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Abstract

A relative, like-value image normalisation (LVIN) procedure was investigated as a means
of estimating surface reflectances from sequences of Landsat TM and ETM+ imagery,
and standardising image data for change detection studies when there are uncertainties
in sensor calibration and atmospheric parameters over time. The basis of the LVIN
procedure is that for an N-date sequence, the digital numbers (D Ns) of N-1 overpass
images can be mapped to the reflectance values of a reference image for a set of pseudo-
invariant targets (PITs) common to all images in the sequence. The robust M-estimator
was employed to provide the transformation function that achieved the mapping. The
investigation also showed that in some instances the LVIN procedure could incorporate
the modelled Path DN—the modelled DNV for a target of zero surface reflectance.

A lack of surface validation data was a limitation in the investigation. However, a
qualitative evaluation of the LVIN procedure was possible by examining the pre- and
post-normalisation image histograms. In a comparison with the results of the 65 ra-
diative transfer code, it was observed that when both overpass and reference images
were acquired with the same sensor, the LVIN procedure appeared to correct for at-
mospheric effects; and when overpass and reference images were with different sensors,
the LVIN procedure also corrected for between-sensor differences. Moreover, it was
demonstrated for the more “temporally-invariant” PITs that the procedure retrieved
surface reflectances that were on average within 4-0.02 reflectance units.

The ability of the LVIN procedure to standardise sequences of image data was further
demonstrated in the study of vegetation change. The normalised difference vegetation
index (NDVI) was calculated from LVIN estimates of surface reflectance for a selec-
tion of sites around the township of Mt. Barker, Western Australia, NDVI data had
characteristics consistent with data that have been corrected for atmospheric effects.

A modification to the LVIN procedure was also proposed based on an investiga-
tion of some empirically-derived vegetation reflectance relationships. Research into the

robustness of the relationships for a greater range of vegetation types is recommended.
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CHAPTER 1

Introduction

Space-based imaging of the Earth was born out of meteorological satellite studies in
the late 1960s. Since then, the number of Earth-observing satellites has continued to
grow. In fact, in the last decade alone, over 100 satellites have been placed in orbit for
the purpose of monitoring the Earth’s land, oceans and atmosphere, spawning what has
been referred to as satellite constellations (Asrar, 2002). This is a new paradigm that
calls for an ensemble of space-based observations to provide an integrated view of the
Earth system; strengthening the scientific understanding of the driving forces behind
global change, and monitoring the planet’s *vital signs” {King and Herring, 2000}.

An issue of eritical importance, if space-based cbservations are to form an integrated
set of global observations, is that of sensor calibration. Calibration, both within and
between satellite systems, is important for maintaining data consistency through time
and to facilitate comparisons between sets of remotely-sensed data. Left unaddressed,
a lack of intra- and inter-system calibration has been likened to “apples-to-oranges”
intercomparisons and analyses; it would be difficult to ascribe changes in the Earth
system if data are themselves inconsistent (Barron et al., 1999).

When multiple dates of satellite imagery are used to analyse spatial and temporal
patterns of change in the Earth’s surface properties, it is important that the atmospheric
contributions to the at-sensor signal be removed (Kaufman, 1984). The processing of
image data to achieve this atmospheric correction compensates for the atmospheric ef-
fects on solar radiation between the ground and the satellite sensor, so that changes in
imagery observed through time may be ascribed to disturbances on the Earth’s surface
and not the intervening atmosphere.

One of the longest serving campaigns of Earth-observing satellites has been the
Landsat mission. Some 30 years since the launch of Landsat-1, 7 satellites and 3 sensors
later, the Landsat mission continues to provide multispectral imagery of the Earth that
have found applications in many diverse fields of research (Goward and Masek, 2001).

The application for which long-term archives of Landsat imagery have been extensively



used is in the assessment of land cover change (Caccetta et al., 2000a,b; Richards and
Furby, 2002).

A requirement for land cover change detection in multitemporal sequences of satellite
imagery is that the data be processed into a consistent set of units, free of effects due
changes in sensor calibration and atmospheric condition. This processing, however, may
be hampered by uncertainties in sensor calibration and/or the parameters required to
model the atmospheric effects. Radiometric processing of multitemporal sequences of
Landsat TM and ETM+ images for the purposes of ensuring data consistency through

time is the theme of this doctoral thesis.

1.1 Research Aim

The decision to express image data in a particular set of units {e.g. digital numbers,
radiances, or reflectances) is often driven by the application for which the images are
intended. Converting image data into surface reflectances has the advantage that these
data are free of atmospheric effects, are corrected for seasonal and diuwrnal differences
in solar position, and are independent of differences in sensor systems (Teillet et al.,
2001); a desirable characteristic in multitemporal analysis. In order to estimate surface
reflectances in imagery, most radiometric processing procedures rely on ground-based
knowledge of surface reflectance and/or atmospheric properties; or they infer estimates
of key atmospheric parameters from the imagery itself and neglect possible changes
in sensor systems through time. Such procedures are not suitable for multitemporal
analysis, particularly in retrospective studies when, more often than not, the required
information (i.e. surface, atmospheric or sensor) is unknown.

When applications call for a comparative analysis of image data between dates,
processing to an ahsolute scale is not always necessary. In these instances, images can
be normalised to a common reference image (Hall et al.,, 1991; Furby and Campbell,
2001). Processing methods based on image-to-image normalisation are proposed to cir-
cumvent these uncertainties by adjusting each image in a multitemporal sequence to a
common reference image. This gives each image the appearance that it was acquired
under the same atmospheric condition, solar position, and with the same sensor as the

reference. Surface reflectance retrievals are generally not possible with image normalisa-



tion procedures since, in the absence of in situ measurements, the reference image itself
may be affected by the atmospheric effects.

This thesis investipates the possible use of image normalisation procedures to esti-
mate surface reflectances in multitemporal sequences of satellite imagery. The motivation
for the investigation is the suggestion made by both Hall et al. (1991) and Furby and
Campbell (2001) that just such a relative, image-to-image procedure can in principle
transform image data into surface reflectances, if the reference image itself is expressed
in those units. Moreover, the thesis builds upon these authors’ work by aiming to explic-
itly demonstrate that image normalisation can simultaneously correct for those factors
that lead to observed change between images that are not due to modifications of the

Earth’s surface properties.

1.2 Thesis Scope and Structure

Before describing the factors that can hamper multitemporal analysis with satellite im-
agery, and methods for correcting their effects, it is important to understand how electro-
magnetic radiation emanating from the Sun interacts with the earth-atmosphere system,
and is ultimately detected by the satellite sensor. This is achieved in Chapter 2 with
descriptions of (i) the characteristics of solar radiation in the solar reflective region of
the electromagnetic spectrum (i.e. 400-2500 nm), (ii) some physical properties of the
Earth’s atmosphere and its chemical constituents, and (iii) the mathematical formalisms
that describe a simple model for the electromagnetic radiation emerging from the earth-
atmosphere system. Formulae and definitions to be used in subsequent chapters are also
presented in this chapter.

Chapter 3 narrows the focus of the thesis by presenting a brief overview of the
characteristics of imagery acquired with multispectral sensors on the Landsat series of
satellites, specifically the data for the solar reflective spectral bands. Continuing from the
mathematical models describing the propagation of electromagnetic radiation in Chapter
2, a model for the at-sensor signal specific to the Landsat sensors is presented. The main
factors affecting multitemporal analysis as they pertain to sequences of Landsat imagery
are also given in this chapter. How these factors become manifest in the satellite imagery,

as well as their impact on the mapping and monitoring of land cover change, is described.



This is followed by a review of radiometric processing procedures that seek to minimise
their effect.

The thecory and processing methodologies described in the preceding chapters are
brought together in Chapter 4. In this chapter, the aim of the thesis is addressed with
a description of the image normalisation procedure to be employed and the results of
its application to two multitemporal sequences of Landsat imagery. Preliminary data
processing along with a detailed discussion of the results, emphasising the normalisation
procedure’s ability to retrieve surface reflectances and correct for the aforementioned
factors, is presented. The importance of image normalisation is demonstrated in an
application to monitor vegetation change in one of the multitemporal sequences. Finally,
the detail of preliminary investigations into a possible modification to the normalisation
procedure ends the chapter.

The thesis ends with the conclusions drawn from the investigations and a statement

of possible further work based on discussions given in Chapter 4.



CHAPTER 2
Atmospheric Physics and
Radiative Transfer

This chapter describes the interaction of electromagnetic (EM) radiation emitted by
the Sun with the atomic, molecular and particulate constituents in both the solar and
terrestrial atmospheres. A simple yet accurate model! representing the radiometric signal
emerging from the earth-atmosphere system will be presented. Terms and expressions

that will be used in subsequent chapters will also be defined.

2.1 The Solar Environment

Environmental conditions in the Sun’s core are sufficient for nuclear fusion to produce
the elements of the periodic table up to and including iron {Fe). Energy generated
by nuclear fusion process generates convective forces that transports these elements
through a convective layer (~ 10° km thick) to an outer layers of the Sun known as the
photosphere. The photosphere is a relatively thin layer of the solar atmosphere (a few
hundred kilometres thick) from which nearly all the EM radiant output of the Sun is
emitted. Fligge et al. (2001} state that 99% of the solar radiative output occurs within
the wavelengths interval 300-10000 nm. It is the continuous absorption and emission
of EM radiation by the elements in the photosphere that produces the light observed
emanating from the Sun. The absorption characteristics of these elements, however,
exhibit wavelength (or spectral) dependence, resulting in variations in the continuous

spectrum of solar radiation emitted from the Sun (discussed in Section 2.1.2).

2.1.1 Solar Irradiance

The rate of enérgy transfer by EM radiation, the rodiant fluz, incident per unit area is
termed the radiant flur density or irradiance with units watts per square metre (W /m?).
A quantity often used in remote sensing is that of irradiance per unit wavelength, and
is termed the spectral irradiance (with units W/m?/nm). Unless otherwise stated, the

units of wavelength (A) in this document are nm.
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The total radiant flux from the Sun is approximately 3.84 x 10%¢ W, and since
the mean FEarth-Sun distance is 1.496 x 10! m, the total solar irradiance, over all
wavelengths, incident at the top of the Earth’s atmosphere {TOA), at normal incidence

to the Earth’s surface is

3.84 x 10% 2
= — 1370 W/m?.
Bo= iae x 1oz — 1370 W/m

While this quantity is known as the selar comstant, space-borne observations, such as
those from the Variability of Irradiance and Gravity Oscillation experiment (VIRGO)
conducted aboard the Solar and Heliospheric Observatory (SOHO), reveal considerable
variation of Fy through time.

Figure 2.1 presents a 20-year time series of measurements of Fp from a number
of space-borne missions. The observed variations are due to localised events on the
photosphere known as sunspots' and faculae?. An increased number of these events

occurs approximately every 11 years, a period known as the solar cycle.

2.1.2 Spectral Variations in Solar Irradiance

Instrumentation and measurement strategies designed to measure spectral variation in
solar irradiance at the top of the Earth’s atmosphere have been many and varied. They
have included ground-based measurements, instruments mounted on high-altitude air-
craft and balloons, and space-borne sensors (Arvesen et al., 1969; Neckel and Labs, 1984;
Fligge et al., 2001).

The advantage of space-borne measurements is that they are free of the effects of the
Earth’s atmosphere which, depending on the wavelength of the radiation, can reduce the
intensity of the measured radiation (more later). The high-altitude airborne campaign
of Arvesen et al. (1969) provided a dataset of solar irradiance values measured at high
resolution for wavelengths in the range 200-2500 nm. The NASA CV-990 aircraft con-
ducted eleven research flights at altitudes between 11.6-12.5 km; the aircraft, therefore,
was above 80% of the atmosphere {except the ozone layer) and, therefore, atmospheric

effects were assumed to have marginal impact on the measurements. The solar irradi-

1Sunspots are dark areas on the photosphere which are cooler than surrounding regions. They have
lifetimes ranging from a few days to weeks and are accompanied by strong magnetic fields.

2Faculae are regions of the photosphere which are hotter than their surroundings. They often occur
in conjunction with sunspots and also possess strong magnetic fields and similar lifetimes.
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Figure 2.1: Variations in the solar constant illustrated in a composite from a number of
space-borne missions.

ance data possess very high spectral resolution, and a precision of £1% with an absolute
accuracy around +3% over most of the wavelength range.

The solar irradiance data given in Neckel and Labs (1984) represent corrections to the
authors’ earlier work. The solar irradiance measurements obtained were ground-based
and circumvented the atmospheric problem described earlier by employing a Langley
method of analysis {described in Section 2.3.3). The Langley method involves measuring
the solar irradiance at a number of different Sun elevations and then extrapolating to
zero airmass (Fligge et al., 2001). Using this approach, Neckel and Labs {1984) were able
to obtain solar irradiance values at 1, 2 and 5 nm intervals {depending on the wavelength
region) between 330-1248 nm with an absolute accuracy of the order of 1-27%.

Both the Arvesen et al. (1969) and Neckel and Labs (1984) datasets of monochromatic
solar irradiance are displayed in Figure 2.2. It can be shown that the irradiance curve
resembles that of a Planck’s distribution for a blackbody at a temperature of 5777 K
with a maximum occurring around 500 nm. This is consistent with Wien'’s displacement

law, which states that the wavelength (Apnax) corresponding to the peak in Planck’s curve
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Figure 2.2: Two data sets of the monochromatic solar irradiance at the top of the Earth’s
atmosphere.

for a blackbody radiating at a temperature T are related as follows:

AmaxT = 2.898 x 10°  (nm K).

2.1.3 The Earth-Sun Distance

By far the largest source of variation in Fyy at the TOA is the orbit of the Earth
around the Sun. The Sun is located at one of the foci of the Earth’s orbit—an ellipse
with eccentricity e = 0.01673, and the value of Fy is expected to vary as the reciprocal
of the Earth-Sun distance squared. The mean Earth-Sun distance is referred to as 1
Astronomical Unit (AU) and corresponds to a distance of 1.496 x 10! m. Eckstein
and Simpson (1991) defined the factor D (inversely proportional to the square of the
Earth-Sun distance) to adjust Fg for intra-annual variations in Earth-Sun distance, i.e.

m(J —3)

D=[1+ ecos(O.QSG?»W)]g, (2.1)
where .J is the day of the year. A second expression was used by Vermote et al. (1997b),
namely

D= 1 (2.2)

[1 — ecos(0.9856 T4y
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Figure 2.3: A comparison of two approaches for calculating the adjustment factor D
applied to the solar intensity measurements based on the mean Earth-Sun distance.

In this thesis, the value of solar spectral irradiance corrected for Earth-Sun distance (i.e.
time of year) is denoted Fyj;.

Figure 2.3 presents a time-series of I values calculated using the two expressions
above. A discrepancy between expressions is observed at the maxima and minima of
the time series, where the disagreement reaches 0.074% and 0.069% respectively. The
maxima in Figure 2.3 correspond to the perfielion on January 3 (when the Earth is
nearest the Sun) and the minima to aphelion on July 4 (where the BEarth is furthest
from the Sun). Using either expression for calculating D, it can be shown that solar
intensity at perhelion and aphelion can differ by as much as 4% relative to the mean

Earth-Sun distance (Mather (1999, p. 93) quotes a value of 3.5%).

2.2 The Terrestrial Atmosphere

Occupying the vast distance between the Sun and the Earth is a comparatively thin layer
of gases and suspended particles that envelope the Earth, and collectively comprise the
Earth’s atmosphere. In Earth’s case, 99% of the mass of the atmosphere is contained

below 30 km. Up to about 100 km above sea level, the atmosphere can be stratified into
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4 main layers. They are the troposphere, stratosphere, mesosphere and thermosphere.
The following sections give brief discussions on some of the physical properties of these
layers; their constituents, and measurements of their concentrations and distribution as

they pertain to satellite-based remote sensing and the scope of this thesis.

2.2.1 Atmospheric Pressure and Temperature

Profiles of Atmospheric Pressure

Atmospheric pressure (P) is the weight of a column of air above a unit area and is
expressed in hectopascals (hPa). The horizontal distributions of pressure are familiar to
most in the form of synoptic charts on which isobars join regions of equal pressure. To
analyse the spatial patterns of pressure it is important that the measurements {(known
as station-level values) are adjusted to a standard level. Usually the adjustment corrects
for the station elevation and converts the pressure to a mean sea-level value.

The vertical distribution of atmospheric pressure is known as the pressure profile.
As the density of the atmosphere decreases with altitude, so does the atmospheric pres-
sure. Pressure profiles, for 6 standard atmospheric models available in the 65 software
(Vermote et al., 1997b) are: mid-latitude summer (MLS) and winter (MLW), sub-arctic
summer (SubS) and winter (SubW), tropical (TROP), and US 1962 (US62). These
standard, model profiles are displayed in Figure 2.4.

One device that can measure changes in atmospheric pressure with altitude is a
radiosonde. An example of a radiosonde-measured pressure profile is given in Figure
2.4. The data were acquired by a radiosonde released at 0900 hours from the Australian
Bureau of Meteorology station at Wagga Wagga, New South Wales (station location E
147°27" S 35°10’ and 220 m above sea level) on March 27, 2000. Absolute differences
between radicsonde and model pressure profiles are also displayed. The radiosonde
pressure profile closely resembles a mid-latitude summer profile up to 16 km, and then a
tropical provides a closer up to an altitude of 25 km. A general convergence of pressure
values as altitude increases is also observed.

As mentioned earlier, station-level pressure readings are typically converted to mean
sea-level values so that spatial patterns of pressure can be observed without the influence

of station elevation. If P, denotes the station-level pressure (hPa) then the mean sea
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Figure 2.4: An illustration of atmospheric pressure variation with altitude. The solid
lines represent model value of pressure for standard atmosphere models from 6S (Vermote
et al. (1997)) and the triangles mark radiosonde pressure readings for Wagga Wagga,
NSW March 27, 2000.

level pressure P, is calculated as,
Prnat = PsexP(z/FI)1 (23)

where 2z is the station elevation above sea-level and H is known as the scale height. The
scale height can be estimated by (Wallace and Hobbs, 1977, p. 57) as:

20 — 2

H = imm S

where P and P, are pressure values at elevations z; and zg, respectively. Calculating a
value of H for the each level up to and including 10 km for the data displayed in Figure

2.4 and extrapolating to an elevation 2 = 0, gives the scale heights presented in Table
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Table 2.1: Comparison of scale height H values estimated from the Wagga Wagga ra-
diosonde pressure profiles and those used in some standard atmospheric models.

Pressure H

Profile (km)
Wagga Sonde  8.65
MLS 3.64
MLW 8.00
SubS 8.37
SubW 7.60
TROP 3.81
Usé2 8.35

2.1. The agreement between the Wagga Wagga radiosonde and mid-latitude summer

scale heights is consistent with the conclusions drawn from Figure 2.4.

Profiles of Atmospheric Temperature

Atmospheric temperature (T) profiles exhibit a rather more complex behaviour with
altitude. At the interface between atmospheric layers are regions where temperatires
either remain constant (isothermal) or switch from an decreasing to increasing (or vise
versa) trend. These regions can range from 2-10 km in thickness, and from the Earth’s
surface to the TOA they are referred to as the tropopause, stratopause and mesopause
respectively.

Radiosondes can also measure the vertical structure of temperature in the atmosphere.
The Wagga Wagga radiosonde for March 27, 2000 and 65 model atmospheric temper-
ature profiles are displayed in Figure 2.5. As with the pressure profile, there exists a
great deal of similarity between the Wagga Wagga temperature profile and that of a
mid-latitude summer model up to 13 km after which better agreement is observed with
the tropical temperature profile.

In Figure 2.5 the sub-arctic winter temperature profile increases for the first kilome-
tre. This event is known as a temperature inversion and is often observed on some hot
summer nights or in locations where the Earth’s surface is cooler than the atmosphere
directly above it. Generally, however, atmospheric temperature decreases linearly with
altitude for the first 10-15 km. The rate of temperature decrease is known as the lapse

rate, denote § (KK/km). A comparison of the lapse rates of the 65 mode] atmospheres
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Atmospheric Temperature Profile
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Figure 2.5: Atmospheric temperature profiles from the Wagga Wagga radiosonde (tri-
angles) on March 27, 2000 and the 6 atmospheric models used in 68S.

with that derived from the Wagga Wagga radiosonde for March 27 2000 is given in Ta-
ble 2.2. The agreement between radiosonde-derived lapse rate and that calculated for a

mid-latitude summer is once again observed.

2.2.2 Water in the Atmosphere

Of all the constituents of the Earth’s atmosphere, water is the only compound that can
be present in all three phases (i.e., solid, liquid or gas). Clouds of liquid or solid water
have a rather obvious impact on solar radiation in the visible region of the EM spectrum.
A view of the Earth from space reveals that some clouds can completely obscure a view
of the surface. Much of the incident solar radiation is reflected back into space, and it is
only in certain wavelength regions, from the shortwave infrared through to the thermal

infrared, that clouds may become transparent. The importance of water in its gaseous
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Table 2.2: Comparison of atmospheric temperature lapse rates § derived from the Wagga
Wagga radiosonde and some standard atmospheric models.

Temperature d
Profile (K/km)
Wagga Sonde  -5.94
MILS -5.98
MLW -5.41
SubS -6.22
SubW -4.88
TROP -6.33
Us62 -6.49

form, or water vapour, particularly its impact on the propagation of EM radiation, has
been the focus of too many authors to mention here. These interactions may be modelled
with software packages such as 69 (Vermote et al., 1997b) or MODTRAN4 (Anderson
et al., 2000). Knowledge of the total amount of water vapour in the atmospheric column,
also known as precipitable water, is required for accurate modelling.

Precipitable water at any given time may be estimated indirectly from satellite (King
et al., 1992; Gao and Kaufman, 1999) or airborne (Roberts et al., 1997) measurements of
reflacted solar radiation, from surface measurements of temperature and water vapour
pressure (Prata, 1996; Niemeld et al., 2001) and direct-beam solar spectra irradiance
(Prata, 2000), or traditionally with profiling instrumentation such as radiosondes. For
this thesis, estimating water vapour concentrations from radiosonde measurements alone

shall be considered.

Estimating Precipitable Water Values

Total precipitable water ugse is defined as the total mass of water vapour in the at-
mospheric column and has unit g/cm?. Apart from measuring atmospheric pressure P
and temperature 7', radiosondes also measure a quantity known as the mass mixing ratio
m, (sometimes referred to as the specific humidity), with units g/kg, and represents the
ratio of the density of water vapour to the density of air. That is,

My = — 28 (2.5)

Pwv T Pda

where py, and pg, denote the density of water vapour and dry air respectively. Note

that the above quantities are functions of altitude (z).
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Atmospheric Water Vapour Profile
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Figure 2.6: Water vapour density profiles for the six model atmospheres used in 6S.

To estimate w20, knowledge of the variation of py, and pg, with altitude is required.
An illustration of the variation of water vapour density with elevation for the six model
atmospheres used in 6S is given in Figure 2.6.

The density of dry air at an altitude z can be calculated using

316K, P(z)
T(z) ° 101325k Pa

Pdal2) = 1.292 x 1073( ) (2.6)

(refer to Eq. (A.4), Appendix A, p. 223). Rearranging Eq. (2.5) as

siley < Rt (27)

and using Eq. (2.6), an estimate of total precipitable water in the atmospheric column
is calculated as,

zf
T, / pun(2)d2, (2.8)

where z; and z; are the initial and final altitudes at which radiosonde measurements

were acquired. Applying this approach to the radiosonde data for the Wagga Wagga
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Table 2.3: Some values of precipitable water for various bands Latitudes. (Summer
conditions only}

Source Precipitable Water (g/cm?)
Tropical Mid-Latitude Sub-Arctic
Junge (1963) 4135 3521 2.1-13
65 Vermote et al. (1997b) 4.12 2.93 2.10
MODTRAN4 Anderson et al. (2000} 4.11 2.92 2.08

Bureau of Meteorology station gives the estimate of ugso = 1.83 g/em?. This method
of calculating the total amount of precipitable water in the atmosphere will be regarded
in this thesis as providing the best estimate. It will be referred to as the column integrated
approach.

Water vapour pressure, e (with units hPa), represents the contribution that water
vapour makes to the total atmospheric pressure. When a parcel of air contains the
maximum amount of water for a given temperature, the air becomes saturated. The
water vapour pressure associated with a saturated parcel of air is known as the saturation
water vapour pressure and is denoted as e;. Relative humidity, RH (measured as a
percentage %}, gives a measure of the amount of water vapour in the air compared to
the maximum amount that can be held at a given temperature. It can be calculated
using

RH = £ x 100,

€s
and is another quantity that is measured by radiosondes. Appendix A contains formulae

for calculating e from radiosonde measurements of P, I" and RH.

Spatial Patterns of Precipitable Water

In applications that require estimates of precipitable water for modelling purposes, it
is often sufficient to use values approximated from regional climate databases. Such
databases consist of the long-term climatology from weather stations sparsely located
around the globe. By splitting the globe up into broad bands of equal latitude, some
examples of precipitable water values for the tropic, mid-latitude and sub-arctic regions
are given in Table 2.3.

For more localised, and accurate, estimates of precipitable water, the column-integrated

approach using radiosonde data is a preferable scenario. However, the spatial distribu-
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tion of precipitable water estimates is limited to the number of radiosonde launch sites
and their proximity to the geographic region of interest. Figure C.1 (Appendix C) gives
the location of four radiosonde launch sites around Western Australia. Whilst they are
quite far apart, for some studies the spatial resolution of the estimates of precipitable
water obtained from the four radiosondes is adequate.

New satellite remote sensing technology (e.g. MODIS, see King et al. {1992)) enables
accurate global mapping of precipitable water distribution at high spatial resolution on
a daily basis. Some emerging technologies {e.g. GIFTS) promises radiosonde-quality
soundings of atmospheric pressure, temperature and water vapour concentration at even

higher spatial and temporal resolutions.

2.2.3 Atmospheric Ozone

It terms of abundance, ozone is a relatively minor constituent of the Earth’s atmosphere.
Yet its role in shielding the Earth’s inhabitants from most of the harmful solar radia-
tion is widely known. Particularly well known is the observed thinning of the ozone
concentrations over the Antarctic regions in the southern hemisphere spring months.
Ozone profiles exhibit a great deal of seasonal and geographical variation. Passive®
ground-based approaches using a statistical curve-fitting procedure for inferring ozone
concentration from solar irradiance measurements (King and Byrne, 1976}, or active
airborne remote sensing techniques, such as LIDAR (Light Detection and Ranging} to
measure ozone profiles (Browell, 1989, cited in Stephens (1994)), provide limited spa-
tial information about the distribution of ozone around the globe. Space-borne remote
sensing technologies, however, have provided ozone concentrations for almost the entire
globe on a daily basis since the 1970s.

Since it is beyond the scope of this thesis to survey all the intricacies that a detailed
study of ozone concentrations would entail, some of the profiles of ozone used by standard
model atmospheres are briefly presented along with a discussion of widely used space-

borne sensors designed to map the horizontal distribution of total ozone concentrations.

nlike active approaches for estimating atmospheric ozone concentrations, that involve the sen-
sor/observer sending electromagnetic radiation into the atmosphere and measuring the return signal
{echo), passive methods involve receiving EM from atmospheric constituents illuminated by an indepen-
dent source, e.g. the Sun.
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Some Model Profiles

Column-integrated (or total) ozone concentrations are measured in g/cm?, atmosphere-
centimetres (atm-cm) or Dobson units (DU)%. In general, ozone concentrations peak
in the stratosphere 15-30 km above the Earth’s atmosphere and reduce to zero at an
altitude of around 50 km. Ozone concentrations of 4 x 10756 x 107% g/m? can be
observed in the troposphere up to about 8 km, as indicated in Figure 2.7, but ozone is
by far a stratospheric gas. One of the objectives of the Stratospheric Aerosol and Gases
Experiment (SAGE) [, IT and III was to gather data concerning the spatial distribution of
ozone by mapping vertical profiles from space-borne sensors employing a limb-profiling®
approach. Figure 2.7 presents six profiles for the model atmospheres used in 6S (Vermote
et al., 1997b). The corresponding ozone concentrations for each profile are: US 1962
standard atmosphere, 344 DU; mid-latitude summer, 319 DU; mid-latitude winter, 395
DU, sub-arctic summer 345 DU; sub-arctic winter 480 DU; and tropical, 247 DU.

An explanation for the observed peak in ozone (O3) concentration in Figure 2.7 is

given by considering the following:
e Concentrations of oxygen gas (O3) decrease with increasing altitude.

e Ozone is created when oxygen gas and atomic oxygen combine in the presence of

sunlight (with energy hr) and a neutral third agent M {Na, for example). That is,
Oq + hr — 20,

O+ 0+M— O3 + M.

Reduced O3 concentrations above 15-20 km mean that less ozone is created via

the above process.

¢ Ozone is destroyed when it absorbs EM radiation of an appropriate energy level

to lead to dissociation. That is,

O3+ NO — O3 + NOg,

“The Dobson unit represents the thickness (in mm) of the slab of ozone that results when the at-
mospherie column is brought to standard temperature and pressure and multiplied by a factor of 100.
For example, a reading of 300 DU would correspond to a slab of ozone at STP of 3 mm. Also note that
1000 DU = 1 atm-cm.

SWhen a space-borne sensor’s line-of-sight to the Sun is intercepted by the Earth’s atmosphere, a
profile results from the Sun appearing to set behind the Earth.
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Oz + hv — Qg+ O.

e A consequence of ozone destruction is that very little EM radiation of sufficient

energy to lead to ozone creation penetrates to the lower levels of the atmosphere.

For further details on ozone creation and destruction, the reader is directed to Junge
(1963).

The processes described above keep the concentration of ozone fairly constant, and
it is only when an introduced agent, fulfilling the role of M, inhibits the formation of
ozone (such as the infamous CFCs) that the equilibrium no longer exists. Clearly the
rate of ozone destruction is at its peak when ozone is exposed to the solar radiation.
At the subpolar latitudes in the winter months, very little solar exposure is present
for dissociation to occur and consequently (Junge, 1963}, ozone concentrations for the

sub-arctic regions will, in comparison to other latitudes, be greater.

Mapping Total Ozone Concentrations from Space

Spatial distributions of total ozone concentration have been provided by space-borne
sensors since 1978. The sensor used, the total ozone mapping spectrometer (TOMS), has
been on board the Nimbus-7 (Novemher 1978-1993), Meteor-3 (August 1991-November
1994), ADEOS {July 1996—-June 1997) and Earth Probe (July 1996-) satellites.

TOMS provides an estimate of total ozone concentration by comparing the relative
strength of the signal backscattered by the atmosphere for a small number (six for the
Earth Probe TOMS) of wavelength bands located in the ultraviolet region of the EM
spectrum known as the Hartley-Huggins bands (Stephens, 1994, p. 272). Further details
are given in McPeters et al. {1998).

The TOMS provides high-quality estimates of ozone concentrations for spatial res-
olutions of 200 x 200 km? (Nimbus-7 TOMS) down to 40 x 40 km? resolution (Earth
Probe TOMS). The Earth Probe TOMS, for example, achieves a 3% absolute error,
+2% random error and a systematic error of at most +0.6% resulting from a drift in
sensor responsivity after the first 1.5 years of operation (McPeters et al., 1998). It has
been shown that the TOMS estimates (from Nimbus-7 to Earth Probe) generally agree
with measurements from ground-based stations to within 1% (McPeters et al., 1998).

Since mid-1995 the Global QOzone Monitoring Experiment (GOME) on the ERS-2
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satellite (European Space Agency (ESA)) has provided daily estimates of ozone con-
centration and profile for any location on the globe. The instrument, which measures
solar radiation reflected by the earth-atmosphere system over four channels in the wave-
length range 240-790 nm, derives an estimate of total ozone concentration, employing
differential absorption spectroscopy, with an absolute accuracy of ~ 3%. A more recent
instrument, on ESA’s ENVISAT (ENVIronmental SATellite) and known as Global Ozone
Monitoring by Occultation of Stars (GOMOS) seeks to estimate ozone, and some trace
gas, profiles by maintaining line-of-sight to a set of stars sets through the atmosphere
(Wehr et al., 2002).

2.2.4 Other Gases

Apart from water vapour (Hz0) and ozone (Oj3), other gases that play an important
role in influencing EM radiation in the wavelength regions between 400-2300 nm are
(Vermote et al., 1997b; Vermote, 2002}: oxygen (Og); methane (CHy); carbon dioxide
(CO32); carbon monoxide {CO); nitrous oxide (NoO) and nitrogen dioxide (NO3). Com-
pared to the spatial distribution of atmospheric water vapour and ozone, these so called
other gases are uniformly mixed and vary with altitude and temperature and pressure

profiles in the fashion to be described in Section 2.3.3 {p. 28).

2.2.5 Atmospheric Aerosols

Aerosols are suspended particulates in the Earth’s atmosphere. The impact of aerosols
on remotely sensed observations, soclar radiation and climate variability has been dis-
cussed by many authors (examples are given the following). The varying spatial and
temporal patterns of aerosol; their size and number distributions, different composition
and absorption characteristics, make monitoring aerosol distributions and concentra-
tions more elusive than the molecular counterparts—whose characteristics are relatively
well understood. Much research, therefore, has been directed towards monitoring aerosol
spatial distributions using both ground-based networks and remote sensing technologies.
The following discussion considers only passive approaches to measuring aerosol prop-
erties. However active approaches such as Lidar have been used in monitoring aerosols,

in particular their role as cloud condensation nuclei (CCN).
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Aerosol Types and Sizes

The primary, or direct, sources of asrosols in the Earth’s atmosphere are natural in origin.
For example, aercsols can be windswept sand or dust from weathered or eroded surfaces,
ash and soot from volcanic eruptions or forest fires, or sea spray resulting from the burst
of bubbles and subsequent jet drop at the ocean surface {Twomey, 1977; d’Almeida et al.,
1991). While some of the sources of natural aerosol may result from human activity,
manmade sources of aerosol are typically due to pollutants and industrial emissions. An

example of four aerosol types {or models) described by d'Almeida et al. (1991) are:

1. Continental or rural aerosols—described as those aerosols found in remote, pollution-
free continental areas such as non-forested savannah and rural environments (clean-
continental); or airborne particulates in regions slightly affected by industrial ac-

tivity, traffic, and other anthropogenic activities (average-continental).

2. Urban or industrial aerosols—aerosols located in regions of high man-made pollu-

tion, from, for example, industrial power plants, residential sources or traffic.

3. Desertic aerosols—originating in arid or semi-arid regions of the world; these
aerosols are mineral particles that, under favourable meteorological conditions,

are transported into the atmosphere,

4, Maritime aerosols—burst bubbles at the ocean’s surface, and the resulting jet
drops occurring in the remote maritime environments, well away from coastal ar-
eas, are called clean-maritime aerosols. In the vicinity of pelluted cities where
continental airmasses encounter the marine environment (particularly near indus-

trialised harbours or polluted regions) aerosols are termed marine-polluted.

For the scope of this thesis, the various aerosol types impact the form of phase functions
and single scattering albedo (Section 2.3.5).

The characteristic difference between molecules and aerosols in the atmosphere ig
their respective size characterised by a radius, r. Molecules have a radius on the order of
0.1 nm, while aerosols can have a range of radii from 100-1000 nm. Aerosols are classed
into three groups according to their radius. They are (i) Aitken particles (r < 100
nm); (i) large particles (100 < » < 1000 nm); and giant particles (with r > 1000 nm).
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Cloud droplets, however, which are considered a special subgroup of atmospheric aerosols
(Twomey, 1977), can have radii from 10? nm (in clouds) to 1 mm (as rain drops). An
understanding of the aerosol size and number distributions is not essential to the scope
of this thesis and shall not be discussed here. The author acknowledges however, the
importance of these parameters, particularly their impact on the form of the aerosol

phase function (see Section 2.3.5).

Vertical Distribution of Aerosols

Aerosols generally reside in the troposphere; that is, below altitudes of around 12 km.
Stratospheric aerosol concentrations are generally quite small except after volcanic erup-
tions which inject masses of sulphate (804) particles into the stratosphere; in some cases
increasing the concentrations by two orders of magnitude (Kaufman et al., 1997a; King
et al., 1999). One of the objectives of SAGE 1, II and IIT was to retrieve aerosol pro-
files by employing solar occultation (another name for limb-sounding). However, as Box
and Box (2001) point out, the approach works well in the stratosphere but not the tro-
posphere. Thus for the remainder of this thesis, unless stated otherwise, aerosols will be

implied to mean tropospheric aerosols.

Monitoring Spatial Distributions of Aerosol

The significance of measuring atmospheric aerosol properties lies in their direct and
indirect impact on the Earth’s atmosphere. Aerosols directly affect the solar radiation
budget by scattering and absorbing the solar irradiance as it propagates through the
Earth’s atmosphere. Measuring and monitoring aerosol properties has value in gaining
an understanding of their impact on climate and the radiative budget, their role as
condensation nuclei in cloud/haze formation {d’Almeida et al., 1991; King et al., 1992;
Box and Box, 2001), and their effects on space- or air-borne measurements of surface
reflectance (Kaufman, 1984; Fraser and Kaufman, 1985; Kaufman and Brakke, 1986).
Kaufman et al. {1997b) state that a satellite-based approach to measuring the spatial
distributions of aerosol concentrations has the potential of offering regional to global
mapping on a monthly, weekly and even daily basis; providing the routine monitoring
necessary to gain a fuller understanding of aerosol characteristics, their sources and sinks.

The area of passive remote sensing of aerosol properties is reviewed in Kaufman et al.
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{1997a), King et al. (1999), and Dubovik et al. (2002). A method for estimating aerosol
concentrations with satellite-based observations will be described in Chapter 3.
Aerosol concentrations are also monitored with ground-based instruments. Networks
of solar photometers measure atmospheric optical thickness (see Section 2.3.3), from
which total (columnar) aerosol concentrations are derived. The Aerosol Robotic Network
(Holben et al., 1998, AERONET) is one such network with solar photometers spread
around the globe, the data from which has been used in studies of optical thickness
(Formenti et al., 2002) and absorption and size distribution (Dubovik et al., 2002).
Apart from providing important global-scale information on aerosols and their influence
on climate, these ground-based instruments and methods (Section 2.3.3) provide crucial

validation for space-borne measurements (Holben et al., 1998).

2.3 Radiative Transfer in the Terrestrial Environment

Section 2.1 described the sources of variation in the solar irradiance spectrum, prior to
the solar radiation encountering the Earth’s atmosphere. Section 2.2 described some of
the constituents of the terrestrial atmosphere—specifically molecules and aerosols with
concentrations that vary considerably, both geographically and vertically; on temporal
scales from minutes to decades. This section describes the interaction of the solar irradi-
ance with the molecules and aerosols in the atmosphere and describes the mathematical
formalisms that lead to a simplified version of the radiative transfer equation, which pro-
vides a quantitative model of the satellite-measured signal of emergent radiaticn from

the earth-atmosphere system.

2.3.1 Radiance and Irradiance

Radiance denoted L) is the contribution of electromagnetic power incident on a unit
area dA by a cone of radiation subtended by a solid angle dw (in steradians, sr) at an
angle 4 to the surface normal. It has units W/m?/sr and is expressed mathematically
as’

Ly(8,¢) = cos(8)dwd A.
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In spherical polar coordinates, dw = sin(f}d8d¢ where & and ¢ are the zenith® angle
and azimuth”, respectively. If the radiance from the Sun incident at the TOA is denoted
Linca, then the solar irradiance® is obtained by integrating over all possible zenith angles

and azimuth directions, that is,
2w pwf2
Py = / / Linen sin(8) cos(8)d6d¢. (2.9)
o Jo

Defining ¢ as the cosine of the zenith angle, let the above be rewritten as

s d 1
Fip = / / Linersidpdg. (2.10)
1] 1]

If a radiation field is termed isotropic, then at any point in the field the intensity of
measured radiation is independent of the direction of observation (i.e., independent of £

and ¢). In this case, Eq. (2.10) is evaluated to yield,
Fax = mLinea,
which can be rearranged to give the expression for radiance,
Liney = ‘F%A'- (2.11)

If the illuminating radiation is composed of parallel beams emanating from the direction

(#0; ¢0JJ then
E
Linex = =2 0(p = 10)5(¢ = du), (2.12)

{Chandrasekhar, 1960, p. 22) which is equivalent to Eq. (2.11) when o = pp and ¢ = ¢y.
2.3.2 The Absorbing and Scattering Atmospheres

The two dominant mechanisms affecting the propagation of EM radiation of wavelengths
between 400-2500 nm in the terrestrial atmosphere are absorption and scattering, In
this thesis, absorption and scattering are treated as two separate events, although their
combined effect is known as extinction.

Propagation of EM radiation through the atmosphere is often regarded as indepen-

dent of azimuth direction, ¢, and the intensity of radiation changes as a function of

A zenith angle is a vector’s angular deviation from an outward normal to the Earth’s surface.

TAzimuth is the horizontal angular variation of a vector from a reference direction (usually in the
direction of motion or true north).

BSolar irradiance, also known as total radiant flux per unit area—or radiant flux density—is denoted
here as Fyy, that is corrected for Earth-Sun distance, to distinguish it from solar irradiance at the mean
Earth-Sun distance Fpy (see p. 8).



26

zenith angle, 8. Recall that # represents the inclination of a vector in the direction of
propagation with the outward normal to the Earth’s surface, and that g = cos(#).

In the following discussion we shall refer to the absorbing atmosphere (mainly cor-
responding to the gases, although aerosol absorption, discussed later, is comparatively
marginal) and the scattering atmosphere (the molecules and aerosols).

The degree with which molecules and aerosols absorb and scatter EM radiation
is highly dependent on the particular wavelength region of the EM spectrum under
consideration. To limit the problem, discussion here is restricted to wavelengths between

400-2500 nm.

2.3.3 Optical Thickness

A measure of the opacity or turbidity of the atmosphere for a given wavelength of
EM radiation is the quantity called optical thickness (or often optical depth). From an
altitude z above the Earth’s surface to the top of the atmosphere, the total optical depth

is calculated as,
v.=)
Trot _/ Ktotabatmdz,
z

where fot IS the total extinction coefficient (which can be specified for each of the mole-
cular species in the atmosphere) and 8,4y is the density of the intervening atmosphere
between z and the top of the atmosphere. For the absorbing and scattering atmospheres

we have respectively the absorbing and scattering optical thicknesses Tups and 7gmy -

Absorbing Atmosphere

The absorbing gases in the atmosphere that most impact EM radiation in the wavelength
region of interest are water vapour (H2Q), ozone {O3) and, to a lesser extent, the other
gases described in Section 2.2.4. For each of these gases, an optical thickness can be
calculated given the concentration of the gases in the atmospheric column. The optical
thickness of the absorbing atmosphere T,p. is then a sum of the optical thickness for

each species, that is

Tabsh = E TgXs
0=H20.05.C02,CHi, ..

and the transmittance through the absorbing atmosphere in the direction p can he

represented as the simple product of transmittance values for the individual gases, that
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1s

Tapsr (1) = 11 Torr (2.13)
Q‘=H20,03,COQ,CH4,...

where expressions for T, for some gases are presented below.

To EM radiation of certain wavelengths the absorbing atmosphere appears trans-
parent (Tynsy 18 essentially zero) and the transmittance at these wavelengths is umity.
Wavelength regions where T,1,.1 = 1 are called atmospheric windows, and often satellite
sensors that image or map features on the Earth’s surface are designed to sense in these
regions. Unfortunately at wavelengths beyond 1000 nm, signal levels decrease and satel-
lite sensor bandwidths increase. Therefore, it is rare that sensor bands are entirely in the
atmospheric windows and it is important to correct for the effects of gaseous absorption

(discussed further in Section 3.3.3, p. 84).

Some Expressions for Direct Transmittance

A standard expression for calculating the direct transmittance of a beam of radiation
at an angle @ off nadir through water vapour is the power law (Ouaidrari and Vermote,

1999; Prata, 2000),

Traoa(it) = exp | —amon(upraom)™¥ 2‘”] = (2.14)

where ugyo is the column integrated value of precipitable water (see Section 2.2.2),
m = 1/p, and agooy and B0y are wavelength-dependent coefficients. Similarly, an
expression for direct transmittance for ozone that is often used is the Beer-Lambert-

Bouguer law®

Tosa(u) = exp[—aoarupsm] (2.15)

where ups is the total ozone concentration for the atmospheric column, and s, is the
wavelength-dependent ozone absorption coefficient (see for example Brion et al. (1998))}.
For the other gases (OG) in the absorbing atmosphere, an expression often used for

calculating the direct transmittance (Ouaidrari and Vermote, 1999) is,

Toca(s) = I oo {_%A ( % m) ﬁg,\] |

§=02,CH4,COs,...

®The Beer-Lambert-Bouguer law states that, the intensity of radiation that passes through a slab of
medium with optical thickness 7, at an angle # to normal incidence, is reduced by the factor exp(—7/pu).
Also recall that g = cos(#).
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where P; and P, are the surface and standard pressures (= 1013.25 hPa) respectively.
Generally all gaseous absorption is dependent on pressure and temperature profiles (Ver-
mote et al., 1997b). Broadening of the absorption features in gaseous transmittance
spectra results from pressure-induced collisions (Lorentz broadening; dominating at high

pressures) and thermal motion (Doppler broadening; dominating at high altitudes).

Scattering Atmosphere

Omne of the characteristics defining molecules and aerosols is their respective size or radii
{see Section 2.2.5), and the way in which they scatter EM radiation is also related to their
size. The branch of scattering theory that deals with EM radiation scattered by molecules
{where the wavelengths are much larger than the physical dimensions of the scattering
object) is called Rayleigh scattering theory; for aerosols (with comparable dimensions to
the wavelengths of radiation) it is Mie scattering theory. As Twomey (1977) pointed
out, Rayleigh scattering theory is a special case of the more encompassing Mie theory.

The optical thickness of the scattering atmosphere, denoted 74is, is given as,

Tdifixa = TRX + ™M)

where the mpy and 7y denote the molecular {or Rayleigh) optical thickness and aerosol
(or Mie) optical thickness respectively. More on the mathematical forms for the optical

thickness is given below.

Calculating Molecular Optical Thickness

Molecular optical thickness may be computed with the following expression:

8m3(n2, — 1}2N, (6 + 3y P, 288.15
= 2 . 2.16
TRA BNN2 (6—77) (1013.25) ( T, ) (2.16)

Some of the terms in Eq. (2.16) require detailed explanations, the more obvious terms

however are: A denoting the wavelength in micrometers (um); P, and T, the surface
pressure and temperature values (in hPa and K} respectively; the columnar number
density N, (= 2.154 x 10*> cm~2 for standard conditions}; and N, which is the molecular
number density {= 2.547 x 10'% cm~3 for standard conditions).

