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Abstract. In this paper, we present the issues and solutions of using OWL
ontology to model the knowledge captured in relational databases. Two specific
types of knowledge, which are common to various domains, are identified that
cannot be represented directly using constructs specified in OWL DL. Firstly
the data value range constraint and secondly the calculation knowledge
representation. The solution to the first problem is to conceptualize the data
range as a new class and the solution to the second problem is proposed, based
on utilizing software agent technology. Examples with OWL code and
implementation code are given to demonstrate the problems and solutions.
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1 Introduction

Since its advent, database technologies have been broadly applied to the development
of information systems where persistent data repository and efficient data retrieval are
required. This has consequently produced a vast number of databases. These
databases embed extensive domain knowledge and up-to-date business information
that are crucial to various domains and business processes. With the increasing trend
of collaborations amongst organizations and business needs for sharing and
publishing their products information, these databases are demanded to be shared and
integrated without organizational and application boundaries. However, databases are
enterprise and application dependant in that their design and development are
subjected to a particular business problem domain of an organization. This has
prevented the databases from being shared and integrated in an open environment.
Ontology-based technologies provide a feasible approach to this problem.
Ontology-based technologies promote knowledge sharing and integration by formally
and explicitly defining the meanings and associations of information and data.
Knowledge represented by ontologies will enable machines or software agents to
combine and share them from heterogeneous sources meaningfully. An ontology is
defined as “a formal, explicit specification of shared conceptualization” [2-4].
Ontologies allow specially designed software agents to automatically process and



integrate information from distributed sources. Many approaches have been proposed
to transform the knowledge embedded in databases, particularly in relational
databases, into ontologies [5-10]. The transformation process involves database
reverse engineering to acquire the implicit knowledge from databases and involves
mapping the acquired knowledge onto an ontology language. Ontology Web
Language (OWL) [11], as the WWW consortium recommendation for the Semantic
Web, has gained the popularity as the target ontology language.

However, there is a critical issue of using OWL to fully and accurately represent
the knowledge captured in relational databases. Although there are many similarities
between a conceptual data model of a database, such as UML or EER model, and an
ontology (some researchers classify UML as lightweight ontologies [12]), there are
many practical issues when mapping the knowledge captured in a conceptual model
onto an OWL ontology. For example, there are three common types of relationships
between concepts we model in an UML model, namely, generalization/specialization,
aggregation and composition and association. While generalization/specialization can
be modeled straightforward using OWL hierarchical mechanism i.e. Class and
Subclass, Property and Subproperty, the aggregation/composition relationship cannot
be represented directly using OWL elements. There are also other types of knowledge
captured by a relational database that we found hard to model in OWL such as the
value range restrictions on an attribute, and the functional dependency among several
attributes of one or more tables which capture some sort of relationships between
attributes rather than concepts.

In this paper, we present two alternative solutions to tackle this OWL modeling
issue, namely, conceptualization approach and software agent based approach. Two
specific examples are used to demonstrate each of the approaches respectively: firstly
the problems of modeling the data value range constraint; secondly, the problem of
modeling mathematic calculation knowledge, whose operands are derived from
attributes of one or more concepts, which represents relationships between these
attributes. Our motivation is to reveal some ideas of extending the expressiveness of
OWL in the mean time to retain computational completeness of the ontology model,
thus to make OWL more useful and more adaptive. The rest of this paper is organized
as follows: Section 2 reviews related work on these issues; Section 3 introduces some
preliminary concepts necessary for understanding the foundations of the proposed
solutions; then Section 4 describes the problems in details with examples; followed by
Section 5 demonstrating the solutions to the problems with code example; last in
Section 6, we conclude the paper and indicate future work.

2 Related Work

W3c rules is an addition for modeling knowledge in addition to OWL. Expressiveness
vs. decidability. HP report OWL weakness.

There is not much work that has been reported on addressing the issues of the
knowledge representation with OWL. Stojanovic et al. [6] mentioned that the basic
data type system in a database cannot be preserved in F-logic [13] or RDF [14].
Introducing a new class in RDF for each of the types still cannot retain the operators



on the basic data types. Furthermore, some database related dynamic knowledge
embedded in SQL stored procedures, triggers and built-in functions cannot be mapped
to RDF.

