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ABSTRACT 

 

The flexural behaviour of three different hybrid fibre-reinforced polymer 

(FRP) matrix composites, i.e. S2-glass/E-glass/epoxy, TR50S carbon/IM7 

carbon/epoxy, and E-glass/TR50S carbon/epoxy hybrid FRP composites, has been 

investigated. The main objectives of this study were to: (i) improve the flexural 

properties of the parent composite materials, i.e. E-glass/epoxy and TR50S carbon 

fibre/epoxy composites, through substitution of stronger fibres, i.e. S2-glass and 

IM7 carbon fibres, for the fibres of the parent composite materials, and (ii) 

determine the optimum stacking configurations that produced the maximum 

increase in flexural properties of the resulting hybrid composites. In addition to 

these, two secondary objectives related to the preliminary investigation of 

determining the optimum stacking configurations have also been established. The 

two secondary objectives were to: (i) determine the optimum values of the 

processing parameters of the composites under investigation, and (ii) determine 

the compressive strength and compressive modulus of the parent materials. 

The investigation was carried out experimentally, thus data presented and 

analysed were obtained from laboratory work. Optimum values of five processing 

parameters, i.e. (i) the concentration of matrix precursor within the solvent 

solution utilised to wet the fibres, (ii) the compressive pressure applied during hot-

press curing, (iii) the vacuum pressure of the atmosphere inside the curing 

chamber, (iv) the dwell time during hot-press curing, and (v) the holding 

temperature during hot-press curing, have been established. The criteria for 

determining the optimum values of these parameters were optimum fibre content, 

minimum void content, and optimum flexural properties. Compressive strength 

and compressive modulus of the parent composite materials have also been 

determined. 

Specimens were cut from flat composite plates using a diamond-tipped 

circular blade saw. The longitudinal edges of the specimens were carefully 

polished to remove any possible edge damage due to cutting. The composite 

plates were produced from preforms comprised of a number of glass fibre/epoxy 

prepregs, carbon fibre/epoxy prepregs or a combination of these. All the 
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fabrication procedures were carried out using manual techniques. Whilst the 

compressive tests were conducted in accordance with the ASTM D3410-03 

standard, flexural tests were carried out according to Procedure A of the ASTM 

D790-07 standard. Span-to depth ratios, S/d, of 16, 32, and 64 were selected for 

flexural testing in order to determine the minimum value of S/d required to ensure 

flexural failure rather than shear failure.  Fibre and void contents were evaluated 

from optical micrograph images of the slices perpendicular to the fibre direction 

of the samples. 

It was concluded that the optimum values of the five processing parameters 

under investigations were: (i) epoxy concentration, Ce  50 wt%, (ii) compressive 

pressure, pc  1.00 MPa, (iii) vacuum pressure, pv  0.035 MPa, (iv) dwell time, t 

 30 minutes, and (v) holding temperature, T  120 C. Compressive tests revealed 

that the order of compressive strength for the parent composite materials were 

arranged as follows: S2-glass fibre/epoxy (476 MPa), E-glass fibre/epoxy (430 

MPa), IM7 carbon fibre/epoxy (426 MPa), and TR50S carbon fibre/epoxy (384 

MPa). The compressive modulus of these parent composite materials were found 

to be ordered as follows: IM7 carbon fibre/epoxy (67.9 GPa), TR50S carbon 

fibre/epoxy (61.8 GPa), S2-glass fibre/epoxy (45.1 GPa), and E-glass fibre/epoxy 

(32.9 GPa). After considering these compressive properties, three different hybrid 

combinations, as mentioned earlier, were manufactured and evaluated with the 

prepreg layers of the fibre composites possessing higher compressive strength 

being placed at the compressively loaded side of the flexural specimens. 

Shorter beam specimens (S/d = 16) of the three hybrid systems exhibited 

increased flexural strength as the amount of stronger fibre content was increased, 

but no hybrid effect was noted. The increase appeared to follow the rule of 

mixtures and this was attributed to their failure mode being shear failure. For 

beams tested at S/d = 32 and S/d = 64, the three hybrid systems demonstrated 

three different trends. The S2-glass fibre/E-glass fibre/epoxy hybrid system, 

where the S2-glass fibre (substituted at the compressive loading face) was slightly 

stronger and stiffer compared to the E-glass fibre at the tensile side, demonstrated 

increases in flexural strength together with the presence of a hybrid effect 

following partial substitution of the S2-glass fibre for E-glass fibres at the 
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compressive side. The IM7 carbon fibre/TR50S carbon fibre/epoxy hybrid system, 

where the IM7 carbon fibre (substituted at the compressive side) was slightly 

stronger but significantly stiffer in compression compared to the TR50S fibre at 

the tensile side, exhibited a slight increase in flexural strength that appeared to 

obey the rule of mixtures. This result was attributed to the strength increase in the 

compressive side introduced by the substituted fibres not being sufficient to 

suppress the increase of internal compressive stress due to the increase in 

compressive modulus of the substituted fibres. The E-glass fibre/TR50S carbon 

fibre/epoxy hybrid system, where the E-glass fibre (substituted at the compressive 

side) was found to be slightly stronger but significantly less stiff in compression 

compared to the TR50S fibre at the tensile side, demonstrated a significant 

increase in flexural modulus and also exhibited a significant hybrid effect. The 

decrease in internal compressive stresses generated at the compressive side due to 

the decreased compressive modulus of the substituted fibre, when combined with 

the increase in compressive strength of the substituted fibre, was thought to led to 

the significant increase of flexural strength for this hybrid system. 

General trends observed in flexural modulus for the three hybrid systems 

were reasonably similar with any change in flexural modulus appearing to obey 

the rule of mixtures. Whilst an increase in flexural modulus was noted for higher 

contents of stronger fibre in the case of the S2-glass fibre/E-glass fibre/epoxy 

hybrid system and IM7 carbon fibre/TR50S carbon fibre/epoxy hybrid system, a 

decrease in flexural modulus with increased quantities of stronger fibre was 

exhibited by the E-glass fibre/TR50S carbon fibre/epoxy hybrid system. The 

increase or decrease in flexural modulus was attributed to the relative stiffness in 

compression of the substituted fibre when compared to that of the respective 

parent composite materials. 

Unlike the S2-glass fibre/E-glass fibre/epoxy hybrid system and IM7 carbon 

fibre/TR50S carbon fibre/epoxy hybrid system that did not exhibit any significant 

trend with regards the effect of the substitution of stronger fibre at the 

compressive side, the E-glass fibre/TR50S carbon fibre hybrid system 

demonstrated a significant increase in the energy stored to maximum stress with 

increasing content of the stronger fibre. This increase was mainly attributed to the 
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increased strain–to-maximum stress of the hybrid system with respect to that of 

the parent composite material. 

In addition, for the three hybrid systems under investigation, the most 

significant change in flexural properties was noticed following substitution of the 

first layer at the compressive face. The relative position with respect to the neutral 

plane of the substituted layer was thought to be the reason for this phenomenon. It 

was also noted that flexural properties increased with the increase in S/d. A 

change in failure morphology was noted with the change of S/d from 16 to 32. It 

was thus determined that a S/d ratio of at least 32 was required in order to promote 

flexural failure (as opposed to shear failure). For the S2-glass fibre/E-glass 

fibre/epoxy hybrid system, this change appeared more obvious in comparison with 

that the other two hybrid systems with this change being accompanied by a 

significant increase in flexural strength. 

The main general conclusions that could be drawn from this investigation 

were that, although the flexural modulus appeared to obey the rule of mixture, an 

increase in flexural strength together with the presence of a hybrid effect, would 

most probably be observed when the fibre substituted at the compressive side 

possessed a significantly lower modulus combined with significantly higher 

compressive strength as demonstrated by the hybrid TR50S carbon - E-glass FRP 

composites. The most significant change in properties was exhibited by the first 

layer substitution whilst increasing the value of S/d resulted in an increase of 

flexural strength, with S/d = 32 being determined to be sufficient in order to 

promote flexural failure as opposed to shear failure. 



 x

LIST OF CONTENTS 

 
Chapters Page 
 

TITLE PAGE   …………………….………………………...…………. i 

DECLARATION   ………………….…………………..……………… ii 

PUBLICATIONS ……………………………………………………… iii 

ACKNOWLEDEMENT   ……………………………………………… iv 

ABSTRACT   ……………………………………….………………….. vi 

LIST OF CONTENTS ……………………………………………….. x 

LIST OF FIGURES ………………………………………………….. xvi 

LIST OF TABLES …………………………………………………… xxiii 

 

CHAPTER 1 
INTRODUCTION 

1.1. GENERAL INTRODUCTION ……….……………………………….. 1 

1.2. RESEARCH BACKGROUND ………………………………………… 1 

1.3. RESEARCH POBLEMS ………………………………………………. 5 

1.4. RESEARCH OBJECTIVES …………………………………………… 5 

1.5. RESEARCHSIGNIFICANCE …………………………………………… 6 

1.6. STRUCTURE OF THE THESIS ……………………………………..... 6 

REFERENCES ………………………………………………………… 8 

 

CHAPTER 2 
LITERATURE REVIEW AND THEORETICAL BACKGROUND 

2.1. INTRODUCTION ……………………………………………………… 13 

2.1.1. Definition …………………………………..…………………… 19 

2.1.2. Classification of Composite Materials …..……………………… 24 

2.1.2.1. Relative Dimensions of Reinforcements …………………..  24 

2.1.2.2. Geometry of Reinforcement ……………………………… 25 

2.1.2.3. Fibre Architecture  …………………………………………  28 

2.1.2.4. Matrix Types  ………………………………………………  29 

2.2. CONSTITUENT MATERIALS ……………..………………………... 31 

2.2.1. Fibres  ……………….………………..…………………………. 31 



 xi

2.2.1.1. Glass Fibres …………………..…………………………... 33 

2.2.1.2. Carbon Fibres and Graphite Fibres ………………...……… 37 

2.2.2. Epoxy Matrix …………………………………………………… 41 

2.3. FIBRE-MATRIX INTERFACE …..…………………………………... 45 

2.4. FABRICATION TECHNIQUES OF FIBRE-REINFORCED (FRP) 
COMPOSITES …………………………………………………………. 46 

2.4.1. Hand Lay-up …………………………………………………….. 47 

2.4.1. Wet Lay-up …………………………..……………………... 48 

2.4.2. Dry Lay-up or Prepreg Lay-up …………....………………... 49 

2.4.2. Other Fabrication Techniques …………………………………… 53 

2.5. FIBRE-REINFORCED POLYMER (FRP) COMPOSITES ………….. 56 

2.5.1. Glass Fibre-Reinforced Polymer (GFRP) Composites ………….. 56 

2.5.1.1. Tensile properties ………………………………………… 57 

2.5.1.2. Compressive properties ………………………………….. 60 

2.5.1.3. Flexural properties ……………………………………….. 63 

2.5.1.4. GFRP summary ………………………………………….. 65 

2.5.2. Carbon Fibre-Reinforced Polymer (CFRP) Composites ………… 66 

2.5.2.1. Tensile properties ………………………………………… 66 

2.5.2.2. Compressive properties ………………………………….. 70 

2.5.2.3. Flexural properties ……………………………………….. 74 

2.5.2.4. CFRP summary ………………………………………….. 92 

2.5.3 Hybrid Fibre-Reinforced Polymer (HFRP) Composites ………… 93 

2.5.31. Hybrid effect ……………………………………………... 94 

2.5.3.2. Tensile properties ………………………………………… 95 

2.5.3.3. Compressive properties ………………………………….. 98 

2.5.3.4. Flexural properties ……………………………………….. 100 

2.5.3.5. Hybrid FRP summary …………………………………….. 108 

REFERENCES ………………………………………………………… 109 

 

CHAPTER 3 
MECHANICS OF COMPOSITE MATERIALS   

3.1. CLASSICAL BEAM THEORY  ……………………………………… 127 

3.1.1. Normal Stress and Normal Strain Distribution …………………. 127 



 xii

3.1.2. Shear Stress Distribution ………………………………………… 130 

3.1.3. ‘Composite’ Cross Section of Beams …………………………… 131 

3.1.4. Beam Deflection ……………………..………………………….. 134 

3.2. THE RULE OF MIXTURES ……..…………………………………… 138 

3.2.1. Volume Fraction and Composite Density ………..……………... 138 

3.2.2. Longitudinal Strengths …………………..……………………… 139 

3.2.3. Modulus of Elasticity ……………………………………………. 140 

3.3. LAMINATED BEAM THEORY ……………………………………… 141 

3.4. THE WORK OF FRACTURE ………………………………………… 146 

3.4. FAILURE THEORIES .………….……………………………………. 146 

REFERENCES ………………………………………..…………………… 148 

 

CHAPTER 4 
EXPERIMENTAL PROCEDURE 

4.1. EQUIPMENT DESIGN AND MANUFACTURING …………………. 149 

4.1.1. Composite Plate Fabrication Equipment ………………………. 149 

4.1.1.1. Rectangular stainless steel frames ….…………………… 149 

4.1.1.2. Frame holder …………………………….………………. 150 

4.1.1.3. Oven .…………………………………………………….. 150 

4.1.1.4. Hot-press ..……………………………………………….. 152 

4.1.2. Mechanical Test Equipment ….………………………………… 152 

4.1.2.1. Tabbing press …………………………………………….. 152 

4.1.2.2. Alignment jig …………………………………………….. 153 

4.1.2.3. Compression test fixture ………………………………… 154 

4.1.2.4. Flexural test fixture and loading nose ……………………. 154  

4.2. COMPOSITE PLATE FABRICATION ………………………………. 155 

4.2.1. Materials ………………………………………………………… 155 

4.2.1.1. Fibres …………………………………………………… 155 

4.2.1.2. Matrix …………………………………………………… 157 

4.2.2. Stacking Configuration ………………………………………….. 157 

4.2.3. Plate Fabrication Development ………………………………… 158 

4.2.3.1. Fabrication parameters ………………………………….. 158 

4.2.3.2. Fabrication parameter optimisation …..………………… 159 



 xiii

4.2.3.3. Composite plate fabrication procedure .………………… 160 

4.3. FIBRE VOLUME FRACTION AND VOID CONTENT 
DETERMINATION …………………………………….……..………. 162 

4.4. MECHANICAL TESTING …………………………...……………… 164 

4.4.1. Compressive Test .………………...……………………………. 164 

4.4.1.1. Specimen preparation ……………………………………. 164 

4.4.1.2. Testing ……………………………………………………. 166 

4.4.2. Flexural Test .…………………………………………………… 166 

4.4.2.1. Specimen preparation …………………..……………….. 166 

4.4.2.2. Testing ……..…………………………….……………….. 167 

4.5. OPTICAL MICROGRAPHY …………………………………………... 169 

4.5.1. Specimen Preparation ……………………….………………….. 169 

4.5.2. Image Capturing ……………………………..………………….. 169 

4.5.3. Image Analysis ………………………………………………….. 169 

REFERENCES ………………………………………………………… 171 

 

CHAPTER 5 
FABRICATION PARAMETER OPTIMISATION 

5.1. FABRICATION PARAMETERS ………….………………………….. 175 

5.2. EXPERIMENTAL PROCEDURE ……………………………………. 178 

5.2.1. Materials ……………………………………….………………… 178 

5.2.2. Optimisation Procedure ………………..……………………..… 178 

5.2.3. Testing and Evaluation ….……………………………………… 179 

5.3. RESULT AND DISCUSSION …………………………………………. 180 

5.3.1. Epoxy Concentration Determination ……………………………. 181 

5.3.2. Hot-press Curing Compressive Pressure …………..…………… 183 

5.3.3. Hot-press Curing Holding Time ………………………………… 187 

5.3.4. Hot-press Curing Vacuum Pressure …………………………….. 189 

5.3.5. Hot-press Curing Holding Temperature ………………….…….. 191 

5.4. CONCLUSIONS  ………....……………………….…………………… 193 

REFERENCES ………………………………………………………… 194 

 

 



 xiv

CHAPTER 6 
RESULTS AND DISCUSSION 

6.1. PRELIMINARY TEST: COMPRESSIVE TEST ..…………..………… 199  

6.1.1. Specimens ……………………………………………………….. 199 

6.1.2. Stress-Strain Relation …………………………………………… 200 

6.1.3. Compressive Properties …………….………………………….. 202 

6.2. HYBRID FRP COMPOSITES CONTAINING DIFFERENT TYPES 
OF GLASS FIBRE ……………………………..………………………. 204 

6.2.1. Physical properties ……………………………………………… 205 

6.2.1.1. Stacking configurations …………………………………… 205 

6.2.1.2. Density, fibre content and void content  ………………….. 206 

6.2.2. Mechanical Properties ……………….………………………….. 208 

6.2.2.1. Stress-strain response …………………………………….. 208 

6.2.2.2. Failure mechanism …………..…………………………… 215 

6.2.2.3. Flexural strength …………….…………………………… 217 

6.2.2.4. Flexural modulus …………….…………………………... 220 

6.2.2.5. Energy storage capacity to maximum stress, max ……….. 222 

6.2.3. Summary ………………………………………………………… 225 

6.3. HYBRID FRP COMPOSITES CONTAINING DIFFERENT GRADES 
OF CARBON FIBRE ……………………………………..……………. 226 

6.3.1. Physical properties ……………………………………………… 227 

6.3.1.1. Stacking configurations …………………………………… 227 

6.3.1.2. Density, fibre content and void content  ………………….. 228 

6.3.2. Mechanical Properties ……………….………………………….. 230 

6.3.2.1. Stress-strain response …………………………………….. 230 

6.3.2.2. Failure mechanism …………..…………………………… 237 

6.3.2.3. Flexural strength …………….…………………………… 239 

6.3.2.4. Flexural modulus …………….…………………………... 242 

6.3.2.5. Energy storage capacity to maximum stress, max ……….. 243 

6.3.3. Summary ………………………………………………………… 245 

6.4. HYBRID FRP COMPOSITES CONTAINING MIXED GLASS AND 
MEDIUM STRENGTH CARBON FIBRES …………………………….  246 

6.4.1. Physical properties ………………………..……………………... 247 

6.4.1.1. Stacking configurations …………………………………… 247 



 xv

6.4.1.2. Density and fibre content  …………………………………. 248 

6.4.2. Mechanical Properties ……………….………………………….. 249 

6.4.2.1. Stress-strain response …………………………………….. 249 

6.4.2.2. Failure mechanism …………..…………………………… 256 

6.4.2.3. Flexural strength …………….…………………………… 260 

6.4.2.4. Flexural modulus …………….…………………………... 263 

6.4.2.5. Energy storage capacity to maximum stress, max ……….. 264 

6.4.3. Summary ………………………………………………………… 265 

REFERENCES ………………………………………………………… 266 

 

CHAPTER 7 
CONCLUSSIONS AND RECOMMENDATIONS 

7.1. CONCLUSIONS ……………………………………………………….. 272 

7.1.1. Fabrication Parameters Optimisation ……………………………. 272 

7.1.2. Compressive Properties of Parent Composite Materials ………… 273 

7.1.3. Hybrid FRP Composites Containing Different Types of Glass 

Fibre ……………………………………………………………… 273 

7.1.4. Hybrid FRP Composites Containing Different Grades of Carbon 

Fibre ……………………………………………………………… 274 

7.1.5. Hybrid FRP Composites Containing Glass and Carbon Fibres …. 275 

7.2. RECOMMENDATIONS FOR FUTURE WORK …………………….. 276 

REFERENCES ……………………………………………………………… 277 

 

APPENDICES ……………………………………………………………… 279 
 



 xvi

LIST OF FIGURES 

 

FIGURES Page 

 2.1. Classification of materials for engineering structures (Summarised 
from a number references) …........................................................... 14 

 2.2. Strengths and moduli of typical structural materials showing that, in 
general, those of the metallic materials are superior. (a) Yield 
strength, (b) Young’s modulus …………………………………….. 15 

 2.3. Specific strength and specific modulus of typical structural 
materials showing that, in terms of specific strength and specific 
modulus, a typical carbon fibre-reinforced epoxy (CFRP) composite 
(appears close to top-right corner) is the optimum material. Alumina 
(Al2O3, appears close to top-left corner) ceramic, whilst it possesses 
high specific modulus, has a very low specific strength, whilst 
materials that appear close to the bottom-left corner (phenolic, 
polypropylene, epoxy, and nylon), which are, except for magnesia, 
all polymers, possess both low specific strength and modulus ……. 16 

 2.4. The utilisation of composite materials in aircraft structures from the 
1930s – current. (a) Weight proportion of materials used in aircraft 
manufactured from 1930 – 1980, (b) Proportion of materials in 
modern aircraft, the Boeing 787 – Dreamliner ...………………….. 17 

 2.5. Engineering material evolution through the ages showing, in the 
second layer from the bottom of the figure, the relative importance 
of composite materials ………...…………………………………... 18 

 2.6. Carbon fibre-reinforced epoxy composite showing distinct phases 
between fibres (bright region) and matrix (dark region). (a) 
Transverse to fibre direction, (b) Parallel with fibre direction ……. 20 

 2.7. Impact properties of various engineering materials. Unidirectional 
fibre-reinforced polymer composite materials with approximately 
60% fibre volume fraction  ……………....………………………… 20 

 2.8. Specific strengths and specific moduli of typical structural materials 
showing that, in general, those of composite materials are superior 
in comparison with those of conventional metals  ..…………..…… 23 

 2.9. Three main types of composite system based on the reinforcing 
material geometry:   (a) SEM micrographs of a typical nickel-based 
particle-reinforced lead-based matrix particulate composite with 0.3 
mol fraction of Ni0.93Co0.02Mn0.5Fe1.95O4−δ  and  0.7 mol fraction of  
PbZr0.52Ti0.48O3, (b) Mica flake-reinforced poly-dimethylsiloxane, 
and (c) Unidirectional continuous carbon-silicon carbide fibres 
hybrid-reinforced polymer matrix composite containing four layers 
of carbon fibre prepreg in the lower part and four layers of silicon 
carbide fibres in the upper part illustrating shear failure along its 
neutral plane after being loaded in bending ……………………….. 26 



 xvii

 2.10. Spool of E-glass fibre E2350-11 supplied by Owens Corning Asia-
Pacific. Net weight of the spool is 17 kgs …………………………. 34 

 2.11. Direct-melt glass fibre manufacturing process …………………….. 36 

 2.12. A roll of S2-glass fibre mat Unitex UT-S500 supplied by SP 
System, Newport, Isle of Wight, UK ………..…………………….. 37 

 2.13. Two rolls of 12k tow size PAN-based carbon fibre from two 
different manufacturers …………………………………….……… 40 

 2.14. Illustration of amine curing reaction of epoxide and amine hardener 
showing that each of hydrogen atom of the amine curing agent 
reacts with each of the epoxide groups to form a strong covalent 
bond ………………………………………………………………. 43 

 2.15. Classification of polymer matrix composite fabrication techniques .. 47 

 2.16. Schematic illustration of simple wet lay-up moulding …..……..…. 49 

 2.17. A small-sized autoclave showing its important elements. 
Thermostat that is installed to control its temperature is not shown. 
Element geometry is shown in the inset. (Basic design by Nick 
Jensen, improvement and instrumentation by Sudarisman) ……… 51 

 2.18. Compressive strength comparison between E-glass fibre/vinylester 
and IM7-12k carbon fibre/vinylester composites showing, within 
the range of given fibre volume fraction, that of the GFRP 
composite is higher than that of the CFRP composites ……………. 81 

 

 3.1. A beam subjected to a three-point bending:  (a) A simply supported 
beam of span S deformed with curvature radius of r due to a shear 
force F acting in the mid-span, (b) Magnification of an arbitrary 
segment of the beam showing the deformation of a layer located at a 
distance of y from the neutral axis, (c) Arbitrary cross section of the 
beam showing an elementary cross section dA experiencing a 
normal stress of magnitude x, (d) Schematic representation of 
normal stress distribution along the y axis ………….....………….. 130 

 3.2. Enlarged view of beam segments as seen in Figure 3.1(a): (a) 
Normal and shear stresses generated over the segment due to lateral 
force F, (b) Shear stress distribution over the depth of the beam
 …………………………………………………………………… 132  

 3.3. A typical composite cross section comprising of two different 
materials of rectangular shapes. (a) Cross section, (b) Normal strain 
distribution along the y-axis, (c) Normal stress distribution along the 
y-axis showing discontinuity at the interface of the two materials ... 134 

 3.4. Deflection of a beam: (a) A simply supported beam subjected to a 
lateral force F acting at the mid-span of the beam, (b) Magnified 
view of segment DE of the beam showing the slope and deflection y 
and , respectively, at D, and  + d and y + dy, respectively at E … 137 



 xviii

 3.5. Deflection of a simply supported beam after the origin has been 
moved to point A …………………………………………………. 139 

 3.6. A representative sectional view a three-layer laminated composite 
beam showing the layer numbers (i.e. k = 1, k = 2, and k = 3), the 
number of layer (i.e. n = 3), and for k = 1: hk = h1 and hk-1 = h0, for k 
= 2: hk = h2 and hk-1 = h1, and for k = 3: hk = h3 and hk-1 = h2. ……... 143 

 

 4.1. Rectangular stainless steel frames. (a) Top view, (b) Photograph … 152 

 4.2. Frame holder. (a) Front view of the holder, (b) Photograph showing: 
1. Glass fibre roll, 2. Stainless steel frame, and 3. Holder …………. 153 

 4.3. Oven for producing fibre/epoxy prepregs. (a) Shop drawing 
showing its details and dimensions, (b) Photograph showing: 1. 
Digital thermometer and timer, 2. Rotating handle, and 3. Door …. 154 

 4.4. Tabbing press. (a) Front view showing: 1. Bottom plate, 2. Top 
plate, 3. Hooks, 4. Guiding Pins, 5. Bolt, and 6. Arm, (b) 
Photograph ………………………………………………………… 155 

 4.5. Alignment jig. (a) Top view showing: 1. Holding plates, 2. Parallel 
holders, 3. Bases, (b) Front view showing: 4. Gauge length spacers, 
and (c) Photograph showing fixture grips separated 2.54 mm apart .. 156 

 4.6. Compressive test fixture. (a) Front view showing: 1. Clamping 
screws, 2 and 3. Grips, 4. Load pins, and (b) Photograph ………… 157 

 4.7. Flexural test fixture. (a) Front view, and (b) Photograph showing 
the support along with the three-point bend loading nose ………… 157 

 4.8. Schematic illustration of the composite plate manufacturing 
procedure ………………………………………………………….. 164 

 4.9. Schematic illustration of hybrid FRP composites containing two 
types of fibres in a common matrix ………………..……………… 166 

 4.10. Compressive test specimen showing nominal dimensions. (a) Top 
view, (b) Front view, note that t is specimen thickness which 
depends on the thickness of the composite plate panel …………… 169 

 

 5.1. Photo micrograph of the calibration bar captured under 5 optical 
magnification showing two scale bars of the same length, one in 
micron and the other in pixels (px) …………………..…………… 183 

 5.2. Optical micrographs of two specimens manufactured from different 
epoxy resin contents: (a) 45 wt% of epoxy content showing less 
matrix-rich areas as narrower dark bands (white arrows), and (b) 65 
wt% of epoxy concentration showing matrix-rich areas as wider 
diagonal dark bands (dark arrows) and voids (white arrows) 
between layers ……….…………………………………………….. 185 



 xix

 5.3. Influence of epoxy resin content (within an acetone solution) on 
flexural properties and estimated fibre volume and void volume 
contents …………………………………………………………….. 186 

 5.4.  Optical micrographs of composite specimens: (a) manufactured at 
0.25 MPa compressive pressure illustrating matrix-rich regions and 
voids (dark spots in matrix area), and (b) manufactured at 1.00 MPa 
compressive pressure indicating the presence of denser fibre 
packing and less voids ……………………………………………... 187 

 5.5. The effect of hot-press compressive pressure on fibre alignment 
showing negligible difference in the degree of fibre misalignment: 
(a) pc = 0.25 MPa, and (b) pc = 1.25 MPa …………………………. 188 

 5.6. Influence of compressive pressure during the vacuum hot-press 
curing procedure on flexural properties and estimated fibre volume 
fraction …………………………………………………………….. 189 

 5.7. Optical micrographs illustrating: (a) imperfect fibre wetting (dark 
arrows) and the presence of voids (white arrows) between 
individual prepreg layers for a 20 minute holding time specimen, 
and (b) fibre misalignment within a 40 minute holding time 
specimen (dark arrows) ………...………………………………….. 190 

 5.8. Influence of holding time during the vacuum hot-press curing 
procedure on flexural properties and estimated fibre volume fraction  191 

 5.9. Samples of in-plane micrographs: (a) at pv = 0.085 MPa  showing 
~1.5% up to 5o fibre misalignment, (b) at pv = 0.035 MPa showing 
the lack of fibre misalignment  …………..…………..…………….. 192 

 5.10. The influence of vacuum pressure on flexural strength, flexural 
modulus, and predicted fibre volume fraction at pc = 1.00 MPa, T = 
120 oC, and t = 30 minutes ………………………………………… 193 

 5.11. The influence of holding temperature on flexural strength, flexural 
modulus, and predicted fibre volume and void volume content at pc 
= 1.00 MPa, T = 120 oC, t = 30 minutes and pv = 0.035 MPa …….. 195 

 

 6.1. Representative stress-strain relationship curves of compressive FRP 
composite specimens showing a considerably linear stress-stress 
relation up to close to failure ………………………………………. 201 

 6.2. Compressive properties of single fibre-type composite specimens 
under investigation …………..……………………………………. 203 

 6.3. Visual illustration of the stacking configurations of the hybrid 
composites under investigation ……………………………………. 206 

 6.4. Optical micrograph of hybrid GFRP composites containing one 
layer of E-glass epoxy prepreg and four layers of S2-glass/epoxy 
prepregs showing unevenly distributed fibres, matrix rich areas and 
voids …………………………..…………………………………… 207 



 xx

 6.5. Representative load-displacement and stress-stress relationships for 
S3E2 samples tested at S/d = 16). (a) Load-displacement relationship 
before toe correction, (b) After toe correction, (c) Stress-strain 
relationship ……………………….………………………………... 211 

 6.6. The effect of hybrid ratio on stress-strain relationship for each of the 
hybrid GFRP composite plates: (a) S/d = 16, (b) S/d = 32, (c) S/d = 
64 ………………………………………………………………….. 212 

 6.7. The effect of span-to-depth ratio on stress-strain relationship for 
representative composite plates: (a) S0E5 (E-glass/epoxy) composite 
plate, (b) S3E2 (hybrid S2-E-glass/epoxy) composite plate, (c) S5E0 

(S2-glass/epoxy) composite plate ………………………..………... 214 

 6.8. A typical compressive side fracture region for specimens tested at 
S/d = 16 showing splitting (dark arrows) and fibre buckling ………. 215 

 6.9. A typical fracture region for specimens tested at S/d = 32 
illustrating fibre buckling (top) and less splitting ……….………… 216 

 6.10. A typical fracture surface for specimens tested at S/d = 64 showing 
fibre buckling and kinking domination (top) and less splitting (white 
arrows) ………………………………………………….…………. 217 

 6.11. The influence of hybrid ratio (S2-glass fibre volume/total fibre 
volume) on the flexural strength of hybrid GFRP composites 
showing an increase of flexural strength with the increase in S2-
glass fibre volume ……………………………………….………… 218 

 6.12. The influence of hybrid ratio (S2-glass fibre volume/total fibre 
volume) on the flexural modulus of hybrid GFRP composites 
showing an increase of flexural strength with the increase in S2-
glass fibre volume ……………………………………….………… 221 

 6.13. The influence of hybrid ratio on the energy absorption capacity to 
maximum stress, max, of hybrid GFRP composites ……………….. 222 

 6.14. Visual illustration of the stacking configurations of the hybrid 
CFRP composites under investigation …………………………….. 228 

 6.15. Optical micrograph of hybrid CFRP composites containing TR50S 
and IM7 carbon fibres showing unevenly distributed fibres, matrix 
rich areas and voids. (a) Matrix rich area present at the interface of 
TR50S/epoxy-IM7/epoxy prepreg layers, (b) Uneven fibre 
distribution, with smaller variation was also observed within a 
IM7/epoxy prepreg layer …………………………………..……… 230 

 6.16. Shift of loading point after first failure for specimens tested at S/d = 
16 resulting in the length of the moment arm being reduced or the 
load recorded by the load cell to produce the same magnitude of 
moment force being increased …………………………………….. 232 

 6.17. Representative load-displacement and stress-stress relationships for 
IM1TR5 samples tested at S/d = 16. (a) Load-displacement 



 xxi

relationship before toe correction, (b) After toe correction, (c) 
Stress-strain relationship …………………………………………... 234 

 6.18. The effect of hybrid ratio on stress-strain relationships for each of 
the hybrid CFRP composite plates: (a) S/d = 16, (b) S/d = 32, (c) 
S/d = 64 ……………………………………………………………. 235 

 6.19. The effect of hybrid ratio on stress-strain relationships for each of 
the hybrid CFRP composite plates: (a) TR6

 samples, (b) IM1TR5 

samples, (c) IM6 samples ……………………………………..…… 236 

 6.20. A typical shear failure region for hybrid CFRP specimens tested at 
S/d = 16. (a) Low magnification image showing interlaminar 
delamination (white arrows), and (b) Larger magnification image 
showing interlaminar delamination and fibre buckling and kinking 
at the top side ………………………………………………………. 237 

 6.21. A typical fracture region for hybrid CFRP specimens tested at S/d = 
32 showing fibre buckling and kinking ……………………………. 238 

 6.22. A typical fracture region for hybrid CFRP specimens tested at S/d = 
64 showing out-of-plane fibre buckling and kinking domination at 
the compressive side ……………………………………………….. 239 

 6.23. The influence of hybrid ratio (IM7 carbon fibre volume/total fibre 
volume) on flexural strength for hybrid CFRP composites 
illustrating an insignificant increase in flexural strength with the 
increase in IM7 carbon fibre volume ……………………………... 239 

 6.24. The influence of hybrid ratio on flexural modulus for hybrid CFRP 
composites showing an increase in flexural modulus with the 
increase in IM7 carbon fibre volume content ……………………… 242 

 6.25. The influence of hybrid ratio on the energy absorption capacity to 
maximum stress, max, of hybrid CFRP composites ……………….. 243 

 6.26. Schematic illustration of the stacking configurations of the hybrid 
CFRP composites under investigation …………………………….. 247 

 6.27. Representative load-displacement and stress-strain relationships for 
hybrid composite samples (C1G3). (a) Before toe correction, (b) 
After toe correction, and (c) Stress-strain relationship ……………. 251 

 6.28. Representative illustration of the effect of hybrid ratio on stress-
strain relationships. (a) S/d = 16, (b) S/d = 32, (c) S/d = 64 ……….. 254 

 6.29. Representative illustration of the effect of S/d on stress-strain 
relationships. (a) C0G5 samples, (b) C3G2 samples, (c) C6G0 samples  255 

 6.30. Fracture region of a C2G2 specimen tested at S/d = 16 showing: (a) 
fibre kinking, (b) fibre breakage, (c) delamination in a matrix rich .. 257 

 6.31. Fracture region of a C2G2 specimen with S/d = 32. (a) Compressive 
face showing out-of-plane buckling and kinking (white arrow) and 
splitting (dark arrow), and (b) tensile surface showing fibre 
breakage (dark arrow) and delamination (white arrow) …………… 258 



 xxii

 6.32. Compressive side of the fracture region for a C2G2 specimen with 
S/d = 64: (a) splitting, (b) in-plane buckling producing kink band, 
(c) out-of-plane buckling at the carbon fibre side, (d) matrix-rich 
areas between two prepreg layers ………………………………… 259 

 6.33. The effect of hybrid ratio on flexural strength showing an increase 
of flexural strength with the increase of hybrid ratio ……………… 260 

 6.34. The effect of hybrid ratio on flexural modulus illustrating a decrease 
in flexural strength with the increase of hybrid ratio ……………… 263 

 6.35. The effect of hybrid ratio on specific energy storage capacity-to-
maximum stress showing an increase of max as the hybrid ratio 
increased …………………………………………………………… 264 

 

 

 



 xxiii

LIST OF TABLES 

 

Tables Page 

 2.1. Properties of typical structural materials…………………………….. 22 

 2.2. Global market for advanced composite fibres in 2006 …………….. 32 

 2.3. Cost and properties of E-glass and standard modulus carbon fibre … 33 

 2.4. Typical chemical composition of E- and S-glass fibres (wt%) ……. 35 

 2.5. Typical properties of E- and S-glass fibres ……………………….. 37 

 2.6. Typical properties of carbon fibres from different precursors ……… 41 

 2.7. Typical properties of cured epoxy resin …………………………… 45 

 2.8. Average compressive mechanical properties of E-glass/polyester C-
channel composites at elevated temperatures ……………………… 62 

 2.9. Compressive strength calculation for Khalid et al., 2005 …………. 63 

 2.10. Flexural strength calculation from Khalid et al., 2005 …………….. 68 

 2.11. Typical properties of GFRP composites …………………………… 70 

 2.12. Typical properties of CFRP composites …………………………… 88 

 2.13. Typical properties of hybrid FRP composites ……………………… 103 

 

 4.1. Properties of the constituent materials ……………………………. 160 

 4.2. Stacking configurations …………………………………………….. 161 

  

 5.1. Selected values of the processing parameters ……………………… 181 

 5.2. Optimum values of the processing parameters …………………….. 193 

 

 6.1. Predicted fibre volume and void content of single fibre-type 
composite plates ……………………………………………………. 200 

 6.2. Predicted tensile properties of FRP composites under investigation 
according to the rule of mixtures …………………………………... 203 

 6.3. Calculated density, predicted fibre volume content and void volume 
content of the hybrid GFRP composites …………………….…….. 206 

 6.4. Strain at maximum stress for hybrid GFRP specimens …………….. 220 

 6.5. Calculated density, predicted fibre volume content and void volume 
content for the hybrid CFRP composites …………………..……… 228 

 6.6. Strain at maximum stress for the hybrid GFRP specimens (%) …… 241 

 6.7. Physical characteristics of the hybrid composite plates …………… 248 



 xxiv

 6.8. Strain at maximum stress (%) for the hybrid carbon-glass FRP 
composites under investigation  …………………………..……….. 262 

 

 

 

 

 



CHAPTER 1 

INTRODUCTION 
 

 

 

 
 
 
1.1. GENERAL INTRODUCTION 

 

The flexural behaviour of hybrid fibre-reinforced polymer (FRP) matrix 

composites has been investigated experimentally. Thus, all the data presented and 

analysed were obtained from laboratory work. The current research can be divided 

into three parts. The first part deals with the parameter optimisation of composite 

plate fabrication that will be presented in Chapter 5. The second part, referred to 

as “preliminary work”, consists of compressive testing of the parent composite 

materials that were later used to manufacture the hybrid composite system − this 

part will be presented in section 6.1. The final part contends with hybrid 

composite materials containing three different hybrid systems where each hybrid 

system contains two different reinforcing fibres embedded within a common 

matrix − these hybrid composite systems will be presented in sections 6.2 to 6.4.  

 

 

1.2. RESEARCH BACKGROUND 

 

The specific mechanical properties, i.e., mechanical properties-to-density 

ratio, of composite materials being generally higher than those of conventional 

materials [1](pp. 3-4) is one amongst many reasons behind the wide acceptance of 

composite materials ranging from household appliances, sporting [2] and leisure 

goods, civil and construction structures [3, 4], transportation [5-7], and aerospace 

[8] and high performance structures. The fact that their properties can be 

engineered and tailored [1](pp. 6-9) according to their required applications, e.g., 

through: (i) selecting the type of matrix and reinforcing materials, (ii) controlling 
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the proportions of matrix and reinforcement, or else for the case of fibre-

reinforced composites, through (iii) controlling their fibre architecture, is a major 

advantage of these materials. 

The utilisation of different types of reinforcing material within a common 

matrix to produce hybrid composites has been the subject of research in materials 

science since the 1970s [9-12]. For example, combinations of reinforcement being 

studied have included: glass fibre and carbon fibre [10, 13-15], glass fibre and 

graphite fibre [16, 17], glass fibre and aramid fibre [18], glass fibre and steel fibre 

[19], glass fibre and bamboo fibre [20, 21], aramid fibre and carbon fibre [22], 

aramid fibre and glass fibre [22], carbon fibre and silicon carbide fibre [23, 24], as 

well as ultra high modulus polyethylene fibre and carbon fibre [25]. 

Different properties of various hybrid FRP systems have also been reported. 

For example, investigations have previously focussed on: (i) tensile properties 

(e.g., short glass and short carbon fibres in polypropylene [26], jute and chopped 

strand glass fibre mat in polyethylene [27]), (ii) compressive properties (e.g., sisal 

fibre and chopped strand glass fibre mat in polyethylene [28], ultra high modulus 

polyethylene and carbon fibres in epoxy [25], aramid and glass fibres in 

polyethylene [29]), (iii) compression after impact properties (e.g., Kevlar and 

carbon fibres in epoxy [30]), (iv) impact properties (e.g., Kevlar and carbon fibres 

in epoxy [30], sisal fibre and chopped strand glass fibre mat in polyethylene [28], 

jute fibre and chopped strand glass fibre mat in polyethylene [27]), (v) ductility 

(e.g., ultra high modulus polyethylene fibres in epoxy [25]), (vi) flexural 

properties (e.g., sisal fibre and chopped strand glass fibre mat in polyethylene 

[31], graphite and E-glass fibres in polypropylene chloride [16], ultra high 

modulus polyethylene fibres in epoxy [25], jute and chopped strand glass fibre 

mat in polyethylene [27]), and (vii) flexural fatigue properties (e.g., shaft of 

aluminium core reinforced with GFRP composite jacket [32], glass and carbon 

fibres in epoxy [13, 14]). However, there has been very limited information 

published concerning the improvement of flexural properties for low cost 

unidirectional E-glass/epoxy composites through the partial substitution of 

superior mechanical property S2-glass fibre, as well as improving the flexural 

properties of unidirectional standard quality carbon fibre/epoxy composites by 
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introducing high strength carbon fibres in order to produce hybrid fibre-reinforced 

polymer (FRP) composites. 

The existence of a hybrid effect, i.e., any deviation of hybrid composite 

properties from those predicted by the rule of mixtures [33], may still be 

debatable; some researchers have reported the existence of a positive hybrid 

effect, some have reported an increase in properties but did not observe a hybrid 

effect (i.e., only obeying the rule of mixtures), whilst others have reported a 

negative hybrid effect. 

Positive hybrid effects have been reported by You et al. [34] who studied 

the tensile properties of cylindrical carbon-glass fibre hybrid FRP composite rods. 

Li et al. [25] reported that the substitution of carbon fibre for ultra high modulus 

polyethylene (UHMPE) fibre at moderate amounts, up to 46%, showed a 

positive hybrid effect with regards the compressive strain at ultimate strength. A 

significant positive hybrid effect for fracture toughness (approximately 100% 

increase with 15 vol.% substitution of S-glass fibre for carbon fibre), flexural 

strength and flexural modulus was observed by Chaudhuri and Garala [35]. 

Meanwhile, Davies and colleagues [23, 36] reported that the substitution of 12.5% 

silicon carbide (SiC) fibre into the parent CFRP composite material produced a 

significant increase in flexural strength and exhibited a positive hybrid effect. 

An improvement in the retention of tensile strength and modulus with 

regards to environmental aging has been reported by Thwe and Liao [21] for their 

chopped strand glass fibre – bamboo fibre-reinforced polypropylene composites, 

but they did not report whether or not they observed a hybrid effect. Poor wetting 

leading to weak fibre-matrix interfacial bonding resulted in an increase of tensile 

properties but absence of a hybrid effect for flax FRP composites through 

substitution of glass fibre has been reported [37]. Although Dickson et al. [38] 

reported an increase in strain-to-failure of CFRP layers due to partial 

incorporation of E-glass fibre, a hybrid effect was not observed. Furthermore, a 

significant increase in compressive strain-to-failure has been observed, although a 

hybrid effect was not noticed, with regards to compressive strength due to the 

compressive strength of the incorporated UHMPE fibre being noticeably lower 
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than that of the original carbon fibre [49]. Meanwhile, compressive strength and 

modulus were observed to increase with an increase of S-glass fibre content in 

CFRP composite samples although a positive hybrid effect was not observed [35]. 

Substitution of higher compressive strength SiC fibre for carbon fibre within 

CFRP parent composite materials did not exhibit any significant increase in 

compressive strength, compressive modulus, or work of fracture for the hybrid 

SiC and carbon fibre-reinforced epoxy composites [24]. Wang et al. reported that 

their boron-carbon and silicon carbide-carbon hybrid FRP composites 

demonstrated a remarkable increase in flexural strength [39], but this may be 

attributed to the fibre content in their hybrid systems (75%) being significantly 

higher than that of the parent CFRP composite material (53.1%). Arbelaiz et al. 

[37] reported that poor fibre wetting, noticed in their SEM micrographs, resulted 

in weak fibre-matrix interfacial bonding of their flax-glass fibre hybrid FRP 

composites that limit an increase in flexural strength and flexural modulus, 

resulting in a restricted improvement in flexural properties together with the 

absence of a hybrid effect. 

In contrast to these examples, a negative hybrid effect for the case of tensile 

properties has been reported by Hariharan and Khalil [40]. This result was 

attributed to the coefficient of thermal expansion for the two fibre types utilised in 

their research, i.e., oil palm fibre and chopped strand E-glass fibre mat, being 

significantly different leading to the presence of high residual thermal stresses 

upon cooling down following curing. Similarly, a small negative hybrid effect in 

tensile strength for mixed continuous and spun fabric carbon fibre-reinforced 

phenolic due to weak fibre-matrix interfacial bonding was observed by Kang et al. 

[41]. Finally, although a positive hybrid effect for flexural strength was noticed, 

the flexural modulus exhibited a slight negative hybrid effect from the  

substitution of 12.5% silicon carbide fibre into the parent CFRP composite [23, 

36] that may be attributed to the elastic modulus of the SiC fibre being slightly 

lower than that of the carbon fibre. 

Most of the previous research discussed above observed an increase in 

mechanical properties through hybridisation. Three different categories of this 

hybridisation effect have been reported in a number of previously published 
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papers, namely: (i) remarkable increase in mechanical properties in conjunction 

with a positive hybrid effect, (ii) reasonable increase in properties without a 

noticeable hybrid effect, and (iii) decrease in properties with a negative hybrid 

effect.  

 

 

1.3. RESEARCH PROBLEMS 

 

The overall research problem analysed within the present work can be stated 

as: “To investigate how to improve the flexural properties of parent fibre-

reinforced polymer composite materials through the production of hybrid 

composite materials”. 

As the manufacture of composite plates has also been investigated by the 

present author, a research question relating to this aspect of work may also be 

included. In addition, considering that the failure of composite beams mostly 

initiates at their compressively loaded side [36, 42-48], the compressive properties 

of parent composite materials have also been investigated and, thus, another 

research question regarding this work may also be included. Two additional 

research questions may therefore be derived from the research problem stated 

above. Thus, the following four main research questions or themes may be 

proposed. 

1. What are the optimum values of processing parameters required in order to 

produce the most favourable flexural properties for the composites under 

investigation? 

2. How do the compressive strength and compressive modulus of the parent 

composite materials differ from one another, so that an optimum stacking 

sequence and/or stacking configuration can be determined? 

3. Can the flexural strength, flexural modulus and energy storage capacity-to-

maximum stress of fibre-reinforced polymer matrix composites be improved 

through hybridisation? 
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4.  How does the stacking configuration influence the hybrid effect with 

regards to flexural strength, flexural modulus and energy storage capacity-

to-maximum stress?  

 

 

1.4. RESEARCH OBJECTIVES 

 

The following suppositions were defined to be the main themes of the 

current research. 

1. The optimum values of the processing parameters of the composites under 

investigation can be determined. 

2. The compressive strength and compressive modulus of the parent composite 

materials can be determined. 

3. The flexural properties of the parent composite materials can be improved 

through hybridisation. 

4. The optimum stacking hybrid configuration in terms of producing relative 

optimum increase can be identified. 

 

 

1.5. RESEARCH SIGNIFICANCE 

 

Through achieving the research objectives mentioned above, the following 

positive multiplier effects may further be obtained. 

1. Material saving. Improving the flexural properties of the parent composites 

through hybridisation means an improvement in harnessing the property 

potential of the materials and thus reducing the demand for materials of the 

products. 

2. Weight saving and/or increase of load carrying capacity. Improving the 

performance of materials leads to a reduction in the structure dimensions to 
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support the same magnitude of load, or vice versa, increase the load 

carrying capacity of a structure of the same dimensions. 

3. If the materials are utilised in mobile structures, such as transportation 

vehicles, weight saving results in a reduction in the amount of energy 

required to move it and thus produces savings in fuel consumption. 

4. Fuel consumption savings further reduce the amount of pollutants emitted 

from fuel combustion to the atmosphere. 

 

 

1.6. STRUCTURE OF THE THESIS 

 

The body of this thesis comprises of seven chapters, after which specific 

data and calculations have been included within an appendix. The seven chapters 

of the thesis, together with their brief description, are presented below. 

Chapter 1. Introduction presents a brief description of the whole thesis, i.e., 

general introduction, research background, research problems, research 

objectives, research significance, and the structure of the thesis. 

Chapter 2. Literature Review and Theoretical Background reviews previous 

research related to the subject of the current investigations in more 

detail. This chapter is divided into five sections with each section 

being divided into sub-sections. The subjects discussed within this 

chapter include: general description of composite materials, constituent 

materials of FRP composites, fibre-matrix interface characteristics, 

general description of available fabrication techniques, and discussion 

of mechanical behaviour of FRP composites. 

Chapter 3. Mechanics of Materials contains a discussion on the loading-response 

relationships of the materials and includes classical beam theory, the 

rule of mixtures, laminated beam theory, and failure theories. 

Chapter 4. Experimental Procedure describes the method adopted in order to 

solve the problems stated and presented in Chapter 1. This includes 

equipment design and manufacture, composite plate fabrication 
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procedures, fibre volume content and void content determination 

methods, mechanical testing procedures adopted, and optical 

micrography analysis for the investigation of fracture regions. 

Chapter 5. Fabrication Parameters Optimisation was divided into four sections, 

namely, determination of fabrication parameters, experimental 

procedure, results and discussion, and conclusions. 

Chapter 6. Results and Discussion presents the description, analyses and 

discussion of the data obtained from the experimental work. It contains 

four sections, namely, preliminary test (compressive test) of the parent 

composite materials, hybrid FRP composites containing two different 

types of glass fibres, hybrid FRP composites containing two different 

grades of carbon fibres, and hybrid FRP composites containing 

combination of glass and carbon fibres. 

