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ABSTRACT

This thesis is concerned with the problem of selection of
important variables in Principal Component Analysis (PCA)} in such a
way that the selected subsets of variables retain, as much as
possible, the overall multivariate structure of the complete data.
Throughout the thesis, the criteria used in order to meet this
requirement are ccllectively referred to as measures of Multivariate
Association (MVA). Most of the currently available selection methods
may lead to Iinappropriate subsets, while Krzanowski’s (1987)
M?—Procrustes criterion successfully identifies structure-bearing
variables particularly when groups are present in the data. Our
major objective, however, is to utilize the idea of multivariate
association to select subsets of the original variables which
preserve any (unknown) multivariate structure that may be present in
the data.

The first part of the thesis is devoted to a study of the
choice of the number of components (say, k) to be used in the
variable selectlion process. Various methods that exist in the
literature for choosing k are described, and comparative studies on
these methods are reviewed. Currently available methods based
exclusively on the eigenvalues of the covariance or correlation
matrices, and those based on cross-validatien are unsatisfactory.
Hence, we propose a new technique for choosing k based on the
bootstrap methodology. A full comparative study of this new
technique and the cross-validatory choice of k proposed by Eastment
and Krzanowski (1982) is then carried out using data simulated from
Monte Carlo experiments.

The remainder of the thesis focuses on variable selection in

PCA using measures of MVA. Various existing selection methods are

il



described, and comparative studies on these methods available in the
literature are reviewed. New methods for selecting variables, based
on measures of MVA are then proposed and compared among themselves
as well as with the Mz—procrustes criterion. This comparison is
based on Monte Carlo simulation, and the behaviour of the selection
methods is assessed in terms of the performance of the selected
variables.

In summary, the Monte Carlo results suggest that the proposed
bootstrap technique for choosing k generally performs better than
the cross-validatory technique of Eastment and Krzanowski (1982).
Similarly, the Monte Carle comparison of the variable selection
methods shows that the proposed methods are comparable with or
better than Krzanowski’'s (1987) M?-procrustes criterion. These
conclusicns are mainly based on data simulated by means of Monte
Carlo experiments. However, these techniques for choosing k and the
various variable selection techniques are also evaluated on some
real data sets. Some comments on alternative approaches and

suggestions for possible extensions conclude the thesis.
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CHAPTER 1
INTRCDUCTION

1.1 Multivariate data analysis

In nearly all fields of scientific enquiry, ranging from
biology to psychelogy, more often the researcher finds himself or
herself faced with research objectives prescribing that several
attributes (variables) be measured on each of a set of individuals
or objects. In all such cases, the resulting data is multivariate.
Hence, methods of analysing multivariate data constitute an
increasingly essential area of statistics.

The origins of the currently available multivariate techniques
are to be found in the work of such pioneers as Pearson, Hotelling,
Fisher and Mahalanobis. Due to the heavy computational demands that
these methods impose, their development remained mostly abstract for
years and rendered their application to only small data sets. The
last two decades, however, have seen an explosion in computer
development and virtually unlimited computing power is now a
reality, hence these methods have gained a wide-spread popularity.
Reference of detailed descriptions of the more common multivariate
methods can be made to any standard multivariate text such as
Anderson (1858), Tatsuocka (1971), Bolch and Huﬁng {1974}, Mardia,
Kent and Bibby (1979), Chatfield and Collins (1886), Dillon and
Goldstein (1984), Seber (1984} and Krzanowski (1988).

Choice of the most appropriate method to be used in a
particular study mainly depends on the nature of the problem under
investigation, the envisaged objectives for the analysis, and the
type of data to be analysed. In general, multivariate methods are
primarily concerned with studying interrelations among variables, or

with looking for possible group differences in terms of the



variables and drawing inferences concerning the populations from
which the sample groups are obtained. In Principal Component
Analysis and Factor Analysis for example, there is no prior
categorization of either individuals or variables, but both methods
are variable-oriented in such a way that they detect new dimensions.
On the other hand, Cluster Analysis for example, seeks to find
groups among individuals. Some techniques, however, such as
Canonical Variate Analysis and Discriminant Analysis involve looking
at group structures among individuals or variables and relationships

between variables simultaneously.

1.2 Principal component analysis

Perception of the sample and of its internal structure in
multivariate data cannot be achieved by simply locking either at the
data matrix or at a set of summary statistics derived from it. A
p-dimensional scatterplot (i.e., one involving p variables) seems
appropriate for such an exploratory multivariate study. However,
even with such a plot, for p >3, perception of the data would =till
not be without difficulty. In such cases, a mathematically appealing
statistical procedure is employed to reduce the dimensionality of
the data; most simply by a well chosen projection, which does not
disturb the overall features of the data. Thus, such a
low-dimensional projection is conyenient for =sample inspection and
is expected to reveal interesting patterns with respect to
structure. A commonly used projection technique for analysis
directed towards exploratory or descriptive modeling is Principal
Component Analysis (PCA), whose detailed coverage can be found in
most multivariate texts and published papers which include Gower

(1966), Mardia et al. (1979), Chatfield and Collins (1986), Campbell



and Atchley (1981), Jolliffe (1986), Krzanowski (1888), and Dunteman
(1989). Gower (1968) presents distance properties of principal
components, while Campbell and Atchley (1981) and Krzanowski (1988)
presents a detailed geometric insight into PCA as well as the
algebraic derivation.

At this point, before embarking on the description of the
technique, it would seem quite important to mention that PCA, unlike
its counterpart, Factor Analysis (FA), is a mathematical technique
which does not require an underlying statistical model to explain
the ‘error' structure. The technique is generally treated as a
purely descriptive tool and no distributional assumptions are made
about the original variables. However, more meaningful descriptions
may be attached to the components when multivariate normality can be
assumed on the data. Mandel (1972} and Eastment and Krzanowski
(1982) have argued that retaining the first k principal components
in an analysis, implicitly assumes a model for the data.

PCA, in general, attempts to reduce the dimensionality of a
data set consisting of a large number of interrelated variables,
while retaining as much of the sample information (variation) in the
data as possible. This is achievable by orthogonally transforming
the axes representing the ‘original’ variables into a ‘new’ set of
axes called principal components (PCs). These PCs are uncorrelated
and are ordered so that the first few retain most of the variation
from all the original variables. From an algebraic peint of view,
the PCs are linear combinations of the original variables such that
the above constraints are satisfied. An essential notion in
Multivariate Analysis is that of a linear combination of wvariables;
it is fundamental to both Canonical Variate Analyéis and PCA. let X

be the (mxp) data matrix obtained by observing n objects on p



variables, ‘mean-centered’ and appropriately scaled. Further, let X

= (X1 X ... Xp]T be the (pxl) vector of the variables in X and vj

(v. v co. v )" be a (px1) vector of coefficients, Then the
1j 2] Pj

linear combinations are defined by

P
PC =FTv. X =v X (1.1)
ij 1 § I
i=1
where, PCJ (j =1, 2, ..., p) are the new variables (or dimensions)

obtained from the original variables. Once the PCj’s are obtained,
the values of these new variables for each observation (object) in
the data, can be found by simply substituting the corresponding
values of the X's in X into (1.1). These transformed values are
called Principal Component scores (PC scores). For a fixed j, PCA
seeks such a linear combination, as in equation (1.1) so that the
sample variance of the resulting PC scores is the j-th maximum;
subject to the PCJ's being uncorrelated (or orthogonal) to each
other (j =1, 2, ..., p). The normalization constraint vj vJ =1, on
the components of vj is usually adopted. Thus, the variance of PCj
becones v? C vj. where C denotes the sample covariance matrix of the
variables in X. Maximization of the variance of the PCJ's subject to

the above constraints leads to the eigen_equation
(c - lj I} vj = 0, (1.2)

where lJ is the eigenvalue and vj is the corresponding eigenvector
and the vector of coefficients in equation (1.1)). Note that if the
variables have first been standardized to have unit variance, C is
replaced by the correlation matrix (usually denoted by R). It is

also common practice to scale the coefficients in each PC such that



their sum of squares is equal to the corresponding eigenvalue. Thus,
if v: is the wvector of coefficients corresponding to the j-th PC,
scaled as just described (i.e., V:TVj = lj). then v: = Ilj vj. These
coefficients are called component loadings. If the original
variables (i.e., the X's}) have first been standardized to have unit
variance prior to PCA (i.e., the correlation matrix R has been used
in equation (1.2) instead of the covariance matrix C), then these
coefficients v; measure the correlations between the PCs and the
original (standardized) variables. Hence, they are usually referred
to as component correlations.

let V = (v1 v, e vp] denote the matrix of eigenvectors, and
let the diagonal matrix L = (11 1 ... lp) denote the matrix of

2

corresponding eigenvalues. Then the eigen_equation becomes

C =VLV, (1.3)

and the eigenvectors satisfy viv = w' = Ip, as the PCs are
orthogonal to each other. Note that, since each successzive PC
accounts for a maximum amount of the variation, subject to being
uncorrelated with the previous PCs, and since it can be assumed that
C or R is positive semidefinite and that the eigenvalues are
distinct, 11 > 12 > L. > lp = 0. It is also important to note that,
v, and 11 correspond to the first PC (i.e., PC1)’ v, and 12
correspond to the second PC (PCZ) and so on, and that the
eigenvalues are the respective variances of the different PCs. An
important result, which follows by taking the trace of both sides of
equation (1.3}, is that the sum of the variances of the original

variables is equal to the sum of the variances of the PCs (i.e., the

eigenvalues).



Performing PCA using equation (1.2} (i.e, by initially finding
the eigenvalues of the sample covariance or correlation matrix and
then finding the corresponding eigenvectors) is already simple and
computationally fast. However, ease of computation can be further
enhanced by utilizing the connection between PCA and the singular
value decomposition (SVD) of the ‘mean-centered’ data matrix X which

takes the form (see, e.g., Good (1969)):

X = Usv', (1.4)
where UTU = Ip. WT = ViV = Ip and 5 is diagonal with diagonal
elements s, s, ..., . Here, sz g= ,.. 2 8 are the

1 2 p 1 2 P

non-negative square-roots of the eigenvalues of XTX or XXT, the
columns of U are the p orthonormalized eigenvectors of XX" and the

rows of V' are the orthonormalized eigenvectors of X'X. Now, since

(vsu™) (usv")

= ys2v', (1.5)

XX

the eigenvalues of the sample covariance matrix (n-1)'1xTx, which is
equivalent to the correlation matrix if the columns of X have first
been standardized, are the diagonal elements of (n—l)-lsa.

Suppose that the PC’s PCJ (=1, 2, ..., p} are written as in
equation (1.1) (i.e., as linear combinations of the original
variables Xi (i=1,2, ..., p)). Then for a fixed j (j =1, 2, ...,
p). the coefficients v, are given by the elements of the j-th
column of V; i.e., viJ is the (i,j)-th element of V. The principal
component scores are given by US. It can be verified easily that if

the (i, j)-th element of U is uij then the (i,j)-th element xU of

the data matrix X, is given by



P
= Zu, s V. (1.86)

Further descriptions of this relationship between PCA and the
singular value decomposition may be found in Good (1869) or Gabriel
(1978).

A detailed account of PCA with respect to geometry arises from
the plot in Figure 1.1. This plot represents PCA for a case where
only two variables (X1 and Xz) are used to obtain the data. Here, it
is assumed that we have a sample of n observations plotted on the
axes DX1 and 0X2 of the original variable coordinate system
determined by the variables X1 and Xz’ respectively. It is further
assumed that, the idealized elliptical cluster of points contains
95% of the total number of pbservations in the sample. PCA can be
considered as the following two-step procedure: translation of the
axes OX1 and OX2 such that the peint 0O is moved to (il,ia), the
peint determined by the arithmetic means of the original variables
X1 and Xz; followed by a rotation of these axes to the new
orthogonal axes PC1 and Pcz, respectively, called principal axes,
such that these new axes coincide with directions of maximum
variation of the original observations.

Suppose that the data points are projected onto the axis PCl.
The point PCll (i =1, 2, ..., n) corresponds tc the projection of
the point (x“,x21) onto the axis defined by the direction PC1' The
projection procedure is performed under the constraint that the
variation of the points projected onto PCI, exceeds the variation of
the same points when projected onto any other line passing through
the point (§1,§2). The projected values corresponding to this

direction of maximum variation are the principal component scores.



Figure 1.1 Idealized representation of scatter plot for 1wo
variables, showing the arithmetic mean for each variable
(xland xz), 95% concentration ellipse and principal axes

PC and PC_.
1 2

The first principal axis or principal component (PC1} is often
referred to as the least squares line since the sum of squares of
the perpendicular deviations of the original peoints from this line
is minimal. However, it is important to note that, this line differs
from regression lines which minimize the sum of squares of either
horizontal or vertical displacements. The cosine of the angle 6,
denoted by v11 is the coefficient of X1 in the linear combination
representation of PC1 {see equation (1.1)). Such coefficients are
often referred to as the direction cosines. The first eigenvalue of
the covariance matrix is simply the usual sample variance of the

data points projected onto PC1' Successive principal axes are



determined similarly with the property that they are orthogonal to
the previous axes and that they maximize the variation of the
projected points subject to these constraints. For the two variables
case, only one more direction can be determined and this second axis
ig represented by PC2 in Figure 1.1.

It is important to notice that the PCA of a set of data
depends critically upon the scales used to measure the variables.
For example, when the measured variables are not comparable in
magnitude of variance as well as in terms of their units of
measurement, those variables with large variances will dominate the
first few PCs of the covariance matrix whatever the correlation
structure. Opne possible solution to this scaling problem is to
ensure that all the wvariables are of the same type (e.g., all
heights or all weights). An alternative procedure most commonly
employed, is to standardize all the variables so that they have unit
variance prior to performing the analysis. This is equivalent to
finding the PCs of the correlation matrix rather than the coyar‘iance
matrix. Although the computational procedure is the same, it is
important t¢ realize that the components derived from the
correlation matrix are different from those that arise from using
the covariance matrix. Furthermore, the former set of components
does not give any indication about the nature of the latter set, or
vice versa.

A major argument for using correlation matrices rather than
covariance matrices to obtain the PCs is that the results of
analyses for different sets of random variables are more directly
comparable than for analyses based on covariance matrices. This is
because, as noted before, the PCs based on covariance matrices are

sensitive to the units or scales used to measure the variables.



Also, sizes of variances of PCs from different analyses have the
same Implications for correlation matrices, bﬁt not for covariance
matrices. Furthermore, patterns of coefficients in the PCs can bhe
readily compared for different correlation matrices to decide
whether or not two correlation matrices are giving similar PCs. Such
informal comparisons are often less straightforward for covariance
matrices.

Nevertheless, the use of covariance matrices to perform PCA
does have a general advantage over the use of correlation matrices,
and one other advantage which occurs in a special case. The general
advantage is that statistical inference regarding population PCs
based on sample PCs is easier for covariance matrices. However, in
practice, PCA is commenly used as a descriptive rather than an
inferential tocl. Hence, th;s advantage becomes less crucial. The
second advantage of using covariance matrices occurs when all the
variables are measured in the same units. In this case, it can be
argued that standardizing the variables is equivalent to making an
arbitrary choice of the measurement units. This argument about
arbitrariness can be applied more generally to the use of
correlation matrices, but when the variables are measurements of
different types, the use of covariance matrices leads to_ a more.
arbitrary choice of the units of measurement. Hence, in this case,
the use of correlation matrices should be preferred.

It is important to note that the scaling problem does not
occur in Correlation and Regression Analysis. Correlation
coefficients and the regression coefficients between the response
variable and the predictor variables are not dependent on the scales
or units of measurement of the variables. Regression equations are

equivalent whatever scales are used because the regression line is
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chosen sc that the sum of squared distances of the data points (or
observations) from this line parallel to one of the co-ordinate axes
is minimal. On the other hand, we have already noted that in PCA,
the first PC is chosen so as to minimize the sum of squares of the
perpendicular distances of the data peints from this line.

The arguments above suggest that a careful decision must be
made before a PCA is attempted, as to whether or not standardization
of the wvariables is desirable. All the points raised in these
arguments should be considered before making such a decision.

PCA is considered a useful tool only when the first few PCs
account for most of the variation, so that a few 2-dimensional
scatterplots of principal compcnent scores, may be used to summarize
the multivariate data. If this is the case, it can be argued that
the ‘essential dimensionality' of the data is less than p. In other
words, if some of the original variables are expressible as linear
combinations of the others {because they are highly correlated),
then these varilables may be effectively ‘conveying the same
message’. In such cases it is hoped that the first few PCs will be
intuitively meaningful and will be useful in subsequent analyses
where we can operate with a smaller number of variables,

Perhaps at this point, having used scme notation in the
description of principal components, it would be appropriate to
conclude this section by explaining briefly, the type of notation
used throughout the thesis. Bold face upper case letters represent
matrices, while underlined upper case letters are used to denote
vectors of variables and underlined lower case letters represent
vectors of observations. Vectors of coefficients for the linear
combinations of variables are denoted by bold face lower case

letters. To show the sizes of these matrices and vectors, two
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subscripts separated by the sign x are used. The first subscript is
the number of rows of the matrix or vector, while the second
subscript is the number of columns. Individual variables are denoted
by plain upper case letters, while their sample means are given by
plain lower case letters with bars above them. Double-subscripﬁed
plain lower case letters are used to describe the elements of a
matrix or a vector. The first subscript represents the row number,
while the second subscript is the column number. The transpose of a
matrix is given by the appropriate letter representing that matrix
with the superscript T. Further notation, perhaps somewhat less

general, will be explained as it is introduced in the thesis.

1.3 Variable Selection
1.3.1 General variable selection techniques

The need for a sensible initial choice of variables for
inclusion in a scientific investigation is largely self-evident.
However, knowledge of the system under investigation may be limited
and this may lead to omission of important variables. Needless to
say, omission of variables which play a crucial role in the system
will lead to serious and in most cases irredeemable consequences. In
such cases, the tendency is to start with a very large and
exhaustive number p of such descriptors. This way, the investigater
is guided against 1ignoring essential variabies. One practical
example is the security returns problem (see Narayanaswamy and
Raghavarao (1991)), where it is desired to select the model which
best explains the pricing of securities. When initiating such an
experiment, the appropriate descriptors which best explain the daily
returns variability may be unknown. Hence, it would seem quite

reasonable to include, initially, a comprehensive number of
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variables and to proceed to a variable selection phase to seek the
‘best’ g (<p) descriptors. In this particular case, the data consist
of daily returns on 1200 securities and hence each competing model
is tested on 1200 descriptors. Apart from the considerable
computational problems some of the included variables may inevitably
be redundant, with their presence increasing the level of ‘noise’ in
the data. Consequently, we are faced with the problem of choosing a
subset of the available variables, which hopefully will in some
sense be almost as informative as the entire set of variables.
Clearly, for future experiments, a model which retains only q
variables is more appealing than one with all p variables. Inclusion
of all the variables is not only wasteful of time and resources but
it also makes the model more difficult to understand, and generally,
such a model yields less interpretable results, Furthermore, the
‘over-fitted’ model is sensitive to sampling error, and
over—inclusion of variables may impose other harmful effects. For
instance, the larger the variable-size, the greater the danger that
interesting relationships, effects or patterns will go unnoticed.
This is because the power of any statistical tests which might be
applied is a strictly decreasing function of the number of
variables. Moreover, highly correlated variables add very little to
the explanatory power of the data and can create difficulties in the
numerical estimation of parameters, giving rise to estimates which
are vulnerable to stability. With the ‘smaller’ model, for a given
expenditure of time and effort, a larger number of observations can
be included per sample. lLarge samples are advantageous in the sense
that, firstly, an increase in sample size is usually accompanied by
a decrease Iin the error due to sampling aﬁd secondly, for

sufficiently large samples, the opportunity exists to divide the
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sample randomly into subgroups prior to the analysis and to proceed
to a cross-validatory check of how well the model fits. For these
reasons, interest in models involving subsets of the original
variables is often expressed and can scarcely be over—-emphasized.
The identification of essential variables in multivariate
analysis arises in a variety of contexts. Areas which have received
an extensive amount of investigation are Multiple Regression and
Discriminant Analysis. Here, the optimality criteria on which
selection can be based exist most naturally, namely, the residual
mean square and the error rate, respectively. Authors who have
addressed the regression area include Draper and Smith (1966), Beale
et al. (1967), Furnival and Wilson (1974), Hocking (19768), McKay
(1977, 1979), Krishnaiah (1982) and Brook and Arnold (1985).
Minimizing the residual mean square in a regression analysis
involving p wvariables is equivalent to maximizing the multiple
correlation of the criterion wvariable with the remaining p-1
predictors. Beale et al. (1967) suggested a method for retaining
variables which play a significant role in the system by maximizing
the minimum multiple correlation between the selected variables and
the discarded variables. This is referred to by Beale et al. as
Interdependence Analysis, of which PCA is a special case. Among the
references for variable selection in Discriminant Analysis are McKay
(1976), McLachlan (1979, 1980), Murray (1977), Constanza and Afifi
(1979), van Ness (1979), McKay and Campbell (1882a, 1982b), Daudin
(1986), Ganeshanandam (1987}, Ganeshanandam and Krzanowski ({1983)

and Snapinn and Knoke (1989).

14



1.3.2 Variable selection in principal component analysis

The usefulness of PCA is often assessed by how well it detects
the effective dimensionality of a set of data. This follows from the
fact that one of the major objectives of the analysis is to reduce
the dimensionality of the data without disturbing the owverall
features of the sample, i.e., retaining as much of the sample
variation (information) as possible. Another related objective of
PCA appears to be the identification of new meaningful underlying
variables, the PCs. Rotational techniques that transform the linear
combinations produced by PCA inte more interpretable linear
combinations, are available in most multivariate statistical
computing software packages. The popularity of these techniques is a
realization of the fact that the original linear combinations are
often difficult to interprep. Thus, while PCA solves a well-defined
mathematical problem, it frequently fails to provide the statistical
consumer with useful results. Another major deficiency of PCA in
this respect is that, although the dimensionality of the problem may
be reduced, each component is a linear combination of all of the p
original variables. Thus, even though the first few PCs may be
considered, interpreting the results using all p original variables
seems inevitable. Hence, inclusion of all the original variables in
the analysis is one of the major causes of lack of interpretability
of the linear combinations. In the presence of ‘nolse’ variables,
interesting patterns or relationships which, otherwise, would be
revealed by the PCs, will be 1less prominent if not completely
hidden.

Suppose a PCA meets one of its primary objectives, namely
dimensionality reduction and suggests that k PCs are sufficient to

model the ‘signal’ in the data, the remaining p-k PCs being =
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reflection of the ‘noise’. This suggests that the minimum number of
variables necessary for recovery of the data structure is k. For
example, in the case of the Alate data (see Krzanowski (1987) or
Jeffers (1967))}, 19 variables were measured on each of 40 winged
aphids (alate adelges} that had been caught in a light trap. The
cross-validatory technique for determining the number of components
to be considered in PCA, proposed by Eastment and Krzanowski (1882),
chooses the first 4 components suggesting that the remaining 15
dimensions are a reflection of the ‘noise’ in the data..This, in
turn, suggests that a minimum of 4 of the original variables can
reproduce the structure of the data with sufficient accuracy. An
investigator inveolved in an analysis of multivariate data with a
total of p variables often suspects, and even hopes that a subset of
these variables may adequately explain the data. It may well be that
the main cbjective of the investigation is simply to identify the
factors of importance in some process or phenomenon. Furthermore,
patterns in Z-dimensional scatterplots of principal component scores
may be revealed by using a subset of only the best k of the original
variables. This would help us understand the data better and enable
us to operate with only a few variables in subsequent analyses.

The simplicity of dealing with variables rather than with
their linear combinations would seem to justify the increasing need
in exploratery multivariate studies, to incorporate variable
selection in dimensiconality reduction techniques such as PCA. Hence,
this leads us to a third objective of PCA, namely the elimination of
those variables which contribute relatively little extra
information.

Although the literature covers the subject of PCA considerably

broadly, the variable subset selection problem has received very
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little attention, yet it arises frequently in practice as just
enlightened. The currently available techniques for selecting
variables in PCA can be categorized into three classes; namely,
those based on eigenvectors, i.e., the coefficients between the FCs
and the original variables, those based on various criteria for
optimizing PCs (for example, the property that for a given number of
PCs the sum of the variances of the PCs is a maximum; subject to the
sum of squares of the coefficients between each PC and the original
variables being unity), and those based on measures of Multivariate
Association (MVA}. The criterion for selecting variables has to be
linked as closely as possible to the practical aim of PCA. In view
of the primary objective of the analysis, the importance of a
variable subset should be assessed in terms of whether or not it
retains most of the variation present in the set with all p
variables. The criteria based on eigen_analysis, proposed by
Jolliffe (1972, 1973) choose those variables which are highly
associated with the first few PCs and reject those which are highly
associated with the last few PCs. A subset of the original variables

which optimizes one of the criteria,

k
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is termed a set of principal variables by McCabe (1884). Here, BJ (J
=1, 2, ...,k') are the eigenvalues of the conditiocnal covariance
{or correlation) matrix of k' deleted variables; given the values of
k selected variables, P, (j =1, 2, ...,k = min (k, k')) are the
canonical correlations between the set of k' deleted variables and
the set of k selected variables. These criteria actually satisfy the
property of maximum variation of the first k PCs. While the
techniques just described optimize various optimality criteria, they
lack the ability to choose those variables which will ‘reproduce’,
as closely as possible, the general features of the complete data. A
technique appropriate for this would optimize the multivariate
association between PCs produced by the subset of variables and the
PCs arising from the entire set of wvariables., So far, in the
literature, the M2-Procrustes technique for variable selection in
PCA proposed by Krzanowski (1987) is the only technique that comes
close to meeting this requirement. This technique minimizes the
discrepancy between corresponding peints in the subset configuration
and the configuration of the entire set of variables. Hence, in our
investigation, emphasis is put on empirical techniques for variable
subset selection in PCA, which utilize the idea of multivariate
association. A technique which wuses PCA indirectly, based on
Principal Component Regression is avallable in the literature and
can be effected by performing PC regression and considering the
vector é to be the proposed estimator for the regression
coefficients. Then we can test whether or not the elements of é are
significantly different from zero. Those variables whose
coefficients are found to be not significantly different from zero,
can then be deleted from the model. However, it would seem that this

selection technique does not quite choose variables in the ‘true’
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PCA sense as it requires a response variable in the model; yet in
PCA, variables arise on an equal ‘footing’.

At this stage, it is very important to note that, the number
of variables to be selected (gq) and the number of PCs to be used (k)
need to be determined prior to subset selection. Several methods
based on eigenvalues for fixing k have enjoyed popularity for a
considerable periocd of time and recently, Wold (1976, 1978) and
Eastment and Krzanowski (1982) proposed methods based on the
cross-validation technique. For the reason mentioned earlier that,
determining the value of k can be viewed as equivalent to finding
the number of dimensions required to model the ‘signal’ in the data
with the remaining p-k dimensions being a reflection of the ‘noise’,
it would seem reasonable to set q equal to k.

The optimal approach in selecting variables is to consider all
possible subsets of the available p variables, and choose those that
optimize the selection criterion. In practice, however, this
procedure may not be computationally feasible, hence, some form of
sequential procedure needs to be considered. In other words, given r
{r = g = p} variables in the selected subset, compute the criterion
of interest associated with each variable omitted from the subset in
turn and delete the wvariable whose omission gives rise to the
optimal value of the criterion. This procedure, owing to its nature,
is termed backward elimination. Another  procedure, forward
selection, operates through addition of variables to the existing
set of r variables. The criterion of interest is computed for each
of the p-r remaining variableé added to the set in turn. The
variable which gives rise to the optimal value of the critetion is
then added to the existing set of r variables. A third sequential

procedure combines the above two selection techniques, so that, at
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each stage the backward elimination is followed by a forward
selection. This modified procedure is called stepwise selection. In
our investigation, selection 1is effected using the backward
elimination procedure, However, we feel that it is necessary to
compare the results with those which arise from using the stepwise
selection procedure.

A detailed description of the various methods for selecting
variables in PCA together with an explicit review of the comparative
studies on these selection procedures that exist in the literature

are given in Chapter 5 of this thesis.

1.4 Objectives of the current research project

The main aim of the current study is concerned with the
selection of important variables of a given multivariate set of data
for PCA. However, as a lead-in to this, it was decided to address
the question of the number of components to be used in the selection
process. Not only should the components retained in principal
component analysis contain as much of the sample features as
possible with exclusion of most of the ‘noise’ in the data, but also
the selected subsets of the original variables should satisfy these
constraints. Hence, it would seem reasonable to use such components
in the selection process and to retain as many of the original
variables as the number of these components. Currently existing
techniques for determining the number of components to retain in a
PCA prove to be unsatisfactory. The techniques based on eigenvalues
are subjective while the cross-validatory techniques may be
inappropriate, particularly for small sample cases. For this reason,
it was decided to consider a study in which a tecﬁhique based on the

bootstrap methodology ls introduced and compared with Eastment and
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Krzanowski's (1982} cross-validatory technique.

Chapters 2, 3 and 4 of this thesis concentrate entirely on the
choice of the number of components in PCA. A detailed description of
the various existing techniques for determining the number of
components and a review of some comparative studies that are
available in the literature are presented in Chapter 2. Chapter 3
describes the proposed bootstrap based technique, followed in
Chapter 4 by a comprehensive comparative study of this new technique
with Eastment and XKrzanowski’'s cross-validatory technique. The data
for this study are simulated from Monte Carle experiments using
guidelines from previously published studies.

The remainder of the thesis focuses on variable selectlion in
PCA. Most of the criteria available in the literature for selecting
variables in PCA are concerned with the overall features, either of
the subset data or of the complete data. Thus, the criteria are
based exclusively on covariance or correlation matrices and their
eigenvalues/eigenvectors. More appropriate criteria for preserving
multivariate structure would involve comparing principal component
scores from the subset data and those from the full set data. For a
given subset size (say q), retained subsets would then be those
which maximize the association (closeness) between these two
configurations. Krzanowski's (1887) M*-Procrustes criterion utilizes
this idea, but the study shows that the structure is preserved
particularly when the data are grouped. However, our particular
interest is to utilize the idea of multivariate association to
choose those subsets of the original variables which carry whatever
unknown multivariate structure that may be present in the data. The
major objective of our research project is therefore to provide

empirical subset selection methods for PCA based on Canonical
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Correlations and Graph-Theoretic criteria; and to compare their
behaviour with that of the M°-Procrustes criterion.

A review of literature on variable selection in PCA which
includes various selection methods and a few comparative studies of
these methods is presented in Chapter 5 of this thesis. Chapter &
gives a description of the new selection methods proposed in this
project. The comparative study in our investigation is based mainly
on Monte Carlo simulations, and the behaviours of these methods are
compared by means of the performance of the selected variables. This
study is described in Chapter 7.

As noted before, the results of a PCA are heavily dependent on
the type of variation matrix used. It is therefore appropriate to
monitor the choice of satisfactory subsets of retained variables
according to whether the covariance or the correlation matrix is
used for PCA. Jolliffe (1972) considered a ranking scheme
appropriate only if the subsets are obtained from PCA using the
correlation matrix. Hence, another major aim of the current research
project is to obtain a more general ranking scheme to assess the
performance of the variable selection methods. This objective is
alsc met in Chapter 7.

Although major conclusions are mainly based on data simulated
from normal parent populations by means of Monte Carlo experiments,
the techniques discussed above are also applied to some real data
sets in Chapter 8. The difficulty encountered in ‘real data
investigation’ is that, unlike with the simulated data, the true
‘best’ subset of variables is unknown; hence, comparisons among the
selection methoeds can only be achieved through the use of
3-dimensional and Z2-dimensional scatterplots of pfincipal component

scores. This 1s a subjective approach to the problem at hand.
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Overall conclusions of the current research study are presented in
Chapter 8. Some general comments on the techniques and suggestions
for possible extensions and future developments are also discussed

in Chapter 8 to conclude the thesis.

23



CHAPTER 2
REVIEW OF LITERATURE ON THE CHOICE OF THE NUMBER OF COMPONENTS
IN PRINCIPAL COMPONENT ANALYSIS

2.1 Introduction

As seen in Chapter 1, one of the most popular uses of
principal component analysis is dimensionality reduction.
Frequently, Jjust the first few of the PCs are sufficient to
represent the ‘original’ data adequately, though in some
circumstances, the last few, rather than the first few are of
interest to the researcher. In the present study, however, the
traditional idea of attempting to reduce dimensionality using PCA is
considered, and the possible virtues of the last few PCs are
ignored.

If PCA is performed to serve this purpose of dimensionality
reduction, it becomes necessary to choose the number of components
(say, k) which will ‘reproduce’ the data with ‘sufficient accuracy’
and without loosing much sample information. The precise number of
components to be retained, however, is often unclear. From the
practitioner’'s peint of view, components te¢ retain are those which
are a ‘true’ representation of the ‘signal’ in the data, the rest
being only a reflection of the ‘noise’'. Several techniques are
available in the literature which attempt to select an appropriate
subset of the FCs to account for most of the variation in the data.
These techniques can be categorized into two classes, namely, those
based on eigenvalues and those based on cross-validation.
Descriptions of some existing techniques are given in section 2.2 of
this Chapter, while section 2.3 provides a review of some

comparative studies of these techniques.
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2.2 Some existing techniques for choosing the number of components
2.2.1 Techniques based on eigenvalues

We have already noted in section 1.2 that the eigenvalues can
be interpreted as the respective variances of the different
components. Suppose 11 > 12 b & lp = 0 are the eigenvalues of the
covariance or the correlation matrix, corresponding to the principal
components PC1’ PCa, A PCP’ respectively. Then, the sum of the

variances is given by

p P
Lvar(PC) = L 1. (2.1)

It was also noted in section 1.2 that computing the trace of each
side of equation {1.3) shows that, in general, the sum of the
variances of the original variables is the same as the sum of the

variances of the corresponding PCs, i.e.,

"
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P
= T1. (2.2)

Thus, even though the first few PCs may retain mest of the variation
in the data, the total variation of the system is not changed by the
PCA. This important result can also be realized from the geometrical
point of view. For example, in Figure 1.1, the total wvariation of
the data points in the ‘original’ space defined by the axes OX1 and
OX2 is not changed by their projection onte the ‘new’ space deflned
by the axes PC1 and PCZ' Thus, the percentage of the total variation

of the system ‘accounted for’ by the first k PCs is given by
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K P
P.=|Z1 };1J x 100. (2.3)
i=1 Jj=1

Since the diagonal elements of the correlation matrix are all unjty,
the sum of these diagonal terms is equal to p. Hence, the sum of the
variances of the standardized original variables and of the PCs, and
the sum of the eigenvalues of the correlation matrix are also equal
te p. Therefore, the percentage of total variance in the data

‘explained’ by the first k PCs will be given by
k
Pp. =Yl /p | x 100. (2.4)

Perhaps this P, is the most obvious criterion for choosing the

k
appropriate number of components in PCA. A common decision is, to
choose the smallest k for which Pk > 75% (say). More strictly, it
might be required that Pk > 80% or even Pk > 85% before stopping the
inclusion of more PCs in the subset of retained PCs. Thus, in this
appreoach, the final decision is subjective and somewhat arbitrary.
Another popular approach is to construct a scree diagram by
plotting lj against j (j = 1, 2, ..., p); an idea first introduced
by Cattell (1966). A typical pattern is illustrated in Figure 2.1.
Here the first twe eigenvalues show a sharp drop, followed by 2 much
more gradual decline. It can be argued that those PCs corresponding
to the almost ‘flat’ portion of this graph represent the ‘noise’
components of the system. Thus, it would seem logical to choose k to

be the value of j at which the ‘elbow’ of the scree diagram occurs,

for example, in Figure 2.1 this would probably be at k = j = 3.
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Figure 2.1 Example of a scree diagram

An alternative technique which is alse in popular use is to
exclude those PCs for which 1J < }, where ] is the arithmetic mean
of the eigenvalues, or those for which lj < 1 if the correlation
matrix has been used to perform the PCA. The idea behind this rule
is that if the data were roughly spherical, i.e., the original
variables were almost independent, the PCs would be roughly the same
as the original variables and each of the PCs would have variance
approximately equal to 1. Thus in any PCA, a component with variance
less than I contains less information than at least one of the
original variables, hence, it 1is considered unsuitable to be
retained.

A similar criterion based on the ‘broken stick’ model can also
be used to determine k. If we imagine a stick with unit length to be
broken, at random, intoc p segments, then it can be shown that the
expected length of the k-th longest segment is given by

Lgp L (2.5)
k P 1=k ) -
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Thus, the k-th component is retained if 1J > l; (=1, 2, ..., p)
and is deleted otherwise.

The final eigenvalue-based criterion for deciding on the value
of k makes use of Bartlett’s test for the null hypothesis, H0 : 1J+1
= ] = ,,, = lp versus the general alternative, H1 : at least two

of the last p-j eigenvalues are unequal. HD is rejected at

significance level a, if

P
. . = _ 2
n [ (p~-J3) Iogel k§j+1log°lk] z xv;a (2.8)

where

n'=n- [(Ep + 11)// B],

P
= E lk /(p_ J)l
K=31+1

1

v=12(p~ j+2) {p-J-1).

If the null hypothesis is true, then it can be argued that the last
p-J PCs do not contribute significantly to the total variation;
hence, these PCs can be deleted without serious loss of information.
If k is the number of PCs which represent the 'signal’ in the data,
then the test can be used sequentially to find k.

Nevertheless, it must be pointed out that the methods above
are ad hoc, with no formal statistical justification. Only the facts

that they are intuitively plausible and that they often work in

28



practice, would seem to explain their popularity. One disadvantage
of the method based on Bartlett’'s test is that it is dependent on
the assumption of multivariate normality of the data matrix X which
is often unrealistic. Furthermore, in this method, the overall
significance level is completely unknown because the number of tests
to be performed is random, and these tests are not independent of
each other. Hence, the method could be added to the list of ad hoc
rules. In fact, it can be seen as somewhat similar to the choice of
PCs according to Cattell’s scree graph. Looking for twe consecutive
eigenvalues which are the same in the sense suggested by Bartlett’s
test, corresponds to 1looking for the ‘elbow’ in Cattell’'s scree
graph. However, techniques based on more statistically motivated
principles are available in the literature and these are described

in section 2.2.2 below.

2.2.2 Cross-validatory techniques

Cross-validation is a statistical tool which is generally used
to obtain unbiased or nearly unbiased non-parametric estimators of
prediction error. The standard procedure consists of dividing the
data intoc subgroups which are then deleted from the data, one at a
time; and for each competing model, the deleted values are predicted
using the remainder of the data. An overall measure of the degree of
association between actual and predicted values for each model is
then computed, and the model which optimizes this measure is chosen.

Consider the first rule in section 2.2.1, in which the number
of PCs is chosen on the basis of the percentage of the total
variance ‘explained’ by the retained PCs. This procedure is, in a
sense, eguivalent to looking at the spectral decomposition of the

covariance {(or correlation) matrix or looking at the Singular Value
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Decomposition (SVD) of the ‘mean centered’ data matrix X. In either
case, deciding upon the number of terms to be included in the
decomposition in order to obtain a good fit, is closely related to

*
looking for the smallest integer k, for which P, > P', where P is

k
the chosen cut-off point. However, using the rule based on the SVD
of X rather than one based solely on the eigenvalues of the
covariance (or correlation} matrix, has twoe major advantages.
Firstly, the former rule utilizes the entire information available
in the data and it leads to a particular choice ef k which is unique
to the given data mairix X; in contrast to the latter which chooses
a value of k unique only to the covariance {(or correlation) matrix.
In other words, there may be several distinct data matrices X
yielding almost identical covariance (or correlation) matrices; and
the cholice of k for each of these cases using the latter rule would
be the same (as each 1is associated with the same set of
eigenvalues), whereas the former rule applied to these data matrices
would probably lead to different cholces of k. Secondly, implicit in
the approach based on the SVD of the data matrix X is the idea that
the choice of k should indicate the number of PCs to be retained in
order to ‘reproduce’ X with sufficient accuracy. To illustrate this
pocint, we shall first establish the relationship between PCA and the
SVD of X.

Consider equations (1.1) and (1.4) in section 1.2. Equation
(1.1) gives the principal component scores (PC scores) corresponding
to the j-th PC, while in equation (1.4} is the SVD of the data
matrix X. Using equation (1.1), the matrix of PC scores which
includes all the available p PCs is given by XV, where V is the
matrix of the coefficients between the PCs ﬁnd the original

variables. As noted before, these PC scores can also be obtained by
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multiplying U by S, were U and S arise from the SVD of X as given by
equation (1.4). Thus, XV = US, and since VV = W = I
post-multiplying this egquation by v’ ylelds X = USV' which is the
SVD of X (as given by equation (1.4}). Hence, PCA is equivalent to
the SVD of the data matrix X.

The equation above enables us to write each (i, j)-th element
of X ag in equation (1.6) (i =1, 2, ..., nand j =1, 2, ..., pl.

Thus, retaining only the first k PCs can be seen as equivalent to

modeling the elements of X by the model
k
= Lu, s v, +eE.. (2.7)

This type of model can be referred to as a Principal Component model
or simply a PC model. Here, uit are the elements in the i-th row of
u, st are the diagonal elements of 8§, vtj are the elements in the
J-th column of v\ in equation (1.4) and clJ are the residuals.
Eastment and Krzanowski (1982) suggested a method which utilizes the
PC model above to choose the number of PCs to be retained. Wold
(1976, 1978), on the other hand, worked with a PC model slightly
different from the one in equation (2.7). This model was derived by
Wold and Andersson (1973). In their derivation of the model, the
latter authors also considered the fact that the PCs are linear
combinations of the ‘original’ variables which are uncorrelated and
ordered in such a way that the first few retain most of the
variation or information present in the data. Following is a brief
outline of the derivation.

Suppose that on each of n objects, the values of p variables
hqve been measured giving the data matrix X with elements x1 . If

all the objects come from the same population, the values of each
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variable j are the same for all the objects except for small
deviations 811 due to errors of measurements. Hence, for this simple

case, the data can be described by the model
= + £ . (2.8)

Wold (1976, 1978) suggested that the effect aj should be the mean of
the j-th variable. However, eguation (2.8) is often unrealistically
simpie. The underlying assumption that ‘the objects are so similar
that they are virtually identical’ is hardly fulfilled in practice.
If it is assumed that the objects differ slightly from each other,
the model becomes

X =oa +uv +g , (2.9)
TR T A TS

and a larger variation between the objects leads to the model

k
= + Yu v +g . (2.10)

Here, ui and ult are the elements in the i-th row of U and v and
th are the elements in the j-th column of vl in equation (1.4). It
can be seen that, equation (2.10) is a PC model in which the
observed variable xlJ is linearly related to the PC scores u., using
the weights vtj. Here, u are referred to as PC scores because of
the following reason: Recall from section 1.2 that the matrix of PC
scores is given by N = US, where S is the diagonal matrix with
diagonal elements s, z S, = .., = sp which are the non-negative
square-roots of XTX or XXT as defined in‘ equation (1.4).

Post-multiplying each side of this equation by § ' yields U = NS .
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It was also noted in section 1.2 that the eigenvalues of the sample
covariance matrix are given by the diagonal elements of (n—lquz,
So that the variance of the PC scores for the t-th PC is (n-1)7's.,
t=1 2, ..., p. Hence, the scores u., given by U are simply those
given by N, but standardized to have variance (n—lfdst. t =1, 2
., p. It can also be seen that, equations (2.8) - (2.10) are PC
models with the number of retained PCs being 0, 1 and k,
respectively. Note that when the number of retained PCs is set to
zero, a case given by equation (2.8), it is assumed that all of the
variation in the data is due to chance or is random, so that no PCA
is performed. Further note that it is essential to consider the case
k = 0 as this enables us to compute the variation or information
supplied by only the first PC. This variation is the amount of
reduction in the error sum of squares due to fitting the first PC
and can be obtained by subtracting the sum of squares of the errors
when k = 1 from the sum of squares of the errors when k = 0.
Setting Ei} to zero in each of the two PC models given by
equations (2.7) and (2.10) 1is equivalent to estimating (or
predicting) the data using only the first k PCs. The sum of squared
differences between the predicted and the actual values can then be
calculated and used to assess the accuracy of the prediction
process, If the original data are predicted with ‘sufficient’
accuracy, then it can be argued that the first k PCs represent these
data adequately. Hence, the problem is reduced to choosing the model
with the leas?t number of components for adequate representation of
the data. Therefore, this approach is less subjective than the one
based solely on the structure of the eigenvalues.
However, the computation of U, S, and vtj in equations (2.7)

and (2.10) utilizes the values XIJ itself. Hence, this prediction of
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x1j is over-optimistic. To obviate this clearly unsatisfactory
feature, Wold (1976, 1978) and Eastment and Krzanowski (1982} used
the idea of cross-validation. The principle of the cross-validation
approach is to ensure that each data points that are predicted are
not used in the estimation of the parameters, hence to avoid the
over-optimism in the prédiction process. Applied to the problem at
hand, this approach suggests performing the SVD with part of the
data deleted from the data matrix X. Quantities equivalent to uit,
s, and th arising from this SVD are then used to predict the
deleted values.

