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Effective Binaural Multi-Channel Processing
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Abstract—Binaural noise-reduction algorithms based on
multi-channel Wiener filter (MWF) are promising techniques
to be used in binaural assistive listening devices. The real-time
implementation of the existing binaural MWF methods, however,
involves challenges to increase the amount of noise reduction
without imposing speech distortion, and at the same time pre-
serving the binaural cues of both speech and noise components.
Although significant efforts have been made in the literature,
most developed methods so far have focused only on either the
former or latter problem. This paper proposes an alternative
binaural MWF algorithm that incorporates the non-stationarity
of the signal components into the framework. The main objec-
tive is to design an algorithm that would be able to select the
sources that are present in the environment. To achieve this, a
modified speech presence probability (SPP) and a single-channel
speech enhancement algorithm are utilized in the formulation.
The resulting optimal filter also avoids the poor estimation of
the second-order clean speech statistics, which is normally done
by simple subtraction. Theoretical analysis and performance
evaluation using realistic recorded data shows the advantage of
the proposed method over the reference MWF solution in terms
of the binaural cues preservation, as well as the noise reduction
and speech distortion.

Index Terms—Binaural cues, modified sigmoid function, multi-
channel wiener filter, single-channel noise reduction, speech en-
hancement.

I. INTRODUCTION

I N AN adverse speech communication environment where
the characteristics of target speech are distorted by high

background noise, speech enhancement systems are required
for improving speech quality and intelligibility. Several bin-
aural techniques have been proposed in recent years for future
hearing aids, where the full-duplex exchange ofmicrophone sig-
nals over wireless link between the two devices become fea-
sible. The aim of binaural noise reduction techniques is to im-
prove the signal-to-noise ratio (SNR) of the signal, while si-
multaneously preserving the binaural cues of both target speech
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and residual noise. In terms of the application of hearing pro-
tectors where microphones are integrated into the hearing pro-
tector adjacent to each ear, the binaural processing algorithms
can be readily applied as the microphones can be connected by
cables [1].
The binaural noise reduction techniques in literature can be

divided into two classes. In the first class, identical real-valued
spectral gains are applied to one microphone signal on the left
device and one microphone signal on the right device [2]–[6],
so that the binaural cues of both speech and noise components
are preserved. Although the outputs of a beamformer can be uti-
lized to derive the spectral gain function, these techniques can be
viewed as single-channel spectral weighting approaches, which
are similar to single-channel speech enhancement techniques.
The problem arises as single-channel noise reduction usually
introduces speech distortion and noise artefacts known as the
musical noise, leading to limited or no speech intelligibility im-
provements. Another drawback of these techniques is that the
interfering sources located in the back direction cannot be sup-
pressed due to the forward-backward ambiguity.
The second class of binaural techniques combines all micro-

phone signals from both ears to perform a true array processing.
Some techniques first construct a monaural output and then
apply a postprocessing stage to reconstruct the binaural signals
with correct binaural cues [7]. Other techniques apply fixed
or adaptive beamformers which produce a binaural output,
whereby the beamformers are designed or constrained so that
the binaural cues are also preserved [7]–[10]. In [8], [9] (adap-
tive) beamforming is only applied in the higher frequencies,
while for the lower frequencies the (low-pass filtered) original
microphone signal with correct binaural cues is used. This ap-
proach is not suitable in practice, especially for industrial noise
that is dominated by its low frequency components. Another
method that utilizes coherent processing of all microphone
elements is based on the multi-channel Wiener filter (MWF)
technique, referred to as speech distortion weighted MWF
(SDWMWF) [11], [12]. The drawback of SDWMWF is that it
can only preserve binaural cues for speech but not for noise.
It changes the noise binaural cues to be the same as those of
the speech component. Although the SDWMWF cost function
has been extended such that the binaural cues of both the
target speech and the residual noise can be preserved, there is
a trade-off between binaural cue preservation and noise reduc-
tion performance [13]. Another extension for SDWMWF is by
employing a constraint on the preservation of the binaural cues
of the noise component [14]. This however leads to a trade-off
between binaural cues of the speech and noise components.
The focus of this paper is the development of binaural noise

