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ABSTRACT  

 

 Scientific reasoning and writing skills are ubiquitous processes in science and 

therefore common goals of science curricula, particularly in higher education.  

Providing the individualized feedback necessary for the development of these skills 

is often costly in terms of faculty time, particularly in large science courses common 

at research universities.  Past educational research literature suggests that the use of 

peer review may accelerate students’ scientific reasoning skills without a concurrent 

demand on faculty time per student.  Peer review contains many elements of 

effective pedagogy such as peer-peer collaboration, repeated practice at evaluation 

and critical thinking, formative feedback, multiple contrasting examples, and 

extensive writing.  All of these pedagogies may contribute to improvement in 

students’ scientific reasoning.   

 The effect of peer review on scientific reasoning was assessed using three 

major data sources: student performance on written lab reports, student performance 

on an objective Scientific Reasoning Test (Lawson, 1978) and student perceptions of 

the process of peer review in scientific community as well as the classroom.   In 

addition, the need to measure student performance across multiple science classes 

resulted in the development of a Universal Rubric for Laboratory Reports.  The 

reliability of this instrument and its effect on the grading consistency of graduate 

teaching assistants were also tested.  Further, application of the Universal Rubric to 

student laboratory reports across multiple biology classes revealed that the Rubric is 

further useful as a programmatic assessment tool.  The Rubric highlighted curricular 

gaps and strengths as well as measuring student achievement over time. 

 This study demonstrated that even university freshman were effective and 

consistent peer reviewers and produced feedback that resulted in meaningful 

improvement in their science writing.   Use of peer review accelerated the 

development of students’ scientific reasoning abilities as measured both by 

laboratory reports (n = 142) and by the Scientific Reasoning Test (n= 389 biology 

majors) and this effect was stronger than the impact of several years of university 

coursework.  The structure of the peer review process and the structure of the 

assignments used to generate the science laboratory reports had notable influence on 

student performance however.   Improvements in laboratory reports were greatest 

when the peer review process emphasized the generation of concrete and evaluative 
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written feedback and when assignments explicitly incorporated the rubric criteria.  

The rubric was found to be reliable in the hands of graduate student teaching 

assistants (using generalizability analysis, g = 0.85) regardless of biological course 

content (three biology courses, total n = 142 student papers).  Reliability increased as 

the number of criteria incorporated into the assignment increased.   Consistent use of 

Universal Rubric criteria in undergraduate courses taught by graduate teaching 

assistants produced laboratory report scores with reliability values similar to those 

reported for other published rubrics and well above the reliabilities reported for 

professional peer review.  

 Lastly, students were overwhelmingly positive about peer review (83% 

average positive response, n = 1,026) reporting that it improved their writing, 

editing, researching and critical thinking skills.  Interestingly, students reported that 

the act of giving feedback was equally useful to receiving feedback.  Students 

connected the use of peer review in the classroom to its role in the scientific 

community and characterized peer review as a valuable skill they wished to acquire 

in their development as scientists.   

Peer review is thus an effective pedagogical strategy for improving student 

scientific reasoning skills.  Specific recommendations for classroom implementation 

and use of the Universal Rubric are provided.   Use of laboratory reports for 

assessing student scientific reasoning and application of the Universal Rubric across 

multiple courses, especially for programmatic assessment, is also recommended. 
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CHAPTER 1 

INTRODUCTION  

 

Overview 

Two major sources of motivation exist for peer review as a subject of 

investigation. Firstly, past research suggests that peer review would be an effective 

pedagogical tool for improving scientific reasoning.  Secondly, science educators 

desire their students to have functional working knowledge of the major components 

of the scientific process and peer review is one of those practical competencies.  The 

context of this research is described in problem and purpose statements and the 

explicit research questions are outlined.  Both quantitative and qualitative data were 

used to triangulate between evidence found in students’ written work, their 

performance on a two-tiered scientific reasoning test and their self-reported 

perceptions of the peer review process.  The limitations of these data sources and 

approach and the significance of this line of research are discussed. 

Rationale 

This research focused on the impact of peer review on students’ scientific 

reasoning skills in a college biology curriculum.  As indicated above, it is likely to be 

an effective pedagogical strategy for improving research ability as well as a skill 

required of practicing scientists and therefore desirable in students.  Faculty in higher 

education institutions in particular and educators in general are unlikely to invest in 

new pedagogical strategies however unless significant evidence exists that such 

innovations will produce notable gains in student performance.  While much research 

has investigated the pedagogical effectiveness of various components of peer review 

such as peer-peer collaboration, writing to learn, development of scientific process 

skills, there appear to be few explicit studies of the impact of peer review of science 

writing on students’ scientific reasoning abilities (Figure 1.1).  Thus, this research 

was required to satisfy the need for evidence and insights as to some of the effects of 

peer review on student scientific development. Further, for those university science 

departments around the United States that have already implemented peer review, 

this research may identify mechanisms for increasing its beneficial effects on student 

performance or reducing its frustrations by highlighting the relative strengths and 

weaknesses of the different aspects of the process.  
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Figure 1.1.  Past research in science education provides a context for this 

investigation into the effect of peer review on students’ scientific reasoning abilities. 

Dashed lines indicate aspects and connections pursued by this research 

 

For science faculty willing to consider incorporating new pedagogical 

strategies, peer review is a particularly attractive intervention because it is part of 

authentic scientific practice.  Despite large volumes of literature on the benefits of 

inquiry-based teaching, such a pedagogical revolution has yet to broadly impact upon 

the pedagogy of many of higher education institutions, even in laboratory courses 

(Basey, Mendelow et al. 2000).  This is likely due to the large time investment 

required to make such shifts, especially when higher education faculty and graduate 

teaching assistants are not generally provided with much pedagogical training or 

support for incorporating new methods into their teaching (Bianchini, Whitney, 

Breton, & Hilton-Brown, 2001; Carnegie Initiative on the Doctorate, 2001; Gaff, 

2002; Luft, Kurdziel, Roehrig, Turner, & Wertsch, 2004; Volkmann & Zgagacz, 

2004).   

As peer review is a procedure that many science faculty already understand 

and have personally experienced, it does not impose the same time or cognitive 

demands inherent in other less intuitive pedagogical innovations.  A contrasting 

example is the recent classroom innovation of student response systems.  While a 

powerful pedagogical tool, student response systems require significant investments 

of time and effort by faculty to modify their teaching approach and materials.  

Adoption of student response systems has been slower despite massive financial 
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investments from book publishers.  Specifically, student response systems are a 

commercial product which allow an instructor to pose questions in large lecture 

auditoriums and receive instantaneous feedback from students who answer using 

small hand-held wireless devices.  They allow an unprecedented degree of interaction 

and feedback for both faculty and students even when class sizes are in the hundreds 

to thousands (Powell 2003).  Compared to peer review, however, adoption of student 

response systems has been slow despite the investment of notable commercial 

resources such as bundling student response systems with textbooks, offering free 

trials and other publisher incentives.    

Peer review has already been initiated in over 3800 courses at 900 institutions 

in the United States using the Calibrated Peer Review (CPR) website alone with a 

user-base of over 140,000 student accounts (Russel 2007).  Other academic and 

commercial peer review websites exist with their own distinct user-bases.  In 

contrast, the largest commercial student response system (Classroom Performance 

System – CPS) is in use by only slightly more than twice the number of students.  

This is surprising given that CPS is backed by Pearson Education and the formidable 

marketing and advertising divisions inherent in a global publishing company serving 

100,000 million people (www.pearsoned.com/about/index.htm).  In comparison, the 

fact that the user-base of the Calibrated Peer Review website has grown to nearly 

50% the size of that of the Classroom Performance System through academic word-

of-mouth with absolutely no commercial advertising indicates that science faculty 

appear to have an affinity for peer review as an instructional strategy.  Thus, there is 

both a substantial audience interested in research on the effect of peer review as well 

as a large reservoir of science faculty who might adopt peer review if evidence of its 

effectiveness were available. 

Background  

Strengthening scientific reasoning skills improves content knowledge 

One of underlying purposes of science education is the development of 

scientific reasoning skills (American Association for the Advancement of Science, 

1993; Committee on Undergraduate Biology Education, 2003) both as a pre-requisite 

for a scientifically literate society, and as an end-goal in itself.  Scientific reasoning 

skills also correlate with students’ abilities to learn content knowledge.   Past research 
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has shown that a focus on students’ reasoning skills improves or is sometimes a pre-

requisite to students’ ability to learn content knowledge.  Students classified as 

possessing greater formal reasoning ability showed much larger gains on a concept 

knowledge test especially on items dealing with more abstract biological concepts 

such as evolution or cellular level processes (Lawson, Alkhoury, Benford, Clark, & 

Falconer, 2000).  Use of an inquiry-based approach also increased students’ 

reasoning abilities over the course of the semester (Lawson et al., 2000).  Johnson 

and Lawson (1998) compared end-of-term content achievement for students in 

inquiry vs. expository sections of a non-majors biology course and found that 

reasoning ability was a better predictor of performance than prior knowledge or 

coursework.  Students in sections that used an inquiry-based approach also showed 

larger gains in reasoning ability.  Zohar (2002)  identified that explicit instruction in 

argumentation produced greater knowledge of genetics and resulted in students being 

able to transfer reasoning abilities to everyday situations.  These prior studies provide 

an explicit connection between scientific reasoning skills and content knowledge 

gains and therefore motivate university science departments to improve students’ 

scientific reasoning skills both for their intrinsic value and because it is also likely to 

improve their performance in future courses. 

Peer-peer collaboration improves content knowledge and/or scientific reasoning 

Pelaez (2002) required half of the content for her physiology course to be 

taught by students completing online research and writing assignments followed by 

anonymous peer review using the same software system employed in this research 

(Calibrated Peer Review).  She compared student achievement in content knowledge 

for topics taught by peer reviewed online research projects with scores for topics 

taught by standard lecture followed by group work.  Pelaez found significantly 

greater student achievement for topics that were taught by peer review compared to 

didactically taught topics (p < 0.001, paired t-test).  These gains were realized by both 

top-scoring and low-scoring students in both multiple choice and essay-based 

assessments suggesting that meaningful learning was occurring.  This is a striking 

and compelling finding that self-study and peer-peer interaction caused greater gains 

in content knowledge than those produced by a standard lecture format.  Pelaez 

suggested the peer review process helped to identify hidden misconceptions that 

usually are not addressed by more didactic pedagogies.  As identification of 
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inaccurate prior knowledge and confrontation of erroneous ideas are pre-requisites 

for conceptual change and meaningful learning (Posner, et al. 1982), peer review may 

be a particularly powerful pedagogical strategy.   

Pelaez further suggests that such peer-peer collaboration may be of particular 

benefit to low-achieving students who traditionally have difficulty identifying such 

gaps or inaccuracies in their own knowledge or comprehension.  She cautions that the 

difficulty of the peer-review task must be matched to the students’ scientific 

reasoning abilities however.  She further elaborates that the greater formative 

feedback provided by the peer-review system may also be of particular advantage to 

students who traditionally under-perform on assessments which require synthesis and 

critical thinking.  As longer writing assignments are a more time-intensive means of 

assessing learning than multiple choice exams, students from under-resourced K-12 

educational systems may have far less experience and therefore less opportunity to 

gain these evaluative and synthesis skills.  Peer-review as a formative assessment 

helps to level this playing field by allowing students multiple opportunities to 

practice these skills as well as receive productive feedback thus negating the common 

pattern where performance on essay exams favours students from more privileged 

educational backgrounds.  Pelaez’s (2002) work therefore demonstrates that peer 

review is a powerful pedagogical strategy for improving students’ content knowledge 

and strongly suggests that equally benefits their critical thinking and evaluative skills 

as well. 

Focusing on the effect of peer-peer interaction on critical thinking, Hogan, 

Nastasi, and Pressley (2000) compared peer-led discussions vs. teacher-led 

discussions in Grade 8 science classes.  They found that students asked three and a 

half times as many questions (18% vs. 5% of total verbal statements) and made twice 

as many metacognitive statements (18% vs. 9 %) in peer led group discussions 

compared to teacher led discussions (Hogan, Nastasi et al. 2000).  In particular, peer 

led discussions contained twice the number of statements categorized as justification 

(25% vs. 13%) and synthesis (40 % vs. 21%) than did teacher led groups indicating 

that students in peer groups were engaged in critical thinking for larger percentage of 

the time (Hogan, Nastasi et al. 2000).   Thus, peer-peer collaboration appears to 

encourage students to engage and practice reasoning skills much more frequently 

than do teacher-centred teaching methods.   
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Rivard (2004) found that peer-peer interactions improved all students’ science 

knowledge, though the mode of improvement varied by student achievement level; 

verbal collaboration and exploration produced greater gains in low achievers while 

high achieving students benefited more from writing explanations.  Peer-peer 

collaboration can also improve students’ writing as well as content knowledge.  

Specifically, being forced to employ the criteria in peer evaluations has been shown 

to lead to greater understanding and implementation of the assignment criteria by 

students as writers at the college level (Bloxham and West 2004).   Thus, peer-peer 

collaboration and the feedback provided by peers during such collaboration are useful 

pedagogical strategies that facilitate student learning. 

Connection between writing and learning 

There is a general recognition that writing is an important component of 

science and that the act of writing often improves or structures scientific reasoning 

(Florence & Yore, 2004; Yore, Hand, & Florence, 2004).  Rivard and Straw (2000) 

tested the relative and combined effects of talking and/or writing on students’ 

understanding of ecology and found that analytical writing helps to transform 

rudimentary ideas into coherent and structured knowledge. Hand, Hohenshell & Prain 

(2004) found a direct connection between the number of student writing experiences 

(especially when students were writing for an audience other than the instructor) and 

conceptual gains as well as retention of that knowledge eight weeks later.  

Furthermore, Keys (1994) found repeated collaborative writing assignments also 

could demonstrate an increase in scientific reasoning skills among Grade 9 science 

students.  Thus, writing is a productive venue for peer review in a pedagogical sense, 

as well as being an authentic process of science. 

Why peer review was selected as a pedagogical strategy  

Components of peer review as a pedagogical strategy 

Beyond its already demonstrated value as a pedagogical tool for improving content 

knowledge (e.g. Pelaez, 2002), past research suggests that peer review is likely to 

improve a student’s critical thinking skills for the following reasons.  Firstly, peer 

review provides exposure to multiple contrasting examples helping students to 

determine the salient criteria for a given task (Bransford, Franks et al. 1989).  

Secondly, peer review potentially provides relevant formative feedback.  Formative 
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feedback has been shown to have significant benefits for improving student work and 

learning (Chinn & Hilgers, 2000; Ravitz, 2002; Topping, Smith, Swanson, & Elliot, 

2000; Yorke, 2003).  Thirdly, providing feedback to three separate peers requires 

students to quadruple the extent to which they practice critical thinking skills over the 

course of an assignment.  Normally students would review and revise only their own 

paper, but with peer review, they must engage, evaluate and construct suggestions for 

three papers in addition to their own, thereby gaining four times the practice at this 

skill.  Concerted and repeated practice over time is an important component of 

developing expertise (Ericsson and Charness 1994).  Lastly, students’ comments on 

end-of-term evaluations indicate that the process of peer review often stimulates the 

reflection and self-assessment that has been shown to lead to metacognition and 

meaningful understanding (Baird & White, 1996; Bloxham & West, 2004; Pope, 

2005). 

There has been a great deal of work on how ‘writing to learn’ improves both 

content and argumentation skills, as well as how peer collaboration improves 

reasoning ability and content knowledge. With the exception of Keys and colleagues’ 

work (Keys, 1994, 1995, 1999b, 2000; Keys, Hand, Prain, & Collins, 1999), 

however, little has been done to explicitly address how scientific writing or peer 

review affects scientific reasoning (Figure 1.1).  Further as, Keys’s work focused on 

collaborative writing, not just collaborative inquiry, it therein departs from the model 

used in this study (collaborative inquiry and individual writing).  Further, while 

research has been conducted on the reliability of peers as reviewers (Cho, Schunn, & 

Wilson, 2006; Hafner & Hafner, 2003; Marcoulides & Simkin, 1995), to this 

researcher’s knowledge, little work has been published on the nature of 

undergraduates’ formative feedback (except see Cho, Schunn et al. 2006) nor its 

effect on students’ scientific writing and reasoning skills.  Thus, investigation of the 

explicit connection between peer-review and improvements in students’ scientific 

reasoning skills will connect previous research in new and fruitful ways.  

Support for the underlying assumption that peers can be effective evaluators 

 Undergraduate peers have also been found to be reliable evaluators.  When 

peer reviewers assessed oral presentations in a large-scale study of college biology 

students, the aggregated mean peer review total score (scores averaged over 

approximately 30 reviewers) was found to have nearly a 1:1 correspondence with the 
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instructor generated scores for all three years of the study (Hafner & Hafner, 2003).   

Individual reviewer scores were highly variable (generalizability analysis attributed 

only 25% of score variance between any two raters to actual differences in 

presentation quality), but mean student scores across all reviewers were found to be 

highly consistent and informative (Hafner & Hafner, 2003).   

 In a study more similar in structure to this research, 60 undergraduates were 

found to be reliable in their assessment of the quality of peers’ written papers with 

65% to 75% of the variability in score being attributed to real differences in quality 

among papers according to a generalizability analysis (Marcoulides and Simkin 

1995).  Cho, Schunn and Wilson (2006) also found that peer review using six referees 

produced a reliability of 0.78 and a high correlation with instructor scores (r = 0.89) 

when a rubric was employed.  It should be noted that all the studies reported above 

measured the reliability of numerical scores (i.e. grades) assigned by peers rather 

than measuring the quality or impact of more subjective comments regarding writing 

substance and quality.   Cho, Schunn and Charney (2006) investigated the helpfulness 

of peer comments and found that when undergraduates rated the helpfulness of the 

feedback they received, there was no distinction between the average value assigned 

to instructor comments versus peer comments (p = 0.36).  Thus, peer can effectively 

apply criteria and provide useful evaluations of written work and peer feedback, 

especially when aggregated, can be comparable in quality to instructor feedback. 

Rationale for peer review to be taught as a scientific skill 

 Given the demonstrated effectiveness of peer-peer collaboration, writing and 

peer assessment in improving students’ knowledge and reasoning abilities, the next 

logical step is to combine those functions into a single pedagogical strategy of peer 

review.  Beyond its inherent value as a real-world skill, there are multiple reasons 

why peer review is likely an effective pedagogical strategy.  Advocated best practices 

for science teaching in general have converged into categories that correspond to the 

fundamental components of peer review: active engagement (Linn 1997), 

collaborative learning (Cabrera, Colbeck et al. 2001), formative feedback (Yorke 

2003), reflection (Baird and White 1996), and a focus on incorporating assessment as 

an integral part of the curriculum (Linn 1997).  A review of the literature on self, peer 

and co-assessment of student work indicates that such a focus develops the 
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competencies needed by students to engage in professional practice (Sluijsmans, 

Dochy et al. 1999).   

 Additionally, while both practicing scientists as well as science educators 

explicitly desire that students develop their scientific reasoning skills as a 

fundamental goal of science laboratory experiences (Goodman et al., 2007; Pelaez & 

Gonzalez, 2002) many science faculty also desire that students become aware of the 

integral nature of writing to the process of scientific thinking (Yore et al., 2004). 

Science faculty also desire their students to understand the fundamental role peer 

review plays in maintaining the integrity of science (Abd-El-Khalick and Lederman 

2000).  Indeed, Ford (2008) provides a convincing argument that the scientific 

community and peer review is the source of authority in science and that an explicit 

focus on the role of peer review is crucial to effective construction of content 

knowledge as well as development of students’ scientific reasoning.  He specifically 

focuses on the need to teach students to critique ideas and claims, not just construct 

them and that a realistic understanding of how scientific knowledge is generated is 

necessary for effective learning (Ford, 2008).  Additionally, writing and peer review 

are real world skills desirable in scientifically literate people as well as future 

scientists.  While engagement in authentic practices is important to the development 

of scientific inquiry skills (O’Neill & Polman, 2004) it does not necessarily lead to 

understanding of scientific process (Schwartz, Lederman et al. 2004) if its purposes 

as both a pedagogical tool and desirable real world skill are not made explicit to 

students.  Thus, the value of peer review will be bolstered if instruction explicitly 

addresses the rationale for including peer review in the curriculum.  Students’ 

perceptions of the role of peer review in the classroom and as a real-world skill were 

therefore also addressed as part of this research. 

Problem statement 

Curriculum goals developed by the Department of Biological Sciences at the 

University of South Carolina and similar large, research-based science departments 

focus on developing functional scientific competencies in their students.  Foremost 

among these goals is developing students’ scientific reasoning skills and writing 

skills.   Defined components of scientific reasoning include: identifying assumptions, 

creating and evaluating hypotheses, designing relevant experiments, analysing data, 
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evaluating results, assessing the validity of conclusions, identifying gaps in 

knowledge, learning from mistakes and deciding on steps to be taken in the future 

(see Appendix 1 for full list of Curriculum Goals).   In short, two major curriculum 

goals are for students to be able to engage in effective scientific reasoning and 

communication of findings.  Departmental review of the biology curriculum in 2003 

identified two major challenges to achieving these goals.  Firstly, the majority of 

undergraduate biology laboratory experiences revealed a lack of emphasis on 

scientific reasoning skills.  Secondly, no systematic means of evaluating the 

effectiveness of the curriculum existed.   

Consequently, curriculum reform efforts ensued to provide more opportunities 

for students to engage in open-ended research investigations in the introductory 

biology and sophomore-level courses for majors.   Effective science writing was also 

a desired competency as well as a rich data source for assessing student scientific 

reasoning abilities.  The process of peer review appeared to address both these 

challenges simultaneously.  Peer review is both an authentic scientific competency in 

and of itself as well as being a pedagogical tool that can engage students in 

significant opportunities to practice scientific reasoning, evaluation and writing skills.  

Further, peer review as a pedagogical tool increases the level of formative feedback 

provided to students thereby increasing opportunities for learning, without placing 

further time demands on faculty or graduate teaching assistants.  Peer review was 

thus selected as one pedagogical innovation to address the problem of improving 

students’ scientific reasoning skills as well as training them in a professional 

competency.  The focus it placed on student science writing also provided a rich data 

source (draft and final versions of papers) facilitating a solution for assessing 

students’ scientific reasoning abilities in a meaningful way. 

It quickly became evident however, that a single course was insufficient for 

the development of these skills and that a means of assessing student performance 

across multiple courses was needed.  Thus, this research also reports on the 

development and testing of a Universal Rubric for Laboratory Reports as a means of 

measuring the change in students’ scientific reasoning abilities over time.  

Research Questions 

 This research focused on the following broad research questions. Can 

undergraduate students consistently and effectively engage in peer review?  Is the 
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Universal Rubric for Laboratory Reports a reliable measure of student scientific 

reasoning abilities?  How do students’ scientific reasoning abilities in their laboratory 

reports change with course topic, assignment details and over time?  Do students’ 

scientific reasoning abilities improve with additional peer review experiences? 

Lastly, do students perceive peer review as a worthwhile educational activity? These 

broad questions were divided into the ten studies outlined in Figure 1.2 and 

summarized below. The relationship between the ten studies and each of the related 

research questions is presented in table 3.1. 

 

 

Figure 1.2. Overview of research and relationships among individual studies. 

 

 Firstly, this research established the required foundational condition that 

students are capable of effectively and consistently engaging in peer review (Study 

1).  Next, the reliability of the Universal Rubric was established (Study 2) and it was 

used to assess changes in student scientific reasoning abilities over time in a cross-

sectional sample (Study 4) and a longitudinal sample (Study 5).  Additionally, the 

reliability of scores generated by graduate teaching assistants under natural grading 

situations was assessed (Study 6) and graduate student opinions regarding the utility 

of the Universal Rubric were collected (Study 8).  An external, objective measure of 

student scientific reasoning ability was also employed using the Test of Scientific 

Reasoning (Lawson, 1978; Lawson et al., 2000).  Its reliability in this population was 

established (Study 3) and the relationship between Scientific Reasoning Test score 
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and students’ peer review experiences was investigated (Study 7).   Lastly, 

undergraduates’ perceptions and understandings of the purpose, utility and impact of 

peer review in the classroom (Study 9) and the role of peer review in the scientific 

community (Study 10) were investigated. 

Limitations 

Students’ written laboratory reports, while a rich source of data, inherently 

miss some aspects of reasoning which would be more clearly seen in students’ small 

group discussions, by direct questioning or observation of students in the laboratory. 

Further, using only written work as the primary data source definitely biases the 

results towards students who are able to better articulate their scientific reasoning 

onto paper.  There likely are students within this sample who have scientific 

reasoning skills and gains that were not evident because those students have more 

difficulty expressing themselves in writing than verbally or by action and decision.  

This research also focuses on a product (written report) that is often the result of 

scientific reasoning.  Focusing on the end-product rather than the process itself means 

that some nuances of how reasoning develops many not be noticed.  Use of an 

authentic outcome such as written reports is an effective compromise, however, given 

the realities of limited resources and investigator time for such a large population of 

students.  This research approach allows the assessment of the effect of peer review; 

further research may then illuminate the real-time mechanisms by which peer review 

impacts the development of reasoning skills. 

Significance 

Past research has investigated the effectiveness of various components of peer 

review such as peer-peer collaboration, writing to learn and formative feedback on 

the development of students’ scientific skills (Fig. 1.1) suggesting that peer review 

would be a powerful pedagogical strategy as it combines many of these elements.  

Peer review is also a skill required of practicing scientists and therefore desirable to 

develop in students as an authentic competency.  As little direct research exists on the 

effect of peer review on students’ scientific reasoning abilities, however, these studies 

will contribute to valuable insight to our understanding of students’ scientific 

development.  Besides contributing new knowledge to the field of science education, 
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this research may have practical implications for faculty who have not adopted peer 

review, by providing sufficient evidence to encourage them to incorporate it into their 

own classes. Further, for those university science departments around the United 

States that have already implemented peer review, this research may identify 

mechanisms for increasing its beneficial effects on student performance or reducing 

its frustrations by highlighting the relative strengths and weaknesses of the different 

aspects of the process.  

Lastly, development of a rubric of core criteria for written laboratory reports 

that emphasises scientific reasoning is of interest to a wide variety of science faculty 

and to date, no generalised rubric for written laboratory reports appears to be 

available in the literature.  Assessment of the effect of peer review on students’ 

writing is of interest to both science and writing faculty and language and literacy 

faculty interested in argumentation.  

Summary 

Writing and critical thinking are ubiquitous practices in science and goals of 

science education. A rich and varied literature also exists on both the benefits of peer 

collaboration and formative feedback as well as on the benefits of analytical writing 

to learning and critical thinking.  Peer review emphasises learning by writing and 

provides multiple additional opportunities for students to practice scientific reasoning 

and evaluative skills.  It also increases the level of formative feedback provided to 

students three-fold without a concurrent increasing demand on instructor time.  Peer 

review may therefore accelerate the development of students’ scientific reasoning 

skills.  

This thesis focuses on assessing the effect of peer review on students’ 

scientific reasoning abilities.  Peer review is hypothesized to be a mechanism for 

stimulating the discourse and reflection necessary for development of scientific 

reasoning skills.  Predicted changes in scientific thinking skills can be measured via 

an objective quantitative test as well as qualitative analysis of students’ written 

laboratory reports and peer reviews.  Comparisons of the correlation between 

scientific reasoning and generalized undergraduate academic experience (number of 

credit hours earned) compared to the number of peer review experience allows the 

effects due to the peer review process to be distinguished from the effect of 
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increasing academic maturity.   Additionally, investigation of scientific reasoning 

evidenced in laboratory reports using both cross-sectional and longitudinal samples 

allowed rich and direct measurement of student achievement of curricular goals.  

Lastly, a survey investigating student perceptions of the peer review process would 

enable the impact of peer review to be viewed through the students’ eyes.  The 

context for the study is undergraduate biology laboratory courses at the freshman, 

sophomore and upper division levels at a large (25,000 students) state university in 

the United States. 

Peer review thus provides an interesting link between the areas of scientific 

writing and reasoning and investigation into its effect on students’ scientific 

reasoning and writing skills will provide useful data to faculty and administrators in 

higher education concerned with student achievement as well as programmatic 

assessment and demands on faculty time. 
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CHAPTER 2 

LITERATURE REVIEW  

Overview 

 This chapter is structured around the relevant literature supporting and 

defining the concepts of scientific reasoning, science writing, and peer review as well 

as discussing what tools are currently available for measuring scientific reasoning in 

written form and what tools must still be developed.  Scientific reasoning in 

particular is a concept that is differently defined in various subfields.  Here it refers to 

the mental processes necessary to design, implement and interpret scientific research.  

Therefore, the initial portion of this chapter is spent more fully discussing what those 

mental processes might be and what we know about how those mental abilities 

develop in students.   

Scientific reasoning can be demonstrated in a wide variety of contexts such as 

observation of a person’s actions, recording verbal discussion, probing by interviews 

or analysing scientific outputs, such as written reports.  While other contexts are 

briefly discussed, writing is the logical pragmatic data source to investigate scientific 

reasoning in higher education given the relatively well-developed generalized writing 

ability of students at that age (compared to K-12 abilities), the ubiquity of written 

laboratory reports in the curriculum, the authenticity of writing as a means of 

communicating scientific endeavors and the availability of appropriate instruction 

and mentoring from other science writers (graduate students and faculty teaching 

science courses).  A discussion of what distinguishes science writing from other 

writing and how it relates to scientific reasoning is therefore included. 

The process of peer review, as it is a familiar process to scholars, is only 

briefly described.  Instead time is spent investigating the potential effectiveness of 

peer review as a pedagogical strategy.  It should be noted that peer review is doubly 

valued in that it is a desirable skill for students to learn simply because it is an 

authentic scholarly activity as well as being a pedagogically powerful tool. 

Having now identified the learning outcome of interest (scientific reasoning), 

the instructional intervention (peer review) and the primary data source (science 

writing), it is clear that a tool is needed with which to measure the resulting student 

achievement.  A review of the criteria used in professional peer review as well as 

criteria and measurement tools available in the published literature follow.   These 
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resources were used to compile a list of consensus criteria for effective scientific 

reasoning in written formats.  It became clear that no appropriate published rubric 

was available.   Criteria from the published literature were then combined with input 

from departmental faculty, graduate students and external educational researchers 

over the course of 18 months.  The result was Universal Rubric for Laboratory 

Reports.  Out of consideration for the reader, the various versions, revisions and 

discussions required to produce the rubric were not detailed here.  The relevant 

literature components were mapped onto the final Universal Rubric criteria so that 

the reader may see whether support for each criterion derives from the scientific 

community and/or the research literature.  The reader should note that all criteria 

included in the final version of the rubric were also reviewed and received support 

from the faculty of the Biological Sciences Department at the University of South 

Carolina. 

Regardless of its reliability and validity, however, the rubric provides only a 

single data perspecitve.  A construct as complex as scientific reasoning requires data 

to be triangulated across multiple perspectives to increase confidence in the validity 

and generalizability of conclusions (Mathison, 1988).  The potential use of a different 

methodology (published pencil and paper test of scientific reasoning) as a means of 

sampling a greater proportion of the student population was therefore investigated.  

This more distal measurement could determine if the effect of peer review on 

scientific reasoning was detectable beyond the confines of student written reports.   

Lastly, research literature demonstrated that information on student 

perceptions of the utility and impact of peer review would be worthwhile as student 

perceptions often have a strong impact on and instructor’s willingness to implement 

instructional innovations.  Previous research on students’ perceptions of peer review 

was sparse and indicated a need for a large scale, quantitative survey.  There also 

appeared to be a gap in the research literature concerning students’ perceptions of the 

role of peer review in the scientific community. 

The chapter then concludes with a discussion of additional insights gleaned 

from the literature about how to best implement peer review in the classroom and an 

overall summary. 
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What is scientific reasoning? 

Historical perspective  

 The field of study concerned with scientific reasoning can be divided along 

one’s belief in the extent to which content knowledge and problem context affect 

reasoning strategy and ability.   At one end of the spectrum are studies that focus on 

the development of domain specific content knowledge and the development of 

conceptual knowledge and procedures within a field.  The other end of the spectrum 

considers scientific reasoning to exist across all scientific domains and focuses on 

scientific problem solving e.g. “hypothesis generation, experimental design and 

evidence evaluation” (Zimmerman, 2000, p. 101) independent of content knowledge.  

Zimmerman (2000) describes most of the domain specific research as focusing on 

identification of naïve theories (e.g. misconceptions) and the process of conceptual 

change in specific topic areas.  This researcher concurs that challenging students’ 

alternative conceptions or misconceptions and development of content knowledge is 

more accurately described as learning rather than reasoning.  Similarly, at the other 

end of the spectrum, early attempts to quantify scientific reasoning separated a 

person’s content knowledge from the strategies that they might use to solve problems 

(e.g. Ward & Overton, 1990) found little relationship between a person’s education or 

occupation and their performance on such tasks.  This type of “knowledge-lean” or 

“domain-general” knowledge was believed to be distinct from a person’s knowledge 

of particular subject matters, but subsequent work in the field indicated that reasoning 

abilities were clearly affected by the context in which the reasoning task was set, 

even if no specific knowledge was required (see review in Zimmerman 2000).   

Namely, when presented with a logic problem set in an everyday context (e.g. 

students being punished for rule-breaking at school), students’ correct answers were 

greater than if presented with the exact same logical structure in an “if a, then b” 

format (Ward & Overton, 1990).    

 As the ability to conduct science is of interest here, scientific reasoning here is 

viewed as process mid-way between those two extremes.  The strategies and abilities 

with which this study was concerned transcend specific scientific context (hypothesis 

generation, analysis of evidence, etc.), but this researcher firmly acknowledges that 

those processes are most realistically measured in contexts with which the subject has 

at least some familiarity (e.g. everyday contexts or course material). 
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Characteristics of scientific reasoning in experts 

 A first step in a discussion of the development of scientific reasoning is to 

identify what is meant by the term. Kuhn (1989) defines scientific thinking as the 

ability to consciously use and coordinate theory and evidence.   

The scientist (a) is able to consciously articulate a theory that he or she 

accepts, (b) knows what evidence does and could support it and what 

evidence does or would contradict it, and (c) is able to justify why the 

coordination of available theories and evidence has led him or her to 

accept that theory and reject others purporting to account for the same 

phenomena. (Kuhn 1989, p. 674).   

 Zimmerman (2000, p. 104) expands the definition to encompass the action of 

problem solving in addition to the justification of conclusions and defines scientific 

reasoning as “problem solving strategies [emphasis original] that are involved in the 

discovery and modification of theories about categorical or causal relationships.”  

 Within domain general models of scientific reasoning, there exists another 

relevant distinction however.  Early work focused on knowledge lean or context 

independent reasoning problems that usually took only minutes to solve (Zimmerman 

2000).  Such problems are much more a test of formal abstract reasoning skills rather 

than scientific reasoning skills however.  Content knowledge, while not the goal of 

scientific reasoning here, is required in order to frame and inform ones decisions 

about which hypotheses are likely to be fruitful and what techniques are available for 

experimental design.  Later work on scientific reasoning shifted to more knowledge 

rich tasks that required multiple steps over longer time periods.  In relevant work, 

Klahr and Dunbar (1988) identify three major interrelated conceptual spaces in 

scientific reasoning in their Scientific Discovery as Dual Search model: 1) hypothesis 

generation, 2) experimental design and testing of hypotheses and 3) evidence 

evaluation.  They note specifically that scientific reasoning is not a linear process, but 

a recursive coordination and integration of these processes. 

Much of the cognitive psychology literature on scientific reasoning focuses on 

expertise as it is from observing experts that we derive the qualities and traits that 

comprise the definition of scientific reasoning.  Dunbar extends the work begun with 

Klahr, but makes the logical but radical suggestion that studying people of various 
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backgrounds under controlled experimental conditions on artificial tasks in a 

psychology laboratory fails to capture the aspects of scientific reasoning that produce 

new scientific discoveries.  He suggests specifically that the failure to observe 

scientists as they actually work creates two gaps in our understanding: 1) actual 

scientific problem solving may differ from solving arbitrary psychology tasks, and 2) 

the large contribution made by the social collaboration among colleagues is excluded 

(Dunbar 2000).  When he observed scientific experts in their natural environment 

(here defined as well-funded molecular biologists heading up their own research 

laboratories), Dunbar (1997; 2000) generated several surprising findings: 1) that 

practiced scientists attend to unexpected findings as the major source of new 

hypotheses and experiments, and 2) that they engage in distributed (group) reasoning 

(e.g. group discussions in laboratory meetings) to overcome challenges in their 

research.  In particular, Dunbar concludes that group reasoning surmounts the 

difficulties that individuals have generating explanations for unexpected results. 

 
This pattern of challenging inductions was ubiquitous across all labs…. 

Individual subjects have great difficulties in generating alternate 

inductions from data, and also have great difficulties in either limiting or 

expanding inductions.  Distributed reasoning helps circumvent these 

difficulties.  When distributed reasoning occurs, the group quickly 

focuses on the reasoning that has occurred and the other members of the 

laboratory will generate different representations.  These new 

representations will make it possible for members of the lab to propose 

alternate inductions, deductions and causal explanations.  Thus, 

distributed reasoning provides new premises and models that a particular 

individual might not be able to generate when reasoning alone. (Dunbar 

1997, p. 13) 

 

Not surprising to those who have attended laboratory meetings, however, none 

of the members of the group recalled or could identify the contributions of various 

members to the solution once the challenge had passed. 

 

Once a new concept is generated the cognitive scaffolding is thrown away 

and scientists cannot reconstruct the cognitive steps that went into the 
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discovery.  Because of this scientists and historians reconstruct their 

creative moments, often from their lab books.  Unfortunately many of the 

key cognitive steps made in a discovery do not end up in the lab books. 

Thus, many of these reconstructions are based on partial information and, 

as a result, myths surrounding the creative process develop. (Dunbar 

1997, p. 16) 

 

This work provides three important insights.  Firstly, the focus on collaboration 

and group work in science classrooms is further justified as a skill required of 

practicing scientists (Dunbar 2000) in addition to being an effective pedagogical tool.  

Dunbar’s work also makes clear that focusing on unexpected results and/or 

conflicting data is an intentional action or skill of practicing scientists (1997).  

University instruction should therefore include addressing conflicting data and 

consideration of alternate explanations as an important part of the curriculum and 

such an emphasis should be included in whatever criteria are used to assess student 

performance.  Thirdly, this is a stark reminder that even the most comprehensive 

performance assessment cannot capture all the skills required to be a practicing 

scientist.  Student performance in science writing is a robust measure of scientific 

reasoning skills, but does not capture the process of science in its entirety. 

 Another means of characterising scientific reasoning in experts is to compare 

the strategies of experts versus novices when solving problems.   Common 

characteristics of novices appear to be the obvious lesser content knowledge, as well 

as a tendency to focus on the surface qualities of a problem, rather than work with the 

underlying principles (Dhillon 1998; Schunn and Anderson 1999).  Experts tend to 

frame problems using the abstract underlying principles and solve problems by 

dividing them into functional sub-problems (Schraagen 1990).  This tendency of 

novices to miss the underlying structure of a problem is a familiar phenomenon for 

any instructor who has successfully led students through one problem solving 

exercise only to have them completely stymied when presented with the same type of 

problem set in a different context.  Novices also often tend to be unable to correctly 

represent problems in diagram form (Dhillon 1998; Schunn and Anderson 1999) 

(likely to do the same lack of understanding of underlying principles described 

above), use many, short, less informative and potentially random means of attempting 
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to solve the problem as well as be less aware or capable of the need to control 

variables (Schunn and Anderson 1999).   

