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ABSTRACT 
 

Mallee biomass is considered to be a second-generation renewable feedstock in 

Australia and will play an important role in bioenergy development in Australia. Its 

production is of large-scale, low cost, small carbon footprint and high energy 

efficiency. However, biomass as a direct fuel is widely dispersed, bulky, fibrous and 

of high moisture content and low energy density. High logistic cost, poor grindability 

and mismatch of fuel property with coal are some of the key issues that impede 

biomass utilisation for power generation. Therefore, innovations are in urgent need to 

improve biomass volumetric energy densification, grindability and good fuel 

matching if co-fired with coal. Biomass pyrolysis is a flexible and low-cost approach 

that can be deployed for this purpose. Via pyrolysis, the bulky biomass can be 

converted to biomass-derived high-energy-density fuels such as biochar and/or bio-

oil. So far there has been a lack of fundamental understanding of mallee biomass 

pyrolysis and properties of the fuel products.  

 

The series of study in this PhD thesis aims to investigate the production of such high-

energy-density fuels obtained from mallee pyrolysis and to obtain some new 

knowledge on properties of the resultant fuels and their implications to practical 

applications. Particularly, the research has been designed and carried out to use 

pyrolysis as a pretreatment technology for the production of biochar, bio-oil and 

bioslurry fuels. The main outcomes of this study are summarised as follows. 

 

Firstly, biochars were produced from the pyrolysis of centimetre-sized particles of 

mallee wood at 300-500ºC using a fixed-bed reactor under slow-heating conditions. 

The data show that at pyrolysis temperatures > 320°C, biochar as a fuel has similar 

fuel H/C and O/C ratios compared to Collie coal which is the only coal being mined 

in WA. Converting biomass to biochar leads to a substantial increase in fuel mass 

energy density from ~10 GJ/tonne of green biomass to ~28 GJ/tonne of biochars 

prepared from pyrolysis at 320°C, in comparison to 26 GJ/tonne for Collie coal. 

However, there is little improvement in fuel volumetric energy density, which is still 
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around 7-9 GJ/m3 in comparison to 17 GJ/m3 of Collie coal. Biochars are still bulky 

and grinding is required for volumetric energy densification. Biochar grindability 

experiments have shown that the fuel grindability increases drastically even at 

pyrolysis temperature as low as 300ºC. Further increase in pyrolysis temperature to 

500°C leads to only small increase in biochar grindability. Under the grinding 

conditions, a significant size reduction (34-66 % cumulative volumetric size <75 µm) 

of biochars can be achieved within 4 minutes grinding (in comparison to only 19% 

for biomass after 15 minutes grinding), leading to a significant increase in volumetric 

energy density (e.g. from ~8 to ~19 GJ/m3 for biochar prepared from pyrolysis at 

400°C). Whereas grinding raw biomass typically result in large and fibrous particles, 

grinding biochar produce short and round particles highly favourable for fuel 

applications.  

 

Secondly, it is found that the pyrolysis of different biomass components produced 

biochars with distinct characteristics, largely because of the differences in the 

biological structure of these components. Leaf biochars showed the poorest 

grindability due to the presence of abundant tough oil glands in leaf. Even for the 

biochar prepared from the pyrolysis of leaf at 800°C, the oil gland enclosures 

remained largely intact after grinding. Biochars produced from leaf, bark and wood 

components also have significant differences in ash properties. Even with low ash 

content, wood biochars have low Si/K and Ca/K ratios, suggesting these biochars 

may have a high slagging propensity in comparison to bark and leaf biochars. 

 

Thirdly, bio-oil and biochar were also produced from pyrolysis of micron-size wood 

particle using a fluidised-bed reactor system under fast-heating conditions. The 

excellent grindability of biochar had enabled desirable particle size reduction of 

biochar into fine particles which can be suspended into bio-oil for the preparation of 

bioslurry fuels. The data have demonstrated that bioslurry fuels have desired fuel and 

rheological characteristics that met the requirements for combustion and gasification 

applications. Depending on biochar loading, the volumetric energy density of 

bioslurry is up to 23.2 GJ/m3, achieving a significant energy densification (by a 

factor > 4) in comparison to green wood chips. Bioslurry fuels with high biochar 
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concentrations (11-20 wt%) showed non-Newtonian characteristics with 

pseudoplastic behaviour. The flow behaviour index, n decreases with the increasing 

of biochar concentration. Bioslurry with higher biochar concentrations has also 

demonstrated thixotropic behaviour. The bioslurry fuels also have low viscosity 

(<453 mPa.s) and are pumpable at both room and elevated temperatures. The 

concentrations of Ca, K, N and S in bioslurry are below the limits of slurry fuel 

guidelines. 

 

Fourthly, bio-oil is extracted using biodiesel to produce two fractions, a biodiesel-

rich fraction (also referred as bio-oil/biodiesel blend) and a bio-oil rich fraction. The 

results has shown that the compounds (mainly phenolic) extracted from bio-oil into 

the biodiesel-rich fraction reduces the surface tension of the resulted biodiesel/bio-oil 

blends that are known as potential liquid transport fuels. The bio-oil rich fraction is 

mixed with ground biochar to produce a bioslurry fuel. It is found that bioslurry fuels 

with 10% and 20% biochar loading prepared from the bio-oil rich fraction of 

biodiesel extraction at a biodiesel to bio-oil blend ratio 0.67 have similar fuel 

properties (e.g. density, surface tension, volumetric energy density and stability) in 

comparison to those prepared using the original whole bio-oil. The slurry fuels have 

exhibited non-Newtonian with pseudoplastic characteristics and good pumpability 

desirable for fuel handling. The viscoelastic behaviour of the slurry fuels also has 

shown dominantly fluid-like behaviour in the linear viscoelastic region therefore 

favourable for atomization in practical applications. This study proposes a new bio-

oil utilisation strategy via coproduction of a biodiesel/bio-oil blend and a bioslurry 

fuel. The biodiesel/bio-oil blend utilises a proportion of bio-oil compounds 

(relatively high value small volume) as a liquid transportation fuel. The bioslurry fuel 

is prepared by mixing the rest low-quality bio-oil rich fractions (relatively low value 

and high volume) with ground biochar, suitable for stationary applications such as 

combustion and gasification.  

 

Overall, the present research has generated valuable data, knowledge and 

fundamental understanding on advanced fuels from mallee biomass using pyrolysis 

as a pre-treatment step. The flexibility of pyrolysis process enables conversion of 
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bulky, low fuel quality mallee biomass to biofuels of high volumetric energy density 

favourable to reduce logistic cost associated with direct use of biomass. The 

significance structural, fuel and ash properties differences among various mallee 

biomass components were also revealed. The production of bioslurry fuels as a 

mixture of bio-oil and biochar is not only to further enhance the 

transportability/handling of mallee biomass but most importantly the slurry quality 

highly matched requirements in stationary applications such as combustion and 

gasification. The co-production of bioslurry with bio-oil/biodiesel extraction was 

firstly reported in this field. Such a new strategy, which uses high-quality extractable 

bio-oil compounds into bio-oil/biodiesel blend as a liquid transportation fuel and 

utilises the low-quality bio-oil rich fraction left after extraction for bioslurry 

preparation, offers significant benefits for optimised use of bio-oil. 
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CHAPTER 1  

INTRODUCTION 

 

 
1.1 Background and Motive 

Coal is responsible for the majority of electricity generation in Australia and will 

continue to provide cheap and secure energy for powering the Australian economy in 

the foreseeable future.1 However, the use of fossil fuels (particularly stationary coal-

fired power generation) is known as one of the biggest contributors to green house 

gases emissions, leading to global warming and the problems related to climate 

change.2 Global fossil fuel used in the Reference Scenario increases energy-related 

CO2 emissions from ~29Gt in 2007 to >40Gt in 2030.3 In the transition to future 

sustainable development, renewable energy sources are becoming increasingly 

important in the global energy supply mix. The International Energy Agency (IEA) 

predicts that renewable energy will increase to 16% of the global energy supply by 

2030, of which biomass will be the single most important renewable energy source,3 

accounting for ~ 73% of the total renewable energy supply. For world primary 

energy demand from year 2007-2030, biomass and wastes are expected to have an 

average 1.4% annual growth.3 

 

There are significant advantages of biomass utilisation for power generation. If 

produced in sustainable manner, biomass delivers many environmental benefits such 

as mitigation of green house gases emissions and soil improvement.4 Biomass can be 

closed to carbon neutral, depending on their production processes.5 Biomass can also 

be coprocessed with coal, such as co-firing, to achieve significant emission 

reductions.6,7 Therefore, development of a biomass-based bioenergy system can both 

reduces our reliance on fossil fuels and promotes sustainable rural and regional 

development.  
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Australia is projected for significant expansion of a biomass-based power generation 

industry especially from short rotation crops of mallee eucalyptus.8-12 Mallee is 

typically grown in conventional agricultural land in the form of alley farming i.e. 

narrow belts occupying <10% of the land. Alley farming promotes yield through 

better water capture.8,13 In comparison to other dedicated energy crops, mallee 

biomass has many unique advantages: 

• A true second generation biomass feedstock. As dual purpose crop to manage 

the serious dryland salinity in the premium argricultural lands of Australia and 

producing biomass as a byproduct, mallee biomass does not compete with, 

rather on the contrary enhances food production.8 

• Large-scale biomass production. Mallee biomass is produced from relatively 

small area agricultural land offering significant contribution to a streamline 

bioenergy supply chain.8 In Western Australia (WA) alone, the annual 

production of mallee biomass can be up to ~10 million dry tonnes per 

annum.9,10  

• Efficient bioenergy production for CO2 mitigation with high energy 

productivity in Australia. Recent life cycle analysis has demonstrated that 

mallee biomass production is close to carbon neutral5 and achieves an energy 

ratio of 41.7 and an energy productivity of 206.3 GJ/ (ha year), far exceeding 

the performance of other annual crops such as canola which has energy ratio 

below 7.0 and energy productivity below 40.0GJ/ (ha year).13 

• Significant contribution to local energy security and sustainable development 

in rural and regional Australia. Apart from bioenergy as key products, new 

industries/markets can be established for various co-products from mallee 

biomass eg. solid wood products for timber and furniture, wood composite, 

activated carbon, essential oil, tannins and biopolymers.14 

 

In summary, mallee biomass is a key second generation biomass feedstock in 

Australia. It can play a significant and positive role in Australia’s future bioenergy 

industry and economy.  

