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And yet, I am quite ready to admit that there is a method which might be 

described as “the one method of philosophy”. But it is not characteristic 

of philosophy alone; it is, rather, the one method of all rational 

discussion, and therefore of the natural sciences as well as of philosophy. 

The method I have in mind is that of stating one’s problem clearly and of 

examining its various proposed solution critically. 
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Abstract 

The vast majority of chemical and bio-chemical process plants are normally 

characterized by large number of measurements and relatively small number of 

manipulated variables; these thin plants have more output than input variables. As the 

number of manipulated variables restricts the number of controlled variables, thin plant 

has presented a daunting challenge to the engineers in selecting which measured 

variables to be controlled. In general, this is an important problem in modern process 

control today, because controlled variables selection is one of the key questions which 

must be carefully addressed in order to effectively design control strategies for process 

plants. While the issue relating to controlled variables selection has remained the key 

question to be resolved since the articulation of CSD problem by Foss in 1970s, the 

work described in this thesis points out to another equally important question in CSD, 

that is, what is the sufficient number of controlled variables required? Thinking over this 

question leads one to the necessity for gaining a rational understating of the governing 

principle in partial control design, namely the variables interaction. 

In this thesis, we propose a novel data-oriented approach to solving the control 

structure problem within the context of partial control framework. This approach 

represents a significant departure from the mainstream methods in CSD, which currently 

can be broadly classified into two major categories as the mathematical-oriented and 

heuristic-hierarchical approaches. The key distinguishing feature of the proposed 

approach lies in its adoption of technique based on the Principal Component Analysis 

(PCA), which is used to systematically determine the suitable controlled variables. 

Conversely, the determination of the controlled variables in mathematical-oriented and 

heuristic-hierarchical approaches is done via the mathematical optimization and process 

knowledge/engineering experience, respectively. It is important to note that, the data-

oriented approach in this thesis emerges from the fusion of two important concepts, 

namely the partial control structure and PCA. While partial control concept provides the 

sound theoretical framework for addressing the CSD problem in a systematic manner, 
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the PCA-based technique helps in determining not only the suitable controlled variables 

but also the sufficient number of controlled variables required.  

Since the classical framework of partial control is not amendable to a systematic 

way in the identification of controlled variables, it is necessary to develop a new 

framework of partial control in this thesis. Within this new framework the dominant 

variable can be clearly defined, and which in turn allows the incorporation of PCA-

based technique for the systematic identification of controlled variables.  

The application of the data-oriented approach is demonstrated on a nonlinear 

multivariable bioprocess case study, called the two-stage continuous extractive (TSCE) 

alcoholic fermentation process. The system consists of 5 interlinked units: 2 bioreactors 

in series, a centrifuge, vacuum flash vessel and treatment tank. The comparison of the 

two-stage design with that of single-stage design reported in literature shows that: (1) 

both designs exhibit comparable performance in term of the maximum allowable trade-

off values between yield and productivity, and (2) two-stage design exhibits stronger 

nonlinear behaviour than that of single-stage. Thus, the design of control strategies for 

the former is expected to be more challenging.  

Various partial control strategies are developed for the case study, such as basic 

partial control strategy, complete partial control strategies with and without PID 

enhancement technique and optimal size partial control strategy. Note that, this system 

consists of 16 output variables and only 6 potential manipulated variables, which has 

approximately 4,000,000 control structure alternatives. Therefore, the application of 

mathematical approach relying on optimization is not practical for this case study – i.e. 

assuming that evaluation of each alternative takes 30 seconds of optimization time, thus, 

complete screening will require almost 4 years to complete. 

Several exciting new insights crystallize from the simulation study performed on the 

case study, where two of them are most important from the perspective of effective 

design of partial control strategy: 

1) There is an optimal size of partial control structure where too many controlled 

variables can lead to the presence of bottleneck control-loop, which in turn can 

severely limit the dynamic response of overall control system. On the other 
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hand, too few controlled variables can lead to unacceptable variation or loss in 

performance measures. 

2) The nature of variables interaction depends on the choice of control structure. 

Thus, it is important to ensure that the nature of open-loop variables interaction 

is preserved by the implementation of a particular control strategy. When this is 

achieved, then we say that this control system works synergistically with the 

inherent control capability of a given process – i.e. achieving the synergistic 

external-inherent control system condition.   

The proposed approach has been successfully applied to the case study, where the 

optimal partial control structure is found to be 3x3 i.e. 3 controlled variables are 

sufficient to meet all 3 types of control objectives: overall (implicit) performance 

objectives, constraint and inventory control objectives. Finally, the proposed approach 

effectively unifies the advantages of both mathematical-oriented and heuristic-

hierarchical approaches, and while at the same time capable of overcoming many 

limitations faced by these two mainstream approaches. 
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1 THESIS OVERVIEW 

1.1 Motivation and Objectives 

The motivation for this study is driven by two important factors: (1) lack of simple and 

versatile tool to solve control structure design problem, and (2) lack of research focus to 

date to address control structure problem in bioprocess systems. With regard to the first 

motivating factor, it is important to note that the control structure problem is the central 

issue to be resolved in modern process control. Although research work in this area has 

spanned more than 3 decades, most of the methods which have emerged over this period 

are not user friendly (and even impractical) when applied to industrial needs. Thus, 

further research is required to develop a method which can be easily and effectively put 

into practice.  

Fortunately, a few theoretical frameworks exist within which this complex design 

problem can be addressed in a systematic way. One of these frameworks is called the 

Partial Control Structure (Stephanopoulos and Ng 2000), an approach which has been 

adopted in industry since the inception of modern process control (Tyreus 1999). In this 

thesis, a new theoretical framework (i.e. refinement of the generalized concept) is 

established and within which, a new technique based on the principal component 

analysis (PCA) is developed for implementing the partial control strategy. 

As for the second motivating factor, most of the bioprocess control work has 

focused on the controller algorithm design, which implicitly assumes that controlled 

variables are pre-determined. In practice, this is not the case where the larger the system 

of interest, the harder it is to determine the suitable controlled variables. Accordingly, 

the work described in this thesis aims to fill this research gap where the issues of control 

structure in bioprocess are addressed in a systematic manner. 

The objectives of this study are as following: 

a) Development of a novel technique to implement the partial control strategy 

(including new theoretical framework of partial control). 
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b) Modeling and optimization of the two-stage continuous extractive (TSCE) alcoholic 

fermentation system. 

c) Design of partial control strategy using a novel technique (developed in (a)) for the 

TSCE alcoholic fermentation system. 

1.2 Novelty, Contributions and Significance 

Although the control structure research has spanned over 3 decades, there has been no 

report in the open literature where the Principal Component Analysis (PCA) is adopted 

to solving this problem i.e. solving control structure design (CSD) problem based on the 

plant data analysis. As such, the work in this thesis is the first attempt ever made in the 

application of PCA to solving control structure problem within the context of partial 

control concept. The salient feature of the new technique is that, it allows the engineers 

to implement partial control strategy without the need for rigorous process experience 

and knowledge. Interestingly, now as then, the implementation of partial control is still 

made in a rather ad-hoc manner relying heavily on process experience and knowledge. 

The technique developed in this PhD work is essentially a fusion of two major 

concepts known as partial control structure (PCS) and Principal Component Analysis. 

The adoption of PCS framework is crucial as to provide a theoretical foundation to 

address the CSD problem. Meanwhile, the PCA is needed to solve the key problem in 

partial control which is the identification of the so-called dominant variables. Note that, 

we classify this new technique into the data-oriented approach implying the 

incorporation of tool for data analysis e.g. PCA. So in this thesis we refer to this new 

technique, in general as the data-oriented approach and in particular as the PCA-based 

technique (to specifically denote the application of PCA). It is important to note that, 

most of the mainstream CSD methods fall into two major categories, which are 

mathematical-oriented and heuristic-hierarchical approaches. Obviously, the data-

oriented approach described in this thesis represents a significant departure from these 

two mainstream approaches. 

In addition, in this work we also address the control structure problem in bioprocess 

(case study) which has received very little attention to date. Note that, the bulk majority 

of bioprocess control research in the last 3 decades has focused on the controller 
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algorithms design and its applications, thus leaving the issue of CSD (in bioprocess) 

relatively untouched. 

The key contributions of the PhD work described in this thesis can be summarized 

as follow: 

1. Development of a novel PCA-based technique for the identification of dominant 

variables for partial control. Various criteria, conditions and quantitative tools are 

established, which form the backbone of the PCA-based technique (Chapter 3). 

2. Refinement of the partial control concept where a new framework is proposed within 

which one can clearly define the dominant variable i.e. the dominant variable has not 

been formally defined before (Chapter 3). 

3. Development of a new methodology based on the PCA-based technique for complete 

partial control design, which incorporates inventory and constraint control 

objectives. Such methodology for partial control implementation has never been 

proposed or reported in open literature (Chapter 4). 

4. Establishment of new framework for the dynamic controllability analysis which 

combines the concepts of control relevant metric (v-gap), factorial design of 

experiment and multi-objective optimization (Chapter 5). 

5. Dynamic modeling, optimization and controllability analysis of the two-stage 

continuous extractive (TSCE) alcoholic fermentation system. Note that, this work is 

the extension to a single-stage design reported in literature i.e. two-stage design has 

not been studied before (Chapter 5). 

6. Study of control structure design of a typical industrial bioprocess using TSCE 

alcoholic fermentation system as a case study. Based on this study, a few new 

insights are obtained such as:  

a) Change in the nature of variables interaction before (open-loop) and after the 

control system implementation (closed-loop) can have a significant impact on 

the dynamic performance of partial control (Chapter 8). 

b) Non-uniqueness of dominant variable set makes it extremely difficult to 

solve partial control problem via optimization (Chapter 7).  
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c) There should be an optimal size (number of controlled variables) of partial 

control strategy; otherwise the overall dynamic performance can be degraded 

by the presence of bottleneck control-loop (BCL) (Chapters 6-8). 

The significance of this PhD work can be viewed in terms of two key aspects. 

Firstly, the work provides an effective technique to solving the central issue in modern 

process control - the control structure problem. Here, the development of new PCA-

based technique for implementing partial control strategy allows the use of minimum 

process experience and knowledge. As this technique is easy to understand, it can 

greatly facilitate the novices in the implementation of partial control strategy even to the 

new processes. Note that, previously without any systematic technique it is difficult even 

for the experienced engineers to implement partial control strategy to a new process, 

where experience and knowledge about it is still limited.  

Secondly, the work shows that one way to improve bioprocess performance is by 

focusing on the control structure design of the bioprocess plant. In this case, the control 

structure of the bioprocess control system is more important than the choice of the 

controller algorithm design. Now it is possible to handle control structure design 

problem even for a bioprocess (i.e. control structure is normally emphasized in 

traditional chemical processes), because of the development of PCA-based technique. 

Additionally, addressing the bioprocess control design within the context of partial 

control has an advantage because it can lead to a simple and cost-effective control 

system i.e. small size control system and possibly using only simple PID controllers. 

Another aspect which is worthy of consideration is that, this work can serve as a 

starting platform for addressing the multi-scale control structure problem in future. It is 

interesting to note that especially in bioprocess, because of the increasing trend of 

integration among multi-scale systems including the microbial system (which is 

characterized by multi-scale processes from genome to metabolome), the questions 

which variables to control, which variables to manipulate and how to connect between 

these two sets will become even more important in future. 
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Figure 1-1: Thesis structure overview 
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1.3 Thesis Structure 

Figure 1-1 shows the overview of thesis structure. In summary, this thesis is structured 

as follows: 

Chapter 2 – This covers the literature reviews on the backgrounds relevant to this 

PhD work, and which are divided into two main parts. The first part deals with the 

control structure design problem where various methods developed for dealing with this 

problem are reviewed. Also advantages and limitations of the existing methods are 

highlighted and the unresolved challenges especially in the area of partial control are 

identified. One of the key challenges in partial control application arises from its heavy 

reliance on process experience and knowledge i.e. it is heuristic-based. Thus, if a 

technique exists to reduce this heavy reliance, then arguably partial control framework 

can provide effective solution to solving the complex control structure problem. The 

second part of the review describes the introduction into the bioprocess modeling and 

control in general. Here, the prevalent approach in bioprocess control design is described 

and the remaining gaps for further research are identified. One of the gaps is the lack of 

current research focus on addressing the control structure design in bioprocess control - 

existing approaches focus heavily on the controller algorithms design. In addition, a 

review on the extractive alcoholic fermentation technique for the production of fuel 

ethanol is also presented as to give sufficient background for the bioprocess case study 

adopted in this thesis. 

Chapter 3 – In this chapter, a generalized (classical) concept of partial control 

structure is presented and its key limitations are further discussed. A new theoretical 

framework for partial control which can overcome these limitations is developed. Within 

this new framework, the concept of dominant variables is clearly defined and procedure 

for identifying these variables via Principal Component Analysis (PCA) is established. 

In conjunction with the identification of dominant variables via PCA, criteria and 

conditions are proposed to ensure systematic and consistent result can be obtained. 

Furthermore, two measures are defined which are called the closeness index (CI) and 

dominant variable interaction index or array (IDV). The significances of these indices are 

that, while CI can be used to rank the impact of dominant variables on a performance 

measure, IDV can be employed to decide on the number of dominant variables, which 
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must be controlled to ensure acceptable variation in a performance measure. In other 

word, there is no need to control all of the dominant variables because the interaction 

among them, makes it possible that controlling only a few of them will indirectly and 

naturally control other variables. Part of the results regarding the theoretical 

development is published in Chemical Product and Process Modeling Journal. But it is 

important to remember that, the theoretical development described in this chapter 

emerges from the crystallization of several preliminary works, which have been 

presented in a number of conferences.  

Chapter 4 – Here, a methodology for complete partial control design which 

includes the inventory and constraint control objectives is proposed. It is interesting to 

note that, the methodology adopts the PCA-based technique developed in Chapter 3 to 

identify the dominant variables. As to avoid confusion arising from the vast array of 

objectives that a control system needs to achieve, these objectives are partitioned into 3 

major categories as (1) overall control objectives, (2) constraint control objectives, and 

(3) inventory control objectives. The subset of dominant variables which must be 

controlled to achieve the overall objectives is termed as the primary controlled variables. 

Meanwhile both of constraint and inventory control objectives are achieved by 

controlling subsets of constraint and inventory variables respectively. Here, the 

applications of PCA-based technique together with the unit operation knowledge allow 

one to identify which constraint and inventory variables that must be controlled. In other 

words, just like in the case of dominant variables, there is no need to control all of the 

inventory and constraint variables because of the existence of variables interaction. 

Chapter 5 – Nonlinear dynamic modeling of the case study process called the two-

stage continuous extractive (TSCE) alcoholic fermentation system is presented. It is then 

followed by the optimization of operating conditions of this case study process. Note 

that, the ethanol yield and productivity are the two key performance measures for this 

process. Interestingly, these performance measures exhibit opposite trends where the 

conditions that increase the yield tend to decrease the productivity, and vice versa. Thus, 

the optimization in this case attempts to find the operating conditions which give the 

optimal trade-off between these two performance measures. It is also important to 

highlight in this chapter that a new dynamic controllability analysis framework, which is 
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based on the combination of concepts of control-relevant metric, factorial design of 

experiment and multi-objective optimization is proposed. Using the proposed 

framework, the dynamic controllability of the two-stage design (case study) and single-

stage design (reported in literature) of extractive alcoholic fermentation systems is 

analyzed. Additionally, the optimization of operating conditions and dynamic 

controllability of the two-stage and single-stage designs are compared. 

Chapter 6 – The overall aim of this chapter is to develop a basic partial control 

strategy for the TSCE alcoholic fermentation system (Chapter 5), which does not 

directly incorporate the constraint and inventory control objectives. Moreover, as far as 

the basic partial control strategy is concerned, only the dominant variables are controlled 

to setpoints with the main emphasis to achieve the specified overall performance 

measures. In this case, the performance measures are the ethanol yield, percentage 

conversion of substrate to ethanol and volumetric productivity of ethanol. The values 

obtained in the optimization of the case study process described in the Chapter 5 are 

adopted in the simulation of basic partial control strategy. Note that, this is the first 

chapter in which the PCA-based technique developed in Chapter 3 is used to obtain the 

dominant variables corresponding to the yield, conversion and productivity. Because the 

focus is on the basic partial control design, thus the methodology proposed in Chapter 4 

is only partially required in this case. Based on the PCA-based technique, this basic 

partial control design only requires two controlled variables from the four dominant 

variables identified. Despite its simplicity, the dynamic simulation study shows that the 

basic partial control design performs satisfactorily well, in term of its ability to maintain 

the steady-state variations (offsets) of the performance measures within the specified 

bound. However, the basic design shows rather poor performance in terms of meeting 

the constraint and inventory control objectives; the constraint and inventory variables 

show large peaks during the transient response. 

Chapter 7 – In this chapter, the proposed methodology for complete partial control 

design (Chapter 4), which incorporates the constraint and inventory control objectives, is 

applied to the previous TSCE alcoholic fermentation system mentioned in Chapters 5 

and 6.  Furthermore, the applications of closeness index and dominant variable 

interaction index previously described in Chapter 3 are also demonstrated in this chapter. 
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Dynamic simulation is performed to assess the comparative performances of complete 

partial control design with and without the PID enhancement technique. Additionally, 

the impact of control structure on the nature of variables interaction before (open-loop) 

and after the implementation of a chosen control strategy (closed-loop) is highlighted. 

Other important aspects pertaining to the partial control are also discussed, which 

include the working principle of partial control, non-uniqueness of dominant variable set 

from the classical concept of partial control perspective, and the tool for understanding 

the variables interaction. 

Chapter 8 – An important question from Chapter 7 is how significance is the 

impact of the variables interaction (which depends on the control structure) on the 

overall closed-loop performance? This chapter is mainly dedicated to answering this 

question. Here, a term called Bottleneck Control-Loop (BCL) is introduced which in this 

thesis is referred to as one of the factors that can limit the performance of a control 

strategy. It is argued in this chapter that, a significant improvement in control (dynamic) 

performance can be achieved if the BCL can be identified and removed (i.e. size 

reduction can lead to improvement). However removal of the BCL implies removal of 

one controlled variable. Thus, while removing the BCL can lead to improved dynamic 

performance, it can also lead to the degradation in the steady-state performance if the 

controlled variable being removed is a primary (dominant) variable. In order to assess 

whether the BCL should be removed or not, the dominant variable interaction index can 

be used to assess how severe is the penalty on the steady-state performance. The bottom-

line is that, there should be an optimal size for the partial control design of a particular 

system, where too many control-loops (controlled variables) can lead to poor 

performance. 

Chapter 9 – In this chapter, important conclusions that can be drawn from this PhD 

work are forged into a brief essay. Additionally future works are suggested for 

improving the current data-oriented approach, and for extending its applications into 

different areas such as, multi-scale control structure design and design of decentralized 

model predictive control (MPC) system. 
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2 LITERATURE REVIEW 

2.1 Control Structure Problem 

Figure 2-1 depicts the plantwide control problem which can be divided into two main 

categories as: 

i. Control structure design (CSD) problem. 

ii. Controller algorithm design (CAD) problem. 

Despite the great significance of the first category of the problem, the vast majority 

of the research work has been focusing on the second category of the problem, which 

assumed that the controlled variables were pre-determined. With regard to the second 

category of the problem, most of the work has typically dealt with the controller 

algorithms design and analysis, for instances, the designs of multi-loop PID, nonlinear 

controller, robust controller and model predictive control (MPC). 

Initially, the challenge of plantwide control problem was seriously addressed by 

(Buckley 1964) in 1960s, where he proposed the concept of dynamic process control in 

order to handle the problem. While this concept provides practicable solution to the 

problem, its shortcoming lies in its inability to highlight the essence of the control 

structure problem. 

The essence of control structure problem was finely articulated by Foss (1973) in 

his paper “Critique of Chemical Process Control Theory”, who stated that: 

“Perhaps the central issue to be resolved by the new theories of chemical process 

control is the determination of control system structure. Practicable solutions to this 

problem are not directly forthcoming from the current methods… it is a formidable task 

to separate from among these those that should be measured and manipulated and to 

determine the control connection among them… Such are the questions that need 

answers, and it is the burden of the new theories to invent ways both of asking and 

answering the questions in an efficient and organized manner.” 
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Figure 2-1: Illustration of plantwide control problem 
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manipulated variables, as well as the determination of the structure interconnecting the 

controlled and manipulated variable sets. These are formidable tasks because the 

problem is normally open-ended and combinatorial in nature. Thus, no single unique 

solution exists for a typical chemical process. Very often engineers are just contended 

with a workable control structure that provides satisfactory performance, as it is 

extremely difficult to identify the best one among the ‘sea’ of candidate control 
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Currently there are 2 major approaches to addressing the CSD problem as follow: 

i. Mathematical-based approach (with optimization). 

ii. Heuristic-hierarchical approaches. 
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Heuristic-hierarchical approach relies heavily on the process knowledge and 

experience and there are several well-known methods within this family. Among the 

heuristic methods are the nine-step procedure (Luyben, Tyreus and Luyben 1997), five-

tiered procedure (Price and Georgakis 1993) and partial control structure (Shinnar 

1981). Some methods also combine the heuristic rules with the decomposition idea of 

(Douglas 1988), for example, the plantwide control method described in (Zheng, 

Mahajanam and Douglas 1999). In some articles, the heuristic-hierarchical approach is 

called the process oriented approach e.g. in ( (Larsson and Skogestad 2000). 

Statistical data-oriented approach relies on the availability of plant data and the 

statistical technique to extract the information from the data. This is an unexplored 

opportunity since the inception of dynamic process control idea nearly four decades ago. 

The proposed PCA-based method in this thesis (Nandong, Samyudia and Tade 2010b) is 

the first reported method within this category. This PCA-based method adopts the 

framework of partial control in order to address the control structure problem. 

Control structure problem is a typical open-ended type of problem and 

combinatorial in nature. The number of control structure candidates (or input-output 

structures) can be determined based on (Van de Wal and De Jager 2001) as: 

��� � �2�� 	 1��2�� 	 1� 
 1  2-1 

Where �� and �� is number of manipulated inputs (input degree of freedom) and 

number of output variables respectively. 

Traditionally the plantwide control problem has been addressed based on the unit 

operation approach (Luyben, Tyreus and Luyben 1997). The basic assumption 

underlying this approach is that the unit control systems can comprise the entire plant 

control system in a linear manner – ignores the effect of interaction among the 

interlinked units. 

Because the control structure problem is open-ended in nature, it is important that 

the problem is addressed in systematic manner. To address this problem in a 

theoretically-founded manner, formal frameworks are required where (Stephanopoulos 

and Ng 2000) suggested three choices of formal frameworks as: 

1. Feedback optimizing control structure (FOCS) 
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2. Self-optimizing control structure (SOCS) 

3. Partial control structure (PCS) 

It should be remembered that unlike the mathematical approach, heuristic-hierarchical 

approach does not have (or lack of) sound theoretical foundation. Some authors have 

argued that this is the main reason why the application of heuristic-hierarchical methods 

often leads to ad-hoc procedures in solving the control structure problem. Surprisingly, 

despite this limitation, the heuristic-hierarchical approach has received better acceptance 

than that of mathematical approach in process industry. One of its main strengths is its 

simplicity as compared to mathematical approach which requires extensive 

mathematical formulation. 

2.1.1 Research Progress in Control Structure Design 

Research study on control structure problem has spanned more than 3 decades and 

where various methods have been developed along the way. Table 2-1 shows the 

methods which can be categorized into mathematical-based approach. And Table 2-2 

shows the methods which are based on either hierarchical or heuristic or combination of 

both ideas – heuristic-hierarchical approach. Additionally, Table 2-3 shows the methods 

which can neither be strictly categorized into the mathematical-based nor heuristic-

hierarchical approach. These methods normally are hybrid of mathematical, heuristic 

and hierarchical ideas in various proportions. 

While the key advantage of mathematical approach lies in its theoretical foundation 

which enables engineers to address the CSD problem in a systematic manner, the key 

advantage of hierarchical approach rests on its simplicity. Because of its theoretical 

foundation, the mathematical approach allows the translation of the overall operating 

objectives (normally implicit function of process variables) into a set of controlled 

variables – this is considered the heart of CSD problem. On the contrary, the heuristic-

hierarchical approach is incapable of handling this problem because of its lack of 

theoretical foundation (Stephanopoulos and Ng 2000).  

An ideal approach for control structure problem should unify the advantages of both 

mathematical and heuristic-hierarchical approaches. Furthermore, it must be able to 

overcome the limitations faced by both approaches. 
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Table 2-1: Mathematical and optimization based methods for CSD 

Methods/References Remarks 

Feedback Optimizing Control 

Structure (Morari, Stephanopoulos 

and Arkun 1980)  

Assumes set of controlled variables used in feedback control, which 

can self-optimize the economic in the presence of disturbances. 

Provides theoretical framework to address CSD problem and free of 

engineering heuristics. 

Limitation:  (1) Difficult to deal with the multi objectives 

optimization formulation, (2) heavy computational requirement. 

Self-optimizing Control Structure 

(Skogestad 2000), (Larsson, et al. 

2001), (Araujo, Govatsmark and 

Skogestad 2007) 

A variant of feedback-optimizing control structure using single-

objective optimization formulation. Key idea is to find a set of 

variables to control that will lead to acceptable loss in optimum 

economic performance in the presence of disturbances. 

Applications: Tennessee Eastman (TE) process and HDA plant. 

Optimal Control based Approach  

(Robinson, et al. 2001) 

Optimal controller gain matrix is divided into feedback and 

feedforward parts. Indicates if MPC is preferred over a 

decentralized plantwide control. 

Limitation: Not clear how controlled variables are selected. 

Application: Reactor with recycle and polymerization process. 

MILP Optimization based on 

Dynamic Model (Wang and 

McAvoy 2001) 

Adopts MILP optimization to synthesize plantwide controller in 

three stages as fast and slow safety variables and followed by 

product variables. 

Limitation: Not clear how controlled variables are selected. 

Application: TE process 

MILP Optimization  based on 

Linear Dynamic Economics 

(Narraway and Perkins 1993), 

(Kookos and Perkins 2002) 

Address how changes in control structure alter the economics. 

Requires linear dynamic economics model. 

Application: Reactor/separator process and double effects 

evaporator system. 

Heuristic-Optimization Method 

(Kookos and Perkins 2001) 

Heuristic rules are incorporated into the MILP optimization 

formulation. Heuristics are used for quick generation of promising 

control structures. 

Application: Double-effects evaporator, HDA plant and TE process 



15 

 

 

 

Table 2-2: Heuristics-Hierarchical based methods for CSD 

Methods/References Remarks 

Dynamic Process Control 

(Buckley 1964) 

Divides CSD problem based on time scales: (a) material balance – 

slow scale, and (b) quality – fast scale. Provides practical solution to 

CSD problem. Many heuristic methods that follow still inherit the 

characteristics of this method. 

Cause-and-Effect Representation 

(Govind and Powers 1982) 

Use simple input-output models to generate alternate control 

structures. First non-numerical problem-solving technique to 

synthesize control structure. 

Partial Control based on 

Engineering Experience (Shinnar 

1981), (Arbel, Rinard and 

Shinnar 1996) 

Provides theoretical-founded way to address CSD problem. Key idea 

is to control a small subset of variables known as dominant variables, 

which will lead to acceptable variations in operating objectives.  

Limitation: Difficulty in identifying suitable dominant variables via 

engineering experience and process knowledge. 

Application: Fluidized Catalytic Cracker (FCC) 

Partial Control based on 

Thermodynamics (Tyreus 

1999a), (Tyreus 1999b) 

Using expressions derived from thermodynamic knowledge to 

determine suitable dominant variables. 

Application: TE process 

Five-tiered Framework (Price 

and Georgakis 1993) 

 

Five tiers: (1) production rate control, (2) inventory control, (3) 

product specification control, (4) equipment & operating constraints, 

and (5) economic performance enhancement. 

Application: Reactor/separator system 

Nine-step Procedures (Luyben, 

Tyreus and Luyben 1997) 

Establish:  (1) control objectives, (2) degree of freedom, (3) energy 

management system, (4) production rate, (5) product quality, safety, 

operational & environmental constraints control, (6) inventories 

control, (7) component balances consistency, (8) individual unit 

operation control, and (9) improve dynamic controllability. 

Application: TE and HDA processes. 

Heuristic-Simulation Framework 

(Konda, Rangaiah and 

Krishnaswammy 2005) 

Simulation is combined with nine-step procedure facilitating the 

novices to use the heuristic method. 

Application: HDA process 
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Table 2-3: Other methods for CSD 

Research Work/Reference Remarks 

Hierarchical Approach (Douglas 

1988), (Zheng, Mahajanam and 

Douglas 1999) 

Use Douglass (1988) idea of hierarchical decomposition based on 

economics. Simple modifications can be used to determine the 

optimum surge capacities of a process. Framework can be used to 

integrate process design and control. 

Limitation: Can lead to conflicting results. 

Application: Reactor/separator system. 

Balanced Scheme Control 

Structure (Wu and Yu 1996) 

Emphasizes the use of balance control scheme between units e.g. 

reactor and separator to handle large load changes. 

Application: Reactor/separator process. 

Decision-based Approach 

(Vasbinder and Hoo 2003) 

Uses analytic hierarchical process to prioritize the various objectives.  

Plant is decomposed, and for each module the nine-step approach is 

invoked to design the control structure. 

Application: Reactor/separator process. 

Thermodynamic Approach 

(Antelo, Muras, et al. 2007) 

Combined concept of process networks, thermodynamics and 

systems theory to derive robust decentralized controllers that ensure 

plant stability. 

Limitation: Can be too complicated for large-scale system. 

Application: CSTR 

Control-relevant Metric Approach 

(Samyudia, et al. 1995) 

Framework based on control relevant metric is used to screen 

alternative control structures, with emphasis on stability and 

achievable performance of the system under decentralized control 

architecture. The method does not provide way to select controlled 

variables. 

Limitation: Not clear how controlled variables are selected. 

Application: Reactor/separator process. 
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2.1.2 Partial Control Structure 

Early motivation for the applications of partial control arises from the technology 

limitations and cost factors, which necessitates the use of a few simple measurements 

and actuators to control the process (Tyreus 1999a). Despite the rapid advancement in 

technology today, partial control remains an important control strategy in process 

industries. This is due to the limited number of available manipulated variables normally 

encountered in real cases i.e. the number of manipulated variables is normally smaller 

than the number of output variables - thin plant cases. 

The subset of variables which are controlled at constant values such that, the 

variations in the operating objectives are acceptable in the face of external disturbance 

occurrence is called the dominant variables. It is important to note that, the heart of 

partial control problem lies in the identification of these dominant variables. From its 

early inception, in partial control the search for the dominant variables has been based 

on extensive engineering experience and process knowledge i.e. by heuristic approach. 

Tyreus (1999a) proposed a systematic approach (albeit with restricted applications) to 

identify the dominant variables but requires thermodynamics knowledge of the process. 

One limitation of this method, however, it is only suitable for finding variables which 

have strong thermodynamic relationship with the operating objectives; otherwise, if the 

operating objectives are not strongly related to thermodynamic, then this method will not 

work. Other than this thermodynamic approach which has narrow application restricted 

by the thermodynamic knowledge, unfortunately, there has been very little progress in 

the development of other systematic approach to identify the dominant variables. 

The applications of partial control to fluidized catalytic cracker and Tennessee 

Eastman Process were reported by (Arbel, Rinard and Shinnar 1996) and (Tyreus 1999b) 

respectively. Note that, the Tennessee Eastman Process has also been adopted as a case 

study for testing other CSD methodologies, for examples, the combined method based 

on steady-state analysis, engineering judgment and simulation (McAvoy and Ye 1994), 

hierarchical procedure based on thermodynamics (Antelo, Banga and Alonso 2008) and 

Self Optimizing Control Structure (Larsson, et al. 2001).  

Partial control framework offers an advantage over the heuristic approach in term of 

its ability to address the control structure problem in a systematic manner – i.e. it has 
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sound theoretical framework. However, the key challenge in partial control currently lies 

in the difficulty to identify the dominant variables. A framework for defining the partial 

control problem was proposed by (Kothare, et al. 2000), which allows the incorporation 

of both engineering-based decisions and more rigorous theoretical tools to achieve the 

goals of partial control. Nevertheless, this framework does not provide an efficient tool 

to identify the dominant variables. More detail regarding partial control will be dealt 

with in Chapter 3. 

2.2 Bioprocess Modelling and Control 

2.2.1 Introduction 

Biotechnology is the oldest known technology which has served the humanity since pre-

biblical times (Demain 1981) where one of its earliest applications is to produce beer by 

fermentation. Undoubtedly, biotechnology is one of the most important processes in 

nature which is inherently multi-scale in character (Ayton, Noid and Voth 2007). Other 

well-known examples of important processes which are multi-scale include turbulent 

flows, mass distribution in the universe and vortical structures on the weather map. An 

important feature of multi-scale processes is that different physical laws may be required 

to describe the systems involved on different scale (Weinan and Engquist 2003). 

The incorporation of multi-scale knowledge in the process modelling is not 

straightforward (Stephanopoulos, Dyer and Karsligil 1997, Bassingthwaighte, Chizeck 

and Atlas 2006). Consequently, despite the well-known multi-scale nature of systems 

involving industrial microbes, the analysis and design approaches adopted in the 

bioprocesses are still largely based on the simplified macro-scale concept. This macro-

scale approach is also known as formal approach (Moser 1984). The key feature of this 

formal approach is that the detailed phenomena occurring at the fine scales (i.e. fine 

details) are generally ignored. Based on this approach, the fine-scale phenomena (i.e. 

detailed cellular metabolism) such as those occurring at the cellular level are lumped 

into macro-scale parameters, for examples, specific growth and product formation rates 

and yield coefficients. The primary motivation for adopting this approach rests on its 
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simplicity and practicality in the absence of detailed information and knowledge 

particularly on the fine resolutions. 

2.2.2 Bioreactor: Definition of Performance and Research Focus 

At the heart of a bioprocess is the bioreactor which has been considered to provide a 

central link between the starting feedstock and the product. As such, it plays a critical 

role in the economics of biotechnological processes in general (Cooney 1983). 

The bioreactor must be designed to meet the specific needs and constraints of a 

particular process, and its design will normally affect both cost and quality of the final 

product or service. Therefore, the practicality of the bioreactor performance is 

essentially determined by the benefit/cost ratio (Lubbert and Jorgensen 2001). With 

respect to the benefit, it is defined in terms of the amount of the desired product 

produced and its market price. On the other hand, the cost reduction is the major 

objective in biochemical engineering. In a nutshell, the bioreactor performance 

encompasses all activities undertaken to ensure reproducible operation or to improve the 

performance of biochemical conversion step of the bioprocess system. 
Research efforts for improving the performance of bioreactor could be broadly 

divided into two important aspects: 

a) Key enabling tools. 

b) Biosystem improvement.  

Furthermore, there are two major key enabling tools which support the research efforts 

for improving the bioreactor performance which are: 

a) modelling, computation and analysis. 

b) Measurement technology including the sampling, analytical techniques 

and sensors development.  

Meanwhile within the biosystem improvement efforts, one could further divide the key 

research works into two main categories as:  

a) Bioreactor design and operation. 

b) Microbial strain improvements or cellular system improvement. 
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Figure 2-2 Framework of relationship between the research on key enabling tools (modelling and 

measurement technology) with the research on bioreactor design and operation towards the improvement 

of bioreactor performance 
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Figure 2-3: Schematic representation of interactions between the cellular and environment and the cellular 

metabolism. The biochemical synthetic route from genome to the metabolome is shown as unbroken 

arrows. Possible interactions in that route (e.g. transcription factors or effectors binding to the genome, 

enzymatic feed-back loops, or poisoning effects) are shown by dashed arrows (Liden 2002) 
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Figure 2-2 shows an overview of these key research areas across different scales 

(cellular up to bioreactor level), which are vital towards the improvement of bioreactor 

(benefit/cost ratio) performance, and hence could lead to an overall improvement of the 

biotechnological process. Note that, the progress in measurement technology has 

allowed better access to detailed measurements such as the cellular metabolites 

concentrations, intracellular fluxes and cellular physiological states. This in turn creates 

large volume of multi-scale data and information about the overall bioreactor system 

ranging from the genome scale, to metabolome and up to the macro-scale level of 

bioreactor. 

The multi-scale nature of the overall bioreactor system can be illustrated by Figure 

2-3. One of the major research efforts in recent years are to interpret and evaluate this 

large volume of data or information through the application of modelling technique. In 

connection to such efforts, the progress in modelling could also be viewed as a mean to 

create valuable new insights about the biosystem of interest and to provide new research 

directions for further improvement (see Figure 2-2). 

2.2.3 Key Challenges in Bioprocess Design and Operation 

Table 2-4 summarizes the key challenges (Cooney 1983, Liden 2002) in bioprocess 

design and operation, which in turn frequently put a limit on the bioreactor practical 

performance as measured by the benefit/cost ratio. Voluminous research efforts have 

been dedicated in the last 30 years in order to overcome these key challenges mainly 

through the applications of process system engineering concept to the bioreactor design 

and operation and more recently through the concept of metabolic engineering to 

improve the microbial strain of interest. 

In this review, one of the aims is to present how these key challenges have been 

addressed from modelling, design and control point of views using alcoholic 

fermentation process as a case study. Following this review, another important aim is to 

highlight the key research gaps which become the basis of this PhD study.  
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Table 2-4: Key challenges in bioreactor design and operation  

Challenges Remarks 

Limitation on heat and mass transfer Particularly critical for aerobic fermentation, immobilized 

cells and heavy cells density fermentations. 

Low volumetric productivity Due to (1) low biocatalyst activity, (2) inhibitory effects 

(product, high substrate concentration, temperature). 

Low final product concentration Causes high recovery costs. 

High product quality requirement Important to minimize the by-product formation & thus 

increase the yield of desired product. 

Lack of physiological understanding Complex physiology prevents effective use of measured 

variables to design control system for controlling the 

culture. 

Lack of sensors to measure primary 

variables 

Primary variables are substrates, products and biomass 

concentrations.  

