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Abstract—Digital channel capacity of a network is an
important factor in network design. Recent solutions use the
Markov chain to model and compute the capacity of only a
specific wireless network with multiple relays and multiple
hops (MR-MH), and thus cannot be used for networks in
general. Further, the solutions assume that all communication
link failure probabilities are equal and that state transitional
probabilities are known. This paper proposes a general solution
for computing the capacity. Our solution first converts the
problem of computing the channel capacity of such networks
into a network reliability problem. Then, it applies the
Augmented Ordered Binary Decision Diagram (OBDD-A)
method to compute the reliability, and hence the channel
capacity. The OBDD-A does not require the aforementioned
assumptions, and can be applied to a wide range of networks.
Since the OBDD-A has been shown to have linear time
complexity and constant space complexity for families of
networks with constant inter-connectivity (such as MR-MH)
the proposed solution is extremely efficient. The application of
our method is verified by simulations.

Index Terms—channel capacity, multi-relay networks, digital
channel modeling, augmented ordered binary decision
diagram, network reliability.

1. INTRODUCTION

Wireless communications networks are becoming
prevalent in the developed world, and therefore they must be
optimally designed to meet application demands. A number
of issues affect the performance of wireless networks,
including reduction of signal at increasing distance from base
stations, energy efficiency and communication range [1].
These difficulties have been addressed, among others, by
using networks with multiple relays, each possibly having
multiple hops. Adding additional hops to a relay decreases
the distance of each wireless communication, and hence
increases the likelihood of successful communication in that
hop while decreasing the power needed to send the message
[1]. The addition of hops, however, also increases the number
of places where a communication error can occur [2]. In
contrast, adding additional relays increases the chance that at
least one correct communication will occur. The multi-relay-
multi-hop networks are referred to as MR-MH networks; and
example is shown in Fig 1.

The network’s ability to channel data at a suitable
capacity is also an important issue in the design and

implementation of networks, including wireless networks.
The capacity is affected by packet loss, in which case the
receiving node (e.g., in the Internet) will detect a checksum
or check bits error and request packet retransmission. The
speed at which data is transmitted through a wireless network
is affected by the channel capacity, and is seen as the inherent
limiting factor to performance in current and future systems
[3].

The computation of the capacity of MR-MH networks has
been addressed by Berber, Kovacevik and Temerinac [4, 5]
using a multi-state model. Markov chains are used to find
steady state probabilities at any given time period, and these,
in turn, are used to compute channel capacity. This work
assumes that communication channels have memory and that
a decode-and-forward relay strategy is used [5] The channel
capacity is the greatest possible rate for the channel, where
rate in bits per transmission is defined in [6].

The paper [4] shows how to derive the Markov chain to
compute the capacity for small networks that contain only
one or two relays. While the method can be extended to
networks with a larger amount of relays, each such formula
must be calculated independently. Further, each formula
contains multiple summations and products of conditional
probabilities, and thus producing the formulas by hand is
time consuming, if feasible, for larger networks. Further,
while the method [7] is able to produce a general formula for
MR-MH networks of arbitrary size, the formula is only
applicable to such networks that have equal communication
link failure probabilities. Finally, all formulas presented only
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Figure 1. Sample MR-MH Network



apply to MR-MH models and not to other relevant network
models.

Renk, Iankov and Jondral [8] also considered the capacity
of MR-MH networks but approached it as an optimization
problem and computed bounds rather than the actual capacity
value. Further, most of the work addressed networks with
either relays or multiple hops and the case of both was seen
as simply the maximal bound of both individual cases.

In this paper, we propose using Augmented Ordered
Binary Decision Diagrams (OBDD-A) to automatically
analyze the channel capacity of networks with a potentially
large number of relays and hops. Specifically, the main
contribution of this paper is twofold. First, we show how to
convert the problem of computing the capacity of MR-MH
networks in [4, 5] into a network reliability problem, defined
in Section III. We then show how to solve the reliability
problem, and hence the MR-MH problem, using OBDD-A.
Our simulations, discussed in Section 1V, show that OBDD-
A is an appropriate tool for computing the channel capacity
of MR-MH networks of even large size, and is equally
applicable to many other networks.