Further, there is a notable distinction in how novices and experts approach a 

problem in that experts spend more time and effort identifying the underlying 

paradigm and framing the question than do novices.   For example, four groups of 

subjects ranging in their level of expertise and content knowledge were presented 

with a real world problem.   Undergraduate experimental psychology majors 

(novices), experimental psychology graduate students (intermediates), PhDs in areas 

outside of sensory psychology (design experts) and PhD in sensory physiology 

(domain experts) were presented with the problem that the taste of Coke-Cola no 

longer appears to be preferred by much of the Dutch public and asked to design 

research programs which would suggest how the product should be improved 

(Schraagen 1990).   The presence of two groups of PhDs was an attempt to determine 

the extent to which problem solving is domain specific.  Namely, PhDs from other 

areas have plenty of expertise in conducting scientific research, but using content 

knowledge that is less relevant here.  Subjects were asked to ‘talk-aloud’ describing 

their thinking as rationale as they worked through the problem.  The domain experts 

spent nearly fives times as long in framing the question as did beginners (10.5 vs. 2.2 

statements, p = 0.02) and nearly twice as long as did the design experts (5.7 

statements).  The research programs produced by the subjects varied in that the PhDs 

all produced much more structured goals than did the novices, out-of-area PhDs and 

graduate students all used mental simulation a great deal and only the PhDs problem 

conception schema contained abstract principles (Schraagen 1990).  In-area PhDs 

broke the problem down into sub-problems and designed a means of investigating 

each sub-problem. Out-of-area PhDs also framed the problem in abstract terms, but 

had to resort to mental simulation, working through the results that would be 

generated by each experimental approach and then checking the outcome against the 

initial goal to determine if it was a fruitful approach (Schraagen 1990).   

Thus, the identification of an appropriate paradigm and subsequent approach 

to a research problem appears to be the most challenging portion of scientific 

reasoning, particularly because novices are often completely unaware of the need to 

identify the underlying principles before designing an experimental approach.  When 

research is set into more scholarly settings, this issue of needing to identify the 

underlying paradigm would translate itself into a need to understand the context or 
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knowledge landscape of a field and propose research that would fill interesting gaps 

in that knowledge in a fruitful way. 

 Summing across these works, scientific reasoning thus appears to have 

several layers.  The first layer of reasoning is the ability to take static data and 

make logical conclusions or to design an experiment that would test a given 

hypothesis.  This type of reasoning can be measured by paper and pencil tests 

which present students with scenarios for which they are asked to select 

appropriate methodologies or to interpret the outcomes of experiments already 

run (e.g. Scientific Reasoning Test, Lawson 1978).   The second layer, the 

development of the more complex skill of identifying underlying principles and 

framing a scientifically interesting question is likely more challenging and 

requires a more comprehensive methodology for its assessment.  Appropriate 

methodologies might include direct observations of students while engaged in 

research, or analysis of students’ written reports on their research project.  

The last layer, which is missing from these scholarly attempts to 

investigate how science is conducted is the ability to be conversant in ones’ 

scientific field and recognize when conceptual frameworks are incompatible 

with the existing evidence and to propose a new paradigms (Kuhn 1970).  

While superficially similar to the ability to recognize that a given set of data 

may or may not support a given conclusion and suggesting or selecting 

alternative tests (which is common in paper and pencil tests), such constrained 

scenarios miss the more fully developed process that occurs when investigators 

take a step back in their consideration of the problem and re-examine not just 

the localized concept, but the conceptual framework from which it is derived.   

This pinnacle of scientific reasoning produces new thoughts or insight that lead 

to scientific discovery.  While true scientific discovery is difficult to achieve 

within even the higher education classroom, it should be included in the 

definition of scientific reasoning, or else the definition cannot encompass the 

best examples of scientists at work.   

Therefore, for the purposes of this study, scientific reasoning is defined 

as:  the ability to generate, manipulate, evaluate and reconcile data within 

conceptual frameworks.  Additionally, scientific reasoning includes the ability 

to note disparities among data or between data and theoretical frameworks and 

test and revise to those conceptual frameworks in a continuous attempt to 
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generate an internally consistent understanding of phenomena.  The challenge 

now arises as to how to facilitate the development of scientific reasoning in our 

students as well as measure the effectiveness of such a curriculum. 

How can educators facilitate the development of  

 students’ scientific reasoning abilities? 

What is known about the trajectory of how scientific reasoning skills develop? 

Zimmerman (2000) provides a comprehensive review of literature regarding 

scientific reasoning and the following highlights emerge from her work.   

Children’s performance (third to sixth graders) was characterized by a number 

of tendencies: to generate uninformative experiments, to make judgments based 

on inconclusive or insufficient evidence, to vacillate in their judgments, to 

ignore inconsistent data, to disregard surprising results, to focus on causal 

factors and ignore noncausal factors, to be influenced by prior belief, to have 

difficulty disconfirming prior beliefs, and to be unsystematic in recording plans, 

data, and outcomes. (Zimmerman 2000, p. 129) 

Adults appear to differ from children in that they typically “needed to see the 

results of several experiments. Rather than ignoring inconsistencies, adults tried to 

make sense of them. Adults were more likely to consider multiple hypotheses (e.g., 

Dunbar & Klahr, 1989; Klahr et al., 1993).” (Zimmerman 2000, p. 134).  Both 

children and adults used multiple strategies and Zimmerman accurately points out 

that the transition to more productive strategies is gradual rather than abrupt.  

Experience improves performance among children whether that experience is gained 

over chronological age or over multiple sessions with the same experimental system 

and education improves performance among adults (Amsel and Brock 1996).  

Several pedagogically important distinctions arise from this set of work.  The 

first distinction is that hypothesis generation or properly framing the question appears 

to be a more challenging task than selecting or designing appropriate experimental 

protocols.  Even elementary school children (first graders) are facile in selecting the 

appropriate experimental design to differentiate between two conflicting hypotheses 

and can generate empirical procedures on their own to test two given alternative 

hypotheses (Sodian, Zaitchik et al. 1991).  Specifically, when 1st and 2nd graders were 

presented with two mutually exclusive and exhaustive hypotheses, over 50% of the 
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1st graders and 86% of the 2nd graders could correctly design an experimental test to 

distinguish between the two proposed explanations.  When presented with a problem 

but no suggested explanations, however, only about 25% of the children in both 

grades could generate spontaneous solutions (e.g. appropriate tests).  Thus, the skill 

of properly framing the question appears to be more difficult than the skills of 

controlling variables or identifying causal relationships (see again the Coke-Cola 

taste study Schraagen 1990; Sodian, Zaitchik et al. 1991), though it should be noted 

that control of multiple variables (causal and non-causal) is still quite challenging for 

elementary age children (Kuhn 2007).  This outcome makes sense as properly 

framing the question requires contextual knowledge to select the plausible solutions 

from the infinite universe of possible solutions, but selection of an appropriate 

methodology to test two hypotheses requires considerably less contextual knowledge.  

Phrasing the proposed solution in a productive way (to allow easy differentiation and 

refutation) is likely also a learned skill.   

 

Pedagogical implications of research on expertise 

 Thus, when attempting to teach scientific reasoning, it appears to be productive 

to initially scaffold students by providing them with hypotheses and having them 

focus on developing methodological competency (control of variables, understanding 

of co-variation, replication, etc.).  More experienced students can then be given the 

more challenging task of framing their own questions as well as determining 

appropriate methods.   Lajoie (2003) in particular points out a weakness in the field 

that has invested much in differentiating between the abilities of novices vs. experts 

while neglecting to develop corresponding pedagogical methods to help students 

better develop expertise.  She recommends that the trajectory and qualities of 

expertise must be made explicit to students and that they benefit from a focus on 

metacognitive elements because experts have “a better awareness of what they know 

and do not know” (Lajoie 2003 p. 21).  In particular, she recommends that students 

be facilitated by a “continuous interacting hierarchy of novice to intermediate 

learners” supervised by an expert in a collaborative real-world setting (Lajoie 2003 p. 

22).   

 Students should be provided with multiple representations of a problem to 

allow comparison [and] frequent situations that force them to reflect on the results of 

their actions.  Frequent embedded formative feedback and expert intervention 
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highlighting the need for ongoing practice and refinement are also key issues for 

success (Lajoie 2003).   These elements have been shown to greatly accelerate 

students’ development of the qualities associated with expertise such as greater 

pattern recognition, metacognition regarding the limitations of one’s own knowledge 

and deeper, more highly structured knowledge.  For example, 20 hours of training 

using a simulation presenting new avionics technicians with multiple problems to be 

solved and formative feedback including suggested strategies improved performance 

to a level equivalent to almost four years of experience (Nichols, Pokorny et al. 

1992).  In particular, such training simulations accelerate learning because they 

present learners with both common and unusual situations allowing learners to 

perceive underlying principles more rapidly than with on the job training wherein 

long time periods are required to experience such contrasting and unusual situations 

(Ong 2007). 

Thus, research on expertise appears to suggest that collaboration, reflection 

and metacognition facilitate the development of scientific reasoning.  In the scientific 

community, however, the scientific reasoning does not end when the last data point is 

collected, but continues as outcomes are communicated to colleagues via scientific 

writing (Yore, Florence et al. 2006) and similar to scientific reasoning, scientific 

writing is also an explicit skill that must be taught (Campbell, Kaunda, Allie, Buffler, 

& Lubben, 2000; Keys, 1999a; Lerner, 2007).  As both are specialized skills, any 

measure of scientific reasoning via scientific writing is confounded; effective 

reasoning may be obscured by poor writing or simply a lack of proficiency with 

science writing (Lerner 2007).  Thus the use of science writing as a data source for 

scientific reasoning is a more conservative measure than direct observation.  As 

scientific writing is a highly authentic and readily available data source for assessing 

scientific reasoning in higher education however, this constraint is acknowledged, but 

does not alter the decision to use scientific reports as a major data source.   

Defining features of scientific writing  

Scientific writing varies notably from other forms of formal writing and from 

informal writing as well.  Keys (1999a) identifies scientific writing as differing from 

other forms of writing in that scientists use: 
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[1.] grammatical metaphor, or the condensation of several words that describe 

an action or process into a single noun, such as photosynthesis, 

metamorphosis, or polymerization…  

[2.] expansion, the building of semantic relationships between events by the use 

of additional clauses that further specify, define, or extend the initial 

clause. Expansion includes three main types: (a) elaboration—further 

defining or clarifying an idea; (b) extension—joining two unique but 

related ideas; and (c) enhancement—qualifying with further information 

such as time, place, cause, or condition…  

[3.] lexical density: a high number of content words per clause;  

[4.] writing in the voice of third person; and…  

[5.] many [explanatory words] for events, such as cause, represent, produce, 

and form.  [numbers and all underlined emphases added, italicized 

emphases are original] (p. 1046) 

 

In addition to the differences delineated above, scientific writing also 

commonly uses an identifiable organizational format with an introduction/ purpose, 

methods, results, conclusions (Keys 1999), cites references to other scientific work 

and contains figures, tables or other graphical representations of data.  Scientific 

writing also strives to avoid value-laden adjectives or adverbs in an attempt at 

objectivity.  A complete absence of bias is impossible however, as even the questions 

scientists choose to pursue are affected by societal and personal influences (Kuhn 

1970; Simonton 2004).   It has been recognised since the early 1900s that scientific 

writing differs sufficiently from other forms of writing and that to learn to write 

scientifically, students must either be taught its conventions explicitly or be notably 

enculturated to scientific writing as a genre (Keys 1999; Lerner 2007).  

How science writing can facilitate science reasoning 

Writing in and of itself has historically been viewed as an effective 

pedagogical tool due to the creation and ownership of knowledge and reflection it 

encourages and has evolved into movements such as the ‘Writing Across the 

Curriculum’ and ‘Writing to Learn’ which have grown in higher education and K-12 

institutions over the last few decades (Connally & Vilardi, 1989; Keys, 1999b; Klein, 

1999) and in science laboratories in particular (Lerner 2007).  There has been debate 
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over whether expressive creative (more personal) writing vs. more constrained, 

scientifically focused writing has greater power to engender learning and many 

advocates of writing to learn suggest expressive or informal writing is beneficial in 

science classrooms as well (Hand, Prain, & Wallace, 2002; Keys, 1999b; Keys, 

Hand, Prain, & Collins, 1999).  To some degree, that debate is irrelevant to our 

purposes here.  Even if creative writing were to be more effective at stimulating 

engagement, the specific skill of comparing and evaluating scientific ideas and 

justifying scientific conclusions with data in a persuasive written form is a desirable 

skill that can only be acquired by practice in the genre of scientific writing (Keys 

1999).   

Most active research scientists in academic settings appear to view writing as 

an integral component of their science and a process that stimulates them 

intellectually.  Yore, Hand and Florence (2004) surveyed and interviewed tenured 

and tenure-track faculty from life-sciences, physical sciences and engineering 

disciplines.  Explicitly, the scientists offered the idea that writing serves more than 

just a communication function; it also helps them to improve the clarity of their ideas, 

generate new insights and synthesise the information in new ways (Yore et al., 2006; 

Yore et al., 2004), though the recognition of the transformative effect of writing was 

more tacit for some individuals than others (Yore, Hand et al. 2002).  In particular, 

scientists interviewed by Yore and colleagues valued the reflection and 

metacognition that writing encouraged and the resulting self-assessment.   “[W]riting 

helped them to clarify ideas and detect faults in logic, inconsistencies in claims, 

evidence and warrants, and voids in background” (Yore et al., 2004, p. 364). 

Developmental trajectories of student scientific writing 

Past research provides important clues as to how writing is best incorporated 

into the curriculum.  Writing can stimulate scientific reasoning and knowledge 

generation in students as young as middle school (Keys 2000) and indeed explicit 

instruction on the role of writing in scientific knowledge generation is heavily 

recommended (Campbell et al., 2000; Keys, 1994, 1999b, 2000).  The simple act of 

writing alone is insufficient however.  When students are asked to communicate the 

outcome of their scientific investigations without any specific writing prompts, most 

students simply regurgitate factual information with little interpretation or discussion.  

Explicit identification of writing goals to students, such as the consideration of 
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alternative explanations, or the need to justify conclusions or provide rationales, 

appears to be necessary to facilitate synthesis, reflection and scientific knowledge 

generation (Keys 1999).  

For example, Campbell and colleagues (2000) gave incoming university 

freshman a physical science problem set in a real world context and asked to them to 

work in collaborative groups to differentiate between two alternative hypotheses.  

The outcome of their work was to be written into “…a full report detailing all aspects 

of the experiments, measurements, calculations and graphs as well as your findings 

on who is right or wrong.” (Campbell, Kaunda et al. 2000, p. 842).  The purpose of 

the study was to determine students’ baseline abilities prior to instruction.  This 

contextualized, real-world problem solving situation contained all the elements 

desired in a quality scientific report – alternative explanations that must be tested and 

refuted, multiple possible methodologies, a need for justification of conclusions, etc.  

Student reports fell far short of hopes and expectations however.  Most students 

failed to see the connection between methodology and resulting data.  No student’s 

report contained methodological rationales and several lacked any description of 

methods at all.  The authors did not report on the degree to which students’ 

conclusions were supported by data, but did recommend that “[i]f an ability to 

communicate [ones' scientific process] is considered a necessary element of science 

learning at university level then the communication of science should be taught 

explicitly and alongside the procedures and concepts of science." (Campbell, Kaunda 

et al. 2000, p. 851). 

Similarly, Keys (1999a) found that when 8th graders were asked to conduct 

two inquiry investigations and “provide a written report detailing the behaviors that 

you observed while watching your animal.” (p. 1047) and “evaluate the creek 

water…based on what you know about physical characteristics, chemical 

characteristics and macroinvertebrates,” (p. 1048) that 50% of the individual reports 

and 75% of the collaborative reports results in simple “knowledge telling” in which 

content knowledge could be dense, but inferences and syntheses were rare or non-

existent (< 3 inferences per report).  Students also failed to provide information on 

their methodologies and only reported results, often without any interpretation or 

conclusion (Keys, 1999a).  In contrast, when Keys (2000) provided a similar 

population of 7-9th graders engaged in a soil erosion inquiry project with a writing 

prompt that requested:  
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1.  Your scientific opinion of how bad the erosion is… 

2.  Detailed evidence supporting your opinion, including the results of 

specific observations and measurements. 

3.  A description of how you carried out the observations and 

measurements. 

4.  How your findings compared with your predictions… 

5.  Possible causes of [the] erosion… (p. 689) 

 

All students wrote reports that included appropriate data and observations, 

methodologies and reasoned conclusions. Most “…generated new knowledge and 

explanations specifically from the act of writing….  Therefore students as young as 

eighth grade can engage the mature cognitive process of making the ‘return trip’ from 

the [written] discourse space back to the content space.” (p. 687).  Further, Keys 

asserts that middle school students when properly supported can “engage in high 

levels of scientific thinking including generating hypotheses, evidence, meaning for 

patterns, and knowledge claims.  Thus, they learned science from the writing 

experience…” (p. 688).  The act of writing and conveying ones’ scientific journey 

can therefore be seen as an important component of that journey.  Practicing 

scientists find that the act of writing enhances or participates in their processes of 

scientific discovery.   

 

Summary of the role of writing in scientific reasoning 

Students (novice scientists) should therefore be encouraged to generate both 

scientific insight and knowledge while learning to effectively communicate through 

writing.  Writing serves as both a means of facilitating scientific reasoning as well as 

providing a data source for evaluating students’ abilities.  The benefits of writing are 

further likely to be multiplied when writing is combined with peer review.  Peer 

review may accelerate the development of both scientific reasoning and writing 

because of the critical thinking and evaluation skills required and repeatedly practiced 

as students evaluate the claims and evidence of their peers.   The inevitable 

comparisons that will be made when students evaluate the work of others may also 

stimulate self-assessment and metacognition. 
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What is peer review?  

Definition of peer review 

Peer review is the evaluation of scientific work and reasoning by scholars 

who work in similar or complementary areas (peers) to determine whether or not 

proposed work should be funded or published (National Science Foundation 2008) 

and is a ubiquitous process in science (Ziman 1998).   Success as a scientist is 

predominantly defined by one’s ability to publish in peer-reviewed journals and 

secure grant funding (Mervis 2000).  Despite its near universal use as a means of 

providing active feedback and exerting subsequent influence on the forefront of 

research, only a small amount of research has been conducted on how scientists 

respond to peer review.  When interviewed, scientists have reported that addressing 

reviewers’ comments about their writing forced them to assess, monitor, and regulate 

their science inquiries and research reports (Yore, Florence et al. 2006).  Hence, 

engaging students in peer review is likely to also stimulate reflection and 

metacognition, thus facilitating the development of scientific reasoning skills. 

Why is peer review likely to improve scientific reasoning? 

Peer-peer collaboration improves student learning 

 The positive impact of collaborative learning is generally well accepted 

(Boyer Commission, 2001; Committee on Undergraduate Biology Education, 2003; 

Duit & Confrey, 1996) and has a strong empirical research base in science 

classrooms (e.g. Hogan, Nastasi, & Pressley, 2000; Jensen & Finley, 1996; Osborne, 

Erduran, & Simon, 2004).  Peer review is a specialized form of peer collaboration, 

but even such asynchronous, online, written collaboration can cause learning gains 

(Hoadley and Linn 2000).  Mechanisms by which peer feedback can stimulate 

learning or insight include identifying misconceptions, gaps in logic and 

unrecognized assumptions.  Even when peers are novices, peer-peer collaboration is 

helpful so long as each peer possesses different inaccuracies or inadequacies 

(Schwarz, Neuman & Biezuner, 2000).  

In fact, when Schwarz and colleagues (2000) paired 44 students who both 

held misconceptions about the relative value of fractions, three quarters (77%) of the 

students could answer correctly after working through collaborative inquiry tasks 

with a misinformed peer (a significant gain at the p = 0.05 level) and for nine of the 
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pairs, both students overcame their misconceptions by the end of the task.  In 

contrast, of the 10 students with misconceptions who were paired with a competent 

peer (one who had answered the pre-test question correctly), only half could answer 

the post-test question successfully which is a non-significant gain (p > 0.05).  The 

authors attribute the greater success of peers who were paired with another incorrect 

peer to the fact that peers who held contrasting misconceptions identified and 

corrected those misconceptions through the collaborative process because they 

engaged in argumentation and justification.  In contrast, social dynamics appear to 

differ when one peer is competent and the other not; far less justification and testing 

of ideas ensued in these pairs (Schwarz et al., 2000).  

While the collaboration of peers reviewing written work will not contain so 

much active justification and back and forth discussion, this result is important 

because it indicates that both ends of the peer spectrum can provide useful feedback.  

Namely, the active requirements of the peer review process will overcome the lack of 

interaction in ‘right-wrong’ pairs found by Schwarz and colleagues.  Competent peers 

are thus quite likely to provide useful feedback, while these results suggest that less 

competent peers may also stimulate positive revisions through contrasting 

misconceptions.  Thus, even less competent peers can likely provide useful feedback 

and discussion points to their peers.  Similarly, work of Rijlaarsdam and colleagues 

(2006) focusing on typcial students demonstrated that receiving any type of feedback 

caused significant gains, but students receiving written feedback specific to their 

papers had the largest gains.  While the use of collaborative work is therefore well 

acknowledged in K-12 pedagogical literature, the benefits of formative feedback on 

student learning are less commonly acknowledged in higher education (Yorke 2003).  

 Peer review of science writing is likely to be a particularly effective source of 

collaboration and formative feedback both because of its authenticity as a scientific 

skill and because past research suggests it may provide increased opportunities to 

practice evaluative skills, increase engagement and has a tendency to cause reflection 

and metacognition. 

Peer review provides multiple opportunities to practice scientific reasoning skills 

Each peer review experience exposes a student to multiple contrasting 

examples in the form of peers’ work.  At the institution where this research took 

place each student reviewed three peers’ papers.  In addition, most instructors who 
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implemented peer review also provided three additional exemplars identified as poor, 

average and high quality to assist students in understanding how the specified criteria 

could be enacted with varying degrees of success.  Thus, each student who engaged 

in peer review during this research project saw at least three unique examples and 

often six unique examples in addition to their own paper.   

Multiple contrasting examples of peers’ work can also be a critical aid to 

helping students to determine the salient criteria for a given task (Bransford, Franks 

et al. 1989).  Multiple contrasting examples have been shown to be important in 

helping students identify which aspects of a phenomenon are relevant and which are 

incidental (Driver and Scott 1996).  These multiple opportunities to apply one’s 

knowledge of the criteria in a relevant context would facilitate students finding 

weaknesses in their own work.  In addition, peer review simply increases the time 

that students spend comparing and evaluating scientific thoughts.  In and of itself, 

time on task has been found to correlate with greater achievement regardless of 

instructional method (Admiraal, Wubbels, & Pilot, 1999; Timmerman, Strickland, & 

Carstensen, 2008; Trowbridge & Wandersee, 1994).   Moreover, concerted and 

repeated practice over time is an important component of developing expertise 

(Ericsson and Charness 1994). 

Beyond just the additional opportunities to practice critical thinking and 

evaluation skills, peer review potentially provides relevant formative feedback.  

Formative feedback has been shown to have significant benefits for improving 

student work and learning (Chinn & Hilgers, 2000; Ravitz, 2002; Topping, Smith, 

Swanson, & Elliot, 2000; Yorke, 2003).  Without feedback, students cannot assess 

whether or not their conceptions are accurate or indeed whether or not they are 

learning at all. 

Peer review encourages reflection and metacognition 

Reflection and metacognition are also critical facilitators of meaningful 

learning (Baird & White, 1996; Bloxham & West, 2004; Pope, 2005; Yore et al., 

2002).  Students’ comments on end-of-term evaluations at our institution and 

elsewhere (Stefani 1994) indicated that the process of peer review often stimulates 

such reflection and self-assessment possibly leading to metacognition.  

Metacognition is the conscious control of one’s learning; when students are 

metacognitive, they are aware of where and when and how they have learned 
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something fostering greater construction of knowledge or conceptual change (Schraw 

and Dennison 1994; Baird and White 1996).  The act of writing and particularly the 

act of revision itself often leads to metacognition (Keys et al., 1999; Klein, 1999; 

Yore et al., 2004). Other researchers have suggested that undergraduates may gain as 

much from the act of reviewing as from the peer feedback they receive because of the 

self-reflection which is stimulated when student view others’ work and make internal 

comparisons with their own (Cho, Schunn et al. 2006).  Peer review may thus 

stimulate metacognition on both levels: because of the concrete acts of writing and 

revision as well as the forced evaluation of other’s work. 

Peer review increases engagement in coursework 

 Increased personal relevance and increased student involvement are commonly 

indicated preferences of students in a wide variety of classrooms (Fraser 1998; Fraser 

2002).  As peer review and scientific writing are authentic scientific skills and desired 

professional competencies (Cicchetti, 1991; Marsh & Bazeley, 1999; Yore et al., 

2004), it is plausible that students, as aspiring scientists, would perceive opportunities 

to practice these skills as personally relevant.  Assessing the quality of peers’ papers 

and receiving feedback also is likely to make students feel more actively engaged in 

the assignment.  There is a general perception among faculty who use peer review in 

their courses that students respond positively.  Marcoulides and Simkin report student 

comments such as “This was very useful to me.  Why don’t other professors do this?” 

(1995, p. 223).   More systematic and quantitative evaluations of the effects of peer 

review are “alarmingly sparse” however in the words of Hanrahan and Isaacs (2001) 

who conducted the only evident quantitative study of student perceptions of peer 

review in science writing. 

 When students were given the query “What do you think were the pros and 

cons of doing peer and self-assessment on the essay assignment?” a survey of 

students in a third year health psychology course found eight major themes in student 

perceptions of the peer review process (Hanrahan and Isaacs 2001).  For the reader’s 

convenience, these themes  are highlighted in italics.  Students reported that peer 

review was difficult, though most students focused on either the difficulty of being 

objective in one’s self-assessment, or perceived lack of credibility of peers or 

unfamiliarity with subject matter (essay topics varied and the course contained 

students in multiple programs of study) (Hanrahan and Isaacs 2001).  As all students 
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write on the same topic when doing peer review in biology courses these concerns are 

not terribly applicable to this study.  Students also reported that peer feedback 

provided a better understanding of the assignment and its criteria and that being able 

to compare their work to others was instructive (Hanrahan and Isaacs 2001).  They 

reported that the process overall was productive and caused an improvement in their 

writing either through self-reflection or by developing critical thinking skills.  

Students identified the following problems with implementation: the process was time 

consuming, some peers put little effort into their assessments, and reviewers did not 

receive any feedback on the helpfulness of their comments.  Lastly, students 

expressed that they felt empathy with their instructors, motivation to write well and 

impress their peers and discomfort with having their work exposed to others as well 

as with being placed in the role of critiquing someone else.  Hanrahan and Isaacs 

(2001) did not quantify the frequency of these student perceptions, but do suggest 

that future work quantify and validate these themes to determine if the benefits 

observed by their study are universal to the process of peer review or specific to their 

context and situation. 

 In more informal surveys, students’ comments were positive, and faculty 

perceived them to be more engaged and more motivated than in courses without peer 

review (Stefani 1994).  In first year biology courses where students peer reviewed 

written laboratory reports (n = 120), “100% of the students said that [peer review] 

was more time consuming and over 75% said that it was hard,” but “100% of the 

students said [it] made them think more, 85% said it made them learn more and 97% 

said that it was challenging” (Stefani 1994).  In graduate psychology courses where 

students peer reviewed potential manuscripts (n = 33 students) they rated the process 

of peer review and revision as 8.9 + 1.3 (on a scale where 1 = worthless, 10 = learned 

a lot) and the value of reviewing other people's papers as 7.9 + 2.3 (Haaga 1993).  In 

comparison, students rated the value of giving and watching oral presentations less 

favorably (7.0 + 2.4 and 4.4 + 2.1, respectively) indicating that they perceived peer 

review as a more useful exercise (Haaga 1993).  Notably, even non-science majors 

more often identified peer-review as a preferred learning tool compared to other 

learning aids such as graphic organizers, videos, case studies, personal experience, or 

study group discussions (Pelaez, 2002). 

 Thus, there are anecdotal and qualitative data indicating that students find peer 

review beneficial though it is challenging and time consuming.  In particular, students 
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believe it improves their writing and their ability to think critically, as well as 

stimulates reflection and metacognition by encouraging evaluation and comparison.  

A current gap in this research base is the lack of quantification of these perceptions 

however.  Do the majority of students feel peer review is beneficial?  Is improvement 

in critical thinking a rare or common perception?  No information is provided in the 

literature as to how students perceive the role of peer review in the scientific 

community, nor if they see connections between the classroom and scientific 

community.  Student perceptions are valuable for the insight they provide into 

motivation and effort.  Such affective dimensions can also affect performance, but 

even if students were unanimous in their appreciation of peer review, such 

perceptions may or may not be accurate reflection of actual changes in students’ 

performance as a result of peer review.  To determine the effect of peer review on 

actual performance of scientific reasoning tasks, it is necessary to turn to other 

sources of data. 

How do we measure students’ scientific reasoning abilities? 

Multiple measures for a complex concept 

Scientific reasoning, by definition, occurs in the inaccessible interior of the 

mind.  What is visible to the researcher are the outcomes or actions generated by 

these acts of reasoning.  Potential data sources range from ethnographic observations 

of a person’s actions while in the laboratory, to intentional communications such as 

written reports or oral explanations to direct questioning by an interviewer.  Given 

that reasoning occurs within the mind, it is plausible that asking subjects to articulate 

their thought processes would be a direct measurement of their reasoning.  Research 

shows that self-reports of reasoning are often inaccurate or incomplete however.  

Scientists have been shown to be: unaware of automated aspects of their thought 

processes and therefore leave out critical portions of their scientific reasoning 

processes (Feldon 2007) or oblivious to the synergies and distributed reasoning 

provided by collaborators (Dunbar 2000).  Other professionals such as teachers are 

similarly shown to not be aware of disjunctions between their voiced intentions and 

their actions (Simmons et al., 1999; Wubbels, Brekelmans, & Hooymayers, 1992).   

Reasoning is therefore best measured by a variety of data sources that provide 

triangulation for conclusions (Mathison 1988; Johnson and Onwuegbuzie 2004).  

Beyond the student perception of the impact of peer review already discussed above, 
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this study will focus on measuring student reasoning abilities using two different data 

sources: a detailed investigation of students’ reasoning as evidenced in their science 

writing and a more conservative measure of their abilities on a previously published 

multiple-choice test.  Subsequent sections focus on research relevant to the substance 

and reliabilities of rubrics for measuring reasoning in science writing and the 

previous findings of the Scientific Reasoning Test applicable to this purpose and 

student population.  

The laboratory report is the chosen data source for determining student 

reasoning because it is commonly employed in many science courses (providing a 

natural source of data over several years for each student) and because it most closely 

approximates a real performance assessment: the scientific manuscript.    In order to 

measure scientific reasoning using students’ writing, relevant criteria must be 

selected or developed.  Criteria used by professional referees for scientific journals 

combined with past research on rubrics for student science writing and discussions 

with biology faculty provide an appropriate context for the development of criteria 

that would apply across a wide variety of biology laboratory reports.  Such criteria 

and a rubric built from them would be termed universal because it would identify the 

attributes of effective scientific reasoning and writing regardless of the subject matter 

of the assignment or course (within a science major).  It would also provide students 

with a consistent and explicit set of criteria against which to measure their 

performance and therefore also function as an effective learning tool for students.  As 

described above, when students are asking to communicate their research through 

scientific writing and are not provided criteria or goals for what should be included, 

the outcome is primarily just “knowledge telling” (exhaustive lists of factual 

statements or the final outcome of the work without rationales or explanations) 

(Keys, 1999a) even at the university level (Campbell, Kaunda et al. 2000).  

Development of a rubric thus provides a pedagogical as well as methodological 

benefit. 

Criteria used in professional peer review 

The National Science Foundation provides only two criteria applicable to all 

grant proposals:  intellectual merit and broader impacts (2008).  Intellectual merit 

combines a reviewer’s assessment of the appropriateness of the research design with 

the qualifications of the researchers in light of the significance of the research topic 
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and the likelihood that it would have a “transformative” impact on knowledge in the 

field (National Science Foundation 2008).  The broader impacts criterion is 

concerned with the synergistic potential of the proposal and likely societal impacts.  

Thus, for university students, these criteria indicate that students must develop a 

sense of the context and subsequent significance of their work as well as the 

methodology and outcomes.   

Another source of information on the criteria used by professional referees are 

the instructions provided to reviewers of manuscripts submitted to journals.   

Reliability studies of professional peer review have for the most part focused on 

highly prestigious journals with high rejection rates in the social science and medical 

fields (Cicchetti, 1991).  These studies are the primary source of information on the 

criteria used by professional peer review.   In addition to the expected request for an 

overall recommendation on whether to publish the manuscript, two criteria were 

consistent across all journals for which information was available: significance, and 

methodology (Cicchetti, 1991; Marsh & Ball, 1989; Marsh & Bell, 1981; Petty, 

Fleming, & Fabrigar, 1999) (Table 2.1).   Thus, it appears that these two criteria are 

broadly agreed upon in the scientific community and should be a focus of 

pedagogical strategies aimed at developing university students’ scientific writing and 

reasoning abilities. 

Other criteria commonly included in professional peer review included 

writing quality (Cicchetti, 1991; Marsh & Ball, 1989; Marsh & Bell, 1981), literature 

review (Cicchetti, 1991; Marsh & Ball, 1989; Marsh & Bell, 1981), succinctness 

(Cicchetti, 1991), originality (Cicchetti, 1991) and theoretical context (Petty, Fleming 

et al. 1999).    To further investigate the criteria on which professionals judge science 

and science writing, Marsh and Ball (1989) did a content of analysis of written 

critiques of journal submissions and created an evaluation sheet with a total of 21 

criteria.  They then solicited at least two reviews for each of 278 manuscripts 

submitted to the Journal of Educational Psychology using these 21 criteria.  Using 

factor analysis, they determined that all 21 items condensed back down to four 

criteria commonly stated in instructions to reviewers: 1) research methods, 2) 

relevance to readers, 3) presentation clarity, and 4) significance which were already 

identified by that and other journals (Table 2.1).  Relevant or appropriate for a 

journal’s readership is the only criterion listed above which is not relevant to student 
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papers.  Thus, there appears to be a general agreement within the scientific 

community that methodological competency, appropriate context, adequate literature 

review, strong significance and writing quality are fundamental attributes of high 

quality research and science writing (Table 2.1 and Sternberg & Gordeeva, 1996).  

Consequently, there is strong support for including these criteria in the Universal 

Rubric for Laboratory Reports and such inclusion will assist students in identifying 

and developing the skills desired of practicing scientists. 

Table 2.1.  Criteria Used in Professional Peer Review. 

 Journal of 
Abnormal 

Psychology1 

Journal of 
Personality and 

Social Psychology2 

British 
Medical 
Journal1 

Journal of 
Educational 
Psychology3 

Criteria     
Significance/ 
Importance 

X X X X 

 
Design/Analysis/ 
Methodology 

X X X X 

Writing quality X   X 

Literature review X X   

Appropriateness 
for this journal’s 
readers  

X  X X 

Succinctness X    

Theoretical context  X   

Originality   X  

Note. All journals also asked reviewers to provide an overall recommendation regarding 

publication.  1(Cicchetti, 1991),  2(Petty et al., 1999),  3(Marsh and Ball,  1981, 1989) 

Reliability of professional peer review 

 The selection of criteria and development of a rubric is only half of the 

process however.  The utility of the rubric for both research data collection and use 

by instructors in biology laboratories must be evaluated by testing the reliability of 

the scores it generates when the rubric is applied to students’ laboratory reports.  As a 

means of providing context, the reliability of the rubric developed for this study was 

compared to the consistency of professional referees for science journals and against 

previously published relevant rubrics for measuring student written reasoning and 
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argumentation.  Marsh and Ball (1989) reviewed 15 studies on professional peer 

review of manuscripts submitted to various social science journals from 1973 to 1984 

and found that single rater reliabilities while significantly different from chance, were 

distressingly low (mean single-reviewer reliability of 0.27 + 012; range 0.08 (n= 216 

manuscripts) to 0.54 (n = 0.87)).  “Single-reviewer reliability [was] defined as the 

correlation between two independent reviews of the same manuscript across a large 

number of manuscripts submitted for publication” (Marsh and Bell 1981).  This 

finding of low reliability among referees has been replicated by other focused studies 

(r = 0.29 Petty, Fleming et al. 1999) and meta-analyses on scientific manuscripts (r = 

0.07 to 0.37 Cicchetti, 1991).  Grant proposals have higher reliabilities, which may be 

partially due to the greater number of reviewers (4 rater reliability for total score = 

0.49,  Marsh & Bazeley, 1999).  Such reliability scores are still below those 

considered acceptable if a researcher attempted to publish an instrument with such 

scores however.  At least, overall single rater recommendations to publish or fund are 

consistently more reliable than individual criteria (Cicchetti, 1991; Marsh & Ball, 

1989; Marsh & Bell, 1981; Petty et al., 1999) but still hovered around 0.30 to 0.34. 

Many explanations have been given for the disturbingly low consistency of 

professional reviewers.  For example, editors may intentionally select reviewers of 

contrasting viewpoint for manuscripts on controversial topics, (Cicchetti, 1991), 

reviewers have been shown to have bias towards research in current “hot” topics, 

even at the expense of appropriate methodology (Wilson, DePaulo et al. 1993) and to 

favor some papers over others based on the prestige of the institution or author (Petty 

et al., 1999; Ross et al., 2006 ), author gender (Petty, Fleming et al. 1999), primary 

language of the author (Ross et al., 2006) or even text length (Petty, Fleming et al. 

1999).  One explanation conspicuously missing from these discussions however is 

that reviewers were provided simply with a list of criteria, rather than a rubric.  

The distinction between criteria and rubrics 

Criteria are central to evaluation.  Without explicit identification of the 

qualities that are valued and sought after, evaluation cannot occur.  These qualities 

may be defined to varying degrees and range from highly subjective (e.g. 

“outstanding research which advances the field”) to highly objective (e.g. “text length 

in words”).  The distinction between criteria and rubrics is that rubrics provide 

descriptions of the performance at level for each criterion (Kuhs, Johnson et al. 
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2001).  These guidelines inform the reviewer as to where the decision lines between 

different levels should occur and thereby encourage reviewers to interpret the scale in 

the same way and use the same decision break points.  Without a rubric, reviewers 

may have different expectations or definitions of performance levels leading to vastly 

different applications of the point scale.  Even undergraduate peers from a wide 

variety of university settings can produced highly reliable ratings (α = 0.88) when 

they use a well-defined rubric (Cho, Schunn, & Wilson, 2006). 

