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Abstract

In the surface mining industry the equipment selection problem involves choosing a
fleet of trucks and loaders that have the capacity to move the materials specified in
the mine plan. The optimisation problem is to select these fleets such that the overall
cost of materials handling is minimised. The scale of operations is such that although
a single machine may cost several million dollars to purchase, the cost of operation
outweighs this expense over several years. This motivates the need for a purchase and
salvage policy, so that the optimal equipment replacement cycle can be achieved.

Mining schedules often appear with multiple mining locations and dump-sites, where
a dump-site can also represent a stockpile or a mill. Multiple periods must also be
considered, which adds to the complexity of determining the optimal replacement policy
for equipment. Further, some mines begin with a pre-existing set of equipment, and
the subsequent fleet must be both compatible and satisfy the mill constraints. We also
need to consider the possibility of a heterogeneous fleet.

The equipment selection problem is cursed with a cascade of inter-dependent vari-
ables and parameters. For example, the cost of operating a piece of equipment depends
on its utilisation; the utilisation depends on the availability of the equipment; and the
availability depends on the age of the equipment. We formally define the equipment
selection problem in the Introduction (Chapter 1) and further discuss the complexities
of the problem.

While numerous methods from Operations Research and Artificial Intelligence have
been applied to this problem, optimal multiple period solutions remain elusive. Also,
pre-existing equipment and heterogeneous fleets have largely been ignored. We present
a comprehensive literature review in Chapter 2, outlining the methods applied and
candidly discussing the successes and pitfalls of these approaches. We also organise
the literature by linking related fields, such as Shovel-Truck Productivity and Mining
Method Selection.

In Chapter 3 we extend the match factor ratio, an important productivity index
for the mining industry. Previously this ratio was restricted to homogeneous fleets and
single location/dump. We provide several alternative ratios that incorporate heteroge-
neous trucks, heterogeneous loaders and multiple locations. These extensions are then
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applied to solutions in subsequent chapters to indicate the efficiency of the selected
fleets in terms of the proportion of time they are working (rather than waiting).

In this thesis, we consider the equipment selection as an optimisation problem.
We wish to purchase only whole units of trucks and loaders, which suggests integer
variables are appropriate for this problem. Similarly, salvage occurs in whole units. As
the productivity constraints (satisfying the mill requirements) are linear, we consider
an integer programming approach.

In Chapter 4 we present a single location/dump multi-period integer program that
provides a purchase and salvage policy for a surface mine. We demonstrate through a
retrospective case study that the solutions are economically better than current meth-
ods. We also demonstrate the robustness of the model through a series of test cases.
We extend this model to a mixed integer linear program (MILP) to optimise over mul-
tiple locations/dump-sites in Chapter 5, and test this model on two case studies. This
model also produces an optimised allocation policy for the multiple mining locations
and truck routes.

In Chapter 6 we consider the utilisation of the equipment in the objective function.
This MILP model provides the purchase and salvage policy for a single-location multi-
period surface mine. In this model we introduce constraints that capture the non-
uniform piecewise linear ageing of the equipment. We test this model on a case study
used in previous chapters.

All of the presented models allow for pre-existing equipment and heterogeneous
fleets. Further, they all consider multiple period schedules, ensuring they are all inno-
vative equipment selection tools.

iii



Acknowledgments

This research was supported by an APA(I) through the Australian Research Council
linkage grant no. LP0454362; and our industry partner (Rio Tinto). For all the time
they gave toward this research project, I thank my supervisors:

• Professor Louis Caccetta (Chief Investigator, Western Australian Centre of Ex-
cellence in Industrial Optimisation);

• Dr Stephen Hill, my associate supervisor (Chief Investigator, WACEIO);

• Dr Palitha Welgama, my adjunct supervisor (Partner Investigator, Rio Tinto);
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Chapter 1

Introduction

The ultimate goal of a mining operation is to provide a raw material for the community
at the least expense. If the operation is successful in minimising the cost of material
removal, then remaining profits can be used to effectively rehabilitate the mining site
once all the material has been mined. The aspect of the mining operation which has
the most influence on profit is the cost of materials handling. In this thesis, we focus
on the problem of equipment selection for surface mines as an important driver for the
overall cost of materials handling. In the mathematical branch of Operations Research,
we interpret this problem in the context of an optimisation goal:

To optimise the materials handling such that the desired produc-

tivity is achieved and the overall cost is minimised.

In general, the equipment selection problem involves purchasing suitable equipment to
perform a known task. It is essential that all owned equipment be compatible with both
the working environment and the other operating equipment types. This equipment
must also be able to satisfy production constraints even after compatibility, equipment
reliability and maintenance is taken into account. By examining the equipment selection
problem as an optimisation problem, we can begin to consider purchase and salvage
policies over a succession of tasks or multiple periods. With this in mind, our objective
for this research is:

Given a mining schedule that must be met and a set of suitable trucks and
loaders, create an equipment selection tool that generates a purchase and
salvage policy such that the overall cost of materials handling is minimised.

By considering the salvage of equipment in an optimisation problem, we are effectively
optimising equipment replacement as well as the selection of the equipment. Through-
out the remainder of this introduction we will introduce some necessary background
for the equipment selection problem and outline our approach to solving it.

1



INTRODUCTION

1.1 Surface mining

A surface mine is used to extract mineral endowed rock (or ore) from the earth to
a depth of 500m. We extract minerals such as iron, copper, coal and gold in this
way. This method is employed, as an alternative to underground mining, when the
ore is close to the surface (< 500m); the overlaying soil (or overburden) is shallow;
or the surrounding environment is too unstable to tunnel beneath. There are several
methods of surface mining including open-pit, stripping, dredging and mountain-top
removal. This thesis will focus on open-pit surface mining, which involves removing
ore from a large hole in the ground (sometimes referred to as a borrow-pit). The
largest open-pit mine in Australia is KCGM’s “super pit”, which encroaches on the
regrettably positioned township of Kalgoorlie in Western Australia [Figure 1.1].

Figure 1.1: Kalgoorlie Consolidated Gold Mines super-pit (KCGM 2007a).

Surface mines are created by sequentially removing small vertical layers (or benches)
of material at a time. These benches appear as graded contours in the “super pit” im-
age [Figure 1.1]. Over time, these benches are removed and the borrow pit becomes
wider and deeper. The height of the bench can vary from 4m to 60m and will dictate
the type of equipment that can remove it.

The mined material can generally be categorised into ore and waste material, al-
though they may be further categorised depending upon their quality or grade. These

2



INTRODUCTION

materials are sorted to a number of dump-sites, which can include mills and stock-
piles. The ore will be refined at the mill, while the stockpiles are important for ensur-
ing that the mill receives the correct mixing of ore grades to meet market demands.
The related productivity requirements are optimised by the mining schedule. The
schedule, alongside the pit optimisation (the optimisation of the shape of the pit),
provides required productivities, bench sequences and the shape of the mine (including
bench heights). For large scale open pit mining in particular, trucks and loaders

are the preferred method of materials handling (Czaplicki 1992, Ta, Kresta, Forbes &
Marquez 2005).

1.2 Loaders

Remark 1.2.1 Throughout this thesis we consider a “loader” to be any type of high
productivity excavating equipment, which may include a mining loader, shovel or exca-
vator.

Loaders are used to lift the ore or waste material onto the trucks or other equip-
ment for removal from the mine. In an open-pit mine, loader types can include electric

rope and hydraulic excavators, the hydraulic backhoe excavator, and front-end

loaders (also wheel loaders) (Erçelebi & Kırmanlı 2000). This variety of machines
differs significantly in terms of reliability, maintenance needs, compatibility with dif-
ferent truck types, volume capacity, and cost per unit of production.

The capacity for a loader is defined by the bucket size, and this in tandem with
the loader cycle time (the time required to fill the bucket and drop its contents
into a truck) defines the productivity of the loader. The productivity of the loader
itself is therefore tied to the number of passes (or buckets of material) required to fill
each truck. The number of passes will vary depending on the size of the truck. The
truck capacity is rarely a round multiple of the loader bucket size. Depending on the
policy of the mine, the loader may or may not pass an incomplete bucket to fill the last
amount. A rule-of-thumb can be used to determine whether an additional pass is made.
For example, in this thesis we adopt the rule that if the remaining truck capacity is
greater than one third of the loader bucket capacity, then we make an additional pass.
Otherwise we round the number of passes down.

The electric rope shovel [Figure 1.2] can vary from 25 tonnes to 110 tonnes in bucket
size, and generally has a low cycle time of about 35 seconds. Cables control the arm
and bucket of this loader. The hydraulic excavator is fashioned similarly but controls
the bucket with the use of high pressure hydraulic fluid.

An alternative to the electric rope shovel is the hydraulic backhoe excavator [Figure
1.3]. The electric rope shovel, hydraulic loader and hydraulic backhoe excavator are
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Figure 1.2: An electric rope shovel (Mining-Technology 2007b).

Figure 1.3: A Liebherr R996 hydraulic backhoe excavator (Mining-Technology 2007a).

all capable of swinging the bucket from the mining area to a positioned truck without
moving the base of the loader. The hydraulic backhoe can range from 19 tonnes to 86
tonnes in bucket capacity, and has the fastest cycle time of all the loader types. The
backhoe loader (also known as back-actor or rear-actor) is so named because of the
action of the bucket, which draws the bucket through the earth toward the loader.

The front-end loader is the most versatile of loaders, although limited in bucket
capacity which can vary from 23 tonnes to 57 tonnes [Figure 1.4]. This loader type has
the slowest cycle time as it must manoeuvre on its tyres to position the bucket over
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Figure 1.4: A CAT 992G front-end loader operating in a mine in Russia (Karelia
Government 2007).

the truck.
The type of loader selected for use in a surface mine depends on the type of mineral

to be extracted and other environmental conditions, such as the bench height. We
must also take other considerations, in particular the compatibility of the loaders with
selected truck fleets, into account in the equipment selection process. For example,
some loaders cannot reach the top of the tray on the larger trucks. Conversely, some
loader capacities exceed the capacity of the truck. If we are determined not to underpin
the optimisation process, then we must model the problem such that we select the truck
and loader types simultaneously.

1.3 Trucks

Mining trucks are used to haul the ore or waste material from the loader to a dumpsite.
They are also known as off-road trucks or haul trucks [Figure 1.5]. More commonly,
these vary from 36 tonnes to 215 tonnes. The size and cost of operating mining trucks
is directly proportional to its tray capacity, while the speed the truck can travel is
inversely proportional to its capacity. As with loaders, the variety of truck types differs
according to their reliability, maintenance requirements, productivity and operating
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Figure 1.5: Large capacity mining trucks: one travelling empty down the ramp while
the other travels full up the ramp (KCGM 2007b).

cost.
The performance of a truck is greatly affected by the mine environment. For exam-

ple, the softness of the road soil creates an effect of rolling resistance which reduces
the efficiency of the truck in propelling itself forward. The effects of rolling resistance
can be controlled and reduced by wetting and compressing the roads regularly [Figure
1.6]. Rolling resistance varies a lot across the road and over time, and is notoriously
difficult to estimate.

The forward motion of the truck is also affected by rimpull. Rimpull is the natural
resistance of the ground to the torque of the tyre and is equal to the torque of the wheel
axle multiplied by the wheel radius. Manufacturers supply rimpull curves for their
trucks to enable a satisfactory calculation of truck cycle times. The rimpull curves map
the increase in road resistance as the truck increases speed.

The effects of rolling resistance and rimpull are exacerbated by haul grade, which
is the incline of the haul road. These parameters, alongside haul distance, are critical
for the accurate calculation of the truck cycle time.
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®®

Engine
Engine Model Cat® C18 ACERT™
Base Power (all gears) – Net 397 kW 533 hp

Moldboard
Width 7.3 m 24 ft 0 in

Gross Vehicle Weight – Base
Total 62 456 kg 137,692 lb
Front Axle 18 761 kg 41,360 lb
Rear Axle 43 695 kg 96,332 lb

24M
Motor Grader
Preliminary

Figure 1.6: A grading machine smoothing the road for the trucks to reduce the effect
of rolling resistance (CAT 2007).

1.3.1 Truck cycle time

Definition 1.3.1 The truck cycle time comprises of load time, haul time (full),
dump time, return time (empty), queuing and spotting [Figure 1.7].

A cycle may begin at a loader where the truck receives its load. The truck then travels

full to the dump-site via a designated route along a haul road. The dump-site may be
a stockpile, dump-site or mill. Once the load has been dumped, the truck turns around
and travels empty back to the loader. The act of manoeuvring the truck under the
loader to be served is called spotting. This can take several minutes. In a large mine
the truck cycle time may be around 20-30 minutes in total, and can vary a lot over
time as the stockpiles are moved and the mine deepens.

The truck cycle time is an important parameter because related parameters (that
are not dependent on the final selected fleet) can be absorbed into it. Ultimately we
wish to include intimate details of the mine, such as topography and rolling resistance,
in the modelling process. These parameters can be estimated prior to modelling and
incorporated into the truck cycle time. Further, the truck cycle time can be used to
absorb parameters such as rimpull, haul grade and haul distance into one estimate.
However, the level of queuing that occurs in a fleet is dependent on the number of
trucks operating against each loader. This makes it difficult to accurately estimate
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truck cycle times before the fleet is determined.

travel full to dump−site

dumping

travel empty to loader

queueing

spotting

loading

Figure 1.7: The truck cycle time is measured from the time the truck is filled at the
loader, travels full to the dump-site, dumps the load, and travels empty to the loader
to join a queue and positions itself for the next load (spotting). The truck cycle time
includes queuing and waiting times at the dump-site and loader.

In industry, the common method of truck cycle time estimation is to estimate
the speed of the trucks using manufacturers’ performance guidelines (Smith, Wood &
Gould 2000). These guidelines are simulation results that take into consideration en-
gine power, engine transmission efficiency, truck weight, capacity, rimpull, and road
gradients and conditions (Blackwell 1999). This is combined with topographical infor-
mation to provide an estimate of the hauling route. The guidelines must also be used in
combination with rolling resistance estimates to determine any lag in cycle time. Smith
et al. (2000) provides a method for determining a rolling resistance estimate. Regression
models can also be used to determine good truck cycle time estimates (Çelebi 1998).

In this thesis we make use of truck cycle time estimates provided by the industry
partner.

1.4 Shovel-truck productivity

The ability to predict the productivity of a truck and loader fleet is an important
problem for mining and construction, as the productivity of the fleet is intrinsic to
equipment selection. A part of the equipment selection liturature bases the selection
entirely on productivity estimates of the fleets. This research usually comes under the
banner of shovel-truck productivity, and focuses on “predicting the travel times on the
haul and return portions of the truck cycle . . . and the prediction of the interaction
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effect between the shovel and truck at the loading point” (Morgan & Peterson 1968).
The shovel-truck productivity problem has been well established in construction and
earthmoving literature (Kesimal 1998). This work aims to match the equipment (in
both type and fleet size) such that the productivity of the overall fleet is maximised.
However, much of the literature on shovel-truck productivity exists for construction
case studies and little published research applies to surface mining. Nonetheless these
methods must be addressed here as they represent the core ideas behind current in-
dustry practice in surface mining equipment selection (Smith et al. 2000, Erçelebi &
Kırmanlı 2000).

Those methods deemed classical include match factor and bunching theory.
The match factor is the ratio of truck arrival rate to loader service time, and provides
an indication of the efficiency of the fleet. Bunching theory studies the natural vari-
ance in the truck cycle time due to bunching of faster trucks behind slower trucks.
Shovel-truck productivity methods incorporate both match factor and bunching ideas
into the solution. These methods use many assumptions, considerable expert knowl-
edge/experience and rely on heuristic solution methods to achieve a solution. Modelling
of the true bunching effect would be a helpful asset to the mining and construction in-
dustries, as the effect is not well studied and is currently unresolved. However, the
derivation of such a model is beyond the scope of this thesis.

1.4.1 Match factor

The match factor itself provides a measure of productivity of the fleet. The ratio is
so called because it can be used to match the truck arrival rate to loader service

rate. This ratio removes itself from equipment capacities, and in this sense, potential
productivity, by also including the loading times in the truck cycle times.

Douglas (1964) published a formula that determined a suitable number of trucks,
Mb, to balance loader output. This formula is the ratio of loader productivity to truck
productivity, but as it makes use of equipment capacity it is considering the potential
productivity of the equipment. That is, if the loader is potentially twice as productive
as the selected truck type, then we require two trucks to balance the productivity level.
Let ce denote the capacity of equipment type e ∈ X∪X′, and te signify the cycle time
of equipment type e, where X is the set of all truck types and X′ is the set of all loader
types. The productivity of equipment type e is represented by Pe and the number of
trucks of type i in the fleet is xi, where i ∈ X, while we denote the loader types as i′

where i′ ∈ X′. We denote the equipment efficiency by Ee (representing the proportion
of time that the equipment is actually producing). We can write

Pi′ =
ci′Ei′

ti′
∀ i′ ∈ X′, (1.1)
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for a single loader operation. The productivity of the truck fleet is represented by:

Pi =
ciEixi
ti

∀ i ∈ X, (1.2)

and the match balance is represented by:

Mb =
Pi′

Pi
. (1.3)

Truck cycle time is defined for equation (1.2) as the sum of non-delayed transit
times, and includes haul, dump and return times. Note that ratio (1.3) is restricted
to one loader. This is a simple ratio that can be used to ensure that the truck and
loader fleets do not restrict each other’s capacity capabilities. Sometimes however, it
is not necessary for the productivities of the truck and loader fleets to be perfectly
matched. Morgan & Peterson (1968) published a simpler version of the ratio, naming
it the match factor, MFi,i′ , for truck type i working with loader type i′ is given as:

MFi,i′ =
ti,i′xi
t̄Xyi′

, (1.4)

where xi is the number of trucks of type i; yi′ is the number of loaders of type i′; ti,i′ is
the time taken to load truck type i with loader type i′; and t̄X is the average cycle time
for the trucks excluding waiting times. This ratio uses the actual productivities of the
equipment rather than potential productivities, and therefore achieves a different result
to equation (1.3). In this thesis we consider only the Morgan & Peterson interpretation
of match factor: we are interested in the actual productivities of the truck and loader
fleets.

Remark 1.4.1 The match factor is the ratio of actual truck arrival rate to loader
service time.

In this thesis we make use of the match factor as a productivity indicator, and
contrary to the Morgan & Peterson interpretation, we assume that queue and wait
times are included in the cycle times. With this idea of cycle time in mind, a match
factor of 1.0 represents a balance point, where trucks are arriving at the loader at the
same rate that they are being served. Typically, if the ratio exceeds 1.0 this indicates
that trucks are arriving faster than they are being served. For example, a high match
factor (such as 1.5) indicates over-trucking. In this case the loader works to 100%
efficiency, while the trucks must queue to be loaded.

A ratio below 1.0 indicates that the loaders can serve faster than the trucks are
arriving. In this case we expect the loaders to wait for trucks to arrive. For example, a
low match factor (such as 0.5) correlates with a low overall efficiency of the fleet, namely
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Figure 1.8: The match factor combines the relative efficiencies of the truck and loader
fleets to create an optimistic efficiency for the overall fleet.

50%, while the truck efficiency is 100% [Figure 1.8]. This is a case of under-trucking;
the loader’s efficiency is reduced while it waits. Unfortunately, in practice a theoretical
match factor of 1.0 may not correlate with an actual match factor of 1.0 due to truck
bunching. In this sense, the calculated match factor value is optimistic.

The match factor ratio has been used to indicate the efficiency of the truck or loader
fleet and in some instances has been used to determine a suitable number of trucks for
the fleet (Smith, Osborne & Forde 1995, Cetin 2004, Kuo 2004). While the ratio can
be used to give an indication of efficiency or productivity ratios, it fails to take truck
bunching into account. Therefore caution must be taken in the interpretation of any
calculated match factor values.

Match factor has been adopted in both the mining and construction industries
(Morgan 1994b, Smith et al. 1995). The construction industry is interested in achieving
a match factor close to 1.0, which would indicate that the productivity levels of the fleet
are maximised. However, the mining industry may be more interested in lower levels of
match factor (which correspond to smaller trucking fleets and increased waiting times
for loaders) as this may correlate with a lower operating cost for the fleet. This can
happen if equipment with greater productivity rates than required can perform the
task with lower operating costs than equipment that perfectly matches the required
production.

The match factor ratio relies on the assumption that the operating fleets are ho-

mogeneous. That is, only one type of equipment for both trucks and loaders is used
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in the overall fleet. When used to determine the size of the truck fleet, some literature
simplify this formula further by assuming that only one loader is operating in the fleet,
namely Morgan (1994b), Smith et al. (1995), and Nunnally (2000). Homogeneous fleets
are desirable for the mine, as they simplify maintenance, training of artisans and the
burden of carrying spare parts for different types of equipment. However, heterogeneous
fleets may provide overall cost savings.

In practice, mixed fleets and multiple loaders are common due to pre-existing

equipment or optimal fleet selection that minimises the cost of the project. A situation
with pre-existing equipment can arise both at the start of a mining schedule, and when
a new selection of equipment is desired part-way through the schedule. This highlights
a need for a match factor ratio that can be applied to heterogeneous fleets.

1.5 Mining method selection

Two distinct but dependent problems are the mining method selection and equipment
selection problems. The equipment selection problem arises immediately after we have
obtained a solution to the mining method selection problem. In order to determine
the most appropriate mining method, diggability studies are performed throughout
the area to be mined. These studies look at the quality of the overburden, the swell

factor of the soil and the soil compaction: effectively the ease at which the earth can
be removed from the site. Once the diggability study is complete the mining managers
select a suitable mining method, thereby influencing both the “mode of operation” as
well as the types of available equipment from whence we make our selection (Chanda
1995). In a global sense, the mining method selection process will choose the type of
surface mine that is to be developed, such as open-pit, stripping or dredging. Also,
an expert considers climatic, geological, site, and geo-technical conditions to choose
not only an appropriate mining method, but a sub-set of appropriate truck and loader
types (Gregory 2003, Başçetin 2004). It is with this sub-set of equipment that we begin
our search for an optimal equipment fleet solution.

1.6 Equipment selection

Equipment selection is a combinatorial problem (Hassan, Hogg & Smith 1985) that
involves selecting an appropriate fleet of trucks and loaders to perform the task of ma-
terials handling. There are two industries for whom the truck and loader equipment
selection problem is of critical importance: mining and construction. Both these in-
dustries have applied considerable effort to find a suitable solution strategy for their
operations (Marzouk & Moselhi 2002b). In the selection of the fleet we choose the
number, type and size of the equipment (Bozorgebrahimi, Hall & Blackwell 2003).
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Intuitively this problem is closely related to the allocation problem (which involves
allocating equipment to defined tasks in the schedule) and the equipment replacement
problem (where we optimise the replacement cycle for the chosen equipment).

There are several aspects of the equipment selection problem that have prevented
tractable models in the past. The selection, or purchase, of equipment restricts the
primary decision variables to integers. However, the allocation of this equipment to
fleets and routes intuitively lends itself to non-integer decision variables. After the
consideration of equipment types and equipment age, aspects such as multiple locations,
multiple periods, and the desire for individual machine tracking further exacerbate the
number of decision variables in the model, rendering it a large scale problem. Also,
the set of available equipment can be large and characteristically different (Hassan
et al. 1985). The greatest challenge of the equipment selection problem is to derive a
tractable model which easily identifies with an optimal solution. For example, with the
presence of many identical trucks and loaders which can be allocated to the various
locations in a number of ways, we can create not only multiple optimal solutions but
also large clusters of similar solutions near the optimal.

Other challenges present in the equipment selection problem include:

• Heterogeneous fleets: Within the pit itself, several loaders may operate at dif-
ferent locations with different objectives. In order to meet the needs of a particular
location, different loader types may be operating in the same mine. Similarly, the
trucking fleets that work between the loaders and the dump-sites may have mixed
types. Typically, mixed fleets arise when new equipment is purchased and added
to an older fleet of pre-existing equipment. However, it is possible that mixed
fleets can provide a cheaper fleet if the productivity requirements do not evenly
divide into the operating capacity of a particular truck or loader type.

• Truck cycle time: The number of trucks in the fleet can influence all equipment
efficiency: under-trucking restricts the efficiency of the loader, but over-trucking
restricts the efficiency of the trucks due to queuing and bunching. It is difficult
to predict the cycle time of a fleet with different types of trucks or loaders (a
heterogeneous fleet), or even with varying fleet size. Even the actual cycle time of
trucks and loaders can vary significantly with the accompanying fleet without any
changes to the fleet make-up (Edwards & Griffiths 2000). The interdependency of
these aspects of a mining operation suggest that better solutions may be obtained
by optimising the problem in its entirety rather than focusing on individual items
or subsets of the problem (Atkinson 1992).

• Uncertainty: There is a desire to model the uncertainty and risk in the problem
(Cebesoy, Gzen & Yahşi 1995). The primary parameters that are subject to
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variability are truck cycle time and equipment availability. Truck cycle time is
deemed more important in terms of its variability than loader cycle time because it
comparatively dwarfs the other. This has lead to the modelling of the truck cycle
time by probability distribution (Cebesoy et al. 1995). However, no probabilistic
modelling of equipment availability presents itself in the literature.

• Compatibility: The trucks and loaders must be sufficiently compatible, which
can involve restrictions such as the dumping height of a loader matching the truck
tray height (Çelebi 1998). The existence of pre-existing equipment in the mine
creates difficulties with equipment compatibility.

• Equipment salvage: Equipment salvage should also be considered as equipment
exceeds its maximum age. This is particularly important if we are considering
using pre-existing equipment that is close to its maximum age at the beginning of
the schedule. Also, if salvage is permitted then we can optimise the replacement
cycle of the equipment at the same time that we optimise the purchase policy.

In a bid to curb these complexities, models in the literature are typically restricted
to assumptions such as homogeneous fleets, average truck cycle times for the whole
period, and bunching or queuing is ignored. Costs are often considered to be constant,
and pre-existing equipment has never been permitted. This research addresses the
assumption of homogeneous fleets and the existence of pre-existing equipment. Further,
we introduce a model that accounts for utilisation in the objective function and consider
optimising over multi-period and multi-location schedules.