 

 

 

CHAPTER 1 



                                                                                                                   
                                                                                                                                          
                                              

 
3 

 
High-energy-density Fuels from Mallee Biomass 

However, biomass as a fuel suffers from several undesired characteristics which limit 

its utilisation. These undesired characteristics are listed below: 

• Bulky, high moisture and low energy density. In the case of mallee, the green 

chipped mallee biomass (~10 cm length dimensions) typically contains 45% 

moisture and has a volumetric energy density ~18% that of typical black coals 

(Chapter 6).  

• Poor grindability. Due to its fibrous nature, biomass size reduction is 

problematic with conventional grinders that use compressive force originally 

designed to mill a more brittle coal.  

• Mismatch of biomass fuel properties with those of coal. For example in co-

firing, biomass combustion generates huge quantity of flue gas15 which 

influences combustion stability, reduces  coal  residence time leading to loss of 

plant efficiency.16,4 

• Ash related issues. Biomass often contains high alkali leading to various ash 

related problems i.e deposition, corrosion, fouling and sintering.16-18  

• Heterogenous nature. Biomass feedstock often contains various components 

which have very different characteristics. The highly heterogenous feedstock 

further complicated the coal vs. biomass fuel mismatch effects.19 

 

Fuel supply chain plays a significant role in biomass utilisation. As a result of low 

energy density, long distance transportation of mallee biomass is not economic and 

the capacity of dedicated bioenergy plants utilising mallee biomass as feedstock is 

constrained.20 Logistics cost can be > 50% of total bioenergy production cost.20,21 

Poor grindability further increase grinding energy, fuel handling cost and overall 

plant investment cost.19 Additionally, while poor grindability determines that feasible 

biomass utilisation must deal with large particles, unfortunately large biomass 

particles are undesirable for efficient combustion and limits fuel feeding.16 These key 

issues significantly impedes the development of downstream applications such as 

biomass co-firing, which is known to be a main strategy to increase biomass 

feedstock in the vast existing coal-based power station infrastructure.4 As results of 

biomass-related problems, the uptake of biomass for co-firing in coal-fired power 

stations is limited 22 and the average cost of power generation is also increased.19,23  
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Several approaches have been made to address the problems associated with the 

direct use of biomass as a fuel. This includes upstream measures to pre-treat biomass 

such as: 

• Drying technology for moisture reduction and improve biomass heating 

value.19,24,25 

• Washing/leaching to remove problematic ash forming species.19,26,27 

• Installation of independent biomass grinders in conventional coal stations to 

address poor grindability issue and increase biomass uptake >5%.28 

• Compaction/densification methods such as baling,4,19 briquetting,6,29 and  

pelletizing6,19,30-32  to increase bulk and energy density of biomass.  

• Light thermal pre-treatment method (torrefaction)33-36 to partially decompose 

biomass, improving its grindability and heating value. 

• Combination of torrefaction and pelletizing (TOP) to increase biomass 

volumetric energy density.19,37  

  

These methods were able to solve the biomass problem to a certain extent. The 

volumetric energy density accomplished is moderate. Regardless to particle fineness 

achieved, some techniques such as pulverisation technology, briquetting and 

pelletizing are expensive and require high grinding energy. Product durability and 

applicability of these methods to existing coal-fired power plant is still an issue. 

Therefore, further innovation is required to: 

• Drastically increasing volumetric energy density of the fuel; 

• Significant improvement in fuel grindability; and 

• Satisfactorily addressing fuel mismatching in co-firing applications. 

 

An alternative pre-treatment method is pyrolysis, through which the bulky green 

biomass can be converted to biofuels such as biochar and/or bio-oil. Pyrolysis is a 

flexible low-cost technology which is capable of processing a wide variety of 

feedstocks.38-41,42 Pyrolysis of mallee biomass for the production of biochar and bio-

oil is one of the possible routes targeted to establish a high- energy-density biofuels 

industry in WA. 
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1.2 Scope and Objectives 

This study aims to fundamentally investigate the production and properties of high-

energy-density fuels derived from mallee biomass. It addresses the key issues 

associated with the direct use of biomass as a fuel, using pyrolysis as a biomass pre-

treatment method. The detailed objectives of the present study are: 

(1) To explain the fuel properties and grindability of wood biochar 

benchmarked to a local coal; 

(2) To understand the differences of fuel and ash properties of biochar produced 

from mallee leaf, bark and wood components and implications of individual 

components/whole mallee tree as fuel feedstock; 

(3) To investigate the production, fuel and rheological properties of bioslurry 

from bio-oil/biochar blend; and 

(4) To study the properties of bioslurry and fuel derivatives produced from bio-

oil rich fraction after extraction of bio-oil/biodiesel.  

 

1.3 Thesis Outline 

There are a total of 8 chapters in this thesis. Each chapter is organized as follows, 

and the thesis structure is schematically outlined in the thesis map (Figure 1-1):  

Chapter 1 introduces the background and aims of the current research; 

Chapter 2 summarizes literature survey for significance of mallee biomass, 

technical challenges associate with direct utilisation of biomass and current 

technologies deployed to treat biomass to achieve fuel densification finally leading to 

the identification of gaps and specific objectives for the current study; 

Chapter 3 presents the methodology employed to achieve the research 

objectives, along with detailed explanation of the experimental equipments and 

materials used; 

Chapter 4 discusses the fuel properties/compositions, grindability, energy 

densification and particle size/shape of biochar produced from slow pyrolysis of 

mallee wood at various temperatures, and the data is benchmarked against Collie 

coal;  

Chapter 5 understands the significant differences in the fuel and ash 

properties between biochars derived from various components of mallee trees i.e 

leaf, bark and wood using slow pyrolysis;  
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Chapter 6 examines fuel properties, steady fluid rheology and densification of 

bioslurry produced from mixtures of fast pyrolysis bio-oil and biochar of mallee 

wood matching the bioslurry properties with fuel demands in various combustion 

applications; 

Chapter 7 develops a method for the production of bioslurry from bio-oil rich 

fraction after extraction of bio-oil/biodiesel, and investigates the fuels compositions, 

chemical compounds, surface tension and slurry rheology; and 

Chapter 8 concludes the present study and recommends several areas for 
future research.  
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Chapter 4 Fuel Properties and Grindability 
of Mallee Wood Biochar 
-Effect of slow pyrolysis on fuel properties of 
wood biochar. 
- Effect of grinding timeon the particle size and 
shape of ground biochar particles. 
-Benchmarking against Collie coal. 

Chapter 5 Significant Difference of Fuel and 
Ash Properties of Biochar Derived from 
Various Components of Mallee Trees 
-Comparison of grindability and fuel properties 
between biochars from leaf, bark and wood. 
-Evidence of chemical and structure difference. 

Chapter 8 Conclusions & 
Recommendations 

Chapter 6 Fuel and Rheological 
Properties of Bioslurry Produced 
from Mallee Wood Fast Pyrolysis 
-Production of bioslurry from bio-oil 
and ground biochar targeting boiler and 
gasifier applications. 
-Effect of biochar loading on bioslurry 
fuel density and stability. 
- Bioslurry rheology  

Chapter 7 Fuel and Rheological Properties of Bioslurry 
Produced from Extraction of Bio-oil and Biodiesel  
- Characteristics of bioslurry prepared from the bio-oil rich fraction 
after extraction of bio-oil with biodiesel. 
-Effect of extraction ratio on the chemical composition, surface 
tension, rheology and ash characteristics of bioslurry fuels. 

To understand the implications 

To evaluate the objectives 

Understanding fuel and 
rheological properties of bioslurry Understanding property differences of 

biochar from various mallee components Understanding fuel properties, energy 
densification and grindability of wood biochar  

Figure 1-1 Thesis map 

Chapter 1 Introduction 
-Research needs and motives. 
-Overall aims and scope. 
-Thesis structure and map. 

Chapter 2 Literature Review 
-Status of current knowledge in research area. 
-Research gaps and questions. 
-Specific objectives of this thesis. 

