	6.28923	1.60748	6.42821	1.70967		
22-07	7.33686	0.157355	7.5474	0.205828	6.34891	1.45767	6.48576	1.53634		
23-07	7.51594	0.158411	7.73066	0.206133	6.61943	1.31892	6.7573	1.3842		
24-07	6.94743	0.154552	7.13395	0.194911	6.87312	1.15997	7.01614	1.22337		
25-07	5.94863	0.145714	6.11982	0.168046	6.96771	1.07499	7.10412	1.10666		
26-07	4.94962	0.131828	5.06609	0.143535	6.82617	0.98143	6.95204	1.01036		
27-07	4.64137	0.121553	4.75368	0.132651	6.30517	0.864119	6.42589	0.919607		
28-07	4.55063	0.114139	4.64989	0.125342	5.81132	0.790721	5.92652	0.840894		
29-07	3.85736	0.113872	3.94057	0.122615	5.37598	0.731617	5.47344	0.756208		
30-07	3.16753	0.124014	3.23527	0.133889	5.02377	0.687903	5.10415	0.687287		
31-07	2.51305	0.218364	2.55388	0.256122	4.62966	0.624902	4.70525	0.627751		
01-08	1.8621	0.283295	1.88345	0.450862	4.20857	0.571527	4.26708	0.582793		
02-08	1.59425	0.292181	1.59967	0.498071	3.75219	0.553437	3.79663	0.567725		
03-08	1.97647	0.295635	1.99798	0.51751	3.28114	0.564795	3.33926	0.580198		

DRAIN OUTFLOW (mm)										
DATE	S10	S12	S16	S18	S19	S21	S25	S27		
04-08	2.03148	0.387332	2.05257	0.799928	3.00401	0.590572	3.0357	0.60622		
05-08	1.86528	0.480733	1.87846	1.03622	2.71406	0.633307	2.74204	0.649192		
06-08	1.49301	0.51587	1.49866	1.12312	2.62855	0.776229	2.64504	0.781067		
07-08	1.26919	0.582817	1.2799	1.28909	2.41497	0.958377	2.42749	0.998887		
08-08	1.2496	0.563257	1.25657	1.26416	2.23069	1.29206	2.2481	1.31899		
09-08	1.89763	0.748184	1.91053	1.72601	2.12336	1.64127	2.12296	1.65753		
10-08	2.38579	1.12454	2.40945	2.74136	1.92879	2.06033	1.93997	2.08431		
11-08	2.35352	1.1036	2.37729	2.70193	1.89673	3.03297	1.90632	3.11557		
12-08	2.0663	0.996361	2.08717	2.4086	1.93346	3.91638	1.94273	4.02531		
13-08	1.63799	0.854956	1.65384	2.03056	1.96726	4.50057	1.976	4.61162		
14-08	1.26304	0.807102	1.26399	1.91884	1.97455	4.57627	1.98369	4.69566		
15-08	0.953146	0.971212	0.955012	2.37775	1.95124	4.51317	1.95978	4.63099		
16-08	0.618861	1.15204	0.621975	2.83578	1.87762	4.52753	1.88429	4.64574		
17-08	0.461864	1.08134	0.466142	2.59803	1.79837	4.681	1.80441	4.81795		
18-08	0.222876	0.895963	0.223353	2.12791	1.71186	4.77152	1.70874	4.9094		
19-08	0.185521	0.735103	0.185868	1.71757	1.54383	4.73072	1.54551	4.86274		
20-08	0.195041	0.607627	0.195226	1.36673	1.32649	4.56439	1.33114	4.69163		
21-08	0.212941	0.49449	0.212962	1.03827	1.24374	4.15181	1.24008	4.26087		
22-08	0.215043	0.399186	0.215664	0.768323	1.11803	3.70931	1.1209	3.80166		
23-08	1.32811	0.314142	1.35849	0.544149	0.959001	3.22985	0.963744	3.29006		
24-08	4,72849	0.272989	4,76297	0.440077	0.888992	2.80077	0.892487	2.8439		
25-08	4,7901	0.303826	4.82257	0.509405	0.996703	2.45981	1.00057	2.51188		
26-08	3.98101	0.331865	4.00764	0.564509	1.53866	2.15	1.54411	2.18115		
27-08	3.18667	0.328594	3.2078	0.549448	2.27636	1.91489	2.25947	1.93308		
28-08	2 45901	0.310807	2 46974	0.505072	2 46894	1 7671	2 47197	1 77953		
29-08	1 82505	0.279384	1 83274	0.431479	2 51776	1 60198	2 52882	1 6268		
30-08	1.42855	0.277725	1.43189	0.420186	2,4888	1.46408	2.50291	1.47159		
31-08	1.22826	0.348634	1 23397	1 54243	2 41674	1.34164	2 42849	1.35054		
01-09	0.955187	0.383535	1.71298	3 7 4 4 6 3	2 29814	1 22391	2 19088	1.5566		
02-09	0.832458	0.381868	3 70209	3 11899	2 1635	1 17778	2 25781	2 27796		
02-00	0.636377	0.363973	2 94879	2 9768	1 8612	1 13621	2 71411	2.63666		
00.00	0.488588	0.324587	2 88968	2 42029	1 73855	1.10529	3 38557	2 72595		
05-09	0.380009	0.024001	2.35084	1 87632	1.10000	1.08134	3 36306	2.64038		
00-00	0.000000	0.200141	1 73865	1.69289	1.37455	1.00104	3.04535	2.04000		
07-09	0.240004	0.555510	1.70000	2.04652	1.01400	1.04/02	2 71912	2.91200		
08-09	0.137331	0.0726711	0.91/836	2.04002	1 17321	0.986772	2.11312	2.20202		
00-00	0.107001	0.720714	0.014030	1 9653	0.97/05	1.006	2.92303	2.10230		
10.09	0.111007	0.844946	0.0417.07	1 93138	0.07400	1.000	1.82064	2.11002		
11-09	0.000000	0.044540	0.447.044	1 90107	0.845407	1.0004	1.62004	2.11023		
12-09	0.000041	0.020001	0.273710	1.00107	0.040407	1 30098	1.3970/	2.12702		
12-00	0.000000	0.858742	0.082967	1.72040	0.700000	1 38309	1.00704	2.16200		
14-09	0.042000	0.000742	0.002004	1 90277	0.505552	1.30303	0.00004	2.10000		
14-00	0.030103	0.700212	1 79025	3 70021	0.010007	1.4001	0.000102	2.0400		
15-00	1 99506	0.020001	6.69701	3.00021	0.400742	1.57.502	1 73907	3.00/7		
17.09	3.5406	0.010040	6 E16EA	2.03025	0.411273	1.57440	2 7955	3.67046		
17-03	2,61692	0.410007	6 60670	2.33344	0.030772	1.04030	2.7000	3.67043		
10-05	3.01605	0.010407	5 36072	2.3447	0.0100	1.43341	3 9696	3,00070		
20-00	0.01040	0.200201	0.00070 4 00724	1.77703	0.3070ZZ	1.43200	3,3000	0.20271 n ooco		
20-09	2.30911	0.170091	2.05100	0.050079	1.40090	1.20004	3.30/03	2.0000		
21-09	1 /0043	0.125404	00100.C	0.959973	1.77419	1.10340	3.0247	2.00112		
22-09	1.40091	0.110743	2.4047	0.720347	1.92017	1.09336	3.34148	2.22439 1.04650		
23-09	1.000/2	0.100096	2.40430	0.713241	1.034049	0.373011	3.245	1.94003		
24-09	2.02003	0.203556	3.43918 1 00470	0.700958	1.93414	0.03/966	2.90240			
25-09	4.42404	0.274097	4.901/6	0.0334/	1.357.49	0.77229	2.0499	1.49422		
26-09	4.28485	0.33361	4.71991	0.804795	2.35384	0.729	3.0194	1.34785		