The remainder of the paper is organized as follows. In
Section IT we review network capacity as defined in [4, 5],
the concept of network reliability and the use of the OBDD-A
to compute reliability. In Section III we demonstrate the use
of OBDD-A for computing the capacity of a MR-MH
network. Section IV presents results of a number of tests, and
discusses the outcomes, and Section V concludes the paper.

II. BACKGROUND

This section briefly convers the three areas of background
knowledge relevant to this paper. First we consider the
concept of network capacity as defined in [4, 5]. We then
outline the concept of network reliability and the OBDD-A
method used to compute reliability and other metrics.

A. Network Capacity

A MR-MH network [4] has one direct connection
between given source (s) and target (f) nodes, and a number
of relay connections, each possibly having multiple hops;
Fig. 1 shows an example network with s=0, =9 and four
relay connections. In such network, a communication is
successful only if the direct communication link between the
source and target is successful, and if at least one
communication passes along a relay successfully.

The authors [4] use Markov Chains in their method, and
thus almost all probabilities are conditional. For example the
probability that the communication fails given that the
previous one failed is denoted P(0|0) and the probability that
the communication fails given the previous one succeeded is
denoted P(0[1). Let P(0) be the probability of the
communication failing and P(1) be the probability that it
succeeds. It is noted that P(0)0) = P(0|1), and hence both are
also equal to P(0) [4]; this follows from the chance of packet
failure being independent of the success of previous packets.
Similarly, P(1]0) = P(1jl) = P(1). This indicates that state

probabilities P(0) and P(1) can be used instead of the
conditional probabilities.

Markov chains are used to find formulaic expressions for
P(0) and P(1), which are then combined to give the channel
capacity, C [9], defined as

C =1+ P(0) log> P(0) + P(1) logz P(1). )

Finally, a general formula for a network of » relays is
derived as
C=1+BL, xlog,BL, + (1 — BL,) x log,(1 ~ BL,) (2)
for
BL,= [1- (1 -BL)"]?*xBL:+

(1-[1-Q@=BL)]*) x BLe, 3)
where each communication link has an equal probability of
packet error, BL, and BL; and BL; are the packet error rates
in the co-operative and non-co-operative state, respectively,
and H is the number of hops in the network. Note that this
general formula cannot be calculated using the given method
if the packet error rates are not identical. In addition, both
BL: and BL¢ have to be computed. Further, the formula can
be used only for networks of the type described, but not for
any other type of network.

For the MR-MH network shown in Fig. 1 with all
communications having a failure rate of 0.01, P(0) is
computed to be 0.010001 and P(1) is 0.989999. Hence, the
capacity for this network is 0.919202.

B. Network Reliability

The reliability of a network is defined as the probability
that it is connected. In other words, it is the probability that a
specified communication passing through all or parts of the
network is successful.

A number of different reliability models exist [10, 11].
For example, 2-terminal reliability is when the
communication is between a single source and a single target
(destination) device in the network. If the communication is
between a set of K devices in the network, K-terminal
reliability applies. When communication is required between
all nodes in the network, the all-terminal reliability model is
used. A number of more general network reliability models
also exist, such as a network with multiple source and target
devices requiring a connection between at least one source
and one target.

Further, reliability may be applied to different network
models. A network may have fallible communication links
between devices but devices which, themselves, do not fail.
Wireless sensor networks are often modelled as networks
whose devices may fail (due to power loss, efc.) but whose
communication links are infallible. Finally, a network may
have both fallible devices and communication links.

When computing network reliability, it is usual to
represent the devices and communication links of a network
by the vertices and edges of a graph. Each edge e; of the
network is assigned a probability 0<P(e;)<1.0 of being
available. It is assumed that all edges fail independently.



C. Augmented Ordered Binary Decision Diagrams

Numerous methods exist for computing the reliability of a
network. While most approaches apply to only one or two
reliability and network models, the Augmented Ordered
Binary Decision Diagram (OBDD-A) [11, 12] is applicable to
a wide range of networks and communications. Further the
OBDD-A is capable of analysing very large networks, such
as the 4x40,000 grid network. Finally, the OBDD-A is
capable of computing metrics such as expected hop count
[11] and message delay [12]. The original OBDD-A has been
combined with the boundary set method [13] to give the
hybrid OBDD-A, which is very efficient on undirected
networks.