Chapter 3 Methodology and Analytical 
Techniques 
-Sample preparations. 
-Experimental procedures. 
-Sample analysis and charaterisation. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 
2.1 Introduction 

In the past twenty years, significant research and development have been carried out 

to address the undesirable issues of biomass for power generation.16,17,34,41,43-51,6,52 

The previous studies were focused on various solutions for the problems associated 

with biomass utilisation, including upstream pre-treatment technologies19 to tailor the 

source of problems (biomass properties) and downstream solutions for addressing 

unwanted consequences of biomass applications (change of corroded equipment, 

cleaning of deposits, soot blowing, chemical addition etc). The objectives of this 

chapter are to review the up-to-date research progress on upstream biomass pre-

treatment methods and to evaluate its potential applications, particularly on biomass 

energy densification and fuel matching technology.  

 

This review firstly gives a brief introduction on biomass and the important roles of 

mallee biomass as a bioenergy resource in Australia. A discussion on biomass 

properties with key technical challenges associated with direct utilisation of biomass 

then follows. The chapter then reviews biomass pre-treatment methods deployed to 

solve these problems including drying, pulverisation technology, washing/leaching, 

baling, pelletizing, briquetting, torrefaction and pyrolysis. The typical operation 

conditions, products properties, application potentials and limitation of these 

technologies are then summarised. This chapter concludes with several research gaps 

identified on production of high-energy-density fuels from biomass and the scope of 

study defined in this PhD thesis.  
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2.2 Biomass and Classification 

Biomass is a complex biogenic organic-inorganic solid material produced by natural 

and technogenic processes. It includes natural constituents produced from growing 

land- and water-based vegetation via photosynthesis process or generated via animal 

and human food digestion. Any products derived from technical processing of these 

natural constituents are also biomass.53 Biomass composes of polymers that have 

extensive chains of carbon atoms linked into macromolecules. There are three major 

types of carbohydrate polymers in biomass, i.e. cellulose, hemicelluloses and lignin. 

Other biomass compounds are lipids, proteins, simple sugars, water and inorganic 

species.54 

 

With regards to biomass usage as solid fuel resources worldwide, biomass can be 

classified into several groups according to their biological diversity, source and 

origin (Table 2-1). While the combustion of biomass itself does produce CO2, 

biomass utilisation is carbon neutral or close to carbon neutrals, depending on 

biomass production process. If biomass is produced in a sustainable manner, its 

application for energy production offers significant advantages. This is due to the 

fact that plant growth for the production of biomass feedstock consumes atmospheric 

CO2 thus offsets the CO2 emission from biomass fuel combustion. Therefore, 

sustainable use of biomass energy could be among the ways for nations to meet the 

Kyoto agreement and decrease their reliance on foreign petroleum.55 
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Table 2-1 Classification of biomass as solid fuels resources53  

Biomass groups Biomass sub-groups, varieties and species 
1. Wood and woody biomass Coniferous or deciduous; angiospermous or 

gymnospermous; soft or hard; stem, branches, foliage, 
bark, chips, lumps, pellets, briquettes, sawdust, 
sawmill and others from various wood species.   
 

2. Herbaceous and agricultural 
biomass 

Annual or perennial and field-based or processed-
based such as: 

a. Grasses and flowers (alfalfa, arundo, bamboo, 
bana, brassica, cane, cynara, miscanthus, 
switchgrass, timothy, other) 

b. Straws (barley, bean, flax, corn, mint, oat, 
rape, rice, rye, sesame, sunflower, wheat, 
others) 

c. Other residues (fruits, shells, husks, hulls, pits, 
pips, grains, seeds, coir, stalks, cobs, kernels, 
bagasse, food, fodder, pulps, cakes, others) 

 
3.  Aquatic biomass Marine or freshwater algae; macroalgae (blue, green, 

blue-green, brown, red) or microalgae; seaweed, kelp, 
lake weed, water hyacinth, others.  
 

4. Animal and human biomass 
wastes 

Bones, meat-bone meal, chicken litter, various 
manures, others. 
 

5.  Contaminated biomass and 
industrial biomass wastes (semi 
biomass) 

Municipal solid waste, demolition wood, refuse-
derived fuel, sewage sludge, hospital waste, paper-
pulp sludge, waste papers, paperboard waste, 
chipboard, fibreboard, plywood, wood pallets and 
boxes, railway sleepers, tannery waste, others. 
 

6. Biomass mixtures Blends from the above varieties 
 

 

2.3 Significance of Mallee Biomass in Australia 

In Australia, black coal remains the largest contributor to the nation’s total energy 

production. For example, in the year of 2006-07, energy supply from black coal is 

~44% in Australia’s national energy mix. However, the supplies of renewable energy 

products have been increased steadily from 2001-02 and 2006-07. For example, 

biomass wood/bagasse grew by 10% and biofuel (liquid or gas) increased by 30%, 

although biomass wood/bagasse and biofuels made up of only ~1% and 0.06% of the 

total energy consumption in 2006-2007,56 indicating substantial room for future 

growth. At present, biofuel productions are developed based on various dedicated 

energy crops containing sugar/starch/oil such as sugar cane, wheat and canola (Table 

2-2). For these first generation biofuels produced from food crops, conversion 
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technologies and markets are well established for relatively easy market 

penetration.57 However, it is known that utilisation of large quantities of first 

generation biofuels is of low energy efficiency and high carbon footprint and will 

lead to serious competition with food production.58,59 Therefore, second generation 

feedstock such as lignocellulosic materials are becoming more viable and significant.  

Available as primary source (in the field), secondary (residue from 

forest/agroindustry) or tertiary waste (from urban/industrial activity),8 second 

generation biofuels are abundant, of low cost and have high ratio of energy output to 

input.  

 

Woody perennial species from the genus Eucalypts or mallee are widely recognized 

as key second generation bioenergy feedstock at present and in the future (shown as 

dotted lines in Table 2-2). In Western Australia (WA), the development of mallee 

plantation in alleys between wheat crops began since 1990s with 12 000 ha of mallee 

have been collectively planted so far.8 The key objective is to manage the serious 

dryland salinity problems which impact the sustainability of wheat production in the 

“wheatbelt agricultural area”.10,60 Mallees has outstanding coppice ability i.e new 

vegetation can resprout from rootstocks after harvest. During 3-6 years harvest cycle, 

only above-ground biomass is coppiced leaving the root systems intact. New shoots 

grow rapidly from the root system and as the root system matures with age, more 

robust vegetation is produced. Once planted, the life duration of mallee tree can be 

well over 100 years.61 It was estimated that a total carbon sequestration of ~90 

million tonnes in the form of living biomass can be  generated for every 3 million 

hectares of mallee farm.61 With the assumptions of 30 tonnes mean carbon dioxide 

increment per year, the rate of sequestration would be 90 million tonnes/yr therefore 

over a thirty year period a carbon sink of 2.7 billion tonnes would be created. 
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Table 2-2 A scheme for assessing feedstocks for biofuels and bioenergy in Australia based 

on current and future production bases, and first and second generation processing 

technologies14 

 1st generation biofuels 2nd generation biofuels 
Current 
production 
base 

Box 1 Ethanol and 
biodiesel: 
Ethanol 
• Sugar, C-molasses 
• Wheat 
• Barley 
• Oats 
• Sorghum 
• Maize 
• Sweet sorghum 
• Sugar beet 
Biodiesel 
• Used cooking oil 
• Tallow 
• Canola 
• Mustard 

Box 2 Lignocellulosic for ethanol, butanol, methanol, biogas 
or electricity , as well as Box 1 crops in biorefining to 
produce multiple co-products including biofuels: 
Crops residues  
• Sugar bagasse and cane trash 
• Cereal stubble 
Grasses 
• Annual and perennial grasses 

Farm forestry crops 
• Oil mallee 
• Short rotation coppicing trees 

Forestry 
• Wood harvested for sawlogs and pulpwood 
• Firewood 
• Residue currently left in native forests 
• Residue currently left in plantations 
• Increased forest thinnings 

Waste streams 
• Waste from wood processing facilities 
• Urban wood waste 
• Black liquor (byproduct of pulping) 
• Residues from food processing 
• Municipal Solid Waste 

 
Future 
production 
base 

Box 3 Ethanol and 
biodiesel: 
• Expanded production 

of Box 1 crops 
• GM crops 
• Tree crops with high 

production potential, 
largely untested in 
Australia eg 
Jatropha, Pongamia, 
Moringa, Hura 
crepitans. 

• Algae 
 

Box 4 Biorefineries for range of high value biobased 
products, with energy co-products: 
Forestry or farm forestry 
• Expansion of current hardwood or softwood plantation 

forestry 
• Expansion of oil mallee industry 
• ‘FloraSearch’ type farm forestry-high value  new wood 

products with energy as coproduct 
Grasses 
• Expansion of new grasses eg  Switchgrass 
Algae 
GM crops, grasses, trees 
Other unidentified ‘biorefinery’ initiatives 

 

In reality, the target is not far to be achieved. In WA alone, the potential annual 

production of mallee biomass can be ~10 million dry tones per annum.9,10 As a 

byproduct rather than a dedicated energy crop, mallee biomass complements 

conventional agriculture by delivering environmental services to lowering the salty 

water table at the same time producing feedstock for bioenergy industry8 (Figure 2-

1). Competition with commercial crops is minimal as mallee biomass only occupies 

<10 % of agricultural land.8  
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Figure 2-1 Alley farming of mallee in agricultural land affected by dryland salinity at 

Kalannie, WA. (courtesy from the Oil Mallee Association) 62 Mallee trees are grown 

sustainably in the form of long narrow lines and conventional annual crops are planted in 

between the mallee lines. 

