
Volume 2 • Issue 2 • 1000105
Adv Robot Autom
ISSN: 2168-9695 ARA, an open access journal 

Open AccessResearch Article

Advances in Robotics 
& Automation

Do, Adv Robot Autom 2013, 2:2
http://dx.doi.org/10.4172/2168-9695.1000105

Keywords: Second-order agents; Bounded coordination control; 
Collision avoidance; Potential functions; VTOL aircraft

Introduction
Coordination control of multiple agents has received a lot of 

attention from researchers in the control community due to its various 
applications to search, rescue, coverage, surveillance, reconnaissance 
and cooperative transportation. Therefore, a number of approaches 
have been available for coordination control of networked agents. 
Here, three common approaches are briefly mentioned. The leader-
follower approach (e.g., [1-4] uses several agents as leaders and 
others as followers. This approach is easy to understxand and ensures 
coordination maintenance if the leaders are disturbed. However, 
the desired coordination shape cannot be maintained if followers 
are perturbed unless a feedback is implemented [5]. The behavioral 
approach (e.g., [6,7]), where each agent locally reacts to actions of 
its neighbors, is suitable for decentralized control but is difficult in 
control design and stability analysis since group behavior cannot 
explicitly be defined. The virtual structure approach (e.g., [8-17]) 
treats all agents as a single entity. The virtual structure approach is 
amenable to mathematical analysis but has difficulties in controlling 
critical points, especially when collision avoidance between the agents 
is a must. The control coordination design in this paper belongs to the 
virtual structure approach. In the literature, cooperative control of 
multiple agents with second-order dynamics was also addressed, see 
for example [12,18-30]. However, the problem of bounded control has 
not been addressed for the case where collision avoidance between the 
agents must be considered. 

Let us discuss the reasons why it is difficult to design a bounded 
coordination controller for multiple agents with second-order dynamics 
when collision avoidance between the agents must be considered using 
the virtual structure approach. In this approach, the control design is 
usually based on a nontrivial potential function and the direct Lyapunov 
method. The potential function essentially consists of two parts. The 
first part is usually referred to as the goal part. This part is designed 
such that it puts penalty on the tracking errors of the agents, and is 
equal to zero when all the agents perfectly track their desired trajectory. 

The second part is usually referred to as the collision avoidance part, 
which is chosen such that it is equal to infinity whenever any two agents 
come in contact, i.e., a collision occurs, and attains the minimum 
value when the agents perfectly track their desired trajectories. Since 
the collision avoidance part of the potential function is designed to be 
equal to infinity when there is a collision between any two agents, the 
control signals become extremely large when any two agents are close 
to each other. To overcome this drawback, a method was proposed in 
[10] to design bounded controllers for the agents with the first-order 
dynamics. However, the method in [10] cannot be extended to the 
agents with second-order dynamics by applying the back stepping 
technique in [31]. To see where the problem lies, let us consider a group 
of N agents with the dynamics ii u i Nq = , ∈ , where q1 and u1 denote the 
position and control input vectors of the agent i, respectively, and N is 
the set containing all the agents in the group. Next, let us denote the 
collision avoidance part of the potential function be β, which is equal 
to infinity when there is a collision between any two agents. Then the 
function β must be a summation or a product of all pairwise collision 
avoidance functions βij of the agents i and j, i.e., ( )

β β
, ∈ , ≠

= ∑ iji j N j i  
or 

( )
β β

, ∈ , ≠
=∏ iji j N j i

. Moreover, the function  βij must be a positive 

definite function of 1
|| ||ijq , where qij=qi-qj, i.e., the relative position 

vector between the agents i and j, As a result, the control ui must be a 

function of ββ ∂
∂= ij

ijij q . Since βij is a positive definite function of 1
|| ||ijq , βij 

tends to infinity faster than βij when ||qij|| approaches zero, i.e., when 
a collision between the agents i and j tends to occur. Consequently, it 
is not possible to extend the bounded control design in [10] using the 
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This paper presents a constructive design of distributed and bounded coordination controllers that force  mobile 

agents with second-order dynamics to track desired trajectories and to avoid collision between them. The control 
design is based on the new bounded control design technique for second-order systems, and new pairwise collision 
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1) Boundedness of the control inputs by a predefined bound despite collision avoidance between the agents 
considered, 

2) No collision between any agents, 

3) Asymptotical stability of desired equilibrium set, and 

4) Instability of all other undesired critical sets of the closed loop system. The proposed control design is then 
applied to design a coordination control system for a group of vertical take-off and landing (VTOL) aircraft. 
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back stepping technique to design a bounded coordination controller 
for the agents with second-order dynamics. Using the same analysis as 
above shows that it is not possible (or at least not clear how) to extend 
the bounded controllers for connectivity preservation of a network of 
the agents with the first order dynamics in [32] and [33] to design a 
bounded controller for the agents with second-order dynamics. 

Motivated by the above discussion and the fact that many 
mechanical systems in practice are of second-order dynamics and 
require bounded control inputs with a predefined bound, this paper 
contributes a new method to design bounded coordination controllers 
for mobile agents with second-order dynamics. The method is based 
on a new technique to design a bounded controller for second-order 
systems, and a construction of new pairwise collision avoidance 
functions, which are functions of both the relative position and 
velocity of the agents. The proposed bounded coordination controllers 
guarantee no collision between any agents, asymptotical stability of 
desired equilibrium set, and instability of all other undesired critical 
sets of the closed loop system. The applicability of the proposed method 
is illustrated through an example of designing a coordination control 
system for a group of VTOL aircraft. 

The rest of the paper is organized as follows. In the next section, the 
control objective is stated. Section 3 gives essential preliminary results 
including saturation functions, a technique for designing bounded 
controllers for a second-order system, a non-zero convergent lemma 
for a differential inequality, smooth step functions, pair wise collision 
avoidance functions, and Barbalat-like lemma. Proofs of preliminary 
results are given in [34,10] and Appendices A and B. These results are 
to be used in the control design in Section 4 and stability analysis in 
Appendix C. An application of the proposed coordination control 
design to a group of VTOL aircraft is presented in Section 5. Stability 
analysis of coordination control of VTOL aircraft is briefly given in 
Appendix D. Finally, conclusions are given in Section 6. 