Limited number of suitable manipulated 

variables 

Use of different fermentation system designs to increase 

number of inputs. 
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2.2.4 Modelling of Fermentation Process 

In process engineering the use of model to represent the key dynamic behaviours of the 

process of interest is a prevalent practice. With respect to biochemical engineering, there 

are four key reasons why models are necessary (Bailey 1998): 

1. To think (and calculate) logically about what components and interactions are 

important in a complex system i.e. from DNA sequence to phenotype. 

2. To discover new strategies.  

3. To make important corrections in the conventional wisdom.  

4. To understand the essential, qualitative features.  

The key reason for making models is to be able to bring measure of order to our 

experience and observations (data and information), as well as to make specific 

predictions about certain aspects of the world we experience (Casti 1992). Therefore, 

mathematical modelling does not make sense without defining, before making the 

model, what its use is and what problem it is intended to help to solve – aim and scope 

of the model development. In bioprocess modelling, the key challenge is to transfer and 

adapt the developed modelling methodology from technical to biological systems, where 

the extent of applicability remains open due to several substantial differences between 

the two systems (Wiechert 2002). 

Furthermore, the aim and scope of modelling applications can be summarized into 

six important categories (Wiechert 2002) as: 

1) Structural understanding – the model is mainly used to help focusing the attention 

on what is considered the essential parts of the system.  

2) Exploratory simulation – the most frequent application of models is the exploration 

of the possible behaviour of a system. The model might be very crude, but could 

help to achieve a rough understanding of the system behaviour and to reject false 

hypotheses. 

3) Interpretation and evaluation of measured data – the reproduction of 

experimental data by mathematical models is a well-established tool in all scientific 

disciplines. It is very important to point out that in most cases this is merely a 

reproduction of measured data i.e. does not mean it even has any predictive power. 
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4) System analysis – the models could be used to help in obtaining better 

understanding of the system’s structure and its qualitative behaviour, e.g. 

identification of functional units in metabolic and genetic systems. 

5) Prediction and design – the validated model could be used to predict the outcome 

of future experiments. However, the predictive power is often restricted to a narrow 

scope that does not always contain intended target configurations or ranges of 

conditions. 

6) Optimization – the application of models in engineering disciplines is the state of 

the art, but application to biotechnological systems may not be straight forward. 

 

In the modelling of bioprocess, the key aspect is how to capture the key behaviours 

of the cell populations. Figure 2-4 illustrates the classification of mathematical and other 

representations of cell populations as introduced by Fredrickson (Bailey 1998). 

Fredrickson introduced the term “segregated”, to indicate explicit accounting for the 

presence of heterogeneous individuals in a population of cells. And, the term 

“structured”, is designated for the formulation of model in which cell material is 

composed of multiple of chemical components. Most models and measurements belong 

to the nonsegegated class. 
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Figure 2-4: Classifications introduced by A.G. Fredrickson for mathematical (and other) representation of 

cell populations (Bailey 1998) 

 

Table 2-5 summarizes the key behaviours of alcoholic fermentation process which 

have been the subject of extensive modelling efforts i.e. to capture the behaviours in 

quantitative manners. The development of kinetics models based on Monod type, which 

embeds the inhibitory effects of high ethanol and substrate concentrations on the specific 

growth and product formation rates is a common practice in the formal macroscale (or 

unstructured) approach. Ethanol is considered as the principal stress factor in yeasts 

during fermentation processes. 

Various studies have been dedicated to understand the mechanisms of ethanol 

inhibitory effects on yeasts (Aguilera, et al. 2006, Alexandre, Rousseaux and 

Charpentier 1994, D'Amore and Stewart 1987, Jones 1989, Ricci, et al. 2004). A 

comprehensive review on the kinetics modelling of microbes (both bacteria and fungi) 

based on structured modelling approach can be found in (Nielsen and Villadsen 1992). 
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Table 2-5: Modelling of key behaviours in alcoholic fermentation process 

Behaviours Remarks References 

Inhibitory effects due 

high product or 

substrate or biomass 

concentration 

Due to high substrate and product 

concentrations. High biomass concentration 

causes limitation on mass transfer, and high 

temperature causes high death rate. 

Frequently lead to low yield and 

productivity.  

(Ghose and Tyagi 1979), (Luong 

1985), (Garro, et al. 1995), 

(Jarzebski 1992), (Starzak, et al. 

1994), (Thatipamala and Hill 

1992), (Phisalaphong, Srirattana 

and Tanthapanichakoon 2006), 

(Costa, et al. 2001) 

Mixed physiological 

states or Crabtree 

effect. 

At low dilution rate glucose is used 

oxidatively. At high dilution rates respiro-

fermentative occurs even in the presence of 

excess oxygen. 

(Anderson and Von Stockar 

1992), (Hanegraaf, Stouthamer 

and Kooijman 2000), (Thierie 

2004) 

Oxygen supply or 

micro-aerobic 

fermentation 

Oxygen supply could increase cell viability 

and reduce by-products formation such as 

glycerol.  

(Slininger, et al. 1991), (Dellweg, 

Rizzi and Klein 1989), (Grosz 

and Stephanopoulos 1990) 

Oscillatory 

phenomenon 

Caused by inhibitory action, and negative 

coupling between product formation and 

biomass growth 

(Jarzebski 1992), (Garhyan and 

Elnashaie 2004), (Jobses, et al. 

1986) 

Lag  phase and 

dynamic of the 

respiratory bottleneck 

Adaptive period for cell adjusting from one 

substrate to another (diauxic lag phase).  

(Sonnleitner and Hahnemann 

1994), (Sonnleitner, Rothen and 

Kuriyama 1997), (Pamment, Hall 

and Barford 1978) 

Cellular Metabolism Modelling to understanding cellular 

metabolism and physiology. Used to 

optimize conditions, and in directing genetic 

changes to produce improved strains. 

(Gombert and Nielsen 2000), 

(Patnaik 2001), (Rizzi, et al. 

1997), (Lei, Rotboll and 

Jorgensen 2001), (Galazzo and 

Bailey 1990), (Bideaux, et al. 

2006); (Steinmeyer and Shuler 

1989) 
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2.2.5 Macro-scale Modelling Approach 

Modelling of bioreactor involves 2 major components namely: 

1) Kinetics model of the microbe being used. 

2) Mass and energy (sometimes momentum) balances of the bioreactor.  

The kinetics model of the microbe can be either in the form of unstructured or 

structured. Vast majority of models used in the bioreactor modelling, design and 

optimization is of the unstructured type because of its simplicity. 

Figure 2-5 illustrates the idea of macro-scale approach to bioreactor modelling. 

Here, Umac and Ymac represent the vectors of macro-scale inputs and outputs respectively. 

The descriptions of the bioprocess in general consists of three sets of equations: (1) 

process mass conservation equations describe the type of bioreactor, (2) kinetics 

equations, and (3) yield equations replace the stoichiometry of chemical processes, and 

describe the relationship between the rates of consumption and product formation 

(Andrews 1993). Note that, the focus of modelling in macro-scale approach is to capture 

the macro-scale process behaviours. 

2.2.5.1 Bioreactor Modelling 

The next set of equations is to describe the bioreactor system through the process mass 

conservation equations for each components and energy balance. The conventional 

macro-scale model (Figure 2-5) could in general be represented as a set of differential-

algebraic equations (i.e. DAEs system) as follows. 

First, the set of differential equations representing the bioreactor or macro-scale 

state variables can be written as: 

����� � ��������� , ���� , �� 2-2 

Where ���� � ���  , ���� � ���  and � � ���  are vectors of macro-scale state 

variables, macro-scale input variables and kinetic parameters respectively. Note that, in 

this case, the kinetic parameters of interest are the growth, product formation and 

substrate consumption rates. The fmac is generally a nonlinear function of its arguments. 
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Figure 2-5: Schematic representation of macro-scale modelling approach  

Meanwhile the bioreactor output variables can be expressed as: 

���� �  ��������, �����  2-3 

Assuming the time-varying kinetic parameters can be written as: 

� � !���������  2-4 

The dynamic of the parameters in response to the state variables change is assumed 

instantaneous i.e. follows the dynamic of the macro-scale system. But credible studies 

show that this might be partially true as cells must somehow sense the changes in the 

environmental conditions and have a choice to respond, thus introduces certain lag time 

(Sonnleitner 1998) . This actually leads to some finite time, for example, the relaxation 

time of yeast when subject to excess substrate supply can be on the order of 1 hour 

(Sonnleitner, Rothen and Kuriyama 1997). 

Additionally, Figure 2-5 representation is generally called the black box approach. 

The detailed processes occurring in the cells are ignored and lumped together as the 

macro-scale parameters � e.g. specific growth rate, specific product formation rate and 

yield coefficients. 

2.2.5.2 Unstructured Fermentation Kinetic Modelling 

In this case, we describe the kinetic modelling which is frequently adopted in alcoholic 

fermentation. There are three types of inhibitory effects, which are frequently 

encountered in the ethanolic fermentation in particular and other types of fermentation in 

general, which are: 

1) Product inhibition e.g. too high ethanol concentration can reduce the growth and 

product formation rates. 
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2) Substrate inhibition i.e. when the glucose concentration is too high, the growth rate 

can be significantly reduced. 

3) Biomass inhibition, i.e. too high the biomass concentration can lead to mass transfer 

limitation which can reduce the growth and product formation rates. 

The substrate limitation based on the Monod equation for the specific growth rate can be 

written as follows: 

" � "# $
%&'$ 2-5 

Where S is the substrate concentration and Ks is a parameter. Taking into account the 

ethanol inhibition effect, we can write the specific growth rate as: 

" � "( $
%&'$  2-6 

Where the ethanol concentration (P) inhibitory effect can be expresses in various forms 

(Luong 1985) such as: 

Linear Form: "( � "# )1 	 *
*+,  2-7 

Exponential Form: "( � "#-.%/*  2-8 

Hyperbolic Form: "( � "# ) 0
0'* %1⁄ ,  2-9 

Parabolic Form: "( � "# )1 	 *
*+,

�
  2-10 

Moreover, in the case of high cell density fermentation, the inhibitory effect due to 

the biomass concentration (Xt) on the kinetics needs to be considered. A model which 

incorporates both ethanol and biomass concentrations (Jarzebski, Malinowski and Goma 

1989) can be represented as: 

"( � "# 31 	 ) *
*+,

45 31 	 ) 67
6+,

85  2-11 

If the substrate inhibition is assumed to take linear form (Thatipamala and Hill 

1992), then the following expression could be adopted: 
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"( � "# ) $+9�.$
$+9�.$+:;

,  2-12 

Additionally, the combined inhibitory effects of substrate, product and biomass can be 

expressed as reported in (Costa, et al. 2001): 

"( � "#exp �	?(@� )1 	 67
6+9�

,� )1 	 *
*+9�

,�  2-13 

Furthermore, to take into account the effect of temperature, the parameters 

"#, ?( , ���A and B��A can be expressed as functions of temperature T, e.g.  "# �
�0�C�, ?( � �D�C� etc.  Next, the rate of biomass growth can be written as: 

EA � "�F  2-14 

Where Xv is normally referred to as the viable cell concentration i.e. to differentiate it 

from the dead cell concentration Xd. Thus, the total cells concentration  �G � �F 
 �H. 

It follows that, the growth rate can be linked to the product formation and substrate 

consumption rates through yield coefficients. 

Thus, the rate of substrate consumption following the equation of Pirt (Garro, et al. 

1995): 

EI � J�
KL M⁄


N�F  2-15 

Here, �6 $⁄  is the yield coefficient of biomass produced per amount of substrate 

consumed and m is called the maintenance coefficient. 

Meanwhile, the rate of product formation could be expressed as Luedeking-Piret 

equation (Garro, et al. 1995): 

EO � �* 6⁄ EA 
NO�F  2-16 

Note that,   �* 6⁄    is called the yield coefficient of the product produced per amount of 

biomass produced i.e. this parameter links the growth to product formation. Meanwhile, 

mp is the coefficient that relates to the growth-independent product formation by the 

existing viable cells. 

It is interesting to note that, the kinetics and yield equations are independent of the 

type of bioreactor. Therefore, the kinetics and yield equations can be combined together 
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to constitute a description of the metabolism and how it is affected by the cell’s 

physicochemical environment (Andrews 1993) e.g. substrate and product concentrations. 

2.2.6 Multi-scale Modelling Approach 

Figure 2-6 illustrates the multi-scale approach to modelling bioreactor (Nandong, 

Samyudia and Tade 2007). An essential feature distinguishing the multi-scale approach 

from the traditional macro-scale approach is that in the former, the cellular system is no 

longer treated as a black box.  The Umic, Xmac and β are vectors of micro-scale inputs, 

macro-scale state variables and macro-scale model parameters, respectively. 

Multi-scale system consists of both macro- and micro-scales dynamics, where the 

macro-scale sub-system could generally be expressed as: 

����� � P��������, ���� , ��  2-17 

���� � Q��������, �����  2-18 

Now, the kinetics parameters can be linked with the micro-scale system as follows: 

� � !�(������, ��(�� 2-19 

���(� � ��(������ , ��(� , ��(� , R� 2-20 

��(� � !�(������, ��(� , ��(�� 2-21 

Where  ��(� � ���+:S ,��(� � ���+:S , ��(� � ���+:S  and R are vectors of micro-scale 

state variables, input variables, output variables and parameters respectively. 

Moreover, Eq. 2-20 implies that the micro-scale parameter γ is a time-varying and a 

function of the micro-scale state variable, so it can be expressed as: 

R �  �(����(�� 2-22 

Alternatively, rather than computing γ as a function of micro-scale state variables as in 

Eq. 2-22, the multi-scale model shown in Figure 2-6 could be further extended to 

accommodate even finer scale (e.g. genome scale). Hence, the parameter γ could be 

computed as a function of the state variables of this finer scale sub-system.  
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Figure 2-6: Block diagram representation of multi-scale bioreactor system 

The multi-scale system shown in Figure 2-6 is typically known as an embedded 

type. For more details and explanation about the classification of multi-scale systems, 

interested readers could refer to the review by (Ingram, Cameron and Hangos 2004).  

It is important to highlight that the parameters β and γ play important role in the 

multi-scale modelling because they provide the links across the different scales (Sainz, 

et al. 2003). Indeed one of the key challenges in multi-scale modelling is that, how to 

link the information across the different scales of time and length (Ingram, Cameron and 

Hangos 2004). 

2.2.7 Fermentation Control and Model Application 

Although the simple macro-scale models are often sufficient for process control 

purposes, there is an increasing need for the models incorporating multi-scale 

information and knowledge. In general, this is largely due to the motivation to gain 

better control over chemical reactions, as well as product molecular architecture, 

conformations and morphology (De Pablo 2005).  

Recent increase of trend in the applications of advanced process control (APC) 

techniques in bioprocess industry has been motivated by the expiration of 

pharmaceutical patents and continuing development of global competition in 

biochemical manufacturing (Henson 2006). Notwithstanding these strong motivations, 

the role of process control in biotechnology industry is still very limited as compared to 
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that in the petroleum and chemical industries. For instance, the model-based strategies 

have been scarcely implemented in biological processes (Komives and Parker 2003).  

Surprisingly, in the field of monitoring and control, according to (Junker and Wang 

2006) fermentation technology is substantially ahead of its sister chemical areas, which 

are owing to requirements for tight control of cellular biochemical environment in order 

to optimize yield and productivity. It is important to note that, this view might be based 

on the level of sophistication of the technologies involved in bioprocess control, which 

are generally higher than that of chemical process i.e. sophisticated biosensors and 

complex sampling and analysis techniques, and use of evermore rigorous multi-scale 

approach.  

In contrast, the use of cheap sensors might be sufficient for the chemical processes.  

In this respect, despite the sophisticated hardware/software application in bioprocess, so 

far it is the chemical process that is leading in the development of advanced controller 

algorithms such as robust and nonlinear model predictive controllers. Excellent reviews 

on the progress in monitoring, modelling and control of bioprocess could be found in 

(Schugerl 2001) and (Alford 2006).  

Just like in chemical processes, the nonlinearity in bioprocesses has been considered 

as one of the key limitations to control performance. Thus, in turn the choice of 

controller algorithm (e.g. linear PID or nonlinear controller) is critical and could greatly 

impact the overall bioreactor performance. One reason for this nonlinearity is due to the 

frequent drift in process parameters from that of nominal values particularly when 

external disturbances occur. To overcome this limitation, various types of controller 

algorithms have been adopted in bioprocess which in general could be broadly classified 

as: (a) adaptive control, (b) robust control, and (c) nonlinear model-based control. 

2.2.7.1 Adaptive Control of Fermentation 

With respect to the adaptive control, there are two main reasons for using this technique, 

which are (a) strong nonlinear and nonstationary dynamics of living organisms, and (b) 

lack of cheap sensors capable of providing on-line measurements of the fermentation 

parameters (Vigie, et al. 1990). Adaptive control is an approach to dealing with 

uncertain systems or time-varying systems. This is applied mainly to systems with 
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known dynamic structure, but unknown constant or slowly-varying parameters (Slotine 

and Li 1991).  

It is important to note that, there are various versions of adaptive control for 

fermentation processes. The key feature differentiating the different versions rests on the 

various combinations of the basic adaptive control technique with other control 

techniques such as the optimal, robust and neural network control concepts. For 

instances, the combined adaptive and optimal control concepts (Ban Impe and Bastin 

1995), nonlinear adaptive control (Mailleret, Bernard and Steyer 2004), fuzzy combined 

adaptive control (Babuska, et al. 2002), neural network and adaptive control (Syu and 

Chang 1997) and (Renard and Wouwer 2008). 

2.2.7.2 Robust Control of Fermentation 

In view of complex multi-scale nature of bioprocesses, it is very often that the dynamic 

structure is unknown or poorly understood. Thus in this case, robust control is an 

appealing alternative in which case the uncertainty in term of plant/model mismatch 

could be systematically accounted for in the controller algorithm design.  

An interesting case is the robust H∞ multivariable control, which is arguably a 

promising and preferred model-based, APC strategy if it is desired to maintain both 

closed-loop stability and achieving specific performance over a range of operating 

conditions (Lee, Wang and Newell 2004). Some implementation issues of robust control 

theory to continuous stirred tank bioreactor are presented by (Georgieva and Ignatova 

2000). Additionally, robust controller could also be conveniently applied to fed-batch 

fermentation where minimal process knowledge and minimal measurement information 

is available (Renard, et al. 2006). 

2.2.7.3 Model-based Control of Fermentation – Application of Macroscale 

Models 

In the case of adaptive and robust controllers, rather crude model (minimal knowledge) 

is quite sufficient to design the controller algorithms. However when more rigorous 

nonlinear model of the process is available, an opportunity exists to use the so-called 
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model based controllers. One of the most attractive techniques developed in chemical 

process applications is the nonlinear model predictive controller (NMPC).  

The key advantage of NMPC other than its natural ability to consider process 

nonlinearity is its ability to handle ‘hard constrains’ such valve saturation, which are 

commonly encountered in process plants. Some examples of NMPC applications to 

bioprocesses are reported in (Hodge and Karim 2002, Parker and Doyle III 2001, 

Battista, Pico and Marco 2006, Foss, Johansen and Sorensen 1995). Additionally, many 

of the works in the model-based controllers that are relying on mechanistic models are 

based on the conventional single-scale (or macro-scale) modelling approach. 

2.2.7.4 Model-based Control of Fermentation - Application of Multiscale 

Models 

Much less works have been reported so far on the attempts to use multi-scale model in 

the model-based control of fermentation. Nonetheless, an example is reported in the 

work of (Soni and Parker 2004). In this case, the micro-scale system dynamic is ignored 

i.e. considered as pseudo-steady state. In perspective, multi-scale NMPC could be one of 

the next popular extensions of NMPC particularly in bioprocess application because of 

its inherent capability to handle the multi-scale dynamics. But this might be limited by 

the progress in the multi-scale modelling and computation. 

Discussions on some of the important multi-scale aspects in model predictive 

control can be found in (Stephanopoulos, Karsligil and Dyer 2000).  It is important to 

note that, one of the major limitations of NMPC is the heavy computational requirement, 

which so far has currently limited its real-time applications. An excellent review on the 

currently available computationally efficient NMPC strategies is given by (Cannon 

2004). 

2.2.7.5 Model-based Control of fermentation – Application of Non-

Mechanistic Models 

Many of the model-based strategies adopted in bioprocesses rely also on the non-

mechanistic models such as fuzzy system, neural network and hybrid model systems. 

The advantage of fuzzy system is its ability to model the complex switches/ nonlinearity 
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usually occurring in the microbial systems e.g. physiological switch from the 

fermentation to respiro-fermentation in aerobic yeast cultivation.  

In this respect, comprehensive reviews on the use of fuzzy control in bioprocess are 

reported in (Honda and Kobayashi 2000, Hitzmann, Lubbert and Schugerl 2004, 

Horiuchi 2002), and industrial-scale applications to bioprocess, e.g. recombinant B2 

vitamin production (Horiuchi and Hiraga 1999) and glutamic acid fermentation 

(Kishimoto, et al. 1991). 

Besides fuzzy models, the neural network models are also adopted in the model-

based control of fermentation, for examples, (Chtourou, et al. 1993, Gadkar, Mehra and 

Gomes 2005, Nagy 2007). The key advantage of neural network model is that its 

development requires much less process knowledge than what is required for developing 

mechanistic models. This is very important because, many mechanisms governing the 

behaviours of microbes are still not known, thus preventing the development of accurate 

mechanistic models i.e. it is very difficult to develop rigorous mechanistic models for 

bioprocesses (Aoyama and Venkatasubramanian 1995). 

2.2.8 Integrated Bioprocess System – Challenges to Process Control 

Today, biotechnological processes have been adopted in almost every aspects of live to 

produce for examples, biofuels, fine chemicals, medicines, foods and beverages and to 

treat waste products such as wastewaters and solid wastes from industries. Among these 

biotechnological products, biofuels production via fermentation has been recognized as 

the key driver to sustain the industrial civilization in the face of depleting fossil-based 

fuels resources (Ragauskas, et al. 2006). Other examples include the concept of 

microbial fuel cell to simultaneously produce electricity or energy and treat wastewater 

(Rozendal, et al. 2008, Du, Li and Gu 2007), mixed culture biotechnology to 

simultaneously generate biogases or desired chemicals and to treat wastewater 

(Kleerebezem and Loosdrecht 2007) and integrated advanced oxidation with biological 

process (Bankian and Mehrvar 2004). 

The increasing trend of integration in bioprocess systems can lead to several 

challenges to process control design and operation because this integration leads to 

larger number of possible measurements and operating objectives. A good control 
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system must be able to meet the operating objectives within a realistic range of operating 

conditions. It is interesting to note that, the performance of a control system is 

determined more by the control structure (choice of controlled variables and 

manipulated variables) rather than the controller algorithms design (Arbel, Rinard and 

Shinnar 1996). Thus, for the process control to serve as a way to improve bioprocess 

performance (i.e. process system engineering approach), then the focus should lies in the 

control structure design aspect and less in the controller algorithm design. Unfortunately, 

to date, the research works dedicated into the control structure design aspect is far less 

than that dedicated into controller algorithm design. And yet the integration in 

bioprocess will inevitably create a challenge to control structure design because it results 

in a large number of measurements or variables available. Hence, it becomes less clear 

which output variables to be controlled and which inputs to be manipulated – this issue 

goes beyond the current consideration of controller algorithm design. 

2.3 Bioethanol Production - Overview 

The current surge in global oil demand and climate change imperatives has driven the 

world to think seriously into the large-scale substitute for the petroleum-based fuels. The 

2% of today’s transportation fuels derived from biomass and blended with fossil fuels 

are produced either by the fermentation to ethanol of food-derived carbohydrates (such 

as sugarcane or cornstarch) or by the processing of plant oils to produce biodiesel. 

Evidently, credible studies show that with plausible technology developments, biofuels 

could supply some 30% of global demand in an environmentally responsible manner 

without affecting food production (Koonin 2006). Moreover from the sustainable 

development perspective, shifting the society’s dependence away from petroleum to 

renewable biomass resources is considered as an important contributor to the 

development of a sustainable industrial society and effective management of greenhouse 

gas emissions (Ragauskas, et al. 2006). 

Among these diversified biofuels, bioethanol is the most widely used today as a fuel 

alternative where it constitutes 99% of all biofuels in the United States, which is 

equivalent to 3.4 billion gallons of ethanol blended into gasoline in 2004 (Davis and 

Diegel 2004). Interestingly, the most recent studies show that the current technologies of 
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producing bioethanol from corn are much less petroleum-intensive than gasoline but 

have greenhouse gas emissions similar to those of gasoline (Farrell, et al. 2006). Even 

so, it has been widely accepted that bioethanol can only become large substitutes to 

petroleum-based fuels only if its production becomes economically competitive. 

The key challenges for the successful bioethanol industry, as a fuel alternative 

would hinge in the efficient integration of knowledge across disciplines covering the 

scientific areas such as plant genetics, biochemistry, biomass chemistry and process 

engineering. Unlike simple chemical processes, successful process engineering of 

complex bioprocesses in general would require engineers to properly address the critical 

issues particularly in the aspects of modelling, design and choice of control strategies. 

Despite the awareness of the complexity of bioprocesses which normally consist of 

intermediates reactions pathways catalyzed by numerous of enzymes (Brass, Hoeks and 

Rohner 1997), the modelling approach for design and control of such systems still 

largely relies on the macro-scale concept. Bearing in mind the bioprocesses complexity, 

it is doubtful whether the design and control based on such models would be sufficiently 

reliable as a basis for real time implementation. 

2.4 Extractive Alcoholic Fermentation 

It has been well accepted that the conventional alcoholic fermentation technique is a 

typical product inhibitory processes where the accumulation of ethanol concentration 

above ca. 12 %(v/v) would drastically reduce the cell growth and ethanol production 

rates (Minier and Goma 1982). As a result, the conventional alcoholic fermentation 

exhibits low ethanol productivity and yield that generally restricts its economic 

competitiveness for the large-scale production. Therefore, low productivity and yield of 

conventional fermentation has motivated the development of new fermentation 

technology, which basically relies on the concept of simultaneous fermentation and 

product removal, for example, the extractive alcoholic fermentation technique.  

Earlier works reported on the extractive fermentations (Ramalingham and Finn 

1977, Cysewski and Wilke 1977) clearly showed the improvement of its productivity 

over the conventional technique. Furthermore with cell recycle in extractive 

fermentation, Cysewski and Wilke (1977) reported that the ethanol productivity could be 
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further increased by approximately twice as that without cell recycle. Following these 

earlier discoveries, much of the recent studies have combined the concepts of extractive 

fermentation and cell recycle in bioreactor as a unified means to effectively achieve high 

ethanol yield and productivity. 

Within the broad family of extractive fermentation, it can be further classified 

according to approaches of achieving simultaneous fermentation and product removal. 

Some examples are the fermentation under vacuum (Cysewski and Wilke 1977, 

Ramalingham and Finn 1977), fermentation combined with flash vessel (Maiorella, 

Blanch and Wilke 1984, Ishida and Shimizu 1996, Silva, Rodrigues and Maugeri 1999), 

pervaporation (Christen, Minier and Renon 1990, Shabtai 1991), solvent extraction 

(Minier and Goma 1982, Barros, Cabral and Novais 1987, Gyamerah and Glover 1996), 

gas membrane extraction (Gostoli and Bandini 1995), membrane distillation (Calibo, 

Matsumura and Kataoka 1989, Banat and Simandl 1999) and adsorption (Einicke, 

Glaser and Schollner 1991).  

Also, some works have been reported on the coupling of fermentation with 

membrane dialysis as a method of relieving product inhibitions (Kyung and Gerhardt 

1984). Thibault et al (1987) investigated the possibility of using supercritical CO2 for in 

situ recovery of ethanol during its production by yeast S. cerevisiae. Although it is 

possible to produce ethanol by fermentation at high pressure (7 MPa), severe inhibition 

occurred with CO2 as headspace gas leading to 17% lower ethanol concentration than 

that under normal fermentation conditions. In contrast, a promising result was reported 

by employing CO2 as a stripping agent for ethanol recovery in a bubble column packed 

with coconut shell charcoal (Pham, Larsson and Enfors 1998). This technique differs 

from that of Thibault et al (1987) mainly because of the much lower CO2 pressure was 

used in the bubble column by the former technique.  

Rigorous mathematical model of extractive alcoholic fermentation adopting liquid-

liquid extraction can be found from (Fournier 1986). Based on the model, it was shown 

that the specific productivity can be increased significantly in addition to the ability to 

ferment a feed with a concentration of sugar, which is several times that is possible in 

conventional fermentations. From economic point of view, Honda et al. (1987) 

developed a general framework for assessing the improvement of extractive 
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fermentation with liquid-liquid extraction as compared with the conventional 

fermentation.  

Although the use of solvent in extractive fermentation could provide both kinetic 

and thermodynamic advantages, a great deal of effort is required to choose suitable 

solvent that is completely biocompatible (Bruce and Daugulis 1991). As far as the 

solvent toxicity is concerned, some work has been reported on how to reduce the 

toxicities, for examples, the separation of solvent from cell containing broth via 

membrane perstraction (Frank and Sirkar 1985, Matsumura and Markl 1986, Jeon and 

Lee 1989), yeast immobilization (Bar 1986) and soybean addition to fermenting broth 

(Yabannavar and Wang 1991). 

The application of membrane pervaporation has the advantages over the other 

removal techniques, such as process simplicity, less toxicity to fermenting organisms, 

and less distillation energy consumption. However, some major limitations that hinder 

its application in large-scale operation is the requirement of low temperature 

condensation of permeate vapour (O'Brien, Roth and McAlloon 2000), development of a 

highly ethanol-selective membrane (Calibo, Matsumura and Kataoka 1989) and low 

permeate flux (Banat and Simandl 1999). On the other hand, Silva et al (1999) reported 

some of the positive features of extractive fermentation coupled with flash vessel such as 

(1) ease of operation, (2) low cost, (3) elimination of heat exchanger requirement, (4) 

low inhibitory conditions for yeast cells, and (5) high inhibitory conditions for 

contaminants. 

2.5 Summary 

Research efforts to improve bioprocess performance can be divided broadly into (1) 

process system engineering, and (2) metabolic engineering approaches. From process 

system engineering perspective, the applications of process control techniques has 

received a widespread research attention in the area of bioprocess control. Vast majority 

of bioprocess control works reported in the past 30 years are related to the controller 

algorithms design e.g. nonlinear controller design and adaptive controller design. 

Although control structure (i.e. which variable to control and which variable to 

manipulate) has larger impact than the controller algorithm design on the overall control 
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system performance, very little work has been embarked on the former as compared on 

the latter. 

Increasing trend of integration in bioprocess in response to greater challenge to 

achieve higher profit, more efficient use of raw material and less waste generation has 

motivated the development of more complex system with large number of variables. As 

a consequence, the task to determine the proper control structure has become an even 

more formidable challenge to engineers. This in turn has created large research gaps 

which must be addressed to improve bioprocess performance via the applications of 

process control techniques. It is thus no longer sufficient to rely on controller algorithm 

only – more intensive research in bio-control structure design is required. 

Methods to address control structure problems can be divided into 2 main 

categories: (1) mathematical-based and (2) heuristic-hierarchical approaches. The data-

oriented approach advocated in this thesis is an emerging method to solve this problem. 

Partial control concept provides an attractive solution to control structure problem. 

However, its main limitation arises from its heavy reliance on process knowledge and 

experience. Therefore, to exploit the potential of partial control, a systematic tool must 

be developed which can reduce the heavy reliance on process experience and 

knowledge.  

Fuel ethanol is currently the largest component in biofuels. Because ethanol 

fermentation is a typical inhibitory process, the ethanol produced during fermentation 

should be partially removed to reduce its inhibition effects on growth and product 

formation rates. The extractive alcoholic fermentation technique provides a practical 

solution to overcome this inhibition problem for ethanolic fermentation process. 
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3 PARTIAL CONTROL THEORETICAL FRAMEWORK 

3.1 Introduction 

The concept of Partial Control Structure (PCS) in Chapter 2 could be adopted as a 

formal framework, within which the control structure problems could be addressed in a 

systematic manner. But the generalized concept of partial control and its current method 

of implementation have three limitations: (1) no formal definition for dominant 

variables, (2) heavy reliance on process experience and knowledge, and (3) lack of clear 

expression of relationship between performance measures and dominant variables.  

In this chapter, we propose a new theoretical framework for partial control within 

which the definition of dominant variable can be clearly stated. Furthermore, the 

development of this new framework is crucial because it leads to the development of a 

novel procedure to identify the dominant variables known as the PCA-based technique. 

3.2 General Concept of Partial Control 

Kothare et al. (2000) developed a framework for partial control. Here, this framework is 

adopted with some modifications. Suppose the plant to be controlled is described as: 

����� � ������, 	���� 3-1 

Note that, this representation is slightly different from that of Kothare et al. (2000) 

where they explicitly divided the input variables as manipulated and disturbance 

variables. In this case, we simply lump both types of inputs as represented by vector 	 ��
�  i.e.  	 �  �	��  ��� where 	��  is a vector of manipulated variables and  � is a 

vector of disturbance variables. Meanwhile, � � �
�    is the vector of system states 

and  �  is generally a nonlinear function of its arguments. The vector of output variables � � �
�   can be expressed as: 

���� � ������, 	����  3-2 
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Let the vector of measured outputs �� � �
�  be a vector of process variables 

(excluding input variables), which define the process specifications (i.e. set of operating 

objectives) where �� � � i.e. yp nn ≤ . Here, �� can be expressed as a nonlinear 

relationship as: 

����� � �������, 	����  3-3 

Because �� defines the control objectives (e.g. stability, product specifications, etc), 

it is important to control ��  at the setpoint   ����. Now, depending on the number of 

manipulated variables available (i.e. size of  	��), one can adopt either exact control or 

partial control. According to Kothare et al. (2000) exact control can be defined as: 

Definition 3.1: Exact Control 

The system described by Eq. 3-1 and Eq. 3-2, without any constraints on  	��  is said to 

be exactly controllable if  �� (vector of performance variables)   can be moved to and 

maintained at an arbitrary prescribed set point ����   without offset, starting from an 

arbitrary initial point, by an appropriate (possibly) nonunique choice of the steady-state 

value of manipulated variable. 

□ 

In practice, most process plants possess far less number of manipulated variables 

than the number of measured outputs – i.e. thin plant. So, it is not possible to apply exact 

control strategy to such processes. Thus in this case, partial control is the only option 

where it can be defined as: 

Definition 3.2: Partial Control 

The system described by Eq. 3-1  and Eq. 3-2, without any constrains on 	�� is said to 

be partially controllable if the vector of performance variable �� can be moved to and 

maintained within an acceptable range of an arbitrarily prescribed set point  ����, 
starting from an arbitrary initial point and by an appropriate (possibly non-unique) 

choice of the steady-state value of manipulated variable 	��, such that to ensure ��,��
��  � ��  � ��,�� ��  in the face of external disturbances occurrence. 

□ 
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3.3 Partial Control Problem Formulation: New Framework 

Note that, the general representation previously described as Eq. 3-3 cannot clearly 

reveal the essence of the partial control problem, especially when the performance 

objective is an implicit function of the input-output variables. It is not clear from this 

representation whether all of the elements in �� are the dominant variables or only some 

of the elements in Yp are dominant variables. Nor it is obvious how �� is related to the 

performance measures. 

Thus, we propose a more direct representation of a performance measure !� as 

follows: 

!� � ���	, �, "�  3-4 

Here, " � �
# is a vector of process parameters and �� is a function of its 

arguments. The performance measure represented by Eq. 3-4 can be directly one of the 

elements in the measured output set �� (i.e. !� � $� where  $� �  ��). Additionally, !� can be an implicit function of the process variables and parameters such as, optimum 

profit or minimum cost of production. 

From Eq. 3-4, we can further express the performance measure explicitly in terms 

of the dominant and minor variables as: 

!� � ���	%,�, �%,�, "%,�, 	&,�, �&,�, "&,��  3-5 

Here, 	%,� ,  �%,�  and  "%,�  correspond to the sets of inputs, outputs and parameters, 

which have the dominant effects on  !� and thus, they are referred to as the dominant 

variables. Meanwhile 	&,� , �&,�  and  "&,� are sets of inputs, outputs and parameters, 

which only have minor or small contributions to !� and referred to as the minor 

variables. 

Now, let Ω� � (	%,�, �%,�, "%,�) and Ψ� � (	&,�, �&,�, "&,�) are the sets of 

variables corresponding to dominant and minor variables respectively. Furthermore, 

assuming that the contributions of the dominant and minor variables to the performance 

measure !� can be linearly combined (i.e. over the specified range of operating 

conditions), so that, it can be written as: 
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!� � �%,�+Ω,- . FM,,+Ψ,- 3-6 

Where �%,� and �&,� are functions that represent the contributions of the dominant and 

minor variables sets respectively to the performance measure  !� where 1 � 1, 2, 3…6. 

Remark 3.1: 

The Eq. 3-6 assumes that the dominant and minor variables have no interacted term i.e. 

contributions by both sets of variables can be combined linearly. It is important to note 

that, �%,� and �&,� could be either linear or nonlinear functions of their arguments. 

Normally these functions are unknown; otherwise we can directly identify the dominant 

variables from Eq. 3-6. If the functions are known, then we still need to define the range 

of operating conditions over which they are valid. This is important because we expect 

that dominant and minor variables sets can vary over a large operating conditions due 

to the process nonlinearity i.e. a dominant variable at one operating level can become a 

minor variable at another, or vice versa. However, the representation of the dominant 

and minor variables contributions to !� as Eq. 3-6 is necessary in order to proceed with 

the formal definition of the dominant variables. Only after making clear definition of the 

dominant variables can we then proceed to develop the PCA-based technique to identify 

the dominant variables. 

□ 

Following Eq. 3-6, a general partial control problem can now be stated as follows: 

(P-3.1) 

Given a set of variables (including process parameters) and a performance measure !�  (Eq.3-6), identify the set of dominant variables (7� ) that corresponds to the 

given performance measure.  