The refractive index of dry air is denoted as n,y. The variation of refractive index

wilh wavelength is expressed with the dispersion equation mentioned in Peck and Reeder
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(1972) as,
2406030 n 15997
130 — A2 38.9 — A%

where wavelength () is expressed in ym. Equation (2.17) is valid for dry air at standard

(ngx — 1) x 10° = 8342.13 +

(2.17)

pressure (1013.25 hPa) and 288.15 K, which explains the appearance of these values in
Eq. (2.16). Peck and Reeder (1972) present the following dispersion equation which
they observed to be a better fit to observational data than Eq. (2.17), particularly in

the near-infrared regions 0.9-1.7 pm:

5791817 167909

8

. _ : 2.18
(nax = 1) < 10" = 238 0185 — -2 * 7360 a2 (2.18)

Disagreement between the value of n, calculated with (2.17} and (2.18) is very small,
with the greatest discrepancy (observed in the region 800-2000 nm) on the order of
1077%. A value for the refractive index of dry air at 1013.25 hPa and 288.15 K at
590 nm is n,y = 1.00028.

The scattering of natural light'® by anisotropic molecules (e.g. Nz, Oz, CO3z) with
random orientations was reviewed by Chandrasekhar (1960, p. 45-50) and Young (1981).
When natural light is scattered by a molecule, the scattering event can be termed either
clastic—where the scattered radiation observes no loss of energy; or inelastic—where
the energy of the scattered radiation is different to the incident energy, and there has
been a shift in the wavelength of radiation, i.e. Raman-shifted!l. A detailed explanation
of the interaction of EM radiation at the atomic and molecular levels is given in Loudon
(1983, Ch.8).

Anisotropic molecules alter the angular distribution of scattered light and increase

the total scattering by the factor (in Eq. (2.16)},

6+ 3y
6—Tv’

where « is termed the depolarisation ratio for dry air. Young (1980} gave a value
for v = 0.0279 that incorporates Raman-shift effects, which become prominent when
molecules are strongly anisotropic {Young, 1980). Other authors have received criticism

for using depolarisation ratios that do not take into account Raman effects; the error

1PThe term natural light is often used to refer to unpolarised light. Unpolarised light can be thought
of as transverse waves with random orientation, i.e. no preferred direction of vibration.

1 The Raman effect is observed when light scattered from a molecule has a different wavelength to the
incident light, and is said to be Raman-shifted. A change in wavelength results in a change of energy in
the scattered beam since B = he/A.
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resulting from the use of these incomplete values of + in calculating molecular optical

thickness, has been demonstrated to be around 4% (Young, 1980, 1981; Teillet, 1990).
Teillet (1990) reviewed various other expressions for caleulating the molecular optical

thickness and used Eq. (2.16) as a reference. One of these other expressions was that of

Frohlich and Shaw {1980),

P -
_ s —(3.9140.0742+0.05/ 1)
TRA (1013_25) (e + B2)A , (2.19)

where A is the wavelength in pm, P, is the surface pressure (hPa), z is the elevation
above sea level (in m), and o and 3 are seasonal- and latitudinal-specific coeflicients
given by the authors. Equation (2.19) is based on a least-squares curve fitting to values
of T calculated with Eq. (2.16) for a number of standard atmospheric profiles and

incorporates Rayleigh scattering form water vapour.

Measuring Aerosol Optical Thickness

Spectral estimates of aerosol optical thickness can be obtained by subtracting molecu-
lar optical thickness and any absorption optical thickness values from the total optical
thickness. This is expressed mathematically by numerous authors {e.g. Junge (1963, p.
143)) as,

TMA = Teoth — TRA — Tabsh (2.20)

Indeed, Eq. (2.20} is the basis behind many ground-based instruments designed to mea-
sure aerosol concentrations (refer to Section 2.2.5). Retrieving aerosol optical thickness
from surface extinction measurements of solar irradiance will briefly be discussed in the
following, while some methods for estimating aerosol optical thickness from space-borne
measurements will be discussed in Chapter 3 (pp. 103-109).

The measurement of solar irradiance is known as solar photometry, and the instru-
ment used to acquire these measurements is known as a solar photometer. Earth- or
ground-based solar photometers measure the reduction in intensity of radiation along a
direct beam from the Sun to the solar photometer. From these measurements, estimates
of the atmospheric turbidity, or total optical thickness, may be inferred. The solar irra-
diance measured by a solar photometer at the Earth’s surface assumes the form of the

Beer-Lambert-Bouguer law,

IsolA = FOA EXP(—TmtA/#U)a (221)
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where Fjy is the solar irradiance at the TOA, 7y is the total atmospheric optical
thickness and pgp is the cosine of the solar zenith angle dq.

To retrieve atmospheric optical thickness values from the ground-based solar irradi-
ance measurement, the Langley method (Harrison and Michalsky, 1994) of analysis, in
which measurements of I, are made for a number of different values of 8, is often

employed. In logarithmic form, Eq. (2.21} becomes,

In(Zeoin) = In(Fon) ~ Trotr/ o (2.22)

It can be seen from Eq. (2.22) that given different values of I,y acquired for different
values of fg, and assuming that the atmosphere does not change considerably over the
time that measurements were made, an estimate of Tty can be retrieved from linear re-
gression. The quantity 1/p is known as the airmass. Using the time series of irradiance
measurements and Eq. (2.22) to extrapolate to zero airmass, an estimate of the solar
constant Fjy for a given wavelength can he calculated; which may serve as a diagnostic
check for the solar photometer.

The Multi-Filter Rotating Shadowband Radiometer (Harrison and Michalsky, 1994,
MFRSR} is an example of a solar photometer that utilises the Langley method for
estimating total atmospheric optical thickness. The MPFRSR measures a time series
of total-horizontal, diffuse-horizontal and direct-normal irradiance values at six narrow
(~ 10 nm FWHM) bands between 400-960 nm, and one broadband silicon detector band.
The total-horizontal irradiance, fiqia1x, i the measurement made by the MFRSR of the
entire sunlit hemisphere. A rotating arm holding a narrow metal strip occludes the Sun
from the sensor to obtain the diffuse-horizontal irradiance, Igigusey. The direct-normal
contribution, ljiynermy, 18 defined as the irradiance that is incident a surface normal to
the direct beam. It is calculated by subtracting the diffuse-horizontal irradiance from

the total-horizontal irradiance and dividing by the cosine of the solar zenith angle, i.e.

IdirnormA = (Itotalz\ - Idiffuse,\)/.u‘[)-

For an MFRSR, the measured solar irradiance (Eq. (2.21)) Isn = Ldirnorma. For
some MFRSRs (Harrison and Michalsky, 1994; Holben et al., 1998; Prata, 2000), I
data are stored as 1- or 2-minute averages. These instruments, therefore, acquire high

temporal resolution time series of irradiance measurements (an example is given in Figure

45, p. 133).
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To retrieve total atmospheric optical thickness estimates from MFRSR data, the
time series of irradiance measurements is used and the Langley method of analysis is
applied to each band—with the exception of the band around 933.2 nm because of the
power law behaviour of water vapour attenuation at those wavelengths (e.g. Eq. (2.14,
p. 27). An estimate of Ty is the slope of the line derived from linear regression of
Eq. (2.22) using the morning (AM) or afternoon (PM) irradiance data (Figure 4.6, p.
133, provides an illustrative example). Moreover, since at small zenith angles (small
airmasses) there is a greater likelihood of changes in atmospheric conditions affecting
Langley analysis, and that at large zenith angles (large airmasses) atmospheric refraction
plays a significant role in distorting irradiance measurements, it is suggested (Harrison
and Michalsky, 1994; Formenti et al., 2002) regression should only include those data
acquired for airmasses between 2-6. It is also recommended that a robust regression
procedure be emploved in estimating 7, since patches of cloud in the data translate
into outliers in the regression analysis; and ordinary least squares estimates are very
sensitive to outliers.

Atmospheric water vapour strongly attenuates the signal in the MFRSR 933.2-nm
band. For the three other bands, it is atmospheric ozone that is the dominant absorbing
gas. In fact, these three MFRSR bands are located in what is known as the Chappuis
band (see Figure B.1, Appendix B), and Eq. (2.20) becomes,

TMA = Thoth — TRA — TO3A {2.23)

Spectral variation of Ty is often assumed to follow a Angstrém-type relationship.
That is,
v = A5 (2.24)

where A and B are the Angstrém coefficient and exponent respectively. The aerosol
optical thickness can be extrapolated to any wavelength region of interest, given esti-
mates of A and B. Furthermore, if a value of aerosol optical thickness gy, is known,

or measured, at reference wavelength Ay, then FEq. (2.24) yields,

A

-B
TMA = TMAD (A_o) . (2.25)

Typical values of the Angstrém exponent, B, for Mie scattering range from 1-1.8 (Junge,

1963; Twomey, 1977; Prata, 2000; Formenti et al., 2002).
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2.3.4 Diffuse Reflection and Transmission

Initially, consideration is only given to propagation of the Sun’s EM radiation through
the Earth’s scattering atmosphere and the resulting diffuse radiation field. Diffuse radia-
tion is a result of natural light undergoing either one scattering event (single scattering)
or many scattering events (multiple scattering). Note that the single scattering approx-

imation is only valid for relatively clear atmospheres with low opacity (i.e. small T ).

Some Definitions and Assumptions

Fundamental to the treatment of the radiative transfer presented here, are the assump-
tions that the atmosphere can be stratified into horizontally homogeneous layers (here-
after referred to as a plane-parallel atmosphere), and that the scattering atmosphere is
bound on two sides with optical thicknesses 7 = 0 and 7 = Tg5.

The direction of propagation of EM radiation incident at the TOA or Earth’s surface
from the Sun will be denoted by zenith angle, 8y, and azimuth, ¢¢. Similarly, the direc-
tion of EM radiation emerging from the Earth's surface-atmosphere system is denoted
be zenith angle, 8, and azimuth ¢. For consistency with the notation of most authors in
the field, g = cos(fy) and p = cos(f). Finally, terms inward and outward are used to
describe the propagation towards the surface of the Earth (the negative (—) direction},
and from the surface of the Earth to space (the positive (+) direction) respectively.

Finally, for a plane-parallel, horizontally-homogeneous atmosphere of optical thick-
ness Taigy, we denote the diffusely reflected radiance from the TOA as Ly (0; +p, ¢), and

the radiance transmitted to the bottom of the atmosphere as L (Taifex; —¢, @).

Reflection and Transmission Functions

The reflection and transmission functions are defined for a scattering atmosphere illu-

minated by solar irradiance, Fgy, from the direction (ug, ¢o) as,

‘ Ly (0; +u,
S(Tamas iy ) po, Po) = %ﬂ‘#—@ (2.26)
dapo
and
‘ mLa{Tdien, — 1,
T(raien; s s o, ) = TATAEN 1 0) (2.27)

Faapo
respectively. A planetary albedo, the fraction of solar radiation that is diffusely reflected

back into space, is defined by integrating Eq. (2.26) over all possible (outward) zenith
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and azimuth directions, that is,

1 2T 1
sax(Taifex; o) = - / / S(Taster; 1, @5 o, o) p'dp'de’, {2.28)
v Jo 1]

which is assumed (in the above) to be independent of azimuth. The factor of 1/% ensures

that the albedo has a value of at most 1. Similarly, the diffuse transittance is defined as,

1 27 1
tax(Taigns po) = ;/0 /0 T{taier; ¢, &5 po, ¢o) p'dp’de’, (2.29)

and gives a measure of the fraction of the radiation, incident from the direction (o, ¢o),
that is diffusely transmitted through to the bottom of the scattering atmosphere.

An important property of the diffuse reflection and transmission functions is that
they satisfy the Helmholtz’ reciprocity principle, which states that § and T are unaltered
when the direction of incidence and emergence are interchanged {Chandrasekhar, 1960,
p. 172).

Finally, integrating Eq. (2.28) over all possible solar zenith angles gives the spherical
albedo, .

$x(Taimr) = fﬂ sax (Taieas ) dp’, (2.30)
which is defined as the probability that a photon that has heen reflected by the Earth’s

surface, is then reflected by the atmosphere back towards the surface (which will occur

over and over again).

2.3.5 The Radiative Transfer Equation

Modelling the Earth’s scattering atmosphere as a plane-parallel homogeneous atmosphere
with optical thickness 7 illuminated by natural (unpolarised) light, the equation describ-
ing the diffuse radiation field propagating outwards in the direction (g, ¢) is written

mathematically as,

HBLA@7#,¢)

5 = Lalmip6) — I(T5 1 0). (2.31)

In the case of a scattering atmosphere with optical thickness 74iga, the formal solution

of Eq. {2.31) (Chandrasekhar, 1960, p. 12) is,

La(0;+p,0) = Ly(7asra; +14, @) exp(—Taiern /1)

Tdiff X d.-‘—f
+ [ epr mn e T, amd @82
0
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Ly (Taigens —p @) = Ly(0; —p, @) exp{—Taigea/ )

+ -/OTCURA exp[—(TdiﬁA — T’)/,U-]J,\(T’; —Hy qb}slul,: (233)

where Eqs. (2.32) and (2.33) represent the TOA outward emerging radiance and inward
radiance at the Earth’s surface respectivelv. Equation (2.31) is known as the Radia-
tive Transfer Fquation (RTE) and for a full treatment of the preceding and following
discussions, the reader is referred to Chandrasekhar (1960).

The source function Jy contains the mathematical description of the absorption, scat-
tering and emission that needs to be included in the radiative transfer model. Thermal
emission, for example, would be included in the RTE as additive contributions through
the source function. For the scope of this thesis (400-2500 nm) however, thermal and
other energy sources are negligible and J, will only consider absorption and scattering.

The RTE is an integro-differential equation because, as illustrated in Eq (2.34) below,
Jy contains a double integral. Whilst no analytic solution to Eqs. (2.31)—{2.33) exists,
there are various approximations that can be made to recast the Eq. (2.31) into a solvable
form. It is not the intention of this thesis to review the various approximation schernes.
In the following section however, the simplest solution to the RTE is presented since it
vields a sufficiently accurate model of the space-borne radiometric signal emerging from
the earth-atmosphere system, which has found application in numerous authors’ work.
The approximation is based on the assumption that the scattering atmosphere is bound
at the bottom by a Lambertian surface!?, and the RTE is recast as an equation in terms

of surface reflectance {or albedo) ps) and optical thickness 7yigy.

Modelling TOA Emergeni Radiances

Here a mathematical maodel for the EM radiation emerging from the top of the Earth’s
scattering atmosphere is presented. The formulation is based on the assumption that
the scattering atmosphere of optical thickness 7 = 74;4) is bound at the bottom by a

Lambertian surface with reflectance ps». The radiance emerging from the TOA in the

?Radiation reflected by a Lambertian surface is isotropic {recall definition, p. 25) for any illumination
direction, provided that the illumination is uniform across the surface.
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direction (u, ¢) is given as,

1 2w 1 ,
LY = La(0; +u,0) + - / ] T{taier; #4031, ') Ley pf'dp’d g’
0 1}

+  Lgyexp(—7aiir/p), (2.34)

where the first term on the right-hand side of the above represents the radiance reflected
by the scattering atmosphere in the direction (p,¢) and is termed the path radiance,
later (p. 38) denoted Lypy; the second term (the double integral) represents the radiance
diffusely transmitted through the scattering atmosphere, with T" defined on page 33,
and contains the outward, surface-leaving radiance, Lgy; and the final term on the right-
hand side corresponds to the attenuation of the surface-leaving radiance via scattering
out of the direct beam. The latter term is known as the direct radiance which obeys the
Beer-Lambert-Bouguer law of extinction.

If it is assumed that the surface-leaving radiance, Ly, is isotropic (by the definition of
a Lambertian surface) then integrating over the outward hemisphere—as in Eq. (2.10)—

gives the total irradiance leaving the Earth’s surface (sometimes referred to as exitance),

2r 1
Flp = /o /o Lopdpdg = mly. (2.35)

Furthermore, by using the definition of diffuse transmittance {Eq. (2.29), p. 34),
Eq. (2.34) may be rewritten as,

L3 = La(0; 44, @) + Loy [exp(—7aisea/ 1) + tar{Taisa; i) (2.36)

There are three components to the solar irradiance that propagates through the
Earth’s scattering atmosphere to the Earth's surface: firstly, there is direct component
representing the reduced intensity solar irradiance that results from scattering out of
direct beam, namely,

Faspo exp(—7aign/to); (2.37)

secondly, there is the radiation that is diffusely transmitted to the surface which, using

the expression for the diffuse transmittance Eq. (2.29), is written as,

Faxpo tax(Tamss o) (2.38)

and finally, there is a component that results from the interaction of the outward radiance

from the surface, Lgy, that is reflected by the scattering atmosphere back towards the
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surface. This final component is obtained by combining Eq. (2.10), for an isotropic

radiation field, and the spherical albedo Eq. (2.30) yielding the expression,
TLex 52 (7an)- (2.39)

Combining Eqs. (2.37), (2.38) and (2.39), the total irradiance at the Earth’s surface is
given as,

F oo = Faapto [exp(—7aimn /o) + tar(p0)] + mLex sx(7aiga)- (2.40)

For a Lambertian surface with reflectance psy, the total outward irradiance leaving
the Earth’s surface is going to be some fraction of the total inward irradiance incident

at the Earth’s surface. In fact,

T
Fsu.rf/\

1
FsurfA

Substituting Eqgs. (2.35) and (2.40) into the above and rearranging in terms of pey, gives

= fPsA-

the following expression for the surface-leaving radiance:

_ Psx Faxpo fexp(—7aiga/po) + tax(po)]

Ly,
: 7 [1 — sx{Taimn) psal

(2.41)

To condense the notation in the above, the total transmittance through the scattering

atmosphere, Ticaty, in both the inward and outward directions is defined as,
Tacaea (po) = exp{—7aiga/t0) + taa(po) and (2.42)

Ticaea(pt) = exp{—7aima/p) + tax(p), (2.43)

respectively. Substituting the above into Eq. (2.41), and then Eq. (2.41) into Eq. (2.36)
vields the following expression for the radiation emerging from the top of the scattering

atmosphere:
Psh FdAP"(] TscatA(#‘O) Tscat,\ (,LL) (2 44)

L* = Ly(0; 4+p,¢) +
A(0; 44, ¢) 7 [1 — sa{Tdifa) psi

Note that Eq. (2.44) contains a geometric series in terms of spherical albedo, that is,

1
1 — sx(7aifn) Psi

= [sa(raim) psal®-

k=0
This component has been interpreted (Tanré et al., 1979) as the fraction of radiation
that has interacted with the surface and scattering atmosphere N times (N — oc) and

is referred to as the trapping mechanism (Vermote et al., 1997b). For a relatively clear
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attnosphere, where the value of 74, is small, the contribution due to the spherical
albedo is also small; this is discussed further in Section 3.2.1 (p. 61).

Finally, a complete model of the emergent radiation at the TOA is obtained by
incorporating the effect of gaseous absorption on the radiation along its downward and
upwards path through the absorbing atmosphere. Thus, by incorporating the total
transmittance through the absorbing atmosphere, Eq. (2.13, p. 27), in the downwards

(9) and upward (p) direction yields,

. Psx Fartro Tocarn{io) TscatA(#)}
L3 = Tupn (t0) Taven(42) 4 La(0; 441, &) + . (245
= T () T 1) { (041, ) 4 27000 Tcea (00 o (2.49

This equation is the simplification to the RTE that has been used in the work of numerous
authors (Tanré et al., 1979; Fraser and Kaufman, 1985; Kaufman and Tanré, 1996a,;
Kaufman et al., 1997b; Liang et al., 1997; Vermote et al., 1997b; Quaidrari and Vermote,
1999) in modelling the space-borne measurement of reflected solar radiation emerging
from the earth-atmosphere system. It is important to note that Eq. (2.45) is an accurate
model only if the assumptions on which it is derived are valid. When, for example, the
bounding surface has non-Lambertian properties, then Eq. (2.45) must be modified to

take this effect into account (discussed in Section 3.2).

Path Radiance and Scattering Phase Funclion

The path radiance, L (0; 44, ¢), in Eq. (2.45) is the component of the radiance emerging
from the TOA that is independent of surface reflectance. There has been considerable
interest in modelling the path radiance as it is a purely atmospheric signal from which one
can infer various properties about the earth atmosphere (King et al., 1999, for example).
The interest in path radiance in this thesis is in relation to its effect on space-borne
observations and how one might compensate for it in satellite imagery (to be reviewed
in Section 3.3.3, pp. 82-84). In the following, and hereafter, path radiance will be
denoted L.

One of the key quantities in relation to the path radiance is the scatfering phase
function. It is a function of wavelength, inward and outward geometries, and physical

properties of the scatterer (e.g. aerosol type). Chandrasekhar (1960, p. 146) used the
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single-scattering approzimation'3, to define the scattering phase function, P, as,
P(©) = B 5(ry; 1, 65 10, do),
fop
which represents the angular distribution of scattered radiance as a function of scattering
angle ©. For notational convenience, the incident (up, ¢o) and scattered directions (u, ¢}
are replaced with the forward scattering ¥ (0° < © < 90°) and back scattering ¥_
(90° < © < 180°) angles, calculated (Eckstein and Simpson, 1991} as,

cos(ipx) = Epupo — 1/ (L= p2)(1 = p3) cos(s — o),
and are interpreted as follows:

1. : the angle between a vector from the target in the specular reflectance direction,

and a vector from the target to the TOA in the direction (u, @).

#_ : the angle between a Sun-target vector and a vector from the target to the TOA

in the direction {g, ¢).

Figure 2.8 illustrates the scattering geometry described above. The phase function can
also be thought of as the probability that radiation coming from (g, ¢o) will be scattered
in the direction (g, ¢).

The single-scattering approximation can be used to express the path radiance, Ly,
described in the previous section as the contribution to the emergent radiance L* at the
TOA that has not encountered the Earth’s surface, in terms of the phase function as
{neglecting gaseous absorption),

_ FapoP(9)

P = Tl - 1) (1 — exp(—7aia(1/p0 + 1/12))] (2.46)

If the scattering optical thickness is small, Eq. {2.46) can be simplified using

1— e—Tdiff,\(l/,Lt0+1/u) ~ Ty (#0 + IJ')
ok

to

Fay
Loa= mP(B)Tcﬁﬂ’A- (2.47)

13Gince the expressions for radiative transfer incorporating multiple scattering are very complex, the
single-scattering approzimation is employed in some applications where the assumption, that a photon
is scattered only once along a given path, is valid.
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Figure 2.8: A graphical representation of the scattering geometry described in this sec-
tion, illustrating forward-(v;.) and back-(¢'_) scattering angles.

In a similar manner to the decoupling of the molecular and aerosol optical thicknesses
in Section 2.3.3, the scattering phase function P{8) may be decoupled into molecular
(Rayleigh), Pr(©), and aerosol (Mie), Pya(©), components. Note that, unlike its mole-
cular counterpart, aerosol scattering phase functions exhibit a wavelength dependence
(thus the A subscript).

This decoupling allows Eq. (2.47) to be rewritten as,

Loy = i% [PR(©)7Ra + worPua(©)Tun] (2.48)

where wyy is called the single scaitering olbedo. The single scattering albedo is a quan-
titative measure of a particle’s ability to absorb and/or scatter impinging radiation.
Molecules in the scattering atmosphere are considered conservative and wgy = 1; they
are purely scatterers. However, depending on the type considered (see Section 2.2.5),
aerosols not only scatter light, but can alse absorb a portion of the incident radiation;
woy < 1. If the particle was totally absorbing, wgy = 0. The single scattering albedo
is a wavelength-dependent quantity that varies with aerosol type and relative humidity.

d’Almeida et al. (1991) gives tabulated values of wpy for a number of aerosol types for
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wavelengths between 0.3—40 pm and for eight humidity classes.

Equation (2.48) is a model employed by some authors to represent the path radiance
contribution in their atmospheric correction algorithms (Hill and Sturm, 1988; Miura
et al.,, 2001) or in methods of retrieving aerosol (Mie) optical thickness from satellite
observations (Kaufman et al., 1997b,a; King et al., 1999). It has been pointed out that
the decoupling of the Rayleigh and Mie components of the path radiance is not valid for
wavelength regions less than 450 nm and/or for large values of 8y or @ (Vermote et al.,
1997b). The 6S software uses the successive orders of scattering (SOS) to estimate the
path radiance which Vermote et al. {1997b) claim gives a highly accurate model value
of Lpx.

The basic form of the Rayleigh scattering phase function is,
3 2
Pr(©) = 1(1 + cos*()).

Chandrasekhar {1960, p. 49) introduced the factor § = ~/(2—) where the depolarisation
ratio (see Section 2.3.3) ~ is incorporated . The expression for the Rayleigh scattering

phase function given by Chandrasekhar (1960, p. 49) is,

36
1424

(1A5
1428

)(1 + cos*(©)) + ( ). (2.49)

b | o

PR(®) =

The aeroscl scattering phase function, Py, has a form dependent on the aerosol
type considered. One of the requirements for accurate modelling of the path radiance
is that the phase function and single scattering albedo are representative of the aerosol
type for the area studied, since aerosol type varies with geographic location. Aerosol
scattering phase functions are obtained using Mie theory under the assumption that
aerosols are spherical particles. Figure 2.9 presents the scattering phase functions for
a few different aerosol types over a range of scattering angles ©. A molecular phase
function is presented for comparison purposes. The maxima in aerosol scattering phase
function for scattering angles less than 90° (relative to scattering angles greater than 90°)
indicate that aerosols are predominately forward scatterers. In contrast the symmetric
form of the molecular phase function indicates that molecules scatter equally in both
the forward and backscattering directions.

An analytic expression for Py that Aranuvachapun (1983) demonstrated gave a

satisfactory fit to realistic aerosol scattering phase functions for various types is referred
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Figure 2.9: Scattering phase function for continental, urban and maritime aerosol types.
The Rayleigh and two-term Henyey-Greenstein (TTHG) scattering phase functions are
also displayed.

to as the two-term Henyey-Greenstein scattering phase function:

. 1-gf 1-g3
PMA(e) = fl {1 +gir3 Tz 291 COS(@HS'[Z + (]- i .fl) [1 i g% e 292 003(8)13/2’ (250)

where f; is a weighting factor applied to two single-term Henyey-Greenstein phase func-
tions, and the so called asymmetry parameters g and go account for the large forward
scattering peak that characterise aerosol scattering (see Twomey (1977, p. 214) for illus-
trations). An example given by Aranuvachapun (1983) using the parameters f; = 0.9752,
g1 = 0.7281 and gy = —0.7638 is presented in Figure 2.9.

2.4 Chapter Summary

e Spectral variations in the solar spectrum at the TOA are due to absorption by
the elements in the solar atmosphere. There exist solar irradiance data spanning

400-2500 nm.

e The largest observed variation in the intensity of solar irradiance, Fy, at the TOA

is due to the Earth’s elliptical orbit around the Sun. The scaling factor D adjusts
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values of Fyy (based on mean Earth-Sun distance) for the time of the year and

gives Fgy.

Vertical distributions (profiles) of pressure and temperature can be measured with
radiosondes. There also exist model profiles of these quantities based on standard

atmospheric conditions for given latitudes.

Water vapour profiles can be derived from radiosonde data. These data can also be
used to provide an estimate of the total-column integrated water vapour content
(precipitable water, upao). Given an estimate of precipitable water, transmit-
tance through the absorbing layer of the atmosphere due to water vapour can be

estimated.

Total ozone concentrations, ups, have been measured arcund the globe by the
TOMS since 1978, Model ozone profiles exist for given latitudes. From these
models, ozone absorption coefficients agg can be calculated and used with the
estimate of ups to calculate a transmittance through the absorbing layer of the

atmosphere due to ozone.

Total gaseous transmittance through the scattering layer T is dependent on
wavelength, and obeys the Beer-Lambert-Bouguer law of extinction. It is also

affected by pressure and temperature profiles.

Aerosol spatial distributions vary considerably from location to location. There
is much interest in space-borne technology to provide routine, large-area mapping
of total aerosol concentration (or 7)) to gain a more thorough understanding of
the impact of aerosols on climate. Ground-based solar photometers (e.g. MFRSR)

can be used to estimate myy.

Aerosols have been categorised into various types (e.g. continental, urban, desertic
and maritime), that are characterised by their specific phase function Py and

single scattering albedo wpy.

Scattering optical thickness 74, is the sum of aerosol (Mie) optical thickness, Ty,

and molecular (Rayleigh) optical thickness, Tg).
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e An expression exists for calculating Rayleigh optical thickness given surface pres-
sure, F;, and temperature, 7%, measurements. Much attention has focussed on
complete representation of Rayleigh scattering and an accurate value of the depo-

larisation ratio ~.

¢ Total transmittance through the scattering atmosphere, Ty, has a direct com-
ponent, {exp({—7qigy), representing the reduced intensity by scattering out of the
direct beam} and a diffuse component (tqx, representing the contribution from

scattering events—single or multiple).

o The single-scattering approximation and the assumption that the atmosphere is
bound af the bottom by a Lambertian surface, yields a simplified version of the
radiative transfer equation that models the radiance emerging from the earth-
atmosphere system L} as a function wavelength (A}, direction of incidence (po, ¢o)
and emergence (u, ), surface reflectance {ps)), gaseous absorption (Tupey) and

scattering (Ticasn)-

o The path radiance Ly is defined as the component £} that has not interacted with
the surface. In the single-scattering approximation the path radiance is calculated
from the incidence (pp,¢0) and emergence {p, ¢) directions, the solar irradiance
corrected for Earth-Sun distance (Fyy), molecular (7ry) and aerosol (mny) optical
thicknesses, molecular scattering phase function (Fg), aerosol scattering phase

function (Pyy) and single scattering albedo (wpA).



CHAPTER 3
Satellite Image Data and
Processing

For over forty vears, humankind has been observing the Earth from the most unique of
vantage points: Space. Data acquired with satellite-based remote sensing technologies
have helped investigators monitor the Earth’s atmosphere-hydrosphere-biosphere sys-
tem: from the interactions of its various constituents; to the driving forces that lead
to global change. The spectral, spatial and temporal characteristics of remotely-sensed
data have and continue to contribute to an increased understanding of the workings of
the planet,.

This chapter begins with a brief overview of satellite-based remote sensing, with
discussion limited to the imaging sensors on the Landsat series of Earth observing satel-
lites. Image acquisition, data characteristics and radiometric processing specific to the
multispectral sensors used in this thesis, are also described. Attention is then directed
to modelling the satellite-measured signal and, in particular, describing those factors
that contribute to ohserved changes in the image data that are not due to the Farth’s
surface properties alone, Some methods of change detection in satellite image sequences
are presented and various radiometric processing methods for multitemporal studies are

reviewed.

3.1 Satellite Image Data

Two satellite missions have continuously provided glohal observations of the Earth for the
past 30 years: they are the Landsat and the US National Oceanic and Atmospheric Ad-
ministration (NOAA) Polar Operational Environmental Satellite (POES) programmes.
The sensors on these satellite platforms image the Earth at a range of spatial and tem-
poral scales, and measure emergent radiations over a wide spectral range. To make a
detailed comparison of all the image data characteristics acquired with all the sensors
on both satellite platforms is beyond the scope of the thesis. Therefore, for the sake

of brevity, discussion is limited in what follows to the image data used in this thesis;

45
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namely that acquired with the Thematic Mapper (TM) sensors on the Landsat series
of satellites. Reference is made to other platforms and sensors for comparison purposes
only. It is stressed however that many of the concepts described in the following sections

are not limited to the Landsat TM.

3.1.1 A Brief History of the Landsat Satellites

The Landsat satellite program began on July 23, 1972 with the launch of Landsat-
1 {then called ERTS-1, for Earth Resource Technology Satellite 1). It was the first
satellite to carry an imaging sensor known as the Multispectral Scanner (MSS). Four
more Landsat satellites (numbered 2--5) carried the MSS. Landsat-4 and -5, launched in
July 16, 1982 and March 1, 1984 respectively, also carried the Thematic Mapper (TM);
the data from which offered higher spatial resolution (defined in Section 3.1.3) imagery
than that provided by the MSS over a greater span of wavelengths. Landsat-6, which
was due to be operational in late 1993, failed on launch. The latest in the Landsat series
is the Landsat-7 satellite launched April 15, 1999 which carries the Enhanced Thematic
Mapper Plus (ETM+). The orbital characteristics of the Landsat satellite, and the
spatial and spectral coverage of their sensors are covered in the following sections.
Images acquired with the sensors on Landsat satellites were initially intended to
service the needs of the US Geological Survey and Department of Agriculture (Mather,
1987, p. 49}; the data are primarily used in mapping geoclogy, crops, and pollution
events (Goward and Masek, 2001). Since then the imagery has also been used to map
and monitor dry-land salinity and native vegetation (Caccetta et al., 2000a,b), changes in
urban environments (Ridd and Liu, 1998; Small, 2002), and general retrospective studies
of land cover change (Graetz et al., 1992). All but Landsat-7 have been decommissioned;
Landsat-5 was in operation for almost 14 years beyond its intended lifespan. The Landsat
program will continue with Landsat-8 due to be launched in 2010. The technologies and
data characteristics that have made MSS, TM and ETM+ imagery so valuable to such a
wide community of users, has paved the way for the next generation of earth observation
satellites (for example the Advanced Land Imager {ALI) on the Earth Observation (EQO-

1) satellite) ensuring the long-term continuity of image data of the Earth.
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3.1.2 Orbital Characteristics

Each Landsat satellite was placed in a sun-synchronous' orbit, meaning that they crossed
the equator (any given latitude for that matter} at the same locel time every day.
Landsat-1 to -3 crossed the equator on descending node® at 0930 hours local time (for
any given longitude), Landsat-4 and -5 crossed at 0945 hours, and Landsat-7 ETM+
crosses at approximately 1000 hours. Finally the altitude of the orbits of Landsat-1 to
-3 were nominally 919 km, whilst for Landsat-4, -5 and -7, orbits were 705 km.

The orbits of the Landsat satellites are also termed near-pelar, that is they have
inclinations® between 98.2°-99.1°, and were thus able to image most of the globe (from
around 81° S to 81° N). Furthermore, the orbits were retrograde* with periods of around
103 minutes (Landsat-1 to -3) and 98.9 minutes {Landsat-4, -5 and -7). This gave them

a repeat coverage (over the same area on the surface) of 18 and 16 days respectively.

3.1.3 Multispectral Tmage Acquisition

The MSS, TM and ETM+ sensors contain an oscillating mirror that directs light emer-
gent at the top of the Earth’s atmosphere onto a number of fibre optic detector elements.
As the mirror oscillates from one extreme to the other, the sensor essentially scans for-
wards (forward scan, see Figure 3.1) and backwards (reverse scan) across the satellite’s
track. The sensors are thus called whisk-broom scanners. The on-ground distance of a
scan is approximately 185 km, a distance known as the swath width. The angle sub-
tended by the satellite swath is often referred to as the field of view (FOV). The MSS
had a FOV of 11.56°, the mirror oscillating 4:5.87° off nadir. The FOV of the TM and
ETM+ sensors on the other hand is approximately 15° because of the lower orbits of
the Landsat-4, -5 and -7.

The orbital speed of these satellites in the along track direction is too high to feasibly
scan one line at a time, so a number of detector elements are present to view the Earth
simultaneously at equally spaced intervals along the track. For the MSS, six parallel

detectors scanned six lines across the track, and data were acquired with each forward

'f a Satellite’s orbit of the Earth is such that its rate of precession matches the angular velocity of
the Earth’s motion around the Sumn, then the orbit is called sun-synchronous.

?The north-south path.

3The angle that the orbital path makes relative to the equatorial plane.

4The longitudinal component of the satellite’s path is from east to west.
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Figure 3.1: An illustration of the satellite and sensor view geometries that are involved
in the production of the images acquired with MSS, TM and ETM+ sensors. The field
of view (FOV) and instantaneous field of view (IFOV) are highlighted, as well as the
along- and across-track directions.
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scan only. Each scan line corresponds to an on-ground along-track distance of 79 m.
At the beginning of each forward scan, each detector observed a region of the Earth’s
surface 474 m (6 x 79 m) along the track from the location of the previous scan.

For any one of the detectors in the MS5, signal integration time was about 9.96 us
{Mather, 1987). This produced 3300 samples across the 185 km swath. This meant
that the interval of measurements across the satellite track was approximately 56 m.
Therefore, each detector in the MSS integrates the electromagnetic radiation emergent
from the Earth for a 79 x 56 m? area on the ground. This area is given the name
instantaneous field of view (IFOV) and corresponds to the on-ground dimensions of
a pizel in the resultant image. The IFOV can also be specified as an angular width
(Figure 3.1), and defines the spatial resolution of the image acquired.

Unlike the MSS, the TM and ETM+ have a staggered linear array of detectors
designed to acd_uire measurements on both the forward and reverse scans. Each array
has 16 detectors dedicated to measuring radiation in the solar reflective region of the
EM spectrum (i.e. 400-2400 nm). These detectors have an IFOV of 30 x 30 m?, thus
the resulting imagery has higher resolution than that of the MSS3.

The sensors on the Landsat satellites were designed to measure EM radiation emer-
gent from the top of the Earth’s atmosphere in a discrete number of wavelengih regions
referred to as bands. There is one array of detector elements per band, and each band
is characterised by a filter function, or spectral response curve (Figure 3.2), to perform
a band-average of the continuous spectrum of EM radiation arriving at the sensor. The
normalised spectral response curves for the TM and MSS on Landsat-5 are displayed
in Figure 3.2. For comparison purposes, the response curves for some of the bands on
the NOAA-11 Advanced Very High Resolution Radiometer (AVHRR) and the airborne
Moderate Resolution Imaging Spectroradiometer (MODIS) are also displayed.

Figure 3.2 clearly demonstrates the obvious differences in relative spectral response
between the MSS and TM sensors. There are also differences in the response curves
for different versions of the same sensor, illustrated in Figure 3.3. The response curves
for Landsat-4 and -5 TM are very close, however the ETM+ curves are significantly
different. These differences can make images of comparable band numbers appear quite
different, because the filters average the continuous spectrum of EM radiation which is

affected by gaseous absorption in the atmosphere (more in Section 3.3.3, pp. 84-90).
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Figure 3.2: Normalised spectral response curves (or filter functions) for the bands on
the Landsat-5 MSS and TM, NOAA-11 AVHRR, and airborne MODIS.
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Figure 3.3: The normalised spectral response curves for Landsat-4 and -5 TM and
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Multispectral Vs. Hyperspectral

Images acquired with the MSS, TM and ETM+ sensors are termed multispectral, as are
AVHRR and MODIS, and are distinguishable by a relatively small number of spectral
bands. In contrast, hyperspectral images are comprised of a large number (typically
> 100) of contiguous, narrow spectral bands. The large number of bands in hyperspectral
imagery means that, for each target on the Earth’s surface, the solar reflected radiation
is resolved into a quasi-continuous spectrum of radiation, which is why hyperspectral
remote sensing is often referred to as imaging spectroscopy. The advantages offered
by hyperspectral sensors, that their multispectral counterparts cannot, are very much
dependent on the problem the individual researcher seeks to address with remotely
sensed data (the reader is directed to Goetz et al. (1985) for some examples). For the
objectives of this thesis, it is reasonable to limit attention to multispectral image data
and processing. And while many of the concepts to be discussed in the following are
also applicable to hyperspectral imagery, the nature of hyperspectral data raises many
more issues that need to be taken into considerations (see, for example, Richards and
Jia (1999, pp. 313-335)).

The MSS had in total 4 bands; two sensing the visible (500-700 nm), known as bands
4 and 5, and two the near infrared (700-1100 nm), named 6 and 7 (Figure 3.2). The
MSS on Landsat-3 had a fifth, thermal band that was only active for a short while after
launch. The TM and ETM+ sensors (Figures 3.2 and 3.3) on the other hand have 7
bands; three sensing the visible {450-690 nm}, known as bands 1, 2 and 3; one in the near
infrared {750-900 nm), known as band 4; two in the short-wave infrared {1550-2350 nm),
known as bands 5 and 7; and one in the thermal infrared (10.4-12.5 pm), known as band
6. The ETM+ sensor on Landsat-7 has a panchromatic band (520-900 nm) known as
Band 8, which has a higher spatial resolution than the other bands (15 x 15 m? pixels).

Figure 3.4 illustrates the RGB (red, green and blue) displays of a subset of a Landsat-
5 TM image acquired over Geraldton, Western Australia on February 13, 1999. Fig-
ure 3.4{a) is known as a true-colour composite because the TM bands corresponding to
the red, green and blue regions of the EM spectrum are displayed in RGB in the correct
order. Figure 3.4(b) is called a false-colour composite as it displays TM bands 5, 4, and

2 in RGB. False-colour composites are useful in highlighting certain features in an image,
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Figure 3.4: An example of a (a) true-colour (RGB:3,2,1) and (b) false-colour (RGB:5,4,2)
composite of a subset of the Landsat-5 TM image for Geraldton, Western Australia.

Table 3.1: A summary of Landsat satellite and sensor characteristics.

| MSS ™ ETM+
Satellite Landsat-1 to -5 Landsat-4 & -5 Landsat-7
Bands 45, 6&'7 15 &7 1-5 &7
(8-thermal band (6-thermal band) (6-thermal band,
Landsat-3 only) 8 panchromatic)
FOV 11.56° 15° 15°
185 km swath 185 km swath 185 km swath
IFOV 79 m (along-track) x 30 x 30 m* 30 x 30 m®
56 m (across-track)
Repeat 18 days 16 days 16 days
Cycle (Landsat-1 to -3 only)
Equatorial 0930 hours 0945 hours 1000 hours
Crossing

particularly if one knows the regions of the EM spectrum in which the feature strongly
reflects solar radiation. For example, vegetation is known to reflect light strongly in the
near infrared (bands 4 and 5) and green wavelengths (band 2) relative to other bands,
thus the combination of these bands in RGB highlights vegetation as illustrated by the
green areas in Figure 3.4(b).
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3.1.4 Image Data and Radiance Values

A multispectral image emerges from the collation of successive scan lines along the track
of the satellite’s path. The arrangement of the pixels into a rectangular array provides
a discretised view of the Earth from space. The inclination of the Landsat satellites’
near-polar orbits has meant that most of the globe was imaged every 18 (MSS) or 16
(TM and ETM+) days. Landsat-1 to -3 completed 251 orbits before repeating the same
path 18 days later, whilst Landsat-4, -5 and -7 completed 233 orbits in 16 days.

The EM signal received by the detectors is converted from an analogue signal into
a digital number (DN). In the case of the MSS image data, the signal was quantised
as a 6-bit integer; ranging from 0 (black), corresponding to no signal, to 63 (white) for
detector saturation. These image data were transmitted to ground receiving stations
where subsequent processing scaled the DNs for the first three bands (i.e. 4, 5 and 6)
to 7-bit integers (0-127).

The TM and ETM+ image data have 8-bit (0-255) quantisation. For each spectral
band A, let X, denote the DN and L} the at-sensor radiance for a given pixel. The
response for each of the 16 detectors in any given band is characterised by a responsivity,
g», also known as a detector gain with units W/{m? sr um)/DN, and a zero-radiance
bias oy (unitless). The so called raw DNs and the at-sensor radiances are thus related
as,

X7 = gL} + Qoa- (3.1)

More discussion on the link between image data and radiances, and the impact of changes
in detector response is given in Section 3.3.2 (p. 76). Table 3.2 gives the current {as
at November 12, 2002) values of detector responsivity and bias for ETM+ band 1. The
values were obtained from the calibration parameter file (CPF) for the ETM+ sensor

available from the website,
http://landsat7.usgs.gov/cpf/defaunlt.html.

The CPFs are archived and updated for ETM+ imagery acquired since launch to present.
Unlike the TM, the ETM+ sensor can acquire data in two modes: low mode can mea-
sure a greater range of radiances without saturating the sensor, the sensitivity however

is lower; and high mode, where a smaller radiance range is measurable but the sensitivity
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Table 3.2: Responsivity gx [W/(m? sr pm)/DN] and zero-radiance bias Qg values for
ETM+ band 1 (in high mode).

‘ Detector 1 2 3 4 5 6 7 8 ‘
gx 1.228 1.227 1.215 1.227 1.216 1.226 1.223 1.223
Gox 14.8¢ 14.80 15.13 15.00 15.14 1508 15.23 15.00

9 10 11 12 13 14 15 16
ga 1.220 1.232 1222 1.219 1223 1224 1.228 1.239
Cox 1494 1493 1507 15.09 15.08 15.16 14.99 1308

is increased. The data in Table 3.2 correspond to the high mode setting. For the ETM—+
imagery used in this thesis, the data were acquired with high setting for most bands.
The exception was band 4, which was set to low mode.

The DN's are then transmitted to a receiving station where, depending on the level of
image product required, subsequent on-ground processing may be performed. Australia
has a receiving station for Landsat data at Alice Springs, Northern Territory, from
which image data is maintained and distributed by the Australian Centre for Remote
Sensing (ACRES); part of Australia’s national mapping agency, AUSLIG. The processing
performed by ACRES to achieve the different level of image products conforms to that
used by the Canada Centre for Remote Sensing (CCRS) and the standard format family
as defined by the Landsat Ground Stations Operators’ Working Group (LGSOWG)
Technical Working Group (LT'WG), and described in detail in ACRES (1999) for TM
images.

For radiometrically calibrated TM image products, one can convert the DN, X},
into a radiance value, L} [W/{m?srpm)], by applying the radiometric scaling factors in
Table 3.3 as,

Ly = Lyyina + (&1&552_;_5_@.’2%) X, (3.2)
where Lyiny and Lya are given for each band in Table 3.3 and correspond to the
minimum and maximum radiance values for a DN = 0 and 255 respectively {Markham
and Barker, 1986). The radiometric scaling factors are temporally-invariant (Teillet
and Fedosejevs, 1995; Teillet, 2002), unlike the sensor’s responsivity which can change
through time (Section 3.3.2). These scaling factors are also available in the ancillary
files provided with the image data storage media. Similar radiometric scaling factors are

available for ETM+ image products, either from the CPFs or in ancillary files.
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Table 3.3: Radiometric scaling factors for converting a DN in a radiometrically cali-
brated TM image into a radiance value [W/(m? st pm)].

JBand Limax Lmin)\i

1 1621 = =1.b
2 296.8 =28
3 2043 -—-1.2
4 206.2 —1.5
5 27.197 =037
id 1438 —0.15

Figure 3.5: False-colour composites of (a) a Landsat-1 MSS image (RGB:7,5,4) acquired
on February 2, 1974, and (b) a Landsat-5 TM image (RGB:4,3,2) acquired on September
25, 1988, with WRS path/row designations (99/80) and (93/80), respectively.

