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Highlights 

1. Liquid-liquid immiscibility was observed in aqueous UO2SO4 solution at 

≥285.8±0.5 oC. 

2. The immiscible liquids are either UO2SO4-rich (Urich) or UO2SO4-poor (Upoor). 

3. Analyses of UO2
2+ and SO4

2- spectra imply increasing ion association upon heating. 

4. Decrease of ion hydration in Urich phase due to increasing concentration upon 

heating. 

5. Reversible strong UO2
2+–SO4

2- association results in the liquid-liquid immiscibility. 

 

 

Abstract 

The phase behaviors of aqueous UO2SO4 solutions were investigated in situ with 

a microscope and a Raman spectrometer at temperatures from 25 to 420 ºC. Results 

show that aqueous UO2SO4 solution separated into UO2SO4-rich (Urich) and 

UO2SO4-poor (Upoor) liquid phases coexisted with a vapor phase at ≥285.8±0.5 oC. 

Both visual and Raman spectroscopic investigations suggest that a reversible strong 

UO2
2+–SO4

2- association was responsible for the liquid-liquid immiscibility in 

aqueous UO2SO4 solutions. Main evidences were summarized as: (1) the liquid-liquid 

phase separation temperature decreases with increasing UO2SO4 concentration up to 

0.54 mol/kg, and then increased at greater concentrations, characterizing a lower 

critical solution temperature (LCST) at 285.8 ºC±0.5 oC. LCST is commonly accepted 

as a diagnostic feature of polymer solutions; (2) analyses of the shapes of the Raman 

spectra of v1(UO2
2+) and v1(SO4

2-) bands show that the UO2
2+–SO4

2- association 

becomes stronger at elevated temperatures, especially in the immiscible Urich phase; 
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and (3) with increasing temperature, the Urich phase becomes more concentrated, 

whereas the Upoor phase becomes more dilute, indicating that the hydration of UO2
2+ 

and SO4
2- cannot be maintained in the Urich phase. Destruction of the hydration 

spheres of UO2
2+ and SO4

2- further favors the ion association in the Urich phase. These 

results are important for describing similar sulfate solutions at elevated temperatures, 

especially under supercritical conditions. 

Key words: UO2SO4–H2O; liquid-liquid immiscibility; Raman spectroscopy; ion 

association. 

 

1. Introduction 

It has been shown that the density, viscosity, dielectric constant and ion product 

of pure water are significantly reduced at elevated temperatures, especially in 

supercritical water (SCW) [1–2]. Owing to these remarkably changes, SCW has wide 

industrial applications. For example, it has been considered as an important medium 

for the disposal of waste organic compounds [2]. In general, SCW is found to be 

miscible with many organic compounds and gases, but shows negligible solubilities of 

salts. Previous studies confirmed that the solubilities of many alkali metal sulfates 

were significantly decreased in SCW and sulfates precipitated from supercritical 

solutions [2–5]. However, many aqueous sulfate solutions were reported to show 

intriguing liquid-liquid immiscibility at elevated temperatures [6–7]; the 

homogeneous aqueous solution separated into two immiscible liquid phases 

coexisting with vapor phase. It should be noted that no precipitate was formed in this 
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case, even though the temperature reached the supercritical point of water. Among 

these sulfate–water systems, the UO2SO4–H2O system has been studied for a long 

time because the liquid-liquid phase separation temperature constitutes the upper limit 

for the operation of aqueous homogeneous reactors [8–12]. For example, Marshall 

and coworkers observed the liquid-liquid immiscibility at elevated temperatures and 

pressures (280–450 ºC, 7.5–180 MPa) [12]. The compositions of the immiscible 

liquid phases were also analyzed using quenching method [10]. Although they 

postulated that the liquid-liquid immiscibility might be in close association with the 

polymerization between UO2
2+ and SO4

2- [12], no detailed information on the ion 

interactions in the two immiscible liquid phases is available. In addition, disagreement 

exists among the reported lowest temperatures for the occurrence of the liquid-liquid 

immiscibility in aqueous UO2SO4 solutions. For instance, Secoy reported that the 

liquid-liquid immiscibility occurred at temperatures above 295.5 ºC [8], whereas 

Marshall and Gill observed the critical liquid-liquid immiscibility temperature at 286 

ºC in 0.58–1.14 mol/kg UO2SO4 [12].  