Other research considered relevant to mapping databases to ontologies is those that
introduce mapping languages such as R20 [15] and D2R MAP [16]. R20 specifies
how to populate ontology instances of an existing ontology automatically from the
data stored in a relational database. One assumption, on which the proposed approach
is based, is that the mapping between an ontology’s elements and their correspondent
database elements is somehow known already. Under this assumption, R20 aims to
be expressive and fully declarative to specify how the ontology instances of the
existing ontology can be created from its correspondent database elements such as
columns of a table. It, however, does not specify how the data model of a database
can be represented by an ontology in RDF or OWL. The other mapping language
D2R MAP [16] specifies how to transform the data stored in a relational database into
RDF syntax. It requires domain experts and database experts to identify relationships
amongst tables via SQL queries in “D2R sq/” element.

Both of the approaches do not intend to analysis the semantic mappings between a
relational data model and the targeting ontology, nor to identify implicit knowledge
from databases. Rather, they aim to provide an agile means of wrapping the data held
in existing relational databases using RDF or OWL ontology language.

3 Preliminary Concept

3.1 OWL Specification (reduce to an simple description)

OWL[17] is the WWW consortium recommendation for the Semantic Web language.
It is designed based on the formal foundation of Description Logics [18]. OWL not
only allows formally describing of the meaning of terminology used in web
documents but also permits machine inference and reasoning upon literally presented
facts. OWL is designed based on RDF [14] and extends RDF. In order to pursue the
trade-off between expressiveness and efficient reasoning, OWL has three increasingly
expressive sublanguages designed to serve specific levels of implementation and
users’ needs. They are, namely, OWL Lite, OWL DL, OWL Full. Each of the
sublanguages is an extension of its simpler predecessor as stated in OWL
specifications [17]. OWL Lite provides constructs only for specifying primary needs
including classification hierarchy and simple constraints. OWL DL supports
maximum expressiveness while retaining computational completeness and
decidability which means all conclusions are guaranteed to be computable and all
computations can be finished in finite time. OWL Full [17] supports maximum
expressiveness but not computational guarantees. In this paper, we refer the
knowledge representation issues with OWL to OWL DL as it is the more practical
one to be used in Semantic Web applications. The term “construct” and “element” of
OWL DL are used interchangeably to describe the building blocks specified in OWL
specifications.



The basic building blocks of OWL DL consist of Class, Properties of Class and
Individuals of Classes which can be corresponding to Entity type, attributes of Entity
type and Entity occurrences of an EER model respectively. A classification or
taxonomic hierarchy of classes is realized through the element “subClassOf”, which
corresponds to the generalization/specialization (“is-a”) relationship type between two
concepts. For instance, the concept “Manager” is a subtype of the concept “Staff”.
Two types of Property can be defined in OWL DL: “DatatypeProperty” and
“ObjectProperty”. DatatypeProperty relates a property to the data types defined by
RDF literals [14] or XML Schema Datatypes [19]. ObjectProperty relates a property
to an individual of a Class that actually implies an association between two concepts.
For example, the Class “Order” has an ObjectProperty called “customer” whose
range is of the Class “Customer”.

OWL provides powerful mechanisms to enhance reasoning about the classes
defined in an ontology by specifying property characteristics such as transitive,
symmetric and functional and through property restrictions such as allValueFrom,
someValueFrom etc. Some simple set operations such as unionOf, intersectionOf, and
complementOf are also supported in OWL. These restrictions are also the means for
defining axioms in OWL. However, this powerful mechanism is more designed on
ObjectProperty for reasoning and inferring relationships among Classes while
constructs for representing associations amongst properties are much less provided.
Only the built-in data types from XML Schema are supported in OWL. Restricting
DatatypeProperty and specifying relationships amongst properties cannot be directly
modeled using these provided constructs without the supply of further information.

3.2 Software Agent

Software agent technology has been in extensive discussion for many years but it is
perhaps recently that it has been attracting much attention of exploitation in the
emergence of the Semantic Web. Basically software agents are components in an
application that are characterized by among other things autonomy, pro-activity and
an ability to communicate [20]. Autonomy means that agents can independently carry
out complex and long term tasks. Pro-activity means that agents can take initiative to
perform a given task without human intervention. Ability to communicate means
agents can interact with other agents or other components to assist to achieve their
goals.

In this paper we implement software agents using JADE (Java Agent Development
framework), an agent-oriented middleware [21, 22]. The reason we use JADE is
simply because it facilitates development of complete agent-based applications and it
is written in well known object-oriented language, Java. More details of JADE can be
found on its website (http://jade.tilab.com).

Basically in this paper, we utilize JADE agent technology to help define the
knowledge of calculation. A JADE agent is identified under FIPA specifications [23]
by an agent identifier. A task can be defined for an agent to carry out. Agent action
defines the operations to be performed. Agent communication according to FIPA
specifications [23] is the most fundamental feature of software agents. Format of
messages is compliant with that defined by FIPA-ACL message structure.



