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Abstract

In this thesis, we consider several types of optimal control problems with constraints on

the state and control variables. These problems have many engineering applications. Our

aim is to develop efficient numerical methods for solving these optimal control problems.

In the first problem, we consider a class of discrete time nonlinear optimal control

problems with time delay and subject to constraints on states and controls at each time

point. These constraints are called all-time-step constraints. A constraint transcription

technique in conjunction with a local smoothing method is used to construct a sequence

of approximate discrete time optimal control problems involving time delay in states and

controls and subject to nonlinear inequality constraints in canonical form. These ap-

proximate optimal control problems are special cases of a general discrete time optimal

control problems with time delay appearing in the state and control and subject to nonlin-

ear inequality constraints in canonical form. Thus, we devise an efficient gradient-based

computational method for solving this general optimal control problem. The gradient

formulas needed for the cost and the canonical constraint functions are derived. With

these gradient formulas, the discrete time optimal control problem with time delay ap-

pearing in states and controls and subject to nonlinear inequality constraints in canonical

form is solvable as an optimization problem with inequality constraints by the Sequen-

tial Quadratic Programming (SQP) method. With this computational method, each of

the approximate problems constructed from the original optimal control problem can be

solved. A practical problem arising from the study of a tactical logistic decision analy-

sis problem is considered and solved by using the computational method that we have

developed.

In the second problem, we consider a general class of maximin optimal control prob-

lems, where the violation avoidance of the continuous state inequality constraints is to be

maximized. An efficient computational method is developed for solving this general max-

imin optimal control problem. In this computational method, the constraint transcription

method is used to construct a smooth approximate function for each of the continuous

state inequality constraints, where the accuracy of the approximation is controlled by an

accuracy parameter. We then obtain a sequence of smooth approximate optimal control

problems, where the integral of the summation of these smooth approximate functions is

taken as its cost function. A necessary condition and a sufficient condition are derived

iii



showing the relationship between the original maximin problem and the sequence of the

smooth approximate problems. We then construct a violation avoidance function from

the solution of each of the smooth approximate optimal control problems and the origi-

nal continuous state inequality constraints in such a way that the problem of finding an

optimal control of the maximin optimal control problem is equivalent to the problem of

finding the largest root of the violation avoidance function. The control parameterization

technique and a time scaling transform are applied to these smooth approximate optimal

control problems. Two practical problems are considered as applications. The first one is

an obstacle avoidance problem of an autonomous mobile robot, while the second one is

the abort landing of an aircraft in a windshear downburst. The proposed computational

method is then applied to solve these problems.

In the third problem, we consider a class of optimal PID control problems subject

to continuous inequality constraints and terminal equality constraint. By applying the

constraint transcription method and a local smoothing technique to these continuous in-

equality constraint functions, we construct the corresponding smooth approximate func-

tions. We use the concept of the penalty function to append these smooth approximate

functions to the cost function, forming a new cost function. Then, the constrained opti-

mal PID control problem is approximated by a sequence of optimal parameter selection

problems subject to only terminal equality constraint. Each of these optimal parameter

selection problems can be viewed and hence solved as a nonlinear optimization problem.

The gradient formulas of the new appended cost function and the terminal equality con-

straint function are derived, and a reliable computation algorithm is given. The method

proposed is used to solve a ship steering control problem.

In the fourth problem, we consider a class of optimal control problems subject to equal-

ity terminal state constraints and continuous inequality constraints on the state and/or

control variables. After the control parameterization together with a time scaling trans-

formation, the problem is approximated by a sequence of optimal parameter selection

problems with equality terminal state constraints and continuous inequality constraints

on the state and/or control. An exact penalty function is constructed for these terminal

equality constraints and continuous inequality constraints. It is appended to the cost

function to form a new cost function, giving rise to an unconstrained optimal parameter

selection problem. The convergence analysis shows that, for a sufficiently large penalty

parameter, a local minimizer of the unconstrained optimization problem is a local mini-

mizer of the optimal parameter selection problem with terminal equality constraints and

continuous inequality constraints. The relationships between the approximate optimal

parameter selection problems and the original optimal control problem are also discussed.

Finally, the method proposed is applied to solve three nontrivial optimal control problems.
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CHAPTER 1

Introduction

1.1 Motivation and Background

An optimal control problem is to find a function such that a performance measure (also

called objective function or cost function) is minimized subject to a dynamical system and

a set of algebraic constraints. It has a wide range of applications in many areas such as

space technology, defence, environmental science, operations research, economics, biology,

mechanical engineering, electrical engineering, chemical engineering, civil engineering and

even social sciences.

1.2 Numerical Methods

Numerical Methods In many practical real-world optimal control problems, there are

rigid requirements to be satisfied at every time point in the planning horizon. Such

requirements are often expressed as continuous inequality constraints on the state and/or

control. These algebraic constraints are the most difficult constraints in optimal control

problems. Optimal control problems subject to such continuous inequality constraints

have been studied intensively in the literature. See, for example, [101–103], and the

references cited therein. In [102], necessary conditions for optimality have been derived for

various types of constrained optimal control problems. However, many real-world practical

problems are much too complex to admit analytical solutions by using these necessary

conditions for optimality, and they can only be solved numerically. There are already

some numerical methods, such as the shooting method [31], [32], the discretization method

[109–111], the non-smooth Newton method [107, 108], and the control parameterization

method [96–98,100,101,103], available in the literature.
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2 Introduction

1.2.1 Shooting and Multiple Shooting Methods

The shooting method is developed by Bryson [31] and Breakwell [32] to solve a two-point

boundary-value-problem (TPBVP) obtained from applying the maximum principle. It is

based on a guess of the solution of the co-state equations at the initial time point. Then,

both the state and co-state equations are integrated forward in time. The solution of the

co-state equations at the terminal time is compared with the terminal condition of the co-

state equations obtained from the maximum principle. The error is then used to update

the initial guess for the co-state equations. This process is continued until the conditions

of the maximum principle are satisfied. However, the TPBVP is very sensitive to the

initial guess of the co-state equations. The failure of achieving convergence is common

for this method. Thus, the multiple shooting method is proposed in [33] to overcome the

shortcomings of the shooting method. The multiple shooting method divides the time

horizon into many subintervals, and the shooting method is used in every subinterval until

the conditions of the maximum principle and the continuities of all the junction points

are satisfied. However, this method remains sensitive to the initial guess of the co-state

equations, although to a lesser extent.

1.2.2 The Direct Collocation Method

The discretization method, which is also called the direct optimization method, is an ef-

fective method algorithm for small scale optimal control problems. By the discritization

of the state and control variables, the direct collocation method transforms a constrained

optimal control problem into a finite dimensional nonlinear optimization problem which

can be solved by standard nonlinear programming methods, such as the SQP method.

Initially, a coarse discritization is carried out and a solution is obtained. The optimali-

ty is checked by applying second-order sufficient conditions (SSC). Then, a sequence of

refinement steps are taken, yielding a sequence of increasingly complicated approximate

problems with more accurate solutions. Clearly, for large scale optimal control prob-

lems, the computational burden can become too enormous for effective implementation.

In [109], two discretization methods, that transcribe optimal control problems into non-

linear programming problems, are discussed. These nonlinear programming problems are

solvable by using the SQP method. It is also shown that the SQP method can be used

to check the SSC and to calculate the co-state variables.

1.2.3 Control Parameterization Methods

Consider optimal control problems subject to canonical equality as well as inequality

constraints on the state and/or the control variables. The idea of the control parameteri-
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zation method ( [34–36] and many others) is to partition the time horizon into a number

of subintervals. Then the control is approximated by a piecewise constant or piecewise

linear function with possible discontinuities at the partition points. The heights of the

piecewise constant functions are regarded as decision variables. In this way, the optimal

control problem is approximated by a sequence of finite dimensional optimal parameter

selection problems, each of which can be regarded as a mathematical programming prob-

lem and solved by existing standard optimization techniques. The convergence of the

sequence of the approximate optimal parameter selection problems to the original opti-

mal control problem has also been established in [36]. It has been shown [36] that many

types of constraints encountered in practice can be transformed into respective canonical

constraints. The most difficult constraints are the ones which are required to be satis-

fied at each time point. These constraints are often expressed as continuous inequality

constraints on the state and/or control variables. They are handled by the constraint

transcription method reported in [103], where the continuous inequality constraints are

approximated by functions in integral form involving a smoothing parameter. These inte-

gral functions are either regarded as conventional inequality constraints or appended into

the cost function by using the concept of the penalty function method to form a new cost

function. For the first case, the original optimal control problem is approximated by a

sequence of nonlinear optimization problems with inequality constraints in integral form,

and each of which can be solved by standard constrained optimization methods, such as

the sequential quadratic programming (SQP) method. For the second case, we obtain a

sequence of unconstrained nonlinear optimization problems and each of which is solvable

by standard unconstrained nonlinear optimization techniques, such as conjugate gradient

method or any quasi-Newton method [36].

In practice, the partition time points in the control parameterization method should

also be regarded as decision variables for better efficiency. For this, a time scaling trans-

form (originally called the control parameterization enhancing transform) is introduced

in [87]. It maps the varying partition time points into fixed time points in a new time

horizon via introducing an additional control variable, called the time scaling control.

After the time scaling transform, the resulting optimal control problem is in the same

form as that obtained by the standard control parameterization approach. This time

scaling transform has been applied with great success to convert many highly complex

optimal control problems, such as the optimal impulsive optimal control problems [39,41],

optimal control problems involving switched systems [40], and the optimal discrete valued

control problems [42], into respective standard optimal control problems solvable by the

standard control parameterization approach. For the continuous inequality constraints on

the state and/or control variables, they are handled by the constraint transcription tech-

nique which is originally developed in [103] to handle continuous inequality constraints
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on the state variables only. It is extended in [97] to the case where both the state and

control are allowed to appear explicitly in the continuous inequality constraints. The non-

linear optimization problems, either constrained or unconstrained, are controlled by two

parameters, where one controls the accuracy and the other controls the feasibility. The

convergence for the method developed in [87, 97, 103] can be slow. This is because there

are two parameters to be adjusted. More specifically, it is required to initiate a value

for the accuracy parameter. Then, the feasibility parameter is required to be adjusted

until the continuous inequality constraints are satisfied. The accuracy parameter is then

reduced and followed by the adjustment of the feasibility parameter until the continuous

inequality constraints are satisfied. The process is repeated until the required accuracy is

achieved. Furthermore, there is no theoretical result showing that a local optimal solution

of the nonlinear inequality constrained optimization problem is a local optimal solution

of the optimal parameter selection problem with continuous inequality constraints on the

state and/or control.

The optimal control software package, MISER 3.3 [37], is implemented based on the

control parameterization technique, the time scaling transform and the constraint tran-

scription technique. Many practically important problems have been successfully solved

by using the optimal control software package, MISER 3.3. See, for example, [36,37] and

the relevant references cited therein.

1.2.4 Non-smooth Newton Methods

In [107] and [108], necessary conditions are stated in terms of a local minimum princi-

ple and it is transformed into an equivalent non-smooth equation in appropriate Banach

spaces by using the Fischer-Burmeister function. The nonlinear and non-smooth func-

tions are then solved by a non-smooth Newton’s method. The global convergence and

locally superlinear convergence under certain regularity conditions are proved in [107],

while the local quadratic convergence is proved and a globalization strategy based on the

minimization of the squared residual norm is suggested in [108].

1.3 Discrete Time Optimal Control Problems

Discrete time optimal control problems can be considered as finite dimensional optimiza-

tion problems. There are numerous methods that are available in the literature for solving

discrete time optimal control problems.

In [38], a class of discrete time optimal control problems is studied under the framework

of nonlinear programming. More specifically, the Kuhn-Tucker theorem is applied to this

problem and a discrete maximum principle similar to Pontryagin maximum principle is
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derived. However, it is not widely used in practice. The main reason is that the resulting

two-point boundary-value problem obtained from the application of the discrete maximum

principle is difficult to solve.

In principle, a discrete time optimal control problem can be solved as a mathematical

programming problem by regrading all the states and the control variables as decision

variables and the difference equations as algebraic constraints. However, the computa-

tional burden can become much too enormous for efficient implementation when there

are many states and control variables. It is particularly so when the number of the time

steps is large. Also, the algebraic constraints arising from the difference equations are

not easy to be satisfied, if they are nonlinear. Furthermore, when the problem is subject

to all-time-step constraints, additional nonlinear inequality constraints are required to be

imposed at every time step. Thus, even a small scale discrete time optimal control prob-

lem with all-time-step constraints can become a large sale mathematical programming

problem involving a large number of decision variables and many nonlinear equality and

inequality constraints.

In [61], a discrete time optimal control problem is solved as a mathematical program-

ming problem, where only the control variables are considered as decision variables. The

state variables are obtained through solving the difference equations. In this way, there

are fewer decision variables and the optimization problem does not involve the algebraic

constraints arising from the difference equations. However, the number of decision vari-

ables can still be very large if the number of the time steps is large. For the all-time-step

inequality constraints, they are handled by the constraint transcription technique devel-

oped in [103], where each of the all-time-step constraints is approximated by a sequence

of canonical constraints in the form of the cost function.

The dynamical programming method provides a nonlinear feedback control law, while

the discrete maximum principle or the mathematical programming approach gives rise

to only open loop control law. However, only small scale discrete time optimal control

problems without all-time-step inequality constraints can be solved effectively by the

dynamic programming method.

For many natural and man-made systems, inherent delays exist during the transmis-

sion of information between different parts of the systems. As a consequence, it gives rise

to time delayed systems for which the evolution of current states depends on the past and

present values of states and controls. Optimal control of time delayed systems has been

an active research area since 1960s. For problems involving continuous time systems with

time delay, many papers are now available. See, for example, [44], [45–59]. Amongst these

references, several computational methods (see [46–49, 51–62]) are suggested. For prob-

lems involving discrete time systems with time delay, there are much fewer papers available

in the literature. In [63], Kuhn-Tucker theorem of nonlinear programming (see [64]) is
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used to derive a discrete maximum principle similar to Pontryagin maximum principle for

an optimal discrete time system with a pure delay. However, no efficient computational

algorithm is proposed using this discrete maximum principle. In [65], optimal tracking

control for discrete time systems with time delay and a quadratic cost function, which

is affected by persistent disturbances, is considered. However, no constraints on states

or controls are involved. In [36], computational methods are proposed for several classes

of optimal control problems with constraints on states and/or controls. These include

a discrete time optimal control problem subject to constraints on states and controls at

each time point. However, no time delay is involved in the problem considered.

For discrete time optimal control problems with time delays, it has many applications

in areas such as logistics. To be more specific, it is known that logistics is playing an es-

sential role in modern warfare. Contemporary military thoughts suggests that the logistic

support for the modern warfare could be better described in terms of network structure.

Furthermore, the management of the dynamic system behavior will be needed so as to

maximize performance. This network nature of the modern warfare is constructed through

a system of linked support hubs or nodes, which describe the dynamic distribution of the

stock among the distribution hubs, support bases, exchange points and costumer locations

through the supply routes. This type of network is preferred by the armed forces, because

it enables the transfer of resources throughout and across the system, enhancing the re-

sponsiveness and robustness of support and reducing layering, linearity and the need for

excess redundancy. In [60], motivated by the tactical logistic decision analysis problem, a

class of discrete time optimal control problems subject to constraints at each time point

with time delay appearing in the control is considered. First, the discrete time optimal

control problem with the constraints ignored is solved by using the method suggested

in [67], yielding the unconstrained optimal control. Then the control and the state are

saturated when they violate their respective constraints. Clearly, such a control is, in

general, not an optimal control for the discrete time optimal control problems with time

delay and subject to constraints at each time point. More importantly, it is, in reality,

impossible to saturate the states when their constraints are violated. It is thus clear that

the problem considered in [60] has not yet been solved satisfactorily.

1.4 Minimax Optimal Control Problems

A minimax optimal control problem (also known as a Chebyshev optimal control problem)

is an optimal control problem, where its performance measure cannot be represented

by functions in the form of Bolza. It is described as minimizing the maximal value of

a given function of the state and control variables over a prescribed time interval. It

is well known that a maxmin problem is equivalent to a minimax problem. Minimax
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optimal control problems have been widely studied in the literature. See, for example,

Warga [69, 70], Johnson [71], Powers [72], Holmaker [73–78]. Several sets of necessary

conditions have been derived, and they have been used in the construction of numerical

methods. For the method reported in Warga [69], a transformation is used to convert the

minimax optimal control problem into a standard optimal control problem in the form of

Bolza with additional inequality constraints on the state and/or control variables. Then,

this standard optimal control problem can be dealt with by the existing methods and

theories. This idea has been widely adopted, see, for example, Miele [75–77], Bock [79]

and Oberle [68]. Minimax optimal control problems have many real world applications.

Let us look at two applications below, where the first one is the robot navigation while

the second one is the abort landing of an aircraft in the presence of windshear.

Robot navigation problems have been extensively studied in the literature, see, for

example, [1–4]. One approach, which is known as the reactive approach (see [80]), is to

design a specific control law for each behavior within a collection of behaviors, dedicating

to perform a specific task. The robot switches between different behaviors when different

circumstances are encountered in the environment. The advantage for this method is that

the design task is quite simple because the controller is designed with only a limited set

of objectives under consideration. The second one is called the deliberative approach.

The motion of the robot is carefully designed in advance and some optimal performance,

like minimizing the energy consumption, is specified. This approach is often used in

structured environments, e.g. in industrial settings. In [81], the problem of a single robot

moving towards a goal while avoiding obstacles is considered, where the optimal sequence

of switches between the go-to-goal mode and the avoid-obstacle mode is to be found. This

optimization problem is solved as an optimal control problem. The radius of the obstacle,

called the safety distance, is regarded as the control parameter. However, when the robot

crosses the guard, it changes its mode. But then, it may be steered back towards the

guard, and hence resulting in traversing the guard many times in a short time interval.

To avoid this chattering situation, the single guard is replaced in [82] by two circles with

a common center at the obstacle. When the robot is in the goal-approach mode and is

outside the inner circle, it will change its mode when the inner circle is crossed. On the

other hand, when the robot is in the avoid-obstacle mode and is inside the outer circle,

it will change its mode when it traverses towards the outer circle. The radii are regarded

as control parameters. The optimal radii are obtained through solving an optimal control

problem by using a gradient-based method. However, none of these two approaches solves

this obstacle avoidance problem optimally.

The presence of low-altitude windshear is a microscale meteorological phenomenon

usually taking place in subtropical regions. Windshear is a difference in wind speed and

direction over a short distance in the atmosphere. It is observed that microburst and
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downbursts are often caused by thunderstorms. The microburst and downburst are the

movement of high speed descending air in a short time and then spreading out from

its center horizontally with high velocity. It is highly dangerous when an airplane is

encountered with such a windshear when it is taking off or landing, even for a highly skilled

pilot. This is because the aircraft may encounter a headwind followed by a tailwind, both

coupled with a downdraft. The transition from the headwind to the tailwind leads to an

acceleration and the resulting windshear inertia force can be as large as the drag of the

aircraft, and sometimes as large as the thrust of the engines. Several fatal accidents are

caused by the windshear. Two such incidents are: (i) The crash of a Boeing B-727 from

PANAM Flight 759 on July 9, 1982 at New Orleans International Airport; and (ii) the

crash of a Lockheed L-1011 from Delta Airlines Flight 191on August 2, 1985.

When the pilot of an aircraft detects a low-altitude windshear, he/she has two choices:

(i) penetration landing; or (ii) abort landing. If the initial altitude is low, penetration

landing is always chosen. However, if the initial altitude is high enough, abort landing is a

much safer procedure than penetration landing. Thus, abort landing problem, penetration

landing problem and other control and guidance problems involving windshear have been

extensively studied in the literature. See, for example, [5–24,83–85].

If the abort landing problem is studied as an optimization problem, the global infor-

mation on the wind flow field is assumed available. Then the task is to determine the

optimal trajectory for the maximization of the ground clearance so as to transfer the

aircraft from a descending path to an ascending path safely. For the guidance studies, it

is assumed that only local information on the wind flow is available. In this situation, a

near-optimal trajectory is to be determined to approximate the behavior of the optimal

trajectory by using only the local information. Although the optimal trajectory is not

implementable due to the limitations of the on-board computer capacity, the study can

provide the benchmark for the guidance schemes and piloting strategies for evaluating the

existing guidance schemes and piloting strategies.

The optimal abort landing problem is to determine the optimal trajectory for the

maximization of the ground clearance while transferring an aircraft from the descending

path to an ascending path. In other words, it is to minimize the peak value of the

altitude drop. This problem can be formulated as a minimax optimal control problem.

In [21], the abort landing problem is studied in a vertical plane. It assumes that, when

a plane encounters a windshear, the pilot increases the power setting at a constant time

rate until the maximum power setting is reached. After that, the power setting is held

constant. As a result, the only controls are the angle of attack and its time derivative.

The problem is formulated as a minimax optimal control problem. This minimax optimal

control problem is then converted into a Bolza problem through suitable transformations.

The Bolza problem is solved by using the dual sequential gradient-restoration algorithm
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(DSGRA) in [29] and [30]. The simulation is carried out under different combinations

of windshear intensities, initial altitudes and power setting rates. It is found that, for

strong-to-severe windshear, the optimal trajectory includes three branches: a descending

flight branch, followed by a nearly horizontal flight branch, followed by an ascending

flight branch after the aircraft has passed through the shear region. Along the optimal

trajectory, the point of minimum velocity is reached at about the time when the shear

ends. The peak altitude drop depends on the windshear intensity, the initial altitude, and

the power setting rate. It increases as the windshear intensity increases and the initial

altitude increases. It decreases as the power setting rate increases. In [21], a benchmark

optimal trajectory is obtained for the optimal abort landing problem. From our studies in

Chapter 3, we find that the optimal trajectory obtained is in the same shape. In [83], the

problem is solved by using the gradient-restoration method. In [84] and [85], the problems

is also converted into a Bolza problem through suitable transformations. However, the

Bolza problem is solved by using the multiple shooting method, which requires a good

guess of the initial condition. This is not an easy task to achieve.

1.5 Optimal Closed Loop Control Problems

The numerical methods reviewed in Section 1.2 are for finding open loop optimal con-

trols. However, feedback controls are preferred in engineering applications. It is well

known that an analytic linear feedback control law can be obtained for linear quadratic

optimal control problems. For nonlinear optimal control problems, an analytic feedback

control law is, however, not available except for some very special cases [43]. For non-

linear optimal control problems, even a numerical solution of optimal feedback control is

very difficult to obtain. It involves solving a nonlinear HJB partial differential equation.

The neighboring extremal method, originating in the 1960s, is considered as an effective

method in dealing with feedback control of nonlinear optimal control problems. However,

it is a local feedback control effective only in a small region around the open loop optimal

trajectory. Furthermore, HJB partial differential equation approach is not effective when

the optimal control problems are subject to constraints on the state.

For nonlinear optimal control problems, a simple feedback control is in the form of

a PID controller, which consists of three parallel control terms for proportional, integral

and derivative control actions. The PID controller design technique is widely accepted in

industry. It is one of the most reliable methods used in practice. Since 1940s, many meth-

ods have been developed for tuning the PID controllers. Some methods use information

on the open loop step response, such as the Coon-Cohen reaction curve method, Ziegler-

Nichols frequency response method. Some commercial autotuners, which are developed

based on these simple tuning methods, are available in the market. However, these meth-
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ods often do not provide good tuning because they do not make use of full information of

the dynamic behaviors. The Ziegler-Nichols method, which has been widely used in the

process industry for the tuning of the PID parameters, usually gives rise to oscillatory set

point responses. From 1980s, some automatic tuning methods have been suggested, such

as the phase margin method [27] and the refined Ziegler-Nichols method [28]. However,

the parameters for the proportional, integral and derivative control terms are still not

easy to tune. For optimal control problems with hard constraints on the state and/or

PID controller, the tuning of the PID parameters is much harder. It is particularly so for

the tuning of the parameter for the integral term of the PID controller. The main reason

is that the integral term of the PID controller performs the integral action over a period

of time. Because of the accumulation effect, a large value of the parameter for the integral

control will cause huge overshoot. On the other hand, if the parameter for the integral

control is chosen to be very small, while the overshoot can become small, the steady state

error will take a long time to reduce in the presence of constant disturbances.

Steering control problems have been well studied since 1920s. One of its applications

is in ship steering. It is required to design an autopilot such that the ship is steered to the

desired course automatically. Technically, the measured heading angle is compared with

the desired course, and the difference is used as the input to the autopilot. Then autopilot

generates an output signal by the integrated algorithm to the rudder servomechanism

interface leading to suitable control signals to drive the ship rudder. The functions of

the autopilot can be divided into the course changing and course keeping. Course change

demands a fast response when a ship is maneuvering in a confined waterway. Course

keeping demand a control to maintain the ship in a desired course with minimum rudder

activity even under certain disturbances. Tight control is not recommended because

it makes the rudder so active that additional rudder drag is always resulted. Thus,

the rudder should be controlled in such a way that the propulsion losses caused by the

resultant yawing and the motion of the rudder are minimized. The steering for the course

keeping is more difficult than that for course changing.

For the autopilot design of the ship steering problem, PID control is considered to

be one of the most reliable methods and has been widely used. (see, for example, [88,

89,92]). Until now almost all commercially available ship autopilots were designed based

on the PID controller. There are numerous advantages, resulting in the popularity of

using PID controllers. For example, the structure of a PID controller is simple, involving

only three parameters for the proportional, integral and derivative terms of the PID

controller. It is easily implemented in practice, and convenient to adjust or reset by

engineers. Furthermore, a PID controller is highly reliable. Consequently, it is widely

used by engineers. However, there are also some shortcomings associated with a PID

controller. For example, the parameters of a PID controller are difficult to tune when
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the output is required to move within a highly confined region. This is so even for an

experienced technician.

Adaptive control is another popular control strategy for the ship steering problems

(see, for example, [25,26,90,93,95] ), though it is not as widely used as PID control. The

advantage for the adaptive control is that it doesn’t need the a priori knowledge of the

dynamics of the plant. It works adaptively when there is some change of the steering

characteristics. In [25], the sensitive model approach and the Lyapunov approach are

studied, and simulations based on these two methods are carried out. Results show that

there is no significant difference between these two methods. In [26], the autopilot is

designed based on the model reference adaptive control. Different optimal behaviors in

terms of ship steering are studied. It shows that the rate of turn or the turning circle

should be adjusted during the course changing mode, and the accuracy against the econo-

my should be adjusted during the course keeping mode. In [95], a self tuning autopilot is

designed based on the recursive least-squared estimation method to reconcile the conflict-

ing demands of course keeping and of course changing. It is achieved by formulating the

course keeping performance criterion to minimize the heading error, propulsion losses and

rudder activity, while the course changing performance criterion to minimize the heading

error. However, adaptive controllers are harder to design. In particular, they may not be

applicable when the output is required to move within a highly confined region.

1.6 Overview of the Thesis

In previous sections, we gave a brief introduction of the computational methods available

in the literature for solving optimal control problems. The backgrounds of the problems

that we will study in the following chapters and their applications are also given. The

purpose of this thesis is to present new computational methods for several constrained

optimal control problems. We briefly describe these problems below.

In Chapter 2, we consider a class of discrete time nonlinear optimal control problems

with time delay and subject to inequality constraints on states and controls at each time

point. In other words, for each time point, there is an inequality nonlinear constraint.