As to the association between UO2
2+ and SO4

2-, Raman spectra of the v1(UO2
2+) 

band has been reported to be an effective indicator [13–16]; the coordination of UO2
2+ 

can increase the O=U=O length, causing the v1(UO2
2+) band shifts to lower 

wavenumber [13–14, 17–19]. In fact, Raman spectra of the v1(SO4
2-) band can also be 

used to investigate the ion interaction between UO2
2+ and SO4

2- in aqueous solution 

because the complexation will influence the S-O vibrations of sulfate and cause a shift 

in the v1(SO4
2-) band, which has been well documented in aqueous MgSO4 solutions 
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[20–24]. However, nearly all of the documented Raman spectroscopic descriptions of 

aqueous UO2SO4 solutions were conducted at ambient temperature and focused on the 

v1(UO2
2+) mode, which limits our knowledge on the UO2

2+–SO4
2- association at high 

temperatures as well as the factors inducing the liquid-liquid immiscibility. 

Here, fused silica capillary tube was used to construct the optical and 

spectroscopic cells containing UO2SO4 solutions. A Linkam CAP500 heating stage 

was used to control the sample temperature. Then, the liquid-liquid immiscibility was 

described in situ with microscope and Raman spectrometer. The main achievements 

include: (1) describing the high temperature liquid-liquid immiscibility in the 

UO2SO4–H2O system (≤420 ºC) and measuring the temperatures for the occurrence of 

the liquid-liquid immiscibility at vapor saturated pressures (along a liquid-vapor 

curve); (2) documenting in situ Raman spectra of the UO2SO4–H2O system and 

investigating the UO2
2+–SO4

2- interaction; and (3) investigating the variations of the 

UO2SO4 concentrations in the immiscible liquid phases by analyzing in situ Raman 

spectra. 

2. Materials and methods 

2.1. Optical cell preparation 

Deionized water and guaranteed reagent UO2SO4·2H2O (99.9 mass %, Hubei 

Chushengwei Chemistry Co., Ltd.) were used to prepare aqueous uranyl sulfate 

solutions with the following molality: 0.18, 0.36, 0.54, 0.71, 0.88 and 1.04 mol/kg. 

Fused silica capillary tubes (Polymicro Technologies, LLC) with 300 μm outer 

diameter and 100 μm inner diameter were used to construct the optical and 
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spectroscopic cells (fused silica capillary capsule, FSCC). This type of optical cell 

was first introduced by Chou et al. [25], and the sample loading procedures were well 

described in previous literatures [24–25]. First, one end of the tube was sealed with a 

hydrogen-oxygen flame. Then, the aqueous solution was loaded into the tube and 

centrifuged to the sealed end. At last, the sealed end of the tube was inserted into 

water and the open end was sealed via fusion in a hydrogen-oxygen flame. Since 

samples were heated along a liquid-vapor curve, accurate pressures at the liquid-liquid 

phase separation points inside FSCCs were unknown and they varied with 

temperature and UO2SO4 concentration. Different from our previous studies, in order 

to avoid the reduction of UO2
2+, the silica tube was not vacuumed before the sealing 

of the FSCC using hydrogen-oxygen flame [19]. The FSCC has enough mechanical 

resistance at high temperature (ca. 500–650 ºC) and higher pressure (ca. 100~300 

MPa), and has already been used as a reactor for subcritical and supercritical reactions, 

especially for those involving the hydrolysis of many organic waste compounds [26]. 