Use of rubrics in higher education 

 Whilst faculty in many higher education institutions require graduate teaching 

assistants to use criteria or evaluation worksheets when grading undergraduate  

laboratory reports (our institution and Kelly and Takao 2002), there is a paucity of 

published research on the reliability or validity of rubrics in that context or on the 

natural consistency of graduate students in assigning grades.  The only information 

found by this author to date indicates that graduate teaching assistant and faculty 

instructor grades correlate poorly when using the same detailed list of 14 criteria 

(Kelly and Takao 2002).  A rubric designed around an epistemic model of students’ 

claims and justifications produced high reliability (r = 0.80) when two trained raters 

applied it to the same papers graded by the teaching assistants.  The rater’s relative 

rankings did not correlate however with either the graduate teaching assistant scores 

(r = 0.12), nor the faculty instructor’s relative ranking of the case study papers.  This 

finding suggests that there may be a strong difference in the efficacy of a list of 

criteria versus a rubric and that graduate teaching assistants and instructor would 

benefit from the use of rubric.  

Need for an appropriate rubric for university science writing  

Educators and mentors frequently identify achievement goals for students in 

terms of writing and reasoning and advocate the use of rubrics across a great variety 

of fields (Arter & Mctighe, 2001; Kuhs et al., 2001; Trevisan, Davis, Calkins, & 

Gentili, 1999), but this author has yet to find a rubric in the published literature 

applicable to university science writing that has been psychometrically tested.  

Extensive and well-reasoned published rubrics for scientific reasoning exist, but lack 

reliability testing (Halonen et al., 2003) or are designed for venues other than writing 

(observing students in the lab, Baxter, Shavelson, Goldman, & Pine, 1992; Germann 

& Aram, 1996; oral presentations, Hafner & Hafner, 2003; verbal discussions, Hogan 
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et al., 2000).  For example, Hogan, Nastasi and Pressley (2000) specifically 

developed a rubric to assess reasoning complexity, but it was designed for the less 

structured venue of group discussions.  Consequently, while several of the six criteria 

are relevant (justification, detail, explanation, logical coherence) because the 

performance levels of this rubric largely count the number of instances in which any 

student exhibits the behavior, it could not be usefully applied to student written work.  

For example, the performance levels for the criterion of justification (which is 

concept central to the Universal Rubric) are based on the number of justifications 

provided per idea, without any overarching sense of the quality or priority of the 

justifications.  Such criteria make sense with the more free-ranging nature of group 

discussion, but this rubric is largely uninformative when transferred to written work.   

It should be noted however that Hogan and colleagues’ (2000) scheme does 

provide direct support for the Universal Rubric criterion of Discussion: refuting 

alternative explanations as their definition of synthesis is “a measure of how and if 

opposite views are accounted for, which is a hallmark of dialectical and higher order 

thinking" (Table 5, p. 398).   Besides being hard to translate in practice, when Baxter, 

et al. (1992) compared rubric reliabilities from observations of students performing 

laboratory experiments vs. those same students’ laboratory notebooks they found that 

reliability scores varied based on medium.  Therefore, rubrics developed for other 

media suggest general concepts or priorities, but cannot be borrowed directly as 

measurement tools for written laboratory reports. 

Rubrics designed specifically to assess writing abound and many have been 

reliability tested, but they are for non-science writing forms such as narratives or 

persuasive essays (Baker, Abedi, Linn, & Niemi, 1995; Marcoulides & Simkin, 1995; 

Novak, Herman, & Gearhart, 1996; Penny, Johnson, & Gordon, 2000) or even if they 

can be applied to science writing, are so general as to prevent them from being useful 

for assessing scientific reasoning and other domain specific abilities.  For example, 

Cho, Schunn and Wilson (2006) have a rubric which has been applied to writing in 

16 different courses ranging from history to psychology at four different higher 

education institutions.  This rubric has been shown to be highly reliable both in terms 

of agreement among peer reviewers (α = 0.88) and between peers and instructor 

assessments (α = 0.89).  But the three criteria comprising that rubric (flow, logic and 

insight) do not address many of the qualities valued in the scientific community (e.g. 
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intellectual context, significance, methodology) and are therefore insufficient for 

evaluating scientific reasoning in particular.  

What are available for science writing at the university and post graduate 

levels are criteria lists (Haaga, 1993; Kelly & Takao, 2002; Topping et al., 2000), but 

because they lack performance levels they consequently have poor reliability among 

raters.  While Topping (2000) found high similarity in the counts of positive, negative 

or neutral comments made between peer reviewers and instructors, most other studies 

investigating the actual point values assigned by peer raters versus instructors had 

very little consistency (Haaga 1993), even when just ranking papers (Kelly and Takao 

2002).  Specifically, the teaching assistant and the course professor agreed on the 

ranking of only one out of four case study papers and assigned similar total points 

scores for only two out of four (Kelly & Takao, 2002).  In contrast, when the 

researchers reviewed the same papers and assessed the epistemic levels of student 

argumentation using a complex rubric, the inter-rater reliability was r = 0.80. 

 It thus becomes clear that rubrics generate far more reliable and therefore, 

informative assessments of students’ scientific writing than do lists of criteria.   Use 

of a rubric is therefore advocated for any measure of student performance.  The 

question then becomes, what criteria should be included in the rubric and what 

performance levels should be defined? 

 



 

 

Table 2.2.  Common Themes in Published Criteria for Science Writing or Scientific Reasoning. 
 (Kelly and Takao 2002)1 (Halonen et al., 2003) (Haaga, 1993)2 (Topping et al., 2000)3 Professional peer 

review or other 
research literature 

Study Context Undergraduate 
oceanography scientific 
report  

Desired psychology 
curriculum outcomes 

Graduate psychology 
manuscripts 

Graduate psychology term 
papers 

 

Instrument 
reliability 

Not tested Not tested r = 0.55 Not tested  

Performance levels None specified (5) “Before training” to 
“Professional” 

None specified None specified  

Universal Rubric for Laboratory Reports Criteria 

Context “Clear distinction between 
portions of the theoretical 
model supported by data/ 
background knowledge and 
those which are still 
[untested.]” 

 

Degree of theoretical/ 
conceptual framework 
(Table 2, p. 199) 

“background (primary lit) is 
covered adequately” 

“clear conceptualization of 
the main issues” 

 

“literature review” 

 

Significance     (Cicchetti, 1991; Marsh 
and Ball, 1981, 1989; 
Petty et al., 1999; 

Sternberg & Gordeeva 
1996) 

Hypotheses are 
Testable 

“A clear, solvable problem 
is posed…  
 

    

Hypotheses have 
Scientific Merit 

…based on an accurate 
understanding of the 
underlying theory.” 
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 (Kelly and Takao 2002)1 (Halonen et al., 2003) (Haaga, 1993)2 (Topping et al., 2000)3 Professional peer 
review or other 
research literature 

Experimental 
Design 

“Multiple kinds of data are 
used when available.” 

Sophisticated observational 
techniques, high standards 
for adherence to scientific 
method, optimal use of 
measurement strategies, 
innovative use of methods 
(Tables 1 & 3, p. 198-199)  

  (Cicchetti, 1991; Marsh 
and Ball, 1981, 1989; 
Petty et al., 1999) 

Data Selection “Available data are used 
effectively.  Data are 
relevant to the 
investigation.” 

  “new data (type, range, 
quality)” 

 

Data Presentation “Observations are clearly 
supported by figures” 

    

Statistics  “Uses statistical reasoning 
routinely” (Table 3, p. 199)  

   

Conclusions based 
on data 

“Conclusions are supported 
by the data.”  “Text clearly 
explains how the data 
support the interpretations.” 

“uses skepticism routinely 
as an evaluative tool”   

seeks parsimony 
(Table 5, p. 200) 

“conclusions follow 
logically from evidence and 
arguments presented” 

“conclusions/ synthesis”  

Alternative 
explanations 
 

    (Dunbar 1997; Hogan, 
Nastasi, & Pressley, 
2000) 

Limitations  Understands limitations of 
methods, “bias detection 
and management”  
(Table 3, p. 199) 

   

Primary Literature “Data adequately 
referenced.” 

Selects relevant, current, 
high quality evidence, uses 
APA format (Table 6, p. 
201) 

 “references” 

“Literature review” 
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 (Kelly and Takao 2002)1 (Halonen et al., 2003) (Haaga, 1993)2 (Topping et al., 2000)3 Professional peer 
review or other 
research literature 

Writing Quality “Clear, readable focused 
and interesting.  Accurate 
punctuation and spelling. 
Technical paper format 
[complete and correct].”  

 

Organization, awareness of 
audience, persuasiveness, 
grammar (Table 6, p. 201) 

“well written (clear, concise, 
logical organization and 
smooth transitions” 

“structure (headings, 
paragraphs); precision and 
economy of language; 
spelling, punctuation 
syntax” 

 

Additional criteria 
expressed in 
literature, but not 
included in the 
rubric as they either 
lacked universality, 
or were prioritized 
less by faculty as 
discrete concepts.  

Clear distinction between 
observations and 
interpretations.   

 

Epistemic level:  Arguments 
build from concrete data to 
more abstract theory.  Each 
theoretical claim supported 
by multiple data sources. 

Awareness, evaluation of 
and adherence to ethical 
standards, and practice. 
(Table 4, p. 200) 

 

Scientific attitudes and 
values: enthusiasm, 
objectivity, parsimony, 
skepticism, tolerance of 
ambiguity (Table 5, p. 200) 

“Goals of the paper are 
made clear early” 

 

“Scope of the paper is 
appropriate (not over-
reaching or over broad)” 

“psychology content” 

“Advance organizers 
(abstract, contents)” 

“originality of thought” 

“action orientation” 

 

 

Note: If not indicated directly in the table, quotations were found as follows 1Kelly and Takao, 2002, Table 1 p. 319;  2Haaga, 1993, Table 1 p. 29;  3Topping et al., 2000, 
Appendix 1, p. 167
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Selection of criteria for a universal laboratory report rubric at the university level 

 Beyond the demonstrated need to use rubrics instead of simply lists of 

criteria when evaluating papers, what can be gleaned from these studies are the 

qualities valued in science writing at the university level.  A survey of research 

literature on the subject of university-level science writing found four relevant 

papers that indicated the criteria by which students’ scientific reasoning skills were 

judged (Table 2.2).  When the criteria espoused for scientific writing and reasoning 

at the university level are compared, consensus is achieved for context, conclusions 

solidly derived from data, and writing quality (Haaga, 1993, Halonen, 2003, Kelly, 

2002, Topping, 2000).  Broad support is generated for use of primary literature, and 

experimental design (Halonen et al., 2003; Kelly & Takao, 2002; Topping et al., 

2000).  Surprisingly, while context, methodology, primary literature and writing 

quality appear in both the pedagogical and professional peer review criteria lists, 

significance is conspicuously absent from the classroom based lists despite its 

ubiquitous use as a criterion in the scientific community (compare Tables 2.1 and 

2.2).  Conversely, the criterion conclusions justified by data is found in all the 

pedagogical criteria lists and is absent from the professional referee considerations.   

This author hypothesizes that the absence of significance from classroom evaluations 

is a likely result of instructors feeling that students lack the content background to 

fully appreciate the implications of scientific work and see gaps in knowledge or 

inconsistencies in the field. Why professional peer review criteria do not list extent to 

which conclusions are justified by data is considerably less clear and open to 

investigation. 

This failure to make clear to students that an explanation of the significance 

of scientific work is a desirable quality hinders their development as practitioners of 

science.  Making the significance of completed work clear should be identified as a 

goal of science writing at the university level for two reasons.  Firstly, as the 

scientific community appears to universally value significance when evaluating 

scientific writing, it must be included in any honest attempt to develop students’ 

scientific reasoning abilities.  Omitting it would hinder students’ development as 

practicing scholars.  Secondly, students will not strive to understand or consider 

significance as an issue in their work or writing unless it is identified to them as a 

valuable attribute.  The values of the scientific and science education communities 

thus provide an important foundation for the development of the Universal Rubric.  
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Review of Table 2.2 thus indicates that all the criteria comprising the Universal 

Rubric have support from the science education and/or scientific community.   

Historical perspective on rubric criteria 

The reader may also care to recall the discussion of the role of content 

knowledge in scientific reasoning begun at the beginning of this chapter and note 

that while the criteria selected for the rubric are domain general (not dependent on 

content knowledge in any particular area of science), they explicitly acknowledge 

that proficiency in scientific reasoning requires a strong knowledge of the subject 

matter and familiarity with the context and procedures of the field.  These criteria 

thereby represent a shift in the definition and values of scientific education.  Earlier 

works focused on a dichotomy between reasoning strategies vs. conceptual 

knowledge.  The current consensus of priorities and values described here suggests 

that neither of those viewpoints is sufficient and that the ability to integrate formal 

reasoning and contextual knowledge now comprises a major component of scientific 

reasoning.  

Performance levels for scientific reasoning rubrics 

 Rubrics are differentiated from lists of criteria by the inclusion of 

descriptions of possible student performance at designated levels.  A literature search 

produced one published rubric for scientific reasoning with relevant performance 

levels.  Halonen et al. (2003) performance levels range from before training to 

professional graduate and beyond (Figure 2.1). 

 

 

Figure 2.1.  A portion of Table 3 from Halonen et al. (2003, p. 199) describing the 

performance levels for a criterion.  Publisher provides permission for reproduction in theses and 

dissertations free of charge. 
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Similar performance levels were selected for the Universal Rubric developed for this 

study.  Student performance was expected to range from not addressed (no evidence 

that the student attempted to accomplish the criterion) through novice, and 

intermediate to proficient (performance expected of an outstanding undergraduate or 

beginning graduate student). 

Research significance of a Universal Rubric for science writing 

 Given that no psychometrically tested rubrics for experimentally based 

science writing have been found in the literature, it appears that the development and 

testing of such a Universal Rubric would make a notable contribution both as a 

research instrument and as a pedagogical tool.  University faculty, teaching assistants 

and other practitioners might find it applicable to their pedagogical goals and 

implement it directly.  Other researchers might benefit from using criteria which 

align with those used in professional peer review and other research (including this 

study) to compare the reliabilities of student peer reviewers or the reliability of 

various pedagogical groups (teaching assistants, faculty).  Testing of such a rubric 

using graduate teaching assistants would provide faculty and department chairs with 

sorely lacking information as to the natural consistency of these ubiquitous 

instructors who so far have been mostly vastly overlooked in terms of professional 

development and pedagogical support (Gaff, 2002; Golde, 2001; Luft, Kurdziel, 

Roehrig, Turner, & Wertsch, 2004).  Finally, a rubric independent of subject area 

allows comparison of student performance across multiple courses and assignments 

providing a previously impossible longitudinal analysis of the development of 

students as scientists. 

The Scientific Reasoning Test 

 Such a fine-grained and detailed analysis of student performance restricts the 

investigator to a smaller sample sizes (tens of students) however due to the intense 

time and effort that is required to produce each datum.  When one desires to sample 

a larger proportion, or perhaps the entire student population in question (hundreds to 

thousands of students) and one does not have vast resources, a coarser grained means 

of assessing student scientific reasoning ability is useful.  One such instrument is the 

Scientific Reasoning Test (SRT) (Lawson 1978).  Developed to assess university 

students’ scientific reasoning abilities across a variety of subject matters (biology 

and physics), it has been applied repeatedly in higher education biology courses 
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(Lawson, 1978; Lawson, 1979, 1980, 1983, 1992; Lawson, Alkhoury, Benford, 

Clark, & Falconer, 2000; Lawson, Baker, Didonato, Verdi, & Johnson, 1993; 

Lawson, Banks, & Logvin, 2007) and non-biological high school settings (Norman, 

1997; Westbrook & Rogers, 1994) and found to be reliable in such contexts (Table 

2.3).  Positive correlations have also been found between student performance on the 

Scientific Reasoning Test and self-efficacy (Lawson, Banks et al. 2007), 

computational ability (Lawson 1983) and biology achievement (Lawson et al., 2000) 

as well as using it as a means of assessing the effectiveness of curriculum reform 

efforts on student scientific reasoning ability (Lawson et al., 1993; Westbrook & 

Rogers, 1994). 

 The Scientific Reasoning Test is based on a Piagetian understanding wherein 

student reasoning abilities vary across of spectrum from concrete reasoning which 

“…makes use of direct experience, concrete objects and familiar actions…” to 

formal reasoning which “…is based on abstraction and that transcends 

experience…” (Karplus, 1977, p. 364).  It presumes that reasoning is independent of 

content knowledge, but uses examples that are reasonably familiar to secondary and 

tertiary students in western nations. 

Table 2.3 Published Reliability Scores for the Scientific Reasoning Test.  

Citation # 
students 

Context Reliability 
score 

(Lawson 1978) 513 Year 8, 9, 10 science, 

English and biology 

0.86 

(Lawson 1983) 96 Undergraduate biology 0.76 

(Norman 1997) 60 Year 11 and 12 chemistry 0.78 

(Lawson, Baker et al. 1993) 77 Undergraduate biology 0.551 

(Lawson et al., 2000) 663 Undergraduate biology 0.81 

(Lawson, Banks et al. 2007) 459 Undergraduate biology 0.792 

Note.  Reliability scores are Cronbach’s alpha (1indicates a split half reliability) unless indicated to be 
2Kuder Richardson (KR20). 

It is further useful as most of the questions on the Scientific Reasoning Test use a 

physical science context thereby avoiding bias towards any one biology class when 

the test is applied across the curriculum.  Therefore, as a more distal measure of 

scientific reasoning ability, the SRT would also offer insight as to the transferability 
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of the scientific reasoning skills gained by peer review.  A robust finding of the 

cognitive psychology literature is that performance declines whenever people are 

asked to solve abstract logic problems or real-world problems outside of the 

knowledge domain in which they learned the reasoning strategy (21 studies reviewed 

in Zimmerman, 2000).  This decline occurs even when the principles behind the 

problems are identical.   Therefore, as it uses mostly non-biological contexts and 

examples, the SRT  functions as a highly conservative measure of students’ ability to 

transfer their scientific reasoning to new situations.   

How has the literature informed this study?  

The measurement of scientific reasoning 

 The research literature has informed this study in multiple ways.  Past work 

illustrates that scientific writing differs from other genres (preventing the ready 

adoption of already published rubrics) and that the measurement of scientific 

reasoning via writing is still a developing field.  Past research by cognitive 

psychologists on the development of scientific expertise as well as investigations 

into the evaluative criteria used in the scientific community help to define scientific 

reasoning and identify broadly supported criteria for measuring its development in 

our students.  Reference to the professional scientific community as well as past 

pedagogical research suggest that the criteria of methodology, context, literature, 

significance, justification of conclusions and writing quality are highly valued 

components of scientific expertise which are also measurable in science writing.   

Past research has also strongly indicated that peer review is likely to be an 

effective pedagogical tool for stimulating scientific reasoning.   Effective peer 

review and the collaboration it requires are real world skills and thus desirable 

learning outcomes as well as useful pedagogical strategies.  In particular, peer review 

encompasses several of the strategies identified by Lajoie (2003) as accelerating the 

development of scientific reasoning expertise.  Peer review is an authentic activity in 

the scientific community that provides multiple contrasting representations of the 

same task, collaboration among students with a range of abilities and individualized 

formative feedback.  The multiple representations and formative feedback also both 

stimulate reflection, revision and metacognitive awareness which are necessary for 

meaningful learning and the development of expertise.  Anecdotal and qualitative 

reports of students’ comments suggest that students believe peer review improves 
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their engagement and reflection.  Given the support for its use, the question then 

becomes, how is peer review best enacted in the classroom?   Are there specific 

instructional scaffolds to improve student performance and enhance outcomes? 

Peer review as a pedagogical tool: suggestions for implementation 

Past work on students’ perceptions of peer review suggest that they find it to 

have a positive impact overall (Haaga, 1993; Hanrahan & Isaacs, 2001; Stefani, 

1994), but that students have concerns about the ability of their peers to assess them 

effectively (Cho, Schunn, & Wilson, 2006; Hanrahan & Isaacs, 2001).  Students may 

perceive their peers comments as being less valuable or helpful than those of a 

subject matter expert such as an instructor.  This perception is inaccurate however.  

When the average peer reviewers’ scores correlate strongly with instructor scores(r = 

0.89, n = 254 students over 5 separate courses Cho, Schunn, & Wilson, 2006; r = 

0.62 to 0.88, n = 107 students over three years Hafner & Hafner, 2003).  Cho, 

Schunn and Wilson (2006) also calculated the reliability of among peer reviewers 

and found that any three to four reviewers had an effective reliability of r = 0.55 

while using all six peer reviewers produced a reliability of r = 0.78 (95% confidence 

interval = 0.46 to 0.92).   It should be noted that these correlations and reliabilities 

are significantly higher than those produced by professional referees (Cicchetti, 

1991; Marsh & Ball, 1989; Marsh & Bell, 1981; Petty et al., 1999) or between 

graduate teaching assistants and faculty instructors (Kelly and Takao 2002 515).   

Peer reviews are thus viewed as both valid and reliable from the standpoint of 

an instructor who can see the range of variation in paper quality across the whole 

course (and who has access to these statistics).  Cho, Schunn and Wilson (2006) 

make the salient point however that student perceptions may differ because students 

cannot see the variation in student paper quality across the whole class.  In 75% of 

the 16 courses at four institutions studied, the variation among raters on a single 

student’s paper exceeded the variation in quality that that same student was exposed 

to as a reviewer (Cho, Schunn, & Wilson, 2006).  Namely, the smaller subset of 

papers available to students combined with the relatively greater variation found in a 

small sample of reviewers skewed students’ perceptions of the reliability of peer 

scores.  Students should therefore be granted access to the instructor’s viewpoint and 

these research data on peer reliability should be made an explicit part of instruction. 
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Cho, Schunn and Charney (2006) also conducted the only identified 

quantitative study on students’ perceptions of the usefulness of feedback in a science 

class.  They studied three classes (two undergraduate and one graduate).  In the first 

undergraduate class (n = 28) students received blind feedback from either peers or a 

faculty member.  While students raised in authoritarian educational systems may 

complain that their peers are unqualified to rate their work, undergraduates at this 

major US university could not distinguish between the helpfulness of comments 

provided by peers vs. those provided by a faculty member (p = 0.36, Cho, Schunn et 

al. 2006).  The average usefulness scores were at least 4.0 (maximum point value 

was 5.0) regardless of rubric criterion or source indicating that students found the 

feedback useful regardless of the identity or expertise of the reviewer.  Thus, future 

implementations of peer review in classrooms should provide explicit instructional 

background and/or research data to proactively address student concerns about the 

quality of peer feedback. 

Whilst undergraduates did not perceive any differences in the usefulness of 

the feedback provided by faculty vs. peers, the function of the comments does vary 

based on the identity of the reviewer.  These differences provide insight as to how 

undergraduate students and graduate teaching assistants should be guided in their 

development as reviewers.  When the review comments from two undergraduate and 

one graduate class were coded as to whether or not they made constructive 

suggestions for change, the frequency of each comment type varied as a function of 

the reviewer’s identity (Cho, Schunn et al. 2006).  Faculty comments varied from 

graduate and undergraduate peer comments by being both nearly twice as long (and 

consequently containing nearly twice as many idea units) (p < 0.001) and also 

having the highest frequency of directive comments to any other type (3:1, p < 

0.005, Cho, Schunn et al. 2006).  Directive comments were defined as “suggesting a 

specific change particular to a writer’s paper” (Table 1, p. 269) and could highlight 

either strengths or weaknesses.  Undergraduate comments contained 70% more 

praise comments (positive comments lacking suggestions for change) than faculty.  

Graduate student comments had the highest frequency of criticism (negative 

comments lacking a suggestion for improvements) though criticism was relatively 

uncommon overall (Cho, Schunn et al. 2006).  Cho, Schunn and Charney (2006) 

therefore recommend that instructors implementing peer review provide explicit 
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instruction and support to encourage undergraduates to be more directive (specific 

and suggest changes that would improve that paper in particular) and to encourage 

graduate teaching assistants to use more praise.  It should be noted that the feedback 

provided by graduate students in this study were written for graduate peers however.  

Therefore, the tendency towards criticism may not be representative of the comments 

that graduate students would provide to undergraduates when they are teaching. 

The findings from these studies indicate that when peer review is used in the 

classroom, it is critical that students be informed that peers are effective reviewers, 

as well as provided with support for how to further improve the quality of their 

feedback by being more directive. 

Summary 

The development of scientific reasoning skills in students is a complex and 

multi-layered process requiring spans of several years (Ericsson and Charness 1994; 

Zimmerman 2000).  Science writing is an integral component of scientific reasoning 

or at least an important product produced by such reasoning.   Peer review appears 

likely to accelerate the development of scientific reasoning and writing due to its 

collaborative, metacognitive, and comparative nature as well as the formative 

feedback it provides.  Measuring the development of students’ scientific reasoning 

skills is also a challenge.  As scientific reasoning develops over time, measurement 

tools independent of assignment and course are necessary to track students’ 

longitudinal progress.  The development of a rubric based on attributes valued in the 

scientific community and applicable to a wide variety of science writing would 

provide many fruitful research opportunities.  Not only could acceleration of 

students’ scientific reasoning due to peer review or other instructional interventions 

be measured, but also questions concerning the explicit trajectory of how students 

develop expertise (which skills develop easily, which are more challenging) could be 

addressed.  Lastly, triangulation using other metrics of scientific reasoning is 

necessary and information on students’ perceptions of peer review would be useful 

for facilitating classroom implementation.  Students’ perceptions of the role, function 

and consequences of peer review in both the classroom and the scientific community 

are also relevant as they affect motivation, self-efficacy and transferability of 

reasoning skills.  
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CHAPTER 3 

METHODOLOGY  

Overview 

 The purpose of this chapter is to enable the reader to evaluate the 

methodologies employed in data collection to assess reliability and validity of the 

data from which conclusions are drawn in the discussion sections.  This chapter is 

consequently organized by a general description of the research design (mixed 

methods) followed by a delineation of the research questions and a description of the 

components of the study that are consistent across all data types (such as the 

population of biology majors or the enactment of peer review).  Next, the three major 

data sources and accompanying instruments are described:  1) the Universal Rubric 

for Laboratory Reports which when applied to student laboratory reports assesses 

student achievement in the area of scientific inquiry and critical thinking skills, 2) 

the Scientific Reasoning Test (Lawson et al 2000; Lawson 1978) and 3) the Peer 

Review Survey which elicits student perceptions of the process, purpose and impact 

of peer review.  Sections on each of the data sources include a description of the 

instrument, the means of administering the instrument and data collection, followed 

by a description of the statistical analysis.  

Research design 

Multiple data sources and measurement types were used to assess the impact 

of peer review on students’ scientific reasoning skills.  In particular, an effort was 

made to incorporate both broad scale quantitative measures as well as more detailed 

qualitative perspectives to allow triangulation and increase confidence in conclusions 

(Mathison 1988; Johnson and Onwuegbuzie 2004).  Specifically, three major types 

of measurements were made:  1) broad quantitative measures of scientific reasoning 

ability using cross-sectional cohorts of students to search for the overarching impact 

of peer review, 2) cross-sectional and longitudinal assessments of student scientific 

reasoning ability using laboratory reports and student writings as data sources, and 3) 

student perceptions of peer review using a survey tool.  The inherently subjective 

nature of the laboratory report-based data was greatly reduced by using multiple 

independent raters and other methods of replication.   The broad quantitative 
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assessment of students’ abilities to reason scientifically was made using a pre-

published multiple-choice instrument that was not biology specific. The use of both 

cross-sectional and longitudinal populations allows for further triangulation of 

results.  Lastly, collecting student perceptions of the effect of peer review allows an 

additional level of insight not otherwise afforded as to whether or not students 

recognised the pedagogical aims and outcomes of the instructional innovation. 

Research studies 

 The overarching topic of this project is divided into ten separate studies 

whose inter-relationships were illustrated in Figure 1.2.  Firstly, prerequisite 

conditions and assumptions had to be tested.   Study 1 investigates the degree to 

which students are capable of productively engaging in peer review – specifically, 

that the time and cognitive demands of the task are reasonable and that peer feedback 

can cause improvement in student writing.  Study 2 tested whether the Universal 

Rubric produced consistent and reliable scores when implemented by trained raters.  

While it had been demonstrated reliable in other similar student populations, Study 3 

confirmed the reliability of the Scientific Reasoning Test in this undergraduate 

population.  Next the primary thrust of the research was to determine the impact of 

peer review on students’ scientific reasoning abilities and how those abilities change 

over time as a result of peer review.  Study 4 assessed changes in student scientific 

reasoning abilities in a cross-sectional sample and Study 5 was the same 

methodology using a longitudinal sample.  The relationship between Scientific 

Reasoning Test scores and the number of peer review experiences in which students 

had engaged was investigated in Study 7.   Studies 6 and 8 investigated the reliability 

of the Rubric when used by science graduate students under natural grading 

conditions and graduate students’ perceptions of the utility of the Rubric as the 

Rubric could potentially be an effect pedagogical as well as research tool.  Lastly, 

undergraduates’ perceptions and understandings of the purpose, utility and impact of 

peer review in the classroom (Study 9) and the role of peer review in the scientific 

community (Study 10) were investigated because they would have a direct impact on 

student motivation and effort which would affect the achievement results from 

studies 4, 5 and 7. 
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Table 3.1.  Research Studies and Questions 

Study Study Title Research Question 

1 Consistency and effectiveness 
of undergraduate peer 
reviewers 

Can first year undergraduates enrolled in 
Introductory Biology be effective 
(consistent and useful) peer reviewers? 

2 Reliability of the Universal 
Rubric for Laboratory Reports 

Is the Universal Rubric a reliable metric of 
scientific reasoning and writing skills in 
this population across a variety of biology 
courses with graduate teaching assistants 
scorers? 

3 Reliability of the Scientific 
Reasoning Test  

Is the Scientific Reasoning Test a reliable 
metric in this population? 

4 Student scientific reasoning 
skills in laboratory reports 
(cross-sectional sample) 

To what degree do undergraduates 
evidence scientific reasoning skills in their 
laboratory reports and does their 
achievement vary by course? 

5 Student scientific reasoning 
skills in laboratory reports 
(longitudinal sample) 

To what degree do individual 
undergraduates evidence scientific 
reasoning skills in their laboratory reports 
and how do their skills change over time? 

6 Reliability of scores given by 
graduate teaching assistants 
under natural conditions 

How does the reliability and stringency of 
scores given by graduate teaching 
assistants vary with pedagogical training 
and support? 

7 Relationships between 
Scientific Reasoning Test 
scores and peer review 
experience 

Does peer review have a greater influence 
on students’ Scientific Reasoning Test 
scores than academic maturity as measured 
by academic credit hours and institution 
type? 

8 Graduate teaching assistants’ 
perceptions of the utility of the 
Universal Rubric 

How do graduate teaching assistants 
perceive the Universal Rubric as a 
pedagogical tool and would they advocate 
its use to others?  

9 Undergraduate perceptions of 
the peer review process in the 
classroom 

How do Introductory Biology students 
perceive the role of peer review in the 
classroom and its effects on them 
personally? 

10 Undergraduate perceptions of 
the role of peer review in the 
scientific community 

How do Introductory Biology students 
perceive the role of peer review in the 
scientific community and its effects on 
practicing scientists? 

Note.  See also Figure 1.2 (p.11 or 154) and Table 6.1 (p. 155) for overviews of the research design. 
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Study context 

Study population 

The university is a large (18,000 undergraduates, 8,600 graduate students) 

partially state-funded institution with approximately 1600 faculty, a medical school, 

law school and business school in addition to eleven undergraduate colleges.  Ninety 

percent (90%) of the students are state residents, 82% of freshmen continue to their 

senior year and 62% graduate within six years.  Classes are on a 14 week semester 

system with Fall terms beginning in late August and finishing in early December and 

Spring semesters begin in early January and finish in early May (www.sc.edu). 

The population of biology majors has had relatively consistent demographics 

over the last five years (2002 to 2007, n=10,396 students for all five year averages). 

A notable majority of biology majors are women (62 + 2% female) with an average 

age of 20 years.  Most biology majors are Caucasian (63 + 2%) or African-American 

(19 + 2%); other ethnic groups ranged from less than 1% (Native American), 2% 

(Hispanic) to 7% (Asian).  Eight percent of biology majors did not report an ethnic 

group. Categories of student race or ethnic origin used are those defined by the 

National Center for Educational Statistics (NCES) collected by the university as part 

of the admissions process.  Ethnic categories are self-reported by the student.  Only 

one racial code was recorded per student.  For comparison, the overall student body 

population at this institution is has fewer women (54 + 0.3% female) and slightly 

fewer African-Americans (71 + 1% white and 15 + 1% black) than the biology major 

for the same time period (n = 170,427 students).   Thus, the biology major is 

populated by more women and more African-American students than the institution 

as a whole.  Any positive outcomes from peer review as an instructional innovation 

may therefore be of interest to those concerned with underrepresented groups in 

science.  

 

Student sample 

Demographics for the courses from which the data were collected do not vary 

notably from the biology major patterns (61% of the biology majors were female and 

63% of the total sample was white, 19% was black with single digit percentages for 

all other ethnic groups) but details are provided in each relevant section.  The 
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courses from which study samples are drawn begin with the year-long sequence, 

Introduction to Biological Principles I and II (BIOL 101 and 102) which serves as 

the entry level course for biology majors.  It should be noted that a large proportion 

(~55-65%) of the students enrolled in the introductory sequence (BIOL 101/102) are 

not biology majors, but belong to related health science fields (pharmacy, exercise 

science, students intending to apply to medical school but who are majoring in other 

fields).  Thus, sample sizes vary for specific sub-populations depending on whether 

the measure was restricted to biology majors or utilized all students enrolled. 

Subsequent to Introductory Biology, biology majors are required to enroll in 

three courses: BIOL 301 (Ecology and Evolution), BIOL 302 (Cell and Molecular 

Biology) and BIOL 303 (Genetics).  BIOL 301 and 302 have corresponding optional 

laboratories that are quite popular with majors and from which samples for some 

portions of the study were drawn.  The remainder of the Biology curriculum is 

composed of upper division courses of the student’s choice (400, 500 and 600 level 

courses).  Samples for this project were also taken from one upper division course 

BIOL 530 (Histology) which has a mandatory laboratory.   

 

Software 

Peer review was accomplished using Calibrated Peer Review (CPR) 

(http://cpr.molsci.ucla.edu) an online software program developed in the mid-1990s 

by Orville Chapman and other practicing scientists at the University of California 

Los Angeles as part of the National Science Foundation Molecular Science Project.   

Currently, several hundred institutions across the US use CPR and over 140,000 

students’ accounts existed in the system (Russel 2007).  Contrary to those who have 

used CPR as a peer grading system, this research used peers predominantly for 

formative feedback and little if any portion of a student’s grade was derived from 

points assigned by the CPR software.  In this research, students were graded on their 

efficacy as reviewers during the peer review process and writers were encouraged to 

incorporate the formative feedback they received and improve their paper before 

turning a final version of the paper into the instructor for a grade. 

All final papers were checked for plagiarism using the commercial software 

Safe Assignment (www.safeassignment.com) which ran through Blackboard©. 
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The peer review process. 

The process of peer review was defined for the purposes of this study as 

students’ exchanging written work and feedback via an online, web-based system 

that affords anonymity to both writer and reviewer (but which is transparent to the 

instructor and researcher).  Each peer review process began with students 

participating in an open-ended research project.  Projects were usually collaborative 

among pairs or groups of three to four students. Students then wrote their findings 

individually in a format similar to that used for science publications (Introduction, 

Methods, Results, Discussion, Literature Cited: hereafter termed a ‘laboratory 

report.’).  Students are provided at the onset of the project with the criteria and goals 

on which they will be judged both by the peer reviewers and the grading instructor.  

These criteria and goals come largely from the Universal Rubric (see below) with 

some assignment-specific modifications.   Writers upload drafts of their written 

assignments with identifying information removed.  If the instructor has included 

them, students read and score calibration papers (exemplars provided by the 

instructor) using the assignment criteria.  The instructor has also scored these 

practice papers.  The software then distributes each writer’s paper to three peer 

reviewers.  Reviewers are stimulated by written prompts in the online system (input 

by the instructor) that encourage them to focus their feedback on the given criteria 

that were backbone of the assignment.   

Two forms of feedback are possible in the CPR system.  Reviewers can rate 

student papers on a scale of 1-10 and provide other numerical ratings of the quality 

of a writer’s work by clicking a rating choice for each criterion or if the instructor 

has set the reviewing prompts to include open-ended text boxes, they can write 

detailed comments and explanations to the writer.  For example, in response to a 

criterion prompt such as “Are the writer’s conclusions based on the data?” students 

could respond by clicking either “yes or no.”  If the instructor included a text box for 

the criterion, the reviewer could also provide a justification or explanation of how 

well the writer met that criterion.  The CPR software tracks those numerical scores 

and flags reviewers whose numerical evaluations deviate more than one standard 

deviation from other peer reviewers responding to that same paper.    

Once the deadline for peers to provide feedback has passed, these numerical 

and written pieces of feedback are then made available to writers online.  Writers are 
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encouraged to use the feedback to improve their paper prior to handing it in to be 

graded by the instructor.   

 

Instructions given to students for producing useful feedback 

Two forms of accountability exist to encourage students to provide useful 

feedback.  The CPR system compares the numerical ratings made by reviewers and 

assigns a reviewer competency index score based on how closely aligned the 

reviewers are to one another.  For students enrolled in BIOL 101 a large proportion 

of their peer review grade was based on this consistency rating, the score reviewers 

give their papers and how closely aligned the student’s self-assessment was to the 

reviewers’ assessment.  In BIOL 102, these numerical ratings comprised little to no 

proportion of the student’s grade.  Instead, the emphasis was on the quality of the 

written feedback comments. In BIOL 102, graduate teaching assistants randomly 

selected one review written by each student and assigned points based on the quality 

of the comments.   

For both courses, students were provided with a set of instructions explaining 

the quality of useful feedback.  The instructions included the following definition of 

useful feedback as well as reminders to be respectful and professional in the written 

comments they provide to peers.   Students received the following information in 

class and again within the online CPR system just prior to reviewing peer papers. 

 

Useful feedback is: 

• specific and concrete,  

• focuses on the quality of the author’s argument (are conclusions 

logical and well supported by the evidence/data?) rather than on 

mechanics of writing such as  grammar or spelling, 

• identifies assumptions behind or consequences of author’s ideas 

which the author has not explicitly discussed and  

• would likely result in meaningful new content being added to or 

revised in the paper. 

 

For the terms included in this study, in BIOL 102, the CPR  process was also 

preceded by an in-class exercise on how to produce useful feedback.  Students were 
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given examples of feedback and asked to score them as useful, partially useful, or 

not useful.   A class discussion followed concerning what were appropriate scores for 

each feedback example.  A handout summarizing this exercise was provided to 

students for their convenience and use (Table 3.2 and Appendix 2). 

 

Table 3.2.  Examples From Handout Provided to Students to Encourage Them to be 

Effective Reviewers. 

Feedback item Useful? How to improve the feedback 

1.  Your paper is GREAT!  How did you 
come up with your idea? 

No Provides no actual information to the 
writer on HOW to improve the paper 

2. At the end of paragraph 2, you say you 
think this was a sex-linked cross.  Is this 
your hypothesis? What traits do you 
think the parents had?  Why do you think 
this is the best explanation? 

Yes Full of detail about where and why 
the reviewer was lost and if the 
writer answers the reviewer’s 
questions, the paper will have a 
clearer statement of the hypothesis, a 
consideration of alternative 
explanations and logical connection 
between hypotheses, data and 
conclusions. 