	DRAIN OUTFLOW (mm)									
DATE	S10	S12	S16	S18	S19	S21	S25	S27		
27-09	3.61885	0.325164	3.91373	0.696878	2.83639	0.684131	3.38729	1.23843		
28-09	2.88306	0.293752	3.07053	0.56459	3.07099	0.650129	3.61502	1.14415		
29-09	2.10694	0.327576	2.289	0.560446	3.13108	0.632813	3.61965	1.07633		
30-09	1.44992	1.3531	1.57156	3.06907	3.08658	0.615906	3.47038	0.961781		
01-10	0.863778	1.90486	1.32297	5.95217	2.94015	0.61778	3.18999	1.92486		
02-10	0.373397	1.97464	2.81416	4.67019	2.72171	0.672357	3.01289	2.82298		
03-10	0.148642	1.7988	2.20057	4.66966	2.34745	0.840074	3.08358	3.5578		
04-10	0.128273	1.46159	2.26492	3.73874	2.041	1.03864	3.10724	3.66667		
05-10	0.288216	1.08882	2.81666	2.77345	1.81158	1.25973	2.94727	3.457		
06-10	2.00375	0.741413	4.04376	1.96425	1.50129	1.34379	2.83459	3.20357		
07-10	2.31157	0.405065	3.92603	1.28236	1.4113	1.35648	2.88732	2.89839		
08-10	2.13451	0.159171	3.28457	0.75089	1.40875	1.34066	2.97373	2.61398		
09-10	1.68782	0.100107	2.50133	0.45724	1.44371	1.30404	2.97366	2.33562		
10-10	1.13009	0.080977	1.77992	0.282339	1.47655	1.25002	2.86596	2.04977		
11-10	0.688163	0.063488	1.15969	0.163666	1.48914	1.14338	2.69909	1.77359		
12-10	0.355696	0.06429	0.713874	0.122646	1.47637	1.02987	2,49541	1.53348		
13-10	0.157167	0.057874	0.353164	0.093477	1.44083	0.883734	2.27026	1.30962		
14-10	0.107383	0.047376	0.174652	0.515653	1.36923	0.741521	2.01716	1.02557		
15-10	0.070163	0.04047	0.526042	1.89596	1.22167	0.634959	1.69433	0.889579		
16-10	0.04432	0.036111	1,78555	1.87661	1.08809	0.550285	1.46085	1.0582		
17-10	0.052196	0.028944	1.77528	1.51668	0.963355	0.412705	1.56703	1.42504		
18-10	0.04682	0.02309	1.46167	1.14467	0.825905	0.333349	1.95533	1.51293		
19-10	0.030423	0.019005	1 12746	0.833406	0.664478	0.2577	2 01006	1 43747		
20-10	0.02631	0.014388	0.841056	0.577932	0.558596	0.213619	1.835	1.29493		
21-10	0.021143	0.015311	0.588749	0.407561	0.485075	0 170008	1 65645	1 16639		
22-10	0.014703	0.022237	0.376334	0.328907	0.333601	0.147535	1 43824	1.01623		
23-10	0.013459	0.033959	0.202426	0.322294	0.244759	0.135253	1.21278	0.880273		
24-10	0.01785	0.048069	0.127156	0.298672	0.214482	0.126027	1.01376	0.770162		
25-10	0.021143	0.055343	0 111195	0 254559	0 181936	0.119926	0.861473	0.677329		
26-10	0.027389	0.056038	0.095956	0 185526	0.157096	0.112417	0.727752	0.610222		
27-10	0.031098	0.054714	0.080573	0.13088	0.140165	0.107631	0.619695	0.539906		
28-10	0.031267	0.05143	0.066567	0.091966	0.134036	0.106688	0.542604	0.490112		
29-10	0.03009	0.043674	0.05535	0.068623	0.128865	0.106397	0.470818	0.443612		
30-10	0.02811	0.035799	0.044559	0.049037	0 123552	0.106628	0 411119	0.399512		
31-10	0.020551	0.02261	0.033872	0 185846	0.118593	0.106992	0.363323	0.350774		
01-11	0.020001	0.016873	0.000072	1 67163	0.115505	0.106354	0.311195	0.327829		
02-11	0.016274	0.011378	1 61751	1.38334	0.110816	0.105386	0.286806	0.538152		
03-11	0.015849	0.009743	1.39105	1.323	0.108482	0.104038	0.500612	0.835693		
04-11	0.017202	0.01316	1.36528	1.03934	0.106067	0.101000	0.798139	0.98188		
05-11	0.074315	0.013184	1.00020	0.782301	0.103534	0.111838	0.961579	1.00698		
06-11	0.024368	0.010104	0.847133	0.554465	0.100004	0.108489	1 0012	0.970729		
07-11	0.023254	0.010515	0.630171	0.366482	0.098297	0.105233	0.979029	0.904825		
08-11	0.019982	0.007364	0.437369	0.197995	0.096587	0.100200	0.924082	0.817384		
09-11	0.012786	0.006146	0.46762478	0.072522	0.0000001	0.090113	0.840966	0.721087		
10-11	0.011104	0.005263	0.202110	0.072022	0.088216	0.087213	0.742533	0.635893		
11-11	0.008512	0.004368	0.04442	0.000002	0.086453	0.084427	0.663165	0.554897		
12-11	0.005609	0.004000	0.028158	0.0207	0.084041	0.081706	0.577164	0.004001		
13-11	0.005421	0.002638	0.019593	0,00833	0.082173	0.079685	0,50299	0.411433		
14-11	0.005285	0.002198	0.014469	0.061815	0.080835	0.077544	0,438427	0.342761		
15-11	0.005175	0.002173	0.086527	1,31242	0.078892	0.075195	0.359006	0.316591		
16-11	0.005021	0.002221	1,39265	1.1423	0.077817	0.07298	0.319552	0.413732		
17-11	0.004811	0.002329	1.17677	1,10624	0.076437	0.071529	0.473001	0.570241		
18-11	0.004513	0.002443	1,10979	0.861308	0.075391	0.07006	0,739432	0.67922		
19-11	0.00338	0.003665	0.823868	0.714534	0.074052	0.068469	0.876741	0.720739		

DRAIN OUTFLOW (mm)											
DATE	S10	S12	S16	S18	S19	S21	S25	S27			
20-11	0.002295	0.014239	0.532476	0.888373	0.073061	0.06637	0.906997	0.721552			
21-11	0.002237	0.028843	0.305086	0.85045	0.072071	0.064468	0.879855	0.716881			
22-11	0.002422	0.035747	0.147668	0.697261	0.069848	0.064117	0.810414	0.726656			
23-11	0.002754	0.03704	0.060247	0.532369	0.068673	0.064887	0.717697	0.728905			
24-11	0.003165	0.040634	0.035845	0.392318	0.067018	0.066467	0.628512	0.718444			
25-11	0.00451	0.040423	0.027086	0.266319	0.066331	0.068757	0.544577	0.685936			
26-11	0.005076	0.039211	0.02182	0.174278	0.065705	0.073337	0.467979	0.647563			
27-11	0.007446	0.034064	0.022867	0.082142	0.065166	0.07866	0.400278	0.599479			
28-11	0.009451	0.022032	0.024321	0.042773	0.064997	0.083823	0.343421	0.548294			
29-11	0.010137	0.012185	0.023624	0.023035	0.064885	0.088681	0.290856	0.495669			
30-11	0.010071	0.011835	0.020959	0.181086	0.064876	0.090853	0.247942	0.426818			
01-12	0.00948	0.015325	0.078482	2.19023	0.064703	0.091931	0.203673	0.421073			
02-12	0.008596	0.028036	1.22125	2.17733	0.06492	0.092874	0.182884	0.917487			
03-12	0.006848	0.040721	1.04634	2.12776	0.065182	0.093219	0.31926	1.45837			
04-12	0.005625	0.050237	0.996504	1.84332	0.065413	0.093586	0.548075	1.6339			
05-12	0.004676	0.086388	0.755372	1.7418	0.065559	0.094027	0.706079	1.6332			
06-12	0.004104	0.106691	0.506062	1.43019	0.065294	0.096263	0.755411	1.57388			
07-12	0.003904	0.108744	0.305648	1.12564	0.065289	0.100817	0.751643	1.48851			
08-12	0.00359	0.100217	0.14414	0.844953	0.064257	0.111536	0.717543	1.38174			
09-12	0.003554	0.087325	0.055666	0.582954	0.063544	0.122595	0.654065	1.26379			
10-12	0.004155	0.069115	0.040913	0.365479	0.062912	0.132697	0.581302	1.14133			
11-12	0.008062	0.048271	0.044196	0.173396	0.062864	0.138851	0.514794	1.01388			
12-12	0.014199	0.030813	0.047096	0.063762	0.063147	0.146865	0.456465	0.889092			
13-12	0.021224	0.019153	0.051206	0.034683	0.063164	0.148762	0.39039	0.777994			
14-12	0.023709	0.011094	0.050141	0.145548	0.063316	0.149328	0.341832	0.637169			
15-12	0.022203	0.006472	0.186093	1.54783	0.064016	0.147696	0.292061	0.566557			
16-12	0.018717	0.004287	1.55488	1.28505	0.064922	0.145006	0.282722	0.723775			
17-12	0.014051	0.003724	1.33094	1.21651	0.066967	0.141408	0.53824	1.00938			
18-12	0.011476	0.002549	1.21414	0.909415	0.069865	0.134937	0.847232	1.11486			
19-12	0.007276	0.004062	0.893079	0.67763	0.071807	0.130893	0.989083	1.10363			
20-12	0.005297	0.004515	0.579956	0.465028	0.072552	0.124665	1.00447	1.03975			
21-12	0.004081	0.004344	0.329572	0.274872	0.072468	0.116957	0.958334	0.946654			
22-12	0.003552	0.004159	0.163642	0.124747	0.072495	0.109951	0.874321	0.838519			
23-12	0.003576	0.003947	0.067951	0.044873	0.072371	0.103793	0.768968	0.733419			
24-12	0.003657	0.003689	0.037837	0.025569	0.071824	0.098799	0.666682	0.63508			
25-12	0.003843	0.003145	0.025757	0.015111	0.071187	0.091388	0.575382	0.547843			
26-12	0.003903	0.002605	0.01879	0.009714	0.070188	0.085638	0.493982	0.466358			
27-12	0.003789	0.002367	0.012895	0.007594	0.068826	0.079785	0.416676	0.393478			
28-12	0.003233	0.00221	0.008999	0.0052	0.067006	0.077715	0.34811	0.340122			
29-12	0.002784	0.001913	0.007155	0.004572	0.066254	0.073954	0.299279	0.275678			
30-12	0.002702	0.001936	0.005828	0.003762	0.063819	0.071794	0.243041	0.235443			
31-12	0.002716	0.001943	0.00504	0.003212	0.06319	0.069768	0.205036	0.185093			
01-01	0.298145	1.176247	13.00757	25.59814	2.811953	4.227915	23.16556	34.40325			