To perform the cross-validatory prediction of xij, Wold (1976,
1978) suggested that, initially, the data matrix X should be divided
into g groups. He recommended that g should be between 5 and 10,
inclusive, and must not be a divisor of p and no group should
contain the majority of the elements in any row or column,
Quantities equivalent to u. and vtJ are then computed g times, with
each group of data deleted from X, one at a time. For a fixed k (k =
1, 2, ..., etc.), the number of FCs, the model in equation (2.10) is
fitted to the data arising from the deletion of the h-th group, and
the estimates obtained are used to predict the data in the h-th
group, (h =1, 2, ..., g). It should be noted that when k = 0, the
model in equation (2.8} is the suitable choice for the analysis.
With respect to the choice of the number of PCs, for a fixed k (k =
0o, 1, 2, ..., etc.), the sum of squares of the prediction errors,
with all g groups considered, is calculated and these sums of
squares are then examined over the successive wvalues of k to
determine the optimal k at which adequate prediction of the data

first occurs. This happens when the inclusion of the (k+1)-th PC and

the successive PCs to the model in equation (2.10) no longer
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significantly improves the representation of the data, suggesting
that the first k PCs are sufficient. Hence, some suitable
test-statistic can be used over the consecutive values of k to
determine the minimum walue of k which corresponds to an optimal
representation of the data.
Wold {1878) noted that whether or not the parameters aj should
be cross-validated depends on the type of application for the
analysis and that the decision should be left to the investigator.
It is also important to note that if the analysis precludes the
cross-validation of a; and if the data matrix X has been
‘mean—-centered’, then the models in equations (2.8} - (2.10) do not
contain aj. The cross-validatory procedure arises in two forms,
single-cross and double-cross. In the single-cross procedure,
assessment (validation) relies on some process external to the
system, whereas in the double-cross procedure, assessment results
directly from the analysis itself. Following is an algorithm for the
cross-validatory procedure suggested by wold (18976, 1978), applicable
to both single-cross and double-cross apart from the differences
which arise at the assessment stage. In this algorithm, it is
assumed that the analysis precludes the cross-validation of aj and
that the data matrix X has first been ‘mean-centered’. Hence, the
parameters aj in the models in equations (2.8) - (2.10) are equal to
zero.
Step 1: Divide the set of observations (data matrix X) into g
groups (5 = g = 10).

Step 2: For each value of h (h = 1, 2, ..., g), perform steps
3 - 6.

Step 3: Omit the objects in group h from X and denote the

resulting data matrix by x;'\
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Step 4: Perform the SVD of x;" to obtain the estimates of
the parameters uu and vtf
Step 5: For a fixed k (k =0, 1, 2, ..., p-2), fit the models
in equations (2.8) and (2.10) when k= 0 and kK = 1, 2,
., p~2, respectively, and use the gquantities in s;ep
4 to compute estimates of the deleted part of the

data.

Step 6: Compute the deviations Elj for each value of k for the

deleted objects and denote the resulting matrix by

E(k).

N k=1, 2, ..., p-2.

Step 7: For a fixed k, concatenate matrices EEk), E;k, c s
Eik) (corresponding to each deleted group) vertically

(k) and then

to form the overall matrix of deviations E
compute PRESS(k), the sum of squares of these
deviations. In other words, compute PRESS(k) =

T
Trace{[E(k)] EE(k]]}. The notation PRESS, stands for

PREdiction Sum of Squares, and this is taken in a
similar sense as in linear regression. These PRESS(k)
values are a measure of how well the model in equation
(2.10) predicts the data for each k.

In the case of the single-cross procedure (see Wold (1978)),

F-tests are then made on the statistic

PRESS(k-1} - PRESS(k) .  PRESS(k)
D i D ’
1 2

(2.11)

to decide whether or not the addition of the k-th component is
significant. Here, D1 = n, the number of degrees of freedom required

to fit the k-th component and D2 = n(p-k-1), the number of degrees

3B



of freedom remaining after fitting the k-th component. The
disadvantage of this criterion, however, is that it is dependent on
normality assumptions (on the data matrix X) underlying the F-tests.
The double-cross procedure (see Wold {(1978)) requires that the sum
of squared differences between observed and estimated data points

(based on all the data, using the first (k-1) PCs)

p 2
b [x(k-l) - Xij] , (2.12)
=1

be computed. Sk-1 is then compared with PRESS(k) using the ratio

R = PRESS(k)/ S, (2.13)

If R < 1, the implication is that better prediction can be achieved
by using the first k rather than the first (k-1} PCs, so that the
k-th PC should be included; otherwise inclusion of extra PCs is
stopped. The optimal value of k then becomes the ‘best’ choice of
the number of PCs for adequate representation of the data.

The method suggested by Eastment and Krzanowski (1882)
utilizes the ideas described above. However, these authors argued
that the computational nature of Wold's (1976, 1978) methods
precludes the extraction of the maximum amount of cross-validatory
information in the sense defined by Stone (1974). According to Stone
(1974), the principle of cross-validation is to ensure that the same
data points are not used in both the prediction and assessment
stages, but nevertheless to use as much of the original data as
possible in predicting each xij. This may be achieQed by omitting a

single element from the data rather than a subset or group in the
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cross-validation procedure. This approach 1is often called the
leave-one-out technique. Eastment and Krzanowski (1982) attempted to
meet Stone's requirement, hence, in their method, the quantity
corresponding to th in equation (2.7) is based on the data set with
Just the i-th observation deleted, the estimate of uit is calculated
with only the j-th variable deleted, and st is estimated from the
combined information from the two cases above (i.e., with the i-th
obgservation and the j—;h variable omitted). Furthermore, prediction
is effected by using the widely available SVD algorithms which are
computationally fast, particularly when the recent algorithms for
updating the SVD of a matrix on the addition or deletion of a row or
column are incorporated (see Bunch and Nielsen (1978} and Bunch,
Nielsen and Sorensen (1978)). On the other hand, computations in the
methods suggested by Wold (1876, 1978) are performed using the
Non-Linear Iterative Partial Least Squares (NIPALS} algorithm {see
Wold and Lyttkens (1869)) which is slow and not as universally
available as algorithms for the SVD of a matrix. A more detailed
account of Eastment and Krzanowski's technique is presented in the

next section.

2.2.3 Review of Eastment and Krzanowski’s technique

In this section, we discuss, exclusively, the cross-validatory
technique for choosing the number of components, Kk, proposed by
Eastment and Krzanowski (1882). The reason for this is to show the
nature of the computational procedure in more detail. This way, the
use of the Singular Value Decomposition (SVD) to obtain the PCs and
the cross-validation procedure to predict each element of the data
matrix using only the first k PCs, and hence the choice of optimal k

can be better understood. Following is the general outline of the
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computational procedure.

Consider the X data matrix obtalned by observing n

(nxp)
objects on p variables, ‘mean-centered’ and appropriately scaled.
Associated with a given value of k is the predictor (k); an

estimate of X which arises from fitting only the first k PCs. Thus

the prediction model is given by

x = x*) , g® (2.14)

¥

(k)

where E is the (nxp) matrix of error scores and k =0, 1, 2, ...,

(k) has a multivariate normal distribution under

(k)

the usual distributional assumptions. The errors in any row of E

etc. Each row of E

are statistically independent of the errors in any other row since
the rows of a data matrix generally represent randomly sampled
subjects. An outline of the prediction process using the PCs is

given in Figure 2.2 below.

Figure 2.2 Outline of the prediction of the data matrix X using only
the first k PCs.

PCA . i(k)
Estimate ’

o<

> PRESS(k]} ¢

Here,
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- T -
PRESS(k) = Trace { [x - x“"] [x - x“‘]] }
T
= Trace { [E(k)] [E[k]] }, (2.15)
(k =0, 1, 2, ..., etc.) and some suitable function of these PRESS

values is considered in order to choose the optimum value of k.

As noted before, the singular value decomposition of the data
matrix (see equation (1.4)) enables us to represent xlj, the
{(i,J)-th element of the data matrix X in the form given by equation
(1.68). Clearly, the elements of X can also be written in the form
given by the model in equation {2.7) and this is equivalent to
estimating the data using only the first k PCs. It was also noted
that the technique of Eastment and Krzanowski (1982) utilizes this
model and the cross-validation procedure. Detalls of the reasoning
behind the approach adopted by these authors, such as the use of
cross-validation, have already been presented in the previous
section. Hence, ©presented below 1is the prediction procedure
illustrated in more detail and the use of the prediction sum of
squares to choose the optimal k at which adequate prediction of the
data first occurs.

-~ ~

Llet U and V be the matrices which

(rmxp-1)' S(p—lxp—l) {p-1xp-1)

arise from the SVD of the data matrix X without the j-th column.
Here, U, S and V are respectively equivalent to U, S, and V in the
SVD of the complefe data matrix X in equation (1.4). Then by using

(-.J)

X to denote X with the j-th column omitted, we can write

X"V -y s V. (2.18)

Similarly, let U(n—lxp)’ S[pxp) and v(pxp) respectively correspond
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to U, S, and V when the i-th row of X is omitted. Once again, if we

use X'} to denote X without the i-th row, then we can write
x'') =g 5 V. (2.17)
. . . ~(k) :
Now using equations (2.16) and (2.17), the predictor X of xij is
given by
S(k)_ oK) [2(k) [o(k) (k)
i} i 3
~ -~ -~ - - " _ - r -
= [uii u, e uik] J; [ Isl Iéz . Jgk ] 3
1 1)
s v
2 23
I 7
. kJ . k-j‘
k ~ ~ — -
= ¥ [u s ][Is v ]. (2.18)
1t ot t t)
t=1
Here, u(k) is the vector of the first k elements in the i-th row of

u, Is(k) consists of the square-roots of the first k elements of the

diagonal of S5, J;(k) consists of the square-roots of the first k
(k)

elements of the diagonal of §, and ;j is the vector of the first k

elements in the j-th column of iT.

The SVD is unique except for corresponding sign changes in U
and V in equation (1.4). Since the matrices ﬁ and V (necessary in
equation (2.18}) are found independently, the sign of ;f?} is

arbitrarily negative or positive. To overcome this, it is ensured at

each stage of the prediction process that
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sign[; wl'._:; -l-g v ]= sign[u sV ] (2.19)
1t ottty 1ttt

holds. Here, arises from the singular value decomposition

u s v
ittty
of the complete data matrix X as given by equation (1.6}. After

estimating all the elements, of X, PRESS(k) (k being

X
1)

consecutively, 0, 1, 2, ..., p~-1}) can be computed and the optimal k

is the largest value of k at which the statistic

W= PRESS{k-1) - PRESS(k) - PRESS(k)' (2.20)

D D

k r
is greater than unity. Here, Dk = ntp—-2k is the number of degrees of
freedom required to fit the k-th component and Dr = p(n-1} +

k(k+l-n-p) is the number of degrees of freedom remaining after
fitting the k-th component. Note that both F (see equation (2.11) in
section 2.2.2) and W can be interpreted as the increase in
predictive information supplied by the k-th component, divided by
the average information in each of the remaining components. The
optimal k wvalue above, then becomes the choice of the number of

components to be retained in erder to represent the data adequately.

2.3 Comparative studies on choosing the number of components

In the literature, assessment of the performance of the
majority of the methods described in section 2.2 above, is mainly
through analyses of real data; whether or not they give sensible
results in a particular application, and whether or not the user
understands the conclusions and finds them useful. As discussed in
section 2.2, the criterion B (i.e., the choice according to

Bartlett’s test), though more formalized, is somewhat similar to the
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formulation of Cattell’s scree graph. Looking for the ‘elbow’ in the
graph corresponds to trying to identify the first twe consecutive
eigenvalues which are the same in the sense suggested by the null
hypothesis in Bartlett’s test. Cattell’s scree graph differs from
criterion B in that it starts from the largest elgenvalue, and
compares successive elgenvalues in a pairwise fashion, while
criterion B compares blocks of twe, three, four, etc. The
computational nature of W {(i.e., the criterion proposed by Eastment
and Krzanowski (1982)) suggests that it looks for ‘large gaps' among
the set of eigenvalues arranged in the order of decreasing magnitude
and this process may be equated with using Cattell’s scree graph.
Hence, W can be seen as lending objectivity to Cattell’s approach.
When the chromatography retention index data published by McReynolds
(1970) was subjected to R (i.e., the criterion suggested by Wold
(1978))} and W, with and without outliers, R consistently chose fewer
PCs than W.

Perhaps the most comprehensive comparative study of the
various criteria for determining k, based on Monte Carlo
experiments, 1s due to Krzanowski (1983). This author noted that
criterion E (i.e., choosing PCs whose associated eigenvalues exceed
the average of all the eigenvalues) always yields a choice of k
which 1s less than or equal to the choice using the criterion T
(i.e., retaining PCs whose cumulative variance exceeds 75% of the
trace of the covariance matrix), while criterion B usually leads to
a much larger number of selected PCs than really necessary. Choices
according to criteria E and T depend minimally on sample size while
criterion B gives smaller choices of k for small sample cases than
for large ones. With the exception of data derived from diagonal

dispersion matrices where the behaviour of W is very similar to that
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of B; for the majority of dispersion structures, W behaves almost
like E. Krzanowski (1983) also found in his study that sample size
is not a critical factor in the performance of W. He also noted that
when W fails to choose the appropriate number of PCs, it tends to
choose less components than the required number and consistently
chooses less components than those chosen by the criterion T.

As mentioned in section 2.1.1, the criteria for choosing the
number of PCs based on eigenvalues have no formal statistical
Justification. It would therefore seem that the only techniques with
a more formal statistical base which are appropriate for this
purpose are those described by Wold (1976, 1978) and Eastment and
Krzanowski (1983). However, although the technique suggested by
Eastment and Krzanowski (1982) is seen to be an improved version of
the techniques suggested by Wold (1976, 1978) in the sense that it
attempts to extract the maximum amount of cross-validatory
information, perhaps the results it yields are sensible only as
regards to cross-validation. In other words, the use of a different
resampling procedure such as the bootstrap methodology which has
worked well with various multivariate techniques such as
Discriminant Analysis (DA) in many practical situations, could yield
better results. Hence, in the current research project, we propose a
method for choosing the number of PCs, based on the ideas of

bootsirapping.
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CHAPTER 3
BOOTSTRAP ESTIMATION OF THE NUMBER OF COMPONENTS

3.1 Introduction

Our exploration of the choice of the number of components (k)
in the current research project includes introducing a new technique
based on bootstrapping whose description is presented in this
Chapter. There are three main reasons for this. Firstly, as
mentioned in Chapter 2, in the literature, the only techniques for
choosing k which seem to have a formal statistical justification
are, the technique based on Bartlett’s test (see section 2.2.1) and
the cross-validatory techniques which were suggested by Wold (1976,
1978) and by Eastment and Krzanowski (1982) (see sections 2.2.2 and
2.2.3). Bartlett's test is based on distributional assumptions which
are often unrealistic, and, in any case, it seems to retain more PCs
than necessary in practice, hence leaves us with the choice of only
the cross-validatory techniques. Secondly, although the
cross-validatory techniques are less ad hoc than those based on
eigenvalues, cross-validation suffers from =a few but serious
undesirable features. The procedure involves deletion of part of the
sample and this can induce instability in the prediction process
leading to estimates which are sensitive to sampling error and
therefore unreliable, particularly in cases where sample size is
small.

In order to illustrate this deficiency, we conducted a pilot
study in which a computer program corresponding to the technique
proposed by Eastment and Krzanowski (1982) was written in the matrix
programming software GAUSS (1988) and used to analyse several real
data sets. Among the sets of data analysed was the Alate data whose

description can be found in section 1.3.2. As mentioned in this
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Table 3.1 Results of applying the Eastment and Krzanowski (1982)
cross-validatory choice of the number of components on the

Alate data.
Eigenvalues Cumulative
Number of of the percentage W
PCs (k) correlation | of variance
matrix explained
1 13.838 72.8 26. 288
2 2.368 85.3 5.967
3 0.748 89.2 0.204
4 0. 505 91.9 1.033
5 0.278 93.4 -0.395
3] 0.283 94.7 0.576
7 0.183 95.7 0.119
8 0. 159 96.5 0.116
9 0.145 97.3 0.232
10 0.134 98.0 0.444
11 0.082 98.5 0.047
12 0.078 98.9 0.044
13 0.072 99.3 0. 296
14 0.044 99.5 0.145
15 0.032 99.7 0.064
16 0.024 89.8 0.045
17 0.019 89.9 0.024
18 0.013 1.00 0.012
19 0.004 1.00 _—

section, the Alate data consists of 19 variables, each measured on
40 aphids (alate adelges). It is evident from the disparate nature
of these variables that the data should be standardized before PCA.
Earlier analysis, based on eigenvalues, performed by Jeffers (1967}
suggested that the first two PCs could describe the data
sufficiently. Krzanowski (1987) analysed the data using the
cross-validatory scheme of Eastment and Krzanowski (1982) and
concluded that it would take at least the first four components to
represent the data adequately, but he did not supply the details of
the analysis (i.e., the values of the W statistic corresponding to
each component, etc.). Hence, we chose to re-analyse this set of
data in order to obtain more useful results and these are presented

in Table 3.1.
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The computational nature of the method (see equation (2.20)),
suggests that for all k, k=1, 2, ..., p~1, the statistic W should
be non-negative. This follows from equation (2.7) which suggests
that, as the number of components (k) increases, the error term 813
should decrease and therefore PRESS(k) should be a strictly
decreasing monotone function of the number of components, which, in
turn, suggests that W should take non-negative values.

Despite this fact, the fifth component in Table 3.1 yields a
negative value of the W statistic, and this means that PRESS(k) at k
= 5 is greater than PRESS(k)} at k = 4 which is an unsatisfactory
feature of the cross-validatory procedure, possibly induced by the
deletion involved at the prediction stage. However, among all the
data sets considered, this feature was absent in cases where the
size of the sample was approximately 100 or more and in all cases
where covariance matrices were used to perform the PCA. For example,
consider the Venezuela data which consists of 8 variables
{examination marks) observed on each of 4B6 Venezuela students who
vere sponsored by the British Council to study English Language for
a year at colleges in north of England. These students were
distributed among 10 colleges. We considered only a subset of this
data set which describes 135 of students from three of the colleges
selected at random. From the disparate nature of the the variables,
it was evident that the data should be standardized before the
analysis. Eastment and Krzanowski's (1982) technique suggested that
the first 2 PCs are sufficient for adequate representation of this
set of data. It was also noticed that none of the components
produced negative W values. However, when the same analysis was
performed on the data on only 39 students from one of the three

colleges above, 3 components were retained but the fourth component
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showed a negative value of W. Next we considered the GCRI (Gas
Chromatography Retention Index) data published by McReynolds (1970).
This data set consists of retention indices of 10 representative
test compounds {variables) measured on 226 different liquid phases
{(observations). The variables did not reflect different scales of
measurement; hence it was more appropriate to perform PCA using the
covariance matrix. When the data were subjected to Eastment and
Krzanowski’s (1982) technique, the first 4 components were seen to
be sufficient for adequate representation of the data and none of
the components yielded a negative value for W. Analysis of only 32
observations of the GCRI data chosen at random showed that 3
components are sufficient to represent the data adequately, and all
the values of the W statistic were positive. The results above and
those from other cases considered led us to believe that the
negative values of W occur only in cases where correlation matrices
are used to perform PCA of small-sized data sets in Eastment and
Krzanowski's cross-validatory technique.

Thirdly, the bootstrap methodology, in addition to sharing the
desirable qualities present in the other resampling plans (i.e.,
cross—-validation, Jjackknifing, etc.), has been shown to out-perform
these resampling techniques in many situations, particularly for
small sample sizes, for example, when used with multivariate methods
such as Discriminant Analysis where it is desired to find the best
estimator for the true error rate of misclassification. One
plausible explanation for the superiority of the bootstrap over
cross-validation and jackknifing for small samples is that, while in
the latter techniques only a total of n samples of size n-1 are
available, a much larger number of distinct samples of size n can be

obtained using the bootstrap technique. Hence, the bootstrap sample
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resembles a typical sample from the universe sampled more closely
than it resembles the original sample. Therefore, the estimates
obtained by using the bootstrap technique are more stable and more
general than the cross-validatory and jackknife estimates.

For clarity, descriptions of the general bootstrap
methodology, are presented in section 3.4. prior to the presentation
of the proposed bootstrap technique for choosing the number of
components which is described fully in section 3.5. Furthermore,
since the proposed bootstrap technique utilizes the multivariate
linear regression model and the ideas from principal component
regression, the theme behind multivariate regression modeling is
discussed in section 3.2, while descriptive details of the principal

compeonent regression technique are presented in section 3.3.

3.2 The multivariate linear regression model

Multivariate linear regression is a straightforward
generalization of multiple linear regression. Descriptions of the
former technique can be found in Cramer and Nicewander (1979),
Mardia, et al. (1979), McKay (1979), Muller (1982), Gittins (1985),
and many more. McKay (1979) considered the study of variable
selection in Multivariale Regression Analysis.

Consider two sets of jointly distributed variables Z and

(px1)

Y and let Z and Y be the respective data matrices
—{gx1) (nxp) {mxq)

from a sample of n observations measured on these variables. Suppose
that the columns of Y represent the ‘dependent’ variables which are
to be explained in terms of the ‘independent’ variables given by the
columns of 2. In other words, it is desired to predict the Y

variables simultaneously from the Z wvariables. Multivariate

regression attempts to address this problem through the model,
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Y=2B+E, (3.1}

where, Y consists of ¢ response variables each measured on n
subjects, Z consists of p predictor variables (for convenience, we
assume that ¢ = p and that Z and Y are of full rank), B(pxq) is a
matrix of regression coefficients, and E(nxq) is a matrix of random
disturbances (errors). Fitting the model in equation (3.1) to the
observed data requires the estimation of the unknown parameter B.
This can be done through maximum likelihood if normality is assumed
for the matrix of errors E. These normality assumptions are taken in
a similar sense tc those on E(k) in equation (2.14) in section
2.2.3. In other words, each row of E has a multivariate normal
distribution under the usual distributional assumptions. The errors
in any row of E are statistically independent of the errors in any
other row since the rows of the data matrices Z and Y generally
represent randomly sampled subjects. If no distributional
assumptions are made on E, the estimate of the matrix of
coefficients can be obtained by using the least squares method.
Fortunately, both the maximum likelihood and least squares
approaches lead to the same estimate, so that the actual assumptions
made are not critical to the outcome of the analysis. Assumihg that
both the Z and Y variables have first been ‘mean-centered’, the
least squares estimate of the matrix of regression coefficients, ﬁ,

is obtained by minimizing tr‘ace[ETE), i.e., the sum of squares of

errors. This yields,

- -1
B = [zrz] zZy=s5's , (3.2)
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where, SZ = 2'Z is the (pxp) matrix of the sums of squares and
cross-products of the predictor variables, and SZY = ZTY is the
(pxq} matrix of the sums of squares and cross-products of the
predictor and the response variables. The columns of ﬁ are exactly
the same as the respective vectors of coefficients which would be
obtained if the response variables were predicted separately from
all the predictor variables.

Corresponding to the sums of squares of the actual and the
predicted Y values in ordinary (univariate multiple) regression, are

the (pxp) sums of sguares and cross-product matrices S“ = Y'Y and
S‘}; =YY=BZZB =5_5_ 8 (3.3)

since ‘} = 2;3; ‘} being the.pr-edictor' of Y. The squared multiple
correlation for predicting each variable in the set Y from all the Z
variables (i.e., as in univariate regressicn) is the ratio of a
diagonal element of S;; to the corresponding element of S“. These
correlations represent the proportion of variance in each Y
variable, predictable from all the Z variables. Hence, the squared
multiple correlation measures the degree tc which each response
variable depends on all the predictor variables. Such indices are
generally referred to as measures of association. However, with the
multiple correlation, each Y variable is considered in isclation. In
other words, to calculate the squared multiple correlation
corresponding to each Y variable, interdependencies among all the Y
variables are ignored.

A measure of multivariate association (MVA) which takes into
account the intercorrelations among the variables being predicted

(i.e., the Y variables in our case) is the squared canonical
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correlation between the sets of variables Z and Y. This 1is the
largest squared multiple correlation which arises when a linear
combination of the Y variables 1is predicted from all the 2
variables. Another useful interpretation of this measure is that it
is the largest squared simple correlation between a linear
combination of the Y variébles and a linear combination of the Z
variables. However, since we aim to illuminate the similarities
between the canonica; correlation model and the multivariate
regression model, we shall focus on the former definition of the
cancnical correlation coefflicient.

Define a linear combination of the Y wvariables as C1 = a Y,
where a, is a (gx1) vector of coefficients between the new variable

C1 and the Y variables. Then choosing the vector a such that the

coefficient,
T T -1
N a S5~~~ a a S a
2 -1 YY -1 -1 “yz "zZ zZY -1
Py = T = T ’ (3.
a 8 a a S a
-1 YY -1 -1 YY -1

~

is maximized, yields the largest canonical correlation P, The
corresponding vector a is often referred to as the vector of
canonical weights and the corresponding variable C1= QIX is
generally termed the first canonical variate. As noted before, the
canonical correlation ;1 can also be inperpreted as the simple
correlation between the linear combination of the Y variables C1 and
a linear combination of the Z variébles (say, D1= p:g, where 91 is a
{px1) vector of coefficients between the cancnical variate D1 and
the Z variables). To obtain a unique value for the canonical

correlation P, the constraint Var{Ci) =1 (i.e., the variance of C1

is set equal to unity), which yields

S2
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=1, (3.5)

is added. The coefficient, ;f can be interpreted as the proportion
of variation in the optimum linear composite of the Y variables C1
predictable from all the Z variables. It is invariant in the sense
that a linear transformation of the variables in the set Z or Y does
not change the value of the measure. It is also symmetric in the
sense that it has the same value for Y predicted from Z as for Z
predicted from Y. Hence, it can also be interpreted as the
proportion of variation in the optimum linear composite of the Z
variables D1 predictable from all the Y variables. A problem with
this measure, however, Iis _that after partialling out the two
concomitant canonical variates from the sets 2Z and Y, the
residualized variates may still be correlated. Hence, it becomes
necessary to determine the successive canonical correlations. In
this case, only Il-1 more canonical correlations can be determined,
where I = min(p,q).

The procedure above can be generalized to determine all the I
consecutive squared canonical correlations [éf = ;: z ... = ;i], by
choosing the corresponding vectors gt (t =1, 2, ..., 1) such that

-

z sk .
p, 1is maximized under the constraint,

a SYY a = 1. (3.6)
A further constraint is added to the canonical variates Ct = EI! S0

that Cov(Cl,Cj) = 0, where 1 # j and this yields,
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Ts

a a = 0, for all i=j. (3.7)
s Syy =

This constraint ensures that the canonical variates are orthogonal
to each other. Using equation (3.4), a general equation which allows
the t-th canonical correlation (t =1, 2, ..., 1) to be determined
can be established. This leads to the characteristic (or eigen)

equation,

or

[s“ s _s's -p° 1] a, = 0, (3.8)

using equation (3.3). This implies that, in general, the squared

~

canonical correlations pf {(t =1, 2, ..., 1) between the sets 2 and

Y are the eigenvalues of the (gxq) matrix S, S_ S_. S_. The
v Tyz Tz Tz

vector of canonical weights 2, is the corresponding eigenvector.

-~

Let R [= (2 P2

2
-1

eigenvalues of s's_ s's (i.e., the diagonal matrix of all I
YW vz Z2

pi)] be the diagonal matrix of the

squared canonical correlations}. Further let AT = (_a_:: é; g}l)

denote the corresponding (gxq)} matrix of eigenvectors. Then equation

{3.8) can be written as
-1 -1 -
[S S S S - R] A =0, {3.9)

Here, A is the matrix of canonical weights under the constraint,
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A'S A=1. (3.10)

This constraint means that the respective variances.of the cancnical
variates Ct {(t =1, 2, ..., 1) are all set equal to unity and tbat
these canonical variates are orthogonal, as seen before.

From the descriptions above, it can be easily seen that the
model for canonical correlation analysis is a special case of the
general multivariate linear regression model. Further details of

this relationship can be found in Muller (1982).

3.3 Principal component regression

The principal component regression (PC regression) technique
has already been mentioned briefly in the context of variable
selection in section 1.3.2. Reference of the details of this
technique can be made to Mandel (1982} and Jolliffe (1988).

The key idea in PC regression is to replace the original
predictor variables in the regression model by their PCs before
estimating the parameters involved. The main advantage of the
technique occurs when multicollinearity (i.e., linear or non-linear
dependencies) is present among the predictor variables. In practice,
exact linear dependencies among the variables rarely occur, hence,
the term multicollinearity shall be used to express near-linear
dependencies. The idea of wusing PCs rather than the original
variables is not new (see Hotelling (1957), Muller (1981)), and it
has a number of advantages. Since the PCs are orthogonal to each
other, the calculation of the matrix of regression coefficients is
much more straightforward than when the original variables have not

first been orthogonalized. Furthermore, owing to the orthogonality
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of the transformed variables (PCs), contributions of each PC to the
regression equation <can be more easily interpreted than
contributions of the original predictor variables. Thus, even when
multicollinearity is not. a problem, PC regression may have
advantages for computation and interpretation over ‘ordinary’
regression. However, it is important to note that, despite this
attraction towards PC regression, if the PCs have no clear meaning,
interpretation of the regression equation itself may be hindered.

While the PC regression technique can be applied to every

regression situation covered by equation (3.1} in section 3.2, it is
particularly attractive in the «case of multicollinearity.
Multicellinearity can occur for a variety of reasons. Following are
three examples of conditions under which it can be induced.

(a) In polynomial regression.

(b) In cases where the necessary substantive insight of the
system is lacking, it is common practice to include a
large number of wvariables in the hope that no pertinent
variable will be overlooked, and some of these variables
may be highly inter-related.

{c) In cases where the model is over-defined, i.e., where the
sample is too small +to permit all the potential
coefficients to be estimated.

Multicollinearity has serious effects on least squares estimation,
inference, variable selection and prediction. In its presence, ZTZ
is singular (since rank(Z} < p; implying that determinant(ZTZ) = 0]
and therefore not invertible. Since (ZTZ)-1 is necessary for finding
ﬁ, the estimator for the regression coefficients (see equation
(3.2)), not only estimating % is a problem, but also the precision

of any predictions made from the regression equation is poor. PC
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regression can be used as an attempt to correct this deficiency
because the PCs are orthogonal to each other, implying that the
matrix of PC scores is of full rank. An alternative approach used to
treat multicollinearity is to eliminate those variables which make
no contribution to the system either in a practical sense or
statistically. However, in our proposed bootstrap technique for
choosing the number of components, we tackle multicollinearity
through PC regression. Following is a description of the PC
regression technique.

By introducing the SVD of Z (see equation (1.4)) into equatiocn

(3.1), we obtain

Y=US VB +E, (3.11)
where U'U = W' = V'V = IP and § is diagonal with diagonal elements
s \ p s e s . Here, € =2 s = ... =z s_ are the non-negative

1 2 p 1 2

square-roots of the eigenvalues of ZTZ or ZZT. The columns of U are
the p orthonormalized eigenvectors of ZZ' and the rows of V' are the
orthonormalized eigenvectors of ZTZ. Written in this form, the model
is referred to as the principal component regression model. Equation

(3.7) can be re-written as

Yy=10 [§VTB] + E, (3.12)
where SV'B is an {(rxp) matrix; r being the rank of 2. If
=T
H = SV'B, (3.13)

then, the model becomes
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Y=1Ud + E. (3.14)

Since matrices Y and U are known, the least squares solution for the

unknown elements of H are obtained by the usual matrix equation

. -1
H = [UTU] Uy, (3.15)

which, as a result of the constraint ﬁIﬁ = Ir’ becomes
- ~T
H=UY. (3.1B6)
Hence,
5 . meT
Y = Uuy. (3.17)

If knowledge of the estimator for the matrix of regression
coefficients, say B, is desired, equations (3.13) and (3.18) can be

used to obtain

B=Vvs'H= V0. (3.18)

3.4 The general bootstrap

Suppose that the data points X, (i=1, 2, ..., n), i.e., the
rows of the data matrix x(nmp]' are independent observations from
some multivariate distribution F in a p-dimensional space, and 6(F)
is some real-valued parameter of interest. Then

(a) F is unknown, but can be estimated by the empirical

probability distribution F, for example,’
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F : mass 1/n on each observation X (i=1,2,...,n),

(b) the bootstrap estimate of @(F) is given by
8. =e(F). (3.19)

The basic philosophy underlying the bootstrap procedure for

approximating eaoor as outlined by Efron (1979, 1982), Efron and

Gong (1983}, etec., is to

Step 1: Construct the empirical probability distribution F as

Just described,

* * *
Step 2: Draw a beotstrap sample X, XX by independent

~

random sampling from F, i.e., make n random draws with

replacement from the rows of X If we let X = (51

{nxp)’

* #* #* *
X ...x_ ) and X = (X, ¥ ...%X ), them x may be
%2 "=n =1 =2 "=n =j

#*
equal to some gi for i,j=1, 2, ..., n.

%

Step 3: Compute the bootstrap replication 6, i.e., estimate

*

~ w ~ % * *
o(F) from X by @ (x. x_...x_ ).
=1 =2 '=n

~ .
Note that & is formed from X¥ in precisely the same

~

manner as 0 is formed from X.
Step 4: Repeat steps 2 and 3 a sufficiently large number (say

b} of times, to obtain independent bootstrap

. . ™ ] ~#h
replications @, 87, ..., B and compute the

required bootstrap estimate of @(F) as

b ~
T e . (3.20)

e = [ 1/b ]
BOOT s

If required, compute the variance due to bootstrapping
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b r. ~ 2
02 *m
= - - . .21
S 00T [1 / b 1] m}—:1 [9 eaoor] (3.21)

A large number of publications have been made on the bootstrap
technique and its applications and these include Efron (1979, 1981,
1882, 1985, 1890), Efron and Gong (1883), Efren and Tibshirani
(1986), McLachlan (1987), Gleason (1988) and Fisher and Hall (1988,
1990). Applications of the bootstrap technique to Regression
Analysis can be found in Freedman (1981}, Bunke and Droge {1884),
Freedman and Peters (1984), Rice (1984), Stine (1985), De Wet and
Van Wyk (1986), Gong (1986), Wu (1986), Bose (1988), Hardle and
Bowman (1988), Thomas et al. (1989), Mammen (1989), Navidi (18989),
Rocke {1989), Hall and Hart (1990), and Hardle and Marron (18890).
Bootstrapping correlation coefficients have been discussed by Efron
(1979, 1982), Dolker et al. (1982), Lunneborg {1985), Rasmussen
(1987), Strube (1988), Young (1988), and Hall et al. (1989).

Several attempts have been made to improve the ‘ordinary’
bootstrap procedure described earlier. Such modificatlons include
the smoothed bootstrap and the balanced bootstrap. Of these, the
balanced bootstrap is the most popular choice. In the ordinary
bootstrap, each datum X (i =1, 2, ..., n) may not appear equally
often in the aggregate of all b bootstrap samples. The balanced
bootstrap procedure attempts to correct this deficiency. This simple

balance alsc has the concomitant effect of reducing the probable

*2

error in the variance s
BOQT

due to bootstrapping. Further
discussions of the balanced bootstrap can be found in Gleason
(1988), Graham et al. (1990), and Hall (1990a, 1990b).

However, at this point, the virtues of the balanced bootstrap

will be spared for future investigations. In the present research
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project, only the ordinary bootstrap procedure is explored as a
means of introducing the bootstrap technique for choosing the number

of components in PCA.

3.5 The bootstrap choice of the number of components

To estimate the number of principal components to retain in
order to describe the data adequately, we need to define the
appropriate statistic on which the bootstrap ideas in section 3.4
above can be applied. Hence, we begin by describing such a
statistic. In order to do this, it is necessary to describe how the
bootstrap choice of the number of components utilizes the ideas of
Multivariate Regression Analysis (see section 3.2).

Consider our data matrix x(nup) of p variables measured on
each of n individuals or objects. Needless to say, performing PCA on
this data matrix ylelds p components. As noted in Chapter 2, the aim
is to choose the smallest number (say, k) so that the firsi k of
these PCs can be used to ‘reproduce’ the data with sufficient
accuracy. If this is the case, then it can be argued that the first
k PCs can be used for adequate representation of the data.

Next consider the Singular Value Decomposition (SVD) of the

data matrix X which is given by equation (1.4). Use Xéi)p)
X

to dencte
the estimate of the data matrix which arises from using only the
first k columns of U, only the first k columns of the first k rows
of S and only the first k rows of v This is seen as equivalent to
fitting only the first k PCs. Hence, it can be argued that, if the
original data matrix X can be sufficiently predicted from X(k) in
the multivariate regression sense, then the first k PCs can be used

for adequate representation of the data. Therefobe, the problem is

reduced to the choice of the smallest value of k for which the ‘model
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fit' of the multivariate linear regression equation

(k) (k) (k)

X = X B + E (3.22)

is adequate, where k = 1, 2, ..., etc. Here, B(pxp) is the matrix of
regression coefficients determined in such a way that the random
disturbances in Egﬁip} are minimized. Notice that, equation (3.22)
above is equivalent to equation (2.14) in section 2.2.3 used to
illustrate the cross-validatory technique of Eastment and Krzanowski

(1982). The difference is that here, the predictor X{k) of the data

(k)B(k}, while in Eastment and Krzanowski’'s

matrix X is given by X
technique, this predictor is obtained by using the cross-validation
procedure. However, the idea in both cases is to use the Prediction
Sums of Squares, i.e., PRESS(k), k =1, 2, ..., etc. (see equation
{2.15)), to determine the oétimum value of k. The matrix of errors

E(k) is the measure of the discrepancy between the original data

matrix X and its predictor i(k). Hence, PRESS(k) is, in a sense, the
measure of multivariate association (MVA) between the data matrix X
and the estimate X{k). Therefore, bootstrapping in our context is
used to find the best estimator for the true error sums of squares
due to not fitting the last p-k PCs (k =1, 2, ... etc.).
Bootstrapping is a methodology whose wutilization &epends
intrinsically on the use of high-speed computing power, used for
assessing the variability in an estimate (PRESS{k) in our context)
using only the data at hand. Bootstrap samples are obtained by
resampling the original observations in such a way that the data
structure is preserved, as described in section 3.4. These samples

are then used to assess the estimate of interest PRESS(k). No

distributicnal assumptions are necessary, and the parameter

B2



estimates obtained by bootstrapping are more robust than those
obtained from the original sample.

Next, we describe how bootstrapping is applied to the
miltivariate linear regression model in equation (3.22) in order to
choose the number of components in PCA. Several authors, 1in
particular, Freedman (1981), Efron (1882), Freedman and Peters
(1984) and Stine (1985), have suggested that, when bootstrapping is
used for estimating regression coefficients, the centered residuals
(errors) of the fitted model should be resampled instead of the data
matrix itself. However, these authors also pointed out that this

(k)

approach is appropriate only when X in equation (3.22) is not

(]) )

random and the errors 91 =1, 2, ..., n) in the matrix E

homoscedastic. In our method, X(k) is an estimate of the data matrix

X obtained from using only the first k PCs. As a result, since X is

random X(k) is also random and there is, in general, some dependence
between each row of the matrix of errors E(k) and the corresponding
row of X(k]. Hence the errors are heteroscedastic. In such cases, it

is inappropriate to resample the errors as this would obliterate the
heteroscedasticity. Thus, in our method the ‘correlation sense’ of

the model in equation (3.22) is assumed and the rows of the data

matrix X = (51 Ez“'*n) are resampled rather than the errors.
Bootstrap samples ™ = (§:m 5;” ce §;m) (m =1, 2, ..., b) are

obtained by applying the ‘ordinary bootstrap scheme’ described in

*n( k)= [X"m(k) x“m(k)

section 3.4 and the corresponding estimates X X X,

*m( k)
X

X, J, and hence PRESS'm[k) {k = 0, 1, 2, ..., p-2) are

computed. Figure 3.1 gives a general outline of the application of
the bootstrapping ideas in section 3.4 and the Multivariale Linear
Regression (MVLR) model in equation (3.22) to our bootstrap

technique for choosing the number of components.
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Figure 3.1 Oytline of the prediction of the m-th bootsirap sample
X" using only the first k PCs in the bootstirap technique
for choosing the number of components in PCA.

Resample X" Estimate x'm(k) Predict i'm(k)
> > —_—
BOOTSTRAP PCA MVLR

> PRESS " (k) «

Consider our data matrix x[nmp) of p variables measured on
each of n individuals or objects. Further let x;:up) be the m-th
bootstrap sample {m = 1, 2, ..., b) obtained by resampling the rows
of the data matrix X according to the ‘ordinary bootstrap scheme' in
section 3.4. Then by performing a PCA on the m-th bootstrap sample

we can re-write the model in equation (3.22) as

x'= o xtwlk) o gk (3.23)

Sem( k) . m
Here, X is the predictor of X based on only the first k PCs
(m=1,2, ..., band k=0, 1, 2, ..., p-2) and =5 {5 the
corresponding matrix of errors. Notice that, when k = 0, it is

assumed that all of the variation in X‘m is due to chance, and hence

the model (3.23) becomes X‘m = E'm{k).

Next, we describe how the predictor x'“(k) is computed from

the first k PCs of the corresponding bootstrap sample X‘m. The SVD

of X’m which takes the form

™ =y g™ [v'"' ] (3.24)
enables us to write each (i, j}-th element ({ =1, 2, ..., nand J =
1, 2, ..., p} of X ™ using the model (2.7), which retains only the

*m

first k PCs. Here the constraints on U'm; S, and V’ﬂIm are taken in

64



a similar sense as those on the matrices U, § and V in equatlion

[v""‘]Tv'“‘ = y" [\.r""‘]T 1, and

*m T *m
(1.4). In other words, [U ]U =

*m . . < < *n *m *m
S is diagonal with diagonal elements, s, z s, = ,.. 2 sp .
Written out in detail, equation (3.24) becomes

r.*m _ *m *my  *m v .¥m *m *m.

U u e s v .V
11 12 ip 1 0 11 21 Pt
*m ¥nq *m *m *m *m *m

u_ u . u s v Vv .V
21 22 2p 2 12 22 p2

x’ - (3.25)

* L * * - * #*

u m m u m 0 s m v m v m v m

. nz ne np) \ P J L ip 2p PPj.

Using only the first k columns of U'm, only the first k columns of

T
the first k rows of S'm. and only the first k rows of [V'm] to
estimate the m-th bootstrap sample X™ in equation (3.25), 1is
equivalent to retaining only the first k PCs. In other words, Iif
X.m(k) is the estimated value of X'm using the first k components,
then

k Kk
. #p  ®p *n : s *m m
u. u .. s 0 V..V v
11 12 7 i 11 21 p1
*m  *m *m *m _ *m *m
u_u L, s v \
21 22 0 12 22 p2
x k) _ 7 Ko b e _ (3.28)
*m  *m
u_u_ .
| n2 nz
which can be written in a more compact form as,
T
* * » L
Lok _ ek oomlk) [v m(k)] (3.27)

*, T #* L ] T *
Note here that, [u '““‘]J k) [v ’““‘)] y k)

L d * T
v (k) [V m(k)]

65



. Seml k) *n
= I . In order to determine the predictor X of X', as

k
*m(k)

predicted from X , our approach utilizes the multivariate linear

regression model,

*m - x*m(k) B‘m(k) + E.m(k), (3- 28)

sm(k) .
which corresponds to equations (3.1) and (3.22). Here, B n(k) is the

matrix of regression coefficients determined in such a way that the

E.m(k) are minimized. Note that no

distributiconal assumptions need to be made on E*m{k). There are two

reasons for this, firstly, B ™K

random disturbances in

is estimated using the least
squares method, and secondly, no distributional assumptions are
necessary for the application of the booilstrap methodology. Let

B“m(k) be the estimator for B‘m(k}, then

x'm[k) = x'm(k) B"m(k). (3-29}
which illuminates the correspondence between equations ({3.28) and
{3.23). The least squares estimate of the matrix of regression

ﬁ*m(k]

coefficients, ., may be found in the usual way, 1.e., by

minimizing

Trace {[E*m(k)]T [E'm(k)]},

the prediction sum of squares.