3. Your argument makes no sense.  What 
is your evidence? 

 

Partially Asking for evidence is useful, but 
reviewer does not indicate which part 
of the paper is confusing them or 
what exactly they didn’t understand. 

4. Your argument depends on weight 
being an inherited trait.  What evidence 
do you have to support this assumption? 

Yes The reviewer has identified an 
assumption made by the writer and 
pointed out how the validity or 
invalidity of this assumption could 
impact the writer’s conclusion. 

5. Which of your hypotheses is best 
supported by the data? 

 

Partially The reviewer is specific in indicating 
that the writer did something well 
(posed multiple explanations) and 
indicates that no clear conclusion 
was made but without specifying 
how or where they felt the writer’s 
conclusions were lacking. 

Note: See Appendix 2 for full Handout. 

 

Enactment details of peer review in specific courses 

Students were supported in their development as effective reviewers through 

gradual increase in expectations and repeated exposures to the peer review process.  

A transitioning emphasis from the rote procedures of peer review to the quality of 

feedback was employed.   The laboratory portion of the year-long introductory 

biology sequence highlighted peer review as a central skill and student learning was 
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coordinated across the two courses.  The peer review process was begun in our 

curriculum in Spring 2002 and has been enacted using Calibrated Peer Review every 

semester in the introductory biology courses (BIOL 101 and 102) since Fall 2003. 

First semester Introductory Biology (BIOL 101).  In the first semester course, 

students were first exposed to the procedures and purpose of peer review using a 

relatively intellectually unchallenging assignment: write an introductory paragraph 

for a hypothetical laboratory report on a recently completed laboratory experiment 

and provide feedback to their peers using the CPR website.  The purpose of this 

assignment was to allow students to focus on the mechanisms and procedures of peer 

review without undue worry about the nature and extent of the writing or feedback 

they were providing.  Students were also asked to gradually build skills in writing all 

aspects of a laboratory report over the course of the semester.  Namely, after the 

introductory paragraph, they next write just the methods section for a subsequent 

laboratory activity, the results section for an activity after that, etc.  The culminating 

experiment at the end of the semester was a Drosophila (fruit fly) genetics 

experiment in which students had to determine the mode of inheritance of an 

unknown phenotypic trait.  For this experiment, students were asked to write a full 

laboratory report and provide peer review feedback using the CPR system.  In this 

course, a minor portion (<5%) of students’ laboratory grades were affected by their 

ability to successfully complete the peer review and give assessments which were 

consistent with (within one standard deviation) other peer assigned to the same 

paper.  This is the assignment on which peer review occurred each semester for the 

BIOL 101 course.  

Second semester Introductory Biology (BIOL 102).  In each iteration of the 

second semester course students were provided with an educational dataset, 

Galapagos Finches (Reiser, Smith et al. 2001; Reiser, Tabak et al. 2003), derived 

from real datasets collected by Rosemary and Peter Grant in the early 1970s (see 

Grant and Grant 2002).   Students are told that a mass mortality event occurred on 

the island of Daphne Major and are asked to determine the cause and if evolution 

occurred in the finch population as a result.  As it is a real ecological dataset 

collected for other purposes, there are a variety of defensible conclusions and 

interpretations as well as irrelevant portions to the data.  Students pose their own 

hypotheses, locate, analyze and interpret relevant data and therefore must argue and 

justify their data selection decisions and conclusions.  Written reports are then 
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uploaded to the CPR system.  In this round of peer review, very few of the points 

associated the peer review assignment were earned by successfully navigating the 

software (the exact number of points varied from semester to semester, but were < 

1% of each courses’ total), but instead were focused on the quality of feedback and 

writing produced.   Indeed, reviewers were now graded on the quality of the 

feedback they provide.  Using the “useful/partially useful/ not useful” schema 

indicated previously (column 2 of Table 3.2 as well as detailed in Appendix 2), 

instructors randomly chose a single review written by each reviewer and grade the 

quality of the feedback as a full point, a half point or no points respectively.  

Providing ten useful pieces of feedback in a single review earned 100% of the (10) 

points possible.  Instructors were science graduate students hired as teaching 

assistants.  Students were allowed to write as many pieces of feedback as they 

desired per review to earn the 10 points. 

Ecology and Evolution Laboratory (BIOL 301 L).  In Spring 2005, peer 

review was also incorporated in the BIOL 301 laboratory courses and continued in 

subsequent semesters thus providing students a third opportunity to engage in the 

process.  Uploading of final papers via SafeAssignment began in Fall 2005 in this 

class as the University did not make SafeAssignment available in the Spring 2005 

semester.  BIOL 301 lecture is a required course for all majors.  BIOL 301 

laboratory is an optional (but popular) laboratory for biology majors.  Many transfer 

students bring in credit for introductory biology and thus enter into the biology 

curriculum at this level.  In BIOL 301 Laboratory, students engage in peer review 2-

3 times per semester as there are three experiment-based portions of the laboratory 

that result in written laboratory reports.  In some instances, peer review also occurred 

in other several upper division courses, but not in any systematically reportable way.  

Portfolios including an upper division course in addition to the 301 L and 

introductory biology courses can be constructed for a handful of students.  The intent 

is that students should encounter peer review each time they are asked to do an 

experiment and subsequently write it up, but coordination among the diverse faculty 

members in the department who teach the upper division courses has been sporadic.  

For the purposes of this study, a sufficient number of students experienced peer 

review multiple times (up to 3) for an effect to be discerned.  It is expected that 

greater effects will be seen in future years as a greater proportion of students have 

three or more experiences with peer review. 
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Other courses sampled (BIOL 302 Laboratory and Histology) did not engage 

in peer review during the semesters when data collection occurred.  These samples 

were used to include additional students at later stages in their academic career who 

had participated in one of the three aforementioned courses.  

Data sources and instruments 

The effect of peer review on students was determined by three major data 

sources: 1) students’ performance on the Scientific Reasoning Test (SRT), 2) student 

performance in laboratory reports collected from the three described courses (BIOL 

101, 102 and 301L) and 3) student perceptions of the peer review process collected 

in an anonymous online Survey.  Additionally, two instruments were developed to 

assist with the data collection.  Firstly, in order to compare student performance in 

laboratory reports across multiple courses, a Universal Rubric for Laboratory 

Reports was developed and its reliability as a measurement tool is investigated.  

Secondly, a Survey was constructed to measure students’ beliefs and perceptions of 

the usefulness and value of the peer review experience. 

Universal Rubric for Laboratory Reports 

Instrument development 

Rubric criteria were derived from biology department’s curriculum goals and 

therefore intended to be independent of any particular content area within biology 

(e.g. Trevisan, Davis et al. 1999).  The curriculum goals and subsequent criteria were 

derived through a series of discussions with colleagues on the Departmental 

Curriculum Committee. Members of the committee were the principal authors of the 

Department’s goals.   This researcher encapsulated those discussions and used them 

and the written goals to define an initial set of 15 criteria.  The desired performance 

at the high end of the scale was also based on those discussions.  The low end of the 

performance scale was based on this researchers’ personal experience with 

struggling freshman.  The interim performance levels were developed according to 

instructor experience and a desire for an internally consistent and parallel range of 

performances.  The end result was a four-level scale ranging from not addressed 

which included behaviors often observed in first semester freshman, through novice 

and intermediate and culminating at proficient.   The proficient level of performance 
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was conceptualized as the level of performance expected from a top-ranking 

undergraduate or beginning graduate student.   

Preliminary testing occurred by incorporating the rubric criteria into 

assignments given in this researchers’ own courses (BIOL 102 laboratory at that 

time).  This researcher also continued to share and discuss the criteria and 

performance levels with a wide variety of science faculty, graduate students and 

educational researchers both within and outside the institution over an 18 month 

period.  At the end of that period of recursive review and revision, the criteria and 

performance levels were piloted on laboratory reports from courses taught by faculty 

other than this researcher. Nineteen biology graduate teaching assistants from a 

variety of biological sub-fields were asked to apply the criteria and performance 

levels to a variety of actual student papers and provide explicit written feedback on 

the relevance and usefulness of each criterion and performance level in a single sit 

down session.    Criteria definitions and performance level descriptions were 

subsequently revised again.   This level of review, discussion, testing and revision 

either meets or exceeds that currently described for other published rubrics (Hafner 

& Hafner, 2003; Halonen et al., 2003; Trevisan et al., 1999). 

 

Final rubric description   

Rubric criteria were structured around the foundational components of 

professional scientific writing: introduction, methods, results, and discussion.  To 

assist students, additional explicit criteria were created to focus on hypothesis 

quality, data use and presentation, statistical competency, use and understanding of 

primary literature, significance of research and writing quality (Table 3.3).   
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Table 3.3  Universal Rubric Criteria Codes and Definitions. 
Criteria Code Definition 
Introduction   

Context 

 

I:C Demonstrates a clear understanding of the big picture; Why is this 
question important/ interesting in the field of biology? 

Accuracy  I:A Content knowledge is accurate, relevant and provides appropriate 
background including defining critical terms. 

Hypotheses   

Testable  H:T Hypotheses are clearly stated, testable and consider plausible 
alternative explanations 

Scientific merit H:S Hypotheses have scientific merit. 

Methods   

Controls and 
replication 

M:C Appropriate controls (including appropriate replication) are present 
and explained. 

Experimental 
design 

M:E Experimental design is likely to produce salient and fruitful results 
(actually tests the hypotheses posed.) 

Results   
Data selection R:S Data chosen are comprehensive, accurate and relevant. 

Data 
presentation 

 

R:P Data are summarized in a logical format.  Table or graph types are 
appropriate. Data are properly labeled including units. Graph axes 
are appropriately labeled and scaled and captions are informative 
and complete. 

Statistical 
analysis 

 

R:St Statistical analysis is appropriate for hypotheses tested and appears 
correctly performed and interpreted with relevant values reported 
and explained. 

Discussion   

Conclusions 
based on data 
selected 

 

D:C Conclusion is clearly and logically drawn from data provided.  A 
logical chain of reasoning from hypothesis to data to conclusions is 
clearly and persuasively explained.  Conflicting data, if present, are 
adequately addressed. 

Alternative 
explanations 

D:A Alternative explanations (hypotheses) are considered and clearly 
eliminated by data in a persuasive discussion. 

Limitations of 
design 

D:L Limitations of the data and/or experimental design and 
corresponding implications for data interpretation are discussed. 

Significance of 
research 

D:S Paper gives a clear indication of the significance and direction of the 
research in the future. 

Primary Literature PL Writer provides a relevant and reasonably complete discussion of 
how this research project relates to others’ work in the field 
(scientific context provided) using primary literature.   

Primary literature is defined as: peer reviewed, reports original data 
(not a review), authors are the people who collected the data, and a 
non-commercial scientific association publishes the journal. 

Writing Quality WQ Grammar, word usage and organization facilitate the reader’s 
understanding of the paper. 

In addition to the criteria, performance levels were described for each 

criterion to comprise a rubric. The full final version of the Universal Rubric for 
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Laboratory Reports is attached as Appendix 3.  An example of a single criterion 

showing the four performance levels is given in Table 3.4. 

Table 3.4.  Example of a Universal Rubric Criterion (Hypotheses: Testable and Consider 

Alternatives, H:T) and Corresponding Performance Levels.     

Criterion Performance Levels 

 Not addressed Novice Intermediate Proficient 

Hypotheses 

are clearly 

stated, testable 

and consider 

plausible 

alternative 

explanations 

 

 

• None indicated. 

• The hypothesis is 

stated but too 

vague or confused 

for its value to be 

determined  

• A clearly stated, 

but not testable 

hypothesis is 

provided. 

• A clearly stated 

and testable, but 

trivial hypothesis 

is provided. 

• A single 

relevant, 

testable 

hypothesis is 

clearly stated 

• The hypothesis 

may be 

compared with 

a “null” 

alternative that 

is usually just 

the absence of 

the expected 

result. 

• Multiple 

relevant, 

testable 

hypotheses are 

clearly stated. 

• Hypotheses 

address more 

than one major 

potential 

mechanism, 

explanation or 

factors for the 

topic.   

 

• A comprehensive 

suite of testable 

hypotheses are 

clearly stated 

which, when 

tested, will 

distinguish 

among multiple 

major factors or 

potential 

explanations for 

the phenomena at 

hand. 

 

 

Source of student papers  

Student papers were selected from three different university biology 

laboratory courses to represent student performance at the freshman and sophomore 

levels.  These courses included the first and second semesters of the introductory 

biology course sequence for majors (BIOL 101 and 102) as well as from the 

laboratory on Ecology and Evolution associated with a required majors course 

(BIOL 301) intended to be taken by sophomores.  Similar to the overall major 

demographics, course demographics were predominately female (60-64%) and the 

top two dominant ethnic groups were Caucasian (55-70%) and black (13-24%) 

regardless of course. 

The assignment details that generated the student papers are presented in 

Table 3.5.  
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Table 3.5.  Descriptions of Assignments Used to Generate Student Papers for Rubric 

Reliability Study 

Course 
(term) 

Description of assignment # papers 
selected 

BIOL 
101 

(Fall 04) 

Genetics: Determine the Mendelian inheritance pattern of 

an unknown phenotypic trait in fruit flies (Drosophila 

melanogaster) based on data collected from a live cross. 

49 

BIOL 
102   

(Fall 04) 

Evolution: Determine whether or not evolution occurred in 

a population of birds as the result of a drought using a pre-

existing multi-year dataset (Galapagos Finches) (Reiser, 

Tabak et al. 2003). 

45 

BIOL 
301   

(Fall 05) 

Ecology:  Determine whether shade/sun affects the 

abundance and distribution pattern of dandelions in a 

field.1  

48 

Note.  This 301 assignment was not peer reviewed in this term.  It was the only assignment completed 

in the course by the time of the rubric reliability study.  Peer review occurred for subsequent 

assignments in this class. 

 

BIOL 101 and 102 papers selected from those written in Fall 2004 and BIOL 301 

were selected from those written in Fall 2005.  From each of the three classes (BIOL 

101, 102 and 301 laboratory), a subset of 45 to 50 papers were selected based on the 

following criteria:  

 

1) paper and graphs were complete, on topic and without plagiarism;  

2) paper was authored by a biology major who was still enrolled in the 

biology program at the time of selection;  

3) no more than 5 papers were selected from any one laboratory section 

(maximum enrollment of 24 students per section, 33 sections total 

sampled) and  

4) within each section at least one paper was selected from a student who 

earned an “A” in the course and at least one from a student who earned a 

“D.”  Efforts were made to select papers representing the available 

spectrum of quality (as determined by course grade) within each 

laboratory section.   
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Selected papers were then stripped of all author-identifying information, 

assigned an anonymous ID code and standardized for font type and size, margins, 

and line spacing before printing. 

 

Graduate student raters 

 The papers were scored by two independent groups of raters.  Raters were 

drawn from the biology graduate students, most of who had served as teaching 

assistants in the relevant classes and regularly graded laboratory reports from those 

courses.  One group was trained for a formal reliability test of the rubric and one 

group remained untrained to assess the usefulness of the rubric under more natural 

conditions.  Graduate teaching assistants are ubiquitous as laboratory instructors in 

Research 1 institutions (Golde 2001) and while large research institutions comprise 

only three percent (3%) of all higher education institutions in the US, they produce 

32% of the nation’s undergraduate degrees (Boyer Commission, 1998).  Graduate 

teaching assistants thus have a significant impact on undergraduate education and to 

this researcher’s knowledge, no previous measure of their natural grading 

consistency has ever been reported.  

The two sets of raters were divided among treatment and naturalized 

conditions to ensure the most similar distribution of experience possible (Table 3.6).   

Both sets of raters received identical sets of student laboratory reports, record sheets 

for recording scores, a copy of the assignment that was given to the undergraduate 

students who wrote the papers and verbal instructions on the purpose of the project 

and their role in it as well as monetary compensation for their time and effort. 

Trained Raters.  Nine raters received five hours of training on how to score 

using the Universal Rubric (henceforth referred to as “trained” raters).  Trained 

raters were provided with a Scoring Guide version of the rubric (Appendix 4).  In the 

Scoring Guide, each criterion was followed by examples of student work at various 

performance levels.  Training was facilitated by Dr. Robert Johnson, a specialist in 

rubric design and assessment (University South Carolina, College of Education) and 

began with a whole-group discussion of the rubric rational and intent (3 hours).  

Raters then broke into their assigned teams and individually scored their three 

example papers for that course.  Discussion within the teams occurred until 

consensus scores were reached for each criterion in each exemplar paper (2 hours).    
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Scoring of all papers by trained raters occurred within 24 hrs after training 

and under supervised conditions.  Trained scorers kept track of the time they spent in 

scoring and worked an average of 7.8 hours averaging 6.2 papers per hour.   The 

maximum duration of scoring was 8.5 hours and the minimum was 6.8 h.  Scoring 

occurred in blocks of several hours with breaks for meals and sleep. 

 

Table 3.6.  Gender and Experience Levels of Graduate Student Raters  

Course Rater 
Type 

Raters’ 
genders 

# semesters of teaching 
experience per rater 

Raters have taught 
this assignment? 

101 Trained F, F, M 2, 2, 5 Y, Y, Y 

101 Natural F, F, F 1, 2, 4 Y, Y, Y 

102 Trained F, F, F 3, 3, 11 Y, Y, N 

102 Natural F, F, F 1, 4, 4 Y, Y, Y 

301 Trained F, F, M 3, 7, 7 Y, N, Y 

301 Natural M, M 3, 7 Y, Y 

Note. Codes are as follows: (F) female, (M) male, (Y) yes, (N) no.  Data are portrayed respectively.  

Namely, for “101/Trained,” the first and second raters were both females (F,F), with 2 semesters of 

teaching experience (2,2) and had taught the Drosophila assignment in BIOL 101 before (Y,Y) while 

the third rater was male with 5 semesters of teaching experience who had also taught this particular 

assignment in the past  (M,5,Y).  The average number of semesters of teaching experience for trained 

raters was 4.8 + 3.0 and for natural raters was 3.4 + 1.9. 

 

Natural Raters.  Eight additional graduate students were hired to assess 

grading consistency of teaching assistants in a natural condition and hereafter will be 

referred to as natural raters.  At the time that the rubric reliability study was 

conducted, upper division teaching assistants often received no pedagogical support 

for student written assignments.  Graduate teaching assistants in the 300 level 

laboratories had occasional verbal instructions from the supervising faculty member 

regarding assignment details, but rarely received instructional materials (e.g. no 

criteria, rubrics, etc.).  Introductory biology graduate students were provided with 

assignments and criteria and met regularly with faculty on pedagogical issues.  Thus, 

to provide a standardized, but natural level of support, the comparison group of 

raters received a ten-minute verbal explanation of the assignment and a single page 



 

 

 

71 

list of criteria.  Specifically, for the purposes of this study, the natural raters were 

provided with the same list of criteria as are found on the rubric, but without the 

performance level descriptions or examples of student work (Appendix 5).  The 

same point scale was used (maximum 3 points per criterion) by the natural raters as 

the trained raters.  Natural raters scored papers over the course of week, on their own 

time, in locations of their choosing so as to most accurately match normal grading 

conditions. 

 

Data analysis   

Rubric reliability data were analysed using generalizability (g) analysis 

(Crick and Brennan 1984) which determines the portion of the variation in scores 

which is attributable to actual differences in the quality of the papers rather than 

variation attributable to less relevant sources such as variation among raters, or 

assignments or variation due to interaction among factors such as student-assignment 

or rater-assignment (Shavelson and Webb 1991).  For example, a generalizability 

score of 1.0 therefore means that all the variation in scores between papers was due 

to differences in quality among the papers and that no error was introduced (all raters 

were perfectly consistent regardless of student, assignment, etc.).  In contrast, a 

generalizability score of 0.0 means that none of the variation in scores among papers 

was attributable to actual differences in quality and that all the variation in scores 

was entirely due to other sources of variation such as rater inconsistency instead. 

 

Test of Scientific Reasoning 

 The instrument selected for quantitative measurements of students’ scientific 

reasoning ability was the 2000 version of the Scientific Reasoning Test (SRT) 

(Lawson, 1978; Lawson, Alkhoury, Benford, Clark, & Falconer, 2000) (attached 

here as Appendix 6) because it had been previously validated as a reliable instrument 

in a similar context (university freshman), and it does not suppose any previous 

knowledge of biology, thereby avoiding a source of bias when administered to 

biology majors at different stages in the curriculum.  In fact, most of the questions 

addressed students’ reasoning ability and knowledge of experimental design 

principles using physical rather than biological contexts.  The 2000 version of the 

instrument has 24 multiple choice questions designed in a two-tiered fashion so that 
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the second question in each pair asks students to identify the rationale behind their 

selection for the first question in the pair.   The rationale choices used in the second 

tier questions are based on previously identified student misconceptions (Lawson et 

al., 2000).   Eight of 12 pairs of questions use physical science concepts such as 

density, conservation of mass, pendulum swinging etc, as the context for questions.  

Types of reasoning required of students are those "associated with hypothesis testing 

(i.e., the identification and control of variables, correlational reasoning, probabilistic 

reasoning, proportional reasoning, and combinatorial reasoning)." (Lawson et al., 

2000, p. 1001).  In particular, four questions ask students to identify what results 

would falsify a hypothesis which is a primary component of scientific reasoning in 

our view.  One of the few test items that does have a biological context is illustrated 

in Figure 3.1. 

 

Administration 

The Scientific Reasoning Test was administered to a cross-sectional cohort of 

students in the Fall of 2005 who were enrolled in the five classes mentioned above 

(BIOL 101, 102, 301L, 302L, 530; total enrollment = 942).  Data from non-biology 

majors were winnowed out as the biology majors are the population of interest for 

this study.  Further details on sample reduction decision are provided in the results 

section.  Non-majors comprise more than half (59%) of the students in the 

introductory level and less than 10% of the students in the upper division courses.  

The test was administered in the laboratory portion of each class within three weeks 

of the beginning of the semester.  The purpose and use of the data were explained to 

the students and an information sheet with contact information for the researcher was 

provided to the students.  Completing the test was voluntary and there was no impact 

on the students’ course grade as a result of their score on the test.   In addition to the 

previously published Scientific Reasoning Test, students were asked to self report on 

the number of peer review experiences they have had in past courses, as well as their 

gender, ethnicity and prior biology background.  For students who were enrolled in 

BIOL 102 or higher, they were also asked where they took introductory biology 

(within our program or elsewhere) and if they remembered engaging in peer review 

as part of the course. 
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Figure 3.1.  Example of a tiered pair of questions from the Scientific Reasoning Test 

(Lawson et al., 2000) with a biological context.  Correct answers are 11 (B) and 12 (A). 

 

Data analysis  

It is expected that Scientific Reasoning Test scores should increase with 

academic maturity; as a student progresses from freshman to senior year, their 

scientific reasoning score would be expected to increase simply as a result of their 

overall course work and greater academic experience.  The effect of peer review on 

students’ Scientific Reasoning Score was therefore compared to the effect seen 

merely from increasing academic experience as measured by credit hours.  

Additionally, as many of the biology majors transfer in after freshman year (where 

the major of the peer review experiences occur in our curriculum currently), there 
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could be a greater effect of academic maturity based on where students earned the 

credit hours currently on their record.  Students were categorised into standard class 

years by credit hours earned (0-30 credit hours = freshman, 31-60 credit hours = 

sophomore, 61-90 credit hours = junior, 91-120 credit hours = senior, greater than 

120 credit hours = fifth year).  USC credit hours and credit earned elsewhere were 

tracked separately.  ANOVA tests were used to test for significant differences among 

credit hours earned, type of credit hours (USC vs. transfer credit) number of peer 

review experiences and SRT score. 

 

  Survey of student perceptions regarding peer review 

Overview 

 A Survey on students’ perceptions of the process of peer review, its role in 

the classroom as a learning tool and its function in the scientific community was 

developed and administered in the introductory biology course during the 2006-2007 

academic year.  The instrument was titled The Peer Review Survey and hereafter will 

be referred to as the Survey.  Each administration occurred at the end of the semester 

following the peer review process.  The Survey focused on three major issues: 1) 

students’ understanding of the purpose of peer review within and outside the 

classroom, 2) students’ understanding of the mechanics of peer review, their 

understanding of function of each of the steps in the process, and their opinion of the 

quality of instructional support provided to help them engage in the peer review 

process, and 3) the perceived impact of peer review on their writing and critical 

thinking within and beyond the course.  The Survey was developed with review and 

input from both the faculty responsible for the introductory course as well as from 

the Office of Program Evaluation, USC College of Education.   

 

Fall 2006 Survey structure 

The first semester, the Survey consisted of 23 statements to which students 

were asked to respond using a Likert scale with 6 values ranging from ‘strongly 

disagree’ to ‘strongly agree.’  An even number of Likert choices was intentional to 

force students to indicate a negative or positive reaction.  Six questions focused on 

the purpose of peer review; ten focused on the mechanics of the peer review process 

and the effectiveness of the instructional supports; seven inquired about the impact 

of peer review on students’ writing and critical thinking skills.  Three open-ended 
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questions then followed with a fourth option for additional comments (See Student 

version Fall 2006, Appendix 7).  The open-ended questions were as follows: 

• Please describe why you think we asked you to use peer review in this class.  

• Please describe how you think practicing scientists use peer review in their 

work.  

• What changes would you recommend to improve peer review in this class? 

Student open-ended responses were collected and reviewed recursively until regular 

themes emerged which were defined into categories of responses.   Responses were 

then categorised with more detailed sub-themes identified as appropriate.   Once the 

coding scheme appeared stable because all responses fit into an existing category and 

sub-theme, the number of responses in each category was tabulated (Anderson 

2002). 

 

Fall 2006 Administration 

The Survey was made available to the 562 students still enrolled in the BIOL 

101 course by the end of the Fall 2006 semester (November) and 444 students 

responded (response rate of 79%).  The Survey was made available by use of an 

online Survey tool (Survey Monkey) and student responses were anonymous.  

Students were encouraged to participate by use of a single bonus point for 

completing the Survey (<1% of overall laboratory grade) and bonus points were 

awarded when students emailed to their instructor a “secret code” that was revealed 

to them at the end of the Survey.    This online Survey tool and same reward system 

were used in Spring 2007 (see Table 3.7 for samples sizes and details). 

 

Revision and expansion of Survey and Spring 2007 administration 

After the Fall 2006 semester, student responses to the three open-ended 

queries described above were reviewed and categorized.  For the Spring 2007 

administration, “select the top 3 reasons” items replaced these open-ended questions. 

In the “select the top 3 reasons” format, each choice that could be selected was 

derived from one of the categories of response that emerged from the Fall 2006 data 

collection. Students were asked to choose their top three responses from the resulting 

list.  The refined student version (See Student Peer Review Survey Spring 2007 in 
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Appendix 8) was re-administered in the Spring of 2007 to students in both BIOL 101 

and BIOL 102 (n = 638).   

For the Spring 2007 administration, it was also expected that most of the 

students in BIOL 102 would have already participated in peer review because they 

were enrolled in BIOL 101 the previous semester, so two new items were added.  

Students were asked if the peer review process was 1) more or less difficult and 2) 

more or less useful the second time.  In addition, four more demographic 

triangulation questions were posed to students in the Spring 2007 administration: 

 

• Are you a biology major? 

• Did you participate in peer review in BIOL 101 at USC last fall (2006)? 

• Did you fill out a similar Survey in Fall 2006? 

• Including the current semester, how many semesters have you used peer 

review for biology classes? 

 

The revised Survey was then made available to all BIOL 101 and 102 

students enrolled as of April 2007.  An “Additional Comments” open-text box was 

also part of the Spring version of the Survey in case students wished to add any 

additional information or insight.  

Table 3.7.  Sample Sizes and Response Rates for Student Peer Review Surveys.  

Term Course 

#students 

enrolled 

Response rate 

#             % 

#with 2nd PR 

experience  

% biology 

majors 

Fall 2006 101 562 444 79% n/a Not asked 

Spr 2007 101 230 206 90% 15 (7%)* 42% 

Spr 2007 102 408 376 92% 312 (84%) 38% 

Totals/Average 1200 1026 85.5%   

Note.  Survey administrations occurred at the end of each semester.  PR = Peer Review.  The students 

in BIOL 101, Spring 2007 who are reporting this to be their 2nd peer review experience are 

presumably students who failed to pass BIOL 101 in Fall 2006.  Sample sizes for each item on the 

Survey vary slightly as not all students answered all questions, but variation is less than 2% of the 

total relevant number of respondents (e.g. for BIOL 102, individual item sample sizes ranged from 

369 to 372.) 
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Ethics compliance 

  
This work was conducted in accordance with the principles and philosophies 

of the Australian Code for the Responsible Conduct of Research and the policies and 

procedures of Curtin University of Technology in particular.  All possible care was 

taken to maintain the highest possible standards of academic integrity and honesty as 

well as to respect the welfare, rights and privacy of all people involved in the 

research.  Specific ethics review and compliance were also conducted by the 

institution responsible for the students who comprised the study population.  

An Institutional Review Board (IRB) application for Approval of Human 

Subjects Research at the University of South Carolina was made in 2003 and this 

work received a designation of “Exempt.”   Therefore, written consent by subjects 

was not required.   This work was deemed exempt because the “research [was] 

conducted in established or commonly accepted educational settings, involving 

normal educational practices, such as: (i) research on regular and special education 

instructional strategies, or (ii) research on the effectiveness of or the comparison 

among instructional techniques, curricula, or classroom management methods [or 

was] research involving the use of educational tests (cognitive, diagnostic, aptitude, 

achievement), survey procedures, interview procedures or observation of public 

behavior.” (USC Office of Research Compliance, http://www.orc.research.sc.edu/).   

This designation satisfies federal (US) regulations and National Science Foundation 

requirements for protecting human subjects.   

The data generated by this investigation were based on artifacts from 

assignments that are part of the normal biology laboratory curricula.  Artifacts 

included draft and final versions of student assignments and the corresponding peer 

reviews as well as results of the multiple choice scientific reasoning test and 

anonymous survey results.  The peer review process was conducted using a software 

program that guaranteed anonymity from the student’s perspective, but allowed the 

instructor to track and identify authors.  The objective tests were administered using 

scantron sheets.  All student assignments and artifacts are handled with the level of 

privacy and confidentiality required by the Family Educational Rights and Privacy 

Act (FERPA) of 1974 (http://registrar.sc.edu/html/ferpa/ferpa1.stm). All data were 

reported in aggregate forms to ensure anonymity.  No data were generated which 
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would required the use of a pseudonym or consent as all quotes included were 

collected anonymously. 

As an additional demonstration of respect for students’ interest and welfare, 

students were informed by means of the course syllabi or as a direct handout, that 

their regular course work, or any voluntary measures of achievement (e.g. the 

Scientific Reasoning Test) might be collected and used in an aggregated or otherwise 

anonymous manner for the purpose of evaluating the effectiveness of teaching 

methods and curriculum (including peer review).  Students were given contact 

information for this researcher as well as contact information for the Office of 

Research Compliance and encouraged to contact either if they had concerns or 

questions.   Laboratory reports or Scientific Reasoning Test (SRT) measures of 

student performance were either natural components of the coursework regularly 

assigned for the class, or voluntary (participation or performance had no 

consequences or impact on the student’s grade in the course).  Specifically, cross-

sectional Scientific Reasoning Test data were collected in two ways.  In Introductory 

Biology, the Scientific Reasoning Test was incorporated as a minor component of the 

regular course grade (<1% of the total points) under the heading of participation.  In 

the 300 and 500 level classes, the SRT was taken by students on a voluntary basis.  

Verbal and written information was provided to student volunteers describing the 

intended usage of the information, that participation or lack of participation would 

not affect their grade in any way and contact information should they have any 

questions or concerns later.  All students opted to participate.  In the case of the 

Surveys of student perception of the process of peer review, participation was 

encouraged by the use of a single bonus point (<0.5% of course grade). Response 

rates for the Survey administrations are reported in Chapter 4, but in general ranged 

from 80-90%.   

Thus, all data sources were either a collection of pre-existing information 

(e.g. laboratory reports) re-analyzed outside of the context of the course or had zero 

to negligible influence on a student’s grade in the course. 

  

Limitations of the study 

 

As with all research, conclusions were limited by the types and nature of the 

data collected.  Scientific reasoning encompasses a broad category of skills and 
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abilities that can be demonstrated in a variety of ways.  Students’ written laboratory 

reports, while a rich source of data, inherently miss some aspects of reasoning which 

would be more clearly seen in students’ small group discussions, by direct 

questioning or observation of students in the laboratory directly.  In particular, using 

only written data sources selects for students who are able to articulate their 

scientific reasoning onto paper.  There likely are students within this sample who 

have scientific reasoning skills and gains that were not evident because those 

students had more difficulty expressing themselves in writing than verbally or by 

action and decision.  Nonetheless, communication of scientific ability and 

discoveries via written reports is ubiquitous and a primary means by which scientists 

share their findings making student written laboratory reports not only an appropriate 

data source, but also an effective pedagogical tool. 

Use of multiple-choice tests suffers from similar confounding factors in that 

students may have strong reasoning abilities, but poor test taking abilities.  

Consequently, the results of the Scientific Reasoning Test are used only to assess 

broad-scale patterns without speaking to the ability of any individual or small 

subgroup of students. 

Lastly, survey data must always be treated as the self-report data that they 

are.  Namely, such perceptional data are only useful when it is perceptions that are 

informative and of interest.  Namely, students perceive that peer review improves 

their reasoning skills, but that perception has little bearing on their actual 

achievement which must be measured separately.  Here, students’ perceptions of the 

pedagogical rationale and outcomes of peer review were of interest and so the use of 

a survey tool was appropriate. 

Summary 
 

The effect of an instructional strategy on student learning is always multi-

faceted and complex as human being are dynamic creatures affected by internal 

factors (motivation, affect, self-efficacy, interest, etc.) as well as external factors 

(classroom environment, peer interactions, etc.) beyond the direct instruction.  Thus, 

the effects of instructional strategies must be measured within the context of interest; 

achievement of absolute skills, performance on standardized measures, normative 

performance relative to others etc.  It is with this perspective that the effect of peer 
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review on scientific reasoning was selected.  Contextually appropriate data sources 

(written laboratory reports, rubrics focused on written demonstration of scientific 

skills) were chosen or developed and a continuous focus on real-world scientific 

skills and perceptions of how the classroom relates to scientific community were 

maintained. 
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CHAPTER 4 

RESULTS FROM ACHIEVEMENT DATA 

 

Overview 
 

Conclusions about the effectiveness of peer review are drawn from three major 

data sources: student science writing in the form of laboratory reports, scores on a 

multiple choice Scientific Reasoning Test and student responses to an online Survey.    

The relationships among these three data sources and the research questions are 

illustrated in Figure 1.2.   Results of studies on student achievement in scientific 

reasoning using laboratory reports and the Scientific Reasoning Test are reported 

here.  Undergraduate perceptions of peer review are presented in Chapter 5.  Use of 

both in-depth, proximal data sources such as written laboratory reports and amore 

distal measures of student performance such as the Scientific Reasoning Test, 

allowed for triangulation of results and provides greater confidence in the 

conclusions.  

Before investigating student performance, however, some basic assumptions 

concerning the instructional innovation of peer review are investigated.  Students’ 

ability to produce useful feedback and whether or not writers can effectively 

implement that feedback to improve their papers were investigated in a small-scale 

study (Study 1).  Once it was determined that even the least experienced students 

could productively engage in peer review, the effect of peer review on students’ 

scientific reasoning abilities was then investigated.  Laboratory reports provide an in-

depth look at student scientific reasoning ability in a format similar to that used by 

practicing scientists and thereby constitute an authentic performance assessment 

likely to elicit relevant scientific reasoning skills of interest (National Research 

Council Committee on the Foundations of Assessment 2001) 

The decision to use laboratory reports from a variety of courses necessitated 

the development of a common metric that could measure student achievement of 

scientific reasoning skills regardless of course content or level.  Thus, the Universal 

Rubric for Laboratory Reports was conceived and developed.  Before the Universal 

Rubric could be used to measure student achievement however, its reliability as a 

measurement instrument needed to be demonstrated (Study 2).  The Universal 
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Rubric was tested using laboratory reports from three separate classes in order to 

demonstrate its applicability across a variety of biological content areas.  It should be 

noted that these cross-sectional data on student laboratory reports from BIOL 101, 

102 and 301 laboratories served an additional purpose beyond testing the 

psychometric reliability of the Rubric.  The averaged scores produced during that 

reliability testing were used to evaluate student scientific writing and reasoning in a 

cross section of student enrolled in separate biology courses.  As the BIOL 101 and 

102 papers underwent peer review, while the 301 papers did not, this cross-sectional 

sample also provides a comparison of the performance of younger, less experienced 

students using peer review, against that of older more experienced students who did 

not participate in peer review (Study 4).   Growth in scientific reasoning in the same 

students over time was also investigated using longitudinal portfolios of student 

work from multiple classes over various semesters (Study 5).  These two in-depth 

views of student achievement of scientific reasoning skills were further supported by 

the more objective multiple-choice Scientific Reasoning Test. 

The Scientific Reasoning Test is a conservative instrument for this study as it 

tests reasoning ability in contexts outside of and unrelated to the biology courses in 

which students are learning.  Thus, if across hundreds of students from a range of 

biology courses it detects a relationship between improvement in scientific reasoning 

scores and the number of peer review experiences in which a student has 

participated, the effect of peer review must be rather notable (Studies 3 and 7).   

Additionally, as the primary source of raters for the Rubric’s reliability testing 

were biology graduate teaching assistants and little research on the consistency or 

grading habits of graduate teaching assistants has been published in the past, this 

portion of the study afforded a unique opportunity.  Reliability and stringency of 

scores generated by graduate teaching assistants and the impact of training on those 

scores is also reported and discussed (Study 6).  Graduate teaching assistant 

perceptions of the Universal Rubric utility are also reported to provide insight on 

how the Rubric might facilitate science graduate student teaching (Study 8).  

Student perceptions of the effectiveness of peer review as a learning strategy 

are also investigated.  Specifically, student perceptions of the role of peer review in 

the classroom (Study 9) and the scientific community (Study 10) were investigated.  

As motivation and self-efficacy affect performance as well, student perceptions 

provide additional insight into successes and continuing challenges of peer review.  
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Student comments also indicate whether students correctly perceive the instructor’s 

motivation and intent for incorporating peer review into the curriculum.  Do students 

perceive peer review as a useful skill for practicing scientists?  Do they believe peer 

review improves their critical thinking skills or their scientific writing?   Overall, 

these combined measures illuminate the impact of peer review on student 

achievement and the rate at which their scientific reasoning skills develop as well as 

their understanding of how peer review fits into the scientific community at large. 

 
Study 1:  

Consistency and effectiveness of undergraduate peer reviewers 
 

Peer review capabilities of freshman and first semester transfer students were 

determined with a multiple data sources from one representative semester of 

introductory biology (BIOL 102, Fall 2004: n = 320 students).  The assumption was 

made that if these introductory biology students were capable of peer review, 

students in subsequent courses would also be capable.  The class sampled to answer 

this question had similar demographics to the biology major as a whole (64% female 

and 55% Caucasian, 24% African-American) and was 64% freshman and 21% 

sophomores (transfer students or change of major students).  As is typical for 

introductory biology, only 49% of enrolled students were biology majors (35% were 

related health sciences majors for whom introductory biology is a required 

sequence).  Data sources used were reviewers’ ratings of peer papers, reviewers’ 

comments, tracking changes in student writing from draft to final versions of the 

paper and student self-report data for time on task. 