These inequality constraints are called all-time-step inequality constraints. A constraint

transcription technique is used in conjunction with a local smoothing method to con-

struct a sequence of approximate discrete time optimal control problems involving time

delay in states and controls and subject to nonlinear inequality constraints in canonical

form. These approximate optimal control problems are special cases of a general discrete

time optimal control problems with time delay appearing in the state and control and

subject to nonlinear inequality constraints in canonical form. Thus, an efficient gradient-

based computational method is devised for solving this general optimal control problem.
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The gradient formulas needed for the cost and the canonical constraint functions are

derived. With these gradient formulas, it is shown that the discrete time optimal con-

trol problem with time delay appearing in states and controls and subject to nonlinear

inequality constraints in canonical form is solvable as an optimization problem with in-

equality constraints by the Sequential Quadratic Programming (SQP) method. With this

computational method, each of the approximate problems constructed from the original

optimal control problem can be solved. A tactical logistic problem is considered and stud-

ied. It is a problem of decision making for the distribution of resources within a network

of support, where the network seeks to mimic how logistic support might be delivered in

a military area of operations. The problem is formulated as a discrete time optimal con-

trol problem with a time delay appearing in the control, where the physical limitations

in capacity at locations and the requirements for stock are formulated as all-time-step

inequality constraints. The objective is to minimize the combat power cost function.

In Chapter 3, we consider a general class of maxmin optimal control problems, where

the violation avoidance of the continuous state constraints is to be maximized. An efficient

computational method for solving this general maxmin optimal control problem is devised.

In this computational method, the constraint transcription method is used to construct

a smooth approximate function for each of the continuous state inequality constraints,

where the accuracy of the approximation is controlled by an accuracy parameter. This

yields a sequence of smooth approximate optimal control problems, where the integral of

the summation of these smooth approximate functions is taken as its cost function. A

necessary condition and a sufficient condition are derived showing the relationship between

the original maxmin optimal control problem and the sequence of the smooth approximate

optimal control problems. A violation avoidance function is introduced from the solution

of each of the smooth approximate optimal control problems and the original continuous

state inequality constraints in such a way that the problem of finding an optimal control

of the maxmin optimal control problem is equivalent to the problem of finding the largest

root of the violation avoidance function. The control parameterization technique and a

time scaling transform are applied to these smooth approximate optimal control problems.

Two practical problems are considered and studied. The first one is an obstacle avoidance

problem of an autonomous mobile robot. The objective is to control the robot such that

it will avoid the obstacles as far as possible. The second one is the well known abort

landing of an aircraft in a windshear downburst. It is required to control the aircraft such

that the minimum altitude is maximized. They are both solved by the computational

method developed in this chapter.

In Chapter 4, we consider a class of optimal PID control problems subject to con-

tinuous inequality constraints and terminal equality constraints. In other words, we are

required to find the optimal PID parameters such that a cost function is minimized, while
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the continuous inequality constraints and terminal equality constraint are satisfied. The

constraint transcription method and a local smoothing technique are applied to construc-

t smooth approximate function in integral form for each of these continuous inequality

constraints. The concept of the penalty function is then used to append these smooth

approximate functions in integral form to the cost function, forming a new cost function.

In this way, the constrained optimal PID control problem is approximated by a sequence

of optimal parameter selection problems subject to only terminal equality constraint.

Each of these optimal parameter selection problems is solvable as a nonlinear optimiza-

tion problem. The gradient formulas of the new appended cost function and the terminal

equality constraint function are derived, and a reliable computation algorithm is given for

the tuning of the optimal PID parameters. The method proposed is used to design an

optimal PID controller for a ship steering problem in its full generality without resorting

to simplification or linearization. This PID controller is served as an autopilot such that

the ship is steered to the desired course automatically under certain disturbances.

In Chapter 5, we focus on a class of optimal control problems subject to equality ter-

minal state constraints and continuous inequality constraints on the state and/or control

variables. It is required to find an optimal control such that the performance function

is minimized, and the equality terminal state constraints and continuous inequality con-

straints on both the state and control variables are satisfied. It is a challenging problem

and has been intensively studied, because such constraints are often encountered in prac-

tice. After the application of the control parameterization technique and a time scaling

transformation, the constrained optimal control problem is approximated by a sequence of

optimal parameter selection problems with equality terminal state constraints and contin-

uous inequality constraints on the state and/or control. A new exact penalty functions are

constructed for these terminal equality constraints and continuous inequality constraints.

They are appended to the cost function to form a new cost function, giving rise to an un-

constrained optimal parameter selection problem. The convergence analysis shows that,

for a sufficiently large penalty parameter, a local minimizer of the unconstrained opti-

mization problem is a local minimizer of the optimal parameter selection problem with

terminal equality constraints and continuous inequality constraints. The relationships

between the sequence of the approximate optimal parameter selection problems and the

original constrained optimal control problem are discussed. Finally, the method proposed

is applied to solve three nontrivial optimal control problems.

We conclude the thesis with some concluding remarks and some suggestion for future

research.

The structure of this thesis is shown in the following figure.
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Figure 1.1: The structure of the thesis



CHAPTER 2

Discrete Time Optimal Control Problems

with Time Delay and All-time-step Inequality

Constraints

2.1 Introduction

In this chapter, we consider a class of discrete time nonlinear optimal control problems

with time delay and subject to constraints on states and controls at each time point.

These constraints are called all-time-step constraints. This problem, in principle, can

be solved as a nonlinear optimization problem, where the cost function is minimized

with respect to both the state and control variables subject to the all-time-step inequal-

ity constraints and the difference equations which are regarded as equality constraints.

This approach will give rise to many nonlinear constraints. These include the equality

constraints that arise from the difference equations. These equality constraints are non-

linear. It is acknowledged that nonlinear optimization problems with nonlinear equality

constraints are difficult to solve, as the satisfaction of the nonlinear equality constraints

are difficult to maintain during the optimization process. Another approach is to use the

system of difference equations to calculate the state for a given control. In this way, only

the control variables are decisions variables and the constraints contain only the all-time-

step inequality constraints. Using this approach, the problem can also be regarded as a

nonlinear optimization problem subject to nonlinear inequality constraints at each time

point. To solve such a problem using a gradient-based method, such as SQP approxi-

mation scheme [36], we need the values and the gradients of the cost function and the

all-time-step inequality constraint functions. If the number of the time steps is large, the

number of nonlinear inequality constraints will also be large. To calculate the gradient of

each of these nonlinear inequality constraints, the same number of associated co-state sys-

tems are also required to be solved, one for each of these nonlinear inequality constraints.

Clearly, the computational complexity is rather high.

15
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This chapter is the author’s work in [112]. In this chapter, we use the constraint

transcription technique introduced in [61] in conjunction with a local smoothing method

to construct a sequence of approximate discrete time optimal control problems involv-

ing time delay in states and controls and subject to nonlinear inequality constraints in

canonical form. Rigorous convergence analysis shows that the optimal solutions of the

approximate problems converge to the optimal solution of the original optimal control

problem. Furthermore, it is noted that these approximate optimal control problems are

special cases of a general discrete time optimal control problems with time delay appearing

in the state and control and subject to nonlinear inequality constraints in canonical form.

Thus, we devise an efficient gradient-based computational method for solving this general

optimal control problem. The gradient formulas needed for the cost and the canonical

constraint functions are derived. With these gradient formulas, the discrete time op-

timal control problem with time delay appearing in states and controls and subject to

nonlinear inequality constraints in canonical form is solvable as an optimization problem

with inequality constraints by any gradient-based optimization method, such as the SQP

approximation scheme (see [36]).

With this computational method, each of the approximate problems constructed from

the original optimal control problem can be solved. As an application, we consider the

tactical logistic decision analysis problem formulated in [60]. In [60], the optimal control

problem with the constraints ignored is solved by using the method suggested in [67],

yielding the unconstrained optimal control. Then the control and the state are saturated

when they violate their respective constraints. Clearly, such a control is, in general, not

an optimal control for the discrete time optimal control problems with time delay and

subject to constraints at each time point under consideration. More importantly, it is, in

reality, impossible to saturate the states when their constraints are violated. It is thus

clear that the problem considered in [60] has not yet been solved satisfactorily. With our

method, the constraints are considered explicitly in the development of our algorithm.

Thus, it is not surprising that the optimal cost obtained using our algorithm is much

less than that reported in [60]. More importantly, the optimal control obtained using

our algorithm is such that the all-time-step constraints are satisfied at each time point.

This is unlike the approach used in [60] by artificially saturating the state and control

when the constraints are violated. Although saturating the control is possible, the task

of saturating the state is really not realistic in practice.
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2.2 Problem Statement

Consider a process described by the following system of difference equations with time

delay:

x(k + 1) = f(k, x(k), x(k − h), u(k), u(k − h)), k = 0, 1, . . . ,M − 1, (2.1a)

where

x = [x1, x2 . . . , xn]
⊤ ∈ Rn, u = [u1, u2, . . . ur]

⊤ ∈ Rr,

are, respectively, the state and control vectors, while f = [f1, f2, . . . , fn]
⊤ ∈ Rn is a given

function and h is the delay time, which is an integer satisfying 0 < h < M . Here, we

consider the case where there is only one time delay. The extension to the case involving

many time delays is straightforward but is more involved in terms of notation.

The initial functions for the state and control functions are:

x(k) = ϕ(k), k = −h,−h+ 1, . . . ,−1, x(0) = x0, (2.1b)

u(k) = γ(k), k = −h,−h+ 1, . . . ,−1, (2.1c)

where

ϕ(k) = [ϕ1, ϕ2, . . . , ϕn]
⊤, γ(k) = [γ1, γ2, . . . , γr]

⊤,

are given functions from k = −h,−h+1, . . .− 1 into Rn and Rr, respectively, and x0 is a

given vector in Rn. Define

U =
{
ν = [v1, v2, . . . vr]

⊤ ∈ Rr : αi ≤ vi ≤ βi, i = 1, 2, . . . , r
}
, (2.2)

where αi, i = 1, 2, . . . , r, and βi, i = 1, 2, . . . , r, are given real numbers. Note that U is a

compact and convex subset of Rr.

Consider the all-time-step inequality constraints on the state and control variables

given below:

hi (k, x(k), u (k)) ≤ 0, k = 0, 1, . . .M − 1; i = 1, 2, . . . , N2, (2.3)

where hi, i = 1, 2, · · · , N2, are given real-valued functions.

A control sequence u = {u(0), u(1), . . . , u(M − 1)} is said to be an admissible control

if u(k) ∈ U, k = 0, 1, . . . ,M − 1, where U is defined by (2.2). Let U be the class of all

such admissible controls. If a u ∈ U is such that the all-time-step inequality constraints

(2.3) are satisfied, then it is called a feasible control. Let F be the class of all such feasible

controls.
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We now state our problem formally as follows:

Problem (Q2) Given system (2.1a)- (2.1c), find a control u ∈ F such that the cost

function

g0(u) = Φ0(x(M)) +
M−1∑
k=0

L0(k, x(k), x(k − h), u(k), u(k − h)) (2.4)

is minimized over F , where Φ0 and L0 are given real-valued functions.

2.3 Approximation

In this section, we shall use the constraint transcription technique introduced in [61] to

approximate each of the all-time-step inequality constraints by a sequence of inequality

constraints in canonical form. In this way, we will obtain a sequence of discrete time

optimal control problems with time delay and subject to canonical constraints. Therefore,

to solve Problem (Q2), it is required to solve a sequence of discrete time optimal control

problems with time-delay and subject to canonical constraints. In this section, we shall

construct these approximate optimal control problems and then show the convergence of

these approximate optimal control problems to the original optimal control problem. In

section ??, we shall develop a computational method for solving a general class of discrete

time optimal control problems with time-delay and subject to canonical constraints. This

general optimal control problem contains the approximate optimal control problem as

special cases.

To begin, we first note that the all-time-step inequality constraints (2.3) are equivalent

to the following equality constraints:

gi (u) =
M−1∑
k=0

max {hi (k, x(k), u(k)) , 0} = 0, i = 1, 2, . . . , N2. (2.5)

Thus, the set F of feasible controls can be written as:

F = {u(k) ∈ U, k = 0, 1, . . . ,M − 1 : gi (u) = 0, i = 1, 2, . . . , N2} , (2.6)

where U is defined by (2.2). However, the functions appeared in (2.5) are nonsmooth.

Thus, for each i = 1, 2, . . . , N2, we shall approximate the nonsmooth function

max {hi (k, x(k), u(k)) , 0}

by a smooth function

Li,ε (k, x(k), u(k)) (2.7)
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given by

Li,ε =


0,

(hi + ε)2

4ε
,

hi,

if hi < −ε,

if − ε ≤ hi ≤ ε,

if hi > ε,

(2.8)

where ε > 0 is an adjustable constant with small value. Then, the all-time-step inequality

constraints (2.3) are approximated by the inequality constraints in canonical form defined

by

−ε

4
+ gε (u) ≤ 0, (2.9)

where

gε (u) =

N2∑
i=1

M−1∑
k=0

Li,ε(k, x(k), u(k)). (2.10)

Define

Fε =
{
u(k) ∈ U, k = 0, 1, . . . ,M − 1 : −ε

4
+ gε (u) ≤ 0

}
. (2.11)

Now, we can define a sequence of approximate problems Q(ε), where ε > 0, below.

Problem(Q2(ε)) Problem (Q2) with (2.3) replaced by

Gε(u) = −ε

4
+ gε (u) ≤ 0, i = 1, 2, . . . , N2. (2.12)

In Problem (Q2(ε)), our aim is to find a control u in Fε such that the cost function (2.4) is

minimized over Fε. For each ε > 0, Problem (Q2(ε)) is a special case of a general discrete

time optimal control problem with time-delay and subject to canonical constraints defined

below.

Problem (P2) Given system (2.1a)-(2.1c), find an admissible control u ∈ U such that

the cost function

g0(u) = Φ0(x(M)) +
M−1∑
k=0

L0(k, x(k), x(k − h), u(k), u(k − h)) (2.13)

is minimized over U subject to the following constraints in canonical form:

gi(u) = 0, i = 1, 2, . . . , Ne, (2.14a)

gi(u) ≤ 0, i = Ne + 1, Ne, . . . , N, (2.14b)

where

gi(u) = Φi(x(M)) +
M−1∑
k=0

Li(k, x(k), x(k − h), u(k), u(k − h)). (2.15)

We shall develop an efficient computational method for solving Problem (P2) in the
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next section. In the rest of this section, our aim is to establish the required convergence

properties of Problems (Q2(ε)) to Problem (Q2). We assume that the following assump-

tions are satisfied.

Assumption 2.1. For each k = 0, 1, . . . ,M−1, f(k, ·, ·, ·, ·) is continuously differentiable

on Rn × Rn × Rr × Rr.

Assumption 2.2. For each i = 1, 2, . . . , N2, and for each k = 0, 1, . . . ,M − 1, hi(k, ·, ·)
is continuously differentiable on Rn × Rr.

Assumption 2.3. Φ0 is continuously differentiable on Rn.

Assumption 2.4. For each k = 0, 1, . . . ,M − 1, L0(k, ·, ·, ·, ·) is continuously differen-

tiable on Rn × Rn × Rr × Rr.

Assumption 2.5. For any control u in F , there exists a control ū ∈ F0 such that

αū+ (1− α)u ∈F0 for all α ∈ (0, 1], where F0 is the interior of F , meaning that if u ∈ F0,

then

hi(k, x(k), u(k)) < 0, i = 1, . . . , N2,

for all k = 0, 1, . . . ,M − 1.

Remark 2.1. Under Assumption 2.5, it can be shown that for any u in F and δ > 0,

there exists a ū ∈ F0 such that

max
0≤k≤M−1

∥u(k)− ū(k)∥ ≤ δ,

In what follows, we shall present an algorithm for solving Problem (Q2) as a sequence

of Problems (Q2(ε)).

Algorithm 2.1.

Step 1. Set ε = ε0.

Step 2. Solve Problem (Q2(ε)) as a nonlinear programming problem, and obtain an

optimal solution.

Step 3. Set ε = ε/10, and go to Step 2.

Remark 2.2. ε0 is usually set as 1.0×10−2; and the algorithm is terminated as ”successful

exit” when ε < 10−7.

Remark 2.3. In Step 2, we need to solve Problem (Q2(ε)) for each ε > 0, which is a

special case of Problem (P2). Thus, we will develop an efficient computational method

for solving Problem (P2) in Section ??.

To establish the convergence properties of Problems (Q2(ε)) to Problem (Q2), we need

Lemma 2.1. If uε is a feasible control of Problem (Q2(ε)), then it is also a feasible control

of Problem (Q2).
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Proof. Suppose uε is not a feasible control of Problem (Q2). Then, there exit some

i ∈ {1, 2, . . . , N2} and k ∈ {0, 1, . . . ,M − 1} such that

hi (k, x(k |uε ), uε(k)) > 0.

This, in turn, implies that

Li,ε (k, x(k |uε ), uε(k)) >
ε

4
,

and hence,

gε (uε) >
MN2ε

4
>

ε

4
.

That is,

−ε

4
+ gε (uε) > 0.

This is a contradiction to the constraints specified in (2.12). This completes the proof.

Theorem 2.1. Let u∗ be an optimal control of Problem (Q2) and let u∗
ε be an optimal

control of Problem (Q2(ε)). Then,

lim
ε→0

g0(u
∗
ε) = g0(u

∗).

Proof. By Assumption 2.5, there exists a ū ∈ F0 such that

uα ≡ αū+ (1− α)u∗ ∈ F0, ∀α ∈ (0, 1] .

Thus, for any δ1 > 0, ∃ an α1 ∈ (0, 1] such that

g0(u
∗) ≤ g0(uα) ≤ g0(u

∗) + δ1, ∀α ∈ (0, α1] . (2.16)

Choose α2 = α1/2. Then, it is clear that uα2 ∈ F0. Thus, there exists a δ2 > 0 such that

hi(k, x(k |uα2 ), uα2) < −δ2, i = 1, 2, . . . , N2,

for all k, 0 ≤ k ≤ M − 1. Let ε = δ2. Then, it follows from the definition of Li,ε given

by (2.8) that Li,ε = 0. Thus, (2.12) is satisfied and hence uα2 ∈ Fε. Let u
∗
ε be an optimal

control of Problem (Q2(ε)). Clearly, u∗
ε ∈ Fε and

g0(u
∗
ε) ≤ g0(uα2). (2.17)

However,

g0(u
∗) ≤ g0(u

∗
ε). (2.18)
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Thus, if follows from (2.16), (2.17) and (2.18) that

g0(u
∗) ≤ g0(u

∗
ε) ≤ g0(uα2

) ≤ g0(u
∗) + δ1.

Letting ε → 0 and noting that δ1 > 0 is arbitrary, the conclusion of the theorem follows

readily. This completes the proof.

Theorem 2.2. Let u∗
ε and u∗ be optimal controls of Problems (Q2(ε)) and (Q2), respec-

tively. Then, there exists a subsequence of {u∗
ε}, which is again denoted by the original

sequence, and a control ū ∈ F such that, for each k = 0, 1, ..,M − 1,

lim
ε→0

∥u∗
ε(k)− ū(k)∥ = 0. (2.19)

Furthermore, ū is an optimal control of Problem (Q2).

Proof. Since U is a compact subset of Rr, and {u∗
ε}, as a sequence in ε, is such that

u∗
ε(k) ∈ U, for k = 0, 1, ..,M −1, it is clear that there exists a subsequence, which is again

denoted by the original sequence, and a control parameter vector ū ∈ U such that, for

each k = 0, 1, ..,M − 1,

lim
ε→0

∥u∗
ε(k)− ū(k)∥ = 0. (2.20)

By induction, we can show, by using Assumption 2.1 and (2.20), that, for each k =

0, 1, . . . ,M,

lim
ε→0

∥x(k|u∗
ε)− x(k |ū)∥ = 0. (2.21)

Thus, by Assumption 2.2, we have, for each k = 0, 1, ..,M ,

lim
ε→0

hi(k, x(k|u∗
ε), u

∗
ε(k)) = hi(k, x(k |ū), ū(k)), i = 1, 2, . . . , N2. (2.22)

By Lemma 2.1, u∗
ε ∈ F for all ε > 0. Thus, it follows from (2.22) that ū ∈ F . Next, by

Assumption 2.1, we deduce from (2.20) and (2.21) that

lim
ε→0

g0(u
∗
ε) = g0(ū). (2.23)

For any δ1 > 0, it follows from Remark 2.1 that there exists a û ∈ F0 such that, for each

k = 0, 1, . . . ,M − 1,

∥u∗(k)− û(k)∥ ≤ δ1. (2.24)

By Assumption 2.1 and induction, we can show that, for any ρ1 > 0, there exists a δ1 > 0

such that for each k = 0, 1, . . . ,M,

∥x(k |u∗ )− x(k |û)∥ ≤ ρ1, (2.25)
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whenever (2.24) is satisfied. Using (2.24), (2.25) and Assumption 2.4, it follows that, for

any ρ2 > 0, there exists a û ∈ F0 such that

g0(u
∗) ≤ g0(û) ≤ g0(u

∗) + ρ2. (2.26)

Since û ∈ F0, we have, for each k = 0, 1, . . . ,M,

hi(k, x(k |û), û(k)) < 0, i = 1, 2, . . . , N2,

and hence there exists a δ > 0 such that, for each k = 0, 1, . . . ,M,

hi(k, x(k |û), û(k)) ≤ −δ, i = 1, 2, . . . , N2. (2.27)

Thus, in view of (2.11), we see that

û ∈ Fε,

for all ε, 0 ≤ ε ≤ δ. Therefore,

g0(u
∗
ε) ≤ g0(û). (2.28)

Using (2.26) and (2.28), and noting that u∗
ε ∈ F , we obtain

g0(u
∗) ≤ g0(u

∗
ε) ≤ g0(u

∗) + ρ2. (2.29)

Since ρ2 > 0 is arbitrary, it follows that

lim
ε→0

g0(u
∗
ε) = g0(u

∗). (2.30)

Combining (2.23) and (2.30), we conclude that ū is an optimal control of Problem (Q2).

This completes the proof.

2.4 Computational Method

In this section, we shall develop an efficient computational method for solving Problem

(P2) as a nonlinear mathematical programming problem, where the SQP approximation

scheme is used together with the active set strategy. There are several efficient implemen-

tations of SQP available (see, for example, the subroutines NLPQL and NLPQLP written

by Schittkowski [66]). For doing this, it is required to calculate, for each control sequence

u = {u(0), u(1), . . . , u(M − 1)}, the values of the cost function g0(u) and the constraints

functions gi,ε(u), i = 1, 2, . . . , N , as well as their gradients. The calculation of the values

of the cost function (2.13) and the canonical constraint functions given by (2.14a) and

(2.14b) corresponding to each u ∈ U can be done as follows.
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For each u = {u(0), u(1), . . . , u(M − 1)}, where u(k) ∈ U , k = 0, 1, . . . ,M −1, with U

being defined by (2.2), we solve system ((2.1a), (2.1b), (2.1c)) to obtain the corresponding

solution sequence x(k |u), k = 0, 1, . . . ,M −1. Then, the value of the cost function (2.13)

and the values of the canonical constraint functions given by (2.14a) and (2.14b) are

calculated.

To calculate the gradients of the cost and constraint functions, we will derive the

required gradient formulas corresponding to each control sequence

u = {u(0), u(1), . . . , u(M − 1)}

as follows.

For each i = 0, 1, . . . , N , let

Hi

(
k, x(k), y(k), z(k), u(k), v(k), w(k), λi(k + 1), λ̄i(k)

)
be the corresponding Hamiltonian sequence defined by

Hi

(
k, x(k), y(k), z(k), u(k), v(k), w(k), λi(k + 1), λ̄i(k)

)
= Li(k, x(k), y(k), u(k), v(k))

+Li(k + h, z(k), x(k), w(k), u(k))e(M − k − h)

+
(
λi(k + 1)

)⊤
f(k, x(k), y(k), u(k), v(k))

+
(
λ̄i(k)

)⊤
f(k + h, z(k), x(k), w(k), u(k))e(M − k − h), (2.31)

where e(·) denotes the Heaviside function defined by

e(k) =

{
1,

0,

k ≥ 0

k < 0,
(2.32)

and

y(k) = x(k − h), (2.33a)

z(k) = x(k + h), (2.33b)

v(k) = u(k − h), (2.33c)

w(k) = u(k + h), (2.33d)

λ̄i(k) = λi(k + h+ 1). (2.33e)
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For each control u, λi(·|u) is the solution of the following co-state system

(
λi(k)

)⊤
=

∂Hi(k)

∂x(k)
, k = M − 1,M − 2, . . . , 0, (2.34)

with boundary conditions

(
λi(M)

)⊤
=

∂Φi(x(M))

∂x(M)
, (2.35a)

λi(k) = 0, k > M. (2.35b)

We set

z(k) = 0, ∀k = M − h+ 1,M − h+ 2, . . . ,M, (2.36)

and

w(k) = 0, ∀k = M − h,M − h+ 1, . . . ,M. (2.37)

Then, the gradient formulas for the cost functions (for i = 0) and constraint functions

(for i = 1, . . . , N) are given in the following theorem.

Theorem 2.3. Let gi(u), i = 0, 1, . . . , N , be defined by (2.13) (the cost function for i = 0)

and (2.15) (the constraint functions for i = 1, 2, . . . , N). Then, for each i = 0, 1, . . . , N ,

the gradient of the function gi(u) is given by

∂gi(u)

∂u
=

[
∂Hi(0)

∂u(0)
,
∂Hi(1)

∂u(1)
, . . . ,

∂Hi(M − 1)

∂u(M − 1)

]
, (2.38)

where

Hi(k) = Hi

(
k, x(k|u), y(k|u), z(k|u), u(k), v(k), w(k), λi(k + 1|u), λ̄i(k|u)

)
,

k = 0, 1, . . . ,M − 1.