3.1.5 Scene Identification via the WRS

In this thesis, the area of the Earth’s surface contained in an entire multispectral image
is termed a scene. A scene in a Landsat image is referred to by its designated path
and row number (path/row), as defined by the Worldwide Referencing System (WRS).
Path numbers correspond to the satellite orbits (recall 251 for MSS images (Landsat-1
to -3) and 233 for MSS (Landsat-4 and 5), TM and ETM+ images), which increase
sequentially from east to west. Row numbers refer to the latitudinal centre line of the
scene. Row numbers increase sequentially from north to south.

Since the orbital characteristics of the first three Landsat satellites differ from those
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of the last three, the path designations for a particular scene will be different when
comparing old imagery to more recently acquired ones. The row designations have
remained the same for all Landsat satellites. Figure 3.5 shows two image subsets of the
same area on the Queensland-New South Wales border acquired with (a) the MSS on
Landsat-1 on February 2, 1974, and (b) the TM on Landsat-5 on September 25, 1988,
respectively. Their respective path/row designations are {99/80) for Figure 3.5(a) and
(93/80) for 3.5(b). The choice of bands for the false-colour composites in Figure 3.5 were
based on comparable M35 and TM bands in Figure 3.2.

3.2 Modelling the At-Sensor Signal

Tanré et al. (1979, 1981, 1983) were among the first to provide a mathematical model
for the radiance signal emerging from the top of the Earth’s atmosphere in a context
suitable for satellite-based imaging in the solar reflective region of the EM spectrum. The
expressions presented were based on the uniformity of the underlying surface/target
in the IFOV (i.e. pixel) of the satellite sensor. Two cases were presented: (i) the
target is homogeneous with Lambertian reflectance properties; and (ii) the target is
inhomogeneous with non-Lambertian reflectance properties. These two scenarios will be
discussed briefly in the following sections.

The radiance L3} for a pixel in a particular band is calculated as described in Section
3.1.4 {p. 55). A quantity known as at-sensor reflectance, denoted pf ., is calculated for

the same pixel as,
mL}
Fanpo’

Prath = (3.3)

where Fy) is the exo-atmospheric solar irradiance (Fyy) corrected for Earth-Sun distance
via the adjustment factor, (calculated using Eq. (2.2)), and g is the cosine of the solar
zenith angle (#). The exo-atmospheric solar irradiance for the TM and ETM+ bands
(at an Earth-Sun distance of 1 AU) are often provided along with the radiometric scaling
factors (see Section 3.1.4) and are given in Table 3.4.

The at-sensor reflectance (also known as image-derived or top-of-atmosphere re-
flectance or planetary albedo) is not to be mistaken as an estimate of a target’s surface
reflectance ps), because as we shall see in the following sections, p7,,, is composed of an

atmospheric component, as well as components due to surface and atmosphere-surface



58

Table 3.4: Exo-atmospheric Solar Irradiances, Fpy, at 1 AU for the TM and ETM+
images.

Fox
Band TM ETM4+
1 1957 1969
2 1829 1840
3 1557 1551
4 1047 1044
5 219.3 2257
7 74.52  82.07

interactions. Two advantages of transforming image data into an at-sensor reflectance
were mentioned by Teillet et al. (2001): firstly, the transformation corrects for the co-
sine effects arising from different solar zenith angles and different Earth-Sun distances
between different dates; and secondly, scaling by the exc-atmospheric irradiance adjusts
for differences between sensors (Figure 3.3 in Section 3.1.3), which may be significant in
multi-sensor studies. In the following, at-sensor reflectance is calculated to be consistent

with the models presented by Tanré et al. (1979).

3.2.1 Homogeneous Targets

In Section 2.3.5, Eq. (2.45) was derived as the mathematical expression for the radiance
emerging from the TOA at a zenith angle & (u = cos(#)) for an area of the Earth’s surface
{target) which is homogeneous in composition and Lambertian in surface reflectance
{psy) properties. Ignoring the effects of gaseous absorption on radistion propagating
from the Sun to the target, and from the target to the satellite sensor, and assuming

TAiffA = TRA + Tair, Eq. (2.45) can be written as,

Ps}\Fd/\#OTscat)\ (P‘JO)Tscat)\ (}u‘) (3 4)
7 {1 — sa(7aiger) psa

3= Lpa+

where the terms have been defined in Section 2.3.5. Combining Eqgs. (3.3) and (3.4)
vields the expression for the at-sensor reflectance for a homogeneous, Lambertian target

(Tanré et al., 1979, 1981, 1983),

psATscat)\ (HD)TSC&tA(#’) ] (35)

*
= Patmi +
Psath = Pat [1 — sx(7aiffa)Psa]

Each of the components in Eq. (3.5) are summarised in the following and illustrated in

Figure 3.6.
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Figure 3.6: An illustration of the various paths that EM radiation may take as it prop-
agates from the Sun towards the Earth’s surface, and then into the IFOV of a satellite
sensor.
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Atmospheric Reflectance

The first term in Eq. {3.5), patmy, is called the intrinsic atmospheric reflectance; a func-
tion of solar and sensor zenith angles, solar and sensor azimuths, and the optical thickness
of the scattering layer. It incorporates the molecular and aerosol scattering phase func-
tions (P and Pya), optical thicknesses (tra and 7)), aerosol single-scattering albedo
(woa), and scattering angle (©). In the single scattering approximation, it is written as,

Pr(©)R + WO)\PMJ\(Q)TM/\.

3.6
Apopt (3:6)

Patmh =

This is a purely atmospheric contribution to the at-sensor signal (Figure 3.6, path A),

as it is that component of the radiation that has not interacted with the surface at all.

Diffuse/Direct Transmittance

The numerator on the right-hand side of Eq. (3.5) contains the information on the direct
and diffuse transmittance of radiation interacting with the surface (assuming Lambertian
reflectance) and received at the sensor. An itemised account of the possible paths is as

follows:

(i} the radiation is transmitted directly to the surface {exp(—7aix /1)), is reflected by
the target {psx) and transmitted directly to the sensor (exp(—raia/pt)) {(Figure 3.6,
path B), i.e.,

exp{—Taiff /10 ) Psx eXP(—Taifr /1),

(ii} the radiation is transmitted directly to the surface, is reflected, and diffusely trans-

mitted to the sensor (¢42(1)) (Figure 3.6, path B-C), i.e.,
exp(~Taitr/ #o) Psataa(1);

(iii} the radiation is diffusely transmitted to the target, is reflected, and then directly

transmitted to the sensor (Figure 3.6, path D), i.e.,
tar(po)psr exp(—Taisa/ 1)

{(iv) the radiation is diffusely transmitted to the surface, reflected, and diffusely trans-

mitted to the sensor (Figure 3.6, path D-C), i.e.,

tax(po) partar(u).
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The summation of all these possibilities results in the expression,

Psx [exp(—Taima/ po) + taa(po)] [exp(—Taima/ 1) + tax(p)]

which, from the definition of Egs. (2.42} and (2.43), becomes the expression in the nu-

merator of Eq. (3.5). Tanré et al. (1981) refer to this as the first-order signal component.

Higher-Order Atmosphere-Ground Interactions

Second- and higher-order components (Tanré et al., 1981) are contained in the denom-
inator of the right-hand side term of Eq. (3.5). Since the target’s surface reflectance
and the spherical albedo, s,, are quantities with values less than one, the term can be
expressed as the peometric series,

1

=14+ sapar+ (8ap00)® -0
[1 = sa(7aimn) psal pur+ (1p3)

which is the component of radiation that is reflected by the target, then by the at-
mosphere, then by the target, and so on, until being received at the satellite sensor.
Tanré et al. (1979} employed the Eddington® approximation to determined the fol-

lowing analytic expression to approximate the spherical albedo,

sa{Taier) = (0.927r + 0.337wn) exp(—Taifa )-

This expression can be used to approximate the spherical albedo for a range of optical
thicknesses and at a number of different wavelengths. Figure 3.7 illustrates the behav-
iour of s, with wavelength for a scattering atmosphere composed of (i) molecules only
(thick line), (ii) molecules and aerosols with a visibility of 23 km (thin black line), and
(iii) molecules and aerosols with a visibility of 5 km {dashed line). It is clear from Fig-
ure 3.7 that s, increases with increasing optical thickness (or decreasing visibility). It is
therefore reasonable to expect that as Ty, increases, higher-order interactions become
an increasingly significant contribution to the at-sensor signal. Generally, high-order

contributions are on the order of a few percent (< 10%) of the first-order contributions.

5The Eddington method is used to approximate the integro-differential equation of radiative transfer
{Section 2.3.5) as a pair of first-order ordinary differential equations {Joseph et al., 1976}.
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Figure 3.7: Spherical albedo values calculated via the expression in Tanré et al. {1979}
for different aerosol loadings.

3.2.2 Imhomogeneous Targets

If the area on the Farth’s surface contained in an image pixel is assumed now to be
inhomogeneous, then the right-hand side of Eq. (3.5) is modified. Let there exist a
small, uniform target in the sensor’s IFOV, which (for argument’s sake) is a circle (radius
r), with reflectance pgy, and the reflectance of the target’s surrounding environment is
denoted pey. If 7 is sufficiently small, the target’s contribution to the diffuse radiation
field detected by the satellite sensor will be negligible, and be primarily due to the

surrounding environment. The possible paths radiation may take are:

(i) the radiation can be directly or diffusely transmitted to the target and be reflected

directly into the sensor’s IFOV, i.e.,
exp(—Taigx/to)psx exp(—7Tamx/p)  and  tax(po) sy exp(—Taiga/1); or

(ii) the radiation can be directly or diffusely transmitted to the environment surround-

ing the target, be reflected, and then diffusely transmitted to the sensor, i.e.,

exp(—Taita/po)pertar(p)  and  taa(po)peatar(p)-
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The at-sensor reflectance is therefore modelled as (Tanré et al., 1981; Vermote et al.,

1997h),

exp(—7aimr/ o) + tax(po)
1 — sx(Tdiffa) Per

Pratn = Patma + [Psx exp(—Taira /1) + Pertdn] . (3.7)

It should be noted that including the environmental reflectance in the denominator
of Eq. (3.7) is not strictly correct (that is, in the context of the original derivation of the
trapping mechanism by Chandrasekhar (1960) and reviewed in Section 2.3.3). However,
since the contribution of the higher-order interaction does not exceed 10-15% of that of
the first-order term {Tanré et al., 1979, 1981), interchanging p.y and pgy i3, in practice,
inconsequential.

Using the analogy of a uniform target of radius », it can be observed that as the
radius increases, pey — psa, Eq. (3.7) will become Eq. (3.5). Vermote et al. (1997h)

defines the environmental reflectance as,

1 2r oo ' df
po=g= [ [ pari)Gharay,

where f{r), known as the environment function, is the probability that radiation reflected
at a point (r, ) (polar coordinates) from the target will be diffusely transmitted to the
satellite sensor. From the discussion in the previous paragraph, it is clear that f(0) =0
and f{co) = 1. Full details on the derivation of the above is given by Tanré et al. (1981).

The spatial average reflectance for the Earth’s surface in the IFOV of a sensor can

be defined as

< peo >= f(r)psxr + [1 — f()] pua

where gy is the background reflectance, and < pgy > replaces pey in Eq. {3.7). For small
r, the background reflectance dominates the average reflectance. This is a problem, par-
ticularly for small pixels, known as the adjacency effect, where the reflectance values of
neighbouring pixels influence each others at-sensor signal. Furthermore the environment
funetion f(r) depends on molecular and aerosol phase functions and, through the diffuse
transmittances, molecular and aerosol optical thicknesses {Vermote et al., 1997b) as well.
Scattering due to molecules and aerosol dominate at the shorter wavelengths, thus envi-
ronmental effects are most noticeable for spectral bands in the region < 1000 nm. It has
also been shown that for larger wavelengths the single-scattering approximation of mod-

elled at-sensor signal yields reasonable results, but for the shorter wavelength regions the
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single-scattering model systematically underestimates the environmental effects (Tanré

et al., 1981).

3.2.3 Bidirectional Reflectance Distribution Function

In the preceding sections it was assumed that the surface, whether homogeneous or
inhomogeneous, in the IFOV of a sensor had Lambertian reflectance properties. Recall
that a Lambertian target reflects radiance isotropically regardless of the direction of
illumination, as long as it is illuminated uniformly across its surface. In reality, most
targets exhibit a certain degree of non-Lambertian behaviour, and there typically exists
a directional component in the reflected signal (that is, there will be variations in the
reflected signal depending on illumination and view angles).

The Bidirectional Reflectance Distribution Function (BRDF) is used to specify the
behaviour of surface scattering as a function of illumination and view geometry. It is a
probability density function, denoted R(fg,¢o; 8, ¢), that can be integrated over a solid
angle to yield a probability that a photon will be scattered into a small solid angle arcund
a particular view direction.

The radiance reflected by the target in the direction of a sensor (8,¢) is defined as,

2r  pw/2
L3(8,¢) = /0 /0 R0, ¢'10,0) Linca (¢, ¢} cos(8) sin{§")dé'd¢’, (3.8)

where L. is the radiance of a direct beam illuminating the target., A bidirectional
reflectance factor (BRE), pr, is defined as the ratio of the reflected radiance to the
radiance that would be reflected in the same view direction from a perfect isotropic

(Lambertian} reflector under the same illumination conditions. Mathematically,

0277 oTr/2 R(#,¢';8,¢) Linca(t’, ¢') cos(8') sin(#)d&'d¢/
PRA = )
% o2fr oﬂ’lz Liner(9,¢') cos(0) sin(6")de'd ¢’

(3.9)

Note that all the factors on the righthand side of Eq. (3.9) that are independent of angle

will cancel upon substitution. Equation (3.9) thus becomes,

prA(fo, o; 0, 8} = TR (0o, do3 0, P).

The hemispherical reflectance or albedo, ppy, defined as the surface reflectance integrated

over all viewing angles in the upward hemisphere, is

1 o /2
o0, o) = ;/{) /0 R 00, 03 8, &) cos(8) sin(@')d de'. (3.10)
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The need to model a target’s BRDF is particularly important in multitemporal image
analysis because on different dates, changes in solar zenith angle and azimuth and—for
some sensors more than others (AVHRR, see Cracknell (1997, p. 312))—the angle at
which a target is viewed may lead to significant errors in reflectance estimation (Roujean
et al., 1992). The various approaches to modelling target BRDFE can be categorised
as either physically-based, empirical or semi-empirical. Physically-based approaches
are often computationally demanding as they involve modelling complex geometries of
features on the target’s surface (e.g. the orientation of leaves in a canopy), making
them impractical for use in large-scale correction of satellite imagery. Of the other two
categories, there are numercus other methods of which only the empirical approach of
Walthall et al. (1985) and the semi-empirical approach of Roujean et al. (1992) shall be
discussed here.

Walthall et al. (1985) observed that polar plots of simulated canopy BRF's for soy-
bean plants, for a variety of solar (fp,¢0) and view (#,4) geometries, resembled the
family of curves of the limacon of Pascal. Models producing the cardioid shape were
tested on simulated data and shown to be very accurate (< 0.3% RMS error for 500 nm
< A < 600 nm and < 3% RMS error for 800 nm < A < 1100 nm). When the model
was compared to field soil data (of different soil roughness), surprisingly good agree-
ment (RMS error between 0.6 and 3.3%) was observed. Walthall et al. (1985) used the

expression for BRE,
PR = a1(85 + 6%) + 2636° + agfob cos(@ — o) + a,

where the coefficients a1 to a4 are estimated from statistical regression of a set of BRF
measurements at different 8y, ¢g, # and ¢ values. For nadir-looking sensors such as the

Landsat TM and ETM+, the expression of Walthall et al. {1985) reduces to,
pRA = 016; + a4,

which was used by Moran et al. (2001) to characterise the BRF, and assess the temporal
stability, for some targets.

The approach of Roujean et al. (1992) to modelling the BRDF effects is based on
the physical interaction of radiation with a heterogeneous surface. There are two com-

ponents to the proposed model: Firstly, there is a geometric component, where a surface
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is assumed to be comprised of a number of protrusions with a particular height and
separation, and random orientation. The second is a volume component, that assumes a
medium is homogeneous with randomly located scattering plane facets (e.g. a canopy).

The proposed BRF model is written as,

erRA = ko + kgeomfgeom + kol fvol (311)

where freom and fyo are the geometric and volume scattering kernels, Kgeom and kg
are the geometric and volume scattering parameters, and kp is constant. Both freom
and fyo depend on the incident (6, ¢p) and reflected {8, ¢) directions of the radiation.
Coefficients kgeom and ky, both relate to the sub-pixel surface {e.g. canopy) geometric
and volume properties. Finally, ko is simply defined as the BRF when 63 = 8 = (.

The hemispherical reflectance is also calculated by Roujean et al. (1992) as,

pux = ko + kgeomIgeom + Fyordvol

where Igeom and I, are integrals which may be accurately approximated by trigono-
metric functions that depend on solar zenith angle {#g).

In their formulation, Roujean et al. (1992) also take into account the hot spot phe-
nomenon, corresponding to the maximum in perceived target brightness when view and

solar directions coincide.

Significance for Landsat TM and ETM+ Image Data

The Landsat TM and ETM+ sensors are widely regarded as nadir-viewing instruments,
but at the extremes in the Farth scan, the sensor views range from =7.5° off-nadir. This
is small in comparison with other sensors (e.g. SeaWiF8, AVHRR, MODIS).

Table 3.5 presents 65-modelled radiances at 480 nm for a range of view angles, 8,,
and aerosol optical thicknesses, Ta4gonm. The underlying surface is assumed to have zero
surface reflectance, so the modelled radiances are in fact path radiances, Lpsonm. This
wavelength region was chosen because of the relative dominance of the path contribu-
tion to the satellite-signal at 430 nm. Modelling error in Table 3.5 is interpreted as the
percentage error incurred if a nadir {0°) view zenith angle is assumed when 6, is the
correct view angle. Clearly the table illustrates that if a pixel at the edge of a TM or
ETM+ scan (£7.5°) is assumed to be viewed at nadir, the path radiance is underesti-
mated by < 5%; which is about the absolute accuracy of the TM and ETM+ sensors
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Table 3.5: Simulated (6S) path radiances at 480 nm, Lpasonm [W/(m2srpm)], for a range
of view zenith angles (f,) and aerosol optical thicknesses {Tmasonm). The Error (%) is
to be interpreted as the modelling error incurred for Lpsgonm if & = 0° is assumed when
# = 6, is more appropriate.

| ThM480nm = 0.06 TM480nm = 0.12 TM480nm = 0.23 |
0y Lpsgonm 70 Error | Lpsgonm Vo Error | Lpagonm % Error
0° 32.47 0 34.38 0 38.26 0
7.5° 34.02 —4.8 35.77 —4.3 39.90 —4.1
15° 35.99 —0.8 38.02 —9.5 42.10 —-9.1
30° 41.26 —21.5 43.62 —21.1 48,27 -20.7
60° 63.43 —48.8 67.21 —48.8 74.33 —48.5

(Thome et al., 1993; ACRES, 1999; Teillet et al., 2001). For sensors like the AVHRR
and MODIS (view angles ~ 55°), these errors become unacceptably large, and the view
geometry for pixels is far more significant.

The effect of solar and sensor viewing geometries on the estimate of a target’s
BRDF/BRF for TM and ETM+ imagery is not considered in this thesis. If it is as-
sumed that the TM and ETM+ sensors are nadir instruments, then the Walthall model
for BRF becomes dependent on the solar zenith angle and relative azimuth (¢ — oy)
only, as shown previously (p. 65). Danaher et al. (2001) and Wu et al. (2001), how-
ever, observed that there was systematic brightening of pixels near the western edge
{backscattering direction) of imagery and a darkening of pixels near the eastern edge
{the forward scattering direction), even after images were normalised for solar zenith
angle and corrected for Earth-Sun distance. This causes problems for visual display
when east-west neighbouring images are mosaiced (Wu et al., 2001).

Wu et al. (2001) investigated the use of 3 Walthall-type models to model the BRF
for TM and ETM+ imagery. Based on the statistics of overlap regions they were able
to correct for the east-west brightness differences that were a result of the £7.5° change
in view zenith angle. The method described remains a relative approach since overlap
statistics are calculated using the at-sensor reflectance (Eq. (3.3), p. 57) which, as de-
scribed in sections 3.2.1 and 3.2.2, are not the surface reflectances, The method does, in
theory, normalise imagery for atmospheric effects, and has been successfully applied in
the creation of a mosaic of the Australian continent; comprising 369 Landsat-7 ETM4

images (Wu et al., 2001).
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3.2.4 Modelling Software: 65

The computer code known as the Simulation of the Satellite Signel in the Solar Spectrum
(55) was developed by Tanré et al. {1986) to estimate the signal measured by a satellite
sensor. The models used were those discussed in Sections 3.2.1 and 3.2.2, and users had
the option of selecting a particular band for a number of satellite sensors, including for
example NOAA-8 and -9 AVHRR, and Landsat-5 MSS and TM.

The 5S code was known to have some shortcomings. The issue of BRDF, for ex-
ample, was not accounted for in the 55 code, thus targets are by default assumed to
be Lambertian. Furthermore, some of the calculations were based on approximations
and simplifications that limited the generality/accuracy of the software, particularly in
relation to the diffuse (scattering} terms. Vermote et al. {1997b) commented that, 'the
authors of 58 had to sacrifice the reality versus the practical use of simulation code’, Nev-
ertheless, 55 has been used by many researchers to calculate various terms in satellite
image correction schemes {Caselles and Lépez-Garcia, 1989; Thome et al., 1993; Moran
et al., 1995; Teillet and Fedosejevs, 1995), and as a means of assessing and comparing
the accuracy of the results of correction strategies (Moran et al.,, 1992; Kaufman and
Remer, 1994; Chavez, 1996).

Suvme ten years later, the Second Simulation of the Saotellite Signal in the Solar
Spectrum (68) code was developed (Vermote et al., 1997b) which extended the generality
of 58 and improved the accuracy of some of the computations. The 65 code is one of the
more popular at-sensor signal modelling software packages and, like its predecessor 55,
has been used in many investigations where accurate models for path radiance, diffuse
and direct transmittances, spherical albedo, surface-atmosphere interactions, and BRDF
are required (Huete et al., 1997; Kaufman et al., 1997¢; Zhao et al., 2001; Karnieli et al.,
2001; Miura et al., 2001).

The interest in 65 for this thesis is that it serves to: provide the values required
to illustrate some concepts discussed in the text (Chapter 2 and the next section for
example}); model the path radiance (or atmospheric reflectance) for the image normali-
sation procedure described in Chapter 4; and be used in the fashion described by Zhao
et al. (2001) to estimate surface reflectances in imagery for comparisons with the image

normalisation procedure described in Chapter 4.
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The increased accuracy of 6S over its predecessor lies in the method utilised to model
scattering effects. The code calculates the atmospheric reflectance, diffuse transmittance,
spherical albedo and coupled absorption-scattering transmittance using the Successive
Orders of Scattering (SOS) algorithm. This along with some other features of 65 are

discussed briefly in the following.

Correction for Earth-Sun Distance

In 6S the Earth-Sun distance adjustment factor D is calculated via Eq. (2.2) after the
code has calculated the day of the year, J, from the input values of day and month.
The solar irradiance at the TOA, Fyy is multiplied by D to obtain the value Fyy that is

referred to through this thesis.

Gaseous Absorption

Three additional atmospheric gases were added to the list considered in 55. Gaseous
absorption considered in 6S is due to ozone, Og; oxygen, Oq; water vapour, HyO; car-
bon dioxide, COy; methane, CHy; nitrous oxide, NoO; and carbon monoxide, CO. The
methods used to calculate the transmittance through the absorbing atmosphere are the
same as for 53. However, 6S uses the parameters for the various gases from the HITRAN

database at 10 cm™1.

Atmospheric Reflectance

In 58, as in Eq. (3.6, p. 60), the single scattering approximation allows the atmospheric
reflectance to be written as a sum of molecular and aerosol contributions: the molecular
contribution is calculated as per the first term of Eq. (3.6); the aerosol contribution
is calculated using an approximation (Tanré et al., 1986, p. 91-93) in which the phase
function, in the source term of the radiative transfer equation (RTE, Eq. 2.31), is ap-
proximated by two Legendre polynomials. Vermote et al. (1997b) has pointed out that
this may not be true, particularly for short wavelengths (< 450 nm) and/or large solar or
view zenith angles. So in 63, the SOS algorithm is employed to calculate the atmospheric
reflectance for a combined molecular-aeroscl system.

In summary, the SOS algorithm is a numerical procedure used to solve the RTE

in an iterative fashion. The full details of the implementation of the procedure in 68
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is given in Vermote et al. (1997a). Essentially, Eqgs. (2.32) and (2.33) are solved for a
discrete number of layers in the atmosphere. The iterative component arises when the
initial solution, based on first-order scattering only, is fed back into the source function

for each layer and repeated until convergence,

Diffuse Transmittance and Spherical Albedo

The diffuse reflectance S and transmission T functions were previcusly defined for a
single scattering layer (Chapter 2, pp. 33-34). Since the SOS algorithm works on a
discrete number of scattering layers in the atmosphere, these functions are more accu-
rately modelled in 6S, particularly if one of the layers is at the level of the sensor. For
space-borne observations the corresponding layer is the TOA, and these quantities are
calculated in 65 with realistic mixing between aerosol and molecules (Vermote et al.,
1997b).

Since functions T and S were used to define the diffuge transmittance (p. 34) and
spherical albedo (p. 34}, the 6S estimates of t4) and s) are more accurately mod-
elled than their 5S counterparts; calculated using the Zdunkowski approach and a semi-
empircal formula (Tanré et al., 1986) respectively, which can have errors on the order
of a few hundredths of a reflectance unit when solar or view angles are large, or when

optical thicknesses are high (Vermote et al., 1997b).

3.3 Issues in Multitemporal Analysis

In Section 3.1.1, reference was made to a number of authors who have used satellite
images beyond the limited areas of investigation for which the data were originally
intended. Researchers have utilised repeated measurements of emergent radiation, for
a given location on the Earth, available in multi-date sequences of satellite imagery to
quantify change in some aspect of the Earth’s surface through time. The interpretation
of the results from procedures applied to multiple satellite images of the same scene
over time for the extraction of information, or enhancement of some aspect, is termed
multitemporel analysis. This extends the spatial mopping of surface features (themata)
in a satellite scene into temporal monitoring.

Multitemporal sequences of satellite imagery have been used in many diverse fields

of study and application: from changes in atmospheric dynamics and composition; to
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changes in sea surface temperature, ocean colour dynamics, and productivity. For land
applications, however, there exists no more compelling demonstration of the usefulness
of multitemporal image sequences than their application to the study of land cover®
change (Graetz et al., 1992). Sing (1989) provided some further examples of multitem-
poral analysis of land cover change, such as: assessing changes and shifts in cultivation;
measuring rates of deforestation; monitoring changes in plant phenology and seasonal
pasture production; disaster monitoring; crop stress; and day/night analysis of thermal
emissions, to name a few.

There are a number of issues that must be considered when multitemporal sequences
of satellite imagery are used to analyse land cover change. Left unaddressed these issues
can hamper change detection efforts. How these issues are dealt with is largely dependent
on the nature of the problem one seeks to investigate with the data. A review of some
approaches designed to minimise the impact of the factors arising from these issues as
well as the enhancement of image data is presented in Section 3.4. Aftention focuses on
the key issues that need to be considered in multitemporal analysis when Landsat TM

and ETM+ images are used.

3.3.1 Geometric Correction and Co-registration

Jensen {1996, p. 124) provides a summary of some of the factors that lead to geometric
distortion in imagery. One source of error is due to the FOV of the sensor and is known
as panoramic distortion. Panoramic distortion is a result of the area of the Earth surface
in the IFOV appearing larger at the beginning and end of each scan line than at nadir;
resulting in bigger pixels at the edges of imagery than in the centre. This type of
distortion is most noticeable for sensors with large FOV, such as AVHRR (FOV 112°)
or MODIS (FOV 112°). For the TM and ETM+ sensors (FOV  15°), the panoramic
distortion in pixel size is about 30 cm (approximately 1% of the pixel dimension) and
can thus be ignored. |

Other sources of geometric distortion due to the sensor system are corrected by
on-ground processing prior to the data reaching the users (see Jensen (1996)). The

geometric distortions of concern in multitemporal analysis, that are not due to the

SA generic term used to describe all possible landscapes. Landcover is defined by Graetz et al. (1992)
as “the envelope of living organisms that exist on or in the terrestrial or oceanic surfaces, between the
lithosphere and the atmosphere.”
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sensor, are termed planimetric distortions, and relate to fixed features on the Earth's
surface having different (z,y) positions between image pairs. The notation adopted here
is that x represents the position number of a pizel (or cell) along a scan fine, ¥, in an
image. An image, therefore, is referred to as having M lines and N pixels per line (with
l<z<Nandl<y<M).

Two approaches for correcting for planimetric distortions are image-to-map rectifica-
tion and image-to-image registration. Rectification involves assigning to image coordi-
nate, (z,y) a map coordinate (E,N), where E and N are the eastings and northings of a
particular map projection. Registration involves a translation and rotation of the image
data so that two images of the same geographic area are positioned coincident with one
another, so that the same feature of the Earth’s surface has the same position in both
images.

Rectification is desirable when one seeks to accurately estimate distances and areas,
or when the image data are to be integrated with other geographic data, such as a
geographic information system {GIS). In multitemporal analysis, it is crucial that images
are accurately co-registered. However, the two processes are often combined in a hybrid
co-registration scheme with the end result being an image sequence co-registered to the

same map base.

Datum and Map Projection

It is well known that the shape of the Earth is not a sphere, but is better represented by
a spheroid defined by certain major and minor axes. If at least one point on (or within)
the spheroid can be linked to a point on (or within) the Earth (a point known as a tie
point) then the spheroid defines a datum. Two datums commonly used in Australian are:
the Australian Geodetic Datum AGDE66, so called because it was fully defined in 1966,
with a tie point located at Johnston’s memorial (E 133°56, S 25°12'} in the Simpson
Desert, Australia; and the Geocentric Datum of Australia GDA94, with the tie point
defined at the centre of mass of the Earth.

A map projection is a mathematical function to transform the 3-dimensional surface
of the Earth into a 2-dimensional representation. There are numerous map projections,
but one of the most used is that known as transverse mercator; a regular grid with the

origin of the coordinate system located at the bottom-left corner of the grid. There are
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a number of transverse mercator grids that cover the entire Earth, each one defining a
zone. The Australian continent, for example, is covered by zones 48-58. The Australian
Map Grid (AMG) and the Map Grid of Australia (MGA) are two examples of regular
grids having transverse mecator projection, with distances measured in metres. The map
grid for zone 50, AMG50 for example, has an origin off the southwest coast of Western
Australia.

Image Co-registration

Accurate co-registration is essential for change detection studies, as poorly registered
imagery can lead to the detection of false change and compromise the whole multitem-
poral effort (Sing, 1989; Furby and Campbell, 2001). Figure 3.8 illustrates the effect
that poorly registered imagery have on multitemporal analysis. Displayed in both (a)
and (b) are band 5 images for the same scene acquired on two different dates. The dark
feature to the left of centre is an airport runway. The first date is displayed in the red,
the second in green. Regions of no change between the two images are highlighted in
shades of yellow. In Figure 3.8(a) the two images are clearly not registered very well
as is evident by the green and red ghosting either side of the runway. Figure 3.8(b),
on the other hand, illustrates better registration of the imagery and ghosting effects
are significantly reduced. Ghosting, due to mis-registration, may lead to the detection
of false change, particularly when change detection schemes are employed that involve
pixel-wise operations.

Rectification involves selecting a number of ground control points (GCPs). GCPs are
points on the Earth’s surface, with known map coordinates, (E,N), that can be identified
in imagery. A mathematical relationship between image coordinates (z,y) and the GCPs
is determined via spatial interpolation and the image is transformed to the geometry of

the map. The transformation assumes the form,

)

=3 auEN, (3.12)
k=0 I=0
R 8

y=3 > buEN (3.13)
k=0 =0

which is interpreted as mapping the image location (z,y) to map coordinate (E,N). The

exponents P, @, R and S are the orders of the polynomial in terms of eastings and nor-
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(a) (b)

Figure 3.8: Tllustration of poor (a) and (b) good co-registration of two dates of TM
imagery (band 5). Shades of green and red indicate regions of false change.

things for line y and pixel z; coefficients ay; and bg; can be determined via least-squares
regression. Polynomials typically do not exceed third order, however the appropriate
order can be determined via statistical significance testing (¢-tests, for example) on the
coefficients of the polynomials.

The number of GCPs used in the rectification process is not as important as the
distribution of points throughout the scene. Typically around 100-200 GCPs are used in
the rectification process (Furby, 2000), and a uniform distribution of points can minimise
any bias that may lead to the type of mis-registration observed in Figure 3.8.

Registration, in its simplest form, is employed when it is not essential to assign
the pixels in an image any geographic coordinates; for example, when one seeks to
observe change between two images. In this situation, it is necessary however to ensure
that the same fixed features in both images are accurately positioned. This is difficult
when the images have different line and pixel numbers (encountered when subsets of
image data are used). Therefore, one often finds that a combination of rectification and
registration is employed, in which one image in the multitemporal sequence, referred to
as the rectification base image, has been rectified to a map projection. All other images
are then registered to the rectification base image.

In this combined approach, the GCPs that were used to rectify the base image are



75

also used to co-register the other unregistered images in the sequence. Each GCP must
be linked to an image co-ordinate. This can be time consuming, particularly if the
number of GCPs is large (> 100 say). Furby (2000) suggested an approach whereby the
image coordinates for a small number of GCPs, 4 say, is determined by visual inspection.
The approximate position of the remaining (GCPs in the un-registered image is based on
the original 4. The positions are further refined via a cross-correlation feature matching
procedure between the rectification base image and un-registered image. The correlation
is calculated for a neighbourhood of pixels (say 20 x 20 pixels) centred on the GCP for
a spectral band with high contrast (TM band 5 for Sumtmer scenes (Furby, 2000; Furby
and Campbell, 2001)). A high correlation {around 1) indicates a good fit, whilst a
low correlation (< 0.75) indicates a bad {it, and the corresponding GCPs are excluded
from the rectification process. Mathematical relationships in the form of Eqs. (3.12)
and (3.13) are then obtained between the un-registered pixel coordinates (z,y) and the

GCPs in the base image (E,N).

Resampling

Once expressions have been found that relate image coordinates to eastings and nor-
things, the next task is to determine appropriate intensity values (DN) for the (E,N)
coordinates in the rectified image. This is achieved by resampling the original, un-
registered image. Three methods for resampling are described below.

Nearest neighbour resampling chooses the intensity of the pixel nearest the predicted
position (z,j) from Eqs. (3.12) and (3.13). This method of resampling has the least
impact on the radiometric quality of the data, since it involves copying an actual data
value to the rectified image. Nearest neighbour resampling is criticised because edges
appear in the rectified image in the direction of the sampling, however, it is the recom-
mended procedure for multispectral images as it preserves between-band, or spectral,
relationships.

Bilinear resampling performs a 2-dimensional interpolation of the four closest neigh-
bours to the predicted (&,5). The resulting rectified image will be smoother in ap-
pearance than that produced by nearest neighbour resampling, however between-band
relationships may be compromised in the interpolation process.

Cubic convolution (also known as bicubic) also uses a neighbourhood of pixels (say,
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16 pixels) to perform a 2-dimensional interpolation for the value at (£,7), however the
interpolating polynomial is a third-order polynomial (a cubic). The resulting image again
appears smooth and thus the method suffers the same criticism as bilinear in regards
to compromising between-band relationships and radiometric integrity of the original

imagery.
3.3.2 Sensor Calibration

For many applications involving sequences of satellite imagery, the key issue is to ensure
that a given sensor’s response to a certain amount of radiance emerging from the earth-
atmosphere system be the same at any time during the sensor’s lifetimne; changes in
the satellite observations that are due to artefacts in the measurement system have the
potential of being incorrectly attributed to changes in land use and land cover (Slater
et al.,, 1987; Roderick et al., 1996, Thome et al., 1997, Dinguirard and Slater, 1999;
Thome, 2001; Teillet et al., 2001). Of particular importance is a band’s responsivity,
g, which (recall from Section 3.1.4, p. 54) relates the physical radiance received at the
satellite sensor, L%, to the raw digital number (DN}, X, for that band.

Sensors on the Landsat series of satellites have achieved onboard in-flight calibration
via an internal calibrator (IC) system. The ICs for Landsat-5 TM consists of 3 calibration
lamps’, themselves calibrated pre-flight in a laboratory to a high degree of accuracy
with integrating spheres (Markham and Barker, 1986; Thome et al., 1997). Detector
pre-flight responsivities were determined from regression of the lamp responses against
the pre-flight measured radiances, for eight different lamp states®. Onboard calibration
of the detectors is achieved by routinely measuring lamp irradiances and the relating the
values back to pre-launch radiance values. It has been noted, however, that the IC lamps
have problems maintaining their pre-flight calibration in orbit as a result of the micro-
gravity and vacuum conditions experienced in space (Slater et al., 2001). Consequently,
the accuracy of the onboard in-flight calibration cannot be higher than the pre-flight
calibration (Thome et al., 1997, Thome, 2001).

"The long-term characteristics of the IC lamps have been monitored by the group led by Dr. Dennis
Helder from the South Dakota State University Image Processing Laboratory. Further details are avail-
able from the group’s website hitp : //iplab2out.sdstate.edu/. A description of the IC system for the
Landsat-7 ETM+ sensor as well as other onboard approaches are found in Thome (2001).

BA lamp state is either on (= 1) or off (= 0). The 8 possible lamp states are (1 1 1}, {11 0), (1 0 0},
(000),{001),{(011),(010)and {10 1), each producing a different irradiance level.
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The onboard IC system permits TM and ETM+ sensor calibration to be monitored
with high temporal frequency. Any changes in the detector responsivity are supposed
to be monitored by the IC system and subsequently taken into account by the system
that produces the radiometrically-calibrated image products. Differences between the
16 individual detectors are removed so that the radiance value is independent of detector
number {Jensen, 1996, p. 108), and the end users need only concern themselves with
applying the time-invariant radiometric scaling factors (Table 3.3, p. 56) to convert the
D Ns into radiance values (Teillet, 2002). It has been observed, however, that there have
been changes to the Landsat-5 TM measurement system that were not captured by the
IC {Thome et al., 1993, 1997). This finding has implications for the radiometrically-
calibrated image products and the suitability of radiometric scaling factors in Table 3.3
for calculating accurate radiances. This, and the fact that onboard calibration is not
as accurate as pre-flight, has led to a concerted effort in investigating alternatives to
in-flight sensor calibration that are independent of onboard IC systems and pre-ftight

calibration.

Vicarious In-flight Calibration

Vicarious methods for calibrating satellite sensors are useful for monitoring a sensor’s
radiometric performance independently of onboard diagnostics (Dinguirard and Slater,
1999). Two of the most often used methods for vicariously calibrating a satellite sensor
were first proposed by Slater et al. (1987): these are the reflectance-based and radiance-
based methods. The reflectance-based method requires measurements of surface re-
flectance, atmospheric optical thickness and meteorclogical measurements, and coinci-
dent satellite raw image DN's for a large, homogeneous target. These measurements are
used in conjunction with radiative transfer code to model the at-sensor radiance. The
radiance-based method attempts to mimic satellite observations by using spectrometer
measurements of a surface target from an altitude above much of the scattering layer
in the atmosphere. Radiative transfer code is used only to model residual scattering
and absorption effects that may occur between the specirometer and space. The raw
image DNs for the target are divided by TOA radiance modelled with the reflectance-
or radiance-based methods to yield estimates of sensor responsivity for each band (see

Dinguirard and Slater {1999) for more details). The key considerations of two field cam-
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paigns that employed the reflectance-based method to monitor change in Landsat TM's
responsivity are given below.

Surface reflectance measurements are often acguired with hand-held spectrometers
whose spectral range matches that of the satellite sensor being investigated (e.g. TM/ETM+
between 400-2400 nm). It is also important to make a large number of ground-based
measurements in the least amount of time, to ensure that there is as little change as pos-
sible in atmospheric condition and Sun angle from the time of image acquisition. Slater
et al. (1987) described a “yoke” system to acquire numerous spectrometer measurements
in which the instrument was suspended from a bar straddling the operator’s shoulders
and approximately 1 m to one side. Thome et al. (1993) described a “reflectomobile”
in which the spectrometer is mounted on a trailer and towed across the target, reducing
the acquisition time (compared to the yoke} by half.

It is recommended that the target be uniform and bright in surface reflectance, so
that errors in modelling the scattering component of the satellite signal are reduced.
The target should also be large enough such that a sufficient numbers of pixels may be
used to estimate the target’s average DN. The White Sands Missile Range test site in
White Sands, New Mexico, has been used in numerous vicarious field campaigus (Slater
et al., 1987; Thome et al., 1993; Thome, 2001) because it satisfies both criteria: the area
is composed of gypsum sand dunes, which are quite bright, and contains relatively small
amounts of vegetation; and the site where measurements were acquired is a rectangular,
480 x 120 m area corresponding to 16 rows of 4 pixels (64 pixels in total for each band)
in a TM and ETM+ image. Thome (2001) gave further guidelines for selecting the
ideal test site for a vicarious calibration field campaign. They include: the site elevation
should be above 1 km, so uncertainty in aerosol characteristics has negligible influence
on modelled radiance; and the site should be Lambertian in reflectance properties and
flat terrain to minimise the impact of BRDF and shadowing.

In the vicarious calibration campaigns described by Slater et al. (1987), Thome et al.
{1993) and Thome (2001), there were instruments measuring barometric pressure, and
radiometers measuring solar extinction in a number of narrow bands. From these mea-
surements, the researchers were able to infer estimates of molecular, aerosol, and ozone
optical thicknesses, as well as columnar water vapour concentrations. These results,

along with reasonable assumptions about the aecrosol type, and the average surface re-
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flectance for the test site were input to radiative transfer modelling code to yield an
estimate of the at-sensor radiance. Finally, the average DN values for the test site were
divided by the modelled at-sensor radiance to yield an estimate of the responsivity for
each band.

Thome et al. {1993) utilised the reflectance-based method to estimate the Landsat-5
TM responsivity from image data acquired over the White Sands test site for 8 dates
between July 1984 and August 1992. Data were also collected and processed for 2
additional dates (October 1993 and 1994) for the same test site, the results of which were
published by Thome et al. (1997). The reflectance-based observations of Thome et al.
(1993, 1997) demonstrated that there was a clear change in Landsat-5 TM responsivity
during the sensor’s lifetime that was much larger for bands 1-3 than the other bands.
Apart from the last observation in the sequence, the responsivities for bands 4 and 7
appeared to be have changed the least during the sensor’s lifetime.

A comparison of the vicarious results with those determined via the onboard IC
system, revealed good agreement in the behaviour of bands 1 and 2 responsivities; the
vicariously-derived responsivities being slightly less than the IC-derived values. The
IC system detailed an upwards-increasing trend in bands 2-4 responsivities that was
not evident in the vicarious results. The IC responsivities for bands 5 and 7 had an
erratic temporal behaviour with an apparently linear upwards trend; a behaviour not
observed in the reflectance-based results because of the comparatively small number
of field campaigns. The limited number of vicarious observations, however, indicated
marginal differences relative to the pre-flight responsivities for bands 4, 5 and 7.

The onboard IC system reported an exponential decay in responsivity with time
for bands 1-4 (the primary focal plane bands) that was attributed to outgassing of
the spectral bandpass filters; the scatter of points for these bands were attributed to
temperature effects and variations in the alignment between the detectors and the IC
system (Thome et al., 1997). The erratic behaviour observed in the band 5 and 7
responsivities time series was attributed to interference due to the build up of frost on
the window of the cold focal plane.

It is clear from the findings of Thome et al. (1993, 1997) that there were artefacts in
the TM measurement system that lead to changes in responsivity that were not moni-

tored by the IC system. In this regard, the usefulness of vicaricus calibration has been
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demonstrated; the only disadvantage is the relative infrequency with which vicarious
calibration field campaigns are conducted (Thome et al., 1997). Nevertheless, the com-
bined results of the onboard and vicarious calibrations indicated absolute radiometric
accuracy of the TM sensor is around 5% for bands 1-4 and slightly higher in bands
5 and 7 (< 10%). Finally, Thome et al. (1993} claims the most important finding of
their investigations was the disagreement between the responsivities observed with the
reflectance-based method and the gain factors for the Level 1 image products for the same
image date. The observed responsivities were around 20% less than those in the Level
1 image product for the VIS bands, and disagreement for the other bands was at most
7%; further justification for the vicarious approach to monitoring sensor calibration.

A reflectance-based vicarious calibration campaign was conducted to monitor the
Landsat-7 ETM+ sensor calibration (Thome, 2001). The image data were acquired for
4 dates within the first 198 days of the Landsat 7 mission. Using the same approach as
that described above for the White Sands test site, Thome (2001} applied the reflectance-
based method to data acquired for an additional two sites: a dry lake bed known as
Railroad Valley Playa, Nevada; and Roach Lake Playa, California. It was observed that
the reflectance-based responsivities for all dates agreed to within 3.5% of each other,
and to with 7% of pre-launch values. From these finding Thome (2001) concluded that

the ETM | sensor calibration has remained stable.

Cross-calibration with Tandem Configuration

Teillet et al. (2001) took advantage of a rare situation in which the Landsat-5 TM and
Landsat-7 ETM+ were in tandem orbit, that is with very similar orbital characteristics,
and used the acquired imagery to calibrate one sensor with respect to the other. Only
a summary of the cross-calibration methodology described by Teillet et al. (2001) is
presented in the following.

The two test sites used in the investigations of Teillet et al. (2001) were the dry
lake bed of Railway Valley Playa, Nevada, and a grassland site in Niobrara, Nebraska.
Even though the TM and ETM+ images for both sites were acquired in relatively quick
succession (~ 10-30 minutes apart), the data were converted into at-sensor reflectances
to (i} minimise the impact of the slight difference in solar position, and (ii) compensate

for differences in exo-atmospheric irradiances for the different TM and ETM+ band
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responses, Using the link between at-sensor reflectance and raw image DN (via Eqgs. (3.1)
and (3.3)), Teillet et al. (2001) showed that the TM responsivity may be represented as a
linear function of the ETM+ responsivity. For each test site, data pairs were constructed
from bias-corrected DNs from both TM and ETM+ images. A straight line fit to these
data pairs provided a value of slope M that, when applied to the ETM+ responsivity,
gave an estimate of the TM responsivity for each spectral band.

The investigations of Teillet et al. {2001) demonstrated, once again, that there have
been changes to the TM responsivity throughout the sensor’s lifetime. Not only were
the findings consistent with those of the vicarious calibration campaigns (Thome et al.,
1993, 1997), but the amounts by which the responsivity in VIS bands decreased were
of the same magnitude. It was concluded that using pre-flight calibration coefficients
on image data for the VIS bands would lead to significant errors in at-sensor radiance
calculations, as well as anything derived from radiances such as surface reflectances. The
tandem cross-calibration responsivity for band 4 supported the observations of Thome
et al. (1997) that no significant change has occurred in that band throughout the sensor’s
lifetime. Bands 5 and 7 also showed little change relative to pre-flight (around 1 and 2%

in absolute value for band 5 and 7, respectively).

