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Abstract 

In this contribution the integer least-squares estimation of 

the double differenced L 1 and L 2 ambiguities is analyzed, 

under the provision that the relative receiver-satellite 

geometry is dispensed with. The variance-covariance matrix 

of the ambiguities is instrumental for gaining insight into 

the characteristics of the ambiguity fixing process. A 

qualitative geometric description in detail is therefore given 

of the ambiguity search space. The elongation, the 

correlation coefficient and the areas of the ambiguity search 

space and its enclosing boxes are all given as function of 

the ratio or product of the carrier phase and code standard 

deviations. It is shown that the ambiguity search space is 

very elongated and that the ambiguities are highly 

correlated. It is also shown how the high correlation 

between the ambiguities can be used to ones advantage for 

the transformation to new ambiguities. This is done by 

means of the least-squares ambiguity decorrelation 

adjustment method. The improvements in terms of 

decorrelation, elongation and precision are shown and the 

corresponding optimal time-invariant ambiguity 

transformations are given for a practical range of code and 

measurement precisions. 

1. Introduction 

High precision relative GPS positioning is based on the 

very precise carrier phase measurements. The GPS double 

difference carrier phase measurements are however 

ambiguous by an unknown integer number of cycles. This 

implies that the time span needed for precise positioning is 

determined to a large extent by the time span of data which 

is needed to resolve for the integer double difference 

ambiguities. A significant reduction in the required 

observational time span can be achieved, when the integer 

ambiguity estimation process is integrated with the least- 

squares adjustment of the baseline. For most surveying 

applications, this is the common mode of operation. It 

allows for instantaneous or almost instanteneous 

positioning, depending on whether both code and carrier 

phase measurements or carrier phase measurements only 

are used, see e.g. [Blewitt, 1989], [Fret and Beutler, 1990], 

[Hatch, 1991], [Wfibbena, 1991], [Euler and Landau, 1992], 

[Teunissen, 1993] and [Tiberius and de Jonge, 1995@ The 

reduction in the required time span is achieved due to the 

inclusion into the integer estimation process of the relative 

receiver-satellite geometry. As a result, redundancy 

increases and therefore in general, a significant increase in 

likelihood of the integer least-squares solution is obtained. 

Integer ambiguity estimation is however also possible when 

one opts for dispensing with the relative satellite-receiver 

geometry, see e.g. [Hatch, 1982], [Euler and Goad, 1990], 

[Dedes and Goad, 1994] and [Euler and Hatch, 1994]. In 

fact, from a conceptual point of view, this is the simplest 

approach to integer ambiguity estimation. The code 

measurements are then directly used to determine the 

unknown integer ambiguities of the observed carrier 

phases. In case the code measurements are of poor 

precision though, a major disadvantage of this technique 

when compared with the approach discussed above is the 

length of the observational time span needed to obtain 

sufficiently precise estimates of the carrier phase 

ambiguities. This is due to the fact that the variance of the 

estimated ambiguity is dominated by the variance of the 

code measurements divided by tile number of measurement 

epochs used. Hence, reliable integer fixing of the ambiguity 

becomes feasible only when sufficiently precise code 
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measurements are available 

number of samples are taken. 

and/or when a sufficient 

Despite the mentioned drawback of directly using the code 

measurements for ambiguity fixing, it is felt that a 

systematic study of this rather straightforward technique is 

still warranted. The four major reasons for the author are: 

(a) the still ongoing technical developments for improving 

the precision of the code measurements; (b) to show how 

this technique fits into the general theoretical framework of 

ambiguity fixing; (c) to present results which are of an 

analytical nature; and (d) to allow for a comparison with 

the results that can be achieved when the relative receiver- 

satellite geometry is incorporated into the ambiguity fixing 

process. In view of the increased relevance of code 

measurements, it becomes of importance to know to which 

extent reliable ambiguity fixing is feasible for different 

measurement scenarios. In order to gain a qualitative 

insight, use will be made of analytical results rather than 

only numerical results. 

In section 2, both the single and dual frequency case will 

be considered. It will be assumed that the data pertain to 

relatively short baselines such that the ionospheric delays 

may be ignored. For the dual frequency case, the variance- 

covariance matrix of the ambiguities will be given. This 

matrix is instrumental for gaining a qualitative insight into 

the characteristics of computing the integer least-squares 

ambiguities. In section 3, the geometry of the ambiguity 

search space is analyzed. Diagnostic measures used, are: 

the correlation coefficient, the elongation and the areas of 

both the ambiguity search space and its enclosing boxes. 

These diagnostic measures have also been used by 

Teunissen [1994a] for characterizing the ambiguity search 

space in case the relative receiver-satellite is taken into 

account. Based on these diagnostic measures, the impact of 

the shape of the ambiguity search space on the integer 

least-squares estimation can be described. This is done in 

section 4 for the special case of exact carrier phase data 

and in section 5 for the general case. Finally in section 6, 

the decorrelation of the L 1 and L z ambiguities is taken up 

by means of the least-squares ambiguity decorrelation 

adjustment. The Least-squares AMBiguity Decorrelation 

Adjustment (LAMBDA) has been introduced in [Teunissen, 

1993]. It is a method for the efficient computation of the 

required integer ambiguities. The two main steps of the 

method are: (a) the decorrelation of the least-squares 

ambiguities; and (b) the sequential conditional least-squares 

based search. An elementary presentation of the basic 

principles of the method is given in [Teunissen et al., 1995] 

and [Tiberius and de Jonge, 1995b], and numerical results 

obtained with the method when applied to fast single 

baseline computations are given in e.g. [Teunissen, 1994a] 

and [Tiberius and de Jonge, 1995a]. In the present 

contribution, the decorrelation of the ambiguities is studied 

analytically as well as numerically. The class of ambiguity 

transformations which can be used for the decorrelation 

process, has been discussed in [Teunissen, 1995a] and an 

extensive review of the method is given in the lecture 

notes of the International School "GPS for Geodesy" 

[Teunissen, 1995b]. 

2. The single and dual frequency case 

In order to provide for a reference, we will first consider 

the case where only single frequency data of code and 

carrier phases are available. If  we assume these data to 

pertain to a relatively short baseline such that the 

ionospheric delays may be ignored, then - when expressed 

in units of range (rather than cycles) - the double difference 

carrier phase measurement on L 1 at time epoch i, ~1(/), 

and its corresponding double difference code measurement, 

P~(i), can be represented in their simplest form as 

001( 0 = p(i) +£,N, (1) 
P~(i) = p(i) 

In this pair of equations, p(i) includes all terms that are 

common to both qbl(/) and Pl(i). Hence, p(i) includes the 

double difference form of the range from receiver to 

satellite, as well as the tropospheric delay. The wavelength 

of the L 1 carrier is denoted as £1 (~n = 19 cm) and N~ 

denotes the integer double difference carrier phase 

ambiguity of ~l" The ambiguity N 1 is assumed to be 

constant in time. 