The OBDD-A method builds a binary decision diagram
[14] with augmented nodes that store data relevant to the
metric being computed. For example, for network reliability
each node stores a state probability and for hop count each
node stores the hop counts to currently reached devices.

Each node represents a network state. When a state
represents a state of the network where communication is
successful, the information in the node is recorded and the
node is discarded. A node representing a state in which the
communication can no longer be successful is immediately
discarded. All nodes that fit neither of these categories are
iteratively processed to generate child nodes, each of which
represents a network state. The process continues until all
nodes represent either successful or failure states [11, 12, 15].

The performance of the OBDD-A has been shown to be
related to the width of the network rather than its length [15].
Further, it has been shown that for families of networks of
constant width (such as all MR-MH networks with a fixed
number of relays) the OBDD-A has linear time performance
and constant space performance.

1. USING THE OBDD-A TO COMPUTE CHANNEL CAPACITY
A. Reliability of MR-MH Networks

A communication in a MR-MH network is successful if
the information sent through the direct connection is correctly
received and if at least one relay also delivers an error-free
communication. The probability that a packet is received
successfully by a node is analogous to the reliability concept
of edge failure; if the edge is available the packet is received

Figure 2. A parallel network.

correctly and if the edge is failed the packet has an error.
Hence the error rate BL from [4, 5] is translated into the edge
probability P(egi) by using P(esr) = 1 — BL where epy is the
edge that the packet corresponding to BL travels along.

With this transformation, the reliability of the MR-MH
network becomes equivalent to computing P(1), and the
unreliability (1 — reliability) is equivalent to P(0). Hence
computing the reliability of the MR-MH is sufficient for
computing C.

However, the definition of a successful communication in
a MR-MH network does not fit into any of the standard
models of reliability because a specific path (represented by a
single edge from source to destination) is singled out as a
requirement. Therefore, another transformation, described
below, must be applied in order to use existing reliability
tools such as the OBDD-A [11, 12].

Label the source vertex vo and the target (destination)
vertex v; and the edge that connects them directly ep. Label all
other vertices and edges in the network in order of increasing
distance (number of hops) from the source. Such an ordering
[11] can be seen in the graph in Fig 2.

We now decompose the graph representing the given
MR-MH network G into sub-graphs G = (V, E ~ {eo}) and
G” = ({vo,vi},{ec}), where e is the edge connecting the
source and sink vertices directly. The sub-graph G’
corresponding to the MR-MH network in Fig. 1 is shown in
Fig. 2. We can compute the probability of successful
communication in G using G’ and G”; the communications in
both sub-graphs are required to succeed in order for the
communication in G to be successful. However, sub-graphs
G’ and G” are edge-disjoint, meaning the probability of both
having successful communications is equal to the product of
their individual two-terminal reliabilities.

1. Decompose the graph G into

a. G =(V.E-{eo}), and

b. G7 = ({vo.vi}, {e0})

Use OBDD-A to compute REL(G’)
Compute REL(G”) = Pr(vo)*Pr(eo)*Pr(vy)
Compute REL(G) = REL(G")*REL(G”)
P(1) = REL(G) and P(0) = 1 ~ REL(G)

C =1+ P(0) logs P(0) + P(1) logz P(1)

Figure 3. Algorithm to Compute Capacity from Reliability

The reliability of G”, REL(G”), is P(e¢) and REL(G’) can
be computed using the OBDD-A method for two terminal
reliability. From these reliabilities it is possible to form P(1)
= REL(G’) x REL(G”) and P(0) = 1 — P(1) and hence
compute C. The process is summarized in Fig. 3.

B. The Reliability of Parallel Networks

The G’ portion of an MR-MH is a series of parallel relays
with multiple hops, referred to as a parallel (or disjoint)
network. One such network, with four relays and two hops,
can be seen in Fig. 2. Given that the type of network affects
the performance of the algorithm computing reliability, it is
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important to discuss the suitability of the OBDD-A as a tool
for computing REL(G’).