reduction algorithms for speech enhancement in assistive lis-
tening devices to protect the hearing of those working in loud
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or noisy conditions. It is therefore crucial for the application
of such assistive listening devices to be able to deal with in-
dustrial noise coming from different machinery or tools, with
sound pressure levels often exceeding 80 dBA, and at the same
time maintaining the spatial cues from surroundings. The main
consideration in the design of the binaural multi-channel speech
processing algorithm is to be able to adapt to changing environ-
ments, especially from a very noisy condition to a less noisy one,
and vice versa. As such, speech enhancement approaches such
as computational auditory scene analysis [15], which require
pre-training before use, are not considered especially when we
deal with online and adaptive block-wise speech processing.
In this paper, a modified MWF framework which incorpo-

rates and integrates non-stationarity assumptions about both
speech and noise, is proposed for speech enhancement for as-
sistive listening devices. Due to the fact that speech signals are
known to be highly non-stationary, and may not even be present
in all time-frames and frequencies during speech segments, a
modified conditional speech presence probability (SPP) has
been utilized to formulate the proposed method. This results
in an optimal filter that prevents the subtraction of noise-only
correlation matrix from the speech-plus-noise correlation ma-
trix, and avoids the poor estimate of speech correlation matrix
[16]. In addition, it also utilizes techniques from single-channel
speech enhancement to adaptively select the sources depending
on the conditional SPP from the environment. As such, the
proposed method points a beam in the direction of the speech
source when speech is active, and points the beam to the noise
source when only noise is present. In this case, it is capable of
obtaining an improved preservation of binaural cues of both
speech sources and noise as well as providing higher noise
suppression compared to conventional formulation. This means
that the filter is not an actual Wiener filter but is inspired from
the Wiener filter. Note that this paper is a modification of
[16] in a binaural configuration manner, which emphasizes the
ability to maintain spatial cues of both speech and noise by
utilizing a modified conditional SPP algorithm from [17] and
the single-channel techniques from [18].
The paper is organized as follows. In the second section, the

proposed framework is developed, which includes the formula-
tion of an alternative binaural MWF algorithm, the computation
of the single-channel speech enhancement algorithm for the ref-
erence signals, and the involvement of SPP in different parts of
the framework. Section III theoretically compares the proposed
method with the conventional SDWMWF. Section IV demon-
strates the performance measures used in this work. Section V
presents the results and Section VI concludes the paper.

II. A MODIFIED BINAURAL MWF

A. Configuration and Notation

Consider a configuration of microphones with the -th mi-
crophone signal on the left and the right sides of the hearing pro-
tection device defined in short-time Fourier transform (STFT)
domain as

(1)

where and represent the speech
components in the microphone signal, while
and represent the noise components. Here,
and denote the frequency bin index and time-frame index,
respectively.
The -dimensional stacked microphone signal vectors

and , and the -dimensional signal
vector are given as

(2)

with

(3)

where denotes the transpose operator. The correlation matrix
of speech plus noise , the clean speech correlation ma-
trix , and the noise correlation matrix are
defined as

(4)

where denotes the conjugate transpose operator. The -di-
mensional signal vectors and are defined sim-
ilarly as . The speech and the noise components are as-
sumed uncorrelated, such that

(5)

For speech enhancement algorithms, the -th signal of
the left device and the -th signal of the right device
will be used as the so-called reference signals. Typically, the
front microphones are used as reference microphones. For con-
ciseness, the reference microphone signals are defined as

(6)

where , , , and
are speech and noise components at the respective reference mi-
crophones. Here, and are -dimensional vectors
with only one element equal to 1 and the other elements equal
to 0, i.e., and .
The output signals are obtained by filtering and summing all

microphone signals

(7)

where and are -dimensional com-
plex weight vectors. The output signals can be written as
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(8)

where , represent the speech com-
ponent and , represent the noise
component of the output signals at respective side.