Chapter 7. Conclusion and Recommendations for Future Work summarises 

the outcomes of the investigation and presents recommendations that 

may be carried out in order to enhance the current findings.  
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CHAPTER 2 

LITERATURE REVIEW AND 
THEORETICAL BACKGROUND 
 

 

 

 
 
 
2.1. INTRODUCTION 

 

In the broadest point of view, there exists a vast diversity of engineering 

materials which can be in solid, liquid or gaseous states, but structural materials 

are almost entirely found in the solid state. Based on their similarities in 

processing conditions, microstructures, properties, and applications, structural 

materials can be classified into four main groups, i.e., metals and their alloys, 

ceramics and glasses, polymers and elastomers, and composites, with details of 

this classification being presented in Figure 2.1. 

The history of human progress shows that the development of civilisation 

has been closely related to the advancement of materials being used in a particular 

era, with the development of materials mainly being triggered by the need for 

superior quality materials for weapons [1] (p. 3). The development of structural 

materials through human history can be traced back from pre-history and is 

summarised from a number of references ([1] (pp. 3-6), [2, 3]) below. During the 

Stone Age, prior to 10000 B.C., most structures were made from stone which is a 

ceramic. Following this, during the Bronze Age, 4000 B.C. – 1000 B.C., copper 

and bronze were discovered with the rapid expansion of weapons and tools from 

these metals. Pins, daggers, blades, fragments, and ornaments made from copper 

(Cu) containing 0.5%  3.0% of tin (Sn) and up to 1.5% of arsenic (As), dated to 

1800 B.C. – 3900 B.C., have been found in Egypt, India, Iran, Iraq, and Turkey 

[3]. In addition, some ornaments, swords, daggers, spear-heads, and battle-axes 
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dating to 1300 B.C. have been found in Egypt with the main manufacturing 

method being determined to be forging except for sphere-heads that were 

fabricated by metal casting [2]. The next era was the Iron Age (1000 B.C. – A.D. 

1620) in which the previous generation of materials used to produce tools and 

weapons were replaced by iron. The manufacture of weapons and tools from iron 

by the Anatolians and Iranians manufacturing has been traced back to 1500 B.C. – 

1000 B.C. It is believed that iron reached Asia, North Africa and Europe in 500 

B.C. – 1000 B.C., Greece in 900 B.C., and Sudan in 200 B.C. [3]. Following 

the invention of metal production technologies, such as iron casting in 1620, and 

the manufacture of different grades of steel which began in 1850, together with 

light weight alloys during the 1940s, metals have played a primary role as the 

main structural material and also the main engineering material in the broader 

sense. 
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Figure 2.1. Classification of materials for engineering structures (Summarised 
from references [4], [1] (pp. 21-22), [5] (p. 5), and [6] (pp. 1-4)). 

Materials for 
Engineering 
Structures

Metals and 
alloys: 
 Iron and steel 

and their alloys 
 Aluminium 

and its alloys 
 Copper and its 

alloys 
 Nickel and its 

alloys 
 Titanium and 

its alloys 
 Magnesium 
 Gold and its 

alloys 
 Silver and its 

alloys 

Ceramics and 
glasses: 
 Silicon 

carbide 
 Silicon nitride
 Silica 
 Magnesia 
 Alumina 
 Portland 

cement 

Polymers and 
elastomers: 
 Epoxy 
 Polyester 
 Phenolic 
 Polyamide 
 Polyethylene 
 Polysulfone 
 Polyetherether 

ketone 
 Polyvinyl-

chloride 
 Natural rubber

Composites: 
 Polymer matrix 

composites 
(PMCs) 

 Ceramic matrix 
composites 
(CMCs) 

 Metal matrix 
composites 
(MMCs) 

 Carbon/carbon 
composites 
(CCCs) 
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Figure 2.2. Strengths and moduli of typical structural materials showing that, in general, those of metallic materials are 
superior, redrawn from Ref. [5]. (a) Yield strength (p. 85), (b) Young’s modulus (p. 35) 
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The utilisation of metallic materials continued to increase and reached a 

peak during the early 1960s [1] (p. 4) due to its relatively high strength and 

modulus, as presented in Figure 2.2, whereas the utilisation of other materials, 

such as polymers and elastomers, ceramics and glasses, and composites generally 

declined due to their relatively poor performance using the rudimentary 

manufacturing techniques available at that time. Composite materials have been 

used for aircraft structures since the first generation of powered aircraft in the 

early twentieth century [7] with airframes and stressed-skins being comprised of 

wood, which is a natural composite material, in addition to woven fabric stretched 

over wing-frames and then embedded in resin. The fuselage of  the Monocaque 

Deperdussin monoplane produced in 1912 [8] (pp. 163-164) and Lockheed Vega 

radial engine passenger aircraft build in 1927 even used wood for their fuselage 
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Figure 2.3. Specific strength and specific modulus of typical structural materials 
showing that, in terms of specific strength and specific modulus, a typical carbon 
fibre-reinforced epoxy (CFRP) composite (appears close to top-right corner) is the 
most superior materials compared to the other. Alumina (Al2O3, appears close to 
top-left corner) ceramic although it possesses high specific modulus its specific 
strength is very low, while materials appear close to bottom-left corner (phenolic, 
polypropylene, epoxy, and nylon), which are, except magnesia, polymer, possess 
low specific both strength and modulus (Plotted from numerical values cited from 
Ref. [6] (p. 2))  
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and wings [8] (p. 184). During World War II, several European countries and 

Japan experienced a shortage of metal and were driven to use wood in different 

forms in order to produce aircraft. For example, laminated composite materials 

were used in the De Havilland Mosquito bomber aircraft of the British Royal Air 

Force, with wood being used for the frame and laminated plywood for the 

stressed-skin [7, 9]. Russian bomber aircraft also extensively utilised plywood, 

bakelite ply, balinit and delta wood for wing spars of the I1-4, as well as for the 

outer skin and fuselage of the I1-2 [10]. In Japan, wood was also used for the 

substitution of metal components for aircraft structures [11]. However, it was in 

the beginning of the 1960s that the development of modern composites started to 

increase significantly [12] (p. 3) as a result of the requirement for materials 

simultaneously possessing high specific strength and high specific stiffness (see 

Figure 2.3 ) in various structural applications embracing civil, military, aerospace 

and space, marine, and automotive engineering. 

 

 

A brief survey of materials meeting these requirements has been shown in 

Figure 2.3 - whilst ceramics are shown to possess the optimum combination of 

(a) (b)
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Other

 
Figure 2.4. The utilisation of composite materials in aircraft structures from the 
1930s – current. (a) Weight proportion of materials used in aircrafts manufactured 
from 1930 – 1980 [7], (b) Proportion of materials in modern aircraft, the Boeing 
787 – Dreamliner [13]. 
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specific strength and specific stiffness, their relatively poor fracture toughness 

behaviour rules them out for many applications. Figure 2.4(a) shows the 

proportion of various materials utilised in aircraft structures from 1930 to 1980, 

indicating that the replacement of wood with reinforced plastic materials occurred 

between the late 1940s and early 1950s, while those of a modern aircraft (Boeing 

787 Dreamliner) have been presented in Figure 2.4(b), illustrating that composite 

materials are the primary structural materials for this aircraft. 

The importance of composite materials in engineering structures throughout 

the ages can be seen in Figure 2.5. The first man-made composite was produced 

from bricks reinforced with wheat straw as long ago as 1,300 B.C. [14] (p. 3). 

Data for stone and bronze ages were obtained from archaeologists, those for 1960s 

were based on allocated teaching hours in the U.K. and U.S. universities, and 

those for 2020s were predicted utilisation in automotive industries. It can be seen 

from Figure 2.5 that the relative importance of composites in 2020 is expected to 

be similar to that of ceramics or polymers and greater than that of metals. 

 

 

Figure 2.5. Engineering materials evolution through the ages showing, in the 
second layer from the bottom of the figure, the relative importance of composite 
materials [1] (p. 4) 
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2.1.1. Definition 

 

A composite material can be defined as a material that comprises of two or 

more constituents, namely the reinforcement and matrix, which possess distinct 

characteristics ([15] (p. 1) and [16] (p. 6)), macroscopically combined with a 

recognisable interface [17], and identifiable [18]. Simple examples of composites 

include bamboo as a natural composite, glass fibre-reinforced polypropylene and 

carbon fibre-reinforced epoxy as fibrous composites, silicon carbide (SiC) or 

titanium carbide (TiC) particles dispersed in an aluminium matrix to produce 

silicon carbide particle-reinforced aluminium matrix or titanium particle-

reinforced aluminium matrix composites, as well as reinforced concrete. The first 

feature, namely distinct characteristics, can be obtained by tailoring fibre 

arrangement and controlling fibre content to meet the intended in-service 

properties and behaviour requirements, so that a typical composite component is 

typically designed for that application alone and often may need to be redesigned 

for even relatively small changes in the application – a relatively small shift in the  

loading direction for unidirectional fibre-reinforced composites will generate shear 

stresses due to coupling effects and may significantly decrease the composite 

strength. The second and the third features, namely recognisable interface and 

identifiable, imply that the mixture of the constituents is of a physical nature 

where each constituent can still be identified and that there exists a distinct 

interface separating the two constituents as shown in Figure 2.6, such that they can 

be separated by means of physical methods. 
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Composite materials have been utilised in various applications due to their 

superiority in many regards, e.g., excellent mechanical properties, such as high 

yield strength and Young modulus (as presented in Figure 2.2.), light weight and 

 

Figure 2.6. Carbon fibre-reinforced epoxy composite showing distinct phases 
between fibres (bright colour) and matrix (dark colour). (a) Transverse to fibre 
direction, (b) Parallel with fibre direction. 

 

Figure 2.7. Impact properties of various engineering materials. 
Unidirectional fibre-reinforced polymer composite materials with 
approximately 60% fibre volume fraction (Data adapted from Mallick as 
cited in Ref. [6] (p. 8)) 



 22

high corrosion resistance [19, 20] as well as impact resistance (as shown Figure 

2.7.), lower tooling cost for manufacturing complex shapes [21], and outstanding 

fatigue strength. For example, the fatigue strength of steel and aluminium alloys is 

approximately 50% of their ultimate static strength whereas that of CFRP 

composites is up to almost 90% of their ultimate static strength [6] (p. 7) − the 

fatigue strength of other selected structural materials has been presented in Table 

2.1. Composite materials have been utilised in applications ranging from 

automotive ([19, 22] and [6] (pp. 17-18)) such as in the Porsche Carrera GT all-

carbon chassis [23], aircraft industries [19, 24] such as aircraft engine components 

in the General Electric F-404 [25] and wing elements of the Sukhoi S-27 Berkut 

aircraft [26], aerospace engineering [6] (pp. 14-17) such as the SuDerbird SCS 

Kevlar dual-shell reflector [27], marine structures [28, 29] such as boat hulls [30, 

31], bulkheads, deck plates and mast systems [32], high speed ships and ferries 

[29], civil engineering applications such as the deck of the Wick Wire Run bridge 

in Taylor County, West Virginia [33], GFRP structural profile blocks [12] (p. 98), 

and longitudinal beams for Tom’s Creek Bridge in Blacksburg, Virginia [34], 

electrical and electronic appliances such as switch housings, circuit boards, 

insulation components, and computers, telescoping composite tubes for antenna 

and screen monitor casings [35], as well as sporting goods [6] (pp. 18) such as 

graphite/epoxy and carbon/epoxy tennis and badminton racquets [36] and CFRP 

Fight Weapon bicycle frames from Asia Seiko [37]. 
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Table 2.1. Properties of typical structural materials 

Materials 
Density 
(g/cm3) 

Impact resistance 
(J/m)a) 

Fatigue limit 
(MPa)b) 

Metals and alloys: 
  Al 7075 T6 
  Al 6005 T6 
  FeC, 021%C, annealed 
  Ti alloy, 99.2% Ti 
  Ti-6Al-4V standard 
  Ti-6Al-4V condensate 

 
2.811) 

 
7.862) 
4.513) 

 
 

 
 
 
 

438) 
 
 

 
9612) 

3113) 

22014) 

 
40015) 

52415) 

Ceramics and glasses: 
  Al2O3, 99.5% dense 
  Si3N4 

 
3.894) 

 

 
 
 

53016) 

Polymer and elastomers: 
  Epoxy resin 
  Polysulfone 
  Polyacetal 
  PMMA 

 
1.12 – 1.305)

 
 
 

 
10 – 505) 

 
 

249) 

 
 

1817) 

2218) 

 

Composites: 
  CFRP 
  GFRP 

 
1.266) 
1.997) 

 
3110) 
10711) 

 
7019) 

4620) 
 

a)Izod impact unless stated other method. 
b)At N = 106 unless stated other value. 
1)Reference [38], p.47. 
2)Reference [39], Table 25. 
3)Reference [39], Table 35. 
4)Reference[40], p. 80. 
5)Reference [41], pp. 90-96. 
6)Reference [42], carbon fibre/polyamide, 

Vf = 50%, 
7)Reference [43], E-glass/epoxy 

composites, Vf = 60%. 
8)Reference [39], Table 212, Charpy 

impact, notched specimen. 
9)Reference [40], p. 158. 
 

10)Reference [44, 45], pp. 396-406. 
11)Reference [39], Table 215.1, glass fibre/ 

polycarbonate, Vf = 30%. 
12)Reference [38]. 
13)Reference [45], f = 5 Hz. 
14)Reference [46], N = 107, f = 22 Hz 
15)Reference [47]. 
16)Reference [48], R = 1. 
17)Reference [48], p. 365. 
18)Reference [48], p. 364, f = 1.67 Hz. 
19)Reference [48], p. 365, short carbon fibre/ 

polysulfone, Vf =40%. 
20)Reference [48], p. 365, short glass fibre/ 

polysulfone, Vf = 40%. 
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The superior mechanical properties of composites, such as their excellent 

fatigue resistance [50], tensile strength (for a typical S-glass fibre-reinforced 

epoxy composite is 1136.2 MPa at 61.2% volume fraction fibre [51] compared to 

525 MPa for that of Al 7075 aluminium alloy [39] (Table 139)), combined with 

their light weight (the density of the above GFRP is 2.06 g/cm3 [51] compared to 

2.80 g/cm3 for that of the Al 7075 aluminium [39] (Table 139)), results in 

excellent specific strength and specific stiffness [20, 29, 32, 50] as presented in 

Figure 2.8, leading to improved application performance, whether it be lower 

weight as in the case of the replacement of a graphite/epoxy composite structure 

for the existing aluminium structure in the Boeing 777 which resulted in a weight 

saving of 20% or more [52], increased stiffness and load-carrying capacity [53].  

In addition, the structure of composite materials can be designed to meet the 

specific properties of in-service loading and environmental conditions [30, 32]. 

For mobile structures, the use of composite materials has tended to increase load-

carrying capacity and/or reduce fuel consumption, resulting in a less polluting 

product and safer environment, as well as prolonging the availability of natural 

resources. For example, the use of CFRP composite materials in the Boeing 787 

fuselage [54] and other main structures is predicted to reduce labour cost and the 

 
 

Figure 2.8. Specific strengths and specific modulus of typical structural 
materials showing that, in general, those of composite materials are superior in 
comparison with those of conventional metals [49] (p. 11). 
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number of stress raiser points due to a reduction in the number of parts, improve 

aerodynamic performance, and furthermore, reduce fuel consumption [13], 

whereas the use of glass-reinforced aluminium laminate (GLARE) composites in 

the Airbus A380 is envisaged to increase the strength and fatigue resistance of the 

structure [55] compared to those of conventional titanium alloy structures.  

Another key advantage of composite materials is their excellent corrosion 

resistance [32, 56]. It has been estimated that approximately US$ 276 billion or 

3.1% of the Gross Domestic Product (GDP) of the United States of America 

(U.S.A.) is lost due to corrosion and associated failures [57]. Composite materials 

have been used in many applications due to their improved corrosion resistance, 

such as one layer of unidirectional GFRP composite placed surrounding the CFRP 

composite core of the Aluminium Conductive Composite Core (ACCC) high 

voltage mains grid cables produced by CTC (Irvine, CA, U.S.A.) to separates the 

CFRP core from aluminium wires in order to prevent galvanic corrosion, and the use of 

GFRP composite for piping, walkways, stairways, hand-rails, ladders, support structures 

and decks of offshore oil platforms to replace those of metals that are more corrosive [56]. 

 

2.1.2. Classification of Composite Materials 

 

Composite materials can be classified into different groups based on several 

criteria and this will be considered in the present section.  

 

2.1.2.1. Relative dimensions of reinforcement 

Based on the relative dimensions of the reinforcing materials, composite 

materials can be categorised as follows: 

 

Macro-composites  such as reinforced concrete beams where concrete possessing 

high compressive strength but poor tensile strength is reinforced with steel [58, 59] 

or composite [58-60] bars in its tension sides [58] in order to improve its 

performance. 
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Micro-composites or simply known as composites – such as various types of 

fibrous composites, for examples CFRPs, GFRPs, and silicon carbide fibre-

reinforced titanium alloy matrix [59];  and particulate composites of different 

reinforcement and different matrices [59-64], where their reinforcement are in the 

order of microns in dimension. The introduction of reinforcement into a particular 

matrix can improve the properties of the resulting composite in comparison with 

that of the matrix, the reinforcement or both.  

 

Nano-composites  such as nano-sized silicon carbide (SiC) particles dispersed in 

epoxy [60], fine yttria (Y2O3) particles dispersed in magnesium [61], and carbon 

nano-tubes dispersed in epoxy [62], where the nano-sized fibres or very fine 

particles of clay or other materials are dispersed in polymeric or other parent 

materials in order to improve particular properties of the parent materials. For 

example, in order to improve the tensile strength and modulus, flexural strength 

and modulus, and thermal stability of satin weave preformed CFRP nano-

composite, Chisholm et al [60] dispersed micro- and nano-sized SiC particles in 

epoxy before being used as matrix to produce the CFRP nano-composite. Tun and 

Gupta [61] blended Y2O3 particles with magnesium (Mg) powder, compacted it, 

then sintered the mixture to produce nano-composite possessing improved 

hardness and tensile strength in comparison with the pure Mg parent material. 

Kim and Lee [62] used carbon nano-tubes (CNT) to reinforce epoxy that, further, 

was used as a matrix in E-glass fabric/epoxy nano-composite with improved 

electromagnetic wave absorption capability for the complete GFRP/CFRP/PVC 

foam/CFRP sandwich structure. 

 

2.1.2.2. Geometry of reinforcement 

Based on the geometry of the reinforcing material, composite materials can 

be classified into three main groups as discussed in page 2 of reference [63], i.e.: 

 

Particulate composites, Figure 2.9(a)  composite materials where the reinforcing 

materials are in the form of particles, for example dispersing tungsten particles in 

copper (used as high-current electrical contact materials [66-68], heat sinks [64, 
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65], and spot-welding electrodes [64] which results in improved erosion resistance 

[66] and tensile strength of the Cu matrix [67]. Other commonly utilised particle 

reinforcements include alumina tri-hydrate (AlH6O3), also known as ATH, for 

silicon polymer-based rubber reinforcement [68], calcium carbonate (CaCO3) for 

high density polyethylene (HDPE) [69], kaolin Al2Si2O5(OH)4 for polyethylene 

[70], mica (KAl2(AlSi3O10(OH)2) for nickel-coating material [71] and silicas SiO2 

for polyacrylate, polyimide and polypropylene [72], and epoxy [73]. 

 

 

     

 
 
Figure 2.9. Three main types of composite system based on the reinforcing 
material geometry:   (a) SEM photo micrographs of a typical nickel-based particle-
reinforced lead-based matrix particulate composite with 0.3 mol fraction of 
Ni0.93Co0.02Mn0.5Fe1.95O4−δ  and  0.7 mol fraction of  PbZr0.52Ti0.48O3 [76], (b) 
Mica flake-reinforced poly-dimethylsiloxane [74], and (c) Unidirectional 
continuous carbon-silicon carbide fibres hybrid-reinforced polymer matrix 
composite containing four layers of carbon fibre prepreg in the lower part and four 
layers of silicon carbide fibres in the upper parts showing shear failure along its 
neutral plane after being loaded in bending [75]. 

(a) 

(c) 

(b) 
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Flake composites, Figure 2.9(b)  the reinforcements are commonly distributed in 

their matrices in a randomly oriented manner, such that the properties of these 

composites tend to be more isotropic rather than anisotropic. Vu-Khanh [76] 

dispersed mica and glass flakes in order to improve the mechanical properties of 

poly-propylene whereas Osman and colleagues [74] used mica flakes to improve 

the strength and elastic modulus of  poly(dimethylsilokxane). Wang et al [77] 

embedded graphite flakes in a polyester matrix to produce a material possessing  

sufficient electrical properties, whilst Okumura and co-workers [78] utilised 

titanium flakes to reinforce aluminium matrix resulting in an improvement of 

tensile and flexural strength in the flake direction. Flake-reinforced composites 

have been widely used, ranging from coatings for decorative and protective 

purposes, such as the inner lining of chemical containers [79, 80] and outer coating 

of sub-sea pipe-lines [79, 80];  electromagnetic noise suppression material [81]; to 

load-bearing structural components, such as turbine blades [80]. 

 

Fibre composites - these reinforcing materials are in the form of fibres as 

illustrated in Figure 2.9(c). As the fibre component is generally significantly 

stronger and stiffer compared to the matrix phase  for example, tensile strength 

and modulus of a typical E-glass fibre are, respectively, 3.5 GPa and 73 GPa [82] 

(p. 58), whilst those of a typical Derakane 8084 vinylester matrix are only 0.076 

GPa and 2.9 GPa [83]  fibre properties and fibre content will strongly determine 

the properties of these composites. More detail concerning the properties and 

behaviour of fibre composites upon loading will be discussed in the next chapter. 

From the point of view of aspect ratio, i.e., length-to-diameter ratio, fibre 

composites can be further divided into two sub-groups, namely, chopped fibre- (or 

short fibre- or whiskers-reinforced) composites and continuous fibre-reinforced 

composites. Chopped fibres possess aspect ratios between 5 and approximately 

1000 [49] (p. 5), whilst those of continuous fibres are typically 1000 and higher 

[84] (p. 92). The orientation of continuous fibres can be tailored according to the 

required in-service loading conditions in order to optimise the contribution due to 

the fibres whereas that of short fibres can also be controlled, albeit to a lesser 
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degree, into a preferred orientation ([15] (p. 137) and [85] (p. 20)) during 

composite manufacture [86]. 

 

2.1.2.3. Fibre architecture 

Fibre orientation can be tailored into a one-dimension (1-D) form to produce 

unidirectional FRP composites, two-dimensions (2-D) to produce multidirectional 

laminated FRP composites, as well as three-dimensions (3-D) by weaving, 

braiding, knitting or stitching. As most of the composite properties are primarily 

depended upon fibre architecture [87], fibre architecture selection is crucial to 

meet in-service loading configurations [88]. The one-directional fibre arrangement 

is selected if the structures are mainly subjected to a unidirectional loading with 

the magnitude of the loading in the other two directions being considerably 

smaller [15] (p. 9), such as would be the case for simply supported beams, struts, 

and frame members. The 2-D fibre architecture is generally considered for more 

complex loading configurations where a part of a structure experiences two-

dimensional loading, such as a bridge deck, whilst 3-D fibre arrangements are 

utilised when through the thickness loading is present in addition to in-plane 

loading [84] (p. 105), such as would be the case for impact loading [89] (p. 45). 

The 1-D fibre arrangement can be found in the form of rovings or tows 

(Figures 2.9, 2.11, and 2.12), yarns, unidirectional plain weaves (Figures 2.11) 

where the transverse yarn is a very light minor fill that alternately crosses under 

and over each longitudinal heavy main tow or roving, and unidirectional pre-

impregnated tapes. In the case of 2-D fibre arrangements, fibre orientation can be 

tailored after they are embedded within the matrix such as in laminated composites 

manufactured using prepregs, or before they are impregnated in the matrix by 

using woven fabrics. The difference between 1-D and 2-D weaves is that in 1-D 

plain weaves the minor transverse fill is much lighter in size compared to that of 

the major longitudinal main tow or roving, called the warp. 3-D fibre performs can 

be produced by various procedures, i.e., weaving, braiding, knitting and stitching 

as summarised from Tong [89] (pp. 13-45). In 3-D weaving, there are a number of 

layers of warp yarn, contrary to the case of a single layer of warp yarn in 2-D 
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weaving. Braiding is a textile manufacturing technique utilised to produce tapes or 

3-D structures with o fibre orientations such as hose and shaft reinforcement and 

rocket casings. The main advantages of braided products are their high structural 

integrity and high torsional rigidity [84] (p. 106). In contrast to this, there are two 

main knitting techniques used to produce fibre performs, i.e., warp and weft 

knitting. In warp knitting, a number of yarns are fed into the machine in the 

longitudinal product direction where each of these yarns produces a line of knit 

loops in this direction. In weft knitting, only one yarn is fed into the machine in 

the direction transverse to the longitudinal product direction – in this case the yarn 

produces a row of knit loops through the width of the product. Finally, fibre 

stitching is a process of inserting needles through the thickness of a stack of fabric 

layers in order to create stitched threads that can be used to produce 3-D fibre 

performs. 

 

2.1.2.4. Matrix Type 

 

From the point of view of the matrix constituent, composite materials can be 

categorised into four groups ([12] (p. 58 and 151), [15] (pp. 36-52) and [85] (p. 

20)), namely: 

 

Ceramic-matrix composites (CMCs) - despite the superiority of ceramics with 

respect to their hardness [12] (p. 74), such as partially stabilised zirconia (ZrO2) 

which possesses a Vickers hardness value between 1019 kg/mm2 and 1121 

kg/mm2 [39] (Table 203-5/6) (which are equivalent to approximately 77.1 and 

79.6 on the 100 kg scale of Rockwell hardness number) in comparison with up to 

187 HB for ASME SA395 ductile iron [39] (Table 194) which is equivalent to an 

approximate Rockwell hardness of 40.6, their low fracture toughness [19] is 

known to severely limit their utilisation as structural materials. Another common 

ceramic material, alumina (Al2O3), is known to possess an even higher Vickers 

hardness of 2720 kg/mm2 [39] (Table 203-4/6). In addition, ceramics are generally 

high temperature resistant [12] (p. 74), for example, FPH Ceramic high 

temperature heater manufactured by Temcraft, Winston-Salem, North Carolina, 
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U.S.A., which possesses a service temperature of up to 1204 oC [90], and TemSeal 

Cement, a silica-based ceramic cement, produced by Sauereisen, Pittsburg, 

Pennsylvania, U.S.A., which possesses a service temperature of up to 1650 oC  

[91] in comparison with super alloy metals utilised in jet engines that are resistant 

to temperature up to approximately 1000 oC [12] (p. 74). A common disadvantage 

of CMCs is their low strain to failure, for example, 0.15% for alumina (Al2O3) 

obtained from a sintering process at 1300 oC [92] in comparison with 11% for that 

of Al 7075-T651 metal [40] (p. 282) – this results in poor fracture toughness, i.e., 

5 MPa m  for pure Al2O3 ceramic compared to 21 MPa m  for bulk aluminium 

(Al) [93]. 

The main reason behind the initial development of CMCs was to improve 

upon the poor ductility and toughness of unreinforced (i.e., monolithic) ceramics.  

Silicon carbide (SiC) whisker-reinforced alumina (Al2O3) matrix and silicon-

nitride (Si3N4) whisker-reinforced alumina matrix are other examples of CMCs. 

Tekeli and his colleagues [94] reported that the addition of up to 10 wt% of SiO2 

into c-ZrO2 to produce SiO2 particulate-reinforced c-ZrO2 matrix composite 

improved the flexural strength and fracture toughness of the matrix. Furthermore, 

they reported that, for pure c-ZrO2 and its resulting particulate composite 

containing 10 wt% of SiO2, the flexural strength increased from 275 MPa to 292 

MPa, respectively, due to refinement of the matrix grains and the generation of 

residual stresses in the matrix upon cooling, whereas the fracture toughness 

increased by more than 160%. 

 

Carbon-carbon composites (CCCs) - these are mostly utilised for high temperature 

in-service environments, for example: thermal protection for re-entry space 

vehicles, aircraft brakes, and engine turbine components [15] (pp. 51-52). The 

advantages of CCCs over CMCs are mainly related to their relatively high creep 

resistance, and improved strength with an increase of temperature up to 2200oC 

(after which their strength starts to decrease), high thermal shock resistance, and 

wider range of cyclic temperatures [15] (p. 52).  
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Metal-matrix composites (MMCs) - these are commonly found in the form of 

fibrous and particle composites. Different types of fibre materials exist, such as 

stainless steel [95] and tungsten [96] fibres as reinforcement for aluminium and 

titanium alloy matrices, respectively, ceramics (Al2O3, B, and SiC fibres) [97] as 

well as metal- or ceramic-coated graphite and carbon [98], have been used to 

reinforce low density metals. The primary objectives of producing MMCs are to 

improve their specific strength and stiffness [98], in addition to lowering their 

coefficient of thermal expansion (CTE), such as carbon fibre-reinforced 

aluminium utilised for boom antennas in NASA space telescope which can be 

tailored to possess a CTE close to zero without sacrificing weight in comparison to 

aluminium antennas [12] (p. 125). This reduction in CTE is particularly 

advantageous for structures experiencing severe in-service temperature 

fluctuations, such as aeroplane structure in which the temperature at 25,000 feet or 

7620 meter altitude is approximately 34.5 oC whereas that at sea-level is 

typically 15 oC [99]. 

 

Polymer-matrix composites (PMCs) - polymers utilised as the matrix phase for 

PMCs can be broadly classified into two groups, namely thermosetting and 

thermoplastic [100]. Unlike elastomers which are highly elastic, polymers may be 

brittle, especially at room temperature, or else undergo plastic deformation under 

loading [101] (pp. 24-27) and possess low service temperatures [6] (p. 11), low 

strength and elastic modulus, and lower density when compared to metals [101] 

(pp. A3-A15). The reinforcement of polymers with other materials has the 

potential to significantly improve their potential to meet the design requirements. 

Glass fibres are the most commonly utilised reinforcement for polymer matrix 

composites due to their low cost whereas higher cost carbon and aramid fibres are 

generally reserved for situations where higher performance is required [12] (p. 6). 
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2.2. CONSTITUENT MATERIALS  

 

2.2.1. Fibres 

 

The main function of fibres within composite structures is as the load-

bearing component and, as such, they are generally significantly stiffer and 

stronger when compared to the matrix component. For example, the elastic 

modulus of the polymer matrix in a PMC may be typically 3.0 GPa [102] whereas 

that of the reinforcing glass fibre may be 86.9 GPa [103]. Various types of fibres 

are available in the global commercial market, including glass, carbon, graphite, 

aramid, boron, silicon carbide, polyethylene, and natural fibres derived from plants 

or animals ([104], [15] (p. 8), [101] (p. 596) and [12] (p. 54)). The relative 

importance of these fibres in the global composite industry can be seen in Table 

2.2. 

 

 

Geometrically, fibres can be further classified into two main groups, 

namely short fibres (also known as chopped or discontinuous fibres) and 

continuous fibres. As mentioned earlier, fibres can be categorised as continuous if 

they possess an aspect ratio, i.e., the length to diameter ratio, of 1000 or greater. 

With regards to this, continuous fibre-reinforced composites (CFRCs) generally 

possess improved mechanical properties when compared to discontinuous fibre-

reinforced composites (DFRCs) [6] (p. 5); for example, the flexural modulus and 

Table 2.2. Global market for advanced composite fibres in 2006a) 

Fibre type 
Amount Value 

Tonnes 
( 103) 

% 
US$ 

( 106) 
% 

E-glass fibre 2400 97 244 13.9 

Carbon fibre 27 1.1 1300 74.1 

Other fibresb) 46 1.9 211 12.0 

a)Rearranged after Ref. [105]. 
b)Includes: aramid, boron, R-, S- and T-glass, as well as HMPE and quartz 
fibres 
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flexural strength of chopped E-glass FRP composite containing 20 % fibre volume 

fraction are, respectively, 7 GPa and 140 MPa compared to 35 GPa and 840 MPa 

(i.e., more than three times higher) for a unidirectional E-glass FRP composite 

with 60% fibre volume fraction [12] (p. 93); the lower production costs and ease 

of manufacture of complex shapes for DFRCs ([106] and [15] (p. 121)) has led to 

a wider variety of applications. 

In the following sections, detail discussion concerning the different types 

of fibres will be limited to those utilised in this work, i.e., glass fibre and carbon 

fibre. 

 

2.2.1.1. Glass fibres 

Amongst the reinforcing materials used in fibre-reinforced polymer (FRP) 

composites, glass fibres are the most widely utilised mainly due to their relatively 

low price, availability and reliability [107], as well as their reasonably high 

strength when compared to carbon fibres [108]. Comparison between these two 

types of fibres in terms of cost and properties has been presented in Table 2.3 

below. The table shows standard modulus continuous carbon fibre to be 

approximately ten times more expensive when compared to continuous E-glass 

fibre whilst the former is just slightly stronger in tension than the latter. 

 

 

Table 2.3. Cost and properties of E-glass and standard modulus carbon fibre 

Fibre type 
Costa) 

(US$/kg) 

Properties 

Densityb)

(g/cm3) 

Tensile 
strengthc) 

(MPa) 

Elastic 
modulusd) 

(GPa) 

E-glass, continuous 1.90 – 3.30 2.58  3450 72.5 

Carbon, continuous 31.50 – 41.50 1.78 3800  4200 230 

a)[101] (p. A35) c)[101] (p. A9) 
b)[101] (p. A6) d)[101] (p. A15) 
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Glass fibre filaments are produced by forcing a molten glass through holes 

in the bottom of a platinum bushing. Following this, the glass filaments are 

collected, quenched by passing through a light water spray, coated with a 

protective binder, gathered to form a bundle (also known as a tow or strand), and 

finally wound onto a spool as shown in Figure 2.10. This complete manufacturing 

process has been illustrated in Figure 2.11. In addition to protecting the surface of 

the fibres, the binder has additional functions including holding individual fibres 

together for ease of processing, lubricating the fibre surface in order to reduce 

abrasion when in contact with equipment during composite manufacture, impart 

anti-septic agent for softening  and to improve chopability, and provide chemical 

links for improved interface bonding between the fibre surface and matrix ([109, 

110], [109: pp. 18-19, and 110]). 

 
 

The various types of glass fibres may be classified based on their chemical 

composition that, furthermore, determines their properties and usages. There are 

four types of commonly used glass fibres [110], i.e. A-glass fibre with high alkali 

content leading to good chemical resistance; C-glass fibre produced from soda 

borosilicate, possessing excellent chemical resistance, E-glass fibre produced from 

 

Figure 2.10. Spool of E-glass fibre E2350-11 supplied by Owens Corning 
Asia-Pacific. Net weight of the spool is 17 kgs.  
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aluminium borosilicate-based materials, possessing good electrical resistance, and 

S-glass fibres consisting of S- and S2-glass fibres which contain compounding 

elements such as aluminium silicate and magnesium which make them much 

stronger than E-glass fibres. Typical chemical compositions of these types of glass 

fibres are presented in Table 2.4. 

 

 

In general, glass is an amorphous material. Polyhendrons, that are each 

composed of oxygen atoms covalently bonded to silicon, form long three-

dimensional networks within the glass structure. Glass fibres are fairly isotropic 

[12] (p. 11) which is a consequence of its three-dimensional network structure. 

Glass fibres are generally inexpensive, very strong in tension, possessing high 

fracture toughness, as well as being relatively insensitive to chemical 

environments, moisture, and elevated temperature. Some important physical and 

mechanical properties of glass fibres have been presented in Table 2.5. 

The tensile strength of both E and S grades of glass fibre is very sensitive to 

temperature, although S-glass fibre is slightly less sensitive. The tensile strength of 

E-glass fibre degrades by approximately 24% and 50% as the temperature is 

increased from 22 C to 371 C and 538 C, respectively, while that of S-glass 

Table 2.4. Typical chemical composition of E- and S-glass fibres (%wt) 

Element E-glass S-glass 

Silicon oxide, SiO2 54.3b,c)

55.2a)
64.2b,c) 

65.0a) 

Aluminium oxide, Al2O3 8.0a) 
15.2b,c) 

24.8b,c) 

25.0a) 

Calcium oxide, CaO 17.2b,c) 

18.7a) 
a)

0.01b,c) 

Magnesium oxide, MgO 4.6a) 
4.7b,c) 

10.0a) 

10.27b,c) 

Sodium oxide, Na2O 0.3a) 
0.6b,c) 

0.27b,c) 

0.3a) 

Boron oxide, B2O3 7.3a) 
8.0b,c) 

a)
0.01b,c) 

a)[12] (p. 8) b)[15] (p. 15) c)[110] (p. 134) 
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fibre degrades by approximately 18% and 47% for the same temperature increase 

[110] (p. 135) and [111]. 

 

 
 

 

Figure 2.11. Direct-melt glass fibre manufacturing process [110] 
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2.2.1.2. Carbon and graphite fibres 

These days, carbon fibre has been widely used in applications including 

sport and leisure, civil structures, ground, marine and air transportations, military 

equipment, as well as high performance aerospace structures. Among the 

advantageous of carbon and graphite fibres are their low density combined with 

 

Figure 2.12. A roll of S2-glass fibre mat Unitex UT-S500 
supplied by SP System, Newport, Isle of Wight, UK 

 
Table 2.5. Typical properties of  E- and S-glass fibresa) 

Properties E-glass S-glass 

Density (gcm3) 2.54 2.48 

Coefficient of linear thermal expansion 
(×106 C1) 

4.7 5.6 

Tensile strength at 22 C (MPa) 3348  

Tensile modulus at 22 C (GPa) 72.4 85.5 

Yield elongation (%) 4.8 5.7 
a)[110] (p. 135) 
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high strength, high modulus and high temperature resistance in non-oxidising 

environments [112]. When being embedded in polymer matrices, which also 

possess low density, they produce high specific strength and high specific stiffness 

fibre-reinforced polymer matrix composites. The most recent commercial 

passenger aircraft such as the Boeing 787, contain approximately 50 wt% of 

composite materials, most of which is carbon fibre reinforced polymer (CFRP) 

[113], whilst high performance bicycles, canoes, fishing rods, golf clubs, hockey 

sticks, snowboards, and tennis racquets are additional examples of sporting goods 

made from CFRP composite [114]. 

Both carbon and graphite fibres are composed of carbon atoms arranged in a 

specific structure. The carbon content of carbon fibres is 80% to 95% while that of 

graphite fibres is much higher at 99% or more [15] (p. 21). Three types of organic 

precursors are commonly used to produce carbon and graphite fibres, i.e., rayon 

fibres, pitch, and polyacrilonytrile (PAN) [15] (p. 21), [82] (p. 64), [12] (p. 20), 

and [115]. Carbon and graphite fibres are generally produced by the so-called 

thermal decomposition process. The strength and modulus of carbon and graphite 

fibres are spread over a wide range (Table 2.6) depending upon their precursor, 

processing procedure and parameters. Compared to glass and silicon carbide 

fibres, carbon fibres possess much lower density (see Tables 2.5, 2.6 and 2.8) 

leading to superior specific strength and specific stiffness. 

 

Precursors. Continuous rayon fibres are extracted from wood pulp and processed 

by wet spinning. Rayon fibres are a natural thermosetting polymer [12] (p. 23). 

Pitch precursor can be obtained from inexpensive sources such as asphalt, 

polyvinyl chloride (PVC), and tar [12] (p. 23), [115], while PAN fibre precursors 

are apparently those used in textile industries [115]. 

 

Thermal decomposition process. Prior to thermal decomposition processing, the 

precursors generally undergo particulate removal and spinning for pitch precursor; 

and spinning, extraction, and stretching to improve longitudinal alignment of 

polymer molecules for PAN fibre precursor. There are three important stages 
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generally involved in thermal decomposition process to produce carbon fibres 

[116] and [12] (p. 20), i.e. 

1. Stabilisation. This stage is carried out at 200260 C [115] for a few hours 

in air. After being stabilised, precursors will reduce their tendency to melt in 

the further higher temperature processes.  

2. Carbonisation. During this process, most of the non-carbon elements that 

may contaminate the precursor are removed, resulting in a higher purity of 

carbon fibre. The required temperature for carbonisation is approximately 

10001500 C [115], and it must be within an inert atmosphere such as 

nitrogen. In order to avoid any distortion of the precursor structure, the 

heating rate must be kept low. 

3. Graphitisation. In this stage, the properties of the carbon fibres yielded in 

the previous stage are improved by holding the fibre at above 1800 C [15] 

(p. 22), up to 3000 C for PAN-based carbon fibre, for a very short time, 

e.g., one minute, in an inert atmosphere such as argon [117]. 

The degree of alignment and order of atomic structure of the carbon fibre 

along the fibre axis direction, leading to higher stiffness and lower linear thermal 

expansion coefficient in this direction [115] and [12] (pp. 27-29), strongly depends 

upon the graphitisation temperature. Although carbon (graphite) possesses 

relatively high strength and high modulus, it is brittle in nature without any plastic 

deformation prior to fracture. As a consequence, the presence of any defect such as 

micro-cracks and fibre diameter inconsistencies will generate a very high local 

stress. 

Hawthorne and Teghtsoonian [118] studied the compressive behaviour of 

carbon fibres by embedding single carbon fibres in epoxy resin and applying a 

compressive load onto the specimens. They found that the higher the degree of 

anisotropy of fibre structure the more likely that micro-buckling and kinking 

failure modes occurred, in which failure started at the outer surface and propagated 

into the fibre centre. Compressive strength was found to vary from less than 1 GPa 

for high modulus carbon fibre to 2.2 GPa for moderately oriented carbon fibre, 

while the failure strain decreased from 2.5% to less than 1% as the modulus 



 41

increased. In addition, Oya and Hamada [119] reported that the compressive 

strength of several different carbon fibre types varied from 15.6% (M50J) to 

30.8% (T700S) of their respective tensile strengths. 

 

 

The wide variety of properties, which depend upon their precursor type and 

fabrication parameters, for several carbon fibres can be seen in Table 2.6. 

 

 

Figure 2.13. Two rolls of 12k tow size PAN-based carbon fibre from two 
different manufacturers 
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2.2.2. Epoxy Matrix 

 

Different matrix materials can be found in the field of composite materials. 

The particular matrix type for any given application may be selected based on in-

service requirements and environmental considerations. Matrix materials can be 

based on polymers, ceramics, metals, or carbon depending upon the required 

performance and in-service environmental conditions of the resulting composites. 

The main function of the matrix is [88] and [101] (pp. 96-97), firstly, to hold the 

fibres in place in order to allow them to perform as designed and to ensure the 

structural integrity of the product. Secondly, the matrix also plays an important 

role as a load-transfer media from one fibre to the other surrounding fibres via the 

fibre-matrix interface and matrix. Thirdly, the matrix also protects fibres from 

physical damage and chemical attack. In addition, the matrix content within a 

particular composite also contributes to the determination of composite properties. 

Finally, in laminated composites, the shear strength of the matrix predominantly 

controls the interlaminate shear strength of the composites. 

It has been discussed in Section 2.1.2.3 that the fibre architecture may be 

selected mainly based on the applied in-service loads. In order to ensure that the 

fibres function as designed, they must be kept in their initial state as they are 

designed to be held by the matrix. As the load-transfer media, the matrix will 

mostly bear shear loading. Fibres are very fine filaments, for example: glass fibre 

diameters may range from 3.8 m [110] to 22 m [123] whilst those of carbon 

fibre may range from 4.7 m to 15 m [124] (p. 8), so that they are very sensitive 

Table 2.6. Typical properties of carbon fibres of different precursors 

Carbon fibre type 
Diameter

(m) 
Density 
(gcm) 

Tensile 
strength (MPa) 

Tensile 
modulus (GPa)

IM7 12K (PAN-based)a)  5.2 1.78 5570 276 

P-30X 2K (pitch-based)b) 11 1.99 2760 201 

Ural-LO (rayon-based)c)  6  11 1.4 1200  1500 100  120 

a[120] b[121] c[122] 
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to any physical or chemical contact during service. The matrix provides protection 

to fibres from any possible damage that will degrade their properties. 

Polymer matrices possess some advantages, when compared to other 

matrices, such as low density, good chemical resistance, low cost, and ease of 

manufacturing process and, as such, are the most commonly used matrix materials 

for fibrous composites [15] (p. 26). On the other hand, disadvantages include their 

relatively low service temperature (e.g., 200 – 250 oC), degraded mechanical 

properties and change of physical properties due to moisture absorption, high 

sensitivity of ageing to ultra-violet light, high thermal expansion coefficient, 

production of large amounts of smoke upon burning, and being poisonous in its 

uncured state [88]. 

Polymer matrices can be classified into thermoplastics that soften and melt 

upon heating and thermosets that decompose upon heating. Polyethylene, 

polystyrene and polymethyl methacrylate [12] (p. 60), nylon, polyvinyl chloride, 

and polysulfone [100] are examples of thermoplastic, whilst epoxy, polyester, 

vinylester, bismaleimide, polyimide, phenolic triazine and cyanate ester are 

examples of thermoset polymers ([100] and [12] (p. 61)). The most common 

matrices used with glass fibre reinforcement in order to produce GFRP composites 

are polyester and vinyl ester due to their low cost, whereas epoxies, which are 

more expensive and possess superior mechanical properties when compared to 

polyester and vinyl ester, are generally selected for the manufacture of high 

performance PMCs such as those utilised in the aerospace industries [101] (p. 600) 

when incorporated with high performance carbon fibres [107, 116, 129]. 

Compared to other polymeric matrices, epoxy possesses several advantages. The 

most important advantages of epoxy are its low curing shrinkage and strong 

adhesion with various types of fibres [125] that results in accurate dimensional 

stability of the products leading to its extensive usage in FRP composite materials. 

Other advantages of epoxy are its low swelling coefficient [12] (p. 65), high 

resistance to severe environments, and a curing reaction that does not produce 

volatile by-products so that entrapped air bubble can be minimised [125]. 
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During curing, the chemical reaction between the epoxy resin and curing 

agent, also known as a hardener, takes place to form extended crosslinked 

networks of monomers forming large molecular structures [125]. The chemical 

reaction illustrated in Figure 2.14 suggests that the epoxy resin-to-hardener ratio 

must be precisely controlled for optimum performance. Any imbalance will 

produce an excess portion of unreacted resin or hardener, furthermore, complete 

network structures and optimum properties of the resultant product will not be 

achieved. Kim et. al. [126] reported that, unlike tensile strength, tensile modulus 

and ultimate strain were not sensitive to any imbalance of the resin-to-hardener 

   epoxide groups O O 
amine nitrogen 

 hardener  

CH CH2 CH2 CH 

H2N     R     NH2 
O O 

 

CH CH2 CH2 CH 

OH OH 

CH CH2 CH2 CH 

OH N     R     N OH 

CH CH2 CH2 CH 

Figure 2.14. Amine curing reaction illustration of epoxide and amine hardener 
showing that each of the hydrogen of the amine curing agent reacts with each of 
the epoxide groups to form a strong covalent bond (Redrawn from Ref. [125]) 
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ratio, whereas impact strength, work of fracture and fracture toughness were found 

to be sensitive. A lack of hardener may result in a relatively high elastic modulus 

associated with low tensile strength and brittle cured epoxy, whereas too much 

hardener will result in a low elastic modulus together with relatively high tensile 

strength and a large deformation capability of the cured epoxy [127]. 

After being mixed with hardener, the epoxy resin will remain in a liquid 

state for a certain length of time until the gelation process begins, in which the 

viscosity sharply increases. This time period is called the gel time or more 

familiarly, the pot life, which varies from the order of minutes to more than 24 

hour depending upon the type of amine curing agent being used. Aliphatic amine 

type curing agents produce epoxy systems with gel time of minutes up to a few 

hours, whilst those based on aromatic types produce epoxy systems with up to 24 

hours and more of gel time [125]. When gelation has begun, the epoxy system can 

no longer be used to wet fibres. The time required for complete curing is strongly 

dependent upon the curing temperature with a higher curing temperature requiring 

a shorter time for curing. 

In contrast to that of fibres, the compressive strength of epoxy matrices is 

generally higher than their tensile strength [128]. Some practically representative 

properties related to design considerations for epoxy matrix materials have been 

presented in Table 2.7.  

 

 

Table 2.7. Typical properties of cured epoxy resin 

Density (gcm-3) 1.2 – 1.3a) 

Linear thermal expansion coefficient (×10C) 8 – 11b) 

Continuous service temperature (C) 25 – 85b) 

Tensile strength (MPa) 55 – 130a) 

Tensile modulus (GPa) 2.75 – 4.10a) 

Compressive strength, Epikote 828/Epokure (MPa) 104 – 125c) 
a) [15] (p. 33) b) [12] (p. 65) c)[128] 
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2.3. FIBRE-MATRIX INTERFACE 

 

The interface between any two phases in contact, such as that of fibre and 

matrix, is characterised by the presence of discontinuity (p. 79)[12, 15, 129]. It 

implies that there is a change of properties, i.e. physical, mechanical, thermal 

and/or electrical, from one side to the other (from the fibre side to matrix side or 

vice versa) across this region. Although the properties of a typical composite 

material are strongly controlled by the inherent properties of its constituent 

materials (refer to the discussion on the rule of mixtures in Section 3.2), load 

transfer effectiveness from one particular fibre to its surrounding matrix, and 

further to other surrounding fibres, is also greatly influenced by the properties of 

the interface (p. 69)[15, 137-139], and further characterises the mechanical 

properties of the resultant composites [107]. 

The strength of the interfacial bond of an interface for CFRP composites 

depends upon the degree of wetting of the fibre by the matrix [129], resin 

shrinkage stress [130, 131] and the length of the embedded fibre [130]. Interfacial 

bond strength can be improved by coating. Zhu and co-workers [132] revealed that 

the tensile strength of silicon carbide fibre-reinforced aluminium matrix 

composites can be improved by up to 45% from sizing the SiC fibre with SiO2. 

Furthermore, interface characteristics dictate the stress redistribution upon fibre 

breakage [133]. 

 

Strong Interface Bond  From the mechanics of materials standpoint, if strong 

interface bonding exists in composite structures subjected to tensile loading, for 

low fibre volume fractions (such that the magnitude of load that can be supported 

by the fibre portion is smaller than that of the matrix portion), then, due to the 

ultimate strain of the fibre being generally lower than that of the matrix, the fibre 

will be broken prior to matrix crack initiation and thus lead to brittle fracture of the 

composite, creating a single-surface fracture. On the other hand, if the fibre 

volume fraction is relatively high (such that the strength of the fibre portion is 

larger than that of the matrix portion), with the existence of strong interfacial 

bonding, the matrix will experience shear failure along the fibre length and lead to 
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brittle fracture creating multiple-surface fractures [15] (pp. 91-92), [134]. 

Interfacial debonding initiates when the difference in values of strain between 

fibre and matrix reaches a critical value [135]. Bader and Bowyer [136, 137] 

reported that the strength of interface bonding is limited by the strength of the 

matrix. Selby and Miller [128] found that the interfacial strength is slightly higher 

than the shear strength of the matrix, supporting Bader and Bowyer. With 

advanced experimental methods available, fourteen years later, Netravali and 

Schwartz working on glass fibre/epoxy [138] and graphite fibre/epoxy [139] 

composites observed that it was not the interface that failed but, instead, the matrix 

in the proximity of the interface underwent shear failure − the interfacial shear 

strength could thus be several times higher than the shear yield strength of the 

matrix. When a matrix that possesses a low elastic modulus undergoes excessive 

deformation and starts cracking, large portions of the load may be transferred to its 

surrounding fibres. 