The efficiency of the OBDD-A has been shown to be
linked to Fpa, the maximum size of the boundary set [15].
This makes the OBDD-A especially efficient on networks
that have low width. Define the width of G as

MAX(}j - i|: (vi,v;) is an edge of G7 ), )
assuming that the edges and vertices of G are ordered as
described in section I1I A.

It can be seen that the width of the network in Fig. 2 is
four, which corresponds to the intuitive meaning of width if
we count the number of hops as ‘length’. Increasing the
number of hops per relay does not increase the width; the
width (and hence F,.«) is dependent entirely on the number of
relays. OBDD-A has been shown to work well with networks
of reasonably small width (<10). For example, the OBDD-A
computes the two terminal reliability of the 7x1,000 grid
network in 93.5 seconds while requiring only 21.8 seconds
for the 4%40,000 grid network (as shown in Section V.

In addition, the OBDD-A performs better for networks
with a lower number of edges. For example the worst-case
performance of the OBDD-A is on fully-connected networks
where each vertex is connected to every other vertex. For
example, the OBDD-A requires 0.05 seconds to compute the
two terminal reliability of the 3x4 grid of 12 vertices, but
requires more than 26 minutes for the fully connected
network of 12 vertices. Parallel networks have a relatively
low number of edges, and thus are suitable for analysis by the
OBDD-A.

The performance of the implemented OBDD-A on a
range of parallel networks is discussed in Section IV.

C. Computing the Channel Capacity of Other Networks

While the MR-MH model is suitable for extending a
wireless channel, it is not the only possible model. In
particular, the nodes of a wireless sensor network may be
randomly spread over an area or it may be useful to cross-link
channels to improve the overall reliability of the system
either with the nodes on the next level the neighbouring
relays (as shown in Fig. 4) or the same level (as shown in Fig.

Figure 4. An interlinked network

Figure 5. A grid-linked network

5). It should be noted that the latter grid pattern simulates the
capability of wireless nodes to communicate with all
neighbouring nodes.

While it is difficult to calculate a general formula to
handle any form of network, generic tools like the OBDD-A
can be used to compute the network reliability of networks of
almost any configuration. This reliability can, in turn, be used
to computing the digital channel capacity.

In addition to computing the channel capacity, the
network reliability itself can be of use to network designers.
In addition, the OBDD-A can also be used to compute other
metrics such as the expected hop count [11] and message
delay [12]. These provide further information for designers,
especially if the network has power considerations or requires
delay guarantees.

IV. EXPERIMENTAL RESULTS

Each algorithm was implemented using Microsoft Visual
Studio 2010 on a PC (i7 920 2.67GHz processors, SMB L3
cache, 12GB RAM) running Windows 7. Networks were
generated by Perl scripts and pre-sorted by another Perl
script that implements the ordering described in Section II.
For each simulation, the run time, in CPU seconds, was
averaged over five runs, which was deemed to be sufficient
due to the low variance!.

The simulations assumed a communication link failure
rate of 0.1, which is the most commonly used rate in
network reliability literature. It is assumed that graph
vertices (and thus the network devices) do not fail. The
algorithm allows each edge and vertex to be assigned
individual failure rates if required.

A. Multiple-Relay Multi-Hop Networks

A number of parallel networks were generated,
representing the second part of the separated MR-MH

! The greatest variance for the results presented in this paper was 0.002 for
the 4 relay, 3000 hop network.



network. The OBDD-A was able to compute the answer to a
network of three relays, each of five hops, in 0.033 seconds.
A somewhat more robust network, with four relays of 20
hops each, required 0.037 seconds. A large network of five
relays of 100 hops each required 0.078 seconds. In general,
MR-MH networks of a size far larger than those discussed in
[4, 5] can be solved in a fraction of a second.

It can thus be seen that computing the reliability of a
parallel network of even large size is extremely fast using the
OBDD-A algorithm. As long as the number of relays is
relatively small, this performance continues to be excellent.

For example, consider a series of networks of four relays,
with an increasing number of hops per relay. The processing
time increases linearly with the number of hops, as shown in
Fig. 6. Unless an unusually large number of relays is
required, the linear complexity guarantees that the OBDD-A
can compute the reliability of a parallel network in a
reasonable amount of time.
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Figure 6. Relationship between hops and time in a 4 relay network.