A fast and effective equipment selection tool is important due to the dynamic nature
of the productivity requirements. A fast tool would allow a re-run of the equipment
selection process whenever there is a significant change in production requirements
or some other relevant parameter. This research will focus on deriving mathematical
models and computational solutions for a surface mining application, although the
models and derived formulas may be just as easily applied to a construction industry
case study. The research may also be relevant for underground mine equipment selection
- however, this application has not been considered in this body of work.

1.7 Equipment cost

The operating cost of mining equipment dominates the overall cost of materials handling
over time. Typically these costs include maintenance, repairs, tyres, spare parts, fuel,
lubrication, electricity consumption and driver wages into one estimate. The best
way to account for the operating cost of mining equipment is, in itself, an important
problem. Some equipment selection tools use life-cycle costing techniques to obtain
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an equivalent unit cost for the equipment (Bozorgebrahimi, Hall & Morin 2005).
These costs estimate the average lifetime cost per hour or per tonne. Clearly this is
not practical if we are considering salvaging equipment when it is no longer useful or
has reached the end of its optimal replacement cycle. Industry improves the equivalent
unit cost estimate by scaling the value depending on the age of the equipment. That
is, if the equipment requires a full maintenance over-haul at the age of 25,000 hours
then this cost bracket will reflect a greater expense through a scaled factor of the unit
cost.

Equipment operating cost is highly dependent on the age of the equipment. That
is, cost per tonne is determined by productivity; equipment productivity is dependent
on equipment availability: equipment availability is dependent on equipment age. Op-
erating cost can also be affected substantially by the simple addition of one loader
to a single-loader fleet (Alkass, El-Moslmani & AlHussein 2003). Although the most
obvious objective function for an equipment selection model is to minimise cost, as a
function of utilisation and equipment age this adds great complexity to the problem
and has the potential to introduce nonlinearities (Hassan et al. 1985).

Any mining operation is dynamic in nature and may be subject to considerable
changes in the mine plan. In many cases, an equipment selection plan for a multi-
period mine may be rendered inadequate as these changes come to light. The purpose
of the tools derived in this thesis, however, aim to provide the best possible starting
solution given the information available at the time. To add to this varying nature
of the production parameter, the cost parameters may also change significantly and
are themselves estimates (Hassan et al. 1985). Specifically, the capital expense data
available at the time the equipment selection tool is run may differ from the time of
purchase due to:

• the establishment of new contracts with the corresponding suppliers;

• improved historical data (accumulated through previously owned equipment)
which may be combined with supplied data (from the equipment producers)(Smith
et al. 2000, Edwards, Malekzadeh & Yisa 2001);

• a change in demand for second-hand equipment or scrap metal - thus affecting
the salvage value of a piece of machinery;

• changes in the interest and depreciation rates used for the net present value cal-
culations.

Using hire cost data is a simple alternative to using a mix of manufacturer supplied
production costs and real data (Edwards et al. 2001), but this is not always possible or
practical.
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With these examples as justification, we argue that it is not necessary to consider
the cost objective function in its most natural and accurate form: nonlinear. As all
the parameters of the objective function are themselves approximations, the objective
function may be more wisely considered in piecewise linear format. Certainly in in-
dustry this is common practice where operating cost, for example, is considered to be
a piecewise linear function of an age bracket, rather than a nonlinear function of unit
age. By these arguments, the relative parameters of a linearised objective function can
be considered to be sufficiently precise.

1.8 Optimisation

In an optimisation problem, we focus on a single objective function, f(x), whose
purpose is to measure the quality of the decision (Luenberger 2003). Mathematical
programs look at the state of a system and its structure, and in considering a suitable
objective determines how the system can move into the next state.

A general mathematical program can be formulated as follows:
Minimise f(x)

subject to hi(x) = 0 i = 1, 2, ...,m
gi(x) ≤ 0 j = 1, 2, ..., r
x ∈ S

For a linear program we consider the case where the objective function, f(x), and
all the constraints, hi(x) and gi(x) are linear.

Linear programming is a mathematical programming technique that aims to capture
the behaviour of the problem within a linear objective function and linear constraints.
This technique is credited with both explicit formulation of the problem and, through
various solution methods, an efficient solution. The philosophy of linear programming
is simply to derive a mathematical structure by observing the important components of
the system and their essential interrelationships (Dantzig 1998). The “Transportation
Problem” is a famous example of linear programming.

For integer programming, we have the additional restriction that all variables are
integers. The appeal of integer programming as a modelling method is the compactness
of model presentation, the existence of proof of optimality for many of the solution
methods (such as branch and bound), and the ability to perform sensitivity analysis
on the objective function and constraints post hoc. However, mixed integer linear

programs (including integer programs with some binary 0-1 variables) are at times
computationally difficult. Some aspects of the formulation have an enormous impact
on the computation time, such as the integrality and formation of the constraint matrix
(Taha 1975).

Mathematical modelling can bring more advantages in analysis than simply the
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concise and comprehensible structuring of the problem. The way in which a problem
is modelled can help to identify “cause-and-effect relationships” (Hillier & Lieberman
1990). Further to this, the various relationships between the variables are considered
simultaneously.

1.9 In this thesis

This research scans a broad topic that spills into several industries. From a mining
industry perspective, we tackle the problem of clearly defining equipment selection and
set about achieving optimal solutions from several compact models. As we seek a pur-
chase and salvage policy of whole units of equipment and the productivity constraints
are linear, we develop several mixed integer linear program mining models. The ne-
cessity for a logical condition in equipment compatibility reinforces the use of integer
programming as a modelling method.

In this introduction we have defined the research problem, introduced some nec-
essary background and described some complexities associated with the equipment
selection problem. In addressing the problem we begin by reviewing the methods ap-
plied in this area and assess the extent to which these methods successfully address the
problem we wish to solve [Chapter 2]. We also make particular note of any deficiencies
in the literature that can be addressed in our research. Our main contribution from
Chapter 2 is:

• a review and consolidation of the literature; refining the boundaries of the mining
method selection and equipment selection problems. We pay particular attention
to two seemingly disparate streams of research, shovel-truck productivity and
mining equipment selection, and draw the relevant aspects together.

In this introduction we defined the match factor ratio for homogeneous fleets. This is
an important index in the mining industry and is used to indicate the overall efficiency
of the fleet. Recognising the match factor ratio as an important validation tool, we
extend the ratio in several ways in preparation for use on our heterogeneous solutions
in later chapters. In Chapter 3 we present:

• two ways to calculate the match factor for the case of heterogeneous truck fleets
[Section 3.2];

• a ratio to calculate the match factor for the case of heterogeneous loader fleets
[Section 3.3];

• two ways to calculate the match factor for the case of heterogeneous truck and
loader fleets [Section 3.4];
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• extensions for all the above variations for the case of unique truck cycle times
and multiple locations.

Our literature review indicates that modelling the equipment selection problem in a
tractable way is a difficult task. We consider the existence of pre-owned equipment in
all the developed models [Chapters 4, 5 and 6]. A consequence of this is that we must
also consider and permit heterogeneous truck and loader fleets. All models presented
here consider heterogeneous fleets and also allow equipment to be salvaged at the start
of any period in the schedule. Heterogeneity of fleets and equipment salvage have not
before been considered in optimisation models in this surface mining application. The
inclusion of pre-existing equipment is also novel, which is surprising given the prevalence
of pre-existing equipment at the start of a mining schedule and the frequent necessity
to re-perform equipment selection mid-way through a schedule.

We begin this challenge by first addressing the case of single location equipment
selection for a multiple period mine [Chapter 4]. We present a set of constraints that
ensure satisfiability of production requirements after heterogeneous fleet compatibility
is taken into account. We validate this model using a retrospective case study, where
our solution obtains significantly better results than existing industry methods. We
perform robustness testing on a series of test cases we synthesise from the case study.
The important contribution from this chapter is:

• We develop a single-location, single-dump-site, multi-period MILP equipment
selection model [Chapter 4] which provides the optimal purchase and replacement
policy for trucks and loaders. This is a mixed-integer program that solves quickly
using Ilog Cplex libraries. Interestingly, multi-period schedules have not been
considered in the mining literature.

Motivated by the success of the single-location model, we extend this model to
multiple-locations for a multiple period mine [Chapter 5]. It is necessary to intro-
duce continuous variables to permit allocation of equipment to mining locations and
routes, reducing the solvability of the model. We introduce additional constraints that
strengthen the formulation and reduce computation time by shrinking the starting so-
lution space. We test this new model on two industry case studies that describe two
very different surface mining operations. In this chapter:

• We develop a multi-location, multi-dump-site, multi-period MILP equipment se-
lection model [Chapter 5] which provides the optimal purchase and replacement
policy for trucks and loaders. In addition, this model optimally allocates the
trucks and loaders to routes and mining locations respectively. Previously, mul-
tiple locations/dump-sites have not been considered in the mining equipment
selection literature.
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In a bid to create a more realistic cost objective function, we introduce a utilisation
variable for the third model [Chapter 6]. This variable enables the model to account
for the actual hours operated by each piece of equipment. We derive constraint sets
to relate the non-uniform linear cumulative utilised hours to the equipment units in
a linear manner. We test this model on a series of synthetic test cases. The main
contribution from this chapter is:

• We develop a single location, single dump-site, multi-period MILP equipment
selection model that attributes operating cost to equipment utilisation (Chapter
6). Utilisation based costing has also not been considered in any solvable models,
although some theoretical models have been proposed.

In our concluding chapter [Chapter 7], we summarise our findings and look at
opportunities for future research on the equipment selection problem.
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Chapter 2

Literature review

The equipment selection problem is important to both the construction and mining
industries. In spite of the vastly different needs of these two industries, similar meth-
ods are applied in both. The mining industry is interested in selecting a truck and
loader fleet that can meet materials handling needs at minimum cost; the construc-
tion industry places importance on an additional objective: project end date. That
is, the completion of one project early can have just as significant implications for the
cost of the operation as a late completion. Additionally, the mining industry moves
significantly larger quantities of material and over a longer period of time. From this
standpoint, equipment retirement age, equipment salvage and heterogeneous fleets are
more important considerations for a mining industry equipment selection model.

The equipment selection literature for these two industries is broad, and steps over
into two closely related topics: mining method selection and shovel-truck pro-

ductivity. The objective of mining method selection, sometimes known as preliminary
selection (Cebesoy et al. 1995), is to select a sub-group of equipment that is suitable
to operate in the given mining conditions (Oberndorfer 1992). The relationship to
the equipment selection problem is that the mining method selected directly affects
the equipment available to select. In mining method selection, a mining manager has
several mining methods to choose from: each has its own risks and benefits. For ex-
ample, the position of an ore deposit will determine whether surface or underground
mining will be adopted. The mining method selected then implies a subset of suitable
trucks and excavating equipment. Some research selects the mining method alongside
the equipment, while others select the mining method before selecting the truck and
loader fleets. Shovel-truck productivity is a research area propelled by the construction
industry which aims to provide good productivity estimates. This will lead to improved
fleet selection for a mine.

Due to the difference in problem definition and naming, much of this work appears
to have been completed incognizant of the surface mining equipment selection research.

20



LITERATURE REVIEW

That is to say, equipment selection research rarely directly references shovel-truck pro-
ductivity work and vice versa. However, shovel-truck productivity methods are also
used in the mining industry for the purpose of equipment selection in practice.

In this chapter we review the current literature on the equipment selection problem
and provide:

• A collation of equipment selection research from both mining and construction
industries;

• A summary of research categories and hitherto applied methods;

• A consideration of the successes and pitfalls of each applied method; and

• A discussion of how the key elements of the equipment selection problem may be
captured.

In addition to direct equipment selection research, this review investigates the lit-
erature that applies to equipment selection from within the mining method selection
and shovel-truck productivity areas. Figure 2.1 describes the distribution of equip-
ment selection literature and also lists some techniques that have been applied to these
problems. The solution methods for all of these problems have been varied in both
complexity and success.
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Figure 2.1: The distribution of literature and applied techniques for the equipment
selection problem

Operations research techniques such as linear and integer programming have been
applied in a bid to achieve an optimal solution [Section 2.3.3]. With many of these
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methods it is easy to demonstrate optimality, and so a successful program that yields
even a small percentage improvement could represent a great windfall for the mining
operation. These programming methods can compactly incorporate complexities of
the equipment selection problem, which helps to describe a more realistic performance
of a particular fleet than models that are overly restricted by assumptions. Artificial
intelligence techniques such as expert systems, knowledge based methods and genetic
algorithms have also been applied to equipment selection with some success, although
optimality has not been demonstrated in these applications [Section 2.3.5].

For mining method selection, integer programming and artificial intelligence tech-
niques have been important new developments, although anecdotal methods persist
in the literature [Section 2.2]. For equipment selection, the methods applied are
very broad [Section 2.3]. Linear programming, artificial intelligence techniques, sim-
ulation and life cycle costing techniques have dominated the literature. Some models
have been developed using queuing theory, although these are largely underdeveloped.
Shovel-truck productivity has seen some discussion of bunching theory1, productivity
curves2, match factor3 and queuing theory. These methods are typically applied for
the purpose of determining instantaneous productivity levels rather than equipment
selection, and therefore progressive models do not exist.

The construction industry only considers equipment selection and shovel-truck pro-
ductivity, but has been an important motivator for the latter research area. The haulage
fleet can be significantly more expensive to run than the loading fleet, and consequently
more attention has been offered to the derivation of sound haul fleet solutions rather
than optimising the truck and loader fleet together (Bozorgebrahimi et al. 2003).

A closely related problem in surface mining is the dispatching problem, which in-
volves finding the dynamic optimal allocation of equipment to tasks. There have been
attempts to use dispatching methods to solve the equipment selection problem [Section
2.4]. The allocation of loaders to fleets is important in determining the productiv-
ity capabilities of the corresponding fleet. This is addressed in our research in the
multi-location model in Chapter 5.

There are many more closely related problems such as mine production scheduling
(Leschhorn & Rotschke 1989, Golosinski & Bush 2000, Caccetta & Hill 2003, Kumral &
Dowd 2005), pit optimisation (Frimpong, Asa & Szymanski 2002), equipment costing
(O’Hara & Suboleski 1992, Morgan 1994a, Leontidis & Patmanidou 2000), production

1Bunching theory is the study of the jamming effect that can occur when equipment travel along
the same route.

2Productivity curves are created via simulation or extensive data collection where estimated pro-
ductivity levels can be compared to actual productivity performance to help understand efficiency
loss.

3Match factor is the ratio of truck arrival rate to loader service time, and is used to estimate a
suitable truck fleet size.
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sequencing (Western 1995, Halatchev 2002) and equipment replacement (Tomlingson
2000, Nassar 2001). These problems are not within the scope of this study and will not
be discussed here.

2.1 Shovel-truck productivity

The shovel-truck productivity research area focuses on estimating and optimising the
productivity of a truck and loader fleet. This is based on the intuitive notion that
improving productivity will translate into cost reductions (Schexnayder, Weber &
Brooks 1999). Often these productivity optimisation methods extend in a simple way
to become an equipment selection solution. The efficiency of the truck fleet is related
to the number of trucks required to perform the materials handling task (Alarie &
Gamache 2002). Match factor and bunching theory are deemed classical shovel-truck
productivity methods, while queuing theory has received some attention. We discuss
these three methods here as the dominant methods in this area.

The simplest method for determining fleet size based on productivity is as follows:

Number of units required =
Hourly production requirement

Hourly production per unit
.

Clearly the truck and loaders types must be pre-selected and the corresponding fleets
must be homogeneous for this simple concept to be of use.

2.1.1 Match factor

The match factor ratio is an important productivity index in the mining industry. The
match factor is simply the ratio of truck arrival rate to loader service time, and is used
to determine a suitable truck fleet size. Smith et al. (1995) claimed that operations with
low match factors are “inefficient”. Such comments must be interpreted carefully. That
is to say, fleets with a low match factor can be very cheap and satisfy the productivity
requirements of the operation. The use of the word efficient is used strictly in reference
to the ability of both trucks and loaders to work to their maximum capacity. One must
question why it is important for this to be so. When the match factor ratio is used
to determine the suitability of a selected fleet, one must consider that the minimum
cost fleet may not be the most productive or efficient fleet. In this way, a match factor
of 1.0 should not be considered ideal for the mining industry, as this corresponds to a
fleet of maximum productivity. That is, a loader operating at 50% capacity may be
significantly cheaper to run than another loader that operates at 100% capacity under
the same conditions.

Adopting the same concepts as the traditional match factor method, Gransberg
(1996) described a heuristic method for determining the haulage fleet size.
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1. Determine the cycle times, T, for haul and return routes

T =
d

2
(

1
vH

+
1
vR

)

where vH and vR are haul and return velocities of the truck; d is the haul distance
(metres), the divisor 2 averages the velocities.4

2. Obtain loading time, L, from load growth curves (Caterpillar 2003).

3. Estimate delay time, D, along route.

4. Calculate “instantaneous” cycle time, C:

C = L+ T +D.

5. Determine “optimum” fleet size

N =
C

L
.

Note that no method for estimating delay times was provided by the authors. We
can see that step 5 is using the truck arrival rate to truck loading rate ratio with a
nominal match factor value of 1.0, and only one loader. When the match factor is 1.0,
the truck arrival rate perfectly ‘matches’ the loader service rate and the overall fleet
is said to be efficient (with respect to wasted capacity). It is very restrictive to force
the match factor to be any value, and is unlikely to result in an optimum solution with
respect to fleet cost.

2.1.2 Bunching

The productivity of the overall fleet is limited by the lowest productivity of either the
truck or loader fleets. Recall the sketch of truck and loader fleet efficiency [page 11].
Before the intersection, the productivity of the fleet is limited by the capacity of the
truck fleet, and the loader will have additional waiting periods. After the intersection,
the productivity of the fleet is limited by the capacity of the loader, and the trucks
will have additional waiting periods. The intersection itself is the theoretical “perfect
match point” (Morgan & Peterson 1968). This match point is also influenced by the
natural variation in haul cycles, which can lead to further queuing. This is known

4Gransberg (1996) cited the following equation with no justification for the divisor 88:

T =
d

88
(

1

vH
+

1

vR
).

It is possible that is was intended to represent a conversion from miles per hour to metres per second,
although no mention of units was made in the paper.
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as bunching. This is usually due to some of the objects moving more efficiently than
others. It can also be due to small, unpredictable delays.

When trucks are operating in a cycle, the truck cycle time will tend toward the
slowest truck cycle time, unless overtaking is permitted. That is, faster trucks will
bunch behind the slower trucks, causing a drop in the average cycle time. When
trucks queue at the loader or dumpsite waiting for their next load, this has the effect
of resetting the truck cycles and reduces the effect of bunching. Bunching in off-road
trucks is not well studied, and typically, reducing factors are used to shrink the efficiency
to account for bunching (Douglas 1964, Morgan 1994b, Smith et al. 2000).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

T3

T2

T1
©• ©• ©• ©•
©• ©• ©• ©•
©• ©• ©• ©•

Figure 2.2: An illustrative delay effect of bunching with just three trucks.

Consider three trucks with cycle times 4, 5 and 6 minutes [Figure 2.2]. If we do not
permit overtaking, then the fastest truck will be delayed by the slower trucks and its
cycle time will converge to the slowest truck cycle time.

Bunching is known to reduce a fleet’s ability to utilise its maximum capacity. Na-
gatani (2001) has studied the problem of modelling bunching in general traffic flow and
bus routes. Bunching in the truck cycle may be modelled in the same manner.

Bunching certainly occurs in a system of a loader and its correlating fleet of trucks
(Smith 1999). This relationship is not as complex as that of buses and passengers:
if some trucks have bunched behind a slower truck, then the time headway between
the slower truck and the next truck in line will be restored to some extent after the
trucks queue at the loader or dump-site (Smith et al. 1995). From this standpoint, the
cycle times of all of the trucks approaches the cycle time of the slowest truck, but the
time headway is reset before the times converge. This means that the actual average
cycle time for the trucks will be lower than the estimated average cycle time (Smith
et al. 2000). This is a conservative measure and is not adopted in practice: industry
generally uses the average estimated cycle time, often with a reducing factor to account
for the efficiency lost to bunching.

The effects of bunching can be significant. In fact, Smith et al. (1995) found in a
case study that actual travel times were 21% longer than the calculated times, although
they attributed this difference to overestimation of machine efficiency and poor rolling
resistance estimates. However, some of the difference would probably have been due to
the effect of bunching. The interactive effect of equipment types as well as the size of
the trucking fleet can lead to overestimations of fleet efficiency (Smith et al. 2000). It
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is important to consider the effects of queuing and bunching if the proposed schedule
is to be met by the selected equipment.

Smith et al. (2000) suggested that the effects of bunching can be curbed by providing
accurate equipment speeds before the selection of the equipment and fleet sizes. For
homogeneous fleets, it is unlikely that factors such as rolling resistance would influence
an individual truck alone, but rather the whole fleet would become slower. In turn, this
may have no effect on the bunching of the trucks. In heterogeneous fleets, however,
different truck types will be affected differently by poor estimates of rolling resistance,
which in turn could have an exacerbating effect on the bunching of the trucks.

2.1.3 Queuing theory

Queuing theory is the study of the waiting times, lengths, and other properties of
queues. Waiting time for trucks and loaders has been the focus of some shovel-truck
productivity research. Although this has not resulted in good equipment selection
solutions, it may provide suitable bounds for truck behaviour in an equipment selection
model. Queuing theory was first notably applied to shovel-truck productivity by O’Shea
(1964). In this work, he used queuing theory to predict the productivity of trucking
fleets in an attempt to account for productivity lost when the trucks queue at a loader.
Further on, Karshenas (1989) outlined several improvements that were incorporated
into an equipment selection program. These models use the inter-arrival time of one
truck instead of the inter-arrival time of the entire fleet. However, the model requires
the times between any arrivals, which restricts it to homogeneous fleets.

Huang & Kumar (1994) have continued this work in an attempt to select the size of
the trucking fleet using a more accurate productivity estimate. They developed a fleet
size selection M1\M2\N\FIFO\n1\n2 model to minimise the cost of idle machinery.
Here M1 and M2 assert that the customer arrival rate and service rate are exponentially
distributed. There are N parallel servers and the service discipline is First-In-First-
Out. The upper bound of customers allowed in the system is n1, while n2 is the
maximum number of potential customers. This is an interesting approach and relies on
the assumption that idle machinery contributes to the cost. Their model recommended
the selection of fleet sizes that match the maximum efficiency for both location and
haulage equipment. Though it is questionable that such a method would improve the
economic result, it is useful to consider the variability in some of the parameters of the
equipment selection problem such as truck cycle times and queue length.
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2.2 Mining method selection

The mining method selection problem is an approach to equipment selection that rea-
sons that the environmental conditions will imply a particular mining method, and that
the selection of loader and truck types will follow intuitively from there. This problem
then focuses on choosing the correct excavation method for the given conditions. Gen-
erally, this research is based on anecdotal methods, and seeks a feasible solution rather
than an optimal solution. Much of the literature on mining method selection does not
discuss equipment selection modelling in enough detail to be discussed here, but is
nonetheless an important area to research when considering pre-selection procedures.

Atkinson (1992) acknowledges the interdependency of ground preparation, excava-
tion and loading, transport and mineral treatment: that “the optimum cost per ton
may not be obtained by attempting to minimize each of the individual operational
costs”. It is the complexity of combining these factors into one problem that has led
many engineers to the primarily anecdotal and knowledge-based solution methods ap-
plied to mining method selection. In this way, the loader types and loader fleet size
are selected based on diggability studies; the truck type is selected based on the loader;
and, the truck fleet size is selected based on all the above information.

Başçetin, Oztaş & Kanlı (2004) applied a multi attribute decision making (MADM)
model to the mining method selection problem. This methodology is justified for prob-
lems where significant expert knowledge is required that cannot be translated directly
into a quantity (Bandopadhyay & Nelson 1994). These qualitative parameters are cap-
tured in an ordinal ranking. This transformation, from qualitative to ordinal, results
in a loss of information.

Fuzzy set theory has also been used to interpret the uncertainties in the decision
making process (Başçetin & Kesimal 1999, Wei, Fan & Xu 2003, Bitarafan & Ataei 2004,
Başçetin et al. 2004, Başçetin 2004). Fuzzy logic allows black-and-white decisions to
blend at the periphery to form a grey area with known probability, so that decisions can
be made that satisfy certain goals or constraints. In this method, ranks, probabilities
or priority weightings must be allocated to each decision. This can be a considerably
complicated step if it is substantiated. However, this method does not consider the size
of the fleets or pre-existing equipment.

Amirkhanian & Baker (1992) designed an expert system with 930 rules to perform
the task of mining method selection. Although published under the guise of equipment
selection, their research does not endeavour to select a particular truck or loader type
but rather provides a sub-set of suitable equipment from which a suitable fleet may be
chosen.
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2.3 Equipment selection

The equipment selection problem aims to select an appropriate set of trucks and loaders
subject to various objectives and constraints. The assumptions and types of constraints
that are included in the models are varied. Subsequently, an interesting array of meth-
ods has been applied to this problem with varying success, such as heuristic, statistical,
optimisation, simulation and artificial intelligence techniques.

2.3.1 Heuristic methods

The use of heuristic methods persists in industry, with spreadsheets employed to aid
iteration rather than optimisation (Eldin & Mayfield 2005). Smith et al. (2000) rec-
ommended the construction industry darling match factor formula as a means of de-
termining the appropriate fleet size. However, selecting the best equipment types must
be performed by an expert before applying the formula. The match factor ratio, pub-
lished by Morgan & Peterson (1968) as an efficiency measurement tool has been, until
recently, restricted to homogeneous fleets or, at best, heterogeneous truck fleets (Burt &
Caccetta 2007). The earthmoving industry still uses this ratio to determine an appro-
priate truck fleet size once the loader fleet and truck type has been established (Smith
et al. 2000).