 

Weak Interface Bond  If weak bonding exists at the interface then debonding will 

start to occur in the interface [131], forming multiple-plane failures [15] (p. 91). 

Weak interfacial bonds are necessary in improving the toughness of CMCs as the 

toughening mechanism for CMCs is closely related to interface debonding, fibre 

bridging and fibre pullout [131]. Zhou and Wagner [140] observed that upon the 

breakage of E-glass fibre/epoxy composites, weak interface bonding was 

characterised by longer saturated fibre fragment lengths compared to that of strong 

interface bonds. 

 

2.4. FABRICATION TECHNIQUES OF FIBRE-REINFORCED POLYMER 
(FRP) COMPOSITES 

 

The discussion in this section is limited to fabrication techniques related to PMCs 

only with more specific details being presented for those techniques employed in 

this research project. Various fabrication processes are available for composite 

product manufacturing. The properties of constituent materials need to be 

considered when selecting a particular processing technique in order to meet 

product requirements related to both performance and cost. A selection of 
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commonly utilised fabrication techniques for polymer matrix composites is 

presented in Figure 2.15 below. 

 

 

Notes to Figure 2.15: 

SMC – sheet moulding compound 

SRIM – structural reaction injection moulding 

BMC – bulk moulding compound 

RTM – resin transfer moulding 

SCRIMP – Seemann Composites Resin Infusion Moulding Process 

 

The following paragraphs are brief descriptions of common processing 

techniques for continuous fibre-reinforced thermosetting matrix composites. 

 

2.4.1. Hand Lay-up 

 

Flat and curved surfaces can be manufactured using this traditional technique. If a 

typical geometry is required then a mould, which can be made from different 

 
 

Figure 2.15. Classification of polymer matrix composite fabrication 
techniques [6] (p. 12). 
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materials, can be utilised with the mould cavity being coated with release agent 

prior to fibre placement. As is suggested by its name, the fibres are manually 

placed in the mould cavity. Fibre impregnation can be performed by brushing or 

spraying the resin into the fibre arrangement. A roller is then applied for fibre 

compaction and removal of air bubbles whilst curing may take place at room or 

elevated temperature. More detail about this technique will be discussed in the 

following section [100]. 

Compared to other manufacturing techniques, hand lay-up is probably the 

simplest composite manufacturing technique, with this method being the most 

commonly utilised for the manufacturing of small-sized and large-sized parts [15] 

(p. 37). The fibres or preforms are manually laid up onto the surface of a base 

plate or mould. The hand lay-up technique can be further divided into two main 

methods, i.e., wet lay-up and prepreg lay-up [6] (p. 126). 

 

2.4.1.1. Wet lay-up 

Different surface geometries can be produced using this technique, both flat 

and curved surfaces. In manufacturing flat surfaces, base plates are used whilst for 

curved surfaces, moulds are generally used. Prior to fibre placement, a release 

system is applied onto the surface where direct contact with the moulded product 

occurs. Various types of release systems are available in the market, such as 

fluorocarbon, polyvinyl alcohol (PVA), release films, release papers, silicon, wax, 

as well as gel coat and liquid release agent [15] (p. 37). Release films or release 

papers can best be used in the production of flat surfaces. The fibres are carefully 

placed onto the pre-coated base plate or mould with fibre wetting being carried out 

by brushing or spraying a pre-mixed resin-hardener into the fibre arrangement. A 

roller is then applied for fibre compaction and air bubble removal. This is the first 

layer of the composite product. 

If additional layers are required to produce a thicker product then the 

following fibre layers must be laid-up while the first layer is still in its tacky stage 

before it has completely cured, and again followed by fibre wetting and roller 

application. This step can be repeatedly performed until the desired thickness of 
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product is achieved. A simple lay-up mould for making a channel has been 

illustrated in Figure 2.16. 

 

 
 

Curing may be carried out at room or elevated temperature. Some examples 

of composites produced using this methods include racing yachts [100], boat and 

boat hulls, ducts, furniture, radomes, flat sheets [15] (p. 37), storage tanks, 

swimming pools, wind turbine blades [6] (p. 124),  and wavy composite sheets for 

roofing. 

 

2.4.1.2. Dry Lay-up or prepreg lay-up 

This method is also known as autoclave processing or vacuum bagging 

processing [84] (p. 215). Unlike wet lay-up where unimpregnated fibres are used 

as materials, in this method preimpregnated fibres or prepregs are used. Other 

differences with wet lay-up include that curing is carried out under vacuum 

atmosphere and that a compressive pressure for compaction is applied onto the 

part being cured. By applying pressure and curing under vacuum, it is possible to 

fabricate high quality products with very low void contents combined with high 

fibre volume fractions. 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.16. Schematic illustration of a simple wet lay-up moulding (Redrawn 
after Ref. [12] (p. 127)) 
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Prepregs – Prepreg or preimpregnated fibre is fibre that has been wetted with 

matrix, and can be thermoset (in its partially cured stage [15] (p. 46)) or 

thermoplastic [141, 142]. As mentioned, thermoset matrix prepregs are partially 

cured [143] with the precise determination of this stage being crucial as it is 

directly related to tack level which is the adhesion characteristic of the prepregs. 

Tack strongly influences the handling and lay-up operations, such as the levels of 

ease of handling, excess resin and entrapped air bubble removal, and interlayer 

consolidation of the final composite products. Excessive tack will lead to handling 

and lay-up difficulties and excessive resin removal during subsequent processing. 

On the other hand, prepregs with a lack of tack will not be able to produce 

optimum cured properties of the final products [100]. After being produced, 

prepregs must be stored in a freezer at sub-zero temperatures in order to decrease 

the curing rate of the thermoset matrix. The main disadvantage of fibre/thermoset 

prepregs in comparison with fibre/thermoplastic prepreg is the delivery and 

storage requirements for the former, due to the continued curing process of the 

matrix being significantly more complex than the latter. Thus, the shelf life of 

thermoset prepregs is much shorter compared to thermoplastic prepregs. 

 

Autoclave  An autoclave is essentially a pressure vessel where heat and vacuum 

pressure can be simultaneously applied, in addition to compressive pressure (via 

external loading) that can be applied into the preform being processed inside the 

chamber [144]. These requirements imply that an autoclave must be equipped 

with heating elements; hose fittings, hose and vacuum pump for applying vacuum 

pressure; and a means for applying a compressive pressure into the preform being 

consolidated and cured. A small-sized, simple autoclave used in this project has 

been presented in Figure 2.17. The autoclave shown in Figure 2.17 is specially 

designed to produce flat plates of continuous fibre-reinforced composite. Its 

maximum effective internal size is approximately 310  185  3.5 mm3. The heat 

is supplied by a pair of electric heater elements of 2400 watts total power. To 

ensure homogeneous temperature distribution over the area, the heating element 

geometry is designed as shown in the inset of Figure 2.17 with the temperature 

being controlled using a thermocouple. A PIAB vacuum pump type L28 [145] and 
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a vacuum gauge were installed. This mini pump can generate vacuum levels up to 

70 kPa. Compressive pressure onto the lay-ups was applied by means of a 30-ton 

loading capacity via a hydraulic pump − this pump can generate compressive 

pressures in excess of 5 MPa over the largest plates that can be accommodated by 

the autoclave. 

 

 

 

Curing Process  Release agent or release paper can be applied onto the 

contact surface with the prepreg preform. Prepregs should be taken out of the 

storage and the release papers being immediately removed and then stacked 

together to form the required number of layers. The preform is then cut along its 

edges to trim the resin-rich area and to conform to the size of the autoclave. 

Prepregs that have been stacked together, usually called a preform or lay-up, are 

then carefully placed into the air tight autoclave chamber. Simultaneously with the 

increase of temperature to its dwell temperature, the air inside the chamber is 

pumped out in order to generate the required vacuum pressure inside the chamber. 

The curing temperature for thermoset matrix composites is known to generally 

vary from 120 oC to 200 oC [146] (p. 2-53). 

Different vacuum level and magnitude of compressive pressure have been 

applied and reported in previous work. In 2005, Gustin and colleagues [44] 

 

 

 

 

 

 

Figure 2.17. A small-sized autoclave showing its important elements. Thermostat 
that is installed to control its temperature is not shown. Element geometry is 
shown in the inset. (Basic design by Nick Jensen , improvement and 
instrumentation by Sudarisman) 
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applied 0.077 MPa (600 mm Hg) autoclave vacuum pressure to produce carbon 

fibre-reinforced epoxy, Kevlar fibre-reinforced epoxy and carbon-glass hybrid 

fibre-reinforced epoxy composites, while, for producing GLARE using glass 

fibre-reinforced epoxy as reinforcement, Botelho and co-workers [147] applied an 

autoclave vacuum pressure of 0.083 MPa. More recently, Sudarisman and 

Davies [143] reported that they utilised an autoclave vacuum pressure ranging 

from 0.085 MPa to 0.035 MPa in order to produce CFRP composites with the 

void content decreasing from 4.2 vol.% to 1.5 vol.% as the vacuum level 

increased from 0.085 MPa to 0.035 MPa. 

In 1992, Boey and Lye [148] applied up to 7 MPa of external compressive 

pressure in order to reduce void content during the vacuum-bagged curing of E-

glass/epoxy composites. They reported that the void content started to reduce 

when the applied compressive pressure reached 0.4 MPa, with a sharp drop being 

observed for an applied compressive pressure of 5 MPa or higher. They further 

reported that the lowest void content obtained was 4 vol.%. Park and Jang [149] 

also applied 7 MPa of compressive pressure whereas other researchers such as 

Davies and colleagues [79, 161, 162] and Sudarisman and colleagues [150], 

applied a lower compressive pressure, 2.5 MPa, during the vacuum-bagged 

curing of FRP composites. Olivier et al. [151] in 1995 and Liu et al. [152] in 2006 

applied compressive pressures of 0.1 to 1.0 MPa and 0.0 to 0.6 MPa, respectively, 

to cure carbon fibre reinforced epoxy composites. Both groups revealed that 

higher applied compressive pressures resulted in lower void content, however, 

Sudarisman and Davies [143] reported that excessive compressive pressure can 

result in fibre misalignment. 

It should be noted that applying a vacuum into the chamber atmosphere 

immediately after shielding the chamber is crucial, as the viscosity level of the 

matrix will increase in accordance with the increase of temperature prior to 

undergoing cross-linking [100], in order to be able to remove as much air as 

possible. In addition, for the same reason it should also be performed prior to 

applying any compressive pressure. 
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Advantages and disadvantages  In comparison with other available techniques, 

hand lay-up possesses some advantages and disadvantages. The following are its 

main advantages and disadvantages [100]. 

Advantages: 

a. Flexible design capability. 

b. Accommodates small- and large-sized products. 

c. Low investment on equipment and tooling. 

d. Minimum start-up lead time and cost. 

e. Designs can easily be modified. 

f. Cores and reinforcing structures can be employed. 

g. Sandwich structures can be produced. 

h. Low cost for prototyping and pre-production process. 

i. The required intermediate level skilled workers can easily be trained. 

 

Disadvantages: 

a. Needs more workers. 

b. Good quality surface can only be attained on one side. 

c. Product quality relies on the skill of the worker. 

d. Can not handle large volume production. 

e. Curing time can be longer. 

f. Waste product relatively high. 

 

2.4.2. Other Fabrication Techniques 

 

Filament winding [15] (pp. 42-44) – In filament winding, a continuous fibre tow 

or tows are passed through a resin impregnation bath and embedded into the resin. 

The tows, which have already been wetted with resin, are then helically wound 

onto a rotating mandrel. The helical angle depends upon the linear velocity of the 

rotating mandrel and the relative longitudinal velocity of the mandrel with respect 

to the resin bath. The number of layers depends on the thickness of the product, 

filament diameter, and the number of filaments within the tow. After being cured 
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at elevated temperature, the product is removed from the mandrel. The resulting 

products are in the form of cylindrical- or spherical-shapes, such as pipes, tubes, 

and fuel tanks.  

 

Pultrusion [12] (pp. 89-90) – This technique is fully automatic controlled. Various 

shapes of continuous composite profiles, such as channels and I-sections, as well 

as flat-sections and solid cylindrical bars, can be produced utilising this technique. 

Continuous fibre tows or mats are first passed through a resin impregnation bath 

and then pulled through a pre-forming die for the removal of excess resin and air 

bubbles. Next, they pass through a heated die for final shaping and curing. The 

continuous product is then cut into certain lengths as required. 

 

Resin Transfer Moulding (RTM) [6] (p. 155) – In this technique, a pair of moulds 

with a cavity in the shape of the required product are utilised. Before being used, 

the mould cavity surfaces are coated with release agent to ease product removal. 

Fibres, generally as perform, are carefully placed into the mould cavity after 

which the mating mould is placed and clamped together. Prior to being injected 

into the mould cavity, the resin is mixed with hardener or catalyst, as well as 

reinforcing particles and colouring pigment if required. A high surface quality for 

the product can be attained depending on the surface quality of the mould cavity. 

A vast variety of products can be produced, such as bicycle frames, doors, 

helmets, hockey sticks, wind turbine blades, as well as complex geometry 

products such as automotive panels, sports car bodies, and aircraft components 

(bulkheads, fairings, ribs, stiffeners, and spars). 

 

Autoclave process [82] (pp. 126-128) – An autoclave is principally an air-sealed 

chamber whose pressure and temperature can be controlled. Prior to product 

preform placement on the mould base plate, the surface of the base plate needs to 

be coated with release agent or release film. The pressure of the atmosphere in 

which the product is cured is then decreased to a required vacuum in order to help 

remove any entrapped air bubbles and thus improve the quality of the product. In 

addition, compressive pressure may be applied onto the product preform in order 
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to assist air bubble removal and to compact fibre arrangement. Elevated 

temperature helps to accelerate the curing process. More detail concerning the 

autoclave process was previously presented in Sub-Section 2.4.1.2. 

 

Roll wrapping [6] (pp. 190-193) – Roll wrapping is basically prepreg lay-up 

where the mould is in the form of a mandrel, either cylindrical or tapered. 

Prepregs are cut into the required geometry and dimensions and then wrapped 

onto a mandrel which has been coated with wax or other release agent. The 

mandrel which has been wrapped with prepreg is then rolled on a table. During 

the rolling, force is applied into the mandrel to provide compressive pressure 

exerted from the mandrel and also table surface into the prepreg in order to 

produce prepreg compaction and to ensure thorough contact between the mandrel 

surface and the prepreg for obtaining a precise geometry of the final product. For 

small-sized products, rolling is usually performed manually while for large-sized 

products this is accomplished by machine. Golf shafts and fishing rods are some 

examples of products manufactured using this method. 

 

Seemann Composite Resin Infusion Moulding Process (SCRIMP) [6](pp. 166-168) 

– SCRIMP is a typical variant of RTM where a one-sided open mould is utilised. 

A number of fibre layers are put onto a mould cavity which has been coated with 

release agent. If a core, usually for stiffening purposes, is needed, it is put on the 

existing fibre layers. Other layers of fibre are then put into the existing 

arrangement. All the reinforcing arrangement within the mould cavity is then 

covered with a layer of plastic sheet and air-sealed tightened with the mould. 

Vacuum pressure is applied onto the arrangement for fibre compaction and to 

suck the resin system into the mould passing through the fibre arrangement. The 

vacuum level should be kept high in order to ensure that adequate resin wetting of 

the fibre occurs and thoroughly fills the entire cavity. Various products, such as 

boat hulls, car bodies, satellite dishes, and wind turbine blades, can be made using 

this method. 
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Bladder moulding [153] – Bladder moulding is, principally, a typical application 

of a pressure-bag moulding technique whose products are mostly tubular 

structures. Unlike pressure-bag moulding [15] (p. 40) where a pressure-bag is 

constructed between a flexible air-sealed sheet covering the bagged lay-up, and a 

pressure plate, a bladder is placed between prepreg layers. The moulding process 

is started by coating the surface of the cavity with release agent. Next, the prepreg 

arrangement with an uninflated bladder is placed into the cavity. The mould is 

then securely closed with the mated mould, and the bladder is inflated by being 

blown with compressed air (up to 2 MPa [154]) in order to generate pressure that 

is required for preform densification. Curing and part consolidation can be carried 

out at elevated temperature. After completion of the curing process, the 

compressed air is released and the bladder is taken out from the moulded part for 

finishing processing if necessary. 

 

2.5. FIBRE-REINFORCED POLYMER (FRP) COMPOSITES 

  

Polymers are the most widely utilised matrix to produce composite materials 

[49] (p. 8). They can be reinforced with a wide variety of reinforcing materials in 

terms of their geometry, e.g., particles [68-79], flakes [80, 82-87], discontinuous 

and continuous fibres [42, 44, 51, 54, 60, 61, 81, 108, 109, 156, 163, 165, 168-

170], as well as other types of materials, e.g. polymers [155], carbon, graphite and 

aramid [107, 116, 160-162], metals [156, 157], ceramics and glasses [177-181], as 

well as natural fibres [167, 172, 173]. Deng [107] used the difference between 

theoretical and experimental values of Vf to calculate void volume fraction, Vv, and 

further predicted tensile and flexural properties of GFRP composites. Unlike Vf 

and density, , the thermal expansion coefficient, , of FRP composites may be 

altered by the presence of residual stresses upon curing and the fibre-matrix 

interfacial strength, and thus it is not as accurate as Vf and  predictions. 

The discussion on PMCs in the following sub-sections will be limited to 

those being the objects of this investigation, namely glass fibre-reinforced polymer 

(GFRP), carbon fibre-reinforced polymer (CFRP), and their hybrid fibre-

reinforced polymer (hFRP) composites. The properties being discussed will also 
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be limited only to those directly related to the subject of the current research 

project, i.e. tension, compression and flexure. 

 

2.5.1. Glass Fibre-Reinforced Polymer (GFRP) Composites 

 

Glass fibres are the most widely used polymer reinforcement [158], such that 

GFRP composites are the most widely utilised composite materials. Different 

polymer matrices, such as nylon 6.6 [159, 160], polypropylene [112, 187-189], 

polycarbonate [161], polyester [21, 29, 191-193], vinylester [85, 167-171], 

polyurethane [162, 163], and epoxies [19, 162, 164-168], have also been 

reinforced with glass fibre using various fibre architectures, e.g., randomly 

distributed discontinuous [160, 163, 169], unidirectional [168, 177], unidirectional 

stitched [162], cross ply [169], plain weave [168], woven roving [29], woven 

fabric [165], knitted fabric [83], and 3D braided [87]. 

Different mechanical properties of GFRP composites, e.g., tension [20, 89, 

113, 145, 185, 186, 200, 202], compression [20, 89, 145, 194, 196, 201, 203-205], 

flexure [20, 28, 197, 198, 206], torsion or shear [28, 93, 195, 197, 199], impact 

[28, 29, 83, 160, 170], and hardness [163, 171], have been investigated and 

reported. Various methods and/or standards and specimen geometries were utilised 

to study a particular mechanical property aforementioned above. 

 

2.5.1.1. Tensile properties 

Hamada and co-workers (1992) [134] investigated woven cloth E-

glass/epoxy composite subjected to tensile loading. Gripped areas of the 

specimens were reinforced with aluminium tabs. They found that the tensile 

modulus of amino-silane coated glass fibre/epoxy samples was slightly higher than 

those of acryl-silane coated, but the tensile strength of the former was higher than 

that of the latter. 

In 1999, Deng and colleagues [107] utilised three different cross-sectional 

geometries, and thus cross-sectional aspect ratios, i.e., circular, ‘peanut’-shaped, 

and oval, of glass fibre to produce glass fibre-reinforced epoxy composite plates. 
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Specimens were cut from unidirectional GFRP composite panels containing a 

particular fibre cross-sectional geometry produced using an autoclave at 0.6 MPa 

compressive pressure and 120 oC in vacuum atmosphere for 16 hours. To prevent 

damage in the gripped areas, cross ply CFRP composite tabs were glued onto this 

area. The fibre volume fraction, Vf, was relatively high and varied between (62.0  

1.9)% to (69.8  0.4)%. Tensile testing in both the longitudinal and transverse 

directions were carried out according to ASTM D3039 [172]. They revealed that 

longitudinal tensile strength, L-t, and modulus, EL-t were not sensitive to fibre 

cross-sectional aspect ratio, whereas transverse tensile strength, T-t, and modulus, 

ET-t, are sensitive to fibre cross-sectional aspect ratio with the ‘peanut’-shaped 

fibre cross-section FRP composites exhibiting the lowest T-t and ET-t. The circular 

fibre cross-section FRP composite specimens subjected to longitudinal tensile 

loading underwent catastrophic failure due to multiple fibre breakage and 

transverse matrix cracking, indicating strong fibre-matrix interfacial bonding, 

immediately after the linear load-displacement plot reached its peak load – the 

fracture surfaces indicated brittle failure. Such a failure mode has also been 

reported in other literatures [173, 174] resulting in fibre bundle pull-out [169] 

because the interfacial bond characteristics control the interlaminar shear and 

tensile strength [175]. The other two types of fibres experienced progressive fibre 

breakage and longitudinal matrix cracking producing splitting, as has been 

previously observed by Hayashi [176], because of poor structural integrity due to a 

lack of matrix surrounding the fibres induced by the applied compressive pressure 

during autoclave curing. Such a failure mechanism resulted in ‘broom-like’ 

failure. Different topographic views were observed on the failure surfaces on the 

specimens subjected to transverse tensile loading. The circular fibre cross-section 

FRP specimens exhibited flat fracture surfaces with some matrix stuck on the fibre 

indicating strong fibre-matrix interfacial bonding producing matrix cracking in the 

fibre longitudinal direction. Unlike the aforementioned FRP specimens, the other 

two types of specimens showed matrix channels on the fracture surfaces indicating 

debonding along the fibre-matrix interface. 

Thomason [160] investigated the effect of fibre diameter and fibre aspect 

ratio on the properties of discontinuous E-glass fibre-reinforced polyamide 6,6 
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(PA6,6) produced by injection moulding. E-glass fibres of four different 

diameters, i.e., 10, 11, 14 and 17 m, were chopped into 3.8 mm lengths. Pre-

dried PA6,6 pellets were dry-blended with chopped E-glass prior to being fed into 

an extruder for injection moulding. Thomason observed that increasing the fibre 

diameter resulted in slight decreases in elastic modulus, strength and strain to 

failure. 

Wonderly et al. [83], in 2005, investigated the mechanical properties of 

knitted E-glass fabric/vinylester composites. Longitudinal tensile testing was 

carried out in accordance with ASTM D3039 [172] and open hole longitudinal 

tensile testing was according to ASTM D5766 standards, while ASTM C297 was 

employed for transverse tensile tests.  All specimens contained end tabs of 45o 

glass fibre-reinforced vinyl ester composites glued onto their gripped areas, with 

‘brooming’ being observed during failure, which represents longitudinal matrix 

cracking and possibly fibre-matrix debonding, failure similar to those reported by 

Deng and colleagues [107], with the average failure stress being presented in 

Table 2.11. They also found that the longitudinal tensile strength of the GFRP 

specimens, for both the solid and open hole cases, is lower than that of the CFRP 

specimens, whereas the transverse tensile strength of the GFRP specimens is 

higher than that of CFRP specimens. This phenomenon may be attributed to the 

fact that longitudinal properties are fibre-dominated [162] whilst transverse 

properties are matrix-dominated [177]. 

Thomason [159] recently reported that the tensile modulus of chopped glass 

fibre/polyamide 6.6 composite containing between 0-50 wt.% of  glass fibre of 

various diameters, i.e., 10, 14 and 17 m (similar to the case mentioned earlier), is 

higher than its flexural modulus, with the fabrication and testing procedure being 

identical to that outlined in reference [160]. In addition to finding that the tensile 

modulus, which is fibre-dominated [162], is higher than the flexural modulus, 

Thomason also noted both properties to be more sensitive to fibre content in 

comparison to fibre length or fibre diameter. In addition, shorter fibre composites 

lost more of their elastic modulus with a decrease of matrix modulus compared to 

longer fibre composites. Thomason also observed that, for injection moulded 

thermoplastic matrix composites, fibre content can be increased by increasing 
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moulding die diameter while keeping fibre diameter constant, whilst the residual 

fibre length decreased, which led to a decrease in mechanical properties [170, 

178], with increasing fibre content. 

The discussion in the previous paragraphs can be summarised as follows. 

There are some factors that control the tensile properties of GFRP composites, i.e., 

fibre coating that leads to fibre-matrix interfacial characteristics [134], fibre 

diameter [159, 160], length and content [159]. Unlike the longitudinal tensile 

properties of GFRP composites, transverse tensile properties are sensitive to fibre 

cross-sectional aspect ratio [107]. Deng also pointed out that the longitudinal 

tensile failure mode is also influenced by fibre cross-sectional aspect ratio and he 

observed that GFRP specimens underwent catastrophic failure showing fibre 

breakage and transverse matrix cracking [107], whereas Wonderly [83] observed 

that longitudinally tensile loaded specimens failed by longitudinal matrix cracking  

leading to splitting. Inline with transverse tensile properties, the transverse tensile 

failure mode is also influenced by fibre cross-sectional aspect ratio and GFRP 

specimens were noted to transversely fail due to matrix failure in the fibre 

direction [107]. 

 

2.5.1.2. Compressive properties 

Sigley and colleagues [179] reported their work on unidirectional E-glass 

fibre-reinforced talc-filled or calcium carbide-filled polyester composites, 

containing 52% of fibre, under hydrostatic pressure subjected to axial compressive 

loading.  They observed that failure initiated with kinking of fibre bundles, instead 

of individual fibre failure due to the inhomogeneous distribution of fibres, 

followed by debonding of fibre bundles controlled by the resin transverse tensile 

strain. Material debris and pieces of fibres were found at the fracture surfaces. 

Fabre-matrix interfacial debonding, as indicated by clean surfaces of broken 

fibres, was also noticed at the edges of kink bands. Up to a certain limit, 

atmospheric hydrostatic pressure increased the stress at both the proportional limit 

and failure, but a change of failure mode with the increase of hydrostatic pressure 

was not observed.  
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In 1992, Hamada and co-workers [134] reported their work on woven cloth 

E-glass/epoxy composite tubes subjected to compressive loading. Aluminium tabs 

were glued onto the gripped areas of the specimens. They found that the 

compressive strength varies from 27% to 29% of tensile strength depending on 

the fibre surface treatment. Compressive properties were influenced by the fibre 

surface coating, with the properties of amino-silane coated glass fibre/epoxy 

samples being higher than those of acryl-silane coated. Both groups of samples 

exhibited similar load-displacement plots, with the load increasing with the 

increase of displacement up to a certain displacement and then fluctuating within a 

certain range indicating fracture propagation. The amino-silane treated fibre/epoxy 

samples failed by splaying crushing with fronds being generated inward and 

outward of the wall, while the acryl-silane treated samples failed by fragmentation 

crushing with rings of failure being generated at the failure area. 

Budiansky and his colleagues pointed out that FRP composites subjected to 

compressive loading mainly failed by plastic kinking which is strongly controlled 

by initial fibre misalignment [180, 181] and the shear yield strength of the 

composites [181]. 

Lee and colleagues [166, 182] reported that low volume fraction, Vf  30%, 

unidirectional GFRP composites under compressive loading failed by splitting, 

and by combined failure modes of splitting and kinking for higher Vf. Later, a 

study on the splitting failure mode of E-glass fibre/vinyl ester composites under 

combined compressive and shear loading was carried out by Yerramalli and Waas 

in 2003 [183]. Specimens of d  l = 6.7 mm  63.5 mm with a compressive gauge 

length of lg = 12.7 mm were loaded under proportionally combined compressive 

and shear loading. They observed that under high cross-head translation speed-to-

rotational speed ratios, the specimens failed by combined splitting and kinking, 

with extensive fibre brooming being more profound in the splitting region. 

Another finding was that compressive strength decreased with the increase of 

shear stress. 

The compressive strength of knitted glass fabric-reinforced vinyl ester 

composites have been reported by Wonderly et al. [83]. The compressive tests 
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were carried out according to ASTM D6641, while open hole compressive 

specimens were tested in accordance with the Northrop Grumman standard due to 

its more consistent results. All specimens contained end tabs of 45o glass fibre-

reinforced vinyl ester composites glued onto their gripped areas. They found that 

compressive strength was significantly lower than tensile strength, i.e. 73% of 

tensile strength for solid specimens, and 66% for open hole specimens. Contrary 

to the trend noted for tensile strength, the compressive strength of GFRP 

specimens was higher than that of CFRP specimens, 396.2  20.3 MPa compared 

to 328.0  37.9 MPa for GFRP and CFRP specimens, respectively. The data also 

showed the strengths of GFRP specimens to be spread over a narrower range in 

comparison to those of CFRP specimens. 

Wong et al. [184] investigated the behaviour of E-glass fibre-reinforced 

polyester C-shaped composite short columns at elevated temperature. The 

temperatures were 20 oC, 60 oC, 90 oC, 120 oC, 150 oC, 200 oC, and 250 oC, while 

the size of the C-channel was 100 mm flange  30mm web  4mm wall thickness, 

and the column high being 30 mm. They found that compressive mechanical 

properties of the specimens dropped sharply at the heat distortion temperature of 

the resin. Above the heat distortion temperature, these properties were resin 

dominated due to resin softening effects at high temperature. At room temperature 

up to approximately the heat distortion temperature, specimens showed local 

buckling then failed in an explosive manner, which may indicate crushing, while 

at higher temperature they showed a combination of local crushing and local 

buckling and bending. 

 

Table 2.8. Average compressive mechanical properties of E-glass/polyester C-
channel composites at elevated temperatures [184]*) 

Compressive 
properties 

Temperature (oC) 

20 60 90 120 150 200 250 

Strength (MPa) 282.20 177.72 87.49 45.61 31.68 30.39 22.58 

Modulus (GPa) 22.25 12.90 15.60 10.00 7.50 6.70 6.60 
 

*)Summarised from Tables 2 and 3.  
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Khalid and colleagues [19] reported an investigation on woven fabric E-

glass/epoxy composite I-beams of different flange and web thicknesses, i.e. 3.5, 

4.5, 5.5 and 6.5 mm, with a constant flange width (77 mm), beam depth (125 mm), 

and specimen length of 250 mm subjected to compressive loading. They reported 

that the first crushing load and amount of absorbed energy increased with the 

increase of both flange and web thicknesses of the beam. Significant increases of 

the cross-sectional area, as presented in Table 2.9 below, may be responsible for 

the increase of the first crushing load, although it is in a linear relationship. The 

increase of compressive strength, the last column of Table 2.9, may be caused by 

an increase of fibre volume fraction as also reported by Algood and his colleagues 

[163]. It can be seen in the third column that the increase of flange and web 

thicknesses were not as linear as the increase of the number of prepreg layers, i.e., 

4, 6, 8 and 10, while the increase of flange and web thicknesses did not 

significantly influence the minimum first moment of inertia of the cross sectional 

area (fourth column of Table 2.9). 

 

It can be concluded from the previously reported findings that the 

compressive strength of a typical GFRP composite is significantly lower than its 

respective tensile strength [83, 134]. Compressive properties of GFRP composites 

are influenced by matrix properties [179, 181], the degree of fibre misalignment 

[180, 181], fibre-matrix interfacial characteristics [134], fibre volume fraction [20, 

Table 2.9. Compressive strength calculation for Khalid et al., 2005 [19]  

 Dimensions 
(mm) Area, 

A 
(mm2) 

Imin (mm4) 
Crushing 
load (kN) 

Compress-
ive 

strength, 
c (MPa) H w t 

125 77 3.5  952  3,604,889 36.9565         38.82 

125 77 4.5 1,215 3,663,260 66.6667         54.87 

125 77 5.5 1,474 3,705,019 142.3913         96.60 

125 77 6.5 1,729 3,773,117 230.4348       133.28 

a)Fillet areas are neglected 
b)Approximated from Figure 4 of Ref. [19]. 

H

w

t 

t
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195, 196] and temperature [184]. The compressive failure mode is mostly kinking 

[204, 214, 215] initiated by local buckling, and then followed by fibre crushing 

[134, 184]. Lee and colleagues [166, 182] and Yerramalli and colleagues [185] 

further revealed that this is valid for high Vf, while a splitting mode is more 

dominant for low Vf. 

 

2.5.1.3. Flexural properties 

In addition to tensile and compressive moduli and strengths, Hamada and  

co-workers [134] investigated three-point bend loaded properties of woven cloth 

E-glass/epoxy composite plates employing a span-to-depth ratio, S/d, of 16. They 

found that the tensile and compressive strength of the composites being tested 

were significantly lower than the flexural strength, while the tensile modulus was 

much higher than the flexural modulus. Flexural modulus and flexural strength 

were influenced by the fibre surface coating, with those of amino-silane coated 

glass fibre/epoxy samples being 27% and 44%, respectively, higher than those of 

acryl-silane coated, see Table 2.10. The specimens showed fibre-matrix debonding 

failure at both the compressive and tensile sides of the beams. 

Chen et al. (1994) [186] reported their work on flexural failure mechanisms 

of unidirectional E-glass fibre-reinforced soft thermoplastic matrix composites, 

where they utilised three different thermoplastic matrices possessing three distinct 

different elastic moduli, i.e., 48 MPa, 207 MPa and 516 MPa. Testing was carried 

out under four-point bend (FPB) loading configuration with loading spans equal to 

one-third of the support span. They found that a stiffer matrix produces 

significantly higher flexural strength (Table 2.10), and concluded that flexural 

strength was mainly controlled by composite shear strength and fibre-matrix 

interfacial characteristics. All failures were initiated at the compressive sides 

producing in-plane and out-of-plane fibre microbuckling and then followed by 

local buckling. Significant differences of matrix stiffness also lead to different 

failure modes, where the most flexible matrix produced catastrophic failure with 

fibre microbuckling while the stiffest matrix produced gradual failure due to the 

accumulation of fibre microbuckling, surface delamination and fibre breakage. 
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Gilchrist et al. (1996) [108, 187] working on different lay-ups of E-

glass/epoxy composite I-beams, notched with circular cut-out and unnotched, 

loaded under FPB reported that the presence of circular cut-out in the webs 

reduced the maximum load by approximately 25% and changed the failure 

initiation point. Failure of unnotched beams was initiated at the compressive sides, 

as had been reported by Chen et al. [186] for GFRP composite beams, at 

approximately 50% of maximum load, while that of the notched beams was 

initiated from a shear-loaded circular cut-out in the web [108] showing matrix 

cracking due to local tensile stresses [187]. The damaged compressive flange 

exhibited local buckling and delamination [187] while the tension flange damage 

was very minor [108]. In addition, upon calculation of the flexural modulus and 

strength, it was found that flexural modulus was higher than tensile modulus, but 

flexural strength was lower than tensile strength. Such lower flexural strength may 

be caused by the fact that failure was initiated at the compression side, with the 

compressive strength generally being much lower than tensile strength. 

Deng and colleagues (1999) [107] studied the longitudinal and transverse 

flexural properties of GFRP composites whose physical description is as given in 

the first paragraph of sub-section 2.5.1.1. Flexural characterisation was carried out 

in three-point bending (TPB) tests in accordance with ASTM D790 [188]. A fixed 

support span of 40 mm was used, such that specimens contained different fibre 

cross-sectional geometries due to the different thickness from specimen to 

specimen. They reported that longitudinal and transverse flexural strength, L-fl 

and T-fl, and modulus, EL-fl and ET-fl, are slightly affected by fibre cross-sectional 

aspect ratio. Larger cross-sectional aspect ratios resulted in lower L-fl and EL-fl, 

while T-fl and ET-fl are the lowest in comparison with the respective values of 

those of the circular and ‘peanut’-shaped fibre cross-sections. Stress distributions 

in a beam which linearly varies along the span of the beam may be responsible for 

the higher flexural strength and strain-to-failure in comparison to their respective 

transverse tensile and strain-to-failure. The top surfaces of the specimens subjected 

to longitudinal flexural loading experienced compressive loading while the other 

surfaces underwent tensile loading. Apart from the oval fibre cross section, the 

compression sides failed by local buckling followed by kink band formations as 



 67

have been discussed in sub-section 2.5.1.2, while the other side failed by tension, 

exhibiting fibre-matrix debonding or splitting and fibre breakage as have been 

discussed in sub-section 2.5.1.1. The ‘peanut’-shaped fibre cross-section 

specimens suffered much less compressive failure at their top surfaces but more 

tensile failure at their bottom surfaces in comparison with the circular fibre cross-

section specimens. Perhaps surprisingly, the oval fibre cross-section specimens 

showed only very minor, even negligible, compressive failure at their top surfaces 

accompanied by excessive fibre-matrix interface splitting at their bottom surfaces. 

The transverse flexural failure surfaces exhibited transverse matrix cracking, 

inferring that the transverse modulus, strength and strain to failure are strongly 

influenced by matrix properties and fibre-matrix interfacial strength. For all the 

cross-sectional geometries, they found that the flexural strength was higher than 

tensile strength, but apart from the circular fibre cross-section composites, the 

composite flexural modulus was lower than tensile modulus as had been reported 

by Hamada et al.  [134]. 

The effect of fibre pre-stressing on flexural properties, evaluated under FPB 

loading configuration, for unidirectional [189] E-glass fibre-reinforced epoxy 

composites was reported by Motahhari and Cameron (1999) [190]. The 

prestressing was applied during the whole cycle of fabrication processing. They 

reported that there is an optimum value, at which exists an optimum synergetic 

effect of the degree of ‘loose’ fibre and curing residual stress, of pre-stressing 

level, and flexural modulus and flexural can be increased by up to 33%. These 

increases can be attributed to the fact that upon prestressing, the fibres 

simultaneously react to external loading such that they also tend to break 

simultaneously resulting in lower strain on complete fracture as shown by the 

force-deflection curve. 

Srivastava [28] investigated the effect of water immersion on interlaminar 

shear strength (ILSS), flexural strength under TPB loading, and impact resistance 

of E-glass fabric reinforced particle-filled vinyl ester composites. Polyethylene 

(PE) particles of 40-m size and 10-m size aluminium tri-hydrate (ATH) 

particles have been utilised to improve matrix properties prior to fibre embedment. 

He reported that, before being immersed in water, ATH-filled matrix composite 
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specimens exhibited increase of up to 40% of flexural strength and up to 33% of 

ILSS, while PE-filled matrix composite specimens produced only insignificant 

increase in both flexural strength and ILSS in comparison with un-filled matrix 

composite specimens. In addition, both flexural strength and ILSS increased with 

the increase of immerse time because water intake increases the formation of sub-

microcracking and energy absorption. 

Thomason (2000) observed that elastic modulus, strength and strain to 

failure of discontinuous E-glass fibre-reinforced polyamide 6,6 decreased with the 

increase of fibre diameter [160]. 

O’Brien and Krueger (2003) [167] carried out finite element analysis on 

unidirectional GFRP composite beams of various span-to-depth ratios subjected to 

TPB and FPB loading and compared the results with those calculated based on 

beam theory. They reported that the 2D plain-strain and plain-stress models under 

TPB loading configuration for both linear and geometric non-linear analyses as 

well as under FPB loading configuration for 2D geometric non-linear analysis 

gave slightly lower maximum tensile stresses right under the loading nose when 

compared to those predicted by beam theory. Smaller span-to-depth ratios resulted 

in larger discrepancies. For the FPB loading configuration for 2D geometric non-

linear analysis, the result was considerably close to each other apart from those 

right under the loading nose. This may due to the Saint-Venant effect [191, 192] 

(pp. 240 and 34, respectively). They also revealed that the beam theory prediction 

on maximum tensile stress in bending was more accurate compared to 2D finite 

element analysis, and for 3D finite element analysis, the larger span-to-depth ratio 

as well as larger beam width results in more accurate predictions of beam theory. 

Hagstrand et al. (2005) [193] studying unidirectional glass fibre-reinforced 

polypropylene thermoplastic composites found that the presence of voids in 

composite materials decreases flexural modulus and flexural strength, but it 

increases beam stiffness. In addition, flexural failure loads also increase slightly 

with the increase of void content up to 14%. The composites were produced by 

compression moulding, and the specimens were tested in FPB loading according 

to ASTM D790 [188] with a loading span of 16 mm, support span of 48 mm, and 

span-to-depth ratio of 19.92 to 23.08 depending upon the depth of the beam. 
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Specimens mostly failed between the two loading noses and showing compressive 

buckling and interlaminar shear delamination. 

Khalid and colleagues [19] reported an investigation concerning GFRP 

composite I-beams subjected to three- and four-point bend loading. The physical 

description of the beams is as given in sub-section 2.5.1.2, except that the length 

of the beams was 500 mm with a constant support span of 450 mm. Instead of in 

terms of stress-strain, the results were presented as load-displacement and bending 

moment-rotation angle terms. They reported that the first crushing loads of four-

point bend (FPB) tests are higher than those of three-point bend (TPB) tests, 

however, apart from the specimens containing 8-layer thick flange and webs, the 

respective flexural strengths of FPB tests are lower than those of TPB tests. Such 

lower flexural strength may be caused by the fact that in FPB cases, there were 

two loading noses, and that the first failure, which often happened at the 

compressive side right under the loading noses [108], were in two separate places 

compared to only one single area for the TPB cases. Therefore, failure was 

initiated in two different places. 

 

 
 

Flexural properties of GFRP composites were also investigated by Cao and 

Cameron [164]. Untreated and treated E-glass fibre was utilised to reinforce epoxy 

matrix material. Three different treatments, i.e. prestressing, silica particle 

modification and combination of prestressing and silica particle modification, 

Table 2.10. Flexural strength calculation from Khalid et al., 2005 [19] 

 Dimensions (mm)

Iy (mm4)a) 

TPB test FPB test 

H w t 
Max 

load, F 
(kN)b) 

Strength, 
fl (MPa)

Max 
load, F 
(kN)b) 

Strength, 
fl(MPa)

125 77 3.5 2,468,981 7.108  20.24 7.941    15.08 

125 77 4.5 3,102,139 12.530  28.40 17.353    26.22 

125 77 5.5 3,705,019 16.747  31.78 27.500    34.79 

125 77 6.5 4,278,600 27.470  45.14 35.000    38.34 

a)Fillet areas are neglected 
b)Approximated from Figures 6 and 7 of Ref. [19].

H 

w

t 

t 
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were applied onto the fibre surface prior to embedment into epoxy matrix. Flexural 

characterisation was carried out in TPB loading in accordance with ASTM D790 

[188]. They revealed that the flexural properties can be improved by prestressing, 

silica particle coating of glass fibres, and the combination of both treatments. As 

presented in Table 2.10, prestressing can improve the flexural modulus and 

flexural strength by 29.4% and 34.7%, respectively, while silica particle coating 

can improve these properties by 27.8% and 11.4%, respectively. Both 

treatments, when combined, can improve flexural modulus and flexural strength 

by 74.7% and 87.5%, respectively. 

The following conclusions can be drawn from the above discussion. 

Hamada et al. [134] for fibre cloth, Deng et al. [107] for unidirectional fibre and 

Thomason [160] for discontinuous fibre reinforced polymer composites 

independently reported that their composites exhibited higher tensile modulus with 

lower tensile strength in comparison with flexural modulus and flexural strength, 

respectively. Hagstrand et al. [193] found the same phenomenon for modulus but 

the opposite effect for strength, while Gilchrist et al. [108] revealed in the contrary 

for both tensile and modulus. Compressive strength is much lower than flexural 

strength [134]. In addition to fibre content, flexural strength and flexural modulus 

of GFRP composites are influenced by fibre diameter [160], fibre-matrix 

interfacial properties [134, 164], matrix properties and composite shear strength 

[28, 186], fibre prestressing level [164, 190], fabrication parameters [190] which 

influence composite microstructure, moisture content [28], void content [193], 

span-to-depth ratio and specimen width [167], and loading configuration [19] 

where FPB shows a higher crushing load but, in fact, lower flexural modulus and 

flexural strength compared to TPB. Failure was initiated at the compressive side of 

the beams with the failure mode being influenced by matrix properties [186]. 

Fibre-matrix debonding may be observed at both the compressive and tensile sides 

of the failed specimens [134, 186], fibre microbuckling [186], interlaminar 

delamination or splitting [193]. 
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Table 2.11. Typical properties of GFRP composites 

First author, 
year 

Fibre 
characteristics 

Matrix 
type Vf (%) 

Elastic modulus, 
E (GPa) Strength,  (MPa) Strain to 

failure,  
(%)*) 

Dominant failure mode 

Et Ec Efl t c fl Tension Compression Flexure 

Deng, 1999 UD, 0o, C Epoxy   69.20   49.9    50.2  1,056.8    1,653.7 2.18, 3.34 FB, T-MC, Db   K / FB, T-MC 
  UD, 0o, P Epoxy   68.20   51.0    48.1  1,089.4    1,564.7 2.36, 3.55 Db, L-MC, SR   Less K / Db, FB 
  UD, 0o, O Epoxy   69.30   49.7    47.0  1,080.6    1,354.5 2.33, 3.66 Db, L-MC, SR   --- / Db, L-MC 
  UD, 90o, C Epoxy   69.80   18.3    17.0        40.7          92.9 0.26, 0.57 Db, T-MC, SF   T-MC 
  UD, 90o, P Epoxy   64.20   11.8    12.8        37.3          84.2 0.38, 0.66 Db, T-MC, SR   T-MC 
  UD, 90o, O Epoxy   62.00   15.5    13.2        45.4          92.2 0.32, 0.81 Db, T-MC, SR   T-MC 
Thomason, 2000a) Dc, d10 PP6,6   15.90      9.7       9.2      184.1       286.5 2.83, N/A N/A   N/A 
  Dc, d11 PP6,6   15.90      9.8       9.2      182.9       285.4 2.80, N/A N/A   N/A 
  Dc, d14 PP6,6   15.90      9.6       9.3      173.7       269.8 2.70, N/A N/A   N/A 
  Dc, d17 PP6,6   15.90      9.5       9.0      164.0       249.3 2.49, N/A N/A   N/A 
Wonderly, 2005, E-g, UD, 0o VE  N/A             544.0     396.2     Db, T-MC Db, K   
  OH: d/w = 6/38 E-g, UD, 0o, OH VE  N/A             367.4     238.9     Db, T-MC Db, K   
  E-g, UD, 90o VE  N/A               23.6       T-MC     
Khalid, 2005b) UD, I-beam, 4 layers Epoxy  N/A                38.8        20.2   N/A N/A   
  6 layers Epoxy  N/A                54.9        28.4   N/A N/A   
  8 layers Epoxy  N/A                96.6        31.8   N/A N/A   
  10 layers Epoxy  N/A              133.3        45.1   N/A N/A   

Continued 
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Table 2.11. Continued 

First author, 
year 

Fibre 
characteristics 

Matrix 
type Vf (%) 

Elastic modulus, 
E (GPa) Strength,  (MPa) Strain to 

failure,  
(%)*) 

Dominant failure mode 

Et Ec Efl t c fl Tension Compression Flexure 

Sigley, 1992 E-g 28x2400, UD, 0o talc PE   52.00              780.0       K in & out, SF    
  E-g 18x2400, UD, 0o cc PE   52.00              380.0       K in & out, SF    
  E-g 9x4800, UD, 0o cc PE   52.00              450.0       K in & out, SF    
Hamada, 1992 Ac-s E-g cloth Epoxy   42.00   20.5    11.5      315.6       90.2     422.0     Fragmentation Db in both sides 
  Am-s E-g cloth Epoxy   42.00   21.2    14.6      403.1     108.4     608.1     Splaying Db in both sides 
Lee, 1999 E-g, UD, 0o VE 0.00        3.7             Dd or splitting   
  E-g, UD, 0o VE 10-30                 Dd or splitting   
  E-g, UD, 0o VE  40-60                  Db and K   
Yerramalli, 2003 E-g, UD, 0o VE   50.00                  Db then K   
Wong, 2004 E-g, UD, 0o,                         
    C-shaped,      20 oC PE  N/A     22.3         282.2           
  60 oC PE  N/A     12.9         177.7           
  90 oC PE  N/A     15.6           87.5           
  120 oC PE  N/A     10.0           45.6           
  150 oC PE  N/A        7.5           31.7           
  200 oC PE  N/A        6.7           30.4           
  250 oC PE  N/A        6.6           22.6           
    90o, 20 oC PE  N/A        7.4                 

Continued 
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Table 2.11. Continued 

First author, 
year 

Fibre 
characteristics 

Matrix 
type Vf (%) 

Elastic modulus, 
E (GPa) Strength,  (MPa) Strain to 

failure,  
(%)*) 

Dominant failure mode 

Et Ec Efl t c fl Tension Compression Flexure 

Chen, 1994 E-g, UD, 0o/Thrplast H4056   44.60                   41.0       MB, K 
    H5526   45.00                247.0       MB, K, FB 
    H7246   43.20                355.0       MB, K, Db, Dl 
Gilchrist, 1996c) E-g, UD, 0o Epoxy  N/A   45.4      1,049.0           Compr FBu, Dl 
  E-g, UD, 90o Epoxy  N/A   15.2            46.5           Compr FBu, Dl 
  E-g, UD, 0o, 45o Epoxy  N/A   26.7    38.6      432.8       278.8 1.27/-1.38     Compr FBu, Dl 

notched: E-g, UD, 0o Epoxy  N/A                    Compr FBu, Dl 
  E-g,UD, 90o Epoxy  N/A                    Compr FBu, Dl 
  E-g, UD, 0o, ±45o Epoxy  N/A              1.40/-1.38     Compr FBu, Dl 
Srivastava, 1999d) E-g, farbic VE  N/A                320.0         
    VE-ATH  N/A                451.0         
    VE-PE  N/A                330.0         
O'Brein, 2003 S2-g,UD, 0o Epoxy  N/A   47.7                   
  S2-g,UD, 90o Epoxy  N/A   12.3                   
Hagstrand, 2005 UD, 0o PP  N/A   28.0    24.0      700.0       470.0       comp, int lam Dl 
Cao, 2006e) E-g, UD, 0o Epoxy   20.00       13.0         283.5       comp, int lam Dl 
  E-g prestr15,UD, 0o Epoxy   20.00       16.8         382.0       comp, int lam Dl 
  E-g-Sil mod,UD,0o Epoxy   20.00       16.6         315.8       comp, int lam Dl 

Continued 
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Table 2.11. Continued 

First author, 
year 

Fibre 
characteristics 

Matrix 
type Vf (%) 

Elastic modulus, 
E (GPa) Strength,  (MPa) Strain to 

failure,  
(%)*) 

Dominant failure mode 

Et Ec Efl t c fl Tension Compression Flexure 

 Cao, 2006 E-g prestr-Sil,UD,0o Epoxy   20.00       22.6         531.7       comp, int lam Dl 
   (Continued) E-g, UD, 0o Epoxy   30.00       19.0         468.8       comp, int lam Dl 
  E-g-SiO2 mod,UD,0o Epoxy   30.00       24.6         502.8       comp, int lam Dl 
  E-g prestr-Sil,UD,0o Epoxy   25.00       28.7         657.7       comp, int lam Dl 

Notes: 

Subscripts: t = tension, c = compression, fl = flexural. 