The time-averaged real-valued estimate of the ambiguity 

follows from (1) as 
k 

1 
N1 = -~lki~= l (~1(i) -Pl(i)) (2) 

The most likely integer estimate of the ambiguity is then 

obtained from a simple rounding of Ar I to its nearest 

integer. In order to validate the most likely integer 

ambiguity estimate, we of course still need to infer the 

likelihood of the above integer estimate. Based on the 

assumptions that: (a) unmodelled effects in (1) are absent; 

(b) the variances of q~l(i) and P~(i) are time-invariant; and 

(c) ~1(/) and Pl(i) are not cross correlated nor time 

correlated; an application of the error propagation law to 



(2), gives the variance of N~ as 

4@ 
= +(r,/(re) (3) a _7.77(1 2 2 (rN, Llk 

Note that the variances cy 2 and @ in this expression, are 

the variances of the undifferenced carrier phase and code 

measurements. Since the precision of the code 

measurements is much poorer than that of the carrier phase 

measurements ((r,~ << (re), equation (3) clearly shows that 

the precision with which the ambiguity can be estimated, 

is dominated by the precision of the code measurements. 

Based on a standard deviation of the undifferenced carrier 

phase measurement of (re = 0.3 cm, table 1 shows, for 

different values of k and (re, some typical values the 

standard deviation of N1 can take. It will be clear from the 

results of this table, that a reliable integer fixing of theL 1 

ambiguity becomes feasible only, when sufficiently precise 

code measurements are available and/or when a sufficient 

number of samples are taken. As an example consider a 

time spacing of  5 seconds between the samples. In case cye 

= 30cm, this would then imply an 8.3 minutes 

observational time span, to achieve an ambiguity standard 

deviation of 0.3 cycles. 

%1 (cycle) 

k= l  
k=10 
k= 100 
k = 1000 

%=60cm %=45cm ~p=30cm %=10cm 

6.3 4.7 3.2 1.1 
2.0 1.5 1.0 0.3 
0.6 0.5 0.3 0.1 
0.2 0.1 0.1 0.03 

Table 1: Standard deviations (in cycles) of the time- 

averaged single frequency L~ ambiguity estimates for 

varying k and (re, with c% = 0.3cm. 

One can expect that the situation improves, in case dual 

frequency data are used. In the dual frequency case, the 

double difference equations for phase and code read 

% ( 0  = p(/) +~N,  
qb2(i ) = p(i) +£2N2 
*'~(i) = O(0 
P~(O = 0(0 

(4) 

These are four equations in three unknowns, with the 

redundancy of one being due to the presence of the code 

measurement on the second frequency. Again we will 

assume that the observables have time-invariant variances 

and that they are not cross correlated nor time-correlated. 

We will also assume that the variances of the observables 

are frequency independent. Thus, ~,~, = (r.~ = cy,~ and 
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(re, = ~e~ = c~e. The least-squares solution for the two 

ambiguities, based on a k number of  samples, follows then 

a s  

k 
1 

N1 = "-~lki~= l (~,(i) -(Pl(i) + P2(i))/2) 
k 

N2 = + ~= ~ (dOz(i) -(Pa(i) +P2(i))/2) 

(5) 

Note that the two ambiguities are correlated due to the 

presence of the code measurements. The ambiguity 

variance-covariance matrix follows from an application of 

the error propagation law to (5) as 

[21 (rN~ (r 
Q~= ~N~ 

(rN~, (rN~ J 

+ 2c~ / ~e) 2 4  (z2/~1)( 1 2 2 

~ik2 k 1 
1 1 2 2 

(~/£2)(1 +2(r,/crp) 

(6) 

It is remarked that if one would replace @ in (6) by 2@, 

one would get the ambiguity variance-covariance matrix, 

that belongs to the model which uses dual frequency phase, 

but single frequency code. Note, if we neglect the carrier 

phase variance in (6), that, when compared to the single 

frequency case (3), the variances of the two ambiguities 

have improved by a factor of  two. For a single epoch 

(k=-l), the standard deviations of the two ambiguities read 

in cycles: cru, _-- 4.46 and (rN~ ~ 5.72, when (~. = 0.3cm 

and • = 60cm, and (rN, ~ 0.74 and (rN~ -= 0.95, when (r~ 

= 0.3cm and (rp = 10cm. It should be stressed however, 

that in the present case, it is not sufficient to consider only 

the precision of the individual ambiguities. That is, the 

most likely integer estimates of the two ambiguities are not 

obtained from a simple rounding of the real-valued 

estimates of (5) to their nearest integer. Hence, in the dual 

frequency case it generally does not make much sense to 

come up with a table, like table 1, showing the standard 

deviations of the L~ and L 2 ambiguities. This is due to the 

fact that the two ambiguities are correlated. Hence, in order 

to be able to come up with the most likely integer 

ambiguity estimates, the complete ambiguity variance- 

covariance matrix of the two ambiguities needs to be taken 

into account. 

It is interesting to observe what can be said when, instead 

of (5), one would use the following ambiguity estimates 
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k 
N,= (**(i)-e,(i)) 

(7) 
k 

AI~ = ~ £ (OO=(i)-P2(i)) 
t~'2t~ i = 1 

Note, that these two ambiguities are now uncorrelated. 

Hence, their ambiguity variance covariance matrix is 

diagonal, which implies that the two ambiguities can now 

be treated independently using the simple scheme of 

rounding to the nearest integer. This may seem to be an 

advantage. A closer look however, will reveal that this is 

not true. In order to see this, first note that N 1 follows 

from a least-squares adjustment that is based on the first 

and third equation of (4) and that 3/; follows from a least- 

squares adjustment that is based on using the second and 

fourth equation of (4). But this implies, that one is not 

making use of  a dual-frequency adjustment. Instead, one is 

applying a single frequency adjustment, which is executed 

twice for each of the two frequencies separately. As a 

result, one is disregarding the redundancy which is present 

in the four equations of  (4). Disregarding redundancy 

implies a neglect of information, which otherwise could 

have been put to a good use in the ambiguity fixing 

process. The important point to understand is therefore, that 

the correlation present in (5) is to our advantage and not to 

our disadvantage. It is to our advantage in the sense that 

with (5) one will be more successful when validating the 

integer least-squares ambiguities, then when using (7). Of 

course with (5), one cannot use the simple scheme of 

rounding to the nearest integer. But this does not matter, 

since the transformation and search step of the LAMBDA- 

method takes care of this situation in a very efficient 

manner. In fact, as it will be shown in the sections 

following, the ambiguity transformation of the LAMBDA- 

method makes use of the existing non-zero correlation, so 

as to come up with new ambiguities that are largely 

decorrelated and that are also much more precise than the 

original ambiguities. 

3. The geometry of the ambiguity search space 

In order to get a better understanding of the relevance and 

implications of using the complete variance-covariance 

matrix, this section will introduce diagnostics for 

characterizing the size and shape of the ambiguity search 

space. The ambiguity search space is defined as the set of 

vectors N~R 2 that satisfy the inequality 

( ~ - ~ 0 * Q ~ ' ( ~ - ~  - z 2 , (8) 

with ~r = (19,,~2)* and Z 2 being a suitably chosen 

constant. The ambiguity search space is ellipsoidal and 

centred at N. The shape of the search space is governed by 

the variance-covariance matrix QN and its size can be 

controlled by Z 2. First we will give an indication of what 

one can expect from the shape of the ambiguity search 

space. After that, we will consider the elongation of the 

ambiguity search space, the ambiguity correlation 

coefficient and the areas of the ambiguity search space and 

its enclosing boxes. 