The flow chart described in Figure 2.3 illustrates the technique traditionally used
by equipment selectors. However, it relies heavily on one or more experts in equipment
selection. This increases the likelihood of an “attractive alternative” being missed in
the analysis (Webster & Reed 1971). Also, the expert cannot possibly determine the
quality of their solution in relation to the large number of alternatives over the solution
space. The well-used “50-minute hour” method - a scaling of productivity to account
for losses in efficiency - also lacks researched credibility, and effectively becomes a simple
scaling method (Gransberg 1996).

Determine fleet size

Select ‘best’ truck type

Perform equipment matching

Select specific loader type

Mining method selection

?

?

?

?

Figure 2.3: The classical equipment selection heuristic.

Markeset & Kumar (2000) argued for the use of life cycle costing (LCC) as an
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equipment selection method. This tool relies on the assumption that the equipment is
kept for its entire life span, so no salvage is permitted. Unfortunately this means that
the optimal replacement cycle cannot be determined which undermines the optimisation
process. However this type of analysis may be useful in the determination of a cost per
hour for equipment.

2.3.2 Statistical methods

Blackwell (1999) developed a multiple linear regression model to estimate the impor-
tant equipment selection parameters that display great variation, such as truck cycle
time, tire consumption, fuel consumption and truck operating hours. He argued that
these parameters are usually estimated via simulation with questionable results due
to “variations in truck power and load carried”. These parameters can then be used
to determine an appropriate fleet of trucks and loaders through the use of the simple
match factor heuristic above or other means. This method relies on the existence of
large data sets for the appropriate parameters for the mine in question.

Griffis (1968) developed a heuristic for determining the truck fleet size using queu-
ing theory. This extended the work by O’Shea (1964) outlined in Section 2.1.3 for
calculating the productivity of a set of fleet options by estimating the truck arrival
rates by Poisson distribution. Later, Farid & Koning (1994) used simulation to verify
the equipment selection results of a queuing theory based on the Griffis and O’Shea
works.

2.3.3 Optimisation techniques

The use of integer programming methods is well established in both the mining and
construction operations (Jayawardane & Harris 1990). Integer programs have been
used to create mining schedules (Dagdelen, Topal & Kuchta 2000, Dagdelen & Asad
2002, Johnson, Dagdelen & Ramazan 2002, Ramazan & Dimitrakopoulos 2003, Kumral
& Dowd 2005) and for pit optimisation (Caccetta & Hill 2003). However, for equip-
ment selection much of the focus is on project completion and dispatching or allocation
(Erçelebi & Kırmanlı 2000). The models tend to assume given equipment types, rather
than allowing the models to select these with the fleet size. Fleet homogeneity and
restricted passes between loader and truck are also common constraints (Çelebi 1998)
that have not been demonstrated to be sensible. In a departure from cost optimisation,
some solution methods look at optimising productivity (Smith et al. 2000) and optimis-
ing equipment matching (Morgan 1994b). Since maximising productivity is different
to minimising cost, such objectives are also useful in the construction industry. For
example, in other formulations, “budgeting constraints” have been considered where
the maximum permissible budget cash outlay for a given time period is an upper bound
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(Cebesoy et al. 1995). “Mutual exclusivity” is a common restriction that only allows
one type to be used. Cebesoy et al. (1995) describes heterogeneous fleets as “unac-
ceptable or even unthinkable”, although only anecdotal evidence has supported these
claims to date.

Webster & Reed (1971) proposed an equipment selection model for general mate-
rials handling as an assignment problem. This model incorporates a predetermined
utilisation matrix into the cost objective function, which is an achievement not yet
accomplished in the mining industry. The objective function minimises the costs of the
equipment according to a predetermined utilisation matrix. One of the limitations of
this model is that it only allows one piece of equipment (and therefore only one type)
to be allocated to a particular task. This quadratic integer program is intended for
allocation rather than equipment selection in the way that we approach the problem in
this thesis. It is primarily theoretical model: the authors admit that such a formulation
is not capable of solving practical sized problems at the time of publication. In fact,
a pre-determined utilisation matrix for a problem with 27 loaders (maximum age 20
years), 26 trucks (maximum age 15 years), 13 periods and maximum truck fleets of 10
and 30 for loaders and trucks would require a matrix of almost 1GB in size for the
trucks alone. The model also does not account for truck and loader compatibility and
does not attempt to ensure that productivity requirements are met. It is also restricted
to a single period.

Hassan et al. (1985) extended Webster and Reed’s model to combine the equipment
selection problem with the allocation problem. The objective function used in this
model minimises the “sum of operating and capital costs over all [tasks] and equipment
types”. It selects equipment to perform tasks, rather than satisfying productivity
requirements. It does, however, ensure that the equipment performs these tasks in a
nominated time-frame. For surface mining productivity requirements are considered
important - time restrictions can be absorbed.

Cebesoy et al. (1995) developed a systematic decision making model for the selec-
tion of equipment types. The final step in the model made use of a binary integer
program. This model considers a single period, single location mine with homoge-
neous fleets. Suitability matching of the equipment occurs prior to the solving of this
model, presumably in the form of mining method selection. This model operates on
the assumption that equipment is kept for its entire life, and that we pay the cost of
running it for its entire life regardless of utilisation or the number of periods it is ac-
tually required. The objective function and constraints are very simple, reflecting the
homogeneous fleet and single-location assumptions.

Michiotis, Xerocostas & Galitis (1998) developed a binary integer programming
model to select equipment for a mine, which was paired with a layer stratification model.
The equipment selection model minimises the time required for the extraction of the
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mine (in its entirety) as an objective function. It is not clear why this objective function
is chosen, as the authors note that this time can be “estimated at the preliminary
scheduling phase”. The model focuses on selecting appropriate equipment types that
suit the geology of the mine, such as bench height, rock density and rock resistance. It
is intended to reduce a large set of available equipment types to a satisfactory set from
which optimal equipment selection can take place using other methods.

Edwards et al. (2001) used a linear programming model to select the optimum
loader type for construction use. The model is not formally presented in their paper
and so it is difficult to determine the decision variables used in the model. This model
solves for very small time domains (such as 20 hours) and selects one fleet for the entire
schedule. This means that salvage is not permitted and purchase occurs once at the
beginning of the schedule. Due to the small time domain, the age of the equipment
is not incorporated into the model and therefore equipment availability and its change
with age is unaccounted for.

Other people have applied integer programming to this problem in a limited capac-
ity. Jayawardane & Harris (1990) applied integer programming to optimise the move-
ment of materials in the construction industry, incorporating project end dates. The
developed model was intended to determine if the “available resources could be utilized
toward the project completion within the target time” (Jayawardane & Harris 1990).
They also consider soil compaction and swell factors. This model is designed to min-
imise the cost of moving the material, and allocate tasks to pre-existing fleets - in this
sense it is not an equipment selection model.

2.3.4 Simulation

Simulation is a well used and notably powerful tool for the mining industry (Hall 2000).
Although simulation is most effectively used in mining equipment selection to analyse
the earth-moving system, some equipment selection solutions exist that use simulation
models (Hrebar & Dagdelen 1979, Tailakov & Konyukh 1994, Marzouk & Moselhi 2004).
Kannan (1999) provides some defined requirements and “success factors” for simulation
programming, and a short but directed literature survey of simulation modelling in the
construction industry.

Shi (1999) used simulation to produce large sets of data in order to train a neural
network for predicting earthmoving production. Simulation is also a useful tool to
observe the interactions of particular equipment. Schexnayder, Knutson & Fente (2005)
describe a simulation model for predicting productivity, although this is not directly
intended for equipment selection. On a simpler note, simulation can also be used
to estimate a suitable truck cycle time (Frimpong, Changirwa & Szymanski 2003).
However, without formal modelling of the effect of bunching for both homogeneous and
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heterogeneous fleets, simulation results should be carefully interpreted.

2.3.5 Artificial intelligence

Artificial intelligence techniques are prevalent amongst large scale mining applica-
tions due to their ability to find feasible solutions within a short time (Clément &
Vagenas 1994). The most common methods among the literature are the expert sys-
tem (Denby & Schofield 1990), decision support system methods (Bandopadhyay &
Venkatasubramanian 1987, Başçetin 2004) and genetic algorithms (Haidar & Naoum
1995, Haidar & Naoum 1996, Haidar, Naoum, Howes & Tah 1999, Marzouk & Moselhi
2002a, Marzouk & Moselhi 2002b, Xinchun, Weicheng & Youdi 2004). Genetic al-
gorithms are a computer simulation technique which selects a solution after several
generations of stochastic selection based on a fitness. In this sense they are designed
to imitate evolution.

The expert systems approach, often preferred for complex systems, is a struc-
tured attempt to capture human expertise into an efficient program (Welgama &
Gibson 1995). Amirkhanian & Baker (1992) developed an expert system for equipment
selection in construction, incorporating 930 rules. These rules incorporate “information
concerning a particular project’s soil conditions, operator performance, and required
earth-moving operations”.

Ganguli & Bandopadhyay (2002) also developed an expert system for equipment
selection. However, their method requires the user to input the “relative importance
of the factors”, which is typically difficult to quantify and substantiate. Although
the expert system method does not claim optimality of its solutions, it does highlight
an important aspect of modelling equipment selection: the equipment subset to be
considered in the model will be dependent on the soil and mining conditions. In this
sense, rule-based pre-selection is a logical pre-process to any equipment selection model
(Başçetin 2004).

Various decision support tools, such as analytical hierarchy process (Başçetin 2004)
and expert systems (Amirkhanian & Baker 1992), apply priority to decisions for logic
based heuristic solutions. These methods consider the entire process of equipment
selection holistically, including site conditions, geology and environment, as well as
equipment matching. Equipment matching is a step beyond merely considering com-
patibility, where equipment pairs can be ranked in suitability in a pre-optimisation
process. However, these heuristic methods cannot claim optimality.

There are numerous examples of the application of genetic algorithms to the equip-
ment selection problem. Naoum & Haidar (2000) developed a genetic algorithm model
for the equipment selection problem. Their model incorporates the lifetime discounted
cost of the equipment, which is attached to the assumption that the equipment is used
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from purchase until its official retirement age, and not sold or replaced before that
time. It also requires an expert to select the loader type before the optimisation pro-
cess begins, and is restricted to homogeneous fleets. The authors argue that intelligent
search techniques are necessary because integer programming is incapable of solving a
problem with more than one type of independent variable. While this is not true, such
techniques may be required when constraints become nonlinear, which may arise due to
queuing. Intelligent search techniques may also be useful for obtaining a good quality
feasible solution where integer programming techniques cannot differentiate between
clusters of near-optimal solutions.

Marzouk & Moselhi (2004) designed a bold model using simulation and genetic
algorithms to simultaneously minimise two objectives: time and cost. Intended for the
construction industry, their model provides a one fleet solution for the length of the
entire project, which is not realistic for a multi-period mining operation with fluctuating
production requirements.

2.4 Dispatching and allocation

The allocation of equipment is an important consideration for the satisfaction of pro-
ductivity requirements. The objective of dispatch optimisation is to maximise the
efficiency of the fleet at hand (Hagenbuch 1987). Truck dispatch systems apply lin-
ear programs dynamically to determine the minimum number of trucks required for
a schedule, and dynamic programming is then used to determine allocation to mining
locations (Blackwell 1999).

Easa (1988) developed two quadratic programming models for earthwork allocation.
These models allow for linear unit cost functions of purchase and excavation for borrow
pits, as opposed to constant cost functions. The operating cost of equipment can
fluctuate with the age of the equipment, due to different levels of maintenance and
running costs (Easa 1987).

Truck allocation is complicated by the presence of uncertainty in some parameters
such as plant downtime, truck load and truck cycle time. Typically mathematical
programming is used to solve the allocation problem, while heuristics are used for
dispatch. Ta et al. (2005) developed a stochastic model that incorporates real-time
data for allocation of the fleet. More recently, Karimi, Mousavi, Kaveh & Afshar
(2007) addressed the uncertainty in parameters with a fuzzy optimisation model.

2.5 Discussion

With such a wide variety of methods applied to the problem, we can expect the quality
and detail of the solutions to vary. For simple and fast models, shovel-truck productivity
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can obtain feasible solutions, although there is no guarantee of optimality. With the
scale of operations involved in mining, sub-optimal solutions can equate to significant
costs.

Mining method selection is an important step to consider before equipment selec-
tion. Ideally the mining method and equipment should be optimised together. Within
the equipment selection literature, the popular techniques focus on decision support
models, genetic algorithm approaches and integer programming models. Each has its
own benefits - decision support models are capable of including a significant amount of
expert detail, but cannot guarantee optimality; genetic algorithms can obtain feasible
solutions to problems with a large number of variables and constraints, but also can-
not guarantee optimality; integer programs can guarantee optimal solutions, but are
computationally difficult to solve.

Although the applied literature for the surface mining equipment selection problem
is diverse, there are common weaknesses amongst all of the presented models and
techniques. Namely:

• Pre-existing fleets: Models that consider the existence of pre-existing equip-
ment do not exist in the literature.

• Fleet homogeneity: There is no reason to believe that a mixed-type fleet per-
forms worse than a homogeneous type fleet.

• Equipment type pre-selection: Loader (or truck) type pre-selection requires
a highly skilled and experienced engineer to select a loader type based on geo-
graphical and geological information. This can be a time consuming task and
optimality is unlikely. The equipment type selection should occur simultaneously
with fleet size selection if optimality is desired.

• Restricted passes: Although there is a general preference for restricting the
maximum number of passes from loader to truck, there is no evidence in the
literature to support this constraint.

• Political factors: Political and social pressures can sometimes carry more weight
than optimal cost considerations (Chanda 1995). These aspects are difficult to
model and are simply excluded from the modelling process.

• Bunching: The effect of bunching is largely ignored, or is accounted for by a sim-
ple reducing factor (usually obtained through simulation or observation). How-
ever, without a formal modelling of the effect of bunching for both homogeneous
and heterogeneous fleets, it is difficult to give too much credit to a simulation
result.
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• Operating cost: The inclusion of sensible ownership, operating and mainte-
nance costs may play a crucial role in the solution. Yet in integer programs the
costs are often accepted as a constant input to which no further calculations are
performed.

• Objective choice: Some research has modelled the equipment replacement prob-
lem but focuses on replacement time rather than optimising the type and number
of truck/loader replacements.

Hajdasinski (2001) argued that while a particular model may produce an optimal
solution, minor factors that were excluded from the model may prevent the solution
from being realistic. In this case, they suggested that providing the next best solutions,
even if they are suboptimal, is important for the scrutiny of management.

One of the greatest weaknesses of research in this area is the neglect of properly
defining the problem that is being solved and listing all assumptions made in the process
of acquiring a solution. Proper problem definitions and assumption lists allow the reader
to quickly determine the applicability of the work to their own research area.

A program that allows the consideration of all sizes of equipment will test the
‘bigger is better’ notion that is prevalent amongst the mining community (Çebi, Köse
& Yalçin 1994, Haidar et al. 1999). Accuracy of the formulation is also important:
using approximations such as ‘average truck haulage distance’ over the life of the mine
may be severely inadequate. The main objective of the program is to cut down on these
undemonstrated and unrealistic assumptions and seek a solution that is either optimal
or very near optimal. This means that we must consider the entire set of available
equipment in order to select the best combination (Erçelebi & Kırmanlı 2000).

In this thesis we address several of these issues. Firstly we select an objective
function that minimises the cost of materials handling, and through this, optimises
the type and number of trucks and loaders in the solution. We carefully consider
the manner in which operating costs change over the lifetime of the equipment and
account for these changes where possible. We eliminate the restriction on the number of
passes from the loader to the truck to enable the model to choose the most appropriate
equipment match. Also, we simultaneously select the equipment types to ensure the
validity of the optimisation process. We also consider the possibility of pre-existing
equipment and allow for heterogeneous fleets. The models all consider multiple periods
in a bid to obtain the cheapest overall materials handling cost. We consider two ways
to represent the productivity requirements of the mine (namely single location and
multiple location), and finally develop a model that accounts for equipment utilisation
in the objective function.
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Match factor extensions

For the mining industry, the match factor ratio is an important indicator with a dual
purpose: during the equipment selection phase, it can be used to determine an appro-
priate fleet size such that the truck fleet productivity matches that of the loader fleet;
when a fleet is selected, the match factor can be used to estimate the relative efficiency
of the fleet. Thus far this ratio has been restricted to homogeneous fleets - however,
heterogeneous fleets are common in large scale mines. We present several extensions
to the match factor ratio to allow consideration of heterogeneous fleets. The results of
this chapter have been published in the International Journal of Mining, Reclamation
and Environment (Burt & Caccetta 2007).

3.1 Introduction

The mining and construction industries have long held interests in determining the
productivity or efficiency of a selected fleet of trucks and loaders. One way to study
the efficiency of a fleet is to weigh the efficiencies of the truck fleet and loader fleet
against one another. The match factor is the ratio of truck arrival times to loader
service rates.

The aforementioned industries have used the match factor for many decades as an
indicator of productivity performance. As defined by Morgan & Peterson (1968), the
match factor ratio, MFi,i′ , for trucks of type i working with loaders of type i′ is given
as

MFi,i′ =
ti,i′xi
t̄Xxi′

, (3.1)

where xi is the number of trucks of type i, xi′ is the number of loaders of type i′, ti,i′

is the time taken to load truck type i with loader type i′, and t̄X is the average cycle
time for all trucks. We provide a summary of the notation in section 3.6.
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This ratio has hitherto relied on the assumption that the truck and loader fleets are
homogeneous. That is, all the trucks are of the same type, and all the loaders are of the
same type. In reality, mixed fleets are common. Heterogeneous fleets can occur when
equipment types are discontinued, equipment is superseded, or simply when a mixed
fleet is cheaper than a homogeneous fleet. Heterogeneous fleets can occur when new
equipment is purchased to work alongside pre-existing equipment. It is also possible
that a heterogeneous fleet can represent a minimum cost equipment selection solution.
In this chapter we propose new ways for defining match factor for heterogeneous fleets.

In particular, we:

• Present two ways to define match factor when heterogeneous truck fleets are
present [Section 3.2];

• Present a new method to define match factor when heterogeneous loading fleets
are operating [Section 3.3]; and

• Present a new method to define match factor when both truck and loader fleets
are heterogeneous [Section 3.4].

The aim of this chapter is to provide extensions to the productivity and efficiency
measures currently available in the literature. This will enable greater consideration of
heterogeneous fleets.

3.2 Heterogeneous truck fleets

The fleet most likely to be heterogeneous is the trucking fleet. This is due to the large
number of trucks required to meet production requirements, compared to a relatively
small number of loaders. Also, although there may often be different types of loaders
operating in a mine, they are often in different locations and so can’t be considered as
separate fleets.

We begin by considering the truck arrival rate in the case of a heterogeneous truck
fleet with a homogeneous loading fleet.

Definition 3.2.1 The truck arrival rate, A, for a heterogeneous truck fleet with
homogeneous loading fleet is the ratio of the number of trucks to the truck cycle time:

A =
∑

i xi
t̄X

,

where xi is the number of trucks of type i ∈ X (where X is the set of all truck types),
and t̄X is the average cycle time for all truck types.
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At this stage this rate is unaffected by the number of truck types, as we use an
average truck cycle time. The loader service rate is the number of trucks that are
served per second. The loader cycle time may vary between different truck types.

Definition 3.2.2 The loader service rate, Di′, for loader type i′ is given by

Di′ =
xi′
∑

i xi∑
i ti,i′xi

,

where xi is the number of trucks of type i, xi′ is the number of loaders of type i′ ∈ X′,
and ti,i′ is the time required to load truck type i from loader type i′.

As the match factor is the ratio of truck arrival rate to loader service time, the
match factor for heterogeneous truck fleets is easily derived from Definitions 3.2.1 and
3.2.2:

MFi′ =
A

Di′
(3.2)

=
∑

i xi
t̄X

/∑
i xixi′∑
i ti,i′xi

(3.3)

=
∑

i ti,i′xi
t̄Xxi′

(3.4)

=
∑
i

MF i,i′ . (3.5)

It is clear that if only one truck type is operating in the fleet, then equation (3.4)
will produce the same result as equation (3.1). Another way to think of this match
factor for heterogeneous truck fleets is to add the individual match factors from each
of the homogeneous sub-fleets. Note that the alternative method is only appropriate
for the case of homogeneous loader fleets working with heterogeneous trucking fleets.

Sometimes we would like to use unique truck cycle times for different truck types
in the fleet. This can occur when trucks have different routes. For example, consider a
case where larger equipment is used to haul waste while smaller trucks are used to haul
ore: the waste and ore may be sent to different locations, with significantly different
cycle lengths. When individual truck cycle times are used, the times must be weight
averaged to produce an accurate match factor. Equation (3.4) can be easily extended
to account for unique truck cycle times.
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Definition 3.2.3 The average cycle time, t̄X , is given by:

t̄X =
∑

i tixi∑
i xi

,

where ti is the cycle time for truck type i ∈ X and xi is the number of trucks of type i.

Now, substituting this new truck cycle time into equation (3.4), we have the follow-
ing lemma:

Lemma 3.2.1 For heterogeneous truck fleets with individual truck cycle times, the
match factor for homogeneous loader fleets of type i′ ∈ X′can be represented by

MFi′ =
(
∑

i xi)
(∑

i ti,i′xi
)

xi′
∑

i tixi
. (3.6)

3.3 Heterogeneous loader fleets

This section considers the case of mixed loaders in the fleet, while the trucks remain
uniform in type. The time required to load a truck may be different for various types
of loaders. The loader service rate is the number of trucks served in a defined time
period. In a heterogeneous fleet, the time taken to serve a truck may differ between
the varying loader types.

Lemma 3.3.1 The loader service rate for heterogeneous loader fleets working with
truck type i ∈ X is given by

Di =
∑
i′

xi′

ti,i′
. (3.7)

Proof: The loader service rate is the ratio of the total number of trucks to the time
required to serve them. We have ti,i′ for several loader types i′ and one truck type i.
The number of trucks type i served by loader type i′ in ti,i′ time is:

1
ti,i′

.

Thus the total number of trucks served by all loader types in a unit of time is

Di =
∑
i′

xi′

ti,i′
, as required.

�
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Recall that the match factor is the ratio of truck arrival rate to loader service rate. The
truck arrival rate is:

Ai =
xi
ti
,

which gives the following theorem:

Theorem 3.3.2 For heterogeneous loader fleets, the match factor for a homogeneous
truck fleet of type i ∈ X is

MFi =
xi

ti
∑

i′
xi′
ti,i′

. (3.8)

When only one type of loader operates in the fleet, equation (3.8) reduces to equa-
tion (3.1). In the case of multiple dump locations or routes, equation (3.8) can be
expanded to account for differing truck cycle times. First, we represent the average
truck cycle time by:

t̄X =
∑

h ti,hxi,h
xi

(3.9)

where ti,h is the cycle time for truck type i on route h, and xi,h is the number of trucks
of type i working on route h. This gives the following corollary:

Corollary 3.3.3 The match factor for heterogeneous loader fleets working with truck
type i (with individual truck cycle times for trucks on route h) can be represented by

MFi =
(xi)2(∑

i′
xi′
ti,i′

)
(
∑

h ti,hxi,h)
. (3.10)

3.3.1 Example

The following example calculates the match factor of a heterogeneous loader fleet. Table
3.1 outlines the equipment set.

Equipment Capacity (Tonnes) Cycle Time (seconds)

22 Truck type A 150 1500
1 Loader type B 60 35
1 Loader type C 42 35

Table 3.1: Example data for a heterogeneous loader fleet with common truck cycle
time.

The cycle time for the loader is the time taken for one full swing of the bucket.
Some trucks may need several buckets to fill their trays. The first step is to determine
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the unique loading time for each truck. If the truck capacity is not a round multiple
of the loader capacity, then we take another scoop if the capacity left is more than one
third of the loader bucket size. This is because it takes almost the same amount of
time to move a portion of a scoop as it does to move a full scoop (Gransberg 1996).

Truck type A and loader type B: 150
60 = 2.5 3 swings 3× 35 = 105 seconds

Truck type A and loader type C: 150
42 = 3.6 4 swings 4× 35 = 140 seconds

This gives the match factor:

MFA =
xA

t̄X
∑

i′
xi′
tA,i′

=
22

1500× ( 1
105 + 1

140)

= 0.88.

This shows that the fleet is under-trucked. When a minimum cost fleet is desired,
one would reasonably expect that under-trucking would provide better solutions than
perfectly matching the fleets with a match factor of 1.

3.4 Heterogeneous truck and loader fleets

For heterogeneous truck and loader fleets, we consider the time required for each loader
to serve the available truck fleet. This is equal to the sum of the number of trucks of
type i multiplied by the time required to serve that truck type. We call this the loading
times, ti′ , for each loader type i′.

Definition 3.4.1 The time, ti′, required for a loader of type i′ to serve the entire fleet
of trucks is

ti′ =
∑
i

ti,i′xi . (3.11)

So the time taken for one loader to serve one truck is:

ti′∑
i xi

. (3.12)

Thus we obtain the following corollary:

Corollary 3.4.1 The loader service rate for heterogeneous trucks and loaders is
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given by

D =
∑
i′

xi′
∑

i xi
ti′

. (3.13)

As in Section 3.3, the truck cycle time is assumed to be constant for the entire truck
fleet for that period.

Theorem 3.4.2 The match factor for both heterogeneous truck and loader fleets can
be represented by

MF =

(
t̄X
∑
i′

xi′

ti′

)−1

. (3.14)

Proof: We now consider the truck arrival rate for the entire fleet, given in definition
3.2.1:

MF =
A

D

=
∑

i xi
t̄X

× 1∑
i xi
∑

i′
xi′
ti′

=
1

t̄X
∑

i′
xi′
ti′

, as required.