Proof. Define

u = [(u(0))⊤, (u(1))⊤, . . . , (u(M − 1))⊤]⊤. (2.39)

Let the control u be perturbed by εû, where ε > 0 is a small real number and û is an

arbitrary but fixed perturbation of u given by

û = [(û(0))⊤ , (û(1))⊤ , . . . , (û(M − 1))⊤]⊤. (2.40)

Then, we have

uε = u+ εû = [(u(0, ε))⊤, (u(1, ε))⊤, . . . , (u(M − 1, ε))⊤]⊤, (2.41)
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where

u(k,ε) = u(k) + εû(k), k = 0, 1, . . . ,M − 1. (2.42)

For brevity, let x(k) = x(k|u) be the solution of the system (2.1a)-(2.1c) corresponding

to the control u. Furthermore, let the perturbed solution be denoted by

x(k, ε) = x(k | uε), k = 1, 2, . . . ,M. (2.43)

Then,

x(k + 1, ε) = f(k, x(k, ε), y(k, ε), u(k, ε), v(k, ε)). (2.44)

The variation of the state for k = 0, 1, . . . ,M − 1 is:

△x(k + 1) =
dx(k + 1, ε)

dε

∣∣∣∣
ε=0

=
∂f(k, x(k), y(k), u(k), v(k))

∂x(k)
△x(k)

+
∂f(k, x(k), y(k), u(k), v(k))

∂y(k)
△y(k)

+
∂f(k, x(k), y(k), u(k), v(k))

∂u(k)
û(k)

+
∂f(k, x(k), y(k), u(k), v(k))

∂v(k)
△v(k), (2.45a)

where

△x(k) = 0, k ≤ 0, (2.45b)

△u(k) = 0, k < 0. (2.45c)

From (2.45b) and (2.45c), we obtain

△y(k) = 0, k = 0, 1, . . . , h, (2.46a)

and

△v(k) = 0, k = 0, 1, . . . , h− 1. (2.46b)

Define

L̄i = Li(k, x(k), y(k), u(k), v(k)), (2.47a)

L̂i = Li(k + h, z(k), x(k), w(k), u(k)), (2.47b)

f̄ = f(k, x(k), y(k), u(k), v(k)), (2.47c)

f̂ = f(k + h, z(k), x(k), w(k), u(k)), (2.47d)

H̄i = Hi(k). (2.47e)
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By chain rule and (2.47a), it follows that

∂gi(u)

∂u
û = lim

ε→0

gi(uε)− gi(u)

ε
≡ dgi(uε)

dε

∣∣∣∣
ε=0

=
∂Φi(x(M))

∂x(M)
△x(M)

+
M−1∑
k=0

[
∂L̄i

∂x(k)
△x(k) +

∂L̄i

∂y(k)
△y(k)

+
∂L̄i

∂u(k)
û(k)

∂L̄i

∂v(k)
△v(k)

]
. (2.48)

From (2.33a), (2.33c) and (2.47b), we have

M−1∑
k=0

{(
∂L̄i

∂y(k)

)
△y(k) +

(
∂L̄i

∂v(k)

)
△v(k)

}

=
M−1∑
k=0

e(M − k − h)

[(
∂L̂i

∂x(k)

)
△x(k)

+

(
∂L̂i

∂u(k)

)
û(k)

]
. (2.49)

Substituting (2.49) into (2.48), and then using (2.31) and (2.47a)-(2.47e), we obtain

∂gi(u)

∂u
û =

(
∂Φi(x(M))

∂x(k)

)
△x(M)

+
M−1∑
k=0

[(
∂H̄i

∂x(k)

)
△x(k) +

(
∂H̄i

∂u(k)

)
û(k)

−
(
λi(k + 1)

)⊤ ∂f̄

∂x
△x(k)

−
(
λ̄i(k)

)⊤ ∂f̂

∂x(k)
△x(k)e(M − k − h)

−
(
λi(k + 1)

)⊤ ∂f̄

∂u(k)
û(k)

−
(
λ̄i(k)

)⊤ ∂f̂

∂u(k)
△u(k)e(M − k − h)

]
. (2.50)
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Using (2.35b) and the definition of e(·), it follows that

M−1∑
k=0

(
λ̄i(k)

)⊤ [ ∂f̂

∂x(k)
△x(k) +

∂f̂

∂u(k)
△u(k)

]
e(M − k − h)

=
M−h−1∑
k=0

(
λ̄i(k)

)⊤ [ ∂f̂

∂x(k)
△x(k) +

∂f̂

∂u(k)
△u(k)

]
e(M − k − h)

=
M−1∑
k=h

(
λi(k + 1)

)⊤ [ ∂f̄

∂y(k)
△y(k) +

∂f̄

∂v(k)
△v(k)

]
. (2.51)

As △y(k) = 0, for 0 ≤ k ≤ h, and △v(k) = 0, 0 < k ≤ h, we have

M−1∑
k=h

(
λi(k + 1)

)⊤ [ ∂f̄

∂y(k)
△y(k) +

∂f̄

∂v(k)
△v(k)

]

=
M−1∑
k=0

(
λi(k + 1)

)⊤ [ ∂f̄

∂y(k)
△y(k) +

∂f̄

∂v(k)
△v(k)

]
. (2.52)

Combining (2.51) and (2.52), we obtain

M−1∑
k=0

(
λ̄i(k)

)⊤ [ ∂f̂

∂x(k)
△x(k) +

∂f̂

∂u(k)
△u(k)

]
e(M − k − h)

=
M−1∑
k=0

(
λi(k + 1)

)⊤ [ ∂f̄

∂y(k)
△y(k) +

∂f̄

∂v(k)
△v(k)

]
. (2.53)

From (2.45a) and (2.53), it follows from (2.50) that

∂gi(u)

∂u
û =

(
∂Φi(x(M))

∂x(k)

)
△x(M)

+
M−1∑
k=0

{(
∂H̄i

∂x(k)

)
△x(k)

+

(
∂H̄i

∂u(k)

)
û(k)−

(
λi(k + 1)

)⊤△x(k + 1)

}
. (2.54)
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Thus, by (2.34), (2.47c) and (2.54), we obtain

∂gi(u)

∂u
û =

(
∂Φi(x(M))

∂x(k)

)
△x(M)

+
M−2∑
k=0

[(
∂H̄i(k)

∂x(k)

)
△x(k)

−
(
∂H̄i(k + 1)

∂x(k)

)
△x(k + 1)

]
+
∂H̄i(M − 1)

∂x(k)
△x(M − 1)−

(
λi(M)

)⊤ △x(M)

+
M−1∑
k=0

[(
∂H̄i

∂u(k)

)
û(k)

]
. (2.55)

Therefore, by substituting (2.35a) and (2.45b) into (2.49), it follows that

∂gi(u)

∂u
û =

[
∂Hi(0)

∂u(0)
,
∂Hi(1)

∂u(1)
, . . . ,

∂Hi(M − 1)

∂u(M − 1)

]
û.

Since û is arbitrary, we obtain

∂gi(u)

∂u
=

[
∂Hi(0)

∂u(0)
,
∂Hi(1)

∂u(1)
, . . . ,

∂Hi(M − 1)

∂u(M − 1)

]
.

This completes the proof.

The values of the cost and constraint functions as well as their gradients are calculated

as described in following algorithm.

Algorithm 2.2.

Step 1. For a given control sequence u = {u(0), u(1), . . . , u(M − 1)} with u(k) ∈ U ,

k = 0, 1, . . . ,M − 1, compute the solution x(k), k = 0, 1, . . . ,M − 1, of system (1) by

solving time delayed difference equations (2.1a) with initial conditions (2.1b) and (2.1c)

forward from k = 0 to k = M .

Step 2. Calculate the values of the cost function g0(u) and the constraint functions

gi,ε(u), i = 1, 2, . . . , N , by using the control sequence u = {u(0), u(1), . . . , u(M − 1)}, and
the corresponding solution sequence x(k), k = 0, 1, . . . ,M − 1.

Step 3. For each i = 0, 1, . . . , N , compute the co-state solution λi(k), k = M −
1,M − 2, . . . , 0, by solving co-state difference equations (2.34) with terminal conditions

(2.35a), (2.35b), (2.36) and (2.37) backward, from k = M,M − 1, . . . , 0. Thus, for each

i = 1, 2, . . . , N , λi(k), k = M − 1,M − 2, . . . , 0, are obtained.

Step 4. Calculate the gradients of the cost function g0(u) and the constraint functions

gi(u), i = 1, 2, . . . , N , according to the formulas given in Theorem 2.3.



30
Discrete Time Optimal Control Problems with Time Delay and All-time-step Inequality

Constraints

Based on Algorithm 2.2, Problem (P2) can be solved as a nonlinear mathematical

programming problem by using the SQP approximating scheme. The subroutines NLPQL

and NLPQLP coded in [66] are two examples of efficient implementations of SQP.

2.5 A Tactical Logistic Decision Analysis Problem

We now consider a tactical logistic decision analysis problem studied in [60]. It is a

problem of decision making for the distribution of resources within a network of support,

where the network seeks to mimic how logistic support might be delivered in a military

area of operations. The problem is formulated as a discrete time optimal control problem

with a time delay appearing in the control, where the physical limitations in capacity at

locations and the requirements for stock are formulated as all-time-step constraints. The

objective is to minimize the combat power cost function. The procedure for constructing

the “optimal” control reported in [60] is as follows. The optimal control is first obtained,

by using the method reported in [67], for the optimal control problem with the constraints

ignored. Then, the control and the state are forced to be saturated when they violated

their constraints. Clearly, the control so obtained is not, in general, an optimal control.

Furthermore, it is, in reality, impossible to saturate the state of the system. Thus, the

problem has not yet been solved successfully in [60]. Thus, in this section, both the

control constraints and the all-time-step constraints are considered explicitly during the

computation of our optimal control. Therefore, the solution obtained satisfies all the

constraints.

We now recall the optimal control model of tactical logistic decision analysis prob-

lem formulated by [60] as follows. Let x(t) = [x1(t), x2(t), . . . , x5(t)]
⊤ be the state

vector, where xi(t), i = 1, 2, . . . , 5, denote the stocks of logistic resources at the five

locations at time t. Let u(t) = [u1(t), u2(t), . . . , u8(t)]
⊤ be the control vector, where

ui(t), i = 1, 2, . . . , 8, denote the stocks dispatched for supply along eight routes during

the time period t. It is assumed that there is a delay of one time period between the

dispatch of material from a supply location and the receipt at a receiving location. A(t)

denotes the proportions of stock at respective locations that are available for the next

time period; B(t) denotes the proportions of stock along respective supply routes that

are providing the supply. The bounds for x(t) and u(t) reflect, respectively, the physical

limitations in capacity at locations and supply routes. Furthermore, the criteria are the

footprint and the physical distribution effort, which are the average combat power spen-

t in protecting logistic resources located in the network and the average combat power

spent in maintaining and protecting distribution effort along supply routes. Q(t) and

R(t) denote, respectively, the opportunity cost to combat power of protecting the logistic
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resources at all the locations and along all the supply routes. Then, the model is

x(t+ 1) = Ax(t) +B0u(t) +B1u(t− 1), (2.56a)

x(0) = x0, u(−1) = 0, (2.56b)

xmin ≤ x(t) ≤ xmax, (2.57a)

umin ≤ u(t) ≤ umax, (2.57b)

where

A =


0.95 0 0 0 0

0 0.9 0 0 0

0 0 0.75 0 0

0 0 0 0.75 0

0 0 0 0 0.85

 ,

B0 =


0 −1 −1 0 0 0 0 0

0 0 0 −1 −1 −1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0

 ,

B1 =


0.95 0 0 0 0 0 0 0

0 0.87 0 0 0 0 0 0

0 0 0 0 0.75 0 0 0.7

0 0 0.8 0 0 0.8 0.7 0

0 0 0 0.85 0 0 0 0

 ,

x0 =


3500

800

400

400

200

 .

The cost function is

G =
1

2
x⊤(T )Qx(T ) +

T−1∑
t=0

1

2

{
x⊤(t)Qx(t) + u⊤(t)Ru(t)

}
, (2.58)
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where

Q =


1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 1.5 0

0 0 0 0 2.5

 , R =



1 0 0 0 0 0 0 0

0 5 0 0 0 0 0 0

0 0 5 0 0 0 0 0

0 0 0 2.5 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 4 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 2


.

The logistic network for the example is as shown in Figure 2.1. The constraints (2.57a)

Figure 2.1: Example for the logistic network

and (2.57b) can be rewritten as:

gi(u) = xi,min − xi(k) ≤ 0, k = 0, 1, . . . ,M − 1,

i = 1, 2, . . . , 5, (2.59)

gi(u) = xi(k)− xi,max ≤ 0, k = 0, 1, . . . ,M − 1,

i = 6, 7, . . . , 10. (2.60)

The constraints (2.59) and (2.60) are all-time-step inequality constraints. We now use the

constraint transcription method described in Section ?? to approximate these all-time-

step inequality constraints by a sequence (in ε > 0) of the inequality constraints given
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below:

−ε

4
+ gε(u) ≤ 0 (2.61)

where gε(u) is constructed from gi(u) according to (2.10) and (2.8). In this way, we

obtain a sequence (in ε > 0) of discrete time optimal control problems with time delay

and subject to canonical constraints (2.61). For each ε > 0, the corresponding discrete

time optimal control problem with time delay and subject to canonical constraints (2.61)

can be solved as an nonlinear optimization problem as explained in Section ??. The values

of the cost function and the canonical constraint functions are calculated as mentioned

in Step 1 to Step 2 of Algorithm 2.2. Their gradients are calculated as explained in

Algorithm 2.2 using the gradient formulas obtained in Theorem 2.3. The initial value of

ε is chosen as 1.0 × 10−2. ε is reduced to ε/10 in each iteration. It is found that the

change in the cost function value is negligible after ε is reduced to 1.0× 10−7. Thus, the

corresponding optimal cost function value (1.68 × 107) obtained is taken as the optimal

cost function value. This value is much less than that obtained in [60], which is 3.5× 107.
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Figure 2.2: Stock dispatched supply

The optimal control and the corresponding optimal state obtained using our method

are depicted in Figures 2.2 to Figure 2.4. By careful examination of these figures, we see

that the constraints on the control and the all-time-step constraints are satisfied at each

time point. From Figure 2.2, we see that u1(k) = 0 for k = 0, 1, . . . , 4, indicating no stock

being dispatched along the supply route 1 to Node 1. This is because u1(k) could only

contribute extra stock to Node 1 through the supply route 1 from Node 0, and the initial

stock in Node 1 is large, twice as large as those in the other nodes. Thus, it is clear that
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Figure 2.3: Stock at each location

stock should be moved out of Node 1 to other nodes quickly through the supply routes 2

and 3 so as to decrease the cost of holding the stock in Node 1. Also from Figure 2.2, we

see that u2(k) and u3(k) are very large at k = 0, meaning that a large amount of stock is

dispatched from Node 1 to the other nodes of the network at k = 0. From the structure

of the network, it is clear that there is only one supply route to Node 5 with no supply

route coming out of it. This means that Node 5 is a pure receiver of stock from other

nodes. In view of the limits imposed on the maximum stock in various nodes, we see

form Figure 2.3 that the amount of stock that is moved along the supply route 4 to Node

5 is low for k = 0, 1, . . . , 4. The structure of the network depicted in Figure 2.1 clearly

reveals that there are 4 supply routes (i.e., supply routes 3, 6 and 7 ) to Node 4 with only

one supply route (i.e., supply route 8) coming out of it. For Node 3, there are 2 supply

routes (i.e., supply routs 2 and 4) in and only 1 (i.e., supply route 7) out. By virtue of

these observations, the amounts of stock along the supply routes for which the stocks are

moved out should be large. This is confirmed in Figure 2.2 that uk(k) and u8(k), which

denote, respectively, the amounts of stock being moved out from Node 3 along the supply

route 7 and Node 4 along the supply route 8 are large for k = 1, 2, 3, 4. Their values are

quite low at k = 0. This is due to the appearance of time delay along the supply routes,

which indicates that that nodes cannot receive stock instantaneously. The stocks arrive

with delay. For Node 2 , there are 3 supply routes (i.e., supply routes 4, 5 and 6) out

but only 1 supply route (i.e., supply route 2) in. As shown in Figure 2.2, we see that the

amounts of the stock being moved out along the supply routes 4, 5 and 6 are relatively
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Figure 2.4: Stock at location 1

small.

We also consider the situation when the time horizon is increased to 20. The optimal

control and the corresponding optimal state obtained are shown in Figure 2.5, Figure 2.6

and Figure 2.7, respectively. From these figures, we can see that the stock at each node

reaches a balance state, i.e., the lower bounds for the stocks at each node, after t = 7. It

is obvious that the method proposed in [60] fails for this situation. In conclusion, we see

the solution obtained by using our method is highly effective.

2.6 Conclusions

In this chapter, we considered a class of discrete time optimal control problem with time

delay and subject to all-time-step inequality constraints on both the state and control.

It has been shown that, this problem can be approximated by a sequence of discrete

time optimal control problems with time delay and subject to canonical constraints. A

computational method was then proposed to solve a general class of discrete time optimal

control problems with time delay and subject to canonical constraints as a nonlinear

optimization problem. This general discrete time optimal control problem contains these

approximate problems as special cases. Thus, the computational method developed for

solving the general discrete time optimal control problem was used to solve each of these

approximate problems. As an application a tactical logistic decision analysis problem was

considered. It was solved by using the computational method developed. The results
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Figure 2.5: Stock dispatched supply for t=20

obtained are much superior to those obtained in [60].
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Figure 2.6: Stock at each location for t=20
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Figure 2.7: Stock at location 1 for t=20





CHAPTER 3

A Maxmin Optimal Control Problem

3.1 Introduction

This chapter is the author’s work in [113]. In this chapter, we consider a general class

of maxmin optimal control problems, where the violation avoidance of the continuous

state constraints is to be maximized. Our aim is to derive an efficient computational

method for solving this general maxmin optimal control problem. In this computational

method, the constraint transcription method [103] is used to construct a smooth approxi-

mate function for each of the continuous state inequality constraints, where the accuracy

of the approximation is controlled by an accuracy parameter. We then obtain a sequence

of smooth approximate optimal control problems, where the integral of the summation of

these smooth approximate functions is taken as the cost function for each of the problem-

s. A necessary condition and a sufficient condition are derived showing the relationship

between the original maxmin problem and the sequence of the smooth approximate prob-

lems. We then construct a violation avoidance function from the solution of each of the

smooth approximate optimal control problems and the original continuous state inequali-

ty constraints in such a way that the problem of finding an optimal control of the maxmin

optimal control problem is equivalent to the problem of finding the largest root of the vio-

lation avoidance function. The control parametrization technique [36] and a time scaling

transform [87] are applied to these smooth approximate optimal control problems.

Two practical problems are considered. They are (i) Obstacle avoidance problem of

an autonomous mobile robot; and (ii) the abort landing of an aircraft in a windshear

downburst. We show that these two practical problems can be formulated as special cases

of the general maxmin optimal control problem. The proposed computational method is

then applied to solve these problems. The solutions obtained are highly satisfactory.

39
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3.2 Problem Statement

Consider a dynamical system defined on [0, T ].

ẋ(t) = f(x(t), u(t)), t ∈ (0, T ] (3.1a)

with initial and terminal conditions

x(0) = x0 (3.1b)

x(T ) = xf (3.1c)

where T is the terminal time and

x = [x1, x2, . . . , xn]
⊤ ∈ Rn and u = [u1, u2, . . . ur]

⊤ ∈ Rr

are, respectively, state and control vectors, while f = [f1, f2, . . . , fn]
⊤ ∈ Rn is a given

continuously differentiable function of its arguments.

We assume that the following assumption is satisfied.

Assumption 3.1. Let V be a compact subset of Rr. Then, there exists a positive

constant K1 such that

∥f(x, u)∥ ≤ K1 (1 + ∥x∥)

for all (x, u) ∈ Rn × V.
Define

U =
{
ν = [v1, v2, . . . vr]

⊤ ∈ Rr : αi ≤ vi ≤ βi, i = 1, 2, . . . , r
}

(3.2)

where αi, i = 1, 2, . . . , r, and βi, i = 1, 2, . . . , r, are given real numbers. A piecewise

continuous function u is said to be an admissible control if u(t) ∈ U for all t ∈ [0, T ]. Let

U be the class of all such admissible controls. Furthermore, let x(·|u) denote the solution
of system (3.1a)-(3.1b) corresponding to u ∈ U .

Consider the continuous state inequality constraints, given by

gi(x(t|u)) ≥ 0, t ∈ [0, T ], i = 1, 2, . . . , N (3.3)

where T is the terminal time. It is assumed that the following assumption is satisfied.

Assumption 3.2. gi, i = 1, 2, . . . , N , are continuously differentiable with respect to x.
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Let F be defined by

F = {u ∈ U : gi(x(t|u)) ≥ 0, t ∈ [0, T ], i = 1, 2, . . . , N} (3.4)

A u ∈ F is called a feasible control and F is referred to as the set of feasible controls.

Then we introduce the violation avoidance parameter δ which is defined as follows:

δ = min
0≤t≤T
1≤i≤N

gi(x(t|u)), ∀u ∈ F (3.5)

It is the size parameter in the obstacle-avoidance problem and the height of the aircraft

in the abort landing problem to be discussed later.

To proceed further, we define the following violation avoidance constraints

g̃i(x(t|u), δ) = gi(x(t|u))− δ ≥ 0, i = 1, 2, . . . , N (3.6)

Remark 3.1. It is obvious that δ is a nonnegative constant number and the following

conditions are satisfied.

(1) For each i = 1, 2, . . . , N , g̃i(x, δ) is a strictly monotonically decreasing function in

δ ≥ 0.

(2) For each u ∈ F , there exists a δu > 0 such that

min
1≤i≤N

min
0≤t≤T

g̃i (x(t|u), δu) = 0.

We may now state our maxmin optimal control problem as follows.

Problem (P3) Given the dynamical system (3.1a)-(3.1b) subject to the terminal con-

straint (3.1c), find a control u ∈ F such that δ is maximized.

Remark 3.2. By (A1) and the definition of U , it follows from an argument similar to

that given in the proof of Lemma 6.4.2 in [36] that x(t|u) ∈ X for all t ∈ [0, T ] and for

all u ∈ U , where X ⊂ Rn is a compact subset.

3.3 Computational Method

To solve Problem (P3), we shall apply the control parametrization scheme [36] together

with a time scaling transform [87]. It is briefly revealed below. The time horizon [0, T ] is

partitioned with a monotonically increasing sequence {t0, t1, . . . , tp} . Then, the control is
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approximated by a piecewise constant function as follows.

up(t) =

p∑
i=1

σiχ[ti−1,ti)(t), (3.7)

where ti−1 ≤ ti, i = 1, 2, . . . , p, with t0 = 0 and tp = T , and

χI(t) =

{
1,

0,

if t ∈ I ,

otherwise.

As up ∈ U , σi = [σi
1, σ

i
2, . . . , σ

i
r]
⊤ ∈ U for i = 1, 2, . . . , p . Denote by Ξ the set of all such

σ =
[
(σ1)⊤, (σ2)⊤, . . . , (σp)⊤

]⊤
∈ Rpr.

The switching times ti, 1 ≤ i ≤ p − 1, are also regarded as decision variables. We

shall employ the time scaling transform introduced in [87] to map these switching times

into a set of fixed time points
k

p
, k = 1, 2, . . . , p− 1, on a new time horizon [0, 1]. This is

easily achieved by the following differential equation

ṫ(s) = υp(s), s ∈ [0, 1], (3.8a)

with initial condition

t(0) = 0, (3.8b)

where

υp(s) =

p∑
i=1

θiχ[ i−1
p

, i
p)
(s). (3.9)

Here, θi ≥ 0, i = 1, 2, . . . p, and
p∑

i=1

θi
p
= T. (3.10)

Let θ = [θ1, θ2, . . . , θp]
⊤ and let Θ be the set containing all such θ.

Taking integration of (3.8a) with initial condition (3.8b), it is easy to see that, for

s ∈
[
q−1
p
, q
p

)
,

t(s) =

q−1∑
k=1

θk
p

+
θq
p
(ps− q + 1), (3.11)

where q = 1, 2, . . . , p. Clearly, t(1) = T. The approximate control given by (3.7) in the

new time horizon [0, 1] becomes

ũp(s) = up(t(s)) =

p∑
k=1

σkχ[ k−1
p

, k
p)
(s), (3.12)
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which has fixed switching times at s = 1
p
, 2
p
, . . . , p−1

p
. Now, by using the time scaling

transform (3.2), the dynamic system (3.1a)-(3.1b) is transformed into

ẏ(s) = f̃(s, y(s), σ, θ) (3.13a)

y(0) = x0 (3.13b)

and the terminal condition (3.1c) becomes

y(1) = xf (3.13c)

where y(s) = x(t(s)) and

f̃(s, y(s), σ, θ) = υp(s)f(x(t(s)), ũp(s))

Similarly, applying the time scaling transform to the continuous state inequality con-

straints (3.6) yields:

g̃i(y(s), δ) ≥ 0, s ∈ [0, T ], i = 1, 2, . . . , N. (3.14)

To proceed further, let y(·|σ, θ) denote the solution of system (3.13a)-(3.13b) corre-

sponding to (σ, θ) ∈ Ξ×Θ.

The approximate problem to Problem (P3) may now be stated formally as follows.

Problem (P3(p)) Given system (3.13a)-(3.13b), find a (σ, θ) ∈ Ξ × Θ such that the

violation avoidance parameter δ is maximized subject to (3.13c), (3.14) and (3.10).

To solve Problem (P3(p)), we will re-formulate it as a problem of finding the largest

root. First, we will construct a new optimal control problem by applying the constraint

transcription technique [103]. Then a necessary condition and a sufficient condition are

given showing the relationships between the new problem and the original problem. To

derive an effective algorithm, a violation avoidance function of δ is defined. The original

problem is equivalent to the problem of finding the largest root of the violation avoidance

function. The maximum violation avoidance parameter δ can be located by using the

section search method. The optimal control software package MISER 3.3 ( [37]) is used

at each iteration.

To begin, let us introduce an auxiliary optimal control problem below.

By using the constraint transcription method [103], each of the continuous state in-
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equality constraints is approximated by a smooth function Li,ε(y(s|σ, θ), δ), where

Li,ε(y(s|σ, θ), δ) =


−g̃i(y(s), δ),

(g̃i(y(s), δ)− ε)2

4ε
,

0,

if g̃i(y(s), δ) < −ε

if − ε ≤ g̃i(y(s), δ) ≤ ε

if g̃i(y(s), δ) > ε

(3.15)

Now, for a fixed δ ∈ [0,∞), we define an auxiliary optimal control problem, where a

(δ, θ) ∈ Ξ×Θ is to be chosen such that the cost function

Jε(σ, θ|δ) =
∫ 1

0

N∑
i=1

(Li,ε(y(s), δ))ds, (3.16)

is minimized over Ξ×Θ subject to (3.13c) and (3.10).

Let this problem be referred to as Problem (P3δ(p).

We will give a necessary condition and a sufficient condition to show the relationships

between Problem (P3(p)) and Problem (P3δ(p)).

Remark 3.3. By Remark 3.1, we can show that∫ 1

0

Li,ε(y(s), δ)ds

is well defined for each δ ≥ 0.

Remark 3.4. From Remark 3.1, it is clear that, for each δ,
∂g̃j(y(s), δ)

∂y
, j = 1, 2, . . . , N ,

are continuous in s ∈ [0, 1], and ẏi(s), i = 1, 2, . . . , n, is piecewise continuous in s ∈ [0, 1].

Theorem 3.1. Let (σ(0), θ(0)) ∈ Ξ × Θ and let y(0) be the corresponding solution of

system (3.13a)-(3.13b) such that (3.13c) is satisfied. Suppose that δ(0) is such that (3.14)

is satisfied. Then

Jε(σ
(0), θ(0)|δ(0)) =

∫ 1

0

N∑
i=1

Li,ε(y
(0)(s), δ(0))ds ≤ Nε

4
. (3.17)

Proof. From the constraint transcription defined in (3.15), it is clear that

Li,ε(y
(0)(s), δ(0)) ≤ ε

4
, ∀s ∈ [0, 1], i = 1, 2, . . . , N. (3.18)

Thus, the conclusion follows readily from (3.16).

Before deriving the sufficient condition, Lemma 3.1 in [86] is quoted without proof as

follows.
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Lemma 3.1. Let f be a nonnegative valued function defined on [0, T ]. If f is continuously

differentiable on [0, T ], then

∫ T

0

f(t)dt ≥ f̂

2
min

{
f̂

M
, T

}
, (3.19)

where

M = max
t∈[0,T ]

∣∣∣∣df(t)dt

∣∣∣∣ (3.20)

and

f̂ = max
t∈[0,T ]

f(t). (3.21)

With the help of Lemma 3.1, we can derive the desired sufficient condition as in [86]

below.

Theorem 3.2. Let
(
σ(0), θ(0)

)
∈ Ξ×Θ be such that (3.10) is satisfied and let y(0) be the

corresponding solution of system (3.13a)-(3.13b) such that (3.13c) is satisfied. Suppose

that δ(0) is such that

Jε(σ
(0), θ(0)|δ(0)) ≤ ε

8
min

{ ε

4M
, 1
}
, (3.22)

where

M = max

{∥∥∥∥∂g̃i(y(0)(s), δ(0))∂y(0)
dy(0)(s)

ds

∥∥∥∥ : s ∈ [0, 1], i = 1, 2, . . . , N

}
. (3.23)

Then, the constraints (3.14) are satisfied.