Note here that, despite the fact that the columns of the

matrices [U""(k]s'“‘(k)] and V™) from which x™%) is obtained are

orthogonal (see equation (3.27)}, the columns (variables) of X'm(k)

are not necessarily orthogonal. This can be explained as follows: In
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a similar sense as US in equation (1.4) gives the PC scores of the

data matrix X, multiplying etk g*o(k)

by yields the PC scores
corresponding to the m-th bootstrap sample. This is egquivalent to
projecting the original sample points onto the space defined by the
orthogonal PC axes. However, multiplying these PC scores by [quT
is equivalent to projecting the points back onto the original set of
axes (but retaining information provided by only the first k PCs)
which, in practice, are not necessarily orthogonal. Following this

mik)

argument, it is seen that the rank of X (say, r) can take

values less than p (full rank) indicating the presence of
multicollinearity. Hence, computation of the estimator B‘ka) of the

matrix of regression coefficients, may not be possible through the

usual formulation as

~ e » T . - * T *m
B mi{ k} = {[x m(k)] [x ll(k)]} [x m(k)] X", (3.30)

which corresponds to equation (3.2) in section 3.2. To evade this
difficulty, the principal component regression technique described
in section 3.3 is utilized and following are the details of Iits
application.

Let

- e prdad o T
oK) _ gra(k)  gea(k) [v m(k)] (3.31)

be the SVD of X.m(k). where ﬁ’m(k), §*m(k), and §‘m(k} are taken in

2 similar sense to the matrices U, S, and V¥ in equation (1.4). In

T T T
other words, [U*m(k)] gk [v'm(k)] ylk) v*m(k)[v*m(k]
Ir and §'m(k) is diagonal with diagonal elements, Ezm(k) = §;”‘k’ >
- ~um( k) .
zs, . Then the equation (3.28) becomes
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T *
X _ G'm(k) {§'m(k) [v'm(k}] B'm(k)} + E m(k)_ (3.32)

Note that equation (3.32) corresponds to equation (3.12) in section

3.3. Now, following the steps provided by equations ({(3.13)}-(3.17);
i'm(k)

. the predictor of the original m-th bootstrap sample, X ,
can be written as
(3.33)

it -~ % ¥ T m
g'm(k) _ gem(k) [U (k)] X'

and this corresponds to equation (3.17). Finally, using egquations

(3.23) and (3.33), we obtain

prolk) _ yom _ {ﬁ'm(k) [ﬁ*n(k)]T x«-..}’ (3. 34)

from which for a fixed kK (k =0, 1, 2, ..., p-2),
PRESS "(k) = Trace {[E'“““]T [E"“(k)]}, (3.35)
can be computed, m = 1, 2, ..., b. Note that, using the theme behind

the multivariate linear regression model in section 3.2, PRESS‘n(k)
can be regarded as the measure of departure between the m-th
bootstrap sample and the corresponding sample structure that arises
from fitting only the first k PCs, after partialling out the
respective multiple correlations between the two structures.
Furthermore, multivariate linear regression analysis and canonical
cqrrelation analysis share the same general model, as seen in

section 3.2. Thus, PRESS'm(k) can be classified as a measure of

68



miltivariate associatjion.
e— . .
For a fixed value of k, if we let PRESS (k) be the arithmetic
mean of these PRESS values computed over all b bootstrap samples,

i.e.,

b . |
PRESS (k) = [1/::] Y PRESS "(k) (3.36)

w=1

which corresponds to equation (3.20) in section 3.4, then a suitable
—
function of PRESS (k) (k =1, 2, ..., p-2) can be used to determine
optimal k. The analogy of the present technique with polynomial
regression (see Draper and Smith (1966) and Wold (1878)) suggests
e— r— —
7= PRESS (k-1) - PRESS (k) N PRESS (k) (3.37)

D D
1 2

which is analogous to the F ratio statistic used for model choice in
variable selection with linear regression as a suitable criterion
for determining optimal k. Here D1 and D2 are taken exactly as in
equation (2.11): D1 = n and D2 = n(p-k-1) are the degrees of freedom
associated  with [P‘ﬁs“s_s"(k—l) - m’m] and PRESS (k),
respectively. In other words D1 is the number of degrees of freedom
required to fit the k-th PC while D2 is the number of degrees of
freedom remaining after fitting the k-th PC. Note also that ¥ has
the same interpretation as Eastment-Krzanowski's (1982) W statistic
{see equation (2.21)). In other words, W is the increase in
predictive information supplied by the k-th PC divided by the the
average information in the remaining p-k principal components. We
therefore choose optimal k tc be the largest value of k for which W

is greater than unity.

69



CHAPTER 4
MONTE CARLO COMPARISON OF THE BOOTSTRAP
ARD THE CROSS-YALIDATORY CHOICE OF THE NUMBER OF COMPONENTS

4.1 Introduction

In this Chapter, the performance of the proposed bootstrap
technique for choosing the number of components is compared and
contrasted with the cross-validatory scheme of Eastment and
Krzanowski (1982) by means of Monte Carlo simulation experiments.
The optimality criteria for these procedures are W and W
respectively, hence, these two methods will be hereafter referred to
as the W technique and the W technique, respectively. Computer
programs corresponding to each of these techniques written in the
matrix programming software GAUSS (1988) are used to conduct the
simulation study and these programs are presented in Appendix B of
the thesis. The advantage of using simulated data for these
evaluations is that, unlike with real data where there is no prior
knowledge of the nature of the data, the artificial data can be
constructed in such a way that the number of PCs necessary for a

sufficient description of the data is known prior to the analysis.

4.2 Simulation study plan

The design for the simulation study we adopt in this
investigation utilizes models 1 through 4 of Jolliffe (1972), who
constructed these models in such a way that within each model, some
variables are linear combinations of others except for random
disturbances and they are therefore redundant. Jolliffe's models
make use of randomly generated variates 2, (1 =1, 2, ..., v) which

1
are identically and independently distributed {(iid} as N(O, 1).
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Table 4.1: Definition of constructed variables for models 1-4 of

Jolliffe (1972)

Vv Relationship with independent standard normal variates
a
r
i
a Model 1 Model 2 Model 3 Model 4
b
1
e
xl 21 21 21 21
X2 22 22 Z2 22
X3 23 23 23 zz+23
X4 21+0.524 21+0.524 21+0.822+0.824 Z4
X 2 +0.72 Z +0.72 2 +0.72 Z +0.75Z
5 2 5 2 6 2 s 4 5
X Z +Z Z_+2 Z +0.52 22 +0.752 +1.5Z
& 36 2 8 3 8 4 5 6
X _ _—  — 2
7 7
X _ _ e — Z_+0.52
8 7 8
X _ —_— _ 2Z_+0.5Z +2
8 7 8 9
X0 T T - 32422542
Being linear combinations of these iid variates, the constructed

variables Xj (j =1, 2, ..., p) in each model are distributed as

N(O, af], where af is the variance of Xj. The relationship between

the constructed variables X (j =1, 2, ;... p) and the iid variates

3

2 (1 =1, 2, ..., v} is shown in Table 4.1.

i

this table

It can be seen from

that the models were constructed so that the new

variables Xj (j =1, 2, ..., p) fall into groups and within which

the wvariables are linear combinations of each other (plus random

disturbances), while variables from different groups are

independent. For example, in medel 2 variables X1 and X4 fall into
one group, describing one dimension; variables Xa’ Xs’ and Xs fall
into another group,

describing a second dimension; and variable X
3

on its own describes a third dimension. Hence, the effective
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dimensionality of this model 1is 3. Using this ‘clustering’
procedure, the effective dimensionality of a data set generated in
accordance with each of the other models can be found. In each
model, the total number of variables is fixed and so is the number

of groups or dimensions. For models 1 through 3, there are B

constructed variables (i.e., p = 6) falling into 3 groups (i.e, k
3), and for model 4 there are 10 variables (i.e., p = 10} in 4
groups (i.e., k = 4). This way, for each model, the number of
components needed to represent the data adequately is known prior to
the attempt to determine it using the cross-validatory (W} or the
bootstrap (W) ‘dimensionality detection’ techniques. The performance
of these techniques can be assessed using the percentage of the
total number of simulations, each technique chooses the ‘correct’
number of components (as indicated by the number of groups in each
model) to represent the ‘signal’ in the data.

The data sets for the Monte Carlo simulation study are
therefore generated in accordance with models 1 through 4 in Table
4.1 using a computer program written in GAUSS (1988). Sample sizes
are fixed at two levels: small (n = 25) and large (n = S0) for each
choice of the number of variables in the data. The reason for this
is not only to compare the two techniques W and ﬁ, but also to
examine any significant influence on their behaviour due to the
sizes of samples. Further, in the case of the W technique, the
number of bootstrap samples is fixed at two levels, b = 80 and b =
100. This is done to determine whether or not an increase in the
number of bootstrap samples +would significantly improve the
performance of the proposed bootstrap technique. The number of Monte
Carle training samples for which each technique (W or W) is applied

to detect the dimensionality of the data under each of the sampling
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considerations described above (i.e., model, sample size and number

of bootstrap samples in the case of W) is fixed at 50.

4.3 Monte carlo results

The simulation results of choosing k using the techniques W
and W for Jolliffe's models 1 - 4 are summarized in Tables 4.2 -
4.8. For each model, the percentage of the total number of times
each technique retains the correct (expected) number of components
to sufficiently model the ‘signal’ in the data under each sampling
consideration is shown in these tables. Tables 4.2 - 4.5 give the
results for which PCA is performed using covariance matrices (i.e.,
when i(k) in equation (2.14) and ﬁ'm(k) in equation (3.23) are
obtained from the PCA of variables which have not first been
standardized)}, while the results in Tables 4.6 - 4.9 are based on
PCA using correlation matrices. Also given in Tables 4.2 and 4.5 for
models 1 and 4, respectively, is the computational real (not CPU)
time (in seconds) taken by each method to complete the analysis from
a single simulation on a 386SX 20Mhz perscnal computer. This
compufational time does not appear in Tables 4.3 and 4.4 because
models 2 and 3 being similar to model 1 (in terms p = 6 and k = 3)
would use almost exactly the same time as model 1 under the same
sampling considerations. Furthermore, the only additional computing
time needed in the analysis to obtain the results in Tables 4.6 -
4.9 1is that which corresponds to the standardization of the
variables and this extra time is negligible. Therefore, it seems
reasonable to expect that the computational time taken by the
methods when PCA is performed using the correlation matrices would
be nearly the same as the corresponding time when PCA is performed

using the covariance matrices. Hence, the information on the
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computational time has also been omitted for Tables 4.6 - 4.8.

In the case of our proposed bootstrap technique, the
percentage of the total number of times W chooses the right number
of components, can also be used as a measure of the performance of W
relative to the number of bootstrap samples used. However, it was
decided to use an additional measure due to the bootstrapping
itself, calied the bootstrap error, and for each sampling
consideration, this is taken to be the arithmetic mean of
PE? s2 (k),
koo BOOT

[

computed over all the Monte Carlo training samples considered. Here,
*
for a fixed value of k, s;;n(k) is the variance of the PRESS "(k)

values computed over all b bootstrap samples. In other words,

[ ] b - —_—T
sazm_(k) = [l/b—l] m§1 (PRESS (k) - PRESS (k))%, (4.1)
where, PRESS (k) is the arithmetic mean of the PRESS (k) values (m
=1, 2, ..., band k=0, 1, 2, ..., p-2) computed given by equation
(3.36). Notice that equation (4.1) corresponds to equation (3.21) in
section 3.4.

First, consider the results based on covariance matrices. As
we noted in section 4.1, the correct (expected) number of components
necessary to model the ‘signal’ in the data for models 1 - 3 is 3
(i.e., k= 3). In model 1 (Table 4.2), for large samples {n = 50), W
chooses the correct number of components 96% of the time, while the

choice is of 2 components (2%) and zero components (2%) for the

remainder of the simulations. Note that the choice of zero
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Table 4.2 Cross-validatory choice (W) and the bootstrap choice (W)
of the number of components in model 1 when covariance
matrices are used to perform PCA.

Number of Number of choices (%)
Method| Components
(k = 3) n = 50 n=25
0 2 18
1 0
2 10
W 3 ag 72
4 0 0
Computaticnal 117.93 53.39
time (sec.)
b = 50] b = 100 b =50 b = 100
0 0
1 o
2 0 2
i 3 a8 100 98 ag
4 2 0 ] ]
Computational § gq gg| 165 27 61.46| 108.37
time (sec.)
Bootstrap 0.0782| 0.0780 | 0.0804} 0.0602
Error

components arises when none of the components yields a value of W
greater than the cut-off point 0.8. The choice of zero components is
undesirable because it would not make sense to expect =zero
dimensions (components)} to describe the data adequately (at least in
our simulation study). For the same sample size (n = 50), W performs
slightly better than W; choosing the correct number of components
98% of the time when b, the number of bootstrap samples is 50 and
all the time when b = 100. When sample size is decreased to n =
25, the performance of ¥ remains virtually unaltéred; choosing the

correct number of components with 98% probability both when b = 50
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and when b = 100. On the other hand, the performance of W
deteriorates markedly; the choice being of the correct number of
components 72%, 2 compenents 10% and zero components 18% of the
time. Thus, it would seem that neither the size of the sample nor
the number of bootstrap samples has a ‘significant’ effect on the
performance of W. Howéver, W's performance seems to be heavily
dependent on the sample size. Hence, it seems that W consistently
retains the correct number of components more than W does, and this
behaviour is more prominent when samples are of small size.
Furthermore, whenever W fails to choose the correct number of
components, it chooses smaller values for k when samples are small
and larger values for large samples. On the other hand, W seems to
choose smaller values for k for both small and large sample sizes.
For large samples in model 2 (Table 4.3) W performs poorly;
retaining 2 components more frequently (82%), 1 component 84 of the
time and choosing the correct number of components {(k = 3) only 10%
of the time. On the other hand, even though W's performance is neot
as good as it is in model 1, it is much better than that of W. For
both levels of the number of bootstrap samples (i.e., for both b =
50 and b = 100) W chooses the correct number of components 86% of
the time. Hence, it seems that for samples of large sizes, W is the
most successful of the two candidates in choosing the correct number
of components in PCA. For the remaining 14% of the time, W chooses
one extra component than the expected number. The small samples case
seems to improve the performance of W slightly. The number of times
it chooses the correct number of components rises by 30%. However,
W's performance becomes slightly better for small samples than it is
for large samples, only when a large number of boétstrap samples (b

= 100) is used, where W chooses the correct number of components
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Table 4.3 Cross-validatory choice (W) and the bootstrap choice (W)
of the number of components in model 2 when covariance
matrices are used to perform PCA.

Number of Number of choices (%)
Method|| Components
{k = 3} n =50 n=25
0 2
1 10
W 2 82 48
3 10 40
4 0 0
b=50| b=100 | b = 50| b = 100
0 0
1
W 2 0 18 10
3 86 86 82 90
4 14 14 0 0
Bootstrap 0.0850| 0.08324 | 0.0635] 0.0630
Error

with 90% probability. When b = 50, W chooses the correct number of
components only with 82% probability. Thus, for a small number of
bootstrap samples, decreasing the size of the sample seems to cause
a slight drop in the performance of W. For a large number of
bootstrap samples, the reverse seems to be true. Overall, W performs
mich better than W, for both large and small samples. Also notable
is the fact that for large samples, when W fails to choose the
correct number of components, it tends to choose cone extra component
than necessary, whereas for small samples, the alternative choice
tends to be Jjust short of the correct one. W's choice, however,
tends to be too small, regardless of the size of the sample.

For both large and small samples in model 3'(Table 4.4), the

methods behave almost similarly to their behaviour in model 1 (Table
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Table 4.4 Cross-validatory choice (W) and the bootstrap choice (W)
of the number of components in model 3 when covariance
matrices are used to perform PCA.

Number of Number of choices (%)
Method Components
{(k = 3) n =750 n =25
0
1
W 2 14
3 g8 78
4 0 0

b =50 b = 100 b =50| b = 100

0 0
1
W 2 0 A
3 100 100 96 96
4 0 0 0 0
B°gﬁiz;ap '0.0804| 0.0788 | 0.0619| 0.0610

4,2)., However, a change of behaviour can be seen for small sample
cases, where W shows a slight improvement In its performance;
choosing the correct number of components 78% of the time. For the
remaining 22% of the time, W chooses 2 components (14%), 1 component
(2%4) and zero components (6%). For large samples, W's performance is
slightly better than it is in model 1; choosing the correct number
of components all the time. However, 1its performance is also
slightly worse than it is in model 1 for small samples; choosing the
correct number of components with 96% probability. Nevertheless, for
both large and small samples, W ostill performs better than W. It can
also be seen that as in models 1 and 2, for small samples, whenever
W fails to choose the correct number of components, there is a

tendency for k being chosen smaller. However, W seems to exhibit
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Table 4.5 Cross-validatory choice (W) and the bootstrap choice (W)
of the number of components in model 4 when covariance
matrices are used to perform PCA.

Number of Number of choices (%)
Method Components
(k = 4) n = 50 n =25
0
1
2 e0 B2
W 3 40 38
4 0 0
Computational 483. 90 178.50
time {(sec.)
b = 501 b = 100 b =50 b = 100
0 0
1 0
2 0 0
3 8 10 34 28
¥ 4 60 62 60 B6
5 30 28
B 2 0 ]
Computational | 5,0 o7| gga.38 | 218.76| 426. 33
time (sec.)
Bootstrap 0.1324| 0.1322 | 0.1070| 0. 1059
Error

this behaviour regardless of the sample size. It can also be deduced
that the number of bootstrap samples is not an important factor in
the performance of .

It was noted in the previous section that data generated in
accordance with model 4 will have 4 true dimensions. It is clear
from Table 4.5 that W fails completely to detect this dimensionality
of model 4 for both large and small samples. In other words, the

choice of the correct number of components does not occur at all.
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Its choice for k is mainly 2 or 3 components; choosing 2 components
approximately 20% more than it chooses 3 components. Once again, Ws
performance is far better than that of W. Its choice is mainly of
the true number of components, occurring with 604 and 62%
probability when b = 50 and b = 100 respectively for large samples,
while this choice occurs with B0% and 66% probability for the small
samples case. An increase in the number of bootstrap samples from b
= 50 to b = 100, improyes Ws performance only very slightly. Hence,
W chooses the true number of components, although the alternative
choice for k tends to be larger by one component for large samples
and smaller by one component for small samples. However, with the W
technique, the choice for k tends to be too small for both large and
small samples.

Next we shall focus on the behaviour of the two methods W and
W for choosing the number of components in cases where the PCs arise
from correlation matrices. Both methods in model 1 (Table 4.8)
behave nearly the same as when covariance matrices are used for PCA
to choose the number of components (see Table 4.2). For small
samples, W shows a slight improvement in its performance; retaining
the correct number of components 74% of the time, compared to 724 in
Table 4.2. However, this desired change of behaviour 1is also
accompanied by a slight rise (6%) in the probability of W to choose
zero compconents. Nevertheless, for large samples, W performs very
well; choosing the correct number of components 94% of the time. On
the other hand, the performance of W remains superior to that of W
for beoth large and small samples; choosing the correct number of
components with 898% probability under all the sampling
considerations (i.e., sample size and the number of bootstrap

samples used in the analysis). This behaviour of W is very similar
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Table 4.6 Cross-validatory choice (W) and the bootstrap choice (W)
of the number of components in model 1 when correlation
matrices are used to perform PCA.

Number of Number of choices (%)
Methed Components
(k = 3) n = 50 n=25
0 4 24
1 0
W 2 2
3 94 74
4 0 0
b =50| b =100 b = 850] b = 100
¢) 0 0 0 0
1 0] 0 0 0
ﬁ 2 0 0 2 2
3 a8 o8 98 a8
4 2 2 0 0
Beotstrap 0.0395| 0.0388 | 0.0285| 0.0282
Error

Table 4.7 Cross-validatory choice (W) and the bootstrap choice (W)
of the number of components in model 2 when correlation
matrices are used to perform PCA.

Number of Number of cheices (%)
Method Components
(k = 3) n = 50 n= 25
0 2 2
1 0 12
W 2 88 68
3 10 18
4 0 0
b=50 b=100 | b=50]b=100
0 0 0 0 0
1 0 0 0 0
" 2 0 0 0 0
3 70 70 80 a0
4 30 30 10 10
B°Eiiz£ap 0.0353| 0.0350 | 0.0258| 0.0250
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to its behaviour when covariance matrices are used to perform PCA in
Table 4.2. However, its performance is slightly worse here for large
sample sizes when b = 100 than the corresponding performance in
Table 4.2.

For small samples, using correlation matrices for PCA in modgl
2 (Table 4.7) leads to a behaviour of W which is quite different
from that for which the PCs arise from covariance matrices. However,

when samples are of large size, the change of behaviour of W is very

minor. Overall though, W still performs poorly; retaining the
correct number of components only 10% of the time for small samples
and with 18% probability for large samples. Its choice is mainly of
2 components; being with 88% probability when samples are of large
size and 68% for small samples. W chooses the correct number of
components with 70% probability for large samples and with 80%
probability for small samples, both when the number of bootstrap
samples is 50 and when it is 100. Thus, even though for small
samples using correlation matrices for PCA leaves the performance of
W nearly the same as when covariance matrices are used, there is a
cerresponding drop in its performance for large samples. Despite
this behaviour, W's performance remains superior over that of W for
both sample sizes. It can also be seen that the number of bootstrap
samples is not a factor in the performance of W, but its alternative
choice of k is one additicnal component in both situations.

For small samples in model 3 (Table 4.8}, use of correlation
matrices for PCA yields a better performance of W than when
covariance matrices are used, although there is a slight increase
{4%) in the choice of zerc components. W chooses the correct number
of components with 80% probability compared to 78% when covariance

matrices are used for PCA (Table 4.4). However, for large samples,
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Table 4.8 Cross-validatory choice (W) and the bootstrap choice (W)
of the number of components in model 3 when correlation
matrices are used to perform FPCA.

Number of Number of choices (%)
Method|| Components
(k = 3) n = 80 n=25
0 10
1
W 2
3 96 a0
4 0 0
b =50| b = 100 b =580 b = 100
0
1
W 2
3 100 100 100 100
4 0 0 0 0
Bootstrap 0.0380| 0.0380 | 0.0267| 0.0268
Error

the performance of W remains virtually unaffected when correlation
matrices are used for PCA instead of covariance matrices, but it is
still better than when samples are of small size. On the other hand,
W performs slightly better here for small samples than it does when
covariance matrices are used to perform PCA for the same sample
size. Once more, it performs better than W; choosing the correct
number of components ail thé time for both levels of the number of
bootstrap samples (b = 50 and b = 100) within each case of sample
sizes (n = 25 and n = 50). Thus, W is the better of the two methods
for choosing the number of components. Furthermore, sample size and
the number of bootstrap samples is not a factor 1n.its performance.
When correlation matrices are used for PCA in model 4 ([Table

4.9), the behaviours of W and W differ from the corresponding
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Table 4.9 Cross-validatory choice (W)} and the bootstrap choice (W)
of the number of components in model 4 when correlation
matrices are used to perform PCA.

Number of Number of choices (%)
Method Components
(k = 4) n =80 n =25
0 0
1
W 2 14
3 80 60
4 34 26
b =580] b= 100 b =50 b= 100
8] 0 0 0 0
1 0 0 0 0
2 0 0 0 0
‘\:l 3 0 0 6 2
4 2B 28 54 58
g5 66 66 38 40
B 6 6 2 0
Bootstrap 0.0266| 0.0266 | 0.0209| 0.0208
Error

behavicurs when the PCs arise from covariance matrices. In fact,
although the methods show such a change of behaviour in the other
models, this change seems to be more prominent in model 4. The
performance of W improves considerably; the choice being of the
correct number of components (k = 4) 34% of the time for large
samples and 26% for small samples. However, the choice of a smaller
number of components than necessary remains high (66% for large
samples and 74% for small samples). For small samples, W performs
slightly worse here than when covariance matrices are used for PCA;
choosing the correct number of components with probability slightly

less than 60% and mainly 5 components otherwise. Nevertheless, for
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this sample size (small) W still ouﬁperforms W. At both levels of
the number of bootstrap samples (b = S0 and b = 100) with large
samples, W's choice is mainly of § components (66%) and the correct
number of components being chosen with only 28% probability. Thus,
for large samples, W performs slightly better than W. Once again, we
can notice that W mainly adds one more component to the required
number, while W's cheoice tends to be too small. Remembering that a
smaller choice for k may lead to exclusion of essential components,
it would seem that W still performs better than W. One possible
reason for the slight ‘over-estimation’ of k by the technique W in
mode]l 4 is that in this model, the variables within each group
(dimension) are not as strongly interrelated as the variables in the
other models. Hence, the variables within each dimension are, in a
sense, describing ‘extra’ dimensions {sub-dimensions), yielding an
overall effect of slightly ‘more’ than 4 dimensions for this model.
It has already been noted that, in general, increasing the
number of bootstrap samples from b = 50 to b = 100 yields very
little and in some cases no improvement in the performance of W. In
all cases (Tables 4.2 - 4.9), the corresponding decrease in the
bootstrap error also seems negligible. Since, both levels of the
number of bootstrap samples yield virtually the same results, the
computational time of W can be minimized by using the smaller of the
two levels. However, in all cases, there is a considerable drop in
the bootstrap error associated with an increase in sample size.
Hence, increasing the size of the sample improves the results in
terms of the bootstrap error. This confirms the pattern observed
with models 1, 3 and 4 where the increase in sample size improves
the probability of the methods to choose the correct number of

components. While the bootstrap error when correlation matrices are
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used for PCA is generally less than the corresponding bootstrap
error when covariance matrices are used for PCA, such a comparison
is not sensible as the magnitudes of PRESS.m(k], m=1, 2, ..., b
and k = 1, 2, ..., p-2 (see equation (4.1)) arising from each case
{covariance or correlation matrices) would, in general, not be
gimilar. In fact, while in some cases, the methods perform better
when correlation matrices are used for PCA, this is not generally
the case.

Finally, we compare the techniques W and W on the basis of the
amount of computational time needed to perform the analysis in each
case for a given set of sampling considerations. The most
computationally intensive procedure common to both techniques is the
SVD of a matrix. With W, when the data matrix X is estimated from
only the first k PCs, the estimates of the xU (i=1, 2, ..., m J
=1, 2, ..., p) elements of X are computed separately and two SVDs
are required; one for X without the i-th row and the other for X
without the j~th column. Hence, np SVDs of matrices each with size
(n-1 x p) and np SVDs of matrices each with size (n x p-1) are
required; the total being 2np SVDs. Turning to our proposed
bootstrap technique W, for each bootstrap sample, (p-1) SVDs are
required; one for decomposing the m-th bootstrap sample (X.m] itself

. sm(k)
and the other for decomposing X ,

k=12, ..., p-2. Hence, b +
b(p-2) SVDs are required in total. Note that for both W and W, no
SVD is required when k = 0. As an illustration, first consider the
case where n = 25, p =6 and b = 50. In this case, W requires 250
SVD's while W requires 300 SVDs. It is therefore expected that W
would take a shorter computational time than W. In the simulation

experiment corresponding to this case (Table 4.2), W 1is slower;

taking 61.46 seconds while W takes 53.39 seconds. One possible
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explanation for this is that with W, the S5SVDs are of smaller
matrices. If the number of bootstrap samples is increased to b =
100, W would require 500 SVDs, but W still requires 300 SVDs. This
time, W is computationally faster than W as we can see in Table 4.2,
W takes 108.37 seconds while W still takes 53.39 seconds. Next,
considerrthe case where n = 50, p = 10 and b = 50. Here, W requires
450 SVD's while W requires 1000 SVDs. Hence, we would expect W to be
faster computationally. Table 4.8 shows that # takes a shorter time
(348.67 seconds) to complete the analysis than W (483.90 seconds),
as expected. Increasing the number of bootstrap samples to b = 100
leads 900 SVDs and the analysis for W takes B684.38 seconds. It must
be realized, however, that according to the Monte Carlo simulation
study, there is very little and in some cases no improvement in the
quality of the results due to an increase in the number of bootstrap
samples. Hence, the computational time of W can be kept at a minimum
by using a considerably small number of bootstrap samples without a
serious loss of power in the ability of W to choose the correct

number of components.

4.4 Conclusions

The results of the Monte Carlo simulation study in the
previous section demonstrate the general usefulness of the bootstrap
(W) and the cross-validatory (W) techniques for choosing the number
of components in PCA, although W receives more support than W.
However, preliminary comparisons of these techniques with the B, E
and T criteria for choosing the number of components discussed in
section 2.3 (not presented here) showed that W and W often give

results that differ from those that would be obtained from B, E and

T. It seems that the central idea of the techniques W, W and R
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{i.e., the cross-validatory choice of the number of components
suggested by Wold (1978)) is that of adequate representation of the
data using the first few components. In other words, if k (= 1, 2,
., etc.) is consecutively the number of components retained in a
model designed to represent the data, the aim is to determine the
smallest value of k for which the retained components can be used to
‘reproduce’ the data with sufficient accuracy. This suggests that
the purposes of performing PCA must be borne in mind when choosing
the optimum method. If the aim is simply to describe the variability
in the data, then the criteria, B, E and T are appropriate. However,
if it is anticipated that the PCs might be used in future analyses,
then our proposed bootstrap technique W and the cross-validatory
techniques R and W should be preferred. For example, as noted in
Chapter 1, one objective of PCA is to reduce the dimensionality of
the data without disturbing its overall sample features. This can be
achieved by retaining only the first few PCs, as the PCs are
determined in such a way that the first few include most of the
variation (information) in the data. However, the simplicity of
working with the original variables instead of their PCs suggests
that there is a need to incorporate the selection of subsets of
important variables in PCA. In this case, the objective is to choose
subsets of the original variables which contribute most of the
sample information in the data. Hence, the criteria used to select
the variables should utilize the first few PCs, sufficient for
adequate representation of the data. Thus, it seems preferable to
use the techniques ﬁ, W or R to make the choice of the number of PCs
to be used for this purpose.
While, the results in Tables 4.2 - 4.9 show that, in some

cases using correlation matrices for PCA instead of covariance

88



matrices slightly improves the performance of the techniques W and
W, in other cases the reverse is true. Hence, there is no general
indication whether the correlation or the covariance matrices should
be used for PCA in conjunction with Wor W. In general, W performs
satisfactorily, although there is a slight tendency for k to be
chosen slightly too small when samples are of small size and
slightly too large for large samples. The tendency for the choice of
k to be too large seems to be greater than its tendency to be too
small. On the other hand, depending on the degree to which the data
set to be analysed has a clear-cut indication of its dimensionality,
W also performs satisfactorily for large samples, although there is
a slight tendency for k being chosen too small. However, for small
samples, W frequently yields an under-estimated choice of the number
of components. A similar experience has been reported by Krzanowski
{1983) who examined the behaviour of W over different types of
structure for the covariance and correlation matrices, and reached
the conclusion that W chooses about the right number of PCs in each
case, although there is a tendency for k to be chosen too small. Hig
study and the earlier study conducted by Eastment and Krzanowski
{1982) also found that, in some cases, one or more values of the
statistic W are very close, but less than the cut-off point unity,
making it wunclear whether or not to retain the components
corresponding to these values. In such cases, these authors chose to
move the cut-off point slightly below unity, i.e., 0.9. The main
idea behind this approach is to overcome the problem of
under-estimation of the number of components. Furthermore,
Krzanowski (1983) argued that, while the cut-off point at W = 1
seems reasonable, the reasoning behind it is not rigid and it could

be slightly relaxed to account for sampling variation. Wold (1978)
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also found, in a small simulation study that R has the tendency to
retain too few PCs. This feature is undesirable because there is a
greater danger in components with vital information for adequate
description of the data being ignored. Hence, W for which this
feature is largely less prominent, is more appropriate for choosing
the number of components. In fact, the study shows that % generally
performse better than W, particularly for small sample cases. The
slight tendency for W to choose one extra component than necessary
for large samples seems to be an advantage over the tendency for W
to choose a number too small, because with ﬁ, the loss of essential
components is not likely. The simulation study also shows that for a
small number of bootstrap samples, W takes slightly longer to be
computed than W when samples are of small size; and approximately
1.3 times quicker than W to complete the analysis, for large
samples. For a large number of bootstrap samples, W is generally
sliower than W. However, it is also evident from this study that an
increase in the number of bootstrap samples yields very little and
in some cases no improvement in the ability of W to choose the
correct number of components. Hence, the computational time for W
can be minimlzed by using a considerably small number of bootstrap
samples wilthout effectively decreasing its performance. Having
stated the advantages of W over W {and R), we would strongly
recommend this W as the criteria for choosing the number of

compenents in PCA.
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CHAPTER S
REVIEW OF LITERATURE ON VARIABLE SELECTION
IN PRINCIPAL COMPONENT ANALYSIS

5.1 Introduction

One of the major aims of the current research project is, to
explore the choice of subsets of the original variables of some
given data in a PCA, that will retain the overall features or the
multivariate structure present in the entire set of variables. As a
lead-in to this investigation, this Chapter focuses on the currently
existing criteria for selecting such subsets of variables. An
extensive amount of literature is available in the area of variable
selection in the context of Regression Analysis and Discriminant
Analysis. The criteria wused for variable selection 1in these
techniques are, most naturally, based on minimizing the residual
mean square error in the case of Regression Analysis and error rate
of misclassification in Discriminant Analysis. A list of authors who
have addressed the problem of variable selection in these areas has
already been given in section 1.3.2. However, very little seems to
have been done in the context of variable selection with reference
to PCA.

A variable selection technique which, however, is not directly
linked with PCA makes use of Principal Component Regression and has
already been mentioned briefly in section 1.3.2. In this technique,
unlike in ‘ordinary’ PCA, the variables do not arise on an ‘equal
footing’. In essence, the variables arise in the regression context
where there is a response variable which is dependent on a set of
predictor variables. In cases where the predic@or variables are
linearly or near-linearly dependent on each other (a problem

referred to as multicollinearity), it 1is common practice to
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transform these variables into PCs (which are orthogonal) and then
regress the response variable on these new variables (the PCs}. The
resulting regression equation can then be interpreted in the usual
way. Apart from overcoming the problem of multicollinearity, and the
higher interpretable nature of the regression equations that arise
from PC regression (compared to equations that arise from
untransformed predictors), this approach provides an alternative way
of selecting subsets of the original predictors te include in a
regression equation. Subsets of selected variables are those for
which the coefficients between the corresponding PCs and the
response variable are statistically different from zero. Details of
this approach can be found in Jolliffe (1986). However, since
variables in this approach arise in the regression rather than the
PCA context, we shall end its discussion at this point and focus on
techniques that use the PCs directly, to select subsets that retain
adequate sample informaticon cor variation in the data.

Jolliffe (1972, 1973) suggested several methods of choosing
the best subset of g variables which preserve the main sample
features in a ‘Principal Component’ manner. McCabe (1884) presented
various optimality criteria on which selection of variables
containing the maximum sample variation can be based. These methods
are discussed in section 5.2.1 of this Chapter. Krzanowski (1987)
suggested a technique based on Procrustes Analysis for choosling
subsets of the original variables which carry the overall features
of the sample, present in the entire set of variables. Details of
this technique are presented in section 5.2.2 followed by a review

of comparative studies on variable selection in PCA in section 5.3.
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5.2 Some existing criteria for the selection of variables in PCA

5.2.1 Criteria based on eigen_analysis and various other optimality

criteria

The variable selection techniques discussed in this section
have alsc been mentioned briefly in section 1.3.2. A detailed
account of these techniques can also be found in Jolliffe (1972,
1986).

The first technique we shall discuss , henceforth referred to
as Bl, was first suggested by Beale et al. (1867). In this method
the main aim is to choose a number (say, lo) that is used in the
stopping rule for the sequential rejection of variables. First, PCA
is performed using all the original p variables and 1f P,
eigenvalues are less than lo, the corresponding eigenvectors (PCs)
are conhsidered in turn beginning with the PC whose corresponding
eigenvalue is the smallest,‘then the PC corresponding to the second
smallest eigenvalue and so on until the p:h PC. The original
variables are then associated with the P, PCs (eigenvectors) and the
first P, variables which have the largest coefficients, in absolute
value, with these PCs discarded. A second PCA is carried out on the
remaining (p—pl) variables. Once again, if P, of the eigenvalues are
less than lo. the original variables are associated with each of the
corresponding components, and these P, variables are discarded. A
third PCA is then performed on the remaining (p-pl-pz) variables and
this procedure is continued until all the eigenvalues in the latest
PCA are greater than 10. The procedure is stopped at this stage with
the number of variables having dropped to say, k which depends on
the choice of 10.

The next four methods, namely, J1, J2, J3 and J4 that we will
discuss, require a single PCA to be performed on the entire set of p

variables, hence, they are computationally faster than Bl. The
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method J1 is the same as Bl except that only the first PCA {using
all the variables) is performed. If k variables are to be retained,
then (p-k) variables which have the largest coefficients with the
last {p-k) PCs are discarded. In the method J2, the sum of squares
of the coefficients in the last (p-k) PCs is computed for egch
variable. If these sums of squares are sorted in descending order,
the variables corresponding to the first (p-k) sums of squares in
the sorted list are thgn discarded. Thus, J2 retains those variables

for which the sum of squares

r c°, (5.1)

is minimal. Here, cj1 is the ccoefficient of the i-th variable in the
J-th PC. The next method, J3 is computationally similar to J2 and it
retains those variables which are best predictable from the first k
PCs. When the correlation matrix is used for PCA, the proportion of
variation explained by the i-th variable, predictable from the first

k PCs is given by

k 2
Yy o1 <, {5.2)

where lj is the j-th eigenvalue. Thus, by using the method J3 we
choose those k variables associated with first k largest values of
this proportion of wvariation. Among the methods based on
eigen_analysis, the last method we shall discuss, namely J4, is in
some sense, related to Jl. The difference is that with J4, the
retained variables are those whose coefficients in the first k PCs

are the largest and the remaining (p-k) variables are discarded.
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Note that, the choice of the number k in the methods J1 - J4
is critical. In the same way that the value of k is determined by
the choice of lo in the method B1, this choice in Ji - J4 could be
equated with the number of eigenvalues greater than some 1&
Alternatively, k could be set equal to the minimum number of PCs for
which the proportion of variation explained is greater than some @ .

Next we discuss the varicus optimality criteria suggested by
McCabe (1984) for selection of wvariables in PCA. McCabe’s approach
has already been mentioned briefly in section 1.3.2. In his
approach, McCabe (1984) used the fact that the PCs satisfy a number
of optimality criteria and termed subsets of the original variables
which optimize one of these criteria as sets of principal variables.
A traditional property of PCs is that they maximize the variance
subject to a set of constraints. Equivalent to this property is the
concept that for a given number of PCs, the sum of the variances is
the largest possible. Since the eigenvalues, lj, =1, 2, ..., p

are the variances corresponding to the PCs, this property of maximum

total variance of the first k PCs is given by the criterion

k
Max ¥ 1. (5.3)

Thus, a set of k of the original variables for which this criterion
is optimized satisfies the property of maximum total variance of the
first k PCs. Notice that this criterion is equivalent to criterion
(1.5b) (i.e., criterion (b) of the set of criteria (1.5) in section
1.3.2). In other words, maximizing the retained wvariation,
represented by criterion (5.3) is equivalent to minimizing the lost
variation, represented by criterion (1.5b). Since the determinant of

the covariance matrix is the generalized variance, the criterion
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k
Max 1 1., (5.4)

is similar to criterion (5.3), though the variance here is expressed
in a multivariate sense. In a similar way that criterion (5.3) is
equivalent to criterion (1.5b}, this criterion (5.4) is equivalent
to criterion (1.5a). Fellowing a similar argument to the ones just
presented, a subset of k of the original variables which optimizes
criterion (1.5c), satisfies the property of maximum cumulative
variance of the first k PCs. Such a subset also represents the
variables which are best predictable from the retained k PCs. Notice
that, for this reason, criterion (1.5c} is somewhat similar to
method J3 among the methoeds in Jolliffe (1972, 1973). Criterion
{(1.5d) can also be viewed as arising from the concept of maximum
cumulative variance of the first k PCs. The sum of the squared
canonical correlations between the retained k variables and the
discarded (p-k) variables, represents the amount of varliation in the
retained variables predictable from the discarded variables. Hence,
for a given k, the larger the wvalue of criterion (1.5d), the higher
the redundancy in the set of discarded variables and the smaller the
total wvariance explained by these variables. Now, recalling from
section 2.2.1 that the sum of the variances of all variables in a
given set of variables is the same as the sum of the variances of
all the corresponding PCs, the total wvariance of the (p-k) PCs
corresponding to the discarded wvariables will be <gmall. This
variance, in turn, corresponds to a larger total variance of the k

PCs corresponding to the retained variables.
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5.2.2 The M?-procrustes criterion

When Krzanowski (1987) applied the variable selection criteria
in Jolliffe (1972, 1973) and McCabe (1984) on the Alate aldeges data
{described in section 1.3.2), he noted that while the subsets of
variables chosen by these criteria satisfy several optimal;ty
conditions, they fail to satisfactorily ‘reproduce’ the overall
structure of the complete data (with the entire set of variables).
He argued that, in practice, an investigator would be interested in
those subsets of the original variables which can ‘reproduce’ as
closely as possible, the general features of the data with the
entire set of variables. One possible explanation for the failure of
Jolliffe’'s and McCabe’'s methods to recover the multivariale
structure of the complete data is that, they are concerned with
overall features, either of the complete data (in the case of
Jolliffe (1972, 1973)) or of the subset data (in the case of McCabe
(1984)). Hence, they lack an appropriate criterion to preserve
structure (such as groupings) among units (individual data points).
A suitable criterion would involve comparisons between individual
data points of the complete data configuration and the corresponding
points of the subset configuration. To meet this requirement,
Krzanowski (1987} considered a criterion based on Procrustes
Analysis. Procrustes Analysis is a long standing technique for
comparing . two n-point configurations which owes its name to Hurley
and Cattel (1962), but its origins date back at least as far as a
paper by Moisier (1839). Chief references in this area include Green
(1852), Schénemann (1966, 1968}, Schénemann and Carroll {1970},
Gower {1971, 1975), Krzanowski (1971, 1979, 1982, 1988), Sibson
(1878) and Peay (1988). Gower (1975) generalized the jdea of

Procrustes Analysis so that a single analysis c¢an allow the
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investigator to compare more than two configurations simultaneously.
However, in our current research project, the term Procrustes
Analysis shall be used to refer to the comparison of two
configurations only. This 1is because, our present approach to
variable selection in PCA requires the computation of a measure of
the relationship between the subset configuration and the complete
data configuration (in this case, using Procrustes Analysis). Thus,
at each stage of the wvariable selection procedure, only twe
configurations are involved. The application of Procrustes Analysis
to the variable selection problem (with reference to PCA) will now
be outlined.

Let X be the (nxp) data matrix, consisting of p variables
measured on each of n individuals in the sample, and Y be the (mxk)
transformed data matrix of PC scores yielding the best k-dimensional
approximation to the original data. The value of k may be determined
using either W (i.e. » the proposed bootstrap technique described in
Chapter 3) or W (i.e., the cross-validatory technique suggested by
Eastment and Krzanowski (1982} described in section 2.2.3).
Similarly, let X denote the (nxg) reduced data matrix which retains
only g selected variables, and Y be the corresponding (mk) matrix
of PC scores. It should be noted that since k components may be
sufficient to model the ‘'signal’ in the data, the remaining p-k
dimensions are a reflection of the ‘noise’. Hence, it would seem
reasonable to set g, the number of wvariables to retain, to k.

Krzanowski (1987} worked with the Procrustes criterion

M = Tr‘ace[YTY + ?T‘?] - 2 Trace(D)}, (5.5}

where, M® is the sum of squared differences between corresponding

points of the configurations Y and ?; and D is the (kxk) diagonal
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matrix obtained from the SVD of ¥'Y. In fact, D corresponds to the
matrix 5 in the SVD equation (1.4) in section 1.2. M is computed to
maximize the congruence between the two configurations matching
under translation (i.e., to mean-center both Y and Y), rotation and
reflexion. In this process, the configuration of Y is fixed first
(naturally) and the subset configuration Y is transformed. This is
because it is desired to make Y look like Y as much as possible, and
not vice versa. Krzanoyski (1987) claimed that this residual sum of
squares is therefore a measure of loss of Information of the
original data structure when only g instead of all p variables are
utilized. Hence, the ‘best’ subsets of retained variables are those

for which M2 is minimized.

5.3 Comparative studies on variable selection in principal

component analysis

Jolliffe (1870, 1972) investigated the methods J2 and J3 and
demonstrated that their performance is unsatisfactory, since they
consistently fail to choose appropriate subsets of wvariables for
data with simple correlation structures. For example, if the data
are simulated in such a way that there are k groups of variables and
within each group the variables are highly intercorrelated, with
variables from different groups being 1independent, satisfactory
subsets can be obtained by including one variable from each group.
In such cases, the method J2 tends to reject all the variables from
one of the groups, and hence the retained subset will not contain
any of the variables from this group (an unsatisfactory feature).

A difficulty encountered with method J4 is that, even if the
value of k is known (from using 1O or ao), among the first k PCs a
variable may have large coefficlents in some PCs and small

coefficients in other PCs. Hence, unless a few variables have large

29



coefficients in the first k PCs, by choosing the varlables with the
first k largest coefficients we may be loosing the structure (or
interpretability) of the PCs.