�

If we have unique truck cycle times, equation (3.14) can be easily extended to:

MF =
1(∑
i′
xi′
ti′

)∑
i∈I

xi
(ti,Ixi,I)

(3.15)

where ti,I is the unique truck cycle time for trucks in subset I ∈ X.
We find an expression that is equivalent to equation (3.14) but may be simpler

to implement in a spreadsheet by first observing that the loader service rate can be
represented by:

D =

∑
i′ xi′

∑
i xi
∏
h6=i′(ti,hxi)∏

i,i′(ti,hxi)
.

We take the truck arrival rate for the entire fleet from definition 3.2.1 to obtain the
following theorem.
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Theorem 3.4.3 The match factor for both heterogeneous truck and loader fleets can
be represented by

MF =

∏
i,i′ ti,i′xi∏

h6=i′(ti,hxi)
∑

i′ xi′ t̄X
. (3.16)

When only one type of truck and one type of loader operate in the fleet, equations
(3.14)-(3.15) reduce to equation (3.1), as expected.

3.4.1 Example

This example determines the match factor of a heterogeneous truck and loader fleet.
Table 3.2 presents the data set.

Equipment Capacity (Tonnes) Cycle Time (seconds)

15 Truck type A 150 1500
7 Truck type B 230 1500
1 Loader type C 60 35
1 Loader type D 38 30

Table 3.2: Example data for a heterogeneous truck and loader fleet with common
truck cycle time.

The unique loading times for each truck are determined by the rule of thumb de-
scribed in Section 3.3.

Truck type A and loader type C: 150
60 = 2.5 3 swings 3× 35 = 105 seconds

Truck type A and loader type D: 150
38 = 3.9 4 swings 4× 30 = 120 seconds

Truck type B and loader type C: 230
60 = 3.8 4 swings 4× 35 = 140 seconds

Truck type B and loader type D: 230
38 = 6.1 6 swings 6× 30 = 180 seconds

We calculate the loading times, ti′ , for each loader of type i′.

tC =15× 105 + 7× 140 = 2555

tD =15× 120 + 7× 180 = 3060

MF =
1[

1
2555 + 1

3060

]
× 1500

= 0.928
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This solution is close to the theoretical perfect match of 1.0. This is a good result
in terms of overall efficiency and productivity of the fleet. However, one should be
aware that costing has not been considered in determining the match factor and so it is
possible that the fleet would be cheaper to operate even if the match factor was lower.

3.5 Discussion

For the mining industry, the match factor ratio is an important indicator which we have
extended for several likely circumstances, including heterogeneous truck and loader
fleets with multiple routes. The match factor can be used to optimise the truck cycle
time in order to gain maximal efficiency from the selected fleet. Alternatively, project
managers may use the match factor formula to determine the ideal number of trucks
in the fleet. The formulae presented in this chapter are less restricted in their choice
of equipment, select mixed fleets to suit the productivity requirements and minimise
materials handling expense.

It is interesting to note that the Morgan & Peterson (1968) match factor ratio
excludes waiting and queuing times for trucks and loaders. This may be because the
waiting time for a truck fleet is difficult to estimate without first knowing the size of
the truck fleet. However, if we use the match factor ratio as an index of overall fleet
efficiency, then it is acceptable to include waiting times that have been estimated by
other methods.

The formulae presented in this chapter provide a sensible extension to the original
equation and bring greater accuracy to the cases where mixed fleets operate together.
All of these formulae can be implemented easily in spreadsheet software such as Mi-
crosoft Excel. Throughout the rest of this thesis, we employ the heterogeneous match
factor ratios to indicate the overall efficiency of the selected fleets.
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3.6 Summary of notation

X the set of all available truck types.
X′ the set of all available loader types.
i the truck equipment type index, i ∈ X.
i′ the loader equipment type index, i′ ∈ X′.
MFi,i′ the match factor for homogeneous truck and loader fleets of types i and

i′ respectively.
MFi′ the match factor for heterogeneous truck fleets working with loader type

i′.
MFi the match factor for heterogeneous loader fleets working with a homo-

geneous truck fleet of type i.
MF the match factor for heterogeneous truck and loader fleets.
xi the number of trucks of type i.
xi′ the number of loaders of type i′.
ti the cycle time for truck type i.
ti′ the time required for a loader of type i′ to serve the fleet of trucks.
ti,i′ the the time taken to load truck type i with loader type i′.
t̄X the average cycle time for all the trucks.
A the truck arrival rate.
Ai the truck arrival rate for truck type i.
Di′ the loader service rate for heterogeneous truck fleets working with loader

type i′.
Di the loader service rate for heterogeneous loader fleets working with truck

type i.
D the loader service rate for heterogeneous loaders working with a hetero-

geneous truck fleet.
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Chapter 4

Single-location, multi-period

equipment selection

In a simple surface mining scenario we can consider the mine to have one mining
location and one dump-site connected by a lone truck route. Our objective is to de-
termine a purchase and salvage policy for trucks and loaders such that the cost of
materials handling is minimised over a multiple period schedule. This problem quickly
becomes large scale when we consider large sets of trucks and loaders, and long sched-
ules. The inclusion of pre-existing equipment leads to the possibility of heterogeneous
fleets; the non-uniform behaviour of different equipment types (with respect to operating
cost, availability and productivity) coupled with compatibility issues adds to the com-
plexity of the problem. In this chapter, we present an integer program for equipment
selection that incorporates heterogeneous fleets, pre-existing equipment and compatibil-
ity while optimising over multiple periods. We introduce a specialised linear constraint
set to ensure satisfaction of production requirements. We also test the model on a case
study and a set of synthesised test cases. The resulting model is a robust equipment
selection tool that obtains optimal solutions quickly for large sets of equipment and long
schedules.

4.1 Introduction

In the mining industry, materials handling represents a significant component of the
operational cost. Extensive research has provided the industry with numerous feasible
solution strategies, but the complexity of the problem has hindered optimal multi-
period solutions. In this research, we provide a suitable equipment selection tool that
will select the trucks and loaders for a multi-period mine at minimum cost.

In particular, we focus on developing a robust equipment selection tool for a single-
location, multi-period mine. A single-location mine is a mine which has just one mining
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location with a single route to a lone dump-site (Figure 4.1). By limiting to a single-
location mine we are in essence generalising the productivity requirements for the mine
to just one location. By doing this it is possible that the selected fleet will be incapable
of meeting a more complicated schedule. However, we consider the model in this chapter
to be a tool for smaller mines or for mines where there is no significant difference in
the mining locations and route lengths.

loading location dump−site

Figure 4.1: A simplified model of a mine with single-location, single-dump-site and a
lone route connecting the two.

We wish to consider all planned time periods in the mining schedule to ensure that
the selected fleet can cope with the changes that the planned schedule brings, rather
than simply satisfying short-term requirements. In addition to this, we consider the
possibility of pre-existing equipment. Due to the dynamic nature of mines and the
subsequent demands placed on them, it is common for a mining schedule to change
significantly after only a few years into the schedule. When this occurs, it may be
necessary to re-perform the equipment selection. In this case, there would be a con-
siderable amount of pre-existing equipment - some of which may be discontinued or
superseded by better equipment. This also means that we may have heterogeneous
fleets.

In addition to the purchase of equipment, we also consider the salvage of equipment
for two reasons. Firstly, mines often operate for longer than the standard life of a piece
of equipment. From this, we can expect that we will need to retire some of the equip-
ment during the schedule. In particular, pre-existing equipment may already be close
to retirement age. Secondly, mining schedules sometimes have significant productivity
changes from period to period. The mining manager may wish to determine whether it
is better to purchase equipment for short term periods, or to hire equipment over the
peak periods. Allowing salvage permits them to investigate this.

In this chapter we develop an integer program with the following features:

• the inclusion of pre-existing equipment and heterogeneous fleets;

• a multi-period mining schedule;

• linear compatibility constraints answering satisfaction of the productivity require-
ments;
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• costing which is apportioned to the age of the equipment (in line with industry
standards).

Many aspects of the presented model, such as the consideration of multiple periods
and pre-existing equipment, are novel for the mining industry and ensure that the
model is both a new and advanced equipment selection tool.

We formulate the model in section 4.2 by first listing the assumptions (section
4.2.1) before outlining the decision variables (section 4.2.2), followed by a derivation
of the objective function (section 4.2.3) and constraints (section 4.2.4). We provide a
summary of the notation and the complete model in sections 4.2.5 and 4.2.6. To test
the model, we first run test cases to validate the model in section 4.4 before considering
a mining case study in section 4.5. Finally, we discuss the results and opportunities to
extend the work in section 4.6.

4.2 Problem formulation

Trucks and loaders only come in discrete quantities, so it is appropriate to track them
using integer variables. A cost objective function can be linearised through careful
definition of the variable indices, and productivity constraints are naturally linear.
Therefore the equipment selection problem for surface mines is best expressed as a
pure integer program.

4.2.1 Assumptions

The model is, by necessity, an abstraction of the real problem. Consequently we apply
some assumptions and conditions to make the model solvable. For this formulation,
the following assumptions apply:

Known mine schedule: We assume that an acceptable mine schedule has already
been derived, and that the mining method has been selected. We start the equip-
ment selection process with a sub-set of trucks and loaders that suit the particular
mining scenario.

Single mining location: All the loaders and trucks are considered to operate as one
fleet. That is, all loaders work in the same location, and all the trucks service all
loaders. We consider the mine to have a single mining location, a single dump-site
and a single haul route connecting the two.

Salvage: All equipment is salvageable at the start of each period at some depreciated
value of the original capital expense. Any pre-existing equipment may be salvaged
at the start of the first period.
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No auxiliary equipment: Auxiliary equipment, such as wheel loaders and small
trucks, are not considered in this model. Although the cost of running auxil-
iary equipment may differ according to the overall fleet selection, for the purpose
of this model this cost is considered trivial. Note that the cost of auxiliary equip-
ment can be built into the operating cost if necessary.

Known operating hours: The operating hours of the mine are estimated by taking
planned downtime, blasting and weather delays into account.

Single truck cycle time: Since we assume a single mining location, a single truck
cycle time is used for all trucks. The cycle time is constant over a time period and
is known for all periods. It accounts for factors that affect the truck performance,
such as rimpull, rolling resistance, haul distance and haul grade.

Heterogeneous fleets: We allow different types of equipment to work side-by-side.

Fleet retention: All equipment is retained at the end of the last period. Optionally,
we can relax this assumption and allow the model to salvage some or all equipment
at the end of the final period.

Full period utilisation: Operating costs are charged as though the equipment has
been fully utilised for the entire period in which it is owned.

The presented integer program assumes that some pre-processing of the available
equipment has already occurred, and that equipment not satisfying the mining method
or mine pit requirements are not included in the initial set of available equipment.
The length of a time period as used in the model can be adjusted to any desired
magnification, but for the purpose of the case study, is set to one year.

4.2.2 Decision variables and notation

Let the set of all truck types be X, and the set of all loader types be X′. We use i and i′

to denote a single truck and loader type, respectively. To simplify the notation, we use
e to represent a single type (which can be a truck or loader type), where e ∈ X ∪X′.

Suppose that there are K periods, M available truck types and N available loader
types with maximum age L. The following six variable types for the single location
model generate a total of 2(MKL + NKL) + K(2N − 1) variables before variable
reduction takes place.

Fleet purchase and operating variables

For this formulation we wish to capture the number of equipment, the equipment type,
the age of the equipment and the periods in which the equipment is operating. We
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adopt three indexes to represent type (e), period (k) and age (l). The index e is
drawn from the set of all available equipment types, X∪X′; the index k is drawn from
the set of all periods, {0, 1, . . . ,K}; and the index l is drawn from the age range of
equipment type e (which can vary significantly amongst types). The decision variable
for equipment type e is:

xk,le : number of owned equipment units of type e ∈ X∪X′ that are age l at the start
of period k.

All equipment in ownership operate, so a value of 0 asserts that the equipment with
those indices is not owned. The fleet purchase and operating variables are general
integers.

Remark 4.2.1 The index l represents the equipment age in operated periods. As each
equipment type may have a unique number of operating hours per period (due to varying
availability amongst equipment types), the value that l represents may not be uniform
in hours between equipment types.

Salvage variables

We use salvage variables to tell when a truck or loader is salvaged, and the period that
it occurs. These variables are defined similarly to the purchase and operating variables:

sk,le : number of owned equipment units of type e ∈ X ∪X′ that are age l salvaged at
the start of period k.

The salvage variables are also general integers.

Indicator variables

The compatibility constraints have an or condition. This means that either one or the
other constraint will have dominance, but not necessarily both. We use this to ensure
that the compatible truck fleet can match the productivity requirements of the mine
or the productivity capabilities of the loader, whichever is less [Section 4.2.4]. In order
to set up these constraints, we require a new 0-1 variable that selects the constraint
which should dominate:

hki′ : 0-1 variable forcing one constraint in two to be active for loader type i′ in period
k.

All the indicator variables are binary integers.
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4.2.3 Objective function

In the mining industry, the viability of a mine depends on the efficiency of the equipment
and its ability to meet production requirements at the lowest possible cost. Thus the
profitability of a mine is intrinsically linked to the cost of the operating equipment:
both capital and ongoing. Therefore, we consider the objective function as the cost of
materials handling. More specifically, we are interested in the net present value (NPV)
of the cost of materials handling for the life of the mine. We wish to consider the capital
expense, the operating expense (per period of ownership), and the salvage value of the
equipment with respect to a discount rate I.

First we consider the capital expense, which is a one-off cost incurred during the
period of purchase. We represent the fixed cost of purchasing equipment of type e by
Fe, and discount this purchase to the present using a discount factor, Dk

1 :

Dk
1 =

1
(1 + I)k

(4.1)

where k is the current period (starting from 0).
Note that pre-existing equipment does not incur a capital expense as it was pur-

chased in a period not considered in this optimisation horizon. Thus the total capital
expense for a truck or loader of type e is∑

e,k

FeD
k
1xk,0e . (4.2)

The operating expense reflects the cost of operating and maintaining the equipment.
It takes into account varying maintenance expenses, availability and productivity levels,
which are known to vary with the age of the equipment. In the mining industry, the
typically nonlinear operating cost is simplified by creating a piece-wise linear function
that is divided into cost-brackets (Figure 4.2).

The operating cost bracket size, denoted by B0, defines the size of the equipment age
increments which estimate the cost of running equipment in a piecewise linear fashion.
We use increments of 5000 hours for our analysis.

Let Hk be the operating hours for period k and ale is the availability of equipment
type e, aged l. The cost bracket in which equipment lies at the beginning of a period
is given by b(l) ∈ {0, 1, ..., s}, where s − 1 is the total number of cost brackets. We
calculate the cost-bracket each period using:

b(l) =

∑
h≤l a

k,b(l−1)
e Hk

B0
, (4.3)

where the availability of the equipment is dependent on the cost-bracket in which the
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Figure 4.2: The variance of equipment operating cost against cost bracket. The rise
in operating cost can reflect the increased maintenance expense or the time since the
last overhaul. Large drops in the operating expense occur when an overhaul has taken
place.

equipment lies. We assume that the operating cost is constant over the cost-bracket,
so if a piece of equipment moves into a different age cost bracket within a period, the
operating cost for the period should be appropriately split between these two brackets.
We wish to determine the proportion of time that the equipment lies in this cost
bracket, and the proportion of time that the equipment lies in the proceeding cost
bracket (Figure 4.3).

(b)

(a)

B B1 2

Figure 4.3: The two cases of equipment age landing between age brackets. For case
(a), the equipment stays in the same age bracket for the entire period. In case (b), the
equipment steps over into the next age bracket within the period.

We represent this proportion of time by the parameter Bk,l
h,e for h = 1, 2, where h

is the hth cost bracket that the equipment has landed within that one period. If we
consider that the equipment could land in a maximum of two cost brackets within one
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period, then we have:

Bk,l
1,e =

 1 if (bk,le + 1)B0 −
∑

k a
k+P (e)
e Hk > ak,le Hk

(bk,l
e +1)B0−

∑
k a

k+P (e)
e Hk

ak,l
e Hk

otherwise

and

Bk,l
2,e = 1−Bk,l

1,e.

The variable cost, V k,b(l)+h−1
e , is the cost per operated hour for equipment type

e ∈ X ∪X′ in cost-bracket b(l) + h− 1 in period k. Hence, for the operating expense,
we have the following expression:∑

e,k,l,h

Bk,l
h,eD

k
1V

k,b(l)+h−1
e xk,le . (4.4)

As we are minimising the cost of materials handling, we represent salvage by a
negative expense. We apply a combined depreciation (at rate J per period) and NPV
discount factor (at rate I per period), Dk,l

2 , where:

Dk,l
2 =

(1− J)l

(1 + I)k
, (4.5)

where l is the age of the equipment at the start of period k.

Remark 4.2.2 The way that we have defined the decision variables “absorbs” the age
of the equipment, and the period it is operating in, as an index. This prevents the NPV
factor from becoming a function of the decision variables itself and subsequently deters
nonlinearity in the objective function.

Since Fe is the original capital expense, the salvage cost is:

−
∑
e,k,l

FeD
k,l
2 sk,le . (4.6)

Complete objective function

We wish to minimise the following objective function:

minimise
∑
e,k

FeD
k
1xk,0e +

∑
e,k,l,h

Bk,l
h,eD1V

k,b(l)+h−1
e xk,le −

∑
e,k,l

FeD
k,l
2 sk,le .

The first term represents the cost of capital outlay for purchasing equipment; the
second term captures the operating expense; and the third expression represents the
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salvage value of the equipment. In total there are 3(MKL + NKL) + MK + NK =
O((M +N)KL) terms in the objective function (before variable reduction).

4.2.4 Constraints

Index restrictions

To reduce the total number of variables in our program, we restrict the age bracket
of any piece of equipment to be no greater than the maximum age of the equipment
type, which we denote as L(e) for type e. In other words, we do not create a variable
for equipment older than its maximum age. Furthermore, we restrict the age of any
equipment that is not pre-existing to be no greater than the number of the current time
period. This is because equipment cannot increase two age brackets in a single time
period. However, we must also take into account the possibility of pre-existing equip-
ment. If we define P (e) to be the highest starting age of any pre-existing equipment of
type e, then in time period k we only have to consider equipment up to age

Lk(e) = min{P (e) + k − 1, L(e)}.

If there are no pre-existing equipment of type e, we set P (e) = 0. Whenever we sum

k

l

P(e)

L(e)

Figure 4.4: An illustration of the age indices considered for various time periods, with
P (e) = 2, L(e) = 5. As the periods increase, the permitted age increases.

over l, we only need to sum up to l = Lk(e) [Figure 4.4]. We note that as salvage occurs
at the start of the period, salvage variables extend to l = Lk(e) + 1.

Productivity constraints

The simplest constraint in the model is the satisfaction of productivity requirements:
the right quantities of materials must be handled to satisfy the mixing demands on
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the mill. To capture the productivity requirements in a constraint, we first consider
the potential productivity of the loader, P k,li′ , when it is aged l in period k. We can
determine this quantity by looking at the equipment availability (ali′), capacity (ci′)
and cycle time (tki′) where i′ is a loader from X′:

P k,li′ =
a
b(l)
i′ ci′

tki′
. (4.7)

For this formulation, availability is determined by the equipment’s age. The age de-
termines the age bracket under which the equipment falls. In turn, the age bracket
determines an availability estimate, which represents the proportion of total time that
the equipment is available to work. We have the following productivity constraints,
where T k is the productivity requirement for period k:∑

i′,l

P k,li′ xk,li′ ≥ T
k ∀ k. (4.8)

We similarly capture the productivity requirements for the trucks.

Compatibility constraints

We must ensure that the trucks and loaders used in a period are compatible with each
other. However, we do not need to make all trucks compatible with all loaders; we must
merely satisfy productivity requirements with the set of compatible trucks and loaders.
To set this up as constraints, we first define the set X(i′) to be the set of truck types
which are compatible with loader type i′. Next we define a constraint that ensures that
all equipment compatible with a particular loader type can satisfy the requirements:∑

i∈X(i′),l

P k,li xk,li ≥
∑
l

P k,li′ xk,li′ ∀ i′ ∈ X′, k. (4.9)

However, we must also consider the possibility that two loader types can be selected.
Equation (4.9) only accounts for the case where all trucks are compatible with one
loader, i′. We want to consider the loader type pairs case (i′, h′) and ensure that the
compatible fleet of trucks can service both of these loaders together. We denote the
union of the compatible truck fleets by the set X(i′, h′):∑

i∈X(i′,h′),j,l

P k,li xk,li,j ≥
∑
l

(P k,li′ xk,li′,j + P k,lh′ xk,lh′,j) ∀ {i′, h′} ⊂ X′, k. (4.10)
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Similarly, we must allow the possibility of three types of loaders, (i′, h′, j′):

∑
i∈X(i′,h′,j′),j,l

P k,li xk,li,j ≥
∑
l

(P k,li′ xk,li′,j+P k,lh′ xk,lh′,j+P k,lj′ xk,lj′,j) ∀ {i′, h′, j′} ⊂ X′, k.

(4.11)

We let A represent the set of all possible combinations of loaders, so that we can
bring together constraints (4.9), (4.10) and (4.11) into a constraint set. Note that the
assumption of full period utilisation may cause some problems with this constraint. In
particular, we could be forcing the trucking fleet to exceed the productivity require-
ments of the mine - if the loaders exceed the productivity requirements we don’t want
to force the trucks to match them. We can rectify this by introducing an indicator
variable, hkA′ , where A′ ⊂ X′, that will choose one of the following two constraints to
dominate:∑

i∈X(A′),l

P k,li xk,li ≥
∑
i′∈A′,l

P k,li′ xk,li′ −MhkA′ ∀ A′ ⊂ X′, k, (4.12)

∑
i∈X(A′),l

P k,li xk,li ≥ T
khkA′ ∀ A′ ⊂ X′, k. (4.13)

Because we are taking the power set of X′, this will generate 2K(2N−1) constraints
(where K is the total number of periods and N is the number of loaders). For the 13
period, 27 loader case study this equates to 35 billion constraints. However, the number
of loaders possible in the final solution will generally be much lower than the complete
set. Thus we can limit the generation of constraints by allowing a maximum of α loader
types. This will produce 2K

∑α
a=1( n!

a!(n−a)!) constraints. For the 13 period, 27 loader
problem with a maximum of 4 loader types, this equates to just 542178 constraints.

It is not necessary to allow more types in the compatibility constraint than the
number of different loader types in the optimal solution. Realistically, we expect that
no more than three loader types will be selected when we have pre-existing loaders and
no more than two loader types when we have no pre-existing loaders, although it is
possible that more can be selected.

We further reduce the number of constraints in the model by entering this constraint
set as lazy constraints. These constraints are only entered into the model if they are
violated by the solution of the master model. This is a useful technique for eliminating a
large set of inactive constraints from the model - potentially improving the computation
time and solvability of the model.
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Variable transition

Much of the linearisation in this model is due to the way that we have defined the
decision variables: we capture the working period and age of each piece of equipment
in respective indexes, k and l. It is important to establish the relationship between
these two indexes. That is, as we increment through the periods, how does the age
index, l, increase?

x

x x

x

e e

ee
k,l k,l+1

k+1,l+1k+1,l

Figure 4.5: The relationship between the indexes k and l for the variable transition
constraint in the single-location model.

In this model one period correlates with one period of equipment age [Figure 4.5].
Individual equipment types may age a different number of hours per period depending
on the number of available hours. This level of detail is not lost in this formulation,
but is abstracted to an integer age (relative to periods of use), l. We express this
relationship for all equipment types in constraint (4.14):

xk,le = xk−1,l−1
e − sk,le ∀ k > 0, l ∈ [1, Lk(e)], e. (4.14)

That is, the equipment that we own in period k, xk,le , must be equal to the equipment
that we owned in the previous period less the equipment that we salvaged at the start
of this period. Note that this constraint set is only valid if the relationship between
l− 1 and l is uniformly linear. In Chapter 6 we define a non-uniform relationship that
leads to completely different constraints.

Forced salvage

The maximum age of each type of equipment can vary substantially, ranging from as
low as 25,000 hours to 100,000 hours. When a piece of equipment reaches its maximum
age, we want to force it to retire at the beginning of the following period. This is a
particularly important consideration when including pre-existing equipment which may
already be close to retirement age at the beginning of the schedule, or for when we wish
to consider long mining schedules that breach the lifespan of the equipment.

xk,le = sk+1,l+1
e ∀ l > Lk(e), e, k. (4.15)
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However, during variable creation we can prevent over-age variables from existing in
the first place, thus effecting forced salvage.

Salvage Restriction

In this formulation we aim to minimise the cost. However, we provide a means of creat-
ing profit: salvage of trucks and loaders. These variables must be carefully constrained
to prevent the salvage of equipment that is not owned:

xk−1,l−1
e ≥ sk,le ∀ k > 0, l ∈ [1, Lk(e) + 1], e. (4.16)

Also, we prevent the unbounded salvage variables from dominating:

sk,0e = 0 ∀ e, k. (4.17)

Pre-existing equipment

A novelty of this model is the ability to include pre-existing equipment in the optimi-
sation process. We achieve this by setting the truck or loader decision variable of the
appropriate age to the number of pre-existing equipment of type e that are age P (e),
which we call xP (e)

e .

x0,P (e)
e + s0,P (e)

e = xP (e)
e ∀ e ∈ P. (4.18)

Through this constraint we also permit the model to salvage the equipment imme-
diately, which is the sole reason for forcing salvage to occur at the beginning of each
period.