□ 

This general problem (P-3.1) can be illustrated by Figure 3-1, which shows the 

mapping of  a set of dominant variables onto a performance measure   !�  and where the 

set of all variables making up the process plant is  Σ � 9	, �, ":, where Ω�  ; Σ. This is 

a very difficult problem to solve if the method used to identify the dominant variables 

solely relies on engineering experience and process knowledge. As the sizes of Σ   and 
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 Φ  are getting larger, the more complicated the problem becomes, which in turn can 

easily lead to unreliable result. 

Remark 3.2: 

From Figure 3-1,  7=  >  7?  @ 0  thus,  != and  !? are said to be correlated with each 

other. On the other hand 7B  >  7= � 0 thus,  !B  and  != are said to be uncorrelated 

with each other. The complete dominant variable set  7�  for n number of performance 

objectives is a combination of all these dominant variable sets i.e.   7� � 7B C 7= C7?…7
. 

□ 

From the control performance point of view, one is probably more interested in 

knowing how much the performance measures will vary when external disturbance 

occurs. Such a variation in the performance measure !� from its steady-state nominal 

value may be written as: 

∆!� �  ∆�%,� .  ∆�&,�  3-7 

Where the contributions (norm values) are given as: 

Δ�%,� � E �%,�+Ω�- F �%,�+Ω���-E  3-8 

Δ�&,� � E�&,�+Ψ�- F �&,�+Ψ���-E  3-9 

Note that,   Ω���   and Ψ��� correspond to the steady-state (nominal) values of 

dominant and minor variables sets respectively. For n number of performance measures 

(i.e. multiple objectives), a vector of variations can be written as: 

ΔΦ �  GΔHBΔH=IΔHJ
K �  GΔFD,BΔFD,=IΔFD,JK . MNN

OΔFM,BΔFM,=IΔFM,JPQQ
R
 3-10 

 



 

 
 

Figure 3-1: Illustration of the key problem of partial control: mapping of set of dominant variables onto 

performance measures 

3.3.1 Dominant Variable

Based on Eq. 3-7 or Eq. 

variable with respect to a given performance measure as follows:

Definition 3.3: Dominant Variable

The dominant variable

smallest subset of variables that can (possibly) be formed from the set 

such that, when the variables in 

variations in dominant variables

measure is solely due to the variations in minor variables (

that  S!� �  S�&,� �
Remark 3.3: 

The Definition 3.3 above implicitly assumes that there is no interaction among the 

dominant variables. Thus, we assume that they are all selected as controlled 

which mean that their variations from their nominal values are zero.

point out that in most cases, these dominant variables are interacted among themselves 

and as such it is not necessary to control all of themΔ�%,� @ 0 but we still

controlled are indeed the dominant variables. In this regard, the presence of interaction 

 

: Illustration of the key problem of partial control: mapping of set of dominant variables onto 

Dominant Variable Definition 

7 or Eq. 3-10, we can now proceed with the definition of

variable with respect to a given performance measure as follows: 

3: Dominant Variable 

The dominant variables set  7�  for a given performance measure 

smallest subset of variables that can (possibly) be formed from the set 

such that, when the variables in  7�  are controlled at constant values (or setpoints)

variations in dominant variables  S�%,� � 0, and as such the variation in performance 

measure is solely due to the variations in minor variables (T. V.�  S!�,�� .  

The Definition 3.3 above implicitly assumes that there is no interaction among the 

dominant variables. Thus, we assume that they are all selected as controlled 

that their variations from their nominal values are zero.

point out that in most cases, these dominant variables are interacted among themselves 

and as such it is not necessary to control all of them in practice. If this is the case, then 

but we still expect that Δ!� � ∆!�,��  if the variables

controlled are indeed the dominant variables. In this regard, the presence of interaction 

48 

 

: Illustration of the key problem of partial control: mapping of set of dominant variables onto 

proceed with the definition of the dominant 

 

for a given performance measure  !� is defined as the 

smallest subset of variables that can (possibly) be formed from the set X � 9	, �, ":  
are controlled at constant values (or setpoints), the 

variation in performance . S�&,�  @ 0) and such 

□ 

The Definition 3.3 above implicitly assumes that there is no interaction among the 

dominant variables. Thus, we assume that they are all selected as controlled variables 

that their variations from their nominal values are zero. It is interesting to 

point out that in most cases, these dominant variables are interacted among themselves 

. If this is the case, then 

if the variables that are being 

controlled are indeed the dominant variables. In this regard, the presence of interaction 
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among the variables often leads to the identification of only a small subset of the 

dominant variables if the methods used for their identification relies on process 

experience or optimization. Therefore, Definition 3.3 above consider the entire set of 

dominant variables rather than only this small subset i.e. if  Δ�%,� @ 0. 

□ 

3.3.2 Mathematical Formulation of Partial Control 

Following the Definition 3.3, the variable in the set  Ω,  is the dominant variable 

corresponding to the performance measure  !�. In other words, this variable is bound to 

have strong influence on the performance measure  !� but not necessarily on the other 

performance measures. 

An alternative problem statement based on the optimization framework can also be 

derived from the definition of partial control (Definition 3.2) and the general 

representation of Eq. 3-10 (i.e. in term of norm of variations of performance measures).  

The “simplest” mathematical representation for the partial control problem can be 

viewed as an optimization problem as follows: 

(P-3.2) YZ[ΩCS�^   +_`�a, b,c�- 

Subject to: 

dCS  �  dghi   3-11 

ΔΦ �  ΔΦ��   3-12 

	��
  � 	��  � 	��   3-13 

���
 � � � ���   3-14 

��	, �, "� � 0 3-15 

Note that, the variations  of the performance measures ∆Φ  from their nominal 

values in the presence of external disturbances are measured in term of Euclidian norm. 

The notation   djk stands for the total number of dominant variables in Ωjk. Here,  ΩCS  denotes the total set (i.e. Ωjk � ΩB C Ω= C…Ω
) of the dominant variables 
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corresponding to a set of performance measures  !�, which are assumed to be controlled 

at the constant setpoints. And   dghi   is the total number of available manipulated 

variables (or control degree of freedom). Meanwhile, the manipulated variables are 

assumed to be constrained between the maximum and minimum values of  	��  and  	��
 respectively. Moreover, the optimization is subject to an anticipated 

vector of disturbances � with lower and upper bounds equal to ���
 and ��� , 

respectively. 

It is important to note that, this is contrary to the definition of partial control 

(Definition 3.2) where the manipulated variables are not constrained. However, if such 

constraint on manipulated variables is not imposed, then the optimization result can be 

infeasible for the specified range of operating conditions or window. The reason for this 

is that different operating window can lead to different dominant variables for similar 

performance objectives – for nonlinear system the control structure depends on 

operating level (Nandong, Samyudia and Tade 2007b). Meanwhile, �  represents a set of 

equations which describes the steady-state behaviour of the process. Note that, the 

dynamic model is required if the set of performance measures contains a dynamic 

performance measure. 

Bear in mind that, the representation of partial control problem P-3.2 implicitly 

assumes that all of the dominant variables must be selected as controlled variables. In 

practice, the problem as stated by P-3.2 can be extremely difficult to solve by means of 

conventional mathematical method. The presence of multiple performance measures can 

significantly complicate the identification of dominant variables due to the interrelated 

natures of the variables. Moreover, such optimization problem normally requires large 

computational time due to the combinatorial nature of the problem and nonlinearity. 

However, this representation is useful because it can help us to view the essential feature 

of the problem in its simplest form possible. 

Additionally, depending on which approach is employed to find the dominant 

variables, either by heuristic (P-3.1) or by mathematical (P-3.2), it is quite unlikely that 

the resulting dominant variables obtained by both approaches will be exactly the same 

i.e. Ω�  @ Ωjk. Recall that, the Ω�  represents the set of total dominant variables 
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corresponding to all performance objectives obtained by heuristic approach (P-3.1) and Ωjk represent the total set of dominant variables obtained by solving P-3.2. 

Consequently, this means that the technique for identifying the dominant variables 

can become a decisive factor that determines the performance of partial control strategy. 

One reason for this is that partial control performance is heavily dependent on the 

selection of controlled variables, which necessarily come from the set of dominant 

variables identified. 

3.4 Basic Concepts for PCA-based Technique 

3.4.1 Principal Component Analysis (PCA) 

For more details about the PCA, interested readers could refer to Wise and Gallagher 

(1996). Here we just provide brief overview about PCA and its property which is 

relevant to the proposed technique. Assuming that the data matrix X has m rows 

(observations) and n columns (variables plus performance measures), the application of 

PCA to the dataset will decompose X into the sum of outer product of vectors ti and pi 

plus a residual matrix E: 

l � �B1B� . �=1=� .m. �n1n� .  o  3-16 

Where ),min( nmk ≤ , the vector  ��  is known as scores and the vector  1� is called 

loadings. While the scores provide the information on how the samples or observations 

relate to each other, the loadings contain the information on how variables are 

interrelated. 

Remark 3.4: 

The matrix of dataset l should contain both variables and performance measures of 

interest. Thus, the number of columns consists of the number of variables (6�� and 

performance measures (6p� i.e.6 � 6� . 6p. 

□ 

To determine which variables are responsible for certain abnormal event, one can 

plot the scores and loadings of the first and second principal components (PC-1 and PC-

2) as depicted by Figure 3-2. From this PCA plot one can then identify the outlier or the 
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observation point that is far away from the centre i.e. outside the normal operating 

window (shown by dotted circle). This outlier is normally related to the unusual or 

abnormal event that occurs in the system. The variables which occupy the same 

quadrant as the outlier (i.e. 1st quadrant) and the opposite quadrant (i.e. 3rd quadrant) are 

expected to have some influences on the occurrence of the outlier (see Figure 3-2). 

Moreover, the variables that occupy the same quadrant as the outlier are positively 

correlated with the outlier and those occupying the opposite quadrant are negatively 

correlated with the outlier. Likewise, the variables in the same quadrants are positively 

correlated with each other but negatively correlated with those in the opposite quadrant.  

If the variables are positively correlated with the outlier, then this means that in 

order to reduce the outlier one needs to reduce the values of the variables, and vice 

versa. The question now becomes how can one use this concept to identify the dominant 

variables? 

Suppose that an outlier exists and based on the PCA plot, one can identify a variable 

and a performance measure which are strongly responsible for this outlier. Then, one can 

conclude that the variable must have a very strong influence in comparison with other 

variables on the performance measure. Thus, we say that this variable is a dominant 

variable for the performance measure. However, for this analysis to work we need to 

develop a proper procedure involving the use of not only PCA but also design of 

experiment (DOE) concept. Furthermore, we need to establish certain criteria and 

conditions to be used together with the procedure. 

3.4.2 Dominant Variable Identification 

3.4.2.1 Conceptual Framework for PCA-Based Technique 

Figure 3-3 illustrates the PCA-based technique which involves successive applications 

of PCA on a dataset  l , i.e. successive dataset reductions are required. The first 

application of PCA (i.e. 1st level of dataset reduction) on the original dataset l  (Figure 

3-3a) generates two uncorrelated sub-groups (orthogonal groups) of smaller sub-datasets  lB and l=: 

l � �lB l=�  3-17 
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Figure 3-2: Plot of scores and loadings of PC-1 and PC-2 

 

Figure 3-3: Generalized concept of dataset reduction using PCA to identify dominant variables 
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Here, the subscript “1” is to indicate the subset of variables and performance 

measures that occupy the 1st and 3rd quadrants. And the subscript “2” is to indicate those 

variables and performance measures that occupy the 2nd and 4th quadrants. Also note 

that,  lB and  l=  are called the first level of reduced sub-datasets. 

From Figure 3-3a, the sub-dataset  lB contains the performance measure of interest. 

But at the level of this dataset reduction, it remains unclear which of the variables (out of 

the 7) that strongly correlate with the performance measure i.e. its dominant variables.  

Therefore, another PCA is applied to the sub-dataset  lB  as shown in Figure 3-3b 

and this generates even smaller two sub-datasets as: 

lB � �lBB lB=�  3-18 

Note that, this is called second (2nd) level of dataset reduction where the last number 

in the subscript indicates which quadrants the sub-dataset belongs to e.g. lB= , where 

number “2” indicates that the sub-dataset belongs to quadrants 2 and 4 and number “1” 

indicates the previous “parent” sub-dataset. 

Now from Figure 3-3b, one can see that the performance measure of interest is in 

the lB=. As expected, the number of variables has now been reduced from 7 to 4 

variables. Another PCA can be applied to lB= and further reduces this sub-dataset as: 

lB= � �lB=B lB==�  3-19 

Finally, from Figure 3-3c, one can identify that the performance measure is now in 

the 3rd level of sub-dataset lB==  and there are only two variables that are deemed having 

strong correlation with the performance measure. And these two variables are most 

likely the dominant variables for the performance measure. 

 

Remark 3.5: 

It is important to note that, the PCA plot (Fig. 3-3) based on which a dataset is 

successively reduced is only involved the first two principal components i.e. PC-1 and 

PC-2. The plot of PC-1 and PC-2 is considered adequate if the sum of variances of PC-1 

and PC-2 is at least 70% of the total variances in the original dataset. Of course, this 
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sum of variances of PC-1 and PC-2 normally increases with the increase in the level of 

dataset reduction. 

□ 

3.4.2.2  Dominant Variable (DV) Criteria 

There are 3 conditions that constitute the so-called dominant variable (DV) criteria, 

which states that for the dataset or sub-dataset to contain any dominant variable: 

1) There should be at least one performance measure in the dataset. 

2) There should be at least one variable in the dataset. 

3) There should be at least one outlier exists within the dataset. 

If one or more of these criteria are not fulfilled, then the set of variables obtained cannot 

be guaranteed as the dominant variables set. 

3.4.2.3 Successive Dataset Reduction (SDR) Condition 

If the dominant variables are identified through successive dataset reductions, then the 

successive dataset reduction (SDR) condition must be fulfilled, which states as follows: 

For the successive dataset reductions using PCA, at each level of dataset reduction 

the DV criteria must be completely fulfilled, else the dominant variable 

identification result is not consistent. 

Therefore, based on the previous illustrative example (Figure3-3), notice that the 3 

criteria are fulfilled throughout the 3 stages in the dataset reductions. Thus, the dominant 

variable identification result is consistent. 

3.4.2.4 Critical Dominant Variable (CDV) Condition 

In connection to the successive dataset reduction process, an important question is how 

many successive dataset reductions are required before one can “safely” conclude that 

the dominant variables have finally been revealed. In response to this question, we 

introduce a stopping condition, which is termed as the critical dominant variable (CDV) 

condition. 
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Definition 3.4: Critical Dominant Variable Condition 

The successive dataset reduction level is said to reach a critical dominant variable 

condition once the sum of variances of principal components associated with the dataset 

reduction level, which are used to generate the PCA plot  ≥  qrs�r. 

□ 

Notice that, as the successive dataset reduction level increases, the sum of variances 

of principal components used to generate the PCA plot also increases. The successive 

dataset reduction can be stopped once this sum of variances reaches the threshold value 

(qrs�r). Normally, we prefer a 2D-plot of PCA, which requires only the first two 

principal components (PC-1 and PC-2) as shown previously in the illustrative example 

(Figure 3-3). Once the sum of variances of PC-1 and PC-2 has reached a value that is at 

least equal to qrs�r   then, this implies that the dominant variables have already been 

identified at the corresponding dataset reduction level i.e. the critical level of dataset 

reduction level has been achieved. 

If the sum of variances of PC-1 and PC-2 (i.e. 2D-plot of PCA) is not large enough, 

the result obtained may not be accurate. Thus, one may need to plot PC-1, PC-2 and PC-

3 (i.e. 3D-plot). Here, the sum of variances of the PC-1, PC-2 and PC-3 must be at least 

equal to qrs�r. Note that, in the case study described in this thesis, we take the value 

of  qrs�r � 85%. 

3.4.3 Concept of Closeness Index 

The closeness of variables (including parameters) Vi to Φj can be calculated by 

measuring the distance between Vi* and Φj (see Figure 3-4), where Vi* is the resolved 

location of Vi in the direction of the Φj. Here, Vi can be a process input u, or output y, or 

parameter β. 

Definition 3.5: Closeness Index 

The closeness index (CI) which is a measure of the strength of correlation between 

variable   w�  and a performance measure Φj in the direction of the performance measure 

is defined as follows: 
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x�y  z E��yE EOΦ||||||}~E�  3-20 

Where the distance between the resolved position w��  and position Φj (Figure 3-4) 

can be written as: 

��y � EOΦ||||||}~E F EOV�|||||||}�E �  EOΦ||||||}~E F EOV|||||}�Ecos ���   3-21 

The value of x�y   provides the measure of how close the correlation between a 

variable w�  and a performance measure Φj. The smaller the magnitude of x�y then the 

more closely is the correlation between w�  and Φj. Note that, the closeness index can 

also be calculated between two dominant variables. Let says one wants to find out how 

close is the correlation of a variable  wn in the direction of another variable w�. 
Then the closeness index can be written as: 

xn� � ��n�� EOV|||||}�E⁄  3-22 

Of course, one can also find out how close is the correlation between wn and w � in the 

direction of wn. In this case, the closeness index in the direction of wn is: 

x�n � ���n� EOV|||||}�E⁄  3-23 
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Figure 3-4: Illustration of closeness index concept: (a) Vi is positively correlated with Φj, and (b) Vi is 

negatively correlated with Φj 

It is important to note that, the value of  xn� is not necessarily the same as x�n.  

Therefore, this has an important implication on the selection of controlled variable as 

will be discussed in the next section. The significances of closeness index can be 

summarized as following: 

1. For a given performance measure φp and multiple dominant variables  $B, $=,… , $
, the values of closeness index i.e.  xB�, x=� , … , x
� can provide the 

order of influences of the variables on the performance measure. 

2. For a given dominant variable $n and a multiple performance measures (φ1, 

φ2…φp) which are correlated with $n, then the values of closeness index i.e. xnB, xn=, … , xn� provide the order of influence of $n on the performance 

measures. 

3. When the set of dominant variables corresponding to a performance measure 

φp consists of an input �� and output $
, then the values of x�� and x
� 

provide the clue whether  �� can be used as manipulated variable for $
. If x�� � x
� then this suggests that �� should not be considered as 

manipulated variable. 
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4. Let suppose for a given performance measure φp there exist two dominant 

variables  $� and $y  that have similar or very comparable closeness index x�� � xy� then, the calculation of x�y and xy� provides the clue whether to 

control both dominant variables or only one of them. If the values of x�y and xy�are small, then it is sufficient to control  $�  if  x�y � xy�  , otherwise 

control $y . When the values of x�y and xy�  are significantly large then, this 

suggest it is better to control both of the dominant variables i.e. more 

variables need to be controlled. 

 

Note that, the closeness index (CI) is used to form two types of matrices, called the 

dominant variable interaction index and variable-variable interaction index. While CI 

itself can be used for ranking the dominant variables, the two indices can be used for 

assessing the sufficient number of controlled variables (i.e. either primary or inventory 

or constraint controlled variables) required. Applications of the dominant variable 

interaction and variable-variable interaction indices will be demonstrated in Chapters 7 

and 8. 

3.4.4 Ranking of Dominant Variables by Closeness Index 

There are two types of rankings: 

Case 1: Multiple Variables – Single Performance Measure (MVSPM) Ranking 

For a given !� and multiple variables, ranks the strength of influences of  $B, $=, … , $
  on  !� based on the values of  xB�, x=�, … , x
�. 

 

Case 2: Multiple Performance Measures - Single Variable (MPMSV) Ranking 

For a given dominant variable  $� and multiple performance measures correlated with it, 

ranks the influence of  $�   on  !B, !=, … , !� based on the values of  x�B, x�=, … , x��. 

 

Illustrative Example 1:  Case 1 

Let a dataset X which contains 6 variables and 2 performance measures as follows: 

[ ]21654321 φφyyyyyyX =
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Find the most suitable controlled variable that is strongly related to the performance 

measure !B. 

 

Solution 1 

Let assume that the first level of dataset reduction on X generates [ ]15211 φyyyX =  

and [ ]26432 φyyyX = . Assume that the DV criteria and critical dataset reduction 

level condition are met, then the dominant variable for  !B are 9$B, $=, $�:. 
Computation of closeness index of each variable in the direction of the performance 

measure φ1 shows that x�B � xBB � x=B. Then, the decreasing order of dominant variable 

influence on φ1 can be deduced as: 

order decreasing 

215

→

yyy

 

Thus, y5 is the strongest dominant variable for the performance measure φ1 which 

suggests it is the best choice for the controlled variable. Note that, the closer is the 

variable yi to a given performance measure φj, the stronger is the influence of that 

dominant variable on the performance measure. Hence, given multiple dominant 

variables the value of x�y can be used as a basis to choose which dominant variable to be 

used as the controlled variable. 

□ 

Illustrative Example 2: Case 2 

Suppose a dataset X11 containing 1 dominant variable and 3 performance measures as 

follows: 

[ ]32111 φφφiyX =
 

Rank the influence of the dominant variable on the 3 performance measures. 

 

Solution 2 

Let suppose that the calculation of the closeness index of yi in the direction of each 

performance measure shows that x�= � x�B � x�?. Hence, this suggests that yi has the 

largest influence on φ2 and the weakest influence on φ3. The decreasing order of 

influence of  $� on the performance measures is: 
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order decreasing 

312

→

φφφ

 

□ 

3.4.5 Dominant Variable Interaction Index (IDV) 

For the case where there are multiple dominant variables, then one of the important 

considerations is on the degree of their interaction. It is important to know the influence 

of a particular variable in the direction of other variables because this will determine 

how many dominant variables that should be controlled.  

A matrix of dominant variable interaction (IDV) with n rows of dominant variables 

and m columns of performance measures in term of the CI values is written as follows: 

�%� � GxBBx=B xB=x== m xB�x=�I � Ix
B x
= m x
�K 3-24 

 

Definition 3.6: Dominant Variable Interaction Index (IDV) 

The dominant variable interaction index is a matrix consisting of n variables and m 

performance measures of the CI values as Eq. 3.23, which is a measure of influence of a 

particular variable on performance measures.  

□ 

The significance of IDV is that it can be used as a guideline to decide on how many 

dominant variables need to be controlled in order to ensure that the variation in the 

corresponding performance measure φk is minimal or acceptable. In general, large values 

of elements in IDV indicate weak coupling between the variables and the performance 

measures involved. In other words, we cannot guarantee that the variation in the 

performance measure is acceptable if only one variable is controlled to constant setpoint 

because of week correlation with the performance measure. More details regarding the 

IDV and its extension to a more general case of variables interaction (i.e. variable-

variable interaction index IVV) will be further discussed in Chapter 4. 
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3.5 Summary 

In this chapter, a new theoretical framework of partial control is proposed within which 

the dominant variable can clearly be defined. Also the performance measures-dominant 

variables relationship is expressed mathematically, which helps to visualize the key 

problem in partial control. Within the new framework of partial control, the significance 

of the dominant variables is attached to the existence of overall (implicit) performance 

measures, which are assumed to be the implicit functions of process variables. In 

contrast, within the classical or generalized framework of partial control, the 

significance of the dominant variables is attached to the so-called performance 

variables, which define the complete (i.e. overall, inventory and constraint) control 

objectives of the plant. As will be pointed out in the next Chapters 4 and 7, this approach 

leads to complication in determining the suitable controlled variables i.e. leads to non-

uniqueness of sets of dominant variables. 

The conceptual framework for applying the PCA-based technique is developed to 

identify the dominant variables which correspond to the specified performance 

measures. It is important to note that early development of this technique was reported in 

(Nandong, Samyudia and Tade 2007b) – but still without a formal theoretical framework 

for the application of PCA. This PCA-based technique and the new framework of partial 

control are fused together to form a methodology for solving the partial control problem 

in particular, and the control structure problem in general. In this case, the partial control 

framework is required to provide a sound theoretical foundation for the methodology, so 

that the control structure problem can be addressed in a systematic manner. More details 

regarding this methodology will be described in the next chapter. 

The concept of Closeness Index (CI) is proposed to rank the importance of 

dominant variables. Additionally, the dominant variable interaction index is developed 

from the concept of closeness index, which can be used to assess the sufficient number 

of dominant variables that should be controlled, thus helping us to answer the question 

of how many controlled variables are required? 
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4 METHODOLOGY OF COMPLETE PARTIAL 

CONTROL DESIGN 

4.1  Introduction 

Previously in Chapter 3, we have elaborated on how the concept of principal component 

analysis (PCA) can be applied to identify the dominant variables, which is an essential 

step in the partial control design. Additionally, the definition of dominant variables is 

also proposed in Chapter 3 in order to clarify the task of dominant variables 

identification. New concepts such as the closeness index (CI) and the dominant variable 

interaction index or array (IDV) are also proposed, which can be used to facilitate the 

selection of controlled variables among a subset of dominant variables.  

The key aim of this chapter is to establish a methodology of the so-called Complete 

Partial Control Design (CPCD), which is based on the results (i.e. PCA-based technique 

and the new partial control framework) of theoretical development described in Chapter 

3. Here, CPCD means that the incorporation of inventory and constraint control 

objectives into the design of partial control strategy. 

4.2 Classification of Control Objectives 

In this thesis, it is assumed that the plantwide control objectives can be broadly divided 

into 3 major categories: 

a) Overall operating objectives/ performance measures.  

b) Inventory control objectives. 

c) Constraint control objectives. 

The essential feature of the overall operating objectives is that they are normally 

implicit function of the process variables. For instances, the optimum profit, minimum 

cost and optimal tradeoff between yield and productivity – thus, they cannot be directly 

identified from process knowledge or experience. Normally it is very difficult to identify 

variables which are strongly linked (and hence to be controlled) to these type of control 
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objectives by means of process knowledge and experience; which variables to be 

controlled such that the overall performance measures can be achieved. Indeed, the heart 

of the CSD problem is how to address this issue in a systematic way.  

It is important to note that for a given set of overall performance objectives, the 

corresponding set of dominant variables depends on the process design and operating 

level. Thus, this prevents direct extension of the engineering experience from one 

process design to another as the dominant variables depend on how the various units 

comprising the plant are linked together. Furthermore, due to process nonlinearity the 

dominant variables corresponding to a given set of overall performance objectives can 

change as the operating level (or condition) changes. Hence, for these two reasons we 

need a systematic procedure to address a given set of overall performance objectives 

because it cannot be solved simply by applying process knowledge and experience. 

Unlike the overall performance objectives, the inventory and constraint control 

objectives can directly be handled via our process (or unit operation knowledge) and 

experience. The significances of inventory control objectives can be summarized as 

follows: 

a) To prevent overflow or dry up of tanks, reactors, etc. containing liquid. 

b) To minimize the fluctuation of liquid holdup especially in reactor, otherwise 

this can cause high fluctuation in reactor conversion. Also, small variation in 

reactor holdup is desirable because it allows the operation closed to the 

maximum reactor volume, which normally leads to economic advantage. 

c) To prevent material accumulation in the system. 

d) To ensure stability especially if the system is non self-regulating. 

The overall aim of the constraint control objective is to ensure that the plant can run 

in a safe, smooth and reliable manner. To achieve this overall aim, it is important to 

control the variables which relate to the process constraints, which can be categorized 

into 4 key areas as: 

i. Safety 

ii. Smooth operation 

iii. Environmental protection 

iv. Product quality 
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Safety 

This includes the safety of both personnel and equipment in the plant. For examples, 

maximum pressure in distillation column above which the column raptures, maximum 

hotspot temperature in exothermic tubular catalytic reactor beyond which runaway 

reaction occurs, and maximum furnace temperature above which the tubes start to melt.  

Note that, the violation of these constraints can cause damage to the equipment 

involved or severe accidents to the personnel and other equipment in the plant. While the 

constraints above are typical in process plant, in bioprocess plant one needs to consider 

even wider scope of constraints, which can strongly affect the productivity and yield. 

For instance, excessively high temperature can cause irreversible damage to the living 

cells causing poor productivity or even a complete halt in operation. 

Smooth operation  

Some variables are very crucial to the smooth operation of the plant, for instance, vapour 

velocity in distillation column. Whereas too high vapour velocity can lead to flooding, 

too low vapour velocity can cause weeping. Both phenomena can severely degrade the 

purities of distillation products and can ultimately lower the productivity. Therefore, it is 

very important to ensure that the vapour velocity is within an acceptable range during 

the distillation operation in order to avoid these phenomena. In this case, because we 

cannot directly measure and control the vapour velocity, we can control the differential 

column pressure which relates to the vapour velocity. 

Environmental protection 

The need to protect the health of environment normally leads to certain environmental 

regulations, which can impose constraints on the process operation. For examples, 

discharge limits imposed on certain chemicals in wastewater and maximum allowable 

wastes disposal to the environment. 

Product quality 

This is an important type of constraint which arises from the market demand. Examples 

of variables within this class of constraint are the product purity, crystal size distribution, 

molecular weight of polymer, colour and texture of certain food products, etc. 
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4.3 Classification of Controlled Variables 

Based on the classification of the 3 operating objectives, there are also 3 corresponding 

types of controlled variables, which are: 

a) Primary controlled variables ���,� 

b) Inventory controlled variables ���,� 
c) Constraint controlled variables ���,� 

The following definitions are applied in this thesis regarding the types of the 

controlled variables mentioned above. 

Definition 4-1: Primary Controlled Variables  

The primary controlled variables are the dominant variables which are to be controlled 

at constant setpoints, such that the variations in the key performance measures or 

overall operating objectives are within the maximum allowable limits. 

□ 

Definition 4-2: Inventory Controlled Variables 

The inventory controlled variables are the variables which must be controlled in order 

to avoid overflow or dry up and material accumulation in the system. 

□ 

Definition 4-3: Constraint Controlled Variables  

The constraint controlled variables are the variables which are to be controlled in order 

to ensure that process constraints are not violated. 

□ 

The primary controlled variables are normally obtained from the set of dominant 

variables relating to the key performance measures. Because of the interaction among 

the dominant variables, it becomes unnecessary to control all of the dominant variables. 

Thus, the set of primary controlled variables ���,� is normally a subset of the total 

dominant variable set  Ω	  i.e.  ���,� 
 Ω	. 

The controlled variables for achieving inventory control purposes can be liquid 

levels and pressures. Meanwhile, the controlled variables for achieving constraint 

control objectives can be compositions, temperatures, pressures, pH, etc. Unlike the 
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primary controlled variables, it is relatively straightforward to identify the inventory and 

constraint controlled variables from process knowledge and experience. 

Bear in mind that the key feature that distinguishes the primary controlled variables 

from the inventory or constraint controlled variables lies in the way by which they can 

be identified. Unlike inventory and constraint controlled variables which can be 

indentified directly via process knowledge or experience, it is very difficult to identify 

the primary (dominant) controlled variables corresponding to a given set of overall 

(implicit) performance measures based solely on process knowledge.   

As an illustration, let consider a process system comprising a tubular (exothermic) 

catalytic reactor and a distillation column. Process knowledge can be viewed to come 

from two important sources which are (1) unit operation knowledge and (2) process 

chemistry. From unit operation knowledge we can identify that the important constraint 

variables are the reactor hotspot temperature, maximum column pressure, maximum 

product impurity and maximum or minimum vapour flowrate in the column. From 

process chemistry, let say we know that the catalyst will disintegrate when the 

temperature is above certain threshold limit. All of the above variables should constitute 

the process constraints which must be addressed by the constraint control objectives. 

Now, an important question is, what are the other variables which must be controlled in 

order to achieve the optimum profit objective for the plant i.e. overall (implicit) 

performance measure? Obviously we cannot answer this question directly based on our 

process knowledge. Notice that, the above mentioned constraint variables will probably 

remain the same if we use two distillation columns instead of one. However, the 

corresponding controlled variables to achieve the optimum profit will likely to change 

because these primary controlled variables depend on the nature of interlinked units. Or 

suppose that we use the fluidized bed reactor instead of tubular reactor but still using the 

same catalyst, then process chemistry of the catalyst dictates that reactor the temperature 

is still one of the important process constraints i.e. too high reactor temperature can lead 

to catalyst degradation. But this will lead to different primary controlled variables, 

which remain unknown as far as process knowledge is concerned. There is no substitute 

to good process knowledge in the identification of constraint controlled variables. But 

one needs a systematic tool to help in the identification of primary controlled variables. 



68 
 

 
 

 

 

 

Figure 4-1: Key steps in complete partial control design methodology 

4.4 PCA-based Control Structure Design Methodology: Application of 

Partial Control Framework 

Figure 4-1 shows the key steps in the complete partial control design. There are 9 key 

steps comprising the methodology where the first 4 steps focus on the basic partial 

control design, which aims to determine the primary controlled variables corresponding 

to the overall operating objectives. Steps 5 to 7 focus on the determination of suitable 

controlled variables to achieve the inventory and constraint control objectives. Step 8 

addresses the selection of manipulated variables, controller pairings and controller 

 Specification of Performance Measures 

Design of Experiment 

Identification of Dominant Variable 

Selection of Primary Controlled Variables 

Identification of Constraint Variables 

Selection of Inventory-Constraint Controlled Variables 

Control Structure Design Decisions 

Identification of Inventory Variables 

Dynamic Performance Improvement 
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tuning.  Lastly Step 9 aims to enhance the dynamic performance of the overall control 

system. 

 

Remark 4.1: 

In some methodologies such as the 9-step procedure and self-optimizing control, it is 

viewed as necessary to identify the control degree of freedom (degree of freedom 

analysis) after the specification of control objectives. Unlike in these methodologies, in 

the proposed methodology (Figure 4-1) the degree of freedom analysis is embedded in 

the Step 8. The reason for this is that in partial control normally the number of inputs is 

very small such that the degree of freedom analysis can be very simple and 

straightforward. Thus, it is not considered as one of the major issues in the context of 

partial control structure. 

□ 

 

More detailed description about each step depicted in Figure 4-1 is as follows: 

4.4.1 Determination of Overall Performance Measures 

There are 2 key objectives at this step: 

i. Specify the performance measures/overall operating objectives Φ. 

ii. Specify the maximum allowable variations (i.e. ΔΦ
��) of the performance 

measures in the face of (anticipated) external disturbance occurrence. 

Remark 4-2: 

Final control structure (i.e. which variables to be controlled and how many controlled 

variables) depends strongly on the selected performance measures. The main objective 

at this step is to determine the performance measures which are related to the overall 

plant objectives such as, optimum profit, minimum energy consumption and optimum 

trade-off between two certain performance measures. These control objectives are 

normally implicit functions of the process variables. 

□ 
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4.4.2  Design of Experiment (DOE): Plant Data Generation 

The main objective is to generate plant data which contain significant information 

regarding the performance measures of interest. Two important issues are the 

determination of: 

i. Set of inputs �� for design of experiment. 

ii. Magnitude of inputs perturbations  Δ��. 

Process knowledge and experience can be adopted in the process to identify the 

suitable set of inputs �� for the design of experiment (DOE). The perturbation 

magnitude Δ��  should be large enough such that, the resulting dataset contains some 

outliers. 

One type of design of experiment that can be employed is the factorial design for 

small number of inputs and fractional factorial design for larger number of inputs. The 

inputs used can be the manipulated variables (i.e. flows) or known disturbances (e.g. 

temperature, pH, concentration) or a combination of some manipulated variables and 

some measured disturbances.  

4.4.3 Identification of Dominant Variables 

Successive dataset reductions using Principal Component Analysis (PCA) are applied to 

the matrix of dataset � (see Chapter 3). Note that, the dominant variable criteria must 

be completely fulfilled at each stage of dataset reduction until the critical level of dataset 

reduction is reached i.e. the successive dataset reduction condition is applied.  

We need to specify the threshold value (�����) for the sum of variances of the first 

and second principal components for the case where 2D-plot of PCA is used. This value 

is used as an indicator whether we already reach the critical dataset reduction level. The 

recommended minimum ����� should be ≥ 80%. When the value of ����� is too small, 

then this can lead to an apparently too many dominant variables i.e. some of the 

variables are non-dominant. 
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4.4.4 Selection of Primary Controlled Variables 

There are two key questions to be answered at this stage which are: 

1) Which dominant variables to be controlled? 

2) How many dominant variables to be controlled? 

4.4.4.1 Primary Controlled Variable (PCV) Criteria 

The following Primary Controlled Variable (PCV) criteria can be used as a guideline in 

selecting which dominant variables to be controlled: 

1. Select the dominant variable/s with the largest (steady-state) influence on the 

performance measure (we can use CI to rank the dominant variables). 

2. For a serial case, select the dominant variable/s in the last stage (downstream) 

because this implies rejection of most of the disturbance effect i.e. if upstream 

variable is controlled, then the effect of disturbance that enters through the same 

point/stage as another variable downstream will be poorly rejected. 

3. Select a subset of dominant variables that lead to the most favorable pairings e.g. 

diagonal RGA elements closed to unity. 

4. Select a variable which leads to fast disturbance rejection. This means that we 

need to compromise between strong steady-state influence (criteria 1) and fast 

dynamic response. Note that, prior process experience and knowledge regarding 

the process can be used to identify the inputs which have fast or slow dynamics. 

Additionally, preliminary simulation study can be adopted in order to find input 

candidates which have the fast dynamics. 

4.4.4.2 PCV Criteria 1 – Relation to Closeness Index 

With regard to the first PCV criteria, the selection of controlled variables from the subset 

of dominant variables can be done based on the ranking of dominant variable influence 

on performance measure of interest. The ranking of a dominant variable yi with respect 

to a certain performance measure φp can be quantified by its closeness index ��� as 

described previously in Chapter 3. 

 



72 
 

 
 

Remark 4-3:  

In some cases, the rank of the dominant variables is too close to one another i.e. their 

closeness index values are close to each other. As such, the controlled variable/s can be 

selected on the basis of dynamic influence on a particular performance measure of 

interest. In other words, control the dominant variable which has the fastest dynamic 

influence on the performance measure. 

□ 

4.4.4.3 Determination of Number of Primary Controlled Variables via IDV 

With respect to the second key question, it is always desirable to control as small as 

possible the number of dominant variables. The reason is that, the smaller the number of 

controlled variables the simpler is the control system. Furthermore, some of the 

manipulated variables must be reserved for the inventory and constraint control 

objectives.  