4 Problem Description with Examples

In this section, we describe the two specific types of knowledge that cannot be
modeled directly in OWL in detail with examples. Solutions to the problems are given
in the following section.

4.1 Data Value Range Modeling Problem in OWL

The first type of knowledge that we mentioned in the introduction section that cannot
be modeled directly using constructs defined in OWL DL is the constraint on data
value range. Data value range constraint is very common to various domains. For
example, a company recruitment statement contains a minimum age and a maximum
age requirement and a bank product requests a minimum and a maximum amount of
deposit over a period such as monthly. This refers to data value range in database
development. This kind of data constraint can be obtained from database schema,
application source code through validation and SQL queries. It, however, cannot be
directly represented using any constructs specified in OWL DL. One example of the
recruitment requirement for the employee’s age constraint in a company, named
ABC, can be expressed as the formula:

ABCEmployee (18 < age < 65)

In OWL DL, if we define a Class namely Employee, with a DatatypeProperty
namely age shown as in the OWL definition below:

<owl:Class rdf:ID="Employee"/>
<owl :DataTypeProperty rdfID="age">
<rdfs:domain rdfresource="#Employee" />
<rdfs:range rdfresource="&xsd;integer" />
<owl:DatatypeProperty>

We may further add constraints such as the cardinality on the age property, but no
any other elements defined in OWL for property restrictions, such as allValueFrom
and the set operator like unionOf and intersectionOf, can be used to model the simple
value range constraint. We therefore need other means to represent this kind of
knowledge in OWL ontologies.

4.2 Calculation Knowledge Representation Problem in OWL

The second type of knowledge cannot be modeled directly using OWL constructs is
the general calculation knowledge. An arithmetic calculation consists of operands and
arithmetic operators such as addition, subtraction, multiplication and division.
Operands in a calculation are often derived from columns of tables in a database or
from properties of Classes in an ontology. The result of a calculation, in the mean
time, is assigned to a column or a property. This represents associations amongst
properties rather than classes. It may also represent the dynamic knowledge which is
generated at run time in a given application. This type of knowledge is usually



defined in SQL queries such as stored procedures or application source code when
validating new data entry to ensure data consistency. One example of this type of
knowledge is the calculation of total cost including GST tax of a purchase. The cost is
calculated based on three properties: the “quantity” of the product in the purchase,
the “price” of the product excluding GST tax and current “GST tax rate”. It can be
expressed as the following formulas:

SubTotal = itemQuantity * singleUnitPrice
Tax = SubTotal * GSTRate
TotalCost = SubTotal + Tax

In OWL, there is no constructs defined for modeling this type of associations
among properties from one or more Classes.

5 Approach

For the modeling problems stated in the previous section, we propose two possible
ways to tackle the issues, which are demonstrated with code in this section.

5.1 Conceptualization of Data Value Range Constraint in OWL

As OWL does not provide any constructs for restricting value range on
DatatypePropertie, we cannot represent this constraint directly in the way that we
specify it in a programming language or in a database management system. However,
we can model the value range constraint by conceptualizing it into a new Class. The
conceptualization actually explicitly reflects the semantics of the data restriction
because the general concept Age of human being is different from the concept
minimum age and maximum age in a company recruitment requirement. We
demonstrate the solution to the first problem defined in section 4.1 in List 1.

In the OWL ontology List 1, the constraint on employee’s age is conceptualized as
a new Class “EmploymentAge”. 1t has two DatatypeProperties: “minAge” and
“maxAge”. There is one individual created for ABC company recruitment
requirement called “ABCEmploymentAge” whose “minAge” is 18 and "maxAge” is
65. The property “age” of the Class “Employee” can therefore be defined as an
ObjectProperty whose range is of the class “EmployeeAge”. If there are individuals
of ABC company employee, their age must be between 18 and 65.