 

Characteristics of undergraduate peer review 

 Overall, introductory biology peer reviewers were found to be consistent and 

effective. Ninety-six percent (96%) of students in the class successfully completed 

the peer review process (n = 307).  Given the detailed nature of several of the data 

sources, sub-samples were used for some analyses.  The average numerical rating 

given to peers for their draft papers was 5.7 (on a scale from 1 to 10) with a standard 

deviation across writers of 1.5.  As most papers were reviewed by three peers 

(average number of reviews per paper = 2.75), comparing the text ratings among the 

reviewers of a paper was a reasonable means of measuring the consistency of these 
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novice raters.  The average standard deviation among reviewers looking at the same 

work was 1.6 on a scale of 10 (n = 335 reviews of 119 papers).  Especially given 

students’ inability to more finely differentiate scores (only integers values are 

allowed by the CPR website), a 16% variation among reviewers was viewed as 

reasonable.  By way of comparison, graduate student raters of similar papers had 

average standard deviations of 2.0 (trained raters) to 5.0 points (natural raters) on a 

45 point scale with average paper scores of 11.7 to 20.8 respectively.  As the average 

standard deviation of scores produced by graduate students who determine grades in 

the course was 11% of their average total scores (5.0 / 45), it seems acceptable for 

peer reviewers to have a comparable range of variability (16%).   Further, another 

study of peer reviewer consistency using three peer reviewers produced alpha 

Cronbach reliability scores of α = 0.55 (Cho, Schunn, & Wilson, 2006).  

Introductory biology students were therefore deemed sufficiently consistent as peer 

reviewers and therefore, by extension, more advanced biology majors are also 

assumed to be consistent reviewers. 

Introductory biology students took on average 32.4  + 14.3 minutes per 

review (n=182 reviews) including the time required to read the paper (average paper 

length = 1,265 + 448 words, n = 66 papers).  Peer review thus did not appear to place 

an undue burden on students.   Ninety-five percent (95%) of the writers who 

participated in the peer review process also viewed their results as indicated by the 

CPR website login data.  Thus, on a broad scale, undergraduates appeared to 

competently navigate the peer review process and they were reasonably consistent in 

their estimations of the overall quality of a peer’s work. 

 

Incorporating feedback is a distinct process from peer review 

Using a smaller sub-sample of papers from this course, an in-depth look at 

how the quality and nature of peer feedback was made by independent rating (not 

using the grades assigned by the graduate teaching assistants in the course).  Both 

draft and final papers were scored using the criteria provided to the students.  The 

individual pieces of feedback provided by the reviewers were also evaluated.  

Feedback was coded as to topic and nature, and the draft and final versions of the 

paper correlated with the feedback to determine which pieces of feedback appeared 

to have been used to revise the paper.  The average reviewer gave 3.7 + 2.6 (out of 
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10 possible) useful pieces of feedback per review.  The average writer therefore 

received an average of 10.4 + 5.0 useful pieces of feedback across all three 

reviewers.   

Receiving and implementing the feedback seem to be two distinct processes 

however.  While 95% of students in the class appeared to have logged in and viewed 

their results (n = 308 students), but only 54 + 31% of the feedback received by 

students in the intensive sub-sample was incorporated on average.  Given this 

notable variation in the use of the feedback with the minimum use being 0% (2 

students) and the maximum being 100% (1 student), a correlation between use and 

gain in points from draft to final version of the paper was plotted (Figure 4.1). 
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Figure 4.1.  Effect of using peer feedback on the quality of students’ final papers.  

Sample from BIOL 102, Fall 2004 (n=22 unique students.)  Gain in score is the difference between 

the score achieved by the draft and final versions of the paper for each student.  Number of feedback 

items used by each writer was determined by correlating all pieces of feedback received by a writer 

with changes evident in the final paper compared to the draft.  By definition, only feedback items 

deemed useful (see Chapter 3 Methods) were used in this analysis as vague feedback did not generate 

changes that could be definitively traced back to a particular feedback item. 

 

On average, for every three pieces of useful feedback incorporated, a writer 

saw a two point (4%) increase in his/her grade on the final paper.  This graph was 

shown to all subsequent classes to encourage them to use the feedback as an 

effective means of improving their papers.  The intercept on the regression line was 

not set at 0,0 as a writer could have presumably made revisions to the paper and 
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improved it without incorporating any peer feedback. Peers therefore appear to also 

be effective at providing useful feedback, both as defined for the purposes of this 

study and in terms of final grade outcome. 

 

Improving the usefulness of peer feedback 

This result supports previous findings that undergraduates perceive the 

helpfulness of peer feedback as similar to the helpfulness of instructor feedback 

(2006).  Cho, Schunn and Charney (2006) also found that undergraduates were the 

largest source of praise-based feedback while instructors provided the bulk of the 

directive feedback (defined as makes specific suggestions for change). These authors 

therefore recommended that undergraduates be encouraged to be more directive in 

their reviews.   

The handout and instruction provided to students as part of this study were 

developed prior to the publication of Cho and colleagues’ work, but nevertheless 

were well-aligned with their recommendations.  Students were instructed to focus on 

making their feedback as specific and concrete as possible with the ultimate 

determinant of feedback quality being whether the comments were sufficient to 

plausibly generate meaningful change in the writers’ paper (see Chapter 3 for more 

detail).  To encourage students to take these recommendations seriously, reviewers 

were graded by graduate teaching assistants on the quality of the feedback they gave 

(1 pt for each piece of useful feedback up to a maximum of 10 pts).  The criterion of 

useful defined here is equivalent to Cho, Schunn and Charney’s (2006) category of 

directive.  

Cho, Schunn and Charney (2006) reported that approximately 20-60% of the 

comments made by undergraduates were directive depending on which sample and 

rubric criterion were considered.  Far more directive feedback was provided in the 

area of prose flow (~40-60% of feedback) and far less for argument quality (~45%) 

or insight (~20%).  Similarly, when the quality of undergraduates’ feedback was 

reviewed by an independent rater as part of this study, approximately 37% + 26% of 

the feedback was coded as useful.  In contrast, instructor feedback was 80% directive 

for prose flow, 90% directive for argument and 50% directive for insight.  So there 

appears to be room for improvement in undergraduate feedback, though this level of 

usefulness appears to be normal for undergraduate populations.  No comparable 

information is available for professional peer review.  Even if professional referees 
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written comments were collected (e.g. Marsh and Bell 1981), information on their 

topology or quality was not reported.  

Cho, Schunn and Charney do not provide details however as to what supports 

were provided for undergraduates in writing their feedback, nor the undergraduates’ 

experience level with peer review.  Their online peer review system does allow 

writers to score the usefulness of the feedback they receive which would provide 

some motivation to reviewers similar to being graded by a graduate teaching 

assistant.  One of their undergraduate samples was composed of juniors and seniors 

(who produced the largest frequency of directive feedback) and the other was not 

specified.  These students were predominantly freshman.  Presumably, the value of 

student feedback would be lesser without these supports.  So at a minimum, students 

should be motivated to provide useful feedback by some sort of accountability 

system as well as being provided with rubric-based guidance and examples of what 

constitutes useful and productive feedback. 

 

Changes in science writing as a result of peer review 

Even if the proportion of useful feedback can be improved, peer feedback 

does still cause notable improvement in the quality of student writing and thinking.  

The student papers sampled here were generated as part of a BIOL 102 unit on 

evolution using data from populations of Galapagos Finches (same assignment as 

described in Table 3.5).  Analysis of the changes made from the draft to the final 

versions of the paper and correlation with the feedback received by each writer 

indicated the location of the gain in points (Table 4.1).  Overall, an average gain of 

15% was seen for each criterion.   Four major areas of weakness (defined as students 

earned < 50% of the possible points) were seen in the draft papers:  1) the 

comprehensiveness of the data used by the student, 2) refutation of alternative 

explanations, 3) explanation of evolutionary mechanisms and 4) future directions 

and significance of the research (Table 4.1, items in italics).  While all the areas of 

weakness improved as a result of peer review, the greatest gains occurred in 

“Refutation of alternative explanations” (34% increase) and “Explanations of 

evolutionary mechanisms” (36% increase). 

Thus, it appears that some weaknesses in students’ science skills were more 

easily identified by peers.  Additionally, peer reviewers’ feedback caused greater 

improvement in those areas than others.  Thus, this result suggests there may be a 
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developmental trajectory wherein some scientific reasoning skills (such as the ability 

to refute alternatives) develop before others.  As students all worked on the same 

research project, peers likely felt comfortable suggesting alternative explanations and 

identifying when writers had effectively dealt with those alternatives.  

Table 4.1.  Student Performance on Draft and Final Lab Reports and Changes Made 

as a Result of Peer Feedback. 

Assignment Criteria % possible points earned 

 Draft Final Gain 

Introduction/Background  
• Relevant Context 
• Content knowledge is accurate and relevant 

 64  72 9 

Hypothesis(ses) are 
• Testable and relevant  
• Include multiple plausible alternative 

explanations  

 64  79 15 

Methods: clear, concise description of data 
collection and analysis. 
 

 68  76 8 

Results  

• Data presented in a logical, clear format 

• Data are relevant to question and clearly 
tied back to hypotheses being tested 

• Data are complete and comprehensive 

 

 74 

 70 

 16 

 

 77 

 82 

 27 

 

2 

13 

11 

Discussion  
• Clear, logical and persuasive discussion of 

why data support one hypothesis over the 
others 

• Clear refutation of alternative 
explanations  

 
  

64 
 

 
 38 

 
  

78 
 

 
 71 

 
14 
 
 

34 

Explanation of evolutionary mechanisms 19 54 36 

Future directions, implications 16 26 10 

Writing quality 
• Clear, concise, direct and persuasive. 

 
 72 

 
 83 

 
11 

Total 53 68 15 
Note.  Sample size is 22 students who each wrote a draft and final version of their lab report.  

Students had more difficulty determining whether or not all relevant 

alternatives had been considered in that  the criterion of data are complete and 

comprehensive still showed room for improvement.  This is not surprising as 
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identifying when data are incomplete can be more difficult if many students are 

missing the same data type.  Students who make similar errors are less likely to 

identify the error when reviewing other students work (Schwarz, Neuman, & 

Biezuner, 2000).  Further, the content knowledge necessary to explain evolutionary 

mechanisms clearly improved from draft to final as well.  Discussing the future 

implications of a research project also appeared to be a challenging area for students 

at this level.  

Summary of results from Study 1: The effectiveness and consistency of peer 
reviewers 

Introductory biology students are capable of engaging in peer review and the 

process is a reasonable time commitment for an introductory level course 

assignment.  Introductory biology peer reviewers can produce a reasonable number 

of useful feedback items per review (similar to the proportion reported by  Cho, 

Schunn et al. 2006), though there is distinct room for improvement.   Peer feedback 

was deemed useful both when reviewed by an independent rater and because it 

produced increases in student scores when writers choose to incorporate the 

feedback into their revisions.  Four areas of weakness were found in student papers 

in an introductory biology course.  Two of those areas improved as a result of peer 

feedback: students’ consideration of alternative explanations and their explanations 

of evolution.  Thus, introductory biology students were effective peer reviewers who 

stimulated both reasoning and content knowledge gains.   It is further plausible that 

student capabilities will improve with experience. 

Study 2: 

Reliability of the Universal Rubric for Laboratory Reports 

Once it was determined that introductory biology student can engage 

productively in peer review, subsequent research questions required a common 

metric for measuring student performance across multiple courses (either 

longitudinal or cross-sectional).  The Universal Rubric for Laboratory Reports 

(hereafter “the Rubric”) was developed to serve as this common yardstick for 

assessing student performance.  Prior to widespread implementation or application 

however, the Rubric underwent psychometric evaluation to test its reliability as a 

measurement tool. 
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Reliability of the Rubric was measured at several levels and in two different 

contexts.  The reliability of each individual criterion was calculated as well as the 

reliability of the overall total score assigned to each paper.   To ensure universality of 

the Rubric, the reliability evaluation was replicated both within a course (n = 45 to 

49 unique student papers per course) and across three different biology courses.  In 

addition, the entire experimental design was implemented with trained raters and 

then replicated again (using the same papers) using graduate teaching assistants in 

natural grading conditions to allow extrapolation of the reliability results to more 

real-world contexts.   

Generalizability analysis was used to assess reliability.  It differentiates the 

portion of the variation in scores which is attributable to actual differences in the 

quality of the papers (reported as g) from the variation attributable to less relevant 

sources such as variation among raters, or assignments or variation due to interaction 

among those factors such as student-assignment or rater-assignment interactions 

(Shavelson and Webb 1991).  All reliability scores reported here were 

generalizability scores.  In general, only reliability scores generated from 

comparisons among three raters are reported in the text as they were generated from 

experimental data.  Single rater reliabilities indicate the equivalent confidence one 

would place in a score generated by a single rater (e.g. an instructor grading a paper) 

but are function of three rater reliabilities and therefore have a predictable 

relationship (see Figure 4.2). 
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Figure 4.2.  Relationship between average three-rater reliability and single-rater reliability 

scores using data derived from this study (n = 142 papers). 

All results reported for rubric reliability refer to scores generated by three trained 

raters only unless otherwise specified.  Data on the reliability of the rubric under 

natural grading conditions occurs in a separate upcoming section. 

 

Reliability of individual criteria 

 Not surprisingly, reliability as measured by generalizability analysis varied 

by criterion (Table 4.2) but with a few exceptions, most criteria were reliable in a 

variety of contexts.  The minimum three-rater reliability (g) across all three datasets 

was 0.20 and the maximum was 0.94 with an average reliability of 0.65 (this result 

excluded the criteria of Methods: Controls for all three datasets and Results: 

Statistical Analysis for BIOL 102 and Methods: Experimental Design for BIOL 101 

as these criteria are discussed separately).  Refer to Table 3.3 for full descriptions of 

criteria.  Considering just the maximum reliabilities achieved, the range of reliability 

values as measured by generalizability analysis was 0.62 to 0.94 across all criteria 

(Table 4.2).  These results indicate that each criterion is reliable in at least a subset of 

situations.   

Other studies have reported individual criterion reliabilities as low as g = 

0.151 for four raters (Baker, Abedi et al. 1995) so these individual criterion measures 

are quite encouraging in many cases.  Baker et al. (1995) only report maximum 

criterion reliabilities of g =0.722 with four raters (and an average reliability of g 
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=0.53 over six criteria). It should also be noted that excluding the criteria mentioned 

above, when criterion reliabilities are averaged over multiple courses, the minimum 

reliability for any single criterion is 0.49 and the maximum is 0.79 (Table 4.2).  

Therefore, the reliabilities for these individual criteria are on par with others 

published in the literature are acceptable for use in this and similar contexts (see also 

Table 4.3 for published reliability values of total scores).  Further, graduate student 

peer reviews in a course simulating publication in scholarly journals found a similar 

pattern to that shown here; individual criteria had quite low reliabilities (r = 0.26 to 

0.47 for two raters), but that the overall score had a much higher reliability (r = 0.55) 

(Haaga 1993).  This pattern of overall or total scores having equal or higher 

reliabilities than criterion scores was also found in other studies (Klein, Stecher et al. 

1998) and professional peer review of journal submissions and grant proposals 

(Cicchetti, 1991; Marsh, Herbert W & Bazeley, 1999; Marsh, H W. & Bell, 1981).   

 

Criteria with low reliability scores  

 A few of the criteria reported in Table 4.2 have reliabilities (g) at or near 

zero.  Due to several of the assumptions behind generalizability theory, this appears 

to have occurred because the students uniformly failed to perform these criteria 

(resulting in rating scores of 0) rather than being a direct reflection of the 

effectiveness of the criteria.   Specifically, for Methods: Control in BIOL 102, 132 of 

135 scores given were zeros.  For BIOL 301, 126 of the given 144 scores were zeros.  

For Results: Statistics for BIOL 102, 123 of the 135 scores were also zeros.  

Generalizability analysis assumes that there will be variation in performance and 

perceives such a lack of variation as an indicator of low reliability rather than poor 

actual performance.   If the lack of variation in scores is an accurate reflection of 

student performance however, then the low reliability score is an artifact of the 

calculation process rather than an accurate assessment of the criterions’ reliability. 
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Table 4.2.  Reliability of Individual Universal Rubric Criteria Using Generalizability 

Analysis (g) 

 Course Overall 

 101 102 301 Ave 

Criteria                                        n = 49 45 48 142 

Introduction     

     Context 0.67 0.83 0.50 0.67 

     Accuracy and relevance 0.67 0.47 0.65 0.60 

Hypotheses     

      Testable 0.70 0.70 0.81 0.74 

      Scientific Merit 0.76 0.66 0.67 0.70 

Methods     

      Controls -1 0.002 0.16 n/a 

      Experimental Design 0.20 0.89 0.57 0.55 

Results     

     Data Selection 0.50 0.53 0.66 0.56 

     Data Presentation 0.77 0.72 0.64 0.71 

     Statistics3 0.59 0.022 0.62 0.61 

Discussion     

     Conclusions based on data 0.63 0.60 0.65 0.63 

     Alternative explanations refuted 0.73 0.55 0.72 0.67 

     Limitations 0.57 0.83 0.60 0.67 

     Significance 0.56 0.81 0.79 0.72 

Primary Literature 0.57 0.85 0.94 0.79 

Writing Quality 0.42 0.35 0.71 0.49 

Total Score 0.85 0.85 0.85 0.85 

Note.  Reliability values in bold are the maximum reliabilty score per criterion.  Sample sizes reflect 

the number of unique papers scored per course.  All values reported are three-rater reliabilities (g) 

using trained raters.  See Appendix 9 for single rater reliabilities.  1The trained raters for BIOL 101 

did not perceive the genetics assignment as providing a traditional control and chose as a group to not 

rate this criterion.  Natural raters scoring 101 papers achieved a three-rater reliability of 0.74 for this 

criterion however.  2See section on low criteria reliabilities for explanation.  
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Two lines of evidence suggest that the uniformly low scores on these criteria 

were an accurate assessment of student performance rather than the result of a poorly 

designed criterion.  Firstly, post-hoc review of the writing assignments given to the 

students indicates that while the use of a control was always implied/ conceptualized 

by the instructors, there was no explicit statement that students should include a 

control.   Similarly, in BIOL 102, students were not instructed to perform statistical 

calculations or assessments.   

This evidence came about because each assignment, while being based on the 

Universal Rubric, explicitly focused on fewer than 9 of the 15 criteria each.   Criteria 

selection or exclusion was classroom decisions made by the faculty instructors in 

charge of the courses.  Especially with introductory biology, the instructors’ believed 

that students would be overwhelmed with having to provide peer review feedback on 

15 substantial criteria and so the peer review, and consequently the written 

assignment handouts, emphasized a subset of the rubric criteria.  If the instructor did 

not specify that students should incorporate those factors, it is likely that students did 

not attempt to perform them, and the resulting uniformly low scores were likely 

accurate.    There were other criteria that were not explicitly identified, but on which 

the students’ performance varied (and reliability scores were acceptable), so it is 

possible that the criterion of Methods: Control was simply a poor one.  Alternatively, 

the inclusion of controls may be a specific skill that has to be learned and without 

explicit instruction, comes later in a student’s development. 

A second line of evidence supported this interpretation that the uniformly 

poor student performance was the cause of the low reliability rather than the utility 

of the criteria.  Criteria with low reliabilities in one course where students were not 

instructed to incorporate that component had much higher reliabilities in the other 

two courses where those criteria were included in the assignment.  Namely, 

reliability correlated with criterion inclusion to a certain extent.  For example, 

Results: Statistics had a reliability score of 0.59 in BIOL 101 and 0.62 in BIOL 301 

for trained raters.   Additionally, in BIOL 101 the scores were notably consistent for 

the criterion Methods: Experimental Design (only 45% of the scores varied from the 

mode) and the reliability score was 0.20 again showing the correspondence between 

a lack of variation in scores and low reliability.  Again, this was a situation where 

student performance was constrained by the assignment.  The raters interpreted the 

students as not being involved in the experimental design (and therefore scored them 
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low on the performance of that skill) because much of the experimental design was 

instructor determined.  After the completion of the rubric study, this criterion was 

revised to address both student derived and instructor derived experimental designs.   

In the other two courses, the reliability of the Methods: Experimental Design 

criterion was higher (0.57 and 0.89, Table 4.2). Thus, each criterion performed well 

in at least one course and there was a correspondence between a failure to include 

rubric criteria in the assignment and low reliability scores.   The low reliability 

scores for these criteria thus appeared to be more a reflection of poor alignment of 

the assignment and the rubric rather than an accurate assessment of the reliability of 

these criteria.  Therefore, all criteria performed reasonably whenever they were 

included in the assignment in a manner that allowed student performance to vary 

with ability. 

Another function of the Universal Rubric is thus to highlight curricular 

weaknesses or misalignments as advocated by Halonen et al. (2003).  The instructors 

were previously unaware that they had not provided explicit instruction to the 

students to incorporate controls into their experimental design or to use statistics, nor 

were they aware that these omissions occurred in multiple courses.  Application of a 

universal metric (such as the Universal Rubric) because it is comprised of curricular 

goals thus serves a dual purpose of assessing curriculum alignment and progression 

as well as student development.  The corresponding data on student achievement 

must therefore be interpreted within the context of alignment between assignment 

and curriculum goals.  If assignments do not ask students to perform various 

scientific skills, students are unlikely to develop those skills over time. 

 

Reliability of the rubric as a whole 

 Reliability of the Total Score sum of the criteria scores earned for each paper 

divided by the number of criteria) based on three raters was much higher (g = 0.85 

for all three datasets than that for individual criteria (Table 4.2).  In general terms, 

these results mean that 85% of the variation in the total scores was reflective of 

actual differences in the quality of the papers (rather than rater inconsistency or other 

sources of error) and that scores generated with the rubric would produce highly 

reliable grades.  Single-rater scores calculated from the three-rater scores were, of 

course, lower (g = 0.65 to 0.66, Appendix 9), but all are comparable to those found 

in the literature (see Table 4.3).   In addition, the Universal Rubric’s single rater 
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reliability is higher than the average or maximum single rater reliability reported for 

16 studies on the reliability of professional peer review (r = 0.19 to 0.54, median = 

0.30, (Cicchetti, 1991); r = 0.27 + 0.12, (Marsh and Ball 1989)) and nine studies of 

National Science Foundation grant submission reviews (r = 0.17 to 0.37, median 

0.33 (Cicchetti, 1991)).  

When attempting to compare the Universal Rubric to other published works, 

it should be noted that no other rubric for university science writing was identified 

which also underwent reliability testing.  Rubrics listed in Table 4.3 are the closest 

relevant rubrics that could be located.  These rubrics evaluate student writing when 

students are asked to explain, justify or persuade, but come from a variety of grade 

levels and subject areas outside of science.   Several studies described relevant 

criteria for science writing at the university level (Haaga 1993; Kelly and Takao 

2002) but were not rubrics.   Halonen et al. (2003) describe an excellent and 

comprehensive rubric for development of students’ scientific reasoning skills, but it 

is neither designed for science writing, nor reliability tested.  Other rubrics found in 

the literature which focused on science skills either directly observe students in the 

laboratory (Baxter, Shavelson et al. 1992; Germann and Aram 1996) or study other 

communication media (laboratory notebooks: Baxter et al., 1992; oral presentations: 

Hafner & Hafner, 2003; verbal discussion: Hogan, Nastasi, & Pressley, 2000). 

Baxter, et al. 1992  specifically found that reliability scores varied based on medium 

of communication so reliabilities for non-written student performances were not 

included in Table 4.3.   By comparison with published results, the Universal Rubric 

is therefore deemed reliable for written laboratory reports in biology at the university 

level.   
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Table 4.3.  Reliability of Professional Peer Review and Relevant Rubrics for Writing. 

Citation  
Statistic 

# 
Criteria 

# 
Raters 

Reliability 
Value 

Rubrics     

 (Baker, Abedi et al. 1995)1 α 6 4 0.84 to 0.91 

 (Cho, Schunn, & Wilson, 2006)1 α 3 5 0.882 

 (Haaga 1993)3 r 4 2 0.55 

 (Marcoulides and Simkin 1995)1 g 10 3 0.65-0.75 

 (Novak, Herman et al. 1996)1, 4 g 6 15, 2 0.6, 0.75 

 (Penny, Johnson et al. 2000)1 phi  6 2 0.6 to 0.69 

Professional peer review      

  Meta-analysis (Cicchetti, 1991) r various 15 0.33 

  (Marsh and Bell 1981) r 5 2 0.51 

  (Marsh and Ball 1989) r 4 15 0.30 

  Meta-analysis (Marsh and Ball 1989) r various 15 0.27 + 0.12 

  (Marsh, Herbert W & Bazeley, 1999) phi Holistic 4 0.704 

  This study g 15 3 

2 

1 

0.85 

0.79 

0.65, 0.66 
Note.  Professional peer review employs lists of criteria rather than rubrics with defined performance 

levels which may account for the difference in reliability scores.  1Non-scientific writing.  2Relability 

produced by undergraduate peers rather than trained raters.  3List of criteria only, not a rubric.  
4Multiple rubrics reported in this study, these results refer to the WWYR rubric.  5Single rater 

reliabilities were calculated from two-rater data, but reported as single rater reliabilities. 

  
In general, reliability scores increase as the number of measurements (writing 

samples per student) increases or the number of raters increases (Brennan, 1992; 

Hafner & Hafner, 2003; Novak et al., 1996) though an increase to four raters from 

three raters produces a negligible increase in the generalizability co-efficient 

(Brennan 1992).  Longer scales (number of performance levels) do not produce a 

similar increase in reliability.  The optimum number of performance levels appears 

to center around four (Penny, Johnson et al. 2000) which corresponds to the number 
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of performance levels in the Universal Rubric.  In addition, augmentation of scores 

(adding “+” or “-“ to an integer score) was allowed in this study as it increases 

reliability to a greater extent than using an integer scale of the same length (Penny, 

Johnson et al. 2000; Penny, Johnson et al. 2000).   Overall, the reliability of the 

Universal Rubric meets or exceeds that of relevant published comparisons (Table 

4.3) indicating that the rubric is an acceptably effective psychometric tool.  Further, 

the little information that currently available on the consistency of graduate teaching 

assistants indicates that there is little correlation in grades among instructors (Kelly 

& Takao, 2002).  Therefore, tools or pedagogical strategies which improve reliability 

are desirable.  Reliability generally increases as scores are summed across multiple 

criteria (e.g. Total Score has a consistently higher reliability than vs. any single 

criterion) (Cicchetti, 1991; Marsh, Herbert W & Bazeley, 1999).  Consequently, 

practitioners are encouraged to use as many criteria as are relevant for assessing 

student performance.  

 

Impact of assignment alignment on criteria reliability  

As demonstrated earlier, instructor exclusion of criteria in assignment 

instructions can strongly impact whether or not students attempt to address criteria 

and consequently affect the reliability of a criterion.  Alignment of rubric criteria and 

course assignments are shown in Table 4.4.  The choice by instructors to emphasize 

a subset of the criteria and excluding other criteria appeared to have affected some 

reliabilities (e.g. Methods: Controls).   In contrast, other criteria seem to be naturally 

incorporated into student thinking.  For example, the concept that hypotheses should 

have scientific merit (some hypotheses are more interesting or worthwhile to pursue 

than others) was not explicitly mentioned in any assignment (Hypotheses: Scientific 

Merit, Table 4.4), yet there was very little variability in the reliability of this criterion 

across the three courses and it had a reasonably high reliability score (g = 0.70). 

 



 

 

 

99 

Table 4.4   Inclusion of Rubric Criteria in Course Assignments  

 
Criterion incorporated into the assignment 

 for the course indicated? 

Criteria Code 101 102 301 

Results: Statistics R: St Yes 
 

 Yes 

Discussion: Conclusions 
based on data selected 

D: C Yes Yes Yes, but highly 
implicit 

Hypotheses: Scientific merit H: S     

Hypotheses: Testable and 
consider alternatives 

H: T Partial: 
“clear with 
rationale” 

Yes, 
verbatim 

Yes, clearly 
stated 

Results: Data presentation R: P Yes Yes Yes 

Results: Data selection R: S Determined 
by instructor 

Yes Yes, but implicit  

Discussion:  
     Alternative explanations 

D: A  Yes   

Introduction:  
     Accuracy and relevance 

I: A Yes Yes, 
verbatim 

  

Discussion: 
     Significance of research 

D: S Yes Yes   

Discussion: 
     Limitations of design 

D: L Yes    

Methods: Controls M: C n/a   

Methods:   
     Experimental design 

M: E Determined 
by instructor 

Yes, but 
implicit 

  

Introduction: Context I : C Yes Yes, 
verbatim 

  

Writing Quality 
 

WQ Yes Yes Yes 

Primary Lit PL Yes,  
2 required 

Bonus 
only 

Partially, 
citations 

required, but 
primary lit not 

specified. 
Note.  Criteria are rank ordered from least variable to most variable based on spread between 

minimum and maximum reliability per course reported in Table 4.2.  Blank cells indicate that the 

criterion was not explicitly mentioned in the assignment.  For BIOL 101 and 102, alignment 

designations were derived directly from the grading rubric handed out to students in the class.  For 

BIOL 301, no written assignment was given to the students.   Alignment of the assignment with the 

rubric was generated by 301 teaching assistants reviewing the list of criteria shortly after the 

assignment occurred and identifying those they felt were communicated to the students.  Codes are 

provided to facilitate comparison with data presented in Figure 4.3. 
 

Thus, this analysis would seem to indicate that instructors should not presume that 

all scientific reasoning skills are equally easy or difficult for students to develop.  
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Some aspects of experimental design such as methodological controls, incorporation 

of statistics and discussion of limitations and implications do not appear to come 

naturally to students and require explicit pedagogical support. 

In contrast, writing quality appears to be widely valued by instructors as well 

as practicing scientists (Yore, Hand, & Florence, 2004) and was included in all three 

assignments, yet had a much lower average reliability (0.49) and a large spread 

(minimum reliability 0.35 and maximum reliability 0.71).  Graduate student raters 

apparently find it easier to assess the merit of scientific hypotheses, than to assess 

writing quality (the variation in scores assigned for this criterion was more than 

twice the average (SD = 0.44 compared to 0.2, see Table 4.2).  The criterion of 

Writing Quality developed for the Universal Rubric appears to be subject to greater 

interpretive latitude than other criteria despite being inspired by the South Carolina 

Department of Education English Language Arts Rubric (2006).  While revision of 

the criterion may improve reliability, it is also possible that as it is a more holistic 

criterion (raters must consider the writing quality of the entire work at once) high 

levels of reliability may simply more difficult to achieve.  With the exception of 

Writing Quality, explicit inclusion of criteria in assignments appears to improve 

reliability however.  To test this conclusion, a post hoc analysis was performed.  

Reliability scores for individual criteria for each course were drawn from Table 4.2 

and overlaid on the inclusion information provided in Table 4.4.  Each criterion was 

categorized for each course assignment as being included, partially included or 

excluded and its reliability score (g) averaged accordingly (Table 4.5). 

 
Table 4.5.  Correspondence Between the Inclusion of Criteria in an Assignment and 
Criterion Reliability 
 Rubric criterion included in assignment? 

 Yes Implicitly No 

Average reliability score (g) 0.63 0.68 0.55 

Standard deviation 0.12 0.25 0.27 

 n =  23 7 14 

Note.  Reliability scores of individual criteria in each course were categorized according to the degree 

of inclusion in that assignment. Sample sizes are the number of reliability scores in that category. 

Methods: Control was not included because the BIOL 101 raters intentionally omitted it). 
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Approximately half of the time, criteria were explicitly included in the 

assignment instructions across the three courses (n = 23).  In some of these instances, 

the assignment used criteria wording from the Universal Rubric verbatim.  In seven 

other instances, criteria were implicit or partially included in the assignment.  For 

example, for the criterion “Hypotheses are clearly stated, testable and consider 

plausible alternative explanations” (Table 3.3) was rated as partially included in the 

BIOL 101 assignment because reviewers were asked to evaluate if “the hypothesis 

[was] clearly stated for the unknown cross?’ and “[were] observations given here as 

rationale for the hypothesis?”  In 14 instances Universal Rubric criteria were not 

mentioned in the assignment in any way.   The variation in reliability scores clearly 

increases as criteria are left of out assignment instructions (doubling of the standard 

deviation from included to excluded, Table 4.5).  Thus, it is recommended that 

criteria be included explicitly in assignment instructions if that concept will comprise 

a portion of a student’s grade.  If instructors choose to leave out particular criteria 

from assignment instructions, then that information is necessary for any curriculum-

wide comparison of scores to be properly interpreted.  Student performance is 

sensitive to context and poor performance is only meaningful if students were 

explicitly instructed to attempt a criterion. 

In short, no single criterion should be used alone to indicate the quality of a 

student’s scientific reasoning ability, but when grouped, the collective score gives a 

reliable indication of student performance.  Reliability generally increases as criteria 

are explicitly included in assignment instructions.  Some criteria are more natural 

than others and student performance addresses the criterion of scientific merit even 

though it was not explicitly mentioned in the assignment instructions.   

 

Effect of biological subject matter on the reliability of the Universal Rubric 

 The Rubric was intended to be universal meaning applicable to all 

experimental research projects in which students were likely to engaged while 

completing their bachelor’s degrees in biology.   This need for the Rubric to be 

reliable regardless of the biological subject matter was the main motivation for 

testing reliability over three separate courses.   Results to date support the conclusion 

that the Rubric functions independent of subject matter.  Criterion reliabilities (g) 

vary as a function of the inclusion or exclusion of criteria, or other factors, but do not 

appear to vary as a function of the course.  Specifically, reliability maxima are 
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evenly distributed among the courses (101 and 102 each have 4 maxima, 301 has 6 

maxima, Table 4.2).  Reliability of the Total Score in particular is consistent (indeed 

identical) regardless of course.  Thus, the Rubric’s reliability appears to be 

independent of subject matter. 

Summary of results for Study 2: for the reliability of the Universal Rubric  

The Universal Rubric was found to be a reliable tool (g = 0.85) for measuring 

students’ overall performance in the design, implementation and interpretation of 

scientific research.   Its reliability was also independent of biology content area, with 

no notable differences occurring among the three separate courses.  Total Scores had 

notably higher reliabilities than any individual criterion on average. 

Comparison of student performance on individual criteria was contextually 

sensitive however.   For many of the criteria, failure to explicitly include the criterion 

in the assignment resulted in poor performance on that criterion.   Reliability of a 

few criteria could not be completely explained by inclusion or exclusion of the 

criterion in the assignment however, so confidence in the reliability of student scores 

was highest when points for multiple criteria were summed.  Data on student 

achievement must therefore be interpreted within the context of alignment between 

assignment and curriculum goals.  

 

Study 4:  
Student achievement of scientific reasoning skills in laboratory reports  

(cross-sectional sample) 
 

 When student performance from a cross-sectional sample of laboratory 

reports was viewed across all three courses, there was a decided trend of 

improvement from 101 to 102 and a notable decline in 301 scores for most criteria 

(Figure 4.3).  Average scores for 12 of the 15 criteria were significantly different 

from one course to the next (ANOVA p =0.001).  The primary explanation for the 

decline in 301 scores was that the 301 papers reported in the cross-sectional study 

did not undergo peer review.  These results suggest that peer review had a noticeable 

impact on students’ performance.  For the courses where peer review did occur, 

students in 102 had significantly higher scores than students in 101 for 7 of the 12 

significant criteria (Figure 4.3).  Of the five criteria in which 101 students had higher 

scores, three were explicitly included in the 101 assignment, but not in the 102 
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assignment (Results: Statistics, Discussion: Limitations, Primary Literature).  There 

are several potential explanations for the increase in scores from BIOL 101 to 102.   

The first and most obvious explanation would be that scores increase as 

experience with peer review and scientific writing and reasoning increase. As these 

scores represented a cross-sectional rather than longitudinal sample however and 

data on the number of prior peer review experiences were not available for these 

students, this conclusion remains speculative.  As both samples of student papers 

were collected in the Fall of 2004 (a year when sequential progression through the 

courses was not enforced), it was possible that 102 sample included many first 

semester freshman. 
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Figure 4.3.   Student performance across a cross-section of biology courses.   

All  scores within a criterion significantly different at p <0.001 level except for I:A, M:C and M:E.   

The maximum score possible per criterion is 3.0.  Refer to Table 4.2 for Rubric criteria codes.  

Sample sizes were BIOL 101 (n = 49 papers); BIOL 102 (n = 45papers); BIOL 301 (n = 48 papers). 

 

Another potential explanation for the difference in scores derives from 

differences in how the peer review experience was constructed for BIOL 101 vs. 

102.  The peer review experience in BIOL 101 was much more heavily scaffolded. 

Approximately 37 yes/no and high/med/low multiple choice queries comprised the 

criteria.  It provided only a few opportunities for open-ended written.  The peer 

review points earned by students were based on how well their multiple choice 



 

 

 

104

answers aligned with each other and those of the instructors, rather than on the 

content of open-ended text responses as in 102.  Essentially, students earned points 

for completing the online peer review process regardless of the quality of the written 

feedback they provided.   

Students in BIOL 101 were encouraged to take the process seriously and to 

provide substantive feedback, but no systematic mechanism held them accountable 

for the quality of their feedback.  The faculty instructor did spot-checks, or 

investigated if a writer complained, but in a course of several hundred students, 

evaluation of the quality of reviews did not involve many students.  The BIOL 102 

peer review experience focused on less than a dozen criteria and required open-

ended responses be provided for all those criteria and that at least ten pieces of useful 

feedback be provided per review.  Graduate teaching assistants randomly graded the 

quality of the feedback for one review per student to ensure accountability.  BIOL 

102 students also conducted a laboratory exercise (complete with handout) on how to 

define and provide useful feedback.  Therefore, it is possible that the greater scores 

earned by the 102 papers are a result of higher quality peer feedback in that course 

due to the relative emphasis placed on the quality of the feedback.  

The most likely explanation for the lower performance of the 301 students is 

that the 301 papers did not undergo peer review and so lacked peer feedback or 

subsequent revision.  Students in this BIOL 301 laboratory sample (Fall 2005) had 

earned an average of 90.6 + 32.8 total credit hours indicating more than three years 

of academic experience and had an average institutional (USC) GPA of 3.14 + 0.62 

on a four-point scale.  In contrast, the students in BIOL 101 and 102 were 

predominately freshman (64%-76.5%) and had lower institutional GPAs (3.00 + 0.85 

for 101 and 2.71 + 0.87 for 102).  Thus, the 301 students possessed greater academic 

experience and had stronger academic records.  Consequently, it is unlikely that their 

lower scores were the result of lesser academic experience at the university level or 

lesser academic success in other courses.  BIOL 301 student appear to be more 

experienced and academically competent lending support to the idea that the 

difference in scores is the result of the lack of the peer review experience.  So the 

effect of peer review appears to fade over time if the process is not continued. 

The lower GPA of BIOL 102 students compared to BIOL 101 students 

further suggests that higher scores on scientific reasoning in 102 were caused by 
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differences in the peer review process rather than by differences in student 

demographics.   