B. Formulation of Binaural MWF Incorporating SPP

The MWF method has been widely used for binaural speech
enhancement given that it produces a minimum mean square
error (MMSE) estimate of the speech component in the refer-
ence microphone at respective sides, simultaneously reducing
noise and limiting speech distortion [11], [14]. The mean
square error (MSE) cost function for the filters and

is equal to

(9)

The drawback is that some residual noise will still remain in
the output signals at both sides, and . In this paper, a
bi-criteria optimization problem for binaural MWF is proposed,
which consists of a criterion to minimize the error in Eq. (9) and
another criterion to minimize the noise power. Furthermore, in
order to cope with the fast dynamic changes of non-stationary
speech and noise in real environment, a SPP algorithm is fully
utilized in the proposed formulation of the binaural speech en-
hancement method. Let the two-state model for speech events
at every frequency bin and frame be defined in this context as

(10)

where and denote speech absence and
speech presence in the -th frequency bin of the -th frame,
respectively. Such model can be incorporated directly into the
design criterion of the MWF, leading to a weighted average
formulation where the first term is weighted by the probability
that speech is present, while the second term is weighted by
the probability that speech is absent. The cost function for such
criteria can be formulated as

(11)

where is given by

(12)

with and denote the condi-
tional probability that speech is present obtained from the ref-
erence channels respectively at the left and the right, while

is the combined conditional probability that speech is
absent. The solution of Eq. (11) is then given by

(13)

Based on the definition in Eq. (5), the solution of -SPP
in Eq. (13) is very similar to the formulation in [19], whichmini-
mizes the SDWMWF cost function with SPP. However, the pro-
posed binaural solution in this paper avoids the estimation of the
speech correlation matrix and incorporates the cross-
correlation vectors and instead of
using only the speech correlation vectors, i.e.,
and . Since in practice, is often
estimated by

(14)

such estimates can become non-positive semi-definite at low
SNR when becomes larger than . Thus, in-
stead of using the direct subtraction in the correlation matrices,
this paper proposes an estimate of the cross-correlation vectors
which follows the dynamic changes in the reference channels.

C. Estimation of Cross-Correlation Vector

The proposed estimates of the cross-correlation vector at both
sides and are defined as

(15)

where is a single-channel weighting gain function. The
role of is to pick up all acoustic source signals from the
environment and maintain those with speech while suppressing
the background noise. Thus when speech is active, the value of

would be close to one, and when speech is inactive,
would approach the gain floor.

In practice, the mathematical expectations involved in the
previous PSD matrices can be estimated by utilizing recursive
smoothing. As such, the cross-correlation vectors at both sides
are recursively updated by

(16)

where is the smoothing factor. Here, is defined as

(17)

where and are gain functions ob-
tained for the corresponding reference channels
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and . The arithmetic mean is employed
to ensure that the binaural cues can be preserved for the
single-channel approach.
The gain function at each side can be computed by employing

the modified sigmoid function (MSIG) developed in [18]. It is a
flexible function that is capable of improving speech quality in
terms of the trade-off between speech distortion, noise reduction
and musical noise. As such, the gain on the left side is given by

(18)

where denotes the gain floor, and , , are fixed MSIG
parameters that determine the shape of the gain function. Here,

is the a priori SNR in the left reference channel,
which is estimated by utilizing the modified decision-directed
(MDD) approach defined as [18], [20]

(19)

and and denote, respectively, the
estimated noise PSD and the estimated clean speech spectrum
from the preceding frame at the left reference channel. The pa-
rameters and denote the smoothing factor the SNR floor,
respectively. The a posteriori estimate is given by

(20)

where and are smoothing constants for speech and noise,
respectively. The gain on the right side is derived
similar as in Eq. (18).

D. Estimation of the Conditional SPP

Assuming a complex Gaussian distribution of the STFT co-
efficients for both the speech and the noise, and by applying
Bayes rule, the conditional SPP for each channel,

is given for each frequency bin and each
frame as [21], [22]

(21)

The parameters and indicate the estimated
a priori SNR and the a posteriori SNR, respectively at -th
channel. However, instead of using the model of conditional

SPP expressed in Eq. (21), an improved estimation proposed
in [17] has been employed in this work. It is given by

(22)

where is the exponential smoothing
constant, with , denotes the averaging time con-
stant, with . Here, denotes a sigmoid
function defined as

(23)

where and indicate, respectively, the slope
and the mean of the sigmoid function. Both are given by

(24)

(25)

The parameters and are fixed values that represent the typ-
ical SNR value when speech is active. Besides pro-
viding a better SPP estimate, Eq. (22) also ensures that no stag-
nation would occur in Eq. (13).