2.2. Microscopic observation and Raman characterization 

A Linkam CAP500 heating stage was used to control the temperatures of the 

optical cells containing UO2SO4 solutions (25–420 ºC). The temperature of the stage 

was calibrated with the melting temperatures of n-hexadecane (18.17 oC), sulfur (119 

oC), and NaNO3 (306.8 oC). This stage provided a good thermal stability (±0.1 oC) 

with negligible temperature gradients (<1 oC within 15 mm). To accurately measure 

the temperature for the occurrence of liquid-liquid immiscibility, the heating rates 

were 5 ºC/min at temperatures ≤250 ºC and 1 ºC/min at temperatures >250 ºC. A 
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microscope with 10× and 20× Olympus objectives was used to observe the phase 

behavior of the UO2SO4–H2O system in the investigated temperature and pressure 

ranges.   

Raman spectra of the v1(UO2
2+), v1(SO4

2-), and OH stretching [vs(H2O)] bands 

were collected using a high resolution Raman spectrometer (LabRam HR, Jobin-Yvon 

Horiba). The spectra were collected using a frequency doubled Nd: YAG laser 

excitation with wavelength of 532.06 nm. The Raman spectrometer was equipped 

with air cooled CCD-detector (1024 × 256 pixel, -70 ºC), a long working distance 

objective (Olympus, 50×) and a 1800-groove/mm grating. The resolution of the 

Raman spectrometer is about 1.0 cm-1. The laser power on the sample surface is about 

9.5 mW. The v1(UO2
2+) and v1(SO4

2-) spectra were collected from 600 cm-1 to 1400 

cm-1, and spectra for the vs(H2O) band were obtained from 2600 cm-1 to 3900 cm-1. 

The acquisition time was 40–240 s with three accumulations. The 1000.7 cm-1 peak of 

benzonitrile (McCreery Research Group) was used to calibrate the wavenumbers of 

the collected spectra [24].  

To characterize the speciation and relevant ion interaction in the UO2SO4–H2O 

system at high temperatures, the PeakFit v. 4.0 program (AISN Software Inc.) was 

used to fit the spectra of the v1(UO2
2+) band. The spectra were treated with a 

Lorentz-Gaussian model, a linear baseline and 0.5 % smoothing.  

3. Results and discussion 

3.1. Liquid-liquid immiscibility 

The phase behaviors of 1.04 mol/kg UO2SO4 in the optical cell were illustrated 
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in Fig. 1. At temperatures above 287.2 oC, a new liquid phase was separated from the 

aqueous phase at saturated vapor pressure (Figs. 1a, b). The new liquid phase was 

composed of a series of immiscible droplets scattering in the aqueous phase. Previous 

studies showed that the new liquid phase is rich in UO2SO4, whereas the coexisting 

aqueous phase is poor in UO2SO4 [10]. For the ease of description, these two liquid 

phases were termed as Urich and Upoor phases, respectively. As shown in Figs. 1c and d, 

Urich droplets converged and the volume of a single Urich droplet increased upon 

heating. During subsequent heating, the volume of the vapor phase decreased with 

increasing temperature, and homogenized into the Upoor phase at 362.5 oC (Figs. 1e~g). 

Then, the Urich and Upoor phases were heated to 420 oC along an isochoric curve, 

assuming that the volume of the FSCC does not change. At temperatures above 350 oC, 

the property of the Upoor phase is very close to that of pure water due to its extremely 

low UO2SO4 concentration [10]. Secoy observed the critical temperature in the Upoor 

phase at ca. 374.0–374.4 ºC [8]. Therefore, Urich phase was converted to supercritical 

water (SCW) at temperatures above 374 oC and the Urich phase and SCW coexisted at 

temperatures up to 420 oC. Figs. 1i~l show the near critical homogenization between 

Urich and Upoor phases during cooling; volume of the Urich phase increased and the 

Urich–Upoor phase boundary disappeared gradually with decreasing temperature.  