APPENDIX 6

(RAINFALL POTENTIAL ET AND IRRIGATION DATA)

	IRRIGATI	ON RATE						
	(mm/h) FOR	DAILY	RAINFALL	. (mm)	POTENTIAL EV	APOTRANSPIR/	ATION (mm)
DATE	10 ML/Y	16 ML/Y	WET	AVERAGE	DRY	WET	AVERAGE	DRY
01-01	2.09	0	0	0	0	6.3	7.4	5.8
02-01	0	3.344	0	0	0	6.7	7.1	5.8
03-01	0	0	1.01818	0	0	5.5	7.2	5.3
04-01	0	0	0.10909	0	0	4.6	6.4	6.1
05-01	0	0	6.65455	0	0	4.5	5.9	7.7
06-01	0	0	0.06364	0	0	4.7	7.2	7
07-01	0	0	0	0	0	6.1	7.2	6
08-01	0	0	0	0	0	5.7	6.1	6.8
09-01	0	0	0	0	0	4.7	5.7	6.6
10-01	0	0	0	0	0	3.6	6.2	5.9
11-01	0	0	0	0	0	4.9	7.3	6
12-01	0	0	0	0	0	6.1	7.1	5.9
13-01	0	0	0	0	0	7.5	5.5	5.2
14-01	0	0	0	0	0	7.5	6.9	5.5
15-01	2.09	3.344	0	0	0	6.3	7.2	7.4
16-01	0	0	0	0	0	7.5	7.6	7.5
17-01	0	0	0.08182	0	0	5.6	7.5	6.4
18-01	0	0	0.48182	0	0	5.6	7.8	6
19-01	0	0	0	0	0.02727	6.6	7.1	5.2
20-01	0	0	0.41818	0	0.01818	3	7.1	6.7
21-01	0	0	85.4455	0	0	2	7.3	4.9
22-01	0	0	91.2818		0	2.6	6.1	5.8
23-01	0	0	0.6			4.3	5	4.9
24-01	0	0	0		0	3.9	5.7	4.5
25-01	 		0 25455		0.02727	58	58	47
26-01	 	n n	 		0.02.02.0	6.9	6.6	55
27-01	 	n n	 	0 78182		6.9	6.0	63
28-01	 	n n	 	00.02 N		53	4.3	58
29-01	 	n n				5.6	4.8	7
30-01	 	n	n n	n n	0	6.0	57	73
31-01	0	n n	 	0	0.03636	73	62	47
01-02	2.09	3 344	 	0	0.25455	81	5.1	43
07-02	2:00	0.044	0 0	0	0.25455	7.6	56	51
02-02	 	n		n n	0.201.00	6.4	53	63
00.02	0	n	 	0.09091	0	7.8	5	7
05-02	0	n n	0 0	0.00001	0	6.6	59	65
06-02	0 0	0	 	0	0	6.0	6.0	39
07-02	0	0	0 0	0	0	61	7.6	51
08-02	0	0	0 0	0	0	6	7.4	62
00.02	0	n n	0 0	0	0	66	73	67
10-02	0	n n	0 0	0	0	6.6	7.5	68
11-02	0	0	0	0	0	8.0	6.4	6.0
12.02	0	0	0	0	0	5.0		5.4
12-02	0	0		0	0	3.7	5.5	5.5
14.02	0	0	6 13636	0	0	J.4 / 1	53	5.7
14-02	200	2244	0.10000	0	0	4.1		U.Z 2.0
10-02	2.09	0.044	0.70400	0	0 10000	3.5	0.C 2.2	0.0 גר
10-02	0		0.27273		0.10909	4 د ح	0.0	0.Z
17-02					0		70	4.I E A
10-02					0	0.0 גרו	7.J CO	5.4 E C
19-02					0	4.Z	0.9	
20-02					0	0.2	(.) C 0	5.0 5.0
21-02				0.04045		0.2	0.0	5.9 E 4
22-02	I U	ן טן	I U	ן טן	0.05455	0.1	(5.4

	IRRIGATI	ON RATE						
	(mm/h) FOR	DAILY RAINFALL (mm)			POTENTIAL EVAPOTRANSPIRATION (mm)		
DATE	10 ML/Y	16 ML/Y	WET	AVERAGE	DRY	WET	AVERAGE	DRY
23-02	0	0	0	0	0	6.4	6.6	5.1
24-02	0	0	0.04545	0.50909	0	6.7	2.9	3.7
25-02	0	0	5.63636	0.12727	0	5.4	5	5.1
26-02	0	0	0	0	0	6.2	4.6	5.7
27-02	0	0	0	0	0	5.8	4.8	6.2
28-02	0	0	0	0.01818	0	5.7	5	4.9
01-03	2.09	3.344	0	0	0	5.9	4.5	6.3
02-03	0	0	0	0	0	5.2	3.8	6.3
03-03	0	0	0.46364	0	0	4.7	4.8	7
04-03	0	0	0.10909	0	0	4.1	5.1	6.4
05-03	0	0	0	0	0	4.6	5.3	6.9
06-03	0	0	0.4	0	0	4.7	5.5	6.4
07-03	0	0	0	0	0.11818	4.2	5.3	4
08-03	0	0	0	0	0	4.7	5.5	4.4
09-03	0	0	0	0	0	5.1	5.4	4.9
10-03	0	0	0	0	0	5	5.8	5.2
11-03	0	0	0	0	0	5.6	5.5	5.2
12-03	0	0	0	0	0	5.6	5.9	5.1
13-03	0	0	0	0	0	4.3	5.7	5.2
14-03	0	0	0	0	0.00909	3.7	6.4	4.9
15-03	2.09	3.344	0	0	2.01818	3.9	6.4	2.9
16-03	0	0	0	0	0.01818	5	5.3	3.7
17-03	0	0	0	0	0	5.1	5.1	4.7
18-03	0	0	0	0	0	5.4	5.5	4.5
19-03	0	0	0	0	0	5.7	5.6	3.8
20-03	0	0	0.15454	0	0	2.1	6.1	4.5
21-03	0	0	6.75455	0	0	2.4	5.6	4.8
22-03	0	0	1.41818	0	0	2.8	5.6	4
23-03	0	0	0	0	0	3.6	4.8	3.6
24-03	0	0	0	3.92727	0	4.2	4.3	3.4
25-03	0	0	0	0	0	4.4	4.9	3.6
26-03	0	0	0	0	0	4.5	4.7	4.5
27-03	0	0	0	0	0	4.5	4.9	5.4
28-03	0	0	0	0.07273	0	4.5	4.9	5.3
29-03	0	0	0	0.01818	0	5	4.2	5.2
30-03	0	0	0	0	0	2.6	4.2	4
31-03	2.09	3.344	0	0	0	3.3	4.2	3.6
01-04	0	0	0	0	0	3.4	4.5	4.9
02-04	0	0	0	0	0	3.4	4.1	4.6
03-04	0	0	0	0	0	4.1	3.2	4.1
04-04	0	0	0	0	0	4.1	3.9	5
05-04	0	0	0	0	0	3.5	4.5	3.5
06-04	0	0	0	0	0	2.7	4.7	2.2
07-04	0	0	0	0	0.21818	3.1	4.3	3.4
08-04	0	0	0	0	0	3	4.2	3.5
09-04	0	0	0	4.36364	0.07273	3	2.1	3.7
10-04	0	0	0	0.10909	0	2.8	3.9	3.8
11-04	Ū.	0	0.07273	0.03636	0.05455	2.4	3.3	4
12-04	n	n	л. П	0.01818	ос.,о. П	2.9	3.8	4.6
13-04	n	n	0.05455	<u>п</u>	n n	3.3	3.8	2.5
14-04	n	n	л. С	7,46364	1.51818	2.9	2.1	2.6
15-04	2.09	3 344	n	0.20909	0.98182	2.0	27	2.0
16-04	0	0	Ū	0.00909	0.50909	3.5	2.7	2.8