To determine the number of primary controlled variables, the dominant variable 

interaction index IDV can be adopted (see Chapter 3). In general, if the elements of IDV 

are small, then this implies that it is sufficient to control only one or two of the dominant 

variables i.e. one or two primary controlled variables required. On the other hand if the 

elements are quite large, then we need to control one or two more extra dominant 

variables. The procedure of assessing the number of primary controlled variables is as 

follows. 

4.4.4.4 Case 1:  Single Performance Measure-Multiple Dominant Variables 

For the case of single performance measures with n number of dominant variables, the 

dominant variable interaction index IDV is given by a column vector as: 

��� � ���
���� ..�"#$

$%  4-1 
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Algorithm 

1. Select the strongest (minimum element) dominant variable   &' ( Ω, ) * +. 

2. Check the element of k-row of IDV 

3. If   ���|' - �
��, then it is sufficient to control only  &'. 

4. Else, select the second strongest dominant variable  &. ( Ω, / * + as follows: 

i. Calculate the closeness index values of &' in the directions of other dominant 

variables (not including �'') i.e. �'�, �' , … �'".  

ii. Choose the next controlled variable &. such that �'. is the largest. 

iii. Calculate the sum of ��� elements excluding the controlled variables i.e. 

Λ'. � 2 ��"
�3�,�4',.  

iv. Take an average closeness index excluding the controlled variables i.e.  

�5'. � Λ'.+  

5. If   �6'. - �
��, then it sufficient to control only &' and  &. . Else repeat Steps 4 to 5. 

□ 

 

 

Remark 4-4: 

Except for the case of strong interaction among the dominant variables where   ���|' -�
��  , it is quite difficult to estimate exactly how many dominant variables should be 

controlled for the case of weak interaction. Therefore, one alternative way to decide the 

number of primary controlled variables for the case of weak interaction is via simulation 

i.e. whether more than one dominant variables should be controlled depends on whether 

the performance specification is met or not. If not, one needs to control the next (second) 

strongest dominant variable and a simulation is then performed to evaluate whether 

controlling 2 dominant variables is sufficient or not. This continues if the performance 
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objectives are still not achieved. Of course, this is a rather tedious task as we need to 

iteratively pre-design the controller for the simulation study. 

□ 

 

Remark 4-5: 

Here �
�� is a small positive value that is less than unity (heuristically chosen between 

0.05 and 0.15). Thus, in general if the value of the closeness index ��7  8 0.15, then this 

implies a rather weak correlation between the variable &� and &7 . 
□ 

4.4.4.5 Case 2:  Multiple Performance Measures-Multiple Dominant 

Variables 

For the case of m number of performance measures with n number of dominant 

variables, the dominant variable interaction index IDV is given by a matrix of n rows and 

m columns: 

��� � <���� � �� �  = ��
� 
> ? >�"� �" = �"
@  4-2 

 

Algorithm 

1. Select the strongest dominant variable &� ( Ω, A * +, which has the strongest effect 

on majority of the performance measures. 

2. Check the ith
 row (��,
��) elements of IDV matrix. 

3. If  ��,
�� - �
��, then it is sufficient to control only  &� . Where  ��,
�� is given by 

��,
�� � BCDEFG|GHI,J..KL���|�M  4-3 

Read: find the maximum value ��7 in the ith row of the matrix IDV. 
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4. Otherwise, find the next strongest dominant variable &' ( Ω, ) * + which has the 

largest effect on most of the performance measures. Find the k
th row with largely 

small values of closeness index  �'7  , where  N � 1,2…P. 

5. Check for the maximum element within ith
 and kth

 rows i.e. ��',
��. 

6. If ��',
�� - �
��, then it is sufficient to control only &�  and &'. 

��',
�� � BCDEFG,EQG|GHI,J..K RminEVI,.3�,'W���|�,'� X ,minEVJ,.3�,'W���|�,' X , …minEVK,.3�,'W���|�,'
 X Y 4-4 

Read: find the maximum value of closeness index among the minimum values of 

closeness index within the columns involving the ith and kth rows in the IDV matrix. 

7. Otherwise, repeat steps 4 to 6, for example, for the case where 3 controlled variables 

are required. First, find the next strongest dominant variable &Z ( Ω, [ * + , which 

has the next largest effect on majority of the performance measures. Then, repeat 

Step 4 by checking for the maximum element within ith, kth and qth rows i.e. ��'Z,
��. 

If  ��'Z,
�� - �
�� , then it is sufficient to control only \&� , &' , &Z]. Where 

��'Z,
�� � BCDEFG,EQG ,E^G|73�, ..
 RminEVI,.3�,',ZW���|�,',Z� X,minEVJ,.3�,',ZW���|�,',Z X, ..  minEVK,.3�,'W���|�,',Z
 X Y 4-5 

8. If  ��'Z,
�� - �
�� , so it is sufficient to control only 3 dominant variables. 

Otherwise, repeat Steps 4 to 6. 

□ 

Remark 4-6: 

For two controlled variables, PA+EVGW���|�,'7 X in Eq.  4-4 means that to find the 

minimum element (closeness index) of IDV within j
th

 column and involving only i
th

 and k
th

 

rows. Similarly for three controlled variables, PA+EVG,.3�,',ZW���|�,',Z7 X in Eq.  4-5 

means that to find the minimum element of IDV within j
th

 column involving only i
th

, k
th

 

and q
th

 rows. 

□ 
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4.4.5 Identification of Inventory Variables YI 

Typical inventory variables are liquid level and pressure. Thus, this type of variables is 

very easy to identify based on minimum knowledge and experience. Here, identify all 

variables (i.e. liquid levels or pressures) which fall within the inventory category i.e. ��. 
Next, rank the importance of the inventory variables. For example, the vessel or tank 

which operates closed to maximum capacity should be given priority over other tanks 

which operate further away from their maximum capacity. Also, the liquid level in 

reactor should be ranked above that of liquid level in surge tank. Then, specify the 

maximum steady-state and dynamic variations of inventory variables in the face of 

disturbance occurrences, i.e. ∆��,
��``  and ∆��,
��ab"   respectively. 

 

Remark 4-7: 

The steady-state variation or offset in the variable is the difference between its nominal 

(setpoint) value and its new steady-state value in the face of external disturbance 

occurrence. Meanwhile, the dynamic variation in a variable is equivalent to either peak 

value or minimum value during its transient response. It is important that the peak value 

during the transient is below the allowable limit, otherwise overflow might occur. 

□ 

4.4.6 Identification of Constraint Variables YC 

The following steps can be applied to identify the constraint variables: 

i. First, based on the unit operation knowledge plus the physical and chemical 

knowledge about the bio-chemical components used, identify all the 

variables (��) that relate to the process constraints characterizing each unit or 

equipment, which makes up the entire plant. Note that, the process 

constraints normally form the so-called operating window within which the 

plant must operate to ensure safe, smooth, reliable and profitable operation.  



77 
 

 
 

ii. After identifying all the variables relating to the process constraints, rank the 

importance of the constraint variables.  

iii. Finally, specify the maximum allowable steady-state and dynamic variations 

in the face of disturbance occurrence, i.e. ∆��,
��``  and ∆��,
��ab"  respectively.  

 

Note that, the maximum dynamic variation could be either the maximum peak or 

minimum value during the transient response. Since the peak value during transient can 

be damaging to the equipment, it is important to ensure that the maximum dynamic 

variation (e.g. maximum excursion of reactor temperature) of a constraint variable 

remains within allowable limit of the equipment involved. 

Detailed analysis might be required for complex units such as bioreactor, 

exothermic catalytic reactor and multi-component distillation column. Furthermore, 

some of the variables that relate to the process constraints might belong to the inventory 

group of variables. For example, liquid level in reflux drum should not be allowed to fall 

below certain limit, otherwise the cavitation of pump below the drum will occur and 

damage the pump. This in turn can lead to unreliable operation or even unsafe operation. 

Therefore, in this case the liquid level in the reflux drum serves as both inventory and 

constraint control objectives. Moreover, some of the constraint variables might also 

belong to the dominant variable set or the primary variable set. For example, the 

bioreactor temperature may have strong influence on productivity (overall performance 

measure) and at the same time it is also a constraint variable i.e. high temperature can 

kill the microbes. Thus, bioreactor temperature serves as both dominant and constraint 

variable. 

4.4.7 Selection of Inventory-Constraint Controlled Variables 

Once the candidates for inventory and controlled variables (sets of �� and  ��) are 

identified, the next tasks are to determine which of the constraint variables should be 

controlled. Note that, just like in the case of dominant variables, we do not need to 

control all of the inventory and constraint variables because they are normally 

interrelated. Thus, this step is very crucial where the main tasks are to determine: 
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1. Inventory (���,�M  and constraint (���,�) controlled variables from �� and  �� 

respectively, where ���,� 
 �� and  ���,� 
 ��. 

2. Sufficient number of inventory and constraint controlled variables required. 

 

To resolve the first task, the previously mentioned PCA-based method can be 

adopted in order to gain insight about the nature of the interaction among the inventory-

constraint variables. Meanwhile, the second task can be handled via the variable-variable 

interaction index (IVV). 

4.4.7.1 Inventory-Constraint Controlled Variables (ICCV) Criteria 

The following criteria can be used as guidelines for the selection of inventory-constraint 

controlled variables: 

1. When two or more variables are strongly correlated, then select the most 

important variables based on their ranking. 

2. When two or more variables are strongly correlated, then select the variables 

which are easy to measure. 

3. When two or more variables are strongly correlated, then select the variables 

which are most susceptible to disturbances. 

4. Select a set of variables that lead to the most favourable pairing i.e. diagonal 

elements of RGA closed to unity. 

 

With respect to the second task, we want to control sufficient number of variables 

such that, the variations in  �� and �� are acceptable in the face of disturbance 

occurrence, i.e.: 

Inventory variables variations: c ∆��̀ ` * ∆��,
��``∆��ab" * ∆��,
��ab" d 
Constraint variables variations: c ∆��̀ ` * ∆��,
��``∆��ab" * ∆��.
��ab" d 

 

To determine the number of inventory-constraint controlled variables, we could 

adopt the variable-variable interaction (IVV) array, which is the extension of the 
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dominant variable interaction array (IDV) previously mentioned in this chapter. Of 

course, rather than calculating the closeness index between variable and performance 

measure (dominant variable case), we need to compute the closeness index between 

variables. Then, use the variable-variable closeness index values to form the matrix of 

variable-variable interaction array i.e. IVV. From the values of elements in IVV, we can 

estimate the sufficient number of variables that should be controlled in order to ensure 

acceptable steady-state and dynamic variations of the inventory-constraint variables. 

4.4.7.2 Variable-Variable Interaction Index IVV 

For n constraint and inventory variables (i.e. ��  e  ��M, the variable-variable interaction 

array IVV can be written as: 

��� � <��� �� � � �  = ��"� "> ? >�"� �" = �""@  4-6 

Note that, IVV is a square matrix. Since the closeness index of a variable with respect 

to its own is zero i.e. ��7 � 0, A � N, then the IVV  can be expressed as follows: 

��� � < f �� � � f = ��"� "> ? >�"� �" = f @  4-7 

 

4.4.7.3 Screening of Inventory-Constraint Controlled Variables via IVV 

Algorithm 

1. Choose the most critical constraint variable &� ( �� e �� , A * + as controlled 

variable. 

2. Check the maximum element of ith row i.e. ��,
�� 

3. If  ��,
�� - �
��, then it is sufficient to control only  &� . Where 

��,
�� � BCDEFG|GHI,J..gL���|�M  4-8 
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Read: find the maximum value ��7 in the ith row of the matrix IVV. 

4. Otherwise, control the next most important variable &' ( �� e �� , ) * + where this 

variable shows weak correlation with &�  i.e. ��' 8 �
��. 

5. Check the maximum element of ith and kth rows  ��',
��. Where: 

��',
�� �  BCDEFG,EQG|73�, .." RminEVI,.3�,'W��� d|�,'� X,minEVJ,.3�,'W��� d|�,' X, . .minEVK,.3�,'W��� d|�,'" X Y 4-9 

Read: find the maximum value of closeness index among the minimum values of 

closeness index within the columns involving the ith and kth rows in the IVV matrix. 

6. If  ��',
�� - �
�� , then it is sufficient to control only  &�  and &' . 
7. Otherwise repeat Steps 4 to 6. 

□ 

4.4.8 Control Structure Design Decisions 

There are 4 main tasks involved in this step as follows: 

1) Selection of manipulated variables from the available inputs (control degree of 

freedom analysis). 

2) Determination of manipulated-controlled variables pairings using RGA analysis 

(minimum requirement for simplicity). 

3) Selection of control law i.e. P-only or PI or PID controller. More advanced 

controller algorithms can also be considered if the process is very difficult to 

control using simple PID type controller. 

4) Controller tuning to meet the desired dynamic responses or control criteria. 

 

Selection of Manipulated Variables Set 

Note that, the selection of manipulated variables set (UMV) in partial control is not as 

critical as the selection of controlled variables set (YCV). The reason is that, for partial 

control normally there are only a few suitable inputs which can be manipulated i.e. 

limited number of control degree of freedom. Thus, most of the time we will use all of 
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the available inputs as manipulated variables – selection is not an option in this case. 

However, in the case where there are less number of manipulated variables required than 

the control degree of freedom, we can employ a few techniques for selection of UMV. 

One of the techniques that could be applied to select the UMV from a large number 

of inputs is the Single-Input Effectiveness (SIE) described in (Cao and Rossiter 1997). 

Other method which can be used as a guidance to select the suitable manipulated 

variables is the Morari Resiliency Index (MRI) (Morari 1983). The MRI is a measure of 

the inherent ability of the control structure to handle disturbances. The larger the value 

of MRI, the more resilient is the control structure. 

 

Controller Pairings 

The selection of controller pairings in partial control is relatively simple as compared 

with that of more complex control strategies with larger number of controlled variables; 

in partial control strategy only a few controlled variables are adopted leading to less 

tedious task of selecting the suitable controller pairings. In general, for simplicity one 

can always adopt the simple RGA analysis in the selection of controller pairings. 

Note that for the controller pairing, one can also adopt more rigorous analysis such 

as, the dynamic RGA (DRGA), performance RGA (PRGA). For more detail regarding 

controller pairings readers can refer to (Hovd and Skogestad 1993). 

 

Controller Tuning 

Simple and practical method for the controller tuning for multivariable process can be 

found in (Luyben 1986). For the controller tuning for the multi-loop SISO design, one 

can use the trial-and-error method based on Ziegler-Nichols tuning because it is simple 

to implement. Other methods which can be adopted for tuning of PI/PID controllers are 

as proposed in Lee, Cho and Edgar (1998) and Zhang, Wang and Åström (2002).  

 

Remark 4-8: 

Note that, we will not discuss further in this thesis regarding the use of more rigorous 

analysis for the selection of manipulated variables, controller pairings and controller 

tunings. For simplicity the selection of manipulated variables is based on the process 
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knowledge (i.e. with minimum mathematical analysis) while controller pairings is done 

via the simple RGA analysis. Therefore, the focus of the research work described in this 

thesis is on the most critical step (and the least studied aspect) of partial control design, 

which is the selection of controlled variables. 

4.4.9 Dynamic Performance Improvement 

The last step is to enhance the dynamic performance of the complete partial control 

design against disturbances. This step is necessary when the dynamic performance of the 

partial control strategy is still unacceptable, for instance, the recovery of the 

performance measures (e.g. yield and productivity) is too slow.   

There are various strategies which can be adopted at this stage, such as the PID 

enhancement techniques i.e. cascade, ratio and feedforward control strategies. 

Additionally, the unused manipulated variables (i.e. remaining input degree of freedom) 

can also be used to control extra variables, which could further improve the dynamic 

performance. For the case when the control-loops interactions are too serious, then one 

can design the decoupler in order to reduce the loops interaction. 

4.5 Discussion on Control Structure Design Approach 

Why unit operation approach to plantwide control design works? Recall that in this 

thesis, we divide the operating objectives into three broad category as (1) overall 

operating objectives, (2) inventory objectives, and (3) constraint objectives. Notice that, 

most of the operating objectives are attached to the last two control objectives. 

Interestingly, the vast majority of the variables related to these two objectives can be 

identified directly from the unit operation knowledge i.e. they are the explicit functions 

of the process constraint variables in most cases.  

On the other hand, the number of overall operating objectives which are the implicit 

functions of the process variables is much smaller than that of combined inventory and 

constraint objectives. Therefore, it is intuitively clear why the unit operation approach 

work in plantwide control design because the majority of the objectives are related to the 

constraint and inventory control objectives. Furthermore, the stability which is the most 
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basic requirement for the process plant operation is frequently governed by the 

constraint and inventory control objectives, and not by the overall operating objectives. 

Since the large majority of operating objectives consist of inventory and constraint 

types, it seems that one can only focus on these two types of objectives in order to 

resolve the plantwide control problem. Thus, an important question becomes why we 

need to incorporate the overall operating objectives in the plantwide control design at 

all? 

The answer to this question lies in the idea of profit optimization of a process plant 

requiring the fulfillment of various implicit operating objectives, e.g. maximum yield, 

productivity and minimum energy consumption, etc. While the constraint and inventory 

control objectives are basic requirements to operate a plant in a safe, smooth and reliable 

manner, unfortunately fulfilling only these two types of objectives cannot ensure the 

attainment of optimum profit i.e. optimum plant operation.  

As a result, we need to find which variables to be controlled in order to achieve the 

overall operating objectives, which can ultimately lead to optimum plant operation. 

These variables which are subset of the dominant variables are called in this thesis as the 

primary controlled variables. Unlike the inventory and constraint controlled variables, 

which can be identified based on the unit operation knowledge and experience, the 

determination of the primary controlled variables is not as straightforward due to their 

implicit relationship with the overall performance measures. Therefore, we need a sound 

theoretical framework to address this type of operating objectives i.e. new partial control 

framework developed in this thesis. 

4.6 Summary 

In this chapter, a complete partial control design methodology is proposed. The 

complete partial control design includes: (1) overall operating objectives, (2) constraint 

control objectives, and (3) inventory control objectives. These three objectives 

correspond to three classes of controlled variables which are: (1) primary controlled 

variables from the set of dominant variables (identified via PCA-based technique), (2) 

constraint controlled variables from the set of constraint variables, and (3) inventory 

controlled variables, respectively. 
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It should be remembered that, the existence of variables interaction means that it is 

not necessary to control all of the candidate (primary, inventory and constraint) 

variables. Only a few variables are required as controlled variables, and the rest of the 

uncontrolled variables will be indirectly controlled by virtue of their interaction with the 

controlled variables. However, this leads to two key questions: which variables should 

be controlled and how many variables should be controlled? 

One way to identify the primary controlled variables is by using the closeness index 

(CI) – CI is used to rank the importance of dominant variables. Also, we propose a few 

heuristic guidelines which can further support the decision relating to this task.  

Next, we can assess the number of primary controlled variables using the proposed 

dominant variable interaction array IDV. There are two cases involved: (1) multiple 

dominant variables with single performance measure, and (2) multiple dominant 

variables with multiple performance measures. In both cases we have developed the 

algorithms required in order to apply the IDV for assessing the sufficient number of 

primary controlled variables. 

Unlike the primary variables, the inventory-constraint variables can directly be 

identified by means of process (i.e. unit operation) knowledge. We propose a few 

heuristic rules which can be adopted in selecting the inventory-constraint controlled 

variables. Additionally, we extend the application of the dominant variable interaction 

array (i.e. to variable-variable interaction array IVV) to assessing the sufficient number of 

inventory-constraint controlled variables required. 

We might be wondering why in the past until now that partial control strategy has 

worked quite well despite of its heavy reliance on process knowledge and experience? If 

this is the case, do we really need a systematic tool for implementing partial control? To 

these questions we provide the following answers.  

First, the majority of the operating objectives are of the inventory and constraint 

types, which largely determine the safe, smooth and reliable operation. As we know that 

most of the inventory-constraint variables are usually interacted, thus, this means that 

there is no need to control all of them. But this also means that, we can choose rather 

arbitrarily the controlled variables, and the chance that the resulting control strategy is 

workable is high due to the variables interaction.  
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To answer the second question, we need to ask a further question that is, can this 

control strategy achieve the implicit objectives, such as, the optimum profit, optimal 

trade-off between yield and conversion, etc? Then, the answer is clearly no because we 

need a better tool (other than pure heuristic approach) to precisely translate these 

implicit objectives into a set of feedback-controlled variables (i.e. the heart of CSD 

problem). In short, the existing approach to partial control though seems to work quite 

well, it is unlikely that the resulting control strategy is capable of meeting the overall 

(implicit) operating objectives. Thus, at best this control strategy can only achieve the 

inventory and constraint control objectives. Therefore, we need a systematic tool to 

implement partial control strategy such that, we can achieve all 3 types of operating 

objectives in a systematic and consistent manner. 
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5 MODELLING, OPTIMIZATION AND DYNAMIC 

CONTROLLABILITY: TSCE ALCOHOLIC 

FERMENTATION PROCESS CASE STUDY 

5.1 Introduction 

Product inhibition is one of the major limitations restricting the achievement of high 

yield and productivity in fermentation processes. In ethanolic fermentation, the most 

prevalent practice to reduce the ethanol inhibition is by adopting the so-called extractive 

fermentation technique as previously described in Chapter 2. Costa et al. (2001) showed 

that the integration of vacuum flash vessel can significantly increase the ethanol yield 

and productivity i.e. the technique results in higher productivity than the traditional 

batch process. 

While the study in Costa et al. (2001) focused on the single-stage design, in this 

thesis we extend this study to the two-stage design. In this case, two bioreactors in series 

are used instead of using single large bioreactor as in the case of single-stage design. 

There are 4 major objectives in this chapter which are to: 

1. Develop nonlinear modeling of two-stage continuous extractive alcoholic 

fermentation system. 

2. Optimize the operating conditions (i.e. to achieve optimal trade-off between 

yield and productivity) for two-stage design and compare the result with that 

of a single-stage design. 

3. Develop new framework for dynamic controllability analysis. 

4. Compare the dynamic controllability of two-stage design with that of single-

stage design. 

A major portion of this chapter was published in the Journal of Chemical Product 

and Process Modelling (Nandong, Samyudia and Tade 2006). One of the main 

contributions of the work described in this chapter is the novel approach to analyzing the 

dynamic controllability. This dynamic controllability approach is based on the 
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integration of the v-gap metric, factorial design of experiment and multi-objective 

optimization concepts. 

5.2 Process Description 

The two-stage continuous extractive alcoholic fermentation  in this study is based on the 

single-stage design originally proposed by Silva et al (1999). Using the refined kinetic 

data, Costa et al (2001) had conducted some studies on the optimization and 

determination of the effective control structure for the single-stage design based on the 

concept of factorial design and response surface analysis. 

A general scheme of the two-stage continuous extractive fermentation coupled with 

a vacuum flash vessel is shown in Figure 5-1. There are five interlinked units; two 

bioreactors in series, a centrifuge, treatment tank and vacuum flash vessel. 

Conventionally, the usual arrangement in industrial process is to have four interlinked 

bioreactors with measurement made at the entrance of the first bioreactor and at the exit 

of the last bioreactor. Moreover, the flash vessel is operated in a temperature range 

between 28oC to 30oC, which is chosen in order to eliminate the necessity for a heat 

exchanger installation in the bioreactor(Costa et al, 2001). 

A small portion of the heavy phase stream (FC) from the centrifuge is purged out to 

avoid the accumulation of impurities and dead cells. Also, in the cells treatment unit the 

cells suspension is diluted with water. Then, sulphuric acid is added to avoid bacterial 

contamination.  

The following assumptions are made in this study: 

A.1 The separation efficiecy of yeast cells from the liquid in the centrifuge is 100%. 

Thus,the concentration of yeast cells in the light phase stream FE is zero i.e. all 

yeast cells go to the heavy phase. 

A.2 As an implication of A.1, the substrate and product concentrations in FE and FC 

streams are similar to their concentrations in F2 stream. 

A.3 Dynamics of the treatment tank and flash vessel are very fast as compared to the 

dynamics of the bioreactors. 

A.4 Well-mixing in both bioreactors. 

 



 

 

Figure 5-1: Two-stage extractive alcoholic fermentation coupled with vacuum flash vessel
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requires the availability of suitable manipulated inputs (MVs) where in this case the 

number of MVs is actually much smaller than the number of outputs.  

There are only 6 potential MVs, which are: 

1. Cell recycle ratio (R) 

2. Flash recycle ratio (r) 

3. Feed stream (Fo) 

4. Exit flowrates from the fermentor 1 (F1) 

5. Exit flowrate from fermentor 2 (F2)  

6. Vapour flowrate from the vacuum flash vessel (Fv) 

 

On the other hand, there are six outputs available for each bioreactor that are:  

1. Viable cell concentration (Xv) 

2. Dead cell concentration (Xd) 

3. Substrate concentration (S) 

4. Ethanol concentration (Et) 

5. Bioreactor temperature (T) 

6. Fermentor liquid level (L)  

 

Since there are two bioreactors, the total number of outputs available is twelve. 

Note that, the determination of which outputs to control will be reported in Chapters 6 

and 7. 

To illustrate that the perfect level control assumption is unrealistic, let consider that 

the perfect level control in the first bioreactor can be achieved using the exit flowrate 

(F1) as the manipulated input. But this stream is actually the inlet flow to the second 

bioreactor. Consequently, extremely aggressive control action of the liquid level in the 

first fermentor would lead to heavy fluctuation of F1, which in turn becomes serious 

disturbance to the second bioreactor. Hence, in this study the dynamics of liquid levels 

in both fermentors would be taken into consideration in the dynamic controllability 

analysis. 
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5.3 Modelling of TSCE Alcoholic Fermentation Process 

The fermentation process in both bioreactors can be dynamically modelled using a set of 

differential-algebraic equations (DAEs) coupled with the fermentation kinetic model. It 

is assumed that bioreactor mixing is ideal (assumption A.4), which implies that the 

ordinary differential equations can be used to represent the fermentation dynamics. 

Furthermore, for simplicity and practicality the unstructured kinetic model is adopted 

rather than the structured metabolic model in order to reduce the computational 

requirement during the simulation study. The kinetic model takes into account the 

effects of product, biomass and substrate inhibitions. Also, the effect of temperature on 

the activity of the living cells is included in the kinetic model. 

 

The following ordinary differential equations are used to represent both bioreactors: 

Bioreactor 1 

�� �������� �	⁄ � ������
� � ���� � ����� � �����  5-1 

�� �������� �	⁄ � ��������� � ����� � �����  5-2 

�� �������1 � �	� �⁄ �� �	⁄ � ���������� � ���� � ����  5-3 

�� � ����	���1 � �	� �⁄ � � � �	� �⁄ �� �	⁄ � �  

                                                 ��������� � ���	� � ���	�  5-4 

�� ������� �	⁄ � ����������∆ ! ��"#$�⁄ � � ���� � ����  5-5 

�� ����� �	⁄ � ��� � ��  5-6 

 

Bioreactor 2 

�% ���%��%� �	⁄ � �%�%��
% � ��%� � �%��% � �����  5-7 

�% ���%��%� �	⁄ � �%�%���%� � �%��% � �����  5-8 

�% ���%�%�1 � �	% �⁄ �� �	⁄ � �%�%����%� � �%�% � ����  5-9 

�% � ��%�	%��1 � �	% �⁄ � � � �	% �⁄ �� �	⁄ � �  
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                                                                     �%�%���%� � �%�	% � ���	�  5-10 

�% ���%�%� �	⁄ � �%�%���%��∆ ! ��"#$�⁄ � � �%�% � ����  5-11 

�% ���%� �	⁄ � ��% � ��  5-12 

 

For j = 1, 2, the kinetic equations are: 

Rate of yeast cell growth: 

�
& � '"()��& �*+ � �&�⁄ �,
���*��&� -  

                                         �1 � �	& �"()⁄ �"�1 � �	& ."()⁄ �/��&    5-13 

Rate of yeast cell death: 

��& � *12,
��*1$�	&���&  5-14 

Rate of ethanol formation:  

��& � 3$)�
& �4$��&  5-15 

Rate of substrate consumption:  

��& � �
& 3) �4+��&⁄   5-16 

The kinetics data adopted in this study can be found in Table 5-1. Furthermore, 

other algebraic equations describing the system are given as: 

�	& � ��& � ��&  5-17 

�� � �5 � �6 � �76  5-18 

�76 � ��7  5-19 

�6 � 8�%  5-20 

 

Yield of ethanol produced per maximum theoretical yield is given by: 

39,:� � ��;�	< � �7=�	76� �0.511�5�5�⁄   5-21 
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Volumetric productivity of ethanol produced is given by: 

.�A� � ��;�	< � �7=�	76� �B� � B%�⁄   5-22 

Other algebraic equations for centrifuge and vacuum flash vessel: 

�C � �7 � �; 5-23 

�7 � �76 � �7= 5-24 

�% � �D � �C 5-25 

 

The centrifuge is assumed to achieve perfect solid-liquid separation (assumption 

A.1), thus, no solid in the light phase. Consequently, this leads to the concentration of 

cells in the heavy phase to be equal to the wet cell density or maximum concentration 

(ρ). Thus, the heavy phase stream is simply given by: 

�D � ���%�%� �⁄   5-26 

A small portion of heavy phase flow is purged (FP) and the rest is sent to treatment 

tank (FCT). Where the flow of the wet cells sent to the treatment tank is given by: 

�D2 � �D � �E 5-27 

 

Note that, for F � 1, 2; the notations used in the modeling are as: ��& Viable cells concentration in bioreactor j [kg/m3] ��& Dead cells concentration in bioreactor j [kg/m3] �	& Total cells concentration in bioreactor j [kg/m3] �&  Substrate concentration in bioreactor j [kg/m3] �J Fresh substrate concentration [kg/m3] �	& Ethanol concentration in bioreactor j [kg/m3] �	< Ethanol concentration in vapour phase in flash vessel [kg/m3] �	76  Ethanol concentration in liquid phase in flash vessel [kg/m3] �& Fermentation medium temperature in bioreactor j [oC] 
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�� Inlet temperature of feed flow into bioreactor 1 [oC] �& Liquid hold-up level of bioreactor j [m] �& Outlet flow rate from bioreactor j [m3/hr] �� Total feed flow rate to bioreactor 1 [m3/hr] �5 Fresh substrate flow rate to bioreactor 1 [m3/hr] �6 Cell recycle flow rate [m3/hr] �76 Liquid flash recycle flow rate [m3/hr] �7=  Liquid flash flow rate taken as product [m3/hr] �; Vapour flash flow rate taken as product [m3/hr] �C Light phase flow rate from centrifuge [m3/hr] �D Heavy phase flow rate from centrifuge [m3/hr] � Flash recycle ratio [-] 8 Cell recycle ratio [-] �& Cross-sectional area of bioreactor j [m2] B& Volume of bioreactor j [m3] Δ !  Heat of substrate consumption [kJ/kg] #E Specific heat capacity of fermentation medium [kJ/kg.oC] � Wet yeast cells density [kg/m3] �" Density of fermentation medium [kg/m3] 

 

5.4 Design of Experiment of TSCE Alcoholic Fermentation 

The extractive alcoholic fermentation process could be optimized using response surface 

methodology without the need for model simplifications. Hence, the combination of 

factorial design and response surface methodology provides a convenient alternative to 

the nonlinear model-based optimization, which is well known to be very time-

consuming. However note that, in order to obtain more accurate optimization result, 

model-based optimization technique should be employed. Here, the optimization based 

on response surface is adopted in order to be consistent with the previous works (Silva et 

al 1999, Costa et al 2001). 
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For the single-stage design, various results of the maximum productivity and yield 

were reported. Costa et al (2001) reported the highest values of productivity and yield 

that can be achieved are 21 kg/m3.hr and 82% respectively when the values of fresh 

substrate concentration, So = 130 kg/m3, cell recycle ratio, R = 0.3, flash liquid recycle 

ratio, r = 0.25 and residence time tr = 1.3 hr. These operating conditions correspond to 

bioreactor volume of 257.4 m3. 

Using the input values determined by Silva et al (1999): So = 180 kg/m3, R = 0.35, r 

=0.4 and tr = 1.2 hr, Costa et al (2001) showed that the highest productivity and yield are 

22 kg/m3.hr and 81% respectively. However, this resulted in the bioreactor volume of 

339.8 m3.  

In the following, we present our results for the two-stage design. Table 5-2 shows 

the coded factor level for the factorial design of experiment. The chosen nominal 

operating conditions are corresponding to the values of productivity, yield and 

conversion of 14.5 kg/m3.hr, 82.4% and 86.8% respectively.  

From this factorial design of experiment, a set of models as equations (Eq. 5-27, Eq. 

5-28 and Eq. 5-29) are produced, where the models relate the productivity, yield and 

conversions to the most significant input variables in Table 5-2. By using these models, 

a response shape optimisation is performed, where one of the results is seen in Figure 5-

2 and Figure 5-3. 

Equations for yield (Yield), productivity (Prod) and conversion (Conv) are given by: 

 

39,:� � 21.5 � 0.7�J � 0.46�J � 109.18 � 126.3� �  ��1.3�J � 0.57�J� 5-28 

 

.�A� � 118.6 � 0.4�J � 0.5�J � 214.68 � 230� � �J�1.28 � 1.3� � 2.9�8� ���4428 � 0.8�J� 5-29 

 

#AR� � �7.2 � 0.8�J � 0.2�J � 90.28 � ��203 � 1.5�J� 5-30 
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Table 5-1: Kinetic parameters used in modeling of two-stage continuous extractive alcoholic 

fermentation system 

Parameter *Expression or value 

STUV W. XYZV[��\W. \Y ]⁄ � � W. ^_ - W`\ZV[��\aW. \ ]⁄ � bTUV �`. a^Y_]^ � ^c. \W] � W_W. `c dTUV �`. \\^W]^ � ^c. \W] � ^Y_. YX eV ^. Y`\ZV[��`. W^^X]� e[V `. ^XXcZV[�`. W`fc]� gh 4.1 T[ 0.1 TV 0.2 T 1.0 i 1.5 gjd Y. \^W - W`ka]^ � `. \cX\] � Y. c_ gj] \ - W`WaZV[��\W_\Y lW. _fY�] � ^Ya. WX�m⁄ � n 390 o 0.78 

*Data taken from Costa et al. (2001) 

 

 

Table 5-2: Coded factor level and real values for factorial design (±25% change from nominal 

value) 

Variable Level (-1) Nominal (0) Level (+1) 

F0 (m
3/hr) 75 100 125 

S0 (kg/m3) 112.5 150 187.5 

R (-) 0.1875 0.25 0.3125 

R (-) 0.30 0.40 0.50 
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As shown in Figure 5-2, the productivity of bioethanol increases with the increase in 

flash recycle ratio (r), but at reduced fresh substrate concentration (So). In contrast, 

Figure 5-3 indicates that the yield of bioethanol drops with the increase in r and the 

decrease in So. Hence the productivity and yield show opposite trends to the changes in r 

and So as previously reported in the single-stage design (Silva et al. 1999, Costa et al. 

2001). It is important to note that, therefore, the two-stage design exhibits a similar trend 

in the productivity and yield to that reported of the single-stage design. 

 

Remark 5.1: 

Note that, the magnitude of input perturbations used to generate the dataset for response 

surface analysis is only 20% of the nominal values. The magnitude of input 

perturbations used in this case is chosen based on the assumption that the system is 

subject only to disturbances changes (no large setpoints changes occur). In other words, 

under closed-loop situation in the face of disturbances occurrence the magnitude of 

variations in the manipulated variables are within this ±20% of input perturbations. Of 

course, in practice the actual variations in manipulated variables could be larger than 

this perturbation magnitude if the disturbances are too large or if large setpoints 

changes occur. In this case however, we assume the disturbances magnitudes are 

moderate (or setpoint change is not too large) such that the steady-state variations in 

manipulated variables are within ±20% of their nominal values in the face of 

disturbances occurrences. 

□ 
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Figure 5-2: Response surface of productivity for FO=100 m3/hr and R = 0.20 

 

Figure 5-3: Response surface of yield for Fo =100 m3/hr and R = 0.20 
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5.5 Optimization of TSCE Alcoholic Fermentation System 

Since the Yield and Prod have opposite trends, it is important to find the optimal trade-

off between these two performance measures. To obtain the optimal trade-off between 

Yield and Prod, the following cost function is optimized: 

Υ � 39,:� 39,:�"()⁄ � .�A� .�A�"()⁄   5-31 

Where Yield and Prod are given by (5-27) and (5-28) and Yieldmax and Prodmax are 

taken to be 90% and 27 kg/m3.hr, respectively. The following optimization problem (P-

5.1) is solved using Matlab optimization toolbox: 

(P-5.1) 

qrs!,6,;t,;u,=v�Υ� 
Subject to: 

w�3,x� � 0  5-32 

0.1 y � y 0.5  5-33 

0.1 y 8 y 0.5  5-34 

100 y �J y 200  5-35 

50 y B� y 250  5-36 

50 y B% y 250  5-37 

Note that, Eq. 5-31 corresponds to the steady-state model of the TSCE alcoholic 

fermentation system. In this optimization, the fresh feed flowrate (Fo) is fixed at constant 

value of 100m3/hr. Based on the optimization problem (P.5-1) for the two-stage design, 

the optimal trade-off attainable for yield and productivity are 82% and 21 kg/m3.hr 

respectively. These values correspond to the input values of So = 120 kg/m3, R = 0.225, r 

= 0.27 and tr = 1.27 hr, which results in a total reactor volume of 236 m3
. Hence, in term 

of the maximum achievable yield and productivity, the performances of both single-

stage and two-stage designs are comparable.  
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However at maximum yield and productivity, the two-stage design requires a 

significantly smaller total bioreactor volume than that required by the single-stage 

design, i.e. about 8% and 31% smaller than that obtained by Costa et al (2001) and Silva 

et al (1999), respectively. 