Additionally, it should be noted that student achievement on individual 

criteria appeared to be affected by alignment between the assignment and the Rubric 

in the same way that reliability was.  Namely, students tended to perform poorly on 

criteria which were not included in the assignment.  For example, the BIOL 102 

assignment did not ask students to perform any statistical tests, nor require them to 

use any primary literature and students performed quite poorly on those items.  It 

should also be noted that overall performance is low for all courses.  On average, 

students scored at the novice level (1 point out of a maximum of 3) regardless of 

criterion, course or level.   This is appropriate for the introductory biology students 

and provides ample room for higher level courses to further develop students’ 

scientific reasoning skills. 

 

Summary of results for Study 4: Quality of laboratory reports as a result of peer 

review (cross-sectional sample) 

This cross-sectional sample consequently suggested that peer review 

improved student performance to a greater extent that generalized academic 

experience or ability.   Students in courses which engaged in peer review tended to 

produce higher quality laboratory reports than students in a course which did not 

engage in peer review despite the fact that the students who engaged in peer review 

were less academically experienced and had a lower average GPA.   Specifically, the 

highest scores for 7 of 12 criteria occurred in the BIOL 102 lab reports despite the 

fact that BIOL 102 students had lower average GPA and fewer credit hours than 

BIOL 301 lab students.  BIOL 101 students outperformed BIOL 301 students in an 

additional 5 criteria.  The stronger performance of BIOL 102 students may be due at 

least in part to the fact that the BIOL 102 peer review process had the greatest 

emphasis on students providing substantial and meaningful feedback as reviewers 

were actually graded on the quality of the feedback they provided.  BIOL 102 

students also had more experience with the peer review process on average than did 

BIOL 101 students which may also have bolstered performance. 

Lastly, student performance was improved when Rubric criteria were 

strongly incorporated into the assignment.  On average, students performed at the 

novice level.  Such performance is appropriate for those who were enrolled in 
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Introductory Biology at the time.   Without peer review, students in the 300 level 

biology laboratory also performed at the novice level.   No information was available 

here for 300 level student performance on laboratory reports with peer review. 

 

Study 5:  

Student achievement of scientific reasoning skills in laboratory reports  

(longitudinal sample)  

Longitudinal data on 17 students were generated by combining the rubric study 

with an independent rating of additional papers produced subsequent to the rubric 

study.  The independent rater had internal reliability checks whereby the duplicate 

copies of the same paper were assigned different identity codes and inserted into the 

scoring stack as if they were independent papers.   For 60% of the papers, the 

independent rater’s Total Scores on redundant papers were less than 1 point different 

(on a 45 pt scale).  The average difference in Total Score across all redundant papers 

was 1.53 points.  As trained rater Total Scores had a standard deviation of 2.0 (see 

Table 4.14) the independent rater’s scores were considered equally reliable.  For 

papers that were part of the rubric study, the total scores across all three trained 

raters were averaged and that average value used as the score for this longitudinal 

study. 

 In contrast to the cross-sectional data, when the scores earned by a particular 

student were plotted chronologically, there was a no significant difference among 

scores earned in the different classes.  The reader should recall that inclusion or 

exclusion of a criterion from an assignment may impact student performance (and 

hence score).  This lack of significance is true however, regardless of whether all 15 

criteria are considered, or just the six criteria that were equally emphasized across all 

three assignments (Figure 4.4).   There does appear to be a positive trend of 

increasing score from 1st semester of introductory biology to 301, but this perception 

should be guarded against for three reasons.   

Firstly, given the lack of significance, the trend may not exist at all.  Secondly, 

the positive trend is not evident at the level of individual students.   Only five of 17 

students made large gains from introductory biology to 301. Their gains were 

sufficiently large however to obfuscate the fact that 12 of 17 made no gain or 

declined when the average is calculated (Table 4.6).  Thirdly, beyond statistical 
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significance among means, it should be noted that gains must be larger than 2.0 

points to be considered meaningful.   This cutoff was selected because the average 

standard deviation among three raters on a single paper ranged from 1.94 for BIOL 

301 to 2.13 for BIOL 102 (BIOL 101 had an average standard deviation of 2.06).    
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Figure 4.4.  Average scores earned by laboratory reports across multiple courses from 

longitudinal sample (n = 17 students).  As some students in this sample took BIOL 102 prior to 

BIOL 101, results are reported in chronological order rather than by course.  There is no significant 

difference over time within a set of criteria.  Darker bars are from the subset of six criteria that were 

emphasized equally across all three assignments (refer to Table 4.5). 

 

The trend from first to second semester of introductory biology may be more 

robust because four students made improvements of greater than 2.0 points from the 

first to second semesters of introductory biology while five had no change (Table 

4.6).  None showed a decline.   Twelve of the 17 students showed no change or a 

decline in score from introductory biology to 301, but five had notable gains (29%) 

sufficient to increase the average.  A larger sample size may either reinforce the 

general positive trend until it is clear or provide explanatory insight for the lack of 

improvement.  Additionally, the majority of the 301 papers did not undergo peer 

review, so significant gains may be realized if a peer-reviewed assignment is 

selected for sampling at the 300 level.   

Thus with a larger sample size such as was available for the cross-sectional 

sample, statistically significant change may be observed.  Unfortunately, due to the 
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unconstrained nature of the influences and challenges faced by college students, it is 

quite common for longitudinal studies in higher education to suffer attrition rates of 

43% to 96% (Haswell 2000).  Concerted efforts will be necessary to provide a larger 

sample size in the future.   

 
Table 4.6.  Longitudinal Performance of Individual Students Using Laboratory Report Total 

Scores. 

Student 1st semester 
Intro Biology  

2nd semester 
Intro Biology  BIOL 301 

A 7.0 15.7 12.4 
B 11.8  15.1 
C 11.2  11.2 
D 14.7  13.8 
E 8.4 9.7 17.3 
F 9.3 10.0 6.3 
G 14.3 15.3 13.7 
H 8.4 8.3 22.0 
I 10.5 9.7 9.0 
J 14.5  17.9 
K 5.7 14.0 15.5 
L 7.7 12.7 12.7 
M 15.6  8.2 
N 13.9  18.4 
O 11.7 14.2 12.7 
P 12.1  15.4 
Q 15.1  11.2 

Average 11.3 12.1 13.7 
SD 3.2 2.7 4.0 

Note.  Second semester papers were not available for some students.  Gains must be greater than 2.0 

points on this scale to be considered meaningful.  Laboratory reports were scored using all 15 criteria 

regardless of assignment inclusion or exclusion.  Four of nine (44%) students produced meaningful 

gains from 1st to 2nd semester in introductory biology with the rest showing no change.  Five of 17 

(29%) showed gains from introductory biology to 301, four showed declines and seven were neutral. 

 
 No comparable longitudinal studies of science writing were found in the 

literature, but a few longitudinal studies of undergraduate composition were 

available.  When student essays for placement into freshman and junior year English 

composition courses were compared, significant “changes toward competent, 

working-world performance” were found (n = 64, ANOVA p < 0.02) and the mean 

number of words per sentence and mean clause length increased (Haswell 2000, p. 

307).  Another longitudinal study which collected writing samples over entire 
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undergraduate careers indicated that while students appear to learn from writing, 

even after four years students may not have received sufficient support in their 

coursework to gain analysis and synthesis skills or write in sophisticated or complex 

ways (Sternglass 1993).  

 

Summary of results for Study 5: Quality of laboratory reports as a result of peer 

review (longitudinal sample) 

Study 5 did not identify large changes in scientific reasoning ability.  Review 

of the literature suggests that this is not surprising given that the three writing 

samples were all generated within a three-semester period (Fall 2004 to Fall 2005) 

and the sample size was quite small.  Additionally, some of the endpoint (BIOL 301) 

essays did not undergo peer review. 

 
Study 3: 

Reliability of the Scientific Reasoning Test  
in this undergraduate biology population 

 
 While student performance on laboratory reports is the most direct and rich 

source of data for evaluating the effect of peer review on student inquiry abilities. 

Collection of longitudinal portfolios and scoring of lengthy reports is a time and 

resource consuming process that only allowed evaluation of a subset of majors.  

Coarser-grained measures therefore serve a useful function as they allow sampling of 

entire cohorts of majors.  Additionally, if coarser-grained measures show an effect of 

peer review on student reasoning ability than that effect will likely be richer and 

deeper with more fine-grained measures.  The coarser-grained measure selected for 

use here was the Scientific Reasoning Test (SRT) (Lawson, 1978) developed for use 

in higher education large enrollment biology courses.  While found to be reliable and 

informative in such settings in other institutions (Lawson, Anton E, 1979, 1980, 

1983; Lawson, Anton E, Alkhoury, Benford, Clark, & Falconer, 2000; Lawson, 

Anton E, Banks, & Logvin, 2007), reliability was also assessed directly in this study 

population.   

Typical factors affecting reliability of a psychometric test are: the instrument, 

the population, the setting, the raters (if applicable) as well as all the interactions 

between these factors and the unavoidable “other sources of error.”  The SRT was 

administered in two different terms and six different biology courses including 
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introductory biology and upper division courses for a combined sample size of 851.  

In Spring 2005, the test was administered pre-post in BIOL 102 (n= 303 students 

who took the test) and the Kuder-Richardson 20 (KR20) pre-test score was 0.83.  In 

Fall 2005 it was administered again at the beginning of the term to 548 students in 

five different biology courses ranging from introductory biology to a 500 level upper 

division course.   The corresponding KR20 score (n = 548 biology majors) was 0.85 

in that administration.  These reliability values meet or exceed those published 

recently for this test (see Table 2.3, Lawson, Anton E, 1978, 1983; Lawson, Anton E 

et al., 2000; Lawson, A.E, Baker, DiDonato, Verdi, & Johnson, 1993; Lawson, 

Anton E et al., 2007; Norman, 1997).  Thus, the instrument is reliable in the 

population of biology majors at this institution (Cudek 1980). 

 The SRT was developed using Piaget’s concepts of concrete and abstract 

reasoning.  These reasoning patterns are predicted to develop once students reach the 

stage of logical operations (usually around seven or eight years of age) (Karplus, 

1977).   The advancement of students from concrete to abstract thinking is not 

thought to be a linear or unidirectional progression however and secondary and 

tertiary students may exhibit either or both reasoning patterns under various 

circumstances (Karplus 1977).  Published average scores indicate that there is not an 

automatic increase in SRT with an increase in student chronological age.  Westbrook 

and Rogers (1994) administered the SRT pre-post to 56 ninth graders (average age = 

15.3 years) to test the effect of various instructional strategies.  There were no 

significant differences (though general positive trends did exist) between pre and 

posttest scores for any group (ave + stdev = 4.21 + 2.07 to 5.15 + 1.98, no reliability 

value reported).  In our administration, freshman had an average score + standard 

deviation of 4.89 + 2.02 and 78% of students were between the ages of 19 and 20 

thus confirming that scores should not be expected to increase simply due to 

chronological age.  Other administrations of the SRT reported above were not scored 

using the two-tiered system and used either a 22 or 26 item version of the test so 

similar comparisons could not be made. 

 
Summary of results for Study 3: Reliability of the Scientific Reasoning Test.  

The Scientific Reasoning Test was found to be as or more reliable (KR20 = 0.85) in 

this population of undergraduate biology students as in other published studies. 
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Study 7:  

Relationship between Scientific Reasoning Test scores and peer review experience 

Administration and sample reduction decisions 

 The Scientific Reasoning Test (SRT) was administered to a cross-section of 

biology majors in 100 to 500 level courses in the Fall of 2005 in order to capture 

students with a range of peer review experiences.  From the initial sample of 1048, 

non-biology majors were removed leaving 573 students.   The SRT was administered 

at the beginning of the semester with students self-reporting the number prior peer 

review experiences.  Of the 573 biology majors, 123 did not report the number of 

prior peer review experiences leaving a sample of 451 (Table 4.7).  As Spring 2005 

was the first semester that peer review was implemented in any course beyond the 

introductory biology (101 and 102) courses, it was uncertain how many students in 

302L or 530 might have had three consecutive peer review experiences.   

Table 4.7 Distribution of Biology Majors’ Prior Peer Review Experiences as a 

Function of Course Enrollment 

 # prior peer review experiences reported  

Course Zero One Two Three Four Total 

101 24.4 2.2 0.7 - - 27.3 

102 12.0 5.3 2.0 - - 19.3 

301 12.2 4.0 8.0 1.1 - 25.3 

302 7.1 5.1 6.0 0.7 0.2 19.1 

530 5.5 2.2 1.1 0.2 0.0 9.1 

Total 61.2 18.8 17.7 2.0 0.2 100.0 

Note. Values reported are the percentage of students reporting that number of  cumulative peer review 

experiences (n = 451 students).   BIOL 101 and 102 are introductory biology.  BIOL 301 and 302 

were the lab components of sophomore level classes.  BIOL 530 was Histology.  Numbers in italics 

are the expected number of peer review experiences for a student progressing through the curriculum 

in the traditional fashion. 

As the data in Table 4.7 make clear, more than half of the biology majors in 

the sample did not progress through the curriculum in the intended way.  They had 
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either too many peer review experiences for their course level indicating that they 

had retaken a course, or too few indicating that they were transfer student who had 

taken some proportion of the curriculum elsewhere.  The maximum number of 

legitimate peer review experiences that a student could have accumulated at this 

point is three (BIOL 101, 102 and 301L, marked in Table 4.7 with italics) with three 

unique experiences being a possibility only for students enrolled in 302L or 530.  

Only 44.3% of the students in this sample are successful immersed participants in 

the USC Biology Curriculum (values on the diagonal in italics in Table 4.7).  Course 

enrollment is therefore clearly not an effective proxy for peer review experience.   

In-depth review of the remaining 55.7% of the students commenced.  Some students 

retaking courses had not actually completed the peer review experience in past 

enrollments, while others had.  Past research has shown that student performance is 

affected by a variety of factors that are magnified when students retake classes.  For 

example, the lower self-efficacy or motivation associated with having failed a class 

once could reduce performance (Lawson, et al., 2007; Mistler-Jackson & Songer, 

2000; van Berkel & Schmidt) in subsequent enrollments.  Repeated exposure to the 

same task (writing assignment) can affect performance was well (Anderson, Fisher et 

al. 2002).  Therefore, the decision was made to remove students who had failed and 

were retaking a class thereby reducing the sample size to 389 (Table 4.8).  

Table 4.8 Distribution of Students’ Prior Peer Review Experience Once Students 

Who Repeated Courses are Removed. 

Course # reported prior peer review experiences  

 Zero One Two Three Four Total 

101 27.8 - - - - 27.8 

102 13.1 5.7 - - - 18.8 

301L 12.9 4.4 9.0 - - 26.2 

302L 7.7 5.4 5.4 - - 18.5 

530 5.9 1.5 1.3 - - 8.7 

Total 67.4 17.0 15.7 - - 100 
Note.  Values are percentage of the total sample (n  = 389 students).  Values in bold italics represent 

the expected progression through the curriculum.  Students with alternative combinations of course 

and peer review experience (values not in italics) have taken some portion of their relevant biology 

coursework at other institutions (transfer students).  
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Students who had fewer than the expected number of peer review 

experiences due to transfer credits comprise slightly more than half the total sample 

reported in Table 4.8 heavily skewing the sample towards no prior peer review 

experiences (67.4% of the total sample).  This skew does allow however a nice 

opportunity to distinguish between the effect of academic maturity (credit hours) and 

peer review as notable proportions of the sample have high numbers of credit hours 

with little peer review experience.   

The reader should please note that this variation in credit hours versus 

number of peer review experiences serves as the basis of comparison in this cross-

sectional sample.  As these SRT scores were earned at the beginning of the fall 

semester, there are students present in the sample who are incoming freshman (and 

hence have no peer review experience) as well as transfer students with no peer 

review experience but many credit hours as well as students who have always 

attended USC but recently changed into the biology major.  This variation in 

experience by academic maturity among a cross-sectional sample of biology majors 

was the most valid and informative comparison that could be generated in these 

circumstances.  The experience of attending college itself is expected to improve 

students’ reasoning abilities, so the effect of peer review experience on scores must 

be evaluated by comparing it to the natural and expected gain due to increased 

academic maturity. 

Student performance on the Scientific Reasoning Test 

Student performance on the SRT shows a notable relationship to general 

academic maturity (defined as total credit hours earned) (Figure 4.5).  Credit hours 

were translated into academic class (freshman, sophomore, etc.) using the standard 

conversion of 30 hrs per year.   Student performance did vary significantly with total 

credit hours at the p = 0.011 level (see Table 4.9 for ANOVA results).   An increase 

in Scientific Reasoning Test score with increasing academic experience is not 

surprising; it would be extremely disheartening if students’ reasoning ability did not 

improve over years of university level coursework.  The question is how strong is the 

effect of peer review compared to that of academic maturity or institution. 
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Figure 4.5 Relationship between academic maturity and students’ Scientific Reasoning Test 

scores.  Total credit hours are cumulative and include collegiate transfer credits, and USC credit.  

Scores are significantly different among groups (p = 0.011, see Table 4.9 for ANOVA results).  

Sample sizes are the number of students per group.  Error bars are 95% confidence intervals around 

the means. 

Table 4.9.  ANOVA Results When Scientific Reasoning Test Scores are Sorted by 

Total Credit Hours  

 Sum of Squares df Mean Square F Significance 
Between 
Groups 

86.005 4 21.501 3.295 .011 

Within 
Groups 

2492.915 382 6.526   

Total 2578.920 386    
Note.  These results correspond to Figure 4.5 

As a large proportion of the students in this sample were transfer students, a 

comparison was also made between performance on the SRT and the number of USC 

credit hours earned (Figure 4.6). The source of the credit hours was a concern as 

students with greater peer review experiences would also have greater USC credit 

n= 95       n= 70         n = 79       n = 130     n = 13 

    0-30     31-60          61-90        91-120       120+ 
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hours than transfer students with similar backgrounds.  Significant differences in 

performance as a function of USC credit hours was also found at the 0.005 level 

(Figure 4.6).  Notably, the pattern is not the same as for total credit hours with the 

students with >90 USC credit hours having a lower score then the preceding class.  

Explanations for the drop-off for students who have >90 credit hours may include 

delayed administration or administrator effects.  Only 85 students in the entire 

sample of biology majors had > 90 USC credit hours and 67 of those were enrolled 

in BIOL 530.  The SRT was administered to BIOL 530 several weeks into the 

semester as opposed to the first week as was the case with the other courses.  

Additionally, this researcher was not able to be present in the BIOL 530 

administrations, as she had been in the other administrations, and does not have any 

objective information as to the seriousness or effort that 530 students were asked to 

invest in the test.  So reduced effort due either to upcoming examinations or context 

in which the SRT was presented may have affected the effort students enrolled in 

BIOL 530 as a cohort.  As these students comprise 78% of the students in that 

category, reduced effort in the 530 class is a plausible explanation for the lower 

scores. 

 

Figure 4.6.  Relationship between students’ scores on the Scientific Reasoning Test and time 

spent in the USC curriculum (USC credit hours).  Scores are significantly different among 

groups (p = 0.005 see Table 4.10).  Sample sizes are the number of students per group.  Error bars are 

95% confidence intervals around the means. 

n = 141     n = 83         n = 69           n = 85        n = 6 

    0-30     31-60             61-90          91-120           
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Table 4.10.  ANOVA Results When Transfer Credits are Excluded and Scientific Reasoning 

Test Scores are Sorted by University of South Carolina Credit Hours 

 Sum of Squares df Mean Square F Significance 
Between 
Groups 

97.349 4 24.337 3.295 .005 

Within 
Groups 

2442.773 379 6.445   

Total 2540.122 383    
Note.  These results correspond to Figure 4.6 

In contrast, when student scores on the SRT were sorted by number of peer 

review experiences, scores rise consistently (Figure 4.7).  The relationship between 

peer review and scientific reasoning scores was significantly stronger than that of 

either total credit hours or USC credit hours (p < 0.000).  In addition, the maximum 

value achieved for any group mean in this analysis (6.82) was for students with two 

peer review experiences and the largest gain (1.6 points) occurred from zero to two 

peer review experiences. 

 

Figure 4.7.  Relationship between students’ scores on the Scientific Reasoning Test and the 

number of peer review experiences in which they have engaged.  Scores are significantly 

different among groups (p = 0.000 see Table 4.11).  Sample sizes are the number of students per 

group.  Error bars are 95% confidence intervals around the means. 

n = 26               n = 66                 n = 61 
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Table 4.11.  ANOVA Results When Scientific Reasoning Test Scores are Sorted by the 

Number of Peer Review Experiences in Which a Student Has Engaged 

 Sum of Squares df Mean Square F Significance 
Between 
Groups 

148.851 2 74.425 11.697 .000 

Within 
Groups 

2456.100 386 6.363   

Total 2604.951 388    
 

It should be noted that the maximum score possible on the SRT is 12, so there 

was no concern of a ceiling effect.  If additional peer review experiences will further 

increase scientific reasoning, the SRT is a plausible means of capturing those 

changes.  GPA was not considered as a factor here because while scientific reasoning 

score does vary significantly with GPA, GPA is also an educational outcome, not an 

independent factor.  Plotting two outcomes against each other provides little 

information except that good students score better on tests than do poor students. 

Summary of results for Study 7: Relationships between peer review and Scientific 

Reasoning Test scores. 

In conclusion, even using a relatively insensitive and contextually removed 

tool such as the SRT multiple-choice test, the effect of peer review is apparent.  The 

most statistically significant gains and the greatest overall scores occurred when 

biology majors were categorized by the number of peer review experiences in which 

they had engaged.  Specifically, two peer review experiences produced larger gains 

and scores than did three to four years of university coursework regardless of the 

institution at which that coursework occurred.  It should be noted that there is 

considerable room for improvement in test scores however (two peer review 

experiences producing an average score of 6.82 on a 12 pt scale). 

 

Study 6: 
Reliability of scores given by graduate teaching assistants in natural grading 

conditions 

 Besides its utility as a measurement instrument, the Universal Rubric has 

potential to benefit students and instructors in the classroom as well.  Students learn 

best when expectations are made clear and are consistent over time and rubrics can 
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specifically aid student learning in this way (McNeill, Bellamy et al. 1999).  More to 

the point, however, science graduate students often receive little support for their 

teaching and little training on pedagogical issues such as grading in particular (Boyer 

Commission, 2001; Davis & Fiske, 2001; Luft, Kurdziel, Roehrig, Turner, & 

Wertsch, 2004).   Use of a standardized Rubric would both provide consistency of 

expectations for students across multiple courses within a curriculum as well as save 

graduate teaching assistants the work of developing their own grading schema.  

Given the common lack of attention to graduate students as instructors, one of the 

additional questions asked by this study included, “What is the natural reliability of 

grades produced by the graduate teaching assistants?  Are there any factors (besides 

training) which seem to improve grading consistency?” 

 Consequently, a parallel study to the first reliability study was conducted 

with an additional eight graduate students who did not participate in the first 

reliability study, nor receive explicit training on the rubric.  Using the same student 

papers as from the first study, these untrained graduate teaching assistants 

represented a sample of the natural conditions under which grading of laboratory 

reports occurs.  They were provided with a list of the Rubric criteria and the point 

scale and asked to score papers as if they were laboratory reports in the 

representative courses.  Each of the graduate students involved in this comparison 

study had previous teaching experience in the relevant course, however.  Thus, while 

not receiving any explicit training on the use of the rubric as occurred for the 

reliability study, the raters were familiar with the assignments and any rubric criteria 

which were already incorporated into the course assignments in which they had 

experience.   

The untrained, natural raters had demographic similarities to those in the first 

reliability study including inexperienced and experienced teaching assistants in each 

group (see Table 3.6 for a list of rater characteristics in each study, note differences 

in 301 – Natural rater group only had two members, neither of them inexperienced).  

The primary difference between the two types of raters was that raters in study 2 

(reliability of the Universal Rubric) received the Universal Rubric and Scoring 

Guide which contained examples of student work at each performance level as well 

as five hours of training using multiple exemplar papers and discussion until raters 

came to consensus on the meaning and distribution of criterion scores.   The natural, 

untrained raters received support similar to that provided to graduate teaching 
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assistants when they actually taught in the courses.   Specifically, 10 minutes of 

verbal instructions as the goals and means of the task and a list of criteria.   

 

Table 4.12.  Effect of a Few Hours Training on the Reliability of Scores Given by 

Graduate Teaching Assistants    

Note.  Papers differed by course (n = 142 papers total), but within a course, trained and natural raters 
scored identical papers.  1No third rater available. 
 

Natural grading conditions in this study compared to other published results 

 In general, graduate students under natural conditions had produced similar 

(though lower) average and maximum reliability scores as trained raters (Table 

4.12).  These reliabilities compare quite favorably with the only other published 

reliability of graduate teaching assistants found in the literature, as well as with 

published reliability scores in general (compare to reliabilities in Table 4.3).  In the 

only published student reporting reliability of science graduate students as raters, 

Kelly and Takao (2002) compared the point values assigned for research papers in a 

university oceanography class and found significant differences in the mean scores 

awarded by each teaching assistant (ANOVA p < 0.022, i.e. no correlation among 

teaching assistants).  In addition, when the rank orders of the student papers 

produced by the graduate teaching assistants were compared with those produced by 

trained raters using a rubric there was little correlation (r = 0.12, Kelly and Takao 

2002).  The natural reliability of teaching assistants in this study thus appears to be 

notably higher as reliability scores of g = 0.76 and 0.80 indicate that most (76-80%) 

of the variation in student score was actually due to differences in the quality of 

student work rather than inconsistencies among raters. 

A likely explanation for this finding is that teaching assistants under natural 

conditions actually received more pedagogical training and support for consistency 

in grading then did the teaching assistants in Kelly and Takao’s study.  While not 

Course Trained Raters Natural Raters 

 1 rater 2 raters 3 raters 1 rater 2 raters 3 raters 

101 0.66 0.79 0.85 0.51 0.68 0.76 

102 0.66 0.79 0.85 0.57 0.73 0.80 

301 0.66 0.79 0.85 0.68 0.81 --1 



 

 

 

120

receiving any explicit training as part of this study, the graduate students who 

participated as natural raters had all taught in the introductory biology course at least 

once at some point in the past (see Table 3.6).  Graduate students are always 

assigned to introductory biology for their first teaching assignment because there 

they receive support and pedagogical training from the faculty laboratory 

coordinator.  Introductory biology teaching assistants are required to attend a weekly 

meeting typically lasting two to three hours during which they receive support and 

training for that week’s teaching duties.  Faculty laboratory coordinators monitor 

grade distributions and meet with teaching assistants who seem to have exceptionally 

high or low grading schemes and graduate teaching assistants are exposed to 

Universal Rubric criterion whenever those criteria are incorporated as part of the 

course assignments.  Thus, our natural raters may have greater experience with 

applying criteria to laboratory reports than did the teaching assistants reported in 

Kelly and Takao’s study.  As the level of support described here for teaching 

assistants appears to be greater than that reported for many other institutions.  For 

example, in many cases training in how to teach is not even considered in 

discussions of the quality of doctoral programs (e.g. Mervis 2000; Carnegie Initiative 

on the Doctorate 2001) or when support provided to graduate teaching assistants is 

investigated, most are found to work autonomously with little pedagogical support or 

training (Luft, Kurdziel et al. 2004). 

Reliability of individual criteria under natural grading conditions 

Looking at individual criteria, criterion reliability maxima were again 

distributed across courses (Table 4.13) showing no dependence of reliability on 

subject matter.  Methods: Controls and Results: Statistics for BIOL 102 also posed 

challenges for Natural Raters due to universally low student performance (same 

situation as described for Trained Raters section on low criteria reliabilities).   One 

notable difference was that BIOL 101 Natural Raters were able to successfully apply 

the Methods: Controls criterion and generated a reliability score of g = 0.74.  No 

description of the successful interpretive framework used by Natural Raters was 

available.  Methods: Controls was re-written based on Trained Rater feedback to 

address the difficulties in interpretation suffered by five of the six groups of raters.  It 

should also be noted that Hypotheses: Scientific Merit which was one of the more 

successful criteria for trained raters, had a lower reliability under natural conditions 
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(average reliability of g = 0.42).  This result suggested that the explanatory 

descriptions of student performance at the various scoring levels was necessary for 

this criterion, or else it was prone to excessive variation in interpretation. 

Table 4.13 Reliability (g) Scores for Individual Criteria under Natural Conditions 

 Course 
Criteria 101 102 3011 

Overall 
Ave 

Introduction     

     Context 0.48 0.67 0.70 0.62 

     Accuracy and relevance 0.50 0.64 0.55 0.56 

Hypotheses     

     Testable 0.57 0.60 0.49 0.55 

     Scientific Merit 0.45 0.38 0.42 0.42 

Methods     

     Controls 0.74 0.002 0.002 0.25 

     Experimental Design 0.67 0.84 0.60 0.70 

Results     

     Data Selection 0.25 0.61 0.41 0.42 

     Data Presentation 0.31 0.72 0.61 0.55 

     Statistics 0.27 0.06 0.52 0.28 

Discussion     

     Conclusions based on data 0.48 0.38 0.49 0.45 

     Alternative explanations refuted 0.54 0.66 0.38 0.53 

     Limitations 0.62 0.62 0.39 0.54 

     Implications / significance 0.47 0.50 0.55 0.51 

Primary Literature 0.83 0.57 0.76 0.72 

Writing Quality 0.62 0.67 0.65 0.65 

Total Score 0.76 0.80 0.81 0.79 

Note.  Student papers and samples sizes are identical to that of Trained raters (Table 4.2).  Maximum 

reliabilities per criterion are highlighted in bold.   1BIOL 301 reports two-rater reliability scores.  2See 

section on low criteria reliabilities, the same situation described for trained raters applies for natural 

raters for BIOL 102 and 301. 

When comparing trained and natural raters, in general natural raters had lower 

reliability scores (Figure 4.8).   Reliabilities were similar for some criteria (e.g. 

Introduction: Context and Introduction: Accuracy, Methods: Experimental Design, 



 

 

 

122

Primary Literature and of course the Total Score while other varied noticeably (e.g. 

Results: Statistics).  In only two instances did natural raters generate reliabilities 

higher than trained raters: Writing Quality and Methods: Controls.  It should be 

noted that these were two criteria that seemed to pose difficulty for trained raters.  

Natural Rater reliabilities for Writing Quality were higher (averaging to 0.65) and 

less variable than those produced by trained raters (Figure 4.8). 
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Figure 4.8.  Comparison of the reliability scores of Trained vs. Natural raters for individual 

rubric criteria.  Data points are the average three-rater reliability across all three courses (n = 142 

papers) except for M: Controls which is single data point from BIOL 101: Natural Raters only 

(reliability = 0.74, n=49 papers).  The top of each bar indicates the maximum reliability achieved by 

that type of rater.  Lower bar indicates the minimum reliability (bars are not standard error bars).   

Comparison of the stringency of natural vs. trained raters  

One evident difference does exist between trained and natural raters in the 

number of points each tends to award per criterion.  Trained raters were much more 

stringent on average than natural raters (Table 4.14, Figure 4.9).  Out of the 

maximum total score that could be earned (45 points), natural raters awarded an 

average of 9.1 more points than trained raters, nearly doubling or more than doubling 
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scores depending on the course (Table 4.14).   Natural raters were also more variable 

having an average standard deviation that was more than twice that of trained raters 

and double the range in score (Table 4.14).  The higher overall scores for the natural 

raters may be at least partially caused by these graduate students using a more grade-

like mentality.   In other words, when grading, the average student is expected to 

earn approximately 70-75% of the possible points and the range of scores between 

excellent students and extremely poor students is only approximately 40% (e.g. the 

span between an “F” and an “A” is usually 60% to 100%). 
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Figure 4.9.  Comparison of the stringency of Natural vs. Trained raters (average total score 

+ standard deviation).  Sample sizes are the number of papers scored per course. Three raters per 

group with the exception of the 301 Natural raters group which only had two raters.  Maximum total 

score possible was 45. 

By comparison, scores generated by the Rubric study are absolute scores 

based on criteria rather than relative scores (e.g. grades).  For natural raters grades 

are usually assigned relative to other students in the same course rather than being 

based on absolute criteria.  Thus, without explicit training, it may have been 

challenging to for natural raters to change their perspective and use the absolute 

scale required by the rubric.  With scoring, novice students who performed well, 

might still only earn 30% of the available points which differs a great deal from the 

percentage they would earn as a grade in the class. 

n = 49 n = 45 n = 48 
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Table 4.14.  Variability of Scores Awarded by Trained vs. Natural Raters. 

 Ave total score 

+ Ave Std Dev 

Average Range of 

Total Scores 

Ave Score per 

criterion 

+ Ave std dev 

Course 
Trained  Natural Trained Natural Trained Natural 

101 12.0 + 2.1 27.8 + 6.4 3.9 12.0 0.8 + 0.2 1.9 + 0.5 

102 11.5 + 2.1 15.9 + 5.3 4.0 10.0 0.8 + 0.2 1.1 + 0.4 

301 11.6 + 1.9 18.8 + 3.51 3.7 4.91 0.8 + 0.2 1.3 + 0.31 

Ave. 11.7 + 2.0 20.8 + 5.0 3.9 9.0 0.8 + 0.2 1.4 + 0.4 

Note.  The maximum score possible was 45.  Range was calculated by subtracting the smallest total 

score awarded by an individual rater from the largest to indicate the degree of variation per student 

among the three raters.  Similarly, the average standard deviations reported are the standard deviation 

in total score among the three raters per student averaged over all the papers in that course for that 

type of rater.  1Only two raters in this group. 

 

The greater variability in natural rater scores and consequential lesser 

reliability are likely realities of the research-oriented university classroom.  Most 

university science departments are not able to provide pedagogical training for 

graduate students, especially calibrated training on how to grade, despite their 

ubiquitously role as undergraduate science laboratory instructors (Boyer 

Commission, 2001; Carnegie Initiative on the Doctorate, 2001; Luft et al., 2004).  

This study did not address the reliability of science graduate students grading in the 

absence of standardized criteria, so it is possible that the use of the list of criteria 

alone improves reliability.  

 

Summary of results for Study 6: Reliability and stringency of graduate teaching 

assistants in natural conditions. 

Without explicit training on grading with the rubric, graduate teaching 

assistants in this program (which provides more pedagogical support than many) are 

more lenient and slightly more variable.  Their reliabilities are only slightly less than 

those for trained raters however (g = 0.76 to 0.81).   The generalized pedagogical 

training in introductory biology appears to have provided these graduate students  
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with the ability to be reasonably reliable in their assessments of student performance. 

An additional few hours of training did further improve that consistency.  The 

graduate raters for this project were self-selected volunteers.  No assessment was 

made of their teaching abilities in comparison to the graduate student population at 

large.  

Study 8:  

Graduate teaching assistants’ perceptions of the Universal Rubric 

Graduate student teaching assistants’ perceptions of the Rubric were 

surveyed anonymously immediately after the completion of the Rubric training and 

scoring sessions.  Because graduate teaching assistants’ perceptions of the utility of a 

tool are likely to impact the effectiveness of that tool and because the feedback was 

gathered as an exit survey for the training, these perceptions are presented here rather 

than in Chapter 5.   

Most raters found that the concreteness and specificity of the rubric made 

scoring easier than grading without a rubric. 

It highlights several categories that are expected in scientific writing 

and allows for fairly easy and unbiased assessment of whether 

students are competent in these areas across their academic years. 

Straight forward; Very well organized/formatted document - 

manageable & efficient 

They also often felt that training was useful and that it would be beneficial 

for science departments to provide such training to their teaching assistants (TAs). 

TA orientation should have at least an hour dedicated to 

working with and calibrating with the rubric. A must if scientific 

writing is to be a major objective of the department.  

Absolutely [training] should be given to new TAs. Specific 

instructions will help them grade more consistently - as in how 

to handle specific errors, specific misconceptions, etc. 

Graduate student raters overwhelmingly indicated that the use of exemplar 

papers was a key point in the training experience.  For example, 
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The practice lab reports were very beneficial. Until we looked at 

what you guys (Sue & Briana) scored [on the exemplars] we 

weren't too sure of what applied for criteria for example. 

Yes! Bad papers were very easy to score but superficially good ones 

were a real pain and it was surprising to see what scores a "good paper" 

would get, therefore I trusted the tool even more. 

If departments choose to provide some training to graduate students, the use 

of a rubric and exemplar papers are therefore recommended as minimum 

components of that training.   When asked if they would incorporate elements of the 

rubric into their own assignments in the future, most graduate students replied 

positively.  Specific comments either indicated that they already did use such criteria 

or listed specific criteria on which they thought the students should focus.  Overall 

comments wished for more incorporation of rubric elements into departmental 

courses. 

Believe it or not, this scoring experience really makes me wish I 

TA'ed a writing intensive course! I would love the opportunity to 

help my students develop into expert writers over the semester 

and would definitely use this tool to do so. 

Suggestions for improving the rubric focused mostly on adding additional 

criteria for various elements the graduate students thought were missing or for giving 

greater detail in the rubric about how to handle specific scoring situations.  Notably 

there were no suggestions to shorten the rubric. 

 

Summary of results for Study 8:  Graduate teaching assistants’ perceptions of the 

Universal Rubric. 

 Graduate teaching assistants who volunteered to be the trained raters in the 

Universal Rubric reliability study found the five hour training to be useful enough 

that they recommended that all graduate teaching assistants receive similar training.   

Aspects of the training mentioned as being particularly useful included the scoring of 

common exemplar papers similar to those which were to be scored in the future and 
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discussion of discrepant scores to calibrate rater’s interpretations of the rubric 

criteria and expected student performance at various levels. 

Summary of Achievement Results 

The incorporation of peer review was effective for improving students’ 

scientific reasoning skills and scientific writing.  Students were effective and capable 

reviewers at even the introductory level.  Use of peer feedback improved student 

laboratory reports.  Laboratory reports were a rich source of data when investigated 

with the Universal Rubric for Laboratory Reports.   Application of the rubric to 

longitudinal and cross-sectional portfolios of laboratory reports measured the 

progression of students in acquiring scientific inquiry skills and highlighted gaps and 

mis-alignments between assignments and curriculum goals.   Repeated exposure to 

peer review accelerated gains in scientific reasoning beyond that achieved by 

academic maturity alone.  University science departments are thus encouraged to 

incorporate peer review as an effective pedagogical strategy that benefits students 

without increasing the grading load on instructors.  To assist the reader, the results of 

this study are concisely summarized in Table 4.15.  

Table 4.15.  Summary of Achievement Data Results 

• Undergraduates (even freshman) were effective and consistent peer reviewers 
whose feedback produced meaningful improvements in final paper quality. 

• Peer review of science writing in science classrooms accelerated the development 
of scientific reasoning skills (p = 0.000). 

• The Universal Rubric for Laboratory Reports was reliable independent of 
biological subject mater and improved the consistency of scores generated by 
graduate teaching assistants. 

• A few hours of training on the use of the rubric improves the consistency of 
graduate teaching assistants even further.  Graduate teaching assistants suggested 
that such training become part of regular teaching assistant training.   

• Greater incorporation of rubric criteria into assignments improves student 
performance.  Some criteria required explicit instruction or students did not 
attempt them (e.g. use of controls in experimental design, use of statistics, use of 
primary literature).  

• Application of a Universal Rubric to assignments in multiple courses is a valuable 
tool for detecting gaps in the curriculum as well as identifying curricular 
strengths. 