A Final Remark On Sensor Calibration

The impact that changes in sensor calibration can have on satellite imagery and derived
image products in multitemporal analysis was demonstrated using AVHRR. data by
Roderick et al. {1996). Changes in sensor slope (related to the sensor’s responsivity)
from pre- to in-flight for the AVHRR. throughout the sensors lifetime onboard NOAA-7,
-9, and -11 are well documented (Cracknell, 1997, pp. 93-102). Of particular interest
were the sensor slopes for bands 1 and 2, corresponding to the VIS and NIR respectively.
From these bands, the normalised difference vegetation index (NDVI)? is calculated; a
popular index used by many investigators to monitor large-scale patterns of vegetation
change and condition. Large errors of up to 0.07 NDVT units (i.e. approximately 10-40%

of typical NDVI values for vegetated targets) are observed in the calculated index from

®An index calculated as the difference of reflectances in the NIR and red bands divided by the sum
of reflectances for those same bands, was observed to be correlated with a number of canopy variables
(see Tucker (1979) for example). Further details on the calculation of NDVI are presented in Section
4.4.1 on page 168.
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differences in sensor slope alone {Roderick et al., 1996).

Roderick et al. (1996} constructed times series from 117 months of AVHRR-derived
NDVTI (spanning the lifetimes of AVHRRs on three NOAA satellites) for a large area
over Western Australia. The data exhibited a strong seasonal component, which was
removed using a 12-point moving average filter. This revealed three distinct trends:
the first, corresponding to the data collected with the NOAA-7 AVHRR, was a flat,
constant value around 0.07; the second, a linearly-increasing trend for the lifetime of
NOAA-9 AVHRR; and the third was once again flat and constant in value, around 0.03,
for the NOAA-11 AVHRR data. The errors in calculated NDVI that the observed trend
introduced resembled (in regards to the shape of the curves) those simulated for NDVI
that incorporated the changes in sensor slope reported by Kaufman and Holben (1993,
cited in Roderick et al. (1996)). Remowval of the trend resulted in a NDVI time series
that was dominated by a seasonal component only (as expected).

The work of Roderick et al. (1996) is an example where techniques can be developed
that correct image data for changes in sensor calibration independently of onboard or
vicarious knowledge of sensor response. Roderick et al. {1996) noted that the described
technique cannot be used to provide a calibration of the image data to an absolute
scale, but for the application that their technique was intended (namely, using NDVI
to monitor vegetation change), this is not essential. Such techniques achieve a relative

calibration, and this is explained in further detail in Section 3.4.

3.3.3 Atmospheric Effects in Satellite Imagery

Atmospheric composition and properties vary on small and large spatial scales, and on
temporal scales of the order of hours, days, months and years. In multitemporal analysis,
therefore, it is a reasonable assumption to make that the atmospheric conditions on a
given date will differ to those of other dates in the sequence. The atmospheric effects
considered in this thesis are either additive or multiplicative in nature in regards to the
measured at-sensor signal. Using simulated data provided by the 65 code, this section
describes how these effects are manifest in satellite images,

Furthermore, to illustrate these effects, it is assumed in the examples presented
that image data were acquired with the Landsat-5 TM sensor, with solar zenith angle

and azimuth & = 36.19° and ¢¢ = 81.36°, respectively. Also note that in the figures
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Figure 3.9: Additive effects in satellite imagery: (a) An illustration of the spectral
behaviour of intrinsic atmospheric reflectance values, pgemy, for different aerosol optical
thicknesses {(AOT) at 550 nm; {b) The impact of the path effect on satellite image data
for a subset of a Landsat-5 TM image (6 = 36.19° and ¢y = 81.36°}.

containing image histograms, the label “No Atmospheric Effects” is assigned to image

data that have had all (if any) atmospheric effects removed.

Additive Effect

The additive contribution to the at-sensor signal, termed the path effect, is due to the
intrinsic atmospheric reflectance, pymy (or path radiance, L;y). Recall from Eq. (3.6,
p. 60) that in the single scattering approximation, the atmospheric reflectance is decom-
posed as separate contributions from molecules and aerosols. However, as was previously
metioned (p. 69), a more accurate formulation, encompassing a greater range of aerosol
optical thickness and observation angles, deals with a combined molecule-aerosol system
and the SOS algorithm (Vermote et al., 1997h). Finally, a more complete definition of
the atmospheric reflectance incorporates any gaseous absorption that may occur along
the path from the Sun to the satellite sensor (Figure 3.6, p. 59}. The 65 code, therefore,
was used to calculate the atmospheric reflectances presented in Figure 3.9.

In Figure 3.9(a), it can be seen that the path effect is most obvious in the VIS,

and that puuymy increases with increasing AQOT. For wavelengths above 800 nm, the
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atmospheric reflectance is observed to be less than .02 for myssoam = 0 — 0.2.

The implication for TM/ETM+ bands 1-3, is that the path effect introduces an
offset in the image data (the offset decreasing in magnitude from bands 1 to 3). The
offset has the effect of lightening the image data, which is illustrated in Figure 3.9(b)
for band 1 data from a 512 x 512 subset of a Landsat-5 TM image.

If image data are free of atmospheric effects {Figure 3.9(b), histogram labelled “No
Atmospheric Effects”), then the at-sensor reflectance {Eq. (3.3), p. 57) corresponds
to the surface reflectance, that is pl,,, = psx. The path effect, however, results in a
clear shift of the reflectance histogram to higher values. In Figure 3.9(b), molecular
optical thickness is kept constant (as is gaseous transmittance) while the aerosol optical
thickness takes on two values (AOT(550 nm) = 0.05 and 0.2), resulting in a histogram
shift that increases with increased optical thickness. Therefore, the apparent (at-sensor)
reflectance of a target, pf ., becomes brighter; an effect most noticeable for dark {low

reflectance) targets. In fact, if the target has a zero surface reflectance, then pf ., =

Patmi-
Multiplicative Effects

The total atmospheric transmittance is a combination of scattering of the photons in and
out of the direct beam by the molecules and aerosols, and absorption by atmospheric
gases. The total atmospheric transmittance, simulated with MODTRANd4, for a mid-
latitude summer model is displayed in Figure 3.10 for the solar reflective region of the
EM spectrum. Also presented are the response curves for Landsat-5 TM bands 1-5
and 7, illustrating their placement in relation to some of the more prominent absorp-
tion features. The scattering effects on atmospheric transmittance exhibit a smooth
wavelength dependence, impacting the VIS and NIR. Gaseous absorption occurs for a
number of wavelengths throughout the solar reflective region; highlighted in Figure 3.10
are the gases contributing to some of the more prominent absorption features (from
left to right: ozone {O3), oxygen (O), water vapour {Hs0), carbon dioxide (CO3) and
methane {CHy).

Recall (pp. 60-61) that total scattering transmittance is defined as the sum of direct
and diffuse transmittances through the scattering layer of the atmosphere. The 65 code

was used to compute the direct and diffuse transmittances presented in Figure 3.11(a).
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Figure 3.10: The simulated total atmospheric transmittance for a mid-latitude summer
model (black line) and the Landsat-5 TM response curves {(grey lines). Highlighted are
some of the more prominent absorption features.

The direct (black lines) and diffuse (grey lines) transmittances in the figure correspond
to a vertical path from sea level to TOA for different aerosol concentrations. The solid
thick lines (black and grey) represent the transmittances for a scattering layer composed
of molecules only (no aerosols). It is observed that increasing the aerosol optical thick-
ness (while keeping molecular optical thickness constant) results in a decrease in direct
transmittance but an increase in diffuse transmittance. This is because aerosols are
predominately forward scatterers (Figure 2.9, p. 42); direct transmittance will decrease
with an increase in AOT, since more photons are scattered away from a direct beam
between the ground and the satellite sensor, and the diffuse transmittance increases
as a result of more photons being scattered into the direct beam by the surrounding
environment.

The decrease and increase in direct and diffuse transmittances is also observed when
molecular and aerosol concentrations are kept constant, and only the view angle is in-
creased (Figure 3.11(b)). For an AOT(550 nm) = 0.05 and view angles set at § = 0%,
45° and 65°, it is clear that when the view angle increases, so too does the optical path

length. Therefore, there is an increased likelihood for photons to be scattered away from
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Figure 3.11: Direct (black lines) and diffuse (grey lines) transmittances due to molecular
and aerosol scattering: subfigure (a) illustrating the spectral dependence for different
aerosol optical thicknesses (AOT at 550 nm); subfigure (b) illustrating the direct and
diffuse transmittance (AOT = 0.05) at different observation angles (8).

and even into the direct beam.

The diffuse transmittance contribution to the total scattering transmittance is ob-
served to be smaller than the direct transmittance. This is due to the relative contribu-
tion of the reflectance from a target’s surrounding environment (pp. 62-64) being less
than that of the target itself. As a result, the total scattering transmittance will always
be closer to 1 than the direct transmittance alone. The combined effect of the direct and
diffuse transmittances is a reduced intensity of the sensor-measured signal, illustrated
for nadir view and 6 = 36.19° ¢p = 81.36° in Figure 3.12(a) for three different acrosol
optical thicknesses. It is clear from the figure that total scattering transmittance has
most impact on the VIS bands. Figure 3.12(b) illustrates the effect of total scattering
transmittance on Landsat-5 TM band 1 image data for two AOT values. Total scattering
transmittance results in a reduced contrast in the image data, evident by the narrowing
of the histogram. Furthermore, contrast appears to decrease when AOT increases, in
direct correspondence with the observed behaviour of the total scattering transmittance.
Note that the additive effect is not illustrated in Figure 3.12(b).

Of the atmospheric gases, water vapour plays an important role in the interaction

with EM radiation {recall discussion, pp. 13-14). The large absorption features in
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Figure 3.12: Total scattering transmittances simulated for Landsat-5 TM image data
(fo = 36.19°, 6y = 81.36°): (a) the wavelength dependence for three different aerosol
optical thicknesses (AOTs); (b) the reduced contrast in TM band 1 data due to scattering
(no additive effects displayed here).

Figure 3.10 around 1400 and 1900 nm indicate that water vapour attenuates most (if
not all) of the EM signal at, and around, those wavelengths. Although many satellite
sensor spectral bands are designed to avoid, as much as possible, water vapour absorption
features, most bands are nevertheless influenced by water vapour to some degree. For
the TM and ETM+ sensors, water vapour absorption affects bands 2-5, and 7. It is
expected from Figure 3.13(a), that water vapour absorption most significantly impacts
TM band 5 (around 1650 nm), followed closely by band 4 and then band 7. The effect
of this absorption on TM band 5 data is demonstrated in Figure 3.13(b) for two water
vapour concentrations. Note that the effects of absorption by other gases is not presented
in Figure 3.13(b)}.

Ozone absorption occurs for a range of wavelengths between 450-750 nm known as
the Chappuis band. Ozone absorption, therefore, impacts TM and ETM+ bands 1-
3. The maximum ozone absorption in the Chappuis band occurs around 600 nm, thus
TM/ETM+ band 2 will be most significantly affected by ozone. This is observed in
Figure 3.13(c) for a range of ozone concentrations (in Dobson units, DU). Figure 3.13(d)

illustrates the effect of czone absorption on Landsat-5 TM band 2 image data based on
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Figure 3.13: Water vapour and ozone transmittances simulated with 65 for Landsat-
5 TM image data (fp = 36.19°, 8, = 81.36°). Water vapour transmittance: (a) the
wavelength dependence for three different water vapour concentrations; and (b) the
reduced contrast in TM band 5 data due to water vapour absorption only.
transmittance: (c) wavelength dependence for three different ozone concentrations; and
(d) the reduced contrast in TM band 2 image data due to ozone absorption only (other
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two concentrations. Once again a reduction in contrast is observed. Note also that the
path effect and absorption effects due to other gases are not illustrated.

The two ozone concentrations used in the simulations in Figure 3.13(d) represent the
approximate minimum and maximum ozone concentrations typically observed in the
mid-latitudes. The figure demonstrates that the change in the shape of the reduced-
contrast histograms between upz = 200 and 400 DU is relatively small. It may therefore
be concluded that errors in ozone concentration estimates of the order of the absolute
accuracy of some of the satellite observations (e.g. TOMS, p. 20) will have marginal
impact on the modelling of czone absorption for the TM/ETM+ VIS bands.

Apart from water vapour and ozone, the other atmospheric gases impacting the
TM and ETM+ bands are: oxygen gas {Oz), carbon dioxide (CO;), methane (CHy),
nitrogen dioxide {NOz), and nitrous oxide (NoO). The MODTRAN4 software, which
uses the high-resolution transmission molecular absorption database (HITRAN), was
used to simulate transmittance spectra for these gases, based on a vertical path from
sea level to TOA, for 5 simulated atmospheres (i.e. mid-latitude summer and winter,
sub-arctic summer and winter, and tropical atmospheres). The average transmittances
(and corresponding standard deviations) of all simulated atmospheres are presented in

Table 3.6.

Table 3.6: Average transmittance values due to oxygen (Oa), carbon dioxide (COg),
methane (CHy), nitrogen dioxide (NO3) and nitrous oxide (NyO) absorption for the
Landsat-5 TM bands. The means and standard deviations {St. Dev) given are based on
values from the 5 simulated atmospheres used in MODTRAN4. A blank cell means the
corresponding band is unaffected by that particular gas.

Landsat-5 TM Bands
1 [ 2] 3 | 4 | 5 | 7
Oy Mean 0.989 0.997
St. Dev 85x107% | 28 x 107°
COs Mean 0.993 0.992
St. Dev 34%x1075 | 26 x 104
CHy Mean 0.995 0.969
St. Dev 01 %1075 | 5.1 x 10~
NO; Mean 0.998
St. Dev || 9.5 x 1075
NoO  Mean 0.999
St. Dev 5.7 x 1075
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In Table 3.6, it can be seen that NoO and NOs have the least impact on the TM
bands, affecting bands 1 and 7 respectively, with transmittances around 0.999 and 0.998
respectively. Methane absorption in TM band 7 gives the lowest transmittance (0.97),
while oxygen and carbon dioxide absorption resulted in transmittance vales around 0.99.
Qther than water vapour and ozone, TM band 2 is unaffected by the presence of the
“other” gases. Note that variations in the transmittance values are due to the differences
in the atmospheric profiles used by MODTRAN4 to define the particular simulated
atmospheres.

Finally, the total gaseous transmittance may be obtained using Eq. (2.13, p. 27)
where the product of the individual transmittances for each gas in the absorption layer

of the atmosphere i3 calculated.

Effects of Terrain Elevation

The additive and multiplicative effects described in the preceding examples have been
computed for a fixed elevation and, therefore, atmospheric path length. There may
be considerable variation in terrain elevation within a satellite scene, and one cannot
expect that the path effect or the total transmittance will remain constant throughout
the image. In fact, given stable atmospheric conditions, the physical properties of the
atmosphere, such as the pressure and temperature profiles (Figures 2.4 and 2.5, pp.
11 and 13, respectively), and concentrations of various atmospheric constituents (e.g.
Figure 2.7, p. 19) vary with altitude in the fashions described in Chapter 2. Simply
stated, this is because there is less atmosphere above a target located on a mountain,
for example, than there is at sea level.

To demonstrate the effect that variation in target elevation has on gaseous trans-
mittance, 6S was used to compute the transmittances for Landsat-5 TM bands, for a
mid-latitude summer atmosphere with g = 36.19° and ¢ = 81.36°, for a target located
at a number of elevations. Transmittances were calculated for water vapour, ozone,
methane, oxygen and carbon dioxide for elevations ranging from sea level to 32 km!®
(where the target would be situated above 99% of the mass on the atmosphere). The
results are displayed in Figure 3.14.

Generally, an increase in transmittance is observed for all gases in Figure 3.14 as the

0This is an unrealistic scenario since most terrestrial targets are located between 0-8 km.
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target elevation increases. For targets located within the first kilometre above sea level,
transmittances for gases other than water vapour vary by < 0.6% (for water vapour,
band 5 transmittances vary by ~ 2%).

Clearly, water vapour transmittance is the most sensitive to changes in target eleva-
tion. This can be atiributed to the rapid decrease in water vapour concentrations with
increasing altitude (illustrated in Figure 2.6, p. 15). In fact, remotely-sensed estimates
of precipitable water have been observed to be highly correlated with elevation (Roberts
et al., 1997). The increase in transmittance between sea level and a 1-km elevation is
equivalent to a decrease in column water vapour concentration of around 1.5 g/fem?.
Generally, the higher the target elevation, the less precipitable water is present in the
atmospheric column, and consequently the higher the transmittance.

In contrast, ozone transmittance appears to be the least sensitive to changes in
elevation. In the figure, very little change in transmittance is observed for band 2 (i.e.
the band most affected by ozone absorption) until the target elevation is 16 km. Recall
from Chapter 2 {(Figure 2.7, p. 19) that the peak in ozone concentration for a mid-
latitude summer occurs around 22 km. Even at an elevation of 32 km, where most of
the ozone concentration is below that altitude, the transmittance in TM band 2 is still
0.99. From this it can be concluded that, for most terrestrial targets, ozone transmittance

is insensitive to target elevation.

3.3.4 Change Detection

Change detection studies often utilise multitemporal sequences of satellite imagery in
an attempt to map and monitor physical modifications in land cover types, whether
the cause be natural or anthropogenic. It is crucial that the topics discussed in the
previous sections are taken into consideration prior to embarking on any change detection
endeavour. Before describing methods for minimising the influence of those factors that
may hamper change detection efforts (Section 3.4), this section describes some change
detection techniques and the various shortcomings that may result if the issues raised in
Sections 3.3.1, 3.3.2 and 3.3.3 are not addressed.

Change in surface features may be observed between any two (or more) multispec-
tral images or processed higher-level image products, such as a classification or an image

derived from spectral indices. Sing (1989) described two broad categories of change de-
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tection techniques. The first category relates to those techniques based on the compara-
tive analysis of independently produced images with simple image algebra. The second
category are those techniques that simultaneous analyse multitemporal data with time
series or multivariate statistical analyses. The following presents a review of some change

detection techniques that fall into either one {or both) of these categories.

Image Arithmetic

Techniques that detect change by either differencing or raticing two dates of satellite
imagery (defined, for example, by Jensen (1996, pp. 266-269)) can be applied to each
band in a multispectral image (pixel DN, X, converted into at-sensor reflectances, pf . ,,
or retrieved surface reflectances psy ), a single band in a multispectral image, or the single
image of a processed higher-level product {such as a vegetation index image). Change is
observed for pixels in a difference image that have either a non-zero value (in the case of
image differencing), or a value different to unity (in the case of image ratioing). Image
differencing (or ratioing) is performed on a pixel-by-pixel basis, and whilst techniques
incorporating such operations are sensitive to all those factors mentioned in the previous
sections, the most significant errors arise because of mis-registration (see Figure 3.8, p.
74). Accurate co-registration of imagery is vital if the applied techniques are to yield
any meaningful estimate of land cover change whatsoever. It is implied throughout the
remainder of this chapter that the images described have been co-registered prior to any
change detection technique being applied.

Upper and lower thresholds are applied to the difference (or ratio) image to compen-
sate for possible uncertainty in atmospheric effects and/or sensor calibration. Change
is attributed to pixels whose values fall outside the interval defined by the thresholds.
Thresholds are often selected as integer multiples of the standard deviation about the
mean difference value. The number of standard deviations can be determined interac-
tively via visual inspection of the difference image. Sing (1989} stated that the threshold
selection process is the most critical element of the image differencing and ratioing tech-
niques. The subjective nature of the threshold selection, however, makes such techniques
unattractive to many researchers, particularly since it requires some knowledge of the
characteristics of the land cover which is often unknown.

Sing (1988} and Gong {1993) have both stated that change detected with single-band
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differencing is dependent on the land cover type, and that different change information
is contained in each spectral band. Furthermore, Gong (1993) pointed out that inappro-
priate placement of thresholds can fail to detect smaller, more subtle change between
the two dates: too conservative (narrow interval) and an overestimate of potentially
false change is detected; too liberal (wide interval) and the amount of change is un-
derestimated. This has lead many researchers (examples are given in the following) to
investigate alternative approaches to simple differencing (or ratioing) and to develop

change detection techniques that in some way enhance the measure of change.

Multivariate Statistical Transformations

It is well known that there exists a certain degree of hetween-band interdependence
in a multispectral image. Each pixel in a multispectral image may be thought of as
a k-dimensional multivariate observation, where k is the number of spectral bands. A
measure of this band interdependence is provided by the k xk veriance-covariance matrir,
denoted C.

Principal component analysis (PCA, see for example Richards and Jia (1999, pp.
133-148)) is a multivariate statistical technique that has been applied to multispectral
imagery, to exploit the multivariate nature of the data. PCA produces uncorrelated (or-
thogonal) linearly-transformed components (i.e. the eigenvectors of C' calculated from
the original multispectral data) such that the first component accounts for the maximum
portion of the total variance in a multivariate set of observations, with subsequent com-
ponents accounting for decreasing amounts of variance. Gong (1993) applied PCA to the
images resulting from a simple band-by-band difference of two images. The motivation
for the approach was that the majority of the variance in a difference image is associated
with change between the two dates, thus change information will be preserved in the
first two or three principal components.

Fung and LeDrew (1987) used PCA to identify change between image pairs in a
sequence of MSS images. Their approach was to concatenate the two images, forming a
2k x n matrix {where n is the total number of pixels per band), and use PCA to provide
the linear combination of the bands aligned in the direction of maximum data variance.
Most of the variance in this framework is attributed to areas of no change, thus Fung

and LeDrew {1987) observed that most of the change information was contained in the
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minor components, since areas of land cover change occupy only minor portions of the
entire image scene.

Once again, poor image registration, sensor calibration or atmospheric effects ham-
per the guality of the change highlighted with the above two approaches. Nielsen et al.
(1998} have observed that errors in band-by-band differencing due to registration, at-
mospheric and sensor differences between image pairs are dramatically amplified when
transformations, obtained via PCA, are applied to image data. Furthermore, they crit-
icise the PCA approaches because images in the multitemporal sequence are required
to have the same number of spectral bands if either the Fung and LeDrew (1987) and
Gong (1993) approaches are employed.

Nielsen et al. (1998) proposed a scheme whereby change could be detected between
two images with different numbers of spectral bands and even account for situations
where the bands cover different regions of the EM spectrum. Their approach employed
canonical variate analysis'!! (CVA, see for example Campbell and Atchley (1981)) to
again obtain a linear transformation of the original data to maximise any deviation
from no change between the two dates. The transformations were called multivariate
alteration detection (MAD) transformation. Their investigations also focussed on the use
of the minimum /maximum autocorrelation factor (MAF) transformation by Switzer and
Green (1984) to smooth imagery prior to the application of the MAD transformation.

As with the PCA approaches, the MAD transformations are also affected by poor
image co-registration as well as requiring that the images involved have the same number
of pixels. Furthermore, the promise of the MAD approach of being applicable to images
possessing different numbers of spectral bands, and spanning different wavelength re-
gions, is unsubstantiated, but it is unlikely that the between-image correlation structure
for given cover types is retained if different wavelength regions are considered.

Nielsen et al. (1998) applied their scheme to detect spatial patterns of change due to
(1) urbanisation between two dates of Landsat MSS imagery for Queensland, Australia,

and (ii) changes in sea surface temperature resulting from the El Nifio-Southern Os-

UThe usual implementation of CVA in satellite studies is to maximise the spectral separation between
two or more classes (defined in the following) in a satellite scene by computing linear combination of the
original k£ bands in such a way that between-class differences are maximised relative to the within-class
differences (Campbell and Atchley, 1981). These linear combinations are referred to as spectral indices
{more in “Image Time Series” section below) and highlight features in an image corresponding to the
particular class of interest.
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cillation event between January 1982 and January 1983 with AVHRR image data over
part of the California current system near Baja, California. They found that the MAD
transformations produced more accurate results than the prineipal component analysis
approach of Gong (1993). Furthermore, they claimed that the application of the com-
bined MAF/MAD transformations removed any spatially incoherent noise and outliers
in the imagery that may be attributed to poor image geometric registration. It was also
noted that, since the linear gains and offsets that sensor calibration and atmospheric
effects introduce in satellite imagery have an impact on the magnitude of the change

measured, the image data should be properly intercalibrated.

Poast-classification Analysis

This inter-band correlation may be observed for different land cover types, and is typ-
ically strongest within cover types than between them. Many researchers have utilised
this fact to map different cover types with satellite imagery. The different land cover
types are referred to as classes, or themes (e.g. vegetation, bare soil, water body), and
a classifier allocates a particular class label to a pixel based on some prior informa-
tion. When the classifier has processed every pixel in a multispectral image, the result
is a map of the geographical distribution of a particular class {theme) referred to as a
classification or thematic maop.

Change detection via post-classification analysis is probably the easiest technique to
describe. Change is detected in a multitemporal sequence of classifications if a pixel
changes class between dates. Since each pixel in any given image is assigned one of
diserete number of classes, it is a relatively simple and straightforward technique to
automate. Furthermore, since the approach uses classifications, absolute accuracy of
the multispectral image data is not essential. In fact, the only requirement is that
the multispectral images in the sequence be normalised (more in Section 3.4). The
main limitations to this method of change detection are the geometric co-registration of
imagery and the accuracy of the classification.

The best known classifier is the Mazimum Likelihood (ML, see for example Jensen
{1996, pp. 229-231)) classifier. Since the ML classifier operates on a pixel-by-pixel
basis, the resulting classification can sometimes appear quite ‘speckled’. One expects

that neighbouring pixels most likely belong to the same class, and therefore a classi-
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fication should preserve spatial continuity within classes. This is the basis for some
proposed neighbourhood models (Besag, 1986; Kiiveri and Campbell, 1992; Campbell
and Kiiveri, 1993, for example) that aid in maintaining the spatial cohesion expected in
classifications. Kiiveri and Caccetta (1996) demonstrated that classifications resulting
from procedures that incorporate spatial correlation in image data appear considerably
smoother. Difficulty arises when there is a solitary pixel that actually corresponds to a
certain class, yel because of its neighbours it is assigned to the class of its neighbours.

Kiiveri and Caccetta (1996, 1998) and Kiiveri et al. (2001) demonstrated how use-
ful conditional (or causal) probability networks (CPNs) are at exploiting the temporal
aspect to the change detection problem. The CPXN classifier is applied to a sequence of
classification, produced with the ML classifier for example, as input. The idea with the
CPN approach is that if a pixel has a certain classification in one year, then if no change
in land cover has occurred, the pixel will have the same classification the following year.
Any uncertainty or error in pixel classification between image dates is compensated for
via the temporal link in the CPN.

The result of the CPN classifier is the posterior probability for each pixel in an image
belonging to a particular class; the resulting image is essentially a spatially-varying
probability surface (Kiiveri et al., 2001). A threshold is applied to the probabilities
(usually a value of 0.5): above the threshold, pixels are assigned to the particular class;
below the threshold and the pixel is labelled as not belonging to that class. The CPN
can also serve as a tool for integrating other data sources to aid in classification. The
CPN approach has been utilised to map and monitor the spread of dry-land salinity and
native vegetation in the southwest of Western Australia (Caccetta et al., 2000a,b).

Change detection by comparing classifications in a multitemporal sequence can only
detect change in a discrete number of land cover types. The signal corresponding to
these land cover types must be of sufficient strength and possess the appropriate spectral
characteristics to be recognised by a classifier as belonging to a particular class. The DN
for each band in multispectral images range from 0-255 (for TM/ETM+), and differences
in these values between dates, due to vegetation stress for example, have the potential
of confusing the classifier and subsequently lead to incorrect classification for a given
pixel. For this reason, many researchers prefer to monitor the temporal behaviour of

continuous variables, such as an image-derived vegetation index or surface reflectances.
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The latter is only recommended if the image data are corrected for atmospheric effects

and temporal change in sensor response; the topic of discussion in Section 3.4.

Image Time Sertes

Recall that spectral indices are linear combinations of the bands in a multispectral image
that highlight the particular land cover feature of interest. Those spectral indices that
highlight vegetated targets and are known as vegetation indices. These vegetation indices
are attractive because they collapse the multivariate set of spectral observations into a
single index that can be related to biophysical parameters of vegetation in the scene of
interest (Roderick, 1994). As such, they can be used in investigations into vegetation
cover and condition.

Roderick (1994) used satellite-derived vegetation indices to monitor the condition of
vegetation from season to season, in various regions of Western Australia. The approach
adopted was essentially to treat each pixel value in a normalised difference vegetation
index (NDVI) image as a single observation in a time series, the length of which is dic-
tated by the number of images in the sequence. Effectively there is a time series at
each pixel location. He applied three standard time series techniques—Fourier transfor-
mations, autocorrelation, and classical decomposition!>—to the NDVI time series and
observed that, of the three methods investigated, the classical decomposition was the
most effective at identifying inter-annual vegetation change.

Other vegetation indices, also derived from empirical observations of a variety of
vegetation types, under a range of conditions, have been proposed that offer improved
capabilities to the NDVI (discussed in Chapter 4, pp. 168-170). One such vegetation
index is the soil-adjusted vegetation index (SAVI), proposed by Huete {1988), which
enhances the vegetation signal and suppresses the soil component of the signal in satellite
imagery over sparsely vegetated areas. Other authors have adopted a statistical approach
based on CVA and image data from training sites to derive vegetation indices {Caccetta
et al., 2000a; Behn et al., 2000; Furby, 2000}.

In most cases an average value of the index, calculated for a neighbourhood of pixels,

12 assical decomposition is a term used here to describe the decomposition of a time series into its
seasonal, trend and random parts. For example, the seasonal behaviour is removed from a time series by
applying a 12-month, moving average filter. This leaves behind only the trend and random components
of the time series.
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is used to construct the time series rather than individual pixel values. This has the
effect of minimising the impact of mis-registration. The other factors affecting change
detection combine to introduce an offset and a gain that can affect the derived index.
In the case of the indices derived using CVA, absolute accuracy of the image data is not
important as long the images are normalised. As for the empirically-derived vegetation
indices, sensor calibration, the atmospheric path effect and gaseous absorption, impact
the spectral band and in turn modify the absolute accuracy of the vegetation indices
calculated for different dates. If data are to be combined in a time series to monitor
change, then they must be adjusted for these factors; methods that achieve this are

discussed in the next section.

3.4 Radiometric Processing of Multitemporal Sequences
of Imagery

Discussion in Section 3.3.2 focussed on sensor calibration and stressed the necessity of
the routine monitoring of the radiometric performance of the satellite sensor (either via
onboard systems, vicariously in field campaigns, via cross-calibration with other sensors,
or in a combination of these approaches) to maintain a high level of consistency in image
product throughout the sensor’s lifetime. In Section 3.3.3 it was described how changes
in atmospheric properties impact the satellite image data. Furthermore, Section 3.3.4
described how neglecting to address these two issues introduces errors that can hamper
efforts in change detection. This section reviews some methods for minimising the impact
of the factors that lead to observed change between images in a multitemporal sequence
that are not due to modifications in land cover.

The radiometric processing of satellite image data to simultaneously compensate
for changes in sensor calibration and atmospheric conditions through time, has been
referred to as image colibration (Caccetta et al.,, 2000b; Wu et al,, 2001; Furby and
Campbell, 2001). This is not to be confused with sensor calibration, which converts
the sensor-acquired signal (stored as a DN) into the physical units of radiance; or with
atmospheric correction, which aims to remove the atmospheric effects from the radiances
at the TOA (L3) and retrieve surface reflectances (p;x}. In multitemporal analysis, the
radiometric processing may be applied to an image in isolation of the other images in the

sequence ( Unitemporal Methods, Section 3.4.1), or in a relative, image-to-image fashion
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where statistics derived for one image is used to transform the data in another image
into similar units (Multitemopral Methods, Section 3.4.2). It is this author’s belief that
the latter approach to radiometric processing is more appropriately referred to as image

normalisation and is the terminology adopted in this thesis.

3.4.1 TUnitemporal Methods

The processing methods described in this section are applicable to single dates of satel-
lite imagery. They can incorporate in situ measurements of surface reflectance and/or
atmospheric parameters (e.g. optical thickness, pressure/temperature profiles, etc.), or
they may derive the desired quantities from the image data itself. For multitemporal
analysis, these methods may be applied to each image independently of the other images

in the sequence.

Empirical Line Approaches

There are numerous processing procedures that aim to retrieve the surface reflected
component from image DN for each pixel in a multispectral image. If a satellite overpass
coincides with the acquisition of some ground-based surface reflectance measurements,
Pex, for a number of targets within the scene, then these measurements along with the
image data for the same targets, X, can be used to obtain a transformation that, when
applied to the whole satellite image, converts the image DN into a surface reflectance.
Methods that transform satellite imagery in this fashion are known as empirical {ine
(EL) procedures.

The traditional EL procedure can simultanecusly correct for atmospheric effects and
sensor calibration by mapping X3 for a number (m say, where m > 2) of bright (high
reflectance} and dark (low reflectance) pixels to the ground-based measurements of pgy
made for the same m targets. This mapping is achieved by fitting a straight line to data
pairs formed from the image and ground data as illustrated in the scatter plot of Figure
3.15{a). Such a scatter plot is constructed for each spectral band and the estimates of
intercept (ay) and slope (by) of the line of best fit are rearranged to yield the image
correction coefficients, Ay = —ay /by and By = 1/by.

It is also desirable in the EL procedure that the surface target’s area be greater than

or equal to the spatial dimensions of an image pixel. A further requirement, often seen
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Figure 3.15: Scatter plots illustrating {a) the traditional empirical line (EL) procedure
and (b) the refined empirical line (REL) procedure of Moran et al. (2001). Also dis-
played are the lines defined by either the slope, by, and the intercept, that can either be
statistically-derived, ay, or be the modelled path DN, X,5. Image correction coefficients
are obtained from the estimated slope and intercept.

as a limitation of the EL approach, is that the selected target has spatially homogeneous
surface reflectance properties. Most practical implementation of the EL procedure ac-
quire a sufficient number of reflectance measurements over the extent of the target such
that an average reflectance may be computed and used as a representative estimate of
psx for that target.

Moran et al. (2001) proposed the refined empirical line (REL) procedure which differs
from the EL approach described above firstly in regards to the surface target require-
ments, and secondly by incorporating the theoretically darkest pixel in an image into
the straight line fitting. An example scatter plot used in the REL procedure is displayed
in Figure 3.15(b). The REL procedure is a two-point regression between the surface-
measured reflectance and image DN for one bright (high reflectance) target, and the
modelled DN for a target with zero surface reflectance, denoted X5, and referred to in
this thesis as the path DN. The image correction coeflicients in the REL procedure are
given as Ay = —X,, /by and By = 1/by.

In regards to the reflectance requirements for the bright target in the REL procedure,
Moran et al. (2001) stated that:
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1. the target should be bright;

2. the sensor resolution to target size ratio should be 1:8 {for the TM and ETM+
sensors this means that the target should have dimensions on the order of 240 x

240 m); and

3. the target’s BRDF needs to be characterised. Moran et al. {2001) achieved this by
adopting the empirical BRDF model of Walthall et al. (1985) which, for the TM
and ETM+ sensors (p. 65), becomes a simple expression in terms of solar angle

only.

Characterising the BRDT for a bright target in a scene of interest is suggested so that
the REL approach can be applied to images where no coincident ground-based surface
reflectances measurements have been acquired. The implication here is that the target’s
reflectance properties are temporally invariant and only change as a function of solar
position and sensor viewing angles. Moran et al. (2001) emphasised the importance of
the third requirement in the REL procedure by demonstrating that errors in surface
reflectance estimation of around 10% may be incurred for changes in solar zenith angle
up to 30° (i.e. Afy ~ 30°) if the target’s BRDF is not well characterised.

Modelling the path DN requires knowledge of some atmospheric parameters for the
date the imagery was acquired. Specifically, the parameters of particular importance in
modelling X5 are uos, ¥m20, TRy and 7y, as well as (fg, o) and (8, ¢). From Figure

3.15(b)} it can be seen that if p;y = 0 for a target and its surroundings, then
Xy = Xpa,

and the sensor-measured signal is completely due to atmosphere effects. This is in
fact the basis for many atmospheric correction procedures (see Dark Target Approaches
section below).

The advantages of the REL method over the EL approach, Moran et al. (2001) claim,
is that it is a relatively fast procedure to implement since the surface reflectance of only
one bright target needs to be known. Most of the effort, they claim, is involved in
characterising the target’s BRDF, The task of atmospheric modelling {modelling the
path DN) is comparatively easily if one is given measurements of optical thickness and

employs atmospheric modelling software (e.g., 65 or MODTRAN). The image correction
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coefficients determined via the EL or REL procedures define an equation that when
applied to the DNs in an uncorrected satellite image converts the data into surface

reflectances. The estimates of surface reflectance are given as,
Peorrd = A)\ + B)\ X,\, (314)

where peqry are the retrieved (corrected) surface reflectances, and Ay and B, have
been defined previously. Using a comparison of the retrieved and measured (“true”)
surface reflectances for a grassland site, Moran et al. (2001) showed that the REL pro-
cedure can estimate pgy to within 0.01 reflectance units. Finally, Moran et al. (2001)
showed that uncertainty in modelled path DN, due to limited knowledge in some of
the atmospheric parameters, had little impact on retrieved reflectances for bright target
(differences around 0.01 reflectance units for band 1 and less for other bands). It was
noted, however, that the errors for dark targets should be higher since (as discussed in
Section 3.3.3) additive effects due to atmospheric scattering are most noticeable for low
reflectance targets.

Possible limiting factors for operational implementation of the REL procedure in
multitemporal analysis are the required size of the bright target, the dependence on
surface reflectance measurements, and the modelling of the path DN. There would be
a handful of satellite image scenes that contained sufficiently bright targets with the
desired 1:8 sensor-to-target area ratio, as well as the required ground-based reflectance
and atmospheric measurements. Even fewer locations around the globe would exist
where the required measurements were available for dates extending back through time
{as required for retrospective studies of land cover change).

As a result, much research has focused on radiometric processing methodologies that
are independent of ground-based measurements. The most popular techniques are those
that derived estimates of the key atmospheric parameters from the imagery itself. Such

methods are the topic of the next section.

Dark Target Approaches

A desirable feature of a radiometric processing procedure is if it allows the unknown
atmospheric parameters to be inferred from the image data itself. These so called image-

based procedures can be applied to any image in the multitemporal sequence, and for



104

any date, as they are not dependent on ground-based measurements of the desired at-
mospheric parameters. In the literature on these image-based procedures, attention
focuses on their ability to correct for atmospheric effects; any changes in sensor calibra-
tion are assumed to be characterised and taken into account. To be consistent with the
literature surveyed, the following discussion will also focus on image-based procedures
for correcting atmospheric effects.

A common characteristic of many image-based procedures is that they exploit the
darkest pixels in a scene because, as previously mentioned, the additive effects in imagery
{i.e. the path effect, due solely to the atmosphere and having no surface contributions})
are most obvious over low reflectance targets. Examples of the most often used dark
targets are: water bodies, deep to minimise bottom reflectance and containing little, if
any, suspended sediments; shadow areas resulting from terrain topography; and dense
green vegetation. For these dark targets, the contribution to the sensor-measured signal
is dominated by the path effect; the surface contribution is much smaller because of the

lower surface reflectance. Thus, for a dark target,
Xam Xpxn, L= Lpy, Of o ™ Patmd

Surface reflectances for these targets belong to lower end of the image histogram (his-
togram minima), except in those image scenes that correspond to desert, arid or semiarid
areas where few, if any, sufficiently dark targets can be found (Teillet and Fedosejevs,
1995).

The simplest image-based procedure for correcting the atmospheric path effect is
the dark-object subtraction {DOS) procedure. The DOS procedure assumes that the at-
sensor reflectance calculated for darkest pixels in a scene is a reasonable approximation
for the atmospheric reflectance, that is p,, = patms. By removing the estimate of
Patmy irom the at-sensor refletcances calculated for the other pixels in an image, the
DOS procedure effectively removes the path contribution to vield an estimate of surface
refllectance. However, the path contribution is only one atmospheric effect observable in
image data. The DOS procedure does not correct for the multiplicative effects of gaseous
absorption, the direct and diffuse scattering transmittances (Section 3.3.3, p. 84), or
the multiple surface-atmosphere interactions (Section 3.2, p. 61). In an evaluation of

the retrievals from the DOS procedure and measured surface reflectances, Moran et al.
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(1992) demonstrated unacceptably high errors were incurred as a result of neglecting
the multiplicative effects; the DOS procedure gave results marginally different to no
correction at all.

Chavez (1996) proposed an extension to the DOS procedure that incorporates a cor-
rection for the multiplicative atmospheric effects in imagery. The DOS procedure as
described above was used to yield estimates of L,y. Furthermore, using gaseous trans-
mittance values tabulated by Moran et al. (1992}, Chavez (1996} derived empirically-
based estimates of transmittance from the Sun to the target which, to first-order, were
a reasonable approximation. Making the further assumptions that there was no dif-
fuse contribution at the surface and that the total transmittance from target to sensor
was unity, a simplified version of the RTE was inverted to yield estimates of surface
reflectance. The procedure was evaluated against surface reflectance measurements, and
it was observed that image-derived estimates were, on average, within 0.02 reflectance
units of the in situ measurements. The numercus assumptions on which the procedure
proposed by Chavez (1996) is based, however, suggest a limited range of applications
and atmospheric conditions for which the procedure is suitable.

Other image-based procedures use estimates of path radiance (or atmospheric re-
flectance) from dark targets to infer estimates of specific atmospheric parameters. The
parameter most often targeted is aerosol optical thickness, Ty, because, when compared
to other atmospheric constituents, aerosols properties tend to be more elusive (Section
2.2.5, pp. 21-24). Recall (p. 40) that in the single-scattering appraximation, the path
radiance can be decomposed into molecular, LE‘)\, and aerosol, Lgf\, components. That
is,

Lpxy = Ly + L}, (3.15)

where

r F,
R fa M _ Hdr
LD)\ = HPR(@)TRA and LPA = 471_““)0)\PN{)\(9)TM}\-

By subtracting the molecular component of path radiance (easily calculated using, for
example, Eqs. (2.16) and (2.49), pp. 28 and 41, respectively) from the estimates of L)
obtained from dark pixels, values of T\ are obtained by rearranging the equation for
Lg& given reasonable estimate of Py and wg) based on the most suitable aerosol type.

This is the adopted approach in the procedures proposed by Hill and Sturm (1988) and
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Gilabert et al. (1994). In both procedures an estimate of 7y (and the other atmospheric
parameters which are estimated from model atmospheres) is assumed to be applicable
over the entire image. The procedure described by Hill and Sturm (1988) obtains an
estimate of 7y for all bands in a multispectral image, where as that of Gilabert et al.
(1994) obtains an estimate for only two bands. The procedure of Gilabert et al. (1994)
uses estimates of aerosol optical thickness obtained for TM (or ETM+) bands 1 and 3 to
obtain the coefficient and exponent in the Angstrém relationship (Eq. (2.24), p. 32) and
the resulting formula provides estimates of aerosol optical thickness for the remaining
bands.

(Given an estimate of Ty and model inputs for the other atmospheric parameters,
the procedures above make use of some simplified RTE and models that approximate
diffuse transmittance, spherical albedo, and environmental effects, such as those of Tanré
et al. (1979, 1981, 1983), to retrieve estimates of surface reflectances from imagery. The
retrieved reflectances were observed to be within 10-20% of ground-based measurements
(Hill and Sturm, 1988; Gilabert et al., 1994).

Teillet and Fedosejevs (1995) used the 5S radiative transfer code to compute the
modelled at-sensor reflectances for a given date of TM imagery based on typical values
of some dark target surface reflectance and two or three different values of 7. The idea
here is that true values of ) can be estimated from the actual at-sensor reflectance
{average value over all dark pixels) from the histogram minima and interpolation of the

modelled at-sensor reflectances.

An Approach Based on Vegetated Targets

The previous section described how dark targets are utilised in many image-based at-
mospheric correction procedures to estimate aerosol optical thickness. The low surface
reflectance of these targets means that the bulk of the contribution at the sensor is from
the atmosphere, specifically the path radiance. For this reason, vegetated targets were
sometimes not regarded as suitable dark targets because of the relatively high reflectance
of vegetation in the NIR and green regions of the EM spectrum. In recent years, how-
ever, research has shown just how useful vegetated targets can be for estimating aerosol
optical thickness. The success lies in the establishment of some empirical vegetation

reflectance relationships which we shall briefly summarise here in the context of TM and
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Table 3.7: Empirical vegetation reflectance relationships used to estimate aerosol optical
thickness in Landsat TM and ETM+ bands 1-3.

Relationship
Researchers Band 1 Band 2 Band 3
Kaufman et al. (1997¢) ps1 = 0.25 por — psa = 0.50 pe7
Quaidrari and Vermote (1999) | ps1 = 0.23 per  ps2 = 0.67 ps7 pe3 = 0.50 pg7
Karnieli et al. {2001) ps1 = 0.23 por pe2 = 031 ps7 ps3 = 0.52 p7

ETM+ sensors.

Many researchers (Kaufman et al., 1997c; Ouaidrari and Vermote, 1999; Karnieli
et al., 2001) observed that for vegetated targets the surface reflectances in the TM/ETM+
VIS bands (bands 1-3) were highly correlated with surface reflectances in the SWIR band
(band 7). One of the first demonstrations of this inter-band correlation was by Kaulf-
man et al. (1997c) who used TM and Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) measurements of selected targets. With data that had been corrected for at-
mospheric effects via in situ measurements of aerosol optical thickness and the 65 code,
expressions relating surface reflectances in bands 1 and 3 to those in band 7 were estab-
lished; these are given in Table 3.7. Ouaidrari and Vermote (1999) used atmospherically
corrected TM data from three long-term ecological research (LTER) sites to establish
the relationships for bands 1-3. Karnieli et al. {2001}, on the other hand, used data from
an ASD spectrometer mounted on a low-flying light aircraft to derive the relationships
for bands 1-3 also given in Table 3.7.