Since liquid-liquid immiscibility is undesirable in homogenous reactors using 

UO2SO4 (H2O/D2O) solutions as fuels [10], many experimental observations were 

carried out to describe the phase boundaries of the two immiscible liquids under 

saturation pressures or hydrostatic pressures [9, 12]. As shown in Fig. 2 and Table 1, 
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the lowest temperature for the occurrence of liquid-liquid immiscibility is 285.8 ±0.5 

ºC for 0.54 mol/kg UO2SO4 solution; the temperature for the separation of a new 

liquid phase decreases with increasing UO2SO4 concentration in more dilute solutions, 

whereas increases with increasing UO2SO4 concentration in more concentrated 

solutions. For aqueous solution, the lower critical solution temperature (LCST) is the 

low boundary temperature for the separation of new liquid phase(s) from the 

homogenous aqueous phase. Although several studies observed the LCST phenomena 

in the UO2SO4–H2O system, disagreement exists (Fig. 2). Our observations show that 

the LCST is at 285.8 ±0.5 ºC, which is almost the same as that reported by Marshall 

and Gill (286 ºC) [12]. 

Unlike previous observations [9, 11], the liquid-liquid immiscibility was found to 

be fairly stable in aqueous UO2SO4 solutions because no precipitates were observed in 

all the investigated samples at temperatures up to 420 ºC. To investigate the possible 

changes in the thermodynamic properties of the UO2SO4–H2O system, Yang and 

Pitzer conducted theoretical calculations at temperatures close to the critical 

temperature of the liquid-liquid immiscibility [27]. According to their calculation, 

liquid-liquid immiscibility was expected to occur in 2-2 electrolyte solution with 

considerable solubility at 250–300 ºC. The absence of liquid-liquid immiscibility in 

most 2-2 electrolyte solutions was ascribed to the remarkably reduced solubilities at 

temperatures above 77–127 ºC [27]. This result can explain the unusual phase 

behavior in aqueous UO2SO4 solution, because UO2SO4·H2O exhibits exceptionally 

high solubility at elevated temperatures (7.75 mol/kg at 287 ºC, [28]). However, it 
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cannot explain the formation of liquid-liquid immiscibility in aqueous MgSO4 

solution at temperatures above 260 ºC [24] because the solubility of kieserite 

(MgSO4·H2O) was reported to be significantly reduced at temperatures above 200 ºC 

[29]. 

Marshall and Gill observed the liquid-liquid immiscibility in aqueous solutions at 

pressures up to 180 MPa and proposed that the liquid-liquid immiscibility temperature 

increases approximately linearly with pressure [12]. They noticed the relationship 

between the complex ion association and the liquid-liquid immiscibility. Considering 

liquid-liquid immiscibility is common in organic-bearing solutions, the uranyl–sulfate 

ion association was suggested to create an organic-like aqueous solution favoring the 

separation of a new liquid phase at elevated temperatures [12]. In fact, it has been 

accepted that the LCST phenomenon characterizes polymer solution [30–31]. 

Therefore, our observations of the LCST phenomena support the strong ion 

association in aqueous UO2SO4 solution at high temperatures.  

3.2. Ion association between UO2
2+ and SO4

2-  

The free uranyl ion (UO2
2+)aq displays a symmetric stretching mode (v1) at ca. 

870 cm-1 [15–16, 18, 32–33]. Unassociated SO4
2-

(aq) is characterized by a prominently 

symmetric mode (v1) at ca. 980 cm-1 [34]. Both v1(UO2
2+) and v1(SO4

2-) bands can 

serve as indictors to investigate the complexation in the UO2SO4–H2O system because 

these two Raman bands are sensitive to changes in coordination environment [13–14, 

17–23].  

As shown in Fig. 3, the Urich phase is characterized by strong v1(UO2
2+) and 
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v1(SO4
2-) bands, whereas those bands in the Upoor phase are weak. Figs. 4 and 5 show 

the Raman spectra of v1(UO2
2+) and v1(SO4

2-) bands in 0.54 mol/kg UO2SO4 at 

temperatures from 25 to 420 ºC. In the aqueous phase (≤275 ºC), no obvious change 

in the peak position and peak width of the v1(UO2
2+) band has been observed (Fig. 4a). 

However, the symmetry of the v1(UO2
2+) band increases with increasing temperature. 