This linear time complexity for families of networks with
a constant number of relays has been previously shown to be
true for the OBDD-A [15]. In addition, the space
performance for such a family of networks is constant. For
example, each of the networks in Fig. 6 required at most 15
diagram nodes to be stored in memory at any one time.

It is thus clear that the OBDD-A is a suitable tool for
computing the reliability of parallel networks, and hence the
channel capacity of MR-MH networks. However, since the
OBDD-A is a general tool; it can also be used to compute the
channel capacity of other types of networks. Further, it can
compute metrics other than just reliability.

B. Other Networks and Metrics

The OBDD-A has been shown [11, 12] to be able to
compute the reliability, hop count and message delay for a
wide range of networks.

Let the width of a network be MAX(|vs - v/ for any pair
of vertices vy and v, that are connected by an edge. Note that
width is related to the network’s diameter [3]. Networks with

low width such a parallel and grid networks are especially
suitable for analysis with an OBDD-A. For example, the
OBDD-A can compute the two terminal reliability of the
440,000 grid network in 21 seconds and the two terminal
reliability of the 7x1,000 grid network in 104 seconds.

Interconnectivity also affects the performance of the
OBDD-A since it increases the width measure of the
network. For example a parallel network and grid network
with the same number of relays and hops have the same
width, but a cross-connected network of the same size has
greater width. This results in poorer performance.

For example the cross-connected network with five relays
and 100 hops requires 4 seconds as compared to 0.113
seconds for the comparable parallel network. Similarly, the
cross-connected network with four relays and 5000 hops
requires 21.3 seconds as compared to 1.1 seconds for the
corresponding parallel network. While the OBDD-A method
can still be used to solve such networks, it is best to avoid
networks with a large amount of relays.

The OBDD-A can also be used to compute the expected
hop count (EHC) [11] and expected message delay (EMD)
[12] of networks. Due to the additional computation
involved, this requires more time and space than computing
network reliability. For example, computing the two terminal
EHC for the parallel network with 5 relays and one hundred
hops in 0.083 seconds while the network with 5 relays and
one thousand hops requires 0.295 seconds.

C. Digital Channel Capacity and Component Reliability

Berber, Kovacevik and Temerinac [4, 5] show that the
channel capacity is directly related to the reliability
probability of each part of the network, for the case where all
packet error probabilities are equal. The OBDD-A
implementation generated matching results.

Table 1 shows the digital channel capacity of three
networks at different packet error rates, under the assumption
that each component of the network has identical error rates.
The three networks tested were the parallel networks with 4
relays and 2 hops (R4 H2), and 3 relays and 5 hops (R3 HS).
The 3x100 grid network was also tested.

TABLE I. RELATIONSHIP BETWEEN CHANNEL CAPACITY AND
COMPONENT RELIABILITY

Prob R4 H2 R3 H5 Grid 3x100
0.9 0.515803 | 0.293154 | 0.210955
0.89 0.919202 | 0.917894 | 0.917199

0.999 0.988592 | 0.988590 | 0.988571
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Figure 7. Relationship between packet reliability and capacity
The results from Table 1 show that increasing the number
of hops of a network decreases the reliability (and hence the
capacity) of a network. The probability of packet success (or
packet reliability) directly affects the capacity, as shown in
both Table I and Fig. 7. The latter shows the capacities for the
R4 H2 MR-MH network shown in Fig. 1.

V. CONCLUSIONS

In this paper, we have demonstrated that the OBDD-A
can be used to efficiently compute the digital channel
capacity of wireless MR-MH networks. While the original
method [4, 5] requires the manual computation of a large
number of factors for even small graphs, the OBDD-A can
compute the reliability of extremely large MR-MH networks
in seconds

Furthermore, the OBDD-A does not require that the
network be restricted to having equal communication link
failures.

In addition, the OBDD-A has been shown to be of use for
computing the digital channel capacity for networks other
than MR-MH networks, and indeed for computing a range of
other metrics on these networks. However the OBDD-A does
always not scale well for general networks with large width.
More research is required to determine if the OBDD-A is
appropriate for computing the digital channel capacity of
practical networks with hundreds of devices.

We thus conclude that the OBDD-A is an appropriate tool
for computing the digital channel capacity of MR-MH
networks and may prove useful for general networks.
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