Jolliffe (1972) used simulated data to compare the methods Jl
and J4 and several other variable subset selection methods based on
clustering techniques which, however, do not use the PCs. Jolliffe
constructed five models using randomly generated variates which are
identically and independently distributed (iid) as N(0,1), in such a
way that within each model the constructed variables fall into
groups. The variables within each group are linear combinations of
each other (plus random disturbances), while variables from
different groups are independent. Hence, if a group contains ¢
variables, t-1 of these variables are redundant. For each model,
Jolliffe ranked the subsets as best, good, moderate or bad according
to the extent to which they maximize the minimum wmultiple
correlation between the selected variables and any of the rejected
ones. The results of applying the variocus methods on the simulated
data suggested that the methods Jl1 and J4 retain the ‘best’ subsets
more frequently than the cther methods considered. However, the
probability of Jl and J4 to choose ‘bad’ subsets as opposed to
‘good’ and ‘moderate’ subsets was also shown to be higher than for
the other methods. In particular, the method J4 was also shown to be
peculiar, choosing the ‘best’ and ‘bad’ subsets more than it chooses
‘good’ and ‘moderate’ subsets.

Jolliffe (1973) applied the methods above on four data sets,
namely, Pitprops, Alate, Crime rates and British towns. The Pitprops
data consist of 13 variables measured on 80 pitprops of Corsican
pine. A full list of the wvariables, and their carrelation matrix,

can be found in Jeffers (1967). As noted in sections 1.3.2 and 4.1,
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the Alate data consist of 19 variables measured on 40 alate adelges
{winged aphids). Here, the object is to determine the number of
distinct groups (possibly species) of the aphids in the sample. The
Crime rates data, on the other hand, consist of 18 variables (i.e.,
the number of crimes committed in the U.K. within 18 different
categories) measured for each of the 14 years 1850 - 1863. The final
set of data studied by Jolliffe (1973) consists of 57 sociological
variables measured for each of 157 British towns with a population
greater than 50,000 in 1951. In each of the cases above, It was
suspected that fewer variables can yield PCA results similar to
those obtained from PCA using the entire set of wvariables. Jolliffe
used two types of measures of similarity to assess the performance
of the subsets of variables retained by the various methods. For the
first three sets of data, he used a weighted average of the largest
simple correlation coefficient between each of the first few (say k)
PCs from the full set data and any of the first k PCs from the
reduced set data. The weights are proportional to the relative
importance of the first k PCs in the full set data. However, for the
fourth data set, which is much larger, he chose to use a measure
similar to the one above, except that this measure is based on a
rank correlation coefficient, which is easier to calculate. In this
investigation, Jolliffe found that, while none of the methods is
uniformly the best, the methods J1 and J4 identify reasonable
subsets in most cases.

McCabe (1984} used two sets of data to evaluate the
performance of his principal variables method. The first data set is
due to Fisher (1936). There are 4 size measurements (variables) on
50 subjects of Iris versicolor. The second set of data is taken from

a-study of the constituent elements in coal samples conducted by
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Orheim (1981). Nine elements (variables} were measured on §O
samples. In each case, McCabe used the criteria (1.5a) and (1.5b) to
calculate the proportion of variation explained by the retained
subsets of wvariables for all possible subsets (in the case of
criterion (1.5a))} and using the forward selection procedure (in the
case of criterion (1.5b)). He compared these proportions with the
propertion of variation explained by the first few PCs. Using this
approach, subsets of retained variables are those for which the
corresponding propertion of variation explained is nearly as large
as the propertion of wvariation explained by the first few PCs. In
the examples above, McCabe found that his principal variables method
chooses subsets of variables with properties (explained varlation)
similar to those of the PCs for a given number of dimensions. As
noted before, by definition, the PCs maximize the wvarlation
explained in the data for a given number of dimensions. Hence, a
subset of the original variables with the same size as the number of
retained PCs cannot explain more variation than the wvariation
explained by the PCs. However, McCabe concluded that if a small
number of additional variables is used, more comparable results can
be obtained. He also argued that, among his criteria for selecting
principal variables, criterion (1.5a) is the only computationally
feasible choice if all possible subsets are to be explored. Despite
this fact, criterion (1.5b) can be incorporated into a suitable
stepwise variable selection strategy. Apart from the descriptions of
the criteria (1.5¢)} and (1.5d), these criteria received no further
investigation in McCabe's paper.

Although Krzanowski (1987) concluded that his Mz—procrustes
criterion successfully identifies the structure—bearing variables,

the results were optimal particularly when groups were present in
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the data. His study was based on a single real data set and a well
defined simulation of artificial data sets with large samples. It is
important to point out that our objective in the current research
project is to select subsets of variables which preserve any
{unknown} structure that may be present in the data. While
Krzanowski’s approach is robust towards preserving group-structure,
it lacks =a criterion for preserving or even enhancing other
interesting multivariate patterns of the data. Such a criterion
would make a natural comparison between the configuration of the
complete data and the subset data without forcing one configuration
to fit the other (a feature present in the procrustes method), in an
attempt to find whatever natural relationship that exists between
the two configurations. Detailed descriptions of several such
criteria are given in Chapter 6 of this Thesis. The behaviour of
these criteria under different sample sizes should also be examined.

This objective is met in Chapter 7.
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CHAPTER B
THE PROPOSED CRITERIA FOR VARIABLE SELECTION
IN PRINCIPAL COMPONENT ANALYSIS

6.1 Introduction

In order to identify structure-bearing variables using PCA,
our approach in the current research project is, on the one hand
motivated by the long standing and well established technique of
Canonical Correlation Analysis, and a Graph-Theorelic approach using
interpoint-distances on the other. In the former case we use
measures of multivariate association (MVA)} based on canonical
correlations as criteria for selecting variables in PCA, whereas in
the latter we introduce criteria which measure the discrepancy
between corresponding interpolint-distances in the two configurations
Y and Y (as defined and described in section 5.2.2). The idea in
both cases is to maximize the similarity or ‘overlap’ between SY
and S;. the spaces spanned by the sets of PCs Y and E. respectively.
The best subset of retained variables can then be regarded as that
for which this similarity is optimal. Notice that X(kxl) and ?(kxl)
are the vectors of PCs associated with the PC score matrices Y and
Y, respectively. In other words the set of PCs Y arises from the
full set data while the set f arises from the subset data. Details
of the proposed criteria are presented in section 6.2 (for canonical

correlations based criteria) and section 6.3 (for graph-theoretic

criterial.

6.2 Criteria based on canonical correlations
Initially, we shall consider the details of criteria based on
measures of multivariate association. The study of the relationship

between two sets of variables inevitably brings to mind Hotelling’'s
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(1836) method of caronical analysis (CA). Literature in this area
include Anderson (1958), Rozeboom (1965), Levine (1977), Knapp
(1978), Mardia et al. (19739), Muller {1981), Muller (1982],
Chatfield and Collins (1986) and Gittins (1985). Levine (1977) and
and Muller (1982) stated the advantages of performing preliminary
orthogonalization (say, PCA) of each of the two sets of variables to
be compared prior to Canonical Correlation Analysis, one of which is
that it eliminates the problem of c¢ollinearity among variables
within a set.

Now let Z = [Y ?] be the (mx2k) partitioned matrix which
arises from the horizontal concatenation of the matrices of PC
scores Y and Y. Denote the corresponding (2kxl) matrix of PCs by Z =
[! f]T. Then the corresponding (2kx2k) partitioned correlation

matrix between the PCs Z can be written as

R ; R ~
YY i YY
S F—— . (6.1)
R~ : R~~
Yy Yy

Here, RY; is the (kxk) matrix of correlations between the PCs of the

set Y and of ?. and since the correlation matrix, R is symmelric,

R~ = R~ . {6.2)

Furthermore, since the PCs in Y are orthogonal to each other and
similarly, the PCs in ? are orthogonal to each cther and therefore

uncorrelated,

= Rwr =1 (6_3)
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where, Ik is the (kxk) identity matrix. Now, using equation (3.8) in
section 3.2, the squared canonical correlations between the two sets

of PCs Y and i are given by the eigenvalues of

R R R= R-.. (6.4)
YY CYY YY O YY
Using equations (6.2) and (6.3) in (6.4), these squared canonical

correlations are the k eigenvalues of

RY? qu, (6.5)
arranged in descending order. Clearly, working with expression (B6.5)
instead of expressicn (6.4) makes computations easier and faster and
this is one of the attractive features of the canonical correlations
approach to the selection of important wvariables in PCA. The
canonical correlations can also be interpreted as the simple
correlations between linear combinations of the PCs of the set Y and
those of set E. computed in =a specific manner. Such linear
combinations are usually referred to as canonical variates. The
maximum canonical correlation between the sets of PCs Y and ? (say,
pl) is a possible choice for a symmetric measure of MVA
(Multivariate Association) between Y and Y. A problem with this
measure, however, is of course that after partialling out the two
concomitant canonical variates from the sets, the residualized
variates may still be correlated.

For a reasonable index of the total association between the
sets (of variables), it would seem appropriate to combine in some
way the successive canonical correlations which can be extracted.

Cramer and Nicewander (1879} and some other authors (Coxhead (1974),
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Cohen (1982), Serlin (1982) and van Den Burg and Lewis (1888)) have
defined wvarious combinations and shown that these are robust
measures of MVA. While these measures may yield different values
for a given situation, initial investigations of our study revealed
that some of these measures have similar behaviours when used as
eriteria for selecting variables in PCA. For this reason we will
consider only two of the indices recommended by Cramer and
Nicewander (1979), as criteria for the present purpose. These

measures are

- k ~p 17k
= 1- [ m(1- P, ] , (6.8)
=1
and
- 1 k "2 :
'3'6 = T [E pj], (6.7}
j=1
where pl. pa,..., pk are the canonical correlations between the sets

of PCs Y and f arranged in descending order.
Three of the most useful properties of these y-measures, as
pointed ocut by Cramer and Nicewander (1978) are that:
(a) They are symmetric, i.e., yleld the same value for Y
related to Y as for ¥ related to Y,
{b) They are invariant, in that a linear transformation of the
PCs of the set Y or of E does not change the value of the
measure, and
(c) They have a clear proportion of variance interpretation.

~

The average squared cancnical correlation, v o gives the
average proportion of variance of the canonical variates

arising from the PCs in Y predictable from the PCs of the
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set f. The index ;5 » has a similar interpretation, where,
the geometric mean of 1—;? is the unpredictable variance,
and of course one minus this quantity yields the variance
of the canonical variates of the PCs in Y predictable from
the PCs of ?. This is an attractive property of the two
indices ;5 and ;e' since in PCA preserving the maximum
sample variation constitutes the major aim of the
analysis. Hence, as we are interested in assessing the
strength of association between the two sets of PC scores,
these ¢y-measures constitute appropriate criteria for
selecting variables in PCA.

While Krzanowski's procrustes—M2 criterion chooses subsets of
variables to preserve the (group-)structure among individual points,
the criteria based on MVA described above, choose subsets to
preserve the original sample variation and the canonical properties
of the data. Since the MVA criteria give a broader set of additional
diagnostically useful statistics and tests of significance, they
gain favour as the methods of choice over Procrustes Analysis for
this purpose. Overall (1974) noted that Procrustes Analysis tries to
confirm a particular hypothesis rather than to falsify it.
Conventionally, it is unsatisfactory to claim the validity for a
hypothesis after having forced the data to fit the hypothesis. In
some way, such Procrustes Rotation forces empirical data to fit the
target and hence the method is vulnerable to making almost any data
to fit almost any hypothesis. A Monte Carlo study which was

conducted by Nesselroade and Baltes (1970) confirms this fact.
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6.3 Graph-theoretic criteria

The criteria we propose next is based on the interdependence
among individuals within each of the configurations Y and Y. This is
a distance based approach, and since the PC scores (say, Y) can be
regarded as a set of n points Pi (i = 1,2,...,n) in the reduced
k-space, we may use the Euclidean distance djj between points P1 and
Pj. The spatial configuration of the sample is of interest only if
d1j satisfactorily measures the similarity between the i-th and j-th
individuals. When the PCs within the set reflect different scale
measurements, dij becomes an unsatisfactory distance measure. For
example, suppose one of the coriginal variables is nearly independent
of all the others and that the remaining variables are highly
intercorrelated, measuring essentially the same property. The
Euclidean distance will give more weight to this property than to
the property described by the ‘independent’ variable. To evade this
difficulty, it is common practice to renormalize the PCs by dividing
each by its sample standard error. This way, the PCs are given equal
weight and so is each property measured by the original variables.
Gower (1966), noted that since dij makes no attempt to allow for
correlations, it has similar properties to distance measures based
on various similarity coefficients currently in favour 1in
classification work, and hence can be contrasted with distances used
in Discriminant Analysis, such as Mazhalanobis distance. Let d:J be
the corresponding distance between the i-th and the j-th individuals
in the Y configuration. Our motive is to choose subsets for which
the discrepancy between the corresponding interpoint distances dU

-
and d is minimal wunder pre-specified constraints. Since such

1]
constraints may have Graph~Theoretic implications, we begin by

reviewing some terms from Graph Theory.
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Consider a graph for which every observation point is a node,
and each node pair defines an edge. Such a graph is called complete
graph and has n nodes and n(n-1}/2 edges. Assign the Euclidean
distance diJ as a welght to the edge between the i-th and the j-th
nodes. A subgraph of a given graph is a graph with all its nodes and
edges falling within the given graph. A Spanning subgraph has Iits
node set identical to the node set of the given graph. Friedman and
Rafsky (1979, 1883), proposed  Graph-Theoretic  Measures of
Multivariate Asscciatjon and Prediction based on the number of edges
shared by the two spanning subgraphs constructed independently from
two sets (Y and Y in our context), respectively. Like these authors
the spanning subgraphs that we have found useful are the K nearest
neighbour graph (KNN} and the K minimal spanning tree (KMST). The
former (KNN) is simply a spanning subgraph that has an edge between
each point and its K closest points, while the latter (KMST)} is as
defined below.

A palh between two prescribed nodes is an alternating sequence
of nodes and edges with the prescribed nodes as first and last
elements, all other nodes distinct, and each edge linking the two
nodes adjacent to it in the sequence. Now define a cycle as a path
beginning and ending with the same node. A spanning tree of a graph
is a spanning graph that forms a tree, i.e., has no cycles. An edge
weighted graph is a graph with a real number assigned to each edge.
A minimal spanning tree (MST) of an edge weighted graph is a
spanning tree for which the sum of edge weights is minimum. A second
MST is said to be orthogonal to the first, if it connects all of the
nodes with minimal total weight subject to the constraint that the
two MST’s have no edges in common. Similarly, a third MST links all

the nodes with minimal total weight subject to being orthogonal to
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the second and the first MSTs. More generally, let a K~th MST be the
MST orthogonal to the first K-1 MSTs. For a given set of nodes, a
KMST is then the graph defined by all of the edges of the first K
MST's, each orthogonal to the other in the manner just described.

If we wish to choose subsets of variables which preserve
structure among all the n(n-1)/2 distances, then a feasible choice

of criterion is the measure

&= Y |ciij -4, (6.8)

Note that & and the canonical correlations based measures
(y-measures) have the symmetric property in common. Suppose, on the
other hand, that we wish to choose subsets which preserve and
possibly enhance ‘local’ structure, i.e., structure among short
distances without (or with little) regard for the larger distances.
Then a natural choice would be a criterion, 6‘ (similar to &) which
uses only the distance pairs which define either the KNN graph or

the KMST. In other words,

: (6.9}

where, alj is the edge-weight (Euclidean distance} of each of the
edges of the KNN graph or the KMST in the Y configuration and a:j is
the corresponding distance in the 't configuration. Note here that,
the subgraph (KNN or KMST) is constructed from Y rather than from ?,
because it is the Y configuration that we wish to make as similar as
possible to the Y configuration and not vice versa. Hence, unlike &

*
and the y-measures, 8 is non-symmetric.
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Our preliminary investigation not only found, that.both KNN
graph and KMST approaches have similar behaviour with respect to
choosing subsets of variables for PCA, but also showed that the
computations involved in constructing a KNN graph are less intensive
than the construction of a KMST. Hence, we have chosen the KNN
approach for the rest of our investigation. The number of edges in
a KNN graph increases as K increases, thus larger the value of K
more the measure & would behave like 8. Since the aim with & is
to choose subsets for which local structure (eg. group structure) is
preserved, it seems appropriate toe set K to a much smaller number
than the total number of interpoint distance pairs. In our current
study we have chosen K = 1 as it is the smallest possible choice.

So far, we have defined and explained five criteria, namely

-~ -~

*
M2, ' g Y 6 and 8, for selecting variables in Principal
Component Analysis. These criteria are assessed and compared in a
Monte Carlo fashion in Chapter 7, and by means of real data in

Chapter 8. Following is a remark on some computational aspects for

implementing the above criteria into the selection procedure.

6.4 Computational aspects

In principle, the ‘best’ subset(s) can be selected by
computing the criterion of interest for all possible subsets of
variables, and choosing the one(s) with optimal criterion value
(i.e. minimum for ME, d and 5'; and maximum for ;5 and ;8). Although
this can be done for each desired choice of the subset-size ¢, in
practice this approach may not. be computationally feasible. To
overcome this problem, however, any of the standard procedures such
as forward selection, backward elimination or stepwise selection can

easily be implemented. Given the efficient algorithms for obtaining
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an amended singular value decomposition after the deletion of a
single variable from a data set (Bunch and Nielsen (1978}, Bunch
et.al. (1978)), backward elimination is computationally easier and
faster than the other procedures. Hence, to implement the various
criteria, the following backward elimination procedure is used:

Step 1: Set ¢ = p {i.e. X = X) and for a fixed/chosen k,
compute the score matrix Y.

Step 2: For each variable omitted from X in turn, compute the
score matrix ¥ and use this matrix together with Y to
compute the criterion of interest.

Step 3: Delete the variable (say, Xd) whose omission gives
rise to the optimal value of the criterion, and denote

o~

the resulting matrix by X(dr

Step 4: Set X = i(d), and go to Step 2.

This cycle is continued until the desired subset size is reached
-(i.e. when q = k at end of Step 3).

The proposed variable selection methods are compared and
contrasted among themselves as well as with the Mz-procrustes
criterion in Chapter 7. This comparative study is based mainly on
Monte Carlo simulations, and the behaviours of these methods are
compared by means of the performance of the selected variables.
Although major conclusions are mainly based on the Monte Carlo
simulation study, these methods are also applied to some real data
sets in Chapter 8.

Although the backward elimination procedure above is used
throughout the thesis, it was decided to compare the Monte Carlo
results based on this procedure with those based on the stepwise

selection procedure (in Chapter 7). The reason for this is that it

was considered important to know whether or not using the stepwise
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procedure (which is computationally slower)} improves the performance
of the M?-procrustes criterion and the various proposed criteria for

variable selection in PCA.
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CHAPTER 7
MONTE CARLC EVALUATIONS OF THE VARIABLE SELECTION TECHNIQUES

T.1 Simulation study plan

The design for the simulation study we adopt in this
investigation makes use of models 1 through 4 of Jolliffe (1972),
described in section 4.1. Jolliffe constructed these models in such
a way that within each model, some variables are linear combinations
of others except for a random disturbance and hence are redundant.
This way, not only is the ‘true’ dimenslonality of the data is known
prior to the selection of variables, but alsoc the subsets of
variables which satisfactorily define this dimensionality are known.

In Jolliffe’s work, choice regarding satisfactory subsets of
retained variables was based on maximizing the minimum multiple
correlation (say, Rm) between the selected variables and any of the
rejected ones; R; being the maximized value of Rm’s. It was decided,
however, that it would be more appropriate to monitor such a choice
according to whether the PC scores Y and Y are obtained from using
covariance matrices or correlation matrices (remembering the fact
that PCA is heavily dependent on the type of variation matrix used).

Jolliffe's models make use of randomly generated variates 21
(1 =1, 2, ..., v} which are distributed independently as N(0,1).
Being linear combinations of these iid variates, the variables ¥X’s
in the models are distributed as N(O,a?), where vf is the variance
of X-1 (j =1, 2, ..., p). The relationships between the constructed
variables, XJ and the iid variates 2l are shown in Table 4.1. In
our Iinvestigation, ranking of satisfactory subsets of retained
variables when Y and Y are obtained from using the covariance
matrices, is based on maximizing the percentage of variance

explained by the selected subsets. When the score matrices Y and ¥
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come from correlation matrices however, we adopt Jolliffe’s scheme
of ranking subsets which is based on maximizing Rh'

Following is an illustration of our scheme of ranking of
subsets obtained from using covariance matrices. Consider Jolliffe’s
model 2. In this model, X4 equals X1 plus a2 random disturbance or
alternatively, X1 equals X4 plus a (different) random disturbance.
Thus, X1 or X4 should be discarded and this implies that subsets for
which both X1 and X4 occur, are actually bad subsets. Similarly,
X5 and XE are both X2 plus random disturbances, hence subsets for
which at least two variables from the group {Xz' Xs' XB} occur are
bad subsets. Clearly, X1 and X; seem to be describing a single
dimension and the group {Xz 'Xs ,XS} describe another dimension. The
only isolated variable is X3 and it seems to be describing a third
dimension. Hence the dimensionality (k or g) in Jolliffe’s model 2
is 3. In our ranking scheme; of the [g] possible subsets ([g] in
this model)}, only the sensible ones (not termed bad) are
considered. These subsets are shown in Table 7.1, alongside with the
percentages of variance explained by each of them and the rank of
each subset. Note that the subset {3,4,86} in Table 7.1 refers to the

subset {Xs’ X, Xe}. A similar notation is used throughout the rest

4
of the thesis. Note alsoc that the subset with the largest
percentage of explained variation becomes the best and ranked number
one, the second best subset is ranked number 2 and so on. Hence,
for model 2 the subset {3,4,B8} becomes the best set of retained
variables for principal component studies based on covariance

matrices. GSubsets from models 1, 3 and 4 are ranked similarly and

the results are summarized in Table 7.2.
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Table 7.1: Percentage of variance explained by each subset and the
corresponding subset ranks for model 2 of Jolliffe

(1972).
Subset Variance %ge of variance Subset rank
explained
{3.4,6} 4.25 54.8 1
{1,3,86) 4.00 51.6 2
{3,4,5} 3.74 48.4 3
{1,3,5} 3.49 45.1 4
{2,3, 4} 3.25 42.0 5
{1,2,3} 3.00 38.7 6

Table 7.2: Subsets of retained variables ranked according to the
percentage of variance explained for models 1, 3 and 4 of
Jolliffe (1972).

16
17
18
19
20
21
22
23

Model 1 Model 3 Model 4
Subset |Rank|Subset |Rank Subset Rank Subset |Rank Subset |Rank
{4,5,6} 1 ({4,5,8}| 1 {1,3,8, 10} 1 |{1,3,6,8} g |{1,3,5,8}
{1,5,6} 2 §{3,4,5}| 2 {1,2,86, 10} 2 i{1,3,6,7}| 10 [{1,3,5,7}
{2,4,6} 3 [{2,4,6}] 3 {1,3,5, 10} 3 {{1,2,6,8}) 11 |{1,3,4,8}
{1,2,6} 4 [[{2,3,4}] 4 {1, 3,4, 10} 4 {{1,2,86,7}] 12 {{1,3,4,7}
{3,4,5} 5 |{1,5,6}]| 5 {1,2,5, 10} 5 1{1,3,5,9} 12 {{1,2,5,8}
{1,3,5} 6 |{1,3,5})| 6 {1,3,8,9} 6 [{1,3,4,9}| 13 |{1,2,5,7}
{2,3,4} 7 [{1,2,6}] 7 {1,2,4, 10} 7 |{1,2,8,9}{ 14 |{1,2,4,8}
{1,2,3} 8 [[{1,2,3}] 8 {1,2,86,8} 8 |{1,2,4,9}] 15 ({1,2,4,7}

Next we shall consider Jolliffe's (1972) choice of best
subsets (based on ‘correlations’) for each of models 1 - 4 based on
maximizing the minimum multiple correlation Rh. When this ranking
scheme was applied to the four models, it was noted that Jolliffe
incorrectly ranked some of the subsets for models 2 and 3. We may
Justify this finding as follows: Let olj and piJ be the population
varlance-covariance and correlation coefficlents, respectively
between X1 and XJ; and consider for example, model 2. Jolliffe

correctly determined the values of p14, p_ and sz which are 0.894,

25

0:819 and 0.707, respectively. However, his reported value 0.579 for
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Pes corresponding to this model is incorrect. To verify this fact,
let the symbol E dencte the expected value, ai the wvariance of Xi,
0(21) the variance of 2i and U(Zi,ZJ) denote the covariance between

Z1 and Zj. Then

Oes = E(XSXS) - E(XS)E(XS)

=E (22+0.726)(22+26)} - E(22+0.TZB)E(22+ZB)

2 2 2 2
E(Z)-(E(2,)) } . o.7{§(261—tE(ZGJ) }

. 1-7{F‘22253‘E‘22’E‘23’}

= c(ZzJ + 0.76(26) + 1.76(22.26); (7.1)
o = o(Z +0.7Z)
5 2 B
= o(z,) + (0.7)20(26) + 2(0.7)0(2,,2); (7.2)
and o, = 0(22+26) = 0(22) + 0(26) + 2¢(22,26). (7.3)

Since the iid variates Z1 are distributed as N(O0,1), T = 1.7, o =
1.4 and o = 2.0, yvielding Peg = D.985. Jolliffe’s
subset-classification results in which he ranked the subsets as
best, good, moderate or bad for model 2, are partially dependent on
the value of Pes: Hence, in his Table 3, part of the classification
for this model is incorrect. The analytical results of this ranking
scheme were checked by means of a computer program written in GAUSS
(1988} to calculate the multiple correlation between the g retained
variables and each of the p-qg rejected variables for all [g]
possible subsets. The data sets used were constructed in accordance
with Jolliffe's model 1 through 4 from randomly generated
independent variables distributed as N(0,1}. To ensure sample
normality, etc., large samples were generated (size = 10000).
Subsets were then ranked in accordance with the extent to which they

maximized the minimum multiple correlation RInn between the g selected

variables and any of the p-g discarded variables. The results were
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Table 7.3 Corrected ranking of subsets in Jolliffe’s models 1 - 4.

Type of subset Model 1 Model 2ZiModel 3 Model 4
(k=g=3) (k=q=3) j(k=g=3) (k=g=4)
Any subset {1,3,5}{1,2,3} Any subset
Best EBT) containing {3,4,5})4{1,2,6} containing
(R =R ) one variable from {1,3,5} |one variable from
non each of the {1,5,6} each of the
following groups: {2,3,4} [following groups:
{1, 4},{2,86}, {2,4,86}({1},{2,3},{4,5,86)
{3,6} {7,8,9, 10}

{1,2,3}[{3, 4,5}

Good iGD) . {1,3,6}{{4,5,6} —
(0.7R’ =R <R’) {2.3,4)

m m n {3,4,8}
Moderate (MD) :i:i:g;

* -
(C.5R =R <0.7R ) _— _ -
m m m

Bad (BD)

(R <0 SR') All other subsets
m * m

consistent with Jolliffe’s choices, except for models 2 and 3 in
which the corrected procedure ranked some of the subsets
differently. Table 7.3 summarizes the correct(ed) choice of the
subsets ranked as best, good, moderate and bad for all four
models. For model 2 in Jolliffe’'s classification, the subsets
{1,2,3} and {2,3,4} were classified as best, while the subsets
11,3,5}, {1,3,8}, {3,4,5} and {3,4,6} were classified as good, and
all other subsets were classified as bad. For model 3, the subsets
{1,2,3} and {1,2,6} were classified as best, the subsets {1, 3,5},
{1,5,6}, {2,3,4), {2,4,5}, {3,4,5} and {4,5.6} were classified as
good, the subsets {1,3,4} and {1,4,8) were classified as moderate,
and all other subsets were classified as bad.

In order to conduct our Monte Carle study, large samples (n =
100}, moderate sized samples (n = 50) and small saﬁples {n = 25) are

generated in accordance with each of Jolliffe’s models 1 - 4. The
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aim is to compare all five variable selection methods among
themselves and to see whether the size of the samples has any
significant influence on the behaviour of these methods. For each
method, 100 replications / data sets are generated for each choice
of the sample size. The samples are then subjected to each of the
five criteria M, 7_, 7,, & and &  for variable selection; and the

results are presented below. The matrix language programning

software GAUSS (1988) is used throughout this Monte Carlo study.

7.2 Monte Carlo results

The results of applying the various criteria on the simulated
data are summarized in Tables 7.4 - 7.13. These tables show the
number of times (as %) each method retains various types of subsets
of g (= k) variables ranked.l, 2, etc. or best, good, moderate or
bad for models 1 - 4. Tables 7.4 - 7.11 show the results obtained
from using the backward elimination procedure. Among these, Tables
7.4 - 7.7 give the results for which Y and Y are obtained from
covariance matrices, while Tables 7.8 - 7.11 show the results for
which PCA (to obtain Y and ¥) is performed on correlation matrices.
Also shown in Tables 7.4 and 7.7 is the computational time (in secs)
each method takes to complete a single analysis for a given sample
size on the 386SX, 20Mhz personal computer. This information about
computational time has been omitted from Tables 7.5 and 7.6 and
Tables 7.8 - 7.11 for reasons similar to those noted in section 4.2.
This is that, among the similar models (i.e., models 1 - 3) and for
a given sample size, the computational time taken by each method to
complete the analysis in one model is exactly the same as the
corresponding time in the other models. Furthermore, under the same

sampling considerations the computational time taken by each method
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to complete the analysis when covariance matrices are used to
perform PCA is very nearly the same as the corresponding time for
PCA using correlation matrices.

A preliminary Monte Carlo study showed that for models 1, 3
and 4 of Jolliffe (1872), the behaviour of the various variable
selection criteria is virtually wunchanged by performing the
selection using the stepwise selection procedure instead of the
backward elimination procedure. However, in model 2, the performance

-~

of 75. ;'6 and M2 showed a considerable improvement due to the
stepwise selection procedure when correlation matrices were used for
PCA in conjunction wﬁth these criteria. When covariance matrices
were used to perform the PCA, the performance of M2 was virtually
the same as when the backward elimination procedure was used to
select the variables, while the performance of the y-measures was
slightly worse. Hence, presented in Tables 7.12 and 7.13 are the
results obtained when the stepwise selection procedure is used to
select the variables for model 2 only. The results in Table 7.12 are
based on PCA using covariance matrices, while reported in Table 7.13
are the results based on correlation matrices. Once again, the
computational time in Table 7.13 is very nearly the same as the

corresponding time reported in Table 7.12. Hence, information

regarding the computational time appears only in Table 7.12.

7.2.1 Results based on the backward elimination procedure

First, we shall consider the results based on backward
elimination and we shall begin by discussing those results for which
covariance matrices are used to perform PCA. For model 1 (see Table

7.4) with large samples, the criteria Mz, g and LA behave

equivalently to each other, while not only § seems superior to 5
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Table 7.4 Subsets retained by the various methods for model 1 when
covariance matrices are used to perform PCA and the
backward elimination procedure is used to select

variables.
n = 100 n = 50 n =25
Method| Subset {(Rank) |%ge | Subset (Rank)}i%ge [ Subset (Rank) |%ge
{4,5,6} (1) 98 |{4,5,8} (1) 96 ({4,5,6} (1) T7
o {1,5,6} (2) 1 |{1,5,6} (2) 4 {{1,5,8} (2) 15
M {2,4,6} (3) 8
Comp. time 6.79 4.59 3.47
sec. )
{4,5,86} (1) 89 |{4,5,8} (1} a0 |[{4,5,6} (1) 70
{1,5,6} (2) 1 |{1,5,6} (2) 10 {{1,5,8} (2) 17
; {1,2,8} (4) 1
5 {3,4,5} (5) 5
{3,5,6} (BD) 1
Comp. time
(sec. ) 7.11 4.84 3.66
{4.5,6} (1) 99 ({4,5,6} (1) g0 |[{4,5,86) {1) 79
{1,5,8} (2) 1 {1,5,8} (2) 10 |{1,5,6} (2) 13
- {2,4,6} (3) 6
7 {1,2,6} (4) 1
{3,4,5} (5) 1
Comp. time
(sec. ) 7.07 4.80 3.63
{4,5,6} (1} 98 |{4,5,6} (1) 893 ({4,58,6} (1) 76
{1,5,6} (2) 1 [{1,5,8} (2) 6 [{1,5,68} (2) 11
{2.4,8} (3) 1 {{1,2,6} (4) 1 [{2,4,8} (3) 10
3 {1,2,6} (4) 2
{3,4,5} (5) 1
Comp. time
(sec.) B51.85 16. 4% 6.63
{4,5,6} (1) 91 ({4,5,6} (1) 73 {4,5,6}) (1) 58
{1,5,6} (2) 8 ({1,5,86} (2) 16 |{1,5,8} (2) 17
{2,4,6} (3) 1 ({2,4,6} (3) 8 ({2,4,86} (3) 13
5" {1,2,8} (4) 2 ({1,2,8} (4) 2
Comp. time
(sec. } 65. 50 16.94 6.66
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Table 7.5 Subsets retained by the various methods for model 2 when
covariance maltrices are used

to perform PCA and the

backward elimination procedure is wused to select
variables,
n = 100 = 50 = 25
Method} Subset (Rank)|%ge | Subset (Rank) |%ge | Subset (Rank) |%ge
{3,4,8} (1) 100 {{3,4,8} (1) 94 |{3,4,6} (1) 77
{1,3,6} (2) 6 {1,3,8} (2} 8
M2 {2,3,4} (5] 1
{1,2,8} (BD) 1
{2,4,6} (BD) 10
{4,5,8} (BD} 3
{3,4,86} (1) 100 3{3,4,6} (1) 80 §{3,4,8} (1) 786
{1,3,8} (2) 10 {1,3,6} (2) 14
: {2,3,4}) (5) 7
s {1,2,3} (8) 1
{1,2,6} (BD) 1
{2,4,6} (BD) 1
{3,4,6} (1) 100 (4{3,4,86} (1) g1 (4{3,4,6} (1) 76
{1,3,8} (2) 9 |[{1,3,6} (2) 14
N {2,3,4} (5) 7
s {1,2,3} (8) 1
{1,2,6} (BD) 1
{2,4,6} (BD) 1
{3,4,6} (1) 93 [{3,4,8} (1) 80 ({3,4,6} (1) 81
{1,3,8} (2) 1 {{1,3,6} (2) 10 [{1,3,6} (2) 11
s {2,3,4} (5) 4
{1,2,3} (B6) 2
{1,2,6} (BD) 1
{2,4,6} (BD) 1
{3,4,6} (1) 85 [{3,4,6} (1) 77 |{3,4,6} (1) €9
{1,3,86} (2) 5 [{1,3,8} (2) 23 [|{1,3,86} (2) 24
5" {2,3,4} (5) 3
{1,2,3} (6) 2
{1,2,6} (BD) 1
{2,4,6} (BD) 1
but alsc its behaviour is almost as good as the other methods. Once

again the methods 7 and Vg behave identically to each other when

the number of observations in the sample is moderate.

However, M?

and 8 perform better than the 7's; Me being the best. 6. on the

other hand is the poorest method for moderate-sized samples.

When

samples are of small size, L becomes the best method for selecting
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variables. The M° and & methods fall behind y_, while 7 and &
behave poorly; 6. being the worst.

For large and moderate samples in model 2 (Table 7.5), the
methods behave almost similarly to their behaviour for model 1.
However, a change of behaviour can be seen for small sample cases,
where M° becomes the worst criteria, selecting bad subsets more
frequently (14%) than other methods. 8 is the most successful
candidate in this case, picking the best subset 81% of the time with
only 2% bad selections; Criteria ;s and ;s behave identically to
each other and yet better than & .

For all sample €izes in model 3 (Table 7.B}, M seems to be
superior to the rest of the selection methods. However, the other
criteria may not be as inferior as they appear. To clarify this we
shall refer to the construction of variables X4 and Xé in Jolliffe's
model 3 (also see Table 4.1). These two variables can be regarded as
Xz plus {different) random disturbances. Variable Xs’ however, is
mere closely related to Xé than to X4, and has a larger variance
than Xz; hence gets included in the subsets cheosen by the various
methods more often than Xz' Similarly, XB is X3 plus a random
disturbance and it has a greater chance of being included in the
selected subsets because of its larger variance. Now, since model 3
is 3-dimensional, to complete the subset of three variables to be
retained, we need an extra variable. Using the ‘clustering
technique’ described earlier, the choice is between X1 and Xg. Since
the wariable X4 is X1 plus a random disturbance and has larger
variance than X1’ we would expect it to be included in the retained
subsets more often than Xl. This is evident in the simulated samples
when using the M> criterion. However, since X4 can be clustered in

the same group as XE (i.e., perceived as describing the same
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Table 7.8 Subsets retajned by the various methods for model 3 when
covariance malrices are used to perform PCA and the
backward elimination procedure is used to select

variables.

n = 100 n = 50 n =25
Method] Subset (Rank) |%ge | Subset (Rank) |%ge | Subset (Rank)|¥%ge
{4,5,8} (1) 100 ({4,5,6} (1) a2 ({4,5,6} (1) 75
{3,4,5} (2) 6 ({3,4,5} (2) 12
M2 {2,4,6} (3) 2 [{2,4,8} (3) 5
{2,3,4} (4) 1
{1,5,6} (5) 6
{1,3,5} (B) 1
{4,5,6} (1) 47 |[{4,5,6} (1) 58 [{4,5,6} (1) 46
{3,4,5} (2) 3 {{3,4,5} (2) 3 [{2,4,6} (3) 3
; {2,4,6} (3) 1 §{2,4,6} (3) 2 1{1,5,6} (5) 34
5 {1,5,6} (5) 49 4{1,5,6} (5) 31 {{1,3,5} (B) 9
{1,3,5} (8) 4 J[{1,2,6} (7) 1
{1,2.8} (7) 2 1{3,4,6} (BD) 7
{4,5,6} (1) 46 |{4,5,86} (1) 51 ({4,5,6} (1) 44
{3,4,5} (2) 3 {13.,4,5} (2) 3 [[{3,4,5} (2) 8
; {2,4,8} (3) 1 {{2.,4,6} (3) 2 |[{2,4,8} (3) 3
s {1,5,8} (5) 49 [{1,5,6} (5) 38 [[{1,5,B} {5) 35
{1,3,5} (86) 1 JJ{1,3,5} (B6) 4 |{1,3,5} (8B) g
{1,2,8} (7) 2 [{1,2,8} (7) 1
{4,5,86} (1) 52 |{4,5,6} (1} 54 i{4,5,6} (1) 47
{3,4,5} (2) 2 [{3,4.5} (2) 6 [{3,4,5} (2) 9
5 {1,5,6} (5) 45 ({2,4.6} (3) 2 I{2,4,6} (3) 3
{1,3.5} (B) 1 |[{1,5,B6} (5) 37 §{1,5,8} (5) a3
{1,2,6} (7) 1 J{1,3,5} (8B) 6
{1,2,6} (7) 1
{1,4,86} (BD) 1
{4,5,8} (1) 49 1{4,5,86} (1) 40 1{4,5,6} (1) 30
{3,4,5} (2) 3 1{3,4,5} (2) 13 [1{3,4,5} (2) 13
st 248 (3) 1 {{2,4,6} (3) 6 |{2,4,8) (3) | 4
{1,5,6} (5) 43 {2,3,4} (4) 1 ({2,3,4) (4) 3
{1,3,5} (B) 4 ¥{1,5,8} (5) 30 [[{1,5,86} {5) 29
{1,3,5}) (8) 7 41,3,5} (8) 13
{1,2,8} (7) 2 {1,2,8} (7) 5
{1,2,3} (8) 1 [41,2,3} (8) 1

dimension), its inclusion in a subset containing X5 may not be
desirable. This gives the subset {1,5,8} the potential of being
chosen perhaps as much as {4,5,6} and all the methods except o

reflect this behaviour.
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Table 7.7 Subsets retained by the various methods for model 4 when

covaraince matrices are used to perform PCA and the
backward elimination procedure is used to select the
variables.
n = 100 n = 50 n =25
Method| Subset (Rank) {%ge | Subset {(Rank) |%ge | Subset (Rank) [%ge
{1,3,6,10} (1) 85 |[{1,3,6,10} (1) 72 1{1,3,86,10} (1) 52
2 {3,6,9,10} (BD)}{| 15 [{3,5,6,10} (BD) 3 {{1,2,6,10} (2} 1
M {3,6,9,10} (BD)| 25 {|{3,5,6,10} (BD) 8
{3,6,9,10} (BD)| 39
Comp. time 36.53 22.18 14.91
{sec.)
{1,3,6,10} (1) ag |[{1,3,6,10} (1) a3 [{1,3,6,10} (1) 78
{3,5,6,10} (BD) 1 ({1,3,6,9 (8) 1 [{1,2,8,10} (2) 2
{3,5,6,10} {(BD} B ([{1,3,6,9} (8B) 3
{1,2,6,9 (8) 1
- {2,4,6,10} (BD) 1
75 {3,4,5,10} (BD) 2
{3,5,6,9} (BD)| 2
{3,5,6, 10} (BD) B8
{3,6,9,10} (BD) 5
Comp. time 37.74 23.02 15.76
(sec.)
{1,3,6,10} (1) 89 |{1,3,6,10} (1) 83 [{1,3,6,10} (1) T4
{3,5,6,10} (BD) 1 141,3,6,9} (8B) 2 41,2,8,10} (2) 3
{3,5,6,10} (BD) 5 11{1,3,5,10} (3) 1
{1,3,6,9} (8) 4
{1,2,6,9} (8) 1
o {2.,4,6,10} (BD) 1
g {3,4,6,10} (BD)| 2
{3,5,6,8} (BD) 3
{3,5,6,10) (BD)| 6
{3,6,9, 10} (BD) 5
Comp. time 37.66 22.95 15.66
(sec. )
{1,3,6,10} (1) 99 |{1,3,6,10} (1) 84 [{1,3,6,10} (1) 79
{3,5,6,10} (BD) 1 |{3,5,6,10} (BD) 6 [[{1,2,6,10} (2) 1
{1,3,6,8} (8) 3
{1,2,6,9} (8) 1
{2,4,6,10} (BD) 1
3 {3,4,6, 10} (ED) 2
{3,5,6,9} (BD) 2
{3,5,6,10} (BD) 6
{3,6,9,10} (BD)| S
Comp. time| 547 39 59.93 24.869
(sec.)
{1,3,6,10} (1) 99 ({1,3,6,10} (1) 85 J{1,3,6,10} (1) 65
{3.5.6,10} (BD) 1 |[{1,2,6,10} (2) 1 |{1,2,6,10} (2) 8
{1,3,6,9} (B) g {{1,3,5,10} (3) 2
{3,5,6,10} (BD) 6 |{1,3,6,9} (8) 7
{1,2,4,10} (7) 1
. {1,2,6,8} (8) 1
é {2,5,6,8} (BD) 1
{2,5,6,10} (BED) 3
{3,4,6, 10} (BD) 2
{3,5,6,8} (BD}| 1
{3,5,6,10} (BD) 5
{3,6,9,10} (BD) 4
C°?§écfime 203.58 58.53 24.30
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In medel 4 (Table 7.7), the M® criterion behaves worse than
the other methods for all sample sizes. It is at its worst when
samples are of small size, where it chooses the bad subsets with 47%
chance. The other methods behave very well and similar to each other
for large samples. However, though not =as much as with the M
criterion, the performance of these methods deteriorates as sample
size decreases. 38 becomes the best method for selecting variables
when samples are of moderate and small size.

Among the results based on the backward elimination procedure,
we shall next describe the behaviour of our selection criteria when
correlation matrices are used for PCA. For model 1 (see Table 7.8},
all the methods choose the best subsets for all sample sizes. M is
more consistent for large and small samples, by selecting the same
subset more often, while 8 is the most consistent criteria for
moderate samples.

In model 2 (Table 7.89) for large and moderate samples, all
five methods select good subsets though & is more consistent for
moderate samples than the others choosing {(1,3,8} B2% of the time.
Although for small samples, the M method chooses bad subsets more
often (2%) than the other methods (1%), it is the most consistent
selection criterion.