 

Wu et al.13 assessed the overall energy balance during mallee biomass growth, 

harvest, transport and delivery to a central processor over a production period of 50 

years, considering all direct and indirect energy inputs associated with all activities 

eg heat, electricity, fertilizers etc. (Figure 2-2). The energy consumption associated 

with each input was converted to the equivalent non-renewable primary energy 

required to the production, supply and use of the energy. The energy output is the 

primary energy contained in all mallee biomass components. It is estimated that the 

ratio of energy output in biomass to non-renewable energy inputs during the whole 

process (i.e. energy ratio) for mallee is over 40, in comparison to other annual 

dedicated crops grown in the same region, such as canola that has much lower energy 

ratio < 7.0. Overall, the results have indicated that mallee could be the largest and 

cheapest source of secondary generation biomass fuel in WA.  
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Figure 2-2 Mallee production system for biomass production13 

 

2.4 Technical Challenges in Biomass Utilisation  

Despite the advantages of biomass as a renewable bioenergy resource, biomass 

utilisation is often limited to ~10% in practical application. While biomass is often 

considered as a relatively cheap resource as some biomass are available as waste, 

fuel handling cost for biomass can be very high due to several constraints.63 

Compared to coal, biomass also has considerably different organic and inorganic 

compositions as well as physical properties. For example, biomass contains much 

less carbon, more oxygen and moisture leading to lower heating value than coal. 

While biomass has advantages in terms of higher volatility and reactivity in both 

biomass fuel and char. Biomass also has high moisture content. Such characteristics 

dictated that biomass combustion has low process efficiency. Due to its high alkali 

contents, ash-related issues such as fouling, deposition and corrosion are also 

important consideration during biomass combustion.64 

 

Biomass has poor grindability as a result of its bulky and fibrous nature. Therefore, 

such a feature significantly impacts plant milling cost, feeding/fluidisation processes 

and handling operations.19 Poor grindability of biomass also typically leads to the 

production of large biomass fuel particles with a low packing/bulk density and 

volumetric energy density.6 A low volumetric energy density leads to high fuel 

transportation and storage costs, making it uneconomic for long-distance 
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transportation.21 Lastly, the heterogeneous nature and the broad diversity of biomass 

fuels (Table 2-1), requires the knowledge on each individual fuel component in order 

to develop a process which can flexibly handle these fuels. The following sections 

give more details on these biomass constraints. 

 

2.4.1 Biomass Fuel Chemistry and Implications  

The technology chosen for a combustion process is often largely based on fuel 

properties.6 Due to its complex carbohydrate polymers (Section 2.2), biomass is 

highly oxygenated.65 On a dry mass basis, the typical percentages for C, H and O are 

30-60%, 5-6% and 30-45% respectively.6 The contents of C, H, O can vary 

significantly for different types of biomass.66 Fuel properties can be illustrated as a 

correlation between the O:C and H:C ratios of the fuel, i.e. the so-called van 

Krevelen diagram as shown in Figure 2-3. It can be seen in Figure 2-3 that biomass 

has higher contents of O and H and a lower C content than fossil fuels. This leads to 

significantly lower energy content in biomass because in theoritically, C-O and C-H 

bonds have lower energy than C-C bonds.45  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3 van Krevelen diagram for various solid fuels45 

 

Another important factor that influences fuel heating value is the fuel’s moisture 

content.  Figure 2-4 presents the moisture contents of some solid fuels used as blends 

in co-combustion facilities, as reported in a previous study.7 The solid fuels are 
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Bellambi coal, Federal coal, wheat straw, wood, the woody matter of pressed olive 

stone (WPOS) and sewage sludge (SS). Figure 2-4 clearly shows the significant 

differences in the fuel moisture contents not only between coal and biomass, but also 

among various types of biomass fuels. A recent review of 86 varieties of biomass has 

reported a range of moisture contents 3-63 %.53 It is also noted that the specific 

moisture requirement is ~15-30 wt% for syngas production and below 10 wt% for 

pyrolysis.24 Higher biomass moisture content can impose significant adverse impacts 

on the overall energy balance and the volume of flue gas produced per unit of energy 

therefore dewatering of the fuels will be required. High moisture content can also 

cause fuel ignition issues and reduce the combustion temperature, which in turn 

hinders the efficiency, stability and quality of fuel combustion.67 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 Moisture content of fuels (Data taken from reference 7)  
 
Biomass usually consists of 70–80% volatile matter (VM) in comparison to 10 – 

50% of coal.22 A high volatile content affects the combustion system in various 

ways. The fuel is easier to ignite and gives a rapid combustion. As a result, the 

conversion of biomass is dominantly in the gaseous phase and can lose up to 90% of 

biomass mass during the initial pyrolysis stage in comparison to <10% for anthracite 

and 20 - 30% for bituminous coal. The combustion of such quickly-released of 

volatiles produces a large volume of flue gas which requires a bigger reactor volume 

to accommodate in order to achieve complete combustion at a high efficiency and to 
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ensure low pollutant emissions (e.g. CO and PAH, unburned pollutants or products 

of incomplete combustion).6  

 

2.4.2  Inorganic Species in Biomass Fuels and Ash-related Problems during 

Biomass Utilisation 

As a result of nutrients uptake during biomass growth, biomass also contains 

abundant inorganic species, which are ash-forming precursors during biomass 

combustion. The major inherent ash-forming species in biomass include alkali and 

alkaline metallic (AAEM) species, i.e. mainly Ca, Mg, Na, K, and S, P, Si, Cl, Al, Ti 

and Fe. The ash content in biomass fuels vary from biomass to biomass, ranging 

from typically <1% for wood to 30-40% for green house residue.6 The ash content 

together with other fuel properties of biomass can sometime dictate the specific 

biomass utilisation technology to be deployed. For example herbaceous biomass like 

straw contains high alkali causing deposition and corrosion problem. Whereas wood 

biomass is more preferred feedstock as it typically has less ash and alkali problem. 

As straw and wood have different combustion behavior, blends of straw-wood 

cannot be combusted together in grate furnaces.19,68 

 

The ash content of biomass can also influence fuel handling/ processing costs and the 

cost of biomass-based energy production.66 High ash fuels require efficient dust 

removal systems to handle particulate emissions and have low heating values.6 The 

release of inorganic species during solid fuel combustion is influenced both by its 

inherent volatility and organic matter reactions. Inorganic species that are inherently 

volatile at combustion temperatures include derivatives of some AAEM species 

(AAEM) especially K and Na. Other non-volatile material (Ca, Mg etc) can also be 

possibly released by convective transport during rapid pyrolysis.65  

 

Ash slagging, fouling and corrosion in combustors depend strongly on the 

volatilisation of ash species.45 These are key issues associated with the usage of 

biomass as a fuel in combustion applications. It is known that the key ash-forming 

species responsible for ash sintering, agglomeration, deposition, erosion and 

corrosion during biomass combustion are the AAEM species which can form alkali 

silicates, chlorides and sulphates.45 The alkali silicates and sulphates have lower 
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melting points (below 700ºC) and form deposits on the heat transfer walls of a boiler, 

or on the particles bed in a fluidised-bed combustion and causes bed sintering and 

defluidisation.27,69 Chlorine enhances mobility of the AAEM species, especially 

potassium.  Potassium chloride is one of the most stable high-temperature ash 

forming species in gas-phase leading to slagging and fouling problems in biomass 

combustors.65 Moreover, in downstream syngas utilisation such as gas turbines, the 

alkali in syngas can cause deleterious problems like deposition, erosion and 

corrosion on the turbine parts.70 

 

2.4.3 Biomass Fuel Grindability  

Naturally, biomass has fibrous structure and is difficult to fracture by applying 

compressive forces in conventional coal mills, leading to significant costs for size 

reduction of biomass materials as well as other operating and maintenance costs. 

Poor grindability of biomass is a key factor limiting the uptake of biomass as a fuel 

for co-firing applications in conventional coal-based power plants. For example, the 

common mill systems used for coal includes Vertical Spindle, Ball and Cutting/Knife 

mill.71 It is found that during the co-milling of coal and biomass in pilot scale vertical 

spindle mill, the vertical spindle mill uptake was limited only up to 5 wt% of 

biomass blend.71 Ball mill is less suitable to grind biomass for its gravity impacts and 

tumbling actions only flattened biomass fibre rather than cutting. Previous trials71-74 

of biomass grinding in ball mill systems and combination of ball-race and ball-bowl 

systems were unsuccessful, as summarised in Table 2-3.  