Pre-existing equipment that has breached the maximum age, L(e), for its equipment
type, e, must be salvaged immediately:

s0,P (e)
e = xP (e)

e ∀ e ∈ P, P (e) > Lk(e). (4.19)
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4.2.5 Summary of notation

X set of all available truck types.
X′ set of all available loader types.
i truck type index, i ∈ X.
i′ loader type index, i′ ∈ X′.
e truck or loader type index, where e ∈ X ∪X′.
k period index.
l equipment age index.
b current age bracket.
M a large integer.
P set of all pre-existing equipment types.
A power set of all combinations of loader types, A = P(X′).
X(A′) set of all truck types compatible with loader set A′ ⊂ X′.
X(i′) set of all truck types compatible with loader i′ ∈ X′, where X(i′) ⊆ X.
K total number of periods in the mining schedule.
L(e) maximum age (in operating periods) for each truck and loader type, e.
Lk(e) maximum age we need to consider in period k, Lk(e) = min{P (e) + k −

1, L(e)}.
xk,le number of trucks or loaders of type e that are selected in period k, aged l.
sk,le number of trucks or loaders of type e that are salvaged at the start of

period k, aged l.
hkA′ indicator variable that decides dominance of one of two constraints for

loader set A′ ⊂ X′ in period k.
P (e) age of pre-existing equipment type e.
x
P (e)
e number of pre-existing trucks or loaders of type e aged P (e) at the start

of the schedule.
Fe fixed cost (capital expense) of obtaining equipment type e.
Dk

1 discount factor in period k.
Dk,l

2 discount factor and depreciation factor in period k when the equipment is
aged l.

B0 size of the cost brackets.
Bk,l
h,e proportion of time equipment type e aged l spends in cost bracket h ∈

{1, 2}.
V
k,b(l)+h−1
e variable expense for equipment type e in cost-bracket b(l)+h−1 in period

k.
a
b(l)
e availability of equipment e in cost-bracket b(l).
ce capacity of equipment e.
tke cycle time of equipment e in period k.
P k,le productivity of equipment e in period k at age l.
Hk operating hours of the mine for period k.
T k required production of the mine (in tonnes) for period k.
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4.2.6 Complete model

Minimise
∑
e,k

FeD
k
1xk,0e +

∑
e,k,l,h

Bk,l
h,eD

k
1V

k,b+h−1
e xk,le −

∑
e,k,l

FeD
k,l
2 sk,le

subject to∑
i′,l

P k,li′ xk,li′ ≥ T
k ∀ k (4.20)

∑
i,l

P k,li xk,li ≥ T
k ∀ k (4.21)

∑
i∈X(A′),l

P k,li xk,li ≥
∑
i′∈A′,l

P k,li′ xk,li′ −MhkA′ ∀ A′ ⊂ X′, k (4.22)

∑
i∈X(A′),l

P k,li xk,li ≥ T
khkA′ ∀ A′ ⊂ X′, k (4.23)

xk,le = xk−1,l−1
e − sk,le ∀ k > 0, l ∈ [1, Lk(e)], e (4.24)

xk,le = sk+1,l+1
e ∀ l > L(e), e, k (4.25)

xk−1,l−1
e ≥ sk,le ∀ k > 0, l ∈ [1, Lk(e) + 1], e (4.26)

sk,0e = 0 ∀ e, k (4.27)

x0,P (e)
e + s0,P (e)

e = xP (e)
e ∀ e ∈ P (4.28)

s0,l
e = xP (e)

e ∀ e ∈ P, P (e) > L(e) (4.29)

x, s ∈ Z+

4.3 Implementation and validity

4.3.1 Reducing the total number of variables

The formulation of the variables for this model generates a lot of zero variables. For
example, for the 40% depreciation problem in Section 4.4, 11006 variables are generated
during implementation. Of these, only 146 are non-zero in the final solution. For
example, consider the purchase variable xk,le . It is not necessary to create variables for
the case where l > k unless we have pre-existing equipment of age l.

With three indexes each, the truck and loader variables (both purchase and salvage)
can be defined as three dimensional variable matrices (Figure 4.6). Consider the front
face of the matrix to represent the increase of l periods of age (x-axis) with time
period, k (y-axis). We know from constraint (4.14) that l ≤ k, except where pre-
existing equipment occurs. Thus we can exclude all variables where l > k while noting
and accounting for pre-existing equipment in the total set of variables. The resulting
three dimensional matrix is shown in Figure 4.7 for e ∈ P.

The total number of subsequent variables generated is almost half of the number
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k

l

e

Figure 4.6: An illustrative three dimensional sketch of a variable matrix. Each node
represents a variable with respect to time (k), age (l) and type (e).

k

l

e

P(e)

Figure 4.7: An illustrative three dimensional sketch of a variable matrix with redun-
dant variables removed.

resulting if this approach had not been implemented.

4.3.2 Cplex and constraint order

We analysed the model in this chapter using Ilog Cplex v11.0 libraries with Ilog Concert
Technology v2.5 objects. From observations, the best results are obtained from Cplex
when the following are satisfied:

1. Each constraint is fully iterated before the next is considered.

2. The variables are entered into the constraints in the same order that they appear
in the objective function.

3. Dominant coefficients for the variables are positioned before smaller coefficients
of the same variable in the objective function
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Cplex creates a variable when it is entered into the objective function. Variables not
appearing in the objective function are created afterward. Note that the order in which
the variables appear in the objective function is dependent on the dominance of the
coefficients of these variables as they are entered. That is, the largest coefficient entry
for a particular variable acts as a magnet for all other entries of that same variable,
and it is this entry position that will be recorded for all instances of that variable. For
example, if we entered the string 2x1 + x2 + 40x1, then the order of the variables will
be x2, x1, because the dominant coefficient overrides the order of entry, and the first
variable x1 will be collected by the final x1 entry with the dominant coefficient.

The order that the variables are entered into a constraint should match the order
that they are entered into the objective function. Note that Cplex reduces all repeated
variables, and the final position of the reduced variable in the objective function is
related to the dominance of the coefficients. That is, the position with the greatest
coefficient is the dominant and final position. This, coupled with the overall ordering
of variables, has a significant impact on solution speed using the Cplex Optimizer. This
phenomena is not unique to Cplex: the effect of rearranging variables or constraints
has been noted in the past (Taha 1975).

4.4 Model testing

The parameters in this model are subject to uncertainty in two ways. Some parameters
are known to be wild estimates, such as the depreciation of equipment; other parameters
are certain to change once the schedule begins and new information comes to light,
such as truck cycle time and productivity requirements. In sensitivity analysis, we are
interested in the influence of these uncertain parameters on the model. Furthermore, we
study the sensitivity of the model to pre-existing equipment, which will often introduce
incompatibilities into the optimal solution - especially when the pre-existing equipment
has been superceded or discontinued.

To do this, we created a 10-period test case with uniform productivity requirements
(35 million tonnes) and uniform truck cycle times (30.75 minutes). In order to capture
the replacement cycle of the equipment, we reduced the maximum age of the trucks
to 35,000 hours. We did not include any pre-existing equipment in the test cases.
Other important parameters and inputs are presented in Tables 4.1 - 4.3. Table 4.1
displays the maximum age for both the trucks and loaders available for selection by
the model. This is the age at which the equipment must be salvaged if it is still
in operation. Table 4.2 displays the compatibility matrix for the trucks and loaders,
where a 0 denotes that the truck type is incompatible with the loader type, and a 1
indicates compatibility. Table 4.3 displays the availability multiplier which is applied
to the equipment productivity. Similar multipliers are used to represent the cost of
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maintenance and the reduction in efficiency in the equipment.
We programmed the model in C++ using Ilog Concert Technology v2.5 objects,

and solved the program with default IP algorithms in Ilog Cplex v11.0. We performed
these tests on a Pentium 4 PC with 3.0GHz CPU and 2.5GB of RAM.

Depreciation

It is difficult to choose a sound depreciation value, as the prediction of the salvage
value of equipment is highly dependent on variables outside the control of the mining
company, such as the existence of an interested buyer. Therefore, we would like to
vary the depreciation parameter and observe the change in the model. We expect to
see a shift in the computation time that coincides with slight changes in the solution
- computation time will increase when there are alternative solutions that are close
to the optimal solution in terms of objective function value. We analysed the effect
of depreciation on the 10-period test case under two conditions: we kept the adjusted
maximum age of the trucks (reduced to 35000 each), and then we returned to the actual
maximum age values. The difference between these two experiments is significant.

Figure 4.8: The effect of depreciation on computation time with adjusted maximum
age for trucks.

Figure 4.8 depicts the change in computation time with varying depreciation when
the maximum truck age is reduced to 35000 hours. We iteratively increased the depre-
ciation in increments of 5%, but increased this resolution to 1% at points of interest.
The times are unstable, although some asymptotic behaviour is notable as we head
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toward a depreciation of 0 and a depreciation of 100%.

Figure 4.9: The effect of depreciation on computation time with actual maximum age
for trucks.

When we return the truck maximum age to their actual values, a different story is
seen (Figure 4.9): notably a stable behaviour. We explain this difference by observ-
ing the variation in actual maximum truck age - the actual values of this parameter
distinguishes between trucks, as they vary from as low as 25,000 to 75,000. By set-
ting the maximum age for all of the trucks to be the same value, we are removing a
distinguishing factor.

Number of periods

The number of variables increases linearly with the number of periods, while the number
of constraints increases quadratically [Figure 4.10]. Therefore we expect the computa-
tion time to increase nonlinearly as the number of periods increases (Table 4.4). Other
factors, such as the maximum age of the equipment, can also contribute to large leaps
in computation time.

Big-M value

The size of M is important for the first of the compatibility constraints:∑
i∈X(A′),l

P k,li xk,li ≥
∑
i′∈A′,l

P k,li′ xk,li′ −MhkA′ ∀ A′ ⊂ X′, k. (4.30)
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Figure 4.10: The increase of variables and constraints with the number of periods in
the single-location model.

Obviously we need to set M large enough that it will dominate the
∑

i′∈A′,l P
k,l
i′ xk,li′

term when hkA′ is 1. We are concerned, however, that setting it higher than necessary
may add to computation time. To ensure that this does not happen, we tested values of
M starting from 10000 and increasing by a factor of 10 to 1010. This range encompasses
values which are too small (10000 - 1000000) to be effective, to numbers that are too
large for Cplex to accept (1010). We did not expect the objective function value to differ
in this experiment, and it did not (although it is possible it could become unstable in
the nonsensical range). However the interesting result is that the computation time is
not at all affected by variance in the value of the Big-M .

Period Variables Constraints Solution time (seconds)

5 104420 1554 8
6 125608 2094 10
7 146896 2709 18
8 168284 3402 17
9 189766 4165 26
10 211342 4998 76
11 233012 5904 1723
12 254770 6876 6197
13 276612 7910 9092

Table 4.4: The number of variables and constraints for different numbers of periods
for the test case.
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Pre-existing equipment

An important aspect of this model is the ability to include pre-existing equipment.
We test that this works by randomly selecting equipment types to be included as pre-
existing equipment. Using the random number generator in Maple version 9.5, we
selected three loader types from 0 to 27 with age selected randomly from 1 to 100, 000
hours; and five truck types from 0 to 24 with age randomly selected from 1 to 60, 000.
The result is presented in Table 4.5. Note that we denote a truck of type i by Ti, and
a loader of type i′ by Li′ .

Equipment id. L17 L8 L1 T1 T1 T7 T3 T9

Quantity 1 1 1 1 1 1 1 1
Capacity (tonnes) 42 19 25 35 35 136 136 230
Age (hours) 30539 22086 21769 17917 19462 35308 7350 10087

Table 4.5: The randomly selected pre-existing equipment for the 10-period test case.

We ran this trial varying the depreciation parameter by increments of 10 between
30% and 70%, using the actual maximum truck age [Table 4.6]. The time to obtain the
optimal solution decreases as the depreciation parameter increases, suggesting the that
solution becomes easier to find when the depreciation parameter is large. Interestingly
there appears to be no marked difference between the 50% to 70% range. It is difficult
to generalise the cause of this result from one experiment.

Depreciation (%) Time (seconds) Quality Solution

30 139.953 Optimal 1.14664× 108

40 98.203 Optimal 1.14849× 108

50 35.375 Optimal 1.14901× 108

60 31.641 Optimal 1.14914× 108

70 33.500 Optimal 1.14917× 108

Table 4.6: The 10-period test case with pre-existing equipment, varying depreciation
and actual maximum age for all equipment.

We study the solution when the depreciation parameter is set to 60% [Figure 4.11]
and compare it to the solution with no pre-existing equipment [Figure 4.12]. In the
solution with pre-existing equipment, we immediately salvage two of the pre-existing
loaders and purchase a new loader of type 4. This is because none of the pre-existing
loaders are compatible with pre-existing truck type 1, so the solution includes the
purchase of a new loader that is compatible. The cheap type 15 medium capacity
trucks are purchased for the bulk of the fleet work as in the solution with no pre-
existing equipment. A lone truck of type 6 is purchased in period 6. This truck type
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has a smaller capacity than the favoured type 15, and would be selected to fulfill a
small variation in productivity requirements.

Certainly the solution with no pre-existing equipment appears to be simpler than
the solution with pre-existing equipment. This may have been exacerbated by the
randomness of the pre-existing equipment - the pre-existing equipment is unlikely to be
the same as the optimal equipment purchases. The pre-existing equipment also leads
to greater heterogeneity in the fleet, and more purchase/salvage activity through-out
the schedule. The former result is clearly due to the presence of mixed types from the
beginning. The latter behaviour can be explained by the presence of old equipment
from the start of the schedule - this equipment may be forced to retire earlier in the
schedule than a new piece of equipment would.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9

Period

10

1×T1,5 fqv1×T3

v1×T6

v1×T7 fqv1×T9

v23×T15

v1×T15

v1×L1

v1×L4

fq 1×L8,7

fq 1×L17,9

Keyv
Purchasefq
Salvage

1.30 1.30 1.30 1.30 1.30 1.28 1.28 1.28 1.28 1.28 Match Factor

Figure 4.11: The 10-period test case with pre-existing equipment when the deprecia-
tion parameter is set to 60%.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9

Period

10

v2×T8

v24×T15

v1×T15

v1×L2

v1×L3

Keyv
Purchasefq
Salvage

1.18 1.18 1.18 1.14 1.14 1.14 1.14 1.14 1.14 1.14 Match Factor

Figure 4.12: The 10-period test case with no pre-existing equipment when the depre-
ciation parameter is set to 60%.

These solutions demonstrate that the model accounts for pre-existing equipment
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and its corresponding age, and checks for compatibility of the selected fleets.

Productivity requirements and truck cycle time

We can expect that the variation of the productivity requirements over the schedule will
affect computation time and the solution, as the changes in requirements coincides with
the declining ability of the equipment to meet requirements. A similar situation occurs
with truck cycle time, which also has an effect on the fleet’s ability to meet requirements.
We begin this analysis with a uniform truck cycle time. In effect, the truck cycle time
is constant, and so the purchase and salvage behaviour can be attributed to shifts in
the productivity requirements or the reduced efficiency of the equipment.

We now study the following three shapes of the productivity requirements: uniform,
linearly decreasing and parabolic. A flat productivity requirement is interesting because
we expect to be able to see the effect of decreased equipment efficiency over time. This
is the effect of the availability of the equipment.

We study linearly decreasing productivity requirements because a naive expected
behaviour of the production schedule is to extract a lot of material early in the schedule;
the quantity of material extracted slowly decreases as the pit largens and the trucks
must travel further to reach it [Figure 4.4]. Although this is not really what happens,
we study it out of interest.

Figure 4.13: The linear productivity requirements used for the 10-period test case.

A more realistic shape to consider is a parabolic productivity schedule [Figure 4.14].
We study this last of all.

As a final experiment, we flatten the productivity requirements and set the truck
cycle times to be increasing linearly [Figure 4.15]. This is a realistic expectation of the
truck cycle time, which will increase as the pit deepens and widens.

We consider each of these test cases with varying depreciation parameter (in in-
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Figure 4.14: The parabolic productivity requirements used for the 10-period test case.

Figure 4.15: The linear truck cycle times used for the 10-period test case.

crements of 10%), from 30% to 70%. Any depreciation outside of this range can be
considered unrealistic for this type of analysis. The results are presented in Table 4.7.

It is interesting to note that the model solved slowest when both the productivity
requirements and truck cycle times were flattened; the best results were obtained when
the productivity requirements were increasing linear while the truck cycle times were
flattened. To understand this difference more fully, we look at the solutions.

Figure 4.16 shows the solution for the flat productivity requirements and flat truck
cycle time for 50% depreciation. This is a very ‘clean’ solution, employing only two
loader types to neatly fill productivity requirements, and two truck types to work
alongside the loaders. All equipment is purchased in the first period, with the exception
of one truck that is added in period-4 to offset the decreasing availability of the trucks.

We compare this solution with that obtained with linear productivity requirements
and flat truck cycle time [Figure 4.17]. In contrast, this solution looks very ‘messy’
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Production Cycle Time Depreciation Quality Time (s)

flat flat 50% Optimal 1119
linearly decreasing flat 50% Optimal 8

parabola flat 50% Optimal 37

flat flat 30% Optimal 1162
flat flat 40% Optimal 476
flat flat 50% Optimal 1119
flat flat 60% Optimal 109
flat flat 70% Optimal 51

linearly decreasing flat 30% Optimal 10
linearly decreasing flat 40% Optimal 6
linearly decreasing flat 50% Optimal 8
linearly decreasing flat 60% Optimal 6
linearly decreasing flat 70% Optimal 4

parabola flat 30% Optimal 181
parabola flat 40% Optimal 17
parabola flat 50% Optimal 37
parabola flat 60% Optimal 10
parabola flat 70% Optimal 9

flat linearly increasing 30% Optimal 3573
flat linearly increasing 40% Optimal 321
flat linearly increasing 50% Optimal 40
flat linearly increasing 60% Optimal 20
flat linearly increasing 70% Optimal 26

Table 4.7: The results summary for the 10-period test cases with varying production
requirement and flat truck cycle times.

with at least one salvage occuring in every period. Furthermore, this solution selects
two different loaders: one 80-tonne capacity loader and one 48-tonne capacity loader.
We have different loader types because of the starting productivity requirements, which
suggests that the ease with which the latter solution was obtained is related to the lim-
ited number of loader combinations that could satisfy the productivity requirements.
We tested this idea by increasing the flattened productivity requirements to the same
starting level as the linearly decreasing productivity requirements. We were disap-
pointed to find that the 50% depreciation problem with flat productivity requirements
(40 million tonnes) took a sluggish 399 seconds to solve compared to the solutions with
different productivity requirement shape.

With so many parameters in the model, it is difficult to determine the exact cause
of the results in Table 4.7. However, it is clear that more complex productivity re-
quirements are easier to solve than simple or constant requirements. Furthermore, it
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1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9

Period

10

v2×T8

v24×T15

v1×T15

v1×L2

v1×L3

Keyv
Purchasefq
Salvage

1.18 1.18 1.18 1.14 1.14 1.14 1.14 1.14 1.14 Match Factor

Figure 4.16: The solution for the 10-period test case with flat productivity require-
ments and flat truck cycle time for 50% depreciation.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9

Period

10

v1×T8 fqv3×T9fq 2×T9fq 1×T9 fqv27×T15 fq 26×T15,0 fq 25× fq 24× fq 22× fq 21×T15

v1×L4

v1×L25 fq
Keyv

Purchasefq
Salvage

1.14 1.17 1.23 1.27 1.35 1.40 1.05 1.10 1.28 1.26 Match Factor

Figure 4.17: The solution for the 10-period test case with linear productivity require-
ments and flat truck cycle time for 50% depreciation.

appears that increasing the depreciation parameter highlights the financial differences
between decisions, thus making the model easier to solve and improving computation
time.

4.5 Case study

Our industry partner provided data for a complete case study, which included a list of
available equipment, mine data, equipment performance data, compatibility data and
pre-existing equipment lists. We started out with 24 truck types and 27 loader types,
but whittled them down to 8 truck and 20 loader types once equipment unsuited to the
mine was removed. The production requirements and truck cycle times are provided
in Table 4.9, while the truck cycle times and productivity requirements are shown in
Figure 4.18. No lease equipment was included in the set. Cost data and equipment
identities were provided, but cannot be presented here for confidentiality reasons. The
unit for production is one million tonnes while the unit for truck cycle time is minutes.

We begin the mining schedule with some pre-existing equipment [Table 4.8]. That
is, eleven 172 tonne trucks of varying age in hours; and three loaders, namely two 34
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tonne hydraulic shovels and one 42 tonne hydraulic shovel. The age of this equipment
is presented in Table 4.8.

Equipment id. LP7 LP7 LP17 TP12 TP12 TP12

Quantity 1 1 1 3 2 6
Capacity (tonnes) 34 34 42 172 172 172
Age (years) 16 17 16 7 8 11

Table 4.8: Pre-existing equipment for the 13-period case study.

Figure 4.18: The production requirements and truck cycle times for the 13-period
case study.

In this case study, we make the following assumptions:

• The mine is removing ore and waste, and operates under a loader-truck system.

• The operating hours of the mine is 7604 hours for each period.

• The loaders are selected from a set of 20 loader types.

• The trucks are selected from a set of 8 truck types.

• There are K = 13 periods in total, each of length 1 year.

We have the following parameters:

• The cost-bracket length, B0, is 5000 hours.

• The interest rate for all periods is 8%.

• The depreciation rate varies from 40% to 70%.
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We implemented the 13-period case study with 276612 variables but just 7910 con-
straints [Table 4.10].

Depreciation (%) Time (s) Objective function ($)

40 3255 1.25806× 108

50 9873 1.26075× 108

60 3336 1.26212× 108

Table 4.10: Summary of results for the 13-period case study with varying depreciation.

Convergence for this problem was swift, reaching within 1% of optimality in just
15 seconds. Figure 4.19 depicts the rate at which the best integer solution converges
with the best node solution. The best integer solution is the best found feasible integer
solution and acts as an upper bound on the optimal objective function value. The
best node solution is the best found continuous solution which is found by relaxing the
integer assumption and solving the equivalent linear program. This is a lower bound
on the optimal solution. The optimal solution of $1.25806 × 108 was obtained after
3255 seconds (2.5 hours) for the 40% depreciation problem [Figure 4.20].

Figure 4.19: Convergence of the 13-period case study for the single-location model.

In our solution, two 60-tonne loaders were selected over the course of the schedule.
Five different types of trucks were selected to work with these loaders: a 136-tonne
truck, three 177-tonne trucks, two large 230-tonne trucks, 11 pre-existing trucks and
twenty 150-tonne trucks. The match factor indicates that we always have an excess of
trucks, and that the loaders will work almost constantly. This reflects the significantly
higher cost of operating loaders.

Our industry partner derived three retrospective solutions for this case study. The
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9

Period

10 11 12 13

v1×T6fqv1×T8

v1×T8 fqv fq1×T8

v1×T9

v1×T9 fq fq
v3×T12 fq 1×T12,7 fqv2×T12 fq 1×T12,8fqv6×T12 fq 3×T12,11fqv3×T15 fqv7×T15 fq 4×T15,0 fqv5×T15 fqv3×T15 fqv2×T15 fq
v1×L3

v1×L3 fqfq 1×L7,16

fq 1×L7,17

fq 1×L17,16

Keyv
Purchasefq
Salvage

1.08 1.73 1.32 1.25 1.14 1.15 1.24 1.41 1.51 1.03 1.00 1.26 11.00 Match Factor

Figure 4.20: The optimal solution for the 13-period case study for the single-location
model.

first is the solution provided by an inhouse equipment selection spreadsheet tool. The
loader solution kept the youngest pre-existing loader with capacity 34T , and purchased
two new 40T loaders. The truck solution is presented in Table 4.11. This solution

Periods

1 2 3 4 5 6 7 8 9 10 11 12 13

Pre-existing 172T 11 11 11 11 11 11 11 11 11 11 11 11 11
New 172T 5 5 5 5 5 5 5 5 5 5 5 5 5
New 172T 0 2 2 2 2 2 2 2 2 2 2 2 2
New 172T 0 0 0 0 1 1 1 1 1 1 1 1 1

Table 4.11: The retrospective truck purchase and salvage policy for the 13-period case
study.

totalled $1.51483 × 108. The solution provided by our integer programming model
improved this by 17.7% - an increase in profit of $26, 876, 000.

A second solution was produced by an equipment selection manager (for the industry
partner), who recommended the salvage of all pre-existing loaders. One 42T loader and
two 57T loaders were to be purchased. The same truck solution as presented in Table
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4.11 was to be used. This solution cost $1.55241×108, using the cost function provided
in this chapter [Section 4.2.3]. Our model solution provides an improvement of 18.75%,
which amounts to $29, 116, 000.

A third solution was provided, which was the actual solution adopted. All pre-
existing loaders were salvaged and three 57T loaders were purchased. The truck pur-
chase and salvage policy from Table 4.11 was used. This solution cost $1.66550× 108.
Our model improved this solution by 24.3%, amounting to a $40, 425, 000 cost differ-
ence.

Clearly, our solution (although more complicated) is much cheaper, indicating the
advantages of applying an integer programming model to this problem.

4.6 Discussion

For this project, we aimed to derive an integer programming model that would act as
a reliable tool in the equipment selection process. In this chapter, we have presented a
computationally fast integer program that can outperform industry generated solutions
substantially.

We have placed particular importance on pre-existing equipment and compatibility
in this model. Ensuring compatibility of multiple types of equipment is a unique aspect
of this model that allows greater freedom for the equipment selection manager for two
reasons:

1. the manager may consider purchasing equipment that is different to any of the
pre-existing fleet;

2. the manager may consider purchasing mixed fleets that better suit the produc-
tivity requirements of the mine, and consequently may achieve lower operating
expenses.

The ability to include pre-existing equipment in the equipment selection process is novel
for the mining industry.

Another important advantage of this model is that it appropriates the operating
cost across brackets. That is, within one period, if a piece of equipment graduates to
the next cost bracket (relative to its age), then the operating cost will reflect this in a
proportional manner.

The solutions presented in this chapter test the “bigger is better” philosophy that
is commonplace in the mining industry. In our study, bigger equipment is considered
too costly to select all the time. Instead the solutions tend toward moderate sized
equipment that can adapt to changing productivity requirements and truck cycle times.
This result suggests that bigger machines provide a cost benefit only if they can be fully
utilised for the entire period.
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Although the assumptions contribute to the tractability of the model, they can also
detract from its realism. In particular, the assumptions of full period utilisation and
generalised production requirements are abstractions of the problem, designed to create
a simple model.