The performance of all criteria in model 3 (Table 7.10)
diminishes progressively as the sample size decreases. The criteria

~ ~

75 and v behave almost identically to each other for all sample
sizes, choosing the best subsets with 100% probability for large
samples. All the methods, except Mz, perform nearly identically to
each other for moderate and small sample cases. For moderate sized

samples M° chooses the best subsets 87% of the time compared to a

choice of approximately 84% by the other methods. The comparison is
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Table 7.8 Subsets retained by the various methods for model 1 when
correlation matrices are used to perform PCA and the
backward elimination procedure is used to select
variables.

n = 100 n = 50 n =25

Method|| Subset (Rank)]%ge [ Subset (Rank) |%ge | Subset (Rank) |%ge

{1,2,3} (BT) g |{1,2,3} (BT) 14 |{1,2,3} (BT) 8
{1,2,6} (BT) 12 ({1,2,86} (BT) 12 |{1,2,8} (BT) 13

2 {1,3,5} (BT) 11 ({1,3,5} (BT) 17 |{1,3,5} (BT) &
M {1,5,6} (BT) 13 ({1,5,6} (BT) 7 [{1,5,8} (BT) 10
{2,3,4} (BT) 9 [{2,3,4} (BT) 13 |{2,3,4} (BT) 11

{2,4,8} (BT) 20 |{2,4,6} (BT) 16 ({2,4,8} (BT) 11
{3,4,5} (BT 16 |{3,4,5} (BT) 11 [{3,4,5} (BT} 16
{4,5,6} (BT) 10 ||{4,5,6} (BT) 10 {{4,5,6} (BT) 24

{1,2,3} (BT) g I{1,2,3) (BT) 17 §{1,2,3} (BT) 13
{1,2,6} (BT) 13 §{1,2,8} (BT) 14 §{1,2,6} (BT) 11
{1,3,5} (BT) 16 3{1,3,5} (BT) 13 [{1,3,5} (BT) 8
- {1,5,8} (BT) 8 [{1,5,8} (BT} 6 |{1,5,6} (BT) 11

s {2,3,4) (BT) 10 [{2,3,4} (BT} 14 [{2,3,4} (BT) 11
{2,4,8} (BT) 18 j{2,4,8} (BT) 16 {{2,4,8} (BT) 14
{3,4,5} (BT} 13 [1{3,4,5} (BT) 10 {3,4,5} (BT) 18
{4,5,8} (BT) 13 [{4,8,6} (BT) 10 |{4.5,8} (BT) 14

{1,2,3} (BT) 10 [{1,2,3} (BT) 17 |{1,2,3} (BT) 13
{1,2,86} (BT) 12 |{1,2,6} (BT) 14 |{1,2,8} (BT) 10
{1,3,5} (BT) 15 ({1,3,5} (BT) 13 §{1,3,5} (BT) 8
" {1,5,6} (BT) 9 |{1,5,6} (BT) 5 1{1,5,6} (BT) 11

8 [{2,3,4} (BT) 10 |{2,3,4} (BT) 14 |{2,3,4} (BT) 10
{2,4,6} (BT) 18 [{2,4,6} (BT) 16 [{2,4,6} (BT) 17
{3,4,5} (BT) 13 §{3,4,5} (BT) 11 §{3.4,5} (BT) 17
{4,5,6} (BT) 13 }{4,5,86} (BT) 10 ||{4,5,6} (BT) 14

¥

{1,2,3} (BT) 17 |{1,2,3}) (BT) 19 [{1,2,3} (BT) 8
{1,2,86} (BT) 7 |[{1,2,86} (BT) 13 |{1,2,6} (BT) 10
{1,3,5} (BT} 1c |[{1,3,5} (BT) 12 ({1,3,5} (BT) 13
8 {1,5,86} (BT) 12 {1,5,6} (BT) 8 [{1,5,6} (BT) 9

{2,3,4} (BT) 12 {2,3,4} (BT) 16 [{2,3,4} (BT) 10
{2,4,6} (BT) 16 [{2,4,6} (BT) 11 |{2,4,6} (BT) 10
{3,4,5} (BT) 13 [{3,4,5} (BT) 14 |{3,4,5} (BT) 22
{4,5,6} (BT) 13 {4,5,6} (BT) 7 ||[{4,5,6} (BT) 18

{1,2,3} (BT) 7 (11,2,3} (BT) 12 #{1,2,3} (BT) 8
{1,2,8} (BT) 17 |{1,2,86} (BT) 12 I1{1,2,6} (BT) 13
{1,3,5} (BT) 13 |{1,3,5} (BT} 14 #{1,3,5} (BT) 13
3 {1,5,8} (BT) 15 |{1,5,6} (BT) 18 ({1,5,6} (BT) 14

{2,3,4} (BT) 8 ({2,3,4} (BT) 15 |{2,3,4} (BT) g
{2,4,6} (BT) 16 ||{2,4,8} (BT) 8 |{2,4,6} (BT) 17
{3,4,5} (BT) 16 [{3,4,5} (BT) 10 [{3,4,5} (BT) 9
{4,5,6} (BT) 7 |{4,5,86} (BT) 11 [{4,5,6} (BT) 17
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Table 7.9 Subsets retained by the various methods for model 2 when
correlation matrices are used to perform PCA and the
backward elimination procedure 1s used to select

variables.

n = 100 n = 50 n=25
Method| Subset (Rank) |¥ge | Subset (Rank)|%ge | Subset (Rank)i%ge
{1,3,8} (GD} 50 {{1,3,6} (GD) 85 [{1,2,3} (GD) 1
Mz {3,4,6} (GD} 50 ({3,4,8} (GD) 45 |{1,3,86} (GD) 48
{3,4,6} {GD) 49
{1,2,86} (BD) 1
{2,4,6} (BD} 1
{1,3,6} (GD) 51 |{1,3,6} (GD) 55 ({1,2,3} (GD) 4
- {3,4,8} (GD) 49 [{3,4,6} (GD) 45 [1{1,3,6} (GD) 46
L4 {2,3,4} (GD) 6
{3,4,6} (GD) 43
{2,4,6} (BD) 1
{1,3,8} (GD) 51 ({1,3,8) (GD) 55 ({1,2,3} (GD) 4
; {3,4,8} (GD) 49 {1{3,4,6} (GD) 45 |{1,3,8} (GD) 45
6 {2,3,4} (GD) 6
{3,4,6} (GD) 44
{2,4,8} (BD) 1
{1,3,6} (GD) 49 ({1,3,6} (GD) 62 |[{1,2,3} (GD} 7
{3,4,6} (GD) 51 |{3,4,6} (GD) 38 [{1,3,6} (GD) 44
S {2,3,4} (GD) 3
{3,4,6} (GD) 45
{1,2,6} (BD) 1
{1,3,6} (GD) 51 #1{1,2,3} (GD) 3 |1{1,2,3} (GD) 8
6‘ {3,4,6} (GD) 49 |[{1,3,6} (GD) 48 |{1,3,6} (GD) 37
{2,3,4} (GD) 1 [{2,3,4} (GD) g
{3,4,6} (GD) 48 ({3, 4,8} (GD} 45
{1,2,8} (BD) 1

worse for M° 1in small sample situation where it selects the best
subsets only for 77% of the replicates while the value for other

criteria is roughly 90%.
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Table 7.10 Subsets retained by the various methods for model 3 when
correlation matrices are used to perform PCA and the
backward elimination procedure is wused to select
variables.

n = 100 n = 50 n =25

Methodj Subset (Rank) |%ge | Subset (Rank)|%ge || Subset (Rank) |%ge
{1,2,3} (BT) 46 |[{1,2,3} (BT) 36 ({1,2,3} (BT) 24

{1,2,8} (BT) 30 |{1,2,8} (BT) 37 [[{1,2.86} (BT) 31
{1,3,5} (BT) g8 [{1,3,5} (BT) 6 [{1,3,5} (BT) 7
2 {1,5,6} (BT} 6 {{1,5,6} (BT) 8 ({1,5,6} (BT) 9
{3,4,5} (GD) 5 ({3,4,5} (GD) 9 [{2,3,4} (BT) 1
{4,5,8} (GD) 5 ({4,5,6} (GD) 4 |{2,4,8} (BT} 5

{3,4,5} (GD) 11
{4,5,6} (GD) 11
{2,4,5} (BD) 1
{1,2,3} (BT) 40 [{1,2,3} (BT) 31 [[{1,2,3} (BT) 24
{1,2,8} (BT) 35 [{1,2,8} (BT} 26 [[{1,2,8} (BT) 23

{1,3,5} (BT) 14 1{1,3,5} (BT) 21 |1{1,3,5} (BT) 23

- {1,5,6} (BT} 11 [{1,5,8} (BT) 19 |{1,5,8} (BT) 17
L {3,4,5} (GD) 1 |{2,3,4} (BT) 1
{4,5,6} (GD) 2 |[{2,4,6} (BT) 2

{3,4,5} (GD) 4

{4,5,6} (GD) 3

{1,3,4} (MD) 1

{1,4,6} (MD) 2

{1,2,3} (BT) 40 [{1,2,3} (BT) 31 |11,2,3} (BT) 23
{1,2,6} (BT) 36 §{1,2,8} (BT} 26 [|{1,2,6} (BT) 23
{1,3,5} (BT) 14 #{1,3,5} (BT) 21 ({1,3,5} (BT) 24
; {1,5,6} (BT) 10 [{1,5,86} (BT) 1g ({1,5,6} (BT) 17

6 {3,4,5} (GD) 1 ({2,3,4} (BT) 1
{4,5,6} (GD) 2 y{2,4,6} (BT) 2
{3,4,5} (GD) 3
{4,5,6} (GD) 3
{1,3,4} (MD) 2
{1,4,6} (MD) 1
{1,2,3} (BT) 40 |{1,2,3} (BT} 35 {1,2,3} (BT) 16
{1,2,8} (BT) 31 g{1,2,8} (BT) 23 |{1,2,8} (BT) 21
{1,3,5} (BT) 16 |{1,3,5} (BT) 22 |{1,3,5}) (BT) 26
{1,5,6} (BT) 12 [{1,5,86} (BT) 16 [{1,5,6} (BT} 28

8 |{3.4.4} (CD) 1 [{3.4.5} (GD) 1 [{2.3.4} (BT) 2
{4,5,6} (GD) 3 ({2,4,6} (BT)

{3,4,5} (GD) 3

{4,5,6} (GD) 2

{1,3,4) (MD) 1

{1,2,3} (BT} 25 ({1,2,3} (BT) 25 1{1,2,3} (BT) 7

{1,2,8} (BT} 31 ||{1,2,8} (BT) 24 |{1,2,6} (BT) 23
{1,3,5} (BT) 15 |{1,3,5} (BT} 28 [{1,3,5} (BT)
. lt1.s.8) (BTY | 27 [(1.5.6} (BT {1,5,8} (BT)

S {3,4,5} (GD) 1 ({2,3,4} (BT)

{2,4,8} (GD) 1 §{2,4,8} (BT)
{3,4,5} (GD)
{4,5,6} (GD)

{2,4,B} (BT)
{3,4,5} (GD)
{4,5,86} (GD)
{1,3,4} (MD)
{1,4,8} (MD)

—
=3 W B R |

25

22

{2,3,4} (BT) 5
7

3

6

1

1
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Table 7.11 Performance of the various metheds 1in model 4 when
correlation matrices are used to perform PCA and the
backward elimination procedure iIs wused to select

variables.

n = 100 n =50 n =25
Method Subset rank |%ge Subset rank |%ge Subset rank |[%ge
BT 100 BT 100 BT a9
M2 GD 0 GD 0 GD 0
MD 0 MD 0 MD 0
BD "0 BD 0 BD 1
- BT 100 BT 100 BT 12
Ty GD 0 GD 0 GD 0
MD 0 MD 0 MD 0
BD 0 BD 0 BD 1
- BT 100 BT 100 BT 93
7 GD 0 GD 0 GD 0
s MD 0 MD 0 MD 0
BD 0 BD 0 BD 1
BT 100 BT 100 BT a9
) GD 0] GD 0 GD 0
MD 0 MD 0 MD 0
BD 0 BD 0 BD 1
R BT 100 BT 100 BT 100
<] GD 0 GD 0 GD 0
MD 0 MD 0 MD 0
BD 0 BD 0 BD 0

As it can be seen in Table 7.3, the number of subsets falling
in each category (best, good etc.) is large for model 4 compared to
other models. In our simulations for model 4, each selection method
chooses a large number of different subsets, though they fall in the
same category (e.g., best) almost all the time. We would therefore
require a massive table to present all these subsets. Hence, the
results for the performance of the methods with respect to this
model are presented in a more summarized form (in Table 7.11) than
for the other models. The conclusions in this case are easy to make,
where for large and moderate samples all five methods choose the
best subsets with 100% probability. For small samples, apart from 6‘
all the criteria choose bad subsets 1% of the time and best subsets
otherwise. Under these sampling considerations, 6- always chooses
the best subsets, hence it becomes slightly better than the rest of

the methods.
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7.2.2 Results based on the stepwise selection procedure

Next, we shall describe the behaviour of our criteria when
stepwise selection is used as the seguential procedure to select
variables in PCA. In the backward elimination procedure, initially
the system contains all the variables. The criterion of interest is
computed for each variable omitted in turn, and the variable whose
omission optimizes this criterion is deleted. The second stage of
the procedure is similar to the first except that it is performed
without the wvariable deleted at the first stage. The first two
stages of the stepwise selection procedure are exactly the same as
the corresponding stages of the backward elimination procedure
except that from the second stage onwards, each stage of the
backward elimination procedure is accompanied by forward selection.
This allows previously deleted variables to re-enter the system, one
at a time, and the variable whose return (addition) optimizes the
criterion of interest is retained. The popularity of this stepwise
procedure is the realization of the fact that a variable may be
redundant in the presence of certain variables, but may be essential
once these variables have been deleted from the system. Hence, this
procedﬁre Is an improved search for optimal subsets of variables.

As noted before, the behaviour of these criteria when stepwise
selection is used to select variables in models 1, 3 and 4 is almost
identical to their behaviour when backward elimination is used to
perform the selection. For example, consider the behaviour of the
criteria in model 4 for moderate samples when covariance matrices
are used to perform PCA. When backward elimination is used to select
variables (see Table 7.7) & chooses the subsets {1,3,6,10},
{1,2,6,10}, {1,3,6,9} and {3,5,6,10} with 85%, 1%, 8% and 6%

probability, respectively. This criterion chooses the same subsets,
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respectively with 87%, 1%, B% and 6% probability when stepwise
selection is used to perform the selection. Under the same sampling
considerations as above, when backward elimination is used as the
sequential selection procedure, 8§ chooses the subsets {1,3,6, 10} and
{3.5,6,10} with 94% and 6% probability, respectively. This is quite
comparable with its choice of the subsets {1,3,6,10}, {1,3,6,9} and
{3,5,6,10} with 93%, 1% and 6% probability, respectively when
stepwise selection is used to select variables. The rest of the
criteria exhibit exactly the same behaviour for stepwise selection
as for backward elimination. On the other hand, the criteria Mz, ;5
and ;E show a considerable change of behaviour in model 2 when
stepwise selection is used to select variables instead of backward
elimination. Hence, among those results for which stepwise selection
is used to choose the variables, we choose to present the results
for only model 2.

First we shall consider the results for which covariance
matrices are used to perform PCA. For all sample sizes in model 2
(see Table 7.12) the criterion M° shows a behaviour very similar
(exactly the same for large samples) to its behaviour when backward
elimination is wused to select variables (see also Table 7.5).
However, this criterion selects bad subsets (1%) here for moderate
samples, while for small samples bad selections occur with 2% less
probability than when the backward elimination procedure is used for
selection. For all sample sizes, the behaviour of the criteria & and

5* is exactly the same for stepwise selection as for backward

elimination. Finally, for all sample sizes, the criteria ;5 and ;s
perform slightly worse with the stepwise selection procedure than

when backward elimination is used to perform the selection of

variables. These criteria choose the third best subset {3,4,5) (see
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Table 7.12 Subsets retained by the various methods for model 2 when
covariance malrices are used to perform PCA and the
Stepwise selection procedure is used to select variables.

n = 100 n = 50 n=25
Method| Subset (Rank) [%ge | Subset (Rank) [%ge | Subset (Rank) |%ge
{3.4,67 (1) 100 |{3,4,67 (1) 83 [{3,4,867 (1) 76
{1,3,6} (2) 5 [{1,3,6} (2) 6
{3,4,5} (3) 1 [[{3,4,5} (3) 4
. {4,5,6} (BD) 1 §{1,3,5} (4) 2
M {1,2,6} (BD) 1
{2,4,6} (BD) 7
{4,5,8} (BD) 4

Comp. time| 5 g5 8.10 5.95

(sec.) .

{3,4,57 (3) 100 |3, 4,57 (3) 93 |{3.4,6F (1) 3
{1,3,5} (4) 7 #{1,3,8} (2) 1
{3,4,5} (3) 78
- {1,3,5}) (3) 12
L {1,2,6} (BD) 2
{4,5,86} (BD) 3

c°?p' timel 43 g 8.71 6.57

sec. )

{3.4,5) (3 100 [{3,4,5) (3) 92 [{3,4.67 (1) Z
{1,3,5) (4) 8 I{1,3,6} (2) 1
; {3,4,5} (3) 78
8 : {1,3,5} (4) 12
{1,2,6} (BD) 2
{4,5,8} (BD) 3

C°?gécf;me 13.12 8.64 6.51
{3,4,67 (1) 99 |{3,4.67 (1) 80 [{3.4,67 (1) 81
{1,3,8} {2) 1 f{1,3,8} (2) 10 [{1,3,6} (2) 11
{2,3,4}) (5) 4
5 {1,2,3} (8) 2
{1,2,6} (BD) 1
{2,4,6} (BD) 1

C°?§écf;me 140. 11 36. 10 13.35
{3,4,87 (1) g5 |{3.4,67 (1) 77 143.4,86) (1) &9
{1,3,8} (2) 5 j§{1,3,8}) (2) 23 ({1,3,8} (2) 24
5 {2,3,4} (5) 3
{1,2,3} (8) 2
{1,2,6} (BD) 1
{2,4,6)} (BD) 1

C°?§écfjme 138. 53 35.31 13.23

Table 7.1) with the highest probability, compared to the choice of
the best subset {3,4,6} when used with the backward elimination
procedure. Furthermore, for small samples, the probability that

these criteria choose bad subsets increases slightly (3%). However,
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for moderate and small samples the choice of the subset {3,4,5} is
more consistent than the choice of {3,4,6} when these criteria are
used with backward elimination to select wvariables. For a small
number of observations in the sample, 8 remains the best method,
picking the best subset B81¥% of the time and making only 2% bad
selections.

Next we shall discuss the results for which correlation
matrices are used for PCA with the stepwise selection procedure. For
large and moderate saﬁples in Table 7.13, the behaviour of & is
similar (exactly the same for large sample cases} to its behaviour
when variables are selected using the backward elimination procedure
(see alsoc Table 7.9). The criterion 6’, on the other hand, becomes
slightly more consistent; choosing the subsets {1,3,6} and {3,4,6)
more frequently for large and moderate samples, respectively. When
samples are of small size, both the criteria &8 and 6’ behave
slightly better with the stepwise selection procedure, making a few
best selections and no bad selections, while with the backward
elimination procedure in Table 7.9 these criteria meke a few bad
selections and no best selections. These criteria are also more
consistent here than when backward elimination is used to perform
the selection of variables. On the other hand, the performance of
the criteria Mz, ;5 and ;6 shows a considerable improvement for all
sample sizes. Here, the best subsets {1,3,5} and {3,4,5} are chosen
by the stepwise selection procedure with high probabilities as.
opposed to the choice of the subsets {1,3,6} and {3,4,8} in backward
elimination. Note that, while these best subsets {1,3,5} and {3, 4,5}
are selected here by the stepwise selection procedure, there are no
best selections made by the backward elimination érocedure. Further

note that the criteria 75 and 7y become slightly more consistent
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Table 7.13 Subsets retained by the various methods for model 2 when
correlation matrices are used to perform PCA and tihe
stepwise selection procedure 1is used lo select the
variables.

n = 100 n =50 n =25
Method| Subset (Rank)|[%ge | Subset (Rank)[%ge | Subset (Rank) |[%ge

{1,3,5} (BT} 50 {1,3,5} (BT} 56 {{1,3,5} (BT) 48
2 [{3,4,5} (BT) 50 [{3,4,5} (BT) 45 |{(3,4,5}) (BT) 51
{1,2,6} (BD) 1

-~ {1,3,5} (BT) 51 ({1,3,5} (BT) 55 ({1,3,8} (BT) 54
T {3,4,5} (BT) 49 ({3,4,5} (BT) 45 |{3,4,5} (BT) 45
{3,4,6} (GD) 1

- {1,3,8} (BT) 51 {{1,3,5} (BT) 56 [{1,3,8} (BT) 55
T {3,4,5} (BT) 49 (1{3,4,5} (BT) 45 ({3,4,5} (BT) 44

{3,4,6} (GCD) 1

{1,3,6} (GD} 49 |[{1,3,6} (GD) 54 ({1,3,5} (BT) 2
{3,4,8} (GD} 51 ||{3,4,6} (GD) 46 |{1,2,3} (GD) 2

8 {1,3,6} (GD) 51
{2,3,4} (GD) 3

{3,4,6} (GD) 42

{1,3,86} (GD) 52 ({1,2,3} {(GD) 2 |{1,3,5} (BT} 1

s {3,4,6} (CD) 48 ({1,3,8} (GD) 47 j4{1,2,3} (GD) B
{2,3,4} (GD) 1 i{1,3,6} (GD) 45

{3,4,6} (GD) 50 {{2,3,4} (GD) 8

{3,4,6} (GD) 40

than M° when used with the stepwise selection procedure, choosing
the subset {1,3,5} with the highest frequency.

We have noted above that, only the criteria M?, ;5 and ;6 show
a ‘significant’ change in their behaviour when the stepwise
selection procedure is used instead of backward elimination, and
this change occurs for model 2 only. Use of the stepwise selection

procedure yields a considerable improvement in the performance of

-~ ~

M2, 75 and Ws when correlation matrices are used to perform the PCA.

On the other hand, when covariance matrices are used for PCA with
the stepwise selection procedure, the behavieur of M? remains
virtually the same as when the backward elimination procedure is

used to select the variables. However, this time the y-measures
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mainly choose the subsets which are classified as best for PCA using
correlation matrices and third best for PCA using covariance
matrices (see also Tables 7.1 and 7.3). To provide a plausible
explanation for this, we shall use an analytical description of
model 2. Consider the correlation structure within this model (see
Table 4.1} and let pij represent the correlation between the
variables X1 and XJ. Then, as noted in the previous section, for
this model, Py = 0.894, Pog = 0.819, Pos = 0.707 and Peg = 0.985
and ail other pIJ = 0. BSuppose that the backward elimination
procedure is used to select the variables, and as seen before, the
effective dimensionality of the model is three. Hence, the aim is to
choose a plausible subset of three variables to describe the
simulated data adequately. Needless to say, prior to the deletion of
any of the variables, the system contains the entire set
{1,2,3,4,5,6}. Among the correlated pairs of variables, X5 and Xé
form the most correlated pair indicating that one of these variables
can be deleted without losing much information. Hence, at the
initial stage of the backward elimination procedure, X5 or Xs will
be deleted. Our variable selection criteria tend to delete Xg and
retain XB, because X5 is more closely related than Xs to Xz’ and
hence more redundant. Assuming that Xs is deleted from the system,
the original set of variables is reduced to {1,2,3,4,6}. At this
stage, among the variables in the reduced set, the pair X1 and X4 is
the most correlated pair of variables. As a result, either variable
is a candidate for deletion. When covariance matrices are used to
perform PCA, the criteria tend to retain X4 more frequently because
it has a larger variance. However, when correlation matrices are
used for PCA, the criteria tend to retain both variables equally

often, though X1 is retained slightly more frequently. This leads to
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the subset {2,3,4,6} or {1,2,3,8} if X1 or X4 is deleted,
respectively. Among the variables in each of these subsets, Xz and
XB are more closely related than any other pair. The final deletion,
however, will be of X2 since Xs has a larger variance than X2. This
gives the subset {3,4,8} or {1,3,6}.

As noted earlier, the first two stages of the stepwise
selection procedure are exactly the same as the corresponding stages
of backward elimination. For model 2, these stages leave two
variables deleted fram the system. At this stage, the system
contains the variables in the set {2,3,4,6} or the set {1,2,3,8} if
X1 or X4 has been deleted, respectively. The variables Xs and XB are
both X2 plus (different) random disturbances. This suggests that two
variables from the set {2,5,6} are redundant. Intuitively, it seems
preferable to retain Xs because it is more closely related tp both
X2 and XB than the latter variables are to each other. In other
words, Xs can represent both X2 and XS simultanecusly. In fact, it
can be shown that the optimal variable to retain, in the sense of
method Bl described in section 5.2.1, is Xg. Hence, the next stage
of the stepwise selection procedure involves substitution of X2 or
X6 in the set {2,3,4,6} or the set {1,2,3,8} by XE. This proceeds in
the manner described below. The variables Xz and XB form the most
correlated pair in the sets {2,3,4,6} and {1,2,3,6}, and hence
either variable is redundant in the presence of the other and should
be deleted. The deletion of X2 gives rise to the set {3,4,6} or the
set {1,3,6}, while the deletion of Xs yields the set {2,3,4} or the
set {1,2,3}. At this stage, through the forward selection step of
the stepwise procedure, the wvariable XS returns because only one
variable which is highly correlated with XS (i.e., X2 or Xs] is

still present in the system. This gives rise to one of the sets
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{3,4,5.6}, {1,3,5,6}, {2,3,4,5} and {1,2,3,5}. In the first two
sets, the variables Xﬁ and XB are highly correlated, suggesting that
one of these variables can be deleted without losing much
information. For the reason described above, Xs is retained and Xs
is deleted so that the retained subset of variables ig {3,4,5} or
{1,3,5}. Similarly, in the last two sets {2,3,4,5) and {1,2,3,5}, X2
and X5 are highly correlated. Once again, Xg is retained and x2
deleted to give the subset {3,4,5} or {1,3,5}.

Notice that the analytical stepwise selection of variables
described above is based on intuition and the correlation structure
of model 2. Furthermore, by using correlation matrices for PCA to
compute the criteria M?, ;5 and ;B. the correlation structure of
this model is analysed. Hence, the choices of variables using these
criteria are comparable with the choice according to the former
technique. However, the computation of the y-measures takes into
account the correlations between the PCs of the complete data and of
the subset data, and hence the intercorrelations among the original
variables both when correlation and covariance matrices are used to
perform the PCA. Hence, in either case the subset selections made
using these criteria are comparable with the choices according to
the analytical stepwise procedure described above. With respect to
the classification of subsets of variables for PCA using covariance
matrices this shows a slight deterioration in the performance of the
¥~measures. However, it can be argued that, as seen before, the
analytical procedure attempts to reject the most redundant
variables, and since the y-measures mainly choose the same subsets
of variables chosen by the analytical stepwise procedure regardless
of the type of variation matrix used (covariance or correlation),

they should gain favour over the rest of the criteria.

139



On the other hand, the variables in models 1, 3 and 4 are not
as highly intercorrelated as the variables in the group {2,5,6} in
model 2. For example, in model 1, p14 = 0.894, p25 = 0.819, p36.=

0.707 and all other plj = 0. Similarly, in model 3, Py = 0.707, Poy

0.5686, P = 0.819, P = 0.894, P = 0.4863 and all other pi_1 =
0. Hence, at a given stage of the backward elimination procedure,
the importance of a particular variable is not heavily dependent on
the presence of other variables. Thus, when the backward elimination
procedure is used with the selection criteria, essential variables
for models 1, 3 and 4 can be identified satisfactorily.

It seems that, when three or more variables-in the system are
highly correlated among each other, subset selection using the
criteria Mz, ;s and ;s in conjunction with correlation matrices
yields better results for the stepwise selection procedure than for
the backward elimination procedure. On the other hand, when
covariance matrices are used to perform the PCA, the behaviour of
the M criterion remains virtually unaltered when the stepwise
selection procedure is used instead of the backward elimination
procedure, while the performance of the criteria ;5 and ;B slightly
deteriorates. However, in cases where the variables are not highly
intercorrelated, the performance of all the criteria, including &
*

and 8 , is virtually the same for the stepwise selection procedure

as for the backward elimination procedure.

7.2.3 A remark on computational time

Finally, we compare our selection criteria among themselves as
well as with Krzanowski’s (1987) procrustes—M2 criterion on the
basis of the amount of computational time needed to perform a single

analysis under a given set of sampling considerations. First
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consider the computational time needed to implement the criteria
when variable selection is performed using the backward elimination
procedure. Let C(t} denote computer time needed to complete a single
analysis for criterion C. Then using Table 7.4, the computer times
for the various criteria when p = 6 can be ordered as

-~ -~ *

< ¥ <y < § <8

(7.4
(t) a(t) 5(t) (t) ()’ )

for all sample sizes. As noted in section 6.2, the criteria 8 and 6'
are similar except that & uses all the possible distance pairs of
the configurations Y and Y, while 6'l utilizes only the distance
pairs defined by the KNN graph based on the set Y. Intuitively, it
seems reasonable to expect 6:t) to be greater than S(t) because of
the ‘extra’ computational time required to construct the KNN graph.
In fact, this is reflected when p = 6 in Table 7.4. However, only
one KNN graph is constructed to be used in the entire analysis. On
the other hand, as the number of variables p increases, the number
of variables to be deleted also increases. This follows from the
fact that the aim of the analysis is dimensionality reduction.
Consequently, the number of computational operations involving the
calculation of the values of 6' or 3 also increases. This, in turn,
increases the amount of computational time needed to implement both
the criteria & and & . However, this time increases faster for &
than it does for 6' because the computation of the values of &
involves more distance pairs. Hence, for a sufficiently large choice
of the value of p, the ‘extra’ time needed to implement & will
exceed the time needed to construct the KNN graph for 6.. This means
that a(t) will be greater than 6:t] as opposed to a:t) being greater
than auJ when p 1s small. This is evident in Table 7.7, where p =

10.
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Next consider the computational time needed to implement the
criteria when stepwise selection is used to choose subsets of
variables. Using Table 7.12, the computer times for the various
criteria when p = 6 can be ordered as

-~ -~ ™

?n Vo © Y5y © am < B(t)’ (7.5)
for all sample sizes. In the stepwise selection procedure, a larger
number of computational operations involving the calculation of the
values of the various criteria is required than in backward
elimination. Hence, more computational time is needed for the
stepwise selection procedure and using a similar argument about &

»* ]
and § as the one above, a(t) is greater than B(tf

The criteria M?, g and g utilize the corresponding
individual data points in the configurations Y and Y while & and 6.
make use of the corresponding interpoint distances. These interpoint
distances take more time to compute. Furthermore, while there are
only n points in each of the configurations Y and ?, there are
1/2n(n-1) interpoint distances. Hence, in both the backward
elimination and the stepwise selection procedures, the computational

time needed to implement each of the criteria Mz, 75 and 78 is less

than the time needed for & and 6'.

7.3 Conclusions

The results of the Monte Carlo simulation study show, in
general, that all five methods perform satisfactorily when samples
are of large size. However, the performance deteriorates as the
sample size decreases, especially Mz becoming the worst method for

selecting variables in a PCA with small samples. & becomes the best
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method in this case, followed very closely by ;5 and ;s' In fact,
the study shows that, while in some cases ;a and ;5 behave
identically, there 1is a consistent similarity between their
behaviour and that of the criterion &. While in general, the
criterion 6' exhibits the poorest performance in this study, there
is reason to believe {from its derivation) that, like Mz, it could
successfully identify structure-bearing variables for grouped data
as it attempts to preserve ‘local structure'. This however,
obviously needs further investigation. It appears that ;5, ;B and &
are the most suitable methods for our aim to retain subsets of
variables which will preserve the overall multivariate structure of
the data in a PCA. Although none of these three criteria is
uniformly best, & seems to bé the overall ‘best’ choice.

Regarding the optimal sequential approach in selecting subsets
of variables, substitution of the backward elimination procedure
with stepwise selection generally leaves the performance of all the
criteria virtually unaltered. However, if the data are simulated in
such a way that three or more variables are highly intercorrelated,
use of the stepwise selection procedure shows a considerable
improvement in the performance of the criteria Mz, ;s and ;B when
correlation matrices are used to perform the PCA. Hence, in this
case, these criteria are better choices for preserving the overall
multivariate data structure than & and 6.; with ;s and ;6 performing
almost equivalently but slightly better than Mz. On the other hand,
the performance of the y-measures slightly deteriorates when
covariance matrices are used for PCA, the behaviour of the M
criterion is virtually unaltered by using the stepwise elimination

procedure.
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In terms of the amount of computational time needed to
implement the various eriteria, Mz, ¥ and ¥, Seem more practicable
than & and 6*; M being the fastest. However, & and s can also he

used in practice, particularly for small data sets.
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CHAPTER 8
EVALUATION OF THE VARIABLE SELECTION METHCDS ON REAL DATA

8.1 Introduction

The aim of this Chapter is to study the behaviours of the
proposed criteria {;5, ;s’ d and 6'} and the M2-Procrustes criterion
for selecting variables in PCA using real data sets. In a Monte
Carle simulation study in Chapter 7, the propesed criteria above
were considered and compared extensively among each other as well as
with the M2 criterion. The reason for this was that, the currently
available methods for selecting variables in PCA are solely based on
the eigen_analysis of either the covariance or the correlation
matrix, and may therefore lead to unsatisfactory subsets. The Monte
Carlo comparison of these five selection methods was mainly based on
the performances of the subsets they chose. This wés possible
because the simulated data was constructed in such a way that the
constructed variables fell into groups and within which variables
were linear combinations of others, with variables from different
groups being independent. Therefore, not only the ‘true’
dimensionality of the data and hence the number of variables to be
retained were known prior to the variable selection, but alse the
best subsets were known. We argued in Chapter 2, however, that in
real practice the ‘true’ dimensionality of the data is unknown and
hence the need for a good estimator of this dimensionality is
inevitable. We proposed a technique based on bootstrapping for
estimating k, the number of components in PCA (or dimensionality)
and compared it with the cross-validatory scheme of Eastment and
Krzanowski (1982). We have seen from our simulation study and from
the information available in the literature that, although the

latter technique chooses about the right number of components, the
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tendency is for k to be chosen too small. However, the former
technique, based on bootstrapping was shown to be the best choice
for estimating the ‘true’ dimensionality of a given data set.

In real practice, although the dimensionality of the data can
be estimated using elther our proposed bootstrap technique or the
cross-validatory technique of Eastment and Krzanowski (1982) in our
investigation, knowledge of the best subsets of retained variables
is absent. On the other hand, our aim is to choose the subsets of
variables for which the general features of the data from the entire
set of variables are ‘reproduced’ as closely as possible. Hence, in
order to assess the performance of the various selection criteria,
the 2-dimensional as well as 3-dimensional plots (where applicable)
of the principal component ﬁcores from the subset data configuration
are compared with the corresponding plots of the complete data
configuration. The variable subsets for which these plots are
similar can be considered tc be the satisfactory subsets. The
results corresponding to this assessment of the retained subsets of
variables on various data sets considered are presented in section
8.3.1 below. Notice that in this section the k-dimensional plots for
which the subset size is k explain all! of the variation in the
subset data, hence the axes (i.e., PC1 and PC2 in the case of the
2-dimensional plots and PCl, PC2 and PC3 in the case of the
3-dimensional plots) are merely a geometrical rotation of the
original subset variables.

Now, using the assessment of the retained variable subsets
described above corresponds to the requirement that the discarded
variables should be only the redundant ones. There is, however, an
alternative approach to identifying subsets of retained variables so

that the discarded variables are the most redundant. Recall that in
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Multiple Regression with p independent {descriptor) variables there
is an obvious way of choosing a subset of k of these descriptors,
and thls is to choose the subset which maximizes the multiple
correlation of the dependent variable with the k independent
variables (or, equivalently, minimizes the residual mean square). An
extension of this to the analysis of interdependent wvariables, of
which Principal Component Analysis is a special case, is to retain
the set of k variables which maximizes the minimum mueltiple
correlation (say, Rh) between the k selected variables and any of
the p-k discarded ones. Hence, in addition to comparing the plots of
the PC scores of the subset data with the corresponding plots from
the complete data, we also use this approach of maximizing the
minimum multiple correlation to assess the subsets of retained
variables. This study is covered in section 8.3.2. Notice that we
have used a similar approach in the Monte Carlo study of Chapter 7
to assess the subsets of variables chosen by the various selection
criteria for PCA performed using correlation matrices.

Although the performances of our proposed bootstrap technique
for determining the dimensionality and the corresponding
cross-validatory technique of Eastment and Krzanowski (1982) have
been compared extensively in a Monte Carle fashion in Chapte? 4, it
was decided to compare them again here using real data. This is
achieved by comparing the performances of the various variable
selection criteria when used with the choice of the dimensionality
according to Eastment and Krzanowski’s technique, and the
corresponding performances of these criteria when used with the
choice according to the proposed bootstrap technique. Three sets of
real data were obtalned from two sources and these are analysed

below. Each data set is described separately first, and the results
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are discussed later,

8.2 Descriptions of data seis

In order to assess the general usefulness of our proposed
criteria and that of the M°-Procrustes criterion when used to select
variables in PCA, real data which fall into three categories are
used. Each category consists of a single data set. The first
category consists of a small-sized ungrouped data, henceforth
referred to as data 1. This data set contains the monthly employment
figures from 1948-1981 of 16-19 year old male Americans (see page
392 of Andrews and Herzberg (1985)). Here, the twelve months in a
year are treated as variables. The second category consists of
small-sized grouped data, referred to as data 2 while the third
consists of large-sized grouped data, termed data 3. These two
categories of data are based on Venezuelan students who were
financed under a British Council scheme to study English Language
for a year at colleges in north of England. These students were
distributed among ten colleges {(Oldham, Accrington, Burnley,
Lancaster, Cheshire, Reading, Blackpool, Carlett and Lytham) and
their progress was monitored by means of tests administered at the
start (November 1985), in the middle (February 1985) and at the end
{(June 188B) of their courses. Altogether, eight subject units in
English and Spanish were examined. In this case, the students’
scores corresponding to each of these subjects are treated as
variables. Furthermore, in our investigation we consider the dates
on which the tests were administered as the groupings among the
students’ scores. The data set data 2 consists of information on
students from the college Carlett only, while data 3 contains the

information from three colleges, namely, Oldham, Cheshire and
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Carlett. Descriptions of the variables for data 1, data 2 and data 3
together with the corresponding correlation matrices can be found in
appendix A of this Thesis. The category of Large-sized ungrouped
data is not wused in this investigation due to the difficulty
encountered in representing the data using 3-dimensional and
2-dimensional plots of principal component scores with Iabels lto
identify individual data points. In this case the labels may overlap
considerably leading to a totally unreadable plot. In fact, owing to
this difficulty, a feﬁlobservations have been omitted from some of

the plots in section 8.3.1.

8.3 BResults
8.3.1 Evaluation using 3-D and 2-D plots of PC scores

The results of applying the various criteria on the data sets
data 1, data 2 and data 3 are summarized in Figures 8.1 - 8.14. Each
of figures 8.1 - 8.11 consists of two plots of principal component
scores, and in each case the first plot (i.e., Figure a) is the
3~dimensional plot of PC scores for a given set of variables, while
the second plot (Figure b) is the corresponding 2-dimensional plot.
Figures 8.12 - 8.14 consist of only the Z2-dimensional plots, and
this 1s because the the corresponding data set has a ‘true’
dimensionality of 2 according to W, the cross-validatory scheme of
Eastment and Krzanowski (1982) and W, the proposed bootstrap
technique. Note that, in order to determine the ‘true’
dimensionality of the data (k or g) these techniques (W and W) are
used throughout the rest of this investigation. For each data set,
the number of bootstrap samples used to compute the values of the
statistic W is fixed at 1,000. For simplicity, the results presented

here are only those for which the backward elimination procedure is
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used as the sequential procedure to select the variables. Note that,
Since some of the variables have large variances for all three data
sets, 1t is necessary to standardize all the variates in each case
before PCA and variable selection could be performed. Hence, the
results in Figures 8.1 - 8.14 are all based on using the correlation
matrices to perform PCA. These figures show the plots of the various
data sets on the first two and first three PCs before and after
variable selection. The aim is to assess, how well the subsets
selected by the wvarious methods capture the ‘structure’ of the
complete data. In order to do this, the orientation of each
individual data point relative to the orientations of the rest of
the points in the space described by the first two or three PCs of
the subset data is compared with the orientation of the same point
in the space described by the corresponding PCs of the complete
data. If the orientation of the data points in the former space is
similar to their orientation in the latter space, then it can be
argued that the subset data successfully ‘preserves’ the
multivariate structure present in the complete data. Also shown
below each plot is the percentage of variance explained by the plot.

First consider the results based on data 1 which Iis
small-sized and ungrouped. For this data set, W suggests_that 3
components should be retained for adequate representation of the
data (i.e., k = 3) and hence, the optimum number of variables to be
retained is also set equal to 3. The results of applying the various
variable selection criteria on the basis of this choice of k are
summarized in Figures 8.2 - 8.5. On the other hand W's choice for
the value of k is 4, suggesting that the first 4 PCs should be used
to compute each criterion, and hence 4 of the original set of

variables should be retained. We begin by describing the behaviour
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of the variable selection criteria for the former choice of the
value of k. The plots in Figures 8.1a and 8.1b respectively show the
3-dimensional and 2-dimensiocnal representations of the complete data
with all 12 variables, while the plots in Figures 8.2a and 8.2b are
respectively the 3-dimensional and Z2-dimensional representations for
the subset of variables {3,6, 10} selected by the M? criterion. Since
the plot in Figure B8.2a resembles the one in Figure 8.1a in the
manner described above, and similarly the plot in figure 8.2b
resembles the one in Figure 8.1b, it can be argued that the M
criterion selects a subset that satisfactorily preserves the
structure of the complete data. The noticeable discrepancy between
the two plots in each case is that the points on the plots from the
subset data are more ‘compressed’ than those from the full set data.
The plots in Figures 8.3a and 8.3b which are respectively the
3~-dimensional and 2-dimensional representations for the subset
{2,5,6} selected by ;5 show that while this criterion ‘preserves’
the ‘original’ structure (Figures 8.1a and 8.1b} it seems to have
rotated the original structure through an angle of 180° followed by
a reflexion. Notice that, in order to show that data structure
clearly the PCl axis in the plot of Figure &.1a has been reversed.
The criteria ;E and & both chose the subset {2,5,12} whose
3-dimensional and Z-dimensional representations are given in Figures
B.4a and 8.4b, respectively. Here, in addition to original structure
being preserved, a wave-like pattern of the data points is revealed
on the first and fourth quadrants of the 2-dimensional plot. The
sequence of points that defines this wave-like pattern is given by
23, 26, 24, 25, 27, 31, 32, 30, 33, 28, 29, 34. The subset {1,5,11}
chosen by 5 produces a similar plot (Figure 8.5b) except that the

wave-like pattern 1s more prominent. It is apparent from the
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introductory information on the data set at hand (data 1} on page
391 of Andrews and Herzberg (1985) that, unemployment of young
persons typically increases in the summer months, when schools are
not in session, and falls when schools re-open. This is an annual
seasonal pattern. Recalling that the plots above arise from the
subsets {2,5,12} and {1,5,11} each containing the summer month May
(i.e., variable 5) and two winter months, the wave-like pattern in
these plots seems to confirm this seasonal pattern. Hence, the
criteria ;s’ 8 and S. are shown to be excellent choices for
detecting such interesting multivariate patterns.

A feature common to all the plots in Figures 8.1 - 8.5 is the
presence of two clusters of observations. This feature shows more
clearly in the 3-dimensional plots. Thus, while there is no prior
knowledge of the existence gf groupings among the cobservations for
this data, these plots seem to suggest that at least two groups are
present in the data. The first group of observations (data points)
lies mainly on the second and third quadrants of each Z-dimensional
plot and consists of the observations 1-22 corresponding to the
years 1948-1969, while the second group is mostly on the first and
fourth quadrants of each plot and consists of the observations 23-34
from the years 1970-1981. Hence, it seems reasonable to conclude
that, the unemployment rate of 16-19 year old males in the United
States of America (U.S.A.) was at one phase during the years
1948-1969 and at another phase during the years 1870-1981. Note that
this change of pattern is more prominent in Figures 8.4a and 8.4b,
which are respectively the 3-dimensional and Z2-dimensional
representations of the subset chosen by ;5 and &, and in Figures
8.5a and 8.5b which result from & 's choice of the ‘signal’

variables.
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Figure B.la Scatter diagram for data 1 plotted on the first three
PCs computed from all twelve variables. The diagram
accounts for 98.8% of the total variation in the data.
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PCZ

Figure 8.1b Scatter diagram for data 1 plotted on the first two PCs
computed from all twelve variables. The diagram accounts
for 97.5% of the total varialion in the data.
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Figure 8.2a Scatter diagram for data 1 plotted on the first three

PC3

05

PCs computed from variables 3,6 and 10 only. The diagram
accounts for all of the total variation in the subset
data. Note: 5 observations are missing.