Fibre characteristics: Ac-s = acrylo-silane coated, Am-s = amino-silane coated, Dc = randomly oriented discontinuous fibre, KF = knitted 
fabric, UD = unidirectional, 0o = longitudinal direction, 90o = transverse direction,  = fibre diameter (m), L = fibre length (mm), OH 
= open hole, C = circular fibre cross section, P = ‘peanut’-shaped fibre cross section, O = oval fibre cross section. 

Matrix type: cc = calcium carbonate-filled, PA = polyamide, PC = polycarbonate, PE = polyester, PEt = polyethylene, PP = polypropylene, 
PU = polyurethane, talc = talc-filled, VE = vinylester. 

Strain to failure: *)respective values of the utilised test methods. 

Dominant failure mode: comp = compressive, Db = fibre-matrix interfacial debonding or splitting, Dl = delamination, FB = fibre breakage, 
Fbu = flange buckling, FP = fibre pull-out, int lam Dl = interlaminar delamination, K = kinking, L = longitudinal direction, MB = 
microbuckling, MC = matrix cracking, SF = surface is flat, SR = surface is rough, T = transverse direction. 

a)Considering E = 2.58 (g/cm3) [103], S2 = 2.46 (g/cm3) [103], and PA6,6 = 1.14 [106] (p. A5), fibre content of 30 wt.% is equivalent to Vf 
= 15.92 %. 

b)Compressive properties calculated based the available load, geometry and dimension data. Flexural strength for TPB test. 
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c)Moduli were calculated from Figure 11, and strength were calculated from Table 2 of Ref. [108]. 
d)Approximated from Figure 2 of Ref. [28]. 
e)Numerical values were approximated from Figures 3, 4, 6, 7, 9, and 10 of Ref. [164]. 
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2.5.1.4. GFRP summary 

The compressive strength of GFRP composites is commonly much lower 

than their tensile strength [83, 134], which is a drawback of their utilisation for 

structural materials. Some typical GFRP composites exhibit lower flexural 

modulus combined with higher flexural strength [110, 140, 169], some others 

possess both lower flexural modulus and strength [193], and some others exhibit 

higher flexural modulus with lower flexural strength [108]. 

Mechanical properties of GFRP composites are influenced by a number of 

factors related to their micro- and macro-structures. Tensile properties are 

sensitive to fibre-matrix interfacial properties [134], as well as fibre diameter [159, 

160], length and content [159], while transverse tensile properties are also 

influenced by fibre cross-sectional aspect ratio [107]. In addition to fibre content 

[19, 163, 183] and temperature [184], compressive properties are controlled by 

matrix properties [179, 181], degree of fibre misalignment [180, 181], fibre-matrix 

interfacial properties [134]. Flexural modulus and strength are influenced by fibre 

diameter [160], fibre prestressing level [164, 190], fabrication parameters [190], 

fibre-matrix interfacial properties [134, 164], matrix properties and composite 

shear strength [28, 186], moisture content [28], void content [193], span-to-depth 

ratio and specimen width [167], and loading configuration [19]. 

Different longitudinal failure modes have been reported for GFRP 

composites subjected to tensile loading, i.e., catastrophic failure exhibits fibre 

breakage and transverse matrix cracking [107], and longitudinal matrix cracking 

leading to splitting [83], while transverse tensile failure shows matrix failure in the 

fibre direction [107]. Compressive failure modes can be divided into two 

categories, i.e., fibre kinking [204, 214, 215] initiated by fibre local buckling and 

followed by crushing [145, 205] for high Vf [179, 188, 200], and longitudinal 

splitting for Vf  30% [179, 188, 200]. Flexural failure modes of GFRP composites 

subjected to flexural loading can be fibre-matrix debonding at both the tension and 

compression sides [143, 202], fibre micro buckling at the compression side [186], 

and combined with delamination or splitting following buckling [193]. Mechanical 

behaviour discussed in this section, 2.5.1, have been summarised in Table 2.11. 
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2.5.2. Carbon Fibre-Reinforced Polymer (CFRP) Composites 

 

Amongst the reasons of superiority of CFRP composites over other structural 

materials for aerospace applications is their high specific strength and stiffness 

[194]. Most matrices incorporated with carbon fibres to produce CFRP composites 

have tended to be epoxies [151, 177, 195-201] and other thermosetting resins, i.e., 

polyester [185, 202], vinylester [89, 114, 194, 203, 232, 233], phenolic [196], and 

bismaleimide [203]. Carbon fibres have also been utilised to reinforce 

thermoplastic matrices, such as polyphenylene sulphide (PPS) [204], nylons 6 [42, 

204] and 6,6 [42], and polyetherether ketone (PEEK) [205]. For high-temperature 

applications, carbon fibres have been embedded in carbon [206] and graphite [83, 

108, 167, 207] matrices. Different fibre architectures of continuous carbon fibres 

have been employed in producing CFRP composites, e.g., unidirectional [86, 111, 

172, 178, 181, 193, 203, 204, 206, 207, 209, 211, 215, 218], discontinuous [197], 

unidirectional stitched, cross ply, plain weave, woven roving, woven fabric [42, 

196], knitted fabric [83], and 3D braided [208]. 

Different mechanical properties of CFRP composites, e.g., tension [42, 159, 

208, 209, 211, 214, 218], compression [42, 181, 204, 207, 210, 214, 215, 217-

220], flexure [108, 119, 151, 167, 177, 196, 197, 199], torsion or shear [42, 151], 

and impact [206, 210], have been investigated and reported. Various methods 

and/or standards and specimen geometries were utilised to study a particular 

mechanical property. 

 

2.5.2.1. Tensile properties 

Transverse properties of unidirectional CFRP composites have been reported 

by Rezaifard et al. [177]. They reported that transverse modulus and strength 

increased with an increase of fibre surface treatment up to a certain level, but not 

sensitive to fibre properties because they are fibre-dominated [162] as was also 

reported by Wonderly et al. [83] for glass fibre/vinylester composites. 

Olivier and colleagues [151] investigated the effect of cure cycle pressure on 

void content, longitudinal and transverse tensile, and flexural properties of carbon 
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fibre/epoxy composites. They reported that void content decreased with the 

increase of cure pressure. In addition to this, they observed that longitudinal 

tensile modulus was not affected by void content, longitudinal tensile strength 

slightly decreased with an increase of void content, and both the transverse 

modulus and strength were severely affected by void content. As the matrix 

macro-structure is more severely impacted by the presence of voids when 

compared to the fibre, this result confirms that transverse properties are matrix-

dominated [177] whereas longitudinal properties are fibre-dominated [162]. 

Wonderly et al. [83] investigated the mechanical properties of knitted E-

glass fabric/vinyl ester composites. Tensile tests were carried out in accordance 

with ASTM D3039 [172], while open hole tensile specimens were tested 

according to ASTM D5766; all specimens contained end tabs of 45o glass fibre-

reinforced vinyl ester composites glued onto their gripped areas. It was observed 

that CFRP specimens exhibited lateral failure close to the tabs, while the average 

tensile strength has been presented in Table 2.11. They also reported that 

longitudinal tensile strength for solid CFRP specimens is 76% higher than that of 

solid GFRP specimens, and that of open hole CFRP specimens is 69% higher 

that that of open hole GFRP specimens, whereas the transverse tensile strength of 

CFRP specimens is lower than that of GFRP specimens. This phenomenon may be 

attributed to the fact that the longitudinal tensile strength is fibre-dominated while 

transverse tensile strength is matrix-dominated, with the longitudinal tensile 

strength of carbon fibre, 4.9 GPa, being more than double compared to that of 

glass fibres, 2.4 GPa [83, 162, 177]. 

Oya and Hamada [119] reported that the lower the modulus, 410.6 GPa to 

226.9 GPa, of CFRP composites, the higher their strain to failure, 0.32% to 0.98%. 

High tensile strength CFRP composites failed at even higher tensile strains, 

1.78%. Most of their failed samples showed brooming failure incorporated with 

transverse matrix failure for lower strength specimens, and longitudinal matrix 

failure for higher strength specimens. Failure initiated in fibres due to the lower 

strain-to-failure of CF compared to that of the matrix. Strong fibre-matrix 

interfacial bonds will result in brittle fracture for low strength CF and brooming 
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for high strength CF, while weak interfacial bonds will lead to a brooming failure 

mode. Tensile mechanical properties have been presented in Table 2.12. 

Oya and Hamada [204] also reported their work on carbon fibre-reinforced 

nylon6 and poly propylene sulphide (PPS).  Although nylon6 is much tougher than 

PPS, both resultant composites exhibited very similar axial tensile behaviour 

showing slight slope increase of their stress-strain plots with an increase of strain. 

The nylon6 specimens showed a slightly lower axial tensile strength, but with 

wider scatter than PPS specimens. Such a lower axial tensile strength may be 

caused by lower tensile strength of the matrix. The scatter of mechanical 

properties was inline with the variation of fracture mode, i.e., nylon6 specimens 

showing wider scatter exhibited a combination of transverse matrix failure with 

fibre breakage indicating the presence of strong fibre-matrix interfacial bonding 

and the brooming mode indicating weaker interface bonding, while the PPS 

specimens showed only a brooming failure mode. Unlike the transversally-loaded 

PPS specimens which failed in a brittle manner, the nylon6 specimens underwent 

plastic deformation prior to failure. Fracture surfaces of the nylon6 specimens 

exhibited matrix-covered fibres indicating strong fibre-matrix interfacial bonding 

leading to higher transverse strength, while those of PPS specimens are in the 

contrary. Such behaviour reveals that axial properties are matrix dominated, while 

transverse properties are also matrix dominated as have been reported in other 

work [83, 162, 177]. 

Fragmentation tests to investigate fibre fracture and fibre-matrix interfacial 

debonding of AS4 carbon fibre embedded in Shell Epon 828 epoxy resin has been 

reported by Kim and Nairn [201]. The behaviour of fibres embedded in a matrix is 

primarily influenced by inherent properties of the fibre, curing parameters, and 

fibre-matrix interface characteristics. At a certain strain level, the fibre starts to 

break leaving a gap between the two pieces and creating a debonding region in the 

surrounding breakage. Further increases of strain will generate other breakages 

along with their own new gaps and debonding regions until reaching saturation. 

Tensile properties of carbon fibre reinforced polyamide6 and 6,6 

thermoplastics of two different fibre architectures have been reported by Botelho 



 80

et al. [42]. They observed that damage development was primarily caused by 

fibre-matrix interface failure due to shear loading. Tensile mechanical properties 

of their specimens have been presented in Table 2.12. At the same fibre volume 

fraction, carbon fibre fabric/PA6,6 specimens were 13%  38% stronger than 

carbon fibre fabric/PA6 specimens. There was no trend observed for tensile 

modulus in comparison between carbon fibre fabric/PA6,6 and carbon fibre 

fabric/PA6 specimens, as well as for the axial modulus of unidirectional fibre 

composite specimens, whereas the transverse tensile modulus of unidirectional 

carbon fibre/PA6,6 specimens were 27%  36% higher than those of 

unidirectional carbon fibre/PA6 specimens. This might be caused by the existing 

stronger interfacial bond in PA6,6 composite specimens as confirmed by the 

micrographs of their fracture surface showing shorter fibre pull-out length in the 

PA6,6 composite specimen. Both groups of specimens showed linear axial tensile 

stress-axial tensile strain relationships to failure, whereas the transverse tensile 

stress-transverse tensile strain relationships showed a slightly decreasing slope 

with respect to the increase of strain. Matrix softening might be responsible for 

such a phenomenon [101] (p. 527). Most of the specimens, for both axial 

transverse tests, exhibited fibre pull-out modes upon failure, indicating that only 

weak fibre-matrix interfacial bonding existed at the interface. Their results on 

axial and transverse testings also confirmed that axial properties are fibre-

dominated while transverse properties are matrix-dominated as has been reported 

in other work [204, 209]. 

The following conclusions can be drawn from the above findings and 

discussion. Comparing the axial and transverse test results leads to confirmation 

that axial properties are fibre-dominated while transverse properties are matrix-

dominated [42, 204], as has been reported in elsewhere [83, 162, 177]. Following 

an initial breakage of a fibre, on the increase of strain level, new breakages will be 

generated along the fibre creating gaps between fibre pieces and fibre-matrix 

debonding regions in the surrounding gaps until reaching saturation [201]. Shear 

failure along the fibre-matrix interface indicates that loading is transferred from 

matrix into fibres via the interface in the form of shear loading [42]. The strength 

is closely related to fracture modes. Transverse matrix failure combined with fibre 
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breakage indicating excessively strong interface bonding leading to lower tensile 

strength, while brooming failure with longitudinal fibre-matrix debonding 

indicates weaker interfacial bonding leading higher tensile strength [177]. 

 

2.5.2.2. Compressive properties 

Jelf and Fleck [210] reported that the compressive strength of carbon fibre-

reinforced epoxy composite tubes, Vf = 65%, linearly decreased with an increase 

of applied combined shear stresses. This finding was later supported by finding of 

Vogler and Kyriakides [211] for AS4 carbon fibre-reinforced PEEK composites. 

Axial compressive properties of unidirectional carbon fibre-reinforced epoxy 

composites has been reported by Oya and Hamada [119]. They found that the 

higher the compressive modulus the lower the compressive strength and strain to 

failure. Stress-strain relationships of the samples exhibited linearity almost up to 

failure, only small portions of the curve underwent ‘softening’. In comparison with 

tensile properties, compressive moduli were found to vary from 78.54% to 93.36% 

of the tensile modulus, while the compressive strength ranged from 28.34% to 

53.38% of tensile strength. Two different failure modes were observed, i.e., shear 

mode showing a fracture surface at a 45o angle to the fibre direction and mostly 

associated with low strength CFRP specimens, and transverse or crushing mode 

showing a fracture surface perpendicular to the fibre direction and associated with 

higher strength CFRP specimens. 

In another paper [204] Oya and Hamada reported their work on carbon fibre-

reinforced thermoplastics, i.e., nylon6 and PPS. They observed that, for both 

groups of specimens subjected to compressive loading, the stress-strain 

relationship was linear up to failure, and both failed at almost the same magnitudes 

of strain-to-failure, strength, as well as exhibited very close magnitudes of 

modulus, presented in Table 2.12. Whilst strain-to-failure of the nylon6 matrix, 

57.4%, is much higher than that of PPS matrix, 1.6%, it showed that the 

compressive properties are more fibre-dominated than matrix-dominated. They 

observed that most of the nylon6 specimens, 83.3%, failed in a shear mode, while 

almost half, 55.2%, of the PPS specimens failed in a transverse mode. They also 
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noticed that specimens which failed in a shear mode resulted in lower compressive 

strength in their group in comparison with those that failed in a transverse mode. 

Experimental observation of Moran and Shih [205] confirmed that kink band 

formation in ductile matrix composites, in this particular case, an IM7 carbon 

fibre-reinforced PEEK composite, consist of three stages, i.e., initial kinking, 

transitory kinking and band broadening. In the first stage, at a certain level of 

loading, fibres with micro-structure imperfections, such as curved or disoriented, 

will start to rotate and generate shear deformation of the matrix leading to non-

linear stress-strain relationships up to its peak load. Further loading in the next 

step will drive kink band propagation across the specimen in combinations with a 

significant drop of load. Due to fibre rotation, its surrounding matrix experiences 

extreme shear straining, until it reaches it rotation limit. This will then be followed 

by a softer deformation mode of band broadening at considerably constant load 

until complete failure. They also predicted the magnitude of kink band angle 

between 10o – 35o, and the magnitude of steady-state driving stress to be between 

3 and 7 times the shear yield strength of the composite. 

 

 

Figure 2.18. Compressive strength comparison between E-glass fibre/vinylester 
and IM7-12k carbon fibre/vinylester composites showing, within the range of 
given fibre volume fraction, that of the GFRP composite is higher than that of 
the CFRP composites [166]. 
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Lee and colleagues (1999, 2000) [166, 182] observed that unidirectional 

carbon/epoxy composites subjected to compressive loading failed by kinking 

irrespective of Vf. Lee and Waas [166] concluded that compression test results 

with these specimens show that carbon fibre composites have lower compressive 

strengths than glass fibre composites, as presented in Figure 2.18. 

Compressive properties in comparison with tensile properties of carbon fibre 

reinforced polyamide6 and 6,6 thermoplastics of two different fibre architectures 

have been reported by Botelho et al. [42]. They revealed that the carbon fabric-

reinforced PA6,6 composite specimens presented 7%  9% higher compressive 

strength compared to PA6 composite specimens of the same reinforcing materials. 

The compressive strength of woven fabric-reinforced polymer composites is 

significantly lower than their tensile strength which is later supported by Kawai 

and Koizumi [212] for multidirectional fibre-reinforced polymer composites. On 

the other hand, PA6,6 composite specimens exhibited compressive strengths that 

are only 71.1% – 79.5% of their respective tensile strength in comparison to 

82.2% – 91.6% for the PA6 composite specimens. Regarding failure 

mechanisms and modes, they observed that matrix cracking initiated at loads 

ranging from 40% to 50% of failure load within a matrix-rich area. Further loading 

leads to local rotation, similar to kink band formation, and interlaminar 

delamination. Finally, specimens under loading failed in a shear mode at an angle 

of greater than 60o. Comparing these compressive strength results with those of 

Oya and Hamada [119, 204], presented in Table 2.11, one can confirmed what has 

been previously reported [119, 204], i.e., that shear failure is related to lower 

compressive strength. 

Yerramalli and Waas (2003) [183] investigated the effect of shear stress on 

the compressive strength of IM7-12k carbon fibre/vinylester composites. 

Specimen dimensions and loading configurations are as described in sub-section 

2.5.1.2 in paragraph four. Unlike GFRP specimens that failed by combined mode 

splitting and kinking, CFRP specimens failed by a single mode of kinking 

irrespective of cross-head translation speed-to-rotational speed ratio. A decrease of 

compressive strength with the increase of shear stress was also noticed. 
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The compressive strength of knitted glass fabric-reinforced vinyl ester 

composites has been reported by Wonderly et al. [83]. Compressive tests were 

carried out according to ASTM D6641 while open hole compressive specimens 

were tested in accordance with the Northrop Grumman standard due to its more 

consistent results. All specimens contained end tabs of 45o glass fibre-reinforced 

vinyl ester composites glued onto their gripped areas. They observed that the 

compressive strength of solid CFRP specimens is 17% lower than that of GFRP 

specimens, and those of CFRP specimens showed a broader spread of values in 

comparison to those of GFRP specimens. Perhaps surprisingly, the compressive 

strength of open hole CFRP composite specimens is only slightly, 2%, lower that 

that of open hole GFRP specimens. The compressive strength of FRP composites 

mainly depends upon shear yield strength and fibre misalignment of the 

composites [181].  

The discussion above leads to the following conclusion. Compressive 

strength decreases with the increase of combined shear stress [213, 214]. 

Compressive strength is significantly lower than tensile strength, the higher the 

compressive modulus the lower the compressive strength [42, 119]. Although the 

tensile strength of CFRP composites is significantly higher than that of GFRP 

composites, the compressive strength of CFRP composites is considerably lower 

than that of GFRP composites [166]. Shear failure is related to lower compressive 

strength whereas transverse failure is related to higher compressive strength [119, 

204]. Compressive failure modes for unidirectional fibre-reinforced composites 

are dominantly kinking [166, 182, 205, 213] regardless of their fibre volume 

fraction [166], as well as for multidirectional fibre-reinforced polymer composites 

[42, 212]. The kink band formation process is identified as initial kinking, 

transitory kinking and band broadening [205].  

 

2.5.2.3. Flexural properties 

Parry and Wronski [199] in 1981 reported their work on Grafil A-S type III 

carbon fibre-reinforced epoxy composites beams of various span-to-depth ratios, 

S/d,  subjected to TPB and FPB flexural loading. They revealed that flexural 
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strength was significantly lower than tensile strength and that kinking initiated in 

contact with the loading nose at the compressive side of the beam, producing a 

non-linear stress-strain relationship, followed by kink growth propagation towards 

the neutral axis in a decreasing pattern of load magnitude, and eventually, failure 

in either a flexural mode, for S/d = 15 and S/d = 40, or interlaminar delamination 

mode due to the presence of matrix rich areas between two adjacent plies for S/d = 

5. Flexural failure surfaces showing tension and compression failure in their 

fracture surface separated approximately at the neutral axis. The failure 

mechanism at the compressive side has later been confirmed by Moran and Shih 

from their compressive tests of unidirectional IM7 carbon fibre/PEEK composites 

[205]. In the later failure mode, kink band formation was followed by longitudinal 

delamination through matrix rich region. 

A typical CFRP prepreg fabrication method was employed by Kim and Mai 

[197]. Prior to being impregnated with the matrix to produce CFRP prepregs, 

either continuous carbon fibre bundles or discontinuous carbon fibre was 

impregnated with either polycarbonate or epoxy solution in order to ensure 

thorough wetting of the fibre. Specimens with S/d = 30 were subjected to TPB 

loading at a constant crosshead speed of 0.5 mm/min in order to determine their 

flexural strength. Although there was only a slight increase in flexural strength 

when compared to those commonly produced prepreg, the increase in fracture 

toughness for both with discontinuous and continuous fibre reinforcement was 

significant, up to 100%. 

Transverse flexural properties of unidirectional CFRP composites subjected 

to TPB loading has been reported by Rezaifard et al. [177]. They reported that the 

pattern of transverse flexural modulus and strength with respect to fibre surface 

treatment level is similar to those for the respective tensile properties. They 

observed the an increase of up to more than 100% of flexural strength for 100%-

level surface-treated fibre composites in comparison with that of untreated carbon 

fibre/epoxy composites, and further treatment exhibited a declining trend of 

flexural strength. They found that the flexural strength was up to 70% higher 

than tensile strength. 
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The effect of compressive cure pressure on void content, and flexural 

properties of carbon fibre/epoxy composites has been studied by Olivier et al. 

[151]. They pointed out that void content decreases with an increase of 

compressive curing pressure. Void content along with void shape and distribution 

must be considered in determining the effect of void on the flexural properties of 

composites. The decrease of flexural strength may be closely related to the 

decrease of ILSS with any increase of void content, as flexural strength decreases 

with an increase of shear stress as reported in reference [183]. 

Gilchrist et al. (1996) [108, 187] working on different lay-ups of T300 

carbon fibre/epoxy composite I-beams, notched with circular cut-outs and 

unnotched, loaded under FPB, reported that the presence of a circular cut-out in 

the webs reduced the maximum load by approximately 25% and changed the 

failure initiation point. In comparison with its GFRP counterpart, the T300 

carbon/epoxy I-beams are approximately 33% stronger. Failure of the unnotched 

beams was initiated at the compressive sides, as has been reported by Chen et al. 

[186] for GFRP composite beams, with the most severe damage being in the fillet 

resulting from a stress raiser due to geometric discontinuity, while that of the 

notched beams was initiated from a shear-loaded circular cut-out in the web [108] 

exhibited matrix cracking due to local tensile stresses [187]. Compressive flange 

damage exhibited delamination [108] following local buckling [187], while the 

damage at the tension side was barely visible [108]. Axial flexural strength of both 

unnotched and notched CFRP composite I-beams is higher than that of their 

respective GFRP counterparts. 

Oya and Hamada [119] observed that the higher the flexural modulus of the 

composites, the lower the flexural strength. Flexural mechanical properties were 

higher than their respective compressive mechanical properties, but lower than 

their respective tensile properties. Linear stress-deflection relationships up to the 

point of initial failure were observed for all four different grades of CFRP 

composites, and failure was initiated at the compression side, as has been reported 

in [214] for carbon-fibre-reinforced thermoplastic composite I-beams tested under 

three-point bending, advancing into the tension side, passing through the neutral 

plane, and producing interlaminar debonding adjacent to the neutral plane. 
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Oya and Hamada [204] also reported their work on carbon fibre-reinforced 

nylon6 and poly propylene sulphide (PPS).  Although nylon6 is much tougher than 

PPS, both resultant composites showed very similar axial tensile behaviour. The 

scatter of mechanical properties was in line with the variation of fracture mode. In 

order to obtain considerably high strength composites, the matrix must possess 

high fracture toughness and proportional properties of the fibre, matrix and 

interface. 

Finite element analysis on unidirectional CFRP and GFRP composite beams 

of various span-to-depth ratios subjected to transverse TPB and FPB loading to 

identify its accuracy compared to beam theory prediction has been reported by 

O’Brien and Krueger (2003) [167]. They pointed out that the 2D plain-strain and 

plain-stress models under TPB loading configurations for both linear and 

geometric non-linear analyses, as well as under FPB loading configuration for 2D 

geometric non-linear analysis, gave slightly lower maximum tensile stress right 

under the loading nose when compared to those predicted by beam theory. Smaller 

span-to-depth ratios resulted in larger discrepancies. For the FPB loading 

configuration and 2D geometric non-linear analysis, the results were close to each 

other apart from those right under the loading nose. This may due to the Saint-

Venant effect [191, 192] (pp. 240 and 34, respectively). They also revealed that 

beam theory prediction for maximum tensile stress in bending was in very good 

agreement with the result of their model for the 2D finite element analysis, and for 

3D finite element analysis, the larger span-to-depth ratio as well as larger beam 

width results in better agreement with that of beam theory. 

The following are conclusions drawn from the previously reported work on 

the mechanical behaviour of CFRP composites. Whilst short beams, S/d = 5, failed 

by interlaminar shear, longer beams, S/d = 15 and S/d = 40, failed in a flexural 

mode with fracture surfaces showing tensile and compressive failure separated 

approximately at the neutral axis [199]. Failure initiated at the compression side 

[119, 214] with a lower flexural modulus being associated with higher flexural 

strength. Whilst the failure of solid laminated CFRP I-beams subjected to FPB 

loading initiated in their compressive flanges [108, 187], producing local buckling 

and delamination [187], those of the beams with circular cut-outs in their webs 
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initiated in these stress raisers, producing matrix cracking [108, 191] due to local 

tensile stresses [187]. Individually impregnated fibre bundles prior to prepreg 

fabrication can improve fracture toughness up to 100% in comparison to 

previously unimpregnated fibre bundle prepregs [197]. The scatter of flexural 

properties are reflected by the diversity of failure modes [204] whilst the flexural 

strength of CFRP composites can be increase by fibre surface treatments [177]. It 

is not only the quantity of voids that influences CFRP flexural properties but also 

their shapes and distribution [151]. Flexural mechanical properties were higher 

than their respective compressive mechanical properties, but they may be lower 

[119] or higher [177] than their respective tensile properties. Axial flexural 

properties of CFRP composites are not sensitive to matrix properties [204]. The 

axial flexural strength of CFRP I-beams is approximately 33% higher than those 

of GFRP I-beams [108, 187]. O’Brien and Krueger reported that their finite 

element results that predict transverse flexural properties of CFRP and GFRP 

composites were in good agreement with that of beam theory predictions. 
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Table 2.12. Typical properties of CFRP composites 

First author, 
year 

Fibre 
characteristics 

Matrix 
type 

Vf 
(%) 

Elastic modulus, E 
(GPa) Strength,  (MPa) Strain to failure, 

 (%)*) 

Dominant failure mode 

Et Ec Efl t c fl Tension Compress-
ion Flexure 

Rezaifard, 1994 HTA513X, Ud, 90o Epoxy  N/A  10.0     64.6   110.7 0.71,N/A       
Oya, 1996 T700S, Ud Epoxy  N/A  143.0 133.5 128.8 2304.1 1058.3 1521.8 1.78, 0.81, 0.12 Br, L-MC shear comp, mds 
  M40J, Ud, 0o Epoxy  N/A  226.9 194.0 202.5 2126.1 1135.0 1323.0 0.98, 0.60, 0.10 Br, L-MC transverse comp, mds 
  M50J, Ud, 0o Epoxy  N/A  313.8 259.9 254.1 2085.5 843.2 1183.4 0.66, 0.36, 0.06 Br, L-MC transverse comp, mds 
  M60J, Ud, 0o Epoxy  N/A  410.6 322.5 346.7 2248.3 637.1 1086.5 0.32, 0.20, 0.05 Br, L-MC shear comp, mds 
Oya, 1997 AT400, Ud, 0o Nylon6  N/A  113.6 104.3   1511.3 813.2   1.28, 0.78 T-MC, FB, Db     

  AT400, Ud, 0o PPS  N/A  115.9 100.7   1559.8 
 

819.8   1.28, 0.80 L-MC, Db     
  AT400, Ud, 90o Nylon6  N/A  7.3     71.2     1.54 matrix failure     
  AT400, Ud, 90o PPS  N/A  7.9     20.2     0.25 interface failure     
Botelho, 2003 plain weave fabric PA6 40.00 28.3     296.0 271.0           

      50.00 48.1     393.0 
 

323.0           

      60.00 50.2     410.0 
 

367.0           
  Hexcel CF, Ud, 0o PA6 40.00   68.3                   
      50.00 91.2                   
      60.00 110.4                   
 Hexcel CF, Ud, 90o PA6 40.00 1.9          
     50.00 2.4          
     60.00 3.1          

Continued 
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Table 2.12. Continued 

First author, 
year 

Fibre 
characteristics 

Matrix 
type 

Vf 
(%) 

Elastic modulus, E 
(GPa) Strength,  (MPa) Strain to failure, 

 (%)*) 

Dominant failure mode 

Et Ec Efl t c fl Tension Compress-
ion Flexure 

 Botelho, 2003  plain weave fabric PA6,6 40.00  35.4      408.0  290.0            
 (Continued)     50.00  39.0      43.0  352.0            
      60.00  51.1      512.0  391.0            
  Hexcel CF, Ud, 0o PA6,6 40.00  71.4                    
      50.00  88.2                    
      60.00  112.1                    
  Hexcel CF, Ud, 

90  
PA6,6 40.00  2.4                    

      50.00  3.3                    
      60.00  4.2                    
Moran, 1998 IM7, Ud PEEK 60.00          660.0        fibre   
Wonderly, 2005,  T700SC, UD, 0o VE  N/A        958.0  328.0      FB, T-MC, SF Db   
  OH: d/w = 6/38 T700SC, UD, 0o, 

O
VE  N/A        621.2  234.6      Db, T-MC N/A   

 T700SC, UD, 90o VE  N/A        17.8        N/A     
Lee, 1999 IM7-12k, UD, 0o VE 0.00                  Db/splitting   
  IM7-12k, UD, 0o VE 10-30                 Db/splitting   
  IM7-12k, UD, 0o VE 40-60                 Db and K   

Continued 
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Table 2.12. Continued 

First author, 
year 

Fibre 
characteristics 

Matrix 
type 

Vf 
(%) 

Elastic modulus, E 
(GPa) Strength,  (MPa) Strain to failure, 

 (%)*) 

Dominant failure mode 

Et Ec Efl t c fl Tension Compress-
ion Flexure 

Lee, 2000 IM7-12k, UD, 0o VE 0.00                  Db/splitting   
  IM7-12k, UD, 0o VE 10-30                 Db/splitting   
  IM7-12k, UD, 0o VE  40-60                  Db and K   

Yerramalli, 2003 IM7-12k, UD, 0o VE 50.00                  
K (+ 
torsion)   

Gilchrist, 1996 T300, UD, 0o Epoxy  N/A  134.8      1563.0            Compr FBu, Dl 
  T300, UD, 90o Epoxy  N/A  8.2      44.8            Compr FBu, Dl 

 
T300, UD, 0o, 
±45o Epoxy  N/A  54.8    69.3  534.2    357.8  0.75/-0.84     Compr FBu, Dl 

notched: E-g, UD, 0o Epoxy  N/A                    Compr FBu, Dl 
  E-g,UD, 90o Epoxy  N/A                    Compr FBu, Dl 
  E-g, UD, 0o, ±45o Epoxy  N/A              0.94/-0.99     Compr FBu, Dl 
O'Brein, 2003 IM7,UD, 0o Epoxy  N/A  161.0                    
  IM7,UD, 90o Epoxy  N/A  11.4                    

Parry, 1981 Type III, Ud Epoxy 60.00      
110.
0  

1,750.
0    

1,570.
0        catastrophic 

Notes: 

Subscripts: t = tension, c = compression, fl = flexural. 

Fibre architecture: Ac-s = acrylo-silane coated, Am-s = amino-silane coated, Dc = randomly oriented discontinuous fibre, KF = knitted fabric, UD = 
unidirectional, 0o = longitudinal direction, 90o = transverse direction,  = fibre diameter (m), L = fibre length (mm), OH = open hole, C = 
circular fibre cross section, P = ‘peanut’-shaped fibre cross section, O = oval fibre cross section. 
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Matrix type: cc = calcium carbonate-filled, PA = polyamide, PC = polycarbonate, PE = polyester, PEt = polyethylene, PP = polypropylene, PU = 
polyurethane, talc = talc-filled, VE = vinylester. 

Strain to failure: *)respective values of the utilised test methods. 

Dominant failure mode: comp = compressive, Db = fibre-matrix interfacial debonding or splitting, Dl = delamination, FB = fibre breakage, Fbu = 
flange buckling, FP = fibre pull-out, int lam Dl = interlaminar delamination, GC = global crushing, K = kinking, L = longitudinal direction, MB = 
microbuckling, MC = matrix cracking, Mds = mid-depth splitting, SF = surface is flat, SR = surface is rough, T = transverse direction. 



 93

2.5.2.4. CFRP Summary 

Tables 2.12 and 2.13 show that the axial tensile strength of CFRP 

composites is generally higher than that of their GFRP counterparts. Whilst axial 

properties of CFRP composites are fibre-dominated, transverse properties are 

more sensitive to matrix properties [42, 83, 166, 181, 208]. In addition, their 

transverse tensile properties are more sensitive to the presence of voids compared 

to longitudinal tensile properties [151]. The data in Table 2.11 shows that the axial 

compressive strength of unidirectional CFRP composites is significantly lower 

than their tensile strength, and the higher is the compressive modulus the lower is 

the compressive strength [42, 119].  The increase in magnitude of combined shear 

loading significantly decreases compressive strength [213, 214]. Whilst fracture 

toughness can be improved by embedment of individual fibre bundle into polymer 

in order to increase their wetting prior to prepreg fabrication [197], flexural 

strength can be increased by fibre surface treatment [177]. T300 carbon/epoxy I-

beams are approximately 33% stronger than E-glass fibre/epoxy I-beams of the 

same geometry and dimensions [108]. The presence of discontinuities, such as 

holes  [108, 187] as well as the quantity, shape and distribution of voids [151], 

alters flexural strength and failure mechanisms. 

Fibre-matrix interfacial bonding influences the tensile behaviour of CFRP 

composites, i.e., failure mode and tensile strength. Load transfer from matrix to 

fibres takes places via shear loading in the fibre-matrix interface [42]. A weak 

interface produces brooming tensile failure accompanied by longitudinal fibre-

matrix debonding leading to relatively higher tensile strength in comparison with 

excessively strong interfaces that produce transverse matrix failure combined with 

fibre breakage leading to lower tensile strength [177]. Therefore, moderately 

strong interfaces are required in order to produce considerably higher tensile 

strength CFRP composites. Different failure modes of CFRP composites subjected 

to compressive loading have been reported, i.e., shear failure producing lower 

compressive strength, transverse failure associated with comparatively higher 

compressive strength [119, 204], and fibre kinking leading to crushing regardless 

of their Vf [42, 166, 212]. Kink band formation consists of three distinct steps, i.e. 
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initial kinking, transitory kinking, and band broadening characterised by non-

linear stress-strain curves, significant load decrease, and steady load, respectively 

[205]. Flexural failure modes of CFRP composite beams depend upon their span-

to-depth ratios, S/d. Small S/d, S/d = 5, fails by shear showing interply 

delamination initiated under the loading nose at the neutral axis, while S/d  15 

flexural failure exhibited tensile and compressive fracture surfaces with border 

line approximately at the neutral axis [199]. For solid rectangular beams, failure 

initiates at the compression side [119, 214], and in the compressive flange [108, 

191] producing local buckling and delamination for solid CFRP composite I-

beams [187]. The presence of geometric discontinuities as stress raisers in CFRP 

composite I-beams changes the failure mode to matrix cracking [108, 187] due to 

local tensile stresses [187]. The variation in failure modes indicates the spread of 

their respective flexural mechanical property data [204]. 

In addition, by comparing Tables 2.12 and 2.13 it can be concluded that the 

compressive strength of CFRP composites is lower than that of GFRP composites, 

as has been reported by O’Brien and Krueger [166]. 

 

2.5.3. Hybrid Fibre-Reinforced Polymer (HFRP) Composites 

 

The use of glass fibre in various fibre architectures to improve the various 

properties of structural materials [147, 215-222], e.g., natural fibre composites 

[216, 217, 221, 222], metal structures [147, 218], and synthetic fibre-reinforced 

composites [215, 219, 220], has been studied. Carbon or graphite fibre has also 

been incorporated with other fibres or metal structures, such as Kevlar [44, 223-

225], E-glass [223], polyvinyl alcohol [223], polyethylene [226-228], natural fibre 

[226], and metal structure [229, 230], to produce hybrid FRP composites or hybrid 

structures. Another type of fibre being studied for improving FRP composite 

properties by producing hybrid FRP composites is silicon carbide fibre [75, 231-

234]. Basically, FRP composites can be said to be hybrid even if the fibres differ 

only in their the geometries [235].  
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2.5.4.1. Hybrid effect 

 

The hybrid effect can be defined as the synergistic effect resulting from 

combining two or more types of fibre embedded in a common matrix. The hybrid 

effect can be said to exist if any properties of hybrid FRP composites deviate from 

those predicted by the rule of mixtures [236]. If the observed value is higher than 

that predicted by the rule of mixture then a positive hybrid effect will be said to 

exist, and vice versa [235]. It should be noted that the rule of mixtures must be 

applied on a relative volume fraction basis, as opposed to weight fraction or layer 

fraction [237]. Whether the hybrid effect exists or not is still debatable amongst 

many composite researchers. 

By comparing the failure strains of unbonded and bonded layer specimens, 

Bunsell and Harris indicated that the hybrid effect exists, provided that the fibre-

matrix interfacial bond is sufficiently strong [173]. Thomason [160] was reported 

to observe a hybrid effect by substitution of 5 wt.% up to 20 wt.% of S2-glass 

fibre for E-glass fibre in chopped E-glass/S2-glass hybrid fibre-reinforced 

polyamide 6,6 composite strength. Reid et al. [220] observed a positive hybrid 

effect in interlaminar shear strength with glass fibre substitution for 75% and 50 % 

for polypropylene fibres for their hybrid FRP composites. You et al. [238] 

reported that the hybrid effect was evident for the tensile properties of carbon-

glass hybrid FRP composites. According to Kretsis [239], the hybrid effect would 

be more obvious with the decrease in proportion of the lower elongation fibre. The 

incorporation of short glass fibre into short carbon fibre-reinforced polypropylene 

composites to produce short glass-short carbon fibre hybrid FRP composites was 

also found to exhibit a positive hybrid effect in terms of their fracture toughness 

[240]. 

Although their silicon carbide-carbon hybrid FRP composite specimens did 

not show any hybrid effect in compressive strength and flexural strength, just 

followed the rule of mixtures, Wang et al. [234] observed a positive hybrid effect 

in terms of compressive strength and flexural strength in their boron-carbon fibre 

hybrid FRP composite specimens. In contrast to this, a negative hybrid effect in 

tensile strength was reported by Kang et al. [241], but they observed a positive 
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hybrid effect for tensile modulus and flexural strength. Marom et al. [235] also 

reported to observe a small negative hybrid effect in flexural strength whereas the 

modulus was just obeying the rule of mixtures of their glass-carbon hybrid FRP 

composite specimens. 

Whilst negative hybrid effects were observed in some particular properties 

of hybrid FRP composites, some other properties of the respective specimens 

exhibited a positive hybrid effect. Thus, there may be some conditions that need to 

be met in order to produce a positive hybrid effect. 

 

2.5.4.2. Tensile properties 

 

Jones and DiBenedetto [242] studied hybrid FRP composites containing E-

glass fibres coated with two different seizing agents resulting in different fibre-

matrix interfacial and load transfer characteristics. They found that the critical 

fragmentation length of both fibres of the hybrid system slightly decreased in 

comparison with GFRP composites containing a single-type of the fibre. They 

observed that the weaker fibre-matrix interface acted as a crack propagation 

arrester that prevents the adjacent fibres from further breaking; instead, the crack 

would propagate along the fibre and produced multiple fracture planes and fibre 

brooming.  

Incorporation of glass fibre to improve the properties of natural FRP 

composites by producing hybrid FRP composites has been studied. Thwe and Liao 

[222] investigated bamboo-glass fibre hybrid FRP composites subjected to 

immersion on water at 25 oC and 75 oC for different periods of time. They reported 

that partial substitution of short glass fibre for short bamboo fibre in 

bamboo/polypropylene FRP composites improved their tensile strength and 

stiffness retention to environmental aging. In addition, they observed that the 

polypropylene matrix degraded by dissolution. Hariharan and Khalil [243] studied 

a hybrid of randomly oriented oil palm fibre (OPF) and E-glass chopped strand 

mat embedded in an epoxy subjected to tensile loading. Hybrid FRP composites 

possessing a range of hybrid weight ratios (wt% of GF relative to total wt% of 
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fibres), given in Table 2.12, were produced and tested in accordance with ASTM 

D638-76. They reported that a non-symmetrical stacking configuration, i.e., GF on 

one side and OPF in the other, resulted in un-symmetrical deformation because of 

large differences of elastic modulus between the two fibres. A negative hybrid 

effect for tensile properties may be attributed to the fact that the coefficient of 

thermal expansion of GF is much higher than that of OPF leading to tensile 

residual stresses in the OPF upon curing. In addition, the hybrid ratio was 

presented based on weight while the composite strength is given per unit area − 

the density of GF (2.56 g·cm-3) is much higher that that of the OPF (0.7 – 1.55 

g·cm-3) leading to a decrease in hybrid ratio if it was presented in terms of volume. 

Another combination of natural fibre, i.e., flax fibre, and glass fibre to produce 

hybrid FRP composites was studied by Arbelaiz et al. [215]. Various hybrid ratios 

were employed, see Table 2.13. It was reported that there was no hybrid effect 

observed with the substitution of glass fibre for flax fibre in the untreated hybrid 

FRP composites resulting in improved properties obeying the rule of mixtures. 

Poor wetting of the fibre by the matrix leading to weak fibre-matrix interfacial 

bonding, as was obvious from the SEM micrographs, may be responsible for the 

absence of a hybrid effect as has been reported by Li et al. [227]. 

Reid et al. [220] investigated the use of polypropylene fibres for the warp, 

and glass fibre for the weft, to produce plain weave hybrid fabric of various hybrid 

ratios, VfG/Vf, with polyester resin being used as the matrix. Although a negative 

hybrid effect was noted for tensile strength, which may be caused by the use of GF 

as the weft that did not significantly contribute to the strength in the warp, a 

positive hybrid effect was more obvious for interlaminar shear strength.  

Kang et al. [241] studied the combination of high tensile and flexural 

strength continuous carbon fibre and spun fabric carbon fibre hybrid-reinforced 

phenolic composites. CF hybrid reinforced polymer specimens with a hybrid ratio, 

Vf-Ud/Vf, of 0.25 were fabricated for tensile specimens and tested in accordance 

with ASTM D3039-76. Different tensile failure modes, a small negative hybrid 

effect for tensile strength that can be caused by weak fibre-matrix interfacial 

bonding, as confirmed by their respective SEM micrographs, and a positive hybrid 

effect for tensile modulus were observed. Spun fabric CFRP/phenolic specimens 
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failed predominantly by fibre pull-out whereas unidirectional CFRP/phenolic 

specimens failed by a combination of delamination, fibre-matrix interfacial 

debonding and fibre breakage, while the CF hybrid/phenolic composite failed 

mainly due to fibre breakage and delamination combined with a small amount of 

fibre pull-out. Jones and DiBenedetto [242] working on AS4-IM6G hybrid FRP 

composites found out that the fragmentation length of the hybrid increased in 

comparison with even the longer fragmentation length of single fibre composites, 

i.e., AS4 CFRP composites.  

A number of papers dealing with the tensile behaviour of glass-carbon 

hybrid FRP composites can be found, such as that of Bunsell and Harris, Dickson 

et al., Jones and DiBenedetto and You et al. [173, 238, 242, 244]. Bunsell and 

Harris [173] reported that there was no significant effect of fibre placement, i.e., 

whether the CFRP layers or the GFRP layers were placed as the outer layers, on 

tensile behaviour of the carbon-glass hybrid FRP composites. The CFRP layers 

failed in a brittle mode, while the GFRP layers failed due to extensive splitting or 

brooming. You et al. [238] studied tensile properties of carbon-glass hybrid FRP 

composite rods with one single hybrid ratio of 0.47 but with two different 

matrices, i.e., vinylester and polyester, and various fibre placements, i.e., CFRP as 

the core, GFRP as the core and CF dispersed within the GFRP. They reported that 

a hybrid effect was evident, while the effect of matrix type on composite 

properties was insignificant. Unlike that previously reported by Bunsell and Harris 

[173], they revealed that, for both matrix types, rods with CFRP cores exhibited 

higher tensile strength, tensile modulus and ultimate tensile strain compared to 

those with GFRP cores. The increase in tensile strength is due to the decrease of 

failure probability of the carbon fibre with the presence of a higher strain-to-

failure glass fibre as has been explained by Jones and DiBenedetto [242]. The 

highest failure strength exhibited by the CFRP core rod can be attributed to the 

packing geometry of the carbon-glass hybrid FRP system as has also been reported 

by Jones and DiBenedetto [242]. Stress-strain curves of carbon-glass hybrid fibre-

reinforced vinylester composite rods showed gradual fibre breakage that most 

probably was initiated by the lower elongation fibre, i.e. carbon fibre. Dickson et 

al. [244] revealed that there was no hybrid effect observed in both tensile strength 
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and tensile modulus, but they found an increase in strain-to-failure for the CFRP 

layers. 

The tensile behaviour of hybrid FRP composites containing different 

combinations of fibres, i.e., two different types of glass fibre [242], natural fibre 

and glass fibre [215, 222, 243], synthetic fibre and glass fibre [220], two different 

grades of carbon fibre [241, 242], and glass fibre and carbon fibre [173, 238, 242, 

244], has been studied. No hybrid effect was observed if poor fibre wetting of the 

hybrid FRP composites was present [215]. In contrast to this, a negative hybrid 

effect can be caused by incorrect placement of stronger fibres [220], coefficient of 

thermal expansion mismatch resulting in residual tensile stresses [243], or poor 

fibre-matrix interfacial bonding [241]. Positive hybrid effects were reported in 

other references, i.e., improved retention to environmental aging [222], increase in 

elastic modulus [241], and increase in tensile strength and tensile modulus [238, 

242], and increased strain-to-failure [238, 244]. 

 

2.5.4.3. Compressive properties 

 

Different hybrid combinations have been reported, e.g., chopped short sisal 

and chopped strand glass fibre mats [217], polyethylene and carbon fibres [227], 

carbon and glass fibres [185, 245], carbon and silicon carbide fibres [231, 233, 

234], as well as boron and carbon fibres [234]. 

John and Naidu reported that weak fibre-matrix interfacial bonding due to 

the presence of voids, and fibre-to-fibre contact may cause poor load transfer 

among fibres leading to a decrease in compressive strength [220] of their sisal-

glass hybrid FRP composites. Li et al. [227] studied the compressive strength of 

ultra-high-modulus polyethylene (UHMPE)-carbon hybrid FRP composites of 

various hybrid ratios as presented in Table 2.13. They reported that substitution of 

carbon fibre for UHMPE fibre at moderate amounts, up to 46%, showed a 

positive hybrid effect for strain at ultimate strength and significantly increased 

compressive strength of the composite but no hybrid effect in compressive 

strength was observed. The lower compressive strength of the UHMPE fibre in 

comparison with the epoxy matrix, which was considered constant for all the 
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hybrid ratios, may be responsible for the absence of a hybrid effect in compressive 

strength. The increase in strain at ultimate strength can be the result of synergistic 

effects of the stiffer fibre as the load bearing phase and the less stiff fibre as a 

crack propagation arrester. The failure of the UHMPE/epoxy specimens was 

initiated by matrix cracking followed by a combination of debonding and fibre 

buckling at lower stress levels, then delamination and kinking prior to failure. That 

of the CFRP specimens was dominated by fibre micro-buckling followed by 

matrix cracking and fibre breakage. 

Chaudhuri and Garala [245] reported that fibre misalignment due to poor 

composite fabrication processing induced fibre kinking under compressive loading 

leading to shear crippling failure of CFRP samples. A significant positive hybrid 

effect was observed for fracture toughness, i.e., 15% substitution of S-glass fibre 

for carbon fibre resulted in an increase of fracture toughness of approximately 

100%. Although compressive strength and modulus were observed to increase 

with the incorporation of S-glass fibres in CFRP composite samples, a positive 

hybrid effect was not observed. In addition, unlike the dominant failure mode of 

the baseline CFRP samples, which was fibre kinking as later supported by the 

finding of Yerramalli and Waas [185], that of the hybrid samples was mostly 

multiple fibre fracture. 

Sudarisman et al. [233] revealed that there was no significant increase in 

compressive strength, modulus, and work of fracture of SiCF-CF/epoxy hybrid 

composites with different hybrid ratios. Each of their specimens consisted of eight 

layers of SiCF/epoxy and/or CF/epoxy prepregs, with CF/epoxy prepreg layers 

being placed on the inner side while SiC/epoxy prepreg layers were placed in the 

outer side as has been described in the work of Davies et al. [231]. Their failure 

modes were dominated by shear failure, except for the SiC-FRP specimens which 

was global crushing, with the presence of longitudinal interlaminar delamination 

due to interlaminar shear stress for both cases. 

 

The following is the summary that can be drawn from the above discussion 

on the compressive properties of hybrid FRP composites. A positive hybrid effect 
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has been noted in compressive strain at ultimate strength that can be attributed to 

the synergistic effect of the stiffer fibre as load bearing phase and the less stiff 

fibre as crack propagation arrester [220], and also for the work of fracture [245]. 

The presence of voids, and fibre-to-fibre contact leading to poor load transfer 

among fibres [220], as well as fibre misalignment due to poor composite 

fabrication processing induced fibre kinking and shear crippling [245] may cause 

strength degradation and result in the absent of any positive hybrid effect. The 

failure mode of hybrid FRP composites is closely related to those of their single-

fibre-type composites [217, 233, 234, 245]. 