 

Remark 5.2: 

It is important to bear in mind that although two-stage design leads to smaller total 

bioreactors volume than that of the single-stage design, this does not mean that the 

former is cheaper than the latter. In other words, the capital cost of two small 

bioreactors can be larger than that of a (single) large bioreactor. So, the decision to 

proceed with the study of two-stage design in thesis is driven not by the cost but by the 

complexity of the system. In this case, two-stage design is more complex than the single-

stage design, which could offer opportunity to gain more insights into the challenges of 

bioprocess control design. 

□ 

5.6 Dynamic Controllability Methodology 

The main limitation of any steady-state process design is its inability to handle 

uncertainties and disturbances occurring during the process operation that causes 

variability in the plant performance (Perkins and Walsh 1996). Various methodologies 

have been developed for addressing the interactions between process design and process 

control, such as simultaneous design and control algorithm (Kookos and Perkins 2001), 

design and control via model analysis (Russel, et al. 2002) and design and control 

optimization via parametric controllers (Sakizlis, Perkins and Pistikopoulos 2003). 

In this work, a simple, sequential methodology of the integrated design and control 

is proposed. This methodology combines the concepts of the factorial design, v-gap 

metric and robust optimal (loop-shaping) control design to determine whether the 

process designs (i.e. single-stage or two-stage) have a favourable dynamic operability. 

The magnitudes of the input perturbations which are applied to both designs are the 

same and equal to 20± % of the nominal values. Table 5-3 shows the coded factor level 

for the single-stage design. The nominal conditions correspond to 82% of yield and 18 
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kg/m3.hr of productivity. The coded factor level shown in Table 5.4 is for the two-stage 

design, where its nominal operating conditions correspond to yield and productivity of 

84% and 19.4 kg/m3.hr, respectively.  

The following algorithm is proposed to compare the dynamic operability of the two 

designs at the prescribed operating levels. In order to ensure consistency, the nominal 

operating conditions for each design are chosen such that their yield and productivity are 

approximately similar. 

5.6.1 Preliminaries: v-Gap Metric  

Let a linear model .� � z�w�k� � w{�k�z{�, where z� , w�k�, w{�k� and z�  denote the 

normalized right and left coprime fractional descriptions of .� (Anderson, Brinsmead 

and De Bruyne 2002). Further define the following: 

G}�s� � �N}�s�M}�s��  5-38 

G{}�s� � lM{ }�s� N{}�s�m  5-39 

Following the result of (Vinnicombe 2001), the v-gap metric between two linear 

(plant) models 1P  and 2P can be defined as follows: 

�<�.�, .%� � ���%����  5-40 

If and only if the �,	���%���F��� � 0 �� �  ��∞,∞� and the �RA��,	���%���� �0; otherwise �< � 1. The wno and det indicate the winding number and determinant 

respectively. An important property of v-gap is its relationship with the robustness-

performance indicator (
CPb , ) of an optimal loop-shaping controller (McFarlane and 

Glover 1992). For a stable closed-loop system consists of a plant P under the controller 

C, the general robustness stability margin of the controller can be written as: 

�E,D � ���.� � �� � #.�k�l�# �m���k�  5-41 
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When �<�.�, .%� � �Et,D where C is a controller designed based on the plant model 

P1 then, the controller is guaranteed to be stable for the plant dynamic described by 2P .  

Furthermore, if the value of  �<  is small compared to �Et,D then, the controller 

performance will be expected to be comparable for both plant dynamics. It is important 

to note that, if  �<�.�, .%� � �Et,D then, this does guarantee the instability of the 

controller C when it is used for the dynamic behaviour described by P2. However, this 

will normally lead to performance degradation of the controller. 

5.6.2 Description of Uncertainties–Controllability Relationship 

The plant uncertainties could be due to various factors, for examples, plant/model 

mismatch due to unmodelled dynamics of the valves and sensors, unaccounted changes 

in the dynamics of equipment (time-variant parameters) and disturbances occurrences 

e.g. changes in the raw material compositions.  

Figure 5-4a below illustrates the changes in dynamics due to disturbances and 

process nonlinearities. The linear controllers are presumably designed based on a 

nominal operating level, P0. Due to disturbances the controllers will adjust the 

manipulated variables (U1 and U2) to bring back the process outputs to setpoints. In this 

respect, it is important to note that if the system is linear then such disturbance 

occurrence will not change the dynamic behaviour as the manipulated variables change.  

Consequently during the course of operation, as the manipulated variables change, 

the plant dynamic behaviours will also change because of process nonlinearity. The 

degree of deviation of the perturbed dynamic from the nominal dynamic of the plant 

depends on the magnitude and direction of input changes, and also the severity of 

process nonlinearity.  

With regard to this type of uncertainty, the question becomes how to measure or 

quantify the difference in dynamic behaviour between the nominal level and the 

perturbed levels? Answering this question is important in order to properly design the 

controller (i.e. to make an optimal trade-off between performance and robustness) for 

the pre-selected nominal operating conditions at P0 in anticipation for the worst-case 

disturbance scenario.  



102 
 

 
 

 

 

Figure 5-4: Schematic representation of the relationship between dynamic controllability (bopt) and 

uncertainties (v-gap): (a) perturbed operating levels due to inputs changes, (b) dynamically unfavourable 

design, and (c) dynamically favourable design 

In the proposed dynamic controllability methodology, the distance or difference 

i.e. �� � �<�.�, .�� between the nominal dynamic (model) behaviour at P0 and that of 

the perturbed model behaviour at P1 is measured using the concept of v-gap proposed by 

Vinnicombe (2001). 

Another question that needs to be addressed is how well the controller, which is 

designed based on the nominal model at P0 cope with the disturbances that cause the 

change in dynamic behaviour i.e. robustness issue. Obviously using the traditional PID 

controller, this robustness issue cannot be directly taken into account during its design. 

Consequently, to address the robustness issue systematically in the methodology, the 

robust-optimal (loop-shaping) controller proposed by McFarlane and Glover (1992) is 
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adopted. Based on the loop-shaping controller, the robustness-performance trade-off is 

indicated by the parameter bopt.  

Figure 5-4b and Figure 5-4c illustrate how the proposed methodology could be used 

to compare the different designs and determine the design with the most favourable 

dynamic operability. Ideally, it is desirable that all of the distances (v1, v2…) to be within 

the bopt of the loop-shaping controller designed based on the nominal model (see Figure 

5-4c). 

The plant design as illustrated by Figure 5-4b is not dynamically favourable because 

most of the perturbed distances are outside the bopt and hence, the stability cannot be 

guaranteed for this controller in the face of disturbances occurrence. One possible 

solution is to enlarge the stability margin by increasing the bopt but then this will lead to 

poor controller performance i.e. sluggish response. 

The third important question is how to capture the process nonlinearities? One 

possible solution is to measure a series of distances between the nominal level and the 

perturbed levels (i.e. v1, v2, v3…), then to plot the contour line as shown by Figure 5-4b 

or Figure 5-4c. Note that, (Helbig, Marquardt and Allgower 2000) proposed a method 

that can be used to measure the process nonlinearities in the opened-loop sense. 

However, the main limitation of the technique is that the formulation leads to a large, 

non-convex nonlinear optimization problem. Hence the technique not only requires 

prohibitive computational effort but also it does not guarantee a global convergence for 

each distance computed. 

As to alleviate the computational effort, the proposed methodology in this chapter 

adopts the concept of factorial design based on the manipulated variables (MVs) in order 

to capture the process nonlinearity using the closed-loop metric (v-gap). This leads to a 

reduced number of distances to be computed, for example, based on 3 MVs the number 

of distances to be computed is only 8 (i.e. v1, v2…v8). 

 

Remark 5-3: 

One of the key question in measuring the nonlinearity of a given operating point for the 

multivariable system is that, how do we generate points around the selected nominal 

operating level such that the result is an accurate assessment of the nonlinearity at that 
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operating level. Furthermore, how many points that is required to adequately calculate 

the nonlinearity at this nominal level? In the proposed methodology, the design of 

experiment concept can be adopted to generate the perturbed points around the 

specified nominal operating level. This avoids random selection of the perturbed points 

where if the number is too large it can lead to heavy computational requirement. Thus, 

in this manner the technique based on the design of experiment not only allows us to 

generate points in a structurally sound way, but also reduces the number of perturbed 

points needed for assessing the nonlinearity. Of course, once the perturbed points are 

obtained, we can conveniently assess the distances between these points and the nominal 

point using v-gap metric. The next question is can a controller be designed to minimize 

these distances which is a measure of nonlinearity? If we are comparing two designs A 

and B for example, obviously we would prefer to choose whichever design that leads to 

small distances e.g. if a controller can be designed such that the distances of  A are 

largely smaller than that of B, then we should choose A because smaller distances 

means better controllability property. It is important to note that, to optimally design a 

controller which minimizes the perturbed distances, we can adopt the multi-objective 

optimization. Of course, it can be argued that we can also adopt the single-objective 

optimization which is to minimize the worst case scenario (i.e. the largest distance). 

However, the drawback of this approach is that while this largest distance is minimized, 

it could lead to other perturbed distances to exceed the performance limit (see Figure 5-

4 for illustration). Therefore, it becomes clear why we choose to adopt multi-objective 

optimization because we intend to reduce as many as possible the perturbed distances to 

within the performance limit. Overall, the novelty of the proposed methodology lies in 

the integration of three concepts: v-gap metric to measure the distance between two 

points (i.e. model error), design of experiment to generate minimum number of 

perturbed points for nonlinearity assessment and multi-objective optimization is used to 

design a controller in order to ensure as many of these perturbed points are brought to 

be within the specified performance limit. 

□ 
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5.7 Algorithm of Controllability Analysis 

To perform the analysis of alternative designs, we apply the following procedure: 

Step 1: Given a set of plant designs and their input-output structures, and, for each 

design, select the nominal operating level. 

Step 2: Generate a number of input perturbations about the nominal operating 

conditions via factorial design i.e. in this case the factorial design is based on 

three inputs (i.e. R, r and Fo), which will lead to 8 perturbations (P1, P2,…P8).  

Table 5-3 and Table 5-4 show the coded factor level for factorial design of 

single-stage and two-stage of extractive fermentation processes, respectively. 

Step 3: Linearize the plant at the nominal operating level and at the perturbed 

operating levels. These result in 9 linearized models, a linear model at the 

nominal level (P0) and 8 linear models at the perturbed levels (P1-P8). 

Step 4: Apply scaling to the models based on the maximum anticipated changes in 

inputs and outputs. 

Step 5: Select weighting (We) structure e.g. PI with lead-lag structure, to accommodate 

the desired closed-loop performance specification. Simple structure with a 

minimum number of parameters is desirable since this would reduce the 

computational time. 

Step 6:  Perform the optimization to determine the optimal weight parameters of We 

that minimize the values of v-gap between the nominal model and perturbed 

models (or ( )eWiPeWP ,0δ ), subject to a specified closed-loop performance 

within the robust optimal control framework. 
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Table 5-3: Coded factor level and real values for factorial design (single-stage), So = 170 kg/m3 

Variable Level (-1) Nominal (0) Level (+1) � (-) 0.24 0.3 0.36 � (-) 0.344 0.43 0.516 

Fo (m
3/hr) 80 100 120 

 

 

Table 5-4: Coded factor level and real values for factorial design (two-stage), So = 130 kg/m3 

Variable Level (-1) Nominal (0) Level (+1) � (-) 0.2 0.25 0.3 � (-) 0.24 0.3 0.36 

Fo (m
3/hr) 80 100 120 
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5.8 Controllability Analysis – Accommodation of Closed-Loop 

Performance  

To accommodate the desired closed-loop performance in the controllability analysis, the 

following decentralized input weight is used: 

W� � �w�� 0 00 w%% 00 0 w  ¡  5-42 

Note that in the following case study, we select the manipulated (UMV) and 

controlled variables (YCV) as: 

x¢; � £�J8� ¤,  3D; � £
���	� ¤ 

 

For the two-stage design the output variables to be controlled are that of the second 

bioreactor i.e. controlled variables are (��%, �	%, �% ). Some guidelines regarding the 

selection of the weighting structure can be found from (Samyudia and Lee 2004). Let us 

take the weight to have the following form of PI lead-lag structure: 

�&& � �¥&&� � ¦&&� ���&&� � 1�⁄ ; F � 1,2,3  5-43 

Let the vectors of the weighted parameters be   * � l¥�� ¥%% ¥  m2,  § � l��� �%% �  m2 and  ¨ �  l¦�� ¦%% ¦  m2. Then, to find the optimal parameters of 

the weights minimizing the values of v-gap (Vinnicombe 2001) between the weighted 

nominal model 
eoWP and that of the perturbed models

eiWP , we can use the multi-

objective optimization as given by: 

(P-5.2) 

q©ª«,¬,­qrs®¯ ����*, ¨, §��,   °A� 9 � 1, 2, …R 

Subject to the robust optimal performance: 

bL y b´µ¶ y bU 5-44 
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The performance constraints of Lb and Ub  are positive scalar values between 0 and 

1. In this study, we choose these values to be 0.3 and 0.5 for bL and bU, respectively, 

which are reasonable target of closed-loop performance.  

In problem P-5.2, n is equal to the number of perturbed operating levels plus the 

nominal operating level. For example, if 3 inputs are used and based on factorial design, 

there are 8 perturbed operating levels. Thus n = 8 + 1 = 9. Note that, to solve the 

problem P-5.2, multi-objective optimization technique is required. Here, the problem is 

solved using Matlab optimization toolbox. 

Note that, the v-gap between the weighted nominal model P0We and that of the 

perturbed model P1We is given by: 

���*, ¨, §� �  �<�.� ¹̧, .� ¹̧�  5-45 

Where i = 1, 2…8 corresponding to the number of perturbed operating levels. 

Also note that the value of �J$º   indicates the achievable performance and 

robustness of the feedback controller. The smaller this value, the faster the closed-loop 

response would be. But, if it is too small the closed-loop system becomes less robust to 

uncertainty. For a good compromise between performance and robustness, this value is 

normally chosen to be around 0.3. The optimization based on the problem P.5-2 is 

nonlinear. So, its convergence to a global solution cannot be guaranteed. In addition, 

there is no unique set of values of eW  that actually minimizes the worst v-gap and at the 

same time fulfils the specified performance
optb . 

5.9 Results and Discussion 

Figure 5-5 and Figure 5-6 show the step responses (open-loop case) of the ethanol 

concentration (Et) to the fresh substrate flowrate Fo at different operating levels based on 

the linearized models. The response at P1 in the single-stage design indicates large 

difference from that at the nominal point P0. This is expected from the analysis 

presented in Table 5-5, which shows that the v-gap (i.e. measure of model error) 

between P0 and P1 is 1.0 (maximum). Hence, this confirms a large difference (or error) 
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between the nominal and perturbed models i.e. strongly nonlinear behaviour in the P1 

direction. 

However, there is no clear-cut relation between open-loop responses and v-gap 

values i.e. v-gap value could be small (indicate close similarity between nominal and 

perturbed models) but their open-loop responses could be very different. For example, 

Table 5-6 shows that the v-gap between P0 and P1 (0.78) is larger than that between P0 

and P3 (0.385) and yet, open-loop responses of P1 and P0 looks more comparable than 

that of P3 and P0 as shown in Figure 5-6. Table 5-5 and Table 5-6 indicate the v-gap 

values of the eight perturbed models from the nominal model for the single-stage and 

two-stage designs, respectively.  

Note that, the case of not weighted meaning that no performance specification is 

imposed to the process. In this case, the single-stage design has 3 perturbed operating 

points with v-gaps less than 0.3, while all v-gap values of the two-stage design are above 

0.3. Hence, the two-stage design exhibits stronger nonlinearity behaviour, which 

presents more difficulties to process control than the single-stage design. But, it would 

only become clear to what extent this difference affects the dynamic controllability once 

the result of optimization based on problem P-5.2 is obtained.  

Since the values of v-gap could be either enlarged or narrowed depending upon the 

chosen values of input weights (We), it is desirable to find the values that actually 

minimize the worst v-gap of the weighted plant. Since the values of We would affect the 

performance and robustness of the optimal controller designed, it is important that this 

dynamic performance must be within the specification (5-43) i.e. optb  between 0.3 and 

0.5. 

The optimal weights, which minimize the v-gap between nominal model and 

perturbed models of the single-stage and two-stage designs, are given by Eq. 5-45 and 

Eq. 5-46 respectively. In Table 5-5 and Table 5-6, the v-gap analysis results of both 

designs under the optimal weights are presented. Also note that as shown in Table 5-6, 

the closed-loop performances under the optimal weights 
optb  for both designs are almost 

similar (0.3018 and 0.3143) implying that their closed-loop performances are 

comparable at their respective nominal operating levels. 
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From Table 5-5, notice that under the optimal controller, the worst distance is 

unaltered but some distances are reduced i.e. P3 and P5 while other distances increase. 

For the single-stage design, there are 3 of the perturbed points which are guaranteed (v-

gap values within bopt) to be stabilized by the optimal controller i.e. P3, P4 and P6. From 

Table 5-6, notice that none of the v-gap values under the optimal controller lies within 

the specified bopt for the two-stage design. Therefore, this indicates that the two-stage 

design has stronger nonlinearity behaviour than the single-stage design. Thus from the 

linear control perspective, single-stage design has better controllability property than the 

two-stage design. 
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Figure 5-5: Open loop ethanol concentration (single-stage) subject to unit step change in Fo 

 

Figure 5-6: Open-loop ethanol concentration (two-stage design) a subject a unit step change in FO 
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Table 5-5: The v-gap for the single-stage design 

Operating Level Not Weighted Weighted 

P0 0 0 
P1 1.000 1.000 
P2 0.995 1.000 
P3 0.357 0.270 
P4 0.222 0.229 
P5 0.498 0.470 
P6 0.194 0.207 
P7 0.936 0.940 
P8 0.662 0.688 

 

Table 5-6: The v-gap for the two-stage design 

Operating Level Not Weighted Weighted 

P0 0 0 
P1 0.678 1.000 
P2 0.337 0.917 
P3 0.385 0.804 

P4 0.703 0.350 
P5 0.325 0.584 
P6 0.804 0.611 
P7 0.891 0.719 
P 8 0.962 0.852 

 

Table 5-7: Plant optimal performance »¼[½ 
optb

optb  for single-stage design optb  for two-stage design 

Not Weighted  Weighted Not Weighted Weighted 

0.7120 0.3018 0.6745 0.3143 
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For the single-stage design an optimal robust controller can be designed to stabilize 

the three perturbed operating points with the v-gap less than that of �J$º   (P3, P4 and 

P6). As for the two-stage design, all the values of v-gap are above that of optb = 0.3143. 

Hence this implies that it is more difficult to design a controller (based on nominal 

operating level) that is guaranteed to stabilize any of the perturbed operating conditions, 

or if any the closed-loop performance is probably not guaranteed to acceptable. 

 

The optimal weight for the single-stage design: 

¹̧,� � 
¾¿¿
¿ÀkÁ.ÂÂ+k�.�Â+��Â.�Ã+Ä�� 0 00 Å. �+Ä%. �+���.�Ã+Ä�� 00 0 k�Æ.Å%+kÇ.Æ�+�%�.Å +Ä�� ÈÉÉ

ÉÊ
  5-46 

 

And the optimal weight for the two-stage design: 

¹̧,% � ¾¿¿
¿Àk��.ÇÇ+k��. Ç+�%%.ÃÁ+Ä�� 0 00 �.�ÁÃ+k�. Æ+�%Â.ÃÆ+Ä�� 00 0 k� .Á+k�.ÃÅ+�Ç.Â+Ä�� ÈÉÉ

ÉÊ
  5-47 

 

To confirm this analysis, we perform a number of closed-loop simulations for both 

designs. Figure 5-7 shows the closed-loop performance (ethanol concentration) of the 

single-stage design at different perturbed operating points (P1, P3 and P4) based on 

linearized models. It can be seen that the optimal controller designed at the nominal 

operating point is not stable at the perturbed operating point P1. This is expected 

because the v-gap between the nominal and this perturbed levels  ��.� ¹̧, .� ¹̧� =1.0, 

which is much larger than that of  �J$º � 0.3018. 

But, the controller is able to perform well (stable) at perturbed operating points P3 

and P4 since at these levels the v-gaps (0.27 and 0.229 respectively) are smaller than 

bopt. Also as expected, the performances at these operating points (P3 and P4) are 

comparable to that of the nominal one. 
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Moreover, Figure 5-8 demonstrates the closed-loop performance for the two-stage 

design at the different perturbed operating points (P1, P3 and P4). Similar to the single-

stage case, the controller is unable to stabilize the P1 level because the v-gap value of 

this operating point (as shown in Table 5-6 is much larger than bopt value of 0.3143. The 

controller designed at the nominal level is able to stabilize the other perturbed levels P3 

and P4. However, the performance is as good as compared to the performance at the 

nominal operating point i.e. very sluggish.  

Furthermore, by comparing Figure 5-7 and Figure 5-8 it can be seen that the single-

stage design is more responsive than the two-stage i.e. shorter settling times when 

operating at P3 and P4. 

Figure 5-9 shows the simulation result for the setpoint tracking (unit step change in 

ethanol concentration) based on the actual nonlinear model for the single-stage design. 

Interestingly, for the single-stage design, the controller designed at the nominal level is 

only unstable at P1 and P2 i.e. the controller can stabilize 6 other perturbed operating 

levels. 

Figure 5-10 indicate the responses for the setpoint tracking of the two-stage design 

based on the actual nonlinear model. For the first 150 hrs (simulation time) most of the 

perturbed responses are stable and comparable with the response at P0. But many of the 

responses are unstable (exhibit slow drift) after 150 hrs where in fact the controller can 

stabilize only 4 perturbed levels i.e. P3, P4, P6 and P7. This is not surprising since the 

v-gap values of two-stage design are all beyond the value of the specified bopt. 
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Figure 5-7: Setpoint tracking (ethanol) of single-stage under optimal feedback controller based on 

linearized models, optb = 0.3018 

 

Figure 5-8: Setpoint tracking (ethanol) of two-stage under optimal feedback controller based on the 

linearized models, optb = 0.3143 
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Figure 5-9: Setpoint tracking (ethanol) of single-stage based on nonlinear model 

 

Figure 5-10: Setpoint tracking (ethanol) for two-stage design based on nonlinear model 
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5.10 Summary 

Nonlinear modeling of a case study process called the two-stage continuous extractive 

(TSCE) alcoholic fermentation system is developed in this chapter. Then optimization 

based on the response surface methodology is performed to obtain the operating 

conditions, which give the optimal trade-off between yield and productivity of ethanol. 

It is found that the optimal trade-off values between yield and productivity for two-stage 

design are 82 % and 21 kg/m3.hr respectively. Hence, the two-stage and single-stage 

designs exhibit comparable steady-state performance in term of the optimal trade-off 

values between yield and productivity. However, two-stage design requires significantly 

smaller total bioreactor volume than that of single-stage design – two-stage design 

shows potential economic benefit. 

Additionally, in this chapter a new framework for the dynamic controllability 

analysis which integrates the concepts of control relevant metric (v-gap), factorial design 

of experiment and multi-objective optimization is developed. While v-gap is used to 

quantify the nonlinearity or distance between the nominal (operating level) model and 

perturbed (operating level) model, the factorial design of experiment is used to generate 

the minimum number of perturbed operating levels required. For each perturbed 

operating level, a linearized model is obtained, and the distance between this perturbed 

model and the nominal model is quantified via v-gap metric. Then the weight values 

(We) are optimized in such a way to minimize the distances (not just the worst distance) 

– i.e. application of multi-objective optimization formulation. 

The new dynamic controllability methodology is then used to analyze the dynamic 

controllability of the two-stage and single-stage designs. Result of the dynamic 

controllability analysis shows that, the two-stage design exhibits stronger nonlinearity 

than that of the single-stage design. Therefore, the analysis suggests that the two-stage 

design is more difficult to control than the single-stage design. However, it is important 

to note that this analysis is mainly from the controller algorithm point of view. It does 

not consider how the choice of the controlled variables will affect the process 

controllability. In other words, if we use similar controlled variables and manipulated 

variables and also adopt similar controller algorithm, then it would be easier to control 

the single-stage design than the two-stage design. 
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6 BASIC PARTIAL CONTROL DESIGN FOR TSCE 

ALCOHOLIC FERMENTATION SYSTEM 

6.1 Introduction 

It is desirable to have a simple and practical control structure design for the chemical 

and bio-chemical processes. In this regard, partial control philosophy can serve as a 

guiding principle for the engineers to design a simple control strategy, which only 

requires minimum number of sensors. However, as mentioned previously in Chapter 2 

the key drawback to adopting partial control idea rests on its heavy reliance on process 

knowledge and engineering experience. In Chapter 3, we have described a new 

framework for implementing partial control idea which makes use of the concept of 

Principal Component Analysis (PCA) to identify the dominant variables.  

Consequently, a methodology of complete partial control design has been developed 

and presented in Chapter 4. Therefore, in this chapter, we will demonstrate the use of the 

key results developed in Chapter 3 (and part of Chapter 4) on the design of basic partial 

control strategy for the TSCE alcoholic fermentation system, which has been described 

previously in Chapter 5. The complete design of partial control strategy based on the 

methodology described in Chapter 4 will be explored in the next Chapter 7. 

Note that, the result of the basic partial control design for the TSCE alcoholic 

fermentation system has been published in Journal of Chemical Product and Process 

Modeling (Nandong, Samyudia and Tade 2010). 

6.2 Basic Partial Control Structure Design 

6.2.1 Step 1- Performance Measures Specification 

Three implicit performance measures are identified as: (1) ethanol yield (�����), (2) 

substrate conversion (���	), (3) and ethanol productivity (
���). The overall control 



119 
 

 
 

objective is to maintain �����, ���	 and 
��� around their optimal values, which are 

81%, 90% and 21 kg/m3.hr (i.e. optimal results from Chapter 5) respectively, such that, 

the variations or losses in performance measures in the face of disturbance occurrence 

are acceptable. Let the maximum acceptable variations in performance measures are: 

ΔΦ��� � �1.0%1.0%1.0%�   6-1 
Where: 

Φ � �������� �  ���������	
����  6-2 

 

6.2.2 Step 2- Design of Experiment – Data Generation 

The inputs selected for the factorial design of experiment are (1) fresh substrate 

flowrate  ��, (2) inlet substrate concentration   �, (3) cell recycle ratio   !, and (4) flash 

liquid recycle ratio �. Table 6-1 shows the coded and real values used for the factorial 

design of experiment. These inputs are chosen on the basis of their known strong 

influence on the system (i.e. based on the process knowledge). In the absence of prior 

knowledge, it is helpful in selecting which inputs are to be used in design of experiment 

by conducting a preliminary dynamic simulation study (open-loop) on the system of 

interest. The nominal values of  ��,   �, ! and �  are selected as 100m3/hr, 120kg/m3, 

0.225 and 0.27, respectively. These values correspond to the optimal trade-off between  ����� and  
��� (Nandong, Samyudia and Tadé 2006).  

The magnitude of input perturbation applied is "20 % of their nominal values. 

Based on the factorial design of experiment, there is 24 = 16 number of experimental 

runs i.e. this corresponds to 16 perturbed operating levels. In total there are 17 runs 

including the one at the nominal operating level. Note that, it is important that the size of 

the input perturbation to be large enough as to result in some outliers in the plant data. 

To get a good idea of how large the input size should be, one can perform a preliminary 

dynamic simulation study on the process of interest. 
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Table 6-1: Real and coded values used for factorial design 

Input Level (-1) Level (0) Level (+1) $% (m3/hr) 80 100 120 

&% (kg/m3) 96 120 144 

' (-) 0.180 0.225 0.270 

( (-) 0.216 0.270 0.324 

 

Table 6-2: Variables and performance measures forming dataset ) 

Output Variables Input Variables 

Bioreactor substrate concentration: &*, &+ Fresh substrate flowrate: $% 

Bioreactor ethanol concentration: ,-*, ,-+ Fresh substrate concentration: &% 

Bioreactor viable cell concentration: ).*, ).+ Cell recycling stream: ' 

Bioreactor temperature: /*, /+ Flash recycling stream: ( 

Bioreactor liquid level: 0*, 0+  

Performance Measures Process Parameters 

Ethanol Yield: 12345 Rate of growth: (6* , (6+ 

Substrate Conversion: 7%8. Rate of substrate consumption: (9*, (9+ 

Productivity: :(%5 Rate of ethanol formation: (;*, (;+ 
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Remark 6.1: 

The reason to include the input variables in the dataset X in the identification of 

dominant variables is that to enable us to analyze whether the input variables have 

strong impact on the performance measure (see Chapter 3, significances of Closeness 

Index). If the input ui has a strong impact on the performance measure (i.e. it is a 

dominant variable), then it should not be used as a manipulated variable for controlling 

yj. However, if input ui and output variable yj are correlated and both are dominant 

variables for the performance measure of interest, and then in this case ui can be used 

as the manipulated variable for controlling the yj. 

□ 

6.2.3 Step 3- Identification of Dominant Variables 

Successive dataset reductions (as described in Chapter 3, Section 3.4.2) are performed 

using PCA on the dataset  < , which consists of 23 elements (4 inputs, 10 outputs, 6 

process parameters and 3 performance measures) and 17 observations. Thus, the size of 

the dataset < is 17 by 23 i.e. there are 17 observations and 23 variables including 

performance measures and process parameters. Table 6-2 shows the variables, 

parameters and performance measures that form the dataset <. 

 

Remark 6.2: 

Process parameters such as the rate of growth can be considered in the analysis of 

dominant variables assuming that they are measurable e.g. by mean of soft-sensor. 

Otherwise, do not include the process parameters in the dataset X. Here it is assumed 

that the rate of growth is measurable. 

□ 

With regard to the process parameter, it is important to distinguish this term from 

the equipment design parameters, such as reactor volume, heat exchanger surface area, 

etc. In this thesis, the term “process parameter” refers to model parameter which is a 

function of process variables e.g. growth rate which depends on substrate concentration 

and temperature. On the other hand, the equipment parameter is normally not a function 

of process variables i.e. reactor volume will not change with reactor temperature. 
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Figure 6-1 shows the 2D-plot of PCA for the original dataset  <. Note that, the sum 

of variances of PC-1 and PC-2 is more than 70%, thus implies that the 2D-plot of PCA 

is sufficient i.e. no need for the 3D-plot. From the enlarged plot (not shown here), one 

can see that all of the 3 performance measures are in the sub-dataset  <�. Upon 

inspection, there are 9 variables in  <� which may have some correlations with the 

performance measures, which are   � , <	�, <	�,  �,  �, �=�, �>�, �?� and !. 

Also, there are few outliers in the 3rd quadrant, thus showing that X1 fulfils all of the 

3 dominant variable (DV) criteria. In other words, the dominant variables could be 

among these 9 variables. Now, we apply another PCA on the sub-dataset X1 in order to 

further reduce the number of variables. 

Figure 6-2 shows the PCA plot for  <� sub-dataset. From the plot, one can now 

identify that all of the performance measures are in <�� sub-dataset. The plot indicates 

that ����� and ���	 are positively correlated with each other, but are negatively 

correlated with the 
���. This is consistent with the previous report in (Nandong et al. 

2006, Costa et al. 2001) where  ����� and  ���	 are having the opposite trend to that 

of 
���. Based on the enlarged plot (not shown), the variables that are in  <�� are R, rx2, 

S1 and S2. Thus, we have reduced the number of variables from 9 to 4 variables. 

Notice that, the sum of variances of PC-1 and PC-2 is 85% which is equal to the 

threshold value  @ABCA. Thus, this shows that the critical dominant variable condition has 

been reached, and we can stop at this second level of dataset reduction. Furthermore, 

notice that there is an outlier (at observation #6) in the sub-dataset, thus all DV criteria 

are fulfilled. 

Because all DV criteria are completely fulfilled up to this dataset reduction level, 

hence it can be concluded that these 4 variables are the dominant variables for �����, ���	 and 
���. In other words, if the variables are kept constant, the steady-state 

variations or offsets of these performance measures will be guaranteed to be small in the 

face of external disturbance occurrence. 
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Figure 6-1: PCA plot for dataset X: sum of variances PC1 + PC2 = 80% 
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Figure 6-2: PCA plot for  <� sub-dataset: variances of PC1 + PC2 = 85% 

Thus, it can be concluded that the mapping from the set of performance measures 

onto the set of dominant variables results in: 

D��������	
���E F G  � ��?�! H 
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6.2.4 Step 4: Control Structure Design Decisions 

One of the key tasks in Step 4 is to select which dominant variables to be controlled i.e. 

as the primary controlled variables. To facilitate the accomplishment of this task, we can 

adopt the concept of closeness index described in Chapter 3 (Section 3.4.3). Here, we 

will definitely control the strongest dominant variable i.e. the one with the smallest value 

of closeness index. 

Step 4.1: Selection of Primary Controlled Variables 

Note that, we focus on the 3 output variables in the dominant variable set where the 

input variable (R) is left as a possible manipulated variable. Now let: 

�I�I�I�� � �  � ��?��  6-3 

The value of the closeness index for each dominant variable in the direction of each 

performance measure is shown in Table 6-3. Notice that, the closeness index of S2 for 

each performance measure is less than 0.09 i.e. J�K L 0.09 for j = 1, 2, 3. All the values 

of closeness index of S2 are the smallest as compared to the other dominant variables, 

with the exception of closeness index of rx2 on Prod (J�� � 0.051). This indicates that 

S2 is the strongest dominant variable which strongly influences all performance 

measures – it fulfils the first Primary Controlled Variable criteria i.e. PCV criteria 1 

(Chapter 4, Section 4.4.4). However, in particular the influence of rx2 is stronger than 

the influence of S2 on the Prod i.e. J�� L J��. 

Consequently, in this case we decide to control rx2 as well as S2 where the former is 

expected to have more tight (indirect) control on Prod, and the latter to have tight 

control on Yield and Conv. Note that, the selection of S2 as one of the primary controlled 

variable is justified because it fulfils the PCV criteria 1 to 3 (see Chapter 4, Section 

4.4.4). Meanwhile, the selection of rx2 as another controlled variable is considered on 

the basis that this will lead to more tight control on Prod. We will further investigate 

whether this is truly necessary in the next Chapter 8. 
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Table 6-3: Values of closeness index 

Dominant variable Yield (O*) Conv (O+P Prod (OQP 
R* (S2) J��= 0.002 J�� = 0.019 J��= 0.083 R+ (S1) J�� = 0.163 J�� = 0.193 J�� = 0.084 RQ (rx2) J�� = 0.167 J�� = 0.194 J�� = 0.051 

 

 

Based on the analysis via closeness index, the set of selected primary controlled 

variables (�ST,U) is given as follows: 

 

�ST,U � V �, �?�W  6-4 

 

Remark 6.3: 

Notice that, if S1 is controlled rather than S2, then we can achieve faster dynamic 

response on the assumption that the point of entry for the disturbance is closer to S1 than 

to S2 i.e. disturbance enter through bioreactor 1. But this assumption is not necessarily 

valid for the case with recycle system – i.e. two recycle-loops as in the case study 

process. In practise, there could be several sources of disturbances which enter from 

various points. In a serial system with recycle structure, most of the disturbance effect 

will end up in the last system. If the control is imposed on an upstream system, then this 

only absorbs the effect of disturbance in that system only. However, the effect of 

disturbance on the down stream system will only be partially absorbed. The presence of 

recycle structure will eventually propagate this unabsorbed effect back to the upstream 

system. Thus, it would be better to control the downstream system because this leads to 

the removal of most disturbances effect. 

□ 

Step 4.2: Selection of Manipulated Variables 

The next task is to select the manipulated variables UMV from the set of available input 

variables U. Note that, in this study the selection of manipulated variables  is not as 

difficult as the selection of controlled variables. The reason is that, we have only a small 
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number of input variables as compared to output variables i.e. 6 inputs and 16 outputs. 

Therefore, in this case study we simply select the manipulated variables based on 

process knowledge obtained via preliminary simulation study and literature i.e. rigorous 

technique is not applied. However, in practice it is advisable to employ some of the 

quantitative tools such as the Morari Resiliency Index (MRI) to help in the selection of 

manipulated variables especially if the number of input variables is large. 

In this case study, there are six potential manipulated variables as: 

X � V��, ��, �, !, �� , �YW  6-5 
Owing to its strong influence on the selected primary controlled variables (Step 

4.1), the cell recycle ratio (R) is selected as one of the manipulated variables. Another 

input chosen as manipulated variable is Fo due to its direct influence on the substrate 

concentration. Thus, the set of manipulated variables (UMV) is given by: 

XZT � V!,  ��W  6-6 

 

Step 4.3: Determination of Controller Pairings  

Using the RGA analysis, the favourable pairings which minimize the control-loop 

interaction are found to be R-S2 and Fo-rx2. Next, linear PI controllers are designed and 

used for both control loops. In this study, the PI parameter tuning is not optimized. We 

adopt simple tuning procedure based on the Ziegler-Nichols for each loop followed by 

detuning to reduce the controller aggressiveness. The performance of the multi-loop 

SISO control system is tested against a step change in the fresh substrate concentration 

(So) with magnitude equals to 30 kg/m3 i.e. 25% of the nominal value of disturbance. 

6.3 Dynamic Simulation of Basic Partial Control Strategy 

Figure 6-3 and Figure 6-4 show the closed-loop responses of S1, S2 and rx2 when subject 

to step change in So. Notice that, the responses of S1 and S2 exhibit similar shape 

implying closed correlation between them i.e. as anticipated from the previous PCA 

analysis.  Although the disturbance magnitude is severe, the system remains stable. But, 

the responses of controlled variables to step down in So is significantly slower than that 
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to step up in So. This shows that the system is highly nonlinear - recall the result of 

dynamic controllability analysis in Chapter 5. 

Furthermore, notice that the responses of L1 and L2 exhibit similar trend which show 

that these two variables are also dynamically coupled (as predicted by the PCA-based 

analysis previously). Figure 6-4 displays that the magnitude of peak values for L1 and L2 

are quite large i.e. about ±1.0 m in bioreactor 1. This is not desirable because it means 

that we cannot operate close to the maximum bioreactor volume. It is usually desirable 

to operate close to the maximum volume of reactor in order to achieve improved 

economic performance. 