-t

[

AP e

158



PC2

Figure 8.2b Scatter diagram for data 1 plotted on the first iwo FCs
computed from variables 3,6 and 10 only. The diagram
accounts for 98.67% of the total variation in the subset
data. Note: 5 observations are missing.
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Figure B.3a Scatter diagram for data 1 plotted on the first three

vC3

10

PCs computed from variables 2,5 and 6 only. The diagram
accounts for all of the total variation in the subset
data. Note: 4 observations are missing.
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PC2

Figure 8.3b Scatter diagram for data 1 plotted on the first two FCs
computed from variables 2,5 and 6 only. The diagram
accounts for 98.3 of the itotal variation in the subset
data. Note: 4 observations are missing.
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Figure 8.4a Scatter diagram for data 1 plotited on the first three
PCs computed from variables 2,5 and 12 only. The diagram
accounts for all of the total variation in the subset

data. Note: 2 observations are missing.
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Figure 8.4b Scatter diagram for data 1 plotted on the first two FCs
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computed from variables 2,5 and 12 only.

The diagram

accounts for 98.1% of the total variation in the subset
data. Note: Z observations are missing.
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Figure 8.%5a Scatter diagram for data 1 plotted on the first three

10

0.5

05

PCs computed from variables 1,5 and 11 only. The diagram
accounts for all of the total variation in the subset
data.
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Figure 8.5b Scatter diagram for data 1 plotted on the first two PCs

computed from variables 1,5 and 11 only.

The diagram

accounts for 98.4% of the total variation in the subset
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Turning to the case where the choice of the number of
components 1s made using the proposed bootstrap technigue W (i.e., k
= 4), first consider the plots in Figures 8.8a and B.6b. These are
respectively the 3-dimensional and 2-dimensional representations for
the variable subset {2,5,7,12} chosen by the Mz-procrustes
criterion. Comparison of these plots with the ones in Figures 8.1a
and 8.1b, respectively, seems to suggest that the criterion M2
preserves the overall structure present among all 12 variables,
However, in addition 'to the structure being preserved, the two
groups of observations identified when the W criterion is used to
choose the value of k are more prominent here. Figures 8.7a and 8.7b
respectively show the best 3-dimensional and 2-dimensional
representations for the subset of variables {(3,5,6,12} selected by
the criteria ;5, ;S and &, while the plots in Figures 8.8a and 8.8b
are respectively the best 3~dimensional and 2-dimensional
representations for the subset {1,5,6,12} chosen by the criterion &.
By comparing each of the 3-dimensional plots above with the plot in
Figure 8.1a (which arises from the entire set of variables), and
each of the 2-dimensional plots with the corresponding plot in
Figure 8.1b, the criteria ;5, ;E, d and 6. are shown to recover the
overall features of the complete data satisfactorily. These criteria
are also shown to identify the two major groups of the data more
prominently here than when W is used to determine the number of
components. Jt seems that the M criterion combined with the choice
of the number of components using the W method yields the most
straight forward representation of the original data (compare Figure
8.2a with Figure 8.1a and Figure 8.2b with Figure 8.1b). ;5 behaves
similarly except that the plots which arise from the original data

in Figures 8.1a and 8.2b seem to have been rotated through an angle
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Figure 8.6a Scatter diagram for data 1 plotted on the first three

PG

10

05

PCs computed from variables 2,5, 7 and 12 only. The
diagram accounts for 99.3% of the total variation in the
subset data. Note: 3 observations are missing.
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Figure 8.6b Scatter diagram for data 1 plotted on the first two PCs
computed from variables 2,5, 7 and 12 only. The diagram
accounts for 97.67%Z of the total variation in the subset
data. Note: 3 observations are missing.
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Figure 8.7a Scatter diagram for data 1 plotted on the first three

PC3

10

.05

PCs computed from variables 3,5, 6 and 12 only. The
diagram accounts for 99.1% of the total variation in the
subset data.
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PCZ

Figure 8.7b Scatter diagram for data 1 ploitted on the first two PCs
computed from variables 3,5, 6 and 12 only. The diagram
accounts for 97.6% of the total variation in the subset

data.
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Figure 8.8a Scatter diagram for data 1 plotted on the first three
PCs computed from variables 1,5, 6 and 12 only. The
diagram accounts for 99.1% of the total variation in the
subset data.

PG

AP S

168



PC2

Figure B.8b Scatter diagram for data 1 plotted on the first two PCs
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of 180° and reflected as described before. When used with the cholce
of the number of components according to W, the other criteria ;s’ ]
and 6. almost exactly reproduce the data. However, the observation
23 seems to have been shifted from its ‘original’ positicn.
Furthermore, other multivariate patterns are revealed here,
including the enhancement of the two groupings of observations
identifiable in the 3-dimensional and 2-dimensional plots of the
complete data. The latter behaviour is also apparent in all the
criteria when used with the choice of the number of components
according to the W method. If we consider the two groupings of
observations described above; group 1, i.e., observations 1-22 is
virtually unaltered by all combinations of the wvarious variable
selection criteria with the choices of the number of components
according to the W and the W methods. On the other hand, group 2,
i.e., observations 23-34 keeps changing with respect to the choice
of W, W and the selection criteria.

Next we consider the results obtained from data 2 which falls
within the small-sized grouped data category. Recall from section
8.2 that the dates November 1985, February 1986 and June 1986 during
which the progress tests were administered are considered as the
‘groups’ for this data set in our investigation. Both the techniques
W and W suggest that the dimensionality of this data set is 3 (i.e.,
k = 3). Figures 8.9a and 8.9b respectively show the best
3-dimensional and 2-dimensional representations of the complete
data, while Figures 8.10a and 8.10b respectively show the
3-dimensional and 2-dimensional representations for the subset
{1,3,8} chosen by the criteria Mz, ;e' 5 and 3. Rotation of the
plot in Figure 8.10a through an angle of 180° followed by a

reflexion yields a picture similar to the plot in Figure 8.9a, while
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Figure 8.9a Scatter diagram for data 2 plotted en the first three

PC3

-1

-2

PCs computed from all eight variables. The diagram
accounts for 90.0Z of the total variation in the data.
Legend: * = November 1985, + = February 1986, o = June
1986.
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PC2

Figure 8.9b Scatter diagram for data 2 plotted on the first two PCs
computed from all eight variables. The diagram accounts
for 82.1% of the total variation in the data. Legend: =+
= November 1985, +« = February 1986, o = June 1986.
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Figure 8.10a Scatter diagram for data 2 plotted on the first three
PCs computed from variables 1,3 and 8 only. The diagram
accounts for all of the total variation in the subset
data. Legend: » = November 1985, + = February 1986, o =
June 1986. Note: 7 observations are missing.
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Figure 8.

PC2

10b Scatter diagram for data 2 plotted on the first two FPCs

computed from variables 1,3 and 8 only. The diagram
accounts for 83.0% of the total variation in the subset
data. Legend: * = November 1985, + = February 1986, o =
June 1986. Note: 7 observations are missing.
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Figure 8.11a Scalter diagram for data 2 plotted on the first three

PC3

~1

FPCs computed from variables 1,7 and 8 only. The diagram
accounts for all of the total variation in the subset
data. Legend: * = November 1986, + = February 1986, o =
June 1986. Note: 5 observations are missing.
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Figure 8.11b Scatter diagram for data 2 plotted on the first two PCs

computed from variables 1,7 and 8 only. The diagram
accounts for 96.8 of the total variation in the subset
data. Legend: * = November 1986, + = February 1986, o =
June 1986. Note: 5 observations are missing.
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the same transformation performed on the plot of Figure 8. 10b yields
a plot comparable to the one in Figure 8.9b. In other words, the
three groupings of observations indicating the different dates
during which the tests were administered are reproduced almost
exactly. In the plots corresponding to the subset data the groups
defined by the dates February 1986 and June 1986 overlap - A feature
present in the plots corresponding to the complete data. This is an
indication that the (group-) structure is recovered very well, in
this regard, by usingl Ma, ;6. 3 or 5‘ as criteria for wvariable
selection. Although the general features of the complete data can be
identified in the plots of Figures 8.11a and 8.11b which arise from
the subset {1,7,8} chosen by the the ;5 criterion (after an
appropriate rotation and reflexion), not only the groups defined by
the dates February 1985 and June 1986 overlap, but also the groups
defined by November 1985 and June 1988 show a considerable overlap.
Hence, for a small sample of the ‘Venezuela data’ . ;5 seems to be a
poor candidate for preserving (group-) structure.

Finally, we consider the results of applying the various
criteria on data 3 which is large and grouped. Once again, both the
techniques W and W suggest the same dimensionality for this data set
and this is 2 (i.e., k = 2). Here, M° chooses the subset {3,8},
while ;5, ;s, 5 and & all choose the subset {2,8}. The best
2-dimensional representation of the complete data is shown in Figure
3.12, while Figures B8.13 and 8.14 show the best 2-dimensional
representations for the subsets (3,8} and (2,8}, respectively. Note
that the plots in Figures 8.13 and 8.14 each explain 100% of the
variation in the subset data, and hence the axes {i.e., PC1 and PC2)
are merely a geometrical rotation of the original variables, Plots

similar to the one in Figure 8.12 can be obtained from a rotation
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PC2

Figure B.12 Scatter diagram for data 3 plotted on the first two FPCs
computed from all eight variables. The diagram accounts
for 79.0% of the total variation in the data. Legend: *
= November 1985, + = February 1986, o = June 1986.
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Figure 8.13 Scalter diagram for data 3 plotted on the first two FCs

computed from variables 3 and 8 only. The diagram
accounts for all of the variation in the subset dafa.
Legend: » = November 1985, + = February 1986, o = June
1986.
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Figure 8.14 Scatter diagram for data 3 plotted on the first two PCs

PCZ

computed from variables 2 and 8 only. The diagram
accounts for all of the variation in the subset data.
Legend: * = November 1985, + = February 1986, o = .June
1986,
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through an angle of 180° followed by a reflexion of each of the
plots in Figures 8.13 and 8.14. Hence, all five criteria (i, ':"s'
;s’ 5 and 8 ) choose subsets of variables which leave the (group-)
structure intact. The plot resulting from appropriate rotation and
reflexion of Figure 8.14 resembles the plot in Figure 8.12 more
closely than the corresponding plot of Figure 8.13. Hence, it seems

*
that any one of the criteria 75, 36, 8 and 8 1is more appropriate

than M? for preserving (group-)} structure, for large-grouped data.

8.3.2 Evaluation using the minimum multiple correlation

In this section we evaluate the performance of the various
variable selection criteria on real data when choice regarding the
best subsets of retained variables is based on maximizing Rm, the
minimum multiple correlation between the k selected varlables and
any of the p-k discarded ones. Computer programs written in GAUSS
(1988) which are similar to programs 11 and 12 in appendix B are
used to compute the multiple correlations for all possible subsets.
These programs are applied to the data sets data 1, data 2 and data
3, and for each data set, R;, the maximized value of Rm and the Rm
values corresponding to the subsets chosen by the various selection
criteria are identified in the program output. The aim is to compare
the variable selection criteria among themselves on the basis of the
extent to which the subsets they retain maximize the minimum
multiple correlation Rm. The results of this operation are
summarized in Tables 8.1a, 8.1b, 8.2 and B.3. Table B.la gives the
results of applying the variable selection criteria on data 1 with
k, the number of components chosen using the W method, while
presented in Table 8.1b are the results based on the same data set

except that here, the choice of k is made using the W method. Tables
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8.2 and 8.3 give the results of the analyses of the data sets data 2
and data 3, respectively. As noted before, for the last two data
sets, use of the W method and the W method lead to the same choice
of k.

First we consider the results based on data 1 which falls
within the small-sized ungrouped data category. As noted before, W
chooses k = 3, while W chooses k = 4 for this data set. Hence, the
number of retained variables is set equal to 3 and 4, respectively.
Comparing the values of the minimum multiple correlations in Table
8.1a shows that & chooses the subset {1,5,11} with the largest R
value, and hence ranks ‘best’ among the selection criteria. The
criteria ;6 and 3 follow very closely, choosing the subset {2,5,12)
whose Rﬁ value is the second ;argest. On the other hand, while the
criteria M and ;s choose satisfactory subsets {3,6,10} and {2,5,6},
respectively, with a reasonably large value of Rh’ thelr performance
is slightly worse than the performances of the other criteria.

When the dimensionality is 4 in Table 8.1b, the criterion &
becomes the ‘best’ choice for selecting variables for data 1; the
choice being of the subset {1,5,6,12} with the largest Rm value. The
criteria ;5, ;6 and 6. are slightly worse in this case, choosing the
subset {3,5,6, 12} whose R,m value is the second largest. Although the
subset {2,5,7,12} chosen by the M° criterion is satisfactory, with
an Rh value larger than 0.9, this criterion is the worst among the
variable selection criteria. While the R'n values corresponding to
the choice of k according to the ¥ method are larger than those
based on the choice of k using W, this is not necessarily an
indication that ¥ is a better method for choosing k than W. This
follows from the fact that the Rh values for k = f+1 will generally

be larger than those for k= t, t =1, 2, ..., etc. Hence, in our
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Table B.la Subsets retained by the various methods for data 1 and
the corresponding values of the minimum multiple
correlation when the dimensionality is determined using W
(i.e., k = 3),

Minimum multiple
Method Retained subset correlation (Rm)
M2 {3,8,10} 0.960
75 {2,5,6)} 0.960
75 {2,5,12} 0.961
5 {2,5,12} 0.961
»*
5 {1,5, 11} G.962
Maximized minimum
multiple . 0.974
correlation (Rm)

Table 8.1b Subsets retained by the various methods for data 1 and
the corresponding values of the wminimum multiple
correlation when the dimensionality is determined using W
{(i.e., k = 4).

Method Retained subset Minimum ?ultiple
correlation (R )
m
M2 {2,5,7, 12} 0.978
75 {3,5,6, 12} 0.885
76 {3,5,6, 12} 0.985
3 {1,5,6,12} 0.986
L}
S {3,5,86, 12} 0.985
Maximized minimum
multiple 0.988
correlation (Rm]
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Table 8.2 Subsets retained by the various methods for data 2 and the
corresponding values of the minimum multiple correlation.
k, the dimensionality is 3.

. Minimum multiple
Method Retained subset correlation (Rm)
M2 {1,3,8} 0.749
. {1,7.8} 0.602
75 {1, 3,8} 0.748
s {1,3,8} 0.749
[ ]
F) {1,3,8} 0.748
Maximized minimum
multiple | 0.802
correlation (Rm)

Table 8.3 Subsets retained by the various methods for data 3 and the
corresponding values of the minimum multiple correlation.
k, the dimensionality is 2.

Method Retained subset Minimum multiple
correlation (Rm)
2
M {3,8} 0.592
L {2,8} 0.542
s {2,8} _ 0.542
8 {2,8} 0.542
*
S {2,8} 0.542
Maximized minimum
multiple : 0.597
correlation (R )
m
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investigation we consider only the earlier comparisons of the
methods W and W in sectlon 8.3.1 based on the 3-dimensional and
2-dimensional plots of principal component scores.

Next we consider the results obtained from data 2 which is
grouped and small-sized. As noted before, both W and W choose k = 3
for this data set. Hence, the number of retained variables is set
equal to 3. For this data set (see Table 8.2}, the criteria Mz. ;s'
3 and 6' all perform equivalently, choosing the same subset {1,3,8}
whose R|I|n value is the cleosest to the maximized minimum multiple
correlation R;. While ;s’s choice of retained variables {1,7,8} is
reasonable, with Rm> 0.7R;, this criterion becomes the worst method
in this case. Notice that we have noted a similar behaviour in
section B8.3.1 above for the assessment of the performance of the
criteria wusing the 3-dimensional and 2-dimensional plots of
principal component scores.

Finally, we consider the results of applying the various
criteria on data 3 which is large and ungrouped. As mentioned
earlier, both the methods W and W lead to the same dimensionality
for this data set and this is 2 (i.e., k = 2). By comparing the Rm
values in Table 8.3, it is shown that, for this data, M2 performs
better than the other methods; its choice being of the subset {3,8}
whose R.In value is the closest to the maximized minimum multiple
correlation R;. The other criteria all choose the subset {2,8} whose

Rm value is also satisfactory, i.e., Rm> O.TR;.

8.4 Conclusions
It has been shown in section 8.3 above that, three previously
published sets of data contain more variables than necessary in the

‘Principal Component’ sense. PCA using fewer variables yields a set
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of results similar to those obtained from a PCA using the entire set
of variables. This is an indication that the variables in the
retained subsets are sufficient for an adequate representation of
the ‘signal’ in the data; the rest being a reflection of the
‘noise’. Also, in the absence of the ‘noise’ variables, interesting
patterns or relationships are enhanced. Hence, only the ‘signal’
variables need to be measured for future experiments.

Furthermore, the proposed criteria ;s’ ;s’ d and 6*, and the
existing PF-procrustes criterion are shown to be suitable for
deciding which variables to retain in order to preserve the general
features of the complete data. The M criterion lidentifies the
structure~bearing variables particularly when there are .groupings

~ -~

among the observations in the data. The proposed criteria LA P o]
and & are also shown to be optimal in this regard. However, in
addition the variables identified by the criteria ;5, d and 6. also
enhance other multivariate patterns present in the complete data.
Since our objective is toc choose those variables which carry
whatever (unknown) multivariate structure that may be present in the
data, these criteria (;B, d and 6‘) are the most suitable choices
for this purpose. Hence, they gain favour over the M2 criterion when
used for variable selection in PCA. The criterion 6' seems to be the
best choice for selecting variables which reveal group-structure as
well as other interesting patterns or relationships.

A comparison between W, the cross-validatory technique of
Eastment and Krzanowski (1982) and W, the proposed Dbootstrap
technique shows that the twe techniques choose the same number of
components for two of the data sets (i.e., data 2 and data 3). When

this choice of the number of components is used with the various

criteria to select variables, all the criteria are shown to choose
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variables which recover group-structure satisfactorily. For data 1,
however, the techniques W and W lead to different choices of the
number of components. All the criteria are shown to choose variables
which preserve the general features of the complete data when used
with the choice according to the W technique. However, the variables
chosen also reveal ‘extra’ multivariate structure such as
group-structure and other interesting patterns which are hidden in
the presence of the ‘noise’ variables in the complete data. Using
the criteria with the choice according to the technique W yields
similar results except that the group-structure identifiable in the
complete data seems more prominent here than when W is used to
choose the number of components. Hence, W seems more suitable as the
criteria for choosing the number of components in this regard.
Notice that the Monte Carle simulation study in Chapter 4 led to the
same conclusion.

Finally, regarding the performance of the criteria on the
basis of the extent to which the subsets they select maximize the
minimum multiple correlation, all the criteria are shown to perform
satisfactorily. However, the results also show that the M2 criterion
performs slightly worse than the proposed criteria in most cases,

although ¥ also exhibits this behaviour in a few cases.
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CHAPTER 9
SUMMARY, CONCLUSIONS AND FUTURE PROSPECTS

The need for methods of selecting important variables for a
Principal Component Analysis (PCA) is largely self-evident. Firstly,
one of the most popular uses of PCA is dimensionalily reduction.
Since the Principal Components (PCs) are linear combinations of the
original variables under the constraint that they are uncorrelated
and ordered in such a way that the fjirst few retain most of the
variation or information in the data, dimensionality reduction can
be easily achieved by using only the first few of these PCs. If the
original data set consists of p variables, and oniy the first few of
the corresponding PCs are needed for adequate representation of the
data, then it can be argued that the true dimensionality of the data
is much less than p; the remaining dimensions being a reflection of
the ‘noise’. This is because it often happens that the investigator
has measured more variables on each sample member than strictly
necessary in an attempt to avoid ignoring essential variables. In
other words, if some of the original variables are highly
intercorrelated, then these variables may be effectively ‘saying the
same thing’ and hence the dimensionality of the data needs to be
reduced. While using only the first few PCs may successfully reduce
the dimensionality of the data without disturbing the overall sample
features, interpreting these PCs in terms of all the original p
variables seems inevitable. Furthermore, inclusion of all the
original variables in the analysis is one of the major causes for
lack of interpretability of the PCs. Moreover, in the presence of
the 'necise’ wvariables, interesting patterns or relationships which
would otherwise be revealed, are less prominent if not completely

hidden. Hence, the selection of ‘important’ variables in PCA becomes
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one of the major aims of the analysis. Secondly, while an extensive
amount of literature is available in the area of variable selection
in the context of Regression Analysis and Discriminant Analysis,
very little seems to have been done in the context of variable
selection with reference to PCA.

Although the major aim of the current research project is
concerned with the selection of variables in PCA, as a lead-in to
this it was decided to carry out a study on the choice of the number
of PCs (say, k) to be used in the selection process. This is the
minimum number of PCs necessary for adequate representation of the
data. As part of this study, we have proposed a new technique for
choosing k based on bootstrapping. There were three major reasons
for this. Firstly, the only techniques which seem to have a formal
statistical justification available in the 1literature are the
cross-validatory techniques and the technique based on Bartlett's
test. However, not only the 1latter technique is based on
distributional assumptions which are often unrealistic, but also it
is based on the eigenvalues of the covariance or correlation matrix.
Hence, the choice of k is unique to the covariance or correlation
matrix used rather than the data at hand. Furthermore, it tends to
retain more PCs than necessary in practice, and hence leaves us with
the choice of only the cross-validatory techniques. Secondly,
although the cross-validatory techniques are less ad hoc than those
based on eigenvalues, cross-validation involves deletion of part of
the data which can lead to choices of k which are sensitive to
sampling error and therefore unreliable, particularly in cases where
sample size is small. Thirdly, not only bootstrapping overcomes the
problems above, but also it has been shown to out-perform
cross-validation and other resampling plans, for example when used

with multivariate methods such as Discriminant Analysis, where it is
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desired to find the best estimator for the error rate of
misclassification.

The proposed method involved finding the bootstrap estimators
{as opposed to the cross-validatory estimators in the case of
Eastment and Krzanowski’s technique} for the error sums of squares
due to not fitting the last p-k PCs, k = 1, 2, ..., etc. A suitable
function of these estimators was then used to find the optimum value
of k.

Given in Chapter 2 of this Thesis was a detailed description
of the variocus techniques based on eigenvalues and those based on
cross-validation for choosing the number of components in PCA and a
review of some comparative studies of these methods that are
avallable in the literature. Chapter 3 then described the proposed
bootstrap based technique for choosing the number of components,
while presented in Chapter 4 were the details of the Monte Carlo
comparison of this new technique with the cross-validatory scheme of
Eastment and Krzanowski (1982). These two techniques are referred to
as the W technique and the W technique, respectively. The data for
this study were simulated using models 1 through 4 of Jolliffe
(1872), who constructed these models in such a way that within each
model, some variables are linear combinations of others except for
random disturbances, and hence are redundant. The constructed
variables make use of randomly generated variates which are
identically and independently (iid) distributed as N(0,1). These new
variables fall into groups and within which the variables are linear
combinations of each other (plus random disturbances), while
variables from different groups are independent, Hence, for each
model, the dimensionality or the number of components needed to
represent the data adequately were known prior to application of the

W technique and the W technique. These two techniques were compared
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on the basis of the percentage of the number of times each technigue
retains the correct (expected) number of compecnents. Two sample
sizes, large and small, were used for the tralning samples analysed
in the simulation study. The aim was to see whether or not the size
of the sample affects the performance of the two techniques.
Furthermore, in the case of the W technique the number of bootstrap
samples used were fixed at two levels, large and small. Here, the
aim was to see whether or not the number of bootstrap samples is a
factor in the performance of the W technique. For each of the
sampling considerations above, both <covariance matrices and
correlation matrices were used for PCA in conjuction with the W
technique and the W technique. The aim was to see whether or not the
type of variation matrix used affects the performance of the two
techniques,

The Monte Carlo study showed that, for choosing the number of
components in PCA, W is on average superior to W, providing the
correct number of components with a very high probability. Although
W provided the correct number of components satisfactorily for large
samples, there was a tendency for the choice of k to be too small.
This feature was more prominent when data sets were of small sample
size. These results were consistent with the earlier studies by
Eastment and Krzanowski (1982) and Krzanowski (1983). In fact, a
similar experience has been reported by Wold (1978), in a limited
Monte Carlo simulation study with the choice of the number of
components according to the statistic R. On the other hand, it was
noted from the simulation study in Chapter 4 that, W generally
chooses the correct number of components with a very high
probability, although there is a slight tendency (much smaller than
in the case of W) for the choice of k to be one component smaller

than necessary for small samples and one component larger than
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necessary for large samples. The tendency for the choice of k to be
too large was seen to be an advantage over its tendency to be too
small, because with the former, all the essential components are
retained, whereas with the latter some of the essential components
may be deleted. The simulation study also showed that for a smgll
number of bootstrap samples, W takes slightly longer to be computed
than W when samples are of small size; and approximately 1.3 times
quicker than W to complete the analysis for large samples. For a
large number of bootstrap samples, W ois generally slower than W.
However, the study also showed that there is very little and in some
cases no improvement in the performance of W due to an increase in
the number of bootstrap samples. Hence, the computational time for W
can be kept at a minimum by using a considerably small number of
bootstrap samples without effectively decreasing its performance.
The study also showed that, there is a very little change in the
performance of the W technique and the W technique due to the type
of variation matrix used for PCA. The advantages of W above, over W
{(and R) led us to strongly recommend it as the criteria for choosing
the number of components in PCA.

‘Chapters 5 - 7 dealt with variable selection in Principal
Component Analysis. As can be seen in the literature, the only
publications which seem to be available in the area of variable
selection with reference to PCA are Jolliffe (1972, 1973, 1988),
McCabe (1984) and Krzanowski (1987). The methods for variable
selection in PCA suggested by Jolliffe (1972, 1973) and McCabe
(1984) are mainly based on Eigen_analysis and they satisfy various
optimality criteria, but they consistently fail to retain the
suitable subsets of the original variables which preserve the
overall features of the complete data. One possible reason for the

failure of Jolliffe’s and McCabe's methods to recover the
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multivariate structure of the complete data is that, they are
concerned with the overall features, either of the complete data (in
the case of Jolliffe (1872, 1973)) or of the subset data (in the
case of McCabe (1884)). Thus, their criteria are based exclusively
on covariance or correlation matrices and their eigenvalues or
eigenvectors. A suitable criterion for preserving the overall
structure present in the entire set of wvariables would involve
comparisons between the configuration which arises from the PCA of
the complete data and that which arises from the PCA of the subset
data. We termed such criteria as measures of Multivariate
Association (MVA). Krzanowski (1987) proposed such a criterion
(termed Mz-procrustes criterion) based on Procrustes Analysis which
attempts to preserve multivariate data structure by preserving
structure among individual data points. While this criterion
successfully identifies the structure-bearing variables, the results
are optimal particularly when groups are present in the data. Hence,
our major aim in the current research project was to utilize the
idea of multivariate association to select subsets of variables
which preserve any (unknown) multivariate structure that may be
present in ihe data. Having reviewed the literature on variable
selection in PCA, we proposed four methods for selecting variable in
Chapter 6 and compared these among themselves as well as with the
M?—procrustes criterion in Chapter 7.

Two of the proposed methods, termed ;5 and ;s were based on
canonical correlations, while the other two, termed & and & were
based on Euclidean distances between individual data points and some
ideas from Graph Theory. The criteria ;5 and ;s chose those subsets
of variables for which functions of the canonical correlations

between the subset configuration and the complete data configuration

are maximal. The c¢riteria & and 6-, on the other hand, chose those

193



subsets of variables for which the discrepancy between corresponding
interpoint-distances in the two configurations is minimized under
Graph-Theoretic constraints.

In order to perform the wvariable selection, each of the
criteria above was incorporated into the backward elimination
procedure and the variables whose omission optimized the criterion
under investigation were deleted from the system in a sequential
manner until the required number of variables was reached. It was
noted that, since k .components may be sufficient to model the
‘signal’ in the data, the remaining p-k dimensions are a reflecticn
of the ‘noise’. Hence, g, the number of variables to retain is set
equal to k. Although the backward elimination procedure was used
throughout the Thesis, it was decided to compare the Monte Carlo
results based on this procedure with those based on the stepwise
selection procedure in Chapter 7. The aim for this was to see
whether or not using the stepwise sele.ct.ion procedure (which is
computationally slower) improves the perfermance of the various
criteria when used for variable selection in PCA.

The data for the Monte Carlo study in Chapter 7 were simulated
using models 1 - 4 of Jolliffe (1972). Note that these were exactly
the same models used to asses the performance of the W technique and
the W technique for choosing the number of components in PCA. As
noted earlier, Jolliffe constructed these models in such a way that
the variables fall into groups within which variables are linear
combinations of others (except for random disturbances) and hence
are redundant, while variables from different groups are
uncorrelated. This way, not only the dimensionality or the number of
components to use with each criterion, and hence the number of
variables to retain were known prior to variable selection, but also

the subsets of variables which satisfactorily define this
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dimensionality were known. In order to conduct the Monte Carlo
study, the size of the sample was fixed at three levels, large,
moderate and small. The aim was to discover any change of pattern in
the behaviour of the various criteria due to sample size. Both the
covariance matrices and the correlation matrices were used for PCA
In conjuction with all the five variable selection criteria Mz, ;5,
;s’ 5 and & to see whether or not the type of variation matrix used
affects their performance.

The Monte Carlo study found that, in general, all the five
variable selection methods perform satisfactorily when samples are
of large size. Furthermore, the methods generally perform better for
correlation matrices used to perform the PCA than for covariance
matrices. However, the performance deteriorates as sample size
decreases, with M being the_w0rst method for selecting variables in
PCA when samples are of small size. & becomes the best method in
this case, followed very closely by ;5 and ;a' In fact, the study
showed that, while in some cases ;5 and ;e behave identically, there
is a consistent similarity between their behaviour and that of the
criterion 8. While in general, the criterion 6' showed the poorest
performance, there is reason to believe (from its derivation) that,
like Mz, it could successfully identify structure-bearing variables
for grouped data as it attempts to preserve ‘local structure’. This
however, obviously needs further investigation. It seemed that ;5,
;a and 8 are the most suitable methods for our aim to select subsets
of variables which will preserve the overall multivariate structure
of the data in a PCA. Although none of these three methods was
uniformly the best, & may be recommended as the overall ‘best’
choice.

Regarding the optimal sequential approach in selecting subsets

of variables, the study showed that substitution of the backward
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elimination procedure with stepwise selection generally leaves the
performance of all the criteria unaltered. However, if the data are
simulated in such a way that three or more variables are highly
intercorrelated, use of the stepwise selection procedure showed a
considerable improvement in the performance of ;5, ;a and M2 when
correlation matrices were used to perform the PCA. Hence, in this
case, these criteria were better choices for preserving the overall
multivariate data structure than 8 and 5‘; with ;5 and ;B performing
almost equivalently but better than M2. On the other hand, when
covariance matrices were used to perform the PCA, the performance of
M was virtually the same as when the backward elimination procedure
was used to select the variables, while the performance of the
y—-measures was slightly worse.

In terms of the amount of computational time needed to
implement the various criteria, Mz, ;5' and ;6 were shown to be more
practicable than 3 and 6-, and Mz was the fastest. However, it was
also seen that & and & can also be used in practice, particularly
for small data sets.

Although the conclusions from our simulation studies seem to
be prominent and clear, the behaviour of the W technique for
choosing k, the number of components and the various variable
selection methods should be confirmed by further wide-spread
studies. A further study on the behaviour of W could consider
different types of structure for the covariance and correlation
matrices, for example, with variables having identical or different
variances and correlation coefficients. Incorporating such structure
into simulated data would cast some 1light on the sampling
distribution of ¥ and possibly lead to setting up a formal
significance test to decide on k. There are two sources of

variability to be considered in constructing such a distribution,
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namely the variability due to different sample covariance matrices
for a fixed population covariance matrix, and the variability due to
the fact that a fixed sample covariance matrix can result from
different data matrices. For each source of variability, there is a
large number of parameters that can be varied, such as the sample
size, the number of variables, and particularly, the structure of
the covariance matrix.

In the current research project, only the ‘ordinary’ bootstrap
methodology was considered in computing the statistic W for choosing
k. Future investigations could make use of one of the recent
developments, the balanced bootstrap. Suppose we wish to draw b
bootstrap samples. In the ‘ordinary’ bootstrap, each datum X (i =
1, 2, ..., n) may not appear equally often in the aggregate of all b
bootstrap samples. The ‘balanced bootstrapping’ attempts to correct
this deficiency, and has been shown to have the effect of reducing
the probable error in the wvariance due to Dbootstrapping.
Furthermore, the balanced bootstrap has been shown to perform better
than the ‘ordinary’ bootstrap when used with multivariate methods
such as Discriminant Analysis, where it is desired to find the best
estimator for the error rate of @misclassification. Further
discussions of the balanced bootstrap can be found in Gleason
(1988}, Graham et al. (1990) and Hall (1990a, 19390b).

A further study on the varicus criteria for variable selection
in PCA could involve incorporating ‘extra’ multivariate structure
into models similar to those of Jolliffe (1972), for example, curve
patterns, group-siructure, and so on. This would be an attempt to
further confirm that the criteria, particularly the proposed
criteria, choose subsets of the original variables which will
preserve whatever unknown multivariate structure that may be present

in the data. Certainly, further investigation on the criterion 6. is
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needed to confirm our suspicion that, like M2, this criterion could
be robust towards preserving group-structure.

Finally, the application of the techniques W and W for
choosing the number of components and the various criteria for
varlable selection to several different real data sets was made in
Chapter 8. These analyses confirmed the conclusions made from the
Monte Carlo simulation study, that the wvarious variable selection
criteria choose subsets of variables to preserve the overall
features of the complete data. When used with the choice of k
according to W, the criteria ;5, ;s' d and 5‘i selected subsets for
which interesting multivariate patterns other than group-structure
were revealed for one of the data sets. When used with the choice of
k according to W, all the criteria including M’ chose variable
subsets for which group-structure was enhanced. This  has
implications for other multivariate techniques such as Discriminant
Analysis, Cluster Analysis and Projection Pursuit. The objective in
Discriminant Analysis is to classify future individuals into known
groups, while 1in Cluster Analysis and Projection Pursuit the
objective is to find groups or outliers in the data. In Discriminant
Analysis, the practitioner is often interested in choosing subsets
of the original wvariables for which the error rate of
misclassification is minimal, while in Cluster Analysis, interest is
often placed in those variables which can be used to distinguish
between clusters. Hence, the approach of the present study may be
contrasted with these selection exercises. However, our objective in
the current research project was to identify subsets of variables
which carry whatever unknown structure that may be present in the
data, and in an attempt to address this problem we have proposed
several highly-promising criteria for wvariable selection in PCA

which seem to be excellent alternatives to Krzanowski’s (19887)

198



Nﬁ-procrustes criterion. Furthermore, as indicated in this Chapter,
there is an overwhelming scope for further investigation of the
proposed methods and criteria together with some new ideas in the

area of variable selection in Principal Component Analysis.
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APPENDIX A

Listed in this Appendix are the lists of variables of the data
sets described in Chapter 8, together with their covariance and

correlation matrices.

Data 1: U.S.A, 16-19 year o0ld male unemployment data

Measurements of monthly unemployment (1948-1881)

X1 : January
X2 : February

X3 : March
X4 : April
X5 : May
X6 : June
X7 July
X8 : August

X9 : September
X10 : October
X11 : November
X12 : December

Covariance matrix

x 10
X1 X2 X3 X4

X1 B62277.0588 62742. 9964 58452. 9002 53604. 3262
X2 62742.9964 64672. 4323 59810. 9519 54538.0180
X3 58452, 9002 59810.9519 56719.3191 51983. 4492
X4 53604. 3262 54538. 0160 51983. 4492 49043. 0018
X5 47156, 8485 47921.0758 458897. 3030 44007. 3030
X6 66157. 1587 66941. 34786 64892. 7629 61649. 3013
X7 65597.8324 66838, 2861 63800. 2531 59785. 1480
X8 56048. 2014 57095. 2968 54305, 7950 50668. 5936
X9 56433. 8841 §7635. 2077 54435. 4510 50480. 8608
X10 §7155. 7398 57947.5553 54858, 7887 51089.2317
X11 61568. 1979 62633. 1533 59093. 6257 54790.5187
X12 57656. 8467 58467. 2540 55378. 8699 51416.6595
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X1

X3
X4
X5
X6

X8
X9
X10
X11
X12

X1

X3
X4
X5
X6

X8
X9
X10
X11
X1z

X5

47156. 8485
47921. 0758
45897. 3030
44007. 3030
42118. 2273
56827.5152
B3617.3485
45635. 8636
44976. 5606
45479. 9242
48785. 0000
45428. 9845

X9

568433. 8841
§7635. 2077
54435. 4510
50480. 9608
44978. 5606
B65062. 7665
64750.5481
54136.0169
55187. 3628
55980. 0989
60066, 9216
56387.1114

Correlation matrix

X1

X3
X4
X5
X6

X8
X9
X10
X11
X12

OO0 O00000OQ00 =

X1

. 0000
. 9886
. 9835
. 9699
. 9207
. 8060
.9378
.9598
. 9626
. 9484
. 9526
. 9463

joNeNeloelollollolNollolloll e

. 9886
. 0000
. 9875
. 9684
.9182
. 8986
. 9376
. 9585
. 9647
. 9446
. 9509
. 9422

X6

B6157.
B6941.
64892.
61649.
568827.
85620.
78376.
B65552.
B50B62.
BEO36.
70850,
B6249.

1587
3476
7629
3013
5152
1533
4278
9519
7665
8592
6328
3102

X10

57185.
57947.
54858.
. 2317
45478,

51088

BE936
66647

51754

7398
5553
7897

9242

.8592
.2184
55408.
55989,
58191.
. 0998
58108.

OCO000O0ODOO0OO—OO

2112
0989
7763

8064

X3

.9835
. 8875
. 0000
. 9856
. 9390
.9312
. 9557
. 9745
. 9730
. 9549
. 89580
. 9530

201

65597.
66838.
£63800.
59795,
§3617.
T9376.
78573.
64484,
64750.
66647.
70364.
66141.

X1

61569.
62633.
539083.
54780
48785.
70950.
70364.
58850.
60066.
61754,
67080.
62485,

X4

. 9689
. 9684
. 9856
. 0000
. 9683
. 9514
. 9633
. 9778
. 8703
. 8563
. 8553
. 8515

COO0OCOCOO~RO0O0O0O

8324
2861
2531
1480
3485
4278
4768
2219
5481
2184
5686
6961

1

1979
1533
6257

.5187

0000
6328
5686
2781
8216
0998
4920
8038

OO0 COCOO=000O0

X8

56048.
57095,
54308,
50668.
45635,
65552.
64484.
54752.
54136.
55408.
58850.
55215.

X1

57656.
58467.
55378.
51416.
45428.
66249.
66141.
55215.
56387.
58109.
B2485.
B58539.

X5

. 8207
.9182
.9380
. 9683
.0000
. 9463
. 9320
.8503
.9329
.9186
.9178
.8072

2014
2968
7950
5936
BEB36
9519
2219
9207
0168
2112
2781
7620

2

8467
2540
8688
6585
9849
3102
6961
7620
1114
8064
BO3S
6800

X6

. 9060
. 89986
. 9312
.9514
. 9463
. 0000
. 9678
.8574
. 9465
. 9483
. 9362
.9279

OO0 O0O0OO0O=L,0O0O0O000



X1

X3
X4
X5
X6

X8
X10

X11
X12

. 9378
. 9376
. 9557
.8B633
. 8320
. 98678
. 0000
. 8831
. 8833
. 9856
. 9692
. 9670

O0O0OC0COrLr 000000

COO0O0Or OO0 0OOOQO

X8

. 9598
. 9585
.8745
L9778
. 9503
.9574
. 9831
. 0000
. 9848
.8816
.9711
.9671

OQO 00000000

. 9626
. 9647
. 9730
. 9703
. 9329
. 9465
. 9833
. 5848
. 0000
. 8880
.8872
. 89837

OO0, 000000000

X10

. 9494
. 8446
. 8548
. 9563
. 8186
. 8483
. 9858
. 9816
. 9880
. 0000
. 9884
.9872

Data 2 and data 3: Venezuela dala

X111

. 9526
. 8509
.8580
. 8553
.8178
. 9483
.8692
L9711
.9872
. 9884
. 0000
. 8887

O O0OO0OO0OQOODOODO0OO0O

X12

. 9489
.9422
.9530
.9515
.9072
. 9279
. 9670
.9671
. 9837
.8872
. 9887
. 0000

P O0O0000Q0CO0O0O00QOO0C

Measurements of English subject units on Venezuela students

X1 :
X2 :
X3 :
X4 :
X5 :
X6 :
X7
X8 :

Comprehensive score
Essay score
Cloze score, with acceptable alternatives (‘acceptable’)
Cloze score, alternatives not accepted (‘exact’)
Structure test score
Dictation test score

Spanish cloze score (‘acceptable’)

Spanish cloze score ( ‘'exact’)

Data 2: College Carlett only

Covariance matrix

X1

X3
X4
X5
X6

X3

o

=)
O -3 00 00O

X1

. 8097
.2713
. 6883
.5324
. 5243
. 2408
. 5526
. 3968

24

16.
13.
23,
24.

X2

L2713
.6208
1700
1147
5563
B104
. 9648
. 0061

4.
16.
. 4008
12.
16.
18.
.9474
. 6215

16

X3

6883
1700

3381
4575
7955

X4

4.5324
13. 1147
12. 3381
10. 1957
14. 4055
16.0310

8.0439

5.6296

202

8.
23.
16.
14,
32.
27.
10.

X5

5243
5553
4575
4055
6055
1856
2982
. 8393

11.
24,
18.
16.
27.
43.
16.
10.

X6

2409
8104
7955
0310
1856
9447
0614
7794

bt b
WMo

. 55286
. 9649
.9474
. 0438
. 2982
.0614 10.
.3860 13.
.8211 15,

qgqumom

. 3968
. 0061
.6215
.6296
. 9383

7794
8211
6923



Correlaticn matrix

X1

X3
X4
X5
X6

X8

COO0OOC OO0

X1

. 0000
. 5070
. 3521
. 4317
.4541
.5158
. 58586
.4911

[sJeoNoNeNallal el

X2

. 5070
. 0000
. 8047
. 8278
.8314
. 7543
.5120
. 3058

COO0OO0OCr0QO

.3521
. 8047
. 0000
.g8541
L7117
.T374
. 5632
. 3504

O00CO L0000

X4

. 4317
.8278
. 9541
. 0000
. 7901
. 7574
.6422
. 4451

OO0 00C00Q

X5

.4541
.B314
LT117
. 7801
. 0600
. 7182
. 4598
. 26256

[=Ral leRolaNeNo

X6

. 5158
. 7543
L7374
L1574
L7182
. 0000
.B177
. 4108

Data 3: Colleges Oldham, Cheshire and Carlett

Covariance matrix

X1

X3
X4
X5
X6

X8

[y
QOO MmW

—_

X1

.2517
. 9566
. 0842
.2434
. 9524
. 6967
. 6549
. 4451

B

14

23

X2

. 9566
23.
. 0500
10.
22.
. 0024
B.
5.

o721

1826
0160

9755
8757

Correlation matrix

X1

X3
X4
X5
X6

8

QOO0 00

X1

. 0000
.3978
.5379
. 5483
L4722
. 4768
.4830
.4794

COO0O0O0OO0OmO

X2

.3978
. 0000
. 7085
.B7T7
. 7917
. 7107
. 4999
. 3312

B.
14.
17.
12.
17.
18.
. 5208
. 4921

7

OO0OO0OO0OO0O~rOC0OC

X3

042
0500
04389
2582
5306
2268

.5379
. 7085
. 0000
. 8494
. 7334
.6911
.6169
. 4813

6.
10.
12.
. 7835
12.
14,

7.
.T790

CO0O0O~,QODOQ

203

X4

2434
1826
2595

9875

3727
1668

Xa

. 5483
.B777
. 9484
. 0000
L7172
.6819
.6129
. 5002

8.
22.
17.
12,
33.
27.
10.
. 3064

COoOO0O-—-000O0O

X5

8524
0160
5306
9875
5188
4200
8230

X5

L4722
. 7817
. 7334
L7172
. 0000
. 7028
. 5047
. 3417

11.
23.
. 2288
14.
27,
45.
12.
7.

19

OO, O0O0CO0O0QOO

X6

€967
0024

3727
4200
4077
8615
4007

X6

. 4768
. 7107
.6911
.B8B19
. 7028
. 0000
.5106
. 2974

O 0O0O0O0OCOOQ

~N oM

OrrO0OQ0O0OCOO0O

. 5856
.5120
. 5632
.6422
. 4598
.B6177
. 0000
. 8959

. 6549
. 97586
. 5208
. 1668
10.
12.
13.
12.

9230
8615
9749
2903

. 4890
. 4989
.B6169
.6129
. 5047
.5108
. 0000
.8901

= 0000000

WN~N~N~N;mom

—

P O0O0OOC0O00O0

L4911
.3058
.3504
. 4451
. 2626
. 4105
. 8959
-0000

X8

. 4451
. 8757
. 4921
L7790
. 3064
. 4007
. 2903
.6418

X8

.47394
.3312
. 4913
. 5002
. 3417
L2974
. 8901
.Q000



APPENDIX B

The various computer programs corresponding to the techniques
discussed in this thesis were written in the matrix language
programming software GAUSS (1988), and the lists of command
statements for these programs are located in the pocket at the back
of the thesis. Also presented are the lists of command statements
for the GAUSS programs used to conduct wvarious other studies
esgential to the thesis, for example, the program used to correct
Jolliffe’'s (1972) classification of variable subsets for model 1 - 4

described in Table 4.1.