 

2.5.4.4. Flexural properties 

 

Positive hybrid effects have been reported for some flexural properties, i.e., 

strain at ultimate strength [227], flexural strength [241], and fracture toughness 

[245]. The increase in flexural fracture toughness may be attributed to the increase 

in flexural failure strain of the hybrid specimens. Although some researchers [215, 

227, 245] did not observe a positive hybrid effect in some flexural properties of 

their samples, they still reported significant increases in those particular properties, 

i.e., as expected from the rule of mixtures. 

Wang et al. [234] reported that the flexural strengths of their carbon-boron 

and carbon-silicon carbide hybrid FRP samples, 1788 MPa and 1855 MPa, were 

120% and 150% higher than those of their respective compressive strengths. 

The flexural strength of the carbon-boron hybrid FRP samples were 8% and 

58% higher than those of the BFRP and CFRP samples, respectively, but this 

may be credited to the increase of fibre volume fraction of the hybrid system, 

75%, in comparison with those of the CFRP and BFRP samples that are 53.1% 

and 50.0%, respectively. The flexural strength of carbon-silicon carbide hybrid 

FRP samples, 1788 MPa, was approximately 52% higher than that of CFRP 

samples, but 15% lower that that of SiC-FRP samples. Stress-strain relationships 

for both hybrids were essentially linear until the initiation of failure. Their load-

displacement plots showed a sharp drop of load after reaching their peak that may 
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be associated with the initiation of kink band formation in their compressive side 

[205] and followed by delamination or splitting at relatively constant load. 

Arbelaiz et al. [215] reported that the flexural strength and flexural modulus 

of untreated flax fibre-reinforced polypropylene composites increased with the 

incorporation of glass fibre at various hybrid ratios. That poor fibre wetting was 

obviously observed in their SEM micrographs due to weak fibre-matrix interfacial 

bonding (and thus reducing the ultimate strength) may be responsible for limiting 

further increases in flexural properties of their hybrid system and led to the 

absence of positive hybrid effect. Another cause may be related to fibre 

architecture and placement as has been revealed by Park and Jang [228] that 

placing higher strength fibres in the outer layers of carbon-polyethylene hybrid 

FRP composite beams resulted in higher flexural strength. Li et al. [227] revealed 

that substitution of carbon fibre for ultra-high modulus polyethylene (UHMPE) 

fibre up to 46% showed a significant increase in flexural strength. The failure of 

low carbon fibre content, up to 46%, specimens was initiated with debonding and 

delamination at the compressive side propagating to the tensile side. Extensive 

fibre fracture, marked by a sharp load drop, and followed by delamination was the 

predominant failure mode of higher carbon fibre content specimens. Chaudhuri 

and Garala [245] observed significant increases in flexural strength and modulus 

with the incorporation of S-glass fibres in CFRP composite samples. In addition, 

the flexural strength was observed to be higher than the compressive strength of 

the same hybrid specimens as has been presented in Table 2.13. 

Davies and his colleagues [75, 232] reported that a hybrid ratio of 1:8 

produces flexural strength increases in comparison to those of the reference CFRP 

composites. However, there was a slight decrease in flexural modulus for this case 

which was attributed to the fact that the SiC fibre possesses a slightly lower elastic 

modulus than C fibre. Although further increases in hybrid ratio up to 4:8 did not 

show significant increases in flexural modulus and flexural strength for S/d = 32, a 

maximum increase of 35% in flexural strength was obtained for a hybrid ratio of 

4:8 and S/d = 64. It was also noted that a significant increase in fracture energy 

was apparent that may be credited to the increase in strain to failure. The failure 

mode of the SiC-C hybrid FRP composites subjected to a three-point bending load 
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predominantly appeared to be kinking and out of plane buckling at the 

compressive surface underneath the loading nose and propagated towards the 

neutral plane. 

The discussion on flexural properties of hybrid FRP composites can be 

summarised below. Although previously published research do not have a 

common agreement on the existence of a hybrid effect for flexural properties, most 

reports noted that the incorporation of higher strength fibre in the baseline FRP 

composites results in a significant increase in particular flexural properties, i.e. 

strain at ultimate strength [227], flexural strength [75, 215, 227, 232, 241, 245], 

flexural modulus [215, 245], strain-to-failure [75, 232], fracture toughness [245], 

and fracture energy [75, 232]. The flexural strength of hybrid FRP composite 

beams is mainly controlled by the properties of fibres in the outer layer, whilst the 

flexural modulus is more dependent upon properties at the compressive side [228]. 

Flexural strength was observed to be higher than compressive strength for the 

same hybrid specimens [245]. Failure are initiated at the compressive side and 

propagated toward the neutral axis. Li et al. [227] observed failure in the form of 

debonding and delamination for lower carbon fibre content, and fibre fracture and 

delamination for higher carbon fibre content with respect to their carbon-UHMPE 

hybrid FRP composite specimens. Davies and colleagues [75] noticed out of plane 

buckling of fibres followed by kinking at the compressive side at maximum 

flexural stress point. 
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Table 2.13. Typical properties of hybrid FRP composites 

First author, 
year 

Fibre Matrix 
type Vf (%) 

Elastic modulus, E 
(GPa) Strength,  (MPa) Strain to 

failure,    
(%)*) 

Dominant failure mode 

Fibre characteristic rh = 
Vf2/Vf Et Ec Efl t c fl Tension Compress-

ion Flexure 

Thwe, 2003 
Mixture of short 
bamboo fibre and 
short E-glass fibre 

0.00 
Pp 20 %wt 

2.15   20.4       
0.25 2.45   21.1       
0.50 3.30   23.3       

Reid, 2004 
Plain weave fabric 
with polypropylene 
fibre warp and glass 
fibre weft 

0.00 

Polyester 
resin N/A 

   39       
0.28    67       
0.52    93        
0.78    136        
1.00    179        

Hariharan, 2005 
Note: OPF= 
1.12 
GF = 2.56 
Ep = 1.15 

Non-symmetric layer-
wise configuration of 
oil palm fibre and 
glass fibre 

0.00 

Epoxy N/A 

0.912   24.0       
0.08 1.007   26.0       
0.20 1.007   37.5       
0.40 1.265   40.5       
0.49 1.588   47.5       
0.80 2.206   89.5       
1.00 4.265   111.0       

Kang, 2006 
Layer-wise config-
uration of spun fabric 
and unidirectional CF 

0.00 
Phenolic N/A 

36.8   176  248  FP   
0.25 45.1   227  289  FB, Dl, FP  S/d = 16 
1.00 56.2   436  332  FB, Dl, Db   

Continued 
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Table 2.13. Continuation 

First author, 
year 

Fibre 
Matrix type Vf (%) 

Elastic modulus, E 
(GPa) Strength,  (MPa) Strain to 

failure,   
 (%)*) 

Dominant failure mode 

Fibre characteristic rh = 
Vf2/Vf Et Ec Efl t c fl Tension Compression Flexure 

Arbelaiz, 2005 
Note: FF = 1.4 
GF = 2.6 
PP = 0.934 

Mixture of short flax 
fibre and short E-
glass fibre 

0.00 
MAPP-
modified 
polypropy-
lene 

30wt% 

1.61  3.69 27.4  43.2     
0.15 1.90  3.90 32.7  50.1     
0.35 1.97  4.27 35.4  55.2     
0.62 2.00  4.39 39.2  65.7     
1.00 2.17  5.15 48.6  84.0     

Bunsell, 1974 Layer-wise CF-GF, 
Ud 0.50 Epoxy 0.5 89      1.25  CF: FB, MC 

GF: Db, Br    

Dickson, 1989 
Symmetric structures 
of Ud XAS CF - E-GF 
hybrid 

0.00 

Epoxy 0.60 

42.1   1300    3.74      
0.25 70.4   1056   1.52    
0.50 85.8   1330   1.52    
0.75 114.2   1511   1.26    
1.00 136.6   1952   1.43    

You, 2007 
Note: CF = 1.80 
GF = 2.56 
PE = 1.40 
VE = 1.23 
rh = VfCF/VfGF 

GFRP compose rods 0.00 
Polyester 34.4 47.8   972   2.03    
Vinylester 31.6 48.3   983   2.03    

CFRP core in GFRP 
composite rods 

0.47 

Polyester 48.8 83.1   1331   1.60    
Vinylester 45.6 80.4   1281   1.59    

GFRP core in CFRP 
composite rods 

Polyester 48.8 79.5   1128   1.42    
Vinylester 45.6 78.9   1083   1.37    

Continued 
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Table 2.13. Continuation 

First author, 
year 

Fibre Matrix 
type Vf (%) 

Elastic modulus, E 
(GPa) Strength,  (MPa) Strain to 

failure,   
 (%)*) 

Dominant failure mode 

Fibre characteristic rh = 
Vf2/Vf Et Ec Efl t c fl Tension Compressio

n Flexure 

You, 2007 
(continuation) 

CFRP core in GFRP 
composite rods 0.47 

Polyester 48.8 84.0   1213   1.44    
Vinylester 45.6 92.4   1045   1.68    

CFRP composite 
rods 1.00 

Polyester 33.2 114.6   1431   1.25    
Vinylester 30.4 114.8   1454   1.27    

Li, 1999 Layer-wise UHMPE-
carbon fibre  

0.00 

Epoxy 55 

  21.7  54.4 137 3.0, N/A  MC, Db, FBu, 
Dl, K FB, Dl 

0.14   30.6  105.6 191 4.0, N/A    
0.46   50.4  196.8 269 7.5, N/A    
0.80   86.0  379.6 620 12.5, N/A    
1.00   96.5  451.3 716 1.5, N/A    

Chaudhuri, 1994 
Note: CF = 1.76 
GF = 2.49 
Ep = 1.10 

Commingled T300 
6K carbon - IK S-
glass fibres, Ud 

0.00 Rubber 
toughened-
epoxy 

34.2 
 8.0 7.4  86.5 107.8     

0.15  8.1 6.8  98.1 121.7     

Sudarisman, 
2007 

Layer-wise SiC-C 
hybrid FRP, Ud. 

0.00 

Epikote 
828 poxy 

70.0 
– 74.0 

 177.6   1028    SF, K, Dl  
0.25  163.2   933    SF, K, Dl  
0.50  167.4   1016    SF, K, Dl  
0.75  156.7   1075    SF, K, Dl  
1.00  149.1   1333    GC, K, Dl  

Continued 
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Table 2.13. Continuation 

First author, 
year 

Fibre Matrix 
type Vf (%) 

Elastic modulus, E 
(GPa) Strength,  (MPa) Strain to 

failure,   
 (%)*) 

Dominant failure mode 

Fibre 
characteristic 

rh = 
Vf2/Vf Et Ec Efl t c fl Tension Compressio

n Flexure 

Wang, 2009 

Layer-wise carbon-
boron hybrid FRP, 
Ud. 

0.00 
Epoxy 

53.1   101.0  557 1174     
0.47 75.0   139.8  742 1855     
1.00 50.0   161.4  680 1717     

Layer-wise carbon-
silicon carbide 
hybrid FRP, Ud. 

0.00 
Epoxy 

53.1   101.0  557 1174     
46.3 75.2   161.2  806 1788     
1.00 51.0   221.3  991 2096     

Park, 1999 

PEth8 0.00 

vinylester N/A 

  1.2   33.0     
[PEth/C]4 0.50   4.2   124.1     
[PEth2/C2]s 0.50   5.8   126.0     
[PEth2/C2]2 0.50   6.1   131.2     
[C/PEth]4 0.50   5.9   133.2     
[C2/PEth2]2 0.50   6.3   136.8     
PEth4/C4 0.50   4.6   141.7     
C4/PEth4 0.50   6.6   188.3     
[C2/PEth2]s 0.50   7.0   205.1     
C8 1.00   31.2   467.9     

Continued 
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Table 2.13. Continuation 

First author, 
year 

Fibre Matrix 
type Vf (%) 

Elastic modulus, E 
(GPa) Strength,  (MPa) Strain to 

failure,   
 (%)*) 

Dominant failure mode 

Fibre characteristic rh = 
Vf2/Vf Et Ec Efl t c fl Tension Compression Flexure 

Davies, 1999, 
2001 

C8 0.00 

Epoxy 

70   141.0   1745    S/d32: Out 
of plane 
FBu/K. 
S/d=64: Dl, 
FPo 

SiC/C7 0.14 71.2   132.0   1942    
SiC2/C6 0.27 72   128.0   1945    
SiC3/C5 0.40 73.1   130.0   1910    
SiC4/C4 0.53 74   122.0   2090    Shear, Dl 
SiC8 1.00 78   115.1   2100    

 

Notes: 

*)Single fibre, dual fibre or fibre bundle FRP specimens, hence the given values are for SiC fibre properties irrespective of their matrices or 
interlaminar shear strength. 

Subscripts: t = tension, c = compression, fl = flexural. 

Fibre architecture: Ud = unidirectional, 0o = longitudinal direction, 90o = transverse direction. 

Strain to failure: respective values of the utilised test methods. 

Dominant failure mode: Br = brooming, comp = compressive, Db = fibre-matrix interfacial debonding or splitting, Dl = delamination, FB = 

fibre breakage, FBu = fibre buckling, FP = fibre pull-out, GC = global crushing, K = kinking, L = longitudinal direction, MB = 

microbuckling, MC = matrix cracking, SF = surface is flat, SR = surface is rough, T = transverse direction. 
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2.5.4.5. Hybrid FRP summary 

 

Hybrid FRP composites can be defined as FRP composites containing two 

or more types of fibre even if the fibres differ only in their geometries [235]. The 

hybrid effect can be defined as the synergistic effect resulted from combining two 

or more types of fibre embedded in a common matrix. The hybrid effect as the 

synergistic effect can be said to exist if any properties of hybrid FRP composites 

either positively or negatively deviate from those predicted by the rule of mixtures 

[235, 236]. Certain conditions may be required in order to produce positive hybrid 

effect. 

The tensile properties of different hybrid FRP composites have been 

studied. No hybrid effect was observed if poor fibre wetting of the hybrid FRP 

composites was present [215]. A negative hybrid effect can be caused by incorrect 

placement of stronger fibres [220], coefficient of thermal expansion mismatch 

resulting in tensile residual stresses [243], or poor fibre-matrix interfacial bonding 

[241]. Positive hybrid effects were reported in other references, i.e., improved 

retention to environmental aging [222], increased elastic modulus [241], and 

increased tensile strength and tensile modulus [238, 242], and increased strain-to-

failure [238, 244]. 

Investigations on the compressive properties of hybrid FRP composites 

have been published in a number of papers. Positive hybrid effects have been 

noted for compressive strain at ultimate strength that can be attributed to the 

synergistic effect of the stiffer fibre as load bearing phase and the less stiff fibre as 

crack propagation arrester [220], and also for the work of fracture [245]. The 

presence of voids, and fibre-to-fibre contact leading to poor load transfer among 

fibres [220], as well as fibre misalignment due to poor composite fabrication 

processing inducing fibre kinking and shear crippling [245] may cause strength 

degradation and result in the absence of a positive hybrid effect. The failure mode 

of hybrid FRP composites is closely related to those of their single-fibre-type 

composites [217, 233, 234, 245]. 

Although previously published researchers do not have a common 

agreement on the existence of hybrid effect for flexural properties, most reports 
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noted that the incorporation of higher strength fibre in the baseline FRP 

composites results in a significant increase in particular flexural properties, i.e., 

strain at ultimate strength [227], flexural strength [75, 215, 227, 232, 241, 245], 

flexural modulus [215, 245], strain-to-failure [75, 232], fracture toughness [245], 

and fracture energy [75, 232]. The flexural strength of hybrid FRP composite 

beams is mainly controlled by the properties of fibres in the outer layer, while 

flexural modulus is more dependent on properties at the compressive side [228]. 

Flexural strength was observed to be higher than compressive strength for the 

same hybrid specimens [245]. Failure are initiated at the compressive side and 

propagated towards the neutral axis. Li et al. [227] observed failure in the forms of 

debonding and delamination for lower carbon fibre content, and fibre fracture and 

delamination for higher carbon fibre content in their carbon-UHMPE hybrid FRP 

composite specimens. Davies and colleagues [75] noticed out of plane buckling of 

fibres followed by kinking at the compressive side at maximum flexural stress 

point. 
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CHAPTER 3 

MECHANICS OF MATERIALS   
 
 
 
 
 
 

3.1. CLASSICAL BEAM THEORY 

 

The Euler beam theory solution is an approximate solution that, generally, 

gives results in good agreement with the elasticity solution that is an exact 

solution. The strength of materials solution of beams, according to the classical 

beam theory, is based on the following assumptions [1] pp. 221-222. 

1. The span of the beam is much larger than the other two dimensions such that 

normal stresses generated in its cross-sectional area are much greater than 

those generated in the lateral directions. 

2. The beam is prismatic, i.e., its cross-section is constant along its span. 

3. The loads are applied in the plane of symmetry of the beam. 

4. Beam deformation is small, such that the beam behaves elastically. 

5. The plane that is perpendicular to the longitudinal axis of the beam before 

deformation remains perpendicular under deformation. 

6. The beam is comprised of isotropic material. 

 

3.1.1. Normal Stress and Normal Strain Distribution 

 

Figure 3.1(b) shows that a line of length dx before deformation experiences 

an elongation of x. Consider two similar triangles OAB and OCD, 

r

yr

dx

xdx )(


 
 (3.1) 

Defining the normal strain as elongation per unit length, dx
x  , then 

equation (3.1) gives 
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r

y
  (3.2) 

where y is the layer ordinate and r is the curvature of radius of the beam upon 

deformation.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. A beam subjected to a three-point bending:  (a) A simply supported 
beam of span S deformed with curvature radius of r due to a shear force F acting 
in the mid-span, (b) Magnification of an arbitrary segment of the beam showing 
the de-formation of a layer located in a distance of y from neutral axis, (c) 
Arbitrary cross section of the beam showing an elementary cross section dA 
experiencing normal stress of magnitude x, (d) Schematic representation of 
normal stress distribution along the y axis. 
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Employing Hooke’s law in equation (3.2) and rearranging the terms yields 









r

y
Ex  (3.3a) 

or 
yr

E x  (3.3b) 

where E is the elastic modulus. The magnitude of the bending moment with 

respect to the neutral axis generated by x acting over the elementary area dA is 

  ydAdM  xx  . Thus, the magnitude of bending over the entire cross-

sectional area is 

 
r

IE
dAy

r

E
ydAM x2

xx


    (3.4) 

where   dAyI 2
x  is the second moment of inertia. Upon the substitution of 

equation (3.3b) into equation (3.4) and rearranging the terms gives 

x

x
x I

yM 
  (3.5) 

Equation (3.5) shows that the normal stress is linearly distributed along the y-axis 

as illustrated in Figure 3.1(d). For special cases as shown Figure 3.1(a) and given 

that the width and depth of the beam are w and d, respectively, the magnitudes of 

maximum and minimum normal stresses, which occur at 2
dy  , and will be 

given by equations (3.6a) and (3.6b), respectively. 

22

3

dw

SF
x 


  (3.6a) 

2x
2

3

dw

SF




  (3.6b) 
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If the units of force and linear dimensions in equations (3.6a) and (3.6b) are given 

in Newton (N) and millimetres (mm), respectively, then the magnitude of stress 

will be obtained in mega-Pascal (MPa). Equation (3.6a) is the same as equation 

(3) given in the ASTM D790 test standard for the three-point bend testing of short 

beams, i.e., beams with a span-to-depth ratio, S/d, of 16 or less [2]. Employing 

Hooke’s law into equations (3.6a) and (3.6b) yields their respective strains. 

 

3.1.2. Shear Stress Distribution 

Consider a segment of length dx at a distance of x from the mid span of a 

prismatic beam subjected to a lateral load F as shown Figure 3.1(a). An enlarged 

view of this segment has been redrawn in Figure 3.2(a). Defining the magnitude 

of bending moment acted on the right face and on the left face of the segment as 

Mx and Mx + dMx, respectively, results in respective normal stresses of x and x 

+ dx, such that the magnitude of forces acted upon face elements BC on the right 

and AD on the left are, respectively 

dA
I

yM
dAF x

xBC 


   (3.7a) 

   
dA

I

ydMM
dAdF xx

xxAD 


    (3.7b) 

 
 

 

 

 

 

 

 

 

 

Figure 3.2. Enlarged view of beam segments as seen Figure 3.1(a): (a) Normal 
and shear stresses generated over the segment due to lateral force F, (b) Shear 
stress distribution over the depth of the beam. 
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Denoting  as the shear stress generated on the surface AB, and given the width of 

a rectangular cross-section beam being w, not shown on the figure, then the 

magnitude of shear force Fs generated on the surface AB is 

dxwFs    (3.8) 

Applying an equilibrium equation for the shaded layers ABCD of the beam 

segment gives 

 
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FFF xxx
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2

dy

yy

x

dywy
wI
dx

dM

  

Recall that the lateral force acted on the respective cross section is 
dx

dM
F x , the 

second moment of inertia of the cross-section is 
12

3dw
I


 , and the depth of the 

beam is d, then the magnitude of shear stress generated on a layer at a distance y 

from the neutral axis is 

 22
3 4

2

3
yd

dw

F



  (3.9) 

Unlike the normal stress distribution which is linear along the y-axis, that of shear 

stress is parabolic as schematically shown in Figure 3.2(b). The maximum shear 

stress will occur when 4y2 = 0 or y = 0, which is located along the neutral axis 

with the magnitude being given by 

dw

F




2

3  (3.10) 
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3.1.3. ‘Composite’ Cross Section of Beams 

By definition, the composite cross-section of a beam is the cross-section of a 

beam that comprises of more than one material [3] pp. 301-302. Reinforced 

concrete beams, bimetallic beams, sandwich beams and hybrid composite beams 

are some examples of beams possessing composite cross-sections. A schematic 

illustration of this typical cross-section has been presented in Figure 3.3(a). 

 

3.1.3.1. Normal stress distribution 

Given that the elastic modulus of materials 1 and 2 are E1 and E2, 

respectively, the maximum normal stress at the outermost layers according to 

equation (3.3a) are 
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Figure 3.3. A typical composite cross section comprising of two different 
materials of rectangular shapes. (a) Cross section, (b) Normal strain distribution 
along y-axis is assumed to be linear, (c) Normal stress distribution along y-axis 
showing discontinuity on the interface of the two materials. 
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In addition, the magnitude of the bending moment generated over the entire cross-

section according to equation (3.4) becomes 

     
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Recall that 1

1

2 IdAy
A

  and 2

2

2 IdAy
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 , then the magnitude of bending moment 

becomes 

r
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
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xM

IEIE
r 2211 
  (3.11) 

Substitution of equation (3.11) into equations (3.10a) and (3.10b) and rearrange 

the terms gives 

2211

1
1 IEIE

EyM x
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  (3.12a) 

2211

2
2 IEIE

EyM x
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
  (3.12b) 

 

3.1.3.2. Locating the neutral axis 

Considering Figure 3.3(a), a composite cross section comprising of two 

different types of RFP composite materials, the equilibrium equation of horizontal 

forces over the entire cross-sectional area is 

0
2
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1

1  
A

x

A

x dAdA   (3.13) 

Upon substitution of equations (3.10a) and (3.10b), eliminating the term r and 

rearranging the terms yields 

0
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From Figure 3.3(a)  
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Substitution of the above equations into equation (3.14), and noting that 

21 ddd   or 21 ddd  , as seen in Figure 3.3a, gives the distance y1 measured 

from the bottom face of the beam as 
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EEdddEd
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  (3.16) 

If the volume fractions of the two fibre-reinforced polymer composites 

composing the hybrid composite beams are the same, Vf1 = Vf2, then the hybrid 

ratio, rh, will be  

d

d

V

V
r

f

f
h

22    (3.17) 

Dividing both the numerator and denominator of equation (3.16) by d2, and 

substituting equation (3.17) into equation (3.16) yields the distance of the neutral 

plane from the bottom surface as 
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  (3.18) 

 

3.1.4. Beam Deflection 

Consider an infinitesimally small segment, DE = ds, of a beam subjected to 

a three-point bending load as shown in Figure 3.4. Defining r as the radius of 

curvature of the beam, then the magnitude of increment angle DOE is  

r

ds
d   (3.19) 
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Because ds is infinitesimally small, ds  dx, and equation (3.19) becomes.  

r

dx
d   (3.20) 

Substituting the value of r from equation (3.4), and rearranging the terms yields 

x

x

IE

M

dx

d





 (3.21) 

The slope of deflection curve at D, Figure 3.4(b), is 

dx

dy
tan   (3.22) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4. Deflection of a beam: (a) A simply supported beam subjected to a 
lateral force F acted at the mid-span of the beam, (b) Magnified view of segment 
DE of the beam showing the slope and deflection y and , respectively, at D, and 
 + d and y + dy, respectively at E. 
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When 0 ,  tan , and equations (3.21) and (3.22) become 

dx

dy
tan   (3.23) 
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For the special case as illustrated in Figure 3.4(a), the magnitude of bending 

moment at any 20 Sx   along the x axis is 





  x

SF
M x 22

, the boundary 

conditions are 
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Integration of equation (3.24) gives 
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Employing the first boundary condition as given in equation (3.25) gives 01 C , 

and equation (3.26) becomes 
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Integration of equation (3.27) then yields 
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Applying the second boundary condition as given in equation (3.25) gives 02 C , 

and equation (3.28) becomes 
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The deflection at point B where x = S/2 is 
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As the beam shown in Figure 3.4(a) is symmetric about the y axis, so is its 

deflection. If the x axis is moved up so that it passes points A and B, and the y axis 

is moved to the left so that it passes point A, as illustrated in Figure 3.5, then in the 

new coordinate system, the x value in equation (3.29) is replaced with 





  x

S

2
 

and equation (3.29) becomes 
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Deflection in the new coordinate system becomes 
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Maximum deflection, D, occurs at  2
Sx  , thus, equation (3.32) becomes 
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Figure 3.5. Deflection of a simply supported beam after the origin has been 
move to point A 
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Equation (3.33) can be found in other references [2] and [4-6] pp. (610, 314, and 

192, respectively). 

 

3.2. THE RULE OF MIXTURES 

 

The properties of a unidirectional composite material can be predicted by the 

so called rule of mixtures, provided that the properties of the constituent materials 

are known. The principle of this rule is that composite properties are proportional 

to the volume fraction of its constituent properties [7, 8], pp. 57 and 177, 

respectively. The discussion in this section is extended to hybrid fibre composites 

containing two different types or grades of fibres, but is limited to unidirectional 

fibre arrangements.  

 

3.2.1. Volume Fraction and Composite Density 

The volume fraction of the constituents of composite materials can be 

defined as the partial volume of their respective constituents, or mathematically 

can be written as 

c

i
i v

v
V   (3.34) 

Where Vi = Vf1, Vf2, Vm, or Vv  = volume fraction of each constituent, vi = vf1, vf2, 

vm, or vv = volume of each constituent, and vc = volume of the composite. Thus,  

121  vmff VVVV  (3.35a) 

If the total volume fraction of fibre is denoted by Vf where Vf = Vf1 + Vf2, while for 

a high quality PMC composite Vv << Vfi and Vv << Vm then Vv is negligible, and 

Eq. (3.35a) can be rewritten as 

1 mf VV  (3.35b) 

fm VV  1  (3.35c) 



 141

Given the densities of the two types of fibre, the matrix and the voids as f1, 

f2, m, and v, respectively, the density of a hybrid composite is 

 vvmmffffc VVVV   2211  (3.36a) 

As voids contain entrapped gas within solid composite materials, the density of 

voids is much lower than those of the matrix or the fibres, so is  their volume 

fraction, thus their product given in the last term in Eq. (3.36a) can be neglected, 

and Eq. (3.36a) can be rewritten as 

mmffffc VVV   2211  (3.36b) 

Then defining the hybrid ratio, rh, as the ratio of volume fraction of the fibre 

possessing higher strength, Vf2, to volume fraction of total fibre, Vf, 

f

f
h V

V
r 2  (3.37a) 

or 

fhf VrV 2
 (3.37b) 

fhfff VrVVV  )1(21
 (3.37c) 

Combining Eqs. (3.36b), (3.35c), (3.37b) and (3.37c) yields 
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Composite density, c, can be calculated from the measured values of the mass 

and the volume of specimens 

c

c
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m
  (3.39) 
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3.2.2. Longitudinal Strengths 

Longitudinal strength  The longitudinal strength, 11, of unidirectional 

composites can be predicted using the rule of mixtures. The assumptions 

employed in this prediction are (i) fibre and matrix properties are uniform, (ii) 

fibres are continuous and parallel to one another throughout the length, and (iii) 

perfect bonding exists at the fibre-matrix interface [7] pp. 59-60, such that the 

composite under loading experiences isostrain deformation [8] p.178. 

If a normal, either tensile or compressive, load of magnitude F is applied 

onto a unidirectional composite specimen in the longitudinal direction, and given 

that the cross-sectional area of the composite is Ac and fibre volume fractions are 

Vf1 and Vf2, then each of the constituents will carry a fraction of F which is 

proportional to their respective volume fraction as follows 

mff FFFF  21  (3.40a) 

where Ff1, Ff2, and Fm are the portions of load carried by fibre one, fibre two and 

the matrix, respectively. Eq. (3.40a) can be written in terms of the longitudinal 

stress as 

mmffffc AAAAF   221111  (3.40b) 

where 11, f1, f2, and m are the longitudinal stresses in the composite, in fibre 

one, in fibre two, and in the matrix, respectively, while Af1, Af2 and Am are the 

cross-sectional areas of fibre one, fibre two and the matrix, respectively. Each 

term in Eq. (3.40b) is then multiplied with (l/vc) where l is the length of the 

specimen, yielding 
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Considering the definition of volume fraction as given in Eq. (3.34), the above 

equation can be rewritten as 



 143

mmffff VVV   221111  (3.41) 

 

 

3.2.3. Modulus of elasticity 

The first derivative of Eq. (3.41) with respect to strain can be written as 
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Referring to a standard stress-strain curve for tensile testing, 


d
d  represents the 

slope of the curve. If this slope is taken in the initial straight line of the curve, then 

Ed
d 
 , the modulus of elasticity. Therefore 

mmffff VEVEVEE  221111  (3.42) 

 

3.3. LAMINATED BEAM THEORY 

 

 

Figure 3.6. A representative sectional view a three-layer laminated composite 
beam showing the layer numbers (i.e. k = 1, k = 2, and k = 3), the number of layer 
(i.e. n = 3), and for k = 1: hk = h1 and hk-1 = h0, for k = 2: hk = h2 and hk-1 = h1, and 
for k = 3: hk = h3 and hk-1 = h2. 
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The discussion presented in this section is limited to two dimensional cases 

only. The bending moment-strain relationship for a laminated composite beam is 

given by [7] p. 193: 

{M} = [B]{o} + [D]{} (3.43) 

where M is the bending moment; [B] and [D] are the coupling and bending 

stiffness matrices, respectively, and {o} and {} are the strain and radius of 

beam curvature matrices at the mid-plane, respectively. The elements of [B] and 

[D] matrices at the ith row and jth column are given as 
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 (3.44b) 

where k, n and h are the layer number, the number of layers comprising the 

laminated beam, and the ordinates of the interface of any two adjacent layers, 

respectively, as illustrated in Figure 3.6 for n = 3 and k = 1.  
kijQ is the element of 

the stiffness matrix,  ijQ , at º fibre orientation for the kth material. For special 

cases where º = 0, as fabricated and utilised in this research,  ijQ  becomes [8] p. 

208. 
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It should be noted that for orthotropic materials, the bending stiffness matrix, [D], 

is always symmetric, and elements 16 and 26 are always zero. The non-zero 

elements of the stiffness matrix are 

2112

11
11 1 
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E
Q  (3.46a) 
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1ξ   

where E11 and E22 are the longitudinal and transverse moduli, respectively; 12 and 

21 are the major and minor Poisson’s ratios, respectively; Ef and Em are the 

elastic moduli of fibre and matrix, respectively; G12, Gf and Gm are the in-plane 

shear moduli of the layer, the fibre and the matrix, respectively; and  is the 

measure of reinforcement that depends on the fibre geometry, packing geometry 

and loading conditions. Halpin and Tsai recommended that values of  = 2 and  

= 1 for transverse and shear moduli, respectively, are sufficiently accurate for 

circular and rectangular cross-section fibres [7] p. 76. The formulas for 

calculating E22 and G12 as given in equations (3.46c) and (3.46d), respectively, are 

known as the Halpin-Tsai equations. Poisson’s ratios may be calculated as follows 

12
11

22
2112 and 





E

E
VV mmff  (4.47) 

where v and V are the Poisson’s ratio and volume fraction, respectively, whilst the 

subscripts f and m refer to fibre and matrix, respectively. The strain and curvature 

components are [7] p. 208, 

{o} = ([A*] – [B*][D*1][C*]){N} + [B*][D*1]{M} (3.48a) 

{} = [D*1]{M} + [D*1][C*]{N} (3.48b) 

Where [A] is the extensional stiffness matrix and it is, like [D], always symmetric, 

and elements 16 and 26 are always zero for orthotropic materials. Its non-zero 

elements are calculated using the following expression. 
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 In the absence of an external normal force, N, the first term of equation (3.48a) 

and the second term of equation (3.48b) will disappear, and equations (3.48a) and 

(3.48b) then become 

{o} = [B*][D*1]{M} (3.50a) 

{} = [D*1]{M} (3.50b) 

where 

[B*] =  [A1][B] (3.51a) 

[D*] = [D] – [B][A1][B] (3.51b) 

Substitution of equation (3.45) into equations (3.49), (3.44a) and (3.44b) yields 
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The inverse of the extensional stiffness matrix, equation (3.52a), and [D*1] are 
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For the current work where the only non-zero moment is Mx, equation (3.51a) will 

result in the following strain components at the mid-plane. 
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The radii of beam curvature at the mid-plane given by equation (3.51b) are 
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The magnitude of strains at the tensile and compressive surfaces can be 

calculated using the following expression. 
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where y is the distance of the respective outer layer from the mid-plane (note: not 

from the neutral axis). Finally, the magnitude of their respective stresses may be 

calculated as follows. 
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where mmfkfkk
VEVEE 11  is the longitudinal elastic modulus of the kth 

material; E22 and G12 are as given in equations (3,46c) and (3.46d) and the major 

and minor Poisson’s ratios has been given in equation (3.47).  

Equation (3.56) shows that the applied bending moment loaded on the x-

axis does not produce shear strain, but it obviously shows that it can produce 

normal strain transverse to the fibre direction, i.e. y-direction. Such strain may 

cause local fibre displacement that initiates local buckling and lead to kink band 

formation. 

 

3.4. THE WORK OF FRACTURE 

 

The work of fracture, f, can be defined as the amount of energy required to 

create fracture surfaces approximately perpendicular to the loading direction [9]. 

Its experimental value is represented by the area underneath the load-displacement 

curve, such that it can be calculated is follows [10]. 
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where wd is the cross-sectional area of the specimen, n is the number of points at 

the load-displacement curve up to failure, and Fi and xi are the force and 

displacement at point i, respectively. Thus, the work of fracture of materials also 

represents the capacity of the materials to absorb energy [11] up to failure. 
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Another quantity that may be as important as the work of fracture is the energy 

storage capacity up to ultimate stress, max. The magnitude of this quantity can be 

calculated using equation with n being counted up to the maximum stress (as 

opposed to failure for f). 

  

3.5. FAILURE THEORIES 

 

Failure theories predict the strength of a structure, component or member of 

a structure under various loading configurations. Three failure theories exist that 

are commonly applied to predict the strength of composite materials, which can 

be anisotropic, orthotropic or quasi-isotropic depending upon their respective fibre 

architectures, e.g. maximum stress theory, maximum strain theory and maximum 

distortion energy or Tsai-Hill theory [7] pp. 174-181. 

The maximum stress theory predicts that failure will occur if any one of the 

following inequalities is violated. 
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where ij and ij-u are the applied stress and the composite strength in the principal 

material axis directions, respectively. Note that, in equations (3.59a) and (3.59b), 

the composite strength, either tensile or compressive, should be appropriately 

applied referring to the applied stress. 

The maximum strain theory states that in order to prevent failure the 

following inequalities need to be satisfied 
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where ij and ij-u are the applied strain and the composite allowable strain in the 

principal material axis directions, respectively. It should be noted that, in 



 150

equations (3.60a) and (3.60b), the composite allowable strain, either tensile or 

compressive, should be appropriately applied referring to the applied strain. 

According to the maximum distortion energy theory, failure will occur when 

the following inequality is satisfied. 
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Note that the composite normal strength, ij-u, either tensile or compressive, needs 

to be applied in accordance with the applied normal stress. 

Let us look at the maximum stress and maximum strain theories. 

Inequalities (3.59)s and (3.60)s show that each of the stresses and strains are 

evaluated individually. It can further be deduced that the failure mode will be 

associated with any term of the inequality being violated. In addition to this, for 

brittle composite materials with linear stress-strain relationships up to failure, 

these two theories will result in the same prediction. In the contrary to this, the 

maximum distortion energy theory brings about the interaction effect between the 

existing stresses in the materials under consideration. Although these inequalities 

are applicable to two-dimensional cases, equations (3.56) and (3.57) show that 

multi-axial stress and strain states will be produced even if the material is 

subjected to one-dimensional loading. Therefore, these inequalities may also need 

to be applied to the three-point bend loading configuration carried out in this 

research. 
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CHAPTER 4 

EXPERIMENTAL PROCEDURE 
 

 

 

 
 
 
4.1. EQUIPMENT DESIGN AND MANUFACTURING 

 

Prior to composite plate fabrication and testing, the required equipment was 

first designed and manufactured. Shop drawings of the required equipment were 

sent to the Faculty of Science and Engineering Workshop, Curtin University of 

Technology, for manufacture and assembling.  

 

4.1.1. Composite Plate Fabrication Equipment 

 

The main equipment for composite plate fabrication includes rectangular 

stainless steel frames, a frame holder and oven for prepreg manufacturing, and a 

hot-press for prepreg preform curing. 

 

4.1.1.1. Rectangular stainless steel frames 

   

 

Figure 4.1. Rectangular stainless steel frames. (a) Top view, (b) Photograph. 

(a) (b)
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These frames were used for winding fibre rovings or tows prior to being 

embedded with epoxy. The size and geometry can be seen in Figure 4.1 with 

details being given in Appendix 1. 

 

4.1.1.2. Frame holder 

In order to ease the winding of fibre tow onto a frame, the frame was affixed 

into the shaft of this holder. This holder is shown in Figure 4.2. 

 

4.1.1.3. Oven 

This oven, as presented in Figure 4.3, was utilised to partially cure the 

embedded fibres wound onto a frame in order to produce fibre/epoxy prepregs. 

The oven was equipped with an adjustable temperature 2400-watt heat gun that 

supplies hot air into the oven, a probe thermometer and timer, and a shaft. The 

shaft was specially designed such that a frame with embedded fibre wound onto it 

can be affixed and rotated during curing in order to ensure the homogeneous 

evaporation of acetone and curing of the matrix over the frame. The detail of this 

oven has been presented in Appendix 2. 

 

 

 

 

 

Figure 4.2. Frame holder. (a) Front view of the holder, (b) Photograph showing: 1. 
Glass fibre roll, 2. Stainless steel frame, and 3. Holder. 

(a) (b)

1

2 3
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(a) 

 

(b) 

Figure 4.3. Oven for producing fibre/epoxy prepregs. (a) Shop drawing showing 
its details and dimensions, (b) Photograph showing: 1. Digital thermometer and 
timer, 2. Rotating handle, and 3. Door. 

2

1

3
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4.1.1.4. Hot-press 

The hot-press utilised in this project has been presented in Figure 2.17. Its 

basic design was carried out by an undergraduate student as a final year project. 

Some modifications, e.g., installing upper plate guides, preform guides, excess 

resin collection chamber, and vacuum meter, had been undertaken during this 

project in order to improve its performance. The press was used to perform curing 

of prepreg preforms. 

 

4.1.2. Mechanical Test Equipment 

 

In order to carry out mechanical testing, the required equipment for 

specimen preparation and testing was designed and manufactured. This equipment 

included a tabbing-press, an alignment jig, a compressive test fixture, and an 

adjustable-span specimen support equipped with a three-point bend loading nose. 

 

4.1.2.1. Tabbing-press 

 

 

Figure 4.4. Tabbing press. (a) Front view showing: 1. Bottom plate, 2. Top plate, 
3. Hooks, 4. Guiding Pins, 5. Bolt, and 6. Arm, (b) Photograph 

(a) 

(b) 
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A tabbing-press has been presented in Figure 4.4. It was utilised to press 

tensile and compressive specimens during adhesive curing when affixing end-tabs 

onto the ends of the specimens. By applying a compressive pressure, a thin layer 

of adhesive resulted in strong interface bonding between specimen and. A shop 

drawing of this press has been presented in Appendix 3. 

 

4.1.2.2. Alignment jig 

An alignment jig, Figure 4.5 and its detail in Appendix 4, was required for 

specimen alignment in compressive test grips. It was equipped with changeable 

gauge length spacers that enabled the production of various specimen gauge 

lengths in accordance with the ASTM D3410 [1] test standard. Prior to being put 

into the compressive test fixture, a specimen was first aligned and affixed in the 

fixture grips. 

 

 

Figure 4.5. Alignment jig. (a) Top view showing: 1. Holding plates, 2. Parallel 
holders, 3. Bases, (b) Front view showing: 4. Gauge length spacers, and (c) 
photograph showing fixture grips separated one inch apart. 

(c)

(a) 

(b)
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4.1.2.3. Compression test fixture 

Unlike the tensile test fixture, a compression test fixture as presented in 

Figure 4.6 needed to be manufactured due to its unavailability. This fixture was 

required to perform preliminary tests, i.e., compressive testing. Its detail has been 

depicted in Appendix 5. 

 
4.1.2.4. Flexural test fixture and loading nose 

          

 

Figure 4.6. Compressive test fixture. (a) Front view showing: 1. Clamping 
screws, 2 and 3. Grips, 4. Load pins, and (b) Photograph. 

 

 

Figure 4.7. Flexural test fixture. (a) Front view, and (b) Photograph showing 
the support along with the three-point bend loading nose 

(a) (b)

(a) 

(b)
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Flexural tests were carried out in accordance with Procedure A of the 

ASTM D790 [2] test standard. The test fixture along with its loading nose, as 

presented in Figure 4.7, was manufactured in order to meet the requirements of 

the standard. It should be noted that to avoid any excessive indentation effect and 

to minimise stress concentration effects due to sharp edges at the loading nose and 

specimen supports, the standard recommends that the contact surface geometry of 

the loading nose and specimens supports should be cylindrical and of radius 5  

0.1 mm. A detail shop drawing of this fixture has been presented in Appendix 6. 

 

 

4.2. COMPOSITE PLATE FABRICATION 

 

4.2.1. Materials 

 
Two different grades of carbon fibre and two types of glass fibre were 

utilised as reinforcement, with epoxy being selected as the matrix in this project. 

Their primary properties have been presented in Table 4.1. 

 

4.2.1.1. Fibres 

It has been previously discussed in Section 2.5.2 that, despite their high 

tensile strength, compressive strengths of carbon fibres are relatively low in 

comparison with their respective tensile strengths. Low cost E-glass FRP 

composites demonstrated superior compressive strength in comparison with CFRP 

composite [3]. In light of this, in this research the author has attempted to improve 

the flexural properties of CFRP composites by replacing carbon fibres at the 

compressive side of beams with higher compressive strength glass fibre. 

PyrofilTM TR50S is a polyacrilonytrile-based (PAN-based) carbon fibre 

produced by Grafil Inc., Sacramento, CA, USA [4]. The fibre utilised in this 

project was supplied in the of a unidirectional tow that contained 12000 filaments 

[4]. This fibre is considered to be a standard modulus carbon fibre [5] combined 

with moderate strength (Table 4.1). The other grade of carbon fibre used was 

PAN-based HexTowTM IM7 (HS-CP-5000) manufactured by Hexcel Corp., 
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Stamford, CT, USA [6] which combined high strength and standard modulus – 

this tow also contained 12000 filaments. Their production process has been 

discussed previously in section 2.2.1.2. 

Two different types of glass fibre have been selected as a reinforcing 

material for the production of hybrid composites, i.e., E-glass and S2-glass fibres. 

The SE 2350-450 E-glass fibre was supplied by Owens Corning, Toledo, OH, 

USA [13], while the UT-S500 S2-glass was supplied by SP System, Newport, Isle 

of Wight, UK [14]. The E-glass, Figure 2.10, was in the form of a single-end 

continuous roving with approximately 2000 filament content in its tow. The S2-

glass, Figure 2.12, was received from the supplier in the form of unidirectional 

plain weave fabric of 500 mm width and approximately 500 gm-2 weight. The 

tow constructing the principal fabric direction was 1988 tex while that in the weft 

direction was an extra fine 10 tex, with both edges of the fabric being lopped [14] 

− their properties have been presented in Table 4.1. 

 

4.2.1.2. Matrix 

Epoxy resin has been selected as the matrix material due to its compatibility 

with different fibres, fast wetability, ease of processing [15] and good mechanical 

properties [15, 16]. In addition, epoxy also possesses low shrinkage on curing in 

comparison with polyester and vinylester [16]. Its properties have been presented 

in Table 4.1. 

Kinetix R240 epoxy resin combined with Kinetix H160 hardener were 

selected as the matrix in this project. This epoxy, supplied by ATL Composite 

Australia, Southport, QLD, Australia, possesses low viscosity resulting in 

excellent wettability in fibre impregnation. 
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Table 4.1. Properties of constituent materials  

Material Code 
Density 
(gcm-3) 

Filament 
dia (m) 

Strength (MPa) Tensile 
Modulus 

(GPa) 

T. failure 
strain 
(%)b) Tensile Other 

Unidirectional plain wave C-fibre [7, 8]  C0 1.80 N/A 2480  238 1.2 

TR-50S carbon fibre [4]  C2 1.82 7 4900  240 2.0 

HexTowTM IM7-12000 carbon fibre [6]  C3 1.78 5.2 5570  276 1.9 

E2350-450 type 30 glass fibre [9]  Eg 2.58a) 17 3400  72.3a) 2.5 

UT-S500c) UD fabric S2 glass fibre [10]  S2 2.46 9 4890  86.9 5.7 

Technirez R2519/H2409 epoxy [8, 11]  Em0 1.14 N/A 96  3.00  

Kinetix R240/H160 epoxy [12]  Em 1.09 N/A 83.3 Comp.: 98d) 3.65 9.8 
a)System Information: OCTM Advantex® 162A, Owens Corning, Toledo, OH, USA. 
b)Tensile failure strain. 
c)SP System, Newport, Isle of Wight, UK. 
d)Compressive yield strength. 
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4.2.1.3. Stacking configuration 

Although CFRP composites are well known for their superior tensile 

strength, their low longitudinal compressive strength may become a limitation for 

their widespread utilisation [17]. This problem becomes of primary concern if the 

structure will be subjected to compressive or flexural loads. However, through 

partial substitution of another type of fibre possessing a higher compressive 

strength for the carbon fibres in the compressive region of a composite structural 

members subjected to flexural loading, such problems may be minimised. Park 

and Jang [18] proved that placing stronger fibres in the outer layers of laminated 

beams resulted in a higher failure stress for their hybrid composite beams. 

Considering the above mentioned reason, the average thickness of individual 

single prepreg layers, and the resulting plate thickness of approximately 2.00 mm, 

the stacking configurations presented in Table 4.2 have been investigated. 

 

 

 

Table 4.2. Stacking configurations 

Plate number 

The number of prepreg layers of the 
hybrids 

E-g/S2-g TR50S/IM7 E-g/TR50S 

S2-g E-g IM7 TR50S E-g TR50S 

(1) (2) (3) (4) (5) (6) (7) 

1 0 4 0 6 0 6 

2 1 3 1 4 1 4 

3 2 2 2 3 2 3 

4 3 1 3 2 2 2 

5 4 0 4 1 3 1 

6 - - 6 0 4 0 

Note: All fibres in the even numbered columns were placed at 
the compressive faces of their respective hybrid composite 
plates. 



 162

4.2.2. Plate Fabrication Development 

 

4.2.2.1. Fabrication parameters 

In addition to the inherent properties of their constituent materials, the 

properties of FRP composite materials may be influenced by a number factors 

related to their microstructure characteristics, e.g., void content, fibre 

misalignment, fibre volume fraction. Tjong et. al. [19] have observed process-

structure-property relationships in their ternary short-glass fibre-reinforced 

polymer (FRP) composite materials. They reported that a change in manufacturing 

route resulted in microstructure change leading to changes in tensile yield stress, 

tensile fracture stress, tensile modulus and Izod impact energy of their short-glass 

FRP samples due to changes in reinforcement dispersion within the matrix and 

reinforcement-matrix interfacial bonding. Thus, any change in processing 

parameters can influence mechanical properties of the resulting materials. 

For FRP composites produced using the prepreg lay-up technique, these 

parameters include epoxy system concentration in the epoxy solution used for 

wetting the fibres, as well as the magnitude of the applied compressive pressure 

and curing chamber vacuum pressure, dwell time, and holding temperature during 

hot-press curing [8, 20]. Epoxy concentration in the epoxy solution will influence 

the viscosity of the solution resulting in changes in matrix wettability and fibre 

volume fraction and void content. Whilst vacuum pressure inside the curing 

chamber affects void content [20], minimising void content by controlling the 

magnitude of compressive pressure during hot-press curing has also been 

recommended by Olivier et al. [21] and Boey and Lye [22]. Sudarisman and 

Davies [20] also observed the influence of applied compressive pressure on fibre 

misalignment. 

Five manufacturing parameters, i.e., (i) epoxy system concentration in the 

epoxy solution used for wetting the fibres, (ii) magnitude of the applied 

compressive pressure, (iii) magnitude of vacuum pressure inside the vacuum 

chamber, (iv) dwell time, and (v) holding temperature during hot-press curing 

process. will be optimised during manufacture of the FRP composite plates. These 

parameters will be discussed in detail in Chapter 5. 
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4.2.2.2. Fabrication parameter optimisation 

There were five steps in optimising the fabrication parameters as had been 

outlined in previously published work by the author [8, 20]. In each step, only one 

parameter was varied whilst the other four parameters were kept constant. Five 

different values of the parameter being optimised were considered with the 

optimisation procedure being carried out as follows: 

1. Epoxy system concentration, Ce, optimisation in prepreg production process.  

2. Once Ce had been optimised, the second step was to vary the magnitude of 

the applied compressive pressure, pc, during hot-press curing.  

3. The next step was to vary the magnitude of the applied vacuum pressure, pv, 

inside the curing chamber during hot-press curing. 

4. Once the optimum value of pv had been established, the next step was to 

vary the holding time, t, during hot-press curing.  

5. Finally, the hot-press curing temperature, T, was varied in order to 

determine its optimum value.  

In each step, the resulting composite plate was evaluated in terms of flexural 

properties. It should be noted that the optimum values established in each step 

were applied for each successive step. Physical characterisation and flexural 

testing procedures will be discussed in the following sections, whilst the 

optimisation process will be discussed in detail in Chapter 5. 