OATE OBALT WATE VAVERAGE POTENTIAL EVAPOTERARSPECTION (num) 17-04 0		IRRIGATI	ON RATE						
DATE 10 ML/Y Is MLY WET AVERAGE DRY 17-04 0 0 0.13636 0 4.3 2.7 2.8 19-04 0 0 0 0.01818 0 4.3 2.7 2.8 19-04 0 0 0 0 0 2.4 3.3 3.6 20-04 0 0 0 0 0.2.5 3.4 4.4 22-04 0 0 0 0.07273 1.9 2.6 2.7 24-04 0 0 0 0.07273 1.9 2.6 2.2 2.9 2.1 25-04 0 0 0 0 0.00099 2.7 3.6 2.2 2.2 2.6 3.3 1.16 2.8 2.2 2.9 2.1 2.4 3.4 3.004 0 0 0.0 2.2 2.2 2.8 2.1 2.2 2.9 2.7 0.3 3.1 1.6 </th <th></th> <th>(mm/h</th> <th>) FOR</th> <th>DAILY</th> <th>RAINFALL</th> <th>. (mm)</th> <th>POTENTIAL EV</th> <th>APOTRANSPIR/</th> <th>ATION (mm)</th>		(mm/h) FOR	DAILY	RAINFALL	. (mm)	POTENTIAL EV	APOTRANSPIR/	ATION (mm)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DATE	10 ML/Y	16 ML/Y	WET	AVERAGE	DRY	WET	AVERAGE	DRY
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17-04	0	0	0	4.13636	0	4	2.2	3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18-04	0	0	0	0.01818	0	4.3	2.7	2.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19-04	0	0	0	0	0	3.5	3	3.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20-04	0	0	0	0	0	2.4	3.3	3.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21-04	0	0	0	0	0	2.5	3.4	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22-04	0	0	0	0	0	2.6	3	4.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23-04	0	0	0	0	0.07273	1.9	2.6	2.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	24-04	0	0	0	0	0.07273	2.1	2.9	2.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25-04	0	0	0	0	1.56364	2.6	3.3	1.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26-04	0	0	0	0	0.00909	2.7	3.5	2.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27-04	0	0	0	4.25455	0	3	1.6	2.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28-04	0	0	0	0.10909	0	3.6	2.1	3.1
30-04 0 0 0 0 0 2.2 2.2 2.2 2.2 01-05 2.09 3.344 18.7273 0 0 2.3 2.8 2.7 03-05 0 0 0.84545 0 0.10909 1.9 2.4 1.9 04-05 0 0 0 0 1.8 2.8 2.9 06-05 0 0 0 0 4.89727 2.5 2.9 1.7 07-05 0 0 0 0 6.65364 0.79090 1.3 2.9 2.2 09-05 0 0 0.11 4.3182 893636 2.4 1.6 1.8 11-05 0 0 0.96364 13.3091 0.23363 1.2 2 1.7 12-05 0 0 0.96364 13.091 2 1.8 1.2 13-05 0 0 0.96364 13.091 2 1.7	29-04	0	0	0	0	0	3.8	2.4	3.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30-04	0	0	0	0		2.2	2.2	2.6
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	01-05	2.09	3.344	18.7273	U		1.8	2.2	2.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	02-05	U	U	4.94545	U	U	2.3	2.8	2.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	03-05	0	0	0.84545	0	0.10909	1.9	2.4	1.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	04-05	U	U	0.3	U		1.9	2.6	2.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	05-05	U	U	U	U	U	1.8	2.8	2.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	06-05	U	U	U	U	46.9727	2.5	2.9	1.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	07-05	U	U	U	U	6.52727	2.8	3	1.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	08-05	U	U	6.86364	U	7.90909	1.3	2.9	2.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	09-05	U	U	1.1	U	0.06364	2.1	2.7	2.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10-05	U	U	0.1	14.3182	8.93636	2.4	1.6	1.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11-05	U	U	0.96364	13.4091	0.53636	1.2	2	1.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	12-05	U	U	2.81818	19.1273	11.8091	2	1.8	1.2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	13-05	U	U	0.01818	b.22/2/	8.55455	2.2	1.4	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14-05	U 2.00	0	U	0.60909	0.11818	2.2	1.7	1.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	15-05	2.09	3.344	4 20402	0.02727	0.03636	1.9	2	1.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16-05	0	0	1.20102	0 0.7.7.040	0.02727	1.0	2.5	2.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17-05	0	0	3.69091	3.51010	0.03030	1.3	1.0	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10-05	0	0	0.07273	24.1	0.01010	1.0	1.0	2.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	19-05	0	0	0.01010	0.20102	0.00909	1.9	2	<u>∠.1</u> 4.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20-05	0	0	0	0.11010	0.97273	2.3	2.4	1.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	21-05	0	0	0.00000	0.11010	2.40909	2.2	1.0	1.7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22-05	0	0	0.03030	21.1909	0.03636	10	1.7	2.1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23-05	0	0	0.19091	30.4909	0	1.3	1.1	2.2
23-03 0 0 2.02727 1.02727 4.08084 1.7 1.3 1.2 26-05 0 0 1.66364 0.03636 0.30909 1.2 1.8 1.2 27-05 0 0 9.67273 0.03636 0.02727 1.4 1.9 1.6 28-05 0 0 6.75455 16.7727 0.01818 1 1.2 1.7 29-05 0 0 4.54545 0.9 8.65455 1.6 1.5 0.7 30-05 0 0 1.07273 0 15.5273 1.7 1.8 1.2 31-05 2.09 3.344 0.70909 0 1.30909 1.9 2.1 1.6 01-06 0 0.01818 0.10909 1.02727 2 1.4 1.1 02-06 0 0 0.08182 13.4364 2.8 2.4 1.2 1.2 03-06 0 0 0.56364 0 2.28182 1.5 2.3 1.5 05-06 0 0	24-00	0	0	2.20400	2.02727	0.0 Nacac N	1.0	1.J	1.2
28-05 0 0 1.00304 0.03036 0.03035 1.2 1.0 1.2 27-05 0 0 9.67273 0.03636 0.02727 1.4 1.9 1.6 28-05 0 0 6.75455 16.7727 0.01818 1 1.2 1.7 29-05 0 0 4.54545 0.9 8.65455 1.6 1.5 0.7 30-05 0 0 1.07273 0 15.5273 1.7 1.8 1.2 31-05 2.09 3.344 0.70909 0 1.30909 1.9 2.1 1.6 01-06 0 0.01818 0.10909 1.02727 2 1.4 1.1 02-06 0 0.08182 13.4364 2.8 2.4 1.2 1.2 03-06 0 0.56364 0.288182 1.5 2.3 1.5 05-06 0 0 0 2.88182 1.9 1.2 1.3	20-00	0	0	1.66367	0.03636	4.30304 n 3nana	1.7	1.5	1.2
27-05 0 0 5.07273 0.03032 0.02727 1.4 1.5 1.6 28-05 0 0 6.75455 16.7727 0.01818 1 1.2 1.7 29-05 0 0 4.54545 0.9 8.65455 1.6 1.5 0.7 30-05 0 0 1.07273 0 15.5273 1.7 1.8 1.2 31-05 2.09 3.344 0.70909 0 1.30909 1.9 2.1 1.6 01-06 0 0 0.01818 0.10909 1.02727 2 1.4 1.1 02-06 0 0 0.08182 13.4364 2.8 2.4 1.2 1.2 03-06 0 0 33.6909 0.94546 0.09091 1.4 1.6 1.1 04-06 0 0 0.56364 0 2.28182 1.5 2.3 1.5 05-06 0 0 0 13.7	20-05	0	0	9 67073	0.03636	0.00000	1.4	1.0	1.2
20-05 0 0 0.7433 10.7727 0.01010 1 1.2 1.7 29-05 0 0 4.54545 0.9 8.65455 1.6 1.5 0.7 30-05 0 0 1.07273 0 15.5273 1.7 1.8 1.2 31-05 2.09 3.344 0.70909 0 1.30909 1.9 2.1 1.6 01-06 0 0.01818 0.10909 1.02727 2 1.4 1.1 02-06 0 0 0.08182 13.4364 2.8 2.4 1.2 1.2 03-06 0 0 0.8654 0.09091 1.4 1.6 1.1 04-06 0 0 0.56364 0 2.28182 1.5 2.3 1.5 05-06 0 0 0 4.22727 0.78182 1.9 1.2 1.3 06-06 0 0 0 13.7818 2.6 1.4	27-05	0	0	6 75455	16 7727	0.02727	1.4	1.3	1.0
23-03 0 0 4.34343 0.3 0.03433 1.6 1.3 0.7 30-05 0 0 1.07273 0 15.5273 1.7 1.8 1.2 31-05 2.09 3.344 0.70909 0 1.30909 1.9 2.1 1.6 01-06 0 0 0.01818 0.10909 1.02727 2 1.4 1.1 02-06 0 0 0.08182 13.4364 2.8 2.4 1.2 1.2 03-06 0 0 33.6909 0.94546 0.09091 1.4 1.6 1.1 04-06 0 0 0.56364 0 2.28182 1.5 2.3 1.5 05-06 0 0 0 4.22727 0.78182 1.9 1.2 1.3 06-06 0 0 0 13.7818 0 2.6 1.4 1.3 07-06 0 0 3.01818 14.9727	20-05	0	0	0.70400 A EAEAE	10.7727 N Q	8.65455	16	1.2	0.7
30-05 2.09 3.344 0.70909 0 1.3273 1.7 1.0 1.2 31-05 2.09 3.344 0.70909 0 1.30909 1.9 2.1 1.6 01-06 0 0.01818 0.10909 1.02727 2 1.4 1.1 02-06 0 0 0.08182 13.4364 2.8 2.4 1.2 1.2 03-06 0 0 33.6909 0.94546 0.09091 1.4 1.6 1.1 04-06 0 0 0.56364 0 2.28182 1.5 2.3 1.5 05-06 0 0 0 4.22727 0.78182 1.9 1.2 1.3 06-06 0 0 0 13.7818 0 2.6 1.4 1.3 07-06 0 0 3.01818 14.9727 0.0909 2.5 1.4 1.4	29-00	0	0	4.04040	0.5	15 5273	1.0	1.5	1.7
01-05 2.03 3.344 0.70303 1.0303 1.03033 1.03 2.1 1.03 01-06 0 0.01818 0.10909 1.02727 2 1.4 1.1 02-06 0 0.08182 13.4364 2.8 2.4 1.2 1.2 03-06 0 0 33.6909 0.94546 0.09091 1.4 1.6 1.1 04-06 0 0 0.56364 0 2.28182 1.5 2.3 1.5 05-06 0 0 0 4.22727 0.78182 1.9 1.2 1.3 06-06 0 0 0 13.7818 0 2.6 1.4 1.3 07-06 0 0 3.01818 14.9727 0.0909 2.5 1.4 1.4	31.05	200	3344	n 7nana	0	1 30000	1.7	7.0	1.2
01-06 0 0.01616 0.16503 1.02727 2 1.4 1.1 02-06 0 0.08182 13.4364 2.8 2.4 1.2 1.2 03-06 0 0 33.6909 0.94546 0.09091 1.4 1.6 1.1 04-06 0 0 0.56364 0 2.28182 1.5 2.3 1.5 05-06 0 0 0 4.22727 0.78182 1.9 1.2 1.3 06-06 0 0 0 13.7818 0 2.6 1.4 1.3 07-06 0 0 3.01818 14.9727 0.0909 2.5 1.4 1.4	01-05	2.03	0.044	0.70303	n 1nana	1.00303	1.3	2.1	1.0
03-06 0 0 03.6909 0.94546 0.09091 1.4 1.6 1.1 04-06 0 0 0.56364 0 2.28182 1.5 2.3 1.5 05-06 0 0 0 4.22727 0.78182 1.9 1.2 1.3 06-06 0 0 0 13.7818 0 2.6 1.4 1.3 07-06 0 0 3.01818 14.9727 0.0909 2.5 1.4 1.4	20-10	0	0	0.08182	13 /36/	1.02/2/ 2.9	24	1.4	1.1
04-06 0 0.56364 0.228182 1.4 1.0 1.1 04-06 0 0.56364 0 2.28182 1.5 2.3 1.5 05-06 0 0 0 4.22727 0.78182 1.9 1.2 1.3 06-06 0 0 0 13.7818 0 2.6 1.4 1.3 07-06 0 0 3.01818 14.9727 0.00909 2.5 1.4 1.4	02-00	0	0	33 60102	0.94546		2.4	1.2	1.4
04-05 0 0 0.0004 0 1.0 1.0 1.0 1.0 05-06 0 0 0 4.22727 0.78182 1.9 1.2 1.3 06-06 0 0 0 13.7818 0 2.6 1.4 1.3 07-06 0 0 3.01818 14.9727 0.0909 2.5 1.4 1.4	00-00	0	0	Nacaa 0	0.04040	2 28182	1.4	1.0	1.1
06-06 0 0 0 1.2 1.3 1.2 1.3 06-06 0 0 0 13.7818 0 2.6 1.4 1.3 07-06 0 0 3.01818 14.9727 0.00909 2.5 1.4 1.4 07-06 0 0 21.0727 4.5024 2.5 1.4 1.4	05-00	0	0	0.00004	4 22727	0.78182	1.0	1.0	1.3
07-06 0 0 3.01818 14.9727 0.00909 2.5 1.4 1.4 07-06 0 0 3.01818 14.9727 0.00909 2.5 1.4 1.4	80-80 80-80	0	0	0 0	13 7818	0.70102	26	1.4	13
	07-06	0	0	3 01818	14 9727	0 0000	2.0	1.4	1.0
I UG-UDI UI UI 21.67271 15.60911 6.545451 1.31 1.21 UZI	08-06	0 0	n	21,6727	15,6091	6,54545	1.3	12	0.7