 

The poor grindability of biomass leads to various technical problems in biomass 

utilisation. Coarse biomass particles have slow devolatilisation rate, decreased 

burning rate and lowered ignition front speed compared to small biomass particles.75 

Therefore, such biomass particles result in longer residence time required for 

complete combustion, incomplete burn out, blockage/bridging to feeding system, 

sedimentation and mixing problem causing high level of CO emission.16 Therefore, 

there is stringent requirement on the size of fuel particles, e.g. the guidelines requires 

that the pulverised coal particles injected into boiler to have 80% of fuel particles to 

be <74-75µm in pulverised coal-fired power stations.16  
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Table 2-3 Milling test experience using ball mill systems 

Plant Biomass type Biomass blend 
ratio (wt %) 

Summary 

Macquarie 
Generation, 
Australia71 

woodchips 5 Ball mill. Unsuccessful, fibrous 
biomass flattened but particle size 
remains large. Difference 
densities contribute to biomass 
build up problem on coal and ball 
charge bed. 
 

Shawville 
Generating Station, 
USA72  

sawdust, tree 
trimming, 
hybrid poplar 

3 Ball-race mill and bowl mill. 
Grindability index reduced by 6 
points. Feeder limitation causes 
8-10 MW loss of boiler capacity, 
milling power increase 4-5%, mill 
outlet temperature increase. 
 

Plant Hammond, 
USA73 

wood 9.7-13.5 Ball-race mill. Larger particle 
size, mill power increase, 
unburned combustibles higher 
compared to firing coal although 
associated boiler operates at full 
capacity.   
 

Georgia Power 
Company, USA74 

bark 5-20  Ball-Race mill. Unsuccessful, 
fibrous bark material formed 
“bird nests”, blockage of fuel 
flow. 

 

Apart from the requirement of fuel particle size, the desired particle shape for fuel 

handling is those close to spherical with a major axis to minor axis length ratio 

(aspect ratio) of ~1. In practice, due to the poor grindability and fibrous nature of 

biomass, many demonstration plants for biomass/coal co-firing use ground biomass 

particles with sizes of ~ 3 mm 64 and aspect ratios of 3-7 or even higher.6 These large 

and irregular biomass particle lead to reduced biomass conversion efficiency and 

more difficult fuel fluidisation or even fuel blockage.6,34  

 

2.4.4 Biomass Fuel Bulk and Energy Densities 

Most biomasses have low bulk densities. For example chopped straw and rice husks 

have bulk densities around 50-120 and 100-125 kg/m3 respectively much less than 

brown coal (560-600 kg/m3) and bituminous coal (800-900 kg/m3).6 The low bulk 

densities of these fuels significantly increase milling, storage, handling and 

transportation costs.19 Fuels with a low bulk density also has a low volumetric energy 

density causing process and feeding control difficulties, and requires large storage 
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and expensive transportation. Due to its high moisture, low calorific value and low 

bulk density, biomass volumetric energy density is around 10% of coal.44 As a 

consequence, in practical applications such as biomass co-firing in coal-fired power 

stations, the volume requirements of coal and biomass at only 10% of coal heat input 

rate is similar.19 This translates to a disproportionately high biomass operating cost 

for relatively small proportion of heat contribution from biomass.  

 

In addition, biomass bulk density also impacts the requirement of fuel storage, sizing 

of the material handling system and the subsequent fuel thermo-chemical conversion 

process.66 For example in continuous biomass supply chain, it is known that 

transportation cost accounting for >50% of the total delivered biomass-fuel cost 

largely relates to the low volumetric energy density of the biomass.20,21 

 

2.4.5 Heterogeneities among Different Biomass Components and Biomass 

Materials 

It is known that fuel characteristics are broadly diverse among various biomass 

materials or biomass components.76,77 The broad spectrums signify biomass distinct 

characteristics compared to fossil fuel and raise key factors limiting biomass uptake 

as fuels. Previous reviews68,53 compared the compositions and characteristics of 

various biomass fuels. Those studies concluded that biomass fuels are very 

heterogeneous and have significant different characteristics in comparison to coal. 

Specifically for the genus eucalyptus, the variations in fuel chemical compositions 

and heating value are evidenced in not only different species and tree age but also 

different components such as leaf and bark of the same trees.76,78 Similar results have 

also been reported for other  biomass components such as leaf, stems and 

reproductive parts of Cyanara, fibre and sweet Sorghum and Miscanthus which 

suggested biomass quality may be drastically altered with biomass partition.79  
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Figure 2-5 Main components of mallee biomass 

 

For mallee in Western Australia, the whole mallee trees are harvested from the field 

and the total biomass consists of mainly wood, leaf, and bark (Figure 2-5). A 

practical supply chain of mallee biomass to a bioenergy plant will need to consider 

the utilisation of the whole mallee trees.13,20 There are various possible scenarios for 

the utilisation of the whole biomass. For example, a typical scenario is to separate 

leaf component from the whole biomass for the production of eucalyptus oil which is 

a value-added product. This was part of the integrated wood processing concept80 

which produces multiple products including eucalyptus oil, electricity and activated 

carbon. In other cases, the total biomass may also be used without separation, which 

is more likely in future large-scale application of mallee biomass based on a 

continuous supply chain.20 Unfortunately, little information is currently available on 

the fuel properties of various mallee components hence a systematic fundamental 

understanding on these aspects is needed.  

 

2.4.6 Summary  

Based on the discussion in previous sub sections, the major biomass properties which 

may lead to key issues in biomass utilisation, along with the associated technical 

challenges are summarised in Table 2-4. Obviously, the abundant supply/varieties of 

biomass cannot be fully utilised for bioenergy and biofuels production due to these 

constraints. The wide varieties in biomass fuels also require innovations in order to 

improve or upgrade the quality of the raw biomass to meet the requirements of 

conventional feeding systems and conversion process considered. Therefore, 

technological innovations are required to develop an efficient biomass pre-treatment 

technology to substantially increase biomass volumetric energy density (therefore 

 
 
 
 
 
 
 
 

  

Mallee wood biomass 
 

Mallee leaf biomass Mallee bark biomass 
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reduce the logistics cost), the fuel’s grindability and the fuel’s feeding/handling 

properties. Such a method must be effective to lower the fuel’s moisture content, 

H:C/O:C ratio and to increase the fuel’s heating value, therefore to synergise 

volumetric energy increase with bulk density improvement. It is also clear that the 

characteristics of ash-forming species inherent in biomass fuels must be well 

understood and if economically possible be reduced within the guideline limits. The 

next sections review the current progress on various biomass pre-treatment 

technologies, understand the properties of resulted fuels and evaluates the limitations 

and potential applications of these technologies. 

 

Table 2-4 Key biomass properties and its associated technical challenges 
Biomass properties Technical challenges 

differences in fuel 
chemistry compared to coal 
(higher oxygen, moisture 
and volatiles, low carbon) 

low calorific value, combustion efficiency and combustion 
behavior. 

ash related problem 
 

slagging, deposition, fouling, sintering, agglomeration, fly ash 
logistics, pollutants, emissions. 
 

poor grindability size reduction problem, low bulk density, low volumetric energy 
density, incomplete burnout, expensive storage and handling/ 
transportation, segregation/entrainment, longer residence time, 
feeding problem, emission problem 
 

low bulk and (volumetric) 
energy densities 
 

high transport cost, difficulties in process control and feeding 
control, requirement of large storage, limitation on suitable 
available technology. 
 

heterogeneity among 
different biomass and 
biomass components 
 

requirements of process flexibility, fuel components partitions, fuel 
feeding problems. 

 

2.5 Biomass Pre-treatment Technologies 

So far, the technology deployed to pre-treat biomass into a fuel of improved quality 

can be divided into a) physical/mechanical process i.e drying, washing/leaching, 

pulverisation technology, baling, briquetting and pelletizing ; b) thermochemical 

process i.e torrefaction and pyrolysis  or c) a combination of thermal and 

physical/mechanical treatment i.e torrefaction combined with pelletizing (TOP). 
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2.5.1 Drying  

Drying is a major step in the pre-treatment of biomass. Raw biomass feedstock 

usually need to be dried to bring down the moisture from 30-60 wt% to 10-15 wt% 

prior to the conversion process.24 Usually, biomass drying is carried out mainly to 

both increase biomass energy input and minimize the risk of microbial 

decomposition and self ignition.19  

 

The most common dryer used in a bio-energy plant is rotary dryer. Other dryer 

systems employed including the band dryer, steam rotary dryer, pressurized fluid-bed 

dryer and pneumatic steam dryer.24 Apart from dedicated dryers, natural drying is 

also commonly applied in the field although this method has disadvantage of 

unforeseeable weather conditions.19 Upon drying, the biomass material can achieve a 

bulk density in the range 50-400 kg/m3 depending on biomass type and moisture 

content.24 However, drying in dryers generally requires size reduction of biomass 

particles. For example, at the point of delivery, large biomass particles are delivered 

in the form of chips and chunks with a size dimension of 1-8 cm. Rotary dryers can 

accept various particle sizes but flash and belt dryers usually require crushing of fuel 

particles of sizes < 1 cm. Therefore, the drying process sometimes can be 

problematic due to sizing specifications and poor biomass grindability.19 

 