Proof. Suppose that there exits an i, 0 ≤ i ≤ N, such that the corresponding constraint

(3.14) is not satisfied. Then, by Assumption 3.2, there exits an open set ϑi with positive

measure such that

g̃i(y
(0)(s), δ(0)) < 0, ∀s ∈ ϑi. (3.24)

From Remark 3.3, there exists a positive constant M satisfying (3.23). Then, we define

M ′ = max

{∥∥∥∥∂g̃i,ε(y(0)(s), δ(0))∂y

dy(0)(s)

ds

∥∥∥∥ : s ∈ [0, 1], i = 1, 2, . . . , N

}
. (3.25)

Clearly,∥∥∥∥∂Li,ε(y
(0)(s), δ(0))

∂y

dy(0)(s)

ds

∥∥∥∥ ≤
∥∥∥∥dLi,ε(y

(0)(s), δ(0))

dg̃j

∥∥∥∥∥∥∥∥∂g̃i(y(0)(s), δ(0))∂y

dy(0)(s)

ds

∥∥∥∥ . (3.26)

Since ∥∥∥∥dLi,ε(y
(0)(s), δ(0))

dg̃j

∥∥∥∥ ≤ 1, ∀s ∈ [0, 1],



46 A Maxmin Optimal Control Problem

it is clear that

M ′ ≤ M. (3.27)

Thus, by Lemma 3.1, we have

Jε(σ
(0), θ(0)|δ(0)) =

∫ 1

0

Li,ε(y
(0)(s), δ(0))dt ≥ L̂ε

2
min

{
L̂ε

M ′ , 1

}
, (3.28)

where

L̂ε = max
s∈[0,1]

Li,ε(y
(0)(s), δ(0)). (3.29)

By (3.24) and (3.15), we obtain

L̂ε >
ε

4
. (3.30)

Thus, it follows from (3.27), (3.28) and (3.30) that

Jε(σ
(0), θ(0), δ(0)) ≥ L̂ε

2
min

{
L̂ε

M ′ , 1

}
>

ε

8
min

{ ε

4M ′ , 1
}
≥ ε

8
min

{ ε

4M
, 1
}
. (3.31)

This is, however, a contradiction to (3.22). This completes the proof.

Note that Problem (P3δ(p)) is an optimal control problem in canonical form. To solve

it as a nonlinear optimization problem by using the optimal control software MISER 3.3

(see [37]), we need the gradient formulas of the objective function (3.16), the constraint

function Φ(y(1)) = y(1)− xf = 0 from (3.13c) and the constraint function Φ from (3.10).

The gradient of the constraint function

Φ(θ) =

p∑
i=1

θi
p
− T

is given by
∂Φ(θ)

∂θ
=

[
1

p
,
2

p
, . . . ,

1

p

]⊤
The other two are given in the following theorem, where y(·|σ, θ) is referred to as the

solution of (3.13a)-(3.13b) corresponding to (σ, θ) ∈ Ξ×Θ.

Theorem 3.3. For each δ > 0, the gradients of the cost function Jε(σ, θ|δ) with respect

to σ and θ are:

∂Jε(σ, θ|δ)
∂σ

=

∫ 1

0

∂H0(s, y(s|σ, θ), σ, θ, λ0(s|σ, θ, ε))
∂σ

ds, (3.32)

∂Jε(σ, θ|δ)
∂θ

=

∫ 1

0

∂H0(s, y(s|σ, θ), σ, θ, λ0(s|σ, θ, ε))
∂θ

ds, (3.33)
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where H0(s, y(s), σ, λ(s)) is the Hamiltonian function for the cost function (3.16) given

by

H0(s, y(s), σ, θ, λ(s)) =
N∑
i=1

Li,ε(y(s), δ) + λ0(s)f̃(s, y(s), σ, θ), (3.34)

and λ0(·|σ, θ, ε) is the solution of the following co-state differential equation(
dλ0(s)

ds

)⊤

= −∂H0(s, y(s|σ, θ), σ, θ, λ0(s))

∂y
(3.35a)

with the boundary condition

(λ0(1))
⊤ = 0. (3.35b)

Proof. Let σ ∈ Rr be given and let ρ ∈ Rr be arbitrary but fixed. Define

σ(ϵ) = σ + ϵρ (3.36)

where ϵ > 0 is an arbitrarily small real number. For brevity, let y(·) and y(·; ϵ) denote,
respectively, the solution of the system (3.13a)-(3.13b) corresponding to σ and σ(ϵ) while

θ is fixed. Clearly,

y(s) = y(0) +

∫ s

0

f̃(τ, y(τ), σ, θ)dτ (3.37)

y(s; ϵ) = y(0) +

∫ s

0

f̃(τ, y(τ ; ϵ), σ(ϵ), θ)dτ (3.38)

Thus,

△y(s) ≡ dy(s; ϵ)

dϵ

∣∣∣∣
ϵ=0

=

∫ s

0

{
∂f̃(τ, y(τ), σ, θ)

∂y
△ y(τ) +

∂f̃(τ, y(τ), σ, θ)

∂σ
ρ

}
dτ (3.39)

Clearly,
d(△y(s))

ds
=

∂f̃(s, y(s), σ, θ)

∂y
△ y(s) +

∂f̃(s, y(s), σ, θ)

∂σ
ρ (3.40)

Now, Jε(σ(ϵ), θ|δ) can be expressed as:

Jε(σ(ϵ), θ|δ) =
∫ 1

0

{
H0(s, y(s; ϵ), σ(ϵ), θ, λ0(s))− λ0(s)f̃(s, y(s; ϵ), σ(ϵ), θ)

}
ds (3.41)
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where λ0(s) is yet arbitrary. Thus, it follows that

△Jε(σ(ϵ), θ|δ) ≡
dJε(σ(ϵ), θ|δ)

dϵ

∣∣∣∣
ϵ=0

=
∂Jε(σ, θ|δ)

∂σ
ρ

=

∫ 1

0

{
△H0(s, y(s), σ, θ, λ0(s))− λ0(s)△ f̃(s, y(s), σ, θ)

}
ds (3.42)

where

△f̃(s, y(s), σ, θ) =
d△ y(s)

ds
(3.43)

and

△H0(s, y(s), σ, θ, λ0(s))

=
∂H0(s, y(s), σ, θ, λ0(s))

∂y
△ y(s) +

∂H0(s, y(s), σ, θ, λ0(s))

∂σ
ρ (3.44)

Choose λ0 to be the solution of the costate system (3.35a)-(3.35b) corresponding to σ

while θ is fixed. Then, by substituting (3.35a) into (3.44), we obtain

△H0(s, y(s), σ, θ, λ0(s))

= −
(
dλ0(s)

ds

)⊤

△ y(s) +
∂H0(s, y(s), σ, θ, λ0(s))

∂σ
ρ (3.45)

By (3.43) and (3.45), it follows from (3.42) that

∂Jε(σ, θ|δ)
∂σ

ρ

=

∫ 1

0

{
− d

ds

[
(λ0(s))

⊤ △ y(s)
]
+

∂H0(s, y(s), σ, θ, λ0(s))

∂σ
ρ

}
ds

= (λ0(0))
⊤ △ y(0)− (λ0(1))

⊤ △ y(1) +

∫ 1

0

{
∂H0(s, y(s), σ, θ, λ0(s))

∂σ
ρ

}
ds(3.46)

Note that y(0) is constant. Thus, by (3.35b), we deduce from (3.46) that

∂Jε(σ, θ|δ)
∂σ

ρ

=

∫ 1

0

{
∂H0 (s, y(s), σ, θ, λ0(s))

∂σ
ρ

}
ds (3.47)

Since ρ is arbitrary, (3.32) follows readily from (3.47). (3.33) can be derived in the

same way. Thus, the proof is completed.

For the constraint function Φ(y(1|σ, θ)) = y(1|σ, θ)− xf , we have

Theorem 3.4. For each δ, the gradients of the constraint function Φ(y(1|σ, θ)) with



3.3 Computational Method 49

respect to σ and θ are:

∂Φ(y(1|σ, θ))
∂σ

=

∫ 1

0

∂H1(s, y(s|σ, θ), σ, θ, λ1(s|σ, θ))
∂σ

ds, (3.48)

∂Φ(y(1|σ, θ))
∂θ

=

∫ 1

0

∂H1(s, y(s|σ, θ), σ, θ, λ1(s|σ, θ))
∂θ

ds, (3.49)

where H1(s, y(s), σ, λ(s)) is the Hamiltonian function for the constraint function (3.13c)

given by

H1(s, y(s), σ, θ, λ(s)) = λ1(s)f̃(s, y(s), σ, θ), (3.50)

and λ1(·|σ, θ) is the solution of the following co-state differential equation

(dλ1(s))
⊤

ds
= −∂H1(s, y(s), σ, θ, λ1(s))

∂y
(3.51a)

with the boundary condition

(λ1(1))
⊤ =

dΦ(y(1))

dy
(3.51b)

Proof. Let σ ∈ Rr be given and let ρ ∈ Rr be arbitrary but fixed. Define

σ(ϵ) = σ + ϵρ (3.52)

where ϵ > 0 is an arbitrarily small real number. y(·) and y(·; ϵ) denote, respectively, the
solutions of the system (3.13a)-(3.13b) corresponding to σ and σ(ϵ), while θ is fixed. As

it has been done in the proof for Theorem 3.3, we have

△y(s) ≡ dy(s; ϵ)

dϵ

∣∣∣∣
ϵ=0

=

∫ s

0

{
∂f̃(τ, y(τ), σ, θ)

∂y
△ y(τ) +

∂f̃(τ, y(τ), σ, θ)

∂σ
ρ

}
dτ (3.53)

and
d (△y(s))

ds
=

∂f̃(s, y(s), σ, θ)

∂y
△ y(s) +

∂f̃(s, y(s), σ, θ)

∂σ
ρ (3.54)

From (3.50), Φ(y(1|σ(ϵ), θ)) can be expressed as:

Φ(y(1|σ(ϵ), θ))

= Φ(y(1|σ(ϵ), θ))

+

∫ 1

0

{
H1(s, y(s; ϵ), σ(ϵ), θ, λ1(s))− λ1(s)f̃(s, y(s; ϵ), σ(ϵ), θ)

}
ds (3.55)



50 A Maxmin Optimal Control Problem

where λ1(s) is yet arbitrary. Thus, it follows that

△Φ(y(1|σ, θ)) ≡ dΦ(y(1|σ(ϵ), θ))
dϵ

∣∣∣∣
ϵ=0

=
∂Φ(y(1|σ, θ))

∂σ
ρ

= △Φ(y(1|σ, θ))

+

∫ 1

0

{
△H1(s, y(s), σ, θ, λ1(s))− λ1(s)△ f̃(s, y(s), σ, θ)

}
ds (3.56)

where

△Φ(y(1|σ, θ)) = dΦ(y(1))

dy
△ y(1|σ, θ) (3.57)

△f̃(s, y(s), σ, θ) =
d△ y(s)

ds
(3.58)

and

△H1(s, y(s), σ, θ, λ1(s))

=

(
dλ1(s)

ds

)⊤

△ y(s) +
∂H1(s, y(s), σ, θ, λ1(s))

∂σ
ρ (3.59)

Choose λ1 to be the solution of the costate system (3.51a)-(3.51b) corresponding to σ.

Then, by substituting (3.57), (3.58), (3.59) into (3.56), we obtain

∂Φ(y(1|σ, θ))
∂σ

ρ

=
dΦ(y(1))

dy
△ y(1|σ, θ)

+

∫ 1

0

{
− d

ds

[
(λ1(s))

⊤ △ y(s)
]
+

∂H1 (s, y(s), σ, θ, λ1(s))

∂σ
ρ

}
ds

=
dΦ(y(1))

dy
△ y(1|σ, θ)

+ (λ1(0))
⊤ △ y(0)− (λ1(1))

⊤ △ y(1) +

∫ 1

0

{
∂H1 (s, y(s), σ, θ, λ1(s))

∂σ
ρ

}
(3.60)

Note that y(0) is a constant number. Thus, by (3.51b), it follows from (3.68) that

∂Φ (y(1|σ, θ))
∂σ

ρ

=

∫ 1

0

{
∂H1 (s, y(s), σ, θ, λ1(s))

∂σ
ρ

}
ds (3.61)

Since ρ is arbitrary, (3.48) follows readily from (3.61). (3.49) can be derived in the same

way. Thus, the proof is completed.
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Let

Ψp
i (δ) = max

0≤s≤1
{max (−g̃i(ŷ(s), δ), 0)} , i = 1, 2, . . . , N, (3.62)

and define

Ψp(δ) = max
0≤i≤N

Ψp
i (δ). (3.63)

Ψp(δ) is called the violation avoidance function. Here, ŷ(s) is the solution obtained from

solving Problem (P3δ(p)). Clearly, Ψp(δ) = 0 if and only if (3.14) are satisfied. From

(1) of Remark 3.1, we can show that the real-valued function Ψp(δ) is a nondecreasing

function of δ. By (2) of Remark 3.1, there exits a δ such that Ψp(δ) = 0. The maximum

value of δ such that Ψp(δ) = 0 is the largest zero of the real-valued function Ψp(δ) in

[0,+∞).

Now, we see that Problem (P3(p)) is equivalent to the problem of finding the largest

zero of Ψp(δ). We shall use a zero-finding algorithm to generate a sequence of points

δk, k = 1, 2, . . . , which converges to δ∗, where δ∗ is the largest zero of Ψp(δ). For each δk,

we evaluate Ψp(δk) after solving the optimal control problem (P3δk(p)).

Then, for a fixed integer p, we present the section search method to search for the

largest zero δp,∗ of the function Ψp. Given two starting values δ1 and δ2, the recursive

formula for the section search method is

δk+1 =
1

2
(δk + δk−1), k = 2, 3, · · · . (3.64)

Algorithm 3.1.

1. Choose a positive integer p, a relative accuracy ϵ ≥ 0, δ2, and set δ1 = 0.

2. Evaluate Ψp(δ2). If Ψ
p(δ2) = 0, repeat δ2 + c0 until Ψp(δ2) > 0.

3. Compute δ3 from (3.64), and evaluate Ψp(δ3). If | δ3− δ2 |< ϵ, stop; otherwise, goto

Step 4.

4. If Ψp(δ3) > 0, δ2 = δ3. Otherwise, if Ψp(δ3) = 0, δ1 = δ3. Then, goto Step 3.

Remark 3.5. In Step 2, c0 is chosen so as to generate a point δ2 such that Ψp(δ2) > 0.

Remark 3.6. Ψp(δ) is calculated by using the formula (3.63) after solving Problem

(Pδk(p)).

Remark 3.7. The interval of uncertainty for this section search method is (0.5)k of the

original interval.

Remark 3.8. Let δp,∗ and δ∗ be, respectively, the optimal solutions of Problem (P3(p))

and Problem (P3). Then, δp,∗ → δ∗, as p → ∞. The proof is similar to that given for

Theorem 8.5.2 in [36].
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3.4 Obstacle-avoidance Problems

In this section, we consider an autonomous mobile robot in the framework of behavior-

based control (see [80]). The robot is required to reach a pre-specified target from a given

initial condition (position, orientation) while avoiding obstacles along the way.

The robot dynamics are: 
·
x = υ cosϕ (3.65a)
·
y = υ sinϕ (3.65b)
·
ϕ = ω (3.65c)

|ω(t)| ≤ 1, t ∈ [0,∞).

where (x, y) is the position of the robot and ϕ is its orientation, while υ and ω are its

translational and angular velocities. υ is assumed to be a constant value, and ω is a

control variable. In our problem, υ = 1. The initial point is (x(0), y(0), ϕ(0)) = (4, 0, π/2)

and the target is (x(T ), y(T )) = (0, 0). We will discuss the situations with one and two

obstacles. Define a circle with the obstacle as its center and δ its radius.

3.4.1 An One-obstacle Avoidance Problem

We first solve the minimum time optimal control problem involving a robot with its

dynamic given by (3.1a)-(3.1c), initial condition (x(0), y(0), ϕ(0)) = (4, 0, π/2) and target

condition (x(T ), y(T )) = (0, 0). Let this time optimal control be referred to as Problem

(E3). We solve this problem by using optimal control software package MISER 3.3 [37].

Let the optimal control u∗ and the optimal trajectory be denoted as u∗ and x∗, respectively.

They are depicted in Figure 3.1 and Figure 3.2, respectively. The minimum time of

reaching the target is:

T ∗ = 4.7391.

Suppose now that an obstacle is discovered at the location

−
x = [1.78682, 0.63301]⊤,

which is a point at the optimal path. Our task is to steer the trajectory of the robot in

such a way that the minimum distance from the obstacle is maximized while allowing the

time of reaching the target to be increased by a small amount, say 5%, from the minimum

time T ∗. That is, to find a control u such that δ is maximized subject to the following
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nonlinear inequality constraint

(x(t)− 1.78682)2 + (y(t)− 0.63301)2 ≥ δ2, ∀t ∈ [0, T ] (3.66)

and the time constraint
p∑

i=1

θi
p
= T ≤ (1 + α)T ∗, (3.67)

T ≤ (1 + 5%)T ∗. (3.68)

After applying the control parametrization and the time scaling transform outlined in
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Figure 3.1: The optimal control with no obstacle
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Figure 3.2: The optimal trajectory with no obstacle

Section ??, the time constraint (3.68) becomes a constraint on the control parameters

given below.
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Figure 3.3: The optimal trajectory with one obstacle

We solve this problem by using Algorithm 3.1. The maximum value of δ = 0.49539 is

obtained. The corresponding optimal trajectory is shown in Figure 3.3.

3.4.2 A Two-obstacle Avoidance Problem
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Figure 3.4: The optimal trajectory with two obstacles

Suppose now there are two obstacles. One is located at (1.78682, 0.63301)⊤ and the

other is located at (3.80000, 0.85000)⊤. They are two points at the optimal path. By

allowing the time of reaching the target to be increased to less than or equal to (1+α)T ∗,

with α = 5%, we use Algorithm 3.1 to solve the corresponding maximum two-obstacle

avoidance problem. The maximum value of δ obtained is 0.0996. The corresponding

optimal trajectory is shown in Figure 3.4.
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3.5 Abort Landing of an Aircraft in a Windshear

Downburst

In this section, we consider the abort landing of a passenger aircraft Boeing 727 in the

presence of a windshear downburst which is taken from [83] and [84].

To set up the the equations of motion, we assume that the aircraft is a particle of

constant mass, the flight takes place in a vertical plane, and Newton’s law is valid in an

Earth-fixed system. Moreover, the wind flow field is assumed to be steady. Under these

assumptions, the dynamical equations are:

·
x = V cos γ +Wx, (3.69a)
·
h = V sin γ +Wh, (3.69b)
·
V =

T

m
cos(α + δ)−D/m− g sin γ

−(
·

Wx cos γ +
·

Wh sin γ), (3.69c)

·
γ =

T

mV
sin(α+ δ) + L/mV − (1/V )g cos γ

+(1/V )(
·

Wx sin γ −
·

Wh cos γ), (3.69d)

The state variables are the horizontal distance x, the altitude h, the relative velocity V ,

and the relative path inclination γ. In the formulation above, the relative attack angle α

is chosen as the control variable.

The approximation of the aerodynamic forces are listed below:

T = βT∗ (3.70a)

T∗ = A0 + A1V + A2V
2, (3.70b)

D = (1/2)CDρSV
2, (3.70c)

CD(α) = B0 +B1α+B2α
2, (3.70d)

L = (1/2)CLρSV
2, (3.70e)

CL(α) =

{
C0 + C1α,

C0 + C1α + C2(α− α∗)
2,

α ≤ α∗,

α∗ ≤ α ≤ αmax.
(3.70f)

Here, T , D and L denote the thrust, the drag and the lift, respectively. The power setting

β is specified in advance,

β(t) =

{
β0 +

·
β0t,

1,

0 ≤ t ≤ t0,

t0 ≤ t ≤ tf
(3.71)
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The windshear model, which is valid for h ≤ 1000 ft, is given below.

Wx = kA(x), (3.72a)

Wh = k(h/h∗)B(x), (3.72b)

with

A(x) =


−50 + ax3 + bx4,

(1/40)(x− 2300),

50− a(4600− x)3 − b(4600− x)4,

50,

0 ≤ x ≤ 500,

500 ≤ x ≤ 4100,

4100 ≤ x ≤ 4600,

4600 ≤ x

(3.72c)

B(x) =


dx3 + ex4,

−51exp[−c(x− 2300)4],

d(4600− x)3 − e(4600− x)4,

0,

0 ≤ x ≤ 500,

500 ≤ x ≤ 4100,

4100 ≤ x ≤ 4600,

4600 ≤ x

(3.72d)

The angle of attack, α, is subject to the inequality constraints

α ≤ αmax. (3.73)

The initial conditions are:
x(0) = x0, h(0) = h0,

V (0) = V0, γ(0) = γ0,

α(0) = α0.

(3.74)

and the terminal condition is:

γ(tf ) = γf . (3.75)

All the required data are given in Table 3.1.

To avoid crashing on the ground, the minimal altitude is required to be maximized,

i.e.,

max
α≤αmax

min
0≤t≤tf

h(t). (3.76)

(3.76) is equivalent to

max δ (3.77)

subject to the continuous state inequality constraint

g(h(t), δ) = h(t)− δ ≥ 0. (3.78)

The problem is now a special case of Problem (P3). The computational method developed
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Table 3.1: Model data for a Boeing 727 aircraft

Eqs. (3-70), (3-71) Eqs. (3-71), (3-72) Eqs. (3-71)

ρ = 0.2203× 10−2 lb sec2 ft−4 A0 = 0.4456× 105 lb B0 = 0.1551
S = 0.1560× 104 ft2 A1 = −0.2398× 102 lb sec ft−1 B1 = 0.12369 rad−1

g = 3.2171× 101 ft sec−2 A2 = 0.1442× 10−1 lb sec2 ft−2 B2 = 2.4203 rad−2

mg = 150, 000 lb β0 = 0.3825 C0 = 0.7125

δ = 2 deg
·
β0 = 0.2 sec−1 C1 = 6.0877 rad−1

t0 = (1− β0/)
·
β0 C2 = −9.0277 rad−2

tf = 40 sec α∗ = 12 deg
αmax = 17.2 deg

Eqs. (3-73) Eqs. (3-75)

k = 1 x0 = 0 ft
h∗ = 1000 ft γ0 = −2.249 deg
a = 6× 10−8 sec−1 ft−2 h0 = 600 ft
b = −4× 10−11 sec−1 ft−3 α0 = 7.353 deg
c = − ln(25/30.6)× 10−12 ft−4 V0 = 239.7 ft sec−1

d = −8.02881× 10−8 sec−1 ft−2 γf = 7.431 deg
e = 6.28083× 10−11 sec−1 ft−3

in Section ?? is used to solve it. The results obtained are given below. The minimal

altitude is 492 ft, the trajectories of the altitude h, the relative attack angle, α, and the

relative path inclination angle, γ, are shown, respectively, in the pictures Figure 3.5 to

Figure 3.8. The minimal altitude is slightly better than that reported in [85]. Our method

does not require a good initial guess and the optimization process converges very rapidly.

3.6 Conclusions

In this chapter, a general class of maxmin optimal control problems was considered. An

efficient computational method for solving this general maxmin optimal control problem

was developed. It has been shown that, a sequence of smooth approximate optimal control

problems can then be constructed by taking the summation of some smooth approximate

functions, which were obtained by applying the constraint transcription method [103] to

each of the continuous state inequality constraints, as its cost function. A necessary condi-

tion and a sufficient condition were derived to show the relationship between the original

maxmin problem and the sequence of the smooth approximate problems. A violation

avoidance function was then constructed from the solution of each of the smooth approx-

imate optimal control problems and the original continuous state inequality constraints.

It shows that the problem of finding an optimal control of the maxmin optimal control
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Figure 3.5: The altitude with distance

problem is equivalent to the problem of finding the largest root of the violation avoidance

function, and each of these smooth approximate optimal control problems can be solved

by applying the control parametrization technique [36] and a time scaling transform [87].

Two applications, an obstacle avoidance problem of an autonomous mobile robot and

the abort landing of an aircraft in a windshear downburst, were studied by applying the

computational method proposed. The solutions obtained are satisfactory.
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Figure 3.6: The altitude with time

Figure 3.7: The relative angle of attack
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Figure 3.8: The relative path inclination angle





CHAPTER 4

A Nonlinear Optimal PID Tuning Problem

4.1 Introduction

This chapter is the author’s work in [114]. In this chapter, we consider a class of op-

timal PID tuning problems subject to continuous inequality constraints and terminal

equality constraint. By applying the constraint transcription method [103] and a local

smoothing technique to these continuous inequality constraint functions, we construct

the corresponding smooth approximate functions. We use the concept of the penalty

function to append these smooth approximate functions to the cost function, forming a

new cost function. Then, the constrained optimal PID tuning problem is approximated

by a sequence of optimal parameter selection problems subject to only terminal equality

constraint. Each of these optimal parameter selection problems can be viewed and hence

solved as a nonlinear optimization problem. The gradient formulas of the new appended

cost function and the terminal equality constraint function are derived, and a reliable

computation algorithm is given. The method proposed is used to solve a ship steering

control problem.

4.2 Problem Statement

Consider a dynamical system:
ẋ(t) = f(x(t), y(t), u(t)), t ∈ (0, T ] (4.1a)

ẏ(t) = p(x(t)) (4.1b)

x(0) = x0 (4.1c)

y(0) = y0, (4.1d)

where T is the terminal time, and x = [x1, x2, . . . , xn]
⊤ ∈ Rn, u = [u1, u2, . . . , ur]

⊤ ∈
Rr, y ∈ R are, respectively, state, control and output, while f = [f1, f2, . . . , fn]

⊤ ∈ Rn

and p ∈ R are, respectively, given continuously differentiable functions. x0 ∈ Rn and

61
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y0 ∈ R are a given constant vector and a given scalar, respectively.

We assume that the following conditions are satisfied.

Assumption 4.1. There exists a positive constant C1 such that

∥f(x, y, u)∥ ≤ C1 (1 + ∥x∥+ ∥y∥)

for all (x, y, u) ∈ Rn × R× Rr.

Assumption 4.2. There exists a positive constant C2 such that

∥p(x)∥ ≤ C2 (1 + ∥x∥) .

The control u is assumed to take the form of a PID controller given below.

u(t) =

N1∑
j=1

k1,j(y(t)− r(t))χI1,j(t)

+

N2∑
j=1

k2,j

∫ t

0

(y(s)− r(s))χI2,j(s)ds+

N3∑
j=1

k3,j ẏ(t)χI3,j(t), (4.2)

where r(t) denotes a given reference input which is a piecewise continuous function defined

on [0, T ],

Ii,j = [ti,j−1, ti,j), i = 1, 2, 3; j = 1, 2, . . . , Ni (4.3)

while

0 = ti,0 < ti,1 < ti,2 < · · · < ti,Ni
< ti,Ni+1

= T, i = 1, 2, 3, (4.4)

are the switching times for the proportional, integral and derivative control actions, re-

spectively, and χI denotes the indicator function of I given by

χI(t) =

{
1,

0,

t ∈ I,

otherwise
(4.5)

here, {ki,1, ki,2, . . . , ki,Ni
}, i = 1, 2, 3, are respective gains for the proportional, integral

and derivative terms of the PID controller.

The form of the PID controller is a generalized version of the conventional PID con-

troller, in particular, the form of the integral control. For the conventional integral control,

it performs the integral action over a period of time. Because of the accumulation effect,

a large value of the gain for the integral control will cause huge overshoot. On the other

hand, if the gain for the integral control is chosen to be very small, while the overshoot

can become small, the steady state error will take a long time to reduce in presence of

constant disturbances. The generalized integral control is in the form for which it is re-set

at appropriately chosen fixed switching time points so as to give a well-regulated control
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operation.