The validity of the assumption of full period utilisation is wholly dependent on the
management practices of the mine. Some mines may only operate the equipment as it
is needed, while others will operate all equipment that is owned but at lesser capacity.
The full period utilisation assumes the latter is taking place. This can lead to peculiar
solutions, such as having many different truck types (up to 5 in some cases), with some
equipment salvaged after only one year of ownership. This can be attributed to the
assumption that any equipment that is owned is operated for the entire period. This
forces the selection of truck types that closely fit the productivity requirements, and
with the presented data set this sometimes results in many truck types being selected.
However, hiring equipment may offset this problem, and encourage the model to select
a more manageable variety of truck types. We develop a different interpretation of
utilisation in the utilised-cost, single-location, multi-period model in Chapter 6.

The productivity constraints assume that no bunching occurs and the selected fleets
operate efficiently (though not necessarily to full capacity). This is not an accurate
abstraction of reality. For example, if we had 20 trucks operating in a fleet with one
loader operating to full capacity and we added 5 more trucks, then the truck cycle time
would increase due to bunching. Thus, with our present model of the problem, the
productivity of the system will be inaccurately overestimated in this case. In actuality,
the bunching is a function of the fleet solution. It would be a great challenge to pursue
an integer programming model that can capture this type of cyclic relationship.

The assumption of generalised productivity requirements is restrictive in the sense
that this model cannot be applied to a mine with an intricate system of loading locations
and trucking routes with guaranteed satisfaction of productivity requirements. This
model is therefore useful for mining schedules that are not fully developed, or for mines
that do not have much movement between alternate dump-sites.

An obvious improvement is to relax the assumption of generalised productivity re-
quirements by allowing multiple loading sites, dumping sites and truck routes. This is
the challenge that we address in the forthcoming Chapter 5.
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Chapter 5

Multiple-location,

multiple-period equipment

selection

Materials handling in surface mines can be complicated by the presence of multiple
mining locations, multiple truck routes and multiple dump-sites. Even small mines can
have multiple locations or routes in operation simultaneously. Differences in routes can
accrue substantial cost differences if the cycle time is very different. This can lead to the
selection of a fleet that is not capable of meeting productivity requirements if we do not
account for these location differences. We derive a mixed-integer linear programming
model for heterogeneous equipment selection in a surface mine with multiple locations
and a multiple period schedule, while allocating the equipment to locations. We test
the model on two case studies which demonstrate promising results for large sets of
equipment and some long term schedule scenarios.

5.1 Introduction

A typical surface mine may have several mining locations, several dump-sites or several
routes from a location to a dump-site. Ideally, we would like to capture these multiple
locations in an equipment selection model to ensure that productivity requirements can
be met by the selected fleet. An optimal equipment selection solution must allocate the
equipment to these locations to ensure satisfaction of local production requirements. In
spite of the prevalence of multiple trucking routes and dump-sites in surface mines, the
multiple location problem has not been addressed in the truck and loader equipment
selection literature. This may be because the consideration of multiple periods and
multiple locations exacerbates what is already a large scale problem.

In this chapter we address the truck and loader equipment selection problem for
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multiple location, multiple period mines [Figure 5.1].

Remark 5.1.1 A location represents a place in the mine where loaders can operate;
alternatively, the location can encapsulate the mining location, truck and dump-site.

The way in which we define the locations and routes is not significant to the outcome
of the model presented in this chapter. During our analysis of the model, we consider
two case studies that view location in two different ways. The first case study considers
the mining location to be a position for the loader that is significantly different to
another position. For the second case study a location represents the mining location,
the route and the dumpsite. The second scenario occurs when the mining schedule is
less detailed, and productivity requirements are only provided for the mining locations
rather than mining locations and dumpsites.

truck route

dump−siteloading location

Figure 5.1: A multiple-location mine model with 2 loading locations, 2 dump-sites
and 3 truck routes.

The consideration of multiple locations or routes introduces the need to allocate
equipment to locations. Taking a simple approach as in Chapter 4, we could keep
the xk,le variables as is and introduce a fourth index, location j. This approach is
problematic in that trucks and loaders will be allocated to locations for the entire
length of each period, which is unrealistic. Instead, we introduce continuous variables
for allocation which represent the proportion of time the vehicles work at a particular
location. In this chapter we also:

• Consider the inclusion of pre-existing equipment and heterogeneous fleets;

• Consider a multiple-period, multiple-location mining schedule;
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• Derive an allocation policy for trucks to routes and loaders to locations. Surpris-
ingly, an equipment selection model that also allocates equipment has not been
considered before in the mining literature.

We outline the model in Section 5.2. We begin by considering the assumptions
(Section 5.2.1) and the decision variables (Section 5.2.2), before deriving the objective
function (Section 5.2.3) and constraints (Section 5.2.4). We then provide a summary
of the notation (Section 5.2.5) before summarising the complete model (Section 5.2.6).
To test the model, we consider two surface mining case studies (Sections 5.3 and 5.4).

5.2 Problem formulation

As with the single-location model in Chapter 4, integer programming is an appropriate
modelling method for the multi-location problem. However, the allocation variable
must be non-integer as it isn’t effective to allocate a piece of equipment to a single
location or route for the entire period if the period length is substantial, such as one
year, and the equipment is not required. We can adequately capture the allocation
of trucks to routes and loaders to loading locations in continuous variables. Therefore
the multi-location equipment selection problem for surface mining is best modelled as
a mixed-integer linear program.

5.2.1 Assumptions

The model presented in this chapter is a conceptual extension of the model presented in
Chapter 4. Therefore we retain all assumptions from that chapter except the assump-
tions of Generalised productivity requirements and Truck cycle time [Section 4.2.1],
which are relaxed.

Multiple locations: We consider multiple loading locations and multiple trucking
routes. The selected fleet is free to move about these locations and routes as they
are needed as deemed by the allocation policy.

Multiple truck cycle times: Each location may have a different truck cycle time.

Known mine schedule: We assume that an acceptable mine schedule has already
been derived, and that the mining method has been selected. We start the equip-
ment selection with a sub-set of trucks and loaders that suit the particular mining
scenario.

Salvage: All equipment is salvageable at the start of each period at some depreciated
value of the original capital expense. Any pre-existing equipment may be salvaged
at the start of the first period.
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No auxiliary equipment: Auxiliary equipment, such as wheel loaders and small
trucks, are not considered in this model. Although the cost of running auxil-
iary equipment may differ according to the overall fleet selection, for the purpose
of this model this cost is considered trivial. Note that the cost of auxiliary equip-
ment can be built into the operating cost if necessary.

Known operating hours: The operating hours of the mine are estimated by taking
planned downtime, blasting and weather delays into account.

Heterogeneous fleets: We allow different types of equipment to work side-by-side.

Fleet retention: All equipment is retained at the end of the last period. Optionally,
we can relax this assumption and allow the model to salvage some or all equipment
at the end of the final period.

Full period utilisation: Operating costs are charged as though the equipment has
been fully utilised for the entire period in which it is owned.

5.2.2 Decision variables and notation

Fleet purchase and tracking variables

As in Chapter 4, we need to capture the number of equipment, the equipment type,
the age of the equipment and the periods in which the equipment is operating. This
variable set is important for tracking whole equipment units while other variables are
used to allocate equipment. Recall that we adopted three indexes to represent type
(e), period (k) and age (l). The purchase and tracking variable for equipment is:

xk,le : number of equipment of type e in period k that are age l.

Allocation variables

We use continuous variables to allocate equipment to routes or locations for a proportion
of the total time. These variables must be indexed to the period, equipment type,
location or route and equipment age:

fk,le,j : number of equipment of type e, age l, that are allocated to route j in period k.

We note that as these variables are continuous we may allocate partial trucks to a
route, for example, which denotes that a truck spends a partial amount of time on that
route.
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Salvage variables

Recall from Chapter 4 that we use salvage variables to retain important information,
such as which specific truck or loader is salvaged:

sk,le : number of equipment of type e salvaged in period k while age l.

5.2.3 Objective function

Now that we have introduced a utilisation variable, fk,le,j , we would ideally like to bring
it into the objective function to account for operating expense accurately. However,
we cannot account for the cumulative age of a piece of equipment without accounting
for individual machines. Although it seems simple, this step alone is quite difficult
to model and we make this extension in Chapter 6. For now, we have retained the
assumption of Full period utilisation from Chapter 4. Placing the utilisation variable
into the objective function would imply that the equipment is only ageing by quantity
fk,le,j in each period, which is contradictory to our assumption of Full period utilisation.
Therefore we only use the tracking variables in the objective function. We use the same
objective function as for the single-location model in Chapter 4, presented in Section
4.2.3.

Complete objective function

Minimise
∑
e,k

FeD
k
1xk,0e +

∑
e,k,l,h

Bk,l
h,eD

k
1V

k,b(l)+h−1
e xk,le −

∑
e,k,l

FeD
k,l
2 sk,le .

5.2.4 Constraints

Productivity constraints

We must satisfy the productivity requirements for each location or route. As before, the
production capability of a piece of equipment is determined by its availability, capacity
and cycle time:

P k,le =
a
b(l)
e ce
tke

. (5.1)

Again, for this formulation availability is determined by the equipment’s age. We
require the loaders to satisfy the productivity demand, T kj′ , at location j′:∑

i′,l

P k,li′ fk,li′,j′ ≥ T
k
j′ ∀ k, j′. (5.2)

Similarly, we require the trucks to satisfy the demand for each route or dumpsite,
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j: ∑
i,l

P k,li fk,li,j ≥ T
k
j ∀ k, j. (5.3)

The trucks must also match the productivity demand of the mining locations to
which route j connects to:∑

i,l,j⊂C(j′)

P k,li fk,li,j ≥ T
k
j′ ∀ k, j′. (5.4)

Compatibility constraints

We must satisfy productivity requirements with the set of compatible trucks and loaders
for each location. To set this up as a constraint set, recall that we define the set X(A′)
to be the set of truck types which are compatible with loader types A′ ⊂ X′. For
each constraint, we are only interested in the routes, j, that connect to the location
j′. Therefore we consider the routes that are j ∈ J(j′), where J is the set of locations.
Again, we let A represent the set of all possible combinations of loaders:∑

i∈X(A′),j∈J(j′),l

P k,li fk,li,j ≥
∑
i′∈A′,l

P k,li′ fk,li′,j ∀ A′ ⊂ X′, k, j. (5.5)

As we are now using a utilisation variable, these are the only compatibility con-
straints that we require. Since A′ comes from the power set of X′, this will generate
KJ(2N−1) constraints (where K is the total number of periods and J is the total num-
ber of locations). For the 13 period, 27 loader problem with 5 locations, this equates
to 8724 million constraints. However, for a given case study the number of loaders pos-
sible in the final solution will generally be much lower than the complete set. In this
case we can limit the generation of constraints to a maximum of α loader types. This
will produce KJ

∑α
a=1( n!

a!(n−a)!) constraints. For a 13 period, 27 loader problem with a
maximum of 4 loader types and 5 locations, this equates to just 13 million constraints.
Further ways to reduce this number of constraints are discussed in Section 4.2.4. We
choose to enter these constraints into the model as lazy constraints.

Restricted allocation

We link the equipment tracking variables, xk,le , to the allocation variables fk,le,j by placing
an upper bound on the allocation:

xk,le ≥
∑
j

fk,le,j ∀ e, k, l. (5.6)
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Variable transition

As we have extended the model in Chapter 4 for this multi-location model, the variable
transition constraints are exactly the same (the tracking variables do not track the
location in which the equipment works):

xk,le = xk−1,l−1
e − sk,le ∀ k > 0, l > 0, e. (5.7)

Forced salvage

We force the retirement of old equipment with the following constraint:

xk,le = sk+1,l+1
e ∀ l > L(e), e, k < K. (5.8)

However, during variable creation we can prevent over-age variables from existing
in the first place, thus effecting forced salvage.

Salvage Restriction

We repeat the salvage restriction constraints from the previous model by ensuring that
we do not salvage any equipment that we did not own in the previous period:

xk−1,l−1
e ≥ sk,le ∀ k > 0, l > 0, e. (5.9)

Also, we prevent the unbounded salvage variables from dominating:

sk,0e = 0 ∀ e, k. (5.10)

Pre-existing equipment

In this model we also consider pre-existing equipment, and so this constraint is the
same as in Chapter 4. We only need to consider pre-existing trucks and loaders which
are drawn from the subset P ⊂ X ∪X′.

x0,P (e)
e + s0,P (e)

e = xP (e)
e ∀ e ∈ P. (5.11)

Pre-existing equipment that has exceeded the maximum age, L(e), for its equipment
type, e, can be salvaged immediately:

sk,P (e)
e = xP (e)

e ∀ e ∈ P, k, P (e) > L(e). (5.12)
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5.2.5 Summary of notation

X set of all available truck types.
X′ set of all available loader types.
i truck type index, i ∈ X.
i′ loader type index, i′ ∈ X′.
e equipment type index, e ∈ X ∪X′.
j dumpsite/route location index.
j′ mining location index.
k period index.
l equipment age index.
P set of all pre-existing equipment types.
A power set of all combinations of loader types, A = P(X′).
X(A′) power set of all truck types compatible with loader set A′ ⊂ X′.
K total number of periods in the mining schedule.
J total number of locations and/or routes in the mining schedule.
L(e) maximum age (in operating hours) unique for each truck and loader type,

e.
Lk(e) maximum age we need to consider in period k, Lk(e) = min{P (e) + k −

1, L(e)}.
xk,le number of equipment type e selected in period k, aged l.
fk,le,j number of equipment type e selected in period k, aged l sent to work on

route j.
sk,le number of equipment type e salvaged in period k, aged l.
x
P (e)
e number of pre-existing equipment type e aged P (e) at the start of the

schedule.
Fe fixed cost (capital expense) of obtaining equipment type e.
Dk

1 discount factor in period k.
Dk,l

2 discount factor in period k and depreciation factor for equipment aged l.
Bl
h,e proportion of time equipment type e aged l spends in cost bracket h ∈

{1, 2}.
V
k,b(l)
e variable expense for equipment type e, aged b(l) in period k.
P k,le productivity of equipment e, in period k at age l.
T kj required productivity of the mine (in tonnes) for period k at location j.
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5.2.6 Complete model

Minimise
∑
e,k

FeD1xk,0e +
∑
e,k,l,h

Bk,l
h,eD

k
1V

k,b(l)+h−1
e xk,le −

∑
e,k,l

FeD
k,l
2 sk,le

subject to ∑
i,l

P k,li fk,li,j ≥ T
k
j ∀ k, j (5.13)

∑
i′,l

P k,li′ fk,li′,j′ ≥ T
k
j′ ∀ k, j′ (5.14)

∑
i,l,j⊂C(j′)

P k,li fk,li,j ≥ T
k
j′ ∀ k, j′ (5.15)

∑
i∈X(A′),j∈X(j′),l

P k,li fk,li,j ≥
∑
i′∈A′,l

P k,li′ fk,li′,j′ ∀ A′ ⊂ X′, k, j′ (5.16)

xk,le ≥
∑
j

fk,le,j ∀ e, k, l (5.17)

xk,le = xk−1,l−1
e − sk,le ∀ k > 0, l ∈ [1, Lk(e)], e (5.18)

xk,le = sk+1,l+1
e ∀ l > L(e), e, k (5.19)

sk,0e = 0 ∀ e, k (5.20)

xk−1,l−1
e ≥ sk,le ∀ k > 0, l ∈ [1, Lk(e) + 1], e

(5.21)

x0,l
e + s0,l

e = xP (e)
e ∀ e ∈ P, P (e) > 0 (5.22)

s0,P (e)
e = xP (e)

e ∀ e ∈ P, P (e) > L(e) (5.23)

x, s ∈ Z+

f ∈ R+

5.3 Computational results: First case study

Our industry partner provided this case study from a new mining operation. Conse-
quently, no retrospective data was available.

5.3.1 Locations and routes

The mine for this case study has eight loading locations - four mining locations (L1, L2, L3, L4)
and four stockpiles (S1, S2, S3, S4). The stockpiles are used to meet ore grade mixing
constraints at the mill. The mixing constraints are not considered in this model, as they
are assumed to be pre-optimised when the mining schedule was produced. There are
also four dumpsites (D1, D2, D3, D4), which includes one mill (D3). Figure 5.2 depicts
the scheduled locations and routes for this mine. There are 13 routes in total, shown
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Figure 5.2: Routes from mining locations to dumpsites for the first case study.

in Figure 5.3.

5.3.2 Production requirements

Our industry partner provided the production requirement data for both the mining
locations and the truck routes [Tables 5.1 and 5.2]. We combined the location data to
create a production requirement graph for the mine over all periods [Figure 5.4]. We
also created a relationship array to denote which routes correspond to which locations
[Table 5.3]. We use this array for setting up the compatibility constraints. Our industry
partner also provided pre-estimated truck cycle times for each route [Table 5.4].

5.3.3 Case-specific parameters

This case study considers a surface mine operating under a truck-loader hauling system,
and mines ore and waste in an open pit. We know the following:

• The mine operates for 7604 hours in each period.

• The loaders are selected from a set of 20 loader types.

• The trucks are selected from a set of 8 truck types.

• There are 13 periods, K, each of length 1 year.

• The cost-bracket partition, B0, is 5000 hours.

• The discount rate for all periods is 8%.
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Figure 5.3: The routes from mining locations to dumpsites for case study one.

• The depreciation rate is set to 50%.

• The maximum value for any truck variable is 30.

• The maximum value for any loader variable is 10.

5.3.4 Solutions

We implemented this case study on a Pentium 4 PC with 3.0GHz and 2.5GB of RAM.
The model was implemented in C++ using Ilog Concert Technology v2.5 objects and
Ilog Cplex v11.0 libraries to solve the problem. The printable linear program contained
63433 variables and 19366 constraints for the 13-period, 8 truck types and 20 loader
types problem. This model demonstrated a slower convergence than the single-location
problem, indicating a potential symmetry problem that has been magnified by the
increase in scale.
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Figure 5.4: Production requirements for the 13 period case study.

We set up the 13-period problem with just 15571 constraints before the compati-
bility constraints were taken into account. We successively solved and checked infea-
sibility of the compatibility constraints 21 times, adding a total of 3795 compatibility
constraints that were violated along the way.

After 7.5 hours of algorithm run-time, we obtained a solution within 3% of the
optimal solution for the 50% depreciation case study [Table 5.5]. When the algorithm
was permitted to run for a longer period, the computer memory was exhausted. This
indicates a cluster of similar solutions near the optimal solution, making it difficult for
the algorithm to differentiate between the solutions. Generally this occurs when we have
several similar pieces of equipment and several alternate locations to which they must
be allocated. When this allocation can be achieved in many ways without significantly
altering the objective function, we have created a cluster of solutions. Typically these
solutions do not differ much in terms of the objective function value.

The purchase and salvage policy for this multi-location mine is complicated by the
productivity requirements, which contain several significant changes from period to
period [Figure 5.4]. This leads to short-term ownership of some trucks, for example a

Periods Variables Constraints # solves Time (seconds) Quality Solution

10 39855 9814 + 3319 26 5643 3% 1.26292× 108

11 47166 11599 + 3043 15 3979 3% 1.31263× 108

12 55032 13521 + 4043 33 17656 3% 1.37168× 108

13 63433 15571 + 3795 21 26662 3% 1.37249× 108

Table 5.5: The results summary for the first case study with varying periods.
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9

Period

10 11 12 13

v2×T8 fq 1×T8,0fq v1×T8fqv2×T9 fqv1×T9 fq v1×T9 fqv2×T9 fqv3×T12 fqv2×T12 fqv6×T12 fqv15×T15 fqv5×T15 fq 1×T15,0

v1×T15 fqv2×T15 fq
v1×L2 fqv1×L3

v1×L3 fqfq 1×L7,16

fq 1×L7,17

fq 1×L17,16

Keyv
Purchasefq
Salvage

Figure 5.5: The 3% optimal 13-period solution for case study one with the depreciation
parameter set to 50%.

type-8 truck was purchased in period 8 and salvaged at the start of period 9 [Figure
5.5].

The allocation policies are helpful tools because they guarantee that the selected
fleet can cope with the requirements of the multiple locations. We know that the
equipment is not necessarily working to maximum capacity. However, the allocation
policy always allocates 100% of the equipment time across the locations. This implies
that there is some flexibility in the allocation policy. Hence, although this solution is
presented as the optimal solution, there will be numerous alternate optimal solutions.
That is, the allocation policy is not unique. It would be simple to create a spreadsheet
that can reflect the flexibilities in the policy and allow dynamic changes in the policy
without affecting the objective function value.

In the allocation policy for this case study, we represent the age of the equipment
in parentheses as an equipment tracking tool. That is, the age of the equipment is an
important factor in the cost of operating the equipment, and so it is relevant to allocate
the correct age equipment as dictated by the policy [Tables 5.6, 5.7, 5.8 and 5.9].
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Figure 5.6: The locations for case study two.

5.4 Computational results: Second case study

Our industry partner provided a second case study from a mine that was scheduled
to open in 2007. Equipment selection for this mine has not yet taken place, and so
retrospective data (in the form of a comparative solution) is not available. This mine
begins with no pre-existing equipment.

5.4.1 Locations and routes

The locations for this mine are defined differently to the first case study. For this mine
the location encompasses the mining location, the route and the dump-site. This is
a convenient way to define the locations if there are few overall mining locations and
dump-sites.

For example, location one includes the K1 mining location and the route to the
ORE dump-site. The actual location of the dump-site is irrelevant as long as we have
sufficiently accurate truck cycle time estimates. The mine for this case study has two
loading locations (K1,K2). There are also two dump-sites (ORE,WASTE). There
are 4 locations in total, represented by the arrows in Figure 5.6.

5.4.2 Production requirements

This new mine is simpler than the first in terms of the number of mining locations. The
overall production requirements change at a moderate rate [Table 5.10]. However, the
estimated truck cycle times, also provided by the industry partner, demonstrate great
variability from period to period, and also between locations [Table 5.11]. For example,
the smallest truck cycle time is 2.64 minutes, while the longest is 23.82 minutes.

5.4.3 Case specific parameters

This case study considers a mine operating under a truck-loader hauling system, and
mines ore and waste in an open pit. We have the following:

• The mine is removing ore and waste, and operates under a shovel-truck system.

• The operating hours of the mine is 7604 hours for each period.
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Location

Period 1 2 3 4

1 8.24 2.64 0.0 0.0
2 8.3 3.48 0.0 8.24
3 9.28 3.84 5.74 10.23
4 10.52 4.88 8.73 10.45
5 11.16 6.01 10.38 12.6
6 12.47 7.23 11.71 16.72
7 12.05 8.49 13.82 19.6
8 15.77 10.11 15.49 21.37
9 17.74 12.05 16.52 22.82

Table 5.11: The truck cycle times for the second case study.

• The loaders are selected from a set of 20 loader types.

• The trucks are selected from a set of 8 truck types.

• There are K = 9 periods in total, each of length 1 year.

• The cost-bracket length, B0, is 5000 hours.

• The interest rate for all periods is 8%.

• The depreciation rate is set to 50%.

• The maximum value for any truck variable is 30.

• The maximum value for any loader variable is 5.

5.4.4 Solution

Periods Variables Constraints # solves Time (seconds) Quality Solution

7 9100 4242 + 2044 15 5331 Optimal 1.88599× 107

8 11648 5473 + 1484 9 12049 Optimal 1.97785× 107

9 14502 6858 + 2380 16 19477 3% 2.05244× 107

9 14502 6858 + 2240 15 122458 − −

Table 5.12: The results summary for the second case study solutions with varying
periods.

The optimal 9-period solution is given in Figure 5.7. This problem was implemented
with 14502 variables and 6858 constraints, and was solved 16 times after adding 2380
compatibility constraints. It is interesting to note the significant decrease in the truck
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1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Period

v1×T6 fqv1×T8 fqv1×T15 fq 1×T15,0

v1×T15

v fq1×T15

v1×L3

Keyv
Purchasefq
Salvage

Figure 5.7: The second case study 9-period purchase and salvage policy with depre-
ciation 50%.

fleet size of this case study compared to the other, in spite of similar production re-
quirements. This is due to the comparatively short truck cycle times.

We ran the 9-period problem for 34 hours before the computer memory was ex-
hausted, and although the optimality gap achieved a little less than 3%, the problem
did not solve to optimality.

The truck allocation solution is presented in Table 5.13. It is difficult to identify
the slackness in the allocation table because the model did not motivate a minimum
utilisation value - it does not cost more (in terms of the objective function value) to
allocate trucks to locations for more time than necessary. The loader allocation solution
splits one loader across 2 mining locations [Table 5.14]. This is unrealistic if we take
the size of the loader into account, and the time required to dismantle or move the
loader.

5.5 Discussion

In this chapter, we extended the results from Chapter 4 to account for multiple mining
locations or routes. This proved more challenging than simply adding a new index
to the purchase and salvage variables; we introduced a new allocation variable which
dictated the proportion of total time that the equipment works at each location. This
variable turned the model into a mixed-integer program, which are in general more
difficult to solve than linear programs. Many good algorithms exist for pure integer
programs that enable fast solution times for large problems, as we saw in Chapter 4,
but these do not extend to MILPs.

However, although the continuous variables may have increased the difficulty of the
problem, they brought the advantage of a flexible allocation policy. This is a useful tool
for mining engineers, who may take the allocation policy as further evidence that the
selected fleet would be able to perform the required tasks under uncertainty, or simply
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use the policy as a guide to manage the fleet.
We increased the scale of the problem significantly by including multiple locations

in the model. However we were able to solve two case studies for the entire length
of the schedule, which is a major achievement. In part, the solvability of this model
has been achievable because we eliminated the Big-M constraints that were necessary
in the single-location model (Chapter 4). Also, we continued to make use of the lazy
constraint technique to add the compatibility constraints, which helped to keep the
total number of constraints and the size of the model relatively small.