<owl:Class rdf:ID="EmploymentAge"/>

<owl :DatatypeProperty rdf:ID="maxAge">
<rdfs:domain rdf:resource="#EmploymentAge"/>
<rdfs:range rdf:resource="&xsd#int"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="minAge">
<rdfs:range rdf:resource="&xsd#XMLSchema#int"/>
<rdfs:domain rdf:resource="#EmploymentAge"/>
</owl:DatatypePropertys>

<EmploymentAge rdf:ID="ABCEmploymentAge">
<maxAge rdf:datatype="&xsd#int">18</maxAge>
<minAge rdf:datatype="&xsd#int">65</minAge>




</EmploymentAge>
<owl:Class rdf:ID="Employee"/>

<owl :ObjectProperty rdf:ID="employmentAge">
<rdfs:domain rdf:resource="#Employee"/>
<rdfs:range rdf:resource="#EmploymentAge"/>
</owl:ObjectProperty>

List 1 conceptualization of data value range constraint in OWL

5.2 Software Agent-Based Knowledge Representation Approach

Other than the conceptualization, we can also incorporate other existing technologies
to represent the knowledge. In this section, we demonstrate how to represent the
calculation knowledge by using software agent with OWL. For the calculation
knowledge described in section 4.2, we can define it in the following formula.

Total Cost = Price * Quantity * (1 + GST Rate / 100)

Ontologies are typically specific to a given domain. For the above formula we
specify to a product trading domain which would not be the same as in a payroll
system. Thus product concept could have properties of name, barcode, etc. Agents
then have some shared understanding with the product concept and its properties.
There may be two products named the same. In order to unequivocally identify a
product, it may be necessary to specify barcode.

According to the FIPA specifications [23], when agents communicate, product
information representation is embedded inside ACL messages. Because JADE agents
are Java-based, the information can be represented using objects.

In order to exploit agent and ontology technology to support and allow agents to
discourse and reason about facts and knowledge related to a given domain, we specify
the approach into 3 steps.

* Define concepts in an ontology. In the purchase example, it includes Product and

Purchase concepts.

* Develop proper Java classes for the above two concepts in the ontology.

* Define the calculation formula by hard-coding it.

In order to illustrate defined concepts of Product and Purchase in an ontology, we
use Wongthongtham’s notation [24] to model Product and Purchase knowledge
representation. Figure 1 (A) shows Product concept and Figure 1 (B) shows Purchase
concept. Ontology class Product has datatype properties of name and barcode both
related to a string type. Ontology class Purchase has object properties of item related
to the ontology class Product. The ontology class Purchase also has datatype
properties of price related to a float type and quantity and tax rate related to an

integer type.

<<Concept>> <<Concept>>
Product Purchase
name Single string item Single Product
barcode  Single string price Single float
quantity  Single integer
tax_rate  Single integer

(A) (8)
Fig. 1 Product and Purchase concepts in Ontology Modeling



We reuse schema classes available in JADE PredicateSchema,
AgentActionSchema, and ConceptSchema included in the jade.content.schema
package to define the structure of each type of predicate, agent action, and concept
respectively [22]. In the example, we can model the domain including one concept
(Product), one predicate (Purchase — to apply to a product) and one agent action
(Calculate — to calculate total cost including tax).

Since the ontology is shared among agents, TradeOntology class is placed in an ad-
hoc package, ontology. The ontology defined in Java is shown in List 2.

package TradingPackage;

import jade.content.onto.*;

import jade.content.schema.*;

import jade.util.leap.HashMap;

import jade.content.lang.Codec;

import jade.core.CaselnsensitiveString;

public class TradeOntology extends jade.content.onto.Ontology {
//NAME
public static final String ONTOLOGY_ NAME = "Trade";
// The singleton instance of this ontology
private static Reflectivelntrospector introspect = new
ReflectivelIntrospector();
private static Ontology thelnstance = new TradeOntology () ;
public static Ontology getInstance() {
return thelInstance;

// VOCABULARY

public static final String PURCHASE ITEM="Item";

public static final String PURCHASE_QUANTITY="Quantity";
public static final String PURCHASE TAX RATE="Tax Rate';
public static final String PURCHASE PRICE="Price";
public static final String PURCHASE='"Purchase';

public static final String CALCULATOR="Calculator";
public static final String CALCULATE="Calculate";
public static final String PRODUCT_NAME="Name";

public static final String PRODUCT BARCODE="Barcode';
public static final String PRODUCT="Product';

/* Constructor */
private TradeOntology () {
super (ONTOLOGY_NAME, BasicOntology.getInstance());

try {

// adding Concept (s)
ConceptSchema productSchema = new ConceptSchema (PRODUCT) ;
add (productSchema, TradingPackage.Product.class) ;

// adding AgentAction(s)

AgentActionSchema calculateSchema = new
AgentActionSchema (CALCULATE) ;

add (calculateSchema, TradingPackage.Calculate.class);

// adding AID(s)
ConceptSchema calculatorSchema = new ConceptSchema (CALCULATOR) ;
add (calculatorSchema, TradingPackage.Calculator.class);