Remark 4.1. Here, we assume that y and r are real-valued functions. It is straightforward

to extend the results to the case where y and r are vector-valued functions at the expense

of notational complexity.

We now specify the region within which the output trajectory is allowed to move.

This region is defined in terms of the following continuous inequality constraints, which

arise due to practical requirements, such as constraints on the rise time and for avoiding

overshoot. They may also arise due to engineering specification on the PID controller.

gi(t, x(t), y(t), u(t)) ≤ 0, t ∈ [0, T ], i = 1, 2, . . . ,M. (4.6)

For each i = 1, 2, . . . ,M, the function gi is continuously differentiable with respect to x,

y and u, while continuous with respect to t.

To ensure a satisfactory tracking of r(t) by y(t), the following terminal state constraint

is imposed.

Ω(y(T )) = y(T )− r(T ) = 0 (4.7)

The optimal control problem may now be stated below. Given system (4.1a)-(4.1d),

design a PID controller in the form defined by (4.2) such that the output y(t) of the

corresponding closed loop system will move within the specified region defined by the

continuous inequality constraints (4.6) and, at the same time, it will track the given

reference input such that the terminal condition (4.7) is satisfied. First, we formulate a

cost function below.

J(k) =

∫ T

0

{
α1 [y(t)− r(t)]2 + α2 [ẏ(t)]

2 + α3 [u(t)]
2} dt, (4.8)

where αi, i = 1, 2, 3, are the weightings.

For the integral term of the PID controller given by (4.2), we define

zj(t) =

∫ t

0

[y(s)− r(s)]χI2,j(s)ds, j = 1, 2, . . . , N2 (4.9)

Clearly, for each j = 1, 2, . . . , N2, (4.9) is equivalent to{
żj(t) = (y(t)− r(t))χI2,j(t) (4.10a)

zj(0) = 0. (4.10b)

Let z(t) = [z1(t), z2(t), . . . , zN2(t)]
⊤ and q(t) = [q1(t), q2(t), . . . , qN2(t)]

⊤, where the super-
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script ⊤ denotes the transpose and

qj(t) = (y(t)− r(t))χI2,j(t), j = 1, 2, . . . , N2 (4.11)

Then, system (4.10a)-(4.10b) becomes{
ż(t) = q(t) (4.12a)

z(0) = 0. (4.12b)

Now, it follows from (4.12a)-(4.12b) that system (4.1a)-(4.1d) with u(t) chosen as a PID

controller given by (4.2) can be written as:
ẋ(t) = f(t, x(t), y(t), z(t), k)

ẏ(t) = p(x(t))

ż(t) = q(t)

(4.13)

with initial conditions 
x(0) = x0

y(0) = y0

z(0) = 0

(4.14)

where

f(t, x(t), y(t), z(t), k) = f(x(t), y(t), u(t)), (4.15)

while the PID controller u(t) given by (4.2) becomes

u(t) =

N1∑
j=1

k1,j(y(t)− r(t))χI1,j(t)

+

N2∑
j=1

k2,jzj(t) +

N3∑
j=1

k3,jp(x(t))χI3,j(t), (4.16)

here

k = [k1,1, k1,2, . . . , k1,N1 , k2,1, k2,2, . . . , k2,N2 , k3,1, k3,2, . . . , k3,N3 ]
⊤ (4.17)

is the vector containing the gains for the proportional, integral and derivative terms of

the PID controller.

The continuous inequality constraints (4.6) become

g̃i(t, x(t), y(t), z(t), k) ≤ 0, t ∈ [0, T ], i = 1, 2, . . . ,M. (4.18)
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The cost function (4.8) becomes

J(k) =

∫ T

0

{
α1 [y(t)− r(t)]2 + α2 [p(x(t))]

2 + α3

[
N1∑
j=1

k1,j [y(t)

−r(t)]χI1,j(t) +

N2∑
j=1

k2,jzj(t) +

N3∑
j=1

k3,jp(x(t))χI3,j(t)

]2 dt. (4.19)

The problem may now be re-stated as: Given system (4.13) with initial condition (4.14),

find a PID control parameter vector k such that the cost function (4.19) is minimized

subject to the continuous inequality constraints (4.6) and the terminal equality constraint

(4.7). Let this problem be referred to as Problem (P4). Clearly, Problem (P4) is an

optimal parameter selection problem.

4.3 Constraint Approximation

The continuous inequality constraints (4.6) cannot be handled directly, because each of

which contains infinite number of constraints. Here, the constraint transcription technique

(see [36, 94, 101,103]) is applied to the continuous inequality constraints (4.6), leading to

the following equivalent equality constraints:∫ T

0

max {g̃i(t, x(t), y(t), z(t), k), 0} dt = 0, i = 1, 2, . . . ,M, (4.20)

However, the integrands appeared under the integration in (4.20) are nonsmooth. Thus,

for each i = 1, 2, . . . ,M , we shall approximate the nonsmooth function max{g̃i(t, x(t), y(t), z(t), k), 0}
by a smooth function Li,ε(t, x(t), y(t), z(t), k) given by

Li,ε(t, x(t), y(t), z(t), k)

=


0,

(g̃i(t, x(t), y(t), z(t), k) + ε)2

4ε
,

g̃i(t, x(t), y(t), z(t), k),

if g̃i(t, x(t), y(t), z(t), k) < −ε

if − ε ≤ g̃i(t, x(t), y(t), z(t), k) ≤ ε

if g̃i(t, x(t), y(t), z(t), k) > ε,

(4.21)

where ε > 0 is an adjustable constant with small value. Then, for each i = 1, 2, . . . ,M ,

we define

gi,ε (k) =

∫ T

0

Li,ε(t, x(t), y(t), z(t), k)dt (4.22)

We now use the concept of the penalty function to append the functions gi,ε given by
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(4.22) to the cost function (4.19), forming a new cost function given below.

Jε,γ(k) =

∫ T

0

l(t, x(t), y(t), z(t), k)dt

+γ
M∑
i=1

∫ T

0

Li,ε(t, x(t), y(t), z(t), k)dt (4.23)

where

l(t, x, y, z, k) = α1 (y − r)2 + α2 [p(x)]
2 + α3 [u(t)]

2 , (4.24)

and u(t) is given by (4.16) and γ > 0 is a penalty parameter.

We may now state the approximate problem for each ε > 0 and γ > 0 as follows.

Given system (4.13) with initial condition (4.14) and terminal condition (4.7), find a PID

control parameter vector k such that the cost function

Jε,γ(k) =

∫ T

0

L̂ε,γ(t, x, y, z, k)dt, (4.25)

is minimized, where

L̂ε,γ(t, x, y, z, k) = l(t, x(t), y(t), z(t), k)

+γ

M∑
i=1

Li,ε(t, x(t), y(t), z(t), k) (4.26)

This problem is referred to as Problem (P4ε,γ).

To proceed further, we define

Θ = {k : Ω(y(T |k)) = 0}

F = {k ∈ Θ : g̃i(t, x(t), y(t), z(t), k) ≤ 0, t ∈ [0, T ], i = 1, 2, . . . ,M}

Furthermore, let
◦
F denote the interior of F , in the sense that

◦
F = {k ∈ Θ : g̃i(t, x(t), y(t), z(t), k) < 0, t ∈ [0, T ], i = 1, 2, . . . ,M}

We assume that the following assumptions hold.

Assumption 4.3
◦
F ̸= ∅.

Assumption 4.4 For every optimal solution k∗ of Problem (P4), there exists a k such
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that

αk + (1− α)k∗ ∈
◦
F

for all α ∈ (0, 1].

Let

Fε = {k ∈ Θ : g̃i(t, x(t), y(t), z(t), k) ≤ −ε, t ∈ [0, T ], i = 1, 2, . . . ,M}

= {k ∈ Θ : Li,ε(t, x(t), y(t), z(t), k) = 0, t ∈ [0, T ], i = 1, 2, . . . ,M}

where u(t) is given by (4.16).

Thus, Problem (P4) can be also stated as follows: Given system (4.13) with initial

condition (4.14), find a PID control parameter vector k over F such that the cost function

(4.19) is minimized.

Before continuing, we recall Lemma 8.6.2 from [36].

Lemma 4.1. There exists a τ(ε) such that for any 0 < τ < τ(ε), if gi,ε(k) < τ , k ∈ Θ,

then k ∈ F .

Then, we establish the relationships between Problem (P4ε,γ) and Problem (P4) with

the following two theorems.

Theorem 4.1. For any ε > 0, there exists a γ(ε) > 0 such that for all γ, 0 < γ < γ(ε),

if k∗
ε,γ is an optimal solution of Problem (P4ε,γ), then it satisfies the continuous inequality

constraints (4.6) of Problem (P4).

Proof. As k∗
ε,γ is an optimal solution of Problem (P4ε,γ), we have

Jε,γ(k
∗
ε,γ) = J(k∗

ε,γ) + γ

M∑
i=1

gi,ε(k
∗
ε,γ) ≤ J(k) + γ

M∑
i=1

gi,ε(k) (4.27)

for all k ∈ Θ, where gi,ε(k) and J(k) are as defined in (4.22) and (4.19), respectively. Let

kε ∈ Fε be fixed. Then, by the definition of gi,ε(k), gi,ε(k) = 0, i = 1, 2, . . . ,M. Obviously,

there exists a k ∈ Θ such that J(k) ≤ J(k∗
ε,γ). Then, we have

J(k) + γ
M∑
i=1

gi,ε(k
∗
ε,γ) ≤ J(k∗

ε,γ) + γ
M∑
i=1

gi,ε(k
∗
ε,γ) ≤ J(kε) (4.28)

Rearranging (4.28), we have

γ

M∑
i=1

gi,ε(k
∗
ε,γ) ≤ J(kε)− J(k) (4.29)
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Letting β = J(kε)− J(k) in (4.29), we get

M∑
i=1

gi,ε(k
∗
ε,γ) ≤

β

γ

By choosing γ(ε) ≥ β/τ(ε), it follows that for all γ > γ(ε),
M∑
i=1

gi,ε(k
∗
ε,γ) < τ , i =

1, 2, . . . ,M . Hence, from Lemma 4.1, k∗
ε,γ < F . This completes the proof.

Theorem 4.2. Let k∗ and k∗
ε,γ(ε) be, respectively, optimal solutions of Problem (P4) and

Problem (P4ε,γ), where γ(ε) is chosen such that k∗
ε,γ(ε) satisfies the continuous inequality

constraints (4.6) of Problem (P4). Then,

lim
ε→0

J(k∗
ε,γ(ε)) = J(k∗), (4.30)

where J is defined by (4.19).

Proof. By Assumption 4.4, there exists a k̂ ∈
◦
F such that kα = αk̂ + (1 − α)k∗ =

k∗ + α(k̂− k∗) ∈
◦
F for all α ∈ (0, 1]. Now, for any δ1 > 0, there exists an α1 ∈ (0, 1] such

that

J(k∗) ≤ J(kα) ≤ J(k∗) + δ1, (4.31)

for all α ∈ (0, α1). Choose α2 = α1/2. Then it is clear that kα2 ∈
◦
F . Thus, there exists

a δ2 such that max
t∈[0,T ]

g̃i(t, x(t), y(t), z(t), kα2) < −δ2, i = 1, 2, . . . ,M . If we choose ε = δ2,

then kα2 satisfies gi,ε = 0, i = 1, 2, . . . ,M . Using this and from the definition of k∗
ε,γ(ε), we

have

J(k∗
ε,γ(ε)) + γ

M∑
i=1

gi,ε(k
∗
ε,γ(ε)) ≤ J(kα2) + γ

M∑
i=1

gi,ε(kα2) = J(kα2)

Note that

γ
M∑
i=1

gi,ε(k
∗
ε,γ(ε)) ≥ 0

we get

J(k∗
ε,γ(ε)) ≤ J(kα2)

Combining (4.31) and remembering that k∗
ε,γ(ε) is feasible for Problem (P4), we have

J(k∗) ≤ J(k∗
ε,γ(ε)) ≤ J(k∗) + δ1.

Letting ε → 0 and noting that δ1 > 0 is arbitrary, the result follows.

On the basis of Theorem 4.1 and Theorem 4.2, Problem (P4) can be solved through

solving a sequence of optimal parameter selection problems (P4ε,γ) subject to only ter-
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minal equality condition (4.7). Each of these optimal parameter selection problems can

be solved as a nonlinear optimization problem by using a gradient-based optimization

method, such as the SQP approximation scheme [36]. Thus, the optimal control software,

MISER 3.3 [37], is applicable. Further details are given in the next section.

4.4 Computational Method

In this section, we will propose a reliable computational method for solving Problem (P4)

via solving a sequence of Problems (P4ε,γ), where for each ε > 0 and γ > 0, Problem

(P4ε,γ) is solved as a nonlinear optimization problem. For doing this, it is required to

provide, for each k, the value of the cost function Jε,γ(k) , as well as its gradient
∂Jε,γ(k)

∂k
.

Furthermore, we also need the value of the terminal constraint function Ω(y(T |k)) and

its gradient
∂Ω(y(T |k))

∂k
. It is obvious that the values of the cost function Jε,γ(k) and the

terminal constraint function Ω(y(T |k)) can be readily obtained after system (4.13) with

initial condition (4.14) corresponding to k is solved. For the gradient formulas of the cost

function Jε,γ(k) and the terminal constraint function Ω(y(T |u)) corresponding to each k,

we have the following two theorems. Their proofs are similar to that given for Theorem

5.2.1 in [36].

For the notation simplicity, we define

x̃ =
[
x⊤, y, z⊤

]⊤
and

f̃ = [(f)⊤, p, q⊤]⊤.

Then, system (4.13)-(4.14) becomes

˙̃x(t) = f̃(t, x̃, k) (4.32)

with initial conditions

x̃(0) = [(x0)⊤, y0, 0]⊤ (4.33)

Theorem 4.3. The gradient formula for the cost function Jε,γ(k) with respect to k is

given by
∂Jε,γ(k)

∂k
=

∫ T

0

∂Hε,γ(t, x̃(t), k, λε,γ(t))

∂k
dt. (4.34)

Here, Hε,γ(t, x̃, k, λ) is the Hamiltonian function given by

Hε,γ(t, x̃, k, λ) = L̂ε,γ(t, x̃, k) + λ⊤
ε,γ f̃(t, x̃, k), (4.35)
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where L̂ε,γ is as defined by (4.26), and λε,γ is the solution of following system of co-state

differential equations

λ̇(t) = −∂Hε,γ(t, x̃(t), k, λ(t))

∂x̃
(4.36a)

with the boundary condition

λ(T ) = 0. (4.36b)

Proof. Let k ∈ RN1+N2+N3 be given and let ρ ∈ RN1+N2+N3 be arbitrary but fixed. Define

k(ϵ) = k + ϵρ (4.37)

where ϵ > 0 is an arbitrarily small real number. For brevity, let x̃(·) and x̃(·; ϵ) denote,
respectively, the solution of the system (4.32)-(4.33) corresponding to k and k(ϵ). Clearly,

x̃(s) = x̃(0) +

∫ s

0

f̃(τ, x̃(τ), k)dτ (4.38)

x̃(s; ϵ) = x̃(0) +

∫ s

0

f̃(τ, x̃(τ ; ϵ), k)dτ (4.39)

Thus,

△x̃(s) ≡ dx̃(s; ϵ)

dϵ

∣∣∣∣
ϵ=0

=

∫ s

0

{
∂f̃(τ, x̃(τ), k)

∂x̃
△ x̃(τ) +

∂f̃(τ, x̃(τ), k)

∂k
ρ

}
dτ (4.40)

Clearly,
d(△x̃(s))

ds
=

∂f̃(s, x̃(s), k)

∂x̃
△ x̃(s) +

∂f̃(s, x̃(s), k)

∂k
ρ (4.41)

Now, Jε,γ(k) can be expressed as:

Jε,γ(k(ϵ)) =

∫ T

0

{
Hε,γ(s, x̃(s; ϵ), k, λ(s))− λ⊤(s)f̃(s, x̃(s; ϵ), k)

}
ds (4.42)

where λ(s) is yet arbitrary. Thus, it follows that

△Jε,γ(k(ϵ)) ≡
dJε,γ(k(ϵ))

dϵ

∣∣∣∣
ϵ=0

=
∂Jε,γ(k(ϵ))

∂k
ρ

=

∫ T

0

{
△Hε,γ(s, x̃(s), k, λ(s))− λ⊤(s)△ f̃(s, x̃(s), k)

}
ds (4.43)
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where

△f̃(s, x̃(s), k) =
d△ x̃(s)

ds
(4.44)

and

△Hε,γ(s, x̃(s), k, λ(s))

=
∂Hε,γ(s, x̃(s), k, λ(s))

∂x̃
△ x̃(s) +

∂Hε,γ(s, x̃(s), k, λ(s))

∂k
ρ (4.45)

Choose λ0 to be the solution of the costate system (4.36a)-(4.46) corresponding to k.

Then, by substituting (4.36a) into (4.45), we obtain

△Hε,γ(s, x̃(s), k, λ(s))

= −
(
dλ(s)

ds

)⊤

△ x̃(s) +
∂Hε,γ(s, x̃(s), k, λ(s))

∂k
ρ (4.46)

By (4.44) and (4.46), it follows from (4.43) that

∂Jε,γ(k)

∂k
ρ

=

∫ T

0

{
− d

ds

[
(λ0(s))

⊤ △ x̃(s)
]
+

∂Hε,γ(s, x̃(s), k, λ(s))

∂k
ρ

}
ds

= (λ(0))⊤ △ x̃(0)− (λ(T ))⊤ △ x̃(T ) +

∫ T

0

{
∂Hε,γ(s, x̃(s), k, λ(s))

∂k
ρ

}
ds (4.47)

Note that x̃(0) is constant. Thus, by (4.46), we deduce from (4.47) that

∂Jε,γ(k(ϵ))

∂k
ρ

=

∫ T

0

{
∂Hε,γ(s, x̃(s), k, λ(s))

∂k
ρ

}
ds (4.48)

Since ρ is arbitrary, (4.34) follows readily from (4.48). Thus, the proof is completed.

Before giving the gradient formula for the terminal constraint function Ω(y(T |k)), we
define

Ω(y(T |k)) = Ω̃(x̃(T |k))

Theorem 4.4. The gradient formula for the terminal constraint function Ω̃(x̃(T |k)) with
respect to k is given by

∂Ω̃(x̃(T |k))
∂k

=

∫ T

0

∂H̃ε,γ(t, x̃(t), k, λ̃ε,γ(t))

∂k
dt, (4.49)
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where H̃ε,γ(t, x̃, k, λ) is the Hamiltonian function given by

H̃ε,γ(t, x̃, k, λ) = λ̃⊤
ε,γ f̃(t, x̃, k). (4.50)

and λ̃ε,γ is the solution of following system of co-state differential equations

dλ̃(t)

dt
= −∂H̃ε,γ(t, x̃(t), k, λ̃(t))

∂x̃
(4.51a)

with the boundary condition

λ̃(T ) =
dΩ̃(x̃(T |k))

dx̃
(4.51b)

Proof. Let k ∈ RN1+N2+N3 be given and let ρ ∈ RN1+N2+N3 be arbitrary but fixed. Define

k(ϵ) = k + ϵρ (4.52)

where ϵ > 0 is an arbitrarily small real number. x̃(·) and x̃(·; ϵ) denote, respectively, the
solutions of the system (4.32)-(4.33) corresponding to k and k(ϵ). As it has been done in

the proof for Theorem 4.3, we have

△x̃(s) ≡ dx̃(s; ϵ)

dϵ

∣∣∣∣
ϵ=0

=

∫ s

0

{
∂f̃(τ, x̃(τ), k)

∂x̃
△ x̃(τ) +

∂f̃(τ, x̃(τ), k)

∂k
ρ

}
ds (4.53)

and
d(△x̃(s))

ds
=

∂f̃(s, x̃(s), k)

∂x̃
△ x̃(s) +

∂f̃(s, x̃(s), k)

∂k
ρ (4.54)

From (4.50), Ω̃(x̃(T |k)) can be expressed as:

Ω̃(x̃(T |k))

= Ω̃(x̃(T |k))

+

∫ T

0

{
H̃ε,γ(s, x̃(s; ϵ), k(ϵ), λ̃(s))− λ̃⊤(s)f̃(s, x̃(s; ϵ), k(ϵ))

}
ds (4.55)

where λ̃(s) is yet arbitrary. Thus, it follows that

△Ω̃(x̃(T |k)) ≡ dΩ̃(x̃(T |k))
dϵ

∣∣∣∣∣
ϵ=0

=
∂Ω̃(x̃(T |k))

∂k
ρ

= △Ω̃(x̃(T |k))

+

∫ T

0

{
△H̃ε,γ(s, x̃(s), k, λ̃(s))− λ̃⊤(s)△ f̃(s, x̃(s), k)

}
ds (4.56)
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where

△Ω̃(x̃(T |k)) = dΩ̃(x̃(T ))

dx̃
△ x̃(T |k) (4.57)

△f̃(s, x̃(s), k) =
d△ x̃(s)

ds
(4.58)

and

△H̃ε,γ(s, x̃(s), k, λ̃(s))

=

(
dλ̃(s)

ds

)⊤

△ x̃(s) +
∂H̃ε,γ(s, x̃(s), k, λ̃(s))

∂k
ρ (4.59)

Choose λ̃ to be the solution of the costate system (4.51a)-(4.51b) corresponding to k.

Then, by substituting (4.57), (4.58), (4.59) into (4.56), we obtain

∂Ω̃(x̃(T |k))
∂k

ρ

=
dΩ̃(x̃(T ))

dx̃
△ x̃(T |k)

+

∫ T

0

{
− d

ds

[
(λ̃(s))⊤ △ x̃(s)

]
+

∂H̃ε,γ(s, x̃(s), k, λ̃(s))

∂k
ρ

}
ds

=
dΩ̃(x̃(T ))

dx̃
△ x̃(T |k)

+(λ̃(0))⊤ △ x̃(0)− (λ̃(T ))⊤ △ x̃(T ) +

∫ T

0

{
∂H̃ε,γ(s, x̃(s), k, λ̃(s))

∂k
ρ

}
ds(4.60)

Note that x̃(0) is a constant number. Thus, it follows from (4.60) that

∂Ω̃(x̃(T |k))
∂k

ρ

=

∫ T

0

{
∂H̃ε,γ(s, x̃(s), k, λ̃(s))

∂k
ρ

}
ds (4.61)

Since ρ is arbitrary, (4.49) follows readily from (4.61). Thus, the proof is completed.

For each ε > 0, γ > 0, Problem (P4ε,γ) is to be solved as a nonlinear optimization

problem using the gradient formulas given in Theorem 4.3 and Theorem 4.4. Details are

reported in the following as an algorithm.

Algorithm 4.1.

1. Choose ε > 0, γ > 0 and k.

2. Solve Problem (P4ε,γ) as a nonlinear optimization problem, yielding k∗
ε,γ.

3. Check whether all the continuous inequality constraints (4.6) are satisfied or not.
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If they are satisfied, go to Step 4. Otherwise, increase γ to 10γ and go to Step 2 with k∗
ε,γ

as the initial guess for the new optimization process.

4. If ε is small enough, say, less or equal to a given small number, we have a successful

exit. Else, decrease ε to ε/10 and go to Step 2, using k∗
ε,γ as the initial guess for the new

optimization process.

4.5 Application to A Ship Steering Control Problem

Figure 4.1: The overall control system of the ship

In this section, we apply the proposed method to a ship steering control problem. Our

aim is to design a PID controller such that the heading angle, y(t), of the ship will follow

the change course set by the reference input signal r(t). The control system is as shown

in Figure 4.1. The ship motion can be described by the following differential equations

defined on [0, T ] (see [91]). In this application, T = 300s.

...
y (t) + b1ÿ(t) + b2((a1ẏ(t))

3 + a2ẏ(t)) = b3δ̇
′(t) + b2δ̇

′(t) + w, (4.62)

where

w = b3ḋ+ b2d,

δ̇(t) = b4e
′(t), (4.63)

with

e′ =

{
e, if |e| ≤ emax

emaxsign(e), if |e| ≥ emax

(4.64)

where e = u− δ,

δ′ =

{
δ, if |δ| ≤ δmax

δmaxsign(δ), if |δ| ≥ δmax

(4.65)

The variable w is to account for sea disturbances acting on the ship with d a constant

disturbance, u is the control which is chosen in the form of a PID controller defined by
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(4.2), δ is the rudder angle, e is the error signal, e′ and δ′ are the real inputs to the actuator

and ship dynamics, respectively, because of the saturation properties which are defined as

(4.64) and (4.65). The ship model is in its full generality without resorting to simplification

and linearization. This work develops further some pervious studies of optimal ship

steering strategies with time optimal control [99], phase advanced control [92], parameter

self-turning [95], adaptive control [90], and constrained optimal model following [98].

For a ship steering problem, it has two phases: course changing and course keeping.

During the course changing phase, it is required to manoeuver the ship such that it moves

quickly towards the desired course set by the command without violating the constraints

arising from performance specifications and physical limitations on the controller. During

the course keeping phase, the ship is required to move along the desired course. In this

application, the PID controller of the form defined by (4.2) with N1 = N2 = N3 = 6 is

used. More specifically,

u(t) =
6∑

i=1

k1,i(y(t)− r(t))χ[ti−1,ti)(t)

+
6∑

i=1

k2,i

∫ t

0

(y(s)− r(s))χ[ti−1,ti)(s)ds

+
6∑

i=1

k3,iẏ(t)χ[ti−1,ti)(t) (4.66)

where χI denotes the indicator function of I defined by (4.5), while ti, i = 1, . . . , 5, are

fixed switching time points to be specified later.

Set

x1(t) = y(t), x2(t) = ẏ(t), x3(t) = ÿ(t), x4(t) = δ(t) (4.67)

and

x5,j(t) =

∫ t

0

(y(s)− r(s))χ[tj−1,tj)(s)ds, j = 1, . . . , 6. (4.68)

Then, the dynamics of the ship can be expressed as:

ẋ1(t) = x2(t) (4.69a)

ẋ2(t) = x3(t) (4.69b)

ẋ3(t) = −b1x3(t)− b2(a1x
3
2(t) + a2x2(t)) + b3b4e+ b2(x4(t) + d) (4.69c)

ẋ4(t) = b4e (4.69d)

ẋ5,j(t) = x1(t)− r(t)χ[tj−1,tj)(t), j = 1, . . . , 6 (4.69e)
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Table 4.1: Coefficients for the ship model

a1 a2 b1 b2 b3 b4

−30.0 −5.6 0.1372 −0.0002014 −0.003737 0.5

with the initial condition

x(0) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]⊤, (4.70)

where

e = u(t)− x4(t) (4.71)

with

u(t) =
6∑

i=1

k1,i(x1(t)− r(t))χ[ti−1,ti)(t)

+
6∑

i=1

k2,ix5,j(t) +
6∑

i=1

k3,ix2(t)χ[ti−1,ti)(t). (4.72)

The values of the coefficients appeared in the equations are given in Table 4.1. The

reference input signal r(t) used in our example is: r(t) = π/180, for t ∈ [0, 300s].

This ship steering problem is a special case of (4.1a)-(4.1d), where the output system

is:

ẋ1(t) = x2(t)

with initial condition

x1(0) = 0.