Generally, agreement is observed across all three relationships for bands 1 and 3.
Discrepancies, however, are observed in the relationships for band 2. The most likely
reason why Kaufman et al. (1997c) did not establish a relationship for band 2 is because
vegetation reflectance is higher in that band than in 1 or 3. In a communication with
the author, Dr. Kaufman said that not only was high correlation needed to establish
the relationships, but the reflectances have to be sufficiently low also. A high value of
reflectance would increase the possibility of error in aerosol optical thickness estimation,
particularly since retrievals are sensitive to uncertainty in single scattering albedo and
phase function (e.g. Eq. (3.15)). With regards to the band 2 relationships by Ouaidrari
and Vermote (1999) and Karnieli et al. (2001), no reason can be found in the literature

surveyed that suggests why there is such a significant difference.
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The empirical vegetation reflectance relationships of Kaufman et al. (1997c) have
been used in operational procedures for estimating aerosol optical thickness with MODIS
on the Terra satellite (Kaufman and Tanré, 1996b; Kaufman et al., 1997b). The fact
that MODIS views the Earth at angles up to 55° off nadir, has lead researchers to assess
the impact of angular variation on empirical vegetation reflectance relationships and the
subsequent retrieval of aerosol optical thickness (Remer et al., 2001; Gatebe et al., 2001).
For the TM and ETM+ sensors, which are essentially nadir-viewing instruments, the
empirical vegetation reflectance relationships are unaffected by angular variation.

Liang et al. {1997) and Ouaidrari and Vermote (1999) employed the empirical veg-
etation reflectance relationships in procedures for correcting atmospheric effects in TM
imagery. What these procedures offer that other dark-target methods do not is the op-
portunity to correct for spatially varying atmospheric optical thickness. The procedure
described by Liang et al. (1997) operates on a user-defined window of dimensions w x w
pixels (typical w values in the range 11-51}; whereas that of Ouaidrari and Vermote
(1999) partitions an image into a 4 x 4 array of cells in which the operations are per-
formed. For each window, or cell, essentially the same algorithm is employed to estimate
aerosol optical thickness (ignoring for the moment the band 2 processing of Ouaidrari

and Vermote (1999)). The procedures may be summarised as follows:

1. Identify pixels corresponding to vegetated targets in a window /cell based on certain
criteria (e.g. pf.; < 0.05 and NDVI > 0.01}. If vegetated target(s} found based
on criteria, correct pixels for gaseous transmittance in band 7 and estimate psy; go
to [2]. If no vegetated target(s) satisfy the criteria, move to next window/cell and

repeat [1].

2. Use the empirical vegetation reflectance relationships to obtain estimates for pg

and pg for the vegetated target(s); go to [3].

3. Estimate aerosol optical thickness for band 1 and 3, i.e. 71 and 7y, from the
at-sensor reflectances pZ., and p! ., the estimates p and pg3, and a simplified
RTE using lookup tables for transmittances, solar irradiances, phase function etc.;

go to [4].

4. Assuming aerosol optical thicknesses follow an Angstrém relationship (Eq. (2.24),



109

p. 32), calculate the coefficient and exponent using my1 and 7y3, and use the

relationship to estimate Tyg, TMa and Tvs; go to [5].

5. Input estimates of aercsol optical thicknesses and at-sensor reflectances into a
simple RTE with lookup tables for transmittances, solar irradiances, phase function
etc., and invert to retrieve surface reflectance pgy for each pixel in a window /cell,

and for band A =1, ..., 5; move to next window/cell and go to [1].

The reader is directed to Liang et al. (1997) and Quaidrari and Vermote (1999) for
gpecific details of the algorithm, and to Kaufman et al. (1997b) for further comment on
the appropriate vegetated target selection criteria. If a window or cell does not have
any vegetated targets that satisfy the criteria, then the value of aerosol optical thickness
form an adjacent window is used.

The limiting factor for the empirical vegetation reflectance relationship approach
to aerosol optical thickness estimation or atmospheric correction is the need to have
sufficiently dark vegetated targets. This is a problem for desert, arid, and even semiarid
scenes where vegetation cover is sparse and soil/background dominates the reflectance

signal.

3.4.2 Multitemporal Methods

The unitemporal radiometric processing methods of the previous section can be applied
to each image in a multitemporal sequence in an attempt to obtain a consistent set of
imagery through time. The methods requiring in sifu measurements are limited to the
scenes, and date, where the such data are available {a minority of locations around the
globe). The Image-based procedures, whilst useful for correcting atmospheric effects,
did not address the issue of uncertainty in sensor calibration through time.

In many change detection studies involving mulitemporal sequences of satellite im-
agery (Section 3.3.4), the only requirement is that image data be normalised for the
effects of atmosphere, solar position and sensor uncertainty. There are some methods
that achieve this normalisation by selecting a common reference image against which all
other images in the sequence are normalised. These relative, image-to-image normalisa-
tion procedures are a desirable alternative to the other methods when in situ data does

not exist and when processing image data to an absolute scale is not essential (Hall et al.,
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1991). A general description of the key aspects of some image normalisation procedures

is given in the following.

Image Normalisation

In general, the process of image normalisation can be summarised as follows: Image
DN3s are extracted for a subset of pixels in both the reference image, Xrpr,, and the
unprocessed image, X312, Based on this subset of pixels, a transformation is defined
relating the DN's in the unprocessed image to values in the reference image. The trans-
form is then applied to each pixel in the unprocessed image and the result is a processed,
or normalised image (Xcorea)-

This procedure is applied to every image in the multitemporal sequence. If one can
reasonably assume that any differences between images due to sensor calibration, solar
position, and atmospheric effects introduce linear changes, the transformation takes the
form of a straight line (Schott et al., 1988; Hall et al., 1991; Furby and Campbell, 2001).
It is noted that the derived linear transformation is valid only if there is negligible within-
image variability of atmospheric effects and there are no non-linear effects due to sensor
calibration. The three key aspects of the image normalisation procedures that will be
discussed in the following are: determining the subset of pixels; selecting an appropriate

reference image; and finally the derivation of the linear transformation.

Pseudo-Invariant Target Selection

Common to all the image normalisation procedures in the following is the assumption
that there are features common to all satellite image scenes that undergo negligible
changes in reflectance over time. These features are known as pseudo-invarient targets'4
(PITs) and correspond to objects on the Earth surface whose reflectance remains fairly
constant through time. Typical PITs include: deep water bodies, such as ocean or lakes;

urban features and asphalt surfaces, such as rooftops, large roads, or car parking lots;

Y¥The procedure described by Caselles and Lépez-Garefa (1989) use the at-sensor reflectances, but
since these values and DNs differ via a linear transformation, it is easy to show that the interpretation
is not affected if X, is used instead of psata.

“The terminology pseudo-invariant features/targets was used by Schott et al. (1988) since very few
targets on the Earth surface are truly invariant through time. Weathering, precipitation and seasonal
changes in solar geometry, for exarmnple, change the reflectance characteristics of many surface features.
In this thesis, the term pseudo-invariant target is used in reference to those features in a scene that are
less likely to change through time than others.
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other manmade features such as airport runways/tarmacs, quarries and gravel pits; and
naturally occurring rocky outcrops, beach sand and soil (Schott et al., 1988; Caselles
and Lépez-Garcia, 1989; Hall et al., 1991; Furby and Campbell, 2001).

Schott et al. (1988} described a procedure for PIT selection based on ratios of red
and NIR bands (TM/ETM+ band 3 and 4, respectively) to identify water and urban
features in imagery. The idea with the ratio approach is that vegetation tends to have
a high ratio, whilst water and urban features ratios are somewhat lower. A threshold
is applied to the ratio image such that only pixels with a ratio below the threshold
are given a binary ON flag (DN = 255 say), and those pixels with ratios above the
threshold are given a binary OFF flag (DN = 0). In a similar way, another ON/OFF
image is created, this time identifying those pixels that correspond to vegetation and
urban features. Vegetated and urban features have higher reflectance values in band 7
than water features and, therefore, an appropriately placed threshold can be used to
create a binary ON/OFF image that highlights non-water targets. A combination of the
two binary images via the logical AND operation finally results in a binary image that
highlights only urban features; this, Schott et al. (1988), refer to as a pseudo-invariant
feature (PIF) mask. For each band, image statistics (means and standard deviations)
are calculated for pixels identified by the PIF mask, which are then to be used in the
normalisation procedure they described (more later).

Hall et al. (1991) observed that in the non-vegetated extremes of the Kauth-Thomas
(KT) tasselled cap transformation (Richards and Jia, 1999, pp. 148-152) greenness-
brightness scattergram, there exist sets of pixels whose mean reflectance remains constant
between dates. Two sets of invariant targets result from the procedure: a bright set and
a dark set. The placement of the greenness and brightness thresholds determines the
number of pixels contained in the dark and bright sets. Sampling errors may result if
the thresholds are inappropriately placed: too generous and pixels may be included that
are not invariant in reflectance through time (biasing the dark and bright target means);
too narrow and there may be an insufficient number of pixels to accurately determine
the transformation function. Hall et al. (1991) claim that if both dark and bright sets
contain sufficient number of pixels, the procedure they describe is accurate to within +1
DN. The mean DN is calculated for pixels in the dark and bright sets, and these values

are then used in the procedure they describe.
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The procedures described by Caselles and Lépez-Garela (1989) and Furby and Camp-
bell (2001) adopt a manual approach for PIT selection. In the manual approach, targets
are located from either ground knowledge, maps of the features in the area under investi-
gation, or via visual inspection of the imagery. Caselles and Lépez-Garcia (1989) used 3
PITs in their investigations; one bright (sand) mid-range brightness (asphalt} and dark
(clear water). If, however, for a particular date of imagery, one or more of these targets
became unusable (e.g. obscured by cloud)}, then a new set of PITs needs to be chosen
for that date. Furby and Campbell (2001) used robust regressions and argued that the
resulting transformations were unaffected by change in up to half the PITs. Thus only
one set of PITs was required for all images in the sequence, since outliers have negligible
impact on the robust estimates of slope and intercept (i.e. the transformation function)
alleviating the need for repeated visual inspection. The procedure described by Furby

and Campbell {2001) recommend the use of 10-20 PITs.

Reference I'mage Selection

Reference images are often chosen on the basis that they, out of all the images in the
sequence, have the largest dynamic range (Schott et al., 1988). The application of the
multitemporal analysis also drives the choice of reference image: Mapping perennial
vegetation in Western Australia, for example, required an expansion of the low range of
DNs associated with native vegetation. Furby and Campbell (2001) found that images
acquired in the Summer season (solar zenith at its minimum) served as the most suitable
choice of reference image. Caselles and Lépez-Garcfa {1989) also found that a Summer
image was the best choice for the reference image because of the greater dynamic range
of DNs.

Another reason to choose a particular date of imagery as a reference is because it
may coincide with some n situ measurements of surface reflectance and/or atmospheric
optical thickness. This point shall be referred to at the end of this section as it forms

the basis for work presented in Chapter 4.

Normalisation Equations

Another fundamental assumption behind the normalisation procedures mentioned above

is that an image DV is a linear function of surface reflectance. Mathematically, the DN's
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in each band of a reference image, Xpgrra, and unprocessed image, X, are related to

the surface reflectance pgy of a PIT as,
Xgy=ay + 8 poy and Xy = a} + b} par, (3.16)

where the a’s and b's are the unknouwn offsets and gains containing information about the
atmospheric effects, solar position, and sensor calibration for the given dates of imagery.

After some rearrangement, it is straightforward to show that,
Xy = ax + by XrEera, (3.17)

where ay = (bfa} — bial)/b] and by = b} /bR,

Equation (3.17) provides a model by which the unprocessed D/Ns in a given image
are related to the DNs in a reference image for each spectral band. Estimates of the
intercept, ay, and slope, by, in Eq. {3.17) are obtained by either using the statistics
calculated for the PITs (Schott et al., 1988), or via linear regression of the mean DN
from the dark and bright set of PITs (Hall et al., 1991), or the scatter plot of PIT DNs
(Caselles and Lépez-Garcia, 1989; Furby and Campbell, 2001). To illustrate the latter,
referred to here as the like-value approach, a typical scatter plot used in the procedure
described by Furby and Campbell (2001) is given in Figure 3.16.

The number of points in the like-value scatter plot is typically higher than the num-
ber of PITs because targets are chosen whose dimensions extend beyond those of a single
pixel to minimise the impact of mis-registration (Furby and Campbell, 2001). Conse-
quently small neighbourhoods of pixels (around 2-4 pixels) are used to produce the
scatter plots.

For each band, a normalisation plot is constructed from PIT data pairs with the
reference DNs (Xgrpra) along the z-axis, and unprocessed DNs (X} along the y-axis.
The reason the axes are orientated as displayed in Figure 3.16 is to be consistent with
Eq. {3.17) which treats Xggr as the predictor variable and X, as the response variable.

Furby and Campbell (2001) recommend using a robust regression procedure since
least-squares regression is sensitive to outliers in the scatter plot (FFirgure 3.16). The
robust regression they used can treat up to half the total number of points in the scatter
plots as outliers and discard them from the line fitting procedure. The scatter of points in

like-value plots may be due to either the selected PITs not being as temporally invariant
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Figure 3.16: An illustration of ‘like-value’ scatter plot for the image normalisation pro-
cedure described by Furby and Campbell (2001).

as required, slight mis-registration between unprocessed and reference images, spatial
heterogeneity of atmospheric properties, or cloud contaminated pixels.
(Given regression estimates for ay and by, the image normalisation coefficients are

glvern as,

Ay = —ay/by and By =1/by,

where Ay and B, are referred to in this thesis as the image normalisation offset and gain

respectively. Finally, these coefficients define the image normalisation equation, that is,
Xcorr)\ = A)\ + B)\ XA; (318)

where X is the processed DN for the date of imagery under consideration. Equa-
tion (3.18) is ultimately applied to each pixel in an image to achieve the desired image

normalisation.
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Final Remarks on Image Normalisation

Furby and Campbell {2001} referred to their normalisation procedure as the like-values
procedure, because after application of the procedure, the processed image will have DN's
that are similar to those in the reference image. Similarly, Schott et al. (1988} referred to
their procedure as radiometric normalisation. The fact that the reference image serves
as a common normalisation source for the other images in the multitemporal sequence,
led Hall et al. (1991) to call their procedure radiometric rectification, using the analogy
of geometric rectification (p. 72). The images that result from the application of these
normalisation procedures will appear as though they were acquired under the same
atmospheric conditions, with the same solar position, and by same sensor (Schott et al.,
1988).

Whilst the procedures above have been described in terms of image DN's, the units
in which image data are expressed are immaterial to the processing. Therefore, if a
reference image has been corrected for atmospheric effects, solar illumination, sensor
view geometry, and sensor calibration, then image normalisation procedures can, in
principle, be used to transform image data inte surface reflectances or other units in
the absolute scale {Hall et al., 1991; Furby and Campbell, 2001). A test for this would
involve demonstrating that those factors mentioned above can be corrected for, and an
estimate of surface reflectance can be retrieved, thus producing multitemporal sequences
of imagery normalised to physical {reflectance) units that are consistent through time.

This is the basis for the investigation presented in Chapter 4.

3.5 Chapter Summary

o Multispectral imagery acquired with thematic mapper (TM) and enhanced the-
matic mapper plus (ETM+) aboard the Landsat series of satellites have been used
in many areas of multitemporal studies; the best known example is that of land

cover change detection.

e The Landsat satellites carrying the TM and E'TM+ sensors have a 16-day repeat

coverage. Both sensors have a FOV = 15° {on-ground distance 185 km) and an

TFOV of 30 x 30 m.
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o The TM and ETM+ image data are composed of 6 spectral bands (A = 1-5 and
7, 8-bit quantised grey-scale images) spanning the reflective region of the EM

spectrum.

* Tor ‘raw’ TM and ETM+ images, the digital numbers, X, are related to the
at-sensor radiance, L}, via the detector responsivity, gy, and zero-radiance
bias, Q.

* Tor radiometrically calibrated TM and ETM+ images X is related to LY via

radiometric scaling factors.

o Methods for detecting land cover change between dates of imagery in a multitem-

poral sequence are affected by the following factors:

1. Geometric co-registration needs to be addressed otherwise rmis-registration
can cause pixel-by-pixel operations to detect false change.
2. Solar position: may be corrected by scaling at-sensor radiance by TOA solar

irradiance and the solar zenith angle to give the at-sensor reflectance, pf, .

3. Sensor colibration, e.g. changes in relative spectral response, between the
various TM sensors and the ETM+ need to be taken into account. Also
changes in detector responsivity for a given sensor that are not captured by

the onboard calibration system need to be well-characterised.

4. Atmospheric effects, in image data can be additive (due to scattering by
molecules and aerosols; dominating the VIS bands and most noticeable over
dark targets) and multiplicative (due to scattering and gaseous absorption;
affecting all bands to certain degrees; reducing contrast in affected bands) in

nature.

¢ Vicarious calibration campaigns aimed at addressing satellite sensor calibration are
an accurate means of monitoring changes in sensor systems that are not detected by
the onboard calibrators. They have the limitation, however, of being too infrequent

for routine or operational use.

s Radiometric processing procedures for change detection studies involving satellite
imagery aim at obtaining data that are consistent and comparable through time.

Procedures can be categorised as unitemporal or multitemporal.
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* Unitemporal processing methods are often applied to images independently
of the others in the sequence and may be dependent on ground-based mea-
surements of surface or atmospheric properties. The required én situ measure-
ments have limitations particularly in retrospective land cover change studies.
Some, however, derive the desired quantities from the imagery itself. Those
specifically referred to as atmospheric correction procedures do not address

possible changes in sensor calibration through time.

Multitemporal processing methods are often based on image normalisation
to a common reference image. These procedures simultaneously correct for
differences in atmospheric condition, solar position, and sensor calibration
between the unprocessed and reference images. Processed images will have the
appearance that they were acquired under the same atmospheric conditions,

with the same solar position, and by same sensor as the reference image.

e [t has been noted that if the reference image has been corrected for the factors
that can hamper change detection efforts, then in principle image normalisation
procedures can transform image data into surface reflectances for each date in a

multitemporal sequence.



CHAPTER 4

A Synthesis of Methods

This chapter focuses on the application of an image normalisation procedure to multi-
temporal sequences of satellite imagery. Image normalisation has been described as a
useful method (Hall et al., 1991) for standardising digital data in sets of imagery when
inputs (such as sensor calibration coefficients and atmospheric parameters) required for
other radiometric processing procedures are unavailable. The specific motivation for the

work presented here stems from the following quote by Furby and Campbell (2001):

If we have o reference image that we can calibrate to reflectances (sic)!,
for example, by coincident ground reflectance measurements, the robust [like-
value] procedure allows colibration of o sequence of images to that reference

image and hence, to reflectance values.

Thus, it is the aim of this chapter to investigate an image-to-image normalisation
procedure, to be described in Section 4.1, to permit comparisons of surface reflectances
in multitemporal sequences of satellite imagery. Furthermore, by drawing on some of
the theory and methods of Chapters 2 and 3, the results presented in Sections 4.2-4.3
address the notion that the normalised images produced have been corrected for sensor
and atmospheric differences between image acquisition dates. Section 4.4 presents an
application of the proposed procedure to a multitemporal sequence of images for the
purposes of monitoring vegetation change through time; specifically investigating the
impact of radiometric processing via the image normalisation procedure on time series
of the derived vegetation index. The preliminary findings of a possible modification to
the procedure, based on empirical reflectance relationships for vegetated targets, are
given in Section 4.5. The chapter ends with Section 4.6 summarising the findings of this

investigation.

18trictly speaking, one does not calibrate to reflectance units. In the context of this thesis, more
appropriate terminology would be to normalise or standardise.

118
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4.1 A Like-value Method

The image normalisation procedure to be described in this section differs from the rela-
tive, like-value “calibration” procedure described of Furby and Campbell (2001) in two
respects: firstly, by incorporating the theoretically determined darkest pixel in an image,
modelled with radiative transfer code and the radiometric scaling factors; and secondly,
by using a calibrated, atmospherically-corrected reference image. The modelling com-
ponent is proposed as means of applying the normalisation procedure to scenes where
dark targets may be difficult to find. The resulting procedure has the potential to si-
multaneously correct for those factors that lead to a change in pixel DN that are not
due to modifications in surface reflectance properties.

Applying the described procedure to two sequences of TM and ETM+ imagery, the
following sections demonstrate that an image normalisation procedure may be used to
correct for changes in sensor response, solar position and atmospheric effects over time,
and result in a processed multitemporal sequence of satellite image data expressed as

surface reflectances.

4.1.1 A Simplified Radiative Transfer Equation

Recall that the RTE (Eq. (3.4), p. 58) provides a model for the radiance emerging from
the top of a plane-parallel atmosphere bounded at the bottom by a Lambertian surface.
In the single scattering approximation, the radiance in each spectral band in the solar
reflective region of the EM spectrum, A, is modelled as,

PsAFdoni f

LY = Ly + Doty
A P (1 — 8Saper)

(4.1)

where L3 is termed the at-sensor radiance; L,y denotes the path radiance, that is, the
contribution to the satellite signal from the atmosphere which is independent of surface
reflectance pgy; Fy» is the exo-atmospheric solar irradiance adjusted for Earth-Sun dis-
tance; yp is the cosine of the solar zenith angle 8p; Ti'T is the transmittance downwards
and upwards through the atmosphere, combining extinction due to absorption by gases
and scattering by molecules and aerosols along the direct Sun-target-sensor path, and
diffuse scattering into the direct path; and s, is the spherical albedo, a function of molec-
ular and aerosol optical thicknesses, representing the probability that a photon reflected

by the target will be scattered back towards the target by the atmosphere above it.
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The quantity in Eq. (4.1) of key importance in the assessment of land cover change is
surface reflectance ps). If a target’s surface reflectance properties are temporally stable,
then it is reasonable to attribute any observed change in at-sensor radiance (and thus,
image data) through time for that same target to the other quantities in the equation.
Radiometric processing procedures, therefore, aim to determine p ) from Eq. {4.1) by
taking into account sensor characteristics, atmospheric condition, solar illumination and
viewing geometries.

Recall (Eq. 3.2, p. 55) that for each TM or ETM+ spectral band there exist
radiometric scaling factors to convert the DN for any given pixel, X, into an at-sensor
radiance,

LY = O0x+ GuX,, (4.2)

where, in the case of radiometrically-calibrated products (p. 55),

L L.
Oy = Lpjna  and GAz%ﬂ'

Note that the radiometric scaling factors differ between TM and ETM+ images and the
level of image product acquired. They are designed to be temporally invariant (Teillet
and Fedosejevs, 1995; Teillet, 2002), unlike the sensor calibration coefficients (related to
sensor responsivity, g, and zero radiance bias, Qg,) which can change over time. The
internal calibrator (IC) systems onboard Landsat satellites monitor sensor responsivity
through time and any changes are accounted f01f by the on-ground processing system in
the production of radiometrically-calibrated image products. It has been noted {Thome
et al., 1997; Teillet et al., 2001), however, that there have been changes to Landsat-5
TM responsivity through time that the ICs did not detect; potentially rendering the TM
radiometric scaling factors obsolete. Changes in sensor responsivity, radiometric scaling
factors, or on-ground processing are referred to collectively as changes in sensor systems.

A relationship between DN and surface reflectance is obtained by combining Eqs. (4.1)

and (4.2) and expanding the term ps /{1 — 53ps3) In a geometric series to give
Xo = Xpx +bapor +eapd +daplh + - (4.3)

where Xpy = (Lpy — O))/G) is termed the path DN and corresponds to the digital

number for a target with zero surface reflectance, by = Fd,ngiT JGam, ¢y = bysy and
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dyx = cysy. The relationship above clearly illustrates the additive and multiplicative
components of the sensor output.

Many processing procedures that seek to determine surface reflectance from image
data assume that a first-order approximation in pg) is sufficient (Caselles and Lépez-
Garcfa, 1989; Moran et al., 2001). Using the fact that s) and psy are quantities less than
one, it can be shown that for clear-sky conditions and typical solar-sensor geometries
the quadratic and higher-order terms of Eq. (4.3) contribute at most 0.5D0N. The
dependence of the spherical albedo on molecutar and aerosol optical thicknesses, however,
suggests that with increasing opacity, there is an associated increase in the contributions
from a target’s surroundings (due to the trapping mechanism) to the sensor-measured
signal, in which case the higher-order terms in Eq. (4.3) become increasingly significant
(Tanré et al., 1979).

Radiometric processing procedures that assume X is a linear function of py) seek
estimates of X, and by for each band in a multispectral image. These coefficients are

then rearranged to yield the coefficients Ay and B) which in turn define the line,
Peorra = A+ Ba Xy, {4.4)

where Ay = —X,2/bx, Bx = 1/by, and peorry 18 an estimate of the surface reflectance for
a pixel with DN X,. When the estimates of Ay and B, are derived from image data
and ground-based measurements of surface reflectance (e.g. p. 100) these coefficients are
termed image correction coefficients. When the estimates of surface reflectance are ob-
tained from a reference image and a processing procedure based on image normalisation
is employed to derive Ay and B, the coefficients are termed image normalisation coeffi-
cients, and the line defines the image normalisation line (e.g., p. 114). The radiometric
processing procedure described in the following section seeks to estimate these image

normalisation coefficients for multitemporal sequences of TM and ETM+ imagery.

4.1.2 An Extension of the Like-value Procedure

The underlying basis for the image normalisation procedure described in the following,
is that, in any image, there exists a subset of pixels corresponding to targets whose
surface reflectance remains fairly constant over time (i.e. relative to other targets). If

these so called pseudo-invariant targets (PITs) (Schott et al., 1988; Hall et al., 1991;
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Furby and Campbell, 2001) are common to all images in a multitemporal sequence,
then it is assumed that any change in pixel DN for these targets is due to differences
in sensor systems and sensor view angle, solar position or atmospheric effects between
image dates. Therefore after normalisation, the same target in every image is described
as having like-value reflectances.

The like-value image normalisation (LVIN) procedure described here is so called be-
cause it involves normalising N-1 overpass (or unprocessed) images to a single reference
(calibrated and atmospherically corrected) image in an /N-date sequence. The LVIN

procedure may be summarized as follows:
1. Co-register images, e.g. rectify to a common map base.
2. Select an appropriate reference image from the sequence.
3. Select a set of PITs common to all images.
4. For all overpass images, model the path DN (X,,) for each band.?

5. For each image, obtain image normalisation coefficients via regression of reference

image reflectances against overpass image I?Ns for PIT data pairs.

For each band in a multispectral image, a normalisation plot in the fashion presented
in Figure 4.1 is constructed. The items summarized above and their relationships to

Figure 4.1 are discussed in further detail in the following.

Co-register I'mages

Accurate co-registration of the image sequence is of pivotal importance, since mis-
registration may lead to the detection of false change; compromising the whole premise
of change detection studies. Registration of each image to a rectification base {an image
with known map projection) is recommended. A cross-correlation feature matching pro-
cedure, for example, with a number {around 80) of good quality ground control points
uniformly located throughout an image, may be used to register imagery with sub-pixel

(< 30 m for TM and ETM+ images) accuracy (Furby, 2000).

>This step is optional and useful when too few or no dark PITs can be found in a satellite scene.
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Figure 4.1: Image normalisation plots for the LVIN procedure (a.k.a. LVIN plots)
described in Section 4.2.2 without {(a) and with (b) modelled path DN.

Create Reference Image

One of the images in the sequence is chosen as the reference image against which all
other images in the sequence will be normalised. Ideally, there would be at least one
image acquired on a date with coincident ground-based measurements of pgy. Such an
image would be the obvicus choice of reference, and the image I?Ns can be converted
to surface reflectances using the ground-based measurements in an empirical line or the
refined empirical line procedure described by Moran et al. {2001).

It is more likely, however, that no coincident ground data exisis for any date in
the sequence. In this situation it has been suggested (Schott et al., 1988; Furby and
Campbell, 2001} that the image with the greatest dynamiec range of DN (typically a
summer images because of the high solar elevation) be chosen as the reference. Con-
verting the DNs in this image to at-satellite reflectances (which adjusts the data for
solar elevation and Earth-Sun distance, but not atmospheric effects) is an effective way
of making the image data dynamic ranges comparable (Wu et al., 2001). These data
can be corrected for atmospheric effects to retrieve estimates of surface reflectance to

within 6% of ground-based observations (Zhao et al., 2001) using standard model inputs
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to atmospheric correction packages (e.g. 65 (Vermote et al., 1997b)), or to within 0.01-
0.02 reflectance units using image-based techniques (Moran et al., 1992; Ouaidrari and

Vermote, 1999).

Seleet a Set of PITs

Recall that PITs are those features in an image whose reflectance properties remain fairly
constant over time compared to other features in an image. Examples of such features
include deep water bodies, large areas of road or car park asphalt, rocky outcrops, bare
ground and beach sand. Furby and Campbell (2001} suggest selecting a large number
of PITs to cover the range of brightness values from dark (low reflectance), mid-range
and bright (high reflectance} targets (Figure 4.1(a)). Potential PITs can be selected
by visually inspecting the image data and/or using local knowledge of an area. This is
generally the most time consuming aspect of the LVIN procedure. However, experience
shows that a small number of PITs (typically around 10-20), spread uniformly over an
image will, usually suffice. Furby and Campbell (2001) describe in greater detail the

process of PIT selection.

Model Path DN

A knowledge of the path DN, Xy, is important in the LVIN procedure because, ac-
cording to Eq. (4.3), it corresponds to a target where pgy = 0. The image normalisation
procedure, therefore, will map digital numbers in an image equal to the path DN to a
zero value of surface reflectance (Figure 4.1(b)). Image-derived estimates of path DN
may be obtained from the imagery itself provided sufficiently dark targets can be found
in the satellite scene, or there exists areas where terrain elevation casts shadows (refer
to Section 3.4.1, p. 103).

If, on the other hand, a scene contains insufficiently dark targets or shadowed areas
(i.e. where the assumption that target’s reflectance is close to zero is invalid), one may
resort to modelling the path DN. Modelled X, can be calculated from path radiance,
Ly, modelled using radiative transfer (RT) code such as 63, and the radiometric scaling
factors (see Eq (4.3)). For accurate modelling of the path radiance, atmospheric data
measured in situ is the preferred input to the RT code. If in situ data are not available,

estimates of the required parameters {based on a simulated atmosphere or the regional
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climatology for the time of year and the geographic location that the image was acquired)

may be used.

Calculate I'mage Normalisation Coefficients

The final task in the LVIN procedure is to estimate the image normalisation offsets, Ay,

and gains, By, and define the image normalisation equation (i.e. Eq. (4.4)),
Peorrd = A+ BrX,,

where peorra is the estimate of surface reflectance for a target with an image DN value
equal to X,. Two possible scenarios for obtaining estimates of Ay and B) are given
below.

For each of the A PITs, extract the set of X, from the overpass image and cor-
responding p,x from the reference image and form the data pairs {{X», P )it in
Figure 4.1(a). .A straight line fit to the data yields an intercept and slope that may
be interpreted as estimates X, and by of their respective counterparts in Eq. (4.3). It
follows then that estimates of image normalisation coefficients are given for each band
A in an overpass image as Ay = — Ap,\/f))\ and By = 1/?),\.

If, as a result of a lack of dark PITs, a modelled estimate of path DN is computed,
the straight line fit may be constrained to pass through the point (X;,0) and the slope
of the line, b A, determined by the mid-range and bright PIT data pairs as illustrated in
Figure 4.1(b). The normalisation coefficients in this instance are given as Ay = — X5/ by
and By =1/ by.

The scatter of points in the LVIN plots is related to the PITs’ temporal variability
and departures from the assumed invariance. This may be due to the target not being
as invariant in reflectance over time as desirable, changes in the spatial extents of the
target and possible pixel mis-registration, or heterogeneous atmospheric properties over
the extents of the scene (e.g. cloud contaminated pixels). Furby and Campbell (2001),
therefore, recommend the use of a robust regression procedure to obtain the straight
line fit to the data (see p. 113). A number of examples of robust regression procedures
are given in Rousseeuw and Leroy (1987). Most robust regression procedures have a
breakdown point of around 50%, which means that up to half the total number of data

points may be spurious observations before the regression estimates are significantly
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Western Australla

Figure 4.2: Geographic location of the two sequences of Landsat-5 TM and Landsat-7
ETM+ imagery used in the analysis presented in this chapter.

affected (In contrast, the least squares estimator has a breakdown point of 0%.). In the
context of the LVIN procedure, up to half of the PITs can have variable reflectance over

time and still have negligible influence on the fitted line.

4.2 Preliminary Data and Image Processing

Two multitemporal sequences of Landsat-5 TM and Landsat-7 ETM+ images were used
in the analysis presented here. The scene locations of both sequences on the Australian
continent are highlighted in Figure 4.2. The first, known as the Hay sequence, corre-
sponds to a relatively flat area of rural New South Wales, Australia (WRS Path 93
Row 84; scene centre ~E 145°11', S 34°37'). The second, known as the Mt Barker
sequence, to the southwest coast of Western Australia {(WRS Path 111 Row 84; scene
centre ~F 117°23’, S 34°36") has significant variations in elevation throughout the scene.
This section describes the image data and associated processing in preparation for the

application of the like-value procedure.
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4.2.1 Image Data

The acquisition dates for the TM and ETM+ images for both the Hay and Mt. Barker
sequences are presented in Table 4.1. Most of the image data were acquired during the
southern-hemisphere summer months, with the exception of Hay TM images for July
22 and October 26, 1999 which are winter and spring images respectively. Note that
the Hay TM image for July 22, 1999 was acquired approximately 3 weeks after aphelion
(Earth-Sun distance at its maximum} and has a very low sun elevation; consequently
the image appears relatively dark.

Most of the TM data are level 4 bulk-corrected products with standard Canadian
Centre for Remote Sensing (CCRS) formats. The author, however, acknowledges that
there is no information or documentation that indicates the level of image product for
the Mt. Barker image acquired on February 24, 1992. For the purposes of this thesis,
it was assumed that it too was a level 4 bulk-corrected image. If this assumption is
incorrect, then it is of interest to cbserve the impact that this uncertainty in radiometric
scaling factors has on the LVIN procedure.

The ETM+ data have EOSAT Fast-L7 formatting and all bands were acquired with
high gain settings, except band 4 for the Hay (January) and Mt. Barker (February)

images which had low gain settings.

Table 4.1: The Hay and Mt. Barker sequences image dates and sensor information.

Date of Landsat FEarth-Sun Solar
Acquisition Sensor  Dist (AU) Zenith (6p)
Hay (93/84)
Tuly 22, 1999 T™ 1.016 66.12
October 26, 1999 ™ 0.994 37.75
January 7, 2000 ETM+ 0.983 32.62
March 27, 2000 ETM+ 0.997 49.24
Mt. Barker (111/84)
January 20, 1991 ™™ 0.984 41.21
February 24, 1992 ™ 0.989 46.86
Janmuary 28, 1994 ™ 0.985 42,34
March 20, 1995 ™ (.995 53.66
January 7, 1998 ™ 0.983 36.19
February 6, 2000 ETM+ 0.986 37.84
February 11, 2002 ETM+ 0.986 39.65
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4.2.2 Scene Descriptions

Hay images are characterized by the Murrumbidgee River running east—west across the
scene and through the Hay townsite (Figure 4.3(a)). The area covered in each Hay
image is relatively flat, with the typical terrain elevation ranging from 90-120 m above
sea level. In fact, the scene contains the largest and most uniform plain on the Australian
continent (Prata et al., 1997). Thus terrain illumination effects (e.g. shadowing) and
changes in atmospheric properties due to elevation were considered negligible for the
Hay sequence.,

Mt. Barker images are characterized by the vast expanses of perennial native vegeta-
tion to the left and bottom of the imagery, and predominantly cleared land in the upper
half of the scene (Figure 4.3(b}). The most discernible features in Mt. Barker images
are the Stirling Ranges National Park to the top-right of the scene, and the Southern
Ocean which bounds the bottom of the scene. Approximately ninety-five percent of the

terrain in the Mt, Barker image is between 0-370 m above sea level.

4.2.3 Geometric Rectification

For a given study region, all the images were rectified to common map base images. The
Hay images were rectified to the base used in the Australian Greenhouse Office (AGO)
project (Richards and Furby, 2002). The rectification base image has the map grid of
Australia projection for zone 55 (MGAB5), and uses the geocentric datum of Australia
1994 (GDA94}. For Mt. Barker images, the rectification base was an image used in the
Land Monitor project {Caccetta et al., 2000a), with the Australian map grid for zone
50 (AMGS50) and the Australian geodetic datum 1966 (AGD66).

A cross-correlation feature matching procedure (Furby, 2000} was employed for a set
of between 120-200 ground control points uniformly distributed throughout each scene.
Nearest-neighbour resampling was used for the Hay sequence to preserve the radiometric
integrity of the image data for subsequent comparison to ground-based spectrometer
data. Cubic convolution resampling was used on Mt. Baker images. In both cases,

rectification results were within an acceptable error level of ~ 30 m.
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Southern Ocean

Figure 4.3: False-colour composites (RGB:5,4,2) of ETM+ images for (a) Hay, January
7, 2000 and (b) Mt. Barker, February 6, 2000.
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4.2.4 Ground-based Data for Hay

On March 27, 2000 a field campaign was conducted by members of the CSIRO Earth
Observation Centre (EOC) at the Uardry field site (Prata et al., 1997, Prata and Rut-
ter, 2001) 60 km northeast of Hay. The date was chosen to coincide with the Landsat-7
overpass and the acquisition of the corresponding ETM+ image (Table 4.1). At the
Uardry site, there is a 15-m tower (located at E 145°18', S 34°24', 110 m above sea
level) from which surface albedo and meteorological data are continuously logged. Fur-
thermore, a Multi-Filter Rotating Shadowband Radiometer (MFRSR) (Harrison and
Michalsky, 1994; Yankee Environmental Systems, 1997) located at the site routinely
records total atmospheric optical thickness. Since 1995 the Uardry site, maintained by
the CSIRO Division of Atmospheric Research (CAR), has formed part of a Continental
Integrated Ground Site Network (CIGSN) (Prata et al., 1997) and has subsequently been
involved in a number of sensor calibration and validation programmes, such as those of
the ATSR/ATSR-2 (Along-Track Scanning Radiometer on the Envisat satellite), MODIS
on Terra and Hyperion on EO-1.

Surface Refiectance Measurements

Surface reflectance measurements were acquired on the EOC Uardry field campaign of
March 27, 2000 for a number of targets around the field site with a variety of field spec-
trometers. Of interest in this work were the 4 targets for which data were acquired with
either the Analytical Spectral Devices (ASD) FieldSpec or the Geophysical and Envi-
ronmental Research (GER) Inc Iris Spectroradiometers®. These spectra, summarised in
Figure 4.4, were for: a clay scald (denoted Clay measured with the Iris), approximately
500 m west of the Uardry tower; an area containing bare ground and dry grass { Field,
acquired with the Iris) 50 m west of the Uardry tower; an area of ground below the
tower (Tower, measured with an ASD from 15 m above the surface); and a grass tar-
get { Grass, measured with and ASD). These spectra were acquired from approximately
thirty minutes prior to Landsat-7 overflight to two hours after the overpass time.

Within each target area, a number of spectrometer readings were acquired. These

3Relative radiometric calibration of the GER Iris is achieved by the sensor acquiring simultaneous
measurements of the target and a spectralon (trademark of Labsphere Inc) plate; a highly reflective plate
with near-Lambertian properties.
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Figure 4.4: Spectrometer-acquired surface reflectances for (a) a clay scald; (b) an area of
field (50 m west of tower); (c) the area below the tower; and (d) a grass patch acquired
during the EOC calibration campaign of March 27, 2000 at the Uardry field site. The
average reflectances for each target area are highlighted with thick dark lines, whilst the
thin black lines mark two standard deviations about the mean curve. ETM+ response

curves are illustrated in light grey.
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readings were taken over an area extending beyond that of a single ETM+ pixel (i.e.
> 30 x 30 m?). For each target, the spectra were convolved with the ETM+ bands
response functions {displayed in Figure 4.4 as light grey lines) to facilitate comparisons

between ground-based and corresponding satellite image data.

Aerosol Optical Thickness

The time series of solar irradiance measurements for the MFRSR 416.6-nm band acquired
at Uardry on the date of the EOC field campaign is given in Figure 4.5. The numerous
‘dips’ observed in the figure are due to cloud occluding the direct sunlight. For most of
the afternoon the Uardry site was completely covered by cloud; evident in the data by
the similarity between the total and diffuse irradiance measurements made around that
time.

Patches of cloud were also observed in the morning. However there were sufficient
data for the processing software {Dosband) to conduct Langley analysis (refer to Section
2.3.3, p. 31) on the morning direct-normal irradiance measurements and thus retrieve an
estimate of Tyuex for each MFRSR band (Figure 4.6). The total optical thickness values
measured are presented in Table 4.2,

On the day of the EOC field campaign, the TOMS instrument on the Earthprobe
satellite (McPeters et al., 1998) retrieved a columnar ozone concentration over the Uardry
site of upz = 255 DU. Using this estimate for the ozone concentration, and the ozone
absorption coefficients (aps3y) in Table B.1 {Appendix B, pp. 224-225), ozone optical
thicknesses, To3), were calculated for each MFRSR band (see Table 4.2).

Screen-level temperature (7)) and surface pressure (F;) measurements, also acquired
at the Uardry site around the time of Landsat-7 overpass, allowed the molecular optical
thicknesses, TRy, to be calculated (using Eq. (2.16), p. 28) for each MFRSR band. The
values obtained are also given in Table 4.2.

Finally, estimates of aerosol optical thickness, Ty, were obtained using Eq. (2.23, p.
32) and the values of 7o), Tosy and Try described above. Figure 4.7(a) further illustrates
the wavelength dependence of the optical thicknesses in Table 4.2. The estimate of
aerosol optical thickness for the 615 nm band makes the curve depart from the expected,
smooth wavelength dependence (~ A™!). The estimates of molecular optical thickness,

on the other hand, behave as expected (~ A%, Eq. (2.16)). So too does the estimate
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Figure 4.5: Time series of total-horizontal, diffuse-horizontal and direct-normal solar
spectral irradiance measurements [W/(m? nm)] acquired for the 416.6 nm band with a
multi-filter rotating shadowband radiometer (MFRSR) located at the Uardry field site
on March 27, 2000.
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Figure 4.6: Langley plots of the morning (AM) MFRSR data acquired at the Uardry
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Table 4.2: Total {73412 ), 0zone {703, ), molecular (Try) and aerosol (Tyy) optical thickness
values at the Uardry field site for March 27, 2000.

[A(mm) | 7ox  7o3x  TRA TMA |
416.6 | 0.325 0.000 0273 0.052
500.6 [ 0.178 0.008 0.127 0.043
615.0 | 0.103 0.030 0.055 0.0i8
672.8 | 0.083 0.011 0.038 0.034
866.4 | 0.038 0.001 0014 0.024
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Figure 4.7: Optical thicknesses: (a) total, aerosol, molecular and ozone retrieved or
calculated from measurements at the Uardry site; and (b} changes in estimates aerosol
optical thickness for varying ozone concentrations.

of ozone; the 615 nm band is located in the Chappuis band where the value of T3y
is nearly a maximum (minimum transmittance; Figure B.1, p. 225) for a given ozone
concentration.

It can be seen in Figure 4.7(b) that the value of myy in the 615 nm band is greatly
affected by changes in ozone concentration. Recall that the TOMS estimate of ozone
concentration at the Uardry site on the EOC field campaign was 255 DU. Increasing the
concentration to 350 DU decreases the estimate of aerosol optical thickness in the 615 nm
band by around 87%. As the ozone concentration decreases, the curve for mpp begins
flatten out and resemble the expected form of the wavelength dependence. In fact, the

curves displayed in Figure 4.7(b) are similar to those used in King and Byrne (1976)
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to illustrate their method for inferring columnar ozone concentrations from extinction
measurements.

Estimates of 7yy can be used to establish an Angstrom-type relationship. For the
Uardry data, the low estimate of aerosol optical thickness at 615 nm will bias any linear
fit to the data. This value was therefore excluded from the analysis, and the following
relationship,

Tha = 269127108 (4.5)

was obtained (see Figure 4.8). The relationship was used to yield an estimate of aerosol
optical thickness at 550 nm, Tvs500m = 0.04. This is within the range determined in
the long-term study by Prata and Rutter (2001) for the Uardry site, which shows that
TM550nm ranges from 0.02-0.05 with an absolute error of £0.02.

As to why the estimate of aerosol optical thickness is so much lower than the expected
value in the 615-nm band, two possibilities may be considered: Firstly, the estimate
of columnar ozone concentration for the date was too high; or secondly, there was a
calibration or processing error in the corresponding MFRSR band on that date.

From Figure 4.7(b), one might (incorrectly) infer that an ozone concentration close
to zero DU was present on the day—a physically unrealistic scenario. It is more likely,
however, that the MFRSR underestimated the total optical thickness in the 615 nm band.
Further investigation is required as to why the MFRSR (or the processing software)
underestimated the aerosol optical thickness at 615 nm. For the purposes of this thesis,
however, the estimate of obtained for Tyssomm Wwas satisfactory, particularly as it was

within the range expected for the Uardry site (Prata and Rutter, 2001}.

Aerosol Type

Using the estimate of TMs500m from the previous section, 65 was used to model the aerosol
optical thickness values in the 6 ETM+ bands (in the region 4002400 nm} for a variety of
different aerosol types. These modelled values are displayed in Figure 4.8 for continental,
urban, maritime and desertic aerosol types. Equation (4.5) is also displayed in the figure
as the continuous line. A comparison of the MFRSR-derived and 65-modelled values
reveals best agreement with the continental aerosol type. It was therefore concluded that

the aerosols present on the day of the EOC field campaign can best be characterised as
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Figure 4.8: Aerosol optical thicknesses modelled using 6S for the ETM+ solar reflec-
tive bands (shapes connected with thin grey line) and using the Angstrém relationship
derived from MFRSR measurements on the day of the Uardry field campaign.

continental aerosols. This is again consistent with the findings of Prata and Rutter

(2001) for the Uardry site.

4.3 Image Normalisation Results

In this section the LVIN procedure, described in Section 4.1.2, is applied to the Hay and
Mt. Barker image sequences. For comparison purposes, the results of the application of
the procedure with and without the use of modelled path DNs are presented. To dis-
tinguish between the two approaches, the terms free-intercept and constroined will refer
to the LVIN procedure without {Figure 4.1(a)) and with (Figure 4.1(b)} the modelled
path DN (Figure 4.1(b)) respectively.

4.3.1 Reference Image Processing

Once images in both multitemporal sequences had been co-registered, the next task was
to choose/create appropriate reference images. In the following, the processing of the

selected reference images for both the Hay and Mt. Barker sequences is presented.
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Hay Reference I'mage

Recall (from Section 3.4.1, p. 100) that the empirical line (EL) procedure estimates the
image correction coefficients from a straight-line fit to the (X, psx) data pairs for at
least two targets in an image. Moran et al. {2001) described an approach where the
surface reflectance measured for one bright target? and the modelled path DN, X,,, are
used to estimate surface reflectances in what they called the refined empirical line (REL)
procedure (Section 3.4.1, p. 101). In this investigation, a procedure that incorporates
the reflectance measurements of multiple targets as well as the modelled path DN was
used to produce the reference image for the Hay sequence. It is referred to here as the
hybrid empirical line (HEL) procedure and is described in the following.