Shape of ambiguity search space 

A first indication of  the shape of the ambiguity search 

space is obtained from the observation that the ambiguity 

variance-covariance matrix (6) can be written as the sum of 

two special matrices: 

ON = ~1~2"-" ~ ~1/~2 
(9) 

+ 2c 2 (~2/k1)'121[(~2/~1)112 / * 

£,X2k (9~,/~.2) 1/2 ] [(X1/X2)'/2J 

The first matrix in this sum is diagonal, having entries 

which are very small due to the high precision of the 

carrier phase measurements. The second matrix in this sum 

is of rank 1. Due to the relatively poor precision of the 

code measurements, its entries are large compared to the 

entries of the first matrix. This type of decomposition, 

where the variance-covariance matrix of the ambiguities 

can be written as the sum of a full rank matrix and a 

matrix of less than full rank, is very typical for GPS. The 

relevance of this type of decomposition in terms of the 

shape of the spectrum of conditional ambiguity variances 

was already stressed by the author in [Teunissen, 1993]. Its 

implications for the computation of the integer least-squares 

ambiguities are shown in [Teunissen, 1994b] and 

[Teunissen et al., 1994]. Analytically worked out synthetic 

examples are given in [Teunissen, 1995b]. 

The variance-covariance matrix QN is diagonal when % = 

0. Hence, in that case, correlation between the ambiguities 

will be absent and the principal axes of the ambiguity 

search space will be aligned with the grid axes. In practice 

however, this will not be the case since csp>0. In fact, 

since ~ .  << cr v in practice, a direct consequence of the 

above decomposition, is that the ambiguity search space 

must be very outstretched. That is, it will be very narrow 

in nn~ d i r~e t inn  and r a the r  len~rthv in the other ortho~onal 



direction. This can be seen as follows. Assume for the 

moment that cy. = 0. The matrix QN will then fail to be of  

full rank. In fact it is of  rank 1. This implies that the 

corresponding ambiguity search space, instead of  being 

ellipsoidal, collapses to a single straight line interval. Now 

assume that c% is positive, but still very small. The matrix 

QN will then theoretically be of  full rank. Numerically 

however, it will have a near rankdefect. The vector 

e I = ( ( ~ , 1 / ~ 2 ) 1 / 2 ,  --()L2/~.1)1/2) * , which is orthogonal to the 

column vector of  the above rank-1 matrix, may then be 

considered an approximation to the eigenvector of  QN 

be longing  to the smal les t  e igenvalue.  Using 

el*QNel/e~*el = [~1,  the smallest eigenvalue can be 

approximated as 
2 

: 8 - ~  (1/(~.2~ +~.22)) (10) 
gl 

Since g~ is very small indeed, it follows that the ambiguity 

search space will be very narrow in the direction of e 1 . 

The column vector of  the above rank-1 matrix itself, 

e 2 = ( ( ~ , 2 / ) L 1 ) 1 / 2 ,  (~.1/~.2)1/2) * may be considered to 

approximate the eigenvector of  QN belonging to the largest 

eigenvalue. Using e2* QNe2/e2* e 2 = P2 and neglecting cy®, 

the largest eigenvalue can be approximated as 
2 

= 2 - ~  (1/£21 + 1/),22) (11) g2 

From (10) and (11) follows that the small eigenvalue is 

governed by the precision of  phase, whereas the large 

eigenvalue is governed by the precision of  code. Since 

g2 >> gl,  it follows that the ambiguity search space can 

indeed be considered to be outstretched in the e 2-direction. 

Elongation of the ambiguity search space 

The elongation eN,N~ is a numerical measure for the shape 

of  the ambiguity search space. The elongation is defined as 

the ratio of  the length of  the major axis and the length of  

the minor axis o f  the ambiguity search space. Hence, it 

equals the square-root of  the ratio of  the largest and 

smallest eigenvalue of  QN" The elongation follows from (6) 

a s  

1 +(1 -rZ)l/Z)m ' 
eN*N~ = ( 1 - (1  - r 2 )  1/2 

(12) 

with 

r = 4((1 +cy2/cy2)</2+(1 +(~Y2p/(y2)l/2)-l(~.l/~2+~2/~l)-l. 

Note that the elongation is independent of  k. Hence, the 

number of  samples used will not effect the shape of  the 

ambiguity search space. Also note that the elongation is 

cy®/clp. In uniquely determined by the variance ratio 2 z 
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general, elongation lies in the interval [ 1, oc). The ellipse 

reduces to a circle when e = 1 and it collapses to a straight 

line when e ---> oo. In our case, we have eN, N2 = 1 when 

r = 1 and eN,N2 = oo when r = 0. The caser  = 0 

corresponds with cye/cy . = oo. This shows that the 

ambiguity search space will be very elongated when the 

precision of the code is poor with respect to the precision 

of  phase or, vice versa, when the precision of  phase is very 

high with respect to the precision of  code. Since in practice 

we indeed have c % < < % ,  one can expect that the actual 

ambiguity search space is very elongated. For 

c% = 0.3 cm and % = 60 cm, we have eN, u2 = 206. This 

shows that if  the minor axis of  the search space would be 

1 cm long, its major axis would be about 2 meters long. 

The elongation is pushed towards its minimum value of  

one, the smaller the ratio crp/~,  gets. Hence, the ambiguity 

search space will become less elongated the more precise 

the code measurements are, relative to the precision of  the 

carrier phase measurements. In our case however, the 

minimum value e~,N~ = 1 Can never be reached. The closest 

we can get to this value is when % / c %  = 0. In that case 

r reaches its maximum value of  r = 2/()~1/~. 2 +)~;/)~l) and 

the elongation reaches its minimum value of  eN,N2 = )~z/)~l. 

The ambiguity correlation coefficient 

As a measure for the dependency between 291 and 292, we 

consider the correlation coefficient p~,&. As the elongation, 

the correlation coefficient is dimensionless. It follows from 

(6) as 

= + Z ~ o l ~ p )  p~,&, (1 ~ 2 .  2,,_ 1 (13) 

This result shows, as it was the case with the elongation, 

that the correlation coefficient is independent of  k and that 
2 2 it is uniquely determined by the variance ratio cy . /~p .  The  

correlation coefficient is thus determined by the precision 

of  the phase measurements relative to the precision of  the 

code measurements. A change in code variance from 

(60cm) 2 to (10cm) z is a major improvement for the 

precision of  the code measurements, but it will increase the 
2 2 variance ratio cy,/cyp by the same factor - 36 in this case - 

as when the carrier phase variance changes from ( lmm)  2 to 

(6mm) 2. 

It follows from (13), since cs. <<  % in practice, that the 

two ambiguities 291 and 292 will be highly correlated 

indeed. In fact, when c% = 0.3cm, we have 9&& = 0.99995 

for cyp = 60era and p&~ -- 0.9982 for Crp = 10cm, showing 

that the correlation coefficient stays very close to 1 for the 
2 code precision range considered. Since ( 1 - p & & )  = 

2 2 2 2 2 2 
cy&t&/cs & = Cy&l&/~&, with Cy&l & and ~,lZ¢,_ being the 
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conditional variances, the high correlation implies that the 

conditional variances of  the two ambiguities are very much 

smaller than their unconditional counterparts. The 

conditional variance of  the L 2 ambiguity reads for instance 

8 ~  
2 --2T7(1 +(1 2, 2,-1,-1 (14) = + ~ p I G . )  ) . 

cr ~ I~, ~2 k 

From this it follows for k=l,  that ~,1~, ~ 0.03 cycle, 

when or. = 0.3cm and c~p = 60cm. This shows, that once 

the first ambiguity is known, the second ambiguity can be 

fixed to an integer with a high confidence. 