Problem Statement
Agent dynamics

We consider a group of   mobile agents, of which each agent   has 
the following dynamics 

1
ii

i i

pq
p u i N
= ,

= , = ,..., ,





				                  (1)

Where qi € Rn and ∈ ⊂ n
iu D R  are the state and control input of the 

agent i. We assume that n>1 and N>1.  

Coordination control objective

In order to design a coordination control system, it is necessary to 
specify a common goal for the group and initial positions and velocities 
of the agents. We therefore impose the following assumption on the 
reference trajectories and initial conditions between the agents. 

Assumption 4.1: 

i) The reference position vector qid(t) for the agent i to track satisfies 
the condition:  

1

2 3

|| ( ) ||

( ) ( ) ( ) ( )
|| ( ) || || ( ) ||

ijd ijd

id od id od

od odod od

q t
t t t tq q q q

t tq q

ε

ε ε

≥ ,

= , = ,

≤ , ≤ ,

   

 

		                   (2)

for all (i, j) € N, j ≠ i and t ≥ t0 where qijd=qid(t)-qjd(t),ε1ijd is a strictly 

positive constant, ε2od and  ε3od are nonnegative constants, and qod(t)  is 
referred to as the common reference trajectory. 

ii) Let us define 

[ ( ( )) ( ( )) ]

ij i j

ie i id
T

ij ij ij n ie ie n je je

q q q
p p q

q Kq I p p I p pχ

= − ,

= − ,

= + + ∆ − + ∆ ,

 (3)

for all (i, j) € N, j ≠ i, with N the set of all the agents, k is a symmetric 
positive definite matrix, In is an n×n  dimensional identity matrix, and 
∆(x) with x € Rn  is an n×n dimensional diagonal and nonnegative 
definite matrix, whose elements are bounded if x is bounded. In 
addition, the matrix ∆(x) possesses the following properties:  

2

1

2
1 1 2 2 1 2 1 2 1 2

1) ( ) ( ) ( )
2) || ( ( ) ( )) ||

3) ( ) ( ) ( )( ) ( )

n

n
n n

n

x x L x x x x R
I I L x x x R
x x x x A x x x x x x R

−

∆ = ∆ , ∀ , ∈ ,

+ + ∆ ≤ , ∀ ∈ ,

∆ −∆ = , − , ∀ , ∈ ,



 

 (4)

Where L is a diagonal positive definite matrix, ϱ is a nonnegative 
constant, and A(x1,x2) is a diagonal and nonnegative definite matrix 
for all (x1,x2) € R2n. There are many matrices that satisfy the above 
properties. An example is ∆(x)= diag (x1

2,…, x1
2,…xn

2 ) where x1,....
xi,...,xn are elements of x, i.e., x=[x1,…, xi,…xn]T. At the initial time t0 
≥ 0, each agent starts at a different location and all the agents do not 
approach each other at high relative velocities. Specifically, there exist 
strictly positive constants ϱij0 and χij0 such that for all (i, j) € N, with  i 
≠ j, with, where N is the set of all the agents, the following conditions 
hold:

0 0

0 0

|| ( ) ||

( )
ij ij

ij ij

q t
tχ χ

≥ ,

≥ .


				                    (5)

iii) The agents i and j can communicate with each other, i.e., the 
agent i can measure the states qj and pj of the agent j, and the agent j 
can measure the states qi and pi of the agent i, if the following condition 
holds: 

M
ij ijχ χ≤ , 					                    (6)

Where χij
M is a strictly positive constant.  

Remark 4.1:

i) Assumption 4.1.1 specifies feasible reference trajectory qid (t) for 
the agent i in the group to track since it has to satisfy the condition 
(2). A desired coordination shape can be specified by the reference 
trajectories qid(t) with i € N. Let us consider the virtual structure 
approach in [8-10] to generate the reference trajectories qid(t) the agent 
i to track. First, a virtual structure consisting of N vertices is designed 
as a desired coordination shape. Second, we let the center of the virtual 
structure move along the common reference trajectory qod(t). Third, as 
the virtual structure moves, its vertex i generates the reference trajectory 
qid(t) for the agent i to track. Specifically, the reference trajectory qid(t) 
can be generated as qid(t) = qod(t) + li where li is a constant vector.

Moreover, the second equation in (2) implies that all the agents 
have the same desired velocity and acceleration. Since this paper focuses 
on designing bounded coordination controllers for the agents with 
second-order dynamics, we do not consider the case where the shape of 
the virtual structure is time-varying, i.e., the vectors li  are time-varying, 
to avoid complication of the presentation. When li are time-varying, 
the technique proposed in [35] can be used in conjunction with the 
coordination control design in this paper. 
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ii) If at the initial time t0 the agents approached each other at high 
relative velocities, a bounded controller would not be able to prevent 
the agents from colliding with each other. Therefore, it is reasonable 
to impose Assumption 1.2 for the design of bounded coordination 
controllers, which guarantee collision avoidance between the agents. 

iii) Assumption 4.1.3 implies that we need to design a distributed 
coordination control system since the condition (6) specifies that when 

M
ij ijχ χ>   the agents   and   do not communicate with each other. The 

constant M
ijχ  can be considered as the generalized communication 

range between the agents   and . This generalized communication range 
is different from usual communication ranges used in the literature, 
e.g. [12, 10,19] in the sense that the generalized communication range 
relates to both the relative position and the relative velocity between the 
agents while the usual communication range relates only to the relative 
position. Dependence of M

ijχ  on the relative velocity between the 

agents is necessary because we are to design bounded controllers. 