	IRRIGATI	ON RATE						
	(mm/h) FOR	DAILY	RAINFALL	(mm)	POTENTIAL EV	APOTRANSPIRA	ATION (mm)
DATE	10 ML/Y	16 ML/Y	WET	AVERAGE	DRY	WET	AVERAGE	DRY
09-06	0	0	10.3273	18.1182	2.63636	1.4	0.9	1
10-06	0	0	9.42727	0.76364	3.66364	0.6	1.1	1.1
11-06	0	0	5.14545	0.03636	1.58182	1.3	1.5	1.4
12-06	0	0	3.26364	0.01818	2.06364	1.8	1.5	1.5
13-06	0	0	16.4	0.01818	0	0.9	1.2	1.7
14-06	0	0	9.72727	0.25455	0	1.2	1.3	2.1
15-06	2.09	3.344	8.88182	0.08182	1.09091	0.9	1.5	2.2
16-06	0	0	22.2	0	0.11818	1.5	1.5	1.8
17-06	0	0	2	0	5.24545	1	1.7	1.4
18-06	0	0	9.03636	0	0.00909	0.8	1.9	1.7
19-06	0	0	1.24545	0	1.89091	1.5	1.9	1.8
20-06	0	0	0.02727	2.15455	0.13636	1.2	1	1.8
21-06	0	0	0.54546	1.94545	0	1.5	1.5	2.3
22-06	0	0	0	1.17273	0	1.7	1.2	2.2
23-06	0	0	1.28182	18.2091	0.10909	1.8	1.2	1.7
24-06	0	0	13.9818	3.61818	2.60909	1.1	1.2	1.5
25-06	0	0	7.22727	9.58182	0	1.4	1.5	1.6
26-06	0	0	0.26364	1.7	0.03636	1.4	1.4	1.8
27-06	0	0	0.1	0.87273	0	1.6	1.3	2
28-06	0	0	8.50909	0.02727	0	1.4	1.2	2.2
29-06	0	0	4.44545	0	6.34545	1.5	1.2	1.4
30-06	0	0	0.02727	0	9.37273	1.3	1.3	1.1
01-07	0	0	7.67273	0.3	7.36364	1.4	1.1	1.7
02-07	0	0	0.1	1.12727	3.55455	1.6	1.4	1.2
03-07	0	0	7.17273	0.04545	7.13636	0.8	1.6	1.2
04-07	0	0	6.48182	0	2.55455	1.4	2.1	1.5
05-07	0	0	5.87273	2.36364	0	0.7	2.2	1.7
06-07	0	0	8.3	25.8727	0	1.5	1.4	2
07-07	0	0	0.9	2.34545	5.30909	1.3	1.3	1.4
08-07	0	0	0.29091	32.8455	17.7	1.5	1.4	0.9
09-07	0	0	9.02727	21.8091	3.98182	1.1	1.3	1.3
10-07	0	0	1	2.87273	0.00909	1.3	1.2	1.2
11-07	0	0	0.06364	6	1.33636	1.8	1.3	1.4
12-07	0	0	1.16364	13.2364	9.13636	2.6	1.4	1.1
13-07	0	0	5.41818	4.44545	0.02727	1.5	1.5	1.5
14-07	0	0	4.66364	10.1273	0.3	2.6	1.2	1.5
15-07	0	0	39.4909	2.2	0.01818	0.8	1	1.5
16-07	0	0	16.6091	4.16364	0	1.1	1.3	1.6
17-07	0	0	0.81818	0.13636	0.03636	1.3	1.4	1.9
18-07	0	0	0.16364	6.81818	0	1.6	1.6	1.9
19-07	0	0	5.08182	8.84545	0	1.1	1.8	2.1
20-07	0	0	23,1636	41.8636	0.02727	1.3	1.1	1.8
21-07	0	0	2.47273	10.1818	8.75455	1.1	1.2	1.5
22-07	0	-	15.3	0.37273	0	1.4	1.3	1.7
23-07	- N		5 28182	0.0.2.0	0 00909	1.4	1.8	19
24-07			1.83636	10.9	0.00000	1.4	0.8	1.9
25-07	n	n	5.40909	23,2545	о П	1.5	1.5	25
26-07	0	n	3.05455	4,48182	0.10909	1.0	13	2.5
20.07	0	n	10.0727	3,53636	<u>ооооо</u> П	1.6	 N 9	2.0
28-07	0	n	0.56364	4 41818	5 27273	1.0	1.8	13
20-07	0	0	0.43636	26 0818	1 22727	21	1.0	1.5
30-07	0	0		2 46364	14 0818	2.1	12	1.0
31-07	0	0	0.00000	2.14545	3.88182	2.2	1.3	1.6