Area of search space, eigenvalue-box and sigma-box 

In [Teunissen, 1993], the author introduced the area of  the 

ambiguity search space as a measure to indicate the number 

of  grid points located in the search space. As such it can be 

used as a reliability measure for validation. For instance, 

when the area of  the ambiguity search space is small 

enough, such that only one single grid point is located in 

it, one can expect validation to be more successful. Figure 

la  shows the ellipsoidal ambiguity search space and its best 

fitting 2-dimensional box. Since the two sides of  this box 

are determined by the two eigenvalues of  the variance- 

covariance matrix QN, this box will be referred to as the 

eigenvalue-box. The area of  the ambiguity search space, 

AN, and the area of  the eigenvalue-box, A ,  are both 

determined by the determinant o f  QN. They read 

A N = xZ 2 (det Qu) m a n d A  = 47~ 2 (det QN) m (15) 

The determinant of  QN follows from (6) as 
2 2 

det (QN) = 16or*eYe( 1 +cry/cry). (16) 
~2~2/r2 

The determinant does, o f  course, depend on k. The more 

samples are used, the smaller the ambiguity search space 

becomes. For k=-l, ~ = 0.3cm and c~ e = 60cm, we have 

(det QN) 1/2 = 0.155, from which it follows that A N = 4.87 

(cycles) 2 and A = 6.21 (cycles) 2 for ~2 = 10. The value 

A N = 4.87 (cycles) 2 indicates, that the number of  grid 

points inside the ambiguity search space can be expected 

to be of  the order of  five. When A N is significantly smaller 

than one, one can expect that the ambiguity search space 

contains only one grid point. Table 2 gives the range of  

values the area A N can typically take. Assuming that the 

data are normally distributed, the value 22 = 10 

corresponds, in the two dimensional case with a level of  

significance slightly smaller than 0.01, whereas the value Z z 

= 15 corresponds with a level o f  significance slightly larger 

than 0.0005. 

(a) Ambiguity search space with area A v 

and eigenvalue-box with area AN 

(b) Ambiguity search space with area A N 

and sigma-box with area Ao 

Figure 1: The areas of  the ambiguity search 

eigenvalue-box and sigma-box. 

space, 

Au 7( 2 = 10 ~2 = 15 

( e r e = 0 . 3 c m )  ere = 6 0 c m  e r e = 1 0 c m  cr e = 6 0 c m  ~r e = 1 0 c m  

k = 1 4.87 0.81 7.30 1.22 

k = 2 2.43 0.41 3.64 0.61 

k = 10 0.49 0.08 0.73 0.12 

Table 2: The area of  the ambiguity search space, A N . 

The 2-dimensional box that encloses the ambiguity search 

space and which has its sides parallel to the grid axes, will 

be referred to as the sigma-box. Its two sides are 

determined by the standard deviations of  the two 

ambiguities. Figure lb shows the ellipsoidal ambiguity 

search space and the sigma-box. The area of  the sigma-box 

is given as 

Ao~ = 4~2CYNCrN . (17) 

It will be clear that the sigma-box and eigenvalue-box 

become identical only when the principal axes of  the 

ambiguity search space are aligned with the grid axes. The 

ratio of  the two areas A and A can therefore be used as 

a measure for the way the sigma-box fits the ambiguity 

search space. A best fit would then correspond to a value 



of one for this ratio and a poor fit with a value being close 

to zero. Using (15) and (17) it follows that 

A 4zZ(detQN)m : (1 2 ,m (18) 
_ _  = - -  ~ N , N 2 )  • A 4X2~N(YN, 

This result shows that the ratio of A and A is uniquely 

determined by the ambiguity correlation coefficient. Hence, 

besides the usual statistical interpretation, also an 

interesting geometrical interpretation can be given to the 

correlation coefficient. Since we have shown already, that 

in our case the con'elation coefficient will be close to one, 

it follows from (18) that the area of the sigma-box will by 

far exceed the area of the eigenvalue-box (A > > A ) .  In 

fact, for ~¢ = 0.3cm and %, = 60cm, the area of the 

sigma-box will be about one hundred times larger than the 

area of the eigenvalue-box. Hence, in our case the sigma- 

box indeed fits the ambiguity search space rather poorly. 

In this section, the characteristics of the ambiguity search 

space have been studied by means of the elongation, the 

correlation coefficient and the area of the ambiguity search 

space. We will now combine these three measures and 

show how they relate to the precision of the ambiguities. 

This will be done for the arithmetic and geometric mean of 
2 the ambiguity variances, respectively (t:YZ+o'N)/2 and 

( -2-2M/2 The arithmetic and geometric mean are ( .)  N I O  N 2 )  • 

determined by the elongation (eN/¢~), the correlation 

coefficient (PN,~) and the area of the ambiguity search 

space (AN) as 

1 2 2 AN 
7(CYN, + %@ = 2xZ------ T (eN#,_ + eN, l )  

(19) 

2 2 ".1/2 AN 2 ~-1/2 (ONIONJ = '/'~X 2 ( 1  - PN,N,) 

This result clearly shows how the precision of the 

ambiguities can be improved, by reducing the elongation 

and correlation coefficient. In the next and following 

sections, we will consider the construction of ambiguity 

transformations that improve the elongation and correlation, 

but that leave the area A N invariant. 

4. The 2D-deeorrelating ambiguity transformation 

As it was pointed out above, a simple rounding of the real- 

valued estimates of the two ambiguities to their nearest 

integer values will not guarantee that the required most 

likely integer estimates of these two ambiguities is 

obtained. This will only be the case, when the ambiguities 

are completely decorrelated. Since the two ambiguities are 
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correlated in our case, the complete variance-covariance 

matrix of the ambiguities needs to be taken into account 

when computing the most likely integer estimates. 

Following [Teunissen, 1993], the computation of the most 

likely integer ambiguity estimates makes use of a search 

which is based on bounds that follow from a sequential 

conditional least-squares adjustment of the ambiguities. 

When expressed in terms of the L1 and L 2 ambiguities, 

these two bounds read as 

[ ( # , - U l )  2 -< ~N,Z 2 (20) 
2 2 

(#211 -N2) 2 < CYN:IN£(N1) Z 

in w h i c h  JV2l 1 * -2 * = N2-cYN~CrN,(NI-N1) and £(N1)= 1 -  

(#1-N1)2/cY~,Z z" The search for the most likely integer 

ambiguity estimates, can briefly be described as follows 

(for more details, see e.g. [Teunissen, 1993, 1994b]). First 

one selects an integer ambiguity N 1 that satisfies the first 

bound of (20). Then, based on this chosen integer value 

N1, the conditional least-squares estimate #211 and scalar ~(N1) 

are computed. These values are then used to select an 

integer ambiguity #2 that satisfies the second bound of 

(20). A restart is used when one fails to find an integerN 2 

that satisfies this second bound. This is continued until an 

admissible integer-pair (N1, N2) is found. Then a shrinking 

of the ambiguity search space can be applied through an 

appropriate downscaling of X 2, after which one can 

continue with the search process. This process is continued 

until one fails to find any remaining admissible integer- 

pairs. The last found integer-pair is then the sought for 

most likely integer solution, being the integer least-squares 

estimate. 