Coordination control objective 4.1: Under Assumption 2.1, for 
each agent i design the bounded and distributed control ui such that the 
position vector qi of the agent i tracks its reference position vector qid 
while avoiding collision with all other agents in the group. Specifically, 
we will design ui such that 

|| ( ) ||
lim( ( ) ( )) 0

|| ( ) ( ) ||

i

i idt

i j ij

u t
q t q t

q t q t

δ

→∞

≤ ,
− = ,

− ≥ ,

				                   (7)

For all (i, j) € N, i ≠ j and, t ≥ t0 ≥ 0 where δ and ϱij are strictly 
positive constants. The constant δ is strictly larger than ε3od, which is 
defined in (2). Moreover, the control ui should depend only on its own 
states and the states of other agents j if the condition (6) between the 
agent i and the agents j holds. 

Preliminaries
This section presents saturation functions, a technique for 

designing bounded controllers for a second-order system, and non-
zero convergent lemma for a differential inequality, smooth step 
functions, pairwise collision avoidance functions, and Barbalat-like 
lemma. These preliminary results will be used in the control design and 
stability analysis later. 

Saturation functions

This subsection defines saturation functions that will be used in the 
control design later. 

Definition 5.1: The function σ(x) is said to be a smooth saturation 
function if it possesses the following properties: 

1) ( ) 0 if 0 ( ) 0 if 0
2) ( ) ( ) ( )[ ( ) ( )] 0

( ) d ( )3) ( ) 1 1 1
d

x x x x x
x x x y x y

x xx
x x

σ σ
σ σ σ σ

σ σσ

= = , > ≠ ,
− = − , − − ≥ ,

| |≤ , | |≤ , | |≤ ,
	                  (8)

for all (x, y) €R2. Some functions satisfying the above properties include  
σ(x) = than (x) and 21

( ) x
x

xσ
+

= . For the vector x=[x1,…,xi,…,xn]T, we 
use the notation σx=[σ(x1),..,σ(xi)…,σ(xn)]T to denote the smooth 
saturation function vector of x. 

Bounded control design for second-order systems

This subsection presents the idea of a bounded control design 

technique through a simple example. This technique will be used to 
design bounded cooperative controllers later. As such, consider the 
following second-order system: 

1 2

2

xx
ux

= ,
= ,





					                       (9)

where x1 and x2 are the states, and   is the control input. Let us address 
a control problem of designing the control input u to asymptotically 
stabilize (9) at the origin for any initial values(x1(t0),x2(t0))€R2 at the 
initial time t0 ≥ 0 such that ( )u t ε| |≤  for all t ≥ t0. A solution to the 
above control problem is given in the following lemma.

Lemma 5.1: Let the positive constants K and C be chosen such that 
0.5k + c ≤ ε, and let ( )σ •  be a smooth saturation function of • defined 
in Definition 3.1. The bounded control law 

2
2 1 2 22

2

1 ( ( (1 0 5 ) ))
1 1 5

u kx c kx x x
x

σ= − − + + .
+ .

	                 (10)

Globally asymptotically stabilizes the system (9) at the origin. 

Proof: Refer to Appendix A.

Remark 5.1: There are other methods (e.g., [36,37]) to design 
bounded control laws for a chain of integrators inspired by the work in 
[38]. However, these methods are not suitable for designing a bounded 
coordination controller for multiple agents in this paper. 

Non-zero convergent lemma

This subsection presents a non-zero convergent result for a first 
order system. This result will be used to construct pairwise collision 
avoidance functions in Subsection 3.5. 

Lemma 5.2: Assume the continuous vector x (t) € Rn and its 
derivative x, which is also continuous, satisfy the following conditions: 

0 0

0

|| ( ) ||

( ( ( )) ) 0T
n

x t a
x Bx I Q t x a t t

≥ ,

+ + ≥ , ∀ ≥ ≥ ,

 		                (11)

where t0 ≥ 0 is the initial time, B is a symmetric positive definite matrix, 

In  is an n×n dimensional identity matrix, ( )Q t  is a diagonal and 
nonnegative definite matrix whose elements are bounded for all, t ≥ t0 
≥ 0, a0 and a are strictly positive constants. Then 

0 0|| ( ) || min( ) 0
( )M

ax t a t t
Bλ

≥ , ,∀ ≥ ≥ , 		                  (12)

where λM(B) is the maximum eigenvalue of the matrix  . 

Proof: Refer to Appendix B. 

Smooth step function

This subsection gives a definition of the smooth step function 
followed by a construction of this function. The smooth step function 
is to be embedded in a pairwise collision avoidance function to avoid 
discontinuities in the control law in solving the collision avoidance 
problem. 

Definition 5.2: A scalar function h(x, a, b) is said to be a smooth 
step function if it possesses the following properties 

1) ( ) 0 ( ]
2) ( ) 1 [ )
3) 0 ( ) 1 ( )
4) ( ) is smooth
5) ( ) 0 ( )

h x a b x a
h x a b x b

h x a b x a b
h x a b
h x a b x a b

, , = , ∀ ∈ −∞, ,
, , = , ∀ ∈ ,∞ ,

< , , < , ∀ ∈ , ,
, , ,

′ , , > , ∀ ∈ , ,

	                                 (13)
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where ( )( ) h x a b
xh x a b ∂ , ,
∂′ , , = , and  a and b are constants such that a<b. 

Lemma 5.3: Let the scalar function h(x,a,b) be defined as 
( )( ) with

( ) (1 )
f x ah x a b

f f b a
τ τ

τ τ
−

, , = = ,
+ − −

		                  (14)

where 
1

( ) 0 if 0 and ( ) if 0f f e ττ τ τ τ−= ≤ , = > , 		                  (15)

with a and b being constants such that a<b. Then the function (x,a,b) is 
a smooth step function. 

Proof: See [34]. An alternative smooth step function is available in 
[39] but it requires a numerical integration. 

Pair wise collision avoidance functions

This subsection defines and constructs pair wise collision avoidance 
functions. In constructing these functions, we utilize Lemma 3.1, 
Lemma 3.2, Definition 3.2, and Lemma 3.3. The pair wise collision 
avoidance functions will be embedded in a potential function for the 
coordination control design in the next section. 