	IRRIGATI	ON RATE						
	(mm/h) FOR	DAILY	RAINFALL	. (mm)	POTENTIAL EV	APOTRANSPIR/	ATION (mm)
DATE	10 ML/Y	16 ML/Y	WET	AVERAGE	DRY	WET	AVERAGE	DRY
01-08	0	0	1.9	0.39091	0.1	1	1.5	1.9
02-08	0	0	15.2455	0.03636	0.08182	1.5	2.1	1.8
03-08	0	0	0.29091	0	12.3091	1.5	2	0.9
04-08	0	0	0	0	8.45455	2.2	2.3	2
05-08	0	0	0	0	2.06364	2.4	2.4	1.9
06-08	0	0	0.12727	0	10.3	1.9	2.4	1.8
07-08	0	0	8.22727	0	1.61818	1	2.7	1.4
08-08	0	0	8.92727	0	2.01818	1.8	2.8	1.7
09-08	0	0	8.1	25.9182	33.6727	1.7	1.6	1.9
10-08	U	U	0.04545	4.74545	0.66364	2.1	1.8	1.3
11-08	U	U	U	1.91818	5.3	2	1./	1.3
12-08	0	0	0.02727	7.12727	1.75455	1.9	1.4	1.8
13-08	U	U	0.20909	13.9	1.86364	1.6	2	1.4
14-08	U	U	1.05455	0.05455	14.8545	2	2.1	1
15-08	U	U	0.29091	0.08182	13.8091	2.5	1.9	2
16-08	U	U	U	0.08182	1.25455	2.8	2.1	2
17-08	U	U	1.32727	8.64545	U	2.9	2.3	1.7
18-08	U	U	1.02727	0.00909		1.5	1.7	1.9
19-08	U	U	8.72727	0.74545	U	1.8	1.7	1.5
20-08	U	U	1.54545	10.3818	0.06364	1.7	1.5	1.9
21-08	U	U	0.01818	0.9	U	2.7	1.6	2.5
22-08	U	U	0.19091	5.09091	U	1.8	1.7	2.3
23-08	U	U	40.6636	2.91818	0.20909	1.5	1.2	1.5
24-08	U	U	0.26364	6.93636 4.00707	15.7273	2.3	2	2.1
25-08	0	U	U	1.62727	0.05455	2.1	1.5	2.2
26-08	0	U	U	5.70909	U	2.5	1.9	2.2
27-08	0	0	4 07070	0.09091		2.5	2.5	2.2
28-08	0	0	1.87273	0.0000	U 5 00000	1.7	2.4	2.2
29-00	0	0	5.57Z73	0.00909	10,0100	2.3	1.0	1.2
30-00	0	0	1.50304	0.75455	0.01040	2.4	2.2	Z
31-00	2.00	2.244	2.12727	0.24546	0.21010	2.3	2	1.9
01-09	2.09	3.344	1 11010	0.02727	0.0	2.1	∠ 1 0	1.7
02-09	0	0	2.21010	2.72727	1 0.40909	1.9	1.0	Z.Z
03-09	0	0	0.19091	32.4102	1.24040	2.4	2.4	1.9
04-09	0	0	0.70400	4.43030	E CAEAE	1.7	2.3	2.J
05-09	0	0	0.00400	17 0367	1/ 6001	2.7	2.7	1.0
00-03	0	0	0.10303	6 19190	14.0001	37	1.3	1.0
07-09	0	0	0 01919	0.10102	0.02727	2.7	2.2	1.4
00-09	0	0	0.01010	3 72727	6.89091	2.0	27	1.3
10.09	0	0	0	0.02727	5 28182	3.8	2.7	2.2
11-09	0	0	0	0.02727	0.06364	3.4	24	2.3
17-09	0	0	0	5 45455	2 10909	3.4	2.4	2
12-00	0	0		0.40400 2 Q	1 44545	2.3	1.3	20
14-09	0	0	1 27273	1 /0909	0 0	13	1.8	2.2
14-00	2.09	3344	38 7727	0.69091	1 /5/55	1.0	28	24
16-09	2.00	0.044	13 9909	0.00001	0.79091	21	33	2.7
17-09	0	0	0.56364	0	0.78182	2.1	2.5	2.3
18-09	0	0	1 13636	1.56364	0.20102	2.1	2.0	2.3
19-09	0	0	0,0000	2 56364	0.01010	37		2.3
20-09	0	0	0.00000	1 91818	0.02121	25	25	2.7
20.00	0	0	5 17273	0.16364	n	2.5	2.3	29
22-09	0	0	11.0091	0	14.2273	2.9	2.8	1.9

	IRRIGATI	ON RATE						
	(mm/h) FOR	DAILY	RAINFALL	. (mm)	POTENTIAL EV	APOTRANSPIR/	ATION (mm)
DATE	10 ML/Y	16 ML/Y	WET	AVERAGE	DRY	WET	AVERAGE	DRY
23-09	0	0	6.70909	0	3.44545	1.6	3.1	2.5
24-09	0	0	19.7909	0	3.22727	2.2	4.3	2.7
25-09	0	0	2.41818	0	2.79091	2.7	3.5	3.4
26-09	0	0	0.00909	0	0	3.1	2.9	3.7
27-09	0	0	0	0	0.00909	2.9	2.7	2.3
28-09	0	0	0	0.05455	0.26364	3.1	2.9	2
29-09	0	0	0	0.00909	23.7273	4.4	2.4	2
30-09	0	0	0	0	6.70909	4.8	2.4	2.8
01-10	2.09	3.344	0	0.00909	1.54545	3.3	3.3	2.2
02-10	0	0	0.02727	0	2.87273	2.9	3.7	3.1
03-10	0	0	0.19091	0.09091	0	2.2	3.9	3.1
04-10	0	0	14.9727	4.05455	0	2.6	2.7	4.2
05-10	0	0	20.5091	1.43636	0	2.7	2.1	4.1
06-10	0	0	0.56364	2.91818	0	3	2.8	3.9
07-10	0	0	1.8	0.42727	0	3.2	2.8	4.5
08-10	0	0	0	0.00909	0.08182	4.4	3.2	2.2
09-10	0	0	0.00909	1.71818	0.9	4.5	2.9	3
10-10	0	0	0	0.43636	0.02727	3.1	3.1	2.8
11-10	0	0	0.55454	12.3818	0.47273	3.4	3.3	2.6
12-10	0	0	0	0.8	1.4	4.1	3.1	3.4
13-10	0	0	0	0	0.00909	4.6	4.7	3
14-10	0	0	0	0	0	4.4	6	2.7
15-10	2.09	3.344	0	0	0.83636	4.6	3	3.1
16-10	0	0	0.01818	2.38182	0	4.7	4.8	4.1
17-10	0	0	1.92727	6.62727	0	2.8	1.8	4
18-10	0	0	0	28.0182	0	3.7	2.5	4.8
19-10	0	- 0	- 0	1.00909	0	4.1	4.1	4.5
20-10	- 0	- 0	- 0	0	0.17273	4.6	4.3	3.1
21-10	0	0	-	0	9.56364	5.4	4.7	2.8
22-10	- N	- N	- 0	n	7 73636	57	5	3
23-10	0	0	0.32727	n		28	51	3
24-10			1 12727	n	0.06364	2.5	5.0	37
25-10	0		6 51818	n	 N	37	4	4 7
26-10	n n	n n	0.27273	n	n	39	4.8	28
27-10	0	0	0.272.0	n	0	39	51	38
28-10	0	0	0 25455	0	0	33	4.2	4.3
29-10			0.20.00	n	n	4 4	4.3	5
30-10	0		n	8 7 4 5 4 5	n	47	3.4	53
31-10	n n	n n	n	4 88182	n	6.4	33	53
01-11	2 09	3 344	0	4 94545	0	27	29	52
02-11	0	0.011	0 00909	0.64546	0	33	38	5.5
03-11	0	0	0.00000	0.04040	0	37	4	3.1
04-11	0	0	1 24545	0 16364	2 36364	31	55	3.8
05-11	0	0	1 10909	0.10004	0 00909	32	6.0	4.1
06-11	0	0	0 17273	1 14545	0.000000 N	4.1	3.5	4.1
07-11	0	0	0.17270	21	0.01818	 1	3	5.4
08-11	0	0	0 0	4 68182	0.01010		33	5.4
00-11	0	0	0	1 00002	0	4.C 2.2	2.5	5.2
10_11	0	0	0	0.03636	0 0	7.9	2.5	0.0 C A
11 11	0	0	0 0	0.00000	0	0.7	4.4 1	0.Z
10-11	0 0	0	0	0	0 0	J.0 / Q	4.1 1 Q	0.4 6 G
12-11	0	0	0	0.3	0 0	4.5 E A	4.0 E 7	7.1
14.11	0	0	0	0	0	J.4 17	0.7 6.2	1.1
14-11	U U	U	U	U	U	4.7	0.0	4.0