204



REFERENCES

Anderson, T.W. (1958). An Introduction to Multivariale Statistical
Analysis. John Wiley and Sons, Inc., New York. '

Andrews, D.F., and Herzberg, A.M. (1985)., Data: A Collection of
Problems from Many Fields for the Siudenit and Research Worker.
Springer-Verlag, New York.

Bartlett, M.S. (1950). Tests of Significance in Factor Analysis.
British Journal of Psychology, Statistics Section, 3, 77-85.

Beale, E.M.L., Kendall, M.G. and Mann, D.W. (1967). Discarding
Variables in Multlyarite Analysis. Biometrika, 54, 357-366.

Bolch, B.W. and Huang, C.J. (1874). Multivariate Statistical Methods
for Business and Economics. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey.

Bose, A. {(1988). Edgeworth Correction by Bootstrap in Autoregres-
sions. The Annals of Statistics, 16, 1709-1722.

Brook, R.J. and Arnold, G.C. (1985). Applied Regression Analysis and
Experimental Design. New York: Marcel Dekker, Inc.

Bunch, J.R. and Nielsen, C.P. (1978). Updating the Singular Value
Decomposition. Numerische Mathematik, 31, 111-129.

Bunch, J.R., Nielsen, C.P. and Sorensen, D.C. (1978). Rank One
Modification of the Eigenproblem. Numerische Mathematik, 31,
31-48.

Bunke, 0., and Droge, B. (1984). Bootstrap and Cross-Validation
Estimates of the Prediction Error for Linear Regression Models.
The Annals of Statisties, 12, 1400-1424.

Campbell, N.A. and Atchley, W.R. (1981}. The Geometry of Canonical
Variate Analysis. Systimatic Zoology, 30, 268-280.

Cattell, R.B. (1866). The Scree Test for the Number of Factors.
Journal of Multivariate Behavioural Research, 1, 245-278.

Chatfield, C., and Collins, A.J. {1988)}. Introduction to
Multivariate Analysis. Chapman and Hall, London.

Cohen, J. (1982). Set Correlation as a General Multivariate
Data-Analytic Method. Multivariate Behavioural Research, 17,
301-341.

Costanza, M.C., and Afifi, A.A. (1979). Comparison of Stopping Rules
in Forward Stepwise Discriminant Analysis. Journal of the
American Statistical Association, 74, 777-785.

Coxhead, P. (1974). Measuring the Relationship Between two Sets of

Variables. British Journal of Mathematical and Statistical
Fsychology, 27, 205-212.

205



Cramer, E.M. and Nicewander, W.A. (1979). Some Symmetric, Invariant
Measures of Multivariate Association. Psychometrika, 44, 43-54.

Daudin, J.J. (1988). Selecticn of Variables in Mixed-Variable
Discriminant Analysis. Biometrika, 42, 473-481.

De Wet, T., and Van Wyk, J.W.J. (1986). Bootstrap Confidence
Intervals for Regression Coefficients When the Residuals Are
Dependent. Journal of Statistical Computation and Simulatjon,
23, 317-327.

Dillon, W.R., and Goldstein, M. (1984). Multivariate Analysis:
Methods and Applications. John Wiley and Sons, Inc., New York.

Dolker, M., Halperin, S. and Divgi, D.R. (1882). Problem With
Bootstrapping Pearson Correlations in Very Small Bivariate
Samples. Psychometrika, 47, 529-8530.

Draper, N.R. and Smith, H. (1966)}. Applied Regression Analysis. New
York: Wiley.

Dunteman, G.H. (1989). Principal Component  Analysis. Sage
Publications, Inc., California.

Eastment, H.T. and Krzanowski, W.J. (1982). Cross-Validatory Choice
of the Number of Principal Components from a PFrincipal Component
Analysis. Technometrics, 24, 73-77.

Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife.
The Annals of Statistics, 7, 1-26.

Efron, B. (1981}. Nonparametric Estimates of Standard Error: the
Jackknife, the Bootstrap and Other Methods. Biometrika, 68,
589-599.

Efron, B. (1982). The Jackknife, The Boolstrap and Other Resampling
Plans, SIAM-CBMS Monograph 38. Philadelphia: S.I.A. M.

Efron, B. (1885). Bootstrap Confidence Intervals for a Class of
Parametric Problems. Biometrika, 72, 45-58.

Efron, B. (1990). More Efficient Bootstrap Computations. Journal of
the American Statistical Association, 85, 79-89.

Efron, B. and Gong, G. (1983). A Leisurely Look at the Bootstrap,
the Jackknife and Cross-Validation. The American Statistician,
37, 36-48.

Efron, B. and Tibshirani, R. (1986). Bootstrap Methods for Standard
Errors, Confidence Intervals, and Other Measures of Statistical
Accuracy. Statistical Science, 1, 54-77.

Fisher, N. I., and Hall, P. (1989). Bootstrap Confidence Regions for

Directional Data. Journal of the American Statistical
Association, 84, 996-1002.

206



Fisher, N.I., and Hall, P. (1990). Bootstrap Algorithms for Small
Samples. Unpublished Manuscript.

Fisher, R.A. (1936). The Use of Multiple Measurements in Taxonomic
Problems. The Annals of Eugenics, 7, 179-188,

Freedman, D. (1981). Bootstrapping Regression Models. The Annals of
Statistics, 89, 1218-1228.

Freedman, D.A. and Peters, S.C. (1984). Bootstrapping a Regression
Equation: Some Empirical Results. Journal of the American
Statistical Asscciation, 79, 97-106.

Friedman, J.H. and Rafsky, L.C. (1979). Multivariate Generalizations
of the Wald-Wolfowitz and Smirnov Two-Sample Tests. The Annals
of Statistics, 7, B897-717.

Friedman, J.H. and Rafsky, L.C. (1983). Graph-~Theoretic Measures of
Multivariate Association and Prediction. The Annals of
Statistics, 11, 377-381.

Furnival, G. and Wilson, R. (1974). Regression by Leaps and Bounds.
Technometrics, 16, 483-511.

Gabriel, K.R. (1978). Least Squares Approximation of Matrices by
Additive and Multiplicative Models. Journal of the Royal
Statistical Society B, 40, 186-196.

Ganeshanandam, 5. (1987). Variable Selection in Two-Group
Discriminant Analysis Using The Linear Discriminant Function.
Unpublish PhD. thesis, University of Reading, UK.

Ganeshanandam, S. and Krzanowski, W.J. (1889). On Selecting
Variables and Assessing Their Performance in Discriminant
Analysis. Australian Journal of Statistics vol 3, 31, 433-447.

GAUSS (1988). The GAUSS System. Version 2.0. Aptech Systems, Inc.
Kent, Washington.

Gittins, R. (1985). Canonical Analysis. Springer-Verlag Berlin
Heidelberg, Tokyo.

Gleason, J. R. (1888). Algorithm for Balanced Bootstrap Simulation.
The American Statistician, 42, 263-265.

Gong, G. (1886). Cross-Validation, the Jackknife, and the Bootstrap:
Excess Error Estimation in Forward Logistic Regression. Journal
of the American Statistical Association, 81, 108-113.

Gower, J.C. (1966). Some Distance Properties of Latent Root and
Vector Methods Used in Multivariate Analysis. Biometrika, 53,
325-338.

Gower, J.C. (1971). Statistical Methods of Comparing Different
Multivariate Analyses of the Same Data. In Mathematics in the
Archaeological and Historical Sciences (F.R. Hodson, D.G.
Kendall and P. Tautu, eds}, pp. 138-149. Edinbugh: University
Press.

207



Gower, J.C. (1975). Generalized Procrustes Analysis. Psychometrika,
40, 33-51.

Good, I.J. (1869). Some applications of the Singular Value
Decomposition of a matrix. Technometrics, 11, 823-831.

Graham, R.L., Hinkley, D.V., John P.W.M. and Shi, S. (1890).
Balanced Design of Bootstrap Simulations. Journal of the Royal
Statistical Society, Series B, 52, 185-202.

Green, B.F. [(1952). The Orthogonal Approximation of an 0b11due
Structure in Factor Analysis. Psychometrika, 17, 423-440.

Hall, P. (1980a). Performance of Bootstrap Balanced Resampling in
Distribution Function and Quantile Problems. Probability Theory
and Related Fields.

Hall, P. (1990b}. Balanced Importance Resampling for the Bootstrap.
Canberra Statistics Technical Report, CSTR-022-90, SMS-054-80.

Hall, P., Martin, M.A. and Schucany, W.R. {1989). Better
Nenparametric Bootstrap Confidence Intervals for the Correlation
Coefficient. Journal of Statistical Compution and Simulation,
33, 161-172.

Hall, P. and Hart, J.D. (1990). Bootstrap Test for Difference
Between Means in Nonparametric Regression. Journal of the
American Statistical Association, 85, 1039-1049.

Hardle, W. and Bowman, A. (1988). Bootstrapping in Nonparametric
Regression: Local Adaptive Smoothing and Confidence Bands.
Journal of American Statistical Association, 83, 102-110.

Hardle, W. and Marron, J.S. (1990). Semiparametric Comparison of
Regression Curves. The Annals of Statistics, 18, B63-89.

Hocking, R.R. (1878). The Analysis and Selection of Variables in
Linear Regression. Bieometrics, 32, 1-50.

Hotelling, H. (1936). Relations Between Two Sets of Variates.
Biometrika, 28, 57-71.

Hotelling, H. (1857). The relations of the Newer Multivariate
Statistical Methods to Factor Analysis. British Journal of
Statistical Psychology, 10, B69-79.

Hurley, J.R. and Cattell, R.B. (1862). Producing Direct Rotation to
Test a Hypothesized Factor Structure. Behavioural Science, 7,

258-262.

Jeffers, J.N.R. {1867). Two Case Studies in the Application of
Principal Component Analysis. Applied Statistics, 1B, 225-236.

Jolliffe, I.T. (1870). Redundant Variables in Multivariate Analysis.
Unpublished PhD. thesis, University of Sussex.

Jolliffe, I.T. (1872}. Discarding Variables in a Principal Component
Analysis, I: Artificial Data. Applied Statistics, 21, 160-173.

208



Jolliffe, I.T. (1973). Discarding Variables in a Principal Component
Analysis, II: Real Data. Applied Statistics, 22, 21-31.

Jolliffe, 1.T. (1986). Principal Component Analysis. Springer-
Verlag, New York.

Knapp, T.R. (1978). Canonical Correlation Analysis: A General
Parametric Significance-Testing System. Psychological Bullelin,
85, 410-41B.

Krishnaiah, P.R. (1982). Selection of Variables Under Regression
Models. Handbook of Statistics, vol. 2 (P.R. Krishnaiah and I.N.
Kanal, eds.) pp. B0S5-820. North Holland Publishing Company.

Krzanowski, W.J. (1971). A Comparison of Some Distance Measures
Applicable to Multinomial Data, Using a Rotational Fit
Technique. Biometrics, 27, 1062-1068.

Krzanowski, W.J. (1979). Between-Group Compariscen of Principal
Components. Journal of the American Statistical Association, 74,
703-707.

Krzanowski, W.J. {1882). Between-Group Comparison of Principal
Components - Some Sampling Results. Journal of Statistical
Computation and Simulation, 15, 141-154.

Krzanowski, W.J. (1983). Cross-Validatory Choice in Principal
Component  Analysis: Some  Sampling Results. Journal of
Statistical Computation and Simulation, 18, 289-314.

Krzanowski, W.J. {1987). Variable Selection to Preserve Multivariate
Data Structure, Using Principal Components. Applied Statistics,
36, 22-33.

Krzanowski, W.J. (18988). Principles of Multivariate Analysis: A
User’s Perspective. Oxford University Press, New York.

Levine, M.S. (1977). Canonical Analysis and Factor Comparison. Sage
Publications, Inc., Carlifornia.

Lunneborg, C.E. (1985). Estimating the Correlation Coefficient: The
Bootstrap Approach. Psychological Bulletin, 98, 209-215.

Mammen, E. (1989). Asymptotic With Increasing Dimension for Robust
Regression With Application to the Bootstrap. Annals of
Statistics, 17, 382-400.

Mandel, J. (1972). Principal Components, Analysis of Variance and
Data structure. Statistica Neerlandica, 26, 119-129.

Mandel, J. (1882). Use of the Singular Value Decomposition in
Regression Analysis. The American Statistician, 38, 15-24.

Mardia, K.V., Kent, J.T. and Bibby, J.M. (1979)., Multivariate
Analysis. Academic Press, London.

McCabe, G.P. (1884). Principal Variables. Technometrics, 26,
137-144.

209



McKay, R.J. (1878). Simultaneous Procedures in Discriminant Analysis
Involving Two Groups. Technometrics, 18, 47-53.

McKay, R.J. (1977). Variable Selection in Multivariate Regression:
An Application of Simultaneous Test Procedures. Journal of the
Royal Statistical Society, Ser., B, 39, 371-380.

McKay, R.J. (1979}. The Adequacy of Variable Subsets in Multivariate
Regression. Technometrics, 21, 475-478.

McKay, R.J. and Campbell, N.A. (1982a). Variable Selection
Techniques in Discriminant Analysis. 1. Description. British
Journal of Mathematical and Statistical Psychology, 35, 1-29.

McKay, R.J. and Campbell, N.A. (1982b). Variable Selection
Techniques in Discriminant Analysis. II. Allocation. British
Journal of Mathematical and Statistical Psychology, 35, 30-41.

McLachlan, G.J. (1979). A Criterion for Selecting Variables for the
Linear Discriminant Function. Biometrics, 32, 529-534,

McLachlan, G.J. (1980). On the Relationship Between the F Test and
the Overall Error Rate for Variable Selection in Two-Group
Diseriminant Analysis. Biometrics, 3B, 501-510.

Mclachlan, G.J. (1987). On Bootstrapping the Likelihood Ratio Test
Statistic for the Number of Components in a Normal Mixture.
Applied Statistics, 36, 318-324.

McReynolds, W.0. (1970). Characterization of Some Liguid Phases.
Journal of Chromatographical Sciences, 8, B85-691.

Mosier, C.I. (1939). Determining a Simple Structure When Loadings
for Certain Tests are Known. Psychometrika, 4, 149-162.

Muller, K.E. (1981). Relationships Between Redundancy Analysis,
Cancnical Correlation, and Multivariate Regression.
Pychometrika, 46, 139-142.

Muller, K.E. (1982). Understanding Canonical Correlation Through the
General Linear Model and Principal Compeonents. The American
Statistician, 38, 342-354.

Murray, G.D. (1977). A Cauticnary Note on Selection of Variables in
Discriminant Analysis. Applied Statistics, 26, 246-250.

Narayanaswamy, C.R. and Raghavarao, D. (19390). Principal Component
Analysis of Large Dispersion Matrices. Applied Statistics, 2,
40, 309-316.

Navidi, W. {1989). Edgeworth Expansions for Bootstrapping Regression
Models. The Annals of Statistics, 17, 1472-1478.

Nesselroade, J.R. and Baltes, P.B. (1970). On =a Dilemma of
Comparative Factor Analysis: A Study of Factor Matching Based on
Random Data. Educational and Psychological Measurement, 30,
835-948.

210



Orheim, ALV (1981). Personal Communication with McCabe (1984).

Overall, J.E. (1974). Marker Variable Factor Analysis: A ngional
Principal Axes Solution. Multivariate Behavioural Science, 89,
149~164.

Peay, E.R. (1988). Multidimensional Rotation and Scaling of
Configurations to Optimal Agreement. Psychometrika, 53, 199-208.

Rasmussen, J.L. (1987). Estimating Correlation Coefficients:
Bootstrap and Parametric Approach. Psychological Bulletin, 101,
136-139.

Rice, J. (1984). Bandwidth Choice for Nonparametric Regression.
The Annals of Statistics, 12, 1215-1230.

Rocke, D.M. (1983). Bootstrap Bartlett Adjustment in Seemingly
Unrelated Regression. Journal of the American Statistical
Association, 84, 598-801.

Rozeboom, W.W. {1965). Linear Correlation Between Sets of Variables.
Psychometrika, 30, 57-T71.

SAS (1990). SAS Users Guide. Version 6. SAS Institut Inc., Cary
NC, USA.

Schinemann, P.H. (1866). A Generalized Solution of the Orthogonal
Procrustes Problem. Psychometrika, 31, 1-10.

Schinemann, F.H. (1868). On Two-Sided Orthogonal Procrustes
Problems. Psychometrika, 33, 19-33.

Schonemann, P.H. and Carroll, R.M. (1970). Fitting One Matrix to
Another Under Choice of Central Dilaticn and a Rigid Motion.
Psychometrika, 35, 245-255.

Seber, G.A.F. (1984). Multivariate Observations. John Wiley and
Sons, Inc., New York.

Serlin, R.C. (1982). A Multivariate Measure of Association Based on
the Pillai-Bartlett Procedure. Psychological Bulletin, 91,
413-417. :

Sibson, R. (1978). Studies in the Robustness of Multidimensicnal
Scaling: Procrustes Statisties. Journal of the Royal Statistical
Society, 40, 234-238.

Snapinn, S.M. and Knoke, J.D. (1988). Estimation of Error Rates in
Discriminant Analysis With Selection of Variables. BRiometrics,
45, 289-299,

Stine, R.A. (1985). Bootstrap Prediction Intervals for Regression.
Journal of the American Statistical Association, 80, 1026-1031.

Stone, M. (1974). Cross-Validatory Cheoice and Assessment of

Statistical Predictions (with discussion). Journal of Royal
Statistical Society, B, 36, 111-148.

211



Strube, M.J. (1988). Bootstrap Type I Error Rate for the Correlation
Coefficient: An Examination of Alternate Procedures.
Fsychological Bulletin, 104, 290-292.

Tutsuoka, M.M., (1971). Multivariate Analysis. John Wiley and Sons,
Inc., New York.

Thomas, L.A. and Schucany, W.R. (1880). Bootstrap Prediction
Intervals for Autoregression. Journal of the American
Statistical Association, 85, 4865-492.

van den Burg, W. and Lewis, C. (1988). Some Properties of Two
Measures of Multivariate Association. Psychometrika, 53,
108-122.

Van Ness, J.W. (1978). On the Effects of Dimension in Discriminant
Analysis for Unequal Covariance Populations. Technometrics, 21,
119-127.

Wold, S. (1978). Pattern Recognition by Means of Disjoint Principal
Compconent Models. Pattern Recognition, 8, 127-139.

Wold, S. (1978). Cross-Validatory Estimation of the Number of
Components In Factor and Principal Component Models.
Technometrics, 20, 397-405.

Wold, S. and Andersson, K. (1973). Major Components Influencing
Retention Indices in. Gas Chromatography. Journal of
Chromatography, B0, 43-59,

Wold, S. and Lyttkens, E. (1968). Non-Linear Iterative Partial Least
Squares {NIPALS) Estimation Procedures. Bulletin of
International Statistical Instituite: FProceedings, 37th
Session, London, 1-1S.

Wu, C.F.J. (1986}. Jackknife, Bootstrap, and Other Resampling
Methods in Regression Analysis. The Annals of Statistics, 14,
1261-1350.

Young, G. A. (1988). A Note on Bootstrapping the Correlation
Coefficient. Biometrika, 75, 370-373.

212



SUPPLEMENT TO APPENDIX B:

Computer Programs written in GAUSS (1988)



/'l
/*
/l
/*
/’
/*
/i
/l
/*
/"
/¥
Vi
/!
/ﬁ
/*
/#
/'l
/¥
/*
/'l
/l
/*
/*
/*
/#
/*

This program generates data simulated according tc models 1-4
of Jolliffe (1972) which are described in Table 4.1.

1.

Number of Training samples
Sample size

Number of Variables

Model number

PRINT "Frogram execution in progress...";
FRINT;

PRINT "Type in the number of training samples to generate";
PRINT;

tns=CON(1,1);

PRINT;

PRINT "Type in the sample size";

PRINT;

rsize=CON(1,1);

PRINT;

PRINT “Type in the number of variables";
FRINT;

clsize=CON{1, 1);

PRINT;

PRINT “Type in the model number";

FRINT;

mod=CON(1, 1);

fi1=1;

f2=2;

IF mod==1;

IF rsize==100;
fname="b: \\n1l00\\model1";
ELSEIF rsize=80;
fname="b: \\nS0\\model1";
ELSE;
fname="b: \\n25\\model1";
ENDIF;
CREATE fl1="fname WITH zr,clsize, 4;
f1=CLOSE(f1);
OPEN f2="fname FOR UPDATE;
PRINT "Generating and storing samples
PRINT "Please wait...";
PRINT;

according to model

*/
*/
*/
*/
s
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/



smplnumb=1;
DO WHILE smplnumb<=tns;
z=RNDN(rsize,clsize);
x13==z[.,1:3];
modl1l=x13~(z[.,1]+0.5*z[.,4]1)~(=[.,2]+0.7*=z[.,5])
~(z[.,31+z[.,6]);
PRINT “Sample [" smplnumb "] has been generated";
CALL WRITER(fZ2,modll);
smplnumb=smplnumb+1;
ENDO;
CALL CLOSE(f2);
ELSEIF mod==2;
IF rsize==100;
fname="b: \\pl00\\model2";
ELSEIF rsize=50;
fname="b: \\p50\\model2";
ELSE;
fname="b: \\p25\\model2";
ENDIF;
CREATE fl="fname WITH zr,clsize, 4;
F1=CLOSE(f1);
OPEN f2="fname FOR UPDATE;
PRINT "Generating and storing samples according to model 2";
PRINT "Please wait...":
PRINT;
smplnumb=1;
DO WHILE smplnumb<=tns;
=RNDN(rsize,clsize);
x13=z[.,1:3];
modl12=x13~(z[., 1]1+0.5%z[.,4])~(z[.,21+0.7*=z[.,6])
~(z[.,2)+z[.,B]);
PRINT "Sample [" smplnumb "] has been generated";
CALL WRITER(f2, modl2);
smplnunb=smplnumb+1;
ENDO;
CALL CLOSE(f2);
ELSEIF mod==3;
IF rsize==100;
fname="bh: \\ql00\\model3";
ELSEIF rsize=50;
fname="b: \\g50\\mode13";
ELSE;
fname="b:\\q25\\mode13";
ENDIF;
CREATE f1="fname WITH zr,clsize, 4;
f1=CLOSE(f1};
OPEN f2="fname FOR UPDATE;
PRINT "Generating and storing samples according to model 3";
PRINT "Please wait...";
PRINT;
smplnumb=1;
DO WHILE smplnumb<=tns;
z=RNDN(rsize,clsize);
x13=2z{.,1:31];
modl3=x13~(z[.,1]1+0.8%z[.,2]+0.6*=z[.,4]) .
~(z[.,21+0.7*z[.,5]1)~(z[.,3]+0.5*z[.,6]1);
PRINT "Sample [" smplnumb "] has been generated";
CALL WRITER(f2,modl13);
smplnumb=smplnumb+1;
ENDO;



CALL CLOSE(f2);
ELSE;

IF rsize==100;
fname="b: \\m100\\model4d";

ELSEIF rsize=50;
fname="b: \\m50\\mode14";

ELSE;
fname="b: \\m25\\mode14";

ENDIF;

CREATE fil="fname WITH zr,clsize,4;

£1=CLOSE(f1);

OPEN f2="fname FOR UPDATE;

PRINT "Generating and storing samples according to model 4";

PRINT "Please wait...";

PRINT;

smplnumb=1;

DO WHILE smplnumb<=tns;
z=RNDN(rsize,clsize);
x12=zl[.,1:2];
mod41=x12~(z[.,21+z[.,3]1)~(z[.,4]1)~(z[.,4]+0.75*z[.,5])

~(2%2].,4140.75*z[.,5]+1.5*z[.,6]);
modd2=(z[.,7]1)~(z[.,71+0.5%z[.,8])~(2*z[.,7]+0.5*z[., 8]
+z[.,9]1}~(3*z[.,7)+z[.,8]+z[.,9]+z[.,10]);

modl4=mod41~modd4?z;
PRINT “Sample [" smplnumb "] has been generated";
CALL WRITER(fZ,modl4);
smplnumb=smplnumb+1;

ENDO;

CALL CLOSE(f2);

ENDIF;



* Program 2 */
o~ eeseeee—- hd
’* */
* Cross-Validatory choice of the number of components e
/'I ___________________________________________________ */
/* */
/* This program performs the cross-validatory choice of the */
/* number of components proposed by Eastment and Krzanowski *s
/" (1982). */
/* */
/* Input: */
L */
/* */
/* 1. Number of Training samples */
/* 2. Sample size */
/* 3. Number of Variables */
/* 4. Data set */
/* */
/* Qutput: */
/¥ ———— */
/* */
/% 1. PRESS values */
/* 2. Cross-validatory W statistic values (equivalent to F ratio) */
/* 3. Computational time (in seconds) */
’* */
/" ______________________________________________________________ */

NEW; . @ Clearing the computer memory @

#INCLUDE SVD.H; @ Loading the procedure for SVD @
/* ____________________________________ */
/* Loading the data into the program */
S e e r————— *

PRINT "Program execution in progress...";

PRINT;

PRINT "Type in the number of training samples";

PRINT;

tns=CON(1,1);

PRINT;

PRINT "Type in the sample size";

PRINT;

rsize=CON(1,1);

PRINT;

smplnumb=1;
DO WHILE smplnumb<=tns;

timel=TIME; @ Initial time @

ronumb=( (smplnumb-1)*rsize)+1; @ Row number @

f4=4,

fnamel="b: \\n25\\model1"; @ External data file @
OPEN f4="fnamel FOR READ; @ Opening data file for read @

CALL SEEKR{f4,rnumb);
Z=READR(f4,rsize);
f4=CLOSE(f4);

n=ROWS(Z2);

p=COLS(Z2);
S e ———————— e ———————————————————————— */
/* Mean-centering the data, and standardizing it (if necessary) */
/¥ ______________________________________________________________ */

PROC STD(Y);
LOCAL mean, ctrans,deviat;
mean=MEANC(Y);
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ctrans={{-1)*mean)+Y';
deviat=STDC(Y);
RETP( (ctrans. /deviat)’);

ENDP;
X=(({~1)*MEANC(Z2))+2")";
CLEAR Z;
______________________________________________________________ *
A procedure used to find the signs of elements in given matrix */
______________________________________________________________ */
PROC SIGN(L);
LOCAL g;
g=ROUND(ABS(L)./L);
RETP(q};
ENDP;
______________________________________________ *
Performing the SVD of the complete data matrix */
______________________________________________ .
{Uf,sf, Vf'}=SVD2(X);
______________________________________________________________ */
Creating a file on disk to store estimated values of xij, the */
elements of the data matrix X. */
______________________________________________________________ g
f1=1;
£2=2;
fname="a;: \\estmxij";
CREATE f1="fname WITH xe, 1, 4;
f1=CLOSE(f1);
OPEN fZ2="fname FOR UPDATE;
______________________________________________________________ ﬁ/
Estimating the data matrix X using the first M components. */
________________ - o i o o . i S S e e e e B . o . e */
PRINT;
PRINT "Estimating the original data matrix using each of the";
PRINT "first p-1 PCs and storing the results in drive A:...";
PRINT;
PRINT "Please wait...";
i=1;
ei=ZFEROS(n,1) @ Tracks the deletion of rows of X @
e j=ZEROS(FP,1) @ Tracks the deletion of columns of X @
DO UNTIL i>n;
eil[i,1]=1;
Xdeli=DELIF(X,ei); @ Deleting the i-th row @
eifi, 1]=0;

{Udeli,Sdeli, Vdeli}=SVD2(Xdeli);
@ SVD of X without the row i @
CLEAR Xdeli,Udeli;
Sdelip=DIAG(Sdeli);
CLEAR Sdeli;
U=Uf[i,1:p-11;
J=1;
DO UNTIL j>p;
ejlj, 11=1;
Xdel j=(DELIF(X’,ej)}’; @ Deleting the j-th column @
ejlJ, 11=0;
{Udel j, Sdelj, Vdel j} =SVD2(Xdel j);
@ 5SVD of X without the column j B
CLEAR Xdelj,Vdelj;
Sdel jp=DIAG(Sdelj);
CLEAR Sdelj;
Vit=Vf’;
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v=vft[1:p-1, j1;

Vit=Vdeli’

Vi=Vit[1l:p-1, jl;

Uj=Udel jli., ];

uv=Llr . *vy;

Ujvi=uj’ . *vi;

UjVic=ABS(UjVi).*SIGN(UV); @ Performing a parity check @
@ in order to obtain unique i)

@ estimates of xij. @
CLEAR UjVi;
M=1;
DO UNTIL M>p-1; @ Setting the number of PCs to M, @
eM=1, 2, ..., p-1. @

SdeliM=Sdelipl1:M,11];
Sdel jM=Sdel jpl1: M, 11;
UjVieM=UjVic[1:M, 1];
UVS jM=U jVicM. *SQRT(Sdel jM);
UVSSM=UVS jM. *SQRT (SdeliM);
xi jM=SUMC(UVSSM);
CALL WRITER(f2, xijM);
M=M+1;
ENDO;
J=J+1;
ENDQ;
i=i+1;
ENDO;
£f2=CLOSE(f2);

OPEN f3="fname FOR READ;
¥M=ONES(n,p);
PRESS=0NES(p, 1);
PRESSO=(SUMC(DIAG(X' *X)}))/{n*p):
CLs; @ Clearing the screen @
PRINT "PRESS[" O "}=" PRESS0;
s=1;
t=1;
M=1;
DO UNTIL M>p-1;
i=1;
DO UNTIL i>n;
J=1;
DO UNTIL j>p;
CALL SEEKR(f3,t};
XM[i, j}=READR({f3,1);
t=t+p-1;
J=Jj+1;
ENDO;
i=i+1;
ENDO;
PRESS[M, 1]=(SUMC(DIAG( (XM-X)**(XM-X})))/(n*p);
PRINT "PRESS[" M "}=" PRESSIM, 1];
M=M+1;
s=s+1;
t=s;
ENDO;



/¥ e ——————————— e
/* Rearranging the PRESS values to include PRESS[0] in the same
/* variable name PRESS.
/l ______________________________________________________________
M=p-1;
DO WHILE M>=1;
PRESS[M+1, 1]=PRESSIM, 1];
M=M-1:
ENDO;
PRESS([ 1, 1]=PRESS0;
/i ______________________________________________________________
/* Computing the W statistic for the M-th PC, M =1, 2, ..., p-1.
/l ______________________________________________________________
Mvalue=ONES(p-1,1);
Wvalue=ONES(p-1,1);
M=2:
DMC=0;
DO UNTIL M»>p;
DM=n+p-2*%(M-1);
DMC=DMC+DM;
DR=n*p-p-DMC;
Mvalue[M-1,1]1=M-1;
Wvalue[M-1, 1]=(PRESS[M-1, 1]-PRESS[M, 1] )*DR/{DM*PRESS(M, 1) ;
M=M+1;
ENDO;
£3=CLOSE(f3);
/. _____________________ "/
/* Printing the results */
/* _____________________ - /
LET MWnames[2, 1=Mvalue Wvalue;
LET label{1,2]= M W;
MW=MERGEVAR({MWnames);
CLS; @ Clearing the screen
PRINT;
PRINT #label;
PRINT;
PRINT MW;
PRINT;
smplnumb=smplnumb+1;
time2=TIME; @ Final time @
¥ e e e e
/* Converting and printing the computational time in seconds .
.
hr2=(time2[1, 1])*3600;
hri=(timel{1, 1])*3600;
min2={time2[2, 1]1)*80;
minl=(timel{2,1])*60;
sec2=hr2+min2+(time2[3, 11)+((time2[4,1])/100);
secl=hri+minl+(timel1{3,11}+((timel[4,1]1)/100):

*/
*/
*/

*/
*/

compt ime=secZ-secl; @ Computational time in seconds @

PRINT comptime;
PRINT;
PRINT "End of Session [" smplnumb "]1";
PRINT;
ENDO;



/% 3. Computational time (in seconds)
*

b e
NEW; @ Clearing the computer memory
#INCLUDE SVD.H; @ Loading the procedure for SVD

/l ____________________________________ I-/

/* loading the data into the program */

/i ____________________________________ i/

PRINT "Program execution in progress...";
PRINT;

PRINT "Type in the number of training samples";
PRINT;

tns=CON(1, 1);

PRINT;

PRINT "Type in the sample size";

PRINT;

reize=CON(1,1);

PRINT;

smplnumb=1;

DO WHILE smplnumb<=tns;
timel=TIME; @ Initial time @
roumb=( (smplnumb-1)*rsize)+1; @ Row number @
f4=4;
fnamel="b: \\n25\\mode11"; @ External data file
OPEN f4="fnamel FOR READ; @ Opening data file for read

This program performs the proposed bootstrap choice of the
number of components in PCA.

1. Number of Training samples
2. Sample size

3. Number of Variables

4

Data set
Output
1. PRESS values

2. Bootstrap W statistic values {equivalent to the F ratio)

CALL SEEKR(f4,rnumb);
Z=READR(f4,rsize);
f4=CLOSE(f4};
n=ROWS(Z);

p=COLS(2);

PRINT;

PRINT "Type in the number of bootstrap samples"”;
PRINT;

B=CON(1,1);

f1=1;

f2=2;

£3=3;



/* Creating and opening a file to store the PRESS values. */
/* ______________________________________________________________ i/
fname="a: \\PRSFILE";
CREATE f1="fname WITH prs,1,4;
£1=CLOSE(f1);
OPEN f2="fname FOR UPDATE;

/l' ______________________________________________________________ !/
/* For each bootstrap sample, predicting the bootstrap sample */
/* using only the first M components, and computing and storing »*/
/* PRESS[M], M=1, 2, ..., p-2. */
/* ______________________________________________________________ i/
PRESS=ZEROS(p, 1);
countB=1;

DO WHILE countB<=B;
rndrows=FLOOR(n*RNDU(n, 1 }+0ONES(n, 1) };

Y=SUBMAT(Z, rndrows, 0} ; 8 Generating the bootstrap sample @

X=(Y'-MEANC(Y))}*; @ Mean-centering the bootstrap sample @

PRESS[1, 1]=(1/(n*p) ) *SUMC(DIAG(X’ *X}); & PRESS[O] @

{U, S, Vt}=SVD2(Y);

v=vt’;

M=1;

DO WHILE M<=p-2; @ Setting the number of PCs to M, @
@M=1, 2, ..., p2 @

XM=(U[.,1:M1}*(S[1: M, 1:M])*(V[1:M,.]);
{ UM, SM, VMt } =SVD2(XM) ;

CLEAR SM, VMt;

alpha=UM’ *X;

XMp=UM*alpha; @ Predictor of the booistrap sample ©
diser=X-XMp;
PRESS[M+1, 1]=(1/(n*p) )*SUMC(DIAG(discr’ *discr));
M=M+1;
ENDO;

CALL WRITER(f2Z2,PRESS};
countB=countB+1;

ENDO;

f2=CLOSE(f2);

/ﬁ ______________________________________________________________ ﬁ'/
/* Opening the file with PRESS values for reading and declaring */
/* some variables. */
/¥ e ——————— *

OPEN f3="fname FOR READ; @ Opening the file with PRESS values @E
@ for reading e
PRSM=ZEROS(B, 1); @ PRESSI[M] @
PRSMSUB1=ZEROS(B, 1}; @ PRESS[M-11] @
Wvalue=ZEROS(p, 1); @ Bootstrap W statistic values @
DM=ZEROS(p, 1); @ Numerator degrees of freedom ]
DR=ZEROS(p, 1}; @ Denominator degrees of freedom &8
booterr=2EROS(p-1,1); @ Bootstrap error @
avPRESS=ZEROS(p, 1); @ Mean of PRESS values over all @

@ @

bootstrap samples

/* ______________________________________________________________ */
/* Reading the PRESS values for M= 1 and M = 2. */
/i ______________________________________________________________ */
countB=1; .
r=1;

DO WHILE countB<=B;
CALL SEEKR(f3,r);
PRSMSUB1 [ countB, 1 }=READR(f3,1);
r=r+l;
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/ﬁ'

CALL SEEKR(f3,r);
PRSM[countB, 1]=READR(f3,1);
r=r+p-1;
countB=countB+1;

ENDO;

Computing the bootstrap W value, the bootstrap error and the
mean of the PRESS values for M = 1.

DM[1, 1}=n;

DR[1,1]1=n*{p-2);

NUM=(MEANC(PRSMSUB1 }-MEANC(PRSM})/DM[1,11];
DEN=MEANC(PRSM)DR[1,1];
Wvalue[1, 1 1=NUM/DEN;

booterr(1, 1]=STDC(PRSMSUB1);
avPRESS[ 1, 1]=MEANC(PRSM};

Computing the bootstrap W value, the bootstrap error and the
mean of the PRESS values for M= 2, 3, ..., p-2.

DO WHILE M<=p-2;
PRSMSUB1=FPRSM;
r=M+1;
countB=1;
DO WHILE countB<=B;
CALL SEEKR(f3,r);
r=r+p
countB=countB+1;
ENDO;
DM[M, 1]=n;
DR[M, 1]=n*(p-M-1};
NUM=(MEANC ( PRSMSUB1 )} -MEANC (PRSM) ) /DM[ M, 1];
DEN=MEANC(PRSM)DR[M, 1];
Wvalue[M, 1]1=NUM/DEN;
booterr[M, 1]1=STDC({PRSMSUB1);
avPRESS([M, 1]=MEANC{PRSM);
M=M+1;
ENDO;
f3=CLOSE(f3);
booterr[p-1, 1]=STDC{PRSM);

Printing the results */
_____________________ *
compnent=CUMSUMC(ONES(p, 1) );
results=compnent~avPRESS~Wvalue~DM~DR;

LET title[1,5=k avPRESS Wvalue Nd4f Ddf;
CLS; @ Clearing the screen
PRINT;

PRINT $title;

PRINT;

PRINT results;

PRINT;

smplnumb=smplnumb+1;

time2=TIME; @ Final time @

hr2=(time2[1, 1])*3600;
hri=(timel[1, 1]}*3600;

10
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min2=(timez2[2, 1])*B0;
minl=(timel[2, 1])*60;
sec2=hr2+min2+(time2[3,1])+{(time2(4,1])/100);
secl=hril+mini+(timel[3,1])+((timel(4, 1])/100};
compt ime=sec2-secl; @ Computaticnal time in seconds @
PRINT comptime;
PRINT;
PRINT "End of Session [" smplpnumb "]";
PRINT;

ENDO;
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This program performs variable selection in PCA using the M-

squared procrustes criterion of Krzanowski (1987) and the
bakward elimination procedure for a given data set.

Input

1. Number of Training samples

2. Sample size

3. Number of Variables

4. Data set

5. Number of PCs to be used for variable selection

Output

1. Deleted variables and the corresponding M-squared values
2. Selected subset of variables

3. Computational time (in seconds)

NEW; @ Clearing the computer memory
#INCLUDE SVD. H; @ Loading the procedure for SVD

PRINT “Program execution in progress...";
PRINT;

PRINT "Type in the number of training samples";
PRINT;

tns=CON(1,1};

PRINT;

PRINT "Type in the sample size";

PRINT;

reize=CON(1,1);

PRINT;

f11=11;

fname2="b: \\n25\\model1"; @ External data file
OPEN f11="fname2 FOR READ; @ Opening data file for read
PRINT "Type in the number of PCs to be used";

PRINT;

M=CON(1,1};

smplnumb=1;
DO WHILE smplnumb<=tns;

/*
/ ¥
/ *

timel=TIME; @ Initial time @
Z=READR(f11,rsize);

n=ROWS(Z2);

p=COLS(Z2);

Mean-centering the data, and standardizing it (if necessary)



/*
/*
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/!‘
/*
/‘l

/I
/'l
/"

leastM2[p~g+1, 1]=MINC(trackM2);
1=1;
DO WHILE 1<=p;

IF M2allll,1]l==leastM2[p-q+1,1];
vardel[p-g+1,1]=1:
trackdel[1l,11=1;
1=1+1;

ELSE;
1=1+1;

ENDIF;

ENDO;
q=q-1;
ENDO;

slectv=0NES(1,M); @ Contains the retalned variables' indices @
k=1;
1=1;
DO WHILE 1<=p;
IF trackdel(l,1]==0;
sletv(l,kl=1;
k=k+1;
1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDO;
_____________________ l'/
Printing the results */
_____________________ ﬁ/
LET VM2names[2, 1]l=vardel leastM2;
VM2=MERGEVAR(VM2names);
LET labell1,2]= Variable M-squared;
PRINT #label;
PRINT;
PRINT VMZ;
PRINT;
PRINT "Selected subset of variables:";
PRINT;
PRINT slctv;
smplnumb=smplnumb+1;
time2=TIME; @ Final time @

hr2=(time2[1, 1]1)*3600;

hri=(timel[1, 1])*3600;

min2=(time2(2, 1])}*60;

minl={timeil[2, 1]}*60;
sec2=hr2+min2+{(time2[3,1])+((time2[4, 1]1)/100);
secl=hri+minl+(timel([3,1])+((timell4,1]1)-100);
compt ime=secZ2-secl; B Computational time in seconds R
PRINT;

PRINT comptime;

PRINT;

PRINT "End of Session {" smplnumb "]";

PRINT;

ENDO;
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/* 3. Computational time (in seconds)
*
7 —
NEW; @ Clearing the computer memory
#INCLUDE SVD.H; @ lLoading the procedure for SVD
/* ____________________________________ l/
/* Loading the data into the program */
/‘*- ____________________________________ !-/
PRINT "Program executicn in progress...";
PRINT;
PRINT "Type in the number of training samples”;
PRINT;
tns=CON(1,1);
PRINT;
PRINT "Type in the sample size";
PRINT;
rsize=CON{1,1);
PRINT;
fi11=11;
fnamez="b: \\n25\\modell"; @ External data file
OPEN fll1="fnameZ FOR READ; @ Opening data file for read
PRINT "Type in the number of PCs to be used";
PRINT;
M=CON(1,1);
smplnumb=1;
DO WHILE smplnumb<=tns;
timel=TIME; @ Initial time @
Z=READR(f11,rsize);
n=ROWS(Z);
p=COLS{Z);
S e —————— e
/* Mean-centering the data, and standardizing it (if necessary)

/*

This program performs variable selection in PCA using the
Gamma-5 criterion and the backward elimination procedure for
a gliven data set.