Definition 5.3: Let βij with (i, j) € N and i ≠ j be a scalar function 
of χij, which is defined in (3). The function βij is said to be a pair wise 
collision avoidance function if it possesses the following properties: 

0 0 0

1) 0 0 0 [ )

2) 0 (0 ) 0

3) lim lim lim

4) is smooth (0 )
ij ij ij

ij ij ij ij ij

ij ij ij ij ij

ij ij ij

ij ij

R

χ χ χ

β β β χ χ

β χ χ β χ

β β β

β χ

∗

∗

→ → →

= , = , = , ∀ ∈ ,∞ ,

> , ∀ ∈ , , ≤ , ∀ ∈ ,

= ∞, = −∞, = −∞,

, ∀ ∈ ,∞ ,

		                (16)

where ij

ijij
β
χβ ∂
∂= , 

2

2
ij

ij
ij

β

χ
β ∂

∂
= , and ijχ∗

 is a strictly positive constant 

satisfying the following condition: 

min( )M
ij ijd ijχ χ χ∗ ≤ , , 				                    (17)

where 0 0ij ijd ie je

T
ijd ij q q p p ijd ijdq Kqχ χ = , = , == | = , and the constant M

ijχ  is defined 
in (6). 

Remark 5.2: Property 1) implies that the function βij is zero when 
the agents i and j are at their desired locations or are sufficiently 
faraway from each other since the constant χij* satisfies the condition 
(17). Property 2) implies that the function βij is positive definite when 
the agents i and j are sufficiently close to each other. Property 3) means 
that the function βij is equal to infinity when a collision between the 
agents i and j occurs. Property 4) allows us to use control design and 
stability analysis methods found in [40] for continuous systems instead 
of techniques for switched and discontinuous systems found in [41] to 
handle the collision avoidance problem. 

Using the smooth step function given in Definition 3.2, we can find 
many functions that satisfy all the properties listed in (16). An example 
is 

1 ( )ij ij ij
ij ij

ij

h a bχ
β

χ
− , ,

= , 				                      (18)

where lij is a positive constant, and the positive constants aij and bij 
satisfy the following condition: 

0 ij ij ija b χ∗< < ≤ . 				                      (19)

The function h(χij,aij,bij) is a smooth step function defined in 
Definition 3.2. It can be directly verified that the function βij given in 
(18) possesses all the properties listed in (16). In the rest of the paper, 
the function βij defined in (18) will be used. 

Barbalat-like lemma

The following Barbalat-like lemma is to be used in the stability 
analysis of the closed loop system. 

Lemma 5.4: Assume that a nonnegative scalar differentiable 
function f(t) satisfies the following conditions 

1 20
1) ( ) ( ) 0 2) ( )d f t k f t t f t dt k

dt
∞

| |≤ ,∀ ≥ , ≤∫ 	                 (20)

where k1 and k2 are positive constants, then lim ( ) 0t f t→∞ = . 

Proof: See [10]. Lemma 3.4 differs from Barbalat’s lemma found 
in [40]. While Barbalat’s lemma assumes that f(t) is uniformly 
continuous, Lemma 3.4 assumes that ( )d

dt f t| |  is bounded by k1f(t). 
Lemma 4 is useful in proving convergence of f(t) when it is difficult to 
prove uniform continuity of f(t). 

Coordination Control Design
To design the control ui for the agent i that achieves Coordination 

Control Objective 1, we will construct a potential function ϕ. This 
potential function puts penalty on all the tracking errors for all the 
agents in the group, and includes all the pairwise collision avoidance 
functions βij for all i ≠ j. As such, the potential function ϕ is chosen as 
follows: 

2

1 1

1 1( || 2 ( ( )) || )
2 2

i

N N

ie n ie ie ij
i i j N

Kq I p pφ β
= = ∈

= + + ∆ + ,∑ ∑ ∑                   (21)

where the matrices K and ( )∆ • , and the pairwise collision avoidance 

function βij are given in Definition 5.3, and   is the set of all the agents 
except for the agent i. Differentiating both sides of (21) along the 
solutions of (1) and using the first property of ( )∆ •  in (4), we have 

1

1

[2 ( ( ) ( )) ]

1 [( ( )) ( ( )) ]
2

i

N
T
i ie n n ie ie

i
N

T
ij ij n ie ie n je je

i j N

Kp I I L p p

p I p p I p p

φ

β

=

= ∈

= Ω + + + ∆

+ + ∆ − + ∆ ,

∑

∑ ∑





                (22)

Where 

2 ( ( ))
i

ij i j

i ie n ie ie ij ij
j N

p p p

Kq I p p qβ
∈

= − ,

Ω = + + ∆ + .∑ 		                  (23)

It is noted that in deriving (22), we have used pij=pie-pje since 
= =  id jd odq q q , see (2). Now using Property 3) of ( )∆ •  in (4), we can 

write the term [( ( )) ( ( )) ]n ie ie n je jeI p p I p p+ ∆ − + ∆  in (22) as follows: 

[( ( )) ( ( )) ] [ ( )]n ie ie n je je n ie je ijI p p I p p I A p p p+ ∆ − + ∆ = + , , 	                (24)

Where we have again used pij=pie-pje. Substituting (24) into (22) gives 

1

1

[2 ( ( ) ( )) ]

1 [ ( )]
2

i

N
T
i ie n n ie ie

i
N

T
ij ij n ie je ij

i j N

Kp I I L p p

p I A p p p

φ

β

=

= ∈

= Ω + + + ∆

+ + , .