// adding Predicate (s)
PredicateSchema purchaseSchema = new PredicateSchema (PURCHASE) ;
add (purchaseSchema, TradingPackage.Purchase.class);




// adding properties
productSchema . add (PRODUCT_BARCODE,
(TermSchema)getSchema(BasicOntology.STRING), ObjectSchema. MANDATORY) ;
productSchema . add (PRODUCT_NAME,
(TermSchema) getSchema (BasicOntology.STRING) , ObjectSchema.OPTIONAL) ;
purchaseSchema.add (PURCHASE_PRICE,
(TermSchema) getSchema (BasicOntology . FLOAT), ObjectSchema.MANDATORY) ;
purchaseSchema.add(PURCHASE_TAX~RATE,
(TermSchema)getSchema{BasicOncology.INTEGER), ObjectSchema.MANDATORY) ;
purchaseSchema.add (PURCHASE_QUANTITY,
(TermSchema)getSchema(BasicOntology.INTEGER), ObjectSchema.MANDATORY) ;
purchaseSchema.add (PURCHASE_ITEM, productSchema, ObjectSchema.
MANDATORY) ;

Jcatch (java.lang.Exception e) {e.printStackTrace () ; }

List 2 Trade Ontology defined in Java

ackage TradingPackage;
. & & public String getBarcode() {

import jade.content.*; return this.barcode;

import jade.util.leap.*;
import jade.core.*;

// Name
public class Product private String name;
implements Concept f{ public void setName (String value) {
this.name=value;
// Barcode
private String barcode; public String getName() {
public void setBarcode (String return this.name;
value) {
this.barcode=value; } }

List 3 Product concept defined in Java

package TradingPackage;
public int getTax Rate() {

import jade.content.*; return this.tax_Rate;
import jade.util.leap.*;
import jade.core.*;

// Quantity

public class Purchase private int gquantity;
implements Predicate { public void setQuantity(int
value) {
// Price this.qguantity=value;
private float price;
public void setPrice(float public int getQuantity() {
value) f return this.quantity;
this.price=value;
public float getPrice() f{ // Item
return this.price; private Product item;
public void setItem(Product
value) {
// Tax_Rate this.item=value;
private int tax_Rate;
public void setTax Rate(int public Product getItem() {
value) { return this.item;

this.tax Rate=value;

List 4 Purchase concept defined in Java

The schemas for product, purchase, calculate, and calculator concepts are
associated with productjava, purchasejava, calculatejava, and calculator. java
classes respectively. Each property in a schema has a name and a type. For example,




in the product schema, barcode has its type as string. Every product must have
barcode as declared as MANDATORY. Similarly, value for properties item, price,
quantity, and tax rate cannot be null because when the purchase is made these values
are mandatory. Validation is made by throwing an exception if the value of
mandatory properties is null.

The product concept could be defined specifically to particular products e.g. books,
CDs for more specific trading. Properties of the product concept i.e. name and
barcode will be inherited to books and CDs. Book and CDs concepts can have their
own specific properties e.g. the CDs concept might have tracks property and books
might have authors property and so on.

Java classes, associated with the product concept and the purchase predicate in the
example, are shown in List 3 and List 4 respectively.

Agent action associates with the agent identifier which is intended to perform
action for this example to calculate total cost included tax. Calculation can be hard
coded getting value from object of class purchase i.e. price, quality, and tax rate.

For example a product of $200 price, 2 quantity, and 10% tax rate would have

expression as following:

((action (agent-identifier :name calculator) calculate
(product :name “xxx” :barcode “01211”) purchase (product :name
wxxx” :barcode “01211"”) 360)

Alternatively, we can also specify in class purchase as the attribute of TotalCost

shown as in List 5 below.

// Total Cost
private float TotalCost;
public float getTotalCost () {
return this.price * this.quality * (1 + tax Rate / 100) ;

List 5 The formula defined in Java

6. Conclusion

In this paper we addressed the problems associated with knowledge representation in
OWL. OWL specifications provide many mechanisms for defining restrictions and
associations among Classes but not for properties. We have presented two types of
knowledge, which are common to various domains, but cannot be modeled directly
using constructs specified in OWL. To tackle this knowledge presentation gap in
OWL, we have proposed two alternative solutions to the problems. One is to
conceptualize the knowledge such as the data value range constraints and the other is
to use other existing technology such as software agents to encode and convey the
knowledge. We do not intend to list all possible OWL modeling problems rather we
aim to provide some hints to other likewise knowledge representation issues with
OWL that have yet to be resolved.
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