Figure 6-5 shows the closed-loop responses of Yield, Conv and Prod subject to the 

So step changes. To evaluate the effectiveness of this partial control structure, one can 

looks at the steady-state offsets in Yield, Conv and Prod – i.e. if indeed our choice of 

controlled variables is the dominant variables, then the offsets must be small. 

The steady-state offsets in Yield, Conv and Prod in this case is less than 0.1%, thus 

showing the effectiveness of the partial control strategy in term of reducing the steady-

state offsets. Interestingly, the variations in the performance measures are much smaller 

than the specified value which is 1.0%. 

The small offsets in performance measures (which are implicit functions of process 

variables) confirm that the selected controlled variables are indeed having strong 

correlation (influence) with them. In turn, this result confirms that they are the dominant 

variables for the performance measures – validates the application of the PCA-based 

technique. 
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Figure 6-3: Closed-loop responses to step change in So by "30 kg/m3 for S2, rx2, R, Fo, L1 and L2 
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Figure 6-4: Closed-loop responses to step change in So by "30 kg/m3 for T1, T2, Xv1, Xv2, Et1 and Et2 
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Figure 6-5: Yield, Conv and Prod responses to step change in So: "30 kg/m3 
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Table 6-4 shows the peak values of temperatures and ethanol concentrations during 

their transient responses. It is important to note the peak values of these variables 

because the values that are too high can damage the yeast cells, hence leading to slow 

decay of productivity and yield. In this case, it is desirable to keep the temperature 

below 33oC and the ethanol concentration at around 40kg/m3 i.e. industrial practice as 

reported in Costa et al (2001). Table 6-4 clearly shows that the peak value of T2 already 

violates the maximum threshold value of 33oC. The other variables seem to have 

reasonable peak values i.e. below threshold for T1 Et1 and quite close to threshold value 

for Et2. In this case, the most critical variable is T2 (temperature in bioreactor 2) because 

when the temperature exceeds 33oC, the yeast cells activity start to go down drastically – 

leading to reduced yield and productivity. 

Notice that, the peak excursion in ethanol concentration Et2 is about 10% of the 

industrial practice. In this case, this is quite acceptable because the threshold 

concentration of ethanol for S. cerevisiae beyond which growth rate is completely 

retarded is about 12% w/v. Thus, in this case the concentration of ethanol 40 kg/m3 

(approximately 4% w/v) is still far from this threshold value. 

It should be remembered that, the dynamic responses of Yield, Conv and Prod tend 

to follow the dynamic responses of S2 and rx2, which in other words tend to follow their 

corresponding dominant variables responses (Figure 6-3 and Figure 6-5). 

In contrast, large variations in L1, L2, Et1, Et2, Xv1 and Xv2 during the transient 

responses seem to have very little effects on the transient responses of performance 

measures. This is not surprising because these variables are not the dominant variables 

for the performance measures.   
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Table 6-4: Peak values of output (constraint) variables during their transient responses 

 T1 (oC) T2 (oC) Et1 (kg/m3) Et2 (kg/m3) 

Peak 31.5 33.7 33.7 44.7 

 

There are few weaknesses of the current basic partial control strategy which still 

need to be addressed in real practice as: 

1) Long recovery of performance measures especially the productivity (Prod) i.e. 

probably due to sluggish response of primary controlled variable, rx2. 

2) Constraint violation by T2 during transient response can cause damage to yeast cells 

(see Table 6-4) i.e. T2 must be below 33oC. 

3) Unacceptably large variations or fluctuations in L1 and L2 during transient responses, 

which can lead to inefficient use of reactor volume i.e. prevents the operation of 

bioreactors close to their maximum values. 

6.4 Discussion on Basic Partial Control Strategy 

It is important to note that the partial control strategy developed for the extractive 

fermentation system in this case study is only a basic partial control design. Thus, its 

performance can be further improved by applying some of the PID enhancement 

techniques such as, cascade and ratio control strategies. Furthermore, to make the partial 

control design fully functional for large-scale plant, we generally need to add inventory 

control as well e.g. level control.  

Overall, although the partial control strategy adopted in this case study is very 

simple (i.e. we only control 2 out of 16 output variables), its steady-state performance is 

more than acceptable because the variation in performance measures is much less than 

the specified maximum value. Additionally, it is robust in the face of a large change in 

the inlet substrate concentration So – i.e. it remains stable. 

 

  



 

 

Figure 6-6: Illustration of two different 

number of dominant variables

 

Figure 6-6 illustrates two different plant design scenarios corresponding to low and 

high values of @ABCA. Low value of 

variables (Figure 6-6

contributions of the variables to 

of  @ABCA  normally leads to small number of dominan

the variables has very large contribution relative to other non

For partial control, it is desirable to have small number of dominant variables 

because this leads to less controlled variables, and 

strategy. However, it is important to bear in mind that, the number of dominant variables 

is strongly related to the flowsheet design 

variables and distribution of their con

Another important point to note is that, the algorithm for implementing the PCA

based technique proposed so far is based on a system which is open

is not directly applicable to 

unstable processes. However, the PCA

systems but the algorithm for implementing the technique need to be modified. 

 

 

: Illustration of two different plant scenarios: (a) large number of dominant variables, (b) sma

number of dominant variables 

illustrates two different plant design scenarios corresponding to low and 

. Low value of  @ABCA  generally implies a large number of dominant 

6a) for a given performance measure �[, 

contributions of the variables to �[ are more widely distributed. In contrast, high value 

normally leads to small number of dominant variables (Figure 6

the variables has very large contribution relative to other non-dominant variables. 

For partial control, it is desirable to have small number of dominant variables 

because this leads to less controlled variables, and in turn yields less complex control 

strategy. However, it is important to bear in mind that, the number of dominant variables 

is strongly related to the flowsheet design – i.e. different design has different dominant 

variables and distribution of their contributions to a given performance measure.

Another important point to note is that, the algorithm for implementing the PCA

based technique proposed so far is based on a system which is open

is not directly applicable to non-equilibrium systems such as batch and open
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6.5 Summary 

In this chapter, we have demonstrated the use the so-called PCA-based technique within 

the context of new theoretical framework of partial control developed in Chapter 3. The 

PCA-based technique (i.e. data-oriented approach) is used to identify the dominant 

variables corresponding to 3 overall performance measures (i.e. Yield, Prod and Conv) 

for the TSCE alcoholic fermentation system – case study. All of these performance 

measures are implicit functions of process variables, and as such the dominant variables 

cannot be straightforwardly identified based on process experience and knowledge i.e. 

without any systematic tool it is difficult to identify the dominant variables. 

Application of the PCA-based technique shows that there are 4 dominant variables 

(S1, S2, rx2 and R) that correspond to the specified performance measures where 3 of 

them are output variables and 1 is input variable. Using the closeness index (CI) 

analysis, it is determined that S2 has the strongest impact on the performance measures, 

with the exception of its impact on Prod i.e. where rx2 has stronger influence on Prod 

than S2. Based on the CI analysis, S2 is adopted as one of the controlled variables for its 

tight influence on Yield and Conv, and rx2 is adopted as another controlled variable on 

the basis of its tight influence on Prod. 

Simulation study shows that the basic partial control strategy is able to achieve the 

steady-state performance where the variations in performance measures are less than the 

specified bound, which is 1% and where the actual variations are less than 0.1%. Thus, 

this confirms that the controlled variables (S2 and rx2) are indeed the dominant variables 

corresponding to the specified performance measures. In turn, this result validates the 

effectiveness of the PCA-based technique in the identification of dominant variables. 

However, during the transient phase, the bioreactor 2 temperature (T2) violates the 

maximum allowable limit which is 33oC. In practice, this is not desirable because 

temperature excursion above 33oC will dramatically reduce the yeast performance. 

Additionally, the fluctuations of liquid levels in both bioreactors are quite high, which 

means that we cannot operate close to the maximum bioreactor volume – hence, tends to 

cause lower economic performance. 

It is important to remember that the basic partial control strategy discussed in this 

chapter only accounts for the overall performance objectives, and not the other types of 
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control objectives, namely the inventory and constraint control objectives. Thus, 

although the strategy achieves the overall performance objectives, unfortunately the 

other control objectives are not met. Despite these limitations, the control strategy is 

robust enough against the large disturbance occurrence i.e. large change in So. In the 

next Chapter 7, we will address how to incorporate the inventory and constraint control 

objectives into the design of partial control strategy. 
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7 COMPLETE PARTIAL CONTROL DESIGN FOR 

TSCE ALCOHOLIC FERMENTATION SYSTEM 

7.1 Introduction 

In Chapter 6, we have demonstrated the application of PCA-based technique to basic 

partial control design for TSCE alcoholic fermentation process. Interestingly, the PCA-

based technique has been shown to be an effective tool in the identification of dominant 

variables which is otherwise, an intriguing task to perform if one relies solely on 

engineering experiences and process knowledge. The main reason for this complication 

is due to the highly interactive nature of the process variables. 

Recalling the basic partial control design in Chapter 6, one realizes that the basic 

partial control design is quite insufficient from the plantwide control perspective due to 

the absence of inventory control. Furthermore, in the basic partial control design the 

constraints that relate to the process have not been carefully addressed. In other words, 

the basic design only focuses on the overall plant performance measures which are the 

maintenance of optimal trade-off between yield and productivity. 

Although the basic partial control structure previously designed in Chapter 6 shows 

a good steady-state performance (i.e. very small variations in the key performance 

measures), its performance remains unsatisfactory because of: 

a) Large fluctuation of liquid levels in both bioreactors. 

b) High peak values of temperature and ethanol concentration in bioreactor 2. 

c) Slow recovery of the performance measures. 

Thus, further improvements are required in terms of: 

a) Faster recovery of the performance measures. 

b) Lower peak values of temperatures and ethanol concentrations in both bioreactors. 

c) Lower fluctuation of liquid levels. 

Addressing the last two objectives requires us to incorporate inventory and 

constraint control objectives into the basic partial control structure design. In this 

chapter, we will demonstrate how the complete methodology of partial control design 
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proposed in Chapter 4 can be applied to incorporating the inventory and constraint 

control objectives into the basic partial control design – known as the complete partial 

control design. Moreover, various strategies to enhance the dynamic performance of the 

complete partial control design will also be discussed in this chapter. Note that, part of 

this chapter is presented in DYCOPS 2010 (Nandong, Samyudia and Tade 2010). 

7.2 Partial Control – Plantwide Design 

7.2.1 Determination of Controlled Variables for Inventory Control 

Inventory control is one the most important (and basic) aspects in a plantwide control 

design. The basic aim of inventory control is to ensure that there is no material 

accumulation within the system. For the two-stage continuous extractive (TSCE) 

alcoholic fermentation system described in Chapter 5, the variables which are within the 

inventory control group are the holdup liquid levels in the two bioreactors i.e. L1 and L2. 

It is important to note that the holdup liquid levels in the vacuum-flash vessel and 

treatment tank are ignored on the basis that the dynamics of these two units are 

negligible as compared to the dynamics of the bioreactors. In other words, the liquid 

levels in the bioreactors are the main focus of inventory control. 

An important question, is it necessary to control the liquid levels (L1 and L2) in both 

bioreactors? If L1 and L2 are strongly coupled or interacted with each other, then 

probably it is sufficient to control only one of them. Therefore, to answer this question 

we can apply the PCA-based technique described in Chapter 3 in order to find out 

whether they are strongly coupled or not. 

Figure 7-1 shows the PCA plot for the sub-dataset X2 containing L1 and L2. Clearly, 

it can be seen from the figure that L1 and L2 are very closely correlated with each other 

(see quadrant 3). This suggests that it is only necessary to control either one of the liquid 

level in order to achieve the inventory control objective. In this case, we will evaluate 

two control structures namely CS1 which adopts L1 as controlled variable (CV) and CS2 

which uses L2 as CV for the inventory control i.e.: 

��������� 
������ ���
����  ��� �� �� ��� ��1�� �� �� ��� ��2
� 
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Figure 7-1: PCA plot for sub-dataset X2 

Remark 7.1: 

Note that, the decision to control either L1 or L2 and not both is due to the fact these two 

inventory variables are strongly correlated. It is important to bear in mind that this 

decision is made on the assumption that the key (or majority of disturbances) enter 

through the first bioreactor. On the other hand, if the key disturbance enters through the 

second bioreactor, then it is better to control L2 rather than L1 because this would lead 

to maximum disturbance rejection. Furthermore, if the outlet flows from the bioreactors 

are controlled by pumps (i.e. integrating process) rather than by valves (self-regulating 

process), then we must control both liquid levels. In this case study, both outlet flows are 

controlled by valves and the main disturbance (fresh substrate concentration So) enters 

through the first bioreactor. Thus control of only one of the variables is sufficient. 
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7.2.2 Determination of Controlled Variables for Constraint Control 

In order to determine the variables for constraint control, we need to adopt the process 

knowledge about the system i.e. there is no substitute to good process knowledge in the 

identification of process constraints. In this case study, we need to know what factors are 

limiting the performance of the yeast. Two important factors that need to be considered 

in the constraint control are (1) bioreactor temperature, and (2) ethanol concentration in 

the bioreactor. 

For the optimum yeast activity, the temperature should be within the range of 28oC 

to 33oC. The upper limit which is 33oC should not be violated otherwise, the yeast 

activity will be seriously degraded i.e. the growth and product formation rates will be 

seriously retarded. Thus, bioreactor temperatures (i.e. T1 and T2) should be considered in 

the constraint control. 

Another factor that needs to be addressed is the ethanol concentrations in the 

bioreactors. Based on industrial practice, the ethanol concentration in the last bioreactor 

(i.e. normally 4 bioreactors in series are used in industry) is maintained at about 40 

kg/m3. When the ethanol concentration is too high above 40 kg/m3, then the inhibitory 

effect of the ethanol becomes more serious, which in turn can seriously slow down the 

growth and product formation rates. Thus, the productivity and yield of ethanol are 

greatly reduced at a very high ethanol concentration near a threshold value ��,���. 

Obviously, from this perspective the concentrations of ethanol in both bioreactors should 

also be considered in the constraint control i.e.: 

�������
���  � 
����
��� ��!"����#�� $  33
&�

'�(���� 
��
������
�� $ ��,���
� 

Overall we have 4 candidates for the controlled variables in the constraint control, 

which are T1, T2, Et1 and Et2. Note that, we have only 6 potential manipulated variables, 

where 2 are already used in the primary control and 1 is used in the inventory control. 

Therefore, we are left with only 3 manipulated variables which mean that we cannot 

afford to control all of the 4 variables. As a result, we need to do evaluation in order to 

determine which of the candidates are to be controlled. Also, we need to know the 

sufficient number of controlled variables relating to the constraint control objectives. 
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Again we use the PCA-based analysis to find out how strong are the correlations 

among these 4 variables. Referring to Figure 7-1, we can see that T1, T2 and Et2 are 

strongly correlated with each other. Also, these three variables are correlated with L1 and 

L2 but to a lesser extent of course. This suggests that by controlling L1 or L2, this will 

indirectly control T1, T2, and Et2. However, since the correlation is not sufficiently strong 

between {L1, L2} and {T1, T2, Et2}, there is no guarantee that the variations in {T1, T2, 

Et2} will be acceptable. As a result, we need to control at least one of the candidate 

variables i.e. either T1 or T2 or Et2 in order to ensure the variations in {T1, T2, Et2} will 

be acceptable. 

Notice that from Figure 7-1, Et1 occupies quadrant 2 which means that it is not 

strongly correlated with T2. However, we can choose not to control Et1 on the basis that 

its nominal operating value is lower than that of Et2 i.e. 30.5 kg/m3 and 40.5 kg/m3, 

respectively. Consequently, this means that we can allow high variability in Et1 but not 

in Et2. 

Our analysis so far has suggested that we should choose T2 as a controlled variable 

to achieve the constraint control objectives for two reasons: 

1) T2 nominal operating value is larger than that of T1 i.e. 31oC and 28.8oC, 

respectively. Hence, if disturbance occurs, it is more likely that T2 will increase 

(overshoot) above 33oC than T1. 

2) It is easier and cheaper to measure the temperature than to measure the ethanol 

concentration (refer to criteria in Chapter 4, section 4.4.7.1). 

7.2.3 Assessing Inventory-Constraint Controlled Variables via IVV Index 

It is important to assess whether it is sufficient to control only two variables (L1 and T2) 

in order to meet both inventory and constraint control objectives. To understand the 

extent of interaction among the variables, we need to employ the analysis based on the 

variable-variable interaction index (Chapter 4).  

Now, let the inventory-constraint variables: 
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Then, the values of closeness index of each variable are combined to form the 

variable-variable interaction index (IVV) as follows: 
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)*
**
+5. 55 0.00 0.19 0.29 0.13
0.00
0.11
0.10
0.17

5. 55
0.11
0.10
0.17

0.19
5. 55
0.05
0.38

0.29
0.08
5. 55
0.49

0.13
0.16
0.08
5. 55/

00
01
   7-2 

Note that, the first row indicates the effect of L1 in the directions of the other 

variables i.e. >��,  >��,  >�,, >�-, >�.. Notice that the closeness index of a variable with 

respect to itself is always zero i.e. >�� 2 >�� 2 >,, 2 >-- 2 >.. 2 0. Also notice that 

the closeness index of L1 and L2 or vice versa is zero (>�� 2 >�� 2 0). Thus, this means 

that at steady-state L1 and L2 completely tract each other i.e. referred to as perfect 

variables interaction.  

Because of perfect variables interaction between L1 and L2, the values of their 

closeness index with other variables are also the same. Thus, from steady-state point of 

view, it does not matter whether we choose L1 or L2 as a controlled variable because 

their impacts on other variables are expected to be almost the same.  

Now, let compare the influences of T1 and T2 on the other variables by looking at 

the 3rd and 4th rows respectively. If we make a comparison based on the column values 

(i.e. column by column then, subsequently, row by row comparison), then obviously that 

the values in the 4th row are smaller (ignore the variable own closeness index i.e. 0 

value) than that in the 3rd row.  

What does this mean? This implies that T2 has more influence on the other variables 

than T1 has. Therefore, it is justified that T2 is chosen as the constraint controlled 

variable because not only it is the most critical constraint variable (from the heuristic 

analysis point of view) but also it has the most influence on other variables (i.e. values 

of its closeness index are small). 
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Next question, is it sufficient to control only T2? To answer this question let invoke 

the algorithm for analyzing the variable-variable interaction described previously in 

Chapter 4 (Section 4.4.7.2). Let the maximum threshold value of the closeness index be 

0.09 i.e. >��� 2 0.09.  

After selecting T2 as the controlled variable, let us check the maximum value in the 

4th row (i.e. corresponding to T2): 

 

�-,��� 2  maxBCD|DFG…I
J�44|-K 2 maxJ0.10, 0.10, 0.05, 0.0, 0.08K 2 0.10  

 

Since  �-,��� L >���, this means that we need another controlled variable. Upon 

inspection of the 4th row of IVV (Eq. 7-2), we notice that the values of closeness index of 

T2 with L1 and L2 are (largely) responsible for  �-,��� L >���. Thus, our target is to 

control either L1 or L2. As mentioned previously that there is no difference either we 

choose L1 or L2 from the steady-state point of view. However, it is more advantageous to 

control L1 than L2 because the former will lead to faster dynamic response. In the next 

dynamic simulation study, we will evaluate the effectiveness of controlling either L1 or 

L2. To complete the variable-variable interaction analysis above, let say we choose L1 as 

the next controlled variable. 

Now, we examine the maximum value of closeness index in the 1st and 4th rows. 

 

��-,��� 2 maxBGD,BMD|DFG…I
N minBQG|QFG,M

R�44|�,-� S, … minBIQ|QFG,M
R�44|�,-. ST 

2 maxJ0.0, 0.0, 0.05, 0.0, 0.08K 2 0.08 

 

Obviously, with L1 and T2 chosen as the controlled variables,  ��-,��� $ 0.09 hence, 

this indicates that it is sufficient to control only these two variables (out of five 

variables). Of course, the other uncontrolled variables will be indirectly controlled to 

within an acceptable range of variations by virtue of their closed interaction with these 

two controlled variables. 
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7.2.4 MIMO Controller Pairings and Tunings 

Two control structures (with 4x4 dimension) are selected with controlled variables as 

shown in Table 7.1. Both have 2 primary controlled variables to achieve the overall 

performance measures (as in Chapter 6), 1 variable to achieve inventory control and 1 

variable to achieve constraint control objectives. The key difference between the two 

control structures lies in the selection of controlled variable to achieve the inventory 

control objective i.e. while L1 is used in CS1 and L2 is used in CS2. 

The manipulated variables for both control structures are (1) fresh feed flowrate Fo, 

(2) vapor flowrate from the vacuum flash vessel Fv, (3) cell recycle ratio R, and (4) 

outlet flow from the first bioreactor F1. Here, the selection of manipulated variables 

from 6 potential inputs is done via process knowledge. No attempt to employ more 

rigorous tools such as Morari Resiliency Index is made in this study.  

The Bristol’s RGA analysis is adopted in order to determine the manipulated-

controlled variables pairings. The steady-state gains used to perform the RGA analysis 

are obtained from the transfer functions of the linearized plant model. Table 7.2 shows 

the RGA values for both control structures. Based on the RGA values, the controller 

pairings are as shown in Table 7-3. 

Figure 7-2 and Figure 7-3 show the schematics of control structure # 1 (CS1) and 

control structure #2 (CS2) for the TSCE alcoholic fermentation system. The main 

difference between CS1 and CS2 lies in the choice of controlled variable for inventory 

control. While the CS1 adopts L1 as controlled variable, CS2 adopts L2 as controlled 

variable to achieve inventory control objectives. However, both use similar manipulated 

variable which is the fresh substrate flow Fo. 
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Table 7-1: Two control structures of complete partial control design 

Control Structure Primary Controlled Variables Inventory Control Constraint Control 

CS1 S2 rx2 L1 T2 

CS2 S2 rx2 L2 T2 

 

Table 7-2: RGA values of CS#1 and CS#2 

 
CS1 

 
CS2 

Fo Fv R F1 Fo Fv R F1 

S2 4.67 -0.43 2.59 -5.82 S2 -0.88 0.30 2.3 -0.72 

rx2 -13.0 0.86 -1.68 14.8 rx2 0.79 -0.37 -1.24 1.82 

L1 8.00 -0.05 0.16 -7.11 L2 0.98 -0.01 0.02 0.05 

T2 1.34 0.62 -0.06 -0.90 T2 0.11 1.08 -0.08 -0.11 

          

 

Table 7-3: Controller pairings 

Control Structure Primary Controlled Variables Inventory Control Constraint 

Control 

CS1 R-S2 F1-rx2 Fo-L1 Fv-T2 

CS2 R-S2 F1-rx2 Fo-L2 Fv-T2 

 

Table 7-4: Controller tuning values for CS#1 and CS#2 

CS1 

R-S2 UJ1.328� V 0.492K W 10X-/� 

F1-rx2 J13� V 11K/� 
Fo-L1 120 

Fv-T2 -4 

CS2 

R-S2 UJ1.328� V 0.492K W 10X-/� 

F1-rx2 J9� V 5K/� 
Fo-L2 20 

Fv-T2 -4 
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AC – composition controller  LC – level controller 
RC – rate of growth controller  TC – temperature controller 

Figure 7-2: Control structure #1 (CS1) of complete partial control design for TSCE alcoholic fermentation 

system. 
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AC – composition controller  LC – level controller 
RC – rate of growth controller  TC – temperature controller 

Figure 7-3: Control structure #2 (CS2) of complete partial control design for TSCE alcoholic fermentation 

system. 
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7.2.5 Selection of Controller Algorithm and Tuning 

We choose PI controllers to control the primary controlled variables (S2 and rx2) whereas 

P-only controllers are adopted for the inventory and constraint control. The main reason 

for adopting PI controllers is to ensure no offset in the primary controlled variables. 

Sequential loops closing is applied beginning with the two primary control loops, 

followed by the inventory and lastly by the constraint control loop. Initial tuning values 

are obtained from the IMC tuning formula with conservative tuning. 

To obtain the initial tuning values, IMC tuning formula is adopted based on the 

simple first order plus deadtime (FOPDT) models identified at the nominal operating 

level. Then, the controller tuning values are refined to achieve an acceptable dynamic 

performance in term of disturbance rejection. Table 7-4 shows the controller tuning 

values for both control structures. The tuning values for the R-S2 and Fv-T2 control-loops 

are the same for both control structures. Different tuning values are used for the F1-rx2 

and Fo-L2 control-loops. 

7.3 Dynamic Simulation of CS1 and CS2 Partial Control Strategies 

7.3.1 Dynamic Responses of Primary, Constraint and Inventory Controlled 

Variables 

The performances of the two control structures against step disturbance in So with 

magnitude of 30 kg/m3 are tested. Figure 7-4 shows the dynamic responses of S2, rx2, T1, 

T2, L1 and L2. The responses of S2 and rx2 are quite comparable in term of settling time 

under both control structures. But the responses of S2 and rx2 tend to be oscillatory under 

CS2 when subject to step decrease in So. Note that, the pattern of S1 profile follows 

closely that of S2 i.e. as predicted from the previous PCA analysis (Chapter 6) where 

these two variables are found to be closely correlated. 

As for the bioreactor temperatures, it can be observed that the fluctuation of T2 

(peak value) under CS1 is smaller than under CS2. This is very desirable as the peak 

value of temperature should not exceed 33oC, otherwise the yeast cells will be damaged, 

which in turn can reduce the yield and productivity of ethanol.  
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Figure 7-4: Responses of the primary controlled variables when subject to step changes in So of ±30 kg/m3 
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Interestingly, the response of T1 is quite comparable under both control structures 

except it tends to show more oscillatory behaviour under CS2. Note that, T2 is the 

controlled constraint variable under both CS1 and CS2 and T1 is uncontrolled variable. 

Notice that, both constraint variables are having peak values which are below 33oC with 

T2 having the smallest peak under the CS1 strategy. 

Unlike S2 and rx2 which exhibit quite similar profiles under both control structures, 

the dynamic responses of L1 and L2 under both control structures show different profiles. 

For CS1 where L1 is the controlled variable for the inventory control objective, its 

fluctuation is smaller than that under CS2 where the L2 is the controlled inventory 

variable. On the other hand, the reverse pattern is observed for L2 under CS2 where it is 

directly controlled. Despite the difference in peak (fluctuation) values, the responses of 

L1 and L2 show quite similar settling time and steady-state offset.  

Surprisingly, under CS1 the direction or trend of the dynamic responses of L1 and L2 

is opposite to each other. This is in contradiction with the result of PCA-based analysis 

which shows that they are positively correlated; so, they should exhibit similar dynamic 

trend or similar direction. Now, obviously the implementation of the control structure 

CS1 has changed the nature of variables interaction – open-loop variables interaction is 

not the same as that of closed-loop especially under CS1. On the other hand, the profiles 

of these variables exhibit quite a similar trend under CS2. Thus, it seems that the 

implementation of CS1 has reversed or even broken this correlation. Furthermore, this 

suggests that the variables interaction under the open-loop can be different from that 

under the closed-loop. And of course, when the system is in closed-loop, the variables 

interaction can depend on the type of control structure implemented as well e.g. CS1 and 

CS2 lead to different closed-loop variables interaction characteristics. 
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Figure 7-5: Responses of uncontrolled output variables and performance measures when subject to step 

changes in So of ±30kg/m3 
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7.3.2 Dynamic Responses of Uncontrolled Variables 

Figure 7-5 shows the profiles of Xv1, Xv2 and Et2 which are the uncontrolled variables. 

The responses of these uncontrolled variables are quite sluggish and seem to be 

comparable under both control structures i.e. no advantage is shown by either control 

structure. It is rather surprising that the response of Et2 does not seem to strongly follow 

the profiles of L1 under CS1 i.e. CS1 changes the nature of open-loop variables 

interaction. 

Therefore, in other words this means that the correlation of Et2 with L1 (refer to 

Figure 7-4) has somehow been broken or at least weaken by the implementation of CS1. 

Based on the previous PCA-based analysis, these two variables are positively correlated. 

And yet by comparing the profiles of Et2 with L1 (see Figures 7-4 and 7-5 respectively), 

we can notice that they show the opposite trends during the transient stage. In turn, this 

shows that the different nature of variables interaction could arise depending on whether 

the system is open-loop (former case) or closed-loop. 

In conclusion, there is no advantage of adopting either control structure in terms of 

Xv1, Xv2 and Et2 dynamic responses. This is because under both control structures, the 

dynamic responses and offsets are quite comparable. 

7.3.3 Dynamic Responses of Performance Measures 

The responses of performance measures can be observed in Figure 7-5, when subject to 

the disturbance. From the Yield response perspective the performance of CS1 and CS2 

are almost comparable. Similarly from the Conv dynamic response perspective, both 

control structures are comparable but CS2 shows larger undershoot value when subject 

to step increase in So. This implies under CS2 there will be a severe drop in conversion 

followed by sluggish recovery to about the nominal operating value. 

It is interesting to note that, CS1 shows markedly better performance in term of 

Prod response – i.e. faster recovery of Prod under CS1 than under CS2. In contrast, 

large undershoot value of Prod occurs under the CS2 when subject to step decrease in So 

implying heavy loss in productivity before it is slowly restored to about its nominal 

operating value. It is important note that, the offsets or steady-state variations in 
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performance measures are smaller than the maximum allowable variation of 1.0% under 

both control structures i.e. offsets are less than 0.4% - thus, almost comparable with the 

previous basic partial control strategy (Chapter 6). 

7.3.4 Summary of Dynamic Simulation Results 

From the dynamic simulation results, we can draw an overall conclusion that the CS1 

exhibits better performance than CS2 in terms of: 

1) Faster responses of the performance measures especially the response of Prod 

(productivity), smaller undershoots of Conv (conversion) and Prod. 

2) Faster response of the constraint control (T2) and smaller overshoot value of T2 i.e. 

maximum peak is less than 33oC. 

However, CS2 shows slightly better performance from the inventory control 

perspective because it leads to smaller maximum peak value of liquid level. This is 

advantageous in the sense that it allows us to use smaller bioreactor or to operate closer 

to the maximum capacity of the bioreactor. One main reason why liquid levels fluctuate 

less under the CS2 than under the CS1 is that, in the former the strong positive 

correlation (open-loop variables interaction) between L1 and L2 are maintained. On the 

contrary, their interaction seems to be reversed under the latter. We will further discuss 

the impact of changing the variables interaction in the next Chapter 8. 

In the next section, we will discuss how to enhance the dynamic performance of 

CS1. Thus, the CS2 will not be discussed anymore from this point onward.  

In the subsequent section, our main objective is to improve the performance of CS1 

in terms of the following:  

a) The achievement of faster dynamic recovery of the performance measures. 

b) The reduction of the highest peak overshot of the liquid level i.e. L2. 
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7.4 Performance Enhancement of Partial Control 

There are various methods which could be employed in order to enhance the PID 

performance and among the most common approaches are (1) feedforward control, (2) 

cascade control, and (3) ratio control. Other approaches include the (1) decoupler to 

reduce loops interactions, (2) robust-loop shaping to improve the trade-off between 

performance and robustness, (3) delay compensation to overcome limitation arising from 

long deadtime, and many more. 

In this study, we will focus on the possibility of implementing the most commonly 

adopted approaches in industry namely, the feedforward, cascade and ratio controls. 

Additionally, because each technique is suitable for certain types of disturbance, it is 

important to decide which technique is the most suitable for a particular process of 

interest. 

7.4.1 Selection of PID Enhancement Techniques 

To determine which technique is the most suitable for our application, the following 

simple steps are employed: 

Step 1: Identify types of disturbances 

In order to select the most appropriate enhancement technique, we need to identify the 

types of disturbances and how they affect the key process variables (primary, inventory 

or constraint). In this case study, the main disturbance is the fresh substrate 

concentration So and it has a direct effect on the primary variable S2. In addition, it also 

has strong effect on rx2 but its influence on this variable is presumably slower than on 

S2. Because So has influence on the fermentation kinetics (i.e. not only on the growth 

rate but also on the substrate consumption and product formation rates), then its 

fluctuation tends to influence the constraint variable T2, which can cause the violation of 

the threshold value for this variable. Thus, it is very desirable to reduce the effect of So 

disturbance on the system.  

Step 2: Identify control-loop to be enhanced 

To identify which control-loop to be enhanced, we need to know which of the controlled 

variables strongly influence the key performance measures i.e. the primary controlled 
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variables. There are two control-loops that strongly influence the performance measures, 

which are F1-rx2 and R-S2. Note that in term of ranking, S2 has stronger influence on the 

key performance measures than rx2. Thus, our target is to enhance the dynamic 

performance of R-S2 control-loop. 

Step 3: Identify suitable enhancement technique 

Ratio Control 

Based on this disturbance type, ratio control is rejected because it is only suitable for 

flow disturbance which can scale directly with the manipulated variable (R). In this case, 

the concentration (So) does not scale directly with the manipulated variable. Hence, the 

ratio control will not work for our application. 

Cascade Control 

There is a possibility to use cascade control by cascading S2 (controlled variable for 

master controller) with S1 (controlled variable for slave controller). The reason for this is 

that the disturbance which enters the first bioreactor will affect S1 first before affecting 

S2 in the second bioreactor. Therefore, by controlling S1 with slave controller, we can 

reduce the impact of disturbance on S2. However for this scheme to work, the inner loop 

involving S1 must be at least 3 times as fast as that of the outer loop involving S2. To 

assess the speed of responses of S1 and S2, an open-loop step test is conducted by 

increasing R by 0.05.  

Figure 7-6 shows the open-loop responses of S1 and S2 to step change in R. From the 

figure, it can be seen that the open-loop dynamic responses of S1 and S2 are comparable. 

Consequently, this suggests that it is rather unlikely for the inner loop of the cascade 

control to be at least 3 times as fast as that of the outer loop. Therefore, cascade control 

technique is not suitable for our case. 

Feedforward Control 

Having rejected ratio and cascade control strategies, we are left with feedforward 

control. For feedforward control to work, we need an approximate (linear) model (i.e. 

transfer function) relating the So to S2. Additionally, provided that we have a 

measurement of the disturbance, it should be relatively straightforward to apply the 

feedforward control strategy in this case. Accordingly in our case we will adopt the 

feedforward control strategy to enhance the dynamic performance of CS1. 
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Figure 7-6: Open-loop responses of S1 and S2 to step change in R by 0.05 (arrow indicates settling time) 

 

Figure 7-7: Block diagram of combined feedback-feedforward control (Riggs and Karim 2006) 
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7.4.2 Design of Feedforward Controller 

To design the feedforward (FF) controller, transfer function models are developed based 

on step test procedure. This leads to two models, one for disturbance (So), and another 

for the manipulated variable (R) impacts on S2 i.e. Gd(s) and Gp(s) respectively. At the 

nominal operating conditions, the step test yields the following two models: 

Z[J�K 2 \]J^K
\_J^K 2

`.a
J�.`^b�K  7-3 

ZcJ�K 2 \]J^K
dJ^K 2

X�-..
J�.e^b�K  7-4 

The dynamic responses to develop the transfer functions above are shown in Figure 

7-8. Bear in mind that, the models developed here are only crude approximation. Higher 

order models can be developed but can lead to more complex FF control algorithm. 

Notice that from Eq. 7-1 and Eq. 7-2, the dynamic impacts of So and R are 

significantly different (i.e. R has slower impact on S2). This suggests that a dynamic 

feedforward controller is required instead of a static feedforward controller. 

Feedforward control can be synthesized based on the block diagram shown in 

Figure 7-7. The objective of feedforward controller Gff is to compensate for the impact 

of disturbance D on Y. This can mathematically be written as follows: 

ZffJ�KZcJ�KgJ�K V Z[J�Kg 2 0  7-5 

Thus, the feedforward controller is: 

Zff  J�K 2 JUZ[  J�KK/JZc J�KK  7-6 

Using this formula, we can derive the required feedforward controller for our case study 

based on the transfer functions obtained previously, which gives: 

Zff  J�K 2 JJ2.03� V 0.7KK/JJ283� V 141.5KK  7-7 
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Figure 7-8: Step responses (open-loop) of substrate concentration in bioreactor 2 to step changes in R (by 

0.05) and in So (by 30 kg/m3) 

 

 

Figure 7-9 shows the schematic of CS1 enhanced with FF control strategy. Note 

that, a slight change to CS1 is made where a PI controller is used to control the liquid 

level L1 instead of P-only controller. The revised tuning values for the feedback 

controllers augmented with the FF control are shown in Table 7.5. 
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Figure 7-9: Schematic diagram of CS1 augmented with FF control strategy 

 

Table 7-5: Controller tuning values for CS1 with feedforward (FF) control 

Control-Loop Controller Tuning 

R-S2 UJ1.33� V 0.49K W 10X-/� 

F1-rx2 J26� V 8K/� 

Fo-L1 J400� V 360K/� 

Fv-T2 -4 
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7.5 Dynamic Simulation with Feedforward Control Enhancement 

7.5.1 Dynamic Responses of Primary Controlled Variables 

Figure 7-10 shows the comparison of dynamic responses of the controlled primary 

variables for CS1 with and without feedforward (FF) control enhancement. With the 

feedforward control, S2 settles down in less than 10 hours while it takes about 25 hours 

for the case without feedforward control. Thus, it shows that a significant dynamic 

improvement can be achieved with the feedforward enhancement for the S2 response. 

Similarly, the implementation of FF controller also leads to faster dynamic response of 

the rx2. 

Another interesting result arising from the feedforward enhancement is that the peak 

values (or overshoots or undershoots) in S2 and rx2 are slightly larger than without 

feedforward enhancement. Thus, it is expected that overshoots or undershoots of the 

performance measures will be slightly larger than without FF controller. Note that, the 

response of S1 (not shown) follows closely that of S2 as in the previous case of basic 

partial control (Chapter 6). 

7.5.2 Dynamic Responses of Inventory Variables 

The dynamic responses of liquid levels (inventory variables) in the bioreactors with and 

without feedforward control enhancement are shown in Figure 7-10. The settling time of 

the L1 (controlled inventory variable) is much shorter with the feedforward enhancement 

than without feedforward. However, the dynamic response of the uncontrolled L2 is only 

slightly faster with the feedforward control strategy.  