The obvious choice for the Hay sequence reference image was that acquired by the
ETM+ sensor on the date of the EQOC Uardry field campaign on March 27, 2000, The
ground-based spectrometer and atmospheric measurements acquired at the Uardry site
were used along with the DNs extracted from the ETM+ image to construct the scatter
plots in Figure 4.9. The figure shows: solid circles corresponding to the processed
ground-based surface reflectance measurements; and hollow diamonds (on the y axis)
to the path DNs modelled with 65 using atmospheric data acquired at the Uardry
site (Section 4.2.4), and the ETM+ radiometric scaling factors from the image header
file. The x coordinate of the solid points corresponds to the mean value for all spectra
acquired at each target, with the z error bars extending to two standard deviations
about the mean. Since the targets’ size typically extended to beyond the dimensions of
a single pixel, 3 x 3 neighbourhoods of pixels {centred on the recorded geoposition of the
target) were extracted; the y coordinates of the data pairs in Figure 4.9 are the average
DN for each target and the error bars are the two standard deviations limit about the
mean.

For each HEL scatter plot, least squares regression provided the estimates of image
correction lines that convert DNs into surface reflectances for each ETM+ band. The
lines labelled constrained (dashed lines) correspond to the fit of the HEL procedure,
as the regression is constrained to pass through the modelled path DN (shown as hol-

low diamonds on the ¥ axis in Figure 4.9). For comparison purposes, the standard EL

4The REL procedure can, in principle, incorporate two or more bright targets. Moran et al. {2001),
however, focused on the use of one bright target whose surface reflectance was well characterised.
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Figure 4.9: Scatter plots based on the ground-based and ETM+ image data acquired at
the EOC field campaign on March 27, 2000. These data were used in a hybrid empirical
line (HEL; dashed line) procedure to derive image correction coefficients used in the
production of the Hay reference image. For comparison purposes, the EL (dotted) and
65 (light grey) correction lines are also displaved. Error bars denote the two standard

deviation limits.
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procedure provided image correction lines based on spectrometer data alone (i.e. no
path DN) which are labelled free-intercept (dotted line in Figure 4.9), and 6S provided
correction lines, labelled 65 (light grey line in Figure 4.9), based on the Hay MFRSR
estimates of AOT(550 nm), standard mid-latitude inputs for water vapour, temperature
and pressure profiles. Excellent agreement was observed between the 63 and HEL cor-
rection lines for all bands (with the exception of band 2; however agreement was still
within the 95% limits of the data) over most of the range of the image DNVs.

The effect of having too small a number of surface reflectance measurements in the EL
procedure is illustrated in Figure 4.9. The free-intercept approach would have resulted
in significant errors in surface reflectance estimation, particularly for bands 4, 5 and 7
because of the limited number of points at the ‘dark’ end of the plots. Constraining the
correction line to pass through the path DN was useful in tying down the regression for
low reflectances.

The slopes and intercepts of the HEL correction lines were used to estimate the
image correction coefficients (in Eq. (4.4), p. 121) that produced the Hay reference
image. The root mean squared (RMS) error (the standard deviation of the difference
between retrieved value and ground-based measurement (Moran et al., 1992)) for the
retrieved surface reflectances was 0.0098 (calculated on 28 points: 4 targets x 7 bands),
and the mean absolute differences® (MADs) for bands 1-5 and 7 were 0.002, 0.009, 0.009,
0.017, 0.016 and 0.022 respectively. The increase in error for bands 4, 5 and 7 is due to
increase scatter of the four targets about the line of best fit (Figure 4.9). The scatter
overall may be mostly attributed to the calculated average ground-based reflectance
measurements, which for 3 out of the 4 targets used had high variance (Figure 4.4).

Figure 4.10 displays the retrieved reflectances (triangles) resulting from the apph-
cation of the HEL procedure to the image data for the (a) grass and (b) clay targets.
QOne can clearly see that the retrieved reflectances are lower in value than the at-sensor
reflectances (squares), and closer to the measured ground-based reflectances (circles), for

bands 1, 2 and 3. Conversely, the retrieved reflectances for bands 4, 5 and 7 are higher

5For N points, the MAD is calculated as

Map = L%
= ‘j'\’? IPcorrA - Ps)\iv‘.

=1

where peorry and pyy are the estimated and reference surface reflectances respectively.
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Figure 4.10: A comparison of the retrieved surface reflectance (using the HEL procedure;
triangles) with the uncorrected at-sensor (squares) and ground-based (spectrometer data;
circles) reflectances for the (a) grass and (b) clay targets measured during the EQOC

Uardry field campaign.
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targets visited on the EOC Uardry field campaign.

than the corresponding at-sensor refectances. This behaviour is expressed in an alter-
native way in Figure 4.11. In this figure, the at-sensor and HEL-retrieved reflectances
are plotted for each target measured during the EOC Uardry field campaign. The re-
flectances for bands 1, 2 and 3 fall below the 1:1 line whereas the reflectances for band
4, 5 and 7 fall above; supporting the observations made for Figure 4.10.

From the results presented in Figures 4.10 and 4.11, it appears that the HEL pro-
cedure has performed as expected of an atmospheric correction procedure. Specifically
regarding the values of slope and intercept of the lines of best fit in Figure 4.11: the
intercepts are indicative of the additive contributions of the atmosphere to the at-sensor
signal (Section 3.3.3, p. 83), which the HEL procedure has been removed; whilst the
slopes (all > 1) demonstrate the HEL procedure compensating for the multiplicative

effects of gaseous absorption (Section 3.3.3, p. 84).

Mt. Barker Reference Image

The ETM+ image for Mt. Barker acquired on February 6, 2000 was selected as the most

appropriate reference image for two reasons; namely the superior radiometric quality
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of the ETM+ sensor over TM (Teillet et al., 2001), and greater dynamic range of that
particular image data over other dates in the sequence. There were no surface reflectance
measurements with which an EL procedure could be used to correct this image. There
were, however, radiosonde and TOMS data to aid in the selection of the appropriate
inputs to 6S and thus yield a correction equation for each band in the ETM+- image.

Radiosondes are routinely launched from Australian Bureau of Meteorology (ABoM)
sites throughout Australia. Four sites were of interest in the production of the Mt.
Barker reference image. Radiosondes from these sites were launched at 0900 hours local
time on February 6, 2000; about an hour and a half prior to when the Landsat-7 ETM+
sensor acquired the image of the Mt. Barker scene (Table 4.1).

As there are no radiosonde launches from the Mt. Barker town site, radiosonde data
from launch sites in the southwest of Western Australia were examined in an attempt to
characterise the Mt. Barker area. Specifically, these were the radiosonde data from the
Albany, Esperance, Kalgoorlie-Boulder and Perth airports (Figure C.1, Appendix C, p.
227). Equation (2.4, p. 11) was applied to successive pressure measurements up to an
altitude of approximately 10 km for each radiosonde pressure profile. A line of best fit for
these values was extrapolated to sea level to yield the values of H presented in Table 4.3.
The values of scale height compare quite closely to those of model atmospheric pressure
profiles in Table 2.1 (p. 12); specifically for the mid-latitude summer or tropical pressure
profiles. Examination of these radiosonde data with mid-latitude and tropical pressure
profiles revealed that unexpectedly the best agreement occurs between the radiosonde
data and the tropical profiles (Figure C.2(a}).

Temperature lapse rates, 8, calculated as the slopes of the lines of best fit for the

Arst 10 kilometres of the radiosonde temperature measurements were obtained for each

Table 4.3: Scale height 7 values derived from ABoM radiosonde pressure profiles ac-
quired at four sites in Western Australia on February 6, 2000.

Pressure H

Profile (km)
Albany 8.725
Perth 8.748
Esperance 8.573
Kalgoorlie 8.694
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radiosonde and the results are given in Table 4.4. Also presented in the table are the
sea-level temperature values T3 which are the intercepts of the lines of best fit. A
comparison of these lapse rates to those of the model atmospheric profiles given in Table
2.2 (p. 14) reveals good agreement with the mid-latitude summer profile. Examination
of Figure C.2(b), however, shows better agreement with the tropical temperature profile,
particularly for altitudes above 13 km.

The water vapour pressure was calculated at each altitude reached by the radiosondes
from the measurements of temperature, pressure and relative humidity via expressions
(A.6) and (A.7) in Appendix A (pp. 222-223). Finally, by rearranging Eq. (A.5), an
estimate of the water vapour density at each altitude was obtained. After employing the
column-integrated approach (Eq. (2.8), p. 15), an estimate of precipitable water, ugoo,
was obtained for each location. These values are given in Table 4.5.

From the data in Tables 4.3, 4.4 and 4.5 it was concluded that, due to the similarity of
the results, on the date of the ETM+ image acquisition for the Mt. Barker scene, stable
metecrological conditions prevailed between the 4 described locations. Furthermore, in
the absence of any higher-spatial resolution pressure, temperature and water vapour
information, the radiosonde data for Albany was chosen as the best representation of
the atmosphere in the Mt. Barker scene on February 6, 2000.

Estimates of total ozone concentration over the extent of the Mt. Barker image were
obtained from the Earthprobe TOMS data. On average, the ozone concentration for
February 6, 2000 was 263 DU (3 DU standard deviations).

Unfortunately, there were no in situ measurements of atmospheric optical thickness
on the date of the ETM+ acquisition. An aerosol optical thickness Tussonm = 0.05 and

a continental aerosol type were assumed. The validity of these assumptions is discussed

Table 4.4: Temperature lapse rates, d, sea-level temperature, T,g, and regression cor-
relation coefficient, R?, derived from radiosonde data for the four Western Australian
launch sites on February 6, 2000.

Temperature ) T.0 R?
Profile (K/km) (K

Albany -5.56 2054 0.96
Perth -5.97 290.2 0.98
Esperance -5.32  203.0 0.93
Kalgoorlie -5.72  296.9 094




144

Table 4.5: Estimates of precipitable water, u20, obtained from radicsonde profiles for
the four locations in Figure C.1 on February 6, 2000.

LLocation Albany FEsperance Kalgoorlie Perth
| umoo (g/cm?) 1.28 1.35 1.08 1.16

later in Section 4.3.6.

Terrain elevation effects on the absorbing and scattering constituents of the at-
mosphere were discussed in Section 3.3.3 (p. 90). Even if the atmosphere’s properties
and constituents were uniform across an image (which was implied for Mt. Barker based
on the preceding paragraphs), one would expect that the image correction coefficients
would change from location to location as a result of elevation alone. For simplicity,
however, the image correction coefficients derived for the Mt. Barker ETM+ image
were based on one elevation. The errors this introduced are discussed in more detail in
Appendix D and summarised briefly below.

Terrain elevation for the Mt. Barker scene ranges from sea level to over 900 m.
A median elevation » = 200 m was used as input to 63. It is reasonable to expect
that this assumption may result in errors in surface reflectance estimation, especially
for low reflectance values. For most of the terrain in the Mt. Barker reference image
{between 20-370 m; Section 4.2.2), the error in assuming z = 200 m was less than
5% for pgy > 0.04, 0.02, 0.01, and 0.005 for bands 1-4, and better than 1% error for
all reflectances in bands 5 and 7 (see Table D.1). For areas in the Stirling Range and
Porongurup national parks (where z ~ 900 m, see Figure 4.3), the errors were somewhat
larger. Since these elevations constitute a comparatively small portion of the Mt. Barker
scene, they were considered inconsequential to the analysis that follows.

Finally, the 65 code was used to derive image correction coefficients to convert the
ETM+ image IDNs into surface reflectances in the manner described by Zhao et al.
{2001). The information described above was used as the inputs to 65. In summary,
they were: a tropical pressure and temperature profile was used with w0 = 1.3 g/cm?,
ups = 260 DU, and it was assumed that the aerosols present were continental with
T™550mm = 0.05. The image correction coefficients were calculated for an elevation z =
200 m. The quality of a reference image produced in this fashion is far from ideal. There

were no ground-based reflectance measurements with which to validate the reference.
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The image, however, was useful for the comparative analysis to be described.

4.3.2 Pseudo-Invariant Targets

Visual inspection was the method employed for selecting the PITs to be used in the nor-
malisation of the Hay image sequence. Images were displayed in true colour (RGB:3,2,1)
and systematically searched for PITs, such as the examples on page 124. This method
provided PITs in the Hay images such as bare ground, road intersections, white sand
and car park asphalt. A single-pixel DN was extracted for each band from each of a set
of 15 targets.

The PITs used for the Mt. Barker sequence were those used in the Land Monitor
project (Caccetta et al., 2000a,b). Here 2 x 2 or 3 x 3 neighbourhoods of pixels were
extracted for each of 30 PITs (totalling 120 pixels). Some of the sources of invariant
targets were an asphalt surface of an airport runway, rocky outcrops, and the deep water

in the Southern Ocean, which bounds the bottom of all Mt. Barker images.

4.3.3 Modelled Path DN

The Southern Ocean in the Mt. Barker scene provided a large number of suitably dark
PITs for use in the LVIN procedure. Nevertheless, the modelled values of path DNs
were computed for each image in the Mt. Barker sequence for comparison purposes.

Model path radiances were computed for each overpass image in both Hay and
Mt. Barker sequences using 6S. The inputs to the software are summarised in Table
4.6. For Hay images these were a continental aerosol model with Tyz50nm = 0.035, based
on the observations of Prata and Rutter (2001) for the Uardry site, TOMS estimates of
uo3, and the appropriate choice of tropic, mid-latitude summer or winter atmospheric
models for each date. The average value of aerosol optical thickness was chosen because
of MFRSR. calibration problems at the Uardry site on the dates of overpass image ac-
quisition. Finally, the simulations were based on the elevation z = 110 m (range for a
typical Hay scene is 90-130 m).

The aerosol type for all the Mt. Barker images was assumed to be continental, with
TMEs50nm = 0.05, and standard mid-latitude summer atmospheric temperature and pres-
sure profiles were used. For the dates where TOMS data were available, these served as

estimates of ws; if they were not available, the standard 65 model values were used.
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Table 4.6: Inputs used in 63 to model path radiances for each date of image acquisition in
both Hay and Mt. Barker sequences. The inputs were: the day and month the image was
acquired; the particular satellite sensor used; solar zenith angle (6g) and solar azimuth
(¢h); atmospheric water (up20 in g/cm?) and ozone (ups in cm-atin) content; aerosol
type (AT), which in this study was assumed to be continental {Cont.); aerosol optical
thickness at 550 nm (Tnssonm); pressure and temperature profiles (Profiles), which in
this study were assumed to be correspond to standard mid-latitude summer (MLS) or
winter (MLW) profiles; and mean target elevation {z).

| Inputs | Hay Scene | Mt. Barker Scene
Day 22 26 7 20 24 28 20 7 11
Month 7 10 1 1 2 1 3 1 2
Sensor TM ™ ETM+ | TM T™ ™ ™ ™  ETM-+
& 66.12 37.75 32.62 41.21 46,86 4234 54.44 36.19 35.65
dp 40.02 62.20 78.05 31.99 69.53 79.94 62.16 81.36 69.31
U0 0.853 0.853 2.93 2.93 2.93 2.93 2.93 2.93 2.93
UO3 0.323  0.342 0.292 0.319 0.319 0319 0.319 0.319 0.287
AT Cont. Cont. Cont. | Cont. Cont. Cont. Cont. Cont. Cont.
Tvssonm | 0.035  0.035 0.035 0.05 0.05 0.05 0.05 0.05 0.05
Profiles | MLW MLW  MLS MLS MLS MLS MLS MLS MLS
z 110m 110m 110m [200m 200m 200m 200m 200m 200 m
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Figure 4.12: Variations in the modelled path radiance with solar zenith angle for the
first 4 TM/ETM+ bands. Path radiances were modelled on the inputs to 65, given in
Table 4.6, for the dates that overpass images in both the Hay and Mt. Barker sequences
were acquired.
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Path radiances were modelled using 65 with a mean elevation for the Mt. Barker scene
of z = 200 m.

Figure 4.12 illustrates the expected anti-correlation between the modelled path radi-
ance and the solar zenith angle for each overpass image. Images will appear darker when
the solar zenith angle is high as a consequence of the obliqueness of solar illumination
(cos{fy) — 0). The TM image for Hay acquired on July 22, 1999 is the darkest image in
both sequences because of the high solar zenith angle (see Table 4.1); the corresponding
value for Lpy is located at the bottom right of Figure 4.12. Points that deviate from
the line are due to either a change in atmospheric profile used for the modelling (due to
winter or summer dates of image acquisition}, optical thickness or because of the ETM+
sensor acquires data slightly later in the day (smaller zenith angle} than the TM would if
they acquired imagery on the same day. The path radiance corresponding to the ETM—-
image for Hay on January 7, 2000 is the top left-most point whilst the TM image for
Hay October 26, 1999 is the point that is consistently furthest from the line. Generally,
the modelled path radiances behaved as expected.

Numerous assumptions have been made regarding the inputs to the modelled values.
The error that these assumptions introduce to the modelled value of path radiance {and
subsequently path DN} is addressed for the more significant parameters for the Hay and
Mt. Barker scenes respectively in Section 4.3.6.

Finally these path radiances were converted to path DN using the radiometric scaling
factors appropriate to the level of overpass image product. In the case of the Mt. Barler
TM image for February 24, 1992, where the level of image product was not know, the

radiometric scaling factors of Markham and Barker (1986} were used.

4.3.4 Like-Value Normalisation to Surface Reflectances

Normalisation (LVIN) plots were constructed for each band and for all overpass images
using the unprocessed overpass DN, X, and the surface reflectance, pgy, from the
reference image for each PIT (Appendix E, pp. 233-242). Figures 4.13 and 4.14 show
these LVIN plots for the Hay ETM+ image for January 7, 2000 and the Mt. Barker TM

image for January 28, 1994 respectively. The black diamonds in each plot represent the
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data pair (X}, psa) for each pixel associated with a PIT®. The white diamonds on the
y-axes represent the modelled path DN for the given band. Two lines were fitted to
each plot: the first, known as the free-intercept line (solid black line}, calculated on the
PIT data pairs only; the second, is that which results from line of {it constrained to pass
through the model X5 (dashed line). The 95% confidence limits of the free-intercept
lines are also displayed in the figure (in grey).

For the Hay and Mt. Barker sequences, the robust M-estimator” was used to provide
the free-intercept and constrained regression normalisation lines. The insensitivity of
the M-estimator to outliers—relative to least squares—means that up to half the points
in each LVIN plot may be discarded from the regression analysis. This means that if
some of the PITs change in reflectance property between dates, or they are hidden by
clouds on a given date, the image normalisation lines derived with the M-estimator will
not be significantly biased. In all bands, and for most dates (with the exception of the
Mt. Barker February 1992 TM image)}, the constrained regression lines were contained
within the 95% confidence limits of the free-intercept regression lines.

For comparison, 63 correction lines (using the approach of Zhao et al. (2001)) were
computed for each of the Hay overpass images (e.g. Figure 4.13, dotted lines). The
6S correction lines were determined using the available radiometric scaling factors of
the respective sensors and modelled estimates of the atmospheric inputs. For the Hay
ETM+ image for January 7 2000, the 6S correction line compared very well to the
constrained regression line for all bands, however departed from linearity in the high
reflectance range. The departure from linearity is a result of the 65 model giving a non-
linear correction to the data that becornes more evident at high surface reflectances. For
the TM images in the Hay sequence {Appedix E, Figures E.1-E.2) however, 6S and like-
value lines differ significantly for bands 1-3; the slope of the 65 correction lines being
much higher in value than the regression estimates, but the two slopes are in closer
agreement for band 4.

The fact that the constrained regression lines were within the 95% confidence limits

of the free-intercept lines was an interesting result. To compare the results of the free-

5The number of pixels per PIT for the Hay and Mt. Barker sequences is discussed in Section 4.3.2,
p. 145.

? An improved robust M-estimator, available in the S-PLUS software (Venables and Ripley, 1999, pp.
171-174), was employed for this work. For further details on robust estimators in regression, the reader
is directed to Rousseeuw and Leroy (1987).
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Figure 4.13: Like-value image normalisation plots for each band in the Hay ETM+ image
acquired on January 7, 2000. Black diamonds represent the data pair {X, pea) for each
pixel associated with a PIT, whilst the modelled path DN for each band is illustrated
by a white diamond. The free-intercept and constrained regression lines are displayed as
the solid and dashed lines respectively, The 95% confidence limits of the Iree-intercept
regression line are also displayed in grey. The correction line provided by 63 based on
atmospheric input is displayed (dotted line) for comparison purposes.
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Figure 4.14: Like-value normalisation plots for each band in the Mt. Barker TM image
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intercept and constrained approaches, both lines were used to retrieve reflectances for
the PITs used in both multitemporal sequences. A straight line was fit to the retrieved
reflectances, yielding a relationship between the free-intercept values and those obtained
via the constrained approach (see Appendix F, pp. 243-248). Perfect agreement between
the two approaches would have resulted in a slope of 1 and an intercept of 0 for each
band. Instead, it was observed that the values for slope were between 0.91 and 1.24 for
the Hay sequence {Table F.1), and between 0.96 and 1.14 for the Mt. Barker sequence
{Tables F.2 and F.3). The intercept values for the Hay sequence were often above 0.01
in magnitude, and up to 0.03 three times; for the Mt. Barker sequence, however, the
intercepts were more often < 0.01 in magnitude, and only increasing to 0.02 for the
February 24 1992 TM data.

The discrepancy between the two approaches is illustrated in Figures F.1-F.3 (pp.
244-248) where the difference of free-intercept approach relative to the constrained ap-
proach is plotted (in %) for a range of reflectances. The discrepancies are observed to be
most significant for low reflectances {i.e. peorer < 0.1), with relative differences of more
than 100% often observed. However, it can be seen that agreement between the two
approaches is better than around 10% for reflectances above 0.1 for most of the range
of the data, particularly in the VIS bands.

The disagreement between the two approaches is clearly a result of free-intercept
normalisation line’s estimate of y-intercept differing from the modelled value of path
DN. To further investigate this discrepancy, the free-intercept regression lines were
used to estimate X, for all bands in each overpass image. Figure 4.15 demonstrates
that the modelled value of X3 in all but one case (Mt. Barker 1992 image) lies within
the 95% confidence interval of the regression estimate (error bars mark the 2 x standard
errors about the estimate). From this, it was concluded that there was no reason to
reject the claim that the true normalisation line passes through the modelled path DN,
Therefore, the constrained regression results were used to obtain image normalisation
coefficients A, and B, for each band, and subsequently construct the normalisation line,

Peorrh, for each image (Eq. (4.4)).



152

80
5 o, mHay; o, ® Mt Barker
&
&
5 60 Band 1
=
g
:%}40 .
b
(2
g
G
é 20 A
4 Band 2
I

0 1 T T
0 20 40 60 80
Model X p;
(a)

40
:E o, m Hay, o, ® Mt Barker
B!
3
£%001  Band3
ﬁ . an
8
8

20
3
<4
B
% 0
= 10 4
A=
0
L
= —Band 4

0 - T T T
0 10 20 30 40
Model X p;

(b)

Figure 4.15: A comparison of free-intercept regression estimates of Xy for bands 1-4
from Hay and Mt. Barker scenes. The error bars mark the 95% confidence bounds (2 x
standard error) about the free-intercept regression estimates.
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4.3.5 Retrieved Reflectances

Image normalisation coefficients for the overpass images in the Hay and Mt. Barker
sequences were derived from the constrained regression estimates of the LVIN lines.
Unfortunately, there were no ground-hased reflectance measurements with which the
aceuracy of the retrieved reflectances could be assessed; an all too frequently encountered
problem when one attempts to analyse long-term series of archived data for indications
of change in surface properties. Assuming, however, that for each scene there exists
PITs that are reasonably invariant in reflectance property through time, the precision
of the results was assessed in a comparison of the retrieved reflectances (peora) to the
corresponding target in the reference image reflactances {pg).

Table 4.7 presents the MADs (recall definition on page 139) calculated for the two
most temporally-invariant bright, mid-range and dark PITs in each band of the images
in the Hay sequence. Also displayed in brackets are the percentage errors relative to
the reference reflectances. Generally errors in retrieved reflectances for bands 1-3 were
within acceptable limits (Moran et al., 1992, with +0.02 reflectance units}. For bands
4, 5 and 7, however, much poorer results were cbtained; errors in reflectance retrievals
were up to 30% for the bright PITs, and up to 86% for the dark PITs®. The poorer
results for the infrared bands are primarily due to the increased scatter of points about
the regression lines. The RMS error for all bands, across all dates for the targets in
Table 4.7 was 0.083, whilst the RMS error calculated on bands 1-3 only was 0.011.

One can provide a physical explanation for the scatter observed in the LVIN plots
for bands 4-7 by considering the data measured by the sensors in those bands. The
respective bandwidths of bands 4, 5 and 7 are larger than the VIS bands (see Figure
3.3, p. 51) to compensate for the decreased signal level received by the TM and ETM+
sensors at the NIR-SWIR wavelengths. The bands, therefore, are more susceptible to
spectral variations than their VIS counterparts. Furthermore these NIR-SWIR bands
have a greater dynamic range than the VIS bands, which means that subtle variations in
the spectrum—spectral variations in the surface reflectance properties or composition of

the intervening atmosphere over time, for example—become more pronounced in these

®Moran et al. (1992) did not comment of the performance of the procedure they evaluated for bands 5
and 7, but band 4 was observed to perform the worst. Furby and Campbell (2001} also commented that
the increased scatter in the NIR-SWIR bands affected the repeatability of their normalisation procedure.
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Table 4.7: Mean absolute differences (with relative error in brackets) between retrieved
and reference image reflectances, calculated for the most temporally invariant bright,
mid-range and dark PITs (6 points = 3 dates x 2 examples for each target) in the Hay
overpass images.

Band Targets
Bright Mid-range Dark

0.0054(3%) 0.0031(3%) 0.0034(10%)
0.0159(8%)  0.0066(4%)  0.0047(11%)
0.0142(6%)  0.0124(6%)  0.0060(15%)
0.0399(14%) 0.0301(10%) 0.0255(66%)
(81%)
(86%)

0.0868(30%) 0.0588(15%) 0.0200(81%
0.0667(28%) 0.0401(13%) 0.0168(86%

=1 OT = L b

bands, leading to the observed scatter in the LVIN plots.

The software used to provide the M-estimates was also able to indicate which PITs
were used to derive the ‘best’ normalisation line for images in the Mt. Barker sequences.
Specifically, those PITs that were given a non-zero weighting for all bands in all the
overpass images were deemed to be the most temporally invariant targets (see Figure
4.16). The reflectances retrieved for these PITs were used to calculate MADs. Across all
dates, the MADs calculated for bands 1-3 and 7 were 0.006, 0.007, 0.009, 0.008, 0.008
and 0.010 respectively. The total RMS error, calculated on 1764 points (i.e. 6 dates x
7 bands x 42 pixels) was 0.012.

Figure 4.17 displays the pre- and post-normalisation histograms for a 2048 x 2048
subset of the ETM+ image for Mt. Barker February 11, 2002. The pre-normalisation
reflectances are the at-sensor sensor reflectances (Eq. (3.3), p. 57), that is the radi-
ances L3 normalized by the factor Fyypp. There are two post-normalisation histograms:
the first corresponding to reflectances retrieved using 65 and modelled atmospheric in-
puts; the second, labelled LVIN, corresponding to those reflectances retrieved via the
LVIN procedure (the constrained regression approach). Similar histograms for the other
overpass images used in this thesis are presented in Appendix G (pp. 249-253).

Figure 4.17 illustrates that after normalisation, there is a shift in histogram max-
ima. to lower reflectances which is significant for bands 1 and 2, and slightly less for
band 3. This observation is in support the notion that the additive effects of the at-
mosphere (dominated by scattering) have been removed. Also, the broadening of the

post-normalisation histograms for bands 4, 5 and 7 appear to be in accordance with the
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Figure 4.16: Plots of the retrieved (pcorra) and reference {psy) reflectances for the most
temporally-invariant PITs in the Mt. Barker sequence.
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Figure 4.17: Pre- and post-normalisation histograms for the ETM+ image for Mt.
Barker, February 11, 2002. The Before histograms represent the pre-normalisation
reflectances, that is the at-sensor radiances normalised by exo-atmospheric solar irra-
diances. The LVIN histograms represent post-normalisation reflectances retrieved using
the LVIN procedure. The histograms of 65-retrieved reflectances are also displayed (68,
light grey lines).

compensation for the multiplicative effect, namely gaseous absorption, for these bands.
Similar features are observed in the normalised ETM+ image for Hay acquired on Jan-
uary 7, 2000 (see Appedix G, Figure G.1). Both figures reveal excellent agreement
between the LVIN procedure and 65 for the ETM+ image data.

Histograms for the TM overpass images in both Hay and Mt. Barker sequences are
presented in Appendix G. Considering, for the moment, the reflectances retrieved using
the LVIN procedure, a shift is once again observed in the histogram maxima to lower
reflectances for bands 1-3. However, unlike the results for the same ETM+ bands (Figure
4.17), a broadening of the histograms is also observed for the VIS bands. This is most
likely due to the LVIN procedure correcting not only for atmospheric effects, but also
compensating for the differences in relative spectral responses between TM and ETM+

sensors Teillet et al. (2001). Once again, broadening is observed in the histograms of
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Table 4.8: Percentage differences, relative to values used in Section 4.3.3, for X5 mod-
elled with uncertainty in some input parameters.

Changes in Image % difference in Xy
e Sequence Band 1 2 3 4 5 7
TM550nm Hay +52 471 +£03 +£92 +£65 £2.0

Elevation (2) Mt. Barker 1.7 +14 =£1.2 +06 =£01 0.0
Aerosol Type Mt. Barker 0.9 64 08 -34 —-66 -56

bands 4, 5 and 7. Finally, LVIN and 6S histograms differ significantly, particularly in

regards to the broadening observed in the VIS bands.

4.3.6 Sensitivity to Uncertainty in Modelling Parameters

Since the constrained LVIN procedure is dependent on modelled path DN, it is reason-
able to inquire as to the impact of uncertainty in X, on the normalisation lines and
subsequent surface reflectance estimates. Recall that the modelled path DN presented
here were computed from the 63 estimates of path radiance, which were observed to be
reasonably insensitive to uncertainty in water vapour, ozone and other gaseous concen-
trations, as well as to the choice of temperature and pressure profiles. It is also implied
in the LVIN procedure that atmospheric properties within the image are spatially homo-
geneous and, therefore, the calculated values of path radiances are valid over the whole
image.

The source of uncertainty with the greatest potential to significantly impact modelled
Xoa for the Hay overpass images was the aerosol optical thickness. Using the TM
image geometry for July 22, 1999 as the worst-case scenario image (because of the
low sun elevation and therefore increased path length), the minimum and maximum
values of Tassonm observed by Prata and Rutter (2001)—0.02 and 0.05 respectively—
were input to 68, and then the corresponding values X Sﬂn) and XIETEX) were calculated.
The percentage differences relative to the case where the mid-range value was used
(Section 4.3.3) are presented in Table 4.8,

Based on the percentage errors given in Table 4.8, the minimum and maximum path
DN were calculated for all the overpass images in the Hay sequence. These values were
then used to obtain new LVIN lines and the MADs for the retrieved reflectances were

calculated for a relatively bright target (ps; ~ 0.15) for the three overpass dates: for
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bands 1-5 and 7 they were at most 0.0029, 0.0019, 0.0007, 0.0006, 0.0002 and 1 x 10—
respectively. One can reasonably expect that for dark targets the MADs will be greater
because of their proximity to the y-axis (Figure 4.1), where changes in y-intercept would
have the most noticeable impact.

Apart from the obvious uncertainty in 7y for Mt. Barker, variations in terrain ele-
vation also have the potential to change path radiance values across the scene. Modelled
Xslin) and Xsmx) were computed for z = 0 m and 2z = 370 m respectively, using the
solar-sensor geometry of the ETM+ image acquired over the Mt. Barker scene on Febru-
ary 6, 2000. The average percentage differences relative to the path DN used in Section
4.3.3 are given in Table 4.8. Finally, unlike the Hay scene for which, by virtue of its ge-
ographic location, one can reasonably assume the dominance of one aerosol type {in this
case, continental), the Mt. Barker scene most likely contains a mix of different aerosols.
Specifically, depending on the prevailing meteorological conditions at the time of image
acquisition, any given Mt. Barker image most likely contains a mix of continental and
maritime aerosols. The percentage difference given in Table 4.8 for aerosol type are to
be interpreted as the error incurred if a continental aerosol type is used when a maritime

aerosol would be more appropriate.

4.3.7 Discussion: The Like-value Image Normalisation Procedure

The following is a review of the results of the preceding sections, with particular em-
phasis on the application of the described LVIN procedure to the retrieval of surface
reflectances. Some final comments are made with regards to the limitations and impact
of the procedure, as well as some suggestions for potential improvements that may form

the objective of future investigations.

Reference Images

Ground-based data from the EOC Uardry field campaign of March 27, 2000 and the
coincident ETM+ imagery were used in a hybrid of the EL and REL procedures (called
the HEL method, Section 4.3.1, pp. 137-141), to produce the reference image for the
Hay sequence. The HEL procedure which, like the REL approach, constrained the
correction line to pass through the modelled path D'V, was found to be useful in tying

down the regression for the low reflectances, particularly as there were so few surface
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reflectance measurements (4 in total). The lack of uniformity in surface cover for the
four targets visited contributed to the scatter of points in the HEL scatter plots. Greater
consideration of the issues in surface target selection based on spatial homogeneity of
cover types, target size and discernability in satellite imagery, and the range in brightness
is recommended in future field campaigns if the HEL procedure is used to produce a
reference image.

Furthermore, an independent set of reflectance measurements would have been desir-
able to assess the accuracy of the reflectances retrieved for the reference image. Instead,
the accuracy of the resulting reference image could only be assessed by comparing the
retrieved reflectances to the measurements of pgy used in the HEL method (Figures 4.10
(a) and (b), p. 140).

Generally, however, the HEL procedure achieved the result expected of an atmospheric
correction procedure (supported by the 6S results); namely, the removal of the additive
path effect in the VIS bands, and the compensation for atmospheric absorption which
is dominant in the NIR-SWIR bands. Further investigation of the sensitivity of the
HEL procedure to uncertainty in the parameters required to model the path DN is
recommended.

Radiosonde measurements were used to aid in selecting atmospheric model parame-
ters suitable for the Mt. Barker ETM+ image acquired on February 6, 2000 {see Section
4.3.1, pp. 141-145 and Appendix C, pp. 226-228). From these data an estimate of
precipitable water was calculated and input to 63, along with tropical pressure and tem-
perature profiles chosen as appropriate for the date that the image was acquired. There
were no ground-based optical thickness measurements available for the Mt. Barker ref-
erence image. However, an estimate of columnar ozone concentration provided by the
Earthprobe TOMS, and a value of mys50nm = 0.05 with a continental aercsol model
were used as input to 6S. The result was a correction line with which the Mt. Barker
reference image was created. The accuracy of the reference image was limited to how
representative the atmospheric inputs to 65 were of the actual atmospheric conditions
at the time of image acquisition, and the degree of within-image atmospheric variability.
Errors in surface reflectance retrievals due to difference in elevation alone were found to
contribute around 5% over most of the range of reflectance values in the scene (Appendix

D, pp. 229-229).
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The methods employed in the production of the reference images above are far from
perfect. Implicit in these approaches is the assumption that atmospheric properties
(e.g. pressure, temperature, optical thicknesses, concentrations) are uniform throughout
the scene. Were higher spatial resolution atmospheric data available, alternative ap-
proaches to reference image production would have been explored. The methods chosen
in this thesis were considered the most appropriate for the limited amount of radiometric
processing data available (either directly or vicariously), and it was felt that the results

obtained were acceptable for the subsequent analysis.

Modelled Path DN

Path DN, X, were computed from the 6S-modelled path radiance, L, and the ap-
propriate radiometric scaling factors for the image data under consideration (Section
4.3.3, pp. 145-147). It was noted that there was uncertainty with regards to the level of
product for the Mt. Barker TM image acquired on February 24, 1992 (p. 127). Use of
the incorrect scaling factors on an image is likely to have a rather obvious effect on the
modelling component of the described LVIN procedure; the retrieved surface reflectances,
particularly the low reflectances, will have a large error as a result of the normalisation
line being constrained to pass through an incorrect path N, An appreciation of how
significant an impact this uncertainty has on the reflectances retrieved was gained in a
comparison of the modelled path DN to the estimates provided by the free-intercept
approach (discussed later).

There were two other potential sources of error in the modelled estimates of path
radiances. The first, due to the model itself, was based on inherent assumption of the
6S code that the scattering layer in the atmosphere (from which the path radiance
emanates) is above the water vapour absorption layer, and consequently uncertainty in
water vapour concentration had no impact of the modelled path radiances. A more
realistic model would allow for water vapour absorption to impact the path contribution
to the at-sensor signal, since aerosols {dominant forward scatterers) also reside in the
first few kilometres of the troposphere along with water vapour. The impact of water
vapour absorption, therefore, would affect the values of X, for bands 2-5 and 7 (see
for example Figure 3.13, p. 88).

The second source of error in modelled path radiance was due to the uncertainty in in-
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put parameters to the 6S code. Estimates of ozone concentration provided by the TOMS
instrument were used, where available, otherwise model atmosphere concentrations were
used. The uncertainty due to absolute accuracy of the TOMS-derived estimates of 1o
(~ 3%) has negligible effect on the values of X5 (< 0.5 DN) for the VIS bands (which
are most affected by ozone absorption). The choice of model pressure and temperature
profiles, which have an impact on gaseous transmittance, were observed to have a similar
negligible impact.

Sensitivity analysis was conducted on those input parameters that were believed to
have a more significant impact on the error in modelled path DN for the overpass images
(Section 4.3.6, pp. 157-158). These parameters were aerosol optical thickness, terrain
elevation and aerosol type. As there were no in situ or remotely-sensed estimates of
aerosol optical thickness, the inputs to 68 were Tass0am = 0.035 for Hay images, and
T™ssonm = 0.05 for Mt. Barker images. Based on the findings of Prata and Rutter
(2001), the errors that result if a mid-range value for Tpssonm was assumed (Table 4.8,
p. 157) are observed to be most significant for band 3 (~ 9%); an error corresponding
to about £1 DN for the typical estimates of X, in that band. The error for band
1 was ~ 5%, or =3 DN, for the typical values of X5 in that band. Errors of this
magnitude are small compared to the uncertainty in regression estimate of Xy (Figure
4.15, p. 152). Furthermore, in a sensitivity test similar to that conducted by Moran
et al. (2001), the impact of these errors on surface reflectance retrieval for a relatively
bright target was shown to be very small (MAD ~ 0.003 for band 1).

Variations in terrain elevation were considered to have the potential for most sig-
nificantly impacting Mt. Barker images, since 95% of terrain in the standard scene is
between 20-370 m above sea level. The errors incurred if the elevation z = 200 m (the
median value) was assumed for the whole scene introduced at most a +2% error in band
1 (the error decreasing with increasing band number to ~0% in band 7). Since this
error is smaller than that due to uncertainty in aerosol optical thickness (previous para-
graph), it is speculated that terrain elevation has negligible impact on surface reflectance
retrieval over most of the Mt. Barker scene; the exception being the remaining 5% of
the scene, such as the Stirling Ranges were elevations > 900 m may be observed.

For Hay it was assumed that, because of the geographic location of the scene (Figure

4.2, p. 126), the dominant aerosol type present for all dates is best characterised as
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continental. Furthermore, in the absence of any extreme events, such as large fires or an
increase in industrial activity, this is a reasonable assumption to make. A continental
aerosol type was also assumed for the Mt. Barker scene; even though one might reason-
able expect that, because of the geographic location, a mix of aerosol (probably marine,
urban and continental) would be more realistic. If a marine aerosol type was more ap-
propriate, it was shown that modelled X3 would underestimate the ‘true’ path DN by
approximately 3, 7 and 6% for band 4, 5 and 7 respectively. These errors correspond to
at most 0.3 DN for the typical values of path DN for these bands.

It was concluded from the above that, for the limited range of data in this work,
modelled X5 were relatively insensitive to uncertainty in atmospheric parameters. Once
again, lack of validation data hampered efforts for a more thorough investigation of the

uncertainty in model path DN.

Like-value Normalisation

Normalisation plots for the like-value procedure were constructed from the DNs of a
set of PITs (Section 4.3.2, p. 145) and their corresponding reflectances from the refer-
ence image {Appendix E, Figures E.1-E.9, pp. 234-242). Systematic searches by visual
inspection of the Hay imagery, displayed in RGB:3,2,1, provided 15 PITs. From these,
single-pixel data (psy, X)) were extracted; thus, Hay normalisation plots contained 15
data points. The 30 PITs used in Mt. Barker sequence, obtained through expert knowl-
edge of the geographic location of suitable targets in the scene, were inherited from the
Land Monitor project. Since neighbourhoods of pixels were used, Mt. Barker normali-
sation plots contained data points from 120 pixels.

For the data in the normalisation plots, departures from colinearity may be attributed
to either: PIT misregistration, variability of atmospheric properties above each PIT, the
PITs having non-Lambertian reflectance properties, or the PIT’s surface reflectance not
being as temporally invariant as desired. For the Hay sequence data, the scatier of
points about the calculated regression lines was observed to be greatest for bands 4, 5
and 7 compared to the VIS bands, and more in bands 5 and 7 than in band 4. This
observation is consistent with the findings of findings of Schott et al. {1988), Hall et al.
(1991), and Furby and Campbell (2001). Since the dynamic range of the image data is

greatest in the band 4, 5 and 7 (see Histograms, Figures G.1-G.8), one can expect that



163

subtle variations in surface reflectance in these bands may be amplified relative to the
VIS bands.

Robust regression is preferred (Furby and Campbell, 2001) to minimise the influence
of PITs affected by the factors mentioned in the previous paragraph on the normalisation
line. In this work, the robust M-estimator was employed to yield the estimates of
intercept and slope (i.e., the normalisation offset and gain respectively) that defined the
normalisation lines. The improved M-estimator in the S-PLUS software (Venables and
Ripley, 1999) procedure begins with an estimate of the regression coefficients provided
by the S-estimator (Furby and Campbell, 2001). If the test for bias fails, the original 5

estimates of slope and intercept are returned.

Surface Reflectance Retrievals

A comparative analysis (Appendix F, pp. 243-248) was conducted on surface reflectances
retrieved using the LVIN procedure employing either the free-intercept regression or the
constrained regression approaches (Section 4.1.2, pp. 121-126). Significant disagreement
between the two approaches was observed, particularly for low reflectances (<~ 0.1)
which constitutes a large portion of the range of reflectances in VIS bands. The dif-
ferences observed between the two approaches may be attributed to the free-intercept
estimates of y-intercept differing from the modelled values of path DN. The scatter of
normalisation data points impacts where the regression line meets the y-axis: if too few
data points contribute to the regression line, significant discrepancy will be observed
between modelled X5 and y-intercept. In the analysis, the discrepancy was observed
to be more prevalent in the Hay sequence than in the Mt. Barker sequence; most likely
because of the comparatively small number of points in the Hay normalisation plots than
in the Mt. Barker plots.

Nevertheless, the modelled path D Ns were generally contained within the 95% confi-
dence limits of the free-intercept regression estimates (Figure 4.15, p. 152). This finding
implied that statistically there was no reason to reject the hypothesis that the ¢rue nor-
malisation line passed through the modelled value. Constraining the regression fit to
pass through the modelled path DN also has the advantage of circumventing the dif-
ficulties often associated with image-derived estimates of path radiance, particularly in

areas where no (or too few) dark features exist.
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The constrained regression application of the LVIN procedure was used to retrieve
surface reflectances for each overpass image in both multitemporal sequences (even
though the Mt. Barker sequence had sufficient numbers of dark PITs). A compari-
son of histograms of retrieved reflectances and those uncorrected, at-sensor reflectances
for a subset of the ETM+ image data (see Figure G.1, p. 250 and Figure 4.17, p. 156}
revealed that the LVIN procedure had an impact expected of an atmospheric correction
procedure. When the overpass and reference images were acquired with the same sen-
sor {in this case the ETM+-), adjustments for any differences in the sensor’s response
through time were assumed to be small compared to the corrections required for solar
position and atmospheric effects. In agreement with the at-sensor signal modelling, the
additive contribution of the atmosphere {the path radiance} was removed (the amount
removed decreased with increasing band number) from ETM+ bands 1-3; evident by
the shift in histograms to lower reflectances post-normalisation. Furthermore, the re-
duction of intensity of sensor-measured signal due to gaseous absorption in band 4, 5
and 7 (and thus, compression of the dynamic range of data in these bands) has been
removed; evident by the broadening of the histograms post-normalisation. It may there-
fore be concluded that the application of the LVIN procedure removes the influence of
atmospheric effects from image data acquired with the same sensor as the reference.
Furthermore, the agreement with the 6S correction results further supports this claim.

Similarly, a comparison of the pre- and post-normalisation histograms for the TM
images in the Hay and Mt. Barker sequences, revealed not only a general shift towards
a lower reflectance range post normalisation for bands 1-3, but a broadening of the
histograms as well. From the comparison of histograms produced via the 6S and LVIN
procedures (Figures G.2-G.8, pp. 250-253), it was observed that the LVIN procedure
compensated for the differences in TM and ETM+ sensor responses.

The lack of validation data meant that only the precision of the procedure could
be assessed in a comparison between the retrieved reflectances and those of the same
targets in the reference images. Errors in retrieval are attributed to the scatter of the
PITs about the normalisation line (the causes for the scatter were described earlier).
Using the standards set by Moran et al. {1992) as a guide, the MADs and RMS errors
were calculated for a subset of PITs in both sequences. For the Hay images, reflectance

retrievals in bands 1-3 were very good (within < 0.016 reflectance units, corresponding to
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15% for dark PITs) but considerably poorer in bands 4, 5 and 7 (errors up to 86% for dark
PITs). The RMS error calculated for the first three bands was 0.011, whilst the value
caleulated across all bands was 0.063. The increased scatter in the infrared bands and
the relatively small number of pixels (15 pixels) used in the Hay sequence normalisation,
meant that only a small number of points fell on, or close to, the fitted lines. One can
assert that increasing the number of pixels contributing to the regression process—by
considering neighbourhoods rather than single pixel data—will greatly improve the MAD
results in the infrared bands. This was observed in the MADs calculated for Mt. Barker
(120 points) sequence. The MADs calculated were all < 0.01 across all bands, with an
RMS error = 0.012 (Figure 4.16, p. 155). Overall, using the criteria of Moran et al.
(1992} and Gilabert et al. (1994), retrieved reflectances were within the limits deemed

acceptable for most practical applications.