E. Estimation of Speech and Noise Correlation Matrices

By following the two-state model for speech presence or ab-
sence from Eq. (10), the correlation matrices and

can be recursively updated as follows. In the case
when speech is not present, both correlation matrices are given
by

(26)

and when speech is present,

(27)

where and denote the fixed smoothing factors for noise
correlation matrix and speech plus noise correlation matrix, re-
spectively. By employing the conditional SPP from Eq. (22),
the two update formulas can be derived under speech presence
uncertainty into the following forms

(28)
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(29)

where and can be updated continuously
over time. Here, and denote, respectively,

and .
The values of both and are chosen carefully to reflect
the degree of stationarity of speech and noise signals.

III. THEORETICAL ANALYSIS FOR CUE PRESERVATION
AND SNR IMPROVEMENT

A. Optimal Filters Under Single Speech Source Case

To examine the SNR performance and the ability of bin-
aural -SPP in maintaining binaural cues, firstly we
need to observe the behavior of the cross-correlation vectors

and . Under speech presence
uncertainty, Eq. (15) at the left side becomes

(30)

where

(31)

This implies that when speech is present, the solution of binaural
-SPP in Eq. (13) becomes

(32)

while when speech is absent, and the
solution of binaural -SPP is given by

(33)

where is the floor used in Eq. (18).
In the case of a single target speech source, the speech signal

vector can be modeled as

(34)

where is the target speech signal. The -dimensional stacked
vector is given by

(35)

with

(36)

The speech correlation matrix is a rank-one matrix, i.e.,

(37)

with representing the PSD of the
speech signal.
Using Eq. (32), in the case of a single speech source, where

both speech and noise are present, the optimal filters of the bin-
aural -SPP are obtained by applying thematrix inversion
lemma as

(38)
where

(39)

(40)

(41)

Meanwhile, when only noise is present, the optimal filters is
derived from Eq. (33) into

(42)
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B. Theoretical Performance Measures

Here, definitions of both SNR improvement and interaural
transfer functions for cues preservation are given for the pur-
pose of the theoretical performance measurement [23]. The nar-
rowband input SNR is defined as the power ratio of speech and
noise component in the reference microphones at both sides, as

(43)

and the narrowband output SNR is given by the power ratio of
speech and noise component in the output signals

(44)

Thus, the SNR improvement at each side is given by

(45)

The input and output ITFs of the speech component are defined
as the ratio of the component in the reference microphones. In
the case of single speech source, they are given by

(46)

(47)

while the input and output ITFs of the noise component are de-
fined as

(48)

(49)

C. Comparison Between Proposed Method and SDWMWF

The binaural SDWMWFmethod is included for performance
comparison. The SDWMWF minimizes a weighted sum of the
residual noise energy and the speech distortion energy in order
to provide a trade-off between speech distortion and noise re-
duction [14]. The binaural SDWMWF1 cost function is equal to

(50)

where provides a trade-off between reduction and speech dis-
tortion. The optimal filters for the respective sides are
equal to

(51)

By assuming a single speech source and by applying the matrix
inversion lemma, it has been shown in [14] that Eq. (51) can be
reduced to the following optimal filter at each side:

(52)

To examine the ability of binaural in maintaining bin-
aural cues, the single target source optimal filters from Eq. (52)
are utilized. From there, the binaural vectors for the left
and the right sides of the devices are found to be parallel, such
that

(53)

where is given in Eq. (46). Hence, the ITFs
of the output speech and noise components are both equal
to , implying that the binaural speech cues are
perfectly preserved, but the binaural noise cues are distorted.
As all output components are perceived as coming from the
speech direction, the auditory perception of the acoustic scene
is therefore not preserved by the binaural .

1For conciseness, SDWMWF is abbreviated to in the equations.
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Since the solutions of binaural are parallel, by using
the definition in Eq. (44) the narrowband output SNR for each
side will be the same, such that

(54)

From Eq. (45), it follows that the SNR improvement at each
respective side can be obtained as

(55)

This implies that the SNR improvements are directly related to
the noise correlation matrix and speech correlation
matrix . As a matter of fact, they are related to their
estimates and the accuracy of the model. Hence it is important
that the estimates of speech and noise correlation matrices pro-
vide an accurate reflection of the true noise correlation, speech
power and the ATF of the target speech signal.
For the proposed binaural -SPP, the narrowband

output SNR for each side can be obtained by using the defi-
nition in Eq. (43) and Eq. (44) on the optimal filters obtained
under the case when both speech and noise are present, i.e.
Eq. (38). It is given by