• Greater emphasis on the quality of open-ended written feedback significantly 
improved student performance (p = 0.001) to a larger extent than academic 
experience or grade point average. 
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CHAPTER 5 

RESULTS OF THE SURVEY OF STUDENT PERCEPTIONS 

Overview 
 Student achievement results were presented in Chapter 4.  This chapter 

primarily reports the results of an online survey of undergraduate student perceptions 

of peer review and its impact on their scientific reasoning skills.   As learners’ 

perceptions of the relevance of an activity to their personal life and future success 

strongly affects their motivation and performance, information on student 

perceptions of the purpose and impact of peer review provide insight into the student 

achievement data.  Failure to perceive peer review as a worthwhile activity could 

noticeably detract from student performance of peer review tasks.  If student 

achievement is less than anticipated, it is important to determine the cause of the 

poor performance so that pedagogical revisions can be targeted at the actual cause.  

Consequently, the online survey was developed to assess student perceptions of the 

purpose of peer review in the classroom and the relationship between the classroom 

activities and real-world scientific competencies.  In addition, the survey probed 

student perception of the effectiveness of the instructional supports for the process in 

case further potential improvements were identified. 

 

Overview and brief summary of Survey structure 

 Perceptions of relevance can have significant impacts on motivation and 

learning (Bendixen & Hartley, 2003; Mistler-Jackson & Songer, 2000; Osborne, 

Erduran, & Simon, 2004; Van Berkel & Schmidt, 2000).  Consequently, an 

understanding of student perceptions of the peer review process would provide 

additional insights to improve classroom implementation.  Further, one of the goals 

of this curriculum included students developing an understanding of the role of peer 

review in the science community.  While a number of studies have suggested  

students perceive peer review as a positive educational experience  (Haaga, 1993; 

Pelaez, 2002; Stefani, 1994), no extensive quantitative survey has been published 

despite recommendations by previous authors that such information would be useful 

(Hanrahan and Isaacs 2001).  A Survey was therefore constructed to elicit students’ 

perceptions of the purpose, process and impact of peer review on their learning and 
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development as scientists as well as their perceptions of the role of peer review 

within the scientific community.  

 Students’ anonymous opinions regarding the purpose and impact of 

peer review were solicited from introductory biology students over the course of two 

semesters, corresponding with their first and second engagements in peer review.   

Their responses were overwhelmingly positive.  As described in Chapter 3, the 

Survey had a high response rate (85.5%) and contained four subsections:  1) 

statements concerning students understanding of the purpose of peer review (items 

A-F in Table 5.1); 2) statements concerning their understanding of the process and 

mechanics of peer review (items G-O, Table 5.1); 3) statements concerning the 

impact of peer review on students’ papers and future courses (Q-AC, Table 5.1); and 

4) open-ended questions about the rationale for peer review in the class, the role of 

peer review in professional scientists’ work and suggestions for change.  

Components 1, 2 and 3 were statements to which students responded on a Likert 

scale of 1 to 6 with 1 being “strongly disagree” and 6 being “strongly agree.” A 

number of items (X-AC, Table 5.1) were also added for the spring administration.   

The added items probed for greater detail concerning what aspects of learning were 

affected by the process of peer review.  Two items addressing any effects of multiple 

peer review experience were also added for the spring administration.   Identical 

versions of the survey were administered to both BIOL 101 and 102 in the spring.  

The distribution of student responses to each item was reviewed.  The 

responses: slightly agree, agree or strongly agree were deemed to be positive and 

those percentages were summed for each item and reported as the % of positive 

responses.  Positive response rates were tabulated separately for each course.   Given 

the small standard deviations among % positive responses in the different courses, 

the positive response rates were averaged over all three courses for each item and 

reported in Table 5.1.  
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Table 5.1.  Average Percentage of Students’ Positive Responses Regarding the Impact of 
Peer Review Across Three Introductory Biology Courses. 
(#) Survey Component             Survey Item  Total # 

responses 
% Positive Responses 

ave + SD 
(1) I understand the Purpose of:   

Peer Review in this class (A) 1006 93 + 3 
Peer Review for Scientists (B) 1003 94 + 0 

Of Calibration Papers (C) 1004 89 + 5 
Of Receiving Feedback (D) 1003 93 + 3 

Of Giving Feedback (E) 998 94 + 2 
Of Self-assessment (F) 1004 91 + 3 

Average 1003 92 + 3 
(2) My teaching assistant provided:   

Rationale for in-class use (G) 1001 87 + 8 
Future usefulness (H) 999 83 + 8 

Use of Peer Review by Scientists (I) 1000 84 + 8 
How to use peer review system (J) 993 92 + 6 

Training for CPR was adequate (K) 999 84 + 10 
I was motivated to do Peer Review (P) 1001 65 + 5 

Average 997 83 + 9 
Handout readable (L) 993 91 + 6 
Criteria readable (M) 1000 88 + 2 

CPR website user friendly (N) 997 86 + 1 
Time required manageable (O) 996 87 + 2 

Average 996 88 + 2 
(3) Peer Review improved my:   

Laboratory report (Q)   4401 791 

In-class understanding (R) 993 73 + 5 
Work in other courses (S) 997 75 + 7 

Writing skills (T) 995 67 + 5 
Editing skills (U) 998 81 + 5 

Critical thinking skills (V) 998 71 + 5 
Research skills (W) 997 69 + 5 

Average 917 73 + 5 
     Because:   

Calibrations were useful (X)   5582 83 + 2 
Self-assessment was helpful (Y) 558 81 + 6 

Feedback received was helpful (Z) 559 80 + 5 
Feedback quality was satisfactory (AA) 557 69 + 3 

Giving feedback made me think (AB) 557 86 + 6 
I gave quality feedback to others (AC) 557 95 + 2 

Average 558 83 + 9 
Multiple Peer Review Experiences    
Peer Review less difficult the 2nd time (AD)   3033 83 
Peer Review more useful the 2nd time (AE) 303  64 

Note.  Survey items are abbreviated here (see Appendixes 7 and 8 for further detail).  Courses 
surveyed were BIOL 101 Fall 2006 and BIOL 101 and 102 in Spring 2007 (total n = 1026 students). 
1Item Q was asked BIOL 101, Fall 2006 only.  2Items X-AE were asked in Spring 2007 only.   3312 
students in BIOL 102 reported that they participated in peer review in BIOL 101 in Fall 2006.  Of 
these, 303 responded to items AD and AE. 
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Sample independence 

The total number of respondents over all three courses was 1026, but the 

number of responses varied slightly per item as not all respondents completed all 

items (Table 5.1).  Variation in sample size among items was never more than 3% of 

the relevant number of respondents however.  Overall, the trends were quite similar 

for all three courses.  Only approximately 26 of the students (2.5% of the total 

sample) enrolled in BIOL 101 in the Spring 07 semester, identified themselves as 

having been enrolled in BIOL 101 in Fall 2006.  Three hundred and three (303) of 

the 376 students (80%) who responded to the BIOL 102 Survey identified 

themselves as having been enrolled in BIOL 101 and in peer review the previous 

semester.  As the peer review experiences were distinct each semester and only 38% 

of the BIOL 102 students remembered having taken the Survey the previous 

semester repeat administration of the survey was therefore not considered to be an 

issue of concern.  Sample sizes for items Q and X through AC are approximately 

half those reported in other sections because those items were only included for a 

single semester.     

All quotes reported in this chapter were collected anonymously from students 

via open-ended text boxes in the Fall 2006 administration of the Survey.  Therefore 

attributions are not provided for individual quotes.   

 

Study 9:  

Undergraduate perceptions of peer review in the classroom 

 

Student perceptions of the purpose of peer review in the classroom: 

Contrary to the anecdotal reports received from students who came to the 

researcher’s or other instructor’s offices seeking help, the majority of students 

reported that peer review was beneficial and worthwhile whether viewed on a course 

basis or cumulative basis (Figure 5.1, Table 5.1).  In particular, students reported that 

they understood the purpose of peer review, both within and outside of the classroom 

(positive response average for this section over all three classes = 92%, average n = 

1003, Table 5.1).   Students generally considered the process of peer review to both 

improve their coursework and their general critical thinking skills.  For example: 
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After filling [the online survey] out, I realized that peer review had 

helped me more than I thought. My researching skills have improved as 

well as my thinking skills. I actually paid close attention to the advice 

the other students gave me and it was very helpful it correcting my 

paper.  I believe that peer review thoroughly works well and that it 

should be used more often.   

When students were asked directly “why [they] thought we asked them to do 

peer review in this class,” more than half (55.6%, n = 444) of students’ responses 

were best categorized as perceiving peer review as a mechanism to improve their 

laboratory reports.  They specifically identified peer review as improving their 

writing and editing skills.   

I think you asked me to use peer review in order to develop my writing 

and editing skills.  Peer review was used to help each other give useful 

tips in writing our lab reports.  

We did peer review in this class to allow us to see the mistakes in our 

first draft and be able to make changes before we handed them in.  

Interestingly, 11% of students who believed the major purpose of peer review 

was to improve their laboratory reports felt that learning from other people’s 

perspectives was the primary mechanism by which the improvement happened.   

You asked us to use peer review in this class because you wanted us to 

get a sense of what other people were writing so we could add to our 

papers and also get a better understanding of how to write a lab report.  

To view how other[s] interpreted the same experiment, to widen our 

knowledge of the experiment, and to observe others’ opinions.  

Nearly twenty percent (19.6%, n = 444) of students believed that instructors were 

asking them to do peer review because peer review was a useful science skill in and 

of itself rather then just a means to improve one’s grade on a laboratory report. 

[You asked us to do peer review in class] to help us to begin to 

understand the process of peer review that allows scientific studies to 



 

 

 

133

be vetted to prevent shoddy work or bias to slip through, and to develop 

the skills needed for peer review. 

Most people in the class are planning to become scientists or engineers 

in a scientific field. It will be useful later, because we will eventually 

have to do peer reviews in our career paths. 

We were asked to use peer review in order to help us understand the 

usefulness of having your peers review your work and how it has helped 

the scientific community. 

If we are going to grow up to be research scientists, we will need to 

know how to give and take peer review. 

This perception of peer review as being a useful skill relevant to a student’s 

future in 20% of the class may actually be quite notable as only 35% of the students 

enrolled in the course (and taking the Survey) were declared biology majors (196 of 

562 students).  Close to 43% of students enrolled were declared Pharmacy or 

Exercise Science students whose curricula would not include any further biology 

courses.  If the assumption is made that only biology majors would perceive the 

research skills taught in introductory biology to be relevant for a future career as a 

scientist, then a large proportion of majors took this broader view of the purpose of 

peer review in the class.  As the Surveys were anonymous however, there was no 

conclusive way to determine if biology majors in particular perceived peer review as 

a broadly useful scientific skill.  The remaining quarter (24%) of students (n = 444, 

Fall 2006) was composed of various miscellaneous beliefs.   Five percent (5%) of 

students believed that the purpose of peer review in the classroom was to provide 

opportunities to learn how to edit writing while another four percent (4%) thought it 

was to increase their understanding of the assignment.  Negative comments were 

expressed by 2%, miscellaneous comments by 6% and 7% of students did not 

respond to this query. 

 For the Spring 2007 administration, these open-ended responses were coded 

into six categories.  The Survey was revised so that students were asked to “select 

the top three reasons why we asked you to use peer review in the classroom. “ Rank 

order and percentages of the selections were similar between BIOL 101 and 102 for 
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the top three choices.  Students clearly believed that peer review was selected as a 

pedagogical tool because of its role in the scientific community (76.5%, n = 558 

Table 5.2) as well as to improve laboratory reports (77.1%, n = 558).   The third 

most popular rationale  (63.6%) was “to learn to critique scientific work” further 

indicating that students viewed peer review as a functional skill rather than a purely 

in-class process (Table 5.2). 

 

Table 5.2 Top Three Reasons Why Students Believe They Were Asked to Use Peer Review in 

the Classroom. 

Reason 
101 

(n = 187) 
102 

(n = 371) 
Combined 
(n = 558) 

To receive feedback to improve our 
laboratory reports. 

77.0% 77.1% 77.1% 

To learn the importance of the peer review 
process in science. 

73.8% 77.9% 76.5% 

To learn to critique scientific work. 59.4% 65.8% 63.6% 

To improve our ability to communicate 
through writing. 

40.1% 37.2% 38.2% 

To increase comprehension of the laboratory 
assignment. 

40.6% 28.0% 32.2% 

To correct grammar and similar mistakes. 8.6% 12.4% 11.1% 

Other 0.5% 0.8% 0.7% 
Note.  Students were asked to select their top three choices, so percentages do not sum to 100%.  

Sample size is the number of students who submitted responses in Spring 2007.  
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Figure 5.1.  Student perceptions of the role and impact of peer review by Introductory Biology course and term (n = 1026 students).  Percentage 
positive response is the cumulative % of students who responded slightly agree, agree, or strongly agree.   Full Surveys in Appendixes 7 and 8.  PR = peer review.
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Student perceptions of the process of peer review in the classroom: 

Students considered the support provided to them for engaging in the process 

of peer review to be effective (average percentage of positive responses was 85%, n 

= 998).  For example, student comments included statements such as:  “My TA's do 

a wonderful job explaining how to do CPR procedures, why we should find peer 

reviews important, and how to scientists use peer reviews in real life.”  Student 

perceptions of teaching assistant explanations improved from the Fall to the Spring 

semesters becoming more positive and less variable (Figure 5.1).  This was the only 

noticeable difference between the three courses.   While there were slight wording 

changes to improve the clarity of these items (G-K, Table 5.1) between 

administrations, it is more likely that the improvement was due to the teaching 

assistants being more experienced in the spring semester.  Only 4 of 15 teaching 

assistants in the spring semester were new to Calibrated Peer Review (CPR) 

compared to 9 of 15 teaching assistants in Fall 2006 semester.   In general, students 

reported that they received sufficient explanation and support from their teaching 

assistants and that the handouts and other instructional materials were useful.  When 

asked “what changes would you recommend to improve peer review in this class?” 

23.4% of students (n = 444, Fall 2006) said that no changes were necessary and an 

additional 9.5% provided positive comments in the “additional comments” section.  

I enjoyed the peer review system because it really helped me to revise my 

paper and fix its weak points. I believe this is a helpful tool (especially 

for freshman). 

I like the way [peer review] is set up in this class because it is all 

annonymous, [sic] so I wouldn't change anything about it. Plus, it is very 

simple to use and give good descriptions for each step. 

I thought it was helpful, so I probably would not change much. 

The largest proportion of students’ suggestions for change (31.1%) actually 

requested increasing student involvement in peer review (n = 444 students, Fall 

2006).  The largest single category within this group (comprising 12.4% of the total 

444 respondents) wanted more thorough training or more calibration papers. 



 

 137 

To improve the peer review systems, I would recommend that the idea 

behind the assignment be taught thoroughly so that students do their 

reviews and learn from it rather than strictyly [sic] going through the 

motions and not caring anything away from it. 

Changes that I would recommend to improve peer review in this class 

would include providing a more [sic] clearer examples about primary 

literature, and how it should be incorporated into the lab assignment. 

Another portion of this group (8.3% of the total) wanted to improve the 

quality/increase the level of detail of the peer feedback they received; 6.3% wanted 

to make peer review a face-to-face process in class (often to improve accountability) 

and 4.1% wanted more opportunities to do reviews or to receive reviews: “I would 

like to have more than three opinions on the papers that I write.”  

Considerably fewer students wanted less involvement with peer review.  

Slightly more than five percent (5.6% of 444) wanted to reduce the time spent of 

peer review (“It takes an innane [sic] amount of time to peer review an entire paper”) 

and 4.3% thought that peer review was not necessary.  An additional 4.3% wanted 

changes to the grading system.  The remaining third of students suggested changes 

which are not within our control: changes to the CPR website (10.4%) or gave 

comments which were too few to form categories or were off topic (10.1%) or gave 

no response at all (10.8%); 

One notable low point in the quantitative Survey was the degree to which 

students felt motivated to engage in the assignment.  Despite their previously 

articulated understanding of the value of peer review, only slightly more than half 

(63%, n = 1001) said that they were motivated to do the assignment.  As no 

comparative measure of their motivation to accomplish any other assignment was 

made, this percentage could be quite high relatively speaking (given anecdotally 

perceived levels of general student motivation), but lacks sufficient context to be 

more fully interpreted.  This result was consistent over all three courses (Figure 5.1).  

The other notable area of complaint (which was also common in anecdotal 

reports) was that peers did not provide high quality feedback.  Investigation into this 

issue indicates that only slightly less than one-third of students actually (31%, n = 

557) felt that the quality of feedback that they received was unsatisfactory (Item AA, 
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Table 5.1).  It should also be noted that while 31% of students felt they received poor 

quality feedback, 95% of students reported that they provided high quality feedback 

to others (Item AC, Table 5.1) however.  As previously discussed, introductory 

biology students provided useful feedback, but did not do so 100% of the time.   Six 

of 10 feedback items per reviewer were likely useful at best for any given writer (3.7 

average plus one standard deviation of 2.6).  Approximately one third of feedback 

provided by peers was not considered helpful, thereby supporting students’ 

perceptions that the quality of feedback could be improved.  Given the discrepancy 

between 31% reporting that they received unsatisfactory feedback, but only 5% 

reporting having given lesser quality feedback, some students apparently were not 

cognizant or accurate in their assessment of the quality of the feedback that they 

personally provided to others.  While there was clearly a perception that the quality 

of the feedback could improve, 80% of students did feel that, “Other students’ 

feedback was helpful to me in revising my laboratory reports” (Item Z, Table 5.1).  

The distinction between these two likely lies with the word “satisfied.” While 80% 

of student felt they received some useful feedback, 31% perhaps desired a larger 

quantity of useful feedback. 

 

Student perceptions of the effect of peer review  

Students generally perceived peer review as benefiting both their laboratory 

report and their generalized writing and critical thinking abilities.  Specifically, 

three-quarters of students were quite positive about the direct effect of peer review 

on their writing, editing, research and critical thinking skills, (73%, n = 917, Table 

5.1).  Improvement in their laboratory report and their editing skills received the 

highest positive response (79% and 81% respectively).   In-class understanding, their 

work in other courses and generalized writing skills were also positively affected for 

67-75% of the students.  Most notably, 69%-71% of students felt that peer review  

directly improved their critical thinking and research skills (Items V and W, Table 

5.1) and provided comments such as: 

I think that we were asked to use peer review in this class so that our 

critical thinking skills would be enhanced within the scientific 

community. It was also useful in helping us develop better grades on 

the assignment. Reviewing our own work and the work of others 
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allowed us to see the mistakes that we made, and mistakes that we 

should not make. 

Peer review was used in this class to help people gain a better 

understanding of their own writing and their classmates' writing. 

Students had to utilize their writing, editing, critical thinking, and 

research skills; therefore, benefiting greatly from this exercise. 

In the scienticic [sic] community it is very important to have others 

review your paper, and this is why it is instilled in us at such the 

beginign to gte others [sic] input to make your research more accurate 

and precise. 

Peer review helped us understand the process scientists have to go 

through when publishing a report. It also helped us teach each other 

and develop our researching skills. 

Thus, the majority of students perceived peer review as having a positive 

impact on both their immediate work as well as broader impacts on their scientific 

and writing skills.  Consequently, it can be concluded that students perceive peer 

review as a valuable and worthwhile portion of the curriculum. 

 

Student perceptions of why peer review was helpful 

 Students reported the various components of the peer review process to be 

roughly equivalent in their usefulness.    The exemplar papers (Item X), self-

assessment (Item Y) and peer feedback (Item Z) were all rated as beneficial by 

approximately 80-83% of the students (Table. 5.1).  

A small (but notable) percentage of students (7.5%) wrote open-ended 

responses in Fall 2006 indicating that the process of giving feedback to others or 

viewing others’ work was helpful to them in their own writing.  This effect was 

reported both in addition to and instead of, receiving peer feedback from others.  

Examples of student comments evidencing this opinion include:   

When reviewing other peers work, we would also be more inclined to 

think about ours, which would in return help out our own paper. 
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This was in order to learn by teaching. By reading and grading other 

papers, one can easily see what needs done in their own paper. 

To be able to give feedback to our classmates which then might give us a 

better understanding of what's right or wrong in our own papers. 

Consequently, these open-ended responses were condensed into a Likert scale 

item for the Spring 2007 administration (item AB, Table 5.1).  While only 7.5% of 

students volunteered that opinion in the fall, when systematically surveyed 86% of 

the 557 students agreed with the statement that “[p]roviding feedback to other 

students helped me in making revisions to my own laboratory report.”   These results 

support and expand the one other evident report on the impact of giving  feedback 

where 33 graduate students rated the value of reviewing other people’s papers as 7.9 

+ 2.3 on a scale of 10 pts (Haaga 1993).   The qualitative data reported here shed 

new light on the mechanism behind this effect however.  Student comments such as 

those reported above mention two important facets in this effect.  Firstly, giving 

feedback appeared to stimulate reflection and self-evaluation as evidenced in 

comments such as: “when reviewing other peers work, we would also be more 

inclined to think about ours.”  Secondly, exposure to peers’ work caused students to 

compare and contrast among works.  This led to evaluation and self-evaluation as 

evidenced by responses such as “by commenting on other students papers and my 

own I was able to compare and further understand the process of a lab report” and 

“the activity taught you what to look for in a paper and how to apply it to your own.” 

The self-reflection caused by reviewing other people’s papers was the likely 

mechanism by which giving feedback would be perceived as improving the 

reviewer’s own paper.  Self-reflection often leads to metacognition which is an 

awareness of one’s own learning process, or more specifically, the ability to reflect 

upon, understand, and control one’s learning (Schraw and Dennison 1994).  Students 

who specifically mentioned the process of giving feedback as being beneficial to 

their own work have clearly grasped the metacognitive aspects of the process.  As 

indicated by the quotes above, the process of giving feedback caused students to 

engage in self-evaluation and stimulated metacognition. 

Metacognition is a central component of meaningful learning (Wandersee, 

Mintzes et al. 1994; Bendixen and Hartley 2003) and an important professional 
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competency for professionals and experts in both science and teaching (Halonen et 

al., 2003; McAlpine & Weston, 2000; Roche & Marsh, 2000; Sluijsmans, Dochy, & 

Moerkerke, 1999; Yore, Hand, & Florence, 2004; Zembal-Saul, Blumenfeld, & 

Krajcik, 2000).  Baird and White (1996) define meaningful learning as “informed, 

purposeful activity to the extent that learners exert control over their approach, 

progress and outcomes” and indicate four necessary conditions: 1) multiple time 

periods devoted to the activity, 2) opportunity to reflect (reflection valued as an 

explicit activity), 3) guidance or feedback which encourages reflection and 4) 

support in the form of a culture of collaboration.  All four components were present 

in the peer review process.  For example, the time from writing the draft to peer 

review to revision and final version encompasses several weeks of class time.   The 

elements of feedback and self-assessment are specific steps in the CPR process.   In 

addition to the reflection which was apparently caused by the act of giving feedback 

to others, reflection is hard to separate from self-assessment.  Peer review thus 

appears to present a particularly powerful pedagogical tool because of its focus on 

the higher order skills of comparison, evaluation and its ability to generate reflective 

thinking. 

 

Student perceptions of the effect of multiple peer review experiences 

While the proportion of students who felt that peer review was a positive 

experience did not vary noticeably among semesters, faculty involved hypothesized 

that as students gained experience with peer review, the mechanics of the process 

might become easier allowing students to focus more effort on the purpose and 

quality of peer feedback.  This shift in cognitive load from mechanics to substance 

might thereby improve the quality of the feedback and the usefulness of the whole 

process.   Therefore, items specifically asking students to comment on the impact of 

subsequent peer review experiences compared to the first were added to the spring 

version of the Survey. 

In the Spring 2007 administration of the Survey, students were specifically 

asked how their prior experience compared to the current one.   In BIOL 102, most 

(80.5% or 303 of 376) students responding to the Survey indicated that they had 

participated in peer review the previous semester.  The remaining 20% were likely 

transfer students who brought in credit for BIOL 101.   The BIOL 101 course in 

Spring 2007 also reported a few students who said they had engaged in peer review 
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the previous semester (12.6%, n = 206 respondents).   When asked specifically about 

peer review in biology classes however, this percentage fell to 8% (queries #35 and 

37 both report 14 to 16 of 203 respondents with past peer review experiences in 

biology).  While it could be expected that students who failed the course the previous 

term might respond differently, the majority of students repeating BIOL 101 

reported the process was less difficult (65%) and more useful (61%) the second time 

around.   In BIOL 102, a larger majority (83%, n = 303) reported that peer review 

was less difficult the second time and 64% felt that it was more useful (Items AD 

and AE, Table 5.1).  Students were then asked to elaborate on how the 2nd 

experience differed from the first in an open-ended response. 

The majority of students in BIOL 102 (265 of 408) provided some type of 

open-ended response to the query: “If you have used peer review in earlier classes, 

please explain the differences between your recent and previous experience.”  The 

largest proportion of comments (47%) however either did not clearly distinguish 

among semesters or reported on logistical differences between the semesters without 

indicating how those differences impacted the difficulty or usefulness of the 

experience (e.g. “I did not post my graphs correctly. I was docked points for this.” or 

“The paper was more of a challenge to write.”)  

Within the relevant comments, positive statements outweighed negative, 

usually by at least a 2:1 ratio.  The majority of relevant responses (71%) indicated 

that 2nd experience was easier because of increased familiarity and understanding of 

the mechanics of peer review or the CPR website (e.g. “The first experience I didn't 

really know how to use it, but I quickly learned how to work the system. The second 

experience was a lot easier because I was familiar with the system.”).  Three-quarters 

(75%) of the students commented on the usefulness of the subsequent peer review 

experience indicating that the quality of the peer feedback had improved, the 

student’s understanding of the purpose or process of peer review had improved 

and/or the focus on feedback quality was helpful.  For example, 

This year, we had to comment on every question, whereas last year we 

only commented on a few questions.  It was good to comment on all of 

them because it was easier to explain your answer. 
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The peer review this semester was more structured and the responses 

came out more helpful because they were more detailed. 

I understand about peer review a lot more this semester. I also received 

better feedback this semester. 

In earlier classes I was somewhat confused as to what the reason for 

using peer review was but taking it now I realize that peer review helps 

me write better papers and helps me with researching information. 

My previous experience with peer review was that I hated it and I 

thought it was ignorant. Since my recent experience, I realize the 

importance of peer review. 

Better teaching assistant explanations were also cited as improving the 

experience in the spring semester.  The minority of negative comments regarding 

usefulness cited poor reviewer feedback as the major source of frustration (25% of 

total comments specifically mentioning usefulness, 5% of the total number of 

responses received).  Two students did report that the 2nd semester experience was 

less useful because all gains to be made from the process had already occurred in the 

first semester: “While I understand how to work peer review better due to already 

using it, I had already found the major faults in my writing style in the previous class 

as well, and found fewer points of improvement due to this.” 

Students who said that the experience was more difficult the second time 

commonly identified the additional requirement of graph uploading as the reason or 

cited discrepancies in teaching assistant instructions as the major source of difficulty.  

BIOL 101 assignments use data in tabular form which can be imported directly into 

the CPR website.  For BIOL 102, data types require graphs.  The CPR website does 

not allow the uploading of images due to server space restrictions.  So graphs must 

be uploaded to the departmental server and linked to student papers by embedding 

html code within the student’s laboratory report.  Thus, students are not reporting 

greater difficulty or frustration with the actual process of peer review, but with a 

technical work-around step in the process required by the software.   Poor 

communication by teaching assistants is also a problem external to the process of 

peer review.  Thus, the actual process of peer review appears to become easier as 
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students gain experience with the major reported sources of increased difficulty 

being technical or instructor-based in nature.  

Thus, the benefits of peer review likely increase as students gain experience.   

Students clearly indicate that the basic mechanics of the peer review process are 

easier in subsequent experiences due to increased familiarity with procedures and 

expectations.  Students also clearly reported that the quality of the feedback in the 

second semester was better than in the first peer review experience.  Given the 

differences in the structure and emphasis of the 101 vs. 102 assignments described 

earlier however this sample cannot not distinguish between improvements in 

feedback quality due directly to greater student experience from gains in quality due 

to the 102 assignment’s focus on feedback quality.  

 

Summary of results for Study 9: Undergraduate perceptions of peer review in the 

classroom 

Students perceived peer review as a worthwhile activity both because of its 

positive effect on their classroom work and because they viewed it as a personally 

relevant skill for developing scientists.  Namely, approximately three quarters of 

students surveyed reported that peer review improved their laboratory report and in-

class understanding of the experiment as well as content.  They also believed that 

peer review improved their writing, editing and thinking skills and would benefit 

them in the future in other courses. More than three quarters of students also 

specifically reported that peer review improved their research and critical thinking 

skills and many elaborated on the benefits of peer review to their scientific reasoning 

skills in their open-ended written responses.  Notably, 86% of students reported that 

the act of giving feedback was helpful.  Written comments detailed that this 

beneficial effects was because reviewing other student’s work required comparison 

and evaluation and thereby stimulated self-reflection.  Thus, peer review appeared to 

stimulate metacognition and meaningful learning.  Peer review was considered to be 

an effective pedagogical tool by the students.   

For students who had engaged in multiple peer review experiences, frustrations 

with peer review seemed to decline with repeated exposure.  Students attributed the 

decline in frustration to having gained familiarity with the mechanisms and 

procedures and because their attention was shifted to providing more substantial and 

useful feedback (“It was the same, except they were more strict on whether or not 
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you give genuine feedback to other papers.”)  Repeated exposure to evaluative tasks 

was also perceived by students as improving their critical thinking skills, particularly 

as they pertained to scientific reasoning and detecting poor quality scientific work.  

This section is perhaps best summarized by one student’s comment: 

Peer review was used in this class to help people gain a better 

understanding of their own writing and their classmates' writing. 

Students had to utilize their writing, editing, critical thinking, and 

research skills; therefore, benefitting [sic] greatly from this exercise. 

Study 10:  

Undergraduate perceptions of the role of peer review in the scientific community 

 One of the major reasons for choosing peer review as a pedagogical tool was 

its corresponding use in the scientific community.  Consequently, student 

understanding of that connection was probed by both quantitative Survey items and 

open-ended responses.  Ninety-four (94%, n = 1003) of students reported that they 

understood the role of peer review in the scientific community and 84% (n = 1000) 

indicated that their teaching assistant’s explanation of the role of peer review in 

science was effective.  Many of the open-ended responses on the purpose of peer 

review in the classroom reported in the previous section already indicated that 

students understood the real-world significance of peer review by citing it as 

scientific skill that they needed to learn in order to be functioning scientists. 

 When asked specifically how they thought scientists used peer review in their 

own work, students’ open-ended responses from Fall 2006 (n = 444) were divided 

approximately equally among the following categories.  Students believed that 

scientists use peer review:  

 

1) to improve work/correct mistakes in general (21.8%),  

Real scientist use peer review as a source of criticism of their papers. 

Every time their work is published in a journal, it is there for the whole 

scientific community to criticize. 
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I would think that multiple scientists check over each others work to 

make sure there are no errors because otherwise they have problems 

with what they are trying to accomplish. 

2) to ensure accuracy of results and receive approval on methods, findings, 

conclusions (22.5%),  

Real scientists probably use peer review as a method to make sure all 

there work is correct and understandable. Also, they count on having 

fellow scientists to tell them the truth about their work (whether it is valid 

or not, etc). 

Peer review will help scientists to find and overcome bias and mistakes 

they cannot see themselves, to improve studies and ensure that the 

conclusions drawn are valid. 

 

3) to receive feedback and gain new insights/perspectives from others (20.5%).    

I think scientist look at each other's work and research to learn and 

better th[eir] work. One person might have ideas or theories that could 

leave [sic] to new discoveries and more knowledge. Scientists tend to 

build on each other's work to forward their proccesses [sic] of finding 

out unsolved questions. 

They let other scientist read what they have done and get feedback, 

which lets them know what could be done better the next time. With peer 

review, there are many more ideas that will be used in development of 

the paper and possibly lead to new discoverys [sic] by using the 

feedback. 

 

Less common reasons as to why students thought scientists use peer review 

were: to improve writing/readability (11.7%), as a requirement for publishing 

(4.1%), and to encourage replication of their work (4.1%).  Other reasons (mostly 

statements that peer review is just how science is done without explanation or 

rationale) comprised 5.9% of the total sample and 8.1% of students were 

unresponsive to this item.   
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As with student perceptions of the use of peer review in the classroom, these 

open-ended responses were coded and transformed into an item that asked students 

to “select the top three reasons why you believe scientists use peer review.”  When 

this item was administered in the Spring of 2007, the results were similar to the 

open-ended responses.  Receiving feedback/perspective from others and having 

one’s work evaluated/validated were the most common concrete reasons students 

selected for why scientists use peer review (Table 5.3). 

 

Table 5.3. Top Three Reasons Why Students Believe Scientists use Peer Review 

Reason 
BIOL101 
(n = 187) 

BIOL102 
(n = 371) 

Combined 
(n = 558) 

To receive feedback for new opinions, 
perspectives, and insights.   

82.4% 77.9% 79.4% 

To allow others to evaluate the accuracy of 
their work. 

74.3% 75.7% 75.2% 

To allow others to evaluate the credibility of 
their work. 

62.6% 70.1% 67.6% 

To improve the quality of their writing. 32.1% 27.0% 28.7% 

To correct mistakes in their writing. 28.3% 21.8% 24.0% 

To allow others to try to replicate their results. 13.9% 14.0% 12.9% 

As a requirement for publication.  5.9% 12.4% 11.3% 
Other 0.0% 0.8% 0.5% 
Note.  Students were asked to select their top three choices, so percentages do not sum to 100%.  

Sample size is the number of students who submitted responses to this query in Spring 2007.  

 

Comparisons between the classroom and the scientific community 

 Interestingly, students often attributed the same values to peer review in the 

scientific community as in the classroom.   

I believe real scientists use peer review for many of the same reasons 

that our lab class did, but on a deeper level. Scientists probably have 

other scientists review their work, not just for grammar and content, but 

perhaps another scientist has more current/updated information that 

could be added. Regardless, it is a good way for peers in their own field 

of work to critique reports. 
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Real scientists use peer review because of many reasons. Other scientists 

might know more facts or details about another scientist's paper. Some 

may know how to rephrase paragraphs for better understanding. Some 

may know a lot about the subject of the paper and be able to help critic 

it. There are many reasons why real scientists use peer review for their 

work, but the most definite answer is to make their papers better. 

When compared across similar venues (open-ended responses or quantitative 

Survey items), students often perceived the functions and values of peer review to be 

similar in the classroom and for practicing scientists (Table 5.4).   

Table 5.4 Comparison of Students’ Perceptions of the Functions of Peer Review in 

the Classroom and in the Scientific Community 

Function Open-ended responses  
Fall 2006 (n = 444) 

Select the Top 3 Items  
Spring 2007 (n = 558) 

 classroom scientific classroom scientific 
To gain feedback (perspective/ 

insights) from peers to 
improve the quality of work 

42.6 42.3 77.1 79.4 

To allow public evaluation/ 
critique of the quality of 
scientific work 

 22.5 63.61 75.2 / 67.62 

To learn peer review as a 
valuable future skill 

19.6 n/a 76.5 n/a 

To improve the quality of 
written communication. 

11.9 11.7 38.2 28.7 / 24.0 

To correct grammatical or 
similar mistakes in the 
writing 

  11.1 24.0 

To improve own work by 
giving feedback or to 
improve own editing skills 

12.0  n/a n/a 

Issues specific to only one 
context 

3.6 8.2 32.2  

Other/no response 10.3 14.0 0.7 0.5 
Note.  Samples sizes are the number of respondents.  Numbers are the percentages of respondents 

who expressed this opinion.  Note “select top 3” items sum to 300% rather than 100% as students 

selected 3 choices.  Some categories in the open-ended responses were collapsed for clarity and better 

correspondence with quantitative Survey items.  1This item focused on students “learning how to 

critique scientific work” rather than the act of actually critiquing it.  2The first number refers to 
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evaluation of the accuracy of scientific work and the second to the evaluation of the credibility of 

scientific work. 

 

Students viewed peer review as improving the quality of a person’s work, 

whether a laboratory report or a publishable manuscript as well as simply improving 

the quality of a person’s writing.  Students believed that scientists benefit from the 

perspectives of others just as they reported that they themselves benefited.  They also 

viewed peer review as serving an important function of quality control in the 

scientific community and viewed the classroom peer review process as teaching the 

same evaluative skills as used by practicing scientists.   

Differences existed in that some students cited the act of giving feedback as 

improving their own work through reflection, but this concept was not mentioned for 

scientists at large.    

It should be noted that the frequencies of the open-ended responses should not 

be construed as a definitive basis for comparison (and thus no comparative statistics 

were performed).  Many student responses contained multiple concepts and many 

students likely held conceptions that they simply did not articulate in response to the 

single query item.  Responses were categorized by the primary thrust of the 

comment even if other concepts were mentioned.  So the existence of a body of 

comments on a topic should be taken as evidence that it is important enough to a 

notable number of students for them to mention it, but it should not be assumed that 

the concept was absent in an inverse proportion of students.  Evidence of this 

multiple views per student can be found in the differing proportions that exist when 

students were asked to discuss just the primary reason (open-ended query) for peer 

review vs. when they were asked to select the top three functions (quantitative 

Survey item). For example, “to increase comprehension of the laboratory 

assignment” was the reason given only 3.6% of the time in open-ended responses, 

but selected as a top three reason 32.2% of the time in the quantitative Survey items 

(Table 5.2). 

 

Summary of results for Study 10: Students’ perceptions of the role of peer review in 

the scientific community 

Students largely believed that peer review provided many of the same 

benefits to practicing scientists as it did to them.   Students reported they believed 
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that scientists use peer review to improve the quality of their work as reviewers help 

them to find conceptual and factual mistakes, share insights and provide new 

perspectives.  They also responded that a major function of peer review was to 

ensure the accuracy and credibility of research findings; that peer review functioned 

as a gate keeper for quality assurance.  Lastly, small percentages of students believed 

that functions of peer review included improving quality and readability of 

scientists’ writing, to stimulate others to research in the same area and as a plainly 

pragmatic requirement for publication.   

A major finding of the previous study was that students found peer review to 

be equally beneficial to the reviewer as the writer reporting that the act of evaluating 

someone else’s paper caused beneficial self-reflection and self-evaluation.  

Surprisingly, this major benefit of peer review was absent from students’ perceptions 

of the role of peer review in the practicing scientific community.  Students appeared 

to view themselves as being on a learning curve and cited peer review as an 

opportunity to improve their critical thinking skills.  Perhaps because of this 

perspective, they assumed that practicing scientists have already culminated in the 

development of their critical thinking skills and no such corresponding cognitive 

stimulation of the reviewer would occur. 

 

Summary of students’ perceptions of peer review 

 Students reported that peer review was beneficial in the classroom both for 

the immediate benefit of improving their lab reports as well for helping them to 

improve their critical thinking, research and writing skills more broadly.  They found 

both the processes of giving and receiving feedback to be educative and reported that 

this experience of peer review would benefit them in future classes as well.   