One major weakness in this model is the symmetry which prevents the branch-and-
bound algorithm from swiftly converging on an optimal solution. To remedy this, we
would need to define a rule or constraint that allocates equipment in the case of a tie.
However, it is difficult to define a such a rule without being able to identify individual
equipment. A similar issue is discussed in Chapter 6, although in that case it is simpler
to define the rule without undermining the optimisation process.

These multi-location models have selected what appears to be an excessive number
of truck types for the optimal solution - industry reports that it is unusual to have more
than three types of trucks. This suggests that the models are not reflecting the true
penalties associated with the fixed costs of owning equipment. Our data did not contain
any cost that would account for auxiliary equipment, spare parts, or the training of
artisans for multiple equipment types. These penalties can easily be introduced as a
fixed cost, if they are known, or can be estimated from historical data.

However, the optimal solution may still contain multiple truck types after these
costs are taken into account. This is because the optimisation process occurs under the
assumption that the mining schedule is fixed - the solution typically selects a mix of
truck volumes in order to make up the required productivity as closely as possible. Yet
we know historically that any schedule is dynamic and subject to change. This prompts
a need for good retrospective studies that consider the ancillary costs as accurately as
possible (including auxiliary equipment). By considering a series of case studies that
have been fully implemented we can analyse the true costs associated with selecting
multiple truck types.

As the data for the case studies were limited or unknown (such as the requirement
for stockpiles to have their own loaders, and the congruency of mining at each location)
the solution sometimes depicts one loader that moves from location to location. This
may not be realistic and a penalty can be introduced to prevent such solutions.

It is clearly an important issue to properly account for the utilisation of the equip-
ment - both in terms of the operating cost each period and in terms of tracking the
equipment age (when measured in terms of operated hours). If we are interested in
accounting for the utilisation of the equipment, then we must account for each piece
of equipment individually. While this increases the scale of the problem, it also opens
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up avenues for reducing the symmetry of the problem using symmetry-breaking con-
straints. We build upon these ideas in the following chapter to develop a utilisation
cost, multi-period model for a single-location mine.
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Chapter 6

Utilisation cost, single-location,

multi-period equipment selection

When performing equipment selection, we can best account for the operating cost by
considering the utilised hours of the equipment. In a surface mine, equipment is often
not utilised to full capacity and not accounting for this difference may lead to inferior
solutions. In operations such as this, the cost of operating equipment depends on the age
of the equipment while the utilisation of equipment is usually based on the equipment
cost. The co-dependency of the age of the equipment and the utilisation has provided
a barrier to tractable equipment selection models. That is, equipment is rarely utilised
in a linear way, causing the ageing of the equipment (when considering the total hours
utilised) to be non-uniform. In our bid to address this issue, we consider a single-
location multiple-period mine. We present a mixed-integer linear program that achieves
optimal equipment selection and accounts for the equipment utilisation. This model
considers pre-existing equipment and allows for heterogeneous fleets. We also introduce
linear constraints that relate the utilisation variable to a non-uniform piecewise linear
age function. The resulting solution is a purchase and salvage policy for a multiple-
period schedule mine, together with an optimised utilisation policy.

6.1 Introduction

In a surface mining operation, the operating cost of equipment is often represented
by a cost per hour. The cost of running equipment may change with the age of the
equipment, usually reflecting maintenance expenses [Figure 6.1]. When accounting
for cost in an equipment selection model, we are thus interested in determining the
utilisation and cumulative utilisation (or the equipment age) so that we may best
account for the cost of the equipment.

The models presented in Chapters 4 and 5 have adhered to the assumption of
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Figure 6.1: The variance of equipment operating cost against cost bracket. The rise
in operating cost can reflect the increased maintenance expense or the time since the
last overhaul. Large drops in the operating expense occur when an overhaul has taken
place.

full period utilisation [Section 4.2.1]. By this assumption, if equipment is owned in a
particular period then we assume that it was utilised to the fullest possible extent in
this period. Clearly it is not ideal to be charging full utilisation if the equipment is not
operating to capacity - we will favour the selection of equipment that is slightly cheaper
to run for the entire period but not necessarily cheaper to run if charged by utilisation.
In addition, in previous chapters this assumption may have been responsible for the
selection of multiple truck types in the optimal solutions. This may have been caused
by the discrepancy between the fleet productivity levels and the required productivity
levels: the optimiser would rather select a small cheap truck to fill a gap than pay for
a full period of a more expensive but larger truck.

In this chapter, we discard the assumption of full period utilisation and keep track
of how much each equipment is actually utilised. This allows us to bring a utilisation
variable into the objective function, thus preventing overstatement of operating cost.
By doing this we can:

• estimate salvage value for the current period;

• track how close the equipment is to its enforced retirement age; and

• maintain the equipment according to its maintenance schedule.

However, the mine requirements may change from period to period, so the utilisation of
any piece of equipment will change too. This means that the cumulative utilisation of a
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piece of equipment may be a non-uniform piecewise linear function. Thus our challenge
is:

To account for utilisation when it is a non-uniform piecewise linear function.

As equipment is discrete, it is appropriate to use integer variables to keep track
of the purchase and salvage of trucks and loaders. Ideally, we would therefore like to
express all our variables as integers to take advantage of algorithms available to solve a
pure integer program. In this vein, we could represent the utilisation of equipment by
an integer variable containing the number of hours that that equipment has worked.
However, it is more natural to formulate utilisation as the proportion of total available
time spent working, which would require a continuous variable.

We know from previous chapters that the productivity constraints are naturally
linear and that the cost objective function can be linearised through careful definition
of the variable indexes. Therefore, the equipment selection problem with utilisation
cost objective can be best expressed as a mixed-integer linear programming model. To
help us deal with the complexities of this model, we only consider a single-location
mine [Figure 6.2]. We represent a single-location mine by a loading location connected
to a dump-site by a single truck route.

loading location dump−site

Figure 6.2: A single-location mine model.

In this chapter, we:

• Consider the inclusion of pre-existing equipment and possibly heterogeneous fleets.
If equipment selection is performed part-way through the mining schedule, then
a pre-existing fleet must be considered and we must allow the tool to select differ-
ent types of equipment if the current equipment is obsolete. Neither pre-existing
equipment nor heterogeneous fleets have been previously considered in a surface
mining equipment selection optimisation model.

• Consider a multiple-period mining schedule. The productivity requirements of
the mine and the truck cycle time can both change significantly over time, and
we wish to optimise the selected fleet over all time periods rather than considering
each period individually. Although this seems like an obvious consideration for
optimisation, multiple-period models are not common in the mining literature.
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• Introduce a set of linear integer constraints that account for non-uniform piecewise
linear ageing of the equipment.

We formalise the model in Section 6.2. First, we list the assumptions associated
with our solution (Section 6.2.1). We then describe the decision variables (Section 6.2.2)
before deriving the objective function (Section 6.2.3) and constraints (Section 6.2.4).
We provide a summary of notation in Section 6.2.5 and then state the complete model
(Section 6.2.6). To test the model, we first validate the model with a test case before
considering a surface mining case study in Section 6.3 that we solve to optimality over
4 periods and to near optimality for 5 periods. In this same section we also perform
sensitivity analysis of the most influential parameters in the model. Finally, we discuss
opportunities for extending this work in Section 6.4.

6.2 Problem formulation

6.2.1 Asssumptions

The model presented in this chapter is in part an extension of the models presented
in Chapters 4 and 5. Therefore we retain all assumptions from Chapter 4 except the
assumption of Full period utilisation [Section 4.2.1]. The following assumptions apply:

Known mine schedule: We presume that an acceptable mine schedule has already
been derived, and that the mining method has been selected. We start the equip-
ment selection process with a sub-set of trucks and loaders that suit the particular
mining scenario.

Single mining location: For this model, all the loaders and trucks are considered to
operate as one fleet. That is, all loaders work in the same location, and all trucks
service all loaders. We consider the mine to have a single mining location, a single
dump-site and a single haul route connecting the two.

Salvage: All equipment is salvageable at some depreciated value of the original capital
expense. Any pre-existing equipment may be salvaged at the start of the first
period.

No auxiliary equipment: Auxiliary equipment, such as wheel loaders and small
trucks, are not considered in this model. Although the cost of running auxil-
iary equipment may differ according to the overall fleet selection, for the purpose
of this model we consider this cost to be trivial. Note that the cost of auxiliary
equipment can be built into the operating cost if necessary.

Known operating hours: The operating hours of the mine are estimated by taking
planned downtime, blasting and weather delays into account.

113



UTILISATION COST MODEL

Single truck cycle time: Since we assume a single mining location, a single truck
cycle time is used for all trucks. The cycle time is constant over a period and is
known for all periods. It accounts for factors that affect the truck peformance,
such as rimpull, rolling resistance, haul distance and haul grade.

Heterogeneous fleets: We allow different types of equipment to work side-by-side.

Fleet retention: All equipment is retained at the end of the last period. Optionally,
we can relax this assumption and allow the model to salvage some or all equipment
at the end of the final period.

Age brackets: We count the age of the equipment in terms of hours utilised. To
reduce the number of variables, and to bring the variable structure in line with
industry standards, we divide the age into brackets.

6.2.2 Decision variables and notation

Recall that the set of all truck types is X, and the set of all loader types is X′. We
use i and i′ to denote a single truck and loader type, respectively. To simplify the
notation, we use e to represent a single type (which can be a truck or loader type),
where e ∈ X ∪X′.

Fleet purchase and tracking variables

We must manage whole units of equipment. For this purpose we define the following
binary variables for tracking the equipment:

xk,le,j : 0-1 selection of one piece of equipment of type e with identification number j
at the start of period k where the equipment is in age bracket l.

We must now track equipment individually, which sets all tracking (and salvage)
variables to binary variables rather than general integer variables as in previous
chapters. We use the index j to track individual equipment which is now necessary to
calculate individual equipment age. Equipment can now be identified by two indices,
(e, j).

We would like to use the index l to denote the age of the equipment, in time periods.
However, this is impossible, as the equipment age depends on the number of hours the
equipment has been utilised, rather than the amount of time since its purchase. One
way to do this is by letting l denote utilisation in hours. However, this would lead
to a large number of unused variables. Since, in the mining industry, the equipment
costings are typically divided into age brackets (such as 5000-hour brackets), we can let
l denote the utilisation, counted in age brackets. This reduces the number of variables
in the model drastically.
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The utilisation is permitted to change each period, creating a non-uniform piece-
wise linear ageing function. As we will see, this complicates the variable transition
constraints if we wish to retain linearity in them.

Remark 6.2.1 Equipment may age in the following two ways: xk,le,j −→ xk+1,l
e,j if the

cumulative utilised hours does not exceed the age bracket l at the start of period k + 1;
xk,le,j −→ xk+1,l+1

e,j if the cumulative utilised hours does exceed the age bracket l at the
start of period k + 1 [Figure 6.3].

xe
k,l xe

k,l+2

xe
k+1,l+2xe

k+1,l+1

xe
k+2,l+1 xe

k+2,l+2xe
k+2,l

xe
k,l+1

xe
k+1,l

Figure 6.3: An illustration of the transition alternatives from period to period. If
we own a piece of equipment in age bracket l in period k, then in period k + 1 this
equipment could be in age bracket l or l+ 1 depending on how much it was utilised in
period k.

Remark 6.2.1 shows that a piece of equipment may stay in the same age bracket or
graduate to the next age bracket from one period to another. This changes the way
that we need to deal with the constraints, such as variable transition, from the previous
two models in this thesis.

Fleet salvage variables

We define the salvage variables:

sk,le,j : 0-1 indicator for equipment with identification number j, of type e ∈ X ∪ X′

salvaged at the start of period k while in age bracket l.

Note that the equipment operates for another period from the last x variable before
salvage can take place. Consequently, the equipment may move into the next age
bracket as the salvage occurs. Alternatively it may be salvaged from the current age
bracket [Figure 6.4]. We can cover both cases by saying that a salvage occurs in time
period k when xk−1,l

e,j − xk,le,j − xk,l+1
e,j = 1. For pre-existing equipment only, a salvage at

the start of the schedule occurs when x0,l
e,j = 0.
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xe
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se
k+1,l+1

xe
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Figure 6.4: An illustration of the salvage variable transition alternatives. If we own
a piece of equipment in age bracket l in time period k, then we may salvage that
equipment in the following period from age bracket l or age bracket l + 1, depending
on how much the equipment was utilised in period k.

Equipment utilisation variables

We define a continuous variable (restricted to [0, 1]) to represent the utilisation of the
equipment in terms of proportion of available time.

fk,le,j : utilised proportion of total time that equipment with identifier j, of type e, in
age bracket l will work in period k.

6.2.3 Objective function

As in previous chapters, we wish to minimise the cost of materials handling. Costs can
be incurred by capital purchases and operating expenses, while salvaging equipment
can create revenue.

First we consider the capital expense, which is a one-off cost at the start of the
period. To find out when we have purchased a truck or loader, we look at the tracking
variables. For the case k = 0 this is straightforward – we simply look at the variable
x0,0
e,j (while accounting for any pre-existing equipment that may happen to fall into that

age-bracket). However, for k > 0 the use of this term may result in overcounting. This
is because it is likely for equipment to remain in the l = 0 age bracket for more than
one period. For example, if the equipment is purchased in period k = 0, we may have
x0,0
e,j , x1,0

e,j , and x2,0
e,j = 1 for the same e and j.

We solve this problem by counting a purchase, for a truck or loader of type e with
identification j, as being made in period k if∑

l

xk,le,j −
∑
l

xk−1,l
i,j +

∑
l

sk,le,j

is 1. The first term counts if we own the equipment in period k. The second term
subtracts any equipment that we already owned. The third term prevents miscounting
in the case where equipment was owned in the previous period but not owned in this
period. Note that pre-existing equipment does not incur a capital expense as it was
purchased at a time not considered in the optimisation period.
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As in previous chapters, we denote the capital expense for equipment type e by Fe,
and we discount future costs by multiplying by a net present value discount factor, Dk

1 .
Thus the total capital expense for a truck or loader of type e with identification j is

FeD
0
1x

0,0
e,j +

∑
k>0

FeD
k
1(
∑
l

xk,le,j −
∑
l

xk−1,l
i,j +

∑
l

sk,le,j)

for all equipment types, e, and identification numbers, j.
To represent the operating expense, we look at the utilisation variables to find the

amount of time that each piece of equipment is used. As with previous chapters, we
denote the operating expense (per hour) of equipment type e in period k and age bracket
l by V k,l

e . We also discount the variable expense to the net present value. Therefore,
the total operating cost for an equipment of type e with identification j is∑

k,l

V k,l
e Dk

1 fk,le,j .

Recall that for the salvage terms we make use of a combined depreciation and net
present value discount factor, Dk,l

2 . Since Fe is the original capital expense, the salvage
‘cost’ associated with equipment of type e and identification j is

−
∑
k,l

FeD
k,l
2 sk,le,j .

Complete Objective Function

We wish to minimise:

∑
e,j

FeD
0
1x

0,0
e,j +

∑
e,j,k>0

FeD
k
1(
∑
l

xk,le,j −
∑
l

xk−1,l
i,j +

∑
l

sk,le,j)

+
∑
e,j,k,l

V k,l
e Dk

1 fk,le,j −
∑
e,j,k,l

FeD
k,l
2 sk,le,j .

The first two terms represent the cost of capital outlay for the fleets; the next term
represents the operating expense in terms of utilised hours; and the final term denotes
the salvage cost of the fleet.

6.2.4 Constraints

Productivity constraints

Recall that the production capability, P k,le , of a piece of equipment of type e, aged l in
period k, is determined by its availability (ale), capacity (ce) and cycle time (tke). The
productivity constraint now deviates from previous chapters where full utilisation was
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assumed. In this model, we account only for the utilised productivity of the equipment,
rather than the potential productivity. This relaxation of the full period utilisation
assumption allows the model to keep equipment on hand without necessarily using
that equipment in every period. This gives us the following productivity constraints
(where T k is the total mine productivity requirement for period k, i ∈ X and i′ ∈ X′):∑

i,j,l

P k,li fk,li,j ≥ T
k ∀ k, (6.1)

∑
i′,j,l

P k,li′ fk,li′,j ≥ T
k ∀ k. (6.2)

However, we need only generate these constraints for all loaders if we include the
following balance equations:∑

i,j,l

P k,li fk,li,j =
∑
i′,j,l

P k,li′ fk,li′,j ∀ k, i ∈ X, i′ ∈ X′. (6.3)

At this stage, there is no obvious benefit for including this set of equations. However,
this constraint is useful for reducing the total number of constraints generated by the
compatibility constraints in the proceeding section.

Compatibility constraints

We must ensure that the trucks and loaders used in a period are compatible with each
other. However, we do not need to make all trucks compatible with all loaders: we
must merely satisfy productivity requirements with the set of compatible trucks and
loaders.

Again, we let A represent the set of all possible combinations of loaders:∑
i∈X(A′),j,l

P k,li fk,li,j ≥
∑

i′∈A′,j,l

P k,li′ fk,li′,j ∀ A′ ⊂ X′, k. (6.4)

As a power set this will generate k(2n−1) constraints. For the 13 period, 27 loader
problem this equates to 1744830451 constraints. We recognise that for a given case
study the number of loaders possible in the final solution will be much lower than the
complete set. In this case we can limit the generation of constraints to a maximum
of α loader types. This will produce k

∑α
a=1( n!

a!(n−a)!) constraints. For the 13 period,
27 loader problem with a maximum of 4 loader types, this equates to just 271089
constraints.

Even this quantity of constraints will create computer memory issues for the Cplex
optimiser. Therefore we solve the model with only the first level compatibility con-
straint (where A′ is just one loader loader type), and only add the remaining constraints
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into the model post hoc if they are violated by the solution before re-solving.

Variable transition

Time periods and age brackets do not necessarily increase in tandem, so we know that
whenever a time period is incremented, a piece of equipment may remain in the same
age bracket, or it may graduate to the next age bracket. Note that even if it is utilised
at full capacity, it cannot increase two age brackets. This is because of the chosen age-
bracket size (5000 hours) compared to the maximum utilised hours of the equipment
(typically 3500). Taking into account the possibility of salvage, this corresponds to
the constraints (where Lk(e) = min{P (e) + k − 1, L(e)} and P (e) is the highest age of
pre-existing equipment type e at the start of the schedule):

xk,le,j + sk,le,j ≤ xk−1,l
e,j + xk−1,l−1

e,j ∀ k > 0, l ∈ [1, Lk(e)− 1], e, j (6.5)

xk,le,j + sk,le,j ≤ xk−1,l−1
e,j ∀ k > 0, l = Lk(e)− 1, e, j (6.6)

xk−1,l−1
e,j ≤ xk,l−1

e,j + sk,l−1
e,j + xk,le,j + sk,le,j ∀ k > 0, l ∈ [1, Lk(e)− 1], e, j. (6.7)

Constraint (6.5) ensures that we do not own or salvage equipment in period k if we did
not at least own the equipment in the previous period k − 1. Constraint (6.6) is an
ammendment of constraint (6.5) for the variables that lie on the diagonal edge of the
variable matrix. Constraint (6.7) ensures that if we own a piece of equipment in period
k− 1, the we must at least own the equipment in the next period, k, in either the same
or next age-bracket, or we must salvage the equipment in the next period, k, in either
the same or next age-bracket.

As noted before, we only set one xk,le,j to be 1 for any particular piece of equipment
and time period:∑

l

xk,le,j + sk,le,j ≤ 1 ∀ k, e, j. (6.8)

Age bracket graduation

The age bracket that a piece of equipment is in, l, is dependent on the accrued utilised
hours of the equipment. For this model we represent the operation hours of the mine
by Ok, and use age brackets of size B0 hours.

Remark 6.2.2 The accumulated utilised hours in age brackets of a piece of equip-
ment at the start of period k is given by

∑
h<k,l

fh,le,jO
h

B0
,
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where e is the equipment type and j is the individual equipment identification number.

Remark 6.2.3 If ε is an arbitrarily small continuous number and the equipment is in
age bracket l at the start of period k (equivalent to xk,li,j = 1), then

l ≤
∑
h<k,l

fh,le,jO
h

B0
≤ l + 1− ε.

Lemma 6.2.1 If we represent the accrued utilised hours of equipment type e with iden-
tification j in period k and age bracket l by:

∑
h<k,l

fh,le,jO
k

B0
,

then

l ≤
∑
h<k,l

fh,le,jO
h

B0
≤ l + 1− ε

is true when xk,le,j = 1 if

∑
h<k,l

fh,le,jO
h

B0
≥Mxk,le,j + l −M ∀ k > 0, (e, j) /∈ P, l (6.9)

and

∑
h<k,l

fh,le,jO
h

B0
≤M + ((l + 1)−M − ε)xk,le,j ∀ k > 0, (e, j) /∈ P, l, (6.10)

where M is a large integer and P is the set of pre-existing equipment.

Proof: The accumulated utilised hours,
∑

h<k,l f
h,l
e,jO

h, is equivalent to the equipment
age in hours for period k. Thus

∑
h<k,l f

h,l
e,jO

h ≥ 0. Note that xk,le,j is a binary variable.
If xk,le,j = 0, then (6.9) becomes

∑
h<k,l

fh,le,jO
h

B0
≥Mxk,le,j + l −M

= l −M

≥ −M. (6.11)
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The inequality (6.11) is true since
∑

h<k,l

fh,l
e,jO

h

B0
≥ 0. (6.10) becomes

∑
h<k,l

fh,le,jO
h

B0
≤M + ((l + 1)−M − ε)xk,le,j

= M. (6.12)

The inequality (6.12) is true since M is an arbitrarily large integer.
If xk,le,j = 1, then (6.9) becomes

∑
h<k,l

fh,le,jO
h

B0
≥Mxk,le,j + l −M

= M + l −M

= l. (6.13)

The inequality (6.13) is true from Remark 6.2.3. (6.10) becomes

∑
h<k,l

fh,le,jO
h

B0
≤M + ((l + 1)−M − ε)xk,le,j

= M + l + 1−M − ε

= l + 1− ε. (6.14)

The inequality (6.14) is also true from Remark 6.2.3.

�

Lemma 6.2.1 excludes pre-existing equipment because the cumulative utilisation is
calculated slightly differently for this case. However, the age bracket constraints must
also hold for pre-existing equipment. If we define P (e, j) for (e, j) ∈ P to be the age in
hours of the pre-existing equipment of type e and identification j, then at time period
k the accumulated utilised hours of this piece of equipment is∑

h<k,l

fh,le,jO
h + P (e, j).

Constraints (6.9) and (6.10) can then be repeated for (e, j) ∈ P by replacing the
accumulated utilised hours by the above term.
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Salvage restriction

Each individual piece of equipment can only be salvaged once:∑
k,l

sk,le,j ≤ 1 ∀ e, j. (6.15)

We also cannot salvage equipment which is not owned (in the previous period):

sk,le,j ≤ xk−1,l
e,j + xk−1,l−1

e,j ∀ k > 0, l > 0, e, j. (6.16)

We do not permit an identification number to be re-used once the equipment has been
salvaged:∑

h<k,l

sh,le,j +
∑
l

xk,le,j ≤ 1 ∀ k, e, j. (6.17)

Finally, we give a value to the unbounded salvage variable:

s0,0
e,j = 0 ∀ {e, j} /∈ P. (6.18)

Pre-existing equipment

We set each pre-existing equipment to be either selected or salvaged in the first period:

x0,l
e,j + s0,l

e,j = 1 ∀ (e, j) ∈ P, l = P (e, j). (6.19)

Symmetry-breaking constraints

In creating many variables that are identical save for the identification number, j,
we have created large clusters of solutions that are effectively permutations of each
other. This is not ideal computationally. However, we can eliminate this redundancy
if we define some simple rules regarding which identification numbers to use first. We
nominate that we would like to keep the equipment with the lowest identification the
longest, bringing us to our final constraint for this model:

xk,le,j ≥ xk,le,j+1 ∀ (e, j) /∈ P, k, l.
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6.2.5 Summary of notation

X set of all available truck types.
X′ set of all available loader types.
i truck type index, i ∈ X.
i′ loader type index, i′ ∈ X′.
e truck or loader type index, e ∈ X ∪X′.
j individual machine identification index.
k time period index.
l equipment age bracket index.
M a large integer.
ε arbitrarily small number.
P set of all pre-existing equipment tuples.
A power set of all combinations of loader types, A = P(X′).
X(A′) power set of all truck types compatible with loader set A′ ⊂ X′.
P (e) highest starting age (in hours) for pre-existing equipment type e.
P (e, j) starting age (in hours) for pre-existing equipment type e with identification

j.
L(e) maximum age bracket for equipment type e.
Lk(e) maximum age bracket we need to consider in period k, Lk(e) = min{P (e)+

k − 1, L(e)}.
xk,le,j indicator variable for whether the truck or loader with type e and machine

identification j is selected in period k, while in age bracket l.
fk,le,j proportion of time that the truck or loader with type e and machine iden-

tification j is utilised in period k, while in age bracket l.
sk,le,j indicator variable for whether the truck or loader with type e and machine

identification j is salvaged at the start of period k, while in age bracket l.
Fe fixed cost (capital expense) of obtaining equipment type e.
Dk

1 net present value discount factor for period k.
Dk,l

2 combined net present value discount factor and depreciation factor for pe-
riod k for equipment aged l.