With feedforward controller the overshoots in L1 is only about 2%. Although FF 

controller can significantly improve the response of L1, its implementation seems to have 

marginal improvement on L2 in term of reducing its overshoot value. Thus, we can draw 

a conclusion that FF controller only provides significant improvement for L1 in terms of 

(1) faster dynamic response, (2) smaller overshoot or variation than the strategy without 

FF controller. 
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7.5.3 Dynamic Responses of Constraint Variables 

Notice that from Figure 7-10, just like in the case of primary and inventory variables 

(i.e. L1), the dynamic responses of the bioreactor temperatures are faster with the FF 

controller than without the FF enhancement. Surprisingly, the peak value of T2 with the 

FF controller is larger than without FF controler. But the peak value remains well below 

the threshold value of bioreactor temperature i.e. < 33oC. 

7.5.4 Dynamic Responses of Biomass Concentrations 

Note that, we decided not to control the viable cell and ethanol concentrations in both 

bioreactors. It is interesting to know how they respond to the disturbance change. Figure 

7-11 displays how viable cell concentration (Xv2) responds to the disturbance under the 

CS1 with and without FF controller. Obviously, with FF controller the dynamic response 

of Xv2 is very fast and with low maximum variations as compared to CS1 without FF 

enhancement. 

Just like Xv2, with FF controller the dynamic response of Et2 is also very fast as 

compared to that without FF controller (Figure 7-10). Also note that, the peak value of 

Et2 with FF controller is much smaller than that without FF controller. Thus from this 

perspective, with the FF control enhancement we can greatly improve another constraint 

control objective (i.e. other than T2), which is to minimize the peak variation in Et2. 
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Figure 7-10: Responses of primary, constraint and inventory variables under CS#1 with and without 

feedforward control enhancement. 

  

0 10 20 30 40 50
0

5

10

15

20

t (hr)

S
2

 (
k

g
/m

3
)

 

 

0 10 20 30 40 50

1.4

1.6

1.8

2

2.2

t (hr)

rx
2
 (

k
g

/m
3

.h
r)

0 10 20 30 40 50
27

28

29

30

31

t (hr)

T
1

 (
C

)

0 10 20 30 40 50
30

30.5

31

31.5

32

32.5

t (hr)

T
2

 (
C

)

0 10 20 30 40 50
4.6

4.8

5

5.2

5.4

5.6

t (hr)

L
1

 (
m

)

0 10 20 30 40 50
3

4

5

6

7

t (hr)

L
2

 (
m

)

w/o FF: +30

w/o FF: -30

w FF: +30

w FF: -30



163 
 

 
 

 

Figure 7-11: Responses of liquid levels under CS#1 with and without feedforward control enhancement. 
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7.5.5 Dynamic Responses of Performance Measures 

Next, we look into the impact of FF control enhancement on the performance measures 

themselves i.e. Yield, Conv and Prod. Figure 7-11 shows how the three key performance 

measures respond to the step disturbance in So. 

The dynamic response of Yield with the FF control enhancement is about twice as 

fast as that without FF controller (shorter recovery time with FF controller). On the other 

hand, both Prod and Conv show a significant improvement in their dynamic 

performance (i.e. faster recovery and lower peak variations) with FF controller. 

Furthermore, with FF controller the Prod and Conv can achieve recovery in about 10 

hours after the step disturbance occurrence. Meanwhile for the case without FF 

controller, the recovery times for the Prod and Conv are about 70 and 30 hours, 

respectively. 

7.5.6 Variations in Performance Measures 

Table 7-6 shows the steady-state variations or offsets of Yield, Conv and Prod when 

subject to the step change in So by ±30 kg/m3. Notice that, the offsets of the performance 

measures for both CS1 and CS2 are comparable. But the basic partial control structure 

(Chapter 6) seems to show markedly better performance than either CS1 or CS2 in terms 

of the offsets – i.e. the former has smaller offsets. Nonetheless, all control strategies 

result in steady-state variations that are less than the maximum allowable limit of 1.0%. 
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Table 7-6: Steady-state offsets of key performance measures 

Control Structure ∆∆∆∆Yield (%) ∆∆∆∆Conv (%) ∆∆∆∆Prod (%) 

CS1 0.01 0.01 0.35 

CS2 < 0.01 0.01 0.25 

CS1 w FF 0.03 <0.01 <0.01 

Basic Design <0.001 <0.01 <0.01 

 

7.5.7 Summary of PID Enhancement Results 

Overall when the CS1 is augmented with FF controller, we can gain the following 

improvements: 

i. Recovery times of Prod and Conv can be reduced by about 3 and 7 times 

respectively – i.e. faster disturbance rejection effect on performance measures. 

ii. Faster dynamic responses of liquid levels. 

iii. Faster dynamic responses of bioreactor temperatures and ethanol concentrations, 

hence better constraint control performance. 

iv. Faster dynamic responses of primary controlled variables and other uncontrolled 

variables. 
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7.6 Limitations of PID Enhancement Technique 

It is important to note that, the variables interaction depend on the control structure 

design. Recall previously that while CS2 preserves the open-loop variable interaction, 

CS1 somehow alters this interaction. Thus, while under CS2 control strategy L1 and L2 

remain positively correlated as in the open-loop case, these variables are found to be 

negatively correlated under CS1.  

An important question is whether this change in variables interaction has any 

implication on the overall control performance. If it does, in what way this change 

affects the performance. Notice that from the dynamic simulation of PID enhancement, 

some of the unexpected things happen, for example, the dynamic response of L2 shows 

no improvement at all with the implementation of FF controller. Furthermore, the peak 

fluctuations (overshoots or undershoots) remain as high as that without FF control 

enhancement. As a result of this, we could not operate the second bioreactor close to its 

maximum volume. Note that, it is always desirable to operate the bioreactor close to its 

maximum volume because it can lead to maximum economic benefit. Unfortunately, 

high fluctuations in liquid level definitely prevent the operation close to the maximum 

bioreactor volume. 

In view of the above mentioned limitations, we will further investigate the impact of 

variables interaction in the next Chapter 8. The primary motivation for this further 

investigation is to explore whether the dynamic performance can be further improved if 

the variables interaction can be preserved i.e. open-loop variables interaction similar to 

closed-loop variables interaction. 

7.7 Non-uniqueness of DV Sets by Classical Definition 

From the classical dominant variables definition point of view, the subset h��, 3�i or 

h��, 3�i can be considered as the dominant variable (DV) sets because of acceptable 

variations of other variables can be ensured by controlling them. But of course in view 

of the strong correlations of variables in h'��, ��, ��, 3�, 3�, j&i, we could also propose 

other subsets of variables to be controlled such as h��, '��i, h3�, '��i, h��, '��i and 

many more. As far as the classical definition is concerned, all of these subsets are 
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qualified as DV sets – i.e. by controlling them we can more or less ensure acceptable 

variations in the other uncontrolled variables. It seems obvious that, there is no unique 

subset of DV as far as the classical definition is concerned. Consequently, this non-

uniqueness of DV sets from the classical framework of partial control leads to 2 major 

implications: 

1) Because there are many candidates for DV sets, it is not hard to understand why 

engineers can successfully apply partial control even without systematic tool i.e. 

just following engineering intuition or process knowledge. However, engineers 

will be expected to encounter great difficulty when attempting to obtain the 

dominant variables for the implicit operating objectives e.g. optimum profit, 

minimum cost, optimal trade-off between two or more contradicting objectives 

such as in this case study. In other words, it is far from obvious how to identify 

the implicit variables which have the dominant effects on the performance 

measures. 

2) Engineers have often ignored the benefits of interaction among the variables. 

Understanding this interaction can lead to less number of controlled variables, 

which in turn leads to simpler control structure. Take for example in this case 

study, if we have no clue what so ever regarding the interactions among the 

variables, then we tend to be more conservative by attempting to control more 

variables e.g. to control three or four variables instead of only two variables (i.e. 

1 constraint and 1 inventory controlled variables). Therefore, the implementation 

of partial control based on process knowledge and experience could yield 

workable control strategy, but in the absence of good knowledge regarding the 

variables interaction we expect the result tends to be conservative – we tend to 

control more variables than are necessary. 

Bear in mind that to clear this confusion, in this thesis the dominant variables are 

defined only for the overall performance measures or operating objectives which are the 

implicit functions of process variables/ parameters i.e. new definition of dominant 

variable. As such, the subset h��, 3�i for example, is not considered as the DV set 

because they relate to other process variables and not to the implicit performance 

measures. It is important to note that, the subset h��, 3�i is selected as controlled 
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variables mainly as a result of the PCA-based analysis aided by some process 

understandings. Such selection of only fewer controlled variables than the output 

variables of interest to achieve the inventory and constraint control objectives is possible 

because of the strong interaction among these variables. Without the strong interaction 

among the variables, obviously we need to control more variables. Therefore, in order to 

assess the sufficient number of controlled variables, we can employ the variable-variable 

interaction analysis via the IVV index. In this case we use a systematic tool to predict the 

extent of variables interaction and its impact on the number of controlled variables 

required. 

7.8 Variables Interaction: Working Principle of Partial Control 

Imagine that there is no interaction among the variables h'��, ��, ��, 3�, 3�, j&i in the 

sense that, whatever we do to one variable has no effect on other variables. For example, 

if T2 is selected as a controlled variable, then other uncontrolled variables remain 

completely free to drift if there is no interaction between T2 and these other variables. As 

a consequence, we need to control not only h��, 3�i but also h'��, ��, 3�i , as well which 

leads to five controlled variables instead of only two. As we have only four manipulated 

variables remaining, this means that we will face a great difficulty in trying to remove 

one of the controlled variables – and probably the result will not be too good either. 

It has always been perceived that the adoption of partial control is necessary 

because of the less number of manipulated variables than the output variables. But it is 

very important to realize that the partial control itself is made possible because of the 

variables interaction. If the variables interaction does not exist, then, we are forced to 

control every output variables which are deemed important to the overall plant 

objectives including the inventory and constraint control objectives.  

In this manner, the interaction among variables can be considered as the working 

principle in partial control strategy - partial control is governed by the variables 

interaction. An important implication of this principle is on the optimal size (i.e. total 

number of controlled variables or control-loops) of complete partial control structure. 

Hence, for the case where variables have strong interactions, the optimal size can be 

smaller than that for a case where the variables have weak interactions. Further 
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discussion on the implication of the size of partial control structure on the control system 

performance will be discussed in the next Chapter 8. 

7.9 Understanding Variable Interaction by PCA-based Method 

The idea of exploiting the interaction among variables to achieve control objectives is 

not new. In his “Critique of Chemical Process Control Theory” Foss (1973) mentioned 

that it is not necessary to make the process non-interacting simply because it is difficult 

to design multivariable control system by the single-loop methods. He further 

emphasized that the exploitation of interaction inherent in multivariable processes “takes 

judgment, brains, and maturity and a good theory”. 

If the variable interaction can be so important, then it becomes necessary for 

engineers to understand such interaction and exploit its benefit. Other than for the input-

output (I-O) variables interaction which is commonly addressed in controller pairings 

using the well known Bristol’s RGA analysis for example, we are short of systematic 

techniques to analyze the output-output (O-O) variables interaction. As has been argued 

in the previous Section 7.4.2, the understanding of O-O variables interaction is the key 

element in the proper design of partial control strategy.  

Interestingly, the PCA-based method (Chapters 3 and 4) can systematically be used 

to understand the variables interaction, which is the key principle enabling the 

application of partial control structure. Understanding of this interaction can lead to 

proper (1) selection of controlled variables, and (2) determination of sufficient number 

of controlled variables that are just sufficient to achieve the control objectives (overall, 

inventory and constraint control objectives). In other words, we can avoid an overly 

complex design with too many controlled variables with the help of PCA-based method 

– thus, making it possible to design an optimal size partial control strategy. 
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7.10 Summary 

We have shown in this chapter the application of the PCA-based method (i.e. data-

oriented approach) to design complete partial control strategy incorporating the 

inventory and constraint control objectives (application of methodology described in 

Chapter 4). In the case study, both control structures without PID enhancement 

technique perform quite well but the control structure #1 (CS1) shows markedly better 

overall performance than that of CS2. The CS1 and CS2 are different only in term of the 

choice of inventory controlled variables; the former uses L1 and the latter uses L2 as a 

controlled variable to achieve the inventory control objective. 

Furthermore, we also propose a simple procedure that could be used to select the 

appropriate PID enhancement techniques. This procedure is applied in order to enhance 

the performance of CS1, which leads to the selection of feedforward control strategy. It 

is found that the feedforward control enhancement provides significant improvements 

over CS1 without PID enhancement as follows: 

1) Faster recovery in performance measures. 

2) Faster responses in controlled and uncontrolled variables. 

3) Lower peak values in bioreactor temperatures and ethanol concentrations. 

An important conclusion which can be drawn from the simulation study is that the 

variables interaction is dependent upon the choice of control strategy or structure. In the 

case study, while CS2 preserves the open-loop variables interaction, the CS1 alters this 

interaction. In this chapter we have not yet established to what extent such an alteration 

in variables interaction affects the overall control performance. However, we expect this 

alteration has something to do with the lack of improvement in the inventory control 

performance under CS1 when it is augmented with the feedforward control strategy. 

The idea of exploiting variables interaction to achieve control is not new as it was 

mentioned nearly 4 decades ago by Foss (1973) in his “Critique of Chemical Process 

Control Theory”. Surprisingly, the systematic tool which can be used to understand 

especially the output-output (O-O) variables interaction and exploit it benefits for 

control purposes has not yet been developed. Thus in view of this shortcoming, the 

PCA-based method described in this thesis is perhaps the first systematic technique, 

which can be employed to understand this interaction and to provide guideline on how to 
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exploit its benefits. One of the main benefits of interaction is that it allows us to control 

only small subset of variables to achieve a variety of control objectives. But of course, 

this leads to an important question which is how many controlled variables are sufficient 

to meet the specified control objectives. To answer this question we can employed the 

variable-variable interaction index IVV to analyze the extent of variables interaction, 

which in turn allows us to unambiguously assess the sufficient number of controlled 

variables required. 

Finally, we recognize that the variables interaction is the governing principle that 

enables the partial control idea to be applicable in real practice. Without this important 

property, partial control cannot be realized in many real cases – thus, understanding of 

the variables interaction is fundamental in the design of partial control strategy in 

particular and plantwide control in general. 
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8 OPTIMAL SIZE OF PARTIAL CONTROL 

STRUCTURE 

8.1 Introduction 

In Chapter 7, we have compared different types of partial control strategies with size of 

4x4. Note that, the size of the partial control design is given by the number of controlled 

variables, e.g. 4x4 implies 4 controlled variables are adopted. The results from the 

previous chapter showed that further closed-loop performance improvement can be 

achieved by incorporating the feedforward control into the partial control strategy. Also, 

the results showed that the partial control strategy with the feedforward enhancement 

(referred to as CS1 in Chapter 7) can in fact, achieve all three types of operating 

objectives: the overall, constraint and inventory control objectives.  

Despite this wonderful result, we ask ourselves is there a way we can further 

improve the performance of CS1 control strategy? Specifically we are interested to 

reduce the peak fluctuations (changes) of the inventory variables such that in practice, 

this reduction allows us to operate closer to the maximum bioreactor volume. We are 

motivated to achieve this extra goal because by operating the bioreactor closer to its 

maximum volume, we can in practice achieve better economic performance. Of course, 

there could be several answers to the question mentioned above, for example, the 

applications of advanced controller algorithms (e.g. MPC), can be adopted in this case. 

But our quest to improving the CS1 in this study leads us to a rather different and 

unconventional direction – one that has never been reported in open literature before. 

8.1.1 Conditions for Effective Partial Control Design 

Our approach to improving the performance of CS1 strategy as described in this chapter 

arises from our understanding of the basic principle governing the way partial control 

works, and the reason for its implementation on a process system of interest. As a result 
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of this understanding, we propose two important conditions for an effective partial 

control design: 

1) The control-loop which imposes limitation on the speed of (overall) dynamic 

responses must be eliminated – here, the limiting control-loop is referred to as the 

bottleneck control-loop (BCL). 

2) The open-loop variables interaction must be preserved (or its change be minimized) 

by the control system being implemented – ideally the open-loop and closed-loop 

should have similar nature of variables interaction. 

8.1.2 Concept of Bottleneck Control-Loop (BCL) 

In relation to the first condition, we propose a concept of bottleneck control-loop (BCL). 

Bottleneck control-loop is defined as the loop which limits the dynamic response of the 

entire control system. This is quite similar to the idea of rate limiting step in serial 

chemical reactions. However, the key difference lies in the fact that BCL is not easily 

identified because of the intricate nature of interaction among the control-loops in the 

system. It is important to note that, the existence of BCL is caused by the interactions 

among the loops via the output-output variables (O-O variables) interaction. As a 

consequence, the more control-loops are there (larger size of control strategy) in the 

system, the more likely that the BCL presents in the system.  

It is important to distinguish between the control-loops interaction and the variables 

interaction. In the former, the interaction arises from the coupling between the control-

loops in a typically closed-loop system only – not applied to an open-loop system. On 

the other hand, the O-O variables interaction (especially among the output variables) 

exists for a closed-loop as well as for the open-loop systems. Recall from Chapter 7, this 

type of interaction depends on the choice of control structure; different control structures 

have different influence on variables interaction, which either preserve or alter the open-

loop variables interaction.  

In addition, unlike the control-loops interaction the implication of variables 

interaction on the design of control system is an area which is least studied. In so far, 

there has been no method available to deal systematically with the variables interaction. 

In the next sections, we will discuss and highlight the significance of BCL and propose a 
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method for its identification. But first let us introduce another concept namely the 

synergistic external-inherent control system. 

8.1.3 Concept of Synergistic External-Inherent Control System 

With regard to the second condition, another aspect which can lead to the sub-optimal 

performance of a partial control strategy that has been observed in this current study is 

the mismatch of the variables interaction between the open-loop and closed-loop 

situations. As a result of this observation, we propose that the significance of the 

variables interaction is strongly linked to the existence of inherent control system 

possessed by any (open-loop) process of interest. In general, most of real (multivariable) 

processes which are self-regulating can be considered as having the inherent control 

ability; otherwise, the system can be completely unstable or open-loop unstable. This 

inherent controller is one of the important characteristics of real processes which are 

open-loop stable i.e. allows the system to response to disturbances. A striking example 

of a process with strong inherent control system is the biological system, in which the 

living organisms are capable of responding, altering and adapting to their environments 

– e.g. biological robustness (Kitano 2004, Yi, et al. 2000, Barkai and Leibler 1997, 

Carlson and Doyle 2002).  

From this realization, we further propose that the central goal of effective partial 

control design (or external control system) is to augment the inherent control system 

already possessed by a given process of interest.  Therefore, this leads to an idea of 

synergistic external-inherent control (SEIC) system – external control system must work 

synergistically with the inherent control system. Note that, we refer to the control 

strategy (e.g. partial control strategy) which is implemented on the process as the 

external control system. 

The question is how do we ensure that our control system which we implement on 

the process will work synergistically with the inherent control capability of a given 

process of interest? For the time being there is no straightforward answer to this 

question (so far, there is no research work on this idea). Nevertheless, we propose that 

the SEIC system can be realized if the nature of the closed-loop and open-loop variables 

interaction is preserved or at least minimized – thus, related to the second conditions. 
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Remark 8.1: 

Following the idea of SEIC system, it is proposed that the open-loop variables 

interaction must be maintained by the external control system, thus this leads to similar 

closed-loop and open-loop variables interaction characteristics. This is the main 

assumption of SEIC system where an external control system that meets this criterion (or 

property) is bound to have better performance than those which tend to change the 

variables interaction characteristics. However, one might ask a question is it possible 

that the open-loop variables interaction be somehow changed and yet better control 

performance can still be achieved? To answer this question, it is important that we first 

clarify what is the measure of ‘better control performance’ means. Let suppose that the 

control performance is measured in terms of Integral Square Error (ISE) of the 

performance measure and the control energy required (i.e.2-norm on manipulated 

variable signal). Here, ideally we aim to achieve the minimum ISE value with the 

minimum control energy. Let suppose we compare two control systems, where one 

achieves SEIC system property and another control system is not i.e. it leads to 

dissimilar open-loop and closed-loop variables interaction characteristics. From the 

SEIC system point of view, the first control system should lead to smaller control energy 

than the second one for a given value of ISE. The reason for this is that, the second 

control system tends to fight the inherent control system which then tends to lead to 

larger control energy. In conclusion, any control system which does not possess the 

SEIC property will be inferior in performance to the one which possesses the SEIC 

property. 

□ 

 

In order to test the proposals relating to the two conditions above (Section 8.1.1), 

we will evaluate and compare the performance of 3 different partial control strategies:  

1. CS1:  4x4 control strategy from Chapter 7. 

2. CS1-A: 3x3 control strategy with removal of BCL. 

3. CS1-B: 3x3 control strategy as in (2) with feedforward control enhancement. 
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8.2 BCL Impact on CS1 Control Strategy – Preliminary Analysis 

Recall in the previous case (Chapter 7), that the dynamic responses of primary 

controlled variables appear to be quite sluggish. This also leads to a rather slow recovery 

of the performance measures, which are closely related to these primary (dominant) 

variables. Initially, we may tend to suspect that the reason for this sluggishness is due to 

the sluggishness of the inventory control (Fo-L1 loop) i.e. slow movement of Fo leads to 

slow disturbance especially to the second bioreactor. 

Consequently, if this expectation is true then to increase the speed of inventory 

control and hence the overall control system responsiveness, we can increase the 

controller gain Kc1. However, as shown in Figure 8-1, an increase in Kc1 from 400 to 

500 and even up to 600 has very little effect on the dynamic responses of the output 

variables. The question is why such a large increase in Kc1 has virtually no effect on the 

dynamic responses?  

It appears that there exists a control-loop which limits the speed of the dynamic 

responses of variables such that the increase in Kc1 will not be able to increase the speed 

of the dynamic responses. This observation suggests the presence of bottleneck control-

loop (BCL) in the control system.  

As the increase in Kc1 has virtually no effect on the dynamic responses (Figure 8-1), 

we can conclude that Fo-L1 control-loop (Gc1) is unlikely to be the BCL. Next, we can 

try to alter the controller gain of other control-loop such as the F1-rx2 control-loop (Gc4) 

and find out whether this change has any effect on the speed of dynamic responses. 
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Figure 8-1: Impact of increasing controller gain (Kc1) of FO-L1 control-loop (Gc1) on the dynamic 

response of control system. 
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Figure 8-2: Impact of increasing controller gain (Kc4) of Kv1-rx2 control-loop on dynamic responses of S2, 

rx2, L1, R, kv1 and FO 
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Figure 8-3: Impact of increasing of controller gain Kc4 (Kv1-rx2) on dynamic responses of L2, T2, Et2 and 

Xv2 

Figures 8-2 and 8-3 show the effect of increasing the controller gain of F1-rx2 

control-loop (Kc4) on the dynamic responses of both controlled and uncontrolled 

variables. As the controller gain increases, the dynamic responses go from sluggish to 

oscillatory and to ringing. Figure 8-2 also shows that the responses of the manipulated 

variables (R, kv1 and Fo). Notice that, the responses of kv1 (i.e. F1) and Fo are also 

ringing as the controller gain Kc4 increases from 10 to 26. However, the response of R is 
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shown). Rather than improving the speed of dynamic responses, the increase in Kc4 

tends to adversely change the dynamic responses i.e. ringing responses. As such we are 

expecting that F1-rx2 (Gc4) is the likely candidate for BCL in this control system. 

Nonetheless, we still need to perform more rigorous analysis (next section) in order to 

confirm this expectation. 

8.2.1 Block Diagram of CS1 Control Strategy 

Let Yuc1 be the vector of uncontrolled output variables from Sys1 (bioreactor 1) and Yuc2 

be the vector of uncontrolled output variables from Sys2 (bioreactor 2). 

���� � ����	�
���� 
;   ���� � ����
������ 
 
The following notations are used for the 4 controllers: 

a) Gc1 – Fo-L1 control-loop 

b) Gc2 – R-S2 control-loop 

c) Gc3 – Fv-T2 control-loop 

d) Gc4 – F1-rx2 control-loop 

Notice that, all of the manipulated variables except for F1 affect the Sys1 (bioreactor 

1) first before indirectly affecting Sys2 (bioreactor 2) via the output variables of Sys1. In 

other words, F1 directly affects Sys1 and Sys2 (see Figure 8-4). Based on Figure 8-4, the 

“individual unit” process parameters (i.e. rates of growth, substrate consumption and 

product formation) are assumed to affect the individual system state variables e.g. rx1, 

rs1 and rp1 affects directly the state variables of the bioreactor 1. 

8.2.2 F1-rx2 Control-Loop: Potential BCL in CS1 Control Strategy 

From the previous preliminary analysis, the BCL could be the F1-rx2 (or Gc4) due to the 

nature of slow dynamic response of rx2. Consequently, this also leads to slow change in 

the manipulated variable F1 which in turn becomes slow disturbance to other control 

loops especially to Gc1 i.e. notice that from Figure 8-4, F1 has the most direct effect on 

L1. As a result, the dynamic response of Gc1 is always limited by Gc4. Subsequently, an 
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increase in the tuning of Gc1 cannot really improve the dynamic response of the limiting 

control-loop. This is the reason why an increase in Kc1 (in the previous section) has 

virtually no effect on the speed of dynamic responses as shown previously in Figure 8-1. 

On the other hand, the increase in the tuning (Kc4) of Gc4 tends to cause oscillatory 

(even ringing) responses rather than to improve the speed of dynamic responses (see 

Figures 8-2 and 8-3). Obviously, increasing the tuning values is not the choice for 

improving the dynamic responses in this case. A better choice is to remove the BCL 

(possibly Gc4) from the control system design, which means that we need to reduce the 

number of control-loops from four to three i.e. reducing the size of control system to 

3x3. 

An important question is, to what extent this removal affects (possibly degrade) the 

speed of dynamic responses and ultimately the performance measures? In other words, 

the improvement in dynamic performance must outweigh the possible degradation in the 

overall performance measures, in term of their steady-state variations. Therefore, there 

must be a trade-off between the improvement of dynamic responses and the steady-state 

performance specifications. 

8.2.3 Direct Feedthrough across Two Bioreactors in CS1 Control Strategy 

Notice that from Figure 8-4, the F1-rx2 control-loop introduces a direct feedthrough of 

F1 across bioreactor 1 and bioreactor 2. In this case note that, direct feedthrough is 

defined as the input which directly affects both system in series. It is expected that the 

use of this direct feedthrough as a manipulated variable in the CS1 is responsible for 

altering the open-loop variables interaction; the variables interaction of the closed-loop 

system is difference from that of the open-loop. As such, from the second condition 

perspective the CS1 control strategy does not work synergistically with the inherent 

control system of the TSCE alcoholic fermentation process. 
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Figure 8-4: Block diagram of 4x4 MIMO control structure 

 

In conclusion, the CS1 control strategy suffers from two main limitations causing it 

to operate under optimal performance: 

1. Potential existence of BCL in the control strategy. 

2. The control strategy does not preserve the open-loop variables interaction – 

external control system does not work in synergy with the inherent control 

system of the process. 
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8.3 Analytical Tool for Feedback Control Performance 

8.3.1 Singular Value Decomposition (SVD) Concept 

Theorem 1: Let  � � ����. There exist unitary matrices � � ���, ��, … , ��� � ���� � � ���, ��, … , ��� � ���� 

Such that, 

� � �Σ��,   Σ � �Σ� 00 0! 
And where the singular values "� # "� # $ # "% # 0,   & � '()*', )+ 
The proof for this theorem can be found in (Zhou and Doyle 1998). Note that, the 

maximum singular value "� is normally denoted as ", and the minimum singular value 

as  ". 

8.3.2 Feedback Control Performance 

Referring to Figure 8-5, the input loop transfer matrix, Li and output loop transfer 

matrix, Lo are as: 

�- � ./ 8-1 

�0 � /. 8-2 

The input sensitivity matrix is defined as transfer matrix from di to up: 

	- � 12 3 �-45�  8-3 

�% � 	-6-  8-4 

The output sensitivity matrix is defined as the transfer matrix from d to y: 

	0 � 12 3 �045� 8-5 

7 � 	06 8-6 
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Meanwhile the input and output complementary sensitivity matrices (i.e. Ti and To 

respectively) are defined as: 

�- � 2 8 	- � �-12 3 �-45�  8-7 

�0 � 2 8 	0 � �012 3 �045� 8-8 

When the closed-loop system is internally stable, it satisfies the following 

equations: 

7 � �019 8 )4 3 	0/6- 3 	06  8-9 

9 8 7 � 	019 8 64 3 �0) 8 	0/6- 8-10 

� � .	019 8 )4 8 .	06 8 �-6- 8-11 

�% � .	019 8 )4 8 .	06 3 	-6- 8-12 

 

 

Thus for good disturbance rejection at the plant output d on the y would require that: 

",1	04 � 1 "12 3 /.4⁄ < 1 = "1/.4 > 1 8-13 

And good disturbance rejection at the plant input di on up would require that 

",1	-4 � 1 "12 3 ./4 < 1? "1./4 > 1⁄  8-14 

In general, good performance at low frequency range (0, ωl) requires: 

"1/.4 > 1,   "1./4 > 1,   "1.4 > 1 8-15 

And good robustness and good noise rejection require at high frequency range (ωh, 

∞): 

",1/.4 < 1,   ",1./4 < 1,   ",1.4 @ A 8-16 

Here, M is a finite positive number which is not too large. 

  



 

Figure 8-5: Feedback control block diagram

8.3.3 Detection of BCL 

From Eq. 8-14, it is clear that 

the plant input, at low frequency range (0, 

Note that, both K and 

control system, then the minimum singular value of 

than unity. 

Accordingly, the 

and only if: 

"1./4 < 1  

for a low frequency range (0, 

8.4 SVD Analysis of BCL

Note that, the controlled and manipulated variables for 

given by: 

Decentralized control strategy

 

: Feedback control block diagram (Zhou and Doyle 1998) 

Detection of BCL via SVD Analysis 

it is clear that to achieve good performance for disturbance rejection at 

the plant input, at low frequency range (0, ωl) we want to ensure that the

and P are square and diagonal, thus  	0 � 	-. If BCL presents in the 

control system, then the minimum singular value of KP is expected to be

the bottleneck control loop (BCL) exists in the control system (K) if

for a low frequency range (0, ωl). 

Analysis of BCL 

ontrolled and manipulated variables for the 4x4 control strategy

�BC � � ��	���9D�
,   �EC � � F0GFHI��
 
Decentralized control strategy (CS1) for 4x4 MIMO control is as follows:

. � �JK� 0 0 00 JK� 0 000 00 JKL 00 JKM
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o achieve good performance for disturbance rejection at 

we want to ensure that the  "1./4 > 1. 

. If BCL presents in the 

is expected to be much lower 

(BCL) exists in the control system (K) if 

8-17 

control strategy of CS1 is 

is as follows: 
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The controllers transfer functions are given by: 

JK� � �� F0⁄ � 120;  JK� � 	� G⁄ � 5�.LL��PQR1STP.LU4S  

JKL � �� FH⁄ � 84;  JKM � 9D� F�⁄ � �L1STP.WX4S  

Meanwhile for the 3x3 (F1-rx2 control-loop removed) control system, the P or PI 

controller tunings are given by 

JK� � MPP1STP.Y4S ;    JK� � 5M.M�W��PQR1STP.[U4S ;    JKL � 84  

Note that, in the 3x3 decentralized control strategy, the BCL which is Gc4 is 

eliminated – thus, no direct control of growth rate in bioreactor 2. 

8.4.1 Linear Transfer Function Models 

The linear transfer functions matrix for 4x4 MIMO plant obtained at the nominal 

operating conditions is given by: 

/ � �\�� \�� \�L \�M\��\L�\M�
\�� \�L \�M\L� \LL \LM\M� \ML \MM
 

Where the linearized models are given by: 

\�� � P.PX�1STP.Y�W41STP.LWL41STP.PPPU41S]TL.MMMSTL.UMY41ST�.�UL41STP.M[X41STP.�XU41STP.PP�41S]TL.XP�STM.P�Y4  \�� � P.�PW1ST�U.��41S5P.�WM41S5P.PPPL41S]T�.YPXST�P.LY41STP.M[Y41STP.PPL41S]T�.MXUST�.MX�41S]TX.[YS^�U.[�4  
\L� � 5P.P�1S5U[.M4_S]TP.P�[STP.PPP�`_S]T�.M[UST�.W�`1S]TX.XXST��41STM.U41STP.[�L41STP.PPPY41S]T�.L[ST�.YU41S]TM.MWSTY.XW4   

\M� � P.PPM1ST�[.�41S5��.L41S5P.PPP[41S]T�.ULST�.�[41ST�.LY41STP.PP�41S]T�.�LST�.XM41S]TM.YYST��.[4  \�� � �P.�1STP.WPX41STP.PYX41S]TM.LWSTX.�41ST�.�X41STP.LP�41STP.PY�41S]TM.M�STX.L4  
\�� � 5[.YM1STP.PP�4_S]T�.MWST�.XX`1S]5�M.WST��W.[41STP.X41STP.PPP�41S]T�.W�ST�.WX41S]T[.MXST�W.�4  \L� � P.PM�1ST�YWW4_S]5P.PP�ST�.L��PQa`1S]TX.�ST��.X41ST�.M�41ST�.�41STP.�Y41STL.X��PQa41S]TM.YYST��.L4  \M� � 5P.�XM1STYL.Y41S^P.P��41S5P.PPX41S]T�L.LSTXM.M41ST[.XX41STP.W�41S]TP.PPPWSTP.PPP�41S]TM.WST�P.W4  \�L � 5P.P�M1STP.[XY41STP.�L[41S5P.PPP[41S]TX.W�STY.XU41ST�.�W[41STP.LUU41STP.PUX41ST�PQa41S]^X.UMSTY.X4  
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\�L � P.PMX1ST�.[�41S^P.�X41STP.PPX41S]5X.[YSTL�U.W41STL.W41ST�.�[41ST�41STP.W[41STP.PU�41STP.PPL4  \LL � P.PP�1S5�PP[41STL.Y�41STP.Y�[41STP.P[[41S5P.PPL41STL.U[41ST�.LM�41STP.PXU41STP.PPP�41S]T�.[WSTP.U�4  \ML � 5P.PPP�1S5�PXL41ST[.W�U41ST�.MLU41STP.PYL41STP.PPPU41STL.UYW41ST�.LYY41ST�.PL�41STP.WML41STP.PYL41STP.PPP�4  \�M � 5P.PYL1STL.YUL41ST�.XPX41S5P.PPP[41S]TP.UW�STP.�[[41STM.�L�41ST�.P[41ST�.X�U41STP.PP�X41S]TP.[XWSTP.��M4  
\�M � P.W�U1STP.PPX4_S]5P.�L�STL.M��`1S]TU.XP�STX[.MU41STL.M[X41STP.P�U41S]T�.�ST�.UYY41S]TW.XLMSTML.LX4  \LM � P.[W�1ST��.PY41STX.L��41S5P.YUM41STP.PXW41S5P.PP�41ST�P.UW41STU.PXM41ST�.L��41STP.M��41STP.PPP�4   

\MM � 5P.�XW1ST�U.X�41S5P.YM�41STP.PML41S]T�.�L�ST�.�[�41ST�.PYX41STP.PXM41S]TP.Y�WSTP.WUU41S]T�M.�MSTXL.��4  
 

Note that, the models are obtained through a series of plant step tests: Fo, F1, R and 

Fv as inputs (manipulated variables) and S2, rx2, T2 and T2 as recorded outputs. Then the 

model identification is performed using the Matlab System Identification toolbox. The 

size of the step input perturbation for each manipulated variable is 20% of its nominal 

value (refer to Chapter 5, Section 5.4 for the nominal values of R, r, Fo) and Fv nominal 

value is 1.0 m3/hr.. 

 

Remark 8.2: 

The magnitude of inputs change for the plant tests are 20% of their nominal values. 

Here, the objective of the linear models development is to approximate the linear 

dynamics around the nominal operating conditions. Alternatively, direct linearization of 

the system at the nominal operating conditions can also lead to the linear representation 

of the dynamic behaviour. In this case, we choose to develop the linearized models from 

the step tests because the direct linearization tends to lead to unstable models (large 

model error at the optimum, which is not consistent with the nonlinear model prediction 

at the nominal operating conditions i.e. response based on the actual nonlinear model is 

stable. 

□ 
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8.4.2 SVD Analysis of CS1 Control Strategy 

Recall that from Section 8.5, we are interested in the minimum singular value of KP 

where it is desirable that  "1./4 > 1. Otherwise, if "1./4 < 1 there is bound to be a 

BCL in the control system. 

As can be seen from Figure 8-6, the minimum singular value at low frequency is 

much less than 1, i.e. "1./4 < 1. Thus, this indicates the present of BCL in the control 

system K for CS1 strategy.  In other words, one of the control-loops is limiting the 

performance of the overall control system. What happen if we increase the controller 

gain of the suspected BCL which is the Gc4? Can the increase in Kc4 leads to the 

increase in the minimum singular value?  

Figure 8-7 displays the singular values plot for Kc4 = 26 i.e. double the previous 

value of Kc4. Obviously from Figure 8-7, doubling the controller gain Kc4 does not have 

any significant impact on the minimum singular value, i.e. it is still very low. This result 

confirms the previous analysis why an increase in Kc4 fails to increase the speed of 

dynamic response. No change in the minimum singular value implies that there will be 

no change in the speed of the dynamic responses. 

Now, let change the other controller gain such as the Kc1 (Gc1 which controls the 

liquid level in bioreactor 1). Figure 8-8 shows the impact of increasing the Kc1 from 120 

to 300. The singular values plot marginally changes but the minimum singular value at 

low frequency remains very low. Hence, this suggests that the speed of BCL (i.e. thus 

the speed of the overall dynamic responses) cannot really be increased by increasing the 

gain of other control-loop (consistent with the result shown in Figure 8-1). 
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Figure 8-6: Singular values of KP for Kc4 = 13 

 

Figure 8-7: Singular values plot of KP with Kc4 = 26 
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8.4.3 SVD Analysis of 3x3 (CS1-A) Control Strategy 

Figure 8-9 shows the singular values plot for the 3x3 (CS1-A) control system where the 

Gc4 is removed from the CS1 control strategy. Notice that, the minimum singular value 

at low frequency range is now much larger (above 1) than in the case of 4x4 (CS1) 

control strategy. Therefore, this confirms that BCL has been removed from the control 

system. Hence in this case, the BCL is confirmed to be the F1-rx2 control-loop i.e. Gc4.  