In practice, a large overshoot is undesirable. In this problem, the following constraint

is imposed on the upper bound of the heading angle x1(t).

x1(t)− 1.01r(t) ≤ 0, t ∈ [0, 300s] (4.73)

i.e., the heading angle should not go beyond 1% of the desired reference input r(t). This

constraint can be written as:

g1(t) = x1(t)− 101%r(t) ≤ 0, t ∈ [0, 300s] (4.74)

We also impose constraint on the rise time of the heading angle such that the heading

angle is constrained to reach at least 70% of the desired reference input in 30 seconds and
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95% in 60 seconds, i.e.,

g2(t) = h(t)− x1(t) ≤ 0, t ∈ [0, 300s], (4.75)

where

h(t) =


0,

5.1× 10−4t− 3.1× 10−3,

1.5× 10−4t+ 7.9× 10−3,

2.2× 10−6t+ 16.4× 10−3,

t ∈ [0, 6)

t ∈ [6, 30)

t ∈ [30, 60)

t ∈ [60, 300]

(4.76)

To cater for the saturation property of the actuator, it is equivalent to impose upper

and lower bounds on x4(t), i.e.,

−π/6 ≤ x4(t) ≤ π/6, t ∈ [0, 300s] (4.77)

which are continuous inequality constraints. They can be rewritten as:

g3(t) = −x4(t)− π/6 ≤ 0, t ∈ [0, 300s] (4.78)

and

g4(t) = x4(t)− π/6 ≤ 0, t ∈ [0, 300s] (4.79)

Similarly, to cater for another saturation property, we have

−π/30 ≤ x4(t)− u(t) ≤ π/30, t ∈ [0, 300s] (4.80)

They are again continuous inequality constraints, which can be rewritten as:

g5(t) = −x4(t) + u(t)− π/30 ≤ 0, t ∈ [0, 300s] (4.81)

and

g6(t) = x4(t)− u(t)− π/30 ≤ 0, t ∈ [0, 300s] (4.82)

where u(t) is given by (4.72).

The terminal equality constraint is:

Ω(x1(300)) = x1(300)− r(300)

= x1(300)− π/180 = 0 (4.83)

The optimal PID control problem may now be stated formally as follows.

Given system (4.69a)-(4.70), find a PID control parameter vector k = [(k1)⊤, (k2)⊤, . . . , (k6)⊤]⊤



78 A Nonlinear Optimal PID Tuning Problem

with ki = [ki
1, k

i
2, k

i
3]

⊤, i = 1, 2, . . . , 6, such that the cost function

J =

∫ 300

0

{α1(x1(t)− r(t))2 + α2x
2
2(t) + α3u

2(t)}dt (4.84)

is minimized subject to the continuous inequality constraints (4.78), (4.79), (4.81), (4.82),

(4.74) and the terminal condition (4.83), where

u(t) =
6∑

i=1

k1,i(x1(t)− r(t))χ[ti−1,ti)(t) +
6∑

i=1

k2,ix5,j(t)

+
6∑

i=1

k3,ix2(t)χ[ti−1,ti)(t). (4.85)

Here, t0 = 0, t6 = 300, and ti, i = 1, 2, . . . , 5, are the switching time points which are

chosen to be at the time points where the constraint function g2 are nondifferentiable.

They are: t1 = 6, t2 = 18, t3 = 30, t4 = 45, and t5 = 60.

Let this problem be referred to as Problem (Q4), and it is solvable by the computa-

tional method developed in Section ??.

We then construct Problem (Q4ε,γ) according to the procedure as specified in Section

4.3, where the appended new cost function is given by

Jε,γ(k) =

∫ 300

0

{
α1(x1(t)− r(t))2 + α2x

2
2(t)

+α3u
2(t) + γ(g1,ε + g2,ε + g3,ε + g4,ε + g5,ε + g6,ε)

}
dt, (4.86)

where gi,ε, i = 1, 2, . . . , 6, are obtained from gi, i = 1, 2, . . . , 6, respectively, according to

(4.22). In this problem, we set α1 = 10, α2 = 400, α3 = 0.05. It is to be minimized

subject to terminal equality constraint (4.83).

In real world, disturbances always exist and there are many kinds of disturbances. We

consider the case, where the ship is encountered with a constant disturbance d. Assume

that d = 0.3π/180.

Problem (Q4ε,γ) is solved by using Algorithm 4.1, where the final ε and γ are ε = 0.01

and γ = 10. The optimal parameters for the PID controller u obtained are:

k1,∗ = [5.78685, 7.27203, 2.62351, 6.98467, 9.76934, 7.39799]⊤

k2,∗ = [1.03217, 0.00000, 0.00303, 0.00000, 0.24398, 0.84387]⊤

k3,∗ = [99.81791, 100.52777, 100.67912, 100.13533, 99.75020, 99.70358]⊤

The results obtained are shown in Figure 4.2 to Figure 4.5. From the results obtained,
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Figure 4.2: The heading angle of the ship
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Figure 4.3: The constraints for the saturation of the actuator

we see that all the constraints are satisfied. The heading angle tracks the desired reference

input with no steady state error after some small oscillation due to the constant distur-

bance. The overshooting of the heading angle above the reference input is less than 1%,

and hence the constraint g1(t) ≤ 0, t ∈ [0, 300] is satisfied. To test the robustness of this

PID controller, we run the model with the optimal PID controller under the following

environments. (i) The disturbance is much larger, more specifically, d = 0.6 × π/180;

and (ii) the disturbance is coming from the initial heading direction, more specifically,

d = −0.3× π/180. The results are shown in Figure 4.6 and Figure 4.7. In both cases, we

see that the heading angles track the desired reference input with no steady state error

after some small oscillations.
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Figure 4.4: The constraints for the saturation of the control
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Figure 4.5: The rudder angle of the ship

4.6 Conclusions

This chapter considered an optimal PID tuning problem subject to continuous inequality

constraints and terminal state equality constraint. It was shown that the problem can be

solved via solving a sequence of nonlinear optimization problems. An efficient computa-

tional method was proposed. It was then applied to a ship steering control problem. The

results obtained show that the method proposed is reliable and effective.
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Figure 4.6: The heading angle of the ship with a larger disturbance
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Figure 4.7: The heading angle of the ship with a disturbance coming from the initial
heading direction





CHAPTER 5

An Exact Penalty Function Method for

Continuous Inequality Constrained Optimal

Control Problem

5.1 Introduction

This chapter is the author’s work in [115]. In this chapter, we present a computational

approach based on an exact penalty function method [104] for solving a class of optimal

control problems subject to equality terminal state constraints and continuous inequal-

ity constraints on the state and/or control variables. After the control parametrization

together with a time scaling transformation, the problem is approximated by a sequence

of optimal parameter selection problems with equality terminal state constraints and

continuous inequality constraints on the state and/or control. The new exact penalty

functions, developed in [?] and [104] (there are several other similar works in the liter-

ature, such as [116] and [117]), are constructed for these terminal equality constraints

and continuous inequality constraints. They are appended to the cost function to form a

new cost function, giving rise to an unconstrained optimal parameter selection problem.

The convergence analysis shows that, for a sufficiently large penalty parameter, a local

minimizer of the unconstrained optimization problem is a local minimizer of the optimal

parameter selection problem with terminal equality constraints and continuous inequal-

ity constraints. The relationships between the approximate optimal parameter selection

problems and the original optimal control problem are also discussed. Finally, the method

proposed is applied to solve three nontrivial optimal control problems.

83
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Control Problem

5.2 Problem Statement

Consider a dynamical system defined on [0, T ] given below

ẋ(t) = f(t, x(t), u(t)), t ∈ (0, T ] (5.1a)

with initial and terminal conditions

x(0) = x0 (5.1b)

x(T ) = xf (5.1c)

respectively, where T is the terminal time and x = [x1, x2, . . . , xn]
⊤ ∈ Rn and u =

[u1, u2, . . . ur]
⊤ ∈ Rr are, respectively, state and control vectors, while f = [f1, f2, . . . , fn]

⊤ ∈
Rn.

We assume that the following assumptions are satisfied.

Assumption 5.1. f is continuously differentiable with respect to all it arguments.

Assumption 5.2. Let V be a compact subset of Rr. We require that there exists a

constant K such that

∥f(t, x, u)∥ ≤ K (1 + ∥x∥)

for all (t, x, u) ∈ [0,∞)× Rn × V.
Define

U =
{
ν = [v1, v2, . . . , vr]

⊤ ∈ Rr : αi ≤ vi ≤ βi, i = 1, 2, . . . , r
}

(5.2)

where αi, i = 1, 2, . . . , r, and βi, i = 1, 2, . . . , r, are given real numbers. A piecewise

continuous function u is said to be an admissible control if u(t) ∈ U for all t ∈ [0, T ]. Let

U be the class of all such admissible controls. Furthermore, let x(·|u) denote the solution
of system (5.1a)-(5.1b) corresponding to u ∈ U .

Consider the continuous state inequality constraints, given by

gi (t, x (T |u) , u(t)) ≤ 0, t ∈ [0, T ], i = 1, 2, . . . , N (5.3)

It is assumed that the following assumption is satisfied.

Assumption 5.3. gi, i = 1, 2, . . . , N , are continuously differentiable with respect to all

its arguments.

Define

G = {u ∈ U : gi (t, x (T |u) , u(t)) ≤ 0, t ∈ [0, T ], i = 1, 2, . . . , N} (5.4)
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and

H =
{
u ∈ G : x (T |u) = xf

}
(5.5)

Now we state our problem as follows.

Problem (P5) Given the dynamical system (5.1a)-(5.1b), find a control u ∈ H such that

the cost function

J(u) = Φ0 (x(T )) +

∫ T

0

L0 (t, x(t), u(t)) dt (5.6)

is minimized.

We assume that the following assumptions are satisfied.

Assumption 5.4. Φ0 is continuously differentiable with respect to x.

Assumption 5.5. L0 is continuously differentiable with respect to all its arguments.

Remark 5.1. By Assumption 5.1 and the definition of U , it follows from an argument

similar to that given for the proof of Lemma 6.4.2 in [36] that there exits a compact subset

X ⊂ Rn such that x (T |u) ∈ X for all t ∈ [0, T ] and for all u ∈ U .

5.3 Computational Method

To solve Problem (P5), as in Chapter 3, we shall apply the control parametrization scheme

[36] together with a time scaling transform [87]. The time horizon [0, T ] is partitioned

with a sequence τ = [τ0, τ1, . . . , τp]
⊤ of time points τi, i = 0, 1, . . . , p. Then, the control is

approximated by a piecewise constant function as follows.

up(t|σ, τ) =
p∑

i=1

σiχ[τi−1,τi)(t), (5.7)

where τi−1 ≤ τi, i = 1, . . . , p, with τ0 = 0 and τp = T , and

χI(t) =

{
1,

0,

if t ∈ I ,

otherwise.

As up ∈ U , σi = [σi
1, σ

i
2, . . . , σ

i
r]
⊤ ∈ U for i = 1, 2, . . . , p . Denote by Ξ the set of all such

σ =
[
(σ1)⊤, (σ2)⊤, . . . , (σp)⊤

]⊤
∈ Rpr, and denote by Γ the set of all τ = [τ0, τ1, . . . , τp]

⊤

such that τi−1 ≤ τi, i = 1, 2, . . . , p, with τ0 = 0 and τp = T .

Let xp(·|σ, τ) denote the solution of (5.1a)-(5.1b) corresponding to (σ, τ) ∈ Ξ × Γ,

where

xp(·|σ, τ) = x(·|up(t|σ, τ))
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Substituting (5.7) into the continuous inequality constraints (5.3) gives

gi (t, x
p (t|σ, τ) , up (t|σ, τ)) ≤ 0, t ∈ [0, T ], i = 1, 2, . . . , N (5.8)

Let Λ be the set containing all those (σ, τ) ∈ Ξ × Γ such that the constraints (5.8) are

satisfied. Furthermore, let

Υ =
{
(σ, τ) ∈ Λ : xp (T |up (t|σ, τ)) = xf

}
(5.9)

The cost function becomes

Jp(σ, τ) = J (up(t|σ, τ)) = Φ0 (x
p(T |σ, τ)) +

∫ T

0

L0 (t, x
p(t|σ, τ), up(t|σ, τ)) dt (5.10)

We may now define the following approximate optimization problem.

Problem (P5(p)) Given system (5.1a)-(5.1b), find a (σ, τ) ∈ Υ such that the cost

function (5.10) is minimized.

In Problem (P5(p)), the switching times τi, 1 ≤ i ≤ p−1, are also regarded as decision

variables. We shall employ the time scaling transform introduced in [87] to map these

switching times into a set of fixed time points k
p
, k = 1, 2, . . . , p−1, on a new time horizon

[0, 1]. This is achieved by the following differential equation

ṫ(s) = υp(s), s ∈ [0, 1], (5.11a)

with initial condition

t(0) = 0, (5.11b)

where

υp(s) =

p∑
i=1

θiχ[ i−1
p

, i
p)
(s). (5.12)

Here, θi ≥ 0, i = 1, 2, . . . , p.

Let θ = [θ1, θ2, . . . , θp]
⊤ and let Θ be the set containing all such θ.

Taking integration of (5.11a) with initial condition (5.11b), it is easy to see that, for

s ∈
[
k−1
p
, k
p

)
, k = 1, 2, . . . , p,

t(s) =
k−1∑
i=1

θk
p

+
θk
p
(ps− k + 1) , (5.13)
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where k = 1, 2, . . . , p. Clearly, for each k = 1, 2, . . . , p− 1

τk =
k∑

i=1

θi
p

(5.14)

and

t(1) =

p∑
i=1

θi
p
= T. (5.15)

Let Θ̃ be a subset of Θ such that (5.15) is satisfied.

The approximate control given by (5.7) in the new time horizon [0, 1] becomes

ũp(s) = up (t(s)) =

p∑
i=1

σiχ[ i−1
p

, i
p)
(s). (5.16)

which has fixed switching times at s = 1
p
, . . . , p−1

p
. Now, by using the time scaling trans-

form (5.11a)-(5.11b), the dynamic system (5.1a)-(5.1b) is transformed into

ẏ(s) = θkf
(
t(s), y(s), σk

)
, s ∈ Jk, k = 1, 2, . . . , p (5.17a)

ṫ(s) = υp(s) (5.17b)

y(0) = x0 and t(0) = 0 (5.17c)

and the terminal conditions (5.1c) and (5.15) become

y(1) = xf and t(1) = T (5.17d)

respectively, where y(s) = x (t(s)) and

Jk =


[
k−1
p
, k
p

)
,(

k−1
p
, k
p

)(
k−1
p
, k
p

]
,

if k = 1

if k ∈ {2, 3, . . . , p − 1}
if k = p

We then rewrite system (5.17a)-(5.17c) as follows.

˙̃y(s) = f̃ (s, ỹ(s), σ, θ) , s ∈ [0, 1] (5.18a)

ỹ(0) = ỹ0 (5.18b)

with the terminal conditions

ỹ(1) = ỹf (5.18c)
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where

ỹ(s) =
[
(y(s))⊤ , t (s)

]⊤
(5.19)

f̃ (s, ỹ(s), σ, θ) =

[ ∑p
k=1 θkf

(
t(s), y(s), σk

)
χJk

(s)

υp(s)

]
(5.20)

ỹ0 =

[
x0

0

]
(5.21)

ỹf =

[
xf

T

]
(5.22)

To proceed further, let ỹ(·|σ, θ) denote the solution of system (5.18a)-(5.18b) corre-

sponding to (σ, θ) ∈ Ξ×Θ.

Remark 5.2. As in Remark 5.1, there exists a compact subset Y ⊂ Rn+1 such that

ỹ(s|σ, θ) ∈ Y for all s ∈ [0, 1] and (σ, θ) ∈ Ξ× Θ̃.

Similarly, applying the time scaling transform to the continuous inequality constraints

(5.3) and the cost function (5.6) yields:

gi
(
t(s|θ), ỹ(s|σ, θ), σk

)
≤ 0, s ∈ Jk, k = 1, 2, . . . , p, i = 1, 2, . . . , N (5.23)

and

J̃(σ, θ) = Φ0 (y (1|σ, θ)) +
∫ 1

0

L̄0 (s, ỹ (s|σ, θ) , σ, θ) ds (5.24)

respectively, where

L̄0 (s, ỹ (s|σ, θ) , σ, θ) = υp(s)L0 (t (s) , x (t(s)) , ũ
p (s)) (5.25)

Remark 5.3. By respective assumptions specified in Assumption 5.1, Assumption 5.2

and Assumption 5.5, it follows from Remark 5.2 that there exits constants K1 > 0 and

K2 > 0 such that

∥Υ(s, ỹ(s|σ, θ), σ, θ)∥ ≤ K1, s ∈ Jk, k = 1, 2, . . . , p; (σ, θ) ∈ Ξ× Θ̃∥∥∥∥∂Υ(s, ỹ(s|σ, θ), σ, θ)
∂σ

∥∥∥∥ ≤ K2, s ∈ Jk, k = 1, 2, . . . , p; (σ, θ) ∈ Ξ× Θ̃∥∥∥∥∂Υ(s, ỹ(s|σ, θ), σ, θ)
∂θ

∥∥∥∥ ≤ K2, s ∈ Jk, k = 1, 2, . . . , p; (σ, θ) ∈ Ξ× Θ̃∥∥∥∥∂Υ(s, ỹ(s|σ, θ), σ, θ)
∂ỹ

∥∥∥∥ ≤ K2, s ∈ Jk, k = 1, 2, . . . , p; (σ, θ) ∈ Ξ× Θ̃

where Υ is used to denote f̃i, i = 1, 2, . . . , n, gi
(
t(s), ỹ(s|σ, θ), σk

)
, i = 1, 2, . . . , N ; k =
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1, 2, . . . , p, or L̄0.

Problem (P5(p)) is equivalent to the following problem.

Problem (P̃5(p)) Given system (5.18a)-(5.18b), find a (σ, θ) ∈ Ξ×Θ such that the cost

function (5.24) is minimized subject to (5.18c) and (5.23).

Problem (P̃5(p)) is an optimization problem subject to both the equality constraints

(5.18c) and the continuous inequality constraints (5.23). To solve this problem, an exact

penalty function method introduced in [?] and [104] is used.

First, we define

Fϵ = {(σ, θ, ϵ) ∈ Ξ×Θ× R+ : gi
(
t (s|θ) , y (s|σ, θ) , σk

)
≤ ϵγWi,

∀ s ∈ Jk, k = 1, 2, . . . , p, i = 1, 2, . . . , N} (5.26)

where R+ = {α ∈ R : α ≥ 0}, Wi ∈ (0, 1), i = 1, 2, . . . , N , are fixed constants and γ

is a positive real number. In particular, when ϵ = 0, let

F0 =
{
(σ, θ) ∈ Ξ×Θ : gi

(
t (s|θ) , y (s|σ, θ) , σk

)
≤ 0, ∀ s ∈ Jk, k = 1, 2, . . . , p, i = 1, 2, . . . , N

}
(5.27)

Similarly, we define

Ωϵ =
{
(σ, θ, ϵ) ∈ Fϵ : ỹ (1|σ, θ)− ỹf = 0

}
(5.28)

and

Ω0 =
{
(σ, θ) ∈ F0 : ỹ(1|σ, θ)− ỹf = 0

}
Clearly, Problem (P̃5(p)) is equivalent to the following problem.

Problem (P̂5(p)) Given system (5.18a)-(5.18b), find a (σ, θ) ∈ Ω0 such that the cost

function (5.24) is minimized.

Then, by applying a new exact penalty functions introduced in [?] and [104], we obtain

a new cost function defined below.

J̃δ(σ, θ, ϵ) =
J̃(σ, θ) if ϵ = 0, gi

(
t(s|θ), ỹ(s|θ, σ), σk

)
≤ 0

(s ∈ Jk, k = 1, 2, . . . , p)

J̃(σ, θ) + ϵ−α (∆(σ, θ, ϵ) + ∆1) + δϵβ if ϵ > 0

+∞ otherwise

(5.29)

Here, δ > 0 is a penalty parameter, ∆(σ, θ, ϵ), which is referred to as the continuous

inequality constraint violation, is defined by

∆(σ, θ, ϵ) =
N∑
i=1

∫ 1

0

[max {0, ḡi(s, ỹ(s|σ, θ), σ)− ϵγWi}]2 ds (5.30)
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where

ḡi(s, ỹ(s), σ) = gi (t(s), y(s), ũ
p(s))

=

p∑
k=1

gi
(
t(s), y(s), σk

)
χJk

(s) (5.31)

and ũp is defined by (5.16). Furthermore, ∆1, which is referred to as the equality constraint

violation, is defined by

∆1 =
∥∥ỹ(1|σ, θ)− ỹf

∥∥2
=

n+1∑
i=1

(
ỹi (1|σ, θ)− ỹfi

)2
(5.32)

where α and γ are positive real numbers, and β > 2.

Remark 5.4. Note that other types of equality constraints, such as interior point con-

straints (see [36]) can be dealt with similarly by introducing appropriate equality con-

straint violation as defined by (5.32).

We now introduce a surrogate optimal parameter selection problem, which is referred

to as Problem (P5δ(p)), as follows.

Given system (5.18a)-(5.18b), find a (σ, θ, ϵ) ∈ Ξ × Θ × [0,+∞) such that the cost

function (5.29) is minimized.

Intuitively, during the process of minimizing J̃δ(σ, θ, ϵ), if σ is increased, ϵβ should be

reduced. This means that ϵ should be reduced as β is fixed. Thus ϵ−α will be increased,

and hence the constraint violation will be reduced. This means that the values of

N∑
i=1

∫ 1

0

[max {0, ḡi (s, ỹ (s|σ, θ) , σ)− ϵγWi}]2 ds

and
n+1∑
i=1

(
ỹi(1|σ, θ)− ỹfi

)2
must go down. In this way, the satisfaction of the continuous inequality constraints (5.23)

and the equality constraints (5.17d) will eventually be achieved.

Before presenting the gradient formulas of the cost function of Problem (P5δ(p)),

we will rewrite the cost function in the canonical form as in [36] below.
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J̃δ(σ, θ, ϵ) = Φ0 (y(1|σ, θ)) +
∫ 1

0

L̄0(s, ỹ(s|σ, θ), σ, θ)ds

+ϵ−α

{
N∑
i=1

∫ 1

0

[max{0, ḡi(s, ỹ(s|σ, θ), σ)− ϵγWi}]2 ds

+
n+1∑
i=1

(
ỹi(1|σ, θ)− ỹfi

)2}
+ δϵβ

=

(
Φ0(ỹ(1|σ, θ)) + ϵ−α

n+1∑
i=1

(
ỹi(1|σ, θ)− ỹfi

)2
+ δϵβ

)

+

∫ 1

0

L̄0(s, ỹ(s|σ, θ), σ, θ)ds

+ϵ−α

N∑
i=1

∫ 1

0

[max {0, ḡi(s, ỹ(s|σ, θ), σ)− ϵγWi}]2 ds (5.33)

Let

Φ̃0 (ỹ(1|σ, θ), ϵ) = Φ0 (y(1|σ, θ)) + ϵ−α

n+1∑
i=1

(
ỹi(1|σ, θ)− ỹfi

)2
+ δϵβ (5.34)

and

L̃0(s, ỹ(s|σ, θ), σ, θ, ϵ)

= L̄0(s, ỹ(s|σ, θ), σ, θ)

+ϵ−α

N∑
i=1

[max {0, ḡi(s, ỹ(s|σ, θ), σ)− ϵγWi}]2 (5.35)

We then substitute (5.34) and (5.35) into (5.33) to give

J̃δ(σ, θ, ϵ) = Φ̃0 (ỹ(1|σ, θ), ϵ) +
∫ 1

0

L̃0 (s, ỹ(s|σ, θ), σ, θ, ϵ) ds (5.36)

Now, the cost function of Problem (P5δ(p)) is in canonical form. As derived for the

proof of Theorem 5.2.1 in [36], the gradient formulas of the cost function (5.36) are given

in the following theorem.

Theorem 5.1. The gradients of the cost function J̃δ(σ, θ, ϵ) with respect to σ, θ, and ϵ

are:

∂J̃δ (σ, θ, ϵ)

∂σ
=

∫ 1

0

∂H0 (s, ỹ (s|σ, θ) , σ, θ, ϵ, λ0 (s|σ, θ, ϵ))
∂σ

ds (5.37)
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∂J̃δ (σ, θ, ϵ)

∂θ
=

∫ 1

0

∂H0 (s, ỹ (s|σ, θ) , σ, θ, ϵ, λ0 (s|σ, θ, ϵ))
∂θ

ds (5.38)

∂J̃δ (σ, θ, ϵ)

∂ϵ

= −αϵ−α−1

{
N∑
i=1

∫ 1

0

[max {0, ḡi (s, ỹ (s|σ, θ) , σ)− ϵγWi}]2 ds

+
n+1∑
i=1

(
ỹi (1|σ, θ)− ỹfi

)2}

−2γϵγ−α−1

N∑
i=1

∫ 1

0

max {0, ḡi (s, ỹ (s|σ, θ) , σ)− ϵγWi}Wids

+δβϵβ−1

= ϵ−α−1

{
−α

N∑
i=1

∫ 1

0

[max {0, ḡi (s, ỹ (s|σ, θ) , σ)− ϵγWi}]2 ds

+2γ
N∑
i=1

∫ 1

0

max {0, ḡi (s, ỹ (s|σ, θ) , σ)− ϵγWi} (−ϵγWi) ds

−α

n+1∑
i=1

(
ỹi (1|σ, θ)− ỹfi

)2}
+ δβϵβ−1, (5.39)

respectively, where H0 (s, ỹ (s|σ, θ) , σ, θ, ϵ, λ (s|σ, θ, ϵ)) is the Hamiltonian function for the

cost function (5.24) given by

H0 (s, ỹ (s|σ, θ) , σ, θ, ϵ, λ(s|σ, θ, ϵ))

= L̃0 (s, ỹ (s|σ, θ) , σ, θ, ϵ) + λ0 (s|σ, θ, ϵ) f̃ (s, ỹ (s|σ, θ) , σ, θ) , (5.40)

and λ0 (·|σ, θ, ϵ) is the solution of the following system of co-state differential equations

(dλ0(s))
⊤

ds
= −∂H0(s, ỹ (s|σ, θ) , σ, θ, ϵ, λ0(s))

∂ỹ
(5.41a)

with the boundary condition

(λ0 (1))
⊤ =

∂Φ̃0 (ỹ (1|σ, θ) , ϵ)
∂ỹ

. (5.41b)

Proof. Let σ ∈ Rr be given and let ρ ∈ Rr be arbitrary but fixed. Define

σ(ϵ) = σ + ςρ (5.42)
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where ϵ > 0 is an arbitrarily small real number. For brevity, let ỹ(·) and ỹ(·; ς) denote,
respectively, the solution of the system (5.18a)-(5.18a) corresponding to σ and σ(ς) while

θ and ϵ are fixed. Clearly,

ỹ(s) = ỹ(0) +

∫ s

0

f̃(τ, ỹ(τ), σ, θ)dτ (5.43)

ỹ(s; ς) = ỹ(0) +

∫ s

0

f̃(τ, ỹ(τ ; ς), σ(ς), θ)dτ (5.44)

Thus,

△ỹ(s) ≡ dỹ(s; ς)

dς

∣∣∣∣
ς=0

=

∫ s

0

{
∂f̃(τ, ỹ(τ), σ, θ)

∂ỹ
△ ỹ(τ) +

∂f̃(τ, ỹ(τ), σ, θ)

∂σ
ρ

}
dτ (5.45)

Clearly,
d(△ỹ(s))

ds
=

∂f̃(s, ỹ(s), σ, θ)

∂ỹ
△ ỹ(s) +

∂f̃(s, ỹ(s), σ, θ)

∂σ
ρ (5.46)

Now, J̃δ(σ, θ, ϵ) can be expressed as:

J̃δ(σ, θ, ϵ) =

∫ 1

0

{H0(s, ỹ(s; ς), σ(ς), θ, ϵ, λ0(s))− λ0(s)f̃(s, ỹ(s; ς), σ(ς), θ)}ds (5.47)

where λ0(s) is yet arbitrary. Thus, it follows that

△J̃δ(σ(ς), θ, ϵ) ≡
dJ̃δ(σ(ς), θ, ϵ)

dς

∣∣∣∣∣
ς=0

=
∂J̃δ(σ, θ, ϵ)

∂σ
ρ

=

∫ 1

0

{△H0(s, ỹ(s), σ, θ, ϵ, λ0(s))− λ0(s)△ f̃(s, ỹ(s), σ, θ)}ds (5.48)

where

△f̃(s, ỹ(s), σ, θ) =
d△ ỹ(s)

ds
(5.49)

and

△H0(s, ỹ(s), σ, θ, λ0(s))

=
∂H0(s, ỹ(s), σ, θ, ϵ, λ0(s))

∂ỹ
△ ỹ(s) +

∂H0(s, ỹ(s), σ, θ, ϵ, λ0(s))

∂σ
ρ (5.50)

Choose λ0 to be the solution of the costate system (5.41a)-(5.41b) corresponding to σ
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while θ and ϵ are fixed. Then, by substituting (5.41a) into (5.50), we obtain

△H0(s, ỹ(s), σ, θ, ϵ, λ0(s))

= −
(
dλ0(s)

ds

)⊤

△ ỹ(s) +
∂H0(s, ỹ(s), σ, θ, ϵ, λ0(s))

∂σ
ρ (5.51)

By (5.49) and (5.51), it follows from (5.48) that

∂J̃δ(σ, θ, ϵ)

∂σ
ρ

=

∫ 1

0

{
− d

dt

[
(λ0(t))

⊤ △ ỹ(t)
]
+

∂H0(s, y(s), σ, θ, ϵ, λ0(s))

∂σ
ρ

}
ds

= (λ0(0))
⊤ △ ỹ(0)− (λ0(1))

⊤ △ ỹ(1)

+

∫ 1

0

{
∂H0(s, ỹ(s), σ, θ, ϵ, λ0(s))

∂σ
ρ

}
ds (5.52)

Note that ỹ(0) is constant. Thus, by (3.35b), we deduce from (5.52) that

∂J̃δ(σ, θ, ϵ)

∂σ
ρ

=

∫ 1

0

{
∂H0(s, ỹ(s), σ, θ, ϵ, λ0(s))

∂σ
ρ

}
ds (5.53)

Since ρ is arbitrary, (5.37) follows readily from (5.53). (5.38) can be derived in the

same way. For, (5.39), it can be derived readily by applying the chain rule. Thus, the

proof is completed.