Wang et al.(2008)25 studied the influence of microwave drying on biomass (pine 

wood sawdust, peanut shell and maize stalk) pyrolysis. A microwave oven (MO) was 

used to dry the biomass using four power levels i.e. 200, 400, 600 and 800 W. It was 

found that the moisture removal property was highly depended on the power 

capacity. Under optimised condition, a much shorter dehydration time was achieved 

with microwave oven (6 mins at 600 W) compared to electrical oven (EO) drying 

(~40 mins). The BET surface areas of the MO-dried samples were also increased 

compared to those obtained with EO-dried. Fast pyrolysis experiment was conducted 

on the MO-dried biomass using a fluidised-bed reactor (500ºC). An increase of solid 

char and bio-oil were observed in this study. The bio-oil produced has less water 

content with increased heating value and viscosity due to the fact that secondary 

reaction of volatiles was suppressed in pyrolysis of MO-dried biomass. 
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2.5.2 Pulverisation 

A number of pulverisation technologies were developed to mechanically assist the 

grinding of biomass in coal plant. One option is to install separate biomass grinders 

when the amount of biomass processed is higher than 5% of the total fuel flow in 

coal power plants. Esteban and Carrasco (2006)28 evaluated the pulverisation of 

various forest biomass (poplar chips, pine chips and pine bark) using a series of 

hammermill system. Satisfactory biomass particle sizes (95 wt% pass 1000µm mesh, 

12 wt% pass 125 µM mesh) were obtained from grinding the biomass fuels in a 

primary grinder (single bearing horizontal axis hammermill) with different screen 

pore sizes, followed by classification in a dynamic separator and grinding of the 

separator reject in a secondary grinder (double bearing horizontal axis hammermill) 

with 1.5 mm screen pore size. These three types of biomass materials required 

different amount of milling energy to achieve the specified sizes. For an outdoor use, 

the mean energy consumption for poplar chips, pine chip and pine bark were 85.4, 

118.5 and 19.7 kWh/t respectively. Only the electricity used for bark milling reported 

in this work is comparable to the electricity consumed to pulverize anthracite coal 

(20 kWh/t).28 However, the density data of resulted ground biomass from this work is 

not reported.  

 

Mani et al. (2006)81 reported the grinding and properties of wheat straw, barley 

straw, corn stover and switchgrass after grinding using a hammermill. The energy 

requirement are 43.56, 27.09, 19.84 and 58.57 kWh/ t for wheat straw, barley straw, 

corn stover and switch grass, respectively. Ground switchgrass from a hammermill 

with a screen size of 0.8mm had the highest bulk density (181.56 kg/m3). In other 

study, the performance of vibration and cutter mill for grinding wood biomass was 

assessed.82 It was found that 80% the pulverized particles by vibration mill have 

aspect ratios < 2.0 compared to those particles ground using a cutter mill (80% 

having aspect ratios of 2.0-12.0). Total energy consumption of a scaled-up vibration 

mill for pulverising wood chip with a starting size of 22 mm down to wood powders 

(~150 µm) was 800 kWh/t. The fine wood powders were successfully gasified with 

little tar generation in an entrained flow gasifier at 1027°C. Generally, the 

installation of new milling systems (rather than co-milling biomass in existing coal 

mills) can solve some of the problems arose from the poor grindability of biomass, 
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mainly in terms of reduction in size and aspect ratio. However, substantially more 

grinding energy is generally required for biomass than coal. Although grinding does 

assist the packing of the biomass, the bulk density of ground biomass (~226-329 

kg/m3) is still much less than that of coal (~600-900 kg/m3).6 It is generally accepted 

that the extra investment required for installing new grinding systems for biomass is 

not a cost-effective option.19 

 

2.5.3 Washing/leaching 

Attempts were also made to utilise biomass washing and leaching to remove the 

notorious inherent alkali elements and chlorine from biomass.26,83-85 Such a pre-

treatment was generally done by either simple washing with water or a more 

thorough leaching by a suitable acid solution or hot water.26,27,49 It was found that 

potassium, sodium and chlorine were easily removed from rice straw and wheat 

straw by water washing.83 Alkali released from untreated, washed and acid leached 

biomass i.e wheat straw, wood waste and cellulose was studied during pyrolysis at 

200-500°C and > 600°C.26 It was found that, washing with water has reduced the 

alkali emission from wood waste and wheat straw by 5-30% while acid leaching 

effectively reduced the emission to ~70% during pyrolysis. The washing procedure 

were sufficient to reduce the alkali release at >600°C more than 90%. However, 

experiments with pure cellulose of very low ash content (0.07%) indicated water 

washing is ineffective in removing alkali which is bound to the organic structure of 

cellulose.  

 

Jensen et al.(2001)86 studied the removal of potassium by water washing of straw 

char at temperature 25-80°C and with the addition of KCl in the washing water.  In 

this study, at 25°C, about 35-58% of the char potassium dissolved within a few 

minutes. After that, slow release of potassium occurred when smaller particles used 

and the washing temperature rose from 25°C to 80°C. The residual 5-10% of the char 

potassium remains in the char and is very hard to be washed. Another study84 

reported that fine milling and multi-step dewatering on banagrass biomass resulted in 

substantial reductions in ash content (by 45%), or element-wise K (by 90%), Cl (by 

98%), S (by 55%), Na (by 68%), P (by 72%) and Mg (by 68%). However, washing is 

not always effective for all biomass materials. For example, washing is effective to 
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significantly improve ash thermal behaviour of olive residues but is ineffective to 

prevent the formation of ash deposits/agglomerates in fluidised combustion test of 

straw samples.27 It is also found that after washing, the moisture content of washed 

biomass may increase.19 

 

2.5.4 Baling, Briquetting and Pelletizing  

Densification is a process utilised to overcome the low bulk density of biomass. 

There are 3 major mechanical densification techniques commonly used in the 

practice, i.e. baling, briquetting and pelletizing, in an increasing order of equipment 

complexity, energy requirement, and costs.6  

 

For example, pressing of straw to bales can increase the fuel’s bulk density to almost 

twice than that of chopped straw6 giving an increase volumetric energy density from 

0.7 GJ/m3 in chopped straw to ~1.3 GJ/m3 in straw bales. It was also claimed that 

baling can significantly reduce forest biomass transportation cost up to 50%.4 

Briquettes can be produced from biomass or coal-biomass blends.29,87,88 Biomass is 

dried and milled before pressed in mould.89 A previous study29 has produced corn 

stover briquettes with an average size of 32 mm in diameter and 20–25 mm long. In 

comparison to lose corn stover that has a bulk density of merely 42 kg/m3 

(volumetric energy density ~0.8 GJ/m3), the corn stover briquettes have a 

considerably higher bulk density (600 – 950 kg/m3) resulted in an increase of 

volumetric energy density to ~17 GJ/m3. In another study, hazel nut shell briquettes 

were produced at various percentages of binder and pressures led to briquettes with a 

bulk density of 370-770 kg/m3,90 achieving volumetric energy density of ~8-16 

GJ/m3.  

 

The overall pelletizing process involves drying, milling, conditioning, actual 

pelletizing and cooling processes which ultimately compacting biomass into a 

homogenous fuel in cylindrical shapes with 6 – 8 mm in diameter.4 Pellets are a 

refined and dry product which permits good fuel handling and feeding. The energy 

density achieved through the pelletizing ranges from 8 to 11 GJ/m3  for wood pellets 

of various biomass origin.19 In another study,91 the pelletizing of reed canary grass 

only achieved a moderate increase in bulk density from 150 kg/m3 of the raw 
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biomass to 270 kg/m3 of the pellets  indicating an increase of volumetric energy 

density from ~2 GJ/m3 to ~4 GJ/m3 respectively. 

 

Both briquetting and pelletizing may use suitable binders to glue biomass particles 

together during compaction. Among this processes, pelletizing offers several 

advantages including higher press output and acceptance of materials with a wider 

range of moisture contents. However, pelletizing requires the starting samples to 

have a narrower size range. The design of briquetting machine is also simpler.6 

Although various densification methods address the problems associated with the 

low bulk and energy density of biomass, these densification processes typically add 

significant energy costs in the fuel production. For example, in pelletizing, the whole 

compaction process of wood chips including drying and crushing would made up to 

35% of the energy content of the pellet.19 There are several additional drawbacks. 

Firstly, the biomass drying that depends dominantly on the moisture content of raw 

material plays a crucial role in pellet quality such as bulk density and durability.91 

Secondly, the particle size/shape of the raw biomass has a huge influence on the 

feeding process and the durability of the pellet products. Biomass with smaller 

particle sizes generally leads to pellets with better durability92. Lastly, pellets may 

disintegrate during screw feeding and induce hair like structures that block the feeder 

as experienced during the production of greenhouse residue pellets (Figure 2-6). 