	IRRIGATI	ON RATE						
	(mm/h) FOR	DAILY	RAINFALL	. (mm)	POTENTIAL EVAPOTRANSPIRATION (mm		ATION (mm)
DATE	10 ML/Y	16 ML/Y	WET	AVERAGE	DRY	WET AVERAGE DR		DRY
15-11	2.09	3.344	0	0	0.10909	5.2	5.6	4.8
16-11	0	0	0	0	0.00909	5.7	4.4	4
17-11	0	0	0	0	0	6.2	5.1	4.2
18-11	0	0	0	0	0	7.3	5.8	5.4
19-11	0	0	0	0	27.2636	7.6	4.2	3.5
20-11	0	0	0	0	0.5	5.9	5.9	4.2
21-11	0	0	0	0	0	3.7	6.9	4.5
22-11	0	0	0	0	0.02727	3.2	6.3	4.6
23-11	0	0	0	0	0	3	5.6	4.1
24-11	0	0	0.02727	0	1.71818	4.3	5.4	4.3
25-11	0	0	0	2.89091	0	4.4	4.8	5.6
26-11	0	0	0.59091	1.4	1.01818	3.8	3.8	6.9
27-11	0	0	4.08182	2.79091	0	3.8	3.4	6.9
28-11	0	0	0.17273	0.61818	0	4.5	3.7	6.7
29-11	0	0	0.01818	0.20909	0	4.4	3.3	6.7
30-11	0	0	0	0.89091	4.76364	6.1	4.2	3.4
01-12	2.09	3.344	0.02727	0	18.5	6.6	5.1	3.6
02-12	0	0	0.03636	0	0.16364	6	5.6	4.9
03-12	0	0	0.01818	0	0.9	6.2	5.1	3.6
04-12	0	0	0.64546	0	18.3182	6.1	6	3.3
05-12	0	0	0	0	0.4	5.8	6.7	4.1
06-12	0	0	0	0	0.04545	5.2	7.1	4.1
07-12	0	0	0	0	0.03636	6.3	5.5	4.2
08-12	0	0	0	0	0	4.5	5.4	5.8
09-12	0	0	0.10909	0	0	4.4	5.9	5.5
10-12	0	0	4.09091	0	0	4.2	6.5	5.8
11-12	0	0	5.96364	0	0	3.9	7.2	6.5
12-12	0	0	1.56364	0	0	4.3	5.6	6.4
13-12	0	0	1.55455	0.00909	0	4.5	4.9	6.5
14-12	0	0	0.19091	0	0	4.8	4.1	6.4
15-12	2.09	3.344	0.00909	1.56364	0	5.3	5.2	6.6
16-12	0	0	0	1.78182	0	5.3	4.2	6.4
17-12	0	0	0.01818	0	0	6.3	6	6
18-12	0	0	0	0.00909	0	7.1	6.2	5
19-12	0	0	0	0	3.30909	7.6	5.1	5.1
20-12	0	0	0	3.71818	0.02727	6	4.4	4.9
21-12	0	0	0	3.70909	0	5	4.8	4.4
22-12	0	0	0	0.10909	0	3.7	4.9	5.2
23-12	0	0	0	0.17273	0	5.4	5.5	6
24-12	0	0	0	5.30909	0	2.9	5.1	5.6
25-12	0	0	0	3.65455	0	5.7	5.6	5.8
26-12	0	0	0	0	0	5.3	5	6.2
27-12	0	0	0	0.84545	0	7.4	6.2	6.1
28-12	0	0	0	3.27273	0	5	4.4	4.2
29-12	0	0	0	3.30909	0.11818	5.8	5.4	4.9
30-12	0	0	0	0	0	4.7	6.5	5.3

APPENDIX 7

(PARAMETERS USED IN CALIBRATION)

Parameter	Value
Vertical Hydraulic Conductivity (m/s)	0.000005
Horizental Hydraulic Conductivity (m/s)	0.00002
Specific Yield	0.3
Saturated Moisture contents	0.4
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.07
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	5
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.35
ET parameter C2	0.25
ET parameter C3	10
ET parameter Cint	0.06
Parameter Aroot	0.20

Table A7-1: Calibrated Parameters Used in First Simulation

TableA7-2: Calibrated Parameters Used in Second Simulation
--

Parameter	Value
Vertical Hydraulic Conductivity (m/s)	0.000004
Horizental Hydraulic Conductivity (m/s)	0.00002
Specific Yield	0.3
Saturated Moisture contents	0.4
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.06
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	5
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.35
ET parameter C2	0.25
ET parameter C3	10
ET parameter Cint	0.06
Parameter Aroot	0.25

Parameter	Value
Vertical Hydraulic Conductivity (m/s)	0.000005
Horizental Hydraulic Conductivity (m/s)	0.000015
Specific Yield	0.25
Saturated Moisture contents	0.3
Residual Moisture contents	0.012
Coefficient Alpha (1/cm)	0.07
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	4
Saturated Hydraulic conductivity (m/s)	0.0015
Leakage factor	0.0005
ET parameter C1	0.35
ET parameter C2	0.2
ET parameter C3	9
ET parameter Cint	0.06
Parameter Aroot	0.20

Table A7-4: Calibrated Parameters Used in Fourth Simulation

Parameter	Value
Vertical Hydraulic Conductivity (m/s)	0.0000035
Horizental Hydraulic Conductivity (m/s)	0.000012
Specific Yield	0.29
Saturated Moisture contents	0.4
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.07
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	5
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.3
ET parameter C2	0.25
ET parameter C3	10
ET parameter Cint	0.06
Parameter Aroot	0.10

Table A7-5: Calibrated Parameters Used in Fifth Simulation

Parameter	Value

Vertical Hydraulic Conductivity (m/s)	0.000005
Horizental Hydraulic Conductivity (m/s)	0.00002
Specific Yield	0.3
Saturated Moisture contents	0.4
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.07
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	5
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.35
ET parameter C2	0.25
ET parameter C3	10
ET parameter Cint	0.06
Parameter Aroot	0.20

Table A7-6: Calibrated Parameters Used in Sixth Simulation

Parameter	Value
Vertical Hydraulic Conductivity (m/s)	0.000005
Horizental Hydraulic Conductivity (m/s)	0.00002
Specific Yield	0.3
Saturated Moisture contents	0.4
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.06
Capillary pressure at field capacity (m)	2
Capillary pressure at wilting (m)	5
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.32
ET parameter C2	0.25
ET parameter C3	10
ET parameter Cint	0.06
Parameter Aroot	0.20

Table A7-7: Calibrated Parameters Used in Seventh Simulation Value

Parameter

Vertical Hydraulic Conductivity (m/s)	0.0000045		
Horizental Hydraulic Conductivity (m/s)	0.000018		
Specific Yield	0.3		
Saturated Moisture contents	0.36		
Residual Moisture contents	0.02		
Coefficient Alpha (1/cm)	0.07		
Capillary pressure at field capacity (m)	2		
Capillary pressure at wilting (m)	5		
Saturated Hydraulic conductivity (m/s)	0.002		
Leakage factor	0.0005		
ET parameter C1	0.35		
ET parameter C2	0.25		
ET parameter C3	10		
ET parameter Cint	0.06		
Parameter Aroot	0.20		

Table A7-8: Calibrated Parameters Used in Eight Simulation

Parameter	Value
Vertical Hydraulic Conductivity (m/s)	0.000005
Horizental Hydraulic Conductivity (m/s)	0.00002
Specific Yield	0.3
Saturated Moisture contents	0.4
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.07
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	5
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.35
ET parameter C2	0.25
ET parameter C3	10
ET parameter Cint	0.06
Parameter Aroot	0.20