The v1(UO2
2+) band shows three components at ca. 870 cm-1 (C870), 860 cm-1 (C860) 

and 852 cm-1 (C852) (Fig. 4a and Supplementary Material). These three v1(UO2
2+) 

sub-bands have been observed in aqueous UO2SO4 solutions with sulfate/uranyl ratio 

ranging from 5 to 600 at room temperature [13] and can be assigned to UO2
2+, 

UO2SO4
0, and UO2(SO4)2-, respectively [13–14]. With increasing temperature, the 

relative peak height of C860 and C852 increases whereas that of C870 decreases (Fig. 4a). 

Meanwhile, the C870 component shifts to higher wavenumber with the rise in 

temperature. After the occurrence of the liquid-liquid immiscibility, the 

higher-wavenumber shift of C870 component in the Urich phase is more obvious (Fig. 

4a). The v1(UO2
2+) bands become more symmetric and shift to higher wavenumber 

with increasing temperature; ca. 3 cm-1 higher-wavenumber shift was observed from 

300 to 420 ºC. The intensity of C870 sub-band decreases with increasing temperature 

and cannot be detected at temperatures above 320 ºC (Fig. 4a). This result indicates 

that uranyl complexes are the dominant uranyl species in the Urich phase. The 

v1(UO2
2+) bands of the Urich and Upoor phases at the same temperature were also 

compared to investigate the speciation differences. In the Upoor phase, the shape of 

v1(UO2
2+) band is similar to that for aqueous phase (Supplementary Material); 
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deconvolution of the v1(UO2
2+) band shows the presence of UO2

2+, UO2SO4
0 and 

UO2(SO4)2
2- at ca. 870 cm-1, 860 cm-1 and 852 cm-1, respectively. However, the 

v1(UO2
2+) band of the Urich phase is characterized by two v1(UO2

2+) sub-bands at ca. 

864 cm-1 and 854 cm-1, respectively, shifting to higher wavenumber compared with 

those in the Upoor phase (Supplementary Material). Nguyen-Trung et al. observed the 

higher-wavenumber shift of v1(UO2
2+) bands in aqueous uranyl perchlorate solutions 

[13]. The higher-wavenumber shift of the v1(UO2
2+) band was ascribed to the 

weakness in the solvation shell of UO2
2+ [13]. Our results show that the 

higher-wavenumber shift of the v1(UO2
2+) bands in aqueous phase at high 

temperatures may also arise from the complex UO2
2+–SO4

2- association. However, 

further experimental observation and theoretical simulation are needed to make clear 

assignments of the v1(UO2
2+) sub-bands in concentrated aqueous uranyl solutions, 

especially at high temperatures.  

As to the v1(SO4
2-) bands, the spectrum shapes are more complex. As shown in 

Fig. 4b, the wavenumber of v1(SO4
2-) band shifts from ca. 980 cm-1 to 1020 cm-1 

when the sample was heated from 25 ºC to 420 ºC. Meanwhile, the v1(SO4
2-) band 

becomes broader with increasing temperature. The symmetry of the v1(SO4
2-) band 

decreases in the homogeneous aqueous phase, whereas increases in the Urich phase 

with the rise of temperature. At temperatures from 25 to 150 ºC, three v1(SO4
2-) 

components centered at ca. 980 cm-1, 992 cm-1 and 1002 cm-1 have been identified 

(Fig. 4b). In the Urich phase, another two v1(SO4
2-) components at ca. 1015 cm-1 and 

1028 cm-1 can be recognized (Fig. 4b). Due to the complex shape of the v1(SO4
2-) 
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spectra, no deconvolution has been carried out. As far as know, descriptions of the 

v1(SO4
2-) spectra in aqueous UO2SO4 solutions has rarely been documented. 