 

4.2.2.3. Composite plate fabrication procedure 

Composite plate fabrication was carried using a fully manual technique as 

has been discussed in papers previously published by the author [20, 23], that 

involved prepreg manufacturing, prepreg lay-up and hot-press curing. This 

procedure has been illustrated in Figure 4.8. 
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Prepreg manufacturing procedure  Firstly, either carbon, glass or silicon 

carbide fibre was wrapped onto a rectangular stainless steel frame. Next, epoxy 

resin and its hardener were diluted in acetone in two separate pots, in order to 

prolong their pot life time, before mixing them to produce epoxy solution. The 

resin-to-hardener ratio strictly followed the supplier recommendations whilst the 

epoxy system-to-acetone ratio was based on the values established during the 

fabrication optimisation procedure. The fibre arrangement was then embedded in 

the epoxy matrix by pouring the epoxy solution onto the fibre arrangement, 

compacting, and draining it by allowing excess resin to flow out. Finally, it was 

put into an oven that had been pre-heated to 80 ºC for partial curing processing. 

The temperature inside the oven was increase up to 120 ºC [25, 26] at the rate of 

10 ºCm-1 [27] with a total oven time of 20 minutes [25, 26] being previously 

employed. Upon visual observation of the resulting prepregs, this time duration 

was found to be adequate for producing carbon/epoxy prepregs and silicon 

carbide/epoxy prepregs, whilst for glass/epoxy prepregs, 23 minutes was consider 

to be adequate. The resulted prepreg sheets were cut into an approximate size of 

150 mm × 290 mm and placed between two sheets of release paper before being 

stored in a freezer at 10 ºC in order to prevent further curing. 

 

Figure 4.8. Schematic illustration of the composite plate manufacturing 
procedure [23, 24].  
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Preform curing procedure  When a sheet of prepreg was taken out from 

the freezer, one piece of release paper was immediately removed and it was 

exposed to open air for 5 minutes in order to adjust to room temperature. Two 

sheets of the required prepreg were then carefully stuck together in order to 

produce a two-layer preform held between two sheets of release paper. These two-

layer preforms were then cooled down in the freezer in order to ease removal of 

the release paper. The above procedure applied to single layer prepregs was 

applied to these two-layer prepregs until the number of the required layers was 

obtained. The number of layers and the stacking configuration depended upon 

whether a hybrid or baseline composite plate was to be produced. The resulting 

preform was then placed into the hot-press that had been preheated up to 80 ºC, 

and finally, curing was carried out under 1.0 MPa mechanical compressive 

pressure and 0.035 MPa vacuum atmosphere at 120 ºC for 30 minutes. 

 

4.3. FIBRE VOLUME FRACTION AND VOID CONTENT 
DETERMINATION 

 

Experimental values of fibre volume fraction, Vf, and void content, Vv, for 

each composite plate were measured using the image analysis of cross-sectional 

micrographs similar to the method employed by Wang et al. [28]. However, 

whilst Wang e. al. analysed SEM images, the current author utilised optical 

microscopy in order to determine Vf and Vv. For each measurement, at least five 

optical micrographs taken at the same magnification were captured for each of 

five samples carefully removed from different regions of the composite plate − 

details of this procedure will be discussed in detail in Sub-section 4.4.3. 

To verify its accuracy, another group of samples comprising of five or more 

specimens taken from the same plate and selected in the same way as the previous 

group was prepared for Vf and Vv prediction by employing the rule of mixtures. 

The results of the second group were then compared with those of the first group 

through use of a least squares fit procedure. 

Prediction of the fibre volume fraction using the rule of mixtures has been 

reported by Deng et al. [29]. In the present research, the sample dimension was 
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25.4  0.2 mm long  12.7  0.2 mm width with the thickness depending on the 

thickness of the plate. Measurements were carried out using a Mitutoyo vernier 

calliper with a 0.02 mm resolution. Knowing the individual dimensions of the 

samples, their respective volumes could be calculated, whilst their individual 

weights were measured using an AL-3K digital scale, Denver Instrumentation 

Company, Denver, CO, USA. The bulk density of the samples was calculated as 

follows 

twl

m

v

m


 c

c

c
c  (4.1) 

where c, mc and vc are the density (gcm-3), mass (g) and volume (m3) of the 

sample, respectively; whilst l, w and t are the length, width, and thickness of the 

sample (cm), respectively, as illustrated in Figure 4.9. Finally, for single fibre-

type composites the predicted values of fibre volume fraction were calculated 

based on this volume and weight data using equation (4.2). 

mf

mc
f 





V  (4.2) 

where  is density (gcm-3), and the indices c, m and f refer to composite, fibre and 

matrix, respectively. 

For unidirectional hybrid FRP composites, consider Figure 4.9 which 

illustrates a unidirectional hybrid FRP composite containing two types of fibre 

embedded in a common matrix and arranged in a layer-wise pattern. 

 

 

 

 

 

 

Figure 4.9. Schematic illustration of hybrid FRP composites containing two 
types of fibres in a common matrix 
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We should start by defining Vf1 and Vf2 as the fibre volume fraction of the 

single fibre-type FRP composite containing fibre 1 and fibre 2, respectively. The 

volumes of fibre 1, fibre 2 and their total volume are given in equations (4.3a), 

(4.3b) and (4.3c), respectively. 

)( 1f11f1f1 twlVvVv   (4.3a) 

)( 2f22f2f2 twlVvVv   (4.3b) 

f2f1f vvv   (4.3c) 

where v and V are the volume and volume fraction, respectively; and the indices 1 

and 2 refer to fibre 1 and fibre 2, respectively. Substitution of equations (4.3a) and 

(4.3b) into equation (4.3c) gives 

  )(2f21f1f wltVtVv   (4.4) 

Dividing both side of equation (4.4) with vc = lwt, and recall that 
c

f
f v

vV  yields 

the fibre volume fraction of the hybrid FRP composite as 

f2
2

f1
1

f V
t

t
V

t

t
V   (4.6) 

The values of t1 and t2 as well as Vf1 and Vf2 can be determined using image 

analysis that will be discussed in Sub-section 4.4.3, whilst t can be determined by 

direct measurement. Any discrepancy in Vf values obtained using these two 

methods can be attributed to the presence of voids [30]. 

 

4.4. MECHANICAL TESTING 

 

4.4.1. Compressive Test 

 

In order to provide compressive strength data of the single fibre-type, i.e. E-

glass, S2-glass, TR50S carbon, and IM7 carbon polymer composites to be used 
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for the manufacture of hybrid FRP composites, compressive test was carried out 

for these four single fibre-type polymer composites. The compressive strength of 

Tyranno silicon carbide/epoxy composite was obtained from the previous work 

of Davies and Hamada [25] as presented in Table 4.1. The compressive tests were 

conducted in accordance with ASTM D3410-03 [1], using rectangular wedge 

grips (Figure 4.6) in order to accommodate variations in specimen thickness. 

 

4.4.1.1. Specimen preparation 

The specimen geometry according to ASTM D3410 has been depicted in 

Figure 4.10. The specimens were cut from composite plates under investigation 

using a diamond-tipped circular blade saw. In order to minimise edge effects due 

to damage produced by cutting, their longitudinal edges were polished using 600-

grit abrasive paper. Aluminium end-tabs [31-33] were utilised in order to prevent 

damage within the gripped areas during loading. 

The gripped areas of the specimens and one face of each tab were lightly 

abraded using a 1000-grit abrasive paper prior to affixing the aluminium end-tabs 

onto the gripped areas. The thickness of the tabs was 0.8 mm with four tabs being 

glued using the same type of epoxy as the composite matrix materials onto four 

gripped areas of each specimen. In order to obtain as thin a layer of adhesive as 

possible, the glued tabs on each specimen were cured at room temperature under 

mechanical compressive pressure using the tabbing-press shown in Figure 4.4. 

The specimen geometry according to ASTM D3410 has been presented in Figure 

4.10. Two C2A-06-125LW-120 strain gauges were installed on opposite surfaces 

of each specimen at the mid-length of the gauge length as shown in Figure 4.10. 

The grid length of the gauges was 3.18 mm with a 120.0  0.6% Ohm grid 

resistance and 2.080  0.5% gauge factor supplied by Vishay Micro Measurement 

and SR-4 [34]. The compressive strain was recorded using a 4-channel strain 

indicator and recorder, the P3 Strain Indicator and Recorder, manufactured by 

Micro Measurement, Inc., Raleigh, North Carolina, the USA. 
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4.4.1.2. Testing 

Compressive loading was introduced into the specimen through shear at the 

roughened wedge grip interfaces. Due to there being a high sensitivity of 

compressive properties to specimen alignment, care was taken when affixing the 

wedge grips onto each specimen as well as when placing this pre-gripped 

specimen into the test fixture. The tests were carried out in a computer-controlled 

Instron® 5500R universal testing machine at a constant crosshead speed of 1.5 

mmsec-1 with the results being using a Microsoft Excel spreadsheet. 

 

4.4.2. Flexural Test 

 

Flexural tests were carried out in accordance with Procedure B of the ASTM 

D790-07 Standard [2] in a computer-controlled Instron® 5500R universal testing 

machine equipped with an adjustable-span flexural test fixture (Figure 4.7). At 

least five specimens were tested for each case with the specimens being subjected 

to three-point bend loading up to failure. 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Compressive test specimen showing nominal dimensions. (a) Top 
view, (b) Front view, note that t is specimen thickness which depends on the 
thickness of composite plate panel. 
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4.4.2.1. Specimen preparation 

According to ASTM D790-07, the specimen geometry should be rectangular 

with a 12.7 mm width. The specimen thicknesses in the present work were 

determined by the respective composite plate thickness, whilst their length 

depended upon their respective thickness and span-to-depth ratio, S/d. A diamond-

tipped circular blade saw was used to cut the specimens from the composite 

plates. After being cut, the longitudinal edges of the specimens were polished 

using 600-grit abrasive paper in order to remove any possible edge damage due to 

cutting that may affect the flexural properties. For each case, at least five 

specimens were prepared and tested. 

ASTM D790-07 recommends that S/d be chosen in order to ensure that 

specimens fail in their outer layers and due to flexural loading rather than by shear 

loading. In accordance with this, three different S/d ratios, i.e., 16, 32 and 64 [25], 

were selected for testing. Two of the S/d = 64 specimens for each stacking 

configuration were equipped with strain gauges in order to directly measure the 

strain. One gauge was installed at the compressive face (close to the loading nose, 

approximately 5 mm from the mid-span) whilst the other was located at the tensile 

face directly below the compressive face gauge – the gauge type was identical to 

that utilised for the compressive test specimens. 

 

4.4.2.2. Testing 

The layers of the hybrid FRP specimens containing higher compressive 

strength were placed at the compressive side of the beam for testing – this was 

done in order to enhance any positive hybrid effect. Crosshead speeds were set 

equivalent to a 10-2 mmmm-1sec-1 strain rate as recommended by the ASTM 

D790-07 standard. Direct strain measurement for the specimens installed with 

strain gauges was carried out by means of a four channel P3 Strain Indicator and 

Recorder (Micro Measurement, Inc., Raleigh, North Carolina, USA. The data 

acquisition setup for specimens instrumented with strain gauges has been depicted 

in Figure 4.11. The values of flexural strain at maximum stress were calculated 
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from their respective recorded crosshead displacement using the following 

equation [2]. 

2max
6

S

Dd
  (4.7) 

where max is the strain at maximum stress, D is the crosshead displacement, d is 

the depth of the beam, and S is the span of the beam. 

 The ASTM D790-07 standard dictated that for shorter beam, i.e., S/d  16, 

flexural strength, f, can be calculated using equation (3.6a) where flexural 

strength is the normal stress at maximum load. For S/d > 16, due to excessive 

deflection experienced by the beam, the flexural strength should be calculated 

using the following modified equation. 
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where Fmax  and w are the maximum applied force and the width of the specimen, 

respectively. 

The flexural modulus, Ef, should be determined at the initial straight line of 

each individual force-displacement curve [2]. In this research, it was determined at 

a strain, , of 2.5 x 10-3 [25] and calculated using equation (4.9) which was 

obtained from rearranging equation (3.34) and substitutions of Ef for E and  12
1  

wd3 for Ix. 

x
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 (4.9) 

where x
F


  (unit: Nmm-1) is the slope of the load-displacement curve at the 

range being calculated. 
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The specific energy storage capacity for each specimen was calculated using 

equation (4.10) from the individual load-displacement curves produced by the 

Instron testing machine [35]. 
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22

1
DD

FF

wd
  (4.10) 

where wd is the cross-sectional area, n is the number of points of the load-

displacement curve up to Fmax, Fi is the force at point i, and Di is the displacement 

at point i. 

Unless otherwise stated, all data presented in this work was the average 

value of at least five specimens. After being tested up to failure, the fracture 

regions of specimens were removed for failure mode examination with details of 

this procedure being discussed in the following section. 

 

4.4. OPTICAL MICROGRAPHY 

 

4.4.1. Specimen Preparation 

 

Samples for microstructural analysis were carefully removed from either the 

composite plates or fractured specimens using a diamond-tipped circular blade 

saw. Samples removed from composite plates were utilised for fibre volume 

fraction and void content determination, whilst those taken from fractured 

specimens were utilised for failure mode analysis. First of all, each sample was 

mounted into a polyester block using standard procedures and then cured at room 

temperature. The specimens were then gradually polished, starting with 120 grade 

silicon carbide–coated polishing paper and finally a suspension of 0.3 µm grain 

size alpha alumina polishing powder produced by Leco Corp., St Joseph, 

Michigan, USA [36]. 

 

4.4.2. Image Capturing 
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The samples that have been mounted into polyester blocks and mirror-

surface polished were observed under a Nikon Eclipse ME600 optical microscope 

with their images being captured using a colour digital camera, the Spot Insight™ 

2MP, that had been installed on the microscope. These micrographs were use for 

the determination of fibre volume fraction, void content and fibre misalignment. 

In addition to these samples, a micrograph of a scale bar was also captured at each 

magnification for the purpose of scaling the resulting micrographs. 

 

4.4.3. Image Analysis 

All image analyses were carried out using an open source image analysis 

software, ImageJ, developed by the National Institutes of Health, USA [37] apart 

from fibre misalignment that was determined through direct measurement of the 

micrographs [38]. 

Fibre volume fraction determination - The first step in predicting fibre 

volume fraction was to calculate the average diameter, f, (unit: pixels = px) of the 

fibre images to be analysed following the method of Ogasawara and colleagues 

[39]. At least one hundred fibre images of each type of fibre were randomly 

selected with the resulting average diameters being used to predict the fibre 

volume fractions from optical micrographs of the composite specimens. Next, 

after calculating the number of fibre images within each micrograph and 

calculating their area, the fibre volume fraction can be determined as follows 
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
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
 (4.11) 

where Vf is the fibre volume fraction, Af is the fibre image area (px2), Ai is the 

image area (px2), nf is the number of fibres, f is the average fibre image diameter 

(px), li is the length of the image (px), and wi is the width of the image (px). 

Void content determination - Unlike those of fibre images, the boundaries of 

void images are especially obvious. Kim and Nairn pointed out that images of 

empty spaces, holes, and air bubbles inside an epoxy matrix appear dark [40]. 

Considering this fact and the irregular geometrical nature of the voids, void 
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content was predicted using the ImageJ software as previously reported by the 

author [8]. Firstly, each colour image captured using an optical microscope was 

transferred into an 8-bit gray scale image. Next, the intensity threshold of the 

image was set to such a level that the voids appeared as one colour with the fibres 

and matrix appearing as another colour. The third step was to run a particle 

analysis procedure which calculated the void image fraction of the image. 

Layer thickness determination – This procedure started by calculating the 

scaling factor of the sample images through comparing the known fibre diameter 

(unit: m) provided by the supplier with the average values (unit: px) obtained in 

the fibre volume fraction determination. The scaling factor was calculated as 

1000
)(

)(


px

m
fs 


  (m/px) (4.12) 

where (m) and  (px) are the diameter of the fibre provided by the supplier and 

the average values calculated from image analysis, respectively. The next step was 

to measure the distances (unit: pixels) from the outer surface of the layer under 

observation to the interface between the two layers at a minimum of ten points. 

The thickness of the layer could then be calculated as the average value of these 

distances using equation (4.13).  

sii ftt    (mm) (4.12) 

where ti and it  are the thickness of the layer and the average value calculated 

from image analysis, respectively. 
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CHAPTER 5 

FABRICATION PARAMETER 
OPTIMISATION 
 

 

 

 
 
 
5.1. FABRICATION PARAMETERS 

 

In addition to the inherent flexural properties of the constituent materials, 

other parameters that will greatly influence the resulting mechanical properties of 

unidirectional carbon fibre-reinforced polymer (CFRP) composites include the 

microstructural characteristics, e.g., the degree of void content [1, 2], the degree 

of fibre misalignment, and the fibre volume fraction [3, 4]. Furthermore, the 

microstructural characteristics of CFRP composites may also be influenced by 

their processing conditions during manufacture. Important processing parameters 

for consideration in this research include: (i) the concentration of matrix 

precursor, Ce, within the solvent solution utilised to wet the fibres, (ii) the 

compressive pressure, pc, applied during hot-press curing, (iii) the vacuum 

pressure, pv, of the atmosphere inside the curing chamber, (iv) the dwell time, t, 

during hot-press curing, and (v) the holding temperature, T, during hot-press 

curing. In this chapter, the optimisation procedure of these five processing 

parameters will be discussed. 

The concentration of matrix precursor (e.g., epoxy resin) within the solvent 

solution (e.g., acetone) is known to significantly influence the viscosity of the 

resulting solution. Although smaller concentrations of epoxy matrix will tend to 

produce lower viscosity solutions which are more easily able to infiltrate and wet 

the fibre bundles, if the volume fraction of the epoxy matrix becomes too small 

then this will result in insufficient matrix surrounding the fibres, resulting in poor 

structural integrity of the composite [3, 4]. Therefore, although an optimum 

packing density of 82%-83% would be expected for unidirectional composites 
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based on 2D packing models [5], with values close to this being observed from 

experimental work, the structural integrity of the composite should also be 

considered in order to achieve optimum mechanical properties. In this research, 

the epoxy content within the epoxy solution was varied from 45% to 65% in 

increments of 5% − this range covering typical values used for CFRP composites. 

Another related parameter that influences microstructural characteristics is 

the magnitude of the applied compressive pressure on the preform during 

autoclave curing in order to minimise the void content [1, 2]. The presence of 

voids within a CFRP composite is known to significantly decrease the 

performance of structures [1, 2, 6, 7], in particular the compressive and flexural 

strengths due to the increased chance of local fibre buckling and eventual failure 

of the component. In addition, compressive pressure may also affect the degree of 

fibre volume fraction and fibre alignment due to matrix overflow from the prepreg 

lay-up together with fibre displacement during curing [4]. Whilst Boey and Lye 

[1] utilised a compressive pressure as high as 7 MPa in order to reduce the void 

content, when taking into account considerations such as ease of manufacture, 

other researchers [2, 8] have tended to utilise relatively low compressive 

pressures, ranging from 0.1~1.0 MPa and 0.0~0.6 MPa, respectively. In between 

these two extremes, Davies and Hamada [9] have successfully utilised 

compressive pressures in the region of 2.5 MPa. Considering these factors, the 

magnitude of compressive pressure in the present work was varied from 0.25 MPa 

to 1.25 MPa in steps of 0.25 MPa. 

Another parameter that may influence microstructural characteristics is the 

dwell time, with a longer dwell time being known to result in lower void contents 

[10]. Whilst the matrix precursor manufacturer supplied a recommended curing 

time at room temperature under the absence of compressive pressure, in this 

research, a compressive pressure, vacuum pressure and elevated curing 

temperature were applied in order to accelerate the curing process. Thus, an 

optimum dwell time needed to be determined. A typical dwell time of 30 minutes 

has been reported in previously published work [11, 12] and thus the dwell time in 

the present research was varied within the range 30 ± 10 minutes in 5 minute 

steps, i.e., 20, 25, 30, 35 and 40 minutes. 
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In addition to controlling the magnitude of compressive pressure, Boey and 

Lye [1] also applied a vacuum pressure inside the curing chamber ranging from 

0.00 to  MPa during curing. They reported that the void content 

asymptotically decreases with an increase of vacuum. In the current work, the 

author hence employed five different magnitudes of vacuum pressure, i.e., 0.085 

MPa, 0.080 MPa, 0.070 MPa, 0.055 MPa and 0.035 MPa. 

Another parameter that may influence microstructural characteristics of FRP 

composites is the holding temperature during curing. At the beginning of the 

curing process, the viscosity of the resin decreases due to the temperature 

increase, then, when the cross-linking process begins, the viscosity increases [8]. 

Varying the viscosity of the resin during curing by varying the holding 

temperature may result in controlled void removal from the resin system as void 

removal depends upon the resin viscosity (in addition to the applied compressive 

pressure and vacuum pressure). A lower viscosity of the resin during curing may 

ease the removal of voids from the resin. However, if the viscosity of the resin is 

too low then excessive resin may also flow out of the composite (aided by the 

vacuum) and cause a lack of resin in the resulted FRP composites. In addition, too 

high a holding temperature may result in higher resin flows that may displace the 

fibres from their initial positions, resulting in fibre misalignment. Opposite to this, 

too low a holding temperature may result in the viscosity of the resin being too 

high which, when combined with a high compressive pressure, may lead to 

similar consequences due to the matrix (containing the fibres) being deformed. 

Davies and Hamada [9] previously applied a 120 C holding temperature and, in 

light of this, the present research utilised holding temperatures of 120 ± 20 C in 

steps of 10 C, i.e. 100 C, 110 C, 120 C, 130 C, and 140 C. 

The selected values of the five processing parameters have been summarised 

in Table 5.1. 
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5.2. EXPERIMENTAL PROCEDURE 

 

5.2.1. Materials 

Unidirectional plain woven carbon fibre tape supplied by Colan Products 

Pty. Ltd., Huntingwood, NSW, Australia, was selected as reinforcement in 

developing this fabrication procedure. The nominal width of the tape is 300 mm, 

the nominal thickness is 0.25 mm, and the specific area weight is 200 gcm-2. The 

warp contains approximately 98% of the total fibre with the remaining 2% 

comprising the weft fibre [13]. Due to its compatibility with different fibres, fast 

wetability, ease of processing [14],  low shrinkage upon curing [15], and good 

mechanical properties [14, 15], an epoxy resin was selected for the matrix. The 

epoxy, comprising of Technirez R2519 resin and Technirez R2419 hardener, 

was supplied by ATL Composites, Southport, Australia. A 70-to-30 by weight 

mixing ratio [16] was recommended by the manufacturer for this particular epoxy 

system. Properties of the constituent materials have been presented in Table 4.1. 

 

5.2.2. Optimisation Procedure 

The optimisation procedure consists of five steps with one parameter being 

optimised in each step. An optimum value that had been obtained in a particular 

Table 5.1. Selected values of the processing parameters 

Processing parameters Values 

Epoxy concentration, Ce (%) 45 50 55 60 65 

Compressive pressure, pc (MPa) 0.25 0.50 0.75 01.00 1.25 

Vacuum pressure, pv (MPa) 0.085 0.080 0.070  0.055  0.035

Dwelling time, t (minutes) 20 25 30 35 40 

Holding temperature, T (C) 100 110 120 130 140 

Note: the values printed in bold were used in the first step of the optimisation 
procedure. 
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step was then applied in all following steps. In each step, the plates that had been 

produced were cut into specimens according to the adopted flexural test standard, 

ASTM D790-05 [17], and subjected to three-point bend loading until failure or 

else underwent 5% strain, whichever occurred first. Another five samples were 

also carefully removed from the plate, cast into polyester blocks, polished, and 

subjected to optical microscopy for later microstructural analysis. The composite 

fabrication and parameter optimisation procedures have previously been discussed 

in Sub-section 4.2.2. Mechanical testing and optical micrography have been 

discussed in sections 4.4 and 4.5, respectively. 

First, in order to determine the optimum value of epoxy content, Ce, within 

the epoxy solution utilised for embedding the carbon fibre (that had been wrapped 

onto a steel frame), five different concentrations were utilised, i.e., 40 wt%, 45 

wt%, 50 wt%, 55 wt% and 60 wt% as presented in Table 5.1. The other four 

parameters for hot-press curing utilised in this first step were kept constant, i.e., 

compressive pressure, pc, was 0.75 MPa [8], vacuum atmosphere pressure inside 

the chamber, pv, was 0.070 MPa, dwelling time, t, was 30 minutes, and holding 

temperature, T, was 120 C [9]. One composite plate was produced for each Ce 

value with these plates being cut into specimens, tested and analysed in order to 

determine the optimum value of the epoxy concentration. 

Once the optimum value of Ce had been established, this value was then 

applied in optimising the other four fabrication parameters in the later steps. One 

parameter was optimised in each of the following four steps in the following 

order: pe, pv, t and T. The same procedure, apart from the parameter under 

optimisation that was varied, was applied in the next four steps of the optimisation 

procedure.  

 

5.2.3. Testing and Evaluation 

As mentioned, mechanical property characterisation was carried out in 

accordance with ASTM D790-07 [17] with a span-to-depth ratio, S/d, of 64 being 

selected in order to ensure that the specimens failed due to flexure rather than 
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shear. Specimens were subjected to a three-point bend loading configuration until 

failure or else reaching 5% strain, whichever occurs first. Specimen dimensions 

and the preparation procedure, as well as the testing procedure, have been 

presented in detail in sub-section 4.4.2, whilst microstructural characterisation has 

been discussed in section 4.5. At least five specimens were prepared from each 

composite plate and subsequently tested. The data presented here are the average 

values of these specimens. 

 

5.3. RESULT AND DISCUSSION 

 

Figure 5.1 is a photo micrograph of the calibration bar at 5 optical 

magnification. It shows that a length of 687 pixels was equivalent to 1000 m – 

these values being calculated using ImageJ software. Therefore, the scaling factor 

of the micrographs captured under 5 optical magnification can be calculated. 

Fs, 5 o.m. = 0.687 px/m. (5.1) 

 

Micrograph samples for Vf and Vv determination, as well as the flexural 

property calculation procedures using a spreadsheet, have been presented in 

Appendix 7 to Appendix 10. 

 

Figure 5.1. Photo micrograph of the calibration bar captured under 5 optical 
magnification showing two scale bars of the same length, one in micron and the 
other in pixels (px). 
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In comparison with those presented in the previously published papers [3, 

4], the results currently presented in this report may be slightly different due to the 

addition of extra sample data being analysed in order to obtained more reliable 

data. 

 

 

5.3.1. Epoxy Concentration Determination, Ce 

 

The estimated fibre volume fraction, Vf, was found to be in the range 

51.3%~53.6%, which is relatively constant, for Ce between 45 wt% and 60 wt%. 

However, it decreased significantly to ~48.3% when Ce was increased to 65%. In 

comparison with Figure 5.2(b), which represents a specimen containing 65 wt% of 

Ce, Figure 5.2(a) presents an optical micrograph for a specimen containing 45 

wt% of Ce, showing that the fibre distribution was relatively even within the 

individual prepreg layers with no obvious matrix-rich areas (dark bands) and 

suggesting Vf to be relatively high. Figure 5.2(b) illustrates the presence of matrix-

rich regions that were located between adjacent prepreg layers. Such a 

microstructure indicates that a large proportion of the acetone solution containing 

65 wt% of epoxy resin was unable to wet and coat the individual fibres within 

each layer, instead, the matrix concentrated on the surfaces of the individual 

prepregs. 

The presence of a thick matrix film on the surface of each prepreg layer was 

believed to have caused significant variations in the thickness of individual 

prepreg layers, leading to poor flatness of the prepreg surfaces and increasing the 

possibility of air bubble entrapment between adjacent prepreg layers during the 

stacking process. Indeed, several large voids, located between adjacent prepreg 

layers, which appeared dark in colour [18], can be observed in Figure 5.2(b) as 

noted by the white arrows. In contrast to this, the acetone solutions containing 

matrix resin contents below 65 wt% were, as expected, found to exhibit lower 

viscosities which increased their wetability and infiltration into the fibre bundles 

[8]. 
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Concerning the observation of micrographs during image analysis, the 

following points were noticed: (i) there was no void development in the through-

the-thickness direction of the plates, (ii) most of the larger voids were located 

between adjacent plies, (iii) voids altered the initial fibre arrangement, and (iv) the 

majority of the voids were in contact with fibres. Olivier et al. reported that, in 

addition to the volume, void shape and location also need to be considered when 

predicting the mechanical behaviour of composites containing voids [2]. 

 

 

 
 
Figure 5.2. Optical micrographs of two specimens manufactured from different
Ce-s: (a) 45 wt% of Ce showing less matrix-rich areas as narrower dark bands 
(white arrows), and (b) 65 wt% of Ce showing matrix-rich areas as wider
diagonal dark bands (dark arrows) and voids (white arrows) between layers [4]. 
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Figure 5.3 presents the effect of Ce on the flexural strength, flexural 

modulus and estimated Vf and void content, Vv. The highest values for flexural 

strength (988 MPa) and flexural modulus (59.3 GPa) were both achieved at a Ce 

of 50 wt%. The Vf for this system was 53.2% which is slightly below the 

maximum value achieved for the 60 wt% of Ce (53.6%). Referring to the “rule of 

mixtures” and considering the fact that Vf was found to be relatively constant for 

the range of Ce from 45% to 60 wt%, the decrease of flexural strength and flexural 

modulus for Ce above 50 wt% may be attributed to an increase in Vv between the 

individual prepreg layers, similar to the decrease in interlaminar shear strength as 

reported by Yoshida et al. [9]. This also confirmed from the figure that, apart from 

Ce = 60 wt%, general trend that can be observed is that both flexural strength and 

flexural modulus increase with the decrease in Vv, and vice versa. 

 

 
 

It can be concluded from the above discussion that the optimum value of Ce 

is 50 wt%, at which point the maximum flexural strength and flexural modulus 

were achieved together with the minimum Vv, although its Vf was slightly lower 

than that of Ce = 60 wt%. 

        
  

睨崵  � �脈 � 5.3. (a) Influence of Ce on flexural properties showing narrow 
of variation, and (b) Estimated fibre volume fraction with relatively narrow 
range of spread and void volume content with wider range of variation. 
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5.3.2. Hot-press Curing Compressive Pressure, pc 

 

The estimated Vf was found to vary considerably between a minimum of 

50.0% (for a pc of 0.50 MPa) and 59.0% (for a pc of 1.00 MPa). These results 

were confirmed by observations during the vacuum hot-press curing procedure 

where the amount of excess resin squeezed from the prepreg layers was noted to 

vary for different magnitudes of pc. Figure 5.4(a) clearly indicates the presence of 

a relatively low Vf (42.3%, the lowest among those of the samples, at 0.25 MPa of 

pc) when compared to that of Figure 5.4(b) (62.5%, the highest among those of the 

samples, at 1.0 MPa of pc). Overall, it was noted from optical microscopy that 

 

 
 

Figure 5.4.  Optical micrographs of composite specimens: (a) manufactured at 
0.25 MPa pc illustrating matrix-rich regions and voids (dark spot in matrix 
area), and (b) manufactured at 1.00 MPa pc indicating the presence of denser 
fibre packing and less voids. 
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increasing the pc resulted in a lower Vv within the resultant composite plates. This 

result was found to agree with that previously reported [1-2]. 

The degree of fibre misalignment was found to be relatively low as shown 

in Figure 5.5, as the composite plates were produced using a dry lay-up technique. 

This result indicates that although a proportion of the fibres were displaced from 

their initial arrangement, most of these fibres experienced relatively small 

misalignment angles. In addition to this, unlike what was initially suspected prior 

to the experiments, pc was found not to influence the degree of fibre 

misalignment. 

 

 

Figure 5.5. The effect of pc on fibre alignment showing negligible difference 
in the degree of fibre misalignment: (a) pc = 0.25 MPa, and (b) pc = 1.25 MPa. 
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Figure 5.6 illustrates the relationship between pc on one hand, and the 

flexural properties and estimated Vf and Vv, on the other hand. The highest values 

for flexural strength (1201 MPa) and elastic modulus (59.0 GPa) were found to 

occur for the specimen manufactured using a pc of 1.0 MPa. In particular, the 

flexural strength was noted to increase significantly (31%) when compared to the 

maximum value obtained during the first step of optimisation (i.e., Ce), 

corresponding to a pc of 0.75 MPa in the present set of specimens. In contrast to 

this, the flexural modulus was found to be considerably constant. The increase of 

Vv with the increase of pc from 1 MPa to 1.25 MPa may be attributed to 

inadequate time of entrapped air for evacuation due to the effect of higher 

compressive pressure leading to faster matrix consolidation. This was confirmed 

with the majority of void being observed between two adjacent prepreg layers. 

 

In summary, for pc values between 0.25 MPa and 1.25 MPa, the flexural 

strength and flexural modulus increased due to the decrease in Vv. Therefore, a pc 

of 1.00 MPa was considered to be the optimum value. 

        
 

 
Figure 5.6. (a) Influence of pc on flexural properties showing narrow range 
of variation especially for Eff, and (b) Estimated fibre volume fraction with 
relatively wide range of variation.
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5.3.3. Hot-press Curing Holding Time, t 

 

Figure 5.7(a) illustrates a longitudinal section of a specimen manufactured 

using a holding time of 20 minutes. Poor fibre-matrix interface bonding, indicated 

by the dark colour between fibre bundles, and matrix-rich regions (dark arrows) 

are obvious. This figure also shows high Vv (white arrows) that were also mainly 

located between adjacent prepreg layers as has been observed in the previous 

rounds of optimisation. These processing deficiencies may be used to explain the 

relatively low flexural strength (775 MPa) and elastic modulus (49.6 GPa) for this 

particular specimen. 

 

 

 
Figure 5.7.  Optical micrographs illustrating: (a) imperfect fibre wetting (dark 
arrows) and the presence of voids (white arrows) between individual prepreg 
layers in a t of 20-minute specimen, and (b) fibre misalignment within a t of 40-
minute specimen (dark arrows). 
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In contrast to this, Figure 5.7(b) illustrates a specimen manufactured using a 

holding time of 40 minutes, revealing that improvements in inter-layer bonding 

and decreasing Vv could be achieved. However, small amounts of fibre 

misalignment at small off-axis angles, as denoted by the dark arrows, were 

observed and this would be expected to reduce the mechanical properties of these 

specimens in comparison with those of plates produced using a 30 minute holding 

time. Fibre misalignment is known to affect the mechanical properties of the 

composites [3, 4]. Thus, the flow of matrix and subsequent misalignment of the 

fibres may be the cause of the decrease flexural strength for specimens produced 

at t above 30 minutes. 

 

 

The influence of t on the flexural properties, Vf and Vv has been illustrated in 

Figure 5.8. The maximum value of flexural strength (1201 MPa) was achieved at 

a t of 30 minutes whereas the flexural modulus was approximately 63 GPa for 40 

minutes of t. It can be seen in Figure 5.8 that whilst flexural strength increased 

        

Figure 5.8. (a) Influence of holding time during the vacuum hot-press curing 
procedure on flexural properties showing narrow range of variation, and (b) 
Estimated fibre volume fraction with considerably narrow range of spread and 
void volume content with wider range of variation.
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with Vf, flexural modulus slightly increased with holding time, t. Therefore, a 

holding time of 30 minutes was considered to be the optimum value as the 

optimum flexural strength could be achieved with negligibly lower flexural 

modulus in comparison to that of the 40 minute holding time specimen. 

 

5.3.4. Hot-press Curing Vacuum Pressure, pv 

 

As the results from the previous stage showed that most fibres underwent 

misalignment angles between 0o and 10o in both the xy- and xz-planes, increasing 

the vacuum level did not show a negative effect on the fibre arrangement. When 

 
 
Figure 5.9. Samples of in-plane micrographs: (a) at pv = 0.085 MPa  showing 
~1.5% up to 5o fibre misalignment, (b) at pv = 0.035 MPa showing no fibre 
misalignment can be observed [3]. 

 

(b) 

  300 m 

misalignment 

   300 m 

(a) 
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the vacuum level was further increased from 0.085 MPa up to 0.035 MPa, 

however, no fibre misalignment could be observed. The small amount of voids 

removed from the resin system was believed to have caused resin flow to fill in 

the spaces previously occupied by the voids but was not strong enough to displace 

fibres from their initial positions. In addition, the presence of voids may lead to 

fibre misalignment due to local deformation of fibres as has been previously 

discussed. Figure 5.9(a) shows an in-plane micrograph with approximately ~1.5% 

of fibres possessing misalignment angles of up to 5o, in contrast to Figure 5.9(b) 

where no fibre misalignment was noted. 

 

 
 

Figure 5.10 shows a slight decrease in the predicted Vf, ~0.3%, compared to 

that of  pv = 0.085 MPa, when the vacuum level increased from 0.085 MPa to 

0.080 MPa. Further increasing the vacuum level from 0.080 MPa to 0.070 MPa 

produced an increase in Vf back to ~59% and was essentially constant as the 

vacuum level further increased to 0.035 MPa. Whilst the applied pc resulted in 

       

Figure 5.10. (a) The influence of vacuum pressure on flexural strength, flexural 
modulus showing narrow range of variation, and (b) Estimated fibre volume 
fraction with considerably narrow range of variation and void volume content 
with wider range of variation , at pc = 1.00 MPa, T = 120 oC, and t = 30 minutes. 
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significant variations in the amount of excess resin being squeezed from the 

prepreg arrangement, at lower vacuum levels, any increase in vacuum evacuated 

only entrapped voids from the resin system. This result was in contrast to that of 

Boey and Lye [3] who noted that at higher vacuum levels, some of the resin may 

be extracted from the prepreg arrangement being pressed, resulting in an increase 

of fibre content. 

Figure 5.10 also shows that, generally speaking, Vv dropped from ~4.9% to 

~1.5%, as the vacuum level increased from 0.085 MPa to 0.035 MPa. At the 

beginning up to pv = 0.080 MPa, Vv dropped quite rapidly with an increase of 

vacuum level, then it experienced a slower rate of decrease as the vacuum level 

further increased up to 0.035 MPa − a similar phenomenon has been previously 

reported [8]. Although the current results may appear to suggest that Vv may be 

decreased further with increasing vacuum level, this may not be beneficial from 

the production processing point of view as the additional effort required to 

increase the vacuum level further may not be comparable with any extra decrease 

in Vv. 

The flexural strength and flexural modulus were found to vary from 871 

MPa and 56 GPa, respectively (corresponding to 0.085 MPa pv) to 1277 MPa and 

62.3 GPa, respectively (corresponding to 0.035 MPa pv). In comparison to the 

results of the previous step, increases in both flexural strength and flexural 

modulus were observed, although they were relatively small in nature, i.e. 6.35% 

and 1.96%, respectively. Thus, applying a vacuum pressure inside the curing 

chamber resulted in a decrease in Vv. Taking into account the flexural properties, 

Vf and Vv,  a vacuum pressure of 0.035 MPa was considered to be optimum. 

 

5.3.5. Hot-press Curing Holding Temperature, T 

 

The influence of T on the flexural properties, Vf, and Vv, has been presented 

in Figure 5.11. The values of Vf were found to vary within a narrow range, from 

~54.6% at T ~ 140 oC to ~57.9% at T ~100 oC. As the T increased from 110 oC to 

140 oC, the Vf decreased negligibly. Quicker resin evaporation at higher T 

combined with the applied vacuum pressure may be responsible for this slight 
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decrease of Vf as the resin vapour would quickly be evacuated from the flowing 

resin system. 

As T increased from ~100 oC up to ~130 oC, Vv decreased from ~2.46% to 

1.55% and then increased to ~2.25% at T ~140 oC. The decrease of Vv up to T ~ 

130 oC was thought to be caused by the decrease in resin viscosity with larger T 

during the initial stages of the heating process prior to the initiation of gelation 

and cross-linking of the resin molecules – this would aid the removal of voids. In 

contrast to this, a sharp decrease in resin viscosity due at T ~140 oC, leading to 

insufficient time for the entrapped air to be removed, was suggested as a reason 

for the increase of Vv at this temperature. Therefore, a balance needs to be made 

between the resin solidification rate and vacuum level in order to achieve 

optimum void evacuation. 

 

As has been observed in the previous steps, at relatively constant Vf, the 

flexural strength showed a negative correlation with their respective Vv. The 

       

Figure 5.11. (a) The influence of T on flexural strength, flexural modulus 
considerably showing narrow range of variation, and (b) Estimated Vf with 
narrow range of variation and Vv with relatively wide range of variation, at pc = 
1.00 MPa, T = 120 oC, t = 30 minutes and pv = 0.035 MPa.  
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optimum value of T was found to be the same as that in the previous step, i.e., 120 
oC, with the flexural strength and flexural modulus being ~1277 MPa and ~62.3 

GPa, respectively. 

Although a holding temperature of T ~ 120 oC produced a slightly lower Vf, 

its Vv was the lowest and its flexural properties were the highest, thus a T of 120 
oC was considered to be the optimum value. 

 

 5.5. CONCLUSIONS 

 

The optimum values of the following processing parameters, i.e. (i) epoxy 

resin content of the acetone solution, (ii) compressive pressure, (iii) holding time, 

(iv) vacuum pressure inside the curing chamber, and (v) holding temperature 

during hot-press curing, for the fabrication of a unidirectional CFRP composite 

have been investigated in five consecutive steps, with the resulting composites 

having been tested under flexural loading. Whilst Vf and Vv were characterised by 

means of their respective optical micrographs, flexural property characterisation 

was carried out in the three-point bend loading configuration according to the 

ASTM D790-03 standard. Taking into account the highest values of mechanical 

properties and Vf, as well as the minimum value of Vv, the optimum values of the 

processing parameters for this particular epoxy system were determined to be 

those presented in Table 5.2. 

 

It should be noted that each parameter under investigation resulted a typical 

effect on CFRP composite properties being produced. It showed that each of these 

Table 5.2. Optimum values of the processing parameters 

Processing parameters Values 

Epoxy concentration, Ce (wt%) 50 

Compressive pressure, pc (MPa) 1.00 

Dwelling time, t (minutes) 30  

Vacuum pressure, pv (MPa) 0.035 

Holding temperature, T (C) 120 
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parameters influences the properties of the resulted composites in different ways. 

In addition to this, these optimum values of processing parameters have been 

evaluated individually in each consecutive step. This approach has been selected 

considering the fabrication facilities available in the university. In order to be 

capable of obtaining more complex data, such as any possible interactions among 

the processing parameters being studied, further study involving more complex 

experimental approach and more sophisticated fabrication facilities may be carried 

out. Considering that curing is applied to the matrix, it was expected that matrix 

type may dominantly control curing characteristics rather than fibre type, and 

further, these optimum values would also be applied to the fabrication of GFRP 

and hybrid FRP composites. 
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CHAPTER 6 

RESULT AND DISCUSSION 
 

 

 

 
 
 

The results of the preliminary tests, i.e., compressive tests, in addition to 

those of the three different hybrid combinations will be presented and discussed in 

this chapter.  

 

6.1. PRELIMINARY TEST: COMPRESSIVE TEST 

 

Compressive tests were carried out on the single fibre-type FRP composites, 

i.e. E-glass fibre/epoxy, S2-glass fibre/epoxy, TR50S carbon fibre/epoxy and 

IM7-12k carbon fibre/epoxy composites, as reference materials for the hybrid 

FRP composites under investigation. The compressive properties of these 

reference materials would be expected to strongly influence the flexural behaviour 

[1] of the resultant hybrid FRP composites – the reason for this being that 

previous research has indicated that that majority of failures for FRP composites 

subjected to flexural loading have initiated at the compressive side [2-9]. 

Compressive tests were carried out in accordance with ASTM D3410-03 [10]. 

 

6.1.1. Specimens 

 

The specimen geometry and dimensions utilised in this work have been 

presented previously in Figure 4.10. Four aluminium end-tabs [11-13] were 

affixed to each test coupon for the purposes of gripping and the secure transfer of 

load into the specimen. The adhesive used to glue the tabs onto the specimens was 

epoxy, i.e., the same as the matrix material. Each specimen was instrumented with 

two strain gauges, one on each side of the specimen, for the direct measurement of 

strain. Details of specimen preparation and testing procedure have been presented 
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in sub-section 4.4.1 of this thesis whilst the tabbing press, alignment jig and test 

fixture utilised in this experiment have been depicted in Figures 4.4 to 4.6. 

The method utilised for predicting fibre and void volume contents has been 

presented in sub-section 4.4.3. The predicted fibre volume fraction was calculated 

using equation (4.11) from image analysis results carried out using open source 

software, ImageJ [14], based on optical micrographs of sample slices 

perpendicular to the fibre direction. At least ten specimens were removed from 

different points within each composite plate panel to be analysed, and their 

average values were presented in Table 6.1, along with their predicted void 

volume content obtained using the same method. Micrograph samples can be 

found in Appendix 7. Considering that all fabrication parameters had been 

controlled for being invariant during the fabrication of all the plates, the higher 

void volume content of the TR6 plate may be caused by fabrication procedure for 

being fully manual. 

 
 

6.1.2. Stress-Strain Relation 
 
 
Representative stress-strain relationships of the single fibre-type FRP 

composite specimens were noted to be essentially linear to failure as depicted in 

Figure 6.1 – two sets of stress-strain data (i.e., using both strain gauges) have been 

presented for each material. It should be noted that the strains given in the 

horizontal axis are those obtained from direct measurement using strain gauges 

(Appendix 11), whilst the stress values were calculated  using the maximum loads 

Table 6.1. Mean values and standard deviations of fibre volume content 
and void volume content of single fibre-type composite plate 

Materials 
Fibre volume 

fraction, Vf (%) 
Void volume 

content, Vv (%) 

E-glass fibre/epoxy 53.3  6.4 1.50  0.83 

S2-glass fibre/epoxy 54.7  7.2 1.16  0.43 

TR50S carbon fibre/epoxy 53.5  9.1 4.25  0.57 

IM7-12k carbon fibre/epoxy 52.4  8.6 2.33  2.04 
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divided by the respective initial cross-sectional areas of the specimens − 

mechanical properties of the constituent materials have been presented in Table 

5.2. The highest compressive strength (Figure 6.2) was exhibited by the S2-glass 

fibre/epoxy (S2gF/Ep) specimens, followed by those of E-glass fibre/epoxy 

(EgF/Ep), IM7 carbon fibre/epoxy (IM7/Ep), and TR50S carbon fibre/epoxy 

(TR50S/Ep) specimens, respectively. The compressive moduli for each specimen 

were derived from the initial regions of the stress-strain relationships. Careful 

examination of Figure 6.1 revealed that the highest compressive modulus was 

expected from the IM7/Ep specimens, closely followed by TR50S/Ep, with those 

of S2gF/Ep and EgF/Ep being considerably lower. 

 

Apart from the S2gF/Ep composite specimens, all of the curves were noted 

to exhibit linear stress-strain relationships to failure. In contrast to this, the stress-

strain response of the S2gF/Ep specimens (obtained from strain gauges installed 

on opposite faces of these specimens) experienced a change in slope at a 

compressive stress of approximately 330 MPa. This change in slope was 

attributed to the initiation of global compressive buckling of the specimens as 

revealed by the gap between the two stress-strain curves, this being a well known 

phenomenon that frequently occurs during the compressive testing of high 
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Figure 6.1. Representative stress-strain relation curves of compressive FRP 
composite specimens showing considerably linear stress-stress relation up to 
close to failure. 
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strength composite materials. In the absence of this effect, i.e., if global buckling 

of this composite could have been prevented, the compressive strength of this 

specimen would have been expected to be higher.  

In addition, all of the composite specimens exhibited catastrophic failure, in 

contrast to gradual failure that is sometimes noted in CFRP and GFRP 

composites. Although a gradual drop in load for cylindrical CFRP specimens 

loaded in compression has been previously reported [15], catastrophic failure for 

the same specimen geometry albeit with a smaller diameter has also been reported 

[16]. Davies and colleagues [17] also observed catastrophic failure for their 

rectangular cross-sectioned CFRP specimens with an aspect ratio of 3.5. 

Catastrophic failure, as indicated by a sudden load drop at the point of failure, was 

also observed in these compressive tests with the cross-sectional geometry of the 

specimens being rectangular with an aspect ratio of 5. Considering their 

respective specimen geometry and dimensions, the slenderness ratio, 

  o
2

1
lA

I 


 , as a measure of buckling rigidity of the specimens was 

calculated. The slenderness ratio of the specimens in [15] was found to be 8.0, 

those in [16] and [17] were 11.8 and 11.0, respectively, and in this test the 

value was 11.0. The difference in these values was thought to be a significant 

contributory factor to the diversity in failure modes observed. 

 

6.1.3. Compressive Properties 

 

Comparison of the compressive strength and modulus for the FRP 

specimens tested has been depicted in Figure 6.2. As revealed earlier, the S2-glass 

fibre/epoxy (S2gF/Ep) specimens exhibited the highest compressive strength (476 

MPa) followed in order by the E-glass fibre/epoxy (EgF/Ep) (430 MPa), IM7 

carbon fibre/epoxy (IM7/Ep) (426 MPa) and TR50S carbon fibre/epoxy 

(TR50S/Ep) (384 MPa) specimens. For comparison purposes, from referring to 

Table 4.1 for the constituent properties and Table 6.1 for fibre volume content, the 

predicted tensile strengths and moduli, in accordance with the rule of mixtures, 

have been presented in Table 6.2 for these specimens. 



 203

 

Comparing the compressive data given in Figure 6.2 to their respective 

predicted tensile values shown in Table 6.2 suggests a similar order for the 

compressive moduli in both cases although the compressive and tensile moduli are 

not linearly proportional. Figure 6.2 also indicates that the compressive moduli of 

the CFRP specimens are significantly than those of the GFRP specimens (due to 

the higher elastic modulus of the carbon fibres compared to glass fibres). In 

comparison to their respective predicted tensile modulus values, the compressive 

moduli for GFRP, i.e., the EgF/Ep and S2gF/Ep, specimens were 95.2% and 

 

Figure 6.2. Compressive properties of single fibre-type composite specimens 
under investigation showing narrow spread of variation indicating homogeneous 
properties within each individual composite plate. 

Table 6.2. Predicted tensile properties of FRP composites under 
investigation according to the rule of mixtures 

Materials 
Strength 
(MPa) 

Modulus 
(GPa) 

E-glass fibre/epoxy 1576 34.5 

S2-glass fibre/epoxy 2710 49.2 

TR50S carbon fibre/epoxy 2660 130.1 

IM7-12k carbon fibre/epoxy 2914 144.2 
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91.8%, respectively, while those of CFRP, the TR50S/Ep and IM7/Ep, specimens 

were only 47.5% and 47.1%, respectively, i.e., the compressive moduli of the 

CFRP specimens were significantly below those predicted in Table 6.2. 