Students also believed that peer review was a valuable process in the scientific 

community and helped to maintain the integrity of the scientific process.  They 

reported that engaging in peer review in these classes would help further their 

development as scientific researchers.  
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

Summary of the study context and problem statement 

 Engagement in authentic scientific practices such as scientific reasoning and 

scientific writing are common goals for science curricula, particularly in higher 

education.  The curriculum goals for the Department of Biological Sciences at the 

University of South Carolina detail these and other desired skills to be developed in 

biology major students (see Appendix 1).   Departmental curriculum review 

indicated, however, that students had insufficient opportunities to develop these 

skills to the desired levels necessitating some form of curriculum reform.  A rich and 

varied literature exists detailing the benefits of engaging students in authentic 

scientific research as part of their coursework and the necessity of providing 

individualised formative feedback in order for meaningful learning to occur.   Such 

instructional methods can be challenging to enact however in large courses at 

research-active universities given the limited time available to accomplish the 

multiple missions of external funding, research, publication and teaching.   Thus, this 

research investigated peer review as a potential mechanism for accomplishing both 

goals simultaneously without undue burden on the instructor.  Peer review is a 

required competency of practicing scientists, as well as a potential means of 

increasing student learning, reasoning and writing skills. 

 This chapter provides a brief review of the theoretical support for peer review 

as a pedagogy generated in Chapter 2 as well as the results reported in Chapters 4 

and 5.  The findings are discussed in each subsection.  The chapter concludes with an 

overall summary and compilation of recommendations for how to best implement 

peer review and provide the greatest opportunities for student growth. 

Results of literature review and significance of the study 

Past educational research literature and the current social climate within the 

scientific community suggest that the use of peer review to develop students’ 

scientific reasoning skills may simultaneously overcome the challenges of limited 

time but desire for substantial development of reasoning skills. A few studies have 

demonstrated peer review to be an effective pedagogical strategy for learning science 
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content (Birk & Kurtz, 1999; Crouch & Mazur, 2001; Pelaez, 2002).   More 

importantly, while no direct investigation of the effect of peer review on scientific 

reasoning has been made, peer review contains many elements demonstrated to be 

effective pedagogical strategies for development of such skills: peer-peer 

collaboration (Committee on Undergraduate Biology Education, 2003; Crouch & 

Mazur, 2001; Schwartz, Lederman, & Crawford, 2004), sustained practice (Ericsson 

and Charness, 1994), formative feedback (Schunn and Anderson 1999) particularly 

in higher education (Yorke, 2003), multiple contrasting examples (Bransford, Brown 

et al. 2000), and extensive writing (Connally & Vilardi, 1989; Hand, Hohenshell, & 

Prain, 2004; Keys, 1999).  Meta-analyses have further concluded that all these 

strategies notably improve student achievement, especially in combination 

(Schroeder, Scott, Tolson, Huang, & Lee, 2007).   

Peer review may also accelerate the development of scientific reasoning and 

writing compared to other methods due to the self-reflection and self-evaluation it 

causes as awareness of one’s own learning process has been shown to improve 

learning (Duit & Confrey, 1996; Posner, Strike, Hewson, & Gertzog, 1982; Zohar, 

1996).   Further, peer review also provides a several-fold increase in the number of 

opportunities students have to practice evaluative skills while providing three times 

the formative feedback.  These increases in time-on-task and formative feedback are 

further accelerants for the development of scientific reasoning skills (Ericsson and 

Charness 1994).   Peer review, while little studied in the classroom, therefore shows 

great promise as a highly effective pedagogical strategy for improving student 

scientific reasoning skills.  Investigation of its impacts will thereby provide useful 

and novel findings as well as hopefully stimulate innovation in higher education. 

Summary of the components of the study 

 The focus of this study was to evaluate the effectiveness of peer review as a 

mechanism for accelerating students’ scientific reasoning and writing abilities 

without significantly increasing the time burden on faculty.  In addition, the tools 

and data sources developed for this study also provided longitudinal and cross-

sectional windows into the effectiveness of the biology curriculum over the course of 

students’ undergraduate careers.  The effect of peer review on scientific reasoning 

was assessed using three major data sources: student performance on written lab 
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reports, student performance on a Scientific Reasoning Test (Lawson, 1978; Lawson 

et al., 2000) and a Survey of student perceptions of the roles of peer review in the 

classroom and the practicing scientific community.  Measuring the development of 

students’ scientific reasoning skills is challenging.  As scientific reasoning develops 

over at least a period of several years, measurement tools independent of assignment 

and course are necessary to track students’ longitudinal progress.  No suitable metric 

was found in the research literature so an instrument was developed (Universal 

Rubric for Laboratory Reports).   

Review of published research evaluating scientific reasoning in students 

yielded support for most of the 15 criteria comprising the Universal Rubric (refer to 

Table 2.1 for details) with the remaining criteria receiving support from professional 

peer review priorities.   Four criteria had support from both published rubrics or lists 

of criteria as well as professional peer review (Introduction provides appropriate 

context, Experimental Design, Primary Literature and Writing Quality).  Several 

criteria were explicitly mentioned in science education heuristics, but not in 

professional peer review (Hypotheses are Testable, Hypotheses have Scientific merit, 

Data selection and presentation, Statistics accurate and appropriate, Conclusions 

based on data, Limitations appropriately discussed). In addition, review of research 

on professional peer review indicated that the criteria of significance and 

methodology were consensus priorities (refer to Table 2.2).  It should be noted that 

the professional peer review criteria cited here are not a comprehensive 

representation of the values held by professional referees, but merely the relevant 

common threads across multiple journals.  Marsh and Ball (1989) determined 21 

different criteria to have been employed by the professional referees in their study (n 

= 415 reviewers), but found that variation in referees recommendations as to whether 

a manuscript should be published or not converged on just four of those 21 criteria 

(significance, appropriate to journal’s readership base, quality of methodology and 

writing quality) two of were relevant for undergraduate laboratory reports 

(significance and methodology). The criteria developed for the Universal Rubric for 

Laboratory Reports thus are supported by research in the field of science education 

and the scientific community at large.  The Universal Rubric for Laboratory Reports 

was reliability tested using biology graduate students as raters and three separate 

course assignments. An overview of the research design and the relationships among 

data sources are provided in a reproduction of Figure 1.2 and Table 6.1. 



 

 

 

 
 

Achievement Data 

 

   Undergraduate Peer Review 

 
 

Prerequisites and 
Assumptions 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

 

Perceptional Data 
 

 

 

Reproduction of Figure 1.2.  Overview of research questions and relationships between studies. 

Study 1. Consistency and 
effectiveness of undergraduate 
peer reviewers 

Study 2: Reliability of the 
Universal Rubric as a metric for 
determining laboratory report 
quality in this population 

Study 4: Student achievement 
of scientific reasoning skills in 
written laboratory reports  
(cross-sectional sample) 

Study 5: Student achievement of 
scientific reasoning skills in laboratory 
reports (longitudinal sample) 
 

Study 7: Relationship 
between Scientific 
Reasoning Test scores and 
peer review experience 

Study 8: Graduate teaching 
assistants’ perceptions of the 
utility of the Universal Rubric  

Study 6: Reliability of 
scores given by graduate 
teaching assistants under 
natural conditions 

Study 10: Undergraduate 
perceptions of the role of peer 
review in the scientific community 

Study 9: Undergraduate 
perceptions of the peer review 
process in the classroom 

Study 3: Reliability of the 
Scientific Reasoning Test in 
this undergraduate biology 
population 
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Table 6.1.  Brief Summary of Data Sources and Methodological Details for Each Study. 

Study BIOL Course, term Data type Sample size 

1:  Consistency and effectiveness of 
undergraduate peer reviewers 

102, Fall 2004 
Number of students who complete peer review process 
Time per review, numerical ratings of draft papers 
Changes to laboratory reports as a result of peer review 

n = 308 students 
n = 335 reviews of 119 papers 

n = 22 students’ draft and final papers 

2: Reliability of the Universal Rubric 
as a metric for determining laboratory 

report quality in this population 

101, Fall 2004 
102, Fall 2004 
301, Fall 2005 

Laboratory reports scored by 3 trained raters for each course (n 
= 9 raters total).  Raters were biology graduate teaching 
assistants who received 5 hours of training as part of the study. 

101 n = 49 papers (genetics) 
102 n = 45 papers (evolution) 
301 n = 48 papers (ecology) 

3: Reliability of Scientific Reasoning 
Test (SRT) in this population 

Fall 2005: 101, 102, 
301L, 302L and 530, 

Spring 2005: 102 

Fall 2005 courses: SRT scores from enrolled biology majors  
Spring 2005: SRT scores from all students enrolled 

Fall 2005 n = 548 students 
Spring 2005 n = 303 students 

4: Student scientific reasoning skills in 
laboratory reports (cross-sectional) Same as Study 2 

Same as Study 2 using the average of the trained rater scores per 
student 

Same as Study 2 

5: Student scientific reasoning skills in 
laboratory reports (longitudinal) 101, 102 and 301L, 

Fall 2004 to Spring 
2007 

Laboratory reports from various terms to form longitudinal 
portfolios for individual students. Includes papers from Study 2 
where possible (using the average of the trained rater scores). 
Papers from additional terms scored by an independent rater. 

n = 17 students 

6: Reliability of graduate teaching 
assistants under natural conditions Same as Study 2 

Same papers as Study 2 using similar natural raters not 
explicitly trained as part of this investigation (n = 8 raters total) 

Same as Study 2 

7: Relationship between SRT scores 
and peer review experience 

Fall 2005 sample 
from Study 3 

Students who reported the their previous peer review 
experiences and who had not failed the class in a previous 
semester 

Subset of Study 3 Fall 2005 data 
n = 389 students 

8: Graduate teaching assistants’ 
perceptions of the Universal Rubric n/a Trained raters (biology graduate students) from Study 2 n = 9 raters 

9: Student perceptions of the peer 
review process in the classroom 

101 Fall 06 and 
Spring 07; 102 Spring 

2007 

All enrolled students who responded to anonymous online 
survey offered near the end of each semester 

n = 1026 students 

10: Student perceptions of peer review 
in the scientific community 

Same as Study 9 Same as Study 9 Same as Study 9 
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Summary of results of each study and discussion 

 This section contains a brief recapitulation of the major findings from each 

study reported in Chapters 4 and 5 followed by a discussion of the implications of 

these results.   Corresponding recommendations for how peer review could best be 

implemented at other institutions are provided. 

 

Consistency and effectiveness of undergraduate peer reviewers (Study 1) 

Past studies have reported student concerns regarding the ability of peers to 

provide productive feedback (Hanrahan and Isaacs 2001).  The results of this study 

and others indicate that those concerns are unfounded.   Investigation of introductory 

biology students’ peer review experiences demonstrated that they were capable of 

engaging in peer review, produced useful feedback for their peers and that the 

process was a reasonable time commitment for an introductory level course 

assignment (average of 32.4 + 14.3 minutes per review including time to read the 

paper).  Peer reviewers were reasonably consistent (average standard deviation in 

scores among reviewers of a single paper equivalent to 15% of the total score) and to 

provided an average of 3.7 + 2.6 pieces of useful feedback per review.  Each student 

was thus provided with an average of ten useful pieces of feedback across the three 

reviewers.  Peer feedback was identified as useful both by an external rater and 

because it produced increases in laboratory report quality.   Therefore, even 

freshman were productive peer reviewers and instructors should not let concerns 

about ability deter themselves or their students from peer review.  It should be noted 

that there is room for improvement however, in that peers may learn to provide a 

greater number of useful comments per as they gain experience. 

Similarly, Cho, Schunn and Charney (2006) found that their undergraduate 

peer reviewers produced an average of  approximately 3 directive  (i.e. useful) idea 

units per writer.  Their students possessed an average of 3.4 years of college however 

compared with introductory biology students who were three-quarters freshman.  It 

therefore appears that this rate of helpful comments is indicative of beginning peer 

reviewers rather than academic age.  Again, the effectiveness of peer reviewers is 

therefore likely to increase as students gain experience.  Additionally, Cho and 

colleagues demonstrated that when students were blinded to the source of feedback, 

they rated peer feedback as equally helpful compared to instructor feedback (no 
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significant difference based on expertise source ANOVA F (1, 45) = .86, p  = 0.36) 

or criterion (F (2, 90) = .97, p = .38), and no interaction between expertise source 

and criterion score, F (2, 90) = .69, p = .51) (Cho, Schunn et al. 2006).  Thus, 

students’ concern that peers are not effective reviewers appears to be unfounded.  

The final determinant of the usefulness of peer feedback is its effect on student 

writing however. 

Qualitative investigation of a subset of students (n=22 writers) indicated that 

when writers incorporated peer feedback into their final laboratory reports on 

evolution those reports improved in quality.  For each individual piece of peer 

feedback incorporated, final paper score increased by three percent (3%).  The 

average overall gain in score as a result of peer feedback was 28% of the points 

earned on the rough draft.   Peer feedback primarily caused gains in both scientific 

reasoning (here the consideration of alternative explanations) and content knowledge 

regarding the mechanisms of evolution.  As these results were generated by peer 

reviewers in introductory biology (mostly freshman), it is plausible therefore that 

both students’ capabilities as reviewers and the benefits of peer feedback would 

improve with greater peer review experience. 

 

Reliability of the Universal Rubric for determining laboratory report quality in this 

population (Study 2) 

A Universal Rubric for Lab Reports was developed for the purpose of 

assessing student abilities over time and across multiple biology courses, though it 

may also have utility in other scientific disciplines.  The rubric has 15 criteria 

organized around the standard format of scientific papers.  The reliability of the 

rubric as a measurement tool was assessed using generalizability analysis (g) and 

three unique raters for each of three separate assignments generated in three distinct 

biology courses.  Total scores generated by the rubric each had a reliability score of 

g = 0.85 in these three independent tests (n = 45 to 49 student papers per test, see 

Table 4.2) indicating that 85% of the variation in scores was due to variation in the 

quality of student papers and only 15% of the variation was due to rater error or 

interaction factors.    Thus, as reliability did not vary based on assignment, the 

Rubric appeared to be independent of biological subject area as well as a reliable 

overall measure of student scientific reasoning abilities as defined by the Rubric 

criteria. 
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The reliability of individual criteria varied from g = 0.16 to 0.94, though not in 

any predictable pattern by subject matter.   It is therefore recommended that 

instructors include multiple criteria per assignment and not heavily weight any single 

criterion score.  As indicated above, total scores using multiple criteria were 

uniformly reliable however at the g = 0.85 level.  The variation in the reliability of 

some individual criteria did appear to be based however on the degree to which those 

tasks were included in the assignment.   For example, the use of methodological 

controls or the reporting of methodology at all, the discussion of the limitations of 

the research, or the use of statistics all appeared to require explicit delineation in the 

assignment or else student performance was absent to notably low.  In contrast, one 

criterion appeared to be innate (e.g. that hypotheses must have scientific merit) in that 

reliable scores were produced for this criterion across all three courses even though 

that criterion was absent from all three assignments.   

This variation in performance by rubric criterion may suggest variation in the 

ease with which students acquire various scientific process and reasoning skills.  

Some skills may be easier for students to learn and some criteria  (such as hypotheses 

must have scientific merit) appear to be obvious to students while other skills such as 

the inclusion of controls in experimental design, the use of statistics and 

consideration of limitations of the research appear to require more explicit and 

focused instruction.  It is recommended that instructors identify the curricular goals 

of interest and the criteria by which they will measure student performance prior to 

the development of the assignment and that all performance criteria of interest to the 

instructor be explicitly included in the written assignment provided to students.  

Further, how well instructional supports align with curriculum goals must be 

considered as a context for interpreting student performance scores.  In other words, 

if assignments do not ask students to perform various scientific skills, students are 

neither likely to develop those skills over time nor score well on those criteria when 

assessed at the end of their program.  These findings further suggest that 

communication and coordination among faculty to ensure that curriculum goals are 

included in course assignments and that expectations for student performance 

increase at appropriate junctures would make a notable difference in student 

performance and the achievement of departmental curriculum goals.  Thus, student 

achievement trends, the details of assignments within courses and programmatic 

curricular assessment were more closely linked than previously appreciated. 
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Student achievement of scientific reasoning skills in laboratory reports as a result of 

peer review: Cross-sectional (Study 4) and Longitudinal views (Study 5)  

Cross-sectional student performance on written lab reports across multiple 

biology courses was assessed using the Universal Rubric for Lab Reports.  Student 

performance varied by criterion type and assignment emphases as described above.  

Performance was higher when assignments focused on peers providing substantive 

and useful feedback, when reviewers were held accountable for the quality of their 

feedback and when assignments were more closely aligned with the Rubric criteria.  

Further, performance declined significantly when peer review did not occur, even 

though the students in the non-peer review class (BIOL 301L Fall 2005) had greater 

academic experience (91 vs. < 30 credit hours on average) and higher grade point 

averages (3.14 vs. 2.71 USC GPA).  The distinction among student performance in 

these different classes was significant for 12 of the 15 criteria (ANOVA p < 0.001, 

n= 142 students total) with introductory biology laboratory reports which had 

undergone peer review consistently outscoring those collected from a sophomore 

level (301) course.  Thus, peer review elevated the quality of introductory biology 

laboratory reports to a greater degree than did several years of academic experience 

(refer to Figure 4.3 for more detail).  

Longitudinal views using portfolios of individual student performance over 

time show no significant trend in total score (n = 17 students).  In-depth-analysis 

indicated highly variable trajectories in student performance suggesting that 

seventeen students were an insufficient sample for making definitive conclusions 

regarding longitudinal performance. 

 

Reliability of scores given by graduate teaching assistants under natural conditions 

(Study 6) 

Raters who participated in the reliability study were biology graduate 

teaching assistants who had received five hours of explicit training on how to use the 

Universal Rubric for Lab Reports.  A second parallel test was conducted using the 

same student papers but a different set of natural science graduate teaching assistants 

who did not receive the five hours training as part of the reliability study.    It should 

be noted that as part of the development process for the Rubric, its criteria were 

piloted in introductory biology courses for some number of semesters prior to the 

reliability study.  Thus, all raters had some experience with the rubric as they had all 
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taught at least one semester in introductory biology at some point in the past, but the 

natural raters lacked the explicit 5 hrs of training on the rubric immediately prior to 

scoring.  These natural raters were provided with the same level of support that 

teaching assistants typically receive when teaching laboratory sections.  To the 

author’s knowledge, no other rigorous, controlled evaluation of the grading 

consistency of graduate teaching assistants has ever been made, despite their 

ubiquity as instructors in higher education.   

Natural raters (e.g. teaching assistants) were slightly less consistent than 

raters who had received five hours of training (total score reliability of g = 0.76 to 

0.80 for groups of three natural raters compared to g = 0.85 for comparable groups of 

three trained raters), but their reliability scores were still well within or above 

reliabilities found in the published literature for comparable rubrics (see Table 4.3).   

Five hours of training did noticeably reduce the variation in reliability as well as 

elevate reliability scores across individual criteria (see Figure 4.8) so it is 

recommended that graduate students receive at least one explicit training session on 

scoring laboratory reports.   It is unlikely that most educational institutions will be 

able to provide three raters per student paper however.  The corresponding expected 

reliability of a single graduate teaching assistant in this situation was calculated to be 

g = 0.65 to 0.66 across the three courses investigated.  This means that the majority 

(65-66%) of the variation in student scores would be attributable to variations in the 

quality of student work.  This result compares favourably with published reliabilities 

of trained raters (refer again to Table 4.3 for greater detail) and notably exceeds the 

reliability of graduate teaching assistants reported by Kelly and Takao (2002).  Thus, 

while ideally 100% of the variation in grades assigned to students would be due to 

variation in the quality of student work, this result is not achievable even in a 

research setting with multiple raters.  Thus, it is strongly advocated that pedagogical 

support the provided to graduate teaching assistants in this program be continued as 

the existing use of rubrics has produced a level of reliability akin to that produced in 

research settings.  

Natural teaching assistants were twice as lenient as trained raters however 

producing average total scores nearly twice as high (20.8 + 5.0 points per paper 

compared to 11.7 + 2.0 for trained raters (refer to Table 4.14).  This leniency 

appeared to originate in the disparate expectations of grading vs. scoring.  Natural 

teaching assistants were likely thinking from a grading perspective rather than a 
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scoring perspective.  When grading, expectations of student performance are scaled 

to a relative level appropriate for the course.  In contrast, the trained raters were 

using an absolute scale for which novice students tend to score in the bottom 30%.    

This discrepancy is therefore appropriate.  The rubric thus appears to improve 

consistency in both scoring and grading by teaching assistants and is recommended 

for both pedagogical and research use in biological classes.   It should be noted 

however, that this comparison demonstrates that grades are not an appropriate proxy 

for longitudinal scores.  Grades are scaled relative to individual course expectations 

whereas scores must be assigned on an absolute scale in order to note progress over 

time.   

The departmental policy of requiring graduate students to begin their 

teaching experience in the introductory biology course with pedagogical support and 

rubric-based assignments appears to have notably elevated the performance of 

biology teaching assistants.  Namely, departmental teaching assistants produced 

reliability scores comparable to those published in the literature using trained raters 

and well above those published for professional peer review (compare 3 rater g  = 

0.76 to 0.85 to Table 4.3).   The only other comparable assessment indicated no 

correlation among the scores generated by teaching assistants or between teaching 

assistants and/or the instructors and/or trained raters (Kelly and Takao 2002).  

Specifically, Kelly and Takao (2002) compared the scores given by three graduate 

teaching assistants grading oceanography laboratory reports using a rubric and found 

significant differences among the total scores given by each teaching assistant 

(ANOVA, F ratio = 4.6;  p < 0.022).  There was also little correspondence in relative 

rankings when total scores given by the graduate teaching assistants, the faculty 

instructor for the course and two trained raters were compared (Kelly and Takao 

2002).   The two trained raters were highly correlated with each other (r = 0.80), but 

no correspondence existed between their relative rankings of merit and those of the 

instructor or graduate teaching assistants (Kelly and Takao 2002).  The comparably 

high level of reliability produced by our graduate teaching assistants, regardless of 

training, was therefore quite notable.   

As this benchmark study took place in a comparably sized university with a 

high quality graduate program (University of California Santa Barbara), this author 

suggests that the difference in reliability between these two populations of graduate 

teaching assistants was likely due to the embedded training provided in the 
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Introductory Biology courses at the University of South Carolina.  All biology 

graduate teaching assist assistants at USC are first assigned to teach in Introductory 

Biology as their first teaching experience.   Therefore, all raters used in these studies 

had past generalized training and experience in the use of the Universal Rubric 

criteria as well as generalized pedagogical support focused on fairness and 

consistency when assigning grades.  Thus, this research suggests that the Universal 

Rubric, when combined with training on its use, improves consistency in scoring to a 

notable degree.  This research does not provide any information on the effect of the 

Rubric in the absence of training as even the natural raters had significant past 

experience with using this Rubric.  As five hours of training did produce visible 

improvements in reliability (Figure 4.8, Table 4.12), it is recommended that new 

adoptions of the Rubric begin with a similar training using exemplars and discussion 

of discrepancies in interpretation. 

 

Graduate teaching assistants perceptions of the usefulness of the Universal Rubric 

and the corresponding training on its use (Study 8) 

A brief exit survey was given to the nine biology graduate students who 

participated in the five-hour training on the Universal Rubric as part of Study 2.  

They reported that the Rubric facilitated scoring by clarifying expectations and 

benchmarks for the different performance levels.  Graduate students recommended 

that training on the use of the Universal Rubric should be provided to all teaching 

assistants in the biology department.  Graduate students suggested that any such 

training should include the use of exemplar papers followed by discussion of 

discrepant scores until all teaching assistants reach consensus as to how the criteria 

should be applied to student work.  

 

Reliability of the Scientific Reasoning Test (SRT) in this population (Study 3) and 

the relationship between performance on the SRT and the extent of students’ peer 

review experiences (Study 7) 

The Scientific Reasoning Test was found to be more reliable in this 

population (KR20 = 0.83 to 0.85) than was reported for other undergraduate biology 

populations whose reliability scores ranged from α = 0.55 (Lawson, Baker et al. 

1993) to KR20 = 0.79 (Lawson, Banks et al. 2007) (see Table 2.3 for more details).   
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Additionally, the group mean scores were all mid-range (5-6 points on a scale of 12) 

indicating that the SRT targeted an appropriate level of difficulty for this population. 

The Scientific Reasoning Test uses mostly non-biological contexts for its 

questions and scenarios.  As performance usually declines when students are asked 

to apply reasoning strategies learned in the classroom to new contexts (Zimmerman 

2000), the scientific reasoning strategies learned in the biology classroom were 

unlikely to be fully transferred to situations tested by the Scientific Reasoning Test.  

The SRT therefore serves as conservative measure of gains in student reasoning due 

to peer review experience.   

A cross-section of biology majors from five different courses (freshman to 

senior year, n = 389 students) was tested with the Scientific Reasoning Test as a 

means of distinguishing between the effect of peer review over multiple courses and 

the effect of increasing academic experiences (Study 7).  Student scores varied 

significantly when sorted by academic maturity (total credit hours) (ANOVA, p = 

0.011 n = 387).  When sorted by number of peer review experiences however, the 

average scores of students with no peer review, one or two experiences were more 

significantly different (p = 0.000) than when sorted by credit hours (details of 

ANOVA results in Tables 4.9 to 4.12).  Additionally, the largest gains among groups 

were found when students were categorized by peer review experiences than by 

credit hours.   The largest group average overall was produced by students with two 

peer review experiences (refer to Figures 4.5 to 4.7).  In sum, engaging in peer 

review in two different (freshman) courses produced a higher average score than did 

120 credit hours of collegiate coursework or 90 credit hours of coursework at this 

institution in particular.  Peer review thus seemed to accelerate the development of 

students’ scientific reasoning abilities. 

 

Student perceptions of peer review in the classroom (Study 9) 

 Lastly, student perceptions of peer review were assessed with an anonymous 

survey (n = 1,026 students).  Students were overwhelmingly positive about the use of 

peer review in the classroom with 83% on average reporting that it positively 

impacted their laboratory reports, editing, writing, critical thinking and research 

skills (Table 5.1) and these positive perceptions were consistent for different three 

introductory biology courses surveyed over two terms (Figure 5.1).  Notably, 86% 

students reported that that act of giving feedback was equally useful for improving 
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critical thinking skills as the act of receiving feedback.  Written comments indicated 

that the act of reviewing others’ work stimulated self-reflection, self-evaluation and 

an awareness of one’s own learning process.   

Students expressed some concern about the ability of peer to be effective 

reviewers though 80% reported that the feedback received was helpful and 69% 

reported it was satisfactory (see Table 5.1).  Only 5% of students admitted to giving 

poor quality feedback however indicating a disjunction in students’ perceptions.  To 

address this concern, instructors are urged to share the results of research on peer 

review with students.  Students see only the few papers they review and the few 

reviews they receive.   Providing them with research results will allow them a 

course-wide perspective that peers, especially in aggregate, are reliable and provide 

useful feedback (Study 1 reported here as well as Cho, Schunn, & Wilson, 2006).  

Notably, when students are blinded to the source of the feedback, they often perceive 

peer feedback as comparable in quality to that provided by instructors (Cho, Schunn 

et al. 2006).  Thus, the only concern consistently expressed by students engaging in 

peer review is repudiated by a course-wide perspective and corresponding research 

data.  If such data are provided to students, it is anticipated that student concerns 

would dissipate. 

 Further, as students gain experience with peer review, they maintain or 

increase their positive perspective (Figure 5.1).  The majority of respondents from 

the BIOL 102 sample reported that they had participated in peer review the previous 

semester (n = 303) and most (83%) reported that peer review was less difficult the 

second time and 64% said it was more useful.  Thus, this finding further supports the 

notion that repeated exposure to peer review may show accelerating benefits.  As 

they gain experience, students can focus more of their cognitive energy on the 

substance of the task rather than the procedural details.  This increased focus should 

facilitate the improvement that is likely to be seen in their evaluative skills that will 

correspondingly increase the quality of the feedback they provide. 

A few other studies exist which have captured students’ perceptions of the peer 

review process and they generally agree with the findings reported above.  Stefani 

(1994) reported that 100% of first year undergraduates said that peer review of 

biochemistry laboratory reports made them “think more” and 85% said it made them 

“learn more” (n = 120 students) but provided no further information as to how or 

why peer review caused these changes.  Hanrahan and Issacs (2001, p. 57) surveyed 
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233 third year university students with a single open-ended query “give the pros and 

cons of peer review and self-assessment.”  Their students reported the following 

similar results: peer review was productive, improved their papers, and helped to 

develop critical thinking skills.  In addition, Hanrahan and Issacs’ (2001) students 

found the process time-consuming and desired higher quality feedback from their 

peers.  In contrast to our results, their students felt empathy for the time instructors 

spent grading papers and found the exposure of their work to their peers to be 

motivating.   It is unclear if their peer review process was anonymous which might 

have been the difference that caused this increased motivation.  Hanrahan and Issacs 

(2001) do not provide any data on how prevalent each perception was in the student 

population, so it is unclear if the benefits and challenges they report were 

experienced by many or a few students. 

Thus, this work enriched this field of knowledge in four ways.  Firstly, it 

surveyed student perceptions of peer review from a larger sample size than the 

largest published study to date on (four times that of Hanrahan and Issacs).  

Secondly, this work contributed some much needed detail on the mechanisms by 

which students believed peer review benefited them.   Thirdly, these data determined 

that the majority of the student population believed peer review was beneficial and 

negative experiences were in the minority.  Fourthly, this work provides information 

on the effect of multiple peer review experiences which has not been previously 

discussed in the literature at all. 

 

Student perceptions of the role of peer review in the scientific community (Study 10) 

Students also made connections between the use of peer review in the 

classroom and its role in the scientific community.  Students believed scientists 

experienced many of the same benefits from peer review that they themselves did.  

They were cognizant of the quality control role that peer review plays in maintaining 

the integrity of scientific work thereby indicating an awareness of the process that 

distinguishes scholarly publications from popular literature.  Students also 

characterized reviewing as a valuable scientific skill they wished to acquire in their 

development as scientists.  Students thus perceived peer review as an effective 

pedagogical strategy for improving scientific reasoning and writing skills in the 

classroom as well as a valuable scientific skill in and of itself. 
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Summary of conclusions 

These finding suggest that peer review was effective for improving students’ 

scientific reasoning skills and scientific writing.  Repeated experience with peer 

review accelerated gains in scientific reasoning beyond that achieved by academic 

maturity alone.  Students were effective and capable reviewers from the introductory 

level onwards dispelling concerns that peer review is too challenging for freshman.  

Use of peer feedback alone improved student laboratory reports indicating that 

student writing can be improved in the absence of time-intensive instructor feedback.  

These findings do not suggest that there is no need for instructor feedback, merely 

that student feedback is also productive and should be used to increase the overall 

amount of formative feedback provided to students.   

Laboratory reports were further determined to be a rich source of data on 

student progress over time.  The Universal Rubric for Laboratory Reports was 

demonstrated to be a reliable common metric.  Application of the Rubric to multiple 

course assignments highlighted gaps and mis-alignments between assignment 

expectations, desired student performance and curriculum goals.   When graduate 

student teaching assistants were provided training on the use of the Rubric in 

teaching and grading, the reliability of scores assigned to student work were 

comparable to those for published research in the science education field and above 

those produced by professional peer review.  Graduate teaching assistants 

recommended that training on the Rubric be provided to all incoming biology 

graduate students.   

Undergraduate students perceived peer review as a worthwhile activity. They 

believed peer review improved their writing and critical thinking skills and they 

perceived it as a valuable future skill they would need in their development as 

scientists.  To assist the reader, the results of this study are summarized in Table 6.2 

and recommendations for improving classroom enactment follow in Table 6.3.  
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Table 6.2.  Summary of Research Findings From This Study 

• Undergraduates (even freshman) were effective and consistent peer reviewers whose 
feedback produced meaningful improvements in final paper quality. 

• Peer review increased scientific reasoning and writing skills to a greater degree than did 
academic maturity.  Specifically, freshman laboratory reports which underwent peer 
review scored higher on 12 of 15 criteria than laboratory reports written by students with 
an average of 91 credit hours and higher GPAs which were not peer reviewed. 

• Greater incorporation of rubric criteria into assignments improved student performance.  
Some criteria required explicit inclusion in the assignment instructions or students did 
not address them at all (e.g. use of controls in experimental design, use of statistics, use 
of primary literature) while one criterion (e.g. that hypotheses needed to have scientific 
merit) was addressed whether or not it was mentioned in the assignment.  

• The reliability of the Universal Rubric for Laboratory Reports was notable (g = 0.85) and 
independent of biological subject matter in the three courses tested. 

•  Scores generated by trained or natural biology graduate teaching assistants using the 
Rubric were as reliable as those reported in science education research literature.  It 
should be noted that even the natural raters in this study had at least a full semester of 
pedagogical training in introductory biology that included exposure to the Rubric. 

• A few hours of explicit training on the use of the rubric did slightly improve the 
consistency of graduate teaching assistants over natural conditions.   

• Graduate students who received a few hours of explicit training on the use of the Rubric 
recommended that such training be provided to all teaching assistants. 

• Application of a Universal Rubric to assignments in multiple courses detected mis-
alignments and gaps between curricular goals, course assignments, Rubric criteria which 
affected student performance in those areas. 

• Undergraduates were positive about peer review and reported that it benefited them in 
multiple ways (writing, reasoning, thinking, researching).   

• Undergraduates perceived peer review as a valuable stand-alone skill and a natural part 
of their development as scientists. 

 

University science departments are thus encouraged to incorporate peer 

review as an effective pedagogical strategy for improving student scientific 

reasoning and science writing.  The incorporation of peer review is particularly 

recommended whenever instructor time is too limited for students to receive 

feedback on their writing.  Peer review should also be incorporated however even in 

situations where instructors have sufficient time to provide extensive written 

formative feedback because the quadrupling of practice time that students spend 

engaged in evaluation and self-reflection is valuable and does not occur when 
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students only receive instructor feedback. The characteristics of the peer review 

process do alter its effectiveness however.  When incorporating peer review, 

instructors should observe the following recommendations. 

Study limitations and recommendations 

 This research occurred at an institution that had incorporated peer review for 

several years prior to the collection of data and that experience likely strengthened 

these findings.  Namely, initial incorporation of peer review or the Rubric might not 

produce gains as large as those reported here.  Instructor experience (both faculty 

and graduate students) in how to best implement and present the peer review process 

is expected to affect the impact of peer review.   Specifically, degree of experience 

with peer review and the Rubric are anticipated to have the greatest impacts in three 

areas: 1) reliability of graduate student scores, 2) impact of peer feedback on writing 

and 3) student perceptions of and satisfaction with peer review as a pedagogy.   To 

improve the reliability of the scores produced by the Rubric as rapidly as possible, it 

is recommended that instructors score exemplars and discuss how they will interpret 

and apply the Rubric criteria to student work.  The process of building consensus on 

a few example papers is believed to significantly expedite the instructor’s 

development as consistent scorers.  To increase the impact of peer feedback, 

instructors are encouraged to design assignments so reviewers are accountable for 

the quality of the feedback they provide as well as provide them with instructional 

supports on what makes feedback useful (directive, constructive suggestions for 

change, not praise or criticism based).  The best way to improve student perceptions 

of the value of peer review is to directly and frequently discuss the rationale for 

incorporating peer review into coursework as well as its role in the scientific 

community. 

Additionally, instructors and program evaluators are cautioned to view the 

Universal Rubric as a tool rather than an answer.  Post-hoc application of the Rubric 

is likely to be unproductive.  There must be intentional and conscious alignment 

between curriculum goals, course design, assignment details and Rubric criteria in 

order for students to reasonably develop the desired skills over time and for 

laboratory report scores to consequently show meaningful improvement.  Without 

such intentional coordination, the Rubric scores will mostly return information on 
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mis-alignments among these factors.  Within a course, instructors are specifically 

encouraged to select Rubric criteria that are directly relevant to their instructional 

goals prior to the development of the assignment.  Rubric criteria must be a natural 

fit for the assignment or the assignment must be designed to address those criteria.  

Instructional practices must also consistently valued and support those criteria (i.e. 

students need opportunities to practice the desired skills and instructors should role-

model effective scientific reasoning). 

 

Table 6.3.  Summary of Recommendations for Implementing Peer Review. 

• Be explicit in discussing with students the role of peer review in the scientific 
community as well as its benefits in the classroom. 

• Share research results with students demonstrating that peers are effective reviewers 
and that peers can provide useful feedback that improves paper quality if 
incorporated. 

• Design assignments to encourage students to provide high quality written feedback 
to each other.   Means of doing this include explicitly defining and discussing what 
comprises useful feedback and using accountability measures such as randomly 
checking review quality (such checks are much less time consuming that reading 
draft papers). 

• Design assignments so that assignment criteria and peer review criteria both align 
with instructional goals.  Ideally, instructional goals span multiple courses and 
expectations for student performance are consistently aligned and developed 
throughout those educational experiences. 

•  Use a rubric as a means of defining assignment criteria to students. Use of a rubric 
deepens student understanding of the intent of criteria and helps them to provide 
better feedback to peers.  

• Have relevant instructors build consensus on the interpretation of rubric criteria to 
facilitate scoring consistency within and across courses. 

• Try to borrow from rubrics developed by others, especially if they have been 
reliability tested in relevant contexts and contain criteria derived from the scientific 
community.  The Universal Rubric for Laboratory Reports is recommended when 
relevant to program or instructional goals. 

 

 Additionally, it should be noted that none of the measures used here provide 

a comprehensive examination of students’ scientific reasoning ability.  These 

measures are biased towards students who are effective at written communication 

and may miss examples of gains in reasoning skills for students who have difficulty 

translating their thinking onto paper.  As effective written communication is an 
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explicit goal of the studied curriculum however, this emphasis on writing is 

appropriate, but does cause these estimates of student ability to be conservative. 

 In sum, incorporation of peer review can cause significant gains in student 

scientific reasoning and writing abilities especially if enacted in the manner 

described above.  The primary criterion for producing an effective peer review 

process is to build the process using the same the motivations for peer review as exist 

in the scientific community: to produce useful formative feedback on the validity of 

one’s scientific work in order to elevate the quality of science.  This focus on 

improving the quality of students’ scientific thought and writing through authentic 

practice will concurrently improve students’ learning of science at the university 

level. 
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Appendix 9.  Single rater reliabilities for individual 

Universal Rubric criteria using trained raters 

 

 Course Overall 

 101 102 301 Ave 

Criteria                                        n = 49 45 48 142 

Introduction     

     Context .40 .62 .25 .42 

     Accuracy and relevance .40 .23 .38 .34 

Hypotheses     

     Testable .44 .44 .59 .49 

     Scientific Merit .52 .39 .41 .44 

Methods     

     Controls -1 .00 .00 .002 

     Experimental Design .08 .73 .31 .37 

Results     

     Data Selection .25 .27 .39 .30 

     Data Presentation .53 .47 .37 .46 

    Statistics2 .32 .01 .35 .23 

Discussion     

     Conclusions based on data .36 .33 .39 .36 

     Alternative explanations refuted .47 .29 .46 .41 

     Limitations .31 .63 .33 .42 

     Significance .30 .58 .56 .48 

Primary Literature .31 .66 .84 .60 

Writing Quality .20 .15 .45 .27 

Total Score .66 .66 .65 .66 

Note.  Sample sizes reflect the number of unique papers scored per course. 1The trained raters for 

BIOL 101 did not perceive the genetics assignment as providing a traditional control and chose as a 

group to not rate this criterion. 2See section on low criteria reliabilities for explanation.  

 
 