From (6) it follows that 

~2 
2 2 = " ~ ( 1 -  2 (21) PU,N) C~N, IN, / ~N, . z  

2 2 which shows, since PN,N: is close to one, that CYN, W, << ¢S<. 

For instance, for k=-l, c% = 0.3cm and ¢s e = 60cm, we 

have that CrN, ------ 4.5 cycle and ¢SNdN, ~ 0.03 cycle. With 

reference to the bounds of (20), this implies that the 

potential of search halting is significant when one goes 

from the first to the second bound. As a consequence, a 

number of trials in the search are required, before one is 

able to find the integer least-squares solution. This situation 

can however be improved if we make use of the 

decorrelating ambiguity transformation Z* of the 

LAMBDA-method. This transformation transforms the 

original integer ambiguity vector N = (N1, N2)*, its real- 
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valued least-squares estimate N = (At1, N2)* 

variance-covariance matrix QN as 

and its 

z = Z ' N ,  ~ = Z ' N ,  Q~ = Z*QsZ. 

The letter z is used to denote the transformed ambiguities. 

The ambiguity transformation Z* has integer entries and 

is area preserving. The area preserving property implies 

that Z* leaves the areas of  both the ambiguity search 

space and of  its best fitting box invariant. The ambiguity 

transformation Z* is constructed from a sequence of 

Gaussian transformations of  the following two types: 

in which z2~ and Z12 a r e  appropriately chosen integers, see 

[Teunissen, 1993, 1994@ These integers are chosen such 

that the transformed ambiguities become less correlated and 

more precise. They are taken as the nearest integer to the 

ratio of  the covariance and variance, times minus one. As 

a result o f  the ambiguity transformation, the original 

ambiguity search space is transformed into a new, but more 

sphere-like, ambiguity search space. 

In order to show that the transformed ambiguity search 

space is more sphere-like than the original one, consider 
2 2 2 expression (12) with r 2 = 4 det (Q~v)/(cy~, +~u)  . Since the 

decorrelating ambiguity transformation is area preserving 

and improves the precision of  the ambiguities, the 

transformation Z* increases the value of  r 2. As a result 

the elongation eN~N~ " gets smaller. 

In [Teunissen, 1993, 1994a] it was shown that the absolute 

value of  the correlation coefficient of  the transformed 

ambiguities is always less than or equal to one half. This 

implies that one can expect the ambiguity transformation to 

decorrelate the ambiguities if  the correlation coefficient o f  

the original ambiguities is larger than one half  in absolute 

value. It follows from (13) that 9~32 > 1/2, whenever 
2 2 o ~ / ~  e _< 1/2. This condition on the variance ratio is easily 

met in practice. Hence, one can indeed expect that our 

ambiguity transformation Z * will be able to decorrelate theL 1 

and L 2 ambiguities. 

5. Ambiguity decorrelation in case of exact phase data 

Before considering the general case of  ambiguity 

decorrelation, we will first consider the special case that 

o .  = 0. We know that the carrier phase measurements are 

of  a very high precision. The standard deviation of  the 

undifferenced carrier phase measurements is only of  the 

order of  a few millimeters. From a theoretical point o f  view 

it is therefore of  interest to consider the limiting case 

c .  = 0. Once the results are obtained for this limiting 

case, one may consider whether they are also applicable for 

the practical range the code and carrier phase standard 

deviations take. 

In (9) the variance-covariance matrix of  the ambiguities, 

QN, has been decomposed into a sum of  a diagonal full 

rank matrix and a rank-1 matrix. I f  op = 0, then Qw 

reduces to a diagonal matrix and both ambiguities become 

fully decorrelated. Hence, in this limiting case the 

decorrelating ambiguity transformation is simply the trivial 

identity. I f  c% = 0, then QN reduces to a rank-1 matrix 

and the ambiguity search space collapses to a line interval. 

In this case the two ambiguities are fully correlated. I f  we 

write Q~ as QN = R2 +RI, with R 2 being the diagonal 

rank-2 matrix and R~ being the rank-1 matrix, it follows 

from (9), using )~2/9~ = 77 /60 ,  that 

2//[/  
RI = 2 ~p 77 77 

(60) 2 L22k 60 60 
(23) 

Hence, this would be the ambiguity variance-covariance 

matrix in case ~ .  = 0. It would then also follow that 

-60 291 + 77 Ar 2 = constant.  (24) 

This relation may now be used to directly construct the 

decorrelating ambiguity transformation Z * .  Hence, in this 

special case we do not need to construct Z* on the basis 

of  a sequence of  Gaussian transformations. It follows from 

(24) that the first row of Z* is given by (-60, 77). To 

obtain the second row of  Z *, we make use of  the fact that 

all entries of  Z* need to be integer and that Z* needs to 

be area preserving. This gives as second row of  Z*,  (-7, 

9). The decorrelating transformation reads therefore as 

/6:77 I 
Z* = 9 " 

(25) 

Instead of  (-7, 9), one may also take (-7 - i60, 9 + i77), i 

= 0, + 1, + 2 .... We have chosen (-7, 9) however, since it 

will give the best precision for the second ambiguity. I f  we 

apply the error propagation law, it follows from (23) and 

(25) that 



21: Z*R~Z = 2 (re 
(60) 2 ~.22k 

(26) 

This would then be the variance-covariance matrix of  the 

transformed ambiguities, in case (re = 0. I f  we compare 

(23) with (26), we observe that 

] Pu,,v= = 1 ~ Pz,~: = 0 
2 2 2 (r 2crpIk~k ~ (r~, = 0 
2 2 2 [ cyx~ 2cyp/k2k ~ %~ = (r~/(60) 2 

(27) 

Hence, the ambiguity transformation Z* of  (25) achieves 

a perfect decorrelation and a drastic improvement in 

precision. Integer estimation and validation of  the 

t r a n s f o r m e d  a m b i g u i t i e s  b e c o m e s  now ra ther  

straightforward. Due to the perfect decorrelation, the 

integer least-squares estimates of  the two new ambiguities 

simply follow from rounding their real-valued estimates to 

their nearest integer. Also, validation would not be 

problematic, since ( r  = 0 and ( r  is as small as 0.06 cycle 

in case (re = 60cm and k=l. 

The above results are strictly valid of  course, only for the 

case c% = 0. It is therefore of  interest to infer whether the 

ambiguity transformation (25) performs for the general case 

as well as it does for the limiting case ~e = 0. Thus 

instead of  Z*R~Z, we now consider Z*QuZ = Z*(R  2 + 

R1)Z, with cye ;~ 0. It follows from (9) and (25) that 

2 [ 2(r~(9240) 2(r~(1079) ] 

Z*QuZ : )h)~zk 2(r2(1079) (2cy~(582121)+(r2)/4620 " 

(28) 

A comparison of  this transformed variance-covariance 

matrix with the original variance-covariance matrix QH, 

shows for k--l, (re = 0.3cm and (r~ = 60cm, that 

[ P ~ , N ,  = 0 . 9 9 9 9 5  ~ p .... = 0.98 

(rN, = 4.46 ~ ( r  = 2.68 (cycle) 

(rJv, = 3.47 ~ ( r  = 0.32 (cycle) 

(29) 

This shows that transformation (25) does improve the 

situation, but unfortunately however, the improvement is 

only marginal. In particular the correlation coefficient of  

the two transformed ambiguities is still very close to one. 