Final Remarks on Limitations and Future Work

The two most often criticised assumptions on which the LVIN and similar image normal-
isation procedures are based are that: the estimated normalisation offsets and gains are
applicable to the entire satellite scene; and a linear adjustment to the image’s DNs is
adequate for the retrieval of surface reflectances. On the former point, with the exception
of localised haze events, smoke plumes, frontal systems or severe weather phenomena,
spatial heterogeneity of atmospheric properties will contribute marginally to the scatter
of points in LVIN plots when compared to variations in surface cover. On the latter
point, there are a number of physical arguments proposed as to why a non-linear cor-
rection of image data is required. If the simplified RTE given in Eq. (4.1) represents a
reasonable approximation of the at-sensor signal, then the very nature of the expression
demands that the adjustment assumes a non-linear form. Also the linearity assumption
becomes invalid for large field-of-view sensors because of the increased path length {and
thus, optical thickness} at the large zenith angles. Many authors argue (Schott et al.,
1988; Hall et al., 1991; Gilabert et al., 1994; Chavez, 1996; Roberts et al., 1997; Moran
et al., 2001; Furby and Campbell, 2001) that when optical thicknesses are small (and/or
the sensor field of view small), a linear fit (truncation of Eq. (4.3) to first order) is a
sufficient approximation. In this investigation, the scatter of points in the LVIN plots

would have obscured any non-linear behaviour of DN with g, thus no attempt was
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made to investigate anything other than a linear fit to the normalisation data.

The LVIN procedure may breakdown when applied to image data with higher than
8-bit quantisation; for example, imagery such as AVHRR with 10-bit quantisation or
the 16 bits for MODIS imagery. Subtle variations in surface reflectance (for the PITs)
and uncertainty in model parameters may be amplified in the greater dynamic range of
the data. An additional complicating factor relates to the pixel size of aforementioned
sensors; very few targets with dimensions ~ 250 x 250 m? (let alone 1 km?) possess
reflectance properties that are temporally invariant.

Incorporating the model path DN into the LVIN procedure was suggested as a means
of circumventing any difficulties associated with finding sufficiently dark PITs. The
results in this chapter have focussed on a LVIN procedure that constrains the regression
line to pass through the point (0,X;5). This was observed to be useful particularly
when the scatter of points meant that the free-intercept approach would have incorrectly
estimated the contribution of the path radiance. Future investigation may consider a
scheme whereby, instead of constraining the fit to pass through the model path DN,
the point is assigned a weighting factor based on the uncertainty of the calculated Xp,.
This approach would be desirable when there are dark targets present in a scene and,
because of uncertainty in inputs to 65 (say), one wishes to down-weight the influence of
the path DN and allow the image data to dominate the determination of the best fit
line.

The suitability of radiometric processing procedures that rely on atmospheric model
inputs are often debated since the required parameters are typically unknown and the
selection of simulated atmospheric model values is clearly a less favourable alternative
to in situ knowledge on the day concerned. It is noted, however, that current and future
developments in remote sensing technologies may provide accurate estimates of some
of the required input atmospheric data. Routine estimates of aerosol optical thickness
and column water vapour concentration are provided by MODIS globally every 2 days;
TOMS provides daily estimates of total ozone concentration; and the geostationary
GIFTS promises radiosonde-quality soundings of atmospheric pressure, temperature and

water vapour concentration at unparalleled spatial and temporal scales.
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4.4 Application: Change in NDVI for Mt. Barker
Vegetation

One of the most important applications of satellite remote sensing of the terrestrial en-
vironment has been the mapping and monitoring of vegetation cover. Of the variety of
land cover types, vegetation plays many vital roles in the lives of the Earth’s inhabitants:
vegetation converts carbon dioxide into oxygen via the process of photosynthesis, and
water vapour via transpiration; vegetation is consumed as a food source; vegetation is
used as a home or shelter for many of the Earth’s inhabitants; and vegetation is used in
many products to service the needs of humankind, such as housing material, furniture,
fuel for heating and combustion to generate energy. Consequently, there has been wide-
spread interest in the capabilities of remote sensing technologies to provide assessments
of inter-annual and longer-term vegetation change, resulting from either natural or an-
thropogenic causes. Specifically, much attention has focussed on the development of
spectral vegetation indices (or just vegetation indices) derived from multispectral image
data to enhance and highlight vegetated features within a satellite scene.

This section begins with a description of some vegetation indices. The impact of
the LVIN procedure on calculated values of the popular normalised difference vegetation
index (NDVI, more in Section 4.4.1) is presented. The section ends with some discussion
on the effect of image normalisation, via the LVIN procedure, on vegetation change

detection and monitoring.

4.4.1 Some Spectral Vegetation Indices

Tucker (1979) used ground-based spectral measurements of vegetated targets to investi-
gate the correlation between a number of vegetation indices, derived from combinations
of the spectral bands in the green, red and NIR regions of the EM spectrum, and six
‘canopy variables’ (namely, total wet and dry biomass, dry green and brown biomass,
leaf water content, and total chlorophyll content). Two key findings of the investigations
were that (1) indices based on a combinations of red and NIR bands were superior to
the green-red band combinations in terms of their correlation with the six canopy vari-
ables; and (ii} indices using the red and NIR bands were sensitive to photosynthetically

active vegetation, and thus chlorophyll content. These red-NIR hand combinations are
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also known as greenness indices since the higher chlorophyll content, the more green
pigments in the plant and, consequently, the more red (and for that matter, blue) EM
radiation is absorbed. They have also been used in the assessment of plant health; a
plant under stress absorbs less red EM radiation when compared to a healthy plant
because of the lower concentrations of chlorophyll present in the unhealthy plant. Fur-
thermore, the NIR band is useful because no matter what the condition of the plant, it
will reflect stronger in the NIR than in the VIS bands because of multiple scattering in
leaf and canopy layers (Kumar et al., 2001).

A popular greenness index often used in satellite remote sensing is the normalised
difference vegetation inder (NDVI). The NDVI is related to the amount of chlorophyll
present in leaves of (healthy®) vegetation. Furthermore, for healthy vegetation, NDVI
can be related to the amount of vegetation in the IFOV of a satellite sensor. High
NDVI values are associated with areas of higher projected leaf area, whilst lower values
correspond to low leaf area. In other word, NDVI may be used as indicator of vegetation
canopy density.

It is computed as the difference of the NIR and red band reflectances divided by the
sum of reflectances for those same bands. For Landsat TM and ETM+ sensors, NDVI
is calculated from the at-sensor reflectances as,

NDVI = ﬂm (4.6)

Pats T Psat3
where pt 5 and p!,., are obtained from TM and ETM+ bands 3 and 4 via Eq. (3.3,
p. 57) and are not corrected for atmospheric effects. If the image data are corrected
for changes in sensor calibration, solar position and atmospheric effects, then the NDVI

may be calculated as,

NDVI(CO RR) _ Pcorrd — Peorrd ( 47)
Peorrd + Peorrd '

where peorra and peorra are estimated values of surface reflectance (from the LVIN pro-
cedure, for example). Other indices (based on the NDVI} have been proposed that are
designed to enhance the vegetation component to the data whilst minimising the po-
tential problems of using uncalibrated/uncorrected image data, and some of these are

briefly described in the following.

*Low cholorophyll content in leaves is a symptom of a stressed, or unhealthy, plant. The lower
chlorophyll content means less red light is absorbed; leading to a yellowing of the leaves—a condition
known as chlorosis—and consequently a lower calculated value for NDVI,
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Huete (1988) proposed the Soil-Adjusted Vegetation Index (SAVI) to minimise the
impact of soil reflectance on the at-sensor signal when vegetation is sparse or the canopy
cover is less dense. The expression used to calculate the SAVI differs from that of the
NDVI by a constant €, introduced to account for first-order soil-vegetation interactions
and the absorption of red and NIR radiation by the canopy (Huete, 1988). The SAVI is

calculated as,

R |
SAVI = (14 C)Featt —Peatd (4.8)
Psata + Psat3 +C

Recommended values of C' range from 0.25, when vegetation densities are high, to 1,

when vegetation densities are low. Most papers (Kaufman and Tanré, 1992; Miura et al.,
2001; Karnieli et al., 2001, for example} choose C = 0.5, which is the suggested value
for semi-vegetated areas.

Many authors have noted the importance of correcting for atmospheric effects in
image-derived vegetation indices (Paltridge and Mitchell, 1990; Kaufman and Tanré,
1996b; Miura et al., 2001, to name a few). A vegetated target’s actual surface reflectance
(e.g. measured in situ) is typically low in the red band, i.e. ps3 < 0.1, but higher in the
NIR, ps4 > 0.15 (Kaufman and Tanré, 1992). Path radiance, atmospheric scattering and
absorption effects, however, modify the surface-reflected solar radiation and result in at-
sensor reflectances for TM/ETM+ bands 3 and 4 such that, pZ,.4 > ps3 and pf 4 < Ps4-
For a given vegetated target, therefore, it follows that changes in molecular and aerosol
optical thickness through time will impact calculated values of NDVI (i.e. Eq. (4.6)) for
the target. Kaufman and Tanré (1992) noted that the NIR band will be more affected
by uncertainty in aerosol phase function and single scattering albedo (i.e. aerosol type)
rather than aerosol concentration {optical thickness). Furthermore, the fact that optical
thicknesses (total, molecular and aerosol) all decrease in magnitude with increasing
wavelength, atmospheric effects are more noticeable in the red band than the NIR.

Kaufman and Tanré (1992) proposed an Atmospherically Resistant Vegetation Index
(ARVT) where atmospherically resistant refers to the ARVT's insemsitivity to changes
in atmospheric optical thickness when compared to the NDVI. In addition to the red
and NIR bands, the ARVI incorporates the blue band {TM/ETM+ band 1) in a ‘self-
correcting’ index, namely,

ARVI = pgatti — pEatS + r)r(péat?) - ps:atl) , (49)
Pyatd -+ Psat3 — /Y(psatS - psatl)
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where p% ., is the at-sensor reflectance for the blue band and + is a constant, Based on
58 simulations of several surface covers, and for a range of optical thicknesses, Kaufman
and Tanré (1992) showed that a value of v = 1 gave an ARVI that was 4 times less
sensitive to atmospheric optical thickness than the NDVI. (Note that the ARVI becomes
the NDVI when v = 0.}

Another vegetation index that aims to be resistant to atmospheric effects, specifically
the influence of aerosols, is the Aerosol Free vegetation Index (AFRI) developed by
Karnieli et al. (2001). The AFRI utilises the fact that aerosols are essentially transparent
to radiation in the SWIR band (TM/ETM+ band 7), and the empirical vegetation
reflectance result (Table 3.7, p. 107},

Ps3 = 0.5 p:at'i'r

where pf,,7 is the at-sensor reflectance in the TM/ETM+ band 7, which is assumed to be
free of aerosol effects. In the case of TM or ETM+ image data, the AFRI is calculated
by substituting the above expression into Eq. (4.6) to yield,

AFRI = M_ (4.10)
P:atil + 0.5;‘):3”

4.4.2 Mt. Barker Vegetation Data

The application of vegetation indices to satellite image data to monitor vegetation
through time will be demonstrated using the Mt. Barker sequence (Table 4.1, p. 127).
This multitemporal sequence was chosen because of the author’s familiarity with much
of the clearing of native vegetation and establishment of new plantations in the region
through his involvement with the Land Monitor project (Caccetta et al., 2000a,b).

In this section, and in the following figures, reference will be made to uncorrecied
and corrected image data. Uncorrected reflectances refer to image data that has been
converted into at-sensor reflectances; these data have not been corrected for atmospheric
effects or between-sensor differences. Corrected reflectances correspond to image data
that have been processed with the LVIN procedure to yield estimates of surface re-
flectance. Terminology for the NDVI, therefore, will be uncorrected NDVI, correspond-
ing to those computed from uncorrected reflectances (Eq. (4.6)), and corrected NDVI,

computed from corrected reflectances {(Eq. (4.7)).
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Corrected Vs. Uncorrected Image Datla

Figure 4.18 illustrates the difference between corrected and uncorrected reflectances for
two vegetated pixels in the ETM+ image for Mt. Barker, February 11, 2002. It is clear
from the comparison of uncorrected and corrected data, that atmospheric effects (i.e. the
additive effects in the VIS bands and the multiplicative effects of atmospheric absorption
in the NIR-SWIR bands) have been removed by the LVIN procedure. To describe the
difference in general shape of the two corrected reflectance spectra, it is important to
first understand some of the characteristics of the vegetation under investigation.

Both Figures 4.18 (a) and {b) display the reflectance spectra for a pixel located in two
different Blue Gum (eucalyptus globulus) plantations. Figure 4.18(a} is a blue gum pixel
in a plantation known as the Hambley Tree Farm, 2 km east of the Mt. Barker townsite
on Oatland Road, established in 1996 by Integrated Tree Cropping Inc. Figure 4.18(b)
is a pixel from a large (1107 ha) plantation of blue gums known as the Springwell Tree
Farm, 20 km southeast of the Mt. Barker townsite, established in 1999 by Timbercorp
Inc. Blue gums are extensively planted throughout the Mt. Barker scene (in fact, in
many parts of southwest Western Australia) and are used for wood chips, pulpwood and
salinity control {Marcar et al., 1995).

On the date that the ETM+ image was acquired (February 11, 2002) the Hambley
plantation was about 6 years old, and the blue gums were nearing full maturity: that is,
approximately 12 m tall; having compact crowns 4-5 metres in diameter; their branches
retained to half the trunk height; and with drooping sickle-shaped leaves, a dark glossy
green in colour. Juvenile blue gums, on the other hand, have ovate, greyish-blue leaves,
covered with a powdery white substance. Common practice in many tree farms is to
plant the blue gums in rows separated by about 34 metres. Thus, at the time that the
ETM+ image was acquired, the blue gums in the Springwell plantation were about 3
years old: approximately 5 m tall; and, since canopy closure occurs between 2-4 years, a
considerable amount of the at-sensor signal may be attributed to the sand on which the
plantation is located. The difference between the two corrected reflectance spectra, may
therefore be attributed to the difference in age of the two plantations and the implications
for land cover and leaf and canopy reflectance. Specifically, the lighter-coloured leaves

in the younger blue gums explains why the VIS reflectances are higher in Figure 4.18(b)
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Figure 4.18: The difference between uncorrected and corrected reflectances illustrated
with blue gum (E. globulus) spectra from (a) a 6-yearold plantation and (b) a 3-yearold
plantation.
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than in (a), and the influence of the sand explains why the reflectance in the red and
NIR-SWIR bands are higher in (b) than in (a).

Figure 4.18 also illustrates that the difference between the NIR reflectances and
those of the red band has increased after the LVIN procedure was applied. This suggests
that NDVI calculated using corrected reflectances (Eq. (4.7)) will be higher than those
calculated from uncorrected reflectances (Eq. (4.6)} for the same target. In fact, from
Figures 4.18(a) and (b) the uncorrected NDVI are 0.70 and 0.59 respectively, whereas
the corrected NDVT for the same figures are 0.86 and 0.70 respectively.

Equations (4.6) and (4.7) were applied to a 2048 x 2048 subset of the Mt. Barker
scene. Histograms of the corrected and uncorrected NDVI for each date in the sequence
are presented in Figure 4.19. As expected, the histograms generally move toward the
higher NDVI range after image data are converted to surface reflectances. A broadening
of the histograms is also observable; a result due to the multiplicative correction of the
NIR reflectances by the LVIN procedure. The observed behaviour in the histograms is
consistent with the observations of Kaufman and Tanré (1996b).

The maxima observed at the low NDVI end of the histogram are attributed to the
non-vegetated pixels in the image. Note that considerably more greenery is present in
the Mt. Barker 2000 and 2002 images. This is due to grasses sprouting as a result
of an un-seasonally wet summer (2000) and recent rainfall events (2002) for the area.
The histograms for these dates are consequently flatter because the peaks corresponding
to the non-vegetated pixels are heavily suppressed compared to the histograms for the

other dates in the sequence.
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Figure 4.19: NDVI histograms for a 2048 x 2048 subset of Mt. Barker scene over all
dates in the sequence. The terms uncorrected and corrected NDVI are defined in Section

4.4.2.
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NDVI Time Series

The following addresses how the NDVI may be used to monitor change in vegetation
through time, and describes the differences that result from the use of uncorrected and
corrected NDVL

NDVI time series were constructed for selected areas within the Mt. Barker scene
where there have been observable changes in vegetation cover for some of the dates in
the sequence. The vegetation change considered were related to surface cover, such as:
vegetation loss, as a result of clearing or through natural occurrences such as flood-
ing or fire; vegetation gain through either re-vegetation (i.e. the establishment of new
plantations) or recovery after vegetation loss; and a combination of loss and recovery.

The Figures 4.20-4.24 are constructed as follows: At the top of each figure there are
3 small subsets of the imagery, displayed in RGB:5,4,2, for dates at the start (1991},
middle (1995}, and end (2002) of the Mt. Barker sequence. There is an NDVI time
series at the bottom of the page constructed from the mean uncorrected and corrected
NDVT values (calculated via Eqgs. (4.6) and (4.7) respectively) for a neighbourhood of
pixels, highlighted in the RGB imagery as red polygons. The error bars in the time
series mark 2 standard deviations about the mean NDVI value. Recall, also, that the
ETM+ image acquired in 2000 was chosen as the reference image and was processed to
surface reflectances differently from the other dates in the sequence.

To begin, an area where no detectable vegetation change has occurred for any date in
the Mt. Barker sequence (supported by the Land Monitor project) is presented in Figure
4.20. The area displayed by red polygon, centred on (E 117°39, S 34°38'), is perennial
vegetation on the outskirts of the Mt. Barker townsite. The uncorrected NDVI for the
TM February 24, 1992 image is observed to be out of alignment (underestimated) with
the other dates in the sequence. This disagreement was not observed in the corrected
NDVI series, which reveals a consistently high NDVI value {average of 0.73) through
time with each date within 2 standard deviations of each other.

The location of the Hambley blue gum plantation is displayed in Figure 4.21. The
red polygon is centred on (E 117°427, § 34°38'). It can be observed that prior to the
plantation’s establishment in 1996 the NDVI values are low, indicating that no significant

vegetation is present until after that date. The [Figure illustrates a relatively recent
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example of vegetation gain. The time series shows a transition from a non-vegetated
area, then the highly probable presence of vegetation in 1998, and finally the emergence
of vegetation of sufficient density that it was detectable in the imagery for 2000-2002.
Once again the uncorrected NDVI is shown to give an erroneously low value for the
1992 imagery which once corrected is more consistent with the time series between 1991
and 1994. The dip in the both NDVI time series around 1995 may be attributable to
plantation management practices, where the area is cleared or plowed of grasses and
shrubs prior to planting.

It is important to note that vegetation must attain a certain level of canopy density
in order to be detected in a TM/ETM+ pixel. There is, therefore, a temporal lag
from when vegetation is planted (or begins to re-grow) to when it is observed in satellite
imagery. As the vegetation matures, the canopies become fuller and the calculated NDVI
value increases. When canopies have attained certain density, NDVI values calculated
through time will begin to level off, or saturate, independent of any increase in biomass
of the understorey (Tucker, 1979).

Figure 4.22 is another illustration of vegetation gain. The red polygon, centred on
(E 117°59’, S 34°43'), is within an area which is a large eucalypt plantation, 3 km east
of the Porongurup National Park (south of the Stirling Range National Park). This
plantation was established after the acquisition of the TM image in 1991; very probably
the same year because the time series of calculated NDVI shows significant vegetation
growth for the area by 1992. From the 1995 image through to the last date of the
sequence, the NDVI remains stable (around 0.85 for the corrected NDVI). This quite
rapid NDVI saturation is consistent with the observations made for Figure 4.21.

Vegetation loss is illustrated in Figure 4.23. In this instance, vegetation was lost due
to flooding. In fact, the dark blue area around the red polygon (E 117°43', 8 34°27') is
a swamp, just west of the Stirling Ranges, which is known to be subject to intermittent
flooding (similar flooding is observed in the 2000 data). Water targets have low, often
negative, NDVI values {negative if uncorrected NDVI is calculated).

Figure 4.24 illustrates vegetation loss due to clearing. The area investigated (enclosed
in a red polygon) is centred on (E 117°52’, S 34°45"). The time series reveals that clearing
occurred in 1994 after the acquisition of the imagery. Note that in NDVI time series

clearing events are characterised by a sharp transition from high to low NDVI values.



177

In both the plots of vegetation loss, the uncorrected NDVT for 1992 appears to be lower
than the NDVT of its neighbours in the series. This has been adjusted in the corrected
NDVI data.

Figures 4.25 and 4.26 are examples of regions in the Mt. Barker scene which have
undergone a combination of vegetation gain and loss throughout the time series. Figure
4.25 corresponds to the location of the Springwell blue gum plantation, established in
1999. What is observed is an area of native vegetation which was cleared sometime after
the acquisition of the image in 1992 (but prior to 1995), and then the emergence and
maturation of the blue gum plantation over the period 1898-2002. The plantation was
obviously not of sufficient vegetation density (for reasons explained on page 171} to have
reached its maximum NDVI value (i.e. saturated) in the 2000 image data. Figure 4.26
illustrates vegetation gain and then a loss after the 2000 image was acquired. The area
displayed is a small patch of native vegetation south of the Mt. Barker townsite. The
large error bars (relative to the other time series) are a result of the variety of different

cover types (and therefore reflectances) in the area of native vegetation.



178

- Uncorrected
= Corrected

' [\{r/*\i———*—//’\i

06 o

NDVI

0.4

02

0 T \ T T T \ \

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
Date

Figure 4.20: Imagery for an area of perennial vegetation in the Mt. Barker scene for
three selected years from 1991-2002. The time series of corrected NDVI (black line)
calculated for the region highlighted by the red polygon (centred on E 117°39/, S 34°38')
shows no significant loss or gain of vegetation, whereas the uncorrected NDVI series
(grey line) shows variation.
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Figure 4.21: Imagery illustrating the emergence of the Hambley blue gum (E. globulus)
plantation, established in 1996. Corrected and uncorrected NDVI time series show an
increasing NDVT value from 1995-1998 to the eventual saturation of NDVI from 2000—
2002 for the area highlighted by the red polygon (E 117°42/, S 34°38’).
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Figure 4.22: Imagery illustrating the emergence of a large eucalypt plantation. NDVI
values, calculated from uncorrected and corrected reflectances for the area highlighted
by the red polygon (centred on E 117°59’, S 34°43'), increase after the plantations was
established in 1991 and saturate from 1994-2002.
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Figure 4.23: Imagery illustrating a loss of vegetation due to flooding. The dark-blue area
surrounding the red polygon (centred on E 117°43’, S 34°27') is known to be subject to
intermittent flooding. NDVT values for this area, in both the corrected and uncorrected
series, suggest that there is a certain amount of vegetation present between 1991-1998,
but NDVT values decrease in 2000 and reach a minimum in 2002—a negative value in the
uncorrected series. Also, the NDVI value in the uncorrected series for 1992 is brought
into alignment with neighbouring dates in the corrected series.
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Figure 4.24: Imagery illustrating vegetation loss due to clearing. In both corrected and
uncorrected NDVT time series, the loss of vegetation is evident for the area highlighted by
the red polygon (centred on E 117°52/, S 34°45’) by a sharp transition from high NDVI
values from 1991-1994 to low NDVI values from 1995-2002. The uncorrected NDVI
value for 1992 is brought into alignment with its neighbouring dates in the corrected
NDVL
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Figure 4.25: Imagery illustrating vegetation loss and then recovery in the area of the
Springwell blue gum (E. globulus) plantation. The red rectangle (E 118°04', S 34°44')
highlights some native vegetation that was cleared after the 1992 image was acquired
and then was replanted with blue gums in 1999. The uncorrected NDVT value from 1992
is brought into agreement with the 1991 value in the corrected NDVI series.
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Figure 4.26: Vegetation gain and loss for a small region of native vegetation. The large
error bars on the NDVI values in both uncorrected and corrected time series is due to
the highly variable ground cover in the area highlighted by the red polygon (centred on
E 117°35/, 8§ 34°45).
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4.4.3 Discussion: Vegetation Change Detection

It was the aim of Section 4.4 to investigate the impact of the LVIN procedure on the
calculation of NDVI and the implications for vegetation monitoring with time series
data. The Mt. Barker sequence of images was used for the investigation because of
the author’s familiarity with areas of vegetation in the region. An examination of the
reflectance spectra (both the uncorrected, at-sensor reflectance and that derived via the
LVIN procedure) for two pixels corresponding to an old and a new blue gum plantation
(Figure 4.18, p. 172), demonstrated that the LVIN procedure removed the atmosphere’s
additive effect on reflectances in the red band (band 3) described by Kaufman and
Tanré (1992), and compensated for the dominance of atmospheric absorption in the NIR
band (band 4). The increased difference between NIR and red bands meant that the
resulting NDVI were generally higher in value than those calculated using uncorrected
data. Moreover, an increase in the dynamic range of the NDVI was observed as a result
of the multiplicative correction of reflectances in the NIR band (Figure 4.19, p. 174).

NDVI time series were constructed from the uncorrected and corrected NDVI for
selected regions of vegetation change within the Mt. Barker scene (pp. 175-184). The
time series were a simple but effective means of visualising vegetation change: Vegeta-
tion loss was represented by a sharp transition from high to low NDVI value; whereas
vegetation recovery, or gain, was observed to be a slower transition from low to high
value of NDVI, because vegetation must attain a certain level of canopy density before
it is detected in the image data.

The most obvious difference between the uncorrected and corrected time series was
that the corrected time series was, as expected, always higher than the uncorrected series.
It was observed, however, that the uncorrected NDVI values for the TM image acquired
on February 28, 1992 were consistently lower than its neighbouring values, particularly
when there was no observed change in vegetation across the three consecutive image
dates {e.g. Figure 4.20). The fact that uncorrected NDVI values are calculated with
at-sensor reflectances, one must consider the possibility that there was an error in the
choice of radiometric scaling factors or the solar/sensor geometry information for the
1992 image. This explanation, while tentative and in need of further investigation, may

potentially account for the observed disagreement between free-intercept estimates and
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modelled values of path DN described in Section 4.3.4 (see page 151 and Figure 4.15,
p. 152). Nevertheless, it was observed in the corrected NDVI time series that the LVIN

procedure adjusted for the underestimate of the index in the 1992 data.

4.5 Some Empirical Vegetation Reflectance Relationships

Sections 4.1-4.3 explored the use of modelled estimates of path DN in the LVIN pro-
cedure. The path DN is the digital number of the thecretically darkest pixel in an
image since it corresponds to a target with a surface reflectance of zero. There are a

® one can make when calculating the path DN for a scene that,

number of assumptions’
under certain circumstances (see pp. 160-162), may make it an undesirable component
of the LVIN procedure. There is, therefore, an interest in exploring image-based ap-
proaches of relating image DN to surface reflectances. To this end, an approach based
on the empirically-derived reflectance relationships of Kaufman et al. (Section 3.4.1, pp.
106-109) for vegetated targets will be considered in this section.

The empirical vegetation reflectance relationships have found application in map-
ping aerosol concentrations with MODIS imagery and correcting atmospheric effects
in Landsat TM and ETM+ imagery. Recall that the expressions derived by Kaufman
et al. (1997c) relate the reflectances observed in the SWIR bands (TM/ETM+ band 7)

to those in the VIS (TM/ETM+ bands 1 and 3) for vegetated targets were,

ps1 = 0.25 pg7, and (4.11)

ps = 0.50 par. (4.12)

It is the aim of Section 4.5 to investigate the use of the above relationships (hereafter,
the Kaufman relationships) in a LVIN procedure as alternative to modelling the path
DN (ie. Step 4 of the described LVIN procedure, page 122) when satellite scenes are
lacking in terms of dark pseudo-invariant targets. To begin, Section 4.5.1 will describe
the results of testing the Kaufman relationships; firstly with ground-based spectrometer
data for a vegetated target, and then with corrected Mt. Barker images of the previous
section. Then in Section 4.5.2 a description of how the Kaufman relationships may be

incorporated into a LVIN procedure is provided.

19 Assumptions are made when there are uncertainties in, for example, the use of radiometric scaling
factors, sensor calibration, or some of the atmospheric parameters required to model path radiance.
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4.5.1 Data and Processing

Table 4.9: Dates and number of grass reflectance spectra acquired with a GER Iris
spectroradiometer on the McGillivray oval (E 115°47/, S 31°57'), Western Australia.

Date | Num. of Spectra H Date [ Num. of Spectra
January 19, 1994 35 September 6, 1994 20
February 18, 1994 17 October 11, 1994 20
March 30, 1994 14 December 6, 1994 20

April 27, 1994 20 January 6, 1995 20

May 27, 1994 18 February 7, 1995 20

July 28, 1994 20 Total = 224

Spectrometer Measurements

Palmer (1995) describes a CSIRO Mathematical and Information Sciences (CMIS) field
campaign where a GER Iris spectroradiometer'! acquired ground-based reflectance mea-
surements of grass on the McGillivray football oval (E 115°47, S 31°57’) in Floreat,
Western Australia. Table 4.9 gives the dates of the CMIS field campaign. On each date,
a spectroradiometer reading was performed at various locations around the oval in an
attempt to obtain an area mean reflectance. The number of spectra in Table 4.9 is,
therefore, equal to the number of locations visited. For this investigation, the spectra
acquired were convolved with the Landsat-5 TM and Landsat-7 ETM- response curves
(e.g. Figure 4.27; the spectra for the other dates are displayed in Figures H.1-H.11,
Appendix H, pp. 254-265). The resulting spectra, whether processed with the TM or
ETM+ response curves, showed very little differences.

The inter-band correlation of the convolved data (both the TM and ETM+ con-
volved spectra) was assessed by computing correlation matrices for each date. As an
illustrative example, the correlation matrix for the January 1994 spectra is given in
Table 4.10. Differences in the correlation matrix between TM- and ETM--convolved
data were marginal. However, it was observed for all dates that band 4 data showed
little correlation with any of the other bands. High inter-band correlation was ohserved
between the VIS bands (bands 1-3}, as well as between bands 5 and 7. In the interests

of establishing Kaufman-type relationships, attention was restricted to the correlation

1 The same GER Iris spectroradiometer used on the EOC field campaign in Hay (see p. 130).
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Figure 4.27: The convolved Iris spectra (35 in total) of the McGillivray Oval grass
acquired on January 19, 1994: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM+ response curves. Error bars
mark 2x standard deviations about the mean value.

Table 4.10: The inter-band correlation of 35 convolved grass spectra for January 1994.
Presented are the Iris spectra convolved with Landsat-5 TM response curves (in italics,
lower triangle), and the spectra convolved with the Landsat-7 ETM+ response curves
{upper triangle).

| [ 1 2 3 4 5 7

1.000 0927 0944 -0.248 0.895 0.889
0.945 1.000 0874 -0.121 0795 0.807
0.951 0.906 1000 -0.301 0.839 0.923
-0.236 -0.137 -0.287 1.000 -0.372 -0.455
0.891 0.814 0.889 -0.369 1.000 0.969
0.889  0.830 0.921 -0.447 0.971 1.000

-1 T = OB =
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of bands 1-5 with band 7.

The spectra from dates in which band 7 exhibited correlations of 0.8 or better with
bands 1, 3 and 5, and 0.6 or better with band 2, were combined. This meant that only
spectra from 6 of the 11 dates (namely January, March, May, July, and September 1994,
and February 1995) could be used. The resulting data set contained 127 values per
band. Least-squares regression was employed to provide the estimates of the slopes and
intercepts required to define the relationships. The results are presented in Table 4.11. It
can be seen that the estimates of slopes and intercepts for the relationships of both TM-
and ETM+-convolved spectra are very similar; that is, within 0.01 units of each other
in value. Taking the average of the TM and ETM+ estimates for slope and intercept

resulted in the following relationships for the ground-based spectra of McGillivray oval

grass,
pe1 = 0.03 4 0.25 par, (4.13)
pea = 0.06 + 0.29 per, (4.14)
ps3 = 0.02 + 0.54 pg7, and (4.15)
pes = 0.14 + 1.09 per. (4.16)

The results in Table 4.11 are displayed graphically in Figure 4.28. Also illustrated in
the figure are the Kaufman relationships (see Eqgs. 4.11 and 4.12)} for band 1 and band
3 (in grey). The expression for py and pe as functions pg; from this analysis and the
Kaufman relationships compare very closely in the estimates of slope; certainly if one
considers the standard errors given in Table 4.11 and those of Kaufman et al. (1997c,
Table 1). The most notable differences between the Kaufman relationships and the
relationships derived in this research from the grass spectra above, are the offsets (i.e.
the intercepts). Kaufman et al. {1997¢) describes how their relationships were based on
atmospherically corrected TM and AVIRIS images over a number of test sites. The offsets
obtained in their investigations range between —0.011 and 0.022 for band 1, and between
—0.014 and 0.025 for band 3. The offsets they observed, however, were attributed to
residual atmospheric effects in the imagery used and, since they were on average around
0.005, could be ignored. Similarly, offsets in the relationships observed by other authors
(Gatebe et al., 2001; Karnieli et al., 2001) have been ignored because they were attributed
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Table 4.11: The estimates of slope and intercept from the regression of the convolved
grass spectra (127 in total) for bands 1, 2, 3 and 5 against band 7. Also presented in the
table are the regression correlation coefficients (R?), and the calculated standard errors
{Std. Error) and t-values for the estimated parameters.

T™ ETM+
Slope Intercept R? | Slope Intercept R?
Band 1
0.249 0.029 0.763 | 0.244 (0.027 0.771
Std. Erroxr || 0.013 0.002 0.012 0.002
t-value 19.6 11.8 20.0 11.9
Band 2
0.302 0.063 0.627 | 0.279 0.067 0.596
Std. Error || 0.021 0.004 0.021 0.004
t-value 14.1 15.5 13.3 17.0
Band 3
0.532 0.017 0.806 | 0.541 0.014 0.813
Std. Exror | 0.024 0.005 0.024 0.004
t-value 22.2 3.6 22.7 3.1
Band 5
1.095 0.142 0.916 | 1.086 0.146 0.913
Std. Error || 0.030 0.006 0.031 0.006
t-value 35.9 24.6 34.9 24.9

to the same atmospheric effects, Karnieli et al. (2001), for example, using ground-based
spectra. (ASD spectrometer measurements) found that pg = 0.05 + 0.33 pg7, which is
comparable to expression Eq. (4.14), yet the offset was still considered negligible.

The ¢-values were computed in the regression analysis of the convolved grass spectra
(Table 4.11). The t-value for a 95% level of significance on 120 degrees of freedom (i.e.
the number of points minus the two parameters estimated) is tg59; = 1.66. The ¢-values
calculated for all parameters were considerably more than tgse; thus the calculated
offsets are statistically significant and, as far as the grass spectra are concerned, cannot
be ignored. However, as was pointed out by Gatebe et al. (2001), for a vegetated target
with pgy = 0, one expects that ps; and pg also to be equal to zero. The question then
arises: Where does the offset in the grass spectra analysis come from? Potential reasons
why significant and relatively large offsets were observed in the analysis will be addressed

Section 4.5.3.
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Figure 4.28: Surface reflectances pe1, s, Ps3, and pgs as functions of pgy derived from
McGillivray Oval grass spectra. The equations displayed are a summary of the results
presented in Table 4.11. Also displayed in the dashed grey lines for bands 1 and 3 are

the corresponding Kaufman relationships (Eqgs. 4.11 and 4.12).
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Table 4.12: Correlation matrix for the combined vegetation data (64 targets; 448 re-
flectances per band) for all dates of TM and ETM+ imagery in the Mt. Barker sequence
over the years 1991-2002.

1 2 3 4 5 7]

1| 1000 0844 0912 -0.032 0.829 0.838
2 1.000 0925 0196 0703 0.654
3 1.000 -0.001 0.837 0.817
4 1.000 -0.035 -0.207
5 1.000  0.942
7 1.000

Image Vegetation Data

Kaufman et al. (1997¢) derived their empirical vegetation reflectance relationships using
TM and AVIRIS imagery that had been atmospherically corrected, using measurements
of atmospheric optical thickness acquired in situ, and converted into surface reflectances.
The vegetation targets chosen in their investigations were dark (reflectances < 0.1-0.15
in band 7) and corresponded to regions of dense native vegetation (Kaufman and Remer,
1994; Kaufman et al., 1997¢).

Recall from previous sections (Section 4.4, for example) that the Mt. Barker scene
contains an abundance of densely vegetated areas {i.e. nature reserves, perennial na-
tive vegetation, and large plantations). For this investigation the aim was to establish
image-derived Kaufman-type relationships from the retrieved surface reflectances in the
corrected Mt. Barker imagery.

Sample vegetation spectra were extracted for each date in the Mt. Barker sequence
for regions where vegetation remained stable throughout the entire temporal sequence
(see for example Figure 4.20, p. 178). In total 64 targets were identified; the vegetation
spectra were chosen such that ps; < 0.15. From these data an inter-band correlation
matrix was calculated for each date using the 64-point data (given in Appendix H, pp.
266-267). As with the grass spectra, high correlations (> 0.85) were observed between
bands 1-3 and 5, and band 7. Finally, the data for all dates in the TM-ETM+ sequence
between 1991 and 2002 were combined to form a larger dataset of 448 points (64 targets
x T dates). The correlation matrix for the combined dataset is given in Table 4.12.

Once again, the intention was to determine expressions for ps, pe, ps3 and pgs as

linear functions of pgy from the vegetation data. Plots of the reflectances for these
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Table 4.13: The estimates of slope and intercept from the regression analysis of the
combined data set of atmospherically corrected vegetation reflectances (Mt. Barker
image sequence) for bands 1, 2, 3 and 5 against band 7. Also presented are the regression
correlation coefficients (R?), and the calculated standard errors (Std. Error) and t-values
for the estimated parameters.

Slope Intercept R* |

Band 1 0.285 0.005 0.702
Std. Error || 0.009 0.001
t-value 32.4 9.03

Band 2 0.262 0.021 0.488
Std. Error || 0.014 0.001
t-value 18.3 228
Band 3 0.416 0.013 0.806
Std. Error || 0.014 0.001

t-value 29.9 14.8
Band 5 1.284 0.052 0.887
Std. Error || 0.022 0.001
t-value 59.1 38.3

bands against the reflectances in band 7 are given in Figure 4.29. The results of the
least-squares regression for these data are given in Table 4.13.

A comparison of the relationships derived above with the Kaufman relationships
for bands 1 and 3 reveals close agreement (i.e., within the range of slope and intercepts
estimated by Kaufman et al. (1997¢) and others (Remer et al., 2001; Gatebe et al., 2001)).
The offsets observed in the relationships above are smaller than those observed in the
McGillivray Oval grass analysis of the previous subsection, and are similarly statistically
significant (see t-values in Table 4.13; for 446 degrees of freedom tgsq; = 1.645). To
two decimal places, the relationships derived from the Mt. Barker sequence vegetation

spectra are sumimarised as:

ps1 = 0.00 -+ 0.28 pgr, (4.17)
ps2 = 0.02 4+ 0.26 pyr, (4.18)
ps3 = 0.01 1 0.42 pg7, and (4.19)

ps5 = 0.05 + 1.28 pyr. (4.20)
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Figure 4.29: Surface reflectances ps1, ps2, ps3, and pes as functions of pg7 for the retrieved
reflectances of 64 vegetated targets for all dates in the Mt. Barker sequence of TM and
ETM+ imagery acquired over the period 1991-2002. The equations displayed are a
summary of the results presented in Table 4.13. Also displayed in the dashed grey lines
are the Kaufman relationships for bands 1 and 3.
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Table 4.14: A summary of the empirical vegetation reflectance relationships of Kaufman
et al. {Kaufman) and the relationships derived in this work using retrieved reflectance for
vegetation in Mt. Barker sequence {Image-derived) and MecGillivray Oval grass spectra,
(Grass Spectra).

| || Kaufman Image-derived (Grass Spectra |
Band 1 || ps1 = 0.25 pg7  ps1 = 00054 0.28 ps7  pg = 0.03 4 0.25 per
Band 2 psa =0.024 026 p7  pez = 0.06 +0.29 por
Band 3 || pes = 0.50 per  ps3 = 0.01 +0.42 pr  pe3 = 0.02 4+ 0.54 py7
Band 5 a5 = 0,054+ 1.28 por pes = 0.14 + 1.09 pyy

4.5.2 Using the Relationships in a LVIN Procedure

Recall that it was the aim of Section 4.5 to investigate the potential use of the empir-
ical vegetation relationships in the LVIN procedure as an alternative to modelling the
path DN with radiative transfer code. Here a comparison in made between the various
relationships presented previously. For simplicity, they shall be referred to as: Kaufman
corresponding to the expressions of Kaufman et al. {1997c); Image-derived for the re-
lationships derived from vegetation targets in the Mt, Barker sequence of normalised
TM and ETM+ images; and Grass spectra, corresponding to the relationships based on
the McGillivray Oval grass spectra. The expressions for each of these relationships are
given in Table 4.14.

The proposal is to remove Step 4 (pp. 121-126) of the LVIN procedure and replace
the modelled estimate of path DN with an estimate derived from the imagery itself. The
Kaufman relationships may be used to attribute a surface reflectance to a DN value for
a vegetated target in an uncorrected image. This approach may be incorporated into

the LVIN procedure as follows:

Identify pixels in the image corresponding to dense vegetation. For these pixels:

1. Assume that band 7 DN are only affected by gaseous absorption through the

atmosphere and calculate the at-sensor reflectance pf, ;. That is,

p:a.t'? = T"Tl'r PsT

where T%T is the total atmospheric gaseous transmittance from Sun to target,
and from target to sensor for band 7. The ftransmittance may be approximated

using standard atmospheric inputs to RT code such as MODTRAN or 65. Perform
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a simple atmospheric correction on the band 7 data by rearranging the above

expression to yield ps7. The aim should be to select 10-20 targets with pgy < 0.15.

2. Calculate surface reflectances pg for £ = 1, 2, 3 or 5 using empirical vegetation

reflectance relationships, namely

Psk = Qi + b ps7,

where ay and by, are the intercept (offset} and slope of one of the expressions in

Table 4.14 {note that for the Kaufman relationships, & = 1 or 3).

3. Extract the (uncorrected) DN for the kth band, Xj, and form the data pair

{(psk: Xi); where pg, is estimated from the previous item.

4. Incorporate (pgr, Xi) into the LVIN plot for the kth band and proceed with the
free-intercept approach to the LVIN procedure—the cutput will be a sequence of

images normalized to like-value reflectances.

Note that since there is no empirical vegetation reflectance relationship for pga, the above
approach will not work for band 4. Possible methods for addressing this problem are
suggested in Section 4.5.3.

To make a comparison between the three empirical vegetation reflectance relation-
ships, and to demonstrate their application in the proposed ‘new’ LVIN procedure, the
Mt. Barker sequence of images was once again employed. The sequence is ideal for the
comparison because of the sufficient number of dark pixels in the normalisation plots
(mainly extracted from the Southern Ocean). Thus the normalisation plots for the over-
pass images in Mt. Barker sequence (Appendix E; Figures E.4-E.9, pp. 237-242) and
the free-intercept regression LVIN line (with the 95% confidence limits) were used in the
comparison.

Twenty new vegetation targets were identified in the Mt. Barker imagery. The pixel
DN for these targets were processed as described above, and surface reflectances were
calculated via the Kaufman, grass spectra and image-derived relationships. The data
pairs (pg, Xg), & =1, 2, 3, and 5, were made for each vegetated target and superimposed
over the normalisation plots for each overpass date in the Mt. Barker sequence (see
Appendix H; Figures H.12-H.17, pp. 269-274). An enlargement of the normalisation
plots for the Mt. Barker January 20, 1991 image is displayed in Figure 4.30.
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Figure 4.30: An enlargement of the LVIN plots for bands 1, 2, 3 and 5, from the Mt.
Barker image for January 20, 1991. The black diamonds are the pixel DN's for the PITs
in the LVIN plots; Figure E.4. The black lines are the free-intercept LVIN lines with 95%
confidence limits delineated in grey. Also illustrated are the data for the 20 vegetation
targets to which the empirical vegetation relationships have been applied: namely, those
derived by Kaufman et al. (Kaufman, red squares), and the two sets of relationships
derived in this work (Image-derived, green triangles; and Grass spectra, blue circles),
defined in Table 4.14.
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It was observed that the data pairs constructed for the Kaufman and Image-derived
relationships were closest in value (i.e. for bands 1 and 3). Furthermore, the points
derived from the Kaufman relationships (red squares) were generally lower in surface
reflectance than those from the other two relationships and were therefore the left-most
data pairs in the normalisation plots for bands 1 and 3. The points produced with the
Grass spectra relationships (blue circles) had much higher estimates of surface reflectance
and were the right-most points in the plots. Since values for slope in the Kaufman and
Grass spectra relationships are very close, it is clear that the differences observed are
due to the intercepts (the large offset) used in the Grass spectra relationships.

For most of the normalisation plots, the Image-derived relationships (green triangles)
gave data pairs that consistently fell within the 95% confidence limits of the free-intercept
LVIN line; with the exception the 1992 band 3 normalisation plot where none of the
points produced using either of the relationships was contained within the limits. The
Kaufman relationships were the next best at producing points that were within the 95%
confidence limits. The Grass spectra, however, only produced a few points (between

1-5) that were within the confidence limits, if any at all.

4.5.3 Discussion: Empirical Vegetation Reflectance Relationship

Ground-based spectra and image-derived reflectances for some vegetation targets were
used to construct Kaufman-type empirical vegetation reflectance relationships with the
aim of potentially being used in a LVIN procedure. The expressions obtained relate
the surface reflectances for TM/ETM+ bands 1, 2, 3 and 5, to band 7 reflectances
for vegetated targets. For bands 1 and 3, the expressions obtained in this work were
consistent with previous work (Kaufman et al., 1997c; Gatebe et al., 2001), and similarly
for band 2 (Karnieli et al., 2001). The main difference between this work and that of
others was that the calculated intercepts (offsets in the relationships) were statistically
significant and, as far as the data were concerned, could not be considered negligible.
An alternative to the path DN modelling component of the LVIN procedure was
described that incorporates the empirically-derived vegetation reflectance relationships.
Essentially, the relationships are used to estimate surface reflectances for vegetated tar-
gets within an image which would then be used with the corresponding pixel DN to

form data pairs. These vegetated data pairs are then used in the normalisation plots to
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influence the regression line in the low reflectance region. Of the three empirical rela-
tionships investigated (i.e. Kaufman, Grass spectra and Image-derived, p. 195}, closest
agreement was observed between data pairs produced with the Kaufman and Image-
derived relationships. This was because the values of slope in both sets of relationships
were similar, and the offsets in the Image-derived relationships were smaller than those
in the Grass spectra relationships.