V k,l
e variable expense for equipment with type e in period k, at age l.
P k,le productivity of equipment type e in period k, at age l.
T k required productivity of the mine (in tonnes) for period k.
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6.2.6 Complete model

Minimise
∑
e,j

FeD
0
1x

0,0
e,j +

∑
k>0,e,j

FeD
k
1(
∑
l

xk,le,j −
∑
l

xk−1,l
i,j +

∑
l

sk,le,j)

+
∑
k,e,j,l

V k,l
e Dk

1 fk,le,j −
∑
k,e,j,l

FeD
k,l
2 sk,le,j

subject to∑
i′,j,l

P k,li′ fk,li′,j ≥ T
k ∀ k (6.20)

∑
i,j,l

P k,li fk,li,j =
∑
i′,j,l

P k,li′ fk,li′,j ∀ k (6.21)

∑
i∈X(A′),j,l

P k,li fk,li,j ≥
∑

i′∈A′,j,l

P k,li′ fk,li′,j ∀ A′ ⊂ X′, k (6.22)

∑
h<k,l

fh,le,jO
h

B0
≥Mxk,le,j + l −M ∀ k > 0, (e, j) /∈ P, l (6.23)

∑
h<k,l

fh,le,jO
h

B0
≤M + ((l + 1− ε)−M)xk,le,j ∀ k > 0, (e, j) /∈ P, l (6.24)

∑
h<k,l

fh,le,jO
h + P (e, j)
B0

≥Mxk,le,j + l −M ∀ k > 0, (e, j) ∈ P, l (6.25)

∑
h<k,l

fh,le,jO
h + P (e, j)
B0

≤M + ((l + 1− ε)−M)xk,le,j ∀ k > 0, (e, j) ∈ P, l (6.26)

xk,le,j + sk,le,j ≤ xk−1,l
e,j + xk−1,l−1

e,j ∀ k > 0, l ∈ [1, Lk(e)− 1], e, j (6.27)

xk,le,j + sk,le,j ≤ xk−1,l−1
e,j ∀ k > 0, l = Lk(e)− 1, e, j (6.28)

xk−1,l−1
e,j ≤ xk,l−1

e,j +sk,l−1
e,j + xk,le,j + sk,le,j ∀ k > 0, l ∈ [1, Lk(e)− 1], e, j (6.29)∑

l

xk,le,j ≤ 1 ∀ k, e, j (6.30)

fk,le,j ≤ xk,le,j ∀ k, l, e, j (6.31)

sk,le,j ≤ xk−1,l
e,j + xk−1,l−1

e,j ∀ k > 0, l > 0, e, j (6.32)

s0,l
e,j ≤ 1 ∀ l > L(e),∈ P (6.33)∑

h<k,l

sh,le,j + xk,le,j ≤ 1 ∀ k, e, j, l (6.34)

s0,0
e,j = 0 ∀ {e, j} /∈ P (6.35)

x0,l
e,j + s0,l

e,j = 1 ∀ (e, j) ∈ P, e, l (6.36)

xk,le,j ≥ xk,le,j+1 ∀ (e, j) /∈ P, k, l (6.37)
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x, s ∈ {0, 1}

f ∈ [0, 1]

6.3 Computational results

6.3.1 Test case

There are two modes of model validation that we analyse here. In the first instance,
we ensure that the model behaves as we expect. Secondly, we show that the model
adequately captures the real world problem.

To ensure that the model behaves as we expect, we created a test case that show
that the following actually occurs:

• Purchase and salvage can occur in any time period;

• The productivity requirements are met;

• The fleets are sufficiently compatible (subject to productivity requirements);

• The age index, l, is actually capturing the cumulative utilisation;

• Equipment does not age more than one bracket at a time;

• Equipment is salvaged at most once and only if it was owned in the previous
period;

• Equipment is not used beyond its retirement age;

• Pre-existing equipment is either kept or immediately salvaged.

Therefore we need the test case to run for such a length of time that some equipment
reach the end of their replacement cycle. We must also include pre-existing equipment,
and start from a set of trucks and loaders that are not all compatible. To do this, we
created a test case with two types of trucks and two types of loaders. We introduced four
pre-existing trucks of type 0, one pre-existing loader of type 0, and two pre-existing
loaders of type 1. We set up simple mine schedule characteristics such as constant
productivity requirements at a relatively low rate of 4 million tonnes per period; and a
constant truck cycle time of 10.2 minutes. Also, we simplified the remaining parameters
in the model, such as constant operating expense over the entire schedule, and unvarying
availability of equipment. Lastly, we reduce the maximum life of the trucks to 35000
hours to capture the replacement cycle of the equipment in the solution.

We programmed the model in C++ using Ilog Concert Technology v2.5 objects, and
solved the program with default MILP algorithms in Ilog Cplex v11.0. We implemented
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1 2 3 4 5 6 7 8 9 10 11 12 13

1 2 3 4 5 6 7 8 9

Period

10 11 12 13

vT0,0

TP
1,0

TP
1,1

TP
1,2

TP
1,3

fqLP
0,0

vL0,1

fq LP
1,0

fq LP
1,1

Keyv
Purchasefq
Salvage

4.37 4.37 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 Match Factor

Figure 6.5: The optimal purchase and salvage policy for the 13-period validation test
case.

the validation problem with 14496 variables and 24280 constraints. We included only
two levels of the compatibility power constraint. This is possible because the optimal
solution contains only two loader types, so a higher level is redundant. The problem
solved using the default Cplex parameters in 1893 seconds (32 minutes). In the solution,
one new loader was purchased at the beginning of period 2 and one new truck was
purchased at the beginning of period 3 [Figure 6.6]. All pre-existing trucks are kept for
the entire schedule; the two pre-existing loaders (type 1) are salvaged at the beginning
of the schedule while the loader of type 0 is retained for only one period.

In Table 6.1 we sum the utilised hours of the new truck to represent the age of
the equipment over the accummulating periods. By dividing by the size of the bracket
(5000), we calculate the age of the truck in terms of age brackets. By comparing
this value to the solution value, we can determine whether the implemented model is
behaving as we expect. We can see that these values match, which indicates that the
age bracket index, l, is effectively capturing the cumulative utilisation of the equipment.
We can also see that, as we expect, the equipment never ages more than one bracket
at a time. Thus we are satisfied that we have implemented the model correctly.

6.3.2 Case study

We implemented this model on the multi-period surface mining case study studied in
Chapter 4. We start by analysing the first four periods of this thirteen period case
study. The 4-period model contained 65940 variables and 119656 constraints before
the higher level compatibility constraints were added. After performing preliminary
tests, we chose a depreciation value of 53% which obtained the fastest solution time.
The Cplex optimiser found the optimal solution in 1582 seconds (27 minutes) with an
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overall fleet cost of $5.34279e7. We analyse this solution first. After the initial solve,
no higher level compatibility constraints were found to be breached and the solution
was accepted as optimal. The solution converged to within 3% of optimality after just
one minute of computation, taking the remaining 26 minutes to close this small gap
[Figure 6.6].

Figure 6.6: Convergence of the 4-period utilisation cost model, with the depreciation
parameter set to 53%.

In the optimal solution, all the pre-existing loaders were salvaged: reflecting both
their age and their low compatibility with other “cheap” trucks [Figure 6.7]. Two new
loaders were purchased: one loader of type 3 in period 1, and one loader of type 25 in
period 2. The presence of only two loader types in the solution calls a need for up to
only two levels of compatibility constraint. In the truck fleet, three types were selected
overall: the type-12 pre-existing trucks were kept for the entire four periods; one of
the medium-sized type-8 trucks was purchased in period-1 and nine of the super-sized
type-9 trucks was purchased in period-2. This reflects both the increasing demands of
the production schedule and increased truck cycle times, and the declining performance
of the older pre-existing trucks.

One note-worthy aspect of this solution is that there are still three truck types being
selected. As an optimal solution, this goes against the intuition of the mining engineer,
who has a greater sense of the hidden costs of operating multiple types of equipment.
Unfortunately these costs were not visible to the model, and this is reflected in the
types of solutions it finds. This clearly reveals a need for better cost estimates for
heterogeneous fleets.

The match factor for each period reveals that the fleet is well balanced, and that
the truck fleet has some slackness. Again, this reflects the greater cost of running the
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Figure 6.7: The optimal solution for the 4-period case study with the utilisation
model. The depreciation parameter is set to 53%.

loaders over the trucks.
An important part of the way we modelled this problem is the optimisation of

the utilisation of the equipment [Table 6.2]. That is, as we are accounting for the
way that the equipment is used in each period, we are able to optimise the allocation
of equipment to tasks. This means that in the solution we also obtain an optimised
utilisation policy. In this policy it is clear to see which pieces of equipment are not fully
utilised. This provides the mining manager with some flexibility, and a clear indication
of where these flexibilities occur in the fleet.

We implemented the 5-period problem with 95550 variables and 174037 constraints.
After 70926 seconds (19.7 hours) of computation we obtained a solution with optimality
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Period

Equipment 1 2 3 4

T8,0 1 1 1 1
T9,0 0 1 1 1
T9,1 0 1 1 1
T9,2 0 1 1 1
T9,3 0 1 1 1
T9,4 0 1 1 1
T9,5 0 1 1 1
T9,6 0 1 1 1
T9,7 0 1 1 1
T9,8 0 1 1 1
T12,0 0.935386 0.4821 0 1
T12,1 1 0 1 1
T12,2 1 0 1 1
T12,3 1 0 1 1
T12,4 1 0 1 1
T12,5 1 1 0 0.919593
T12,6 1 1 0.232463 1
T12,7 1 0.0112244 1 1
T12,8 1 1 1 1
T12,9 1 0.0112244 1 1
T12,10 1 1 1 1
L3,0 0.852581 1 1 1
L25,0 0 0.0772999 0.709341 0.89751

Table 6.2: The optimal utilisation policy for the 4-period case study, when the depre-
ciation parameter is set to 53%.

gap of 1.10%, with an objective function value of $7.09709e7. In terms of a mining
operation where some aspects of the schedule are expected to change over time, this
is not an unreasonable gap. We observe that the final solution (with optimality gap
1.10%) was found after 17647 seconds, although it took a further 60000 seconds to close
the remaining 0.4% [Figure 6.8].

It is interesting to observe the differences between the 4-period solution and the
5-period solution [Figure 6.9]. Instead of salvaging all the pre-existing loaders, we opt
to keep the loader of type 17 and purchase two new type-2 loaders over the first two
periods. This is related to the choice to purchase a fleet of type-15 trucks in the first
period while keeping all the pre-existing trucks of type 12 - in the 4-period optimal
solution, no type-15 trucks were purchased at all. This highlights the need to optimise
over the entire schedule, as the solutions for shorter periods can be quite different and
lead to worse long-term solutions.
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Figure 6.8: Convergence of the 5-period utilisation cost model, with the depreciation
parameter set to 53%.

Periods Depreciation (%) Time (seconds) Quality Solution

4 35 2444 Optimal 5.33485× 107

4 40 2608 Optimal 5.33968× 107

4 45 2457 Optimal 5.34175× 107

4 50 2717 Optimal 5.34258× 107

4 51 2721 Optimal 5.34266× 107

4 52 2274 Optimal 5.34273× 107

4 53 1588 Optimal 5.34279× 107

4 54 1764 Optimal 5.34284× 107

4 55 1985 Optimal 5.34287× 107

4 60 2386 Optimal 5.34297× 107

Table 6.3: The 4-period case study solutions with varying depreciation.

6.3.3 Sensitivity analysis

The parameters in this model are subject to uncertainty in two ways. Some parameters
are known to be estimates, such as the depreciation of equipment; some parameters
are certain to change once the schedule begins and new information comes to light,
such as truck cycle time and productivity requirements. In our sensitivity analysis,
we are interested in the influence of these uncertain parameters on the robustness of
the model. We begin by studying the behaviour of the model at differing values of
depreciation [Table 6.3].

We observe an interesting phenomenon here where there exists a critical value near
53% where the solution time drops drastically [Figure 6.10]. However, the purchase and
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Figure 6.9: The solution for the 5-period case study with optimality gap 1.10% for
the utilisation model. The depreciation parameter is set to 53%.

salvage policies are identical across all depreciation values tested. Instead of differing
fleets, this critical point marks the decision to significantly alter the utilisation of several
pre-existing trucks [Table 6.4]. Interestingly, the objective function values for the 4-
period case study converge as the depreciation value increases [Figure 6.11].

Next we study the influence of truck cycle time on the solution when the production
requirements are uniform over the entire schedule to 36 million tonnes per period.
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Figure 6.10: The varying solution times with depreciation for the 4-period case study.

Thus we expect any variability in the fleet to be exclusive to two factors: ageing
of the equipment and truck cycle time. In a 4-period solution, the effects of ageing
are not apparent [Figure 6.12]. This test case solved in 1576 seconds, demonstrating
that a simplified production schedule does not necessarily simplify the problem. The
decreasing slackness in the utilisation policy hints at the increasing truck cycle time,
but otherwise the fleet is fairly stable [Table 6.5]. In fact, with less volatility in the
schedule, the purchase policy is also more stable than the case study solution - only
one loader type is used.

We repeat this experiment for productivity requirements by flattening the truck
cycle time over the entire schedule and observing the behaviour of the solution. We
set the truck cycle times over the four periods to 30.75 minutes. In this case, we
expect the purchasing behaviour to closely reflect the demands from the productivity
requirements.

We obtained the optimal solution to this test case in 5781 seconds (97 minutes)
[Figure 6.13]. This indicates the increased complexity of the problem when the pro-
duction requirements vary from period to period - there are many options to increase
the size of the fleet to satisfy a small change in productivity, and many of these options
still will be heterogeneous fleets. This is further confirmed by observing the level of
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Period

Equipment 1 2 3 4

T8,0 1 1 1 1
T9,0 0 1 1 1
T9,1 0 1 1 1
T9,2 0 1 1 1
T9,3 0 1 1 1
T9,4 0 1 1 1
T9,5 0 1 1 1
T9,6 0 1 1 1
T9,7 0 1 1 1
T9,8 0 1 1 1
T12,0 1 0 1 0.919593
T12,1 1 0 0.210014 1
T12,2 1 0 1 1
T12,3 0.935386 0.4821 0 1
T12,4 1 0 1 1
T12,5 1 0.0112244 1 1
T12,6 1 1 1 1
T12,7 1 0.0112244 1 1
T12,8 1 1 1 1
T12,9 1 1 0.0224488 1
T12,10 1 1 1 1
L3,0 0.852581 1 1 1
L25,0 0 0.0772999 0.709341 0.89751

Table 6.4: The utilisation policy for the 4-period case study with 53% depreciation.

heterogeneity in the fleet: two loader types and four truck types. The changes in the
utilisation policy can be clearly noted to follow the changes in the production schedule
[Table 6.6]. That is, as the actual productivity requirements increase, so too does the
utilisation of loaders until the fourth period where almost all equipment is used fully.

Other parameters that have great influence on the scale of the problem include:

• number of available truck types

• number of available loader types

• number of periods

• number of identification numbers per equipment type

• ε (the chosen tolerance value)

• number of age brackets (which corresponds to the Big-M value in the model)
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Figure 6.11: The varying objective functions with depreciation for the 4-period case
study.

Clearly, reducing the overall number of trucks, loaders and periods will improve the
tractability and computation time of the model. As we observed with the 5-period
problem, increasing the scale of the problem by increasing the number of periods,
trucks or loaders only renders the problem too large to solve. We can reduce the
number of identification numbers per equipment type to the optimal number and gain
significant reductions in computation time. However, to do this we need to know the
optimal number of identifications a priori, and this information is only gleamed after
solving the problem. Before solving the problem, we must be cautious that we do not
over-constrain the problem by setting the number of identifications at too low a level.

We expect the value of ε to have an impact on computation time (with a noticeable
effect on solution only with large values of ε). We also expect that there is a critical
value of ε that relates to the stability of the solution - as it is used in the age-bracket
constraint, ε is scaled by the size of the age bracket (in this case study, 5000). We are
therefore interested in studying the behaviour of the model as ε decreases in size. We
do this by observing the changes in computation time and objective function value as
we reduce ε. Figure (6.14) depicts the predicted unstable behaviour, before the solution
stabilises at ε = 0.000000001 [Table 6.7].

The Big-M value needs only be large enough to guarantee the validity of the age-
bracketing constraints. Therefore, the number of age brackets corresponds to the Big-
M value in the model. While this number is fixed by the policies of the mine, we
are interested in studying the robustness of the model subject to different age bracket
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Figure 6.12: We flatten the productivity requirements for the 4-period case study to
observe the fleet changes due to ageing and truck cycle time.

values. To do this we vary M size in increments of 5. We expect the computation time
to increase with the size of age bracket, reflecting the increased difficulty in solving
the linear program associated with the Big-M value. Again we study the problem
with depreciation set to 53% and ε set to 0.00000001. We vary the size of M in four
subsequent tests from 15 to 30 [Table 6.8].

We can see through the analyses of these uncertain parameters that the model is
reasonably robust - the solutions themselves are stable and the main aspect affected by
the uncertainty is computation time.

Other parameters subject to less variability (and are therefore not considered as
interesting for our analysis) are:

• NPV discount rate
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Period

Equipment 1 2 3 4

T8,0 1 1 1 1
T9,0 1 1 1 0.829834
T9,1 1 1 1 1
T9,2 1 1 1 1
T9,3 1 1 1 1
T9,4 1 1 1 1
T9,5 1 1 1 1
T9,6 1 1 1 1
T9,7 1 1 1 1
T12,0 0.0224488 1 1 1
T12,1 0.0224488 1 1 1
T12,2 0.705255 1 0.317194 1
T12,3 0.0224488 1 1 1
T12,4 0.179235 0.843213 1 1
T12,5 1 1 0.252479 1
T12,6 1 1 1 1
T12,7 1 1 1 1
T12,8 1 1 1 1
T12,9 1 1 1 1
T12,10 1 1 1 1
L4,0 0.998269 0.998269 0.998269 0.998269

Table 6.5: The utilisation policy for the 4-period problem with flattened productivity
requirements.

• operating hours of the mine

• compatibility of equipment

• availability of equipment

• fixed cost of equipment

• equipment capacity

• operating cost

• maximum age of equipment

6.4 Discussion

In this model, we observe some interesting results. Initially we expected that by ac-
counting for utilisation in the objective function we would eliminate the tendency to
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Figure 6.13: We flatten the truck cycle times in the 4-period case study.

purchase multiple truck types. However, as we saw with the case study results, this
is not the case. This suggests that high volatility in production requirements is best
dealt with high heterogeneity - a fleet with mixed sizes is more flexible to changes in
demands than a fleet of all the same size. This makes sense analogously if we consider
that two 50 cent pieces cannot be used to closely match prices that are higher than 50
cents and less than 1 dollar in the same way that one 50 cent, two 20 cent and one 10
cent coins can.

As the equipment operating cost is now calculated on hours used, it is no longer
necessary for owned equipment to operate in every period as before. This reduces the
need to purchase equipment for short periods of time and then salvage it, resulting in
a more accurate model than the single-location model presented in Chapter 4.

An interesting observation was the critical phenomena for the depreciation param-
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Period

Equipment 1 2 3 4

T8,0 1 0.0112244 1 1
T8,1 0 1 1 1
T9,0 1 0.0112244 1 1
T9,1 0 1 1 1
T9,2 0 1 1 1
T9,3 0 1 1 1
T9,4 0 1 1 1
T9,5 0 1 1 1
T9,6 0 1 1 1
T12,0 0.697495 0 1 0.90094
T12,1 1 0.98417 0.0382786 1
T12,2 1 0 1 1
T12,3 1 0 1 1
T12,4 1 0 1 1
T12,5 1 1 1 1
T12,6 1 1 1 1
T12,7 1 1 1 1
T12,8 1 1 1 1
T12,9 1 1 0.427323 1
T12,10 1 1 1 1
T15,0 1 1 1 1
L3,0 0.852581 1 1 1
L25,0 0 0.0772999 0.709341 0.89751

Table 6.6: The utilisation policy for the 4-period test case with flattened truck cycle
times.

eter - corresponding with a shift in utilisation policy. This result, along with other
sensitivity analysis, demonstrates that the model is robust to uncertainty, and that the
main factor affected by uncertainty is computation time - a pleasing result.

It is clear that the problem of equipment selection for surface mines is not trivial
due to the dependencies of costs on the age of the equipment, which may be non-
uniform. We had some success in improving the solvability of our model by intro-
ducing symmetry-breaking constraints and by with-holding higher-level compatibility
constraints as lazy constraints. However, for this model to be useful in practice we
would like to see greater scalability and the potential to consider large mining sched-
ules (with up to, say, 20 periods). Greater scalability would enable us to consider a
longer number of mining and dumping locations: allowing us to solve the model in a
more realistic setting.

In spite of this shortcoming, we are satisfied that we adequately captured the non-
uniform piece-wise linear ageing of the equipment within linear constraints. Further,
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Figure 6.14: The varying solution times as we vary the tolerance values (note that
the tolerance values are inverted here).

Periods ε Time (seconds) Quality Solution

4 1e-10 1748 Optimal 5.34279× 107

4 1e-9 1579 Optimal 5.34279× 107

4 1e-8 1538 Optimal 5.34279× 107

4 1e-7 2889 Optimal 5.34279× 107

4 1e-6 2232 Optimal 5.34279× 107

4 1e-5 2314 Optimal 5.34279× 107

4 1e-4 824 Optimal 5.34279× 107

4 1e-3 2080 Optimal 5.3428× 107

Table 6.7: The variance of computation times and objective function value when we
vary ε for the 4-period case study solutions with depreciation at 53%.

we have presented a model that considers pre-existing equipment and heterogeneous
fleets, allows equipment to be salvaged, and outputs a utilisation policy, and a purchase
and salvage policy. This model is robust to the uncertainty of a mining schedule, and
provides the mining manager with a set of optimal decisions based on the best available
information at the time of solution.
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Periods Cost-brackets Time (seconds) Quality Solution

4 15 10801 Optimal 5.12685× 107

4 20 11154 Optimal 5.12685× 107

4 25 13065 Optimal 5.12685× 107

4 30 13065 Optimal 5.12685× 107

4 40 5057 Optimal 5.12685× 107

Table 6.8: The variance of computation times and objective function value when we
vary ε for the 4-period case study solutions with depreciation at 53%.
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Chapter 7

Conclusions

This thesis addressed the equipment selection problem from an optimisation perspec-
tive. Our first contribution was the collation and organisation of a large body of litera-
ture (Chapter 2). The edges of mining method selection and equipment selection have
been blurred in the literary evolution. We categorised the literature based on the actual
achievements and types of solutions obtained. Furthermore, we brought together the
relevant works from shovel-truck productivity and surface mining equipment selection.
Previously these two streams have seen little inter-referencing.

Pre-existing equipment is common in mines when further equipment selection is
required and it seems a short logical step to include this equipment in the process.
A major contribution of this work begins with the consideration of such equipment.
The inclusion of older trucks and loaders which may be discontinued or superseded will
inevitably lead to heterogeneous fleets. In Chapter 3 we extended the match factor ratio
to heterogeneous fleets. While the homogeneous match factor ratio has been studied
to some extent, this heterogeneous ratio is original.

We presented three well behaved integer programming models for equipment se-
lection. All of these models force the retirement of equipment that has reached its
maximum age. This is particularly important when considering pre-existing equip-
ment, or long schedules that exceed the lifetime of new equipment. The first of these
models, in Chapter 4, considered a single-location, multi-period mining schedule with
pre-existing equipment. This model assumed full period utilisation and generalised
productivity requirements in a bid to achieve a fast and general equipment selection
tool. An innovative aspect of this model is the satisfaction of production requirements
under compatible fleets. This model is useful for mines that work all owned equipment
all the time as a policy, and whose mined area is small or localised.

In Chapter 5 we presented an extension to this model by including multiple loca-
tions. This allows the consideration of multiple dumpsites, multiple routes and multiple
mining locations. Consequently, this model also provides an allocation policy. In spite
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of the significant increase in the scale of the problem (by the introduction of multiple
periods), we achieved near optimal solutions for practial sized mining schedules using
the default settings in Cplex.

The models in Chapters 4 and 5 both assume full period utilisation. We relax
this assumption in Chapter 6 where we present an MILP for single-location, multi-
period, utilised cost based equipment selection. This model incorporated several novel
constraints that account for the non-uniformity in the relationship between the periods
of the mine and the rate of age of the equipment. Although we were only able to
achieve optimal solutions for 5 period problems, this model can be used to provide very
detailed allocation policies for a four-term one-year schedule or simply to improve on
the accuracy of the results in previous models for a 5-period (5-year) schedule.

During the course of this work we identified several problems of interest that extend
the work completed here. An important problem arising from this collection of work is
the combined mining method selection and equipment selection problem.

Problem 1 Seek an optimisation model for the combined mining method selection and
equipment selection problem.

Given the influence of the pit optimisation on both mining method selection and equip-
ment selection, one could consider mining method selection, pit optimisation and equip-
ment selection performed together.

Problem 2 Seek an optimisation model for the combined pit optimisation, mining
method selection and equipment selection problem.

In a similar vein, we may be able to improve global solutions by creating the production
schedule at the same time as selecting the equipment. This may help to reduce the
short life cycle of the equipment that was evident in our solutions.

Problem 3 Seek an optimisation model for the combined production scheduling and
equipment selection problem.

The effect of truck-loader interactivity on efficiency is not well understood in the in-
dustry, and has the potential to underpin the optimisation process. We discussed that
queuing and bunching is important for the accurate estimation of cycle times. Sound
queuing and bunching models would therefore be a valuable asset for the mining in-
dustry.

Problem 4 Develop a general queuing and bunching model for the estimation of truck
cycle time.

Often the queuing and bunching of trucks is dependent on the types of equipment and
also the fleet size. It may be possible that such a model can be integrated with an
equipment selection model.
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Problem 5 Develop an integrated queuing, bunching and equipment selection model.

A potential drawback in both of these models is the selection of multiple truck types
in the optimal solutions. It is not known if such solutions could prove more costly if the
mining schedule changes significantly. To study this we should compare retrospective
case studies with these optimal solutions over a fully implemented mining schedule.
Unfortunately data of this quality was not available for the research presented in this
thesis.

Problem 6 Determine the relative costs associated with selecting multiple truck types
over the full dynamic schedule of a surface mine.

The importance of accurate cost data cannot be over-emphasised. Equipment with
different levels of accuracy in the data are incomparable. Equipment with poor data
should not be included, as the results could be devastating if this equipment were
selected and the costs increased significantly.

This model may also be extended to multi-locations, although if the same concepts
as were developed here are used this would require an exorbitant number of variables.

Problem 7 Extend the utilised cost based equipment selection model to multiple loca-
tions.

The work we have achieved in this thesis is clearly only the beginning of an optimi-
sation approach for this challenging, large-scale, mining problem.
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