Table A7-9: Calibrated Parameters Used	l in Ninth	Simulation
Parameter	Value	

Parameter

282

Vertical Hydraulic Conductivity (m/s)	0.0000043
Horizental Hydraulic Conductivity (m/s)	0.00002
Specific Yield	0.3
Saturated Moisture contents	0.35
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.07
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	5
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.35
ET parameter C2	0.2
ET parameter C3	10
ET parameter Cint	0.06
Parameter Aroot	0.25

Table A7-10: Calibrated Parameters Used in Tenth Simulation

Parameter	Value
Vertical Hydraulic Conductivity (m/s)	0.000004
Horizental Hydraulic Conductivity (m/s)	0.00002
Specific Yield	0.3
Saturated Moisture contents	0.35
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.07
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	5
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.35
ET parameter C2	0.25
ET parameter C3	10
ET parameter Cint	0.05
Parameter Aroot	0.20

Table A7-11: Calibrated Parameters	Used in Elevent	th Simulation
Parameter	Value	

Parameter

Vertical Hydraulic Conductivity (m/s)	0.0000055
Horizental Hydraulic Conductivity (m/s)	0.000023
Specific Yield	0.3
Saturated Moisture contents	0.4
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.07
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	4
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.35
ET parameter C2	0.25
ET parameter C3	10
ET parameter Cint	0.06
Parameter Aroot	0.20

Parameter	Value
Vertical Hydraulic Conductivity (m/s)	0.000005
Horizental Hydraulic Conductivity (m/s)	0.00002
Specific Yield	0.3
Saturated Moisture contents	0.4
Residual Moisture contents	0.02
Coefficient Alpha (1/cm)	0.07
Capillary pressure at field capacity (m)	3
Capillary pressure at wilting (m)	5
Saturated Hydraulic conductivity (m/s)	0.002
Leakage factor	0.0005
ET parameter C1	0.35
ET parameter C2	0.25
ET parameter C3	10
ET parameter Cint	0.06
Parameter Aroot	0.20

Table A7-12: Calibrated Parameters Used in Twelth Simulation

Table A-7.13 Rainfall Data and its Classification for Wet, Average and Dry Climates.

	Rainfall
Year	(mm)
1976	835
1977	717
1978	863
1979	719
1980	996
1981	929
1982	839
1983	772
1984	806
1985	744
1986	654
1987	528
1988	834
1989	669
1990	570
1991	800
1992	783
1993	583
1994	511
1995	738
1996	903
1997	738
1998	702
1999	987
2000	807
2001	596
2002	667
2003	648
2004	658

			Soil Te	exture an	d other	Physica	I Propertie	s of SWIA		
Sink 18	Soil	Harvey	AJ and NL Stanford CN+FE Stanford	1	0-10	-Clay , Loam Mostly Loam	Deep Brown	Easily wet, nice texture, not wet/cold	4.41	242.60
				2	30cm	Clay	Pale Brown orange	Definite Clay, easy wet sticky feel, burnt orange mottles	4.68	94.20
Sink 19	Soil	Waroona	Linda Kathleen Vincent and Husband	1	0-10	Clay -Loam	Brown	Slight Mottling	4.08	792.00
				2	20	Clay	Brown	Orange Mottling	4.48	388.00
				3	30	Clay	Brown	Some Mottling	4.87	158.90
Sink 20	Soil	Waroona	Linda Kathleen Vincent and Husband	1	0	Loam	Orange/Brown	Some mottles present	4.48	139,30
				2	15	Clay -Loam	Orangey brown	becoming more orange	4.34	165.40
				3	35	Clay-Loam	light brown orange	Strong mottles, slightly sticky	4.46	179.90
Sink 21	Soil	Waroona	Geoffrey James Mullins	1	0-10	-Sandy Loam			4.34	91.10
				2	20	Clay-Loam			4.56	73.20
				3	30	Clay			4.70	58.20
Sink 22	Soil	Waroona	Geoffrey James Mullins	1	0	-Clayey Sand			4.63	63.20
				2	15	-Clayey Sand			4.73	64.10
				3	30	-Clayey Sand			4.89	88.10
				4	50	-Clayey Sand			5.14	96.50
Sink 23	Soil	Waroona	Geoffrey James Mullins	1	0	Loam			4.22	104.70
				2	15	Sandy Loam			3.74	48.90
				3	30	Loamy Sand			3.67	20.00
				4	50	Loamy Sand			3.66	34.40
				5	65	-Clayey Sand			4.14	54.30

Table A7.14: Soil Physical Properties of SWIA/HWIA.

			Soil T	exture an	d other	Physica	Properties	s of SWIA		
Sink 18	Soil	Harvey	AJ and NL Stanford CN+FE Stanford	1	0-10	-Clay , Loam Mostly Loam	Deep Brown	Easily wet, nice texture, not wet/cold	4.41	242.60
				2	30cm	Clay	Pale Brown orange	Definite Clay, easy wet sticky feel, burnt orange mottles	4.68	94.20
Sink 19	Soil	Waroona	Linda Kathleen ' Vincent and Husband	1	0-10	Clay -Loam	Brown	Slight Mottling	4.08	792.00
				2	20	Clay	Brown	Orange Mottling	4.48	388.00
				3	30	Clay	Brown	Some Mottling	4.87	158.90
Sink 20	Soil	Waroona	Linda Kathleen Vincent and Husband	1	0	Loam	Orange/Brown	Some mottles present	4.48	139.30
				2	15	Clay -Loam	Orangey brown	becoming more orange	4.34	165.40
				3	35	Clay-Loam	light brown orange	Strong mottles, slightly sticky	4.46	179.90
Sink 21	Soil	Waroona	Geoffrey James Mullins	1	0-10	-Sandy Loam			4.34	91.10
				2	20	Clay-Loam			4.56	73.20
				3	30	Clay			4.70	58.20
Sink 22	Soil	Waroona	Geoffrey James Mullins	1	0	-Clayey Sand			4.63	63.20
				2	15	-Clayey Sand			4.73	64.10
				3	30	-Clayey Sand			4.89	88.10
				4	50	-Clayey Sand			5.14	96.50
Sink 23	Soil	Waroona	Geoffrey James Mullins	1	0	Loam			4.22	104.70
				2	15	Sandy Loam			3.74	48.90
				3	30	Loamy Sand			3.67	20.00
				4	50	Loamy Sand			3.66	34.40
				5	65	-Clayey Sand			4.14	54.30

			Soil T	exture an	d other	Physica	I Properties	s of SWIA		
Sink 10	Soil		Linda Warburton 97960147(1	0-10	Clay-Loam	Grey with orange mottles	Organic matter = around 6 cm at soil surface	4.82	85
				2	30	Loam-Clay to Clay	Pale Grey and Yellow mottles	Very Clay like but still has small amount of sand in it. Not sampled	NA	
				3	40	Clay	Gray/Brown	Sampled	5.09	59.8
Sink 11	Soil		Linda Warburton	1	0-10	Loam-Sand	Brown	High Organic matter content	4.84	39.4
				2	10-30	Loam-Clay	Orange/Brown	Mottles, no sample	NA	
				3	+30	Clay	Pale White/Gray	Moving more towards clay, no , mottles	4.91	60.3
Sink 12	Soil	Dardanup	Barrie James Gelmi	1	0-10	-Sandy Loam	Grey with mottles		4.5	112.6
				2	25-30	-Loamy Sand	Yellow/Grey		4.53	51.2
				3	45	Sand	Mottled Grey/Brown		4.24	173.6
				4	60	Sand	Brown with orange mottles	Colour of mottles stronger, no sample	NA	
				5	+60	Clay		Mottled clays starting	NA	
Sink 13	Soil	Dardanup	Barrie James Gelmi	1	0-10	-Sandy Loam	Pale Brown/Gray	Good organic matter, forms ball easily. Cool to touch	4.35	154.2
				2	25-30	-Sandy Loam	Pale Gray	Sandy, cold, larger sand particles than sample above	4.98	209.9
				3	40-45	-Sandy Loam	Pale Brown/Gray	Cold	5.12	188.4
Sink 8	Soil	Waroona	AJJA Pty LTD Allen Green)manager Phil(1	0-10	-Sandy Loam	Light Brown	No mottles, good layer of organic matter, dispersive , under water application	4.61	119.5
				2	25-30	Clay-Loam	Pale Brown	Orange mottles, distinct profile .change	4.68	120.3
Sink 7a,b,c	Drive	Waroona	Alcoa						NA	
Sink 16	Soil	Harvey	Phillip Hall	1	0-10	Loam	Dark Brown, no mottles	Powdery, not cool/cold to touch	4.37	190.3
				2	20	Clay	Orange/Brown mottles	Soil powdery clay not hard set or sticky type clay. Not cold to touch	4.70	82.30
Sink 17	Soil			1	0-10	Clay-Loam	Deep Brown		4.24	557.00
				2	35-40	Clay-Loam	Deep Brown with orange mottles	Sample cool but not wet	4.92	240.50