Remark 5.5. By Assumption 5.1-Assumption 5.5, Remark 5.2 and Remark 5.3, it follows

from arguments similar to those given for the proof of lemma 6.4.2 in [36] that there exits

a compact set Z ⊂ Rn such that λ0(s|σ, θ, ϵ) ∈ Z for all s ∈ [0, 1], (σ, θ) ∈ Ξ × Θ̃ and

ϵ ≥ 0.

Our main aim is to show that, under some mild assumptions, if the parameter δk is

sufficiently large(δk → +∞ as k → +∞) and
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
is a local minimizer of

Problem (Pδk(p)), then ϵ(k),∗ → ϵ∗ = 0, and
(
σ(k),∗, θ(k),∗

)
→ (σ∗, θ∗) with (σ∗, θ∗) being a

local minimizer of Problem (P5(p)).

For every positive integer k, let
(
σ(k),∗, θ(k),∗

)
be a local minimizer of Problem (Pδk(p)).

To obtain our main result, we need the following lemma.

Lemma 5.1. Let
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
be a local minimizer of Problem (Pδk(p)). Suppose

that J̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
is finite and that ϵ(k),∗ > 0. Then

(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
/∈ Ωϵk
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where Ωϵk is defined by (5.28).

Proof. Since
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
is a local minimizer of Problem (Pδk(p)) and ϵ(k),∗ > 0,

we have
∂J̃δk

(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
∂ϵ

= 0 (5.54)

On a contrary, we assume that the conclusion of the lemma is false. Then, we have

gi(ỹ(s|σ(k),∗, θ(k),∗), σj(k),∗) ≤ (ϵ(k),∗)
γ
Wi, ∀ s ∈ Jj, j = 1, 2, . . . , p, i = 1, 2, . . . , N (5.55)

and

ỹ(1|σ(k),∗, θ(k),∗)− ỹf = 0 (5.56)

Thus, by (5.55), (5.56), (5.39) and (5.54), we obtain

0 =
∂J̃δk

(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
∂ϵ

= βδkϵ
β−1 > 0

This is a contradiction, and hence completing the proof.

Before we introduce the definition of the constraint qualification, we first define

ϕi(ỹ(1|σ, θ)) = ỹi(1|σ, θ)− ỹfi , i = 1, 2, . . . , n+ 1 (5.57)

Definition 5.1. Suppose that ∂ḡi(s,y(s|σ,θ),σ)
∂σ

, i = 1, 2, . . . , N, and ∂ϕi(ỹ(1|σ,θ))
∂σ

, i =

1, 2, . . . , n + 1, are linearly independent at (σ, θ) =
(
σ̄, θ̄
)
for each s ∈ [0, 1]. Then, it is

said that the constraint qualification is satisfied for the continuous inequality constraints

(5.23) and the terminal equality constraint (5.18c) at (σ, θ) =
(
σ̄, θ̄
)
.

Theorem 5.2. Suppose that
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
is a local minimizer of Problem (Pδk(p))

such that J̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
is finite and ϵ(k),∗ > 0. If

(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
→ (σ∗, θ∗, ϵ∗)

as k → +∞, and the constraint qualification is satisfied for the continuous inequality

constraints (5.23) at (σ, θ) = (σ∗, θ∗), then ϵ∗ = 0 and (σ∗, θ∗) ∈ Ω0.

Proof. From Lemma 5.1, it follows that
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
/∈ Ωϵ(k),∗ . Now, suppose that

the continuous inequality constraints (5.3) are to be satisfied for t ∈ T̂ , where T̂ is a

subset of T̂ ⊂ [0, T ], then there exits a corresponding subset S ⊂ [0, 1] in the new time

horizon obtained after the time scaling transform, such that

ḡi (s, ỹ (s|σ, θ) , σ) ≤ 0, ∀s ∈ S, i = 1, 2, . . . , N, (5.58)

here, S can be chosen arbitrarily through a proper choice of T̂ ⊂ [0, T ]. Then, by the
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same token as that given for (5.29), we obtain

J̃δ(σ, θ, ϵ) =
J̃(σ, θ) if ϵ = 0, ḡi (s, ỹ (s|σ, θ) , σ) ≤ 0

(s ∈ S)

J̃(σ, θ) + ϵ−α
(
∆̂(σ, θ, ϵ) + ∆1

)
+ δϵβ if ϵ > 0

+∞ otherwise

where

∆̂(σ, θ, ϵ) =

∫
S

N∑
i=1

[max {0, ḡi (s, ỹ (s|σ, θ) , σ)− ϵγWi}]2 ds

Thus, we have

∂J̃δ
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
∂σ

=

∫ 1

0

∂H0

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗, ϵ(k),∗, λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

))
∂σ

ds

=

∫ 1

0

∂L̄0

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂σ

ds

+2
(
ϵ(k),∗

)−α
∫
S

N∑
i=1

max
{
0, ḡi(s, ỹ

(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−(ϵ(k),∗)γWi

} ∂ḡi(s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂σ
ds

+

∫ 1

0

λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

) ∂f̃ (s, ỹ (s|σ(k),∗, θ(k),∗
)
, σ(k),∗, θ(k),∗

)
∂σ

ds

= 0 (5.59)

and

∂J̃δ
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
∂ϵ

= (ϵ(k),∗)−α−1

{
−α

∫
S

N∑
i=1

[
max

{
0, ḡi(s, ỹ

(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γWi

}]2
ds

+2γ

∫
S

N∑
i=1

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}(
−
(
ϵ(k),∗

)γ
Wi

)
ds

−α

n+1∑
i=1

(
ỹi
(
1|σ(k),∗, θ(k),∗

)
− ỹfi

)2}
+ δkβ

(
ϵ(k),∗

)β−1

= 0, (5.60)

Suppose that ϵ(k),∗ → ϵ∗ ̸= 0. Then, by (5.60), it can be shown by using Remark 5.2 and
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Remark 5.3 and Lebesgue dominated convergence theorem that its first term tends to a

finite value, while the last term tends to infinity as δk → +∞, when k → +∞. This is

impossible for the validity of (5.60). Thus, ϵ∗ = 0.

Now, by (5.59), we have∫ 1

0

∂L̄0

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂σ

ds

+2
(
ϵ(k),∗

)−α
∫
S

N∑
i=1

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}
∂ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂σ
ds

+

∫ 1

0

λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

) ∂f̃ (ỹ (s|σ(k),∗, θ(k),∗
)
, σ(k),∗, θ(k),∗

)
∂σ

ds

= 0

Thus,

lim
k→+∞

{∫ 1

0

∂L̄0

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂σ

ds

+2
(
ϵ(k),∗

)−α
∫
S

N∑
i=1

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−
(
ϵ(k),∗

)γ
Wi

} ∂ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂σ
ds

+

∫ 1

0

λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

) ∂f̃ (s, ỹ (s|σ(k),∗, θ(k),∗
)
, σ(k),∗, θ(k),∗

)
∂σ

ds

}
= 0

By Remark 5.3 and Remark 5.4, it follows from the Lebesgue dominated convergence

theorem that the first and third terms converge to some finite values. On the other hand,
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the second term tends to infinite, which is impossible, and hence

∫
S

lim
k→+∞

{
N∑
i=1

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)}

∂ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂σ

}
ds

=
N∑
i=1

∫
S

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)}

∂ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂σ
ds

= 0 (5.61)

where S ⊂ [0, 1] is arbitrary.

Let S0, S1, S2 be chosen such that

S =
2∪

i=0

Si (5.62)

where

A0 =

∫
S0

{
N∑
i=1

max {0, ḡi (s, ỹ (s|σ∗, θ∗)) , σ∗)} ∂ḡi (s, ỹ (s|σ∗, θ∗) , σ∗)

∂σ

}
ds = 0 (5.63)

A1 =

∫
S1

{
N∑
i=1

max {0, ḡi (s, ỹ (s|σ∗, θ∗) , σ∗)} ∂ḡi(s, ỹ (s|σ∗, θ∗) , σ∗)

∂σ

}
ds > 0 (5.64)

A2 =

∫
S2

{
N∑
i=1

max {0, ḡi (s, ỹ (s|σ∗, θ∗) , σ∗)} ∂ḡi(s, ỹ (s|σ∗, θ∗) , σ∗)

∂σ

}
ds < 0 (5.65)

and A1 + A2 = 0. Now, choose a non empty subset S3 ⊂ S1. Let S4 = S1\S3 and

Ŝ = S0

∪
S4

∪
S2. Clearly,

∫
Ŝ

{
N∑
i=1

max {0, ḡi(s, ỹ (s|σ∗, θ∗) , σ∗)} ∂gi (ỹ (s|σ∗, θ∗) , σ∗)

∂σ

}
ds ̸= 0. (5.66)

However, it is a contradiction to (5.61). This implies that S1 and S2 must be empty sets.

In other words, for each i = 1, . . . , N,

N∑
i=1

max{0, ḡi (s, ỹ (s|σ∗, θ∗) , σ∗)}∂ḡi (s, ỹ (s|σ
∗, θ∗) , σ∗)

∂σ
= 0
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for each s ∈ [0, 1]. Since the constraint qualification is satisfied for the continuous in-

equality constraints (5.23) at (σ, θ) = (σ∗, θ∗), it follows that, for each i = 1, 2, . . . , N,

max{0, ḡi (s, ỹ (s|σ∗, θ∗) , σ∗)} = 0

for each s ∈ [0, 1]. This, in turn, implies that, for each i = 1, 2, . . . , N ,

ḡi (s, ỹ (s|σ∗, θ∗) , σ∗) ≤ 0 (5.67)

for each s ∈ [0, 1]. Next, from (5.67) and (5.60), it is easy to see that, for each i =

1, 2, . . . , n+ 1, when k → +∞,

ỹi(1|σ∗, θ∗)− ỹfi = 0 (5.68)

The proof is completed.

Corollary 5.1 Suppose that
(
σ(k),∗, θ(k),∗

)
→ (σ∗, θ∗) ∈ Ω0 and that ϵ(k),∗ → ϵ∗ = 0.

Then, ∆
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
→ ∆(σ∗, θ∗, ϵ∗) = 0, and ∆1 → 0

Proof. The conclusion follows readily from the definitions of ∆(σ, θ, ϵ) and ∆1, and the

continuity of gi and f̃ .

In what follows, we shall turn our attention to the exact penalty function construct-

ed in (5.29). We shall see that, under some mild conditions, J̃δ(σ, θ, ϵ) is continuously

differentiable.

We assume that the following assumptions are satisfied.

Assumption 5.6.

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)} = o

((
ϵ(k),∗

)ξ)
, ξ > 0, s ∈ [0, 1], i = 1, 2, . . . , N.

(5.69)

Assumption 5.7.

ϕi

(
ỹ
(
1|σ(k),∗, θ(k),∗

))
= o

((
ϵ(k),∗

)ξ′)
, ξ′ > 0, i = 1, 2, . . . , n+ 1 (5.70)

Theorem 5.3. Suppose that γ > α, ξ > α, ξ′ > α, −α − 1 + 2ξ > 0, −α − 1 + 2ξ′ >

0, 2γ − α− 1 > 0. Then

J̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

) ϵ(k),∗→ϵ∗=0−−−−−−−−−−−−−−−→
(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

J̃δk
(
σ(k),∗, θ(k),∗, 0

)
= J̃ (σ∗, θ∗) (5.71)
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∇(σ,θ,ϵ)J̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

) ϵ(k),∗→ϵ∗=0−−−−−−−−−−−−−−−→
(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∇(σ,θ,ϵ)J̃δk(σ
∗, θ∗, 0)

= (∇(σ,θ)J̃ (σ∗, θ∗) , 0) (5.72)

Proof. Based on the conditions of the theorem, we can show that, for ϵ ̸= 0,

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

J̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)

= lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

{
J̃
(
σ(k),∗, θ(k),∗

)

+
(
ϵ(k),∗

)−α
N∑
i=1

∫ 1

0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}]2
ds

+
(
ϵ(k),∗

)−α
n+1∑
i=1

(
ỹi
(
1|σ(k),∗, θ(k),∗

)
− ỹfi

)2
+ δk

(
ϵ(k),∗

)β }
(5.73)

By an argument similar to that given for the proof of Lemma 6.4.3 in [36], we can show

that when
(
σ(k),∗, θ(k),∗

)
→ (σ∗, θ∗),

ỹ
(
s|σ(k),∗, θ(k),∗

)
→ ỹ (s|σ∗, θ∗) (5.74)

for each s ∈ [0, 1]. By (5.74) and (5.24), it follows from an argument similar to that given

for the proof of Lemma 6.4.4 in [36] that

lim
(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

J̃
(
σ(k),∗, θ(k),∗

)
= J̃ (σ∗, θ∗) (5.75)
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Substituting (5.75) into (5.73), we have

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

J̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
=J̃ (σ∗, θ∗)

+ lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

N∑
i=1

∫ 1

0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}]2
ds

(ϵ(k),∗)
α

+ lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

n+1∑
i=1

(
ỹi
(
1|σ(k),∗, θ(k),∗

)
− ỹfi

)2
(ϵ(k),∗)

α (5.76)

For the second term of (5.76), we have

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

N∑
i=1

∫ 1

0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}]2
ds(

ϵ(k),∗
)α

= lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

N∑
i=1

∫ 1

0

[
max

{
0,
(
ϵ(k),∗

)−α
2 ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−
(
ϵ(k),∗

)γ−α
2 Wi

}]2
ds

Since ξ > α, γ > α, it follows from Assumption 5.6 that, for any s ∈ [0, 1],

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

max

{
0,
(
ϵ(k),∗

)−α
2 ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
,σ(k),∗

)

−
(
ϵ(k),∗

)γ−α
2 Wi

}
= 0

(5.77)
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Thus, by Remark 5.3 and Lebesgue dominated convergence theorem, we obtain

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

N∑
i=1

∫ 1

0

[
max

{
0,
(
ϵ(k),∗

)−α
2 ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−
(
ϵ(k),∗

)γ−α
2 Wi

}]2
ds

=
N∑
i=1

∫ 1

0

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

[
max

{
0,
(
ϵ(k),∗

)−α
2 ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−
(
ϵ(k),∗

)γ−α
2 Wi

}]2
ds

= 0 (5.78)

Similarly, for the third term of (5.76), it is clear from Assumption 5.7 that

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

n+1∑
i=1

(
ỹi
(
1|σ(k),∗, θ(k),∗

)
− ỹfi

)2
(ϵ(k),∗)

α = 0 (5.79)

Combining (5.76), (5.78) and (5.79) gives

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

J̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
= J̃δk (σ

∗, θ∗, 0) = J̃ (σ∗, θ∗) (5.80)

For the second part of the theorem, we need the gradient formulas of J̃(σ, θ), which can

be derived in the same way as that given for the proof of Theorem 5.2.1 in [36]. These

gradient formulas are given as follows.

∂J̃(σ, θ)

∂σ
=

∫ 1

0

∂H̄0

(
s, ỹ (s|σ, θ) , σ, θ, λ̄0 (s|σ, θ)

)
∂σ

ds (5.81)

∂J̃(σ, θ)

∂θ
=

∫ 1

0

∂H̄0

(
s, ỹ (s|σ, θ) , σ, θ, λ̄0 (s|σ, θ)

)
∂θ

ds (5.82)

where H̄0

(
s, ỹ (s|σ, θ) , σ, θ, λ̄0 (s|σ, θ)

)
is the Hamiltonian function defined by

H̄0

(
s, ỹ (s|σ, θ) , σ, θ, λ̄0 (s|σ, θ)

)
= L̄0(s, ỹ (s|σ, θ) , σ, θ) + λ̄0 (s|σ, θ) f̃(s, ỹ (s|σ, θ) , σ, θ), (5.83)
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and λ̄0(·|σ, θ) is the solution of the following system of co-state differential equations(
dλ̄0(s)

)⊤
ds

= −
∂H̄0

(
s, ỹ (s|σ, θ) , σ, θ, λ̄0 (s|σ, θ)

)
∂ỹ

(5.84a)

with the boundary condition

(
λ̄0(1)

)⊤
=

∂Φ0 (ỹ(1|σ, θ))
∂ỹ

. (5.84b)

By (5.83), we can rewrite (5.84a) as:

(dλ̄0(s))
⊤

ds
= −∂L̄0(s, ỹ (s|σ, θ) , σ, θ)

∂ỹ
− λ̄0(s)

∂f̃(s, ỹ (s|σ, θ) , σ, θ)
∂ỹ

(5.85)

By (5.85) with terminal condition (5.84b) and (5.41a) with terminal condition (5.41b),

we obtain

∥∥λ̄0

(
s|σ(k),∗, θ(k),∗

)
− λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

)∥∥
≤

∥∥λ̄0

(
1|σ(k),∗, θ(k),∗

)
− λ0(1|σ(k),∗, θ(k),∗, ϵ(k),∗)

∥∥
+

∫ 0

1

∥∥∥∥∥−∂L̄0

(
ω, ỹ

(
ω|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂ỹ

+
∂L̃0

(
ω, ỹ

(
ω|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂ỹ

∥∥∥∥∥ dω
+

∫ s

1

∥∥∥∥∥∂f̃
(
s, ỹ
(
ω|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂ỹ

∥∥∥∥∥∥∥−λ̄0

(
ω|σ(k),∗, θ(k),∗

)
+ λ0

(
ω|σ(k),∗, θ(k),∗, ϵ(k),∗

)∥∥ dω (5.86)

By the definitions of (5.41b), (5.84b), (5.34) and ξ′ > α, it follows from Assumption 5.7

that

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∥∥λ̄0

(
1|σ(k),∗, θ(k),∗

)
− λ0

(
1|σ(k),∗, θ(k),∗, ϵ(k),∗

)∥∥
= lim

ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∥∥∥∥∥(ϵ(k),∗)−α ∂

∂y

n+1∑
i=1

(
ỹi
(
1|σ(k),∗, θ(k),∗

)
− ỹfi

)2∥∥∥∥∥
= 0 (5.87)

On the other hand, by (5.35), ξ > α and γ > α, it follows from Assumption 5.6, Remark
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5.3 and Lebesgue dominated convergence theorem that, for each s ∈ [0, 1],

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∫ 0

1

∥∥∥∥∥−∂L̄0

(
ω, ỹ

(
ω|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂ỹ

+
∂L̃0

(
ω, ỹ

(
ω|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗, ϵ(k),∗

)
∂ỹ

∥∥∥∥∥ dω
= lim

ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∫ 0

1

2
(
ϵ(k),∗

)−α
N∑
i=1

∥∥∥∥∥ [max
{
0, ḡi

(
ω, ỹ

(
ω|σ(k),∗, θ(k),∗

)
, σ(k),∗)− ϵγWi

}]
∂ḡi
(
ω, ỹ

(
ω|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂ỹ

∥∥∥∥∥dω
= 0 (5.88)

Thus, by applying Gronwall-Bellman’s lemma (Theorem 2.8.6 in [36]) to (5.86), it follows

from (5.87), (5.88), Remark 5.3 and Lebesgue dominated theorem that, for each s ∈ [0, 1],

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∥∥λ̄0

(
s|σ(k),∗, θ(k),∗

)
− λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

)∥∥
= 0 (5.89)
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By (5.37), (5.132), and (5.35), we have

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∇σJ̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
= lim

ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

{∫ 1

0

∂L̄0

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂σ
ds

+2
(
ϵ(k),∗

)−α
N∑
i=1

∫ 1

0

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}
∂ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂σ

ds

+

∫ 1

0

λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

) ∂f̃ (s, ỹ (s|σ(k),∗, θ(k),∗
)
, σ(k),∗, θ(k),∗

)
∂σ

ds

}

= lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

{∫ 1

0

∂L̄0

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂σ

ds

+

∫ 1

0

λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

) ∂f̃ (s, ỹ (s|σ(k),∗, θ(k),∗
)
, σ(k),∗, θ(k),∗

)
∂σ

ds

}

+ lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

{
2

N∑
i=1

∫ 1

0

max
{
0,
(
ϵ(k),∗

)−α
ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−
(
ϵ(k),∗

)γ−α
Wi

} ∂ḡi(s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂σ
ds

}
(5.90)
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By Remark 5.3 and Lebesgue dominated convergence theorem, it follows from (5.89) that

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

{∫ 1

0

∂L̄0

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂σ

ds

+

∫ 1

0

λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

) ∂f̃ (s, ỹ (s|σ(k),∗, θ(k),∗
)
, σ(k),∗, θ(k),∗

)
∂σ

ds

}

=

∫ 1

0

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∂L̄0

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂σ

ds

+

∫ 1

0

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

λ0

(
s|σ(k),∗, θ(k),∗, ϵ(k),∗

)
∂f̃
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
∂σ

ds

=

∫ 1

0

∂L̄0 (s, ỹ (s|σ∗, θ∗) , σ∗, θ∗)

∂σ
ds

+

∫ 1

0

λ̄0 (s|σ∗, θ∗)
∂f̃(s, ỹ (s|σ∗, θ∗) , σ∗, θ∗)

∂σ
ds

= ∇σJ̃ (σ∗, θ∗) (5.91)

Similarly, by Remark 5.3, Assumption 5.6 and ξ > α, γ > α, it follows from Lebesgue

dominated convergence theorem that

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

{
2

N∑
i=1

∫ 1

0

max
{
0,
(
ϵ(k),∗

)−α
ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−
(
ϵ(k),∗

)γ−α
Wi

} ∂ḡi(s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂σ
ds

}

= 2
N∑
i=1

∫ 1

0

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

{
max

{
0,
(
ϵ(k),∗

)−α
ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−
(
ϵ(k),∗

)γ−α
Wi

} ∂ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

∂σ

}
ds

= 0 (5.92)

We substitute (5.91) and (5.92) into (5.90) to give

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∇σJ̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
= ∇σJ̃ (σ∗, θ∗) (5.93)
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Similarly, we can show that

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∇θJ̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
= ∇θJ̃ (σ∗, θ∗)

(5.94)

On the other hand, we note that

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∇ϵJ̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
= lim

ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

{(
ϵ(k),∗

)−α−1

{
−α

N∑
i=1

∫ 1

0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−
(
ϵ(k),∗

)γ
Wi

}
]2ds

+2γ
N∑
i=1

∫ 1

0

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}((
−ϵ(k),∗

)γ
Wi

)
ds

+
n+1∑
i=1

[
ϕi

(
ỹ
(
1|σ(k),∗, θ(k),∗

))]2}
+ σkβ

(
ϵ(k),∗

)β−1

}

= lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

{
−α

N∑
i=1

∫ 1

0

max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗) (ϵ(k),∗)−α+1

2

−
(
ϵ(k),∗

)γ−α+1
2 Wi

}2

ds

+2γ
N∑
i=1

∫ 1

0

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}
((
−ϵ(k),∗

)γ
Wi

) (
ϵ(k),∗

)−α−1
ds

+
n+1∑
i=1

[
ϕi

(
ỹ
(
1|σ(k),∗, θ(k),∗

) (
ϵ(k),∗

)−α+1
2

)]2}
(5.95)

Similarly, by Remark 5.3, Assumption 5.6, Assumption 5.7 and −α − 1 + 2ξ > 0, −α −
1 + 2ξ′ > 0, 2γ − α − 1 > 0, it follows from Lebesgue dominated convergence theorem
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that

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

∇ϵJ̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)

= −α
N∑
i=1

∫ 1

0

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗) (ϵ(k),∗)−α+1

2

−
(
ϵ(k),∗

)γ−α+1
2 Wi

}]2
ds

+2γ
N∑
i=1

∫ 1

0

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗, θ(k),∗

)
−
(
ϵ(k),∗

)γ
Wi

}((
−ϵ(k),∗

)γ
Wi

) (
ϵ(k),∗

)−α−1
ds
]

+
n+1∑
i=1

lim
ϵ(k),∗→ϵ∗=0

(σ(k),∗,θ(k),∗)→(σ∗,θ∗)∈Ω0

[
ϕi

(
ỹ
(
1|σ(k),∗, θ(k),∗

) (
ϵ(k),∗

)−α+1
2

)]2
= 0 (5.96)

The proof is completed.

Theorem 5.4. Let ϵ(k),∗ → ϵ∗ = 0 and
(
σ(k),∗, θ(k),∗

)
→ (σ∗, θ∗) ∈ Ω0 be such that

J̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
is finite. Then, (σ∗, θ∗) is a local minimizer of Problem (P5(p)).

Proof. On a contrary, assume that (σ∗, θ∗) is not a local minimizer of Problem (P5(p)).