According to the researches on the Raman v1(SO4
2-) band in aqueous MgSO4 solution, 

the v1(SO4
2-) component at ca. 980 cm-1 should arise from unassociated SO4

2-, 

whereas the v1(SO4
2-) components at ca. 992 cm-1 and 1002 cm-1 may represent the 

contribution from contact ion pair and triple ion pair, respectively [20–24]. However, 

it’s difficult to make clear assignments for the v1(SO4
2-) components at ca. 1015 and 

1028 cm-1. It has been reported that the v1(SO4
2-) band becomes broader and the 

wavenumber increases with the increase of the length of inner-sphere ion pairs in 

aqueous MgSO4 solution [21, 23, 35–36]. Considering the obvious 

higher-wavenumber shift of the v1(SO4
2-) band (Fig. 4b), the ion association should be 

more complex than those derived from analyses of the v1(UO2
2+) bands in low 

temperature UO2(SO4)2 solutions. Therefore, ions and/or simple ion pairs should 

transform to complex ion pairs as well as ion pair chain structures (polymers) in 

aqueous UO2SO4 solution at high temperatures. Another band at ca. 1044 cm-1 was 

observed in the Urich phase (Fig. 4b); it might be in association with the v3(SO4
2-) 

mode of UO2
2+–SO4

2- ion pairs [16], which was also observed in aqueous phase (Fig. 

4b). It should be noted that the Raman signals of v1(SO4
2-) bands are very weak in the 

Upoor phase and were not further studied in this study (Fig. 5). 

In addition to the v1(UO2
2+) and v1(SO4

2-) bands, the asymmetric stretching band 

of UO2
2+ (va) was also identified at ca. 960 cm-1 (Fig. 4b) [16]. It shifts from ca. 960 

cm-1 to 950 cm-1 at temperatures from 25 ºC to 275 ºC; the lower-wavenumber shift 



14 
 

should be ascribed to the ion association between UO2
2+ and SO4

2- [18, 33]. The 

va(UO2
2+) band is weak in the Urich phase and cannot be detected at temperatures 

above 350 ºC. For HSO4
-, the intensity of v1(HSO4

-) band increases with increasing 

temperature in aqueous UO2SO4 solution, indicating an increase of hydrolysis of 

uranyl with increasing temperature (Fig. 4b). However, in the Urich phase, the 

v1(HSO4
-) band is not obvious. Previous studies reported that UO2

2+–SO4
2- ion pairing 

is more stable than that between UO2
2+ and HSO4

- [13–14]. In some cases, HSO4
- was 

even considered to be non-complexing anion at high temperature [37]. As a result, the 

left UO2
2+ in the Upoor phase coordinated with SO4

2- to form stable UO2
2+–SO4

2- ion 

pairs. This process was promoted by the transformation of HSO4
- to SO4

2-.  

In summary, in situ Raman spectroscopic description of the liquid-liquid 

immiscibility in UO2SO4–H2O system supports previous speculations that the ion 

pairing between UO2
2+ and SO4

2- increases with increasing temperature [12, 38]. A 

decrease of the dielectric constant of water with increasing temperature, especially 

under supercritical conditions, favors the strong UO2
2+–SO4

2- ion association to form 

complex ion pairs, even polymer structures.  

3.3. UO2SO4 concentration of the immiscible fluids 

Previous studies suggested that the integrated Raman intensity (peak area) ratio 

between Raman active species and water could be used to indicate the concentration 

of corresponding species in water; Raman peak areas are proportional to the number 

of species in the analyzed volume [39]. In aqueous UO2SO4 solution, both UO2
2+ and 

SO4
2- are Raman active, among which the v1(UO2

2+) band is stronger. Theoretically, 
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the peak area ratio between v1(UO2
2+) and vs(H2O) bands (Auranyl/Awater) can provide 

information on the content of uranyl in the Urich and Upoor phases. Similarly, the 

content of sulfate can also be measured by calculating the peak area ratio between 

v1(SO4
2-) and vs(H2O) bands. However, variation of the relative differential scattering 

cross sections with temperature [40] and lack of calibration of our Raman system for 

quantitative analyses prevent accurate measurements of the uranyl concentrations of 

the immiscible liquids. In this study, the Auranyl/Awater ratios were employed to 

qualitatively indicate the variation of uranyl contents with the rise of temperature in 

both immiscible liquids. The changes of sulfate content were not further investigated 

due to the relatively lower Raman intensity of v1(SO4
2-) bands, especially in the Upoor 

phase (Fig. 5).  