Hence, further improvements are possible, since we know 
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that a correlation coefficient of  less than one half in 

absolute value can be achieved. The conclusion reads 

therefore, that although (re = 0.3cm is small with respect 

to ~p = 60cm, it is not small enough for the limiting case (r e 

= 0 to be valid. It follows from (28) that 

p , ,~< l /2  ¢=> ( rp>1869(r  e .  (30) 

This shows that either the code precision must be rather 

poor or the carrier phase precision very high (e.g. ~e = 

0.1cm, (rp = 187cm), in order to have a correlation 

coefficient of  less than one half. In case of  GPS however, 

neither the code precision is that poor, nor the carrier phase 

precision is that high. 

6. L1/L 2 a m b i g u i t y  d e e o r r e l a t i o n :  t h e  g e n e r a l  c a s e  

In this section we will consider the general case of  

decorrelating the Lx/L 2 ambiguities. Use will be made of 

the least-squares ambiguity decorrelation adjustment, as 

discussed in section 4. But, before actually constructing the 

decorrelating ambiguity transformation, it is o f  interest to 

infer first the improvement that one can expect from the 

transformation. We know that the absolute value of  the 

correlation coefficient of  the transformed ambiguities is 

always less than or equal to one half. This implies, when 

we make use of  relation (18) for the transformed ambiguity 

search space, that 

2 
Ao _< A . (31) 

V~-  btz 

Hence, instead of  the factor of  about one hundred between 

A and A , which we had earlier, the area of  the sigma- 

box of  the transformed ambiguity search space is now far 

closer to the area of  the best fitting box. Based on this 

result, we can now also determine a bound on the ratio of  

A and A . Since the ambiguity transformation preserves 

the area of  the best fitting box, A N = A , it follows from 

(6), (18) and (31) that A < (2/(/~-)(detQN)VZAj((rN(r~) 

or that 

A < ---~-4 A ((1 +@/(r~)- ' /2+(1 +@/(r~), /2)-i  (32) 

This shows that the improvement is particularly pronounced 

when the variance ratio 2 2 (rp/(re is large. For (r~, = 0.3cm 

and (rp = 60cm, we have Ao_. < 0.01 A . Assuming that 

the variances of  the two transformed ambiguities are of  the 

same order, this result shows that one can expect an 

improvement by a factor of  ten for the ambiguity standard 



524 

deviations. 

The first decorrelation step 

The above results are quite promising. In order to 

corroborate these results, we will now compute the actual 

ambiguity transformation. To show how the ambiguity 

transformation is constructed, the first step of the 

transformation will be derived analytically. It follows from 

(6) that the L 2 ambiguity is of a better precision than theL~ 

ambiguity. Hence, we will start working on theL~ 

ambiguity. This implies that the first step of the 

transformation reads as 

0 

in which [.] denotes 'rounding to the nearest integer'. From 

(6) it follows that 

-2 ~ 2 / ~ 1  = (34) 
%V,N%V= (1 2 2 

If ~N,N~N2 is less than one half in absolute value, than 

[ CYu,N~N~ ] = 0 and transformation (33) reduces to the trivial 

identity transformation. With )~2/)~ = 77/60, it follows 

from (34) however, that 

-2 < ~ O'p ( 3 5 )  ~ee,GON~ > 1/2 <=> c% 

This shows, since the precision of the code measurements 

will never be that precise, that the inequality of (35) will 

hold true in practice. Hence, transformation (33) will never 

reduce to the trivial identity transformation. We may 

therefore conclude that our ambiguity transformation will 

always result in ambiguities that are less correlated. 

-2 
In (35), we considered a lower bound for %v, N Ou. It is, 

however, also of interest to consider the upper bound 
-2 ~<NCYN~ < 3/2. If namely both this upper bound as well as 

the lower bound of (35) are satisfied, then [ON,NCr)2] = 1 

and the transformation of (33) becomes 

Z 1 = 
(36) 

showing that the first step of our decorrelating ambiguity 

transformation replaces the L 1 ambiguity with the wide- 
lane ambiguity N =NI - N  2. It follows from (34) and£2/K ~ 

= 77/60, that CIN#2CY)~ < 3/2 always holds true. Hence, the 

remarkable conclusion is reached, that the first step of our 

decorrelating ambiguity transformation will, in practice, 

always automatically produce the wide-lane ambiguity. 

Now that we know that the first decorrelation step will 

always produce the wide-lane ambiguity, it is also of 

interest to find out whether a further improvement is 

generally still possible. Following (36), the second 

transformationstep is of the form 

1 / 
z ;  = _[%~G~2j , (37) 

with ~N~v being the covariance between the L 2 ambiguity 

and the wide-lane ambiguity and with ~N~ being the 

variance of the wide-lane ambiguity. The question is now, 

under what conditions the following two inequalities are 

satisfied, 
-2 -2 (38) CrU;V~N > -1/2 and CYN~VfIN < 1/2. 

If both inequalities are satisfied, then [crN#fQ ] = 0, and 

the conclusion is reached that no further improvement is 

possible anymore. It follows, using (6) and (36), from 

Z1* Q~eZI, that 

-2 (~'1~L2 -- ~k'21 (1 z 2 ~#f rN.  = + 2~./Cyp))/ 
(39) 

((;vz2 + ~,21) (1 + 2rs 2 / @) - 27v 1~2). 

From this result follows that the first inequality of (38) is 

always satisfied. The second inequality however, is only 

satisfied when 

2 2 2 2 cy,/cy~ > -1/2 + 2X1)~2/()~ 2 +37~1), (40) 

holds true. Since this implies with ~.2/~.1 = 77/60, that cy. 

> 0.228 ~p must hold true, it follows that the second 

inequality of (38) will not be satisfied in practice. Hence, 

the conclusion is reached, that a further improvement in 

terms of decorrelation is indeed generally possible. 

The remaining decorrelation steps 

Since a further improvement is generally still possible after 

the transformation (36) has been applied, we will now 

consider the remaining decorrelation steps of the 

LAMBDA-method. The following two cases for one single 

epoch (k=l) will be considered: (a) c% = 0.3cm and cre = 

60cm; (b) ~ .  = 0.3cm and op = 10cm. The first 

decorrelation step, being (36), is the same for both cases. 



In order to quantify the improvement which is obtained 

through Z~*, we compare QN with Z~* QsZ~. For the first 

case, this gives 

/19.884  54931 10971 3.420] 
15.493 12.073 1 'ZI*QsZ1 = [3.324 12.073 " 

(41) 

Although the precision of the first ambiguity has been 

improved considerably, the improvement in the correlation 

coefficient is still only marginal. It improved from 0.99995 

to 0.99897. We therefore continue with the second and 

following steps, until no further decorrelation can be 

achieved. The resulting decorrelating ambiguity 

transformation is then obtained as 

:1 = I1o 11] • (42) 

Hence, in the present case three steps are required to obtain 

Z*. In order to quantify the improvement which is 

obtained through Z*, we compare the new variance- 

covariance matrix Q~ = z * QNZ, with the original variance- 

covariance matrix Ql¢: 

[ 9884154931 i0,010028 I 
Q~¢ = 15.493 12.073 'Qz [0.028 0.246 

(43) 

This result shows that the correlation coefficient has been 

improved from 9N, N2 = 0.99995 to P~,z~ = 0.179. Hence, the 

new ambiguities are much less correlated. Also the 

elongation of the ambiguity search space has improved. It 

changed from eN?¢2 = 206 to e z2 = 1.6. Finally, note the 

improvement in precision of the ambiguities. The standard 

deviations have been improved by a factor of about ten: 

%¢, = 4.46 (cycle), ~N2 = 3.47 (cycle) versus %, = 0.32 

(cycle), e = 0.50 (cycle). This has as consequence that 

the inequalities of (20), when expressed in terms of the 

transformed ambiguities, permit a faster search for the 

integer least-squares solution. The first bound is tighter and 

the second bound will less likely be a cause for search 

halting. Based on Z 2 = 10, figure 2 shows both the original 

and the transformed ambiguity search space. Figure 2a 

shows for k=l, the very elongated ambiguity search space 

of the original L~ and L z ambiguities. Figure 2b shows for 

k=-l, k=-2 and k=-10, the transformed ambiguity search 

space. The drastic improvement is clearly visible. For the 

three cases shown in figure 2b, the numbers of grid points 
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inside the ellipse are respectively 5, 3 and 1. These values 

may vary slightly when the ambiguity search space is 

centred at the actual least-squares estimate of the 

ambiguities. 