∑

∑ ∑





		                   (25)

Since βij ≤ 0 for all χ ∈ij R , see Property 2 of  βij in (16), and  A(pie,pje) 
is a diagonal and nonnegative definite matrix, see Property 3) of ( )∆ •  in 
(4), we have the following inequality 

[ ( )] 0T
ij ij n ie je ijp I A p p pβ + , ≤ , 			                  (26)

For all qij € Rn, pij € Rn, pie € Rn, and pje € Rn. Substituting (26) and 
= − iie idup q into (25) results in

1
[2 ( ( ) ( ))( )]

N
T
i ie n n ie i id

i
Kp I I L p u qφ

=

≤ Ω + + + ∆ − ,∑

 	                  (27)

which suggests that we choose the control ui as follows: 
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1[ ( ) ( )] ( ( ) 2 )i n n ie i ie idu I I L p C Kp qσ−= + + ∆ − Ω − + ,                  (28)

Where C is a positive definite matrix. 

Remark 6.1:

1. Substituting Ωi  defined in (23) into (28) results in 
1[ ( ) ( )] ( ( 2

( ( )) ) 2 )
i

i n n ie ie

n ie ie ij ij ie id
j N

u I I L p C Kq
I p p q Kp q

σ

β

−

∈

= + + ∆ −

− + ∆ − − + .∑ 

	 	                  (29)

The elements of ui are explained as follows. The term 
1[ ( ) ( )]−+ + ∆n n ieI I L p  is to make the control ui bounded with a predefined 

bound since ( )σ •  and 1[ ( ) ( )] ( 2 )−+ + ∆ −n n ie ieI I L p Kp  are bounded 

with a predefined bound. The term 2 ( ( ))− − + ∆ie n ie ieKq I p p , which 

is a part of the argument of ( )σ •  and the term 2− ieKp  referred to 
as the attractive force plays the role of forcing the agent to track its 

desired trajectory. The term β
∈

−∑
i

ij ijj N
q , which is a part of the 

argument of ( )σ • , referred to as the repulsive force, takes care of 
collision avoidance for the agent i with the other agents. Moreover, the 
control ui of the agent i given in (28) depends only on its own state and 
the states of other neighbor agents j if these agents are communicated 
with the agent i, i.e., when the condition (6) holds. This is because if 
the condition (6) does not satisfy, we have βij=0 due to Property 1) of 
βij listed in (16) with the constants aij and bij of the function βij chosen 
according to (19), and χij* satisfied the condition (17). 

2. Since ∆(pie) satisfies Property 2) in (4) and ∆(pie) is a nonnegative 
definite matrix, L is a positive definite matrix, a calculation shows that 
the control ui is bounded by

3 0|| ( ) || ( ) 2 ( ) 0i M M odu t C K t tλ λ ε≤ + + , ∀ ≥ ≥ , 	                (30)

as long as the closed loop system (32) is forward complete. Forward 
completeness of the closed loop system (32) is to be proved in Appendix 
C. In (30), ( )•Ma  is the maximum eigenvalue of •, and ϱ and ε3od are 
defined in (4) and (2), respectively. Therefore, the upper-bound δ of the 
control ui can be specified as 

3( ) 2 ( )M M odC Kδ λ λ ε≥ + + . 		              	                   (31)

It is seen from (31) that the upper-bound δ of the control ui can 
be predetermined as long as the pre-specified value of δ is strictly 
larger than ε3od, which is the suprenum value of the reference trajectory 

acceleration, idq . This is because when δ is strictly larger than ε3od we 
can always appropriately choose the matrices   and , and the constant ϱ, 
which comes from a proper choice of the matrix ( )∆ • , see (4). 

Substituting the control ui given in (28) into (1) gives the closed 
loop system 

1( ( ) ( )) ( ( ) 2 )
ii

n n ie i iei id

pq

I I L p C Kpp qσ−

= ,

= + + ∆ − Ω − + .



 

	                 (32)

On the other hand, substituting the control ui into (27) results in 

1

N

i
i

φ ϑ
=

≤ − ,∑ 					                     (33)

Where 

( )T
i i iCϑ σ= Ω Ω . 				    	                (34)

The coordination control design has been completed. We 
summarize the main results in the following theorem. 

Theorem 6.1: Under Assumption 4.1, the smooth bounded control 

vector ui given in (28) with a predetermined bound δ defined in (31) for 
the agent i solves the coordination control objective. In particular, no 
collisions between any agents can occur for all t ≥ t0 ≥ 0 the closed loop 
system (32) is forward complete, and the trajectory qi(t) of the agent i 
asymptotically track its reference trajectory qid(t), for all i € N. 

Proof: Refer to Appendix C. 

Coordination Control of VTOL Aircraft
In this section, we present an application of the proposed 

coordination control design in the previous section to design a 
coordination control system for a group of   VTOL aircraft. 

Related work

Control of a single VTOL aircraft has been considered by many 
researchers since it is under actuated and non minimum phase. An 
approximate input-output linearization approach was used in [42-46] 
to develop controllers for stabilization and output tracking/regulation 
of a VTOL aircraft. In [47], by noting that the output at a fixed point 
with respect to the aircraft body (Huygens center of oscillation) can be 
used, an interesting approach was introduced to design a local output 
tracking controller. Simple approaches were developed in [48,49] to 
provide global controllers for the stabilization and tracking control of 
a VTOL aircraft. A dynamic high-gain approach was used in [50] to 
design a controller to force the VTOL aircraft to globally practically 
track a reference trajectory. 

Since the VTOL aircraft are underactuated it is necessary to 
address the bounded control problem for the agents with second-
order dynamics in order to design a coordination control system 
for a group of VTOL aircraft, see discussion in Subsection 7.4. Due 
to the mentioned difficulties, only few results on cooperative control 
of multiple aircraft are available. In [51], direct coordination (using 
inertial measurements) and nearest-neighbor coordination (using 
relative measurements) were addressed. In [52], a sliding mode 
formation controller was proposed using the leader-follower approach. 
In [53,54], several formation controllers were designed to force a group 
of the quadrotor aircraft to track a desired reference linear velocity 
and to maintain a desired formation. In the above works, collision 
avoidance between the aircraft is not considered. The above review 
motivates an inclusion of this section to present an application of the 
coordination control design for agents with second-order dynamics to 
a group of VTOL aircraft. 