Decreasing feed particle size or using a strong binder or a different feeding system 

are among potential solutions for solving this problem.6  

 

  

 

 

 

 

 

 
 

Figure 2-6 Green house residue pellets before (left) and after screw feeding (right)6 
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2.5.5 Torrefaction and Torrefaction combined with Pelletizing (TOP) 

Torrefaction is a light thermochemical process which is carried out at 200-300°C in 

the absence of oxygen.34 During torrefaction, biomass is partially decomposed giving 

the remaining solid or char as a final product. Via torrefaction, the fuel quality can be 

improved in terms of increasing heating value, being more hydrophobic, enhanced 

grindability, better uniformity and improved durability.34,36,43,93,94 Grindability of 

torrefied wood was found to increase significantly after treatment at 275-300°C. In 

comparison to the untreated biomass, torrefaction at 300°C reduced the energy 

consumption during grinding using a knife mill by 10 times for pine chips and 6 

times for logging residues.35 However, other grinding experiments on torrefied wood 

using ball-mill systems did not produce ground fuels that met the coal particle size 

criterion although in overall,  the fuel grindability was improved with the increasing 

of torrefaction temperature.93  

 

An extension of the torrefaction is a process which combines torrefaction with 

pelletizing, i.e. the so-called TOP (torrefaction in combination with pelletizing) 

process.51 As described previously, pellets do offer several advantages over untreated 

biomass but suffers from several issues regarding moisture uptake, particle 

size/shape and durability. Torrefaction can be a solution to solve some of these issues 

by improving fuel grindability, reducing fuel H:C/ O:C ratio and decreasing fuel 

hydroscopicity. Additionally, the energy density of torrefied biomass is still low, 

around ~5 GJ/m319 since torrefaction has little effect on the fuel’s bulk density. 

Therefore, torrefaction and pelletizing are two complementing processes, 

overcoming each other’s limitation.  

 

Figure 2-7 has illustrated some examples of the finished products via biomass baling, 

briquetting, pelletizing, torrefaction and TOP. Volumetric energy densities of coal 

and various fuels from biomass pre-treatment are presented in Figure 2-8, 

summarised from data in the literature.6,19,29,35 It is also noted that there is little work 

done on mallee biomass in Australia hence Figure 2-8 only includes available data 

reported in the literature. 
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Straw bale 
(Baling)95 

 

Corn stover 
briquettes 
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Wood pellets 
(Pelletizing)96 

Torrefied pine 
wood chips 
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Wood TOP 
pellets  

(TOP)97 
 

Figure 2-7 Products from various biomass densification processes 
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Figure 2-8 Volumetric energy density of various solid fuel (SB- straw bales, TB-torrefied 
biomass, GTLR-ground torrefied logging residue, W-wood, GTPC-ground torrefied pine 
chip, WP-wood pellets, CSBr- corn stover briquettes, TOP- Torrefaction in combination 
with pelletizing, Coal-typical black coal)  
 

The data in Figure 2-8 suggested that through densification, fuel energy density can 

be increased significantly, achieving a moderate ~69% of that of a typical black coal. 

Among the densification processes reviewed, TOP achieved the highest energy 

density of ~19 GJ/m3 while baling achieved the lowest (~1 GJ/m3). The positive roles 

and limitations of various pre-treatment methods discussed in Sections 2.5.1-2.5.5 

are summarised in Table 2-5. 
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Table 2-5 Role and limitation of various pre-treatment methods 
Process Positive roles Limitations 

drying reduce biomass moisture content to 
suit application guidelines. 

challenges in size reduction as some dryers 
require size-specific biomass, 
none of ash-related problems being addressed. 

installation of 
separate biomass 
milling system  

reduce biomass size and particle 
aspect ratio,  
improve feeding. 

high grinding energy, 
high cost, 
little improvements in fuel heating value and 
volumetric energy density, 
none of ash-related problems being addressed. 

 
washing/leaching 
 

reduce biomass ash-related 
problems. 

only effective to some biomass materials, 
an ultimate proportion (5-10 %) of alkali 
being not washable, 
potentially increasing fuel moisture content 
after washing, 
none of grindability issues being addressed. 

baling increase fuel bulk density, 
reduce transport/ storage costs. 

low energy density, 
none of ash-related problems being addressed. 

briquetting increase  fuel bulk and energy  
density, 
produce more homogenized 
biofuel, 
reduce transport/storage costs.  
 

high production cost, 
production quality being sensitive to the 
moisture content of starting materials, 
prone to mechanical damaging,  
size reduction problems of the starting 
materials, 
none of ash-related problems being addressed.  

pelletizing  high fuel bulk and energy density, 
produce homogenized  products, 
enable automatic feeding,  
reduce transport/storage cost.  

high production cost, 
prone to mechanical damaging, 
moisture absorbance leading to disintegration 
that causes feeder blockage, 
size reduction and particle shape problem, 
none of ash-related problems being addressed. 

torrefaction improve fuel grindability 
low moisture, 
safe storage, 
increase fuel heating value and 
uniformity.  

low energy density, 
none of ash-related problems addressed, 
size reduction limit with ball-mill system. 
 

torrefaction in 
combination with 
pelletising (TOP)  

higher energy density, 
homogenized products enabling 
automatic feeding, 
low moisture, 
reduce transport/ storage costs. 

none of ash-related problems being addressed. 
 

 

2.5.6 Pyrolysis 

Pyrolysis is the process of the decomposition of organic components in biomass in 

the absence of oxygen at various temperatures. Technically, pyrolysis is similar to 

torrefaction but pyrolysis is conducted at a wide range of temperatures from 300°C 

to 800°C, resulting in more severe biomass decomposition. During pyrolysis, a series 

of processes take place: (1) heat is transferred from a heat source to the biomass 

particle, resulting an increase in the temperature inside the biomass, followed by (2) 

the initiation of primary pyrolysis reactions at the pyrolysis temperature, releasing 

volatiles and forming char; (3) continuous proceeding of the biomass pyrolysis 
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reactions; (4) secondary reactions of the primary volatile product; (5) autocatalytic 

secondary pyrolysis reactions proceed in parallel with the simultaneous primary 

pyrolytic reactions (item 2); and in combination with (6) other thermal 

decomposition reactions including reforming, water gas shift reactions, radicals 

recombination, and dehydrations.55,98  

 

Via pyrolysis,41,99,100 biomass can be converted to biochar and bio-oil while light 

gases  can be used to supply the energy requirement of pyrolyser operations. The 

yield and composition of pyrolysis products might vary depending on feedstock,47 

reactor configurations and pyrolysis conditions.101-104 Key pyrolysis parameters 

including residence time, heating rate and temperature.52 A low temperature and long 

vapour residence time favour the production of biochar. A high temperature and long 

residence time increase the cracking of volatiles hence gas yield while a moderate 

temperature and a short vapour residence time are optimum for producing bio-oil.41 

In addition, the inorganic species in biomass also have important effect on pyrolysis, 

for example, it is known that alkali salts has a great influence on pyrolysis 

reactions.52 In fast pyrolysis, the inherent AAEM species, especially potassium and 

calcium, catalyse biomass decomposition and char-forming reactions. The alkali 

metals retained in bio-oil makes it problematic for bio-oil combustion in engines.105 

Therefore, it is crucial to understand the roles of these ash-forming species in 

biomass during pyrolysis and to understand the ash properties of these pyrolysis 

products. 

 

Pyrolysis is one of the most thermal efficient pre-treatment processes to obtain liquid 

fuels from biomass.106 Bio-oil is a biofuel of the lowest cost, produced from 

lignocellulosic materials.47 Bio-oil production converts up to 50-90% of biomass 

energy into the liquid.52 The process thermal efficiency (PTE) of bio-oil production 

by fast pyrolysis ranges from 0.61 to 0.68.52  For applications as renewable energy, 

biochar, bio-oil and pyrolytic syngas can be used as alternative fuels in boiler and 

turbine/engines to produce electricity/heat.41,107 An analysis47 shows that bio-oil co-

fired in large power stations and turbine plants is technically most advanced.  
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Pyrolysis is an interesting option to solve the constraints experienced in other pre-

treatment method discussed previously (Section 2.5.1-2.5.5 and Table 2-5). Biochar 

may be a good alternative solid fuel for bioenergy production. Therefore, using 

biochar as a fuel may provide the opportunities to address the key issues associated 

with the use of bulky biomass as a direct fuel, including high moisture content, low 

energy density and poor grindability. However, fine char particles may be dusty and 

prone to ignition during transportation.15 On the other hand, bio-oil is favourable for 

fuel handling and transportation. The volumetric energy content of bio-oil is ~19 

GJ/m3 which is similar to TOP pellets (see Figure 2-7).  

 

2.6 Slurry Fuel Technologies 

Suspension of fine ground char into bio-oil results in a slurry fuel. Recent techno-

economic assessments show that bioslurry supply chain can be an attractive option 

for co-firing application in coal-fired power stations.15,108  Slurry fuels technologies 

are developed mainly to improve fuel transportability and increase volumetric energy 

density. Liquid/slurry fuels are more favourable for fuel handling/fluidisation as it 

enables pumping and atomisation.  

 

Typical slurry fuel production involves preparation, storage, transportation and end-

use applications. A review of some previous studies was carried out on the use of 

coal-oil mixture (COM),109-111 coal-water mixture (CWS),112-116 peat-oil mixture,117 

bio-oil51,118-124 and bioslurry.125,126 The most adopted systems for these fuels are 

boilers, gasifiers and stationary engines. Some of the basic fuel requirements for 

these applications are briefly outlined in Table 2-6.  
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Table 2-6: Slurry fuel requirements in combustion system and significant impact51,109-126 

Aspects Parameters 51,109-126 
 

Applications Significant Impact 

fuel chemistry  fuel compositions  
• low moisture, low ash, 
low H and O to C 
ratio/high heat value 
•  water ≤32 %  
• low N <0.6 wt% (db) 
• low S <0.1wt% (db) 

limit for corrosion, <0.2 
wt% (db) limit for Sox 
emissions 

• ash <0.01wt% (db) 
 

 
boiler, gasifier   
 
 
diesel engine 
boiler 
 
boiler 
 
diesel engine (No. 2 
diesel fuel) 

 
heating value, vapour 
formation. 
 
ash related problems, 
emissions. 