Using the Mt. Barker normalisation plots as a guide, it was generally observed
that the Kaufman and Image-derived relationships gave vegetation data pairs that were
within the 95% confidence limits of the free-intercept regression LVIN line. The one
instance for which all three relationships gave points outside these limits was for band
3 in the 1992 image. Recall from previous sections that the Mt. Barker 1992 image has
twice before provided results that were against the general trends (i.e. modelled and
free-intercept estimates of path DN, p. 151; uncorrected NDVI times, p. 185). It was
speculated previously that problems with this date may be due to uncertainty in the
radiometric scaling factors for the 1992 image data. If this is the case, the fact that the
scaling factors are used to yield at-sensor reflectances for band 7 means that the use of
the incorrect coefficients may result in errors in surface reflectance estimation for that
band; in turn affecting pgs estimation, thus explaining the observed disagreement with
the general behaviour,

The Image-derived relationships computed in this work have the added advantage
that they provide estimates of surface reflectance in two extra bands (bands 2 and 5)
for which the Kaufman relationships did not. Also, the fact that the Image-derived rela-
tionship consistently provided vegetation data pairs that were within the 95% confidence
limits of the free-intercept LVIN line, implies that the empirical vegetation reflectance
results could indeed serve as an alternative to the modelling component of the LVIN
procedure. Further investigations are recommended to assess the surface reflectance
retrievals, and to compare the results with the conventional and modeled-approaches

described in previous sections.

Commentis on the Observed Offsets

‘Whilst #-tests showed that offsets observed in the analysis of grass spectra and normalised

image reflectances were statistically significant, there is no physically-based argument
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as to why there should be an offset at all. In a personal communication with Dr.
Kaufman it was suggested that the offset observed may be an artefact of the range of
reflectances used in the analysis. In order to do atmospheric correction {for which the
relationships were initially intended) not only is good correlation required between the
VIS band and band 7, but the targets used need to be sufficiently dark. The results of
Kaufman et al. {1997¢c) were based on data from atmospherically corrected Landsat TM
and AVIRIS images, such as dense forest areas and some crops, where band 7 reflectances
were typically < 0.15. Furthermore, they demonstrated that relationships derived could
retrieve pg; and pg3 to within +0.006 reflectance units (and aerosol optical thickness with
+0.06).

The band 7 reflectances used in the analysis with Mt. Barker image data were less
than 0.15. The estimate of slope for band 1 in this work (Image-derived method) was
0.28, compared with 0.25 (Kaufman et al., 1997c); the intercepts in both analyses were
the same (i.e. 0.005; see (Kaufman et al., 1997c), Table 1.). Relationships for band
3 were similarly comparable in slope; 0.42 in this work compared with 0.5. However,
in Mt. Barker analysis, an offset of 0.01 was obtained that is 5 times larger than the
average observed by Kaufman et al. (1997¢), yet still within the range of values they
obtained (—0.014—0.025). It was concluded by Kaufman and others that the offsets they
observed were due to residual atmospheric effects. This may very well be the case in this
work, since the reference image constructed for Mt. Barker was based on assumptions
regarding aerosol optical thickness, not to mention all the other potential sources of error
mentioned in the Section 4.3.7 (pp. 158-166).

Atmospheric effects cannot be used to explain the observed offsets in the McGillivray
Oval grass spectra analysis since the spectra were collected at the Earth’s surface. For
the grass spectra, 0.1 < ps7 < 0.30 which often constitutes a considerable range of the
reflectances in band 7 (see histograms in Appendix G, for example). Restricting analysis
to spectra pgy < 0.15 would leave too few data points to establish a relationship with

sufficiently high inter-band correlation.

What about Band 4?

The empirical vegetation reflectance relationships determined in this work provide esti-

mates of surface reflectance in bands 1, 2, 3 and 5. The consistently poor correlation
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observed between band 4 relectances and those in band 7 for vegetated targets meant
that no meaningful relationship could be established to relate psy to psr. It, therefore,
remains that band 4 image data be normalised to surface reflectances using the conven-
tional free-intercept LVIN procedure. A constrained LVIN procedure using a modelled
value of path DN for band 4 may be considered, but one has to make assumptions about
the various model parameters (particularly atmospheric inputs}.

An alternative approach—not explored here because it is beyond the scope of the
thesis—may be to use the Kaufman relationships for the purpose that they were initially
intended: the estimation of aerosol optical thickness. For each vegetated pixel, the at-
sensor reflectance can be determined from image data and the radiometric scaling factors,
and the surface reflectance can be estimated using the relationships for band 1-3 and
5. With these two quantities, the RTE can be inverted and give an estimate of aerosol
optical thickness for these band, namely 7u1 to mys and mys. Then, by employing the
Angstrém relationship

vy = AXE,

coefficients A and B may be estimated in a 4-point regression with the aforementioned
estimates of aerosol optical thickness, and thus provide an estimate of Tyq4. Given the
estimate of aerosol optical thickness in band 4, radiative transfer code, such as 68, may
be employed to either correct the image data, or to model the path DN for use in the

constrained regression implementation of the LVIN procedure for that band only.

4.6 Chapter Summary

s A like-value image normalisation (LVIN) procedure was applied to two multitem-
poral sequences of Landsat-5 TM and Landsat-7 ETM+ imagery with the aim of
estimating surface reflectances and obtaining a normalised /standardised sequence

of imagery for change detection studies.

e The LVIN procedure assumes that within a satellite image there exists features on
the Earth’s surface that have reasonably invariant reflectance properties through
time. Employing robust regression on data extracted from an unprocessed (over-
pass) image and a reference image for these pseudo-invariant targets (PITs), a nor-

malisation equation (linear gain and offset) is obtained to transform unprocessed
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data, and give it the appearance that it was acquired under the same conditions

as the reference images.

The difference between the LVIN procedure described here and the method of
Furby and Campbell {2001} was the use of reference images that have been cor-
rected for atmospheric effects and converted into surface reflectances. The option
of incorporating the theoretically darkest pixel in an image--known as the path
DN—is also proposed in this thesis as a further modification of the method of
Furby and Campbell (2001). It is suggested as a useful means of tying down the
regression at the low reflectance end of the normalisation plots when no suitably

dark PITs (or too few) can be found.

A comparison of the modelled path DNs and the estimates from the free-intercept
approach showed agreement to within the level of statistical uncertainty in the
data, suggesting that the normalisation line is not seriously biased by constraining
the regression. The constrained approach is, however, not recommended if there
is uncertainty in the level of image product (and thus radiometric scaling factors)

used.

Visual inspection of the histograms of the reflectances retrieved via the LVIN
procedure showed that, if overpass and reference images were acquired with the
same sensor (say, both TM or both ETM+) then the LVIN procedure appeared to
correct for atmospheric effects. This finding was supported in comparisons with the
6S-corrected image data. If the overpass and reference images were acquired with
different sensors, then not only did the LVIN procedure correct for atmospheric

effects, but appeared also to compensate for between-sensor differences.

The lack of validation data meant that only a qualitative evaluation of the LVIN
procedures (by comparing retrieved reflectances to those from the reference image)
was possible. The scatter of points about the normalisation lines was a limiting
factor in assessing the precision of the reflectance retrievals. Nevertheless, the LVIN

procedure obtained results that were adequate for most practical applications.

It was further demonstrated that NDVI images computed from LVIN-corrected

reflectances had greater dynamic range than those based on at-sensor reflectances;
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a finding consistent with the expected results of atmospheric correction for red
and NIR bands. More importantly, the LVIN procedure was seen to correct for
uncertainty in radiometric scaling factors and produce a standardised set of data

with which vegetation change could be monitored.

e Finally, the preliminary results of an investigation into the use of empirical vege-

tation reflectance relationships in the LVIN procedure was presented.
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Conclusions

Images acquired for a given scene over time can appear quite different irrespective of what
changes have occurred on the Earth’s surface. These differences are due to (i) changes
in satellite sensor systems, (ii) seasonal variations in solar position, or (iii} atmospheric
effects. Radiometric processing aims to minimise, or eliminate, the contribution of these
three factors to changes observed in sequences of imagery. The radiometric processing
investigated in this thesis is known as image normalisation.

Image normalisation procedures achieve a level of standardisation by transforming
satellite image data into common units, and give images the appearance that they were
acquired under the same solar and view geometries, atmospheric condition, and with the
same satellite sensor as that of a reference image. Furthermore, it is claimed (Hall et al.,
1991; Furby and Camphbell, 2001} that if a reference image is accurately calibrated and
corrected for atmospheric effects, then normalisation procedures may be used to estimate
surface reflectances for the other images in a multitemporal sequence. Such procedures
have the advantage of being able to provide estimates of surface reflectance for scenes
where no in situ observations of surface reflectance and/or atmospheric parameters—
required knowledge for the more physically-based radiometric processing procedures—
are available; a typical situation for the majority of places on Earth.

In this thesis, a like-value image normalisation (LVIN) procedure was described that
is based on the procedure of Furby and Campbell (2001). The LVIN procedure uses the
DN's from unprocessed overpass images and surface reflectances from a reference image
for a set of pseudo-invariant targets (PITs), common to all images in a sequence. From
these data, linear relationships are obtained that transform DNs into surface reflectances
for a given image. The thesis also explored the use of the darkest pixel DN, referred to
as the modelled path DN, as an alternative to finding suitably dark PITs. Conclusions

from the investigation and recommendations for future work are given in the following,
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5.1 Image and Model Data

The Reference I'mages

The LVIN procedure was applied to two multitemporal sequences of Landsat TM and
ETM+4- imagery. The first, known as the Hay scene, was composed of two TM and two
ETM+ images acquired over a rural area of New South Wales, Australia. The second,
known as the Mt. Barker scene, was composed of five TM and two ETM+ images on
the southwest coast of Western Australia, Australia.

The Hay reference was an ETM+ image (March 27, 2000) that had coincident ground-
measured surface reflectances for four targets. The reference image DNs were converted
to surface reflectances via an empirical line procedure, called the hybrid empirical line
(HEL) procedure. An independent set of surface reflectance measurements was not
available to assess the performance of the procedure. However, it was concluded that
the HEL procedure had produced a reference image of sufficient accuracy because of
RMS errors calculated on the 4 measured targets ranged from 0.002 in band 1 to 0.022
in band 7.

As there were no in situ measurements of surface reflectance for any date in the Mt.
Barker sequence, 68 was used to convert the D Ns of an ETM+ image (February 6, 2000;
chosen because its 2N had the highest dynamic range of all the images in the sequence)
into reflectances. The choice of model inputs was guided by radiosonde profiles, TOMS
estimates of ozone column amount, and a knowledge of the terrain throughout the scene.

Both methods employed in the production of the references images assume that
atmospheric conditions are uniform across a scene. Often this is not the case, and
a detailed analysis of the errors that this assumption introduces is recommended. A
comparison of the results from the two approaches above to a correction procedure that
operates on a pixel-by-pixel basis may provide some insight, but an ideal study would
involve comparisons with ground-based measurements of surface reflectance for a large

number of targets spread throughout the scene.

Modelled Path DN

The LVIN procedure requires a number of bright, mid-range and dark PITs to obfain

an estimate for the image normalisation line. If too few PITs are sufficiently dark, then
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scatter in PITs of higher reflectance in the LVIN plots would tend to dominate the
regression and result in an image normalisation lines that incorrectly adjusts the lower
reflectance pixels. In this thesis, the DN for a target with zero surface reflectance was
modelled from the image’s radiometric scaling factors, solar and sensor geometries at the
time of the image was acquired, and estimates (or knowledge) of some key atmospheric
parameters.

The Mt. Barker scene had an abundance of dark PITs (because of the scene’s
proximity to the Southern Ocean) in comparison to the Hay scene. Agreement of dark
PITs’ DN to the modeled path DNs was better for Mt. Barker than for Hay. The
expectation is that if Hay had more dark PITs, one would observe better agreement in
that scene too.

Constraining the regression fit to pass through the modelled path DN was investi-
gated as a possible means for tying down the LVIN line at the dark end of the normal-
isation plots. A consideration for future work may be the development of a weighted
regression scenario, in which the modelled path DNs are attributed weights that in-
dicate the reliability of the modelled point. The weights could consider uncertainties
in the radiometric scaling factors and the parameters that contribute to modelling the
path radiance (such as aerosol type and optical thickness, water vapour concentrations,
terrain elevation etc). This would require a more extensive analysis of the sensitivity of
the LVIN procedure than that presented in this thesis.

Preliminary investigations presented in this thesis have shown that an alternative to
modelling the path DN may be the use of vegetated targets and empirically-based inter-
band reflectance relationships. The relationships derived in this thesis were found to be
consistent with those of other researchers. If the relationships are to be incorporated
into the LVIN procedure, then it may be useful to investigate the impact of seasonal
effects on the empirical vegetation reflectance relationships and on the subsequent surface

reflectance retrievals.
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5.2 Addressing the Research Aim

Atmospherie, Solar Position and Sensor System Effects

In an examination of image histograms pre- and post-normalisation, it was revealed that
the LVIN procedure adjusted image data in the manner expected of an atmospheric
correction procedure; namely, the removal of the additive path effect, due to scattering
by molecules and aerosols in the visible bands, and compensation for the multiplicative
effects of extinction and gaseous absorption which are the dominant mechanisms affecting
the near- and shortwave infrared bands.

This finding was based on comparisons of the LVIN surface retrievals with those from
the 68 code for the situation where both reference and overpass images were acquired
with the same sensor (ETM+). In this instance, changes due to sensor system differences
were assumed to be negligible, and the close agreement between the LVIN procedure and
65 code supported the claim.

The results also imply that differences in sun angle and Earth-Sun distance are
adjusted by the LVIN procedure, since these pieces of information are used by 68S.

When the reference and overpass images were acquired with different sensors, the
LVIN procedure appeared to modify the image histograms in ways that were consistent
with adjustments for differences in the dynamic ranges of data from the TM and ETM+
SENSOTrs.

The LVIN procedure’s ability to remove atmospheric effects was again demonstrated
in comparisons of the retrieved and at-sensor reflectances for vegetated targets in the
Mt. Barker scene. Reflectances in visible bands were reduced while those in the near-

and shortwave infrared bands increased after the application of the LVIN procedure.

Data Consistency through Time

The temporal consistency of the imagery after the application of the LVIN procedure was
assessed by examining retrieved reflectances for a subset of the PITs common to all dates
in both multitemporal sequences. The absolute accuracy of the retrievals could not be
assessed because of a lack of validation data. Nevertheless, the procedure demonstrated
a high level of precision by retrieving surface reflectances, for most bands, to within

£0.01-0.02 reflectance units of the value for the same PIT in the reference image.
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Time series of the normalised difference vegetation index (NDVI), calculated with at-
sensor and LVIN retrieved reflectances, were constructed for selected locations through-
out the Mt. Barker scene. These served as a useful graphical illustration of the vegetation
change for specific locations through time.

The NDVI calculated from at-sensor reflectances for one of the dates in the Mt. Barker
sequence (1992 TM image) was consistently lower in value than neighbouring points in
the time series, even when there was no observed vegetation change between dates. This
was attributed to the use of incorrect radiometric scaling factors as a consequence of un-
certainty in the level of image product for the particular date. Nevertheless, the LVIN
procedure was seen to compensate for this uncertainty and produced a consistent set
of NDVT; supporting the notion that the procedure compensates for changes in satellite

sensor systems.

5.3 Final Remarks

From the findings above, it may be concluded that the LVIN procedure certainly ap-
peared to correct images in multitemporal sequences for effects due to the atmosphere,
solar positions, and the sensor systems, but a thorough assessment was hampered by
a lack of validation data. When the reference image has been processed to surface re-
flectances, the LVIN procedure can be used to retrieve surface reflectances in the other
images in the sequence and produce a consistent set of image data for multitemporal
analyses. The absolute accuracy of the retrievals is limited to the accuracy of the refer-
ence image corrections.

Finally, it is emphasised that constraining the LVIN normalisation line to pass
through the modelled value of path DN is only recommended when the level of TM
or ETM+ product—and thus the radiometric scaling factors—is known. There have
been a number of changes to the on-ground processing of the TM imagery throughout
the sensors lifetime (Markham and Barker, 1986; ACRES, 1999), and the application of
the incorrect coefficients will result in dramatically different values for path DN. Ulti-
mately, it is investigations such as those of Teillet et al. (2001} into the temporal change
of TM’s responsivity that will lead to an updated set of radiometric scaling factors for

the historical archives of TM image products (Teillet, 2002).
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APPENDIX A

Equation of State of Water

Vapour and Other Useful
Formulae

The equation of state for an ideal gas is given by
PV =nRT (A1)

where P and T are the pressure and temperature of the gas respectively, V is the volume
(in m®) occupied by the gas, R is the universal gas constant (8.314 J K~ mol ™!}, and

the number of moles of the gas, n, is given as:

Mgas

3
Mgas

T2 =

where mgy,; denotes the mass of gas (g) contained in the volume and My, the molecular

weight of the gas (g/mol). For one mole of an ideal gas at standard temperature and
pressure {(STP)
FoVo = RTy (A.2)

where Py = 1013.25 hPa, Ty = 273.16 K, and V) = 22.4 L = 2.24 x 1072 m3. The density
of the gas pges is defined as

m
__ '*gas _
Pgas = = Mgas — Pga,svs
Vv

thus Eq. (A.1) can be rewritten as

pv — Poss¥ oy
Mgas

which, after manipulation with Eq. (A.2) gives the density of the gas

puns = (L) D) (A3)

In the case of dry air, composed of 78.08% Na (molecular weight 28.1 g/mol), 20.95%
02 (molecular weight 32 g/mol) and 0.93% Ar {(molecular weight 39.9 g/mol), and also
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noting that at STP, 1 mole of the gas occupies 2.24 x 102 m3, Eq. (A.3) calculates the
density of dry air as,

Ty, P
_ ~3;doy &
paa = 1.292 X 107(2) (35)- (A4)

The equation of state for water vapour takes on a form similar to Eq. (A.1) and is given

by
_ R
= Puv —-n'fwv

where R and T have been defined previously, e is the water vapour pressure (hPa), pye

T, (A.5)

is the density of water vapour and M, is the molecular weight of water vapour. The
water vapour pressure represents the contribution that water vapour makes to the total
atmospheric pressure. Given estimates of pressure, temperature and relative humidity

(RH), the vapour pressure can be calculated with the following expression:
e=esfuRH, (A.8)

where e; is the saturation vapour pressure, representing the total amount of moisture
that air can hold at a given temperature, and f,, is a non-ideal gas scaling factor calcu-

lated as

P
fu=1+0.005 (Fo) .

The saturation vapour pressure can be determined using the expression given in List

(1949, p. 350)

T, T,
logig(es) = Ay (—Ié - 1) + Aglogg (T) + Ag (10E1(1WT/Ts} _ 1)

+ Ag (10E1(T3/T—1>) +logio(Py), (A7)

where 4, = —7.90208, 4, = 5.02808, A3 = —1.3816 x 1077, Ay = 8.1328 x 1073,
E; =11.344, E5 = —3.49149 and T is the steam-point temperature {= 373.16K).



APPENDIX B
Ozone Absorption Coeflicients for
the Uardry MFRSR

The Uardry MFRSR has six narrow bands. The first five bands are positioned in such
a way so as to avoid atmospheric water vapour absorption; the sixth band however is
located in a prominent water vapour absorption feature around 940 nm (see Figure B.1).
The bands centred around 500.6, 615 and 672.8 nm are located in the Chappuis band
and are thus the most significantly affected by atmospheric ozone. For these bands, it is
important to know the ozone optical thickness if one is to retrieve an estimate of aerosol
optical thickness from the MFRSR measurements.

Recall from Eq. (2.15, p. 27) that, given an estimate of the ozone concentration (DU
or atms-cm), 703 can be computed at any wavelength if the ozone absorption coefficients,
teos, are known. Using the ozone transmittances modelled with MODTRAN4 for five
standard atmospheric profiles, and the filter response functions of the Uardry MFRSR,

ozone absorption coefficients were computed. They are given in Table B.1.

224



225

1.00 S5 %g S, o
o St
oo
3 ‘
§ —zone
‘E 0.50 +
i - Water Vapour
=
3 —=MFRSR Band
Responses
0.00 J i ‘ #1 l y J f ‘ } J
400 500 600 700 800
Wavelength (nm)

Figure B.1: The Uardry MFRSRS’ spectral response curves, superimposed on MOD-
TRAN4 simulations of mid-latitude summer ozone and water vapour transmittances.

Table B.1: Ozone absorption coefficients agsy, (cm™) derived from MODTRAN4 ozone
data for the 5 standard model profiles. The profiles are: mid-latitude summer (MLS);
mid-latitude winter (MLW); sub-arctic summer (SubS8); sub-arctic winter (SubW); and
tropical (TROP).

| Model Profile 500.6 nm 615.0 nm 672.8 nm |

MLS 3263 x 1072 1.191 x 1071 4.264 x 10~?
MLW 3.241 x 1072 1189 x 107!  4.249 x 102
SubS 3.268 x 1072 1.191 x 10~! 4.266 x 10~?
SubW 3.237 x 1072 1.189 x 10! 4.248 x 1072
TROP 3.256 x 1072 1.189 x 107!  4.261 x 1072




APPENDIX C
Some radiosonde data for
Western Australia, February 6,
2000

Radiosondes are launched from Australian Bureau of Meteorology (ABoM} stations lo-
cated around Western Australia. Four locations used in this thesis were Albany, Esper-
ance, Kalgoorlie-Boulder and Perth (Figure C.1}. Figures C.2(a) and (b) contain the
pressures and temperatures measured respectively by the radiosondes launched from the
4 locations at 0900 hours local time on February 6, 2000. Whilst these data belong to
the ABoM, they were made accessible via a website maintained by the Univeristy of

Wyoming, Department of Atmospheric Science
http://weather.uwyo.edu/upperair/sounding.html.

For comparison purposes, the model mid-latitude summer and tropical pressure and

temperature profiles are also displayed.
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Figure C.1: A map of Western Australia highlighting the location of the Australian
Bureau of Meteorclogy radiosonde launch sites. Also illustrated is the location of the
Mt. Barker scene, WRS 111/84.



228

30 X
—MLS e TROP
25 + u  Albany = Esperance
o Kalgoorlie & Perth
20 +

Altitude (km)

—_
[=]
4
t

0 T T + v T
10 100 1000

Pressure (hPa)
(a)

30 -

A/—MLS core TROP

4
25T ¥ *  Albany + Esperance

I-,‘

20+ o + Kalgoorlie  + Perth

Altitude (km)

190 210 230 250 270 290
Temperature (K)
(b)

Figure C.2: Plots of (a} pressure and (b) temperature profiles recorded by the radioson-
des launched from Albany, Esperance, Kalgoorlie and Perth at 0900 hours on February
6, 2000. Model profiles of pressure and temperature for simulated mid-latitude summer
(MLS) and tropical (TROP) conditions are also presented.



ArPENDIX D
Effect of Variation in Elevation in
the Reference Image for Mt.
Barker

The elevation of terrain in the Mt. Barker scene ranges from z = 0 m (sea level) to
z ~ 900 m. The 65 code was used to compute the image correction coeflicients to
produce the Mt. Barker reference image from the ETM+ image acquired on February 6,
2000. The code was executed with a median value of terrain elevation of z = 200 m. The
error that this assumption introduces to surface reflectance estimation over the range
of elevations in the Mt. Barker scene are considered below. The error described in the
following figures and table is interpreted as the error in surface reflectance estimation if
the elevation is assumed to be z = 200 m when the true elevation is h, where A = 0, 370

or 900 m.

Table D.1: The surface reflectance values, psy, above which the error due to the assump-
tion that z = 200 m, is less than 5% and 1%.

Lower Limit for pgy
Band Error < 5% Error < 1%
1 0.04 0.10
2 0.02 0.07
3 0.01 0.03
4 0.005 0.01
5} 0 0
7 0 0
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Figure D.1: Error (%) in the estimate of ps, for ETM+ bands (a) 1 and (b) 2 if the

elevation z = 200 m is used when the true elevation is either 0, 370 or 900 m.
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Figure D.2: Error (%) in the estimate of pgy for ETM+ bands (a) 3 and (b) 4 if the
elevation z = 200 m is used when the true elevation is either 0, 370 or 900 m.
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elevation z = 200 m is used when the true elevation is either 0, 370 or 900 m.



APPENDIX E
Overpass Like-value Image
Normalisation Plots for Hay and

Mt. Barker

The following figures contain the like-value image normalisation (LVIN) plots for the
overpass images in both the Hay and Mt. Barker sequences. Recall from Section 4.3.4
(p. 147) that Black diamonds represent the data pair (X, psx) for each pixel associated
with a PIT, whilst the modelled path DN for each band is illustrated by a white diamond.
Also, each plot contains two fitted lines: A free-intercept line (solid), which represents
the usual implementation of the like-value procedure described by Furby and Campbell
(2001); and a constrained (dashed) regression line were the line of best fit is forced to pass
through the modelled path DN. Confidence limits about the free-intercept regression
line are displayed in grev. For the Hay overpass images (Figures E.1, E.2 and E.3) a 6S
calibration line was calculated from atmospheric inputs and is displayed in the figures

as a dotted line.
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Figure E.1: Landsat-5 TM image for Hay acquired on July 22, 1999,
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Figure E.5: Landsat-b TM image for Mt. Barker acquired on February 24, 1992,
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Figure E.7: Landsat-5 TM image for Mt. Barker acquired on March 20, 1995.
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APPENDIX F
Comparison of Free-Intercept and
Constrained Regression
Approaches

In both the Hay and Mt. Barker sequences, a surface reflectance was calculated for each
(FREE) _ 4

PIT using the free-intercept and constrained regression correction lines, p. .\

pgg;(r);v 5) respectively. To compare the results of the two approaches, a linear relationship

(FREE) (CONS)

e oA for each overpass image. The

was obtained by regressing p against p

resulting slopes and intercepts are given in Tables F.1-F.3. Note, that perfect agreement
between the two methods would yield a slope of 1 and an intercept of 0.
Furthermore, a relative difference (%) between the free-intercept and constrained
approaches was calculated as
(FREE) _ P{CONS)

Relative Difference(%) = 100 x Peore CON g;’“’)‘ (F.1)

COrrA

for a range of surface reflectance values. The resulting differences, for each overpass

image, are displayed in the following Figures F.1-F.3.

Table F.1: Comparison of the free-intercept and constrained regression results for the
Hay overpass images.

July 22, 1999 October 26, 1999 ; January 7, 2000
Band | Slope Intercept | Slope Intercept | Slope Intercept

1 0.97 0.00 1.07 -0.01 1.03 -0.01
1.04 -0.01 1.24 -0.03 1.03 -0.03
1.04 -0.01 1.04 -0.01 1.04 -0.01
0.91 0.03 1.04 -0.01 0.98 -0.01
0.95 0.02 1.02 0.00 0.95 0.00
1.00 0.01 0.97 0.01 0.95 0.01

= O e W
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Figure F.1: The magnitude of the relative differences (%) between the free-intercept and
constrained regression LVIN lines for all bands in the Hay overpass images.
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Table F.2: Comparison of the free-intercept and constrained regression results for the
Mt. Barker overpass images: 1991-1994.

January 20, 1991 | February 24, 1992 | January 28, 1994
Band | Slope Intercept | Slope Intercept | Slope Intercept

1 0.96 0.00 1.04 -0.01 1.03 0.00
2 1.00 0.00 1.09 -0.02 1.03 -0.01
3 0.99 0.00 1.16 -0.02 1.00 0.00
4 1.00 0.00 1.02 -0.01 0.99 0.00
5 1.01 0.01 1.00 0.00 1.00 -0.01
T 1.02 0.01 0.98 0.01 1.02 0.00
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Table F.3: Comparison of the free-intercept and constrained regression results for the
Mt. Barker overpass images: 1995-2002.

March 20, 1995 January 7, 1998 | February 11, 2002

Band | Slope Intercept | Slope Intercept | Slope Intercept
1 0.97 0.01 0.99 0.00 1.01 0.00
2 0.99 0.00 1.03 -0.01 1.02 0.00
3 1.12 0.00 1.06 0.00 1.01 0.00
4 1.00 0.00 1.00 0.00 0.98 0.01
5 0.97 0.01 1.01 0.00 1.02 -0.01
7 0.97 0.01 1.02 -0.01 0.99 0.01




248

100.0 T3 100.0 1
3\ —Band1 —-Band?2 --- Band3 *
A4 —Band4 -~ ~Band 5 ---Band 7
i
g 1\ \:; -------------------------- % l;
5 100 5 1003
2 - N LCLEEEEL L
3 . & "
= . E=
fa - ) — —
3 T e 8 -
3 107 : et R 1.0 —t
& ] N P £ 1 AR \—-/*-___—___—'—’,———é;
1 N /,-_’__..--—-" 1 ~{ e N
4 N, Lf J N i - —
1 \ o
0.1 11\":“,.:. 01—
0 02 04 06 08 1 0 02 04 06 08 1
Retrieved Reflectance Retricved Reflectance
Mt, Barker March 20, 1995 Mt. Barker January 7, 1998

100.0 3

10.0 1%

Relative Difference (%)

1.0

0 0.2 04 .6 0.8 1
Retrieved Reflectance

Mt. Barker February 11, 2002

Figure F.3: The magnitude of the relative differences (%) between the free-intercept
and constrained regression LVIN lines for all bands in the Mt. Barker overpass images
March 20, 1995 to February 11, 2002.



ApPPENDIX G
Pre- and Post-normalisation
Image Histograms

In the following figures, the histograms corresponding to overpass image data for both
Hay and Mt. Barker sequences, processed in the fashion described in Chapter 4 {pp.
154-156), are presented. The reflectances in the pre-normalisation, or Before, histograms
refer to the at-sensor reflectance (Eq. (3.3), p. 57), uncorrected for atmospheric ef-
fects. The histograms corresponding to pest-normalisation (labelled LVIN) retrieved
reflectances were obtained using the LVIN procedure (constrained approach) described
in Chapter 4. For comparison, historgrams for surface reflectances calculated with the

6S code (labelled 6S) are also displayed.
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Figure G.7: Histograms of image data for Mt. Barker January 28, 1994.
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APPENDIX H
Inter-band Correlation for Some
Vegetation Targets

Kaufman et al. (1997c) established empirically-derived relationships (known here as the
Kaufman relationships) that relate surface reflectances in some VIS bands to those in
the SWIR band (2.2-um band) for vegetated targets. The Kaufman relationships were
investigated because they may be used to obtain image-derived estimates of path DN
in the LVIN procedure (Section 4.5, p. 186). To test the validity of the Kaufman
relationships, inter-band correlations were calculated between TM and ETM+ bands
for a number of vegetated targets. These data and their respective correlation matrices
are presented in the following for (a) ground-based spectroradiometer measurements
(Section H.1) and (b) satellite imagery (Section H.2). Section H.3 demonstrates how
one might incorporate the Kaufman relationships into the LVIN procedure by using the
LVIN plots for the Mt. Barker image sequence (Appendix E, pp. 237-242).

H.1 Spectroradiometer Measurements

A GER Iris spectroradiometer (Iris) acquired ground-based reflectance measurements of
grass on the MeGillivray football oval (E 115°47', S 31°57') in Floreat, Western Australia,
over the period January 1994 to February 1995 (see Section 4.5.1, p. 187). On each date,
spectroradiometer readings were performed at various locations around the oval in an
attempt to obtain an area mean reflectance. These spectra were convolved with the
Landsat-5 TM and Landsat-7 ETM+ response curves and are given in Figures H.1 to
H.11. Correlation matrices illustrating the inter-band correlation of these data are given

in Tables H.1 to H.11.
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Figure H.1: The convolved Iris spectra (35 in total) of the McGillivray Oval grass
acquired on January 19, 1994: Grey diamonds correspond to the mean value of specira
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM+ response curves. Error bars
mark 2x standard deviations about the mean value.

Table H.1: The inter-band correlation of 35 convolved grass spectra for January 1994:
Iris data convolved with Landsat-5 TM response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

[ 1 4 5 7 ]
1] 1.000 0927 0.944 -0.248 0.895 0.889
2 0945 1000 0874 -0.121 0.795 0.807
3l 0.951 0906 1.000 -0.301 0.889 0.923
4 -0.2%6 -0.137 -0.287 1.000 -0.372 -0.455
5| 0.891 0814 0.889 -0.369 1.000 0.969
71 0.889 0.8%0 0.921 -0.447 0.971 1.000
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Figure H.2: The convolved Iris specira (17 in total) of the McGillivray Oval grass
acquired on February 18, 1994: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM- response curves. Error bars
mark 2x standard deviations about the mean value.

Table H.2: The inter-band correlation of 17 convolved grass spectra for February 1994:
Iris data convolved with Landsat-5 TM response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

L1 2 3 4 5 7
1] 1.000 0929 00915 -0.074 0538 0.542
2| 0.942 1000 0842 0.078 0.622 0.599
31 0.922 0.878 1000 -0361 0.584 0.654
4\ -0.068 0.087 -0.345 1.000 0.106 0.000
5| 0.538 0.623 0.587 0.107 1.000 0.962
7| 0.544 0611 0.649 0.011 0.966 1.000




0.7
-+ Landsat-5 TM
0.6 + 1
] —e— Landsat-7 ETM+

0.5 +
. ]
204 —
s il
=
0.3 +
M -

0.2 +

0.1 +

0 T T T T
400 800 1200 1600 2000
Wavelength (nm)

2400

257

Figure H.3: The convolved Iris spectra (14 in total) of the McGillivray Oval grass
acquired on March 30, 1994: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM+4 response curves. Error bars
mark 2x standard deviations about the mean value.

Table H.3: The inter-band correlation of 14 convolved grass spectra for March 1994:
Iris data convolved with Landsat-5 TM response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

1 2 3 4 5] 7
1| 1000 0917 0930 0276 0795 0.917
2 0932 1.000 0.956 0.582 0919 0.779
30093 0.969 1000 0372 0.8%0 0.856
4 | 0.301 0.566 0.392 1.000 0.556 0.041
51 0.818 0.919 0.895 0.558 1.000 0.778
7\ 0.913 0.70 0.850 0.048 0.787 1.000
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Figure H.4: The convolved Iris spectra (20 in total) of the McGillivray Oval grass
acquired on April 27, 1994: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of specira convolved with the Landsat-7 ETM+ response curves. Error bars
mark 2x standard deviations about the mean value.

Table H.4: The inter-band correlation of 20 convolved grass spectra for April 1994:
Iris data convolved with Landsat-5 TM response curves, lower triangle; convolved with
Landsat-7 ETM- response curves, upper triangle.

HEE 2 3 4 5 7 |

1.000 0957 0981 -0.154 0.884 0.785
0.971 1.000 0929 -0.0563 0837 0.710
0.983 0.949 1.000 -0.277 0918 0.817
-0.145 -0.076 -0.265 1.000 -0.192 -0.129
0.882 0.855 0.816 -0.179 1.000 0.884
0.781 0.730 0.81F -0.119 0.898 1.000

~1 O &= W b2 —
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Figure H.5: The convolved Iris spectra {18 in total) of the McGillivray Oval grass
acquired on May 27, 1994: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM+ response curves. Error bars
mark 2x standard deviations about the mean value.

Table H.5: The inter-band correlation of 18 convolved grass spectra for May 1094:
Iris data convolved with Landsat-5 TM response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

I 2 3 4 5 7 |
17 1.000 0845 00973 0.046 0.769 0.809
2 0.884 1.000 0.842 0472 0.896 0.817
3|\ 0.976 0.882 1.000 -0.026 0.779 0.862
4|l 0.076 0431 0.003 1.000 0471 0.151
5|\ 0.789 0.899 0.796 0472 1.000 0.875
7| 0816 0.895 0.866 0.163 0.884 1.000
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Figure H.6: The convolved Iris spectra (20 in total) of the McGillivray Oval grass
acquired on July 28, 1994: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM+ response curves. Error bars
mark 2x standard deviations about the mean value.

Table H.6: The inter-band correlation of 20 convolved grass spectra for July 1994:
Iris data convolved with Landsat-5 TA response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

1 2 3 4 5 7
1) 1.000 0954 099 0328 0945 0.919
2 0977 1.000 0944 0479 0.885 0.863
3 0995 0960 1.000 0269 0936 0926
4 || 0.848 0.462 0.285 1.000 0432 0.193
5 0.944 0.897 0.937 0437 1.000 0921
7T 0.916 0.876 0.925 0.203 0.922 1.000
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Figure H.7: The convolved Iris spectra (20 in total) of the McGillivray Oval grass
acquired on September 6, 1994: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM- response curves. Error bars
mark 2x standard deviations about the mean valhue.

Table H.7: The inter-band correlation of 20 convolved grass spectra for Septemeber 1994:
Iris data convolved with Landsat-5 TM response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

[ ] 1 2 3 4 5 7 ]
1] 1000 0.969 0.995 -0594 0.963 0.945
2| 0.977 1.000 0.968 -0.525 0.899 0.869
3 0996 097 1000 -0.637 0.958 0.948
4 -0.586 -0.595 -0.627 1000 -0.591 -0.670
5| 0.960 0.906 0.956 -0.588 1.000 0.985
70 0.942 0879 0.945 -0.662 0.987 1.000
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Figure H.8: The convolved Iris spectra (20 in total) of the McGillivray Oval grass
acquired on October 11, 1994: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM+ response curves. Error bars
mark 2x standard deviations about the mean value.

Table H.8: The inter-band correlation of 20 convolved grass spectra for October 1994:
Iris data convolved with Landsat-5 T'M response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

[ 1 2 3 4 5 7]
1] 1.000 0.938 0.956 -0.088 0.834 0.800
2| 0.949 1.000 0910 0.185 0.685 0.612
3| 0959 0.93{ 1.000 -0212 0.831 0851
4|\ -0.074 0.149 -0.193 1000 -0.373 -0.598
51 0.826 0.695 0.82{ -0.378 1.000 0.931
7\ 0797 0.641 0.844 -0.592 0.932 1.000
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Figure H.9: The convolved Iris spectra (20 in total) of the McGillivray Oval grass
acquired on December 6, 1994: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM+ response curves. Error bars
mark 2x standard deviations about the mean value.

Table H.9: The inter-band correlation of 20 convolved grass spectra for December 1994:
Iris data convolved with Landsat-5 TM response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

R 2 3 4 5 7|

1.000 0.880 0.937 -0.136 0803 0.699
0.922 1.000 0.754 0.073 0.648 0.505
0.940 0.825 1000 -0374 0888 0.854
-0.118  0.011 -0.354 1.000 -0.489 -0.645
0.791  0.699 0.854 -0.459 1.000 0.946
0.691 0.572 0.848 -0.640 0.850 1.000

~1 W e o=
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Figure H.10: The convolved Iris spectra (20 in total) of the McGillivray Oval grass
acquired on January 6, 1995: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM+ response curves. Error bars
mark 2% standard deviations about the mean value.

Table H.10: The inter-band correlation of 20 convolved grass spectra for January 1995:
Iris data convolved with Landsat-5 TM response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

| [ 1 2 3 4 5 7 ]
1] 1.000 0949 0.951 0367 0891 0.792
2| 0.959 1000 0.905 0410 0.792 0.670
3| 0955 0.928 1.000 0249 0.908 0.829
4| 0.377 0.393 0.26{ 1000 0.087 -0.089
5| 0.886 0.806 0.905 0.090 1.000 0.959
7 0.787 0.69{ 0.825 -0.078 0.963 1.000
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Figure H.11: The convolved Iris spectra (20 in total) of the McGillivray Oval grass
acquired on February 7, 1995: Grey diamonds correspond to the mean value of spectra
convolved with the Landsat-5 TM response curves; black diamonds correspond to the
mean value of spectra convolved with the Landsat-7 ETM+ response curves. Error bars
mark 2x standard deviations about the mean value.

Table H.11: The inter-band correlation of 20 convolved grass spectra for February 1995:
Iris data convolved with Landsei-5 TM response curves, lower triangle; convolved with
Landsat-7 ETM+ response curves, upper triangle.

1 2 3 4 ) 7
1| 1.000 0957 0978 0307 0.859 0914
2| 0.967 1.000 0927 0391 0850 0.897
3| 0980 0.944 1000 0266 0848 0931
4 (| 0.308 0.382 0.274 1.000 0350 0211
5| ¢.860 0.856 0.852 0.348 1.000 0.948
7 0.916 0.906 0.932 (0.215 0.851 1.000
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H.2 Image Data

Reflectance spectra were extracted from 64 vegetated targets in the Mt. Barker scene for
each date of corrected TM and ETM+ imagery (Section 4.5.1, p. 192). The inter-band

correlation matrices for these data are given for each date in Tables H.12 to H.18.

Table H.12: Correlation matrix for vegetation targets January 20, 1991.
| [ 1 2 3 4 5 7 |

1] 1.000 0.962 0.973 -0.203 0939 0949
2 1.000 0959 -0.055 0.896 0.888
3 1.000 -0.152 0930 0916
4 1.000 -0.170 -0.316
5 1.000  0.959
7 1.000

Table H.13: Correlation matrix for vegetation targets February 24, 1992.
I 2 3 4 5 7]

1 1.000 0948 0974 -0.122 00940 0.946
2 1.000 0.945 0.071 0915 0.906
3 1.000 -0.096 0.950 0.948
4 1.000  0.001 -0.195
5 1.000 0.954
7 1.000

Table H.14: Correlation matrix for vegetation targets January 28, 1994,

1+ 2 3 4 5 7 |

1.000 0938 0974 0.030 0.941 0.933
1.000 0949 0228 0.899 0.867
1.000 0.093 0.948 0.926

1.000 0.030 -0.144

1.000 0.972

1.000

-1 s Lo B
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Table H.15: Correlation matrix for vegetation targets March 20, 1995.

[T 1 2 3 4 5 7 |

1.000 (.888 (.952 0.032 0923 0.931
1.000 0.930 0363 0.920 0.849
1.000 0.112 0945 0934

1.000 0.221 -0.010

1.000 0.952

1.000

~TUT R L) B

Table H.16: Correlation matrix for vegetation targets January 7, 1993.

| 1 2 3 4 5 7 ]

1] 1.000 0942 0979 -0.141 0.942 0.947
2 1.000 0951 0.044 0.886 0.900
3 1.000 -0.101 0952 0.941
4 1.000 -0.124 -0.248
5 1.000 0.965
7 1.000

Table H.17: Correlation matrix for vegetation targets February 6, 2000.
I 2 3 4 5 7]

1 1.000 0.881 0.968 -0.263 0.927 0.952
2 1.000 0.902 0148 0.869 0.832
3 1.000 -0.134 0.943 0.933
4 1.000 -0.148 -0.321
5 1.000 0.964
7 1.000

Table H.18: Correlation matrix for vegetation targets February 11, 2002.

HEE 2 3 4 5 7

1.000 0.870 0.959 -0.206 0915 0.932
1.000 0911 0.246 0865 0.803
1.000 -0.071 0913 0.892

1.000 -0.030 -0.248

1.000  0.949

1.000

=~ U s 2 b2
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H.3 LVIN plots and the Kaufman Relationships

As a demonstration of how the Kaufman relationships {Section 4.5.2, p. 195) may be
incorporated into a LVIN procedure, the Mt. Barker sequence of imagery was once again
employed. Specifically, the normalisation (LVIN) plots for the overpass images in the
Mt. Barker sequence given in Appendix E (pp. 237-242) were used.

Figures (H.12-H.17) in the following contain an enlargement of the LVIN plots for
bands 1, 2, 3 and 5 for each date of overpass imagery in the Mt. Barker sequence.
Recall that the black diamonds are the pixel DNs for the PITs in the LVIN plots, and
the black lines are the free-intercept LVIN lines with corresponding 95% confidence limits
delineated in grey.

Twenty vegetated targets where chosen to which the empirical vegetation relation-
ships {Table H.19) have been applied to form new data pairs: namely, those derived by
Kaufman et al. (Kaufman, red squares), and the two sets of relationships derived in this

work {Image-derived, green triangles; and Grass spectra, blue circles.

Table H.19: The empirical vegetation reflectance relationships of Kaufman et al. (Kauf-
man) and the relationships derived in this work using retrieved reflectance for vegeta-
tion in Mt. Barker sequence (Image-derived) and McGillivray Oval grass spectra (Grass
Speetra). Further details of their derivation is given in Section 4.5, pp. 186-195.

[ |  Kaufman Image-derived Grass Spectra |
Band 1 || ps1 =025 ps7r pe1 = 0,006 +0.28 p7 p = 0.0340.25 pg7
Band 2 psp =0.02+4 0.26 ps7  psp = 0.06 + 0.29 por

Band 3 || ps3 = 0.50 pg7 pe3 = 0.01 + 042 pyr ps3 = 0.02 4 0.54 pgy
Band 5 pes =0.06 +1.28 por pe5 = 0.14 +1.09 pyr
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Figure H.12: Enlargements of the LVIN plots for bands 1, 2, 3 and 5 for the Mt. Barker
TM imagery acquired on January 20, 1991. Twenty new data pairs corresponding to
vegetated targets to which three vegetation reflectance relationships (Table H.19) were
applied are illustrated as red squares (Kaufman), green triangles (Image-derived), and
blue circles (Grass).
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Figure H.13: Enlargements of the LVIN plots for bands 1, 2, 3 and 5 for the Mt. Barker
TM imagery acquired on February 24, 1992. Twenty new data pairs corresponding to
vegetated targets to which three vegetation reflectance relationships (Table H.19) were

applied are illustrated as red squares (Kaufman), green triangles (Image-derived), and
blue circles (Grass).
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Figure H.14: Enlargements of the LVIN plots for bands 1, 2, 3 and 5 for the Mt. Barker
TM imagery acquired on January 28, 1994. Twenty new data pairs corresponding to
vegetated targets to which three vegetation reflectance relationships (Table H.19) were
applied are illustrated as red squares (Kaufman), green triangles (Image-derived), and
blue circles (Grass).
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Figure H.15: Enlargements of the LVIN plots for bands 1, 2, 3 and 5 for the Mt. Barker
TM imagery acquired on March 20, 1995. Twenty new data pairs corresponding to
vegetated targets to which three vegetation reflectance relationships (Table H.19) were
applied are illustrated as red squares (Kaufman), green triangles (Image-derived), and
blue circles (Grass).
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Figure H.16: Enlargements of the LVIN plots for bands 1, 2, 3 and 5 for the Mt. Barker
TM imagery acquired on January 7, 1998. Twenty new data pairs corresponding to
vegetated targets to which three vegetation reflectance relationships (Table H.19) were
applied are illustrated as red squares (Kaufman), green triangles (Image-derived), and
blue circles (Grass).
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Figure H.17: Enlargements of the LVIN plots for bands 1, 2, 3 and 5 for the Mt. Barker
ETM+ imagery acquired on February 11, 2002. Twenty new data pairs corresponding to
vegetated targets to which three vegetation reflectance relationships (Table H.19) were
applied are illustrated as red squares (Kaufman), green triangles (Image-derived), and

blue circles (Grass).