(56)

where

(57)
By using Eq. (45), the SNR improvement on the left side is
defined as

(58)

where is the SNR improvement of the binaural
SDWMWF on the left side (Eq. (55)). The SNR improvement
on the right side is defined similarly to Eq. (58). Since the con-
ditional SPP has only values in between 0 and 1, for
Eq. (58), if , the SNR improvement
is equal to . If , the
SNR improvement is equal to 1, which simply means no im-
provement. Since a large value of generally indicates

speech component is dominant over noise, no SNR improve-
ment at indicates that the proposed algorithm of-
fers less speech distortion in the output signals. By substituting
Eq. (38) to Eq. (47), the ITF of the output speech component for
the binaural -SPP is equal to

(59)

thus , which means the ITF of
speech component is preserved when speech is present. In order
to find the ITF of the output noise component, both Eq. (38)
and Eq. (42) are utilized. By substituting them into Eq. (49), the
noise ITFs are defined as

(60)

where

(61)

Eq. (60) shows that when speech is present,
is a weighted sum of and ,
which relies on the input SNR. When the input SNR
is significantly large, will be distorted by

. However, if the input SNR is sufficient small,
i.e. , is
equal to , which means the noise ITF is preserved.
In the case when only noise is present, the noise cue is also
preserved.

IV. PERFORMANCE MEASURES UNDER REAL ENVIRONMENT

A hearing protection device, as shown in Fig. 1 with two-mi-
crophone array (with inter-microphone space of 1 cm) being
mounted on each side, was utilized for processing. Performance
evaluation for speech quality includes the comparison of the
binaural cues and the noise reduction performance. The noise re-
duction performance is measured by the intelligibility frequency
weighted segmental SNR (IFWSNRseg) measure [24], [25]

(62)
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Fig. 1. A hearing protection device with microphones (with inter-el-
ement space of 1 cm) embedded on each side of a pair of earmuffs. The mi-
crophone signals were processed with the reference and the proposed MWF
approaches to produce the output signals.

where is the ANSI SII weight placed on the -th frequency
bin [26], is the number of bands, is the number of frames,

and are spectrum amplitudes of the clean
speech signal and enhanced speech signal, respectively. Each
frame has a threshold of dB lower bound and a dB upper
bound to discard non-speech frames.
In addition, the segmental noise attenuation (NATTseg) and

the segmental speech preservation (SPREseg) measures are uti-
lized to study if a difference in IFWSNRseg is due to more noise
reduction or less speech distortion. Both are given, respectively,
by [27]

(63)

and

(64)

Here, and are -th frame time-domain vectors
for the noise and the clean speech signal, respectively. The sig-
nals and indicate both noise and the clean sig-
nals processed with the same corresponding filters as used to
enhance the noisy signal. The widely-used perceptual evalua-
tion of speech quality (PESQ) measure has also been included
for performance comparison [25]. For all measurements, results
of the reference channels from the left and right were averaged
to obtain a single value.
The binaural cues were evaluated using the ITD and the ILD

measures. The ITDs here are computed using the cross-correla-
tion, which is commonly used to estimate time delays, as defined
by

(65)

where , , , denote, respectively,
the reference signals and the output signals for speech and noise
in discrete time domain on the left side. Similar notations are
used for the right side. Note that the front microphones (micro-
phones located nearer to the direction where the user is facing,
as shown in Fig. 1) at respective sides are used as the reference
signals. This is the same for all the performance measures that
require the access of the clean signals and/or the observed sig-

nals. The delay is then given by the argument , which
yields the maximum absolute value of Eq. (65), as

(66)

Since has integer values only and the delay is usually frac-
tional, the cross-correlation function needs to be interpolated.
After that, the delay in seconds is obtained by dividing
by the sampling frequency . The absolute ITD errors are then
given by [28]

(67)

The ILDs are obtained by evaluating the logarithm of the power
ratio between the respective signals of the left and right side.
The ILD errors of speech and noise are given as [28]

(68)

where is the signal length in samples.