// 
.d 

// 

Figure 2: (a) Original ambiguity search space for QN of 

(43) with ;(2 = 10 and k=l; (b) Transformed ambiguity 

search space for Qz of (43), with ;(2 = 10 and for k=-l, 

k=-2, k=lO. 

Let us now consider the second case, being ere = 0.3cm 

and ~e = 10cm. For QN and ZI*Q~Z~ we get 

[0.553 0.4301 [0.029 0.094 / 
QN = [0.430 0.336] 'Z1*QNZ1 = [0.094 0.336]" 

(44) 

Again we see that the precision of the first ambiguity has 

been improved, but that the improvement in the correlation 

coefficient is only marginal. It improved from 0.9982 to 

0.9645. We therefore again continue with the second and 

following steps. As a result we get for Z* : 

Z . = [ _ 1 3 - 1 ]  = [_13 011 [10 -11] . (45) 
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Hence, in this case only two steps are required to obtain 

Z* In order to quantify the improvement which is 

obtained through Z* ,  we compare the new variance- 

covariance matrix Q~ = z*  QNZ, with the original variance- 

covariance matrix QN: 

 05530430j j00290009] 
QN [0.430 0.336 'Q~ [0.009 0.026 " 

This result shows that the correlation coefficient has been 

improved from 9N, N~ = 0.9982 to 9~,~ = 0.3243. Hence, the 

new ambiguities are much less correlated. Also the 

elongation of the ambiguity search space has improved. It 

changed from eN,N~ = 34 to e,~ = 1.4. Finally, note the 

improvement in precision of the ambiguities. The standard 

deviations have been improved by a factor of about four: c~N, 

= 0.74 (cycle), ~N~ = 0.58 (cycle) versus eL, = 0.17 (cycle),~ 

= 0.16 (cycle). Again based on ~z = 10, figure 3 shows 

both the original and the transformed ambiguity search 

space. Figure 3a shows for k=-l, the elongated ambiguity 

search space of the two original L~ and L 2 ambiguities. 

Figure 3b shows for k=-l, k=-2 and k=10, the transformed 

ambiguity search space. For the three cases shown in figure 

° 

l 
~2 0 2 

Figure 3: (a) Original ambiguity search space for QN of 

(46) with Z 2 = 10 and k=-l; (b) Transformed ambiguity 

search space for Q, of (46)with )~2 = 10 and for k=-l, k=-2, 

k=-10. 

3b, the numbers of grid points inside the ellipse are all 

equal to 1. 

7. Summary 

For the case the relative receiver-satellite geometry is 

dispensed with, this contribution presented a qualitative 

analysis of the integer ambiguity estimation problem. The 

analysis was based on double differenced dual frequency 

measurements of both carrier phase and code. The 

ionospheric delays were assumed to be absent. It was 

emphasized that, in contrast to the single frequency case, 

a simple rounding of the real-valued LI/L z ambiguity 

estimates to their nearest integer does not guarantee that 

one obtains the most likely integer estimates. In order to 

guarantee this, a search needs to be performed using the 

ambiguity search space. Based on the analytical form of the 

variance-covariance matrix of the L~ and L 2 ambiguities of 

section 2, the geometry of the ambiguity search space was 

characterized in section 3 by means of diagnostic measures. 

These measures were: the elongation (e), the correlation 

coefficient (p),  the area of the ambiguity search space (AN) 

and the areas of its eigenvalue- and sigma-box (AN, Ao~ ). 

In order to have a quick reference, these measures are 

summarized in table 3 and are given as function of the 

carrier phase and code measurement precision, c% and crp. 

The expressions in table 3 are suitable approximations to 

the exact formulae (12), (13), (15), (18) and (32). The 

approximations are based on the assumption that the 

variance ratio 2 2 o./crp is small. 

(i) eN, N, _~ ~(~.,/~2+~2/~1) ~e (iii) A N ~ 4xzacy cy 

2% 
(ii) 9N, N~ -~ 1 - 2 ( ~ * )  z (iv) A,~ ~ A N 

~p 'K (y, 

40-. 
(v) Ao0 < V/3"crPA 

Table 3: Diagnostic measures of the ambiguity search space 

as function of o .  and cyp. 

Since ce /~  . is large in case of GPS, it directly follows 

from table 3, that the ambiguity search space is very 

elongated (eN~ " large) and that the L~ and L 2 ambiguities 

are highly correlated (Pu#~ close to 1). Elongation and the 

correlation coefficient react differently however, to an 

improvement of the code precision. Elongation is to a good 

approximation linear in ~/~/cy,~. Hence, by improving the 



code precision, one can force the ambiguity search space to 

become more sphere-like. The correlation coefficient on the 

other hand however, is rather insensitive to changes in the 

precision of the code measurements. Hence, the correlation 

coefficient of  the L~/L 2 ambiguities will remain close to 

one for all practical purposes. In fact, the correlation 

coefficient will only be smaller than one half, when the 

variance of the code measurements is smaller than twice 

the variance of the carrier phase measurements. 

Since (re/(r. is large, table 3 also shows that the area of 

the enclosing sigma-box, A is very much larger than the 

area of  the ambiguity search space itself. The discrepancy 

between the two areas can be reduced however, by 

improving the code precision. It was remarked that the area 

of the ambiguity search space gives an indication of the 

number of  grid points located in the search space. Table 3 

shows that the area AoN is governed by the square of (r e 

and that it is independent of (r.. The area of the ambiguity 

search space however, depends on (r. and is governed by 

the product (re(r¢" Hence, it is in the area of  the ambiguity 

search space, where the benefit of the very precise cagier 

phase measurements manifests itself. 

The decorrelating ambiguity transformation Z* of the 

LAMBDA-method was discussed in section 4. This 

transformation allows one to transform the original L~/L 2 

ambiguities into two new ambiguities that are much less 

correlated. The correlation coefficient of the transformed 

ambiguities is always less than or equal to one half in 

absolute value. Table 3 shows that the transformation 

results in a drastic decrease in size of the area of the 

sigma-box, A versus Ao/Apar t  from the decrease in the 

correlation coefficient, the 2D-decorrelating ambiguity 

transformation also results in a more sphere-like ambiguity 

search space, having ambiguities with a significantly 

improved precision. For (r+ = 0.3cm, table 4 gives a 

numerical overview of the precision, elongation and 

coefficient of both the original and transformed 

ambiguities, for four different values of ey e . The results of  

table 4 are given for k=-l. They are, however, easily 

adjusted so as to hold for the case k>l. For k>l, the 

standard deviations simply need to be divided by the 

square-root of k. The elongation and the correlation 

coefficient however, do not change, since they are 

independent of  k. 