1. Number of Training samples

2. Sample size

3. Number of Variables

4. Data sget

5. Number of PCs to be used for variable selection

1. Deleted variables and the corresponding Gamma-5 values
2. Selected subset of variables



PROC STD{Y);
LOCAL mean, ctrans,deviat;
mean=MEANC(Y);
ctrans={{-1)*mean)+Y’;
deviat=STDC(Y);
RETP( (ctrans. /deviat)’);

ENDP;
X=({(-1)}*MEANC(Z))+2’)";
CLEAR &;
/¥ */
/* Variable declaration and computing PC scores for complete data */
/! ______________________________________________________________ */
{Uf, Sf, Vf}=8VD2(X);
CLEAR Vf;
UFSE=Uf*Sf;
CLEAR Uf, Sf;
YJ=UFSE[.,1: M];
CLEAR UfSf;
trackdel=ZER0S(p, 1); ® Tracks deleted variables in X. @
peakGS5=0NES{p-M, 1); @ Stores the largest Gamma-5 value. @&
vardel=0NES{p-M, 1); @ Identifies variables to he deleted @
q=p; @ Initial subset size. @
/* ______________________________________________________________ "/
/* Computing the Gamma-5 criterion for each variable omitted */
/* in turn from the data matrix X. */
/'l' ______________________________________________________________ l/
/% DO WHILE g>M;
trackG5=0NES(qg, 1); @ Stores Gamma-5 values. @
G5all=-1000*(ONES(p,1); @ Gamma-S wvalues for variables @
@ omitted from X, indexed in the @
@ order in which the variables @
@ appear in X. @
k=1;
J=1;
DO WHILE j<=p;

IF trackdelfj, 1]==0;

trackdellj,1]=1; @ Indexing the j-th variable for )
@ omission. i

Xdel j=(DELIF(X’, trackdel}}’; @ New X. @

trackdell j, 1}=0; @ Indexing omitted variable for ]
@ replacement. E

{Udel j, Sdel j, Vdel j}=SVD2(Xdel j); @ SVD of new X. @

CLEAR Xdel]j, vdelj;

UjSj=Udel j*Sdel j;

CLEAR Udelj, SdelJj;

Zj=Ujsjl., 1: M);

CLEAR UjSJ;

YjZ2j=Yj~2j;

CLEAR Zj:

RY jZj=CORRX(YJZJ);

CLEAR YjZj;

RYZ=RY jZj[1: M, M+1: 2*M];

CLEAR RYjZj;

cancor=0NES(M, 1)-(SVD(RYZ*RYZ’ }-0.5*0ONES(M, 1));

GS5alllj, 11=1-( (PRODC(cancor))}~(1/M)}; - @ Computing @

@ Gamma-5. @

trackG5[k, 11=G5all[j, 1];

k=k+1;

J=J+1;

ELSE;
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______________________________________________________________ 4
Deleting the variable whose omission yields the largest value */
of Gamma-5. *s
______________________________________________________________ ./
peakGS[p-g+1, 1]=MAXC(trackG5);
1=1;
DO WHILE 1<=p;
IF G5allll, 1)==peakG5[p-q+1,1];
vardel([p-g+1,1]=1;:
trackdel[l,1]1=1;
1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDC;
g=q-1;
ENDO;

Identifying the retained variables */
e e e e e o e e e e e e e o e ﬁ/
slctv=0NES(1, M); @ Containg the retained variables' indices @&
k=1;
1=1;
DO WHILE 1l<=p;
IF trackdell[l, 1]==0;
slctv[l,kl=1;
k=k+1;
1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDO;
_____________________ l’/
Printing the results */
_____________________ l/
LET VG5names[2, 1]=vardel peakGS;
VG5=MERGEVAR(VG5Snames);
LET label[l,2])= Variable Gamma-5;
FRINT $label;
PRINT;
PRINT VG5
FPRINT;
PRINT "Selected subset of variables:”;
PRINT;
FPRINT slctv;
smplnumb=smplnumb+1;
time2=TIME; @ Final time @

hr2=(time2[1, 1])*3600;

hri=(timel[1, 1])*3600;

min2=(time2{2, 1])*60;

minl=(timel[2,1])*50;
sec2=hr2+min2+(time2[3,1]1)+((time2{4,1])/100);
secl=hrl+mini+(time1[3,1]1)+((timel[4,1]1)/100);

compt ime=sec2-secl; @ Computational time in seconds @
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PRINT;
PRINT comptime;
PRINT;
PRINT "End of Session {" smplnumb "1";
PRINT;
ENDO;
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This program performs variable selection in PCA using the
Gamma-8 criterion and the backward elimination procedure for
a given data set.

1. Number of Training samples

2. Sample size

3. Number of Variables

4, Data set

5. Number of PCs to be used for variable selection

1. Deleted variables and the corresponding Gamma-& values
2. Selected subset of variables
3. Computational time (in seconds)

NEW; @ Clearing the computer memory
#INCLUDE SVD. H; @ Loading the procedure for SVD
____________________________________ */

Loading the data into the program */
____________________________________ */

PRINT “"Program execution in progress...";

PRINT;

PRINT "Type in the number of training samples";
PRINT;
tns=CON(1,1};

PRINT;

PRINT "Type in the sample size";

PRINT;

rsize=CON(1,1);

PRINT;

fil=11;

fname2="b: \\n25\\model1"; @ External data file
OPEN fl1="fnameZ2 FOR READ; @ Opening data file for read
PRINT "Type in the number of PCs to be used";

PRINT;

M=CON(1,1);

smplnumb=1;

Do

I
/*
/*

WHILE smplnumb<=tns;

timel=TIME; @ Initial time @
Z=READR(f11,rsize);

n=ROWS(Z);

p=COLS(2Z2);

Mean-centering the data, and standardizing it (if necessary)



PROC STD(Y):
LOCAl, mean, ctrans,deviat;
mean=MEANC(Y);
ctrans=((-1)*meanl}+Y’;
deviat=STDC(Y);
RETP({(ctrans. /deviat)’);

ENDP;

X=(((~1)*MEANC(Z)}+2’)’;

CLEAR Z;
R e *
/% Variable declaration and computing PC scores for complete data */
S e —————————— e *y

{Uf,sf, VI}=SVvD2(X);

CLEAR V£,

UfSf=Uf*Sf';

CLEAR Uf, Sf;

Yj=ULSE(., 1: M];

CLEAR UfSf;

trackdel=ZEROS(p, 1); @ Tracks deleted variables in X. @

peakGB=0ONES(p-M, 1); @ Stores the largest Gamma-6 value. @

vardel=0NES(p-M, 1); @ Identifies variables to be deleted @

q=p; @ Initial subset size. e
/i ______________________________________________________________ t»/
/* Computing the Gamma-6 criterion for each variable omitted */
/* in turn from the data matrix X. */
/¥ e e e e e e e e e e e e e e * s

/* DO WHILE q>M;
trackGB=0NES(q, 1);
GBall=-1000* (ONES(p, 1);

@ Stores Gamma—-68 values. @
@ Gamma-6 values for variables @
@ omitted from X, indexed in the C]
@ order in which the variables @
@ appear in X. @

IF trackdell[j, 1]1==0;

Be®®E®®

trackdel[j,1]=1; @ Indexing the j-th variable for
@ omission.

Xdel j=(DELIF(X’, trackdel))’; @ New X.
trackdel[j,1]=0; @ Indexing omitted variable for
@ replacement.

{Udel j, Sdel j, Vdel j}=SVD2(Xdelj); @ SVD of new X. .

CLEAR Xdelj, Vdelj;

Ujs j=Udel j*Sdel j;

CLEAR Udel j, Sdel j;

Zj=Ujsjl., 1: M1;

CLEAR Uj5j;

YJZJ=Yj~2];

CLEAR Zj;

RY jZ j=CORRX(YjZj);

CLEAR YjZj;

RYZ=RYJZjl[1: M, M+1:2*M];

CLEAR RYjZj;

GBalll j, 1]1=({SUMC(SVD{RYZ*RYZ' )))/M; @ Computing @
@ Gamma-6. @

trackG6(k, 11=G6alll j,1];

k=k+1;

J=j+1;

ELSE;
J=j+1;
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Vi
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Vi

Vi
Vid
/%

/*
/'l
/i

ENDIF;

ENDQ;
______________________________________________________________ */

Deleting the variable whose cmission yields the largest value */
of Gamma-6. */
______________________________________________________________ * /
peakGE[p-q+1, 1]1=MAXC(trackGE);
1=1;
DO WHILE 1<=p;
IF GBallll, 1]==peakG6[p-q+1,1];
vardel [p-gq+1,1]1=1;
trackdel[1,1]=1;
1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDO;
g=q-1;
ENDO;

slctv=0ONES(1,M); @ Contains the retained variables’ indices @
k=1;
1=1;
DO WHILE 1l<=p;
IF trackdei[l, 1]==0;
sletv[l,kl=1;
k=k+1;
1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDQ;
_____________________ ¥/
Printing the results */
_____________________ */
LET VGBnames[2, 1]=vardel peakGt;
VGB=MERGEVAR(VGGnames);
LET labell1,2]= Variable Gamma-6;
PRINT $label;
PRINT;
PRINT VG8B;
PRINT;
PRINT "Selected subset of variables:";
PRINT;
PRINT slctv;
smplnumb=smplnumb+1;
time2=TIME; @ Final time @

hr2=(time2[1,1])*3600;

hri=(timel[1, 1])*3600;

min2=(time2[2,1]1}*60;

minl=(time1[2,1])*60;
sec2=hr2+min2+(time2[3,1])+((time2{4,1]1)/100);
secl=hri+minl+(time1[3,1]1)+((timel{4,1])/100);

compt ime=sec2-secl; @ Computational time in seconds @
PRINT;
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PRINT comptime;
PRINT;
PRINT "End of Session [" smplnumb “]";
PRINT;
ENDO;
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/¥
/*
/!k
/i(-
/!-
/*
/*
/*
/i
/¥
/*
/'K
/*
/*
/-!
/#‘
/*
/-!
/-!-
/‘*
/*
/-*-
/*
/ik
Vi
/*
Vi
/*
/*

/*
Vid
Vi

This program performs variable selection in PCA using the
Delta criterion and the backward elimination procedure for
a given data set.

1. Number of Training samples

2. Sample size

3. Number of Variables

4, Data set

5. Number of PCs to be used for variable selecticn

1. Deleted variables and the corresponding Delta values
2. Selected subset of variables
3. Computational time {in seconds)

NEW; @ Clearing the computer memory
#INCLUDE SVD.H; @ Loading the procedure for 5VD

PRINT "Program execution in progress...";

FRINT;

PRINT "Type in the number of training samples";
PRINT;

tns=CON(1,1);

PRINT;

PRINT "Type In the sample size";

PRINT;

rsize=CON(1,1);

PRINT;

f11=11;

fname2="b:\\n25\\model1"; @ External data file
OPEN fl1="fname2 FOR READ; @ Opening data file for read
PRINT "Type in the number of PCs to be used";

PRINT;

M=CON(1,1);

smplnumb=1;

Do

/*
Vi
/*‘

WHILE smplnumb<=tns;

timel=TIME; @ Initial time @
Z=READR(f11,rsize);

n=ROWS(Z);

p=COLS (Z);

Mean-centering the data, and standardizing it (if necessary)



PROC STD(Y);
LOCAL mean,ctrans,deviat;
mean=MEANC(Y);
ctrans=((-1)*mean)+Y’;
deviat=STDC(Y);
RETP( (ctrans./deviat)’);

ENDP;

X=(({-1)*MEANC(Z))+Z' )" ;

CLEAR Z;
/-* ______________________________________________________________ */
/* Computing and standardizing the PC scores for complete data */
H e e e e * s

{Uf,Sf, Vf}=SVD2(X);

CLEAR Vf;

UfSf=Uf*Sf;

CLEAR Uf,Sf;

Yjunst=UfSf[.,1:M]; @ PC scores @

CLEAR UfSf;

Yj=((Yjunst’)./STDC(Yjunst))'; @ Standardized PC scores @

Yjt=Yj’';

CLEAR Yj;
/* ______________________________________________________________ -*/
/* Computing the distance matrix for the complete data */
/* ______________________________________________________________ *

nf=1;

DO UNTIL nf>n-1;
Y jnf=SQRT{(SUMC((Yjt(.,nf]l-Yjt[.,nf+1:n])"2));

IF nf==1;
Y jnfd=Y jnf;
ELSE;
Yjinfd=Yjnfd!Yjnf; @ Distance matrix for complete data e
ENDIF;
nf=nf+1;
ENDO;
CLEAR Y jt;
S */
/* Declaring variables */
L — *
trackdel=ZEROS(p,1); @ Tracks deleted variables in X. @
leastD=0NES (p-M, 1); @ Stores the least Delta value. @
vardel=0ONES(p-M,1]; @ Identifies variables to be deleted @
q=p; @ Initial subset size. @
/# ______________________________________________________________ ¥/
/* Computing the Delta criterion for each variable omitted */
/* in turn from the data matrix X. */
/iﬁ ______________________________________________________________ -JE/
/% DO WHILE q>M;
trackD=0NES(q,1); @ Stores the Delta values. ®
Dall=-1000*(ONES(p,1); @ Delta values for varlables @
@ omitted from X, indexed in the @
@ order in which the variables @
@ appear in X. @
k=1;
1.

J=1;

DO WHILE j<=p;

IF trackdellj,1]==0;

trackdel[j,1]=1; @ Indexing the j-th variable for
@ omission.

Xdel j=(DELIF (X', trackdel))’; @ New X.

trackdel[j,1]1=0; @ Indexing omitted variable for

@0 e®
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@ replacement. @
{Udel j,Sdel j, Vdel j}=SVD2(Xdelj); @ SVD of new X. C]
CLEAR Xdelj, Vdel];
UjSj=Udel j*Sdel j;
CLEAR Udel j,Sdelj;

Zjunst=UjsSjl.,1:M]; @ PC scores of new X @
CLEAR UjSj;
Z2j=((Zjunst’ )./STDC(Zjunst))’; @ Standardized PC sc. @
Zjt=23";
CLEAR Zj;
/!- ___________________________________________________ lt-/
/* Computing the distance matrix for the subset data */
/¥ * 7
nj=1;
DO UNTIL nj>n-1;
ZjnJ=SQRT{(SUMC((Zjt[.,nJ]-Zjt[.,nj+1:n1)"2));
IF nj==1;
Zjnjd=Zjnj;
ELSE;
Zjnjd=ZjnjdiZjnj; @ Distance matrix for @
@ the subset data. @
ENDIF;
nj=nj+1;
ENDO;
CLEAR Zjt;
Dalll{j, 11=SUMC(ABS(Yjnfd-Zjnjd)); @ Computing Delta @
trackD[k,1]1=Dall[j,1];
k=k+1;
J=j+1;
ELSE;
J=j+1;
ENDIF;
ENDO;
/'IE ______________________________________________________________ */
/* Deleting the variable whose omission yields the least value */
/* of Delta. */
/IE ______________________________________________________________ '*/
leastD{p-g+1,1]=MINC(trackD};
1=1;
DO WHILE 1l<=p;
IF Dallll,1])==leastD[p-q+1,1];
vardel [p-q+1,1]=1;
trackdelll,1]=1;
1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDO;
q=q-1;
ENDO;
/‘*‘ ____________________________________ */
/* Identifying the retained variables */
OV *
slctv=0NES(1,M); @ Contains the retained variables’ indices @
k=1;
1=1;
DO WHILE 1<=p;

iF trackdelll,1]1==0;
sletvll,k]l=1;
k=k+1;
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S*
/¥

/-I-
/-t'
/*

1=1+1;

ELSE;
1=1+1;
ENDIF;
ENDO;
_____________________ */
Printing the results */
_____________________ *y

LET VDnames[2,1]=vardel leastD;
VD=MERGEVAR (VDnames) ;

LET labelll,2]= Variable Delta;

PRINT label:

PRINT;

FRINT VD;

PRINT;

PRINT "Selected subset of variables:";
PRINT;

PRINT slctv;

smplnumb=smplnumb+1;

time2=TIME; @ Final time @

hr2=(time2[1,11)*3600;

hri=(timel[1,1])*3600;

minz=(time2[2,1])%*60;

minl=(timel[2,1])*60;
sec2=hr2+min2+(time2[3,1]1)+((time2[4,1]1)/100);
secl=hril+minl+(time1(3,11)+((timel[4,1])/100);
comptime=sec2-secl; @ Computational time in seconds @
PRINT;

PRINT comptime;

PRINT;

PRINT "End of Session [" smplnumb "]";

PRINT;

ENDO;

26



,* Program 8 */
s eee—————— */
/¥ */
/* The Delta Star criterion (using the K-Nearest Neighbour graph) */
/¥ e ——————— e S E e */
/¥ Backward elimination */
s e *
/¥ */
/* This program performs variable selection in PCA using the */
/* Delta Star criterion and the backward elimination procedure */
/* for a given data set. */
/* */
/* Input: */
I e */
/¥ */
/% 1., Number of Training samples */
/% 2. Sample size ¥/
/* 3. Number of Variables */
/7* 4. Data set */
/* 5. Number of PCs to be used for variable selection */
/* */
/% Output: */
/E ————— */
/¥ */
/* 1. Deleted variables and the corresponding Delta Star values */
/* 2, Selected subset of variables */
/* 3, Computational time (in seconds) */
/* */
A e e e */

NEW; @ Clearing the computer memory @

#INCLUDE SVD.H; @ Loading the procedure for SVD @
S* e ———— * s
/* Loading the data into the program */
S VO */

PRINT "Program execution in progress...";

PRINT;

PRINT "Type in the number of training samples";

PRINT;

tns=CON(1,1);

PRINT;

PRINT "Type in the sample size";

PRINT;

rsize=CON(1,1);

PRINT;

f11=11;

fnameZ2="b:\\n25\\modell"; @ External data file @

OPEN f11="fname2Z FOR READ; @ Opening data file for read @

PRINT "Type in the number of PCs to be used";

PRINT;

M=CON{1,1);

smplnumb=1;
DO WHILE smplnumb<=tns;

timel=TIME; @ Initial time @

Z=READR(f11,rsize};

n=ROWS (Z};

p=COLS(Z};
/!K ______________________________________________________________ *&/
/* Mean-centering the data, and standardizing it (if necessary) */
/* ______________________________________________________________ '*'/



Vi
Vi
Vi

/*
/*
Vi
/*

Vi
/-*'
/*

Vi
Vi
Vi

Vi
Vi
Vi

PROC STD(Y};

LOCAL mean,ctrans,deviat;

mean=MEANC(Y};

ctrans=((-1)*mean)+Y’;

deviat=STDC(Y);

RETP({(ctrans./deviat)’);

ENDF;
X=STD(Z);
CLEAR Z;

Computing and standardizing the PC scores for complete data */

{Uf,sf, Vi }=svD2 (X);
CLEAR Vf;
UFSf=Uf*Sf;

CLEAR Uf,Sf;

Y junst=UfSf[.,1:M];
CLEAR UfSf;

____________________________________ */

@ PC scores @

Yj=((Yjunst’ )./STDC(Yjunst})’; @ Standardized PC scores @

Yjt=Yj ;
CLEAR Yj;

____________________________________ */

Computing the distance matrix for the complete data and */
simultaneously constructing the KNN graph */

nf=1;
DO WHILE nf<=n;

____________________________________ * s

Y jnf=SQRT(SUMC( (Yjt[.,nfl-Yjt)"2});

IF nf==1;
wt=SORTC(Yjnf,1);
minwt=wt{2,1];
Yinfd=Yjnf(2:n,1];

ELSE;
wt=SORTC(Y jnf,1);

minwt=minwt iwt[2,1];

IF nf==n;
Y jnfd=Y jnfd;
ELSE;

anfd=anfd:anf[nf+1:n,1]; @ Distance matrix @

ENDIF;
ENDIF;
nf=nf+1;

ENDO;
CLEAR Yjt;

____________________________________ */

Obtaining and storing the indices of the KNN graph */

knnind=INDNV(minwt, Y jnfd);

Y jnfd=Y jnfd{knnind, 1];

trackdel=ZEROS(p, 1)};
leastDS=ONES(p-M, 1)};
vardel=0NES (p-M, 1);

@ Tracks deleted variables in X. @
@ Stores the least Delta Star value. @
@ Identifies variables to be deleted @

qa=p; @ Initial subset size. @
______________________________________________________________ * s
Computing the Delta Star criterion for each variable omitted */
in turn from the data matrix X. *y
______________________________________________________________ * 7/



/* DO WHILE q>M;
trackDS=0NES(q,1); @ Stores the Delta Star values.
DSall=-1000%* (ONES(p,1); @ Delta Star values for variables

=
It

1;

3

IF

2 ——

/*‘ _________

/* Locating
/* distance

@ omitted from X, indexed in the
@ order in which the variables
@ appear in X.

WHILE j<=p;

trackdellj, 1]1==0;

trackdel[j,1]=1; @ Indexing the j-th variable for
@ omission.

¥del j=(DELIF(X', trackdel))’; @ New X.

trackdel{j,1]=0; @ Indexing omitted variable for
@ replacement.

{Udel j,Sdelj,Vdel j}=SVD2(Xdelj); @ SVD of new X.

CLEAR Xdelj, Vdelj;

UJjSj=Udel j*Sdel j;

CLEAR Udel j,Sdelj;

Zjunst=U3Sjl.,1:M]; @ PC scores for new X

CLEAR UjSj;

Zj=((Zjunst’ )./STDC(Zjunst))’; @ Standardized PC sc.
Zit=Z231";

CLEAR Zj;

__________________________________________ */

nj=1;
DO UNTIL nj>n-1;
Zjnj=SQRT(SUMC((Zjt[.,njl-Z2jtl.,nj+1:nl)"2));
IF nj==1;
Zinjd=2jnj;
ELSE;
Zinjd=Zjnjdi2jnj; @ Distance matrix for
@ the subset data.
ENDIF;
nj=nj+l;
ENDO;
CLEAR Zjt;
the distances that define the KNN graph in the
matrix for the subset data and computing Delta Star

/* ______________________________________________________________
Z2jnjd=Zjinjd{knnind, 1];
DSalll j, 1]1=SUMC(ABS(Yjnfd-Zjnjd)); @ Delta Star
trackDS[k,1]=Dalllj,1];
k=k+1;
J=j+1;
ELSE;
J=Jj+1;
ENDIF;
ENDO;
/¥ e e —
/* Deleting the variable whose omission yields the least value
/* of Delta.
/* ______________________________________________________________

leastDS{p-q+1,1]=MINC(trackDS);

1=1;

DO WHILE 1l<=p;

IF

DSallll,1]==leastDS[p-q+1,1];
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/*
/ﬂ
/'l

Vi
/*
/'*

*
S*
/¥

vardel [p-q+1,1]=1;
trackdel(l,1]=1;
1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDC;
q=q-1;
ENDO;

slctv=0ONES(1,M); @ Contains the retained variables’ indices ®@
k=1;
1=1;
DO WHILE 1<=p;
IF trackdelll,1]==0;
sletvll,kl=1;
k=k+1;
1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDQO;
_____________________ *
Printing the results */
_____________________ *
LET VDSnames[2,1]=vardel leastDS;
VDS=MERGEVAR{VDSnames);
LET label[1,2]= Variable DeltaS;
PRINT label;
PRINT;
FRINT VDS;
PRINT;
PRINT "Selected subset of variables:";
PRINT;
PRINT slctv;
smplnumb=smplnumb+1;
time2=TIME; @ Final time @

hr2z=(time2[1,1])*3600;

hri=(timel[1,1]1)*3600;

min2=(time2[2,1])*60;

minl=(timel[2,1])*60;
sec2=hr2+min2+(time2[3,11)+((time2[4,1])/100);
secl=hril+minl+(timei1[3,1]1)+((timel[4,1]1)/100);
compt ime=sec2-secl; @ Computational time in seconds @
PRINT;

PRINT comptime;

PRINT;

PRINT "End of Session [" smplnumb "1";

PRINT;

ENDO;
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/* Program 9 *
s emmmee——— */
/* */
/* The Delta Star criterion (using the K-Minimum Spanning Tree) */
/* ____________________________________________________________ */
/* Backward elimination */
2.2 e e bttt * /
/¥ */
/* This program performs variable selection in PCA using the */
/* Delta Star criterion and the backward eliminatlon procedure */
/¥ for a given data set. */
/¥ */
/* Input: */
/¥ e */
/* */
/% 1. Number of Training samples */
/* 2. Sample size */
/* 3. Number of Variables */
/* 4. Data set */
/% 5. Number of PCs to be used for variable selection */
/* */
/% Output: */
/F m————— */
* *s
/* 1. Deleted variables and the corresponding Delta Star values */
/* 2. Selected subset of variables */
/* 3., Computational time (in seconds) 4
/¥ */
/* ______________________________________________________________ al:-/

NEW; @ Clearing the computer memory @

#INCLUDE SVD.H; @ Loading the procedure for SVD @
/* ____________________________________ '!/
/* Loading the data into the program */
J* e *y

PRINT "Program execution in progress...";

PRINT;

PRINT "Type in the number of training samples";

FRINT;

tns=CON{1,1);

FRINT;

PRINT "Type in the sample size";

PRINT;

reize=CON(1,1);

PRINT;

f11=11;

fname2="b:\\n25\\model1"; @ External data file @

OPEN fl1l1="fnameZ2 FOR READ; @ Opening data file for read @

PRINT "Type in the number of PCs to be used";

PRINT;

M=CON(1,1);

smplnumb=1;
DO WHILE smplnumb<=tns;
timel=TIME; @ Initial time @
Z=READR(f11,rsize);
n=ROWS(Z);
p=COLS(Z);
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/*
Vi
/*

/*
/*
/i

/*
Vi
Vi

/*
/*
/*

Mean-centering the data, and standardizing it (if necessary)

PROC STD(Y);
LOCAL mean,ctrans,deviat;
mean=MEANC(Y);
ctrans=((-1}*mean)+Y’;
deviat=STDC(Y);
RETP( (ctrans. /deviat)’);

ENDP;

X=STD(Z)};

CLEAR 2Z;

{Uf,Sf,Vf}=8VD2(X);

CLEAR V£,

UL ST=Uf*Sf;

CLEAR Uf,S5f;

Yjunst=UfSf[.,1:M]; @ PC scores

CLEAR UfSf;

Yj=((Yjunst’ }./STDC(Yjunst))’; @ Standardized PC scores
Yjt=Yi";

CLEAR Yj;

nf=1;
DO UNTIL nf>n-1;
Y jnf=SQRT(SUMC((Yjt[.,nfl-Yjt)"2));
IF nf==1;
dist=Yjnf;
ELSE;
dist=dist ¥ jnf; @ Distance matrix for complete data
ENDIF;
nf=nf+1;
ENDO;
CLEAR Y jt;

big=).5*n*(n-1);
itree=CUMSUMC (ONES(n-1,1));
jtree=—n*0ONES(n,1);
jtreeln, 11=0;
i=1;
DO WHILE i<=n-1;
distmn=big;
J=1;
DO WHILE j<=n-1;
inode=jtreelj,11;
IF inode<=0;
d=dist[-incde, jl;
IF d<distmn;
distmn=d;
imin=j;
J=j+1;
ELSE;
J=J+1;
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/*
/*
/*

Vi
/*
/*

Vi
/*
/¥
/*
/*

ENDIF;
ELSE;
J=j+1;
ENDIF;
ENDO;

jtreelimin,1]=-jtreelimin,1};

J=1;

DO WHILE j<=n-1;
inode=jtree(j,1];
IF inode<=0;

IF distl[j, imin]<dist[j,-inode];
Jtreelj,1}=-inin;

J=3+1;
FLSE;
J=3+1;
ENDIF;
ELSE;
J=Jj+1;
ENDIF;
ENDO;
i=i+1;
ENDO;

Yjinfd=(dist[1,2:n])";
i=2;
DO WHILE i<=n-1;

Yjinfd=Yjnfd: (dist[i, (1+1):nl)";

1=i+1;
ENDO;
treeind=0NES(n-1,1);
i=1;
DO WHILE i<=n-1;

treeind[i, 1]=INDNV(dist[itreeli, 1], jtreeli,11],Yjnfd};

i=i+1;
ENDOC;
Yjnfd=¥Yjnfd[treeind, 1];

trackdel=ZEROS(p,1);
leastDS=0ONES(p-M,1);
vardel=0NES{p-M,1);

@ Tracks deleted variables in X. @
@ Stores the least Delta Star value. @
@ Identifies variables to be deleted @

a=p; @ Initial subset size. @
______________________________________________________________ * /
Computing the Delta Star criterion for each variable omitted */
in turn from the data matrix X. */
______________________________________________________________ * g
DO WHILE g>M;

trackDS=0ONES(q,1);
DSall=-1000*(ONES(p,1);

k)
I

1
j=1

3G

WHILE j<=p;
IF trackdell]j,1]1==0;
trackdel[j,11=1;

@ Stores the Delta Star values. @
@ Delta Star values for variables @
@ omitted from X, indexed in the @
@ order in which the variables @
@ appear in X. @

@

Indexing the j-th variable for @
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@ omission.
¥del j=(DELIF (X’ , trackdel))’; @ New X.
trackdel(j,1]=0; @ Indexing omitted variable for
@ replacement.
{Udel j,Sdelj, Vdel j}=SVD2(Xdelj); @ SVD of new X.
CLEAR Xdelj, Vdelj;
Ujsj=Udel j*Sdelj;
CLEAR Udel j,Sdel j;

PEEE®®

Zjunst=UjSil., 1:M]; @ PC scoresg for new X
CLEAR UJSj;
Z2i=((Zjunst’ )./STDC(Zjunst) )’ ; @ Standardized PC sc.
Zjt=2j";
CLEAR ZJ;
W e ————————— *
/* Computing the distance matrix for the subset data */
/* ___________________________________________________ '*/
nj=1;

/'*

DO UNTIL nj>n-1;
Zinj=SQRT(SUMC((Zjt[.,njl-2jt[.,nj+1:nl)"2));
IF nj==1;
Zjnjd=Zjnj;
ELSE;
Zjnjd=ZjnjdiZ2jnj; @ Distance matrix for
@ the subset data.
ENDIF;
nj=nj+1;
ENDO;
CLEAR Zjt;

/* Locating the distances that define the KMST graph in the
/* distance matrix for the subset data and computing Delta Star

/F e e e e e e e —
Zjnjd=Zjnjdltreeind,1];
DSalll j, 11=SUMC(ABS(Y jnfd-Zjnjd)); @ Delta Star
trackDS{k,1]=Dalllj, 1];
k=k+1;
J=j+1;
ELSE;
J=j+1;
ENDIF;
ENDO;
/'IE ______________________________________________________________
/* Deleting the variable whose omission yields the least value
/* of Delta.
2 OOV

leastDS{p~q+1,1]=MINC(trackDS);
1=1;
DO WHILE 1<=p;

IF DSallll,1]==leastDS[p-q+1,1];
vardel [p-q+1,1]=1;
trackdel(l,1]=1;
1=1+1;

ELSE;
1=1+1;

ENDIF;

ENDO:
q=q-1;

ENDO;
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/*
Vi

Vi
Vi
™

Vi
/*
Ve

____________________________________ */
Identifying the retained variables */
____________________________________ */
slctv=0NES(1,M}; @ Contains the retained variables’ indices @
k=1;
1=1;
DO WHILE 1<=p;
IF trackdelll,1]==0;
sletv([l,k]=1;
k=k+1;
1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDO;

_____________________ *
LET VDSnames[2, 1]=vardel leastDS;

VOS=MERGEVAR (VDSnames) ;

LET label{1,2]= Varlable DeltaS;

FRINT label;

PRINT;

PRINT VDS;

PRINT;

PRINT "Selected subset of variables:";

PRINT;

PRINT slctv;

smplnumb=smplnumb+1;

time2=TIME; @ Final time @

hr2=(time2[1,1])*3600;

hri=(timel[1,1])*3600;

min2=(time2[2,1])*60;

minl=(timel[2,1]}*60;
secZ2=hrz+min2+(time2[3,11)+((time2(4,1])/100};
secl=hri+minl+(time1([3,1])+((timel[4,1]1)/100};
comptime=sec2-secl; @ Computational time in seconds @
PRINT;

PRINT comptime;

PRINT;

PRINT "End of Session [" smplnumb "]";

PRINT;

ENDO;
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Following is a program written in GAUSS (1988) to illustrate
the selection of variables in PCA wusing our various selection
criteria incorporated into the stepwise procedure. For convinience,
we present only the program that corresponds to the M*-Procrustes
criterion of Krzanowski (1987). Similar programs which correspond to
the proposed criteria for variable selection, namely, ;5, ;6, d and
5 were also written in GAUSS (1988) to conduct the Monte Carlo
study in Chapter 7 and the analyses of real data sets in Chapter 8,

and copies of these programs are available from either the author or

the principal project supervisor.

/* ______________________________________________________________ */
/* Program 10 */
s mmmmm e */
/* */
/¥ Krzanowski’'s (1987) M-squared-Procrustes criterion */
/# __________________________________________________ -JIE/
/* Stepwise procedure */
/'IE __________________ '*/
* */
/* This program performs variable selection in PCA using the M- */
/* squared criterion and the stepwise selection procedure for */
/* a given data set, */
™ */
/* Input: */
/¥ ’ *y
/* */
/* 1. Number of Training samples */
/* 2. Sample size */
/* 3. Number of Variables */
/% 4. Data set */
/* 5. Number of PCs to be used for variable selection */
/* */
/* Output: */
S* . */
/* *y
/* 1. Deleted variables and the corresponding M-squared values */
/¥ 2. Selected subset of variables _ */
/* 3. Computational time (in seconds) */
/* 4
/* ______________________________________________________________ * s

NEW; @ Clearing the computer memory @

#INCLUDE SVD.H; @ Loading the procedure for SVD @
I® e ————————— e *
/* Loading the data into the program */
/* ____________________________________ #/

PRINT "Program execution in progress...";

PRINT;
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PRINT "Type in the number of training samples";

FRINT;

tns=CON(1,1);

PRINT;

FRINT "Type in the sample size";

PRINT;

rsize=CON(1,1);

FRINT;

fl11=11;

fname2="b:\\nZ25\\model1"; @ External data file @
OPEN fll1="fname2 FOR READ; @ Opening data file for read @
PRINT "Type in the number of PCs to be used";

PRINT;

M=CON(1,1);

smplnumb=1;
DO WHILE smplnumb<=tns;

Vi
Vi
/-JK-

/*
/*
/*

/*
/¥
/*
/‘*‘
/'*‘

timel=TIME; @ Initial time @
Z=READR(f11,rsize);
n=ROWS (2);
p=COLS(Z};
______________________________________________________________ */
Mean-centering the data, and standardizing it (if necessary) */
______________________________________________________________ */
PROC STD(Y);
LOCAL mean,ctrans,deviat;
mean=MEANC (Y);
ctrans=((-1)*mean)+Y’;
deviat=STDC(Y);
RETP({ctrans./deviat)’);
ENDP;
X=({({(-1)*MEANC(Z2))+2' )" ;
CLEAR Z;
______________________________________________________________ */
Variable declaration and computing PC scores for complete data */
______________________________________________________________ */
{Uf,Sf, VI }=SVD2(X);
CLEAR Vf;
UfSf=UL*sr;
CLEAR Uf,Sf;
YJ=ULSf[.,1:M];
CLEAR UfSf;
trackdel=2EROS{(p,1); @ Tracks deleted variables in X. @
1stM22=0NES(p-M, 1}; @ Stores the least M-squared value. @
vardel=0ONES{(p-M, 1); @ Identifies variables to be deleted @
q=p; @ Initial subset size. @
______________________________________________________________ »
Computing the M-squared criterion for each variable omitted */
in turn from the data matrix X. */
______________________________________________________________ */
DO WHILE ¢>M;
trackM2=0NES(q,1); @ Stores M-squared values. @
M2all=-1000* (ONES(p,1); @ M-squared values for variables @
@ omitted from X, indexed in the @
@ order in which the variables @
@ appear 1n X. @
k=1;
J=1;
DO WHILE j<=p;
IF trackdellj,1]==0;
trackdel[j,1]=1; @ Indexing the j-~th variable for @
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/*

@ omission.
Xdel j=(DELIF (X', trackdel))’; @ New X.
trackdel[j,11=0; @ Indexing omitted variable for
@ replacement.
{Udel j,Sdelj,Vdel j}=SVD2(Xdelj); @ SVD of new X.
CLEAR Xdelj, Vdelj;
Ujsj=Udel j*Sdel j;
CLEAR Udelj,Sdelj;
23=U3sjil.,1:M];
CLEAR UjS53;
M2alllj, 1]1=SUMC(DIAG(YJ' *Yj+Zj *2j))
-2¥SUMC(SVD(Zj" *Yj)); @ Computing M-squ.
CLEAR Zj;
trackM2(k,1]=M2alilj,1];
k=k+1;
J=J+1;
ELSE;
J=i+1;
ENDIF;

ENDO;

/* Deleting the variable whose omission yields the least M-squ.

/*

1stM22[p-g+1,1]=MINC(trackM2};
1=1;
DO WHILE l<=p;

IF M2allll,1]==1stM22[p-q+1,1];
vardel[p-q+1,11=1;
M2delv=1stM22[p-q+1,1]; @ M-squared value for

@ deleted variable

trackdel[l,1]=1;
1=1+1;

ELSE;
1=1+1;

ENDIF;

ENDO;

/* Checking whether each deleted variable should re-enter and
/* adding them back into the system if necessary.

IF q<p;

1stM2211=-1000* (ONES(p,1)); @ Stores least M-squared
@ values, indexed in the
@ order in which the
@ corresponding variables
@ appear in the data matrix X
1stM21=0NES(p—gq+1,1); @ Stores the least M-squared value
i=1;
s=1;
DO WHILE i<=p;
IF trackdel{i,1]l==1; @ If a variable has been deleted,
trackdelli,1]1=0; @ undelete it.
trackM2=0NES(q, 1);
M2all=-1000* (ONES(p,1));
k=1;
J=1;
DO WHILE j<=p;
IF trackdellj,11==0;
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/-Jt-
/*
/*
/-*-

trackdel[j,11=1;
Xdel j=(DELIF(X’,trackdel))}’;
trackdell[j,1]1=0;
{Udel j,Sdel j, Vdel j}=SVD2(Xdel j};
CLEAR Xdelj,Vdelj;
Ujs j=Udel j*Sdel j;
CLEAR Udel },Sdelj;
Zj=UjsSjl.,1:M];
CLEAR UjSj;
M2all[j, 1]1=SUMC(DIAG(YJ' *YJ+2j’ *2j))
-2*SUMC(SVD(Z3' *Yj));
CLEAR Zj;
trackM2[k,1]1=M2alllj, 1];
k=k+1;
J=3+1;
ELSE;
J=j+1;
ENDIF;

ENDO;

lstM2all[i,1]1=MINC(trackM2);

1stM21(s,1]=1stM2allli,1];

trackdelli,1]=1;

s=g+1;

i=1+1;

ELSE;
i=i+1;
ENDIF;

ENDOQ;
______________________________________________________________ */
If the return of one of the deleted variables yields a value */
of M-squared smaller than the current least value, then re-add */

that variable and delete the variable whose omission yields */
the least M-squared value in the presence of the re-added var. */
______________________________________________________________ *

IF MINC(1stM21)<M2delv;
1=1;
DO WHILE 1<=p;

IF 1stM2allll,1]==MINC(1stM21);
retv=1; @ Returning variable @
1=1+1;

ELSE;

I=1+1;

ENDIF;
ENDO;
trackdel [retv,1]=0; @ Indexing the variable for return @
trackM2=0NES(g,1):
M2all=~1000* (ONES(p,1));
k=1;
J=1;
DO WHILE j<=p;

IF trackdellj,11==0;
trackdell j,1]1=1;

Xdel j=(DELIF(X’, trackdel})’;
trackdell j, 11=0;

{Udel j,Sdelj, Vdel j}=SVD2 (Xdel}j);
CLEAR Xdelj,Vdelj;

UjSj=Udel j*Sdel j;

CLEAR Udel j,Sdelj;
2j=UjsSjl.,1:M];

CLEAR UjS;j;
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M2allfj, 11=SUMC(DIAG(Y]J *YJ+Zj’'*Zj))
—2*SUMC(SVD(Z’ *Yj));
CLEAR Zj;
trackM2[k,11=M2all[j,1];
k=k+1:;
J=3+1;
ELSE;
J=i+1
ENDIF:
ENDOC;
1stM22 [p-qg+1, 1]=MINC(trackMz2);
1=1;
DO WHILE 1<=p;
IF M2allfl,1]l==1stM22[p-q+1,1];
vardel [p-q+1,1]=1;
trackdel[l,1]1=1;

1=1+1;
ELSE;
1=1+1;
ENDIF;
ENDO;
q=q-1;
ELSE;
q=q-1;
ENDIF;
ENDO;
2 S *y
/* Printing the results */
/* _____________________ */

LET VM2names[2, 1]=vardel lstM22;
VMZ2=MERGEVAR (VMZnames);

LET labelll,2]= Variable M-squared;
PRINT label;

PRINT;

PRINT VM2;

PRINT;

PRINT "Selected subset of variables:";
PRINT;

PRINT slctv;

smplnumb=smplnumb+1;

time2=TIME; @ Final time @
/* ______________________________________________________________ * s
/* Converting and printing the computaticnal time in seconds */
/*- ______________________________________________________________ *

hrz=(time2[1,1]})*3600;
hri=(time1l[1,1])*3600;
min2=(time2([2,1])*60;
minl=(timel[2,1])*60;
secZ=hrZ2+min2+(time2([3,1]1)+({(time2[4,1]1)/100);
seci=hri+minl+(time1[3,1]1)+((timel[4,1])/100);
compt ime=secZ-secl; @ Computational time in seconds @
PRINT;
PRINT comptime;
PRINT;
PRINT "End of Session [" smplnumb "1";
FRINT;

ENDO;
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Vi
Vi
Vid
Vi
/¥
Vid
Vid
/*
/¥
Véd
/¥
/¥
Vi
Vi
Vi
Vi
Vi
Vi
/¥
Vi
Vi
Vi
Vi
/¥

/*
/*
/*
/*-

This program computes the squared multiple correlation
between three retained variables and each of the discarded
variables for all possible subsets of retained variables.

1. Sample size
2. Number of Variables
3. Data set

1. Squared multiple correlation for each

of all possible subsets
____________________________________ *
Loading the data into the program */
____________________________________ */
PRINT "Program execution in progress...";
PRINT;
PRINT "Type in the sample size";
PRINT;
n=CON{1,1);
FRINT;
PRINT "Type in the number of variables";
PRINT;
p=CON(1,1);
PRINT;
M=3; @ Size of the subset of retained variables
fl12=12;
fname2="b:\\n100000\\model1"; @ External data file
OPEN fl12="fnameZ FOR READ; @ Opening data file for read

z=READR(f12,n);
subset=0NES{1,M);
delv=-1000*{ONES(p,1)); @ Deleted variable

Computing the squared multiple correlation for each of all
possible subsets.

J=1;

DO WHILE j<=p-2;
subset[1,1]=j;
delvl[j,1]=3;
descr2=z[., jl;
k=j+1;

DO WHILE k<=p-1;
subsetl,2]=k;
delvlk, 11=k;
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descr3=zI[.,kl;
1=k+1;
DO WHILE 1<=p;
subset[1,3]=1;
delv([l,11=1;
descr=descr2~descr3~zz[.,1]1;
rmsqu=0NES(1,p-M)};
r=1;
s=1;
DO WHILE r<=p;
IF delv(r,1]1==-1000;
pred=z[.,rl;
pd=pred~descr;
cpd=pd’ -MEANC(pd);
cov=(1/(n-1))*(cpd*cpd’'); @ Covariance matrix @
@ the subset and each @
@ of the deleted @
@ variables @
all=cov([1,1];
elZ2=cov(1,2:M+1];
e22=cov{2:M+1,2:M+1];
rmsqull,s]=(el12*INV(e22}*el2’ )/all; @ Squared @
@ multiple @
@ corr. @
s=8+1;
r=r+l;
ELSE;
r=r+l;
ENDIF;
ENDO;
PRINT subset;
PRINT;
PRINT rmsqu;
PRINT;
delv{l,11=-1000;
1=1+1;
ENDO;
delv[k,1]=-1000;
k=k+1;
ENDO;
delv[j,1]1=-1000;
J=j+1;
ENDO;
PRINT;
FRINT "End of session";
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Vi
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Vi
Vi
Vid
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Vi
Vi
/*
Vi
Vi
Vi
Vi
Vi
Vid
Vidd
Vid
Vi
Vidd
Vi
Vi
Vi
Vi

/*
/*
/¥
/*

This program computes the squared multiple correlation
between four retained variables and each of the discarded
variables for all possible subsets of retained variables.

1. Sample size
2. Number of Variables
3. Data set

1. Sguared multiple correlation for each
of all possible subsets

PRINT "Program execution in progress...";

PRINT;

PRINT "Type in the sample size";

PRINT;

n=CON(1,1);

FRINT;

PRINT "Type in the number of variables";

PRINT;

p=CON(1,1);

PRINT;

M=4; @ Size of the subset of retained variables
f12=12;

fname2="b:\\m100000\\modeld" ; @ External data file
OPEN fl12="fname2 FOR READ; @ Opening data file for read
z=READR(f12,n);

subset=0NES{1,M);

delv=-1000*({ONES(p,1)); @ Deleted variable

Computing the squared multiple correlation for each of all
possible subsets.

i=1;

DO WHILE i<=p-3;
subset[1,1]=i;
delv[i,1]=i;
descril=z[.,1];
J=i+l;

DO WHILE j<=p-2;
subset[1,2]=j;
delv(j,1]1=J;
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descr2=zl[., jl;
k=j+1;
DO WHILE k<=p-1;
subset([1,3]=k;
delv(k,1]=k;
descr3=z[.,k];
1=k+1;
DO WHILE 1<=p;
subset[1,4]1=1;
delv(l, 1]=1;
descr=descril~descr2~descr3~zz[.,1]:
rmsqu=0ONES(1,p-M);
r=1;
s=1;
DO WHILE r<=p;
IF delvir,1]==-1000;
pred=z[.,r];
pd=pred~descr;
cpd=pd’ -MEANC(pd);
cov=(1/(n-1))*(cpd*cpd’ );
@ Covariance matrix @
@ the subset and each @
@ of the deleted @
@ variables @
all=cov[1l,1];
el2=cov([1,2:M+1];
e22=cov[2:M+1,2:M+1];
rmsquil,s]=(el12*INV(e22)*el12’ )/all;
@ Squared @
@ multiple @
@ corr. @
s=s+1;
r=r+l;
ELSE;
r=r+1;
ENDIF;
ENDO;
PRINT subset;
PRINT;
FRINT rmsqu;
PRINT;
delv[l,1]1=-1000;
1=1+1;
ENDO;
delvik, 11=-1000;
k=k+1;
ENDO;
delv[j, 1]=~1000;
J=j+1;
ENDO;
delvli, 1]=-1000;
i=i+1;
ENDO;
PRINT;
PRINT "End of session";
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