Fuel physical and 
handling property 

bulk density 
• similar to coal ~0.6-0.9 

Tonne/m3 or higher   
 

 
boiler and gasifier 

transportation, storage, 
volumetric energy 
density, fuel feeding 

 particle size 
• PSD of 80% < 74-75µm 

 
 

• PSD of  < 150 µm  
 

 

 
boiler (coal, COM, 
CWS)  
 
entrained flow gasifier 

combustion efficiency, 
viscosity, 
sedimentation stability, 
additives/stabilizer 
requirement, spray 
atomisation quality. 
 

 Rheological properties 
• viscosity ≤ 1000 mPa.s 

at shear rate 100s-1 at 
25°C is desirable for 
fuel handling. 

• viscosity  100-1000 
mPa.s for heavy fuel oil 
at 50°C 

• fuel exhibit non-
Newtonian 
pseudoplastic is 
preferable  

 

 
boiler  
 
 
boiler 
 
boiler, entrained flow 
gasifier, diesel engine. 

pumpability, piping, 
burner requirements, 
spray atomisation 
quality 

 good sedimentative/static  
stability 

boiler (COM,CWS) 
 

degree of which 
coal/solid particles 
remain suspended in 
liquid phase, storage 
and transportation 

 

It is known that co-firing bio-oil with coal has the potential to substitute a much 

higher energy ratio of coal.121 A previous investigation showed the application of 

biomass-diesel-kerosene slurry fuels in stationary engines.127 Therefore, bio-

oil/biochar slurry (bioslurry) fuels may also be suitable for co-firing with coal in 

coal-fired power plant and combustion in stationary engines apart from gasification 

applications.15 To extend mallee bioslurry fuels in these applications, bioslurry must 

be developed to match existing guidelines in Table 2-6. 
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Bio-oil properties differ significantly from fossil fuel oil. Bio-oil is a polar, viscous 

and highly oxygenated (50 wt%) liquid which has a multiphase nature, high water  

content and low pH.41,55,104,120,128-130 Bio-oil experiences aging when heated 

(especially in air), becoming unstable and more viscous.131 Stabilisation and 

upgrading of bio-oil are some of the key targets in bio-oil commercialisation. So far, 

various upgrading technologies have been developed for bio-oil utilisation, including 

(1) addition of polar sovent101,119,132 (2) hydrodeoxygenation129 (3) zeolite 

upgrading/catalytic cracking of pyrolysis vapors129 (4) emulsification with 

diesel123,133 or biodiesel134,135 with the aid of a surfactant and (5) converting bio-oils 

and chars into H2 or syngas by steam reforming.52  

 

Bio-oil may be further upgraded and refined for the production of liquid transport 

fuels.52,55,106 Garcia-Perez et al.(2007)106 reported a viable method to extract some of 

the best fuel fractions of bio-oil by blending it with biodiesel. Monolignols, furans, 

sugars, extractive-derived compounds and a small fraction of oligomers were the 

main bio-oil compounds extracted in biodiesel. The addition of bio-oils to biodiesel 

did not seem to greatly influence the calorific value of resulting bio-oil/biodiesel 

blend. Further extraction with sodium bicarbonate increased the pH of the biodiesel 

blend to near neutral. However, in these studies the fuel properties or applications of 

bio-oil left over after extraction were not emphasized. At present, apart from using 

the whole bio-oil; the application of residue bio-oil after bio-oil/biodiesel is another 

interesting option for producing bioslurry fuels from mallee pyrolysis. While the 

biodiesel/bio-oil blends may be used as a liquid transport fuel, the bio-oil fractions 

after bio-oil/biodiesel extraction can be used to prepare a bioslurry fuel that is 

suitable for stationary applications such as combustion and gasification.  
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2.7 Conclusions and Research Gaps 

Through literature review, it can be seen that mallee biomass is a key second-

generation feedstock for CO2 mitigation and biofuels production in WA. The main 

challenge is to develop a viable pre-treatment technology which can address the 

major issues associated with the unique and undesired characteristics of biomass i.e 

bulky, high moisture content, poor grindability, low bulk/energy density and 

mismatch in fuel quality if co-processed with coal.  

 

The pre-treatment methods developed so far have various limitations so that R&D is 

still required to develop innovative method to transform raw biomass into a more 

suitable form for used in the conventional milling and feeding facilities. While there 

have been research activities on the biomass pyrolysis, little work has been done so 

far on the grindability of biochars and the development of densified fuels from the 

pyrolysis products. For bioslurry fuels, although such fuels were attempted by 

commercial developments(e.g. “BioOil Plus” from Dynomotive126 and “Bioliq” from 

Karlsruhe,125 there are few technical data available on bioslurry fuels in the open 

literature. At present, little investigation has been conducted on the production and 

properties of bioslurry from mallee biomass in WA. Based on the requirements of 

slurry fuels (Tables 2-6), developments of bioslurry fuels from mallee bio-oil/char 

components will be more likely targeted for boilers and gasifiers systems. Since 

mallee biomass has various components, the fuel properties of each component need 

also to be well understood. Therefore, further R&D is needed to improve the 

applications of mallee biomass using pyrolysis technology including: 

(1) Using biochar as a fuel. This requires understanding the biochar compositions 

obtained under various pyrolysis conditions and its fuel quality. Particularly, 

research is required to assess biochar chemistry, grindability, particle shapes and 

energy densification achieved.   

(2) Differences in biochars produced from various mallee components. Such 

knowledge is required for developing a flexible technology to deal with the 

whole biomass. Key fuel properties (size reduction, energy densification 

achieved, ash forming species) and possible limitations of each biochars 

components to various applications have to be identified.  
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(3) Bioslurry production from bio-oil and biochar from mallee. It is particularly 

important to study bioslurry’ fuel properties, energy densification, fuel stability 

and fluid behaviour. The outcomes are important to evaluate if it is feasible to 

apply bioslurry fuels in combustion and gasification applications.  

(4) Smart use of bio-oil for biofuels production. Utilisation of the whole bio-oil for 

bioslurry product may not be the best solution. It is plausible to use biodiesel to 

extract the high-quality components as a liquid transport fuels (i.e. biodiesel/bio-

oil blends) and to use the residual low-quality components for bioslurry 

production. The key is to understand bioslurry compositions and fuel properties, 

benchmarking against those prepared from the whole bio-oil. Such data are 

important to achieve the co-production of biodiesel/bio-oil as a liquid 

transportation fuel and bioslurry fuels for combustion and gasification 

applications.  

(5) Bioslurry production from the bio-oil/biochar from the whole and different 

components of mallee biomass. Such data are important to assess the viability in 

using the whole mallee biomass for bioslurry production.  

(6) Roles of inorganic species in biomass. Particularly, a systematic study on the 

washing/leaching of biomass on the reduction of ash forming species and its 

significant effect on ash-related aspects for biomass utilisation, particularly ash 

fouling, corrosion, deposition and sintering in combustion applications. 

(7) Aging of bioslurry fuels. This aspect is important to improve bioslurry storage 

properties, fluidisation and process efficiency. The key is to gain a fundamental 

understanding on how aging progresses and developing new method in using 

additives/chemicals to stabilize and prolong the shelf life of bioslurry.  

(8) Combustion/gasification of biochar and bioslurry. As fuels for end use, it is 

important to understand the behaviour of biochar and bioslurry 

combustion/gasification, on both organic and inorganic matter reactions. 
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2. 8 Research Objectives of the Present Study 

The above review has identified a series of gaps in the field. However, within a 3.5-

years of PhD study, it is impossible to conduct research to fill all of the research 

gaps. Therefore this thesis focuses on a systematic investigation on the production of 

high-energy-density fuels from pyrolysis of mallee biomass under various 

conditions: 

The main objectives of this thesis are listed as follows: 

(1) To investigate the production of biochar from mallee wood using slow pyrolysis 

process at various temperatures and understand fuel chemistry, quality, 

grindability and other properties of biochar as well as the implications of using 

biochar as a fuel to transport/fuel handling, benchmarking against Collie coal.  

(2) To examine differences in fuel properties of biochars produced from the slow 

pyrolysis of different mallee components (wood, leaf and bark) and further 

identify the potential advantages and/or limitations of using biochars produced 

from individual biomass components as fuels in power generation facilities. 

(3) To develop a method for bioslurry production from biochar and bio-oil of mallee 

wood fast pyrolysis, particularly to assess the fuel properties, energy density, 

stability, rheology and fluid behaviour of bioslurry fuels prepared.  

(4) To investigate the feasibility of bioslurry fuels preparation from biochar and the 

low-quality bio-oil rich fractions after bio-oil/biodiesel extraction