V. PERFORMANCE EVALUATION

For a fair performance comparison, the conditional SPP is
also applied to replace the trade-off parameter of the conven-
tional SDWMWF function in Eq. (51), such that

. In addition, the minimum variance distortionless re-
sponse (MVDR) beamformer is included in this section for com-
parison [29], [30]. Here, the binaural MVDR filter in the form
without explicit dependence on all ATFs is derived in a binaural
configuration, such that

(69)

where denotes the trace operator. As such, the overall
performance of the binaural -SPP and the binaural

-SPP, together with the binaural MSIG function and
the binaural MVDR, is evaluated and compared. The setup for
the underlying measurements is depicted in Fig. 2. A manikin
with put-on earmuffs as depicted in Fig. 1 is placed close to the
center of a room with dimensions m m, with a re-
verberation time of approximately s. The loudspeakers
are positioned m from the center of the head, with speech
and noise rendered at different positions around the head to
create point source sounds. An additional four loudspeakers
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Fig. 2. Measurement setup for the evaluation of the binaural noise reduction
techniques.

TABLE I
PARAMETER SETTINGS

are placed in each corner of the room facing the walls to create
diffuse-like background noise.
The speech signals consist of 7 (4 male and 3 female)

sentences with lengths ranging from s to s, with the
noise sources being industrial noises. For evaluation purposes,
the speech and noise signals were recorded separately. The
processing was done with a sampling frequency of 16 kHz
using an STFT with the square root of a Hann window, both
for analysis and synthesis, frame length , and 50%
overlap, i.e., . The parameters of both frameworks
are given in Table I, which were determined empirically from
previous works. The algorithms were not adjusted to obtain
the largest amount of noise suppression, but rather to achieve a
good trade-off among the amount of noise suppression, speech
distortion, and musical noise generated from the processing.

Fig. 3. ITD and ILD results for MWF when direction of noise was fixed with
speech source coming from different directions.

Fig. 4. ITD and ILD results for MWF when direction of the target speech was
fixed with noise source coming from different directions.

For evaluation of the ITD and ILD, two scenarios were con-
sidered. One is a speech source from the front of the head with
several noise configurations delivered at 45 , 90 , 135 , 180 ,
225 , 270 and 315 with respect to the left of the head. The
latter scenario had the noise source originated from behind the
head with several speech configurations at 10 , 20 , 30 , 330 ,
340 , and 350 . The reason that only 6 configurations of speech
source were recorded is due to the assumption that the target
speech is often coming from the frontal directions.
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Fig. 5. Noise reduction performance for MWF at 0 dB SNR.

Fig. 6. Noise reduction performance for MWF at 5 dB SNR.

For noise reduction performance, scenarios with speech
sources positioned at the head anterior and several point source
noise configurations rendered at 45 , 90 , 135 , 180 , 225 ,
270 and 315 with respect to the left of the head, were used.
The results for different input SNRs will be plotted to show the
robustness of the proposed methods ranging from extremely
noisy to quiet environments. Note that for all of the perfor-
mance evaluations, only the average scores obtained from
the evaluated seven sentences will be shown rather than the
measurement results from every speech sequence. Due to the
limitation of the laboratory equipment, the experiment with
longer reverberation time has not been conducted in this paper.

Fig. 7. Noise reduction performance for MWF at 10 dB SNR.

Fig. 8. Noise reduction performance for MWF at 15 dB SNR.

Figs. 3 and 4 portray the ILD and ITD errors for the evalu-
ated algorithms averaged across 7 speech sequences and 4 dif-
ferent input SNRs (0 dB, 5 dB, 10 dB and 15 dB). Fig. 3 shows
the results of the speech source coming from different angles,
with the direction of noise fixed, while Fig. 4 depicts the re-
sults of the noise from different positions, with the direction of
speech fixed. As predicted, all the evaluated methods success-
fully preserved speech cues at all configurations, except for the
binaural MVDR approach. This is because the output speech
signals produced by this filter has been greatly distorted, which
can be seen in the results of the noise reduction performance.
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Fig. 9. Noise reduction performance for MWF in diffuse-like jack-hammer
noise at 0 dB SNR.

Fig. 10. Noise reduction performance for MWF in diffuse-like jack-hammer
noise at 5 dB SNR.