We can draw a conclusion from the singular values plot that 3x3 system will be 

more responsive (because its  "  > 1 ) than that of 4x4 system because in the latter the 

performance is limited by the presence of BCL (i.e. its  " < 1 ).  
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Figure 8-8: Singular values plot of CS1 for KP with Kc1 = 300 

 

Figure 8-9: Singular values plot of CS1-A for KP i.e. 3x3 control system 
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8.5 Comparative Performances of Different Partial Control 

Strategies: CS1, CS1-A and CS1-B 

The performance of the following 3 partial control strategies are evaluated and 

compared against the step disturbance in fresh substrate concentration (So): 

i. CS1: (4x4 MIMO) with feedforward enhancement (Chapter 7) 

ii. CS1-A: (3x3 MIMO) with removal of BCL 

iii. CS1-B: (3x3 MIMO) with feedforward control enhancement. 

 

Figures 8-10 and 8-11 display the schematics of 3x3 control strategies without and 

with feedforward enhancement (i.e. CS1-A and CS1-B) respectively. The schematic of 

CS1 is shown in the previous Chapter 7. Note that, the feedforward controllers employed 

in CS1 and CS1-B are identical i.e. similar in terms of structure and tuning values. Note 

that, this feedforward controller is designed based on the first order approximations 

(models) of the impact of cell recycle ratio (R) and fresh substrate concentration (So) on 

the substrate concentration in bioreactor 2 (S2). The dynamic responses which are used 

to develop the first order approximations, and hence which are used to derive the 

feedforward controller can be referred Figure 7-8, Chapter 7. The step change in the 

manipulated variable (R) is 0.05 and the step change in disturbance (So) is 30 kg/m3. 

The reason why the feedforward controller used in CS1-B is similar to that used in 

CS1 is that in both cases they are derived from the same step responses. In practice, we 

can perform fine tuning of both feedforward controllers to achieve a desired 

performance (i.e. optimization of the tuning parameters). However, in our case the 

tuning parameters are fixed by the linear models derived from the step responses (refer 

to Figure 7-8, Chapter 7) - no attempt is made to optimize the tuning parameters. Note 

that, in the 3x3 control strategies (CS1-A and CS1-B), only one of the dominant variable 

is controlled, which is the substrate concentration in bioreactor 2, i.e. S2. 
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Figure 8-10: 3x3 control strategy (CS1-A) without feedforward enhancement. 

 



194 
 

 

Figure 8-11: 3x3 control strategy augmented with feedforward control (CS1-B) 
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8.5.1 Impact of Removing BCL: Analysis via IDV 

Bear in mind Chapter 6, the values of closeness index (CI) are as tabulated in Table 6-3. 

Using the values of CI in Table 6-3, we can form a matrix called the dominant variable 

interaction array IDV as: 

2bC � cd�,� d�,� d�,Ld�,� d�,� d�,LdL,� dL,� dL,Le � f0.002 0.019 0.0830.163 0.193 0.0840.167 0.194 0.051m  8-18 

Notice that the values of elements in the 1st row of IDV (i.e. values corresponding to 

S2 in the directions of performance measures) are largely small as compared to those in 

the 2nd row (values corresponding to S1). Thus, this indicates that S2 has larger influence 

than S1 on the performance measures (Yield, Conv and Prod). To assess whether it is 

sufficient to control only S2, let us invoke the algorithm described in Chapter 4 (Section 

4.4.4.5) to analyze the extent of interaction between the dominant variables and 

performance measures. Also let us specify that d�no � 0.09 for this case i.e. similar 

threshold value as in the IVV analysis described previously in Chapter 7 (Section 7.2.3).  

Inspection of the maximum element in the 1st row corresponding to the most 

influential dominant variable (S2) yields: 

 2�,�no � maxst,u|uwt…x12bC|�4 � 'yD10.002, 0.019, 0.0834 � 0.083 

As  2�,�no z 0.09, then this indicates that it is sufficient to control only S2 to meet 

all 3 overall performance measures:  we can ensure acceptable variations in performance 

measures just by controlling only S2. Thus, in light of this analysis the basic partial 

control design mentioned previously in Chapter 6 is “over controlled” in the sense that, 

there are too many controlled variables to achieve the overall performance measures. It 

is imperative in the control system design to control the minimum number of variables 

because this not only can result in lower cost but also can avoid the presence of BCL in 

the control system. As in this case study, if BCL does presence in the control system 

(which can be detected via SVA analysis), we must apply judicious analysis (e.g. using 

IDV) before we decide either to remove or keep the control-loop that is known to be BCL. 
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If IDV analysis shows that the removal of this BCL will not severely penalize the steady-

state performance (Ii,max < δmax), then it is justified to reduce the size of the control 

system by removing the BCL in order to gain better dynamic performance. 

8.5.2 Dynamic Simulation Results 

8.5.2.1 Disturbance Rejection: Fresh Substrate Concentration (∆So = ±30 

kg/m
3
) 

Figure 8-12 indicates the dynamic responses of the 3 performance measures when 

subject to step disturbance in So with magnitude of ±30 kg/m3. For Yield, there is no 

marked dynamic improvement using 3x3 control strategies (either CS1-A or CS1-B) 

over that of 4x4 control strategy with feedforward enhancement. On the other hand for 

Conv, there is a significant dynamic improvement with CS1-B (3x3 with feedforward 

enhancement) over that of CS1. Additionally, not only the settling time for Conv is 

fastest under CS1-B but also the peak change during the transient response is the 

smallest. It is interesting to note that, even without feedforward enhancement, the 3x3 

control strategy (CS1-A) exhibits significant improvement in the Conv dynamic 

response over that of CS1 for the case of step increase in So. However, no marked 

improvement in the Conv response is made when subject to step decrease in So. 

An interesting point to note is that, the 3x3 control strategies show the largest 

improvement in the dynamic response of Prod. Even without the feedforward 

enhancement, the 3x3 control strategy (CS1-A) can achieve significant improvement 

over that of 4x4 control strategy (CS1). It is rather surprising, however, that for the 3x3 

control strategies the dynamic responses of Prod are quite comparable with and without 

the feedforward enhancement. In other words, we can achieve good performance in term 

of Prod with 3x3 control strategy even without the feedforward enhancement – simple 

strategy that can do the work well. 
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Figure 8-12: Dynamic responses of performance measures (arrows indicate the settling times): magnitude 

of step disturbance in So = 30 kg/m3 
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Figure 8-13: Dynamic responses of controlled and uncontrolled variables: magnitude of step disturbance 

in So = 30 kg/m3 
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Figure 8-13 shows the responses of primary, inventory and constraint variables 

under different partial control strategies. Overall the dynamic responses of the 3x3 

control strategies are better than that of 4x4 control strategy in terms of faster settling 

time and smaller peak change during the transient period. Notice that, in term of primary 

variables (S2 and rx2) responses, the CS1-B gives the best dynamic performance 

followed by CS1-A. Also it is important to note that, the dynamic response of rx2 under 

CS1-A and CS1-B (3x3 control strategies) are significantly improved over that under the 

CS1 control strategy. 

Hence, this confirms close interaction between S2 (controlled variable) and rx2 

(uncontrolled variable) as suggested by the dominant variable interaction analysis 

previously. Another important point to note is that, the steady-state values of S2 and rx2 

under different control strategies tend to converge to within similar range of values i.e. 

small offset of rx2 under CS1-A and CS1-B. 

As can be observed from Figure 8-13, large improvement in the dynamic responses 

of inventory variables (L1 and L2) can be achieved with the 3x3 control strategies. Notice 

from that figure, the peak fluctuations in L1 and L2 are very small under CS1-A and CS1-

B as compared with the peak fluctuations under CS1. Such an improvement (i.e. 

reduction) in the inventory variables fluctuations is beneficial because it allows us to 

operate closer to the maximum bioreactor volume, which in turn improves the economic 

performance – the closer to maximum volume the better the economic performance. It is 

interesting to note that for the inventory variables case, CS1-A and CS1-B show very 

closed dynamic performance i.e. without and with feedforward enhancement show 

comparable performance. 
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Figure 8-14: Dynamic responses of other uncontrolled variables: magnitude of step disturbance in So = 30 

kg/m3 

Just like the inventory variables case, the dynamic responses of constraint variables 

(T1 and T2) also show significant improvement under 3x3 control strategies (peak change 

is small as compared with that under CS1). In addition, both CS1-A and CS1-B also 

show comparable performance. Figure 8-14 shows the other uncontrolled variables: Et1, 

Et2, Xv1 and Xv2. The result further confirm that the 3x3 control strategies are superior in 

terms of providing faster speed of response and lower peak change to 4x4 control 

strategy. Overall, the reduced size partial control strategies (3x3) demonstrates better 

dynamic performance than the 4x4 control strategy. Also it is interesting to note that, it 

seems that there is no loss in steady-state performance due to the removal of BCL from 

the 4x4 control strategy i.e. as expected from the result of assessment using the IDV index 

(Section 8.5.1). 
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8.5.2.2 Disturbance Rejection: Fresh Substrate Concentration (∆So = ±10 

kg/m
3
) 

Recall from Chapter 5, the TSCE alcoholic fermentation system is strongly nonlinear. 

Therefore, the large variation in the disturbance applied in the previous Section 8.5.2.1 is 

expected to significantly excite the nonlinearity of the system. But despite this large 

nonlinearity excitation, all of the partial control strategies studied so far have shown 

stable responses. It is interesting to find out how these control strategies perform against 

a relatively small disturbance magnitude i.e. change in So is only 10 kg/m3. In this case, 

we will compare only CS1 and CS1-A control strategies. 

From Figure 8-15, under the CS1 the dynamic responses of S1 and S2 are 

significantly faster (with lower peaks) than those under CS1-A. This result is opposite to 

the large step change in So (∆So = ±30 kg/m3) used in the previous section. However, the 

responses of inventory and constraint variables remain significantly faster under CS1-A 

than under CS1. For the case of inventory variables, recall that under CS1 when the 

disturbance magnitude is 30 kg/m3, L1 and L2 exhibit the opposite dynamic trends 

(closed-loop variables interaction is different from the open-loop variables interaction). 

Interestingly when the magnitude of disturbance is only 10 kg/m3, L1 and L2 show quite 

similar dynamic trends (i.e. having similar directions as predicted by the open-loop 

variables interaction) under the CS1 control strategy. However, the degree of interaction 

between L1 and L2 seem to be weaker under the CS1 than their degree of interaction 

under the CS1-A (i.e. L2 steady-state offset is quite large under the CS1 as compared 

with that under the CS1-A).  

This result however suggests that, the variables interaction characteristics can not 

only depend on the control structure but also depend on the operating conditions i.e. 

extent of nonlinearity excitation due to the disturbance occurrence. Figure 8.16 shows 

the dynamic responses of the performance measures which are quite comparable under 

both control strategies. Thus, for small change in disturbance, both control strategies 

CS1 and CS1-A seems to have almost comparable performance in term of meeting the 

overall control objective. However, CS1-A shows markedly better performance in terms 

of meeting the inventory and constraint control objectives. 
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Figure 8-15: Dynamic responses of controlled and uncontrolled variables correspond to ∆So = ±1.0 kg/m3 
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Figure 8-16: Dynamic responses of the performance measures: (a), (c) and (e) correspond to ∆So = 10 

kg/m3; (b), (d) and (f) correspond to ∆So = -10 kg/m3 
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8.5.2.3 Disturbance Rejection: Fresh Inlet Flow Temperature (∆To = 1 
o
C) 

Apart from the change in the fresh substrate concentration So, another important source 

of disturbance to the TSCE alcoholic fermentation process is the fluctuation in the 

temperature of the fresh substrate stream To. Therefore, it would be interesting to find 

out how the different control strategies (CS1 and CS1-A) respond to this temperature 

disturbance. To test their performance against To disturbance, a step change (increase) of 

1.0 oC in To is applied to the TSCE alcoholic fermentation system. 

Figure 8-17 shows the dynamic responses of the performance measures and 

controlled variables (S2, T2 and L1) against the step increase in To by 1.0oC. Note that, 

the responses of Yield, Conv and Prod are markedly better under the CS1-A than under 

the CS1. The greatest advantage of the CS1-A strategy over CS1 is the fast dynamic 

response of inventory variables under the former control strategy; sluggish responses of 

the inventory variables under the CS1. Notice also that there is a significant offset in the 

constraint variables as the temperature control only employs P-only controller. It is 

important to note that, we can remove the temperature offset by employing PI controller 

instead of P-only controller. 
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Figure 8-17: Dynamic responses of performance measures and controlled variables correspond to step 

change in fresh stream temperature, ∆To = 1.0oC 
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8.5.3 Implication of Different Control Strategies on Variables Interaction 

Note that from the previous Chapter 7, the implementation of the CS1 has changed the 

nature of variables interaction – closed-loop variable interaction is different from that of 

the open-loop for case of large variations in So (magnitude of change equals to 30kg/m3). 

It can be seen from Figure 8-13 that under the CS1, the responses of inventory and 

constraint variables i.e. pairs (L1 and L2) and (T1 and T2) are opposite to each other, 

hence implies they are negatively correlated under the closed-loop system. However, 

from the previous PCA-based analysis (open-loop system), we discovered that the pairs 

(L1 and L2) and (T1 and T2) are positively correlated with each other. Hence, this means 

that the variables interactions under the open-loop and closed-loop systems are different. 

The question is, to what extent does this difference affects the performance of a given 

partial control strategy? 

To answer this question it is important to bear in mind that, the central objective of 

PCA-based partial control design is to harness the benefit of variables interaction in such 

a way that the external control system functions synergistically with the inherent control 

system of a given process. Here, the inherent control system means that the natural 

tendency of the open-loop process to regulate itself e.g. self-regulating system. The 

existence of such an inherent control system is prevalence in most of the biological 

systems where the living microorganisms have the capacity to regulate their own 

environments. Meanwhile, the term external control system is referring to our choice of 

control strategy to control a given process. It is imperative for an effective control 

system design that both external and inherent control systems must work cooperatively 

in order to achieve a given set of operating objectives.  And the key to achieving this 

important goal is to understand the process variables interaction. 

Understanding of the variables interaction is essential because it ultimately 

determines two important decisions governing an effective design of control strategy: 

1) Which variables should be controlled (selection from the candidates)? 

2) How many variables should be controlled? 

These two decisions can be made following the PCA-based analysis which is 

actually an open-loop analysis. Accordingly, it is important to remember that, the result 

of the variables interaction analysis determining the two decisions above is from the 



207 
 

open-loop viewpoint. It follows that the main assumption of the partial control design 

based on this analysis is that, the resulting (external) control strategy design must 

preserve the open-loop variables interaction. Consequently, if the variables interaction is 

altered by the implementation of a chosen control strategy, we then expect that the 

performance of this control strategy will be sub-optimal. In other words, sub-optimal 

performance implies the deviation of the actual performance (e.g. variations in 

performance measures and dynamic responses) from what can be predicted from the 

result of open-loop PCA-based analysis. It should be remembered that such a sub-

optimal performance is the result of the non-cooperative nature of the chosen control 

strategy with the inherent control system of a given process. 

Now it becomes clear apart from the presence of BCL, the reason why the 

performance of CS1 is inferior to CS1-A and CS1-B (especially with large magnitude of 

disturbance) is due to the non-cooperative nature of CS1 with the inherent control 

system – design which does not lead to the synergistic external-inherent control system. 

When the disturbance magnitude is small (only 10kg/m3), the inventory variables under 

the CS1 (Figure 8-15) seem to regain their positive correlation (although their extent of 

interaction has now been weakened), and hence the SEIC property is improved. As a 

result, the performance of CS1 in this case is almost comparable with that of the CS1-A. 

In conclusion the better the SEIC property, the better is the expected performance of the 

control system involved. 

For a large disturbance magnitude, evidence of this non-cooperative nature is given 

by the fact that the closed-loop variables interaction (under the CS1) is different from 

that of the open-loop. On the other hand, the 3x3 control strategies (CS1-A and CS1-B) 

yield improved performance not only because of the BCL elimination from the control 

systems but also due to the preservation (minimization of the change) of the open-loop 

variables interaction. In other words, the 3x3 control strategies work synergistically with 

the inherent control system of the process; this is shown by the preservation of the open-

loop variables interaction. 

Now we can summarize that the bottom-line for an effective partial control design 

requires the fulfillment of two most critical conditions: 

1) Elimination of BCL from the control system. 
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2) Preservation of the open-loop variables interaction by the implementation of a 

chosen control strategy. 

Meeting these two conditions requires that the partial control strategy must be of 

certain size which is neither too large nor too small i.e. must be of optimal size. While 

the large size (too many controlled variables) can lead to the presence of BCL and 

possible alteration of the open-loop variables interaction, a size which is too small can 

lead to unacceptable variations in the performance measures. Dealing with this dilemma 

requires an effective tool to determine the sufficient number of controlled variables, such 

as the dominant variable interaction index (IDV) proposed in this thesis. 

8.5.4 Summary of Performances Comparison for CS1, CS1-A and CS-B 

Table 8-1 shows the integral absolute error (IAE) for CS1, CS1-A and CS-B for the case 

of ∆So = 30kg/m3. Obviously, the IAE values for CS1-A and CS-B are much smaller 

than that for CS1.  The most drastic improvement with the implementation of CS1-A 

and CS1-B is on the reduction of IAE for the Prod – much faster recovery of Prod under 

these two strategies than under CS1. Note that, even without PID enhancement the 

performance of CS1-A is much better than that of CS1 which is augmented with 

feedforward control. Of course, with the feedforward control enhancement the CS1-B 

shows quite a significant improvement over CS1-A especially in term of reduced IAE 

value for the Conv. From steady-state point of view, however, both CS-A and CS-B 

show almost equal improvement in performance over the CS1 in term of the variation in 

Yield. 

Table 8-2 shows the dynamic performance (in term of peak change during transient 

response) of the inventory-constraint variables. The CS1-A and CS-B show large 

improvement over CS1 in terms of reduced peak values in T2, L1 and L2. Unlike in the 

case of IAE for performance measures, both CS1-A and CS1-B exhibit comparable 

performance. In summary, with the optimal size of partial control strategy, we can afford 

not to use any PID enhancement technique. Therefore, the right size of control systems 

is fundamental in achieving the control objectives. 
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Table 8-1: Performance measures under different control strategies: ∆∆∆∆SO = ± 30 kg/m
3 

Performance 

Measure, ΦΦΦΦ 

Yield (%) Conv (%) Prod (kg/m
3
.hr) 

Control 

Structure 

CS1 CS1-A CS1-B CS1 CS1-A CS1-B CS1 CS1-A CS1-B 

IAE100 27.41 15.07 11.21 29.26 9.68 4.44 10.34 1.4 0.81 

∆φ (%) 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

IAE100 - integral absolute error taken up to 100 hours in simulation time 

 

 

 

Table 8-2: Maximum peak change (∆∆∆∆ymax,dyn) of variables under different control strategies: ∆∆∆∆SO = ± 

30 kg/m
3
 

Variable, y T2 (
o
C) T1 (

o
C) Et2 (kg/m

3
) L1 (m) L2 (m) 

CS1 32.1 30.7 41.9 5.34 6.65 

CS1-A 31.1 30.1 41.6 5.28 4.22 

CS1-B 31.2 30.1 41.2 5.33 4.22 

Nominal value 31.0 29.9 41.2 5.24 4.20 
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8.6 Summary 

For an effective partial control design, two important conditions must be fulfilled: 

1. Elimination of BCL from the control system design. 

2. Preservation (or minimization of change) of the open-loop variables interaction by 

the implemented control strategy. 

The bottleneck control loop (BCL) is defined as the control-loop which is 

responsible for limiting the dynamic performance of a given control system. It is crucial 

to remove the BCL rather than attempting to alter the controllers tuning in order to 

increase the speed of the overall dynamic responses. To eliminate the BCL from the 

control system, we can employ the SVD analysis in order to detect the presence of BCL. 

If the minimum singular value of KP ( "1./4 < 1) is very small less than unity, then 

this indicates the presence of BCL in the control system. Here K and P are the control 

system and linearized plant model respectively. For a good control system (with no 

BCL), it is desirable that "1./4 > 1. In the case study, the F1-rx2 has been identified as 

the BCL (in the preliminary analysis) which is confirmed by the SVD analysis. 

Meeting the second condition is the central goal in the effective partial control 

design, which is to ensure that the chosen (external) control system can work 

synergistically with the inherent control system of a given process. This goal can be 

achieved if the nature of open-loop and closed-loop variables interaction is similar. It is 

important to note that, this is also necessary because the PCA-based analysis is an open-

loop analysis. Therefore, the second condition arises from the main assumption that the 

open-loop variables interaction must be preserved by the control system implemented. 

From the partial control design perspective, the elimination of BCL and 

preservation of open-loop variable interaction requires a certain size of control strategy. 

A size which is too large (too many controlled variables) tends to introduce BCL and 

alter the open-loop variables interaction, which in turn lead to sub-optimal performance 

of the control strategy. On the other hand, the size which is too small (very few 

controlled variables) can lead to the unacceptable variations in performance measures 

and perhaps leads to lack of robustness again disturbances. Thus, there must be a trade-
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off size which can be determined using a tool such as the dominant variable interaction 

index i.e. to determine the sufficient number of primary controlled variables.  

The simulation results of three different control strategies show that the 3x3 control 

strategies (BCL i.e. F1-rx2 is removed) displays superior performance to the 4x4 control 

strategy. Even without the feedforward enhancement, the 3x3 control strategy (CS1-A) 

exhibits significantly better performance than the 4x4 control strategy which is 

augmented with the feedforward control, in terms of: 

1. Faster settling time of variables (controlled and uncontrolled) and the 

performance measures. 

2. Lower peak changes during the transient period of inventory-constraint variables 

and performance measures (i.e. smaller IAE values for Yield, Conv and Prod). 

Lower fluctuations (or peak changes) of the inventory variables under the 3x3 

control strategies means that we can push the operation of bioreactor closer to its 

maximum volume, which in turn can generally lead to economic benefit. Interestingly, 

the implementation of the 3x3 control strategy does not lead to a significant loss in the 

steady-state performance - the variations in the performance measures remain 

acceptable. This is expected from the result of analysis using the so-called dominant 

variable interaction index (IDV). 

It is important to point out that the implementation of the 3x3 control strategy does 

not change in a very significant way the open-loop variables interaction – both open-

loop and closed-loop variables interaction is more or less similar. In this case, for 

example, both L1 and L2 show positive correlation (similar to the open-loop correlation) 

under the 3x3 control strategies. In addition, the implementation of the feedforward 

control (CS1-B) apparently does not change the open-loop variables interaction. 

An important conclusion that can be drawn from this case study is that, a large number 

of controlled variables even if we can afford it (i.e. large number of manipulated 

variables is available) will not necessarily lead to a better performance than that of a 

small number of controlled variables. Indeed in partial control approach, the size of 

controlled variables set is extremely important in determining the effectiveness of the 

resulting control strategy; the study suggests that the smaller control system does not 

mean inferior to larger and more complex control systems. 
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9 CONCLUSIONS AND RECOMMENDATIONS 

9.1 Conclusions 

Almost four decades have passed since the critique of chemical process control theory 

by Foss in 1970s (1973) in which, he highlighted the gaps between the theory and 

practice in process control. His critique has ever since provided motivation and guidance 

to researchers in one of the most important design problems in modern process control 

today, known as the control structure design (CSD). The reason why CSD is very 

important is because it relates to the control philosophy of overall plant and as such, 

demands answers to 3 important questions: which variables to be controlled, which 

variables to be manipulated and what is the structure interconnecting these two sets of 

variables? Although it has long been realized that the impact of control structure design 

is far more important than the controller algorithm design, it is the latter which has 

enjoyed large research attentions in process control community. Perhaps this is not 

surprising because CSD is a very difficult, open-ended problem for which there is no 

precise mathematical formulation - hence it has no unique solution. 

Nevertheless research study in the last 3 decades into control structure problem has 

led to the development of various methods that can broadly be categorized into two 

major families: (1) mathematical approach, and (2) heuristic-hierarchical approach. Both 

approaches have their own advantages and limitations.  

9.1.1 Advantages and Limitations of Current CSD Approaches 

The primary advantage of mathematical approach such as the self-optimizing control 

structure method lies in its solid theoretical foundation within which the control 

structure problem can be addressed in a systematic manner. Moreover, such a theoretical 

foundation allows engineers to translate the set of control objectives which could be 

implicit in nature into a set of controlled variables. In fact, this is the fundamental issue 

to be resolved within CSD problem. Despite its attractiveness from theoretical 
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perspective, mathematical approach suffers from several limitations which probably 

have prevented its widespread acceptance in process industries. One of the main 

limitations is its reliance on mathematical optimization, which becomes impractical for 

systems with large number of input-output variables. When the number of input-output 

variables is large then this leads to prohibitively large number of control structure 

alternatives, which in turn leads to enormous computational effort. The second important 

limitation arises from the nonlinearity of the process system, which frequently leads to 

non-convex optimization. As a result, the solution of mathematical-based method might 

be sub-optimal. And the third important limitation associated with the mathematical 

approach is the difficulty in formulating the optimization problem, especially when it 

comes to multiple control objectives formulation. In this case, one of the main 

challenges is how to specify the weight on each of the control objectives. 

On the contrary to mathematical approach, the heuristic-hierarchical approach, for 

examples, the 5-tiered framework and 9-step procedure has enjoyed better acceptance 

among the industrial practitioners due to its simplicity. It is interesting to note that, many 

of the methods within this category still inherit the characteristics of dynamic process 

control concept, which was introduced by Buckley (1964) in 1960s. Notwithstanding its 

simplicity from the practitioners’ point of view, the heuristic-hierarchical approach 

possesses some limitations inhibiting its effective applications in process industries. One 

of these limitations arises from its heavy reliance on process knowledge and engineering 

experience. As such, the implementation of this method may not work well on a new 

process (or unfamiliar process) where experience about the process is scarce. 

Additionally, the novices will find it hard to implement this approach even to a familiar 

process because of their lack of experience. Even more serious limitation of heuristic-

hierarchical approach arises from its lack of theoretical foundation. As a result, it is not 

convenient (or even possible) to translate the set of control objectives especially those 

which are implicit in nature, into a set of controlled variables in a systematic manner. 

Hence, this frequently leads to the adoption of ad-hoc procedures in the selection of 

controlled variables in particular. 
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9.1.2 Data-Oriented Approach to Solving CSD Problem 

9.1.2.1 Theory 

In this thesis, we propose a novel data-oriented approach to solving control structure 

problem with an emphasis on the controlled variables selection. It is interesting to note 

that, the proposed approach represents a significant departure from the existing 

mainstream approaches in CSD. The approach is essentially the result of the integration 

of two major concepts, which are known as partial control structure (PCS) and principal 

component analysis (PCA).  

The PCS approach has been widely applied in process industries since the beginning 

of modern process control era because it can lead to simple and cost-effective control 

systems. Surprisingly, despite decades of industrial practice there has been no systematic 

tool or procedure available for the effective implementation of partial control strategy. In 

the absence of systematic tool, in most cases the implementations are done in a rather 

ad-hoc manner relying heavily on process engineering experience. As such, partial 

control also suffers from similar limitations as that of heuristic-hierarchical methods. 

But unlike heuristic-hierarchical methods, the PCS is built on a sound theoretical 

foundation, which has the potential to guide the engineers in selecting the controlled 

variables, known as the dominant variables. However, it is doubtful that the current 

practice relying heavily on engineering experience is able to realize this advantage – 

systematic tool is required.  

In view of the shortcomings of existing partial control framework, which relies 

heavily on process experience, we propose in this thesis a modification of this 

framework in such a way to accommodate the application of a novel PCA-based 

technique for identifying the so-called dominant variables. Whereas in the generalized 

(classical) concept of partial control, the control objectives are implicitly lumped 

together into a set of variables known as the performance variables, in the refined (new) 

concept of partial control framework the control objectives are strictly divided into 3 

main categories: (1) overall (implicit) performance objectives or measures, (2) constraint 

control objectives, and (3) inventory control objectives.  
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Accordingly, the distinguishing feature between the classical and new frameworks 

rests on the significance of dominant variables. In the classical framework the 

significance of dominant variables is attached to all 3 types of control objectives i.e. 

overall, constraint and inventory control objectives. We believe this approach is at most 

only capable of meeting the constraint and inventory control objectives and not the 

overall performance objectives. The reason is that, it is not convenient (i.e. far from 

obvious) or even possible to translate the implicit performance measures into a set of 

controlled variables based on experience without any systematic tool. As a consequence, 

the classical framework is likely to lead to sub-optimal control strategy that can only 

achieve the inventory and constraint control objectives. 

Conversely, within the new framework we attach the existence of dominant 

variables only to the overall performance measures, which are normally implicit 

functions of process variables. Therefore, it follows that the search for the dominant 

variables is restricted only to finding, which variables that are strongly linked to the 

overall performance measures. Also note that, within the new framework of PCS this 

task is accomplished through a systematic tool known as the PCA-based technique. 

Unlike the dominant variables relating to the implicit performance objectives, the 

variables which define the inventory and constraint control objectives can normally be 

identified directly from process (unit operation) knowledge, and thus, no specific tool 

may be required to identify them i.e. no substitute to good knowledge.  

Within the new theoretical framework of partial control, not only that a tool (PCA-

based technique) is introduced to identify the dominant variables but also a clear 

definition for the dominant variables is established. Bear in mind that, there has been no 

proper definition for the dominant variables within the context of generalized framework 

of partial control.  It is important to note that, the keys to successful application of this 

PCA-based technique are the fulfillment of 3 important factors: (1) dominant variable 

(DV) criteria, (2) successive dataset reduction (SDR) condition, and (3) critical 

dominant variable (CDV) condition.  

Having identified the set of dominant variables, an important question then follows; 

do we need to control all of the dominant variables, which in this thesis are referred to as 

the primary control variables. Also the same question can be asked for the case of 
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inventory and constraint variables once we have fully identified them via unit operation 

knowledge. Surprisingly, the key to answering this question hinges on our understanding 

of the so-called variables interaction.  

When the candidate (dominant or inventory or constraint) variables are strongly 

interacted or correlated among each other, then it is not necessary to control all of them. 

Therefore, even if we only control a subset of the candidate variables, the other variables 

will be indirectly controlled by virtue of their interaction with the controlled variables. 

Then, this leads further to other important questions: (1) which candidate variable/s 

should be controlled, and (2) how many variables should be controlled? With regard to 

the first question, the answer depends on the type of control objectives. 

For the overall control objectives, we introduce the concept of closeness index (CI) 

to rank the influence of each dominant variable on the performance measure/s. Of 

course, the most influential dominant variable should be controlled. As for the 

inventory-constraint variables, we can rank the significance of each variable based on 

process knowledge e.g. the constraint variable that is known to be the most critical must 

be controlled. To augment the ranking analysis, we also propose heuristic guidelines to 

select the primary, inventory and constraint controlled variables from their 

corresponding candidate variables. 

Next, to answer the second question we propose two quantitative tools known as: 

(1) dominant variable interaction index (IDV), and (2) variable-variable interaction index 

(IVV). Both indices are derived from the concept of closeness index. The IDV is used to 

assess the sufficient number of dominant variables that needs to be controlled, which 

will lead to acceptable variations in performance measures. Likewise, IVV is used to 

assess the sufficient number of inventory-constraint variables to be controlled such that, 

the variation of the other uncontrolled inventory-constraint variables are within an 

acceptable range in the face of external disturbance occurrence. 

9.1.2.2 Application and New Insights 

The data-based approach of partial control incorporating the PCA-based technique is 

successfully applied to the case study: the two-stage continuous extractive (TSCE) 

alcoholic fermentation system. This system exhibits strong nonlinear behaviour arising 
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from the complex kinetics of the yeast used – dynamic controllability analysis (Chapter 

5) indicates that the strong nonlinear behaviour can pose difficulty to control system 

design. Some new insights crystallize from the nonlinear simulation study as follows: 

1. It is possible to design a basic partial control strategy for the TSCE alcoholic 

fermentation system, which focuses only on the performance measures – this will 

normally lead to the smallest size partial control system. However, it should be 

remembered that whether the basic partial control strategy is able or not to 

stabilize a system, and at the same time ensures acceptable loss in performance 

measures due to disturbance occurrence depend very much on the system of 

interest. 

2. It is shown that the set of dominant variables is non-unique from the classical 

partial control framework viewpoint because of the variables interaction. 

3. Variables interaction is the working principle governing the partial control 

strategy – thus, understanding this interaction is crucial for an effective partial 

control design. 

4. The effectiveness of partial control strategy depends on two critical conditions: 

a) The presence of bottleneck control loop (BCL), which imposes limitation 

on overall control system performance must be avoided. Singular value 

decomposition (SVD) analysis on KP can be used to detect the presence 

of BCL in the control system K which is applied to a plant P. 

b) The open-loop variables interaction must be preserved by the 

implementation of the (external) partial control strategy. When this 

condition is fulfilled then, we say that the external control strategy works 

synergistically with the inherent control system of a given process. 

In 1970s Foss raised 3 important questions which finely articulated the essence of 

control structure problem: which variables to be controlled, which variables to be 

manipulated and how these two sets are connected? But in light of the study described in 

this thesis, there is a reasonable ground to believe that these are not the only 

philosophical questions we should seek to answer when dealing with CSD problem. Just 

as important question requiring careful consideration is how many variables should be 
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controlled? Unfortunately, this last question has never been raised before in the history 

of CSD research. 

The last question points to the significance of variables interaction which is 

recognized in this thesis as the working principle governing the partial control design. In 

other words, we cannot design an effective partial control strategy without proper 

understanding of the nature of variables interaction possessed by a particular process of 

interest. It is important to note that, unless we address the last question in a systematic 

manner, there is a great possibility that the resulting control system will be non-optimal 

in size i.e. either too many or too few controlled variables. 

Finally, though research work in control structure problem has spanned over 3 

decades, the bulk majority of methods developed over this time period has ignored the 

significance of variables interaction. As process systems are characterized by variables 

interaction, it is hard to believe that the current mainstream methods for solving the CSD 

problem are capable of producing an optimal size control system. In this regard, the 

proposed data-based approach (or more specifically PCA-based technique) described in 

this thesis represents the first method, which can systematically deal with the process 

variables interaction – thus, makes it possible to determine the optimal size of control 

system. 

9.1.3 Key Advantages of Data-Oriented Approach  

The dynamic simulation results in this work demonstrate that the proposed data-oriented 

approach has the capability of unifying the advantages of both mathematical and 

heuristic-hierarchical approaches. Even more interesting, it can effectively overcome the 

limitations faced by these two mainstream approaches. In short, we can identify the 

advantages of the data-oriented approach as follows: 

1. It shares the primary advantage of mathematical approach in the sense that it has 

a sound theoretical foundation, which is based on the concept of partial control.  

Hence, it enables the engineers to address the CSD problem in a systematic 

manner. 

2. Unlike mathematical-approach, the data-oriented approach does not require any 

optimization. Also it can be applied to real plant as well as to simulated plant. 
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Note that, it is not possible to directly applied mathematical-approach to real 

plant. 

3. It is simple to follow and yet it provides effective solution to the complex CSD 

problem in the sense that, the resulting control system is simple, i.e. low 

dimension. 

4. The PCA-based technique makes it possible for the engineers to identify the 

dominant variables without the need for rigorous process engineering experience. 

5. Within the refined framework of partial control, the PCA-based technique can 

help the engineers to gain insights into the nature of variables interaction (i.e. 

output-output variables interaction). Neither mathematical nor heuristic-

hierarchical approach is capable of handling this variables interaction in a 

systematic manner.  

9.2 Recommendations 

We suggest the following for further improvement and future research direction for the 

data-oriented approach: 

1) Robustness 

If the approach is applied to real plant, then one of the important issues is the robustness 

of the analysis using the proposed PCA-based technique against noise in the 

measurement data. Filtering technique to remove the effect of noise from the 

measurement data is required, such that the PCA-based technique can reliably be 

applied. 

2) Extension of the approach to multi-scale system 

Currently the approach is applied to a system which is modeled based on the 

unstructured (macroscopic) kinetics – hence, it is a single-scale system. Bioprocess can 

be modeled based on the structured metabolic model which will lead to multi-scale 

system. In near future it will become possible to control both macro- and micro-scale 

variables leading to multi-scale control system. So, extension of the current approach to 

multi-scale system can facilitate the multi-scale control structure design in 

biotechnological processes. 
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3) Extension to decentralized model predictive control (MPC) design 

Decentralized MPC design for large-scale system is a challenging issue where, the best 

approach is probably based on the corporation scheme. In this scheme the algorithm is 

developed in such a way that the interaction among the MPCs is directly taken into 

account. But this scheme requires more complex and heavy computational effort than 

the completely decentralized MPC scheme. Thus, we ask ourselves a question, is it 

possible to design a decentralized MPC system without modifying the original algorithm 

as in the case of complete decentralized scheme? A lesson from the partial control study 

in this thesis points to the importance of understanding variables interaction. From this 

perspective, the system can be decomposed using the PCA-based technique (perhaps 

modification of its existing form is required) to yield groups of candidate variables. Note 

that, the variables interaction must be strong within each group but must be negligible 

across different groups. Then, a separate MPC is designed to control selected variables 

for each group – this is to ensure minimum interaction among the MPCs. It is important 

to note that, however, this approach is in a sense resembles that of partial control using 

completely decentralized PID controllers. The only difference is that the number of 

controllers is reduced for the case of decentralized MPC. We think this might lead to a 

better result than the currently complete decentralized (or even corporation) MPC 

scheme, although we let the future study speaks for the validity of this presumption. 
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