Fig. 6 shows the relationship between the Auranyl/Awater ratio and temperature in 

immiscible Urich and Upoor phases for 0.54 mol/kg UO2SO4. The Auranyl/Awater ratio 

increases with the rise of temperature in the Urich phase, indicating that Urich phase 

becomes more concentrated as temperature increases. In the Upoor phase, the 

Auranyl/Awater ratio is obviously reduced with the increase of temperature, indicating a 

decrease in the UO2SO4 contents with increasing temperature. At temperatures above 

350 ºC, the Auranyl/Awater ratio is approaching zero in the Upoor phase, indicating that the 

UO2SO4 concentration is very low. As shown in Fig. 3, it is obvious that the Raman 

intensities of both v1(UO2
2+) and v1(SO4

2-) bands are strong in the Urich phase in the 

investigated temperature range, whereas those in the Upoor phase decreases with 

increasing temperature. The signal of v1(UO2
2+) bands in the Upoor phase cannot even 
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be detected at temperatures above 370 ºC (Fig. 5). The above observations can be well 

compared with those reported by Jones and Marshall [10]; they found that, with 

temperature increased from 300 to 350 ºC, the Urich phase became more concentrated 

and the Upoor phase became more dilute. It is well known that both UO2
2+ and SO4

2- 

are surrounded by strong hydration shells in aqueous solutions. X-ray diffraction 

study shows that UO2
2+ is surrounded by five inner-sphere water molecules and the 

U-Ow distance is about 0.241 nm [41]. Vchirawongkwin et al. suggested that the 

coordination number of SO4
2- is about 11–12 water molecules based on molecular 

dynamics simulation and X-ray scattering investigation [42]. As a result, the hydration 

of UO2
2+ and SO4

2- cannot be maintained in concentrated Urich phase. In other words, 

UO2
2+ and SO4

2- are highly associated in the Urich phase. This is in line with previous 

studies suggesting that the ion association increases with increasing sulfate 

concentration [21, 43].  

It is noted that the Raman signal of v1(HSO4
-) (ca. 1050 cm-1) can be observed in 

the Upoor phase at 370 ºC, whereas the v1(UO2
2+) band is weak (Fig. 5). In the 

v1(UO2
2+)-intensity normalized spectra of the v1(SO4

2-) bands, it is obvious that the 

Upoor phase was characterized by a predominant v1(HSO4
-) band, which was even not 

observed in the Urich phase (Fig. 7). Considered the strong U-O bonding [44] but weak 

v1(UO2
2+) signal in the Upoor phase (Fig. 5a), the relatively higher v1(HSO4

-) intensity 

indicates that the Upoor phase should be of excess HSO4
-. This observation can be well 

compared with the compositions of the immiscible liquids measured using quenching 

methods; Jones and Marshall found that the Upoor phase contained excess of HSO4
- 
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and the Urich phase was about stoichiometric [10]. Therefore, uranyl and sulfate were 

preferentially accumulated in the Urich phase. Meanwhile, the primary sulfate species 

in the Upoor phase was HSO4
-, especially at temperatures above 330 ºC. However, 

unlike the continuous increasing of HSO4
- concentration in the Upoor phase reported by 

Jones and Marshall [10], our results show that the Raman intensity of the v1(HSO4
-) 

band in the Upoor phase increased with increasing temperature from 300 to 350 ºC, and 

then started to decrease at temperatures above 360 ºC; in SCW, the v1(HSO4
-) band 

cannot be identified (Fig. 5). This can be ascribed to the relatively stronger ion 

interaction between UO2
2+ and SO4

2- [13–14]. 