In contrast to this, the compressive strengths of the GFRP specimens were 

higher than those of the CFRP specimens, in terms of both their nominal values 

and also their relative values in comparison with their predicted tensile strengths, 

i.e., 27.3% and 17.6% for the GFRP specimens in comparison with 14.4% and 

14.6% for the CFRP specimens. Similar findings have previously been reported 

by other researchers [15, 18, 19]. For example, Oya and Johnson [20] reported 

that the compressive strength of various types of carbon fibre ranged from 12.5% 

to 15.3% of their respective tensile strength, while in [21] they found these values 

had increased to 29% and 51%, respectively. The higher compressive-to-tensile 

property ratios for the glass fibres may be attributed to their amorphous crystalline 

structure [22, p. 25]. The smaller filament diameter of the S2-glass fibre (9 m, 

Table 4.1) in comparison to that of the E-glass fibre (17 m, Table 4.1), leading to 

a smaller slenderness ratio and thus lower buckling rigidity for individual S2-glass 

fibres, may be responsible for the significantly lower compressive-to-tensile 

strength ratio of the S2gF/Ep specimens, 17.6%, compared to that of the EgF/Ep 

specimens, 27.3%. 

In light of the compressive data mentioned above, and considering the stress 

distribution through the thickness of composite beams subjected to flexural 

loading, it is clear that the potential exists for the improvement of composite 

flexural behaviour through the layering of different FRP prepregs in various 

sequences and proportions. 

 

6.2. HYBRID FRP COMPOSITES CONTAINING DIFFERENT TYPES OF 
GLASS FIBRE 

 

When compared to high performance carbon and SiC fibres, the cost of 

common glass fibres such as E-glass is known to be substantially lower and 

therefore more widely utilised in engineering applications. In recent years, a 

higher performance and higher cost glass fibre, known as S2-glass, has found 
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growing use in high value applications such as airplane fuselages. Preliminary 

work carried out by the authors on E-glass/epoxy and S2-glass/epoxy 

unidirectional composites (Figure 6.2) indicated the compressive strength of this 

particular S2-glass/epoxy composite to be considerably higher when compared to 

that of the E-glass/epoxy composite counterpart. 

Potential may thus exist for the improvement of flexural behaviour in E-

glass/epoxy composites through the partial substitution of S2-glass fibres at the 

compressive side of the specimen. Therefore, in the present work the authors have 

investigated the flexural properties and subsequent failure behaviour of 

unidirectional hybrid FRP composites containing a mixture of E-glass and S2-

glass fibres embedded within an epoxy matrix. 

 

6.2.1. Physical properties 

 

6.2.1.1. Stacking configurations 

 

Composite plates with six different stacking configurations, including the 

standard E-glass/epoxy and S2-glass/epoxy composites, were fabricated, 

subsequently tested and analysed with each plate comprising of five glass 

fibre/epoxy prepreg layers. Considering the previous findings in that the failure of 

composite beams under flexural loading was mainly initiated at the compressive 

face [23-27], in the present work the stronger fibre, i.e., S2-glass fibre, was 

positioned at the compressive side during flexural testing. The stacking 

configurations of the hybrid GFRP composites under investigation have been 

illustrated in Figure 6.3.  
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6.2.1.2. Density, fibre content and void content 

 

The predicted bulk density and fibre volume calculations, in accordance 

with the rule of mixtures using equations (3.39) and (3.38), respectively. 

Considering the fact that the compressive specimens were cut from the same 

composite plate panels, i.e., the S0E5 composite for the EgF/Ep samples and the 

S5E0 composite for the S2gF/Ep samples, and that the fibre volume contents 

 
 

Figure 6.3. Visual illustration of the stacking configurations of the hybrid 
composites under investigation. 

Table 6.3. Mean values and standard deviations of calculated density, fibre 
volume content and void volume content of the hybrid GFRP composites 

Stacking 
configuration 

Bulk 
density,  
(g.cm3)  

Fibre volume content, Vf (%) Void volume 
content, Vv 

(%) 
Rule of 

mixtures 
Image 

analysis 

S0E5 1.87  0.086 52.1  5.76 53.3  6.50 1.50  0.84 

S1E4 1.88  0.080 52.9  5.34 53.6  6.66 1.43  0.76 

S2E3 1.89  0.141 53.8  9.47 53.9  6.82 1.36  0.68 

S3E2 1.89  0.087 53.9  5.87 54.1  6.98 1.30  0.60 

S4E1 1.90  0.120 54.7  8.06 54.4  7.14 1.23  0.52 

S5E0 1.91  0.135 54.9  9.06 54.7  7.30 1.16  0.44 

E-glass/epoxy S2-glass/epoxy 

E5 E4S1

E2S3 E1S4

E3S2 

S5 
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predicted using the rule of mixtures for these hybrid systems were found to be in 

good agreement with those of these two groups of compressive samples, the void 

content of the hybrid systems was predicted based on the proportional content of 

these two types of GFRPs constituting each hybrid system, i.e., the void content of 

the hybrid composites was calculated based on the known fibre volume fractions 

of the S0E5 and S5E0 composites together with the bulk densities of the hybrid 

composites with the results being presented in Table 6.3. 

 

Table 6.3 shos that although the fibre volume content predicted in 

accordance with the rule of mixtures was found to be in a good agreement with 

those calculated based on the fibre volume contents of the parent GFRP 

composites, i.e., E-glass/epoxy and S2- glass/epoxy, the variations in values was 

reasonably wide, ranging from 5,34% for the S1E4 hybrid GFRP plate to 9,47% 

for the S2E3 hybrid GFRP plate. This wide range of values suggested that the fibre 

was relatively unevenly distributed within the plates with this result being 

attributed to the difficulty in ensuring consistency of processing parameter for a 

fully manual hand lay-up fabrication procedure. This conclusion was confirmed 

from Figure 6.4 which illustrates a relatively uneven distribution of fibres within 

 

Figure 6.4. Optical micrograph of hybrid GFRP composites containing one layer 
E-glass epoxy prepreg and four layers of S2-glass/epoxy prepregs showing 
unevenly distributed fibres, matrix rich areas and void (dark spots). 
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the matrix. Further research employing automated processes is recommended for 

the production of high quality composites and validation of the present results. 

 

6.2.2. Mechanical Properties 

 

Sample of load-displacement data obtained from the flexural tests along 

with an example of the detailed calculations of mechanical properties, i.e., flexural 

stress, flexural modulus, flexural strain, strain to maximum stress, strain to failure, 

energy storage capacity to maximum stress and work of fracture have been 

presented in a spreadsheet in Appendix 10. The magnitude of the stress at each 

loading point was calculated using equation (3.6a) or (4.8) depending on the  S/d 

values of the specimens, whilst that of the strain was calculated in accordance 

with equations (4.7) by substituting the respective value of toe-corrected cross-

head displacements for the value of D. Figure 6.5(c) illustrates stress-strain curves 

derived from Figure 6.5(b). 

 

6.2.2.1. Stress-strain response 

 

Representative load-displacement and stress-strain curves for a single type 

of hybrid composite have been presented in Figures 6.5 to 6.7. Figure 6.5(a) 

shows that the samples demonstrated a reasonably linear stress-strain response up 

to failure. The sharp drop in load upon reaching the maximum load indicated that 

the specimens failed catastrophically as had been previously reported [5]. During 

initial loading of the specimens, the specimen would typically experience 

settlement onto the test fixture and may exhibit surface indentation effects at the 

loading points, i.e., the loading nose and two support rolls indented into the 

surface of the specimen due to the presence of matrix rich regions within the 

composite [28, 29]. When equilibrium between the load and indentation 

deformation was reached, the magnitude of the load started to increase with 

increasing cross-head displacement up to the point of initial failure. Eventually, 

specimens underwent failure following a sudden drop of load within in a short 
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period of time. Figure 6.5(b) is the same load-displacement relationship as shown 

in Figure 6.5(a) following a toe correction procedure as dictated by the employed 

standard [30]. Flexural properties of the specimens were derived from Figure 

6.5(b) and an additional 17 similar plots that represented the other two S/d values 

of this configuration together with three S/d values for each of the other five 

stacking configurations. 

Figure 6.6 shows the effect of the hybrid ratio (rh), i.e., S2-glass fibre-to-

total fibre content ratio, on the stress-strain response and maximum stress of 

representative samples. Those that exhibited approximately average values in their 

respective groups were selected as representative samples presented in Figure 6.6. 

The short span samples (S/d = 16) depicted in Figure 6.6(a) indicated that samples 

exhibited an approximately linear stress-strain relationship up to almost the point 

of failure. Apart from the S1E4-4 sample that underwent excessive elongation, the 

samples experienced either an abrupt load drop or else a significant load drop 

within a short period of time. Whilst the S0E5-1 and S5E0-3 samples demonstrate 

the lowest (585 MPa) and highest (672 MPa) flexural strengths, respectively, the 

hybrid composite samples exhibited flexural strengths being these two values. 

This result suggested that a hybrid effect for flexural strength was not observed 

for the S/d = 16 samples. This result was attributed to the failure mode being shear 

for these samples, with the shear strength within the plane transverse to the fibre 

direction being predominantly controlled by the matrix properties. Figure 6.6(a) 

also illustrates that the initial slopes of the curves, i.e., flexural modulus, for each 

of the samples appeared to be within a narrow range.  

In contrast to this, the S/d = 32 samples presented in Figure 6.6(b) all 

exhibited a sudden drop in load at the point of failure and associated with 

catastrophic failure as previously reported [5] – this followed a linear stress-strain 

relationship to the point of maximum stress. Although the lowest flexural strength 

in this group of specimens was exhibited by the S0E5-1 composite, representing 

the pure E-glass/epoxy system, the maximum flexural strength was demonstrated 

by the S4E1-3 sample which represented a hybrid GFRP composite containing four 

layers of S2-glass/epoxy prepregs and one layer of E-glass/epoxy prepreg. This 

suggests that a hybrid effect may exist for flexural strength, depending on further 
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examination of the values for the specimens in this configuration (as will be 

discussed later). 
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Figure 6.5. Representative load-displacement and stress-stress relations of the 
S3E2 samples tested at S/d = 16). (a) Load-displacement relation before toe 
correction, (b) After toe correction, (c) Stress-strain relation. 
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Figure 6.6. The effect of hybrid ratio on stress-strain relation of each of the 
hybrid GFRP composite plate panels: (a) S/d = 16, (b) S/d = 32, (c) S/d = 64. 
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Close analysis of Figure 6.6(b) lead to the conclusion that the variation in 

flexural strength appears to be wider for the S/d = 32 samples compared to that of 

the S/d = 16 samples – this was attributed to the fact that failure in the S/d = 16  

specimens was due to a matrix dominated effect (i.e., shear failure) that would 

presumably be similar for all specimens. 

The effect of hybrid ratio on the stress-strain response for samples tested at 

S/d = 64 has been presented in Figure 6.6(c). Unlike those of the S/d = 32 samples 

that underwent catastrophic failure immediately after achieving their maximum 

stress level, the specimens tested at S/d = 64 often experienced a significant 

decrease in slope close to the point of maximum stress with further increases in 

strain prior to eventual failure. Comparison between the data for the S/d = 32  

specimens (Figure 6.6(b)) and S/d = 64 specimens (Figure 6.6(c)) suggested the 

flexural strength and variation in flexural modulus values to be essentially similar. 

As inferred above, an increase in flexural strength as S/d changed from 16 to 

32 (or 16 to 64) was observed when comparing Figures 6.6(a), 6.6(b) and 6.6(c). 

In contrast to this, increasing S/d from 32 to 64 did not appear to result in any 

significant further increase in flexural strength, neither did the flexural modulus 

increase significantly as S/d changed from 16 to 64. Such a phenomenon was 

confirmed within each individual stacking configuration as illustrated in each of 

the graphs presented in Figure 6.7. In addition, Figure 6.7 also demonstrates the 

increase of strain-to-failure with the increase of S/d – the trends noted above will 

be further mentioned later. 
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Figure 6.7. The effect of span-to-depth ratio on stress-strain relation of 
representative composite plate panels: (a) S0E5 (E-glass/epoxy) composite plate, 
(b) S3E2 (hybrid S2-E-glass/epoxy) composite plate, (c) S5E0 (S2-glass/epoxy) 
composite plate. 
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6.2.2.2. Failure mechanisms 

 

A representative optical micrograph of a sectioned and polished S/d = 16 

specimen following failure has been presented in Figure 6.8. With regards to 

observation noted during the tests, most specimens tested at S/d = 16 appeared to 

fail following the initiation of interlaminar shear cracks at the neutral plane, this 

being followed by crushing and splitting on the compressive side as reported by 

Lee et. al. [31] and fibre breakage at the tensile side. Whilst unidirectional FRP 

composites are known to be weak transverse to the fibre direction, higher 

interlaminar shear-to-normal stress ratios at the neutral plane (as has been pointed 

out by Davies and Hamada [32]), may be responsible for this type of failure, i.e., 

specimens with weak shear strengths (such as unidirectional FRP composites) will 

tend to fail due to shear effects provided that the S/d ratio is sufficiently low. A 

typical fracture surface for such a specimen depicted in Figure 6.8 reveals the 

presence of longitudinal cracks at the neutral axis (white arrows) together with 

splitting and buckled fibres at the compressive surface (top side of the 

micrograph). The presence of such cracks at the neutral plane would appear to 

confirm that the specimens tested at S/d = 16 failed in a shear mode. 

 

An optical micrograph illustrating typical failure of a specimen tested at S/d 

= 32 has been depicted in Figure 6.9. In comparison with that of S/d = 16, less 

 

Figure 6.8. A typical compressive side of fracture region of specimens tested at 
S/d = 16 showing splitting (dark arrows) and fibre buckling (top). 
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splitting appeared for the S/d = 32 specimens. Fibre buckling and the presence of a 

kink band at the compressive side, which is known to be a typical failure mode for 

unidirectional composites at large S/d ratios, can be clearly seen in this figure. 

This result would appear to confirms that a ratio of S/d = 32 was sufficiently high 

so as to suppress shear failure. This type of failure was similar to that previously 

observed in hybrid composites containing carbon and SiC fibres [32]. In the 

present case, however, additional splitting and/or local buckling appeared to be 

present at the compressive side. Buckling, combined with splitting failure, has 

previously been reported for GFRP composites subjected to compressive loading 

[15, 33]. In addition to the fibre-matrix interfacial fracture toughness, those 

authors found that the axial moduli ratio between fibre and matrix, fibre diameter 

and fibre content were all parameters that influenced the compressive failure 

mechanism. 

 

Specimens tested at S/d = 64, such as that typically indicated in Figure 6.10, 

revealed the presence of similar fracture surfaces to those tested at S/d = 32 with 

kink bands and fibre buckling combined with possible fibre crushing appearing to 

dominate failure. The splitting length for the S/d = 64 specimens appeared to be 

shorter than those exhibited for the S/d = 16 specimens (Figure 6.8), confirming 

that the use of larger S/d ratios would reduce the interlaminar-to-normal stress 

 

Figure 6.9. A typical fracture region of specimens tested at S/d = 32 showing 
fibre buckling (top) and less splitting (dark arrows). 
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ratio, thereby leading to reducing splitting and the promotion of fibre buckling and 

kinking. Again, this failure mode was similar to that expected for high strength 

unidirectional composites subjected to flexural loading. 

 

6.2.2.3. Flexural strength 

 

 The effect of S2-glass fibre volume, as a fraction of total fibre volume 

fraction, on flexural strength has been presented in Figure 6.11 as a function of 

S/d ratio. As expected, the flexural strength (σf) of the S2-glass fibre/epoxy 

composite samples (i.e., rh = 1.0) was higher than that of the rh = 0.0  samples (i.e., 

E-glass fibre/epoxy composite) for all S/d ratios. For example, at S/d = 16 the 

flexural strength was 596 MPa for the E-glass/epoxy specimens and 662 MPa for 

the S2-glass/epoxy specimens, i.e., an increase of approximately 11.1%. At the 

largest S/d ratio the values increased from 716 MPa to 883 MPa, i.e. an increase 

of 23.3%. This trend was attributed to the compressive strength of the S2-glass 

fibres being higher compared to that of the E-glass fibres. 

Figure 6.11 illustrates a general trend that, for each S/d ratio, σf gradually 

increased as the E-glass fibres were replaced by S2-glass fibres, and whilst the 

flexural strengths of the samples tested at S/d = 32 appeared to be extremely close 

 

Figure 6.10. A typical fracture surface of specimens tested at S/d = 64 showing 
fibre buckling and kinking domination (top) and less splitting can be observed. 
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to those of their respective counterparts tested at S/d = 64, those of the samples 

tested at S/d =16 were significantly lower. This trend was similar to that noted 

previously by Davies and Hamada [32] for the flexural strength of hybrid 

composites containing carbon and SiC fibres, and also to that previously reported 

by the author [5] for hybrid E-S2-glass fibre/epoxy composites with different S2-

glass fibre-to-total fibre volume content ratios. 

 

 

Whilst the flexural strength of specimens tested at S/d =16 exhibited a 

relatively linear trend up to 100% substitution of S2-glass/epoxy prepreg for E-

glass/epoxy prepreg, those of specimens tested at S/d =32 and S/d =64 sharply 

increased (by 14.7% for S/d =32 and 13.7% for S/d =64) upon the replacement of 

a single layer, 20%, of E-glass/epoxy prepreg by S2-glass/epoxy prepreg. A 

considerably significant increase in flexural strength, up to 20.8% and 17.4% for 

specimens tested at S/d =32 and S/d = 64, respectively, was observed for further 

substitutions up to 60% of the total fibre content. Further increases in the 

substitution level beyond this point did not appear to result in any further 

significant increases in flexural strength and, indeed, appeared to follow the rule 

 

Figure 6.11. The influence of hybrid ratio (S2-glass fibre volume/total fibre 
volume) on flexural strength of hybrid GFRP composites showing increase of 
flexural strength with the increase in S2-glass fibre volume. Considerably small 
magnitude of variation can be observed. 
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of mixtures. Such a phenomenon may be attributed to the stress distribution 

through the thickness of a beam (Figure 3.3) being maximum at the outermost 

layer, and thus, the first layer of substitution (i.e., introduction of a stronger fibre) 

at the point of maximum expected stress will result in the optimal harnessing of 

the strength potential of the substituting fibre leading to a significant increase in 

flexural stress at the point of failure. 

When comparing the trends in flexural strengths as a function of span-to-

depth ratio depicted in Figure 6.11, it is clear that flexural strength values for S/d 

of 16 were significantly lower to those of either S/d =32 or S/d = 64. For example, 

σf for the rh = 0.6 specimens was 650 MPa for S/d = 16 which increased to 855 

MPa and 841 MPa for S/d ratios of 32 and 64, respectively, i.e., 30% higher. The 

generally lower σf values for S/d = 16 was explained in terms of the competing 

failure mechanisms being observed in unidirectional composites subjected to 3-

point bending as has been previously reported [5, 32]. Whereas the specimen may 

fail in a flexural mode (with the strength being calculated using equations (3.6a) 

or (4.8) for S/d  16 or S/d > 16, respectively), another competing mechanism is 

that of interlaminar shear failure at the neutral plane (at the mid-depth of a beam 

for single fibre-type specimens or calculated using equation (3.18) for a hybrid 

cross-section) where the generated shear stress is the highest. In this case the shear 

strength, τmax, would be calculated using equation (3.10). 

For specimens tested at S/d = 16, the relationship between σf and τmax may be 

calculated from equations (3.6a) and (3.10) which results in 

d

S


max

f




 (6.1) 

which suggests that specimens tested at S/d = 16 would generate relatively high 

shear stresses at their neutral planes in comparison with the normal stresses 

generated at the outermost layer. Recalling that unidirectional composites are 

known to possess significantly lower interlaminar shear strengths when compared 

to their longitudinal normal strength [34], such composites would thus be 

expected to fail due to shear at the neutral axis for smaller S/d ratios, whereas 

those tested at higher S/d will tend to fail due to pure flexure. Therefore, the fact 
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that σf for all of the specimens under investigation tested at S/d = 16 produced 

significantly lower values (596-662 MPa) in comparison with those of the other 

two S/d values (708-883 MPa) can be attributed to the τmax/σf ratio being higher 

for S/d = 16 when compared to S/d = 32 or 64. 

Strain at maximum stress, max, for these hybrid configurations has been 

presented in Table 6.4 with the table showing that strain at maximum stress 

generally increased as the span-to-depth ratio increased.  

 

These results would thus confirm that partial substitution (even by a 

relatively small amount, e.g., 20% in the present case) of higher cost, higher 

strength S2-glass for low cost E-glass fibres may produce a significant 

improvement in the flexural strength beyond that expected by the rule of mixtures, 

i.e., a positive hybrid effect. 

 

6.2.2.4. Flexural modulus 

 

The influence of hybrid ratio and S/d ratio on the flexural modulus of the 

hybrid GFRP composites has been presented in Figure 6.12. Apart from those 

with rh = 0.2, a generally similar trend in flexural modulus (Ef) was noted to that 

previously seen for flexural strength (Figure 6.11) with Ef increasing as the S2-

glass fibre content also increased. Similar to that seen for flexural strength, the 

author concluded that an optimum trade-off of improved performance versus 

minimum S2-glass usage, was achieved for the specimens containing the single 

prepreg layer substitution, rh = 0.2, with increases of 6.0%, 8.8% and 8.7% for S/d 

Table 6.4. Strain at maximum stress of hybrid GFRP specimens 

S/d 
Hybrid ratio, rh 

0.0 0.2 0.4 0.6 0.8 1.0 

16 1.84 1.94 1.88 1.86 1.56 1.78 

32 2.01 2.09 2.24 2.22 2.02 2.03 

64 2.56 2.42 2.41 2.33 2.14 2.21 
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= 16, 32 and 64, respectively, when compared to the pure E-glass/epoxy 

composite. However, these values were noticeably similar to those expected from 

the rule of mixtures prediction when taking into account the difference in elastic 

modulus of the single fibre-type composites (numerical values given in Figure 6.2 

for compressive properties and Table 6.1 for predicted tensile properties) and the 

changes in total fibre volume fraction. For all of the S/d ratios tested, the highest 

Ef values were recorded for the S2-glass/epoxy specimens that were also found to 

contain the highest total predicted fibre volume fraction (Table 6.3). Therefore, 

the increase in Ef as a function of S2-glass fibre content were attributed mainly to 

the small increase in total fibre volume fraction for each hybrid configuration as 

the amount of S2-glass fibre increased and also to the difference in the elastic 

modulus of the respective fibres. 

 

 

Figure 6.12. The influence of hybrid ratio (S2-glass fibre volume/total fibre 
volume) on flexural modulus of hybrid GFRP composites showing increase of 
flexural strength with the increase in S2-glass fibre volume. 
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6.2.2.5. Energy absorption capacity to maximum stress 

 

Energy absorption capacity is an important consideration for many 

structural designs and applications of composite materials. The specific amount of 

energy absorbed by the samples up to the maximum stress, max, calculated using 

equation (4.10) has been depicted in Figure 6.13. The figure shows a similar 

general trend as for flexural strength and flexural modulus with max generally 

increasing with S/d. This result can be explained by recalling equation (4.10) 

where max is linearly proportional to the magnitudes of load and displacement at a 

given point up to the maximum stress. From equation (4.7) the value of crosshead 

displacement, D, in terms of strain is given as 











2

6

1
d

SdD  (6.2) 

Therefore, from equations (3.6a) and (4.8) the magnitude of the applied lateral 

force, F, in terms of stress for specimens tested at S/d  16 and S/d > 16 [30], 

respectively, can be obtained as 

 

Figure 6.13. The influence of hybrid ratio on the energy absorption capacity to 
maximum stress, max, of hybrid GFRP composites. Small range of variations 
indicating homogeneous material properties within a plate can be observed. 
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where fc is a correction factor according to the adopted test standard [30] in the 

stress calculation for long span beams, i.e., S/d > 16, with 
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Substitution of equation (6.2) into equation (6.4a) results in the value of the 

correction factor in terms of flexural strain as being 
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The values of fc at maximum stress can be calculated using equation (6.4b) 

with the substitution of their respective strain values being presented in Table 6.4. 

These values were found to vary from fc = 1.056 for rh  0.0 to fc = 1.071 for rh  

0.4, all for specimens tested at S/d = 32. In contrast to this, the values for 

specimens tested at S/d = 64 were found to vary from fc = 1.298 for rh  0.8 to fc = 

1.431 for rh  0.0. 

Substitution of equations (6.2), (6.3a) and (6.3b) into equation (4.10) will 

result in the formulas for max in terms of stress and strain for short span beams, 

i.e., S/d  16 [30], and long span beams as follows. 
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 for S/d  16 (6.5a) 
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If the magnitudes of flexural strength and strain at maximum stress remain 

unchanged with the increase of S/d, whereas in fact they increased (Figure 6.11 

and Table 6.4), combining equations (6.5a) and (6.5b) and substitution of the 

values of S/d of 16, 32 and 64, yield 

16max
c

32max
2

  
f

 (6.6a) 

16max
c

64max
4

  
f

 (6.6b) 

Equations (6.6a) and (6.6b) thus describe the change in max as a function of 

S/d. In addition to this, an increase of max would also be expected from the 

contributions from the increases in f and max, and the effect of the correction 

factor, fc, as given in equations (6.6a) and (6.6b). Recall that in comparison with 

those tested at S/d = 16, the flexural strength of specimens tested at S/d = 32 was 

found to significantly increase, i.e., from 18.8% for the rh  0.0 samples to 31.4% 

for the rh  0.2 samples, as also did max (from 7.3% for the rh  0.2 samples to 

29.9% for the rh  0.8 samples). Thus, for an increase in S/d from 16 to 32, the 

values of max would be expected to increase by a minimum of 147% to a 

maximum of 223% depending on the hybrid configuration. For similar reasons, 

specimens tested at S/d = 64 would be expected to demonstrate an increase in max 

(compared to the S/d = 16 case) of between 368% and 463%. 

Figure 6.13 illustrates the comparison of max for the three S/d values tested 

as a function of the various stacking configurations under investigation. The 

increase in max as S/d increased from 16 to 32 was found to vary from 129.0% to 

211.7% (increased from 10.0 kJm2 to 22.8 kJm2 for rh  0.8, and from 14.8 

kJm2 to 46.3 kJm2 for rh = 0.6, respectively). These two limits are both slightly 

lower than, but reasonably comparable with, the predicted values mentioned 

above, i.e., 146% and 223% for the lower and upper limits, respectively. Further 
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increasing the value of S/d to 64 resulted in an even greater increase in max. In 

comparison to those of S/d = 16, max for the specimens tested at S/d = 64 

exhibited an increase of between 373.8% and 612.3% (increasing from 10.0 

kJm2 to 47.1 kJm2 for rh  0.8, and from 10.5 kJm2 to 74.8 kJm2 for rh  0.4, 

respectively). These experimental values are spread over a slightly wider range in 

comparison with those of the predicted values (468.4% to 562.8%). 

 

6.2.3. Summary 

 

A series of 5-ply unidirectional composites containing E-glass and/or S2-

glass fibres within an epoxy matrix have been manufactured and subsequently 

tested and analysed. The specimens were subjected to a three-point bend (TPB) 

loading configuration in accordance with Procedure A of the ASTM D790-07 

standard [30] in order to evaluate their flexural properties. Following the tests, the 

fracture surfaces of specimens were sectioned, cast in polyester blocks and 

polished prior to examination under an optical microscope. 

It was determined that a S/d ratio of at least 32 was required in order to 

promote flexural failure (as opposed to shear failure). A general trend noted for 

specimens tested at S/d = 32 and S/d = 64 was that both flexural strength and 

flexural modulus increased with a replacement of E-glass fibre by S2-glass fibre. 

In addition to this, both properties also achieved significant increases as the S/d 

ratio increased from 16 to 32, but further increasing S/d from 32 to 64 produced 

only a slight further improvement in both flexural strength and flexural modulus.  

A significant increase (up to 20.8%) in flexural strength was observed for a 

substitution of up to 60% S2-glass fibre for E-glass fibre, however, the most 

promising increase (13.7% to 14.7%) was noticed for smaller amounts of (20%) 

fibre substitution – this being considered to be the optimum substitution amount 

from the point of view of performance increase versus minimum S2-glass fibre 

usage (the S2-glass being considerably more expensive compared to that of the E-

glass fibre).  

In contrast to this, the flexural modulus was found to generally increase as 

the proportion of S2-glass fibre was increased to 100% fibre with, again, the 
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replacement of a single outermost layer demonstrating the most significant 

increase (8.7% to 8.8%) in flexural modulus. Specimens tested at S/d = 16 did not 

show any significant increase in flexural properties due to most of the specimens 

having failed by shear instead of by a flexural mode as had been exhibited by the 

composites tested at S/d = 32 and S/d = 64. The energy absorption capacity up to 

the point of maximum stress appeared not to increase significantly with 

hybridisation, however, a significant increase for this property was noted when 

S/d increased from 16 to 32 and again from 32 to 64 – this trend being attributed 

to the increase in flexural strength, increase in strain at maximum stress, and most 

dominantly by the increase in S/d. 

Optical microscopy confirmed that specimens tested at S/d = 16 tended to 

exhibit significant shear cracking at the neutral plane whereas specimens tested at 

S/d = 32 and S/d = 64 indicated the presence of kink bands and fibre buckling 

which is known to be typical for high strength unidirectional composites under 

flexural loading. Overall, it is concluded that hybrid composites may play a role in 

increasing the flexural performance of GFRP composites through the 

incorporation of relatively small amounts of high cost fibres. 

 

6.3. HYBRID FRP COMPOSITES CONTAINING DIFFERENT GRADES 
OF CARBON FIBRE 

 

Although from the economical point of view, CFRP composites are less 

advantageous in comparison with GFRP composites, the superiority of their 

mechanical and thermal properties [35] has lead to a wider variety of applications 

ranging from sporting goods to aircraft structures [36, 37]. One of the 

disadvantages of CFRP composites is that, as shown earlier, their compressive 

strength is generally lower even in comparison with low cost E-glass/epoxy 

composites [15] − compressive properties of the FRP composites under current 

investigation have been presented in Figure 6.2. 

It has previously been reported that the failure of CFRP beams under 

flexural loading was almost always initiated at the compressive face [19, 27, 32]. 

Potential may therefore exist for the improvement of flexural behaviour in CFRP 
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composites through the partial substitution of higher (compressive) strength 

carbon fibres at the compressive side of the specimens. Consequently, in the 

present section the author has investigated the flexural behaviour of unidirectional 

hybrid FRP composites containing a mixture of lower strength TR50S PAN-based 

carbon fibre [38] and higher strength IM7-12k PAN-carbon fibre [39] embedded 

within an epoxy matrix. 

 

6.3.1. Physical properties 

 

6.3.1.1. Stacking configurations 

 

Six different stacking configurations, including the pure TR50S carbon 

fibre/epoxy and IM7-12k carbon fibre/epoxy composites plates, have been 

fabricated, subsequently tested and analysed. Six layers of carbon fibre/epoxy 

prepreg, comprising of either entirely TR50S/epoxy, entirely IM7-12k/epoxy, or 

else a hybrid mix of these, were stuck together in order to produce a preform and 

subsequently cured under vacuum in a hot press at 120 oC for 30 minutes (using 

the optimised curing conditions previously determined). The reason for six layers 

being used for the CFRP composites, as opposed to five layers for the GFRP 

composites, was the reduced thickness of the individual CFRP prepreg layers – a 

larger number of layers thus being required in order to obtain nominally similar 

thickness CFRP and GFRP composites. The stacking configurations for the hybrid 

GFRP composites under investigation have been presented in Figure 6.14. 
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6.3.1.2. Density, fibre content and void content 

 

 

The calculations for predicted bulk density and fibre volume content in 

accordance with the rule of mixtures using equations (3.39) and (3.38), 

respectively. Recalling the fact that compressive specimens were previously cut 

from some of the same composite plates, i.e., TR6 for the TR50S/Ep samples and 

IM6 for the IM7/Ep samples, the fibre volume fractions predicted using the rule of 

mixtures for these hybrid systems were found to be in good agreement with the 

experimentally determined values for these two groups of pure CFRP composites 

(i.e., TR6 and IM6). Therefore, the void content of these hybrid systems was 

 
 

 
 
 
 
Figure 6.14. Visual illustration of the stacking configurations of the hybrid CFRP 
composites under investigation. 

Table 6.5. Mean values and standard deviations of the calculated density, fibre 
volume content and void volume content of the hybrid CFRP composites 

Stacking 
configuration 

Bulk 
density,  
(g.cm3)  

Fibre volume content, Vf (%) Void volume 
content, Vv 

(%) 
Density-

based 
Image 

analysis 

TR6 1.493  0.045 55.2  6.14 53.5  9.10 4.25  0.57 

TR5IM1 1.492  0.046 55.1  6.29 53.3  9.02 3.93  0.82 

TR4IM2 1.490  0.057 54.8  7.80 53.1  8.93 3.61  1.06 

TR3IM3 1.490  0.046 54.8  6.30 53.0 8.85 3.29  1.31 

TR2IM4 1.484  0.061 54.0  8.41 52.8  8.77 2.97  1.55 

IM6 1.480  0.051 53.5  7.00 52.4  8.60 2.33  2.04 

TR50S/epoxy 

IM7/epoxy 

TR6 TR5IM1 TR4IM2 TR3IM3 

TR4IM2 IM6 
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predicted based on the proportional content of the two types of CFRP prepregs 

that constituted each hybrid system with the results being presented in Table 6.5. 

The fibre volume fractions for each hybrid composite were predicted in 

accordance with the rule of mixtures based on their respective bulk densities and 

proportionally based on their respective constituent properties calculated from 

image analysis. These two prediction methods demonstrated a very good 

correlation with those of the bulk density-based predictions being slightly higher 

(ranging from 1.07% for the IM6 sample to 1.85% for the TR3IM3 sample) in 

comparison with the image analysis method. Again, as had been noticed for the 

hybrid GFRP situation, the variation of fibre content within each plate was 

relatively high, from 6.14% (TR6) to 8.41% (TR2IM4) for Vf based on their 

respective bulk densities and even higher for those based on the proportional 

contribution of the layer properties, i.e., 5.60% (IM6) to 9.10% (TR6). The 

predicted void content in each composite has been presented in the last column of 

Table 6.5 and was noted to exhibit a similar trend to that of fibre volume content, 

i.e., narrow range in average values amongst the plates but a wider variation in 

values within each plate. These values imply that both the fibres and voids were 

not homogeneously distributed within each plate. Considering that the average 

values of both the fibre and void volume contents were relatively consistent within 

each plate, it was concluded that the fully manual hand lay-up fabrication 

procedure utilised in this work may have been responsible for this uneven 

distribution of fibre and void within each plate. In addition, the higher void 

volume content of the TR6 plate, may also be caused by this fully manual 

fabrication procedure because all fabrication parameters had been controlled for 

being invariant during the fabrication of all the plates.  Examples of optical 

micrographs at different magnifications have been depicted in Figure 6.15 and 

they confirm the presence of uneven fibre distribution. 
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6.3.2. Mechanical Properties 

 

Sample of load-displacement data obtained from the flexural testing of 

hybrid CFRP samples along with a spreadsheet sample of detailed calculation of 

mechanical properties, i.e., flexural stress, flexural modulus, flexural strain, strain 

to maximum stress, strain to failure, energy storage capacity to maximum stress 

and work of fracture has been presented in Appendix 10. The magnitude of the 

stress at each loading point was calculated using equation (3.6a) or (4.8) for the 

S/d = 16 and S/d = 32 and 64 specimens, respectively, whilst the strain was 

calculated in accordance with equation (4.7) following substitution of the 

respective values of toe-corrected cross-head displacement for the value of D.  

 

 

6.3.2.1. Stress-strain response 

  

Figure 6.15. Optical micrograph of hybrid CFRP composites containing TR50S 
and IM7 carbon fibres showing unevenly distributed fibres, matrix rich areas and 
void. (a) Matrix rich area presents in an interface of a TR50S/epoxy-IM7/epoxy 
prepreg layers, (b) Uneven fibre distribution, with smaller variation was also 
observed within a IM7/epoxy prepreg layer. 
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Representative load-displacement and stress-strain curves for the hybrid 

CFRP composite under investigation have been presented in Figures 6.17 to 6.19. 

Figure 6.17(a) demonstrates a reasonably linear stress-strain response prior to 

achieving maximum stress for samples containing one layer of IM7/epoxy and 

five layers of TR50S/epoxy prepregs tested at S/d = 16. Unlike that observed for 

the hybrid GFRP cases, a sudden drop in load after reaching the maximum load 

was not observed for the CFRP composites, instead, a gradual drop in load was 

noted. It is suggested that this may, at least partially, be due to the shift of loading 

point toward the supports (Figure 6.16) leading to the alteration of equation (3.6a) 

as the actual moment force generated by the applied load (recorded by the load-

cell) would actually be lower than the true value due to a reduction in the length 

of the moment arm.  

Similar to the case of the GFRP composites, adjustment of the specimens 

onto the test fixture during the early stages of loading was also noticed for the 

CFRP specimens. Surface indentation effects at the loading points, i.e., the 

loading nose and two support rolls, on the specimens (due to the presence of 

matrix rich areas) [28, 29] were thought to be responsible for this phenomenon. 

Figure 6.17(b) are the same load-displacement curves as those in Figure 6.17(a) 

following the application of a toe correction procedure for the displacement as 

dictated by the relevant ASTM standard [30]. Flexural properties of the specimens 

were derived from Figure 6.17(b) in addition to another 17 similar plots 

representing the other two S/d values for this configuration together with three S/d 

values for each of the remaining five stacking configurations. 
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The effect of hybrid ratio (rh), i.e., IM7 carbon fibre-to-total fibre content 

ratio, on the stress-strain response and maximum stress of representative samples 

has been depicted in Figure 6.18 with typical stress-strain relationships for short 

span (S/d = 16) samples being presented in Figure 6.18(a). Apart from that of the 

IM2TR4 samples, the stress-strain relationships were generally linear up to the 

point of maximum stress. Most of the samples exhibited a gradual drop in load 

after achieving the maximum stress, in addition to experiencing further 

elongation. The highest flexural strength (839 MPa) was achieved by the IM2TR4 

specimens which was 8.3% higher than that of the TR6 specimens and slightly 

higher (3.4%) than that of the IM6 specimens. A general trend that can be 

observed from Figure 6.18(a) is that the initial slopes of the curves (representing 

the flexural modulus) for each respective specimen appeared to be within a 

narrow range of values.  

In contrast to this, the S/d = 32 samples presented in Figure 6.18(b) 

exhibited a sudden drop in load associated with catastrophic failure as previously 

reported, after following a linear stress-strain relationship to the point of 

 

Figure 6.16. Shift of loading point after first failure of specimens tested at S/d = 
16 resulting in the length of moment arm being reduced or the load recorded by 
the load cell to produced the same magnitude of moment force being increased. 
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maximum stress [27]. The lowest flexural strength (832 MPa) was exhibited by 

the IM1TR5 sample whilst the highest value (869 MPa) was achieved by the IM6 

sample (i.e., the pure IM7 carbon fibre/epoxy composite). Although a slight 

increase in flexural strength, to a maximum of 2.65% for the IM4TR2 specimens, 

was noticed, the flexural strength of the IM6 samples appeared to be higher 

(3.76%) in comparison with that of the TR6 specimens.  This suggests that, at first 

sight, a hybrid effect may not exist for the flexural strength although this depends 

on the values of the other specimens for this configuration and will be discussed 

again later. Closer observation of Figure 6.18(b) leads to the conclusion that the 

variation in flexural modulus, as represented by the initial slope of each curve, 

appeared to be within a narrow range.  

Comparison between Figure 6.18(b) and Figure 6.18(a) indicated that the 

flexural strength achieved for the S/d = 32 samples were considerably higher for 

S/d = 32 (from 1.7% for the IM2TR4 specimens to 8.0% for the TR6 specimens) 

compared to that of their respective S/d = 16 specimens. 

Figure 6.18(c) illustrates the effect of hybrid ratio on stress-strain response 

for samples tested at S/d = 64. A similar pattern of stress-strain relationships to 

that of samples tested at S/d = 32 was noticed. The samples underwent 

catastrophic failure marked with an abrupt drop of load immediately after 

achieving their maximum stress level. In comparison with Figure 6.18(b), the 

maximum flexural stress appears to be similar with a slightly wider variation in 

flexural modulus. 

An increase in flexural strength as S/d increased from 16 to 32 (or 16 to 64) 

was apparent from comparing figures 6.18(a), 6.18(b) and 6.18(c). In contrast to 

this, increasing S/d from 32 to 64 does not appear to significantly increase flexural 

strength, neither does the flexural modulus increase with the increase of S/d from 

16 to 64. Such phenomena were confirmed within each individual stacking 

configuration, e.g., illustrated in each of the graphs presented in Figure 6.19 for 

the case of hybrid CFRP composites containing three IM7/epoxy and three 

TR50S/epoxy prepreg layers. In addition, Figure 6.18 also demonstrates that the 

strain-to-maximum stress was comparable for the three values of S/d. 
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Figure 6.17. Representative load-displacement and stress-stress relations of 
IM1TR5 samples tested at S/d = 16. (a) Load-displacement relation before toe 
correction, (b) After toe correction, (c) Stress-strain relation. 
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Figure 6.18. The effect of hybrid ratio on stress-strain relation of each of the 
hybrid CFRP composite plate panels: (a) S/d = 16, (b) S/d = 32, (c) S/d = 64. 
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Figure 6.19. The effect of hybrid ratio on stress-strain relation of each of the 
hybrid CFRP composite plate panels: (a) TR6

 samples, (b) IM1TR5 samples, (c) 
IM6 samples. 
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6.3.2.2. Failure mechanism 

 

Figure 6.20 illustrates representative optical micrographs taken at two 

different magnifications of sectioned and polished specimens tested at S/d = 16 

following failure. Shear failure at the mid-plane, as reported in [40], was noted for 

most of the specimens during actual testing at S/d = 16 and this was confirmed in 

Figure 6.20(a). Taken at a higher magnification, Figure 6.20(b) shows shear 

cracks present at a deeper layer in addition to out-of-plane buckling and fibre 

kinking on the compressive side, as has been previously reported [24]. Whilst 

unidirectional FRP composites are known of be relatively weak transverse to the 

fibre direction, a higher interlaminar shear-to-normal stress ratio at the neutral 

plane, as has been pointed out by Davies and Hamada [32], leading to the 

initiation of shear failure in accordance with the maximum distortion energy 

theory mathematically presented in equation (3.61), was believed responsible for 

this type of failure mode. Thus, the presence of longitudinal cracks at the neutral 

plane would tend to confirm that the specimens tested at S/d = 16 failed in a shear 

mode. 

  

 
Figure 6.20. A typical shear failure region of hybrid CFRP specimens tested at 
S/d = 16. (a) Low magnification image showing interlaminar laminar 
delamination (white arrows), and (b) Larger magnification image showing 
interlaminar delamination and fibre buckling and kinking in the topside. 
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An optical micrograph illustrating failure of a representative specimen 

tested at S/d = 32 has been presented in Figure 6.21. Unlike that previously 

observed for the hybrid GFRP case, splitting was not apparent in any of the 

specimens tested at S/d = 32. Instead, fibre buckling combined with kinking at the 

compressive side, which is known to be a typical failure mode for unidirectional 

composites at large S/d ratios [32], was observed. From this result it was 

concluded that a S/d ratio of 32 was sufficiently high to promote flexural failure. 

The fibre buckling failure mode has been reported for GFRP, CFRP  as well as 

SiC-FRP composites subjected to compressive loading [15, 33, 41]. As mentioned 

previously, other parameters known to influence the compressive failure 

mechanism include fibre-matrix interfacial fracture toughness, axial moduli ratio 

between fibre and matrix, fibre diameter and fibre content. 

 

Figure 6.22 represents a typical optical micrograph for a specimens tested at 

S/d = 64 and reveals a similar fracture surface to that tested at S/d = 32 (Figure 

6.21) with out-of-plane buckling (right hand side of the micrograph) and kinking 

of fibres combined with fibre crushing. Once again, splitting was not observed for 

this hybrid CFRP case. This failure mode was similar to that expected for high 

strength unidirectional composites subjected to flexural loading. 

 

Figure 6.21. A typical fracture region of hybrid CFRP specimens tested at S/d = 
32 showing fibre buckling and kinking. 
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6.3.2.3. Flexural strength 
 

 

Figure 6.22. A typical fracture region of hybrid CFRP specimens tested at S/d = 
64 showing fibre out-of-plane buckling and kinking domination in the 
compressive side. 

 

Figure 6.23. The influence of hybrid ratio (IM7 carbon fibre volume/total fibre 
volume) on flexural strength of hybrid CFRP composites showing slight increase 
of flexural strength with the increase in IM7 carbon fibre volume. Considerably 
wide range of variations indicates inhomogeneity of the composite plates. 
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The effect of IM7 carbon fibre volume fraction and S/d ratio on flexural 

strength has been presented in Figure 6.23. Considering that the compressive 

strength of the IM7 carbon fibre/epoxy composite samples was higher than that of 

the TR50S carbon fibre epoxy specimens, the flexural strength (σf) for the IM7 

carbon fibre/epoxy composite samples (i.e., rh = 1.0) was also expected to be 

higher than that of the rh = 0.0 samples (i.e., TR50S carbon fibre/epoxy composite 

samples). Figure 6.23 demonstrates that for some points, rh = 0.33 and rh = 0.67, 

the flexural strength of the specimens tested at S/d = 16 was slightly higher 

compared to that of the rh = 1.0 specimens. The difference in failure modes from 

that of specimens tested at S/d = 16, which failed due to shear, may be associated 

with the different trends noticed in the effect of IM7 carbon fibre volume on 

flexural strength. For example, at S/d = 32 the flexural strength was 836 MPa for 

the TR50S carbon fibre/epoxy specimens and 869 MPa for the IM7 carbon 

fibre/epoxy specimens, i.e., a slight increase of approximately 3.8%. At the largest 

S/d ratio, the flexural strength increased from 865 MPa to 919 MPa, i.e. a slight 

increase of 5.9%. Considering that failure was always initiated at the compressive 

face for these specimens and that the compressive strength of the IM7 carbon 

fibre/epoxy specimens was only approximately 10.9% higher that that of the 

TR50S carbon fibre/epoxy specimens (Figure 6.2), such a small increase in 

flexural strength at higher S/d ratios is reasonably acceptable. 

Figure 6.23 also shows that flexural strength increases with an increase in 

S/d as has been previously reported [5, 28, 32, 41, 42]. This increase may be 

associated with the change in failure mode, as has been recommended by the 

adopted test standard [30], where shorter beams (S/d = 16) were found to fail by 

shear mode and longer beams (S/d = 32 and 64) failed due to a true flexural mode. 

Such an increase can be explained further by recalling equations (6.1) and (3.61). 

Equation (6.1) shows that, for S/d =16 specimens, a relatively lower longitudinal 

normal stress is required to generate a relatively high shear stress at the mid-plane. 

As a consequence of this, the last term in Equation (3.61), which represents the 

contribution of shear stress into the flexural mode, becomes larger. Thus, the 

condition defined in Equation (3.61), i.e., initiation of failure, can be achieved at a 

lower flexural stress in comparison to that of the longer beams. Similar to that 
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previously noticed for hybrid GFRP composites, a sharper increase up to a 

maximum of 8.3% (from 774 MPa to 839 MPa for the S/d = 16 specimens) in 

flexural strength was observed for lower amounts of substitution, up to 33%, of 

IM7/epoxy prepreg layers for TR50S/epoxy prepreg layers because of the reason 

previously discussed. 

Although a significant increase in flexural strength was observed for lower 

amounts of substitutions of IM7 carbon fibre/epoxy prepregs for TR50S carbon 

fibre/epoxy prepregs, a significantly higher compressive modulus combined with 

only slightly higher compressive strength for IM7/Ep specimens (Figure 6.2) may 

lead to the compressive strength being slightly higher in order to suppress the 

increase in internal compressive stresses generated at the compressive face due to 

the increase in compressive modulus as indicated in equations (3.12a) and (3.12b) 

for the hybrid configurations. Therefore, the presence of a hybrid effect for 

flexural strength was not observed for this set of hybrid CFRP composites. 

The strain at maximum stress, max, for these hybrid CFRP specimens has 

been presented in Table 6.6. The table shows that that strain at maximum stress 

appears not to be significantly influenced by the increase in span-to-depth ratio.  

 

It can be summarised that, although the flexural stress increased with the 

increase in IM7 fibre content, such a small increase could not be safely attributed 

to a hybrid effect. The most likely reason for this increase may have been an 

increase in internal load (stress) at the compressive face due to the substitution of 

carbon fibre possessing significantly higher modulus combined with only slightly 

higher compressive strength. 

Table 6.6. Strain at maximum stress of hybrid CFRP specimens (%) 

S/d 
Hybrid ratio, rh 

0.0 0.17 0.33 0.50 0.67 1.0 

16 1.08 1.14 1.10 1.15 1.02 1.17 

32 0.96 0.94 0.97 0.95 0.96 0.96 

64 1.01 0.98 0.97 0.96 0.95 0.94 
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6.3.2.4. Flexural modulus 

 

Figure 6.24. The influence of hybrid ratio on flexural modulus of hybrid CFRP 
composites showing an increase in flexural modulus with the increase in IM7 
carbon fibre volume content and wide range of variations.  

 

A general trend that can be observed for flexural modulus (shown in Figure 

6.24) is that the flexural modulus (Ef) increases with an increase of IM7 carbon 

fibre content represented by the increase of rh. Although this increase appeared to 

obey the rule of mixtures, again, a sharper increase as represented by the slope of 

left hand side of the segments in Figure 6.24 was demonstrated by the initial layer 

of prepreg substitution. These values were generally similar to those expected 

from the rule of mixtures prediction when considering the difference in elastic 

compressive modulus of the single fibre-type composites (numerical values being 

given in Figure 6.2 for compressive properties and Table 6.1 for predicted tensile 

properties) in combination with the changes in total fibre volume fraction. For all 

S/d ratios the highest Ef values were recorded for the IM7 carbon fibre/epoxy 

specimens which were also found to contain the highest total predicted fibre 

volume fraction (Table 6.5). Therefore, the small increases in Ef as a function of 

IM7 carbon fibre content were attributed mainly to the minor increase in total 

fibre volume fraction for each hybrid configuration together with the difference in  
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elastic modulus for the respective fibres. Therefore, a general conclusion that can 

be drawn for flexural modulus in these CFRP composites is that a hybrid effect 

was not observed; the increase appeared to obey the rule of mixtures rather than 

any synergistic effect of hybridisation. 

 

6.3.2.5. Energy absorption capacity to maximum stress 

 

The specific amount of energy absorbed by the samples up to the maximum 

stress for the hybrid CFRP specimens, max, calculated using equation (4.10), has 

been presented in Figure 6.25. The figure shows a similar general trend to that of 

flexural strength and flexural modulus with regards to the effect of S/d on the 

energy absorption capacity to maximum stress, i.e., higher S/d values giving larger  

max. This can be explained by recalling equation (4.10) where max is linearly 

proportional to the magnitudes of load and displacement at a given point up to 

maximum stress. The maximum values of max for the three adopted S/d values 

were 9.88 kJm2 (IM3TR3 specimens), 15.43 kJm2 (IM3TR3 specimens), and 

30.95 kJm2 (TR6 specimens), for S/d values of 16, 32 and 64, respectively. 