Mathematical model and coordinate transformations

A scaled mathematical model of the ith VTOL aircraft in the group 
can be described [43]: 

sin( ) cos( )
cos( ) sin( )

i i i i ii

i i i i ii

i i

x F
gz F

θ ξ τ θ
θ ξ τ θ

τθ

= − + ,

= + − ,

= ,







			                   (35)

where xi, zi and θi denote position of the aircraft center of mass and roll 
angle of the ith aircraft, respectively, iF  and τi are the vertical control 
force and rotational moment, g>0 is the gravitational acceleration, and 
ξi  is the constant coupling between the roll moment and the lateral 
force, see Figure 1. 

Since the VTOL dynamics (35) is non-minimum phase if its 
position (xi,zi) is controlled directly, we introduce the following 
coordinate transformations [49]. 
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sin( )
cos( )

i i ii

i i ii

xx
zz

ξ θ
ξ θ

= − ,

= + ,
				                  (36)

With the coordinate transformations (36), we can write (35) as 
sin( )

cos( )
i ii

i ii

i i

x F
z gF

θ

θ
τθ

= − ,

= − ,

= ,







			        	                 (37)

where 
2
ii ii FF ξ θ= − . 					                  (38)

If we consider ( ),i ix z  as the new position of the aircraft to be 
controlled, it is seen that (37) is of a triangular form. It is noted ( ),i ix z   
coincides with the aircraft’s center of oscillation [47]. Let us define 

sin( )
cos( )

i iii
i i i

i ii i

xx Fq p u
gzz F

θ
θ

−    
= , = , = .     −    





		                 (39)

With the definition of q1, p1 and ui in (39), we can write (37) as 

{) )ii
i i

ii

pq
A B

up
τθ







=
, = .

=






				                      (40)

This is a convenient form that will be used for the coordination 
control design in Subsection 5.4. 

Coordination control objective

Roughly speaking, we will consider a group of N aircraft with a 
coordination control objective of designing the controls iF  and τi 

for the aircraft   such that its position [ ]T
i iiq x z=  tracks its reference 

trajectory ( ) [ ]T
id ididq t x z=  and avoids collision with all other aircraft in 

the group. We will state the coordination control objective precisely 
after the following assumption stated. 

Assumption 7.1:

1. Assumption 2.1 holds. In addition, the reference trajectories qid  
satisfy the following conditions: 

4 5

( ) ( ) ( ) ( )
|| ( ) || || ( ) ||

id od id od

od od od od

q t q t q t q t
q t q tε ε

= , = ,
≤ , ≤ ,

			                  (41)

for all 0 0≥ ≥t t  and i € N, where ε4od and ε5od are nonnegative constants.

2. 3ε µ≤ −od g , where ε3od is specified in (2), and µ is a strictly 
positive constant. 

Assumption 7.1 covers both the stabilization and trajectory 
tracking of the VTOL aircraft and implies that the aircraft is not 
allowed to land faster than it freely falls under the gravitational force. 

Coordination Control Objective 7.1: Under Assumption 7.1, for 
each aircraft i design the smooth control inputs iF  and τi such that the 
position vector qi of the aircraft i tracks its reference position vector qid 

while avoiding collision with all other agents in the group. Specifically, 
we will design iF  and τi such that 

lim( ( ) ( )) 0

|| ( ) ( ) ||

( ) is bounded

i idt

i j ij

i

q t q t

q t q t
tθ

→∞
− = ,

− ≥ ,

| | ,

 				                (42)

for all ( ), ∈i j N , ≠i j  and 0 0≥ ≥t t , where ij  is a positive constant. 

Coordination control design

It is seen that (40) consists of two subsystems, namely the subsystem   
describes linear motion of the aircraft’s center of oscillation and the 
subsystem   gives rotational motion of the aircraft. These two subsystems 
are connected in a lower triangular structure. The subsystem   is of the 
form (1) with n=2. This structure suggests that we should use the back 
stepping technique [31] to design the controls iF  and τi. 

Let us discuss the reason why we need to apply the smooth 
bounded coordination control design proposed in the previous section 
to the VTOL aircraft described by (40). Assume that we have already 
designed the smooth vector ui and that θi is a control. We will need to 
solve the third equation of (39) for iF  and θi. As such, we write the 
third equation of (39) as 

1

2

sin( )
cos( )

i ii

i ii

uF
g uF

θ
θ

− = ,

− = ,
				                     (43)

where u1i and u2i are the first and second elements of ui, i.e.,  

1 2[ ]= T
i i iu u u . Clearly, we need a bounded ui  with 2iu g| |<  to obtain a 

bounded 1

2
arctan( )i

i

u
i u gθ −

+=  and a bounded 1 2sin( ) ( ) cos( )i i i ii u u gF θ θ= − + +
. Motivated by the aforementioned discussion, we will proceed the 
coordination control design for the group of   VTOL aircraft in two 
stages. 

Stage 1: In this stage, we consider the subsystem A defined in (40) 
with ui , i.e., iF  and θi, as a control vector to achieve asymptotical 
tracking of qi(t)-qid(t) and to guarantee no collision between any 
aircraft. As such, define 

i

i

ie i

ie i uu u
θθ θ α

α

= − ,

= − ,
					                    (44)

where αθi is a virtual control of θi, and αui is a virtual control of ui 
defined by 

sin( )

cos( )
i

i

i

i
u

i

F
gF

θ

θ

α
α

α

− 
= . 

−  
				                 (45)

With the third equation of (39), the second equation of (44) and 
(45), we can write uie as 

sin( ) cos( ) (cos( ) 1)sin( )

(cos( ) 1)cos( ) sin( )sin( )
i i

i i

ie ie
ie i

ie ie

u F
θ θ

θ θ

θ α θ α

θ α θ α

− − − 
= . 