Then, there must exist a feasible point (σ̂∗, θ̂∗) ∈ NΛ (σ
∗, θ∗) of Problem (P5(p)) such

that

J̃
(
σ̂∗, θ̂∗

)
< J̃ (σ∗, θ∗) (5.97)

whereNΛ (σ
∗, θ∗) is a Λ-neighborhood of

(
σ̂∗, θ̂∗

)
in Ω0 for some Λ > 0. Since

(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
is a local minimizer of Problem (Pδk), there exists a sequence {ξk}, such that

J̃δk
(
σ, θ, ϵ(k),∗

)
≥ J̃δk

(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
for any (σ, θ) ∈ Nξk

(
σ(k),∗, θ(k),∗

)
. Now, we construct a sequence of feasible points

{(σ̂(k),∗, θ̂(k),∗)} of Problem (P5(p)) satisfying∥∥∥(σ̂(k),∗, θ̂(k),∗
)
−
(
σ(k),∗, θ(k),∗

)∥∥∥ ≤ ξk
k

Clearly,

J̃δk

(
σ̂(k),∗, θ̂(k),∗, ϵ(k),∗

)
≥ J̃δk

(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
(5.98)
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Letting k → +∞, we have

lim
k→+∞

∥∥∥(σ̂(k),∗, θ̂(k),∗
)
−
(
σ̂∗, θ̂∗

)∥∥∥ ≤ lim
k→+∞

∥∥∥(σ̂(k),∗, θ̂(k),∗
)
−
(
σ(k),∗, θ(k),∗

)∥∥∥
+ lim

k→+∞

∥∥(σ(k),∗, θ(k),∗
)
− (σ∗, θ∗)

∥∥
+
∥∥∥(σ∗, θ∗)−

(
σ̂∗, θ̂∗

)∥∥∥
≤ 0 + 0 + Λ

(5.99)

However, Λ > 0 is arbitrary. Thus,

lim
k→+∞

(
σ̂(k),∗, θ̂(k),∗

)
=
(
σ̂∗, θ̂∗

)
(5.100)

Letting k → +∞ in (5.98), it follows from the first part of Theorem 5.3 and (5.100) that

lim
k→+∞

J̃δk

(
σ̂(k),∗, θ̂(k),∗, ϵ(k),∗

)
= J̃

(
σ̂∗, θ̂∗

)
≥ lim

k→+∞
J̃δk
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
= J̃ (σ∗, θ∗)

(5.101)

This is a contradiction to (5.97), and hence it completes the proof.

Theorem 5.5. Let −α−β+2ξ > 0, −α−β+2ξ′ > 0 and −α−β+2γ > 0. Then, there

exists a k0 > 0, such that ϵ(k),∗ = 0,
(
σ(k),∗, θ(k),∗

)
is local minimizer of Problem (P5(p)),

for k ≥ k0.

Proof. On a contrary, we assume that the conclusion is false. Then, there exists a subse-

quence of
{(

σ(k),∗, θ(k),∗, ϵ(k),∗
)}

, which is denoted by the original sequence, such that for

any k0 > 0, there exists a k′ > k0 satisfying ϵ(k
′),∗ ̸= 0. By Theorem 5.2, we have

ϵ(k),∗ → ϵ∗ = 0,
(
σ(k),∗, θ(k),∗

)
→ (σ∗, θ∗) ∈ Ω0, as k → +∞

Since ϵ(k),∗ ̸= 0 for all k, it follows from dividing (5.39) by
(
ϵ(k),∗

)β−1
that

(
ϵ(k),∗

)−α−β

{
−α

N∑
i=1

∫ 1

0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}]2
ds

+2γ
N∑
i=1

∫ 1

0

max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}((
−ϵ(k),∗

)γ
Wi

)
ds

−α

n+1∑
i=1

(
ỹi
(
1|σ(k),∗, θ(k),∗

)
− ỹfi

)2}
+ δkβ = 0

(5.102)
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This is equivalent to

(
ϵ(k),∗

)−α−β

{
−α

N∑
i=1

∫ 1

0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}]2
ds

+2γ
N∑
i=1

∫ 1

0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}((
−ϵ(k),∗

)γ
Wi

)
+max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}
ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)

−max
{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}
ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)] ds

−α

n+1∑
i=1

(
ỹi
(
1|σ(k),∗, θ(k),∗

)
− ỹfi

)2}
+ δkβ = 0

(5.103)

Rearranging (5.103) yields

(
ϵ(k),∗

)−α−β

{
(2γ − α)

N∑
i=1

∫ 1

0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}]2
ds

−α
n+1∑
i=1

(
ỹi
(
1|σ(k),∗, θ(k),∗

)
− ỹfi

)2}
+ δkβ

= 2γ
(
ϵ(k),∗

)−α−β
N∑
i=1

∫ 1

0

{
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}
ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)} ds

(5.104)

Note that −α − β + 2ξ > 0 and −α − β + 2ξ′ > 0. Then, by Remark 5.3 and Lebesgue

dominated convergence theorem, we can show that the left hand side of (5.104) yields

(
ϵ(k),∗

)−α−β

{
(2γ − α)

N∑
i=1

∫ 1

0

[
max

{
0, ḡi

(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗)− (ϵ(k),∗)γ Wi

}]2
ds

− α
n+1∑
i=1

(
ỹi
(
1|σ(k),∗, θ(k),∗

)
− ỹfi

)2}
+ δkβ → ∞

(5.105)

However, under the same conditions and −α− β + 2γ > 0, we can show, also by Remark

5.3, Assumption 5.6 and Lebesgue dominated convergence theorem, that the right hand

side of (5.104) gives

2γ
(
ϵ(k),∗

)−α−β
N∑
i=1

∫ 1

0

max

{
0, ḡi

(
s,ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗

)
−
(
ϵ(k),∗

)γ
Wi

}
ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗) ds → 0 (5.106)
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This is a contradiction. Thus, the proof is completed.

To proceed further, we will define another two new problems. Before we define the

first problem, we define

Υp,ζ =
{
(σ, τ) ∈ Λ :

∥∥x(T |σ, τ)− xf
∥∥ ≤ ζ

}
(5.107)

where Λ is defined by (5.27), and

◦
Υ

p,ζ

=

{
(σ, τ) ∈

◦
Λ :
∥∥x (T |σ, τ)− xf

∥∥ < ζ

}
where

◦
Λ = {(σ, τ) ∈ Ξ× Γ : gi (t, x

p (T |σ, τ) , up (T |σ, τ)) < 0, t ∈ [0, T ], i = 1, 2, . . . , N}

We now define ζ-tolerated version of the approximate problem (P5(p)) as follows:

Problem (P5ζ(p)) Given system (5.1a)-(5.1b), find a (σ, τ) ∈ Υp,ζ such that cost func-

tion (5.24) is minimized.

We let
(
σp,ζ,∗, τ p,ζ,∗

)
and (σp,∗, τ p,∗) be optimal parameter vector of the problems

(P5ζ(p)) and (P5(p)), respectively.

Similarly, before we define the second problem, we define

G = {u ∈ U : gi (t, x (T |u) , u(t)) ≤ 0, t ∈ [0, T ], i = 1, 2, . . . , N} (5.108)

Hζ =
{
u ∈ G :

∥∥x (T |u)− xf
∥∥ ≤ ζ

}
(5.109)

and
◦
H

ζ

=

{
u ∈

◦
G :
∥∥x (T |u)− xf

∥∥ < ζ

}
(5.110)

where

◦
G = {u ∈ U : gi (x (T |u) , u(t)) < 0, t ∈ [0, T ], i = 1, 2, . . . , N} (5.111)

We then define ζ-tolerated version of the approximate problem (P5) as follows:

Problem (P5ζ) Given system (5.1a)-(5.1b), find a u ∈ Hζ such that the cost function

(5.6) is minimized.

We let uζ,∗ and u∗ be optimal control of the problems (P5ζ) and (P5), respectively.

To continue, we assume the following assumptions are satisfied.

Assumption 5.8. For each (σ, τ) ∈ Υp,ζ , there exits a (σ̄, τ̄) ∈
◦
Υ

p,ζ

such that

α(σ̄, τ̄) + (1− α)(σ, τ) ∈
◦
Υ

p,ζ

, α ∈ (0, 1]; (5.112)
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Assumption 5.9. there exits a p1 > 0 such that

lim
ζ→0

Jp
(
σp,ζ,∗, τ p,ζ,∗

)
= Jp (σp,∗, τ p,∗) (5.113)

uniformly with respect to p ≥ p1.

Assumption 5.10. For each u ∈ Hζ , there exits a ū ∈
◦
H

ζ

such that

αū+ (1− α)u ∈
◦
H

ζ

, α ∈ (0, 1]; (5.114)

Assumption 5.11.

lim
ζ→0

J
(
uζ,∗) = J (u∗) (5.115)

uniformly with respect to p ≥ p1

Before continuing, we define another two optimal control problems.

Problem (Q5) Given system (5.1a)-(5.1b), find a u ∈ G such that the cost function (5.6)

is minimized.

Problem (Q5(p)) Given system (5.1a)-(5.1b), find a (σ, τ) ∈ Λ such that cost function

(5.10) is minimized.

Then, we recall a result (Theorem 8.5.1) from Chapter 8 of [87]

Lemma 5.2. Let ûp,∗ be an optimal control, which is constructed from the optimal solution

(σp,∗, τ p,∗) of Problem (Q5(p)) according to (5.7). Suppose Problem (Q5) has an optimal

control û∗, Then,

lim
p→∞

J (ûp,∗) = J (û∗) . (5.116)

Theorem 5.6. Let up,∗ (respectively, up,ζ,∗), which is constructed from the corresponding

optimal solution (σp,∗, τ p,∗) (respectively,
(
σp,ζ,∗, τ p,ζ,∗

)
) according to (5.7), be an optimal

control of the approximate problem (P5(p)) (respectively, (P5ζ(p))). Suppose that u∗ is

an optimal control of the Problem (P5). Then,

lim
p→+∞

J (up,∗) = J (u∗) (5.117)

Proof. From Assumption 5.9 and Assumption 5.11, it is clear that for any c > 0, there

exits a ζ̂ > 0 such that

0 ≤ J (u∗)− J
(
uζ̂,∗
)
≤ c (5.118)

and

0 ≤ J (up,∗)− J
(
up,ζ̂,∗

)
≤ c (5.119)

for all p ≥ p1.

Note that, the terminal state inequality constraints specified in (5.27) (respective-



5.3 Computational Method 113

ly, (5.5)) of Problem (P5(p)) (respectively, Problem (P5)) are relaxed to terminal state

inequality constraints specified in (5.107) (respectively, (5.109)) of Problem (P5ζ(p)) (re-

spectively, Problem (P5ζ). Thus, it has the same structure as Problem (Q5(p)) (respec-

tively, Problem (Q5)). From Lemma 5.2, we have

lim
p→∞

J
(
up,ζ̂,∗

)
= J

(
uζ̂,∗
)

(5.120)

Therefore, it follows (5.118), (5.119) and (5.120) that∥∥∥∥ limp→∞
J (up,∗)− J (u∗)

∥∥∥∥ ≤ 2c (5.121)

Since c ≥ 0 is arbitrary, we have

lim
p→∞

J (up,∗) = J (u∗) (5.122)

This completes the proof.

Before continuing, we recall three results (Lemma 6.4.2, Lemma 6.4.4 and Theorem

2.6.4) from [87].

Lemma 5.3. Let {up}∞p=1 be a bounded sequence in Lr
∞. Then, the sequence {x(·|up)}∞p=1

of the corresponding solutions of the system (5.1a)-(5.1b) is also bounded in Ln
∞.

Lemma 5.4. Let {up}∞p=1 be a bounded sequence in Lr
∞ that converges to a function u

a.e. in [0, T ].Then,

lim
p→∞

J (up) = J (u) . (5.123)

Lemma 5.5. Let {f (k)} ⊂ L1(I) ≡ L1(I,R), where I is a finite interval. Suppose that

and let there exits a function g ∈ L1(I) such that |f (k)(t)| ≤ |g(t)| a.e. on I for all

k = 1, 2, 3, · · · and that

f (k)(t) → f 0(t) a.e. on I .

Then f 0 ∈ L1(I) and ∫
I

f (k)(t)dt →
∫
I

f 0(t)dt as k → ∞. (5.124)

Theorem 5.7. Let up,∗ be an optimal control which is constructed from the optimal solu-

tion of Problem (P5(p)) according to (5.7), and let u∗ be an optimal control of Problem

(P5). Suppose that

lim
p→+∞

up,∗ = ū, a.e. on [0,T ] (5.125)

Then, ū is an optimal control of the problem (P5)

lim
p→+∞

J (up,∗) = J (u∗) (5.126)
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Proof. Since up,∗ → ū, a.e. on [0 ,T ], it follows from Lemma 5.4 that

lim
p→+∞

J (up,∗) = J (ū) (5.127)

Next, we shall show that ū is feasible for Problem (P5). Assume the contrary. Then, we

have ∥∥x (t|ū)− xf
∥∥ ̸= 0 (5.128)

or there exits a i ∈ {1, . . . , N} and a non-zero interval I ⊂ [0, T ] such that

gi (t, x (t|ū) , ū(t)) > 0 ∀t ∈ I (5.129)

However, we know that ∥∥x (t|up,∗)− xf
∥∥ = 0 (5.130)

and

gi (t, x (t|up,∗) , up,∗(t)) ≤ 0 ∀t ∈ I (5.131)

From Lemma 5.3, we note that, as p → ∞

x (t|up,∗) → x (t|ū) (5.132)

for each t ∈ [0, T ]. From (5.130) and (5.132), we see that (5.128) is false. Now, it remains

to falsify the validity of (5.129). For this, if follows from Assumption 5.3 and Lemma 5.3

that

∥gi (t, x (t|up,∗) , up,∗(t))− gi (t, x (t|ū) , ū(t))∥ (5.133)

is uniformly bounded on I × Rn × Rr. Thus, by (5.132), it follows from Lemma 5.5 that

lim
p→∞

∫
I

∥gi (t, x (t|up,∗) , up,∗(t))− gi (t, x (t|ū) , ū(t))∥ dt = 0. (5.134)

Therefore, if (5.129) is valid, then

0 <

∫
I

gi (t, x (t|ū) , ū(t)) dt

=

∫
I

[gi (t, x (t|ū) , ū(t))− gi (t, x (t|up,∗) , up,∗(t))] dt+

∫
I

gi (t, x (t|up,∗) , up,∗(t)) dt

Thus,

0 <

∫
I

gi (t, x (t|ū) , ū(t)) dt

≤
∫
I

[gi(t, x(t|ū), ū(t))− gi (t, x (t|up,∗) , up,∗(t))] dt = 0
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This is a contradiction. Thus, ū is feasible for the problem (P5). On this basis, if follows

from Theorem 5.6 and (5.127) that ū is also an optimal control of the problem (P5).

Algorithm 5.1.

Step 1 Set δ(1) = 10, ϵ(1) = 0.1, ϵ∗ = 10−9, β > 2, choose an initial point (σ0, θ0, ϵ0),

the iteration index k = 0. The values of γ and α are chosen depending on the specific

structure of Problem (P5) concerned.

Step 2 Solve Problem (Pδk), and let
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
be the minimizer obtained.

Step 3 If ϵ(k),∗ > ϵ∗, δ(k) < 108,

set δ(k+1) = 10×σ(k), k := k+1. Go to Step 2 with
(
σ(k),∗, θ(k),∗, ϵ(k),∗

)
as the new initial

point in the new optimization process

Else set ϵ(k),∗ := ϵ∗, then go to Step 4

Step 4 Check the feasibility of σ(k),∗, θ(k),∗ (i.e., check whether or not

max
1≤i≤N

max
s∈[0,1]

ḡi
(
s, ỹ
(
s|σ(k),∗, θ(k),∗

)
, σ(k),∗) ≤ 0).

If
(
σ(k),∗, θ(k),∗

)
is feasible, then it is a local minimizer of Problem (P5(p)). Exit.

Else go to Step 5

Step 5: Adjust the parameters α, β and γ such that the conditions of Lemma 5.1 are

satisfied. Set δ(k+1) = 10δ(k), ϵ(k+1) = 0.1ϵ(k), k := k + 1. Go to Step 2.

Remark 5.6. In Step 3, if ϵ(k),∗ > ϵ∗, it follows from Theorem 5.2 and Theorem 5.3 that(
σ(k),∗, θ(k),∗

)
cannot be a feasible point. This means that the penalty parameter δ is not

chosen large enough. Thus we need to increase δ. If δk > 108, but still ϵ(k),∗ > ϵ∗, then

we should adjust the value of α, β and γ, such that the conditions of Theorem 5.3 are

satisfied. Then, go to Step 2.

Remark 5.7. Clearly, we cannot check the feasibility of gi(y(s), σ) ≤ 0, i = 1, 2, . . . , N ,

for every s ∈ [0, 1]. In practice, we choose a set which contains a dense enough of points

in [0, 1]. Check the feasibility of gi(y(s), σ) ≤ 0 over this set for each i = 1, 2, . . . , N .

Remark 5.8. Although we have proved that a local minimizer of the exact penalty

function optimization problem (P5δk) will converge to a local minimizer of the original

problem (P5(p)), we need, in actual computation, set a lower bound ϵ∗ = 10−9 for ϵ(k),∗

so as to avoid the situation of being divided by ϵ(k),∗ = 0, leading to infinity.

5.4 Examples

5.4.1 Example 5.1

The following optimal control problem is taken from [36] and [105]:

min g0 (5.135)



116
An Exact Penalty Function Method for Continuous Inequality Constrained Optimal

Control Problem

where

g0 =

∫ 1

0

{
[x1(t)]

2 + [x2(t)]
2 + 0.005 [u(t)]2

}
dt (5.136)

subject to { ·
x1(t) = x2(t) (5.137a)
·
x2(t) = −x2(t) + u(t) (5.137b)

with initial conditions

x1(0) = 0, x2(0) = −1 (5.138)

and the continuous state inequality constraint

g1 = 8(t− 0.5)2 − 0.5− x2(t) ≥ 0, ∀t ∈ [0, 1] (5.139)

together with the control constraints

−20 ≤ u(t) ≤ 20, ∀t ∈ [0, 1]. (5.140)

In this problem, we set p = 20, γ = 3 and W1 = 0.3. The result is shown below.
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Figure 5.1: Optimal state variables for Example 5.1
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Figure 5.2: Optimal control and the resulting constraint function for Example 5.1

The optimal objective function value is: g∗0 = 1.75101803 × 10−1, where δ = 1.0 × 106



5.4 Examples 117

and ϵ = 1.89531× 10−5. The continuous inequality constraints (5.139) is satisfied for all

t∈ [0, 1]. Comparing with the results obtained for Example 6.7.2 in [36], the minimum

value of the objective function is almost the same (it is 0.1730 in [36]). However, in [36],

the continuous inequality constraints (5.139) are slightly violated at some t∈ [0, 1]. The

optimal control, the optimal state and the constraint are shown in Figure 5.1 and Figure

5.2.

5.4.2 Example 5.2

We consider a realistic and complex problem of transferring containers from a ship to a

cargo truck at the port of Kobe. It is taken from [106]. The containers crane is driven by a

hoist motor and a trolley drive motor. For safety reason, the objective is to minimize the

swing during and at the end of the transfer. The problem is summarized after appropriate

normalization as follows:

minimize

{
g0 = 4.5

∫ 1

0

[
(x3(t))

2 + (x6(t))
2
]
dt

}
(5.141)

subject to the dynamical equations

·
x1(t) = 9x4(t) (5.142a)
·
x2(t) = 9x5(t) (5.142b)
·
x3(t) = 9x6(t) (5.142c)
·
x4(t) = 9(u1(t) + 17.2656x3(t)) (5.142d)
·
x5(t) = 9u2(t) (5.142e)

·
x6(t) = − 9

x2(t)
[u1(t) + 27.0756x3(t) + 2x5(t)x6(t)] (5.142f)

where {
x(0) = [0, 22, 0, 0,−1, 0]⊤ (5.143a)

x(1) = [10, 14, 0, 2.5, 0, 0]⊤ (5.143b)

and

|u1(t)| ≤ 2.83374 (5.144)

−0.80865 ≤ u2(t) ≤ 0.71265, ∀t ∈ [0, 1]. (5.145)

with continuous state inequality constraints

|x4(t)| ≤ 2.5, ∀t ∈ [0, 1], (5.146a)
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|x5(t)| ≤ 1.0, ∀t ∈ [0, 1]. (5.146b)

The bounds on the states can be formulated as the continuous inequality constraints as

follows:

g1 = −x4(t) + 2.5 ≥ 0 (5.147)

g2 = x4(t) + 2.5 ≥ 0 (5.148)

g3 = −x5(t) + 1.0 ≥ 0 (5.149)

g4 = x5(t) + 1.0 ≥ 0 (5.150)

In this problem, we set p = 20, γ = 3 and W1 = W2 = W3 = W4 = 0.3. The result
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Figure 5.3: Optimal state variables for Example 5.2
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Figure 5.4: The optimal state variables for Example 5.2

obtained is shown below. The optimal objective function value is: g∗0 = 5.75921513×10−3,

where δ = 1.0× 105 and ϵ = 1.00057× 10−7. All the continuous inequality constraints are
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Figure 5.5: Optimal state variables for Example 5.2
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Figure 5.6: Optimal controls for Example 5.2

satisfied for all t∈ [0, 1]. Comparing with the results obtained for Example 6.7.3 in [36],

our minimum value of the objective function is slightly larger (it is 4.684× 10−3 in [36]).

However, in [36], the continuous inequality constraints are not completely satisfied for all

t∈ [0, 1]. The optimal state variables, the optimal control and the constraints are shown

in Figure 5.3-Figure 5.8, respectively.

5.4.3 Example 5.3

The following problem is taken from [107]: Find a control u : [0, 4.5] → R that minimizes

the cost function ∫ 4.5

0

{
u2(t) + x2

1(t)
}
dt (5.151)

subject to the following dynamical equations{ ·
x1(t) = x2(t) (5.152a)
·
x2(t) = −x1(t) + x2(t)(1.4− 0.14x2

2(t)) + 4u(t) (5.152b)
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Figure 5.7: The constraints function under the optimal control for Example 5.2
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Figure 5.8: The constraints function under the optimal control for Example 5.2

with the initial conditions {
x1(0) = −5 (5.153a)

x2(0) = −5 (5.153b)

and the continuous inequality constraint

g1 = −u(t)− 1

6
x1(t) ≥ 0, t ∈ [0, 4.5]. (5.154)

In this problem, we set p = 10, γ = 3 and W1 = 0.3. The result is shown below. The

optimal objective function value obtained is g∗0 = 4.58048380× 101, where δ = 1.0× 104

and ϵ = 9.99998 × 10−5. The continuous inequality constraint (5.154) is satisfied for all

t∈ [0, 4.5]. In [97], the optimal objective function value is about 4.6961921e× 101, which

is slightly larger than our result. The optimal state variables, the optimal control and the

constraint are shown in Figure 5.9 and Figure 5.10.

5.5 Conclusions

In this chapter, we present a new exact penalty function method for optimal control

problems subject to continuous inequality constraints and terminal equality constraints.
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Figure 5.9: Optimal state variables for Example 5.3
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Figure 5.10: Optimal control and the resulting constraint function for Example 5.3

It shows that, for a sufficiently large penalty parameter value any local minimizer of the

transformed problem is a local minimizer of the original problem. From results obtained

for the three examples, we see that the method proposed is effective. In particular, the

optimal controls obtained are feasible controls.





CHAPTER 6

Conclusions and Future Research Directions

6.1 Main Contributions of the Thesis

In this thesis, we studied several optimal control problems with constraints on the state

and control. New numerical methods are developed. We summarize our main contribu-

tions below.

In Chapter 2, we considered a class of discrete time optimal control problem with time

delay and subject to all-time-step inequality constraints on both the state and control.

This problem was approximated by a sequence of discrete time optimal control problems

with time delay and subject to canonical constraints. We have shown that these approx-

imate problems are special cases of a general discrete time optimal control problem with

time delay and subject to canonical constraints as a nonlinear optimization problem. A

computational method was then developed to solve this general discrete time optimal

control problem. It was then used to solve each of these approximate problems. This

approach was applied to study a tactical logistic decision analysis problem. The results

obtained are satisfactory.

In Chapter 3, we developed a new efficient computational method for solving a general

class of maxmin optimal control problems. We constructed a sequence of smooth approx-

imate optimal control problems by taking the summation of some smooth approximate

functions, which were obtained by applying the constraint transcription method [103]

to each of the continuous state inequality constraints, as its cost function. A necessary

condition and a sufficient condition were derived to show the relationship between the

original maxmin problem and the sequence of the smooth approximate problems. We

then introduced a violation avoidance function from the solution of each of the smooth

approximate optimal control problems and the original continuous state inequality con-

straints. We showed that the problem of finding an optimal control of the maxmin optimal

control problem is equivalent to the problem of finding the largest root of this violation

avoidance function. A largest root finding algorithm was then developed based on the

control parameterization technique [36], the time scaling transform [87] and the bisection

123
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search algorithm. The method was applied to study two practical problems. The first one

is an obstacle avoidance problem of an autonomous robot. The second one is the abort

landing of an aircraft in a windshear downburst. The results obtained are satisfactory.

In Chapter 4, we presented an optimal PID tuning method for a class of optimal control

problems with continuous inequality constraints and terminal state equality constraints,

where the control is in the form of a PID controller. Two theorems were given to show that

the problem can be solved via solving a sequence of nonlinear optimization problems. An

efficient computational method for tuning the parameters of the PID controller optimally

was proposed. This method was applied to a ship steering control problem. The results

obtained showed that the method proposed is reliable and effective.

In Chapter 5, we present a new exact penalty function method for a class of optimal

control problems subject to continuous inequality constraints and terminal equality con-

straints. This problem was approximated by a sequence of approximate optimal parameter

selection problems through the application of the control parameterization technique and

the time scaling transform. An exact penalty function method was then used to transfor-

m the approximated problems to unconstrained optimal control problems. It was shown

that, for a sufficiently large penalty parameter value, any local minimizer of the trans-

formed problem is a local minimizer of the original approximate problem. Convergence

analysis was also carried out. Three examples were studied by using the method proposed.

The results obtained are satisfactory.

6.2 Future Research Directions

The computational methods developed in Chapters 2, 3 and 4 are based on the control

parameterization technique, the time scaling transform and the constraint transcription

method. For the constraint transcription method, there are two adjustable parameters

involved. One of these two parameters is to control the accuracy of the approximation,

while the other controls the feasibility of the constraints. Due to the need for adjusting

these two parameters, the burden of these computational methods can be heavy. They

may also encounter difficulty in finding a control such that the continuous inequality

constraints are satisfied at each time point. Furthermore, there is no theoretical result

showing that a local minimizer of the approximate optimization problem is a local min-

imizer of the original optimal control problem concerned. Thus, an interesting future

research direction is to develop computational methods with the constraint transcription

method replaced by the exact penalty function method introduced in Chapter 5. This is to

be supported by a comparison study showing the advantages and disadvantages between

these two approaches.

Except for Chapter 4, the computational methods developed in this thesis are for find-
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ing optimal open loop controllers. It is well known that feedback controls are preferred in

engineering applications. However, the feedback controllers are very difficult to construct

for nonlinear optimal control problems. This is particularly so when there are constraints

involved such as those considered in this thesis. One potential approach to deal with feed-

back control is to regard the optimal open loop controller obtained as for the planning

of the optimal trajectory. Then, a linearization is carried out on the nonlinear control

system around the optimal open loop control and its corresponding trajectory, giving rise

to a linear system. A new cost function in quadratic form is introduced to regulate the

deviation between the actual trajectory and the optimal trajectory. The optimal feed-

back control for this linearized optimal control problem can be obtained. However, the

constraints may not be satisfied with such a composite controller, where the feedback

control is acting on top of the optimal open loop control. An intensive study is required

to carry out for dealing with this issue. The second approach is to use the neighboring

extremal approach to construct a linearized optimal feedback controller. The constraint

issue remains and is required to be dealt with carefully. The third approach is to assume

that the control is in the form of a PID controller. The method proposed in Chapter 4

with the constraint transcription method replaced by the exact penalty function method

could be used to develop new computational methods to tune the parameters of the PID

controller optimally for these constrained optimal control problems. This is an interesting

research project.

Other future research topics include new engineering applications. This will certain-

ly give rise to new challenging theoretical questions in optimal control problems to be

investigated.
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