 

Figure 6.25. The influence of hybrid ratio on the energy absorption capacity to 
maximum stress, max, of hybrid CFRP composites. Considerably wide range of 
variations indicating inhomogeneous properties of the plates can be observed. 
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The significant increase in max with increasing S/d may be contributed to 

the parameters utilised to calculate max and how these parameters behave in 

response to the change in S/d − detailed discussion on this topic was previously 

addressed in sub-section 6.2.2.5 and has been summarised below. If the 

magnitudes of flexural strength and strain at maximum stress remain unchanged 

with increasing S/d (whereas in fact they increased (Figure 6.23 and Table 6.6)), 

and if the effect of S/d on the load-stress relationship is neglected, then equations 

(6.6a) and (6.6b) suggest that max for the S/d = 32 and 64 specimens would be 

twice and four times, respectively, that of the S/d = 16 specimens. In addition to 

this, the increase of max would also be influenced by the increase in f and effect 

of the correction factor, fc, as given in equations (6.6a) and (6.6b). In comparison 

with those tested at S/d = 16, whilst the change in strain at maximum stress was 

relatively small, varying from 0.134 % (at rh  0.67) to 0.557 % (at rh  0.50), 

the flexural strength of the specimens tested at S/d = 32 was found to slightly 

increase, i.e., varying from 1.69% for the rh  0.33 samples to 8.00% for the rh  

0.00 samples.  Therefore, max would be expected to increase by a minimum of 

71.5% for rh = 0.50 to a maximum of 98.6% for rh = 0.67. For similar reasons, 

specimens tested at S/d = 64 would be expected to demonstrate an increase in max 

of a minimum of 261% for rh = 1.00 to a maximum of 318% for rh = 0.00. 

The increase in max when S/d was increased from 16 to 32 was found to 

vary from 53.9% to 100.4% (increasing from 9.76 kJm2 to 15.01 kJm2 for rh = 

1.00 and from 7.41 kJm2 to 14.88 kJm2 for rh  0.67, respectively). This range 

of values was slightly wider than the predicted values, i.e., 71.5% and 98.6% for 

the lower and upper limits, respectively. Further increasing the value of S/d to 64 

resulted in a greater increase in max. In comparison to those of S/d = 16, the value 

of max for the specimens tested at S/d = 64 exhibited an increase of 199% to 

291.3% (increasing from 9.8 kJm2 to 29.2 kJm2 for rh = 1.00 and from 7.1 

kJm2 S/d = 16 to 29.0 kJm2 for rh  0.67, respectively). These experimental 

values are again spread over a wider range in comparison with those of the 

predicted values (261% to 316%). In comparison to that of the hybrid GFRP 
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composites, max for the hybrid CFRP specimens was found to be significantly 

lower. 

 

6.3.3. Summary 

 

Hybrid CFRP composites containing higher strength and higher modulus 

IM7 carbon fibre and/or lower strength and lower modulus carbon fibre within an 

epoxy matrix were  manufactured, tested and subsequently analysed. In order to 

evaluate their flexural properties, the specimens were subjected to a three-point 

bend (TPB) loading configuration in accordance with Procedure A of the ASTM 

D790-07 standard [30]. Following the tests, the fracture surfaces of specimens 

were sectioned, cast in polyester blocks and polished prior to examination under 

an optical microscope. 

It was revealed that specimens tested at a S/d ratio of at least 32 failed due to 

fibre buckling and kinking − contrary to those tested at S/d = 16 that failed in a 

shear mode along their neutral plane. This result suggested that a S/d ratio of 32 

was sufficient in order to promote flexural failure as opposed to the shear failure 

exhibited by specimens tested at S/d = 16. A general trend noticed was that 

flexural strength, flexural modulus and storage energy capacity to maximum stress 

did not demonstrate any synergistic effect, i.e., hybrid effect, instead, the 

replacement of stronger and stiffer IM7 carbon fibre for TR50S carbon fibre 

resulted in a slight increase in flexural properties that appeared to obey the rule of 

mixtures. The absence of a hybrid effect was thought to have been primarily 

caused by the internal stresses generated at the compressive face due to the 

increase in flexural modulus being higher than the respective increase in flexural 

strength introduced by the stronger fibre. This therefore suggests that a lower 

modulus fibre, combined with higher compressive strength, may be instead 

appropriate for the improvement of flexural properties for hybrid composite 

beams. Unlike the absence of a hybridisation effect for flexural modulus and 

strength, however, a considerable increase in flexural properties was noted as S/d 

was increased from 16 to 32 (or 16 to 64). Energy absorption capacity up to 

maximum stress appeared not to increase with hybridisation, although a 
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significant increase in energy absorption capacity up to maximum stress was 

obvious for the increase of S/d from 16 to 32 and further from 32 to 64. This 

increase may be contributed to the increase in flexural strength and most 

dominantly by the increase in S/d. 

Optical microscopy confirmed that specimens tested at S/d = 16 exhibited 

significant shear cracking at the neutral plane whereas specimens tested at S/d = 

32 and S/d = 64 indicated the presence of fibre buckling and kinking which is 

typical of that for high strength unidirectional composites under flexural loading. 

 

6.4. HYBRID FRP COMPOSITES CONTAINING MIXED GLASS AND 
MEDIUM STRENGTH CARBON FIBRES 

 

The relatively low ratio of compressive-to-tensile strength of carbon fibre 

[21, 43, 44] may be a drawback for the use of carbon fibre reinforced polymer 

(CFRP) composites as structural members subjected to compressive and/or 

flexural loading. Whilst E-glass fibre possesses a lower tensile strength in 

comparison to even low strength carbon fibre [5, 29], it conversely demonstrates  

a higher compressive strength in comparison to high strength carbon 

fibre/vinylester composites at the same fibre volume fraction [15]. Further to this, 

Wonderly et al. pointed out that the compressive-to-tensile strength ratio of glass 

fibre reinforced polymer (GFRP) composite was relatively high at 0.73 [19] with 

Mallick crediting this phenomenon to the amorphous structure of the glass fibre 

[22]. 

Considering these findings, in this section an attempt was made to improve 

the flexural properties of CFRP composites through partial substitution of E-glass 

fibre for carbon fibre on the compressive side of the specimen. 
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6.4.1. Physical properties 

 

6.4.1.1. Stacking configurations 

 

Six different stacking configurations, including the pure E-glass fibre/epoxy 

composite and pure TR50S carbon fibre/epoxy composite, were investigated. In 

order to produce composite plates with a thickness of approximately 2 mm, either 

four, five or six layers, depending on the particular configuration, were utilised – 

the variation in layer number being due to the E-glass/epoxy prepreg being thicker 

than that of the TR50S/epoxy case. The average thicknesses of the cured CF/Ep 

and GF/Ep prepreg layers, calculated from their respective single fibre-type FRP 

specimen thicknesses, were found being 0.377 mm and 0.614 mm, respectively.  

The TR50S carbon fibre/epoxy prepregs, E-glass fibre/epoxy prepregs, or a 

mixture of both, were stuck together in order to produce a preform and 

subsequently cured under vacuum in a hot press at 120 oC for 30 minutes 

according to the optimal curing conditions determined previously. The stacking 

configurations of the hybrid GFRP composites under investigation have been 

presented in Figure 6.26. 

 

 

 

 

 

 

 

Figure 6.26. Schematic illustration of the stacking configurations of the hybrid 
CFRP composites under investigation.

E-glass/epoxy 

TR50S/epoxy 

C6G0 C4G1 C3G2 C2G2 

C1G3 C0G5 
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6.3.1.2. Density and fibre content 

 

Physical characteristics of the composite plates have been presented in Table 

6.7 with the fibre volume fractions being determined from optical micrographs of 

slices cut perpendicular to the fibre direction − the calculation can be found in 

Appendix 9. The hybrid ratio, rh, defined as the volume ratio of glass fibre with 

respect to the total fibre content, VfG/Vf, was calculated using equation (6.7) that 

was equivalent to volume fraction given in reference [45]. 


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where t and Vf are the layer thickness and fibre volume fraction within the 

respective layer, respectively. 

 
 

Total fibre content, Vf-total, in Table 6.7 was calculated using the following 

formula. 

Table 6.7. Physical characteristics of the hybrid composite plates 
(Showing mean values and standard deviations) 

Stacking 
configuration 

Bulk 
density,  
(g.cm3)  

Fibre volume content, Vf (%) Void volume 
content, Vv 

(%) 
Density-

based 
Image 

analysis 

C6G0 

C4G1 

C3G2 

C2G2 

C1G3 

C0G5 

1.42  0.006 

1.43  0.151 

1.49  0.022 

1.44  0.030 

1.58  0.026 

1.87  0.024 

48  0.9 

62  8.4 

61  6.1 

47  2.0 

63  1.6 

--- 

--- 

51  9.1 

50  3.2 

49  7.5 

51  9.1 

52  1.6 

48.0 

58.6 

55.0 

48.3 

52.9 

52.0 
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where the subscripts C and G refer to carbon/epoxy and glass/epoxy prepregs, 

respectively, and n and t are the number of prepreg layers and the average 

thickness of individual prepreg layers, respectively. Table 6.7 shows that for the 

hybrid configurations, apart from the C2G2 case, the carbon/epoxy prepreg layers 

(third column in Table 6.7) exhibited a higher fibre content compared to the 

glass/epoxy prepreg layers (fourth column), and thus produced a total fibre content 

higher for the configurations containing thicker carbon/epoxy prepreg layers. The 

variation in total fibre content for the hybrid composites was significant, ranging 

from 46.0% for the pure CFRP composite plate to 58.6% for the C4G1 hybrid 

configuration plate. Such a major variation in fibre volume fraction was also 

expected to have a significant influence on the resulting flexural properties. 

 

6.4.2. Mechanical Properties 

 

6.4.2.1. Stress-strain response 

 

The mechanical property data presented in this section was extracted from 

the output of flexural testing with the raw data and spreadsheet calculation 

example similar to that being presented in Appendix 10. Figures in this sub-

section, and the following sub-sections present the pure CFRP and GFRP 

composites as possessing a hybrid ration, rh of zero and unity, respectively, with 

values between these endpoints representing hybrid composites. Load-deflection 

and stress-strain curves for a single type of hybrid composite have been presented 

in Figure 6.27. A reasonably linear stress-strain response prior to the point of 

maximum stress (Figure 6.27(a)) was noted for this hybrid composite containing 

one layer of carbon fibre/epoxy and three layers of E-glass fibre/epoxy prepregs 

tested at S/d = 16. Apart from specimen number 5, a gradual decrease in load was 

noted past the point of maximum load. This may partially be credited to the 

stacking configuration of this hybrid composite being dominated by glass 
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fibre/epoxy layers possessing a higher failure strain (2.36% [46]) in comparison 

with the pure CFRP composite (0.75% [47]).  Specimen adjustment onto the test 

fixture in the early stages of loading was again noted for these composites and 

thus Figure 6.27(b) illustrates the same data as shown in Figure 6.27(a) following 

a toe correction procedure carried out in accordance with the respective ASTM 

standard [30]. Stiffer prepreg layers, i.e. glass/epoxy prepregs, being displaced 

from their initial placement in different magnitudes and patterns, as can be 

observed in Figure 6.30 and 6.31, may be responsible for the variation in bending 

stiffness of the samples being observed in Figure 6.27. Flexural properties of the 

specimens were derived from Figure 6.27(b) in addition to another 17 similar 

plots representing the other two S/d values for this configuration in addition to 

three S/d values for each of the other five stacking configurations. 
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Figure 6.27. Representative load-displacement and stress-strain relations of 
hybrid composite samples (C1G3). (a) Before to correction, (b) After toe 
correction, and (c) Stress-strain relation. 
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The effect of hybrid ratio (rh), i.e. E-glass fibre-to-total fibre content ratio, 

on the stress-strain response of representative samples has been presented in 

Figure 6.28. These representative samples are those that exhibited approximately 

average values in their respective groups. Typical stress-strain relationships of S/d 

= 16 samples presented in Figure 6.28(a) show approximate linear stress-strain 

curves from the initial loading to a certain level of stress. Whilst the pure CFRP 

(C6G0) and GFRP (C0G5) samples exhibit catastrophic failure, all of the 

representative hybrid samples demonstrated a gradual drop in load and/or 

excessive elongation prior to failure. The highest flexural strength (1065 MPa) 

was achieved by the C2G2 specimens which is 76.8% and 28.3% higher than that 

of the C6G0 (602 MPa) and C0G5 (830 MPa) specimens, respectively. 

A general trend that can be observed in Figure 6.28(a) is that, apart from 

that of the C0G5 specimens, the initial slopes of the curves (representing the 

flexural modulus) for each respective sample appears within a narrow range and 

closer to that of the pure CFRP (C6G0) specimens. The reason for this was that the 

elastic modulus of the TR50S carbon fibre (240 GPa [48]) is known to be 

significantly higher than that of the E-glass fibre (72.3 GPa [49]). 

In contrast to this, apart from the C4G1 specimens, the S/d = 32 samples 

presented in Figure 6.28(b) exhibited an abrupt drop in load associated with 

catastrophic failure following a linear stress-strain relationship to the point of 

maximum stress as previously reported [27]. Whilst the highest flexural strength 

(1230 MPa) was demonstrated by the C1G3 sample representing the hybrid 

configuration containing one layer of carbon fibre/epoxy prepreg and three layers 

of E-glass fibre/epoxy prepreg, the lowest flexural strength (691 MPa) was 

exhibited by the C6G0 sample. This significant increase (77.9%) in flexural 

strength suggests that a hybrid effect would most probably be observed and will 

be later discussed further. A similar trend to that previously observed for S/d = 16 

was observed in Figure 6.28(b) whereupon the variation in flexural modulus 

represented by the slope of each individual curve appeared within a narrow range. 

On comparison between Figure 6.28(b) and Figure 6.28(a) it was concluded that 

the flexural stress achieved for the S/d = 32 samples was considerably higher 
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(from 8.94% for the C2G2 specimens to 32.8% for the C4E1 specimens) than that 

of their respective S/d = 16 samples. 

Figure 6.28(c) illustrates the effect of hybrid ratio on stress-strain response 

for the samples tested at S/d = 64 with the pattern of stress-strain relationships 

being similar to those of the samples tested at S/d = 32. The GFRP composite 

behaviour appeared to dominate the stress-strain relationships, apart from that of 

the C6G0 composite, in that the specimens demonstrated a significant non-linearity 

after reaching a certain level of stress up to failure. This nonlinearity may be 

related to matrix shear yielding and band broadening at the compressive side just 

prior to initiation of local fibre buckling, as has been noted by Daniel et al. [50]. 

In comparison with Figure 6.28(b), the maximum flexural stress appears to be 

similar but with a significantly wider variation in flexural modulus. 
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Figure 6.28. Representative illustration of the effect of hybrid ratio on stress-
strain relation. (a) S/d = 16, (b) S/d = 32, (c) S/d = 64. 
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Figure 6.29. Representative illustration of the effect of S/d on stress-strain 
relation. (a) C0G5 samples, (b) C3G2 samples, (c) C6G0 samples. 
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A general trend that can be drawn by comparing figures 6.27(a), 6.27(b) or 

6.27(c) is a noticeable increase in flexural strength with increasing S/d from 16 to 

32 (or 16 to 64). In contrast to this, the increase of S/d from 32 to 64 appears not 

to significantly increase flexural strength; neither does the flexural modulus 

increase significantly with the increase of S/d from 16 to 64. Such phenomena 

were confirmed, for example, within each individual stacking configuration, e.g., 

illustrated in each of the graphs presented in Figure 6.29 for the case of hybrid 

FRP composites containing three IM7/epoxy and three TR50S/epoxy prepreg 

layers. In addition, Figure 6.28 and Figure 6.29 also demonstrate that significant 

increases in strain to maximum stress was noticed upon hybridisation, but no 

significant difference in strain-to-maximum stress was noticed amongst the three 

values of S/d. 

 

6.4.2.2. Failure mechanism 

 

Bader and colleagues [8] reported that fibre surface treatment had the 

potential to change the mode of failure to be more brittle and also reduce the 

strength of their CF/epoxy tensile specimens whereas Daniel et al. [7] noted that 

failure in CF/epoxy composites subjected to compressive loading initiated with 

matrix shear or shear yielding followed by fibre buckling and fracture. 

Furthermore, band broadening took place at increasing compressive stress with 

thicker specimens producing more complex kink band geometries. 

Failure mechanisms in aluminium-carbon short fibre hybrid-reinforced 

thermoplastic composites have previously been reported by Schmidt-Thomas et 

al. [9]. They noted that changes in temperature significantly affected the failure 

mode and morphology as well as mechanical properties with increases in 

temperature drastically degrading mechanical properties. Alternatively, Hwang 

and Mao [10] reported their work on compressive failure mechanisms in carbon-

glass hybrid FRP composites and noted that increases in length and decreases in 

depth of a delamination caused decreased buckling loads. In addition, an increase 

in the number of glass/epoxy prepreg layers in interply hybrid composites resulted 

in decreased failure loads. 
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A representative optical micrograph for a fracture region in a specimen 

tested at S/d = 16 has been presented in Figure 6.30. As has been previously 

discussed, the specimens tested at S/d = 16 exhibited different patterns of stress-

strain behaviour to failure as depicted in Figure 6.28(a). The first group 

experienced catastrophic failure (C6G0 and C0G5 specimens representing the 

CFRP and GFRP composites, respectively) characterised by a sudden load drop. 

The second group (C2G2 and C3G1 specimens representing hybrid configurations 

with the CF/epoxy-GF/epoxy layer interface closest to the mid-depth of the beam) 

failed after undergoing a gradual decrease in load within a relatively short period 

of time that was thought to be associated with band broadening at the compressive 

side [15, 24] followed by longitudinal crack formation at relatively low strains 

[51] and eventually fibre breakage in the tensile side as presented in Figure 6.30. 

 

 

 
 
 
Figure 6.30. Fracture region of a C2G2 specimen tested at S/d = 16 showing: (a) 
fibre kinking, (b) fibre breakage, (c) delamination in a matrix rich region. 
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Figure 6.31 illustrates a typical failure region for specimens tested at S/d = 

32. As presented in Figure 6.28(b), specimens tested at S/d = 32, apart from the 

C4G1 specimens that did not fail even at 5% strain, experienced catastrophic 

failure as indicated by the sudden drop in load. The strain at maximum stress, 

max, for the hybrid specimens was found to be between that of the CFRP and 

GFRP composites. It was noted that max increased with the proportion of 

GF/epoxy prepreg layers, although not linearly proportional. A reduced effect of 

shear stress at higher S/d, as previously suggested by Davies and Hamada [13], 

may have been caused by the reduction in the period of time available for matrix 

shear yielding processes. 

 
 

 

 
Figure 6.31. Fracture region of a C2G2 specimen with S/d = 32. (a) Compressive 
face showing out-of-plane buckling and kinking (white arrow) and splitting (dark 
arrow), and (b) tensile surface showing fibre breakage (dark arrow) and 
delamination (white arrow). 
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It can be noticed from Figure 6.31(a) that the compressive surface failed 

through a combination of out-of-plane fibre buckling (white arrow) and splitting 

(black arrow). Such a compressive failure mode in GFRP composites has been 

reported by Lee and Waas [14]. At the tensile side shown in Figure 6.31(b), fibre 

breakage due to local tensile stresses combined with delamination near a resin 

rich region was clearly observable. 

Referring to Figure 6.28(c) illustrating specimens tested at S/d = 64, apart 

from that of the CFRP composite that failed at strain less than 1%, a linear stress-

strain relationship up to 1% strain can be noticed. Increases in strain resulted in a 

decrease in slope for the f -   plots. Another characteristic noted in Figure 6.28 

was the fact that max for the hybrid specimens was found to be between those of 

the pure CFRP and GFRP composites, with an obvious trend that max increased 

with an increase in GF content. 

Figure 6.32 illustrates a portion of a fractured specimen tested at S/d = 64. 

The GFRP portion at the compressive side exhibited out-of-plane buckling 

 

 

� igure 6.32. Compressive side of fracture region of a C2G2 specimen with S/d = 
64: (a) splitting, (b) in-plane buckling producing kink band, (c) out-of-plane 
buckling in carbon side, (d) matrix-rich areas between two prepreg layers [4]. 
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combined with splitting. A kink band was observed to cross the interface of the 

CF/epoxy-GF/epoxy layers indicating that the upper part of the CF/epoxy layer 

was bearing a local compressive load. Recall that the average thickness of the 

CF/epoxy prepreg was 0.377 mm while that of the GF/epoxy prepreg was 0.614 

mm, thus indicating that the CF/epoxy-GF/epoxy interface lay below the mid-

plane of the beam, thus the neutral axis had been shifted towards the tensile face. 

This result further implied that the compressive modulus of the GFRP layer was 

lower than the tensile modulus of the CFRP layer, because, in a ‘composite cross 

section’ the neutral axis will be shifted toward the stiffer material [52, pp. 393-

403]. 

 

6.4.2.2. Flexural strength 

 

Figure 6.33 exhibited a general trend whereby f increased with increasing 

rh as previously reported in Kang et al. [53] and increasing S/d. The reduced 

influence of shear as S/d increased was thought to be responsible for the general 

increase in f as S/d increased [32]. These results can be applied to the maximum 

distortion energy failure criterion presented mathematically in equation (3.61) that 

 

Figure 6.33. The effect of hybrid ratio on flexural strength showing the increase 
of flexural strength with the increase of hybrid ratio. Comparatively narrow range 
of variations indicating homogenous properties within a plate can be observed.
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results in an increased value of the last term leading to satisfying the inequality for 

initial failure. Apart from the specimens tested at S/d = 16, f increased with 

partial substitution, up to 80%, of glass fibre for carbon fibre. The maximum f 

(1065 MPa) at S/d = 16 was achieved at rh 63% and then decreased to that of the 

GFRP specimen in an approximately linear pattern. In contrast to all other 

specimens tested at S/d = 64 that failed by flexure, those of C2G2 failed by 

interlaminar shear this was thought to explain the lower than expected f for this 

specimen. Considering that some of the hybrid composites exhibited higher 

flexural strength compared to either of the pure GFRP or CFRP specimens, a 

positive hybrid effect in flexural strength was obviously noticeable. The flexural 

strength of the parent composite materials observed here were noticeably higher 

than those reported in [1], i.e. 568 MPa and 798 MPa for the case of AS4 graphite 

fibre/epoxy and E-glass fibre/epoxy composite, respectively, tested at S/d = 40. 

For specimens tested at S/d = 32, the highest flexural strength (1230 MPa) was 

achieved at rh  0.80. This value was approximately 77.9% and 30.9% higher than 

that of the pure CFRP (691 MPa) and GFRP (940 MPa) specimens, respectively. 

Specimens tested at S/d = 64 exhibited their maximum flexural strength (1248 

MPa) at rh  0.80 which was comparable with that of the same hybrid 

configuration tested at S/d = 32. This implies that further improvement in flexural 

strength may not be obtained for S/d values higher than 32. Although these 

maximum values were significantly lower than that previously reported (1855 

MPa) for unidirectional hybrid carbon-boron FRP composites [54], the total fibre 

volume content obtained here (52.9%) was significantly lower than that reported 

in [54], i.e. 75%. The author in [54] also reported the flexural strength for pure 

CFRP and pure BFRP composites to be 1174 MPa (at Vf = 53.1%) and 1788 MPa 

(at Vf = 50.0%), respectively. That the flexural strength of the parent materials 

were lower than those of [54] may be responsible for the lower overall flexural 

strength of the resulting hybrid FRP composites in the present work, which may 

be closely associated with their respective overall fibre volume fractions. 

Another feature of the f - rh correlation shown in Figure 6.33 was that a 

smaller amount of GF substitution, up to 25%, resulted in a relatively greater 
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increase in f, represented by a steeper slope of the initial left hand side of the 

curve. Such a result has previously been reported [5, 32, 42] for different hybrid 

combination and may be explained as follows. At small amounts of substitution, 

the GF/Ep layers were placed at the outer layer of the compressive side where the 

maximum compressive stress occurs. For additional GF/Ep layers, the substitution 

would be located closer to the neutral plane where the compressive stress is 

significantly reduced, such that the compressive strength of this GF/Ep layer 

would not be optimally harnessed until initial buckling occurs at the outermost 

layer and propagates toward this layer. 

 
 

The strain at maximum stress, max, for these unidirectional hybrid carbon-

glass FRP composites has been presented in Table 6.8. Noting that the strain at 

maximum stress for the unidirectional GFRP composite (1.84%) was significantly 

higher than that of the CFRP composites (0.48%) [1], it was expected that max 

should increase with increasing rh − this trend was indeed observed in Table 6.8. 

Li et al. [55] noted the same result from the incorporation of ultrahigh modulus 

polyethylene fibre into their CFRP samples.  

It was also observed that the relative increase in max was greater when the 

amount of glass fibre substitution was smaller. The table shows that, for S/d = 16 

and S/d = 32, max increases with an increase of rh up to rh  0.63. Generally 

speaking, at low glass fibre content, i.e., smaller values of rh, the strain at 

maximum stress was predominantly controlled by the carbon fibre behaviour, and 

vice versa. 

Table 6.8. Strain at maximum stress of the hybrid carbon-glass 
FRP composites under investigation (%) 

S/d 
Hybrid ratio, rh 

0.00 0.25 0.47 0.63 0.80 1.00 

16 1.19 2.11 2.14 2.52 2.33 2.52 

32 0.94 1.53 2.05 2.62 2.46 2.43 

64 0.92 1.90 2.10 2.29 2.45 3.24 
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It can be stated that a hybrid effect for flexural strength was clearly 

observed up to a maximum of 80% and 63% substitution of glass fibre for 

carbon fibre, respectively, for longer span beams (S/d = 32 and S/d = 64) and 

shorter span beams (S/d = 16). The significant increase in flexural strength 

demonstrated by the first layer substitution was attributed to the optimum 

harnessing of the compressive potential of the glass fibre when placed at he 

location of maximum compressive stress. In addition, the strain at maximum 

stress also exhibited an improvement with increasing glass fibre content. 

 

 

6.4.2.3. Flexural modulus 

 

Considering the fact that the compressive modulus of glass fibre (72.3 GPa 

[49]) was significantly lower than that of carbon fibre (240 GPa [48]), it was 

expected that the flexural modulus, Ef, would decrease with increasing rh and this 

was indeed the case as noted in Figure 6.34. The general trend was that Ef 

increased with increasing S/d but decreased with increasing rh. The general 

increase in Ef with S/d was consistent with the reduced contribution of shear 

 

Figure 6.34. The effect of hybrid ratio on flexural modulus showing a decrease in 
flexural strength with the increase of hybrid ratio. Homogeneous property 
distribution represented by narrow range of variations can be observed. 
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deformation with increasing S/d as the equations for Ef do not take into account 

the proportion of the specimen deflection due to shear. In addition to this, the 

general increase in Ef with S/d was noted to be larger for CFRP specimens than 

for GFRP specimens. Whilst some flexural modulus values, e.g., rh  0.80 for S/d 

= 64, showed a slight positive hybrid effect, overall, the flexural modulus 

appeared to obey the rule of mixtures relationship. 

Similar to that observed for the influence of hybrid ratio on flexural 

strength, a more significant decrease in Ef, as represented by the initial slope of 

the left hand side of the segment in Figure 6.34, was observed for relatively small 

amounts of glass fibre substitution was the reason being the same as that noted for 

the flexural strength case. The decrease in Ef for the C2G2 specimens in 

comparison to that of the C3G2 specimens was attributed to the lower Vf of these 

specimens, as previously shown in Table 6.7. 

 

6.4.2.4. Energy storage capacity to maximum stress, max 

 

 

Figure 6.35. The effect of hybrid ratio on specific energy storage capacity-to-
maximum stress showing an increase of  as the hybrid ratio increases. Whilst 
homogeneous material properties indicated by narrow range of variations can be 
observed for S/d = 16, and S/d = 32, wider range of variations was noticed for S/d 
= 64.



 265

Figure 6.35 illustrates that max generally increased with both increasing rh 

and S/d. Apart from the S/d = 16 specimens that tended to obey the rules of 

mixtures and the C2G2 specimens at S/d = 64, the other hybrid specimens 

exhibited a positive hybrid effect. For each individual curve of the three S/d 

values investigated, the lowest and highest max values were consistently exhibited 

by the CFRP (rh  0.00) and GFRP (rh  1.00) composite specimens, respectively. 

These lowest and highest values were 8.6 kJm2 and 29.4 kJm2 for S/d = 16, 

13.2 kJm2 and 62.8 kJm2 for S/d = 32, and 29.7 kJm2 and 144.7 kJm2 for S/d 

= 64. The low max value for C2G2 specimens at S/d = 64 was thought due to the 

low total Vf for that particular composite as shown in Table 6.7. 

The energy storage capacity-to-maximum stress, max, was predicted from 

the respective flexural stress and flexural strain behaviour as given in equation 

(4.10) with the hybrid effect appearing to be influenced by rh; the higher the rh, 

the less the hybrid effect. The increase in energy storage max with increasing S/d 

ratio was attributed to the increase in flexural strength, strain at maximum stress 

together with the direct effect of the increase in S/d as has been discussed in detail 

previously in sub-section 6.2.2.4. A maximum hybrid effect for max was achieved 

at S/d = 64 and rh  0.25. 

 

6.4.3. Summary 

 

Six different stacking configurations, including those of the parent 

composite materials, of FRP composites containing either all carbon fibre/epoxy, 

all E-glass fibre/epoxy or a mixture of them have been fabricated, tested in 

accordance with Procedure A of the ASTM D790-07 [30] standard, and evaluated. 

A general trend noted is that flexural strength, strain to maximum stress, and 

energy storage capacity to maximum stress were found to increase with the 

replacement of E-glass fibre/epoxy prepreg layers for TR50S carbon fibre/epoxy 

prepreg layers. A maximum increase in these properties was consistently 

demonstrated by replacement of the first layer at the compressive face of the 

specimen. In contrast to this, the flexural modulus exhibited a trend of obeying the 
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rule of mixtures, i.e., flexural modulus decreases with an increase of E-glass fibre 

content due to the elastic modulus of E-glass fibre being significantly lower than 

that of the TR50S carbon fibre. In addition to this, the span-to-depth ratio was 

found to influence the flexural properties of the hybrid composites with the 

flexural strength increasing with span-to-depth ratio due to the reduced effect of 

shear stresses (when compared to axial stresses) under these situations. A positive 

hybrid effect was noted for flexural strength, strain at maximum stress for most 

hybrid configurations, and specific energy storage capacity at maximum stress 

apart from the S/d = 16 specimens. 

Optical micrographs revealed that failure was initiated at the compressive 

face in the form of fibre buckling followed by kink band formation, shear 

cracking in weaker regions (either neutral plane or matrix rich area), and 

eventually fibre breakage at the tensile face. Whilst failure at the compressive side 

was observed to be dominated by fibre buckling, kinking and splitting, that at the 

tensile side exhibited shear delamination and fibre breakage. 

The hybrid effect was clearly noted to have a larger effect when the hybrid 

ratio was small and this was attributed to the relative position of the GF/Ep 

layer(s) with respect to the neutral plane. In contrast to this, the elastic modulus 

appeared to obey the rule of mixtures equation with a decreasing trend following 

substitution of the lower modulus glass fibres. 
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CHAPTER 7 

CONCLUSION AND RECOMMENDATION 
 

 

 

 
 
 
7.1. CONCLUSIONS 

 

Three different fibre combinations, i.e., different types of glass fibre (E-

glass and S2-glass), different grades of carbon fibre (IM7 and TR50S), and 

combination of carbon fibre and glass fibre, were utilised in order to manufacture 

unidirectional hybrid fibre-reinforced polymer matrix composites that were then 

tested under three-point bend loading in accordance with Procedure A of the 

ASTM D790-07 standard. Prior to producing hybrid fibre composite plate panels, 

the equipment required to manufacture and test the composites (e.g., autoclave, 

oven, prepreg frame, test jig, etc.) was first designed and developed by the author. 

The next step of the research was to investigate the influence of processing 

parameters on the mechanical properties and void content of the composites and 

determine an optimum processing route. Once this had been achieved, the 

compressive mechanical properties of the parent composite materials (that would 

be later used to produce hybrid composite materials) were evaluated. Only after 

this had been achieved were the flexural properties investigated for three groups 

of hybrid composite. The following main conclusions were reached from this 

work. 

 

7.1.1. Fabrication Parameters Optimisation 

  

Five processing parameters in the fabrication procedure for the epoxy matrix 

composites were optimised as follows: (i) epoxy concentration within the 

epoxy/acetone solution used for fibre embedment, (ii) mechanical compressive 

pressure applied onto the preform under curing, (iii) vacuum pressure inside the 
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curing chamber, (iv) dwell time during curing, and (v) holding temperature for 

curing. The criteria utilised to determine the optimum conditions were the 

maximum fibre content, minimum void content, maximum flexural strength, and 

highest flexural modulus. The following values were found to be the optimum 

conditions. 

1. Epoxy concentration, Ce  50 wt% 

2. Compressive pressure, pc  1.00 MPa 

3. Vacuum pressure, pv  0.035 MPa 

4. Dwelling time, t  30 minutes 

5. Holding temperature, T  120 C. 

 

7.1.2. Compressive Mechanical Properties of Parent Composite Materials 

  

Compressive test results demonstrated an approximately linear stress-strain 

relationship to the point of failure. The highest compressive strength was achieved 

by the S2-glass/epoxy specimens and then followed by E-glass/epoxy, IM7/epoxy, 

and TR50S/epoxy. This result was found to be in good agreement with previously 

reported data [1-3]. The higher compressive-to-tensile strength ratio for the glass 

fibres was attributed to their amorphous crystalline structure [4, p. 25]. Contrary 

to this, the CFRP composite samples demonstrated higher compressive moduli in 

comparison with those of the GFRP composite samples. The differences in 

compressive strength and compressive modulus amongst these parent composite 

materials led to the conclusion that potential existed to improve the flexural 

properties of a lower compressive strength FRP composite through incorporation 

of higher compressive strength fibre in order to produce a hybrid FRP system. 

 

7.1.3. Hybrid FRP Composites Containing Different Types of Glass Fibres 

  

A considerable positive hybrid effect was noticed for flexural strength and 

flexural modulus, particularly for longer span samples. Specimens tested at S/d = 

32 and S/d = 64 demonstrated a significant increase in flexural properties from the 

addition of a relatively small amount of S2-glass fibre to the E-glass composite. 
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The most remarkable increase in flexural strength and flexural modulus (13.7% to 

14.7% and 8.7% to 8.8%, respectively) was noted when the hybrid ratio was small 

(rh  0.2) and this was attributed to the relative position of the stronger S2-

glass/epoxy prepreg layer with respect to the neutral axis, i.e., the S2-glass was 

places at the compressive face of the specimen. Shear failure exhibited by 

specimens tested at S/d = 16 was thought responsible for the absence of a hybrid 

effect as the shear strength (in unidirectional composites) within the plane of 

failure is matrix dominated and relatively insensitive to fibre properties. It was 

thus determined that a S/d ratio of at least 32 was required in order to promote 

flexural failure (as opposed to shear failure). In addition, it was also noticed that 

flexural properties increased with the increase of S/d ratio and this was credited to 

the change in failure mode from shear failure to flexural failure. 

Significant increases (up to 20.8%) in flexural strength were observed for a 

substitution of up to 60% of S2-glass fibre for E-glass fibre. Unlike that 

observed in flexural strength, the flexural modulus was found to increase for up to 

100% of fibre replacement. In contrast to this, the energy absorption capacity up 

to the point of maximum stress, max,  appeared not to increase with hybridisation, 

although a significant increase in max was noted as S/d increased from 16 to 32 

and then to 64. This increase in max was explained in terms of the increase in 

flexural strength, increase in strain at maximum stress and, more importantly, by 

the increase in S/d. Therefore, hybrid composites may play a role in increasing 

flexural performance through the incorporation of relatively small amounts of 

high strength fibres. 

 

7.1.4. Hybrid FRP Composites Containing Different Grades of Carbon Fibres 

  

A general trend noted for this group of hybrid composites was that the 

flexural strength, flexural modulus and storage energy capacity to maximum stress 

did not demonstrate any synergistic effect, i.e., hybrid effect. Although a 

replacement of stronger and stiffer IM7 carbon fibre for TR50S carbon fibre 

resulted in a slight increase in the flexural properties, it appeared to only obey the 

rule of mixtures. The absence of a hybrid effect for this case may be mainly 
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caused by the internal stresses generated at the compressive face due to the 

increase in flexural modulus being higher than the respective increase in flexural 

strength introduced by the stronger fibre. Therefore, this suggests that a fibre 

combining a lower modulus and higher compressive strength is needed in order to 

optimise the improvement of composite beam flexural properties through the 

production of hybrid composite beams.  

Although no hybrid effect was noted, the flexural properties did increase as 

the span-to-depth (S/d) ratio during testing was increased. This increase was 

attributed to the increase in flexural strength and, more importantly, the decrease 

in the ratio of shear stress to normal stress as S/d increased. Specimens tested at 

S/d ratios of at least 32 failed due to fibre buckling and kinking whereas those 

tested at S/d = 16 failed in a shear mode along their neutral plane. From this it was 

suggested that a minimum value of S/d = 32 is sufficient in order to promote 

flexural failure.   

 

7.1.5. Hybrid FRP Composites Containing Glass and Carbon Fibres 

  

A positive hybrid effect for this group of hybrid composites (TR50S carbon 

and E-glass) was noted for the cases of flexural strength, strain at maximum stress 

(for most of the hybrid configurations), and specific energy storage capacity at 

maximum stress (apart from the S/d = 16 specimens). The most significant 

increase in flexural strength due to hybridisation (26.6%, 46.5% and 33.8% for 

S/d = 16, 32 and 64, respectively) was demonstrated by replacement of a single 

layer of fibre (25 vol.%) at the compressive face of the specimen. In contrast to 

this, flexural modulus was seen to obey the rule of mixtures, i.e., flexural modulus 

decreased with increasing E-glass fibre content due to the elastic modulus of the 

E-glass fibre being significantly lower than that of the TR50S carbon fibre. In 

addition to this, the flexural strength was found to increase with increasing span-

to-depth ratio due to the reduced influence of shear stresses.  

Optical micrographs revealed that failure was initiated at the compressive 

face in the form of fibre buckling followed by kink band formation, shear 

cracking in weaker regions (either the neutral plane or matrix rich areas), and 
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eventually fibre breakage at the tensile face. Whilst failure at the compressive side 

was observed to be dominated by fibre buckling, kinking and splitting, that at the 

tensile side exhibited shear delamination and fibre breakage. 

 

Considering the result of the three different hybrid combinations under 

investigation, a hybrid effect would be most likely to be obviously observed when 

the fibre introduced at the compressive side possessed a significantly lower 

modulus combined with significantly higher compressive strength, as 

demonstrated by the hybrid TR50S carbon - E-glass FRP composites. Such a 

result may be attributed to the decrease of internal stresses generated at the 

compressive side due to the decrease in compressive modulus being relatively 

small in comparison with the increase of compressive strength of the fibre 

introduced at this side. Slightly stronger fibres combined with a higher 

compressive modulus, when introduced at the compressive face, results in the 

absence of a hybrid effect as was noted for the case of hybrid CFRP composites 

containing different grades of carbon fibre. In this case, the increase in 

compressive strength of the fibre introduced at the compressive side was not 

sufficient to suppress the increase of internal stresses generated at this side due to 

the increase in compressive modulus of the introduced fibre. In between these two 

cases was the situation of the hybrid GFRP composites that contained different 

types of glass fibre where a hybrid effect was observed but was not as obvious as 

the case for the hybrid carbon-glass FRP composites. 

The span-to-depth ratio, S/d, was noted to influence flexural properties with 

the flexural properties increasing as the S/d ratio increased. In addition, S/d = 32 

was determined to be sufficient in order to produce flexural failure as opposed to 

shear failure that had been noted for shorter span beams, i.e., smaller S/d values. 

 

7.2. RECOMMENDATION FOR FUTURE WORK 

 

Based on the outcomes of the work contained within this thesis a number of 

possibilities for further studies concerning the improvement of performance for 

composite structural members subjected to flexural loading through the 
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production of hybrid composites using a fully manual hand lay-up procedure were 

indentified. 

1. Improvements in quality of the existing manufacturing facilities in the 

Department of Mechanical Engineering, Curtin University of Technology 

by employing a more sophisticated control system. For example, fibre 

orientation and tension control during fibre wrapping in order to produce 

more accurate fibre orientation and homogeneous fibre tension, in addition 

to more accurate temperature control in the partial curing stage inside the 

oven so as to ensure a consistent curing temperature. 

2. A study to determine the compressive-to-tensile modulus ratio and 

compressive-to-tensile strength ratio in order to produce a more significant 

hybrid effect in a more effective and efficient manner for the production of 

hybrid FRP composites. 

3. Within the elastic limit, the neutral plane of composite beams under 

progressive loading may be shifted toward the tensile face as the load, i.e., 

the magnitude of the bending moment, increases. A study to determine the 

relationship between neutral plane position and bending moment may be 

useful in helping to solve the problem introduce in point 2 above. 

4. The number of fibre types being combined to produce hybrid fibre 

composites could be extended to more than two in order to optimally 

harness the property potential of the constituent materials. However, this 

will undoubtedly be more complex compared to the studies that have thus 

far been carried out utilising only two different types or grades of fibres. 
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Appendix 1. Stainless steel frame. 
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Appendix 2. Oven. 
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Appendix 2. Oven (Continuation) 
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Appendix 2. Oven (Continuation) 
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Appendix 3. Tabbing Press 
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Appendix 3. Tabbing Press (Continuation) 
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Appendix 4. Alignment Jig 
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Appendix 4. Alignment Jig (Continuation) 
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Appendix 5. Compressive Test Fixtures 
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Appendix 5. Compressive Test Fixtures (Continuation) 
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Appendix 5. Compressive Test Fixtures (Continuation) 
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Appendix 6. Flexural Test Fixtures 
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Appendix 6. Flexural Test Fixtures (Continuation) 
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Appendix 7. Micrograph samples for image analysis 
 

 

Figure A7.1. A micrograph sample of glass fibre/epoxy prepreg layer prepared for fibre and 
void content determination by means of micrograph analysis. 

 

 

Figure A7.2. Dark-coloured dots representing fibres of Figure A5.2(a) after being marked and 
filtered showing the number of fibres (484) counted by the ImageJ open source software. 



 293

 
 
Figure A7.3. Dark spots representing voids of Figure A5.2(a) after being traced and filtered 
showing void content, Vv, of 0.1% counted by the ImageJ open source software. 
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Appendix 8. Spreadsheet sample: fibre diameter measurement and calculation. 

Table A8. Sample: COLAN Fibre diameter measurement 
Optical magnification: 50X Scaling factor is: 13.74 px/m   

            

Sam-
ple # 

Diameter 
Sam-
ple # 

Diameter 
Sam-pl 

# 

Diameter 
Sam-
ple # 

Diameter 

px Mic-
ron px Mic-

ron px Mic-
ron px Mic-

ron 
1 98 7.13 31 108 7.86 61 108 7.86 91 98 7.13 
2 112 8.15 32 110 8.01 62 94 6.84 92 103 7.50 
3 108 7.86 33 101 7.35 63 109 7.93 93 100 7.28 
4 103 7.50 34 105 7.64 64 95 6.91 94 110 8.01 
5 101 7.35 35 109 7.93 65 102 7.42 95 103 7.50 
6 110 8.01 36 94 6.84 66 103 7.50 96 101 7.35 
7 100 7.28 37 104 7.57 67 108 7.86 97 96 6.99 
8 99 7.21 38 102 7.42 68 104 7.57 98 112 8.15 
9 102 7.42 39 101 7.35 69 115 8.37 99 105 7.64 

10 101 7.35 40 103 7.50 70 106 7.71 100 95 6.91 
11 90 6.55 41 105 7.64 71 105 7.64 101 97 7.06 
12 99 7.21 42 109 7.93 72 103 7.50 102 109 7.93 
13 101 7.35 43 123 8.95 73 92 6.70 103 92 6.70 
14 95 6.91 44 93 6.77 74 108 7.86 104 97 7.06 
15 100 7.28 45 114 8.30 75 103 7.50 105 111 8.08 
16 95 6.91 46 112 8.15 76 111 8.08 106 107 7.79 
17 111 8.08 47 107 7.79 77 113 8.22 107 102 7.42 
18 103 7.50 48 106 7.71 78 100 7.28 108 105 7.64 
19 104 7.57 49 100 7.28 79 109 7.93 109 99 7.21 
20 109 7.93 50 98 7.13 80 97 7.06 110 103 7.50 
21 111 8.08 51 99 7.21 81 110 8.01 111 106 7.71 
22 108 7.86 52 114 8.30 82 99 7.21 112 96 6.99 
23 101 7.35 53 110 8.01 83 107 7.79 113 102 7.42 
24 106 7.71 54 109 7.93 84 104 7.57 114 104 7.57 
25 109 7.93 55 107 7.79 85 95 6.91 115 98 7.13 
26 103 7.50 56 112 8.15 86 106 7.71 116 108 7.86 
27 111 8.08 57 106 7.71 87 95 6.91 117 105 7.64 
28 116 8.44 58 101 7.35 88 99 7.21 118 99 7.21 
29 96 6.99 59 103 7.50 89 110 8.01 119     

30 105 7.64 60 103 7.50 90 108 7.86 120     
            

  px m (%)        
Mean = 103.86 7.56   Min = 6.55  n = 118  
StDev = 5.956 0.43 5.734  Max = 8.95     

            

 Magnification: 5X = 1.374 px/m       

   10X = 2.748 px/m       

   20X = 5.496 px/m       

   50X = 13.74 px/m       

   100X = 27.48 px/m       
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Appendix 9. Spreadsheet sample: Vf and Vv calculation procedure 

Table A9. Spreadsheet sample for fibre and void content (%) 
(Optimisation Procedure, Stage 1 - Ce) 

       
 Optical Magnification ==> 5X 10X 
 Linear scale factor 1.374 2.748 
 Average fibre dia =  7.559272691 m = 10.386441 20.772881 
 Average single fibre area = 3.14159265 84.7273 338.9092 
 Image size = 800*600 px^2 =  480000 480000 
       

  
Spec # Number of 

fibres 
Void area 

(px^2) 
Volume content Optical 

Magnif    Fibre Void 

1 

11 782 4567 55.21 1.0 10 
12         10 
13 635 7971 44.83 1.7 10 
14 726 14687 51.26 3.1 10 
15 612 9565 43.21 2.0  
16 667 101633 47.09 21.2 10 

  Aver     48.32 5.77  

1 

21 658 0 46.46 0.0 10 
22 773 68483 54.58 14.3 10 
23 732 4616 51.68 1.0 10 
24          
25 872 76988 61.57 16.0 10 
26 759 31739 53.59 6.6 10 

  Aver     53.58 7.58  

1 

31 609 7330 43.00 1.5 10 
32 924 21008 65.24 4.4 10 
33 658 95075 46.46 19.8 10 
34          
35 966 10330 68.21 2.2 10 
36 557 2693 39.33 0.6 10 

  Aver     52.45 5.68  

1 

41 642 55543 45.33 11.6 10 
42 689 18238 48.65 3.8 10 
43 992 2613 70.04 0.5 10 
44 716 31496 50.55 6.6 10 
45 728 9486 51.40 2.0 10 
46           

  Aver     53.19 4.89  

1 

51 664 68645 46.88 14.3 10 
52 689 34023 48.65 7.1 10 
53 704 36388 49.71 7.6 10 
54 776 27799 54.79 5.8 10 
55          
56 802 26802 56.63 5.6 10 

  Aver     51.33 8.07  
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Appendix 10. Spreadsheet sample for flexural property calculation. 
 

NOTES: 

A particular cell, C, in the following spreadsheet is identified with its column, i, and its row, j. Whilst 

capital letter(s) is (are) assigned to identify a column, a number is used to identify a row, e.g. Cij = cell 

AD187 is a cell located in column AD at row 187. 

 
Cell formulas: 

G22 to L22, m: =SLOPE(i14:i1200, i24:i2200), i1 = AU, AV, AW, ... AZ, i2 = AO, AP, AQ ... AT. 

G23 to L23, c: =INTERCEPT(i14: i1200,i24: i2200), i1 = AU, AV, AW, ... AZ, i2 = AO, AP, AQ ... AT. 

G24 to L24, r: =CORREL(i14:i1200, i24:i2200), i1 = AO, AP, AQ ... AT, i2 = AU, AV, AW, ... AZ. 

G25 to L25, D: =i23/i22, i = G, H, I, ... L. 

G26 to L26, Fmax: =MAX(i:i), i = BA, BC, BE, BG, BI, BK. 

G27 to L27, D: =VLOOKUP(i126, i2: i3,2,FALSE), i1 = G, H, I, ... L, i2 = BA, BC, BE, BG, BI, BK, 

i3 = BB, BD, BF, BH, BJ, BL. 

G31 to L31, f: =MAX(i:i), i = BM, BO, BQ, BS, BU, BW. 

G32 to L32, E: = i22*$D$8^3/(4* i28)/1000, i = G, H, I, ... L. 

G33 to L33, max: =VLOOKUP(i133,i2:i3,2,FALSE), i1 = G, H, I, ... L, i2 = BM, BO, BQ, BS, BU, BW, 

i3 = BN, BP, BR, BT, BV, BX. 

G34 to L34, fail: =MAX(i:i), i = BN, BP, BR, BT, BV, BX. 

G35 to L35, max: = i1202/(2* i228* i229), i1 = BY, BZ, CA, ... CD, i2 = G, H, I, ... L. 

G37 to L37, fail: = i1203/(2* i228* i229), i1 = BY, BZ, CA, ... CD, i2 = G, H, I, ... L. 

Where c (N) is the constant of the equation of initial linear part of an FD curve, r is the coefficient of the 
FD correlation, D (mm) is the displacement correction, f (MPa) is the flexural strength, max 

(mm/mm) is the strain at maximum stress, fail (mm/mm) is the strain to failure, max (kJ/mm2) is the 

specific energy storage capacity to maximum stress, and fail (kJ/mm2) is the specific work of fracture. 
 
Corrected or true crosshead displacement was calculated as follows: 

D = Do  D 

Where Do is the recorded crosshead displacement (mm). 

Elastic modulus, stress and strain were calculated using equations given in following page. 
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Appendix 10. Continuation. 
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Appendix 10. Continuation. 
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Appendix 10. Continuation. 
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Appendix 10. Continuation. 
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Appendix 10. Continuation. 
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Appendix 10. Continuation. 



 

 

303

Appendix 10. Continuation. 

 



 

 

304

Appendix 11. Spread sheet sample for compressive property calculation. 
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