− +  
	                (46)

The virtual control vector αui is designed in the same way as the one 
in (28), i.e., 

1[ ( ) ( )] ( ( ) 2 )
iu n n ie i ie idI I L p C Kp qα σ−= + + ∆ − Ω − + , 	                 (47)

where the matrices In ,L, C, and K, ∆(pie),and the constant ϱ  are defined 
in the previous section. It is noted that  3|| ( ) || ( ) 2 ( )

iu M M odt C Kα λ λ ε≤ + + , see 
(30). Therefore, to make it possible to solve (45) for αθi, we impose the 
following condition on the matrices L , K and C, and the constant ϱ: 

3( ) 2 ( )M M odC K gλ λ ε+ + < , 			                   (48)

 

ix

iz iF

iτ i iξτ

iθ

iO

Figure 1: The VTOL aircraft.
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There always exist the matrices L ,K and C, and the constant ϱ such 
that the condition (48) under Item 2) of 

Assumption 7.1: Solving (45) gives 
1

2

1 2

arctan( )

sin( ) ( ) cos( )

i

i

i

i i i i

u

u

u ui

g

gF

θ

θ θ

α
α

α

α α α α

−
= ,

+

= − + + ,
			                   (49)

where αu1i and αu2i  are the first and second elements of αui, i.e., αui=[αu1i  
αu2i] 

1 2
[ ]

i i i

T
u u uα α α= . It is noted that αθi in (49) is well defined because 

|| || 0
iug α− > . 

Remark 7.1:

1. The virtual control αθi is a smooth function of q1,..,qN, p1,..,pN, 
q1d,..,qNd, odq  and odq  because id odq q=   and id odq q=  , see 
Assumption 2.1.1. 

2. The virtual control αui depends only on its own state and the 
states of other neighbor aircraft j if these aircraft are communicated 
with the aircraft , i.e., when the condition (6) holds, see Remark 4.1.2 
for more details. Therefore, the control iF  of the aircraft i depends 
only on its own state and the states of other aircraft j if these aircraft are 
communicated with the aircraft i. 

Due to ui=uie+αui, see (44), the derivative of the function ϕ defined 
in (21) is 

1 1
[ ( ) ( )]

N N
T

i i n n ie ie
i i

I I L p uφ ϑ
= =

≤ − + Ω + + ∆ ,∑ ∑ 		                   (50)

where, ϑi, Ωi and ∆(pie), are defined in (34), (23), and Assumption 1.1, 
respectively. 

Stage 2: In this stage, we will design the control τi to asymptotically 
stabilize uie at the origin by using the back stepping technique [31]. We 
first note that the subsystem B defined in (40) can be written as  

i i

i i

ωθ
τω

= ,
= .





					                    (51)

Now, we define 

iie i ωω ω α= − , 					                    (52)

where αwi is a virtual control of ωi. We now design the virtual control αwi 
to asymptotically stabilize uie at the origin by considering the following 
Lyapunov function candidate  

2
1

1

1
2

N

ie
i

V φ θ
=

= + ,∑ 					                    (53)

where θie is defined in (44). Differentiating both sides of (53) along the 
solutions of (50), (52), and the first equation of (51) gives 

1
1 1

( [ ( ) ( )] )
ii

N N
T ie

i ie i n n ie ie
i i ie

uI I L pV θωϑ θ α ω α
θ= =

≤ − + Ω + + ∆ + + − ,∑ ∑

       (54)

Where 

1
( )i i i i i

i

N

i i odod od
i i i id od od

p u qq q
q p q q q
θ θ θ θ θ

θ

α α α α α
α

=

∂ ∂ ∂ ∂ ∂
= + + + + .

∂ ∂ ∂ ∂ ∂∑  



 

	               (55)

It is noted that the term ie

ie

u
θ  is well defined because 

1sin( )

0
cos( )ie

ie ie dθ
θ θ η η= ∫  and 

1cos( ) 1

0
sin( )ie

ie ie dθ
θ θ η η− = −∫ , which are smooth 

for all ie Rθ ∈ . The equation (54) suggests that we choose the virtual 

control αwi as follows 

1 [ ( ) ( )]
ii

T ie
ie i n n ie

ie

uk I I L pθωα θ α
θ

= − + −Ω + + ∆ ,
 	              (56)

where k1 is a positive constant. 

Remark 7.2: The virtual control αwi is a smooth function of q1,..,qN, 

p1,..,pN,q1d,..,qNd, odq , odq , odq , and θi. Moreover, due to Remark 
5.1 on αθi, the virtual control αwi of the aircraft i depends only on its 
own state and the states of other neighbor aircraft j if these aircraft are 
communicated with the aircraft i. 

Substituting (56) into (54) results in 

2
1 1

1 1 1

N N N

i ie ie ie
i i i

kV ϑ θ θ ω
= = =

≤ − − + .∑ ∑ ∑ 			                 (57)

We finally design the control τi to asymptotically stabilize ωie at the 
origin by considering the following Lyapunov function candidate 

2
2 1

1

1
2

N

ie
i

V V ω
=

= + ,∑ 			    	               (58)

whose derivative along the solutions of (57), (52), and the last equation 
of (51) satisfies 

2
2 1

1 1 1
( )

i

N N N

i ie ie ie i
i i i

kV ωϑ θ ω θ τ α
= = =

≤ − − + + − ,∑ ∑ ∑

 		              (59)

where 

1
( )i i i i i i i

i

N

i i od od iod od
i i i id od iod od

p u q qq q
q p q qq q
ω ω ω ω ω ω ω

ω

α α α α α α α
ωα

θ=

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + .

∂ ∂ ∂ ∂ ∂ ∂ ∂∑  



 

						                    (60)

The equation (59) suggests that we design the control τi as 

2 ii ie iek ωτ ω θ α= − − + ,
 				                   (61)

where K2 is a positive constant. Due to Remark 7.2 on the virtual control 
αwi, the control τi of the aircraft i depends only on its own state and the 
states of other neighbor aircraft j if these aircraft are communicated 
with the aircraft i, i.e., when the condition (6) holds. Substituting (61) 
into (59) gives 

2 2
2 1 2

1 1 1

N N N

i ie ie
i i i

k kV ϑ θ ω
= = =

≤ − − − .∑ ∑ ∑ 			               (62)

The above control design results in the following closed loop 
system: 

1

1

2

[ ( ) ( )] ( ( ) 2 )

[ ( ) ( )]

ii

n n ie i ie iei id

T ie
ie ie ie i n n ie

ie

ie ie ie

pq

I I L p C Kp up q
uk I I L p

k

σ

θ ωθ θ
ω θω

−

= ,

= + + ∆ − Ω − + + ,

= − + −Ω + + ∆ ,

= − − .



 





	             (63)

We summarize the results of the proposed coordination control  
design for VTOL aircraft in the following theorem: 

Theorem 7.1: Under Assumption 5.1, the smooth controls 
2
ii iiF F ξ θ= +   with iF  given in (49) and τi given in (61) for the aircraft  

i solve the coordination control objective 1 as long as the control design 
matrices K and C, and the constant ϱ, which comes from a proper 
choice of the matrix ( )∆ • , see (4), are chosen such that the condition 
(48) holds. In particular, no collisions between any aircraft can occur 
for all t ≥ t0 ≥ 0 the  closed loop system (63) is forward complete, and 
the trajectory qi(t) of the aircraft i asymptotically tracks its reference 
trajectory qid(t), for all  i∈N. 

Proof: Refer to Appendix D. 

Simulation results

In this subsection simulates the coordination control design 
proposed in the previous subsection on a group 6 aircraft. All the aircraft 
have the same coupling constant 0 1iξ = . ,i=1,….,6. The communication 
constant M

ijχ  is specified as M
ijχ = 40. The initial conditions of the 

aircraft are chosen as follows: 
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0
2 2(0) [cos( ( 1)) sin( ( 1))]

(0) [0 0]
(0) 0

T
i

T
i

i

q R i i
N N

p

π π

θ

= − − ,

= ,
= ,

		                 (64)

where R0=10. This choice of the initial conditions means that the 
aircraft are uniformly distributed on a circle centered at the origin with 
a radius of 10. The reference trajectories are chosen as follows: 

2 2( ) [cos( ( 1) ) sin( ( 1) )] 0 20

2 2( ) [cos( ( 1) ) sin( ( 1) )] [0 sin(0 1( 20))] 20 80

T
id d

T T
id d d

q t R i i t
N N

q t R i i R t t
N N

π ππ π

π ππ π

= − + − + , ∀ ≤ ≤ ,

= − + − + + . − , ∀ < ≤ ,

						                    (65)

where Rd = 5. This choice of the reference trajectories mean that the 
aircraft are first to be uniformly placed on a circle centered at the 
origin with a radius of 5 but their positions are opposite to their 
initial positions, are then to track sinusoidal signals. The purpose of 
choosing the above reference trajectories is to illustrate both collision 
avoidance and reference trajectory tracking properties of the proposed 
coordination control. Indeed, with the above choices of the initial 
conditions and reference trajectories all the aircraft need to cross 
the origin, i.e., the center of the aforementioned circles. This is an 
effective illustration of the collision avoidance capacity of the proposed 
coordination controller. 

The matrix ∆(pie), is chosen as 2 2( ) diag( )ieieiep x z∆ = ,
 

 where xie and 
zie are the first and the second elements of pie, i.e., [ ]T

ieieiep x z=
 

. With this choice of ∆(pie),  a simple calculation shows that the 
matrices L and A(x1,x2) and the constant ϱ in (4) are L=diag(2,2), 

2 2 2 2
1 2 11 11 21 21 12 12 22 22( ) diag( )A x x x x x x x x x x, = + + , + + , for all 2

1 11 12[ ]Tx x x R= ∈  
and 2

2 21 22[ ]Tx x x R= ∈ , and ϱ=1. Moreover, the reference trajectories 
specified in (65) ensure that the condition (2) holds with ε1ijd=5, 
ε2od=0.5, and ε30d=0.05. From the condition (48), we choose the control 
design matrices as C=I2 and K=I2. From the initial condition (64) and 
the chosen K, it is directly verified that 0ij  and 0ijχ  in (5) are 0 10ij =  
and 2

0 0ij ijχ =  . The constants aij and bij are chosen as aij=4 and bij=16. 
The other control design parameters are chosen as ( ) tanh( )σ • = • , 
lij=102 for all (i, j) €b N, i ≠ j,K1=2, and K2=4. A calculation shows that 
the condition (48) satisfies with this choice of the control parameters 
and the above choice of the reference trajectories.

Simulation results are plotted in Figures 2 and 3. Figure 2a plots 
the trajectories of all the agents in   plane. It is seen from this figure 

that the proposed coordination controller forces all the aircraft to 
perform collision avoidance and trajectory tracking very well, see 
also Figure 3a for a plot of the scaled product of all relative distance 

1
20

all ( )
dis ( || ( ) ||)iji j N i j

q t
, ∈ , ≠

= ∏ , which is always larger than zero, Figure 3b 

for convergence of the tracking error||q1e||(t) of the aircraft 1 to zero. 
Figure 2b and Figure 2d plot the trajectories zi and xi of all the aircraft 
versus time, and Figure 2c plots θi of all the aircraft versus time. It is seen 
that θi(t) is bounded for all i € N  and t ≥ 0Finally, the controls F1 and 
τ1 of the aircraft 1 are plotted in Figure 3c and Figure 3d, respectively.

Conclusions
A constructive method has been presented to design distributed 

controllers for coordination control of a group of N mobile agents. The 
most desired feature of the proposed coordination control design is that 
the controllers are bounded with a pre-specified bound. The keys to the 
control design include the new bounded control design technique for 
second-order systems, and new pair wise collision avoidance functions 
of both the relative position and velocity of the agents. An extension of 
the proposed coordination control design to agents with higher order 
dynamics is under consideration. 
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