For noise cues, an interesting finding is that ITDs of noise can
be preserved with binauralMSIG, binaural -SPP, as well
as binaural -SPP when noise source was fixed at 180
with speech source rendered from -30 to 30 . However, when
speech was fixed in front of the head with noise coming from
the side (45 to 135 ), the ITDs of noise were not preserved
by binaural -SPP. In general, the binaural MSIG has the
least ILD and ITD errors when compared to both the proposed

Fig. 11. Noise reduction performance for MWF in diffuse-like jack-hammer
noise at 10 dB SNR.

Fig. 12. Noise reduction performance for MWF in diffuse-like jack-hammer
noise at 15 dB SNR.

method and SDWMWF. The binaural -SPP has com-
parable performance with the binaural MSIG, but with slightly
higher ILD errors. As for the binaural -SPP and the bin-
aural MVDR, they recorded poor results among all four evalu-
ated algorithms, particularly in the measured ITD errors. Thus,
it has been shown that -SPP is a more preferable for-
mulation compared to -SPP and MVDR for a binaural
assistive listening device.
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As for the noise reduction performance, Figs. 5 to 8 show
the results are consistent with the results obtained from the
monaural MWF formulations, as reported in [16]. It can be
observed that the proposed binaural -SPP approach has
the best performance recorded among all evaluated algorithms
under lower input SNRs, which means having the largest
IFWSNRseg, NATTseg and PESQ scores. This indicates that
the binaural -SPP has better speech quality compared to
the binaural -SPP and MSIG methods. However, it has
consistently lower SPREseg when compared to the binaural
MSIG function. This is mainly because the smoothing factors
for the MDD approach were chosen as low as possible to
reduce the amount of speech distortion (refer to Table I). As
a result, for higher input SNRs, i.e., 15 dB in Fig. 8, where
the impact of the speech distortion towards speech quality
is larger, -SPP produced slightly lower IFWSNRseg
results when compared to the binaural MSIG method. As for
the performance of the binaural -SPP approach, it was
totally outperformed by the proposed method in terms of both
the SNR gains and the overall perceptual speech quality. For
the binaural MVDR approach, it has the poorest performance
among all the evaluated methods as it generates a large amount
of speech distortion while having a high noise reduction, as
can be observed in SPRE and NATT scores. It is also worth
mentioning that when target speech is directed from the front,
all algorithms except MVDR show a better performance when
the noise is coming from the left or the right side of the head,
and contrary, a poorer performance when noise is coming from
behind due to the front-back ambiguity.
The performance of both frameworks were again examined in

realistic scenarios with diffuse background noise. Evaluations
were done using a diffuse-like jack-hammer noise, with the re-
sults depicted in Figs. 9 to 12. The results are similar when com-
pared to the results from Fig. 5 to 8. The advantage of the bin-
aural -SPP over the binaural MSIG method in terms of
the SNR gains in IFWSNRseg results is less observable under
diffuse-like noise conditions. However, in terms of the amount
of noise reduction and overall speech quality, as depicted in
NATT and PESQ results, the binaural -SPP method still
performs better than the binaural MSIG. As for the other two
reference methods, the binaural MVDR has much higher NATT
scores when compared to the binaural -SPP. Since both
methods have similar results for IFWSNRseg and SPRE, the
higher noise reduction ratio in the binaural MVDR leads to un-
desired suppression of the speech components. This phenom-
enon can also be observed in PESQ scores.

VI. CONCLUSIONS

The use of the binaural multi-channel Wiener Filter (MWF)
technique in hearing protection devices is challenging as it is
unable to preserve the hearing impression of noise, which is
critical for industrial workers in extremely noisy environments.
There are more issues in regards to the implementation of
MWF, particularly the estimation of the second order statistics,
which often requires the aid of a voice activity detection (VAD)
to detect speech presence and absence. Therefore, the prospec-
tive solution presented in this work incorporates the binaural
MWF with the single-channel noise reduction approach. As
such, the speech and noise components in the framework

were proposed to be continuously estimated by utilizing a
single-channel conditional speech presence probability (SPP)
approach and a single-channel spectral weighing gain function.
Experimental results show that the proposed MWF formulation
performs better than the SDWMWF method in maintaining the
spatial cues by having smaller ILD errors for both speech and
noise. The proposed algorithm has also outperformed tradi-
tional methods in terms of speech quality, with a larger SNR
improvement recorded without introducing a higher speech
distortion.
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