4. Conclusions 

In this study, the liquid-liquid immiscibility in UO2SO4–H2O system was 

observed at temperatures up to 420 °C. To investigate the possible changes in 

speciation or structure inducing the liquid-liquid immiscibility, in situ Raman spectra 

of the v1(UO2
2+), v1(SO4

2-), and vs(HO2) bands were collected using a high resolution 

Raman spectrometer. Our results suggest that a reversible polymerization between 

uranyl and sulfate triggers the liquid-liquid immiscibility in UO2SO4–H2O system. 

The evidences were summarized as follows: 

 (1) Temperatures for the occurrence of the liquid-liquid immiscibility were 

obtained using a new heating stage. The temperature-composition phase diagram of 

the UO2SO4–H2O system is characterized by lower critical solution temperature 

phenomenon (LCST = 285.8±0.5 ºC). The presence of LSCT is considered to be a 

characteristic phenomenon of polymer solution;  
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(2) In situ Raman spectra of the immiscible liquid phases in the UO2SO4–H2O 

system were documented. Analyses of the v1(UO2
2+) and v1(SO4

2-) bands indicate that 

UO2
2+ and SO4

2- were highly associated in the Urich phase, whereas the UO2
2+–SO4

2- 

association was weaker in the Upoor phase;   

(3) Experiments were conducted to reflect the variation of the UO2SO4 

concentration in the Urich and Upoor phases by analyzing the peak area ratios between 

v1(UO2
2+) and vs(HO2) bands. Results show that the Urich phase was getting more 

concentrated with increasing temperature. In this case, the hydration of UO2
2+ and 

SO4
2- cannot be maintained, which further implies the strong ion complexation in the 

Urich phase. 
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Figure captions 

Fig. 1. Photos showing the liquid-liquid immiscibility in 1.04 mol/kg UO2SO4 

solution at elevated temperatures and pressures. A, V, Urich, Upoor, and SCW 

represent aqueous phase, vapor phase, UO2SO4-rich phase, UO2SO4-poor phase, 

and supercritical water, respectively. 
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Fig. 2. Temperature-composition diagram of the UO2SO4–H2O system showing the 

boundary temperatures for the occurrence of liquid-liquid immiscibility of specific 

UO2SO4 solutions at saturated vapor pressures. The plotted data are from Table 1 

(squares) and those documented in [8, diamonds], [9, triangles], [11, inverted 

triangles] and [12, circles].  
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Fig. 3. In situ Raman spectroscopic analyses for immiscible Urich and Upoor liquids in 

1.04 mol/kg UO2SO4 solution. (a) Urich liquid at 350 oC; (b) Upoor liquid at 350 oC; 

(c) Urich liquid at 300 oC; and (d) Upoor liquid at 300 oC. 
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Fig. 4. Raman spectra of v1(UO2
2+) (a) and v1(SO4

2-) (b) bands in aqueous and Urich 

liquid phases of 0.54 mol/kg UO2SO4 from 25 to 420 ºC.  

 



27 
 

Fig. 5. Raman spectra of uranyl and sulfate bands in Upoor liquid of 0.54 mol/kg 

UO2SO4 from 300 to 420 ºC.  
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Fig. 6. Variation of peak area ratios between v1(UO2
2+) and vs(H2O) bands 

(Auranyl/Awater) of Urich (squares) and Upoor (circles) liquids as a function of 

temperature in 0.54 mol/kg UO2SO4 solution.  
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Fig. 7. Spectra of v1(SO4
2-) bands normalized by v1(UO2

2+)-intensity for immiscible 

liquids in 0.54 mol/kg UO2SO4. Urich liquids at 350 ºC (a) and 300 ºC (b); and Upoor 

liquids at 350 ºC (c) and 300 ºC (d).  
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Table 1. Observed temperatures for the occurrence of liquid-liquid immiscibility for 

aqueous UO2SO4 solutions at saturated vapor pressures.  

UO2SO4 (mol/kg) Temperature (oC) Standard Deviation (oC) 

0.18 300 0.5 

0.36 287 0.2 

0.54 285.8 0.5 

0.71 286 0.1 

0.88 286.2 0.1 

1.04 287.2 0.2 

 