The corresponding ambiguity transformations, Z *, are also 

given in the table. They also hold for the case k>l. In 

section 4 we studied the decorrelation for the limiting case 
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13. = 0.3cm [ 13.,v, CYN~ e~v~No f3N# [ 
(k=l)  " " : I 

(:re = 60cm 

cyp = 30 cm 

13p = 10 cm 

Up = 3 cm 

Z"  [ (~ ~ e Pzz 
z I z ,  z i z ~  i : 

I 

4.46 3.47 206 0.99995 -7 9 0.32 0.50 1.6 0.18 

-4 5 
2.23 1.74 103 0.9998 -3 4 0.29 0.29 1.6 -0.42 

-4 5 
0.74 0.58 34 0.998 -3 4 0.16 0.17 1.4 0.32 

1 -1 
0.23 0.18 10 0.96 -2 3 0.12 0.06 1.9 -0.01 

1 - 1  

Table 4: Precision ((r), elongation (e) and correlation (9)  

before and after application of the decorrelating correlation 

transformation Z*.  

(r. = 0. The corresponding ambiguity transformation was 

given as [-60;7 / 
Z "  ~ 

-7 

This is the optimal transformation for the case the carrier 

phase measurements are of extreme precision or the code 

measurements are of very poor precision. In the reversed 

situation - very precise code measurements and/or carrier 

phase measurements of  poor precision - the optimal 

ambiguity transformation reduces to the trivial identity 

transformation. The transformations given in table 4 are 

therefore the ones that lie between (47) and the identity. In 

section 5 it was shown how these transformations could be 

constructed. In section 5 we showed that the first step in 

constructing Z* ,  always automatically produces the so- 

called wide-lane ambiguity as a replacement of  theL~ 

ambiguity. But, it was also shown that further 

improvements, which are significant, are generally still 

possible. Improvements on the wide-lane and L 2 ambiguity 

are only impossible, when (r. > 0.228 (rp holds true. One 

can therefore expect, that one of the two transformed 

ambiguities will be the wide-lane ambiguity, only when the 

code measurements are sufficiently precise. This is also 

evidenced by the results of table 4. Each of the two last 

transformations in table 4 transforms such that one of the 

two transformed ambiguities equals the wide-lane 

ambiguity. Also observe from table 4, that neighbouring 

pairs of the four pairs of transformed ambiguities, have one 

transformed ambiguity in common. 

References 

[1] Blewitt, G. (1989): Carrier phase ambiguity resolution 

for the Global Positioning System applied to geodetic 

baselines up to 2000 km. Journal of Geophysical Research, 



528 

Vol. 94, No. B8, pp. 10.187-10.203. 

[2] Dedes, G., C. Goad (1994): Real-Time cm-level GPS 
Positioning of Cutting Blade and Earth Moving Equipment. 

Proceedings of the 1994 National Technical Meeting ION, 

San Diego, California, pp. 587-594. 

[3] Euler, H.-J., C. Goad (1990): On Optimal Filtering of 

GPS Dual Frequency Observations without using Orbit 

Information. Bulletin Geodesique, Vol. 65, pp. 130-143. 

[4] Euler, H.-J., H. Landau (1992): Fast GPS Ambiguity 

Resolution On-The-Fly for Real-Time Applications. 

Proceedings 6th Int. Geod. Symp. on Satellite Positioning. 

Columbus, Ohio, 17-20 March 1992, pp. 650-729. 

[5] Euler, H.-J., R. Hatch (1994): Comparison of Several 

AROF Kinematic Techniques. Proceedings ION-94. pp. 

363-370. 

[6] Frei, E., G. Beutler (1990): Rapid Static Positioning 
Based on the Fast Ambiguity Resolution Approach FARA: 
Theory and First Results. Manuscripta Geodaetica, Vol. 

15, No. 6, 1990. 

[7] Hatch, R. (1982): The Synergism of GPS Code and 

Carrier Measurements. Proceedings 3th International Geod. 

Symp. on Satellite Positioning, Las Cruces, New Mexico, 

8-12 February, 1982, Vol. 2, pp. 1213- 1231. 

[8] Hatch, R. (1986): Dynamic Differential GPS at the 
Centimeter Level. Proceedings 4th International Geod. 

Symp. on Satellite Positioning, Austin, Texas, 28 April - 2 

May 1986, pp. 1287-1298. 

[9] Hatch, R. (1991): Instantaneous Ambiguity Resolution. 

Proceedings of the IAG International Symposium 107 on 

Kinematic Systems in Geodesy, Surveying and Remote 

Sensing, Sept. 10-13, 1990, Springer-Verlag, New York, 

pp. 299-308. 

[10] Teunissen, P.J.G. (1993): Least-Squares Estimation of 

the Integer GPS Ambiguities. Invited Lecture, Section IV 

Theory and Methodology, IAG General Meeting, Beijing, 
China, August 1993. Also in LGR-Series No. 6, 16 p. 

[11] Teunissen, P.J.G. (1994a): A New Method for Fast 
Carrier Phase Ambiguity Estimation. Proceedings IEEE 

Position Location and Navigation Symposium PLANS'94, 

pp. 562-573. 

[12] Teunissen, P.J.G. (1994b): On the GPS double- 
differenced ambiguities and their partial search spaces. 

Proceedings Hotine-Marussi Symposium on Mathematical 
Geodesy, L'Aquila, Italy May 29-June 3, 1994, Geodetic 

Theory Today, Symposium No. 114, lAG, pp. 39-48. 

[13] Teunissen, P.J.G., P.J. de Jonge and C.C.J.M. Tiberius 

(1994): On the Spectrum of the GPS DD-Ambiguities. 

Proceedings ION GPS-94, Salt Lake City, Utah, USA, 

September 20-23, 1994, pp. 115-124. 

[14] Teunissen, P.J.G., P.J. de Jonge and C.C.J.M. Tiberius 

(1995): A new way to fix carrier-phase ambiguities. In: 

GPS-World. April 1995, pp. 58-61. 

[15] Teunissen, P.J.G. (1995a): The invertible GPS 
ambiguity transformations, Manuscripta Geodaetica, 

September 1995, Vol. 20, No. 6, pp. 489-497. 

[16] Teunissen, P.J.G. (1995b): GPS Carrier Phase 

Ambiguity Fixing Concepts. In: Lecture Notes in Earth 

Sciences "International School GPS for Geodesy", Chapter 

8, 8.1-8.75. To be published by Springer Verlag. 

[17] Tiberius, C.C.J.M., P.J. de Jonge (1995a): Fast 

Positioning using the LAMBDA-Method. In: Proceedings 

DSNS95, April 24-28, Bergen, Norway. 

[18] Tiberius, C.C.J.M., P.J. de Jonge (1995b): Introduction 
to GPS Surveying (Part 4). In: Geomaties Info Magazine, 

October 1995, pp. 61-67. 

[19] Wfibbena, G. (1991)~ Zur Modellerung yon GPS 

Beobachtungen fiir die Hochgenaue Positions-bestimmung. 

Universit~/t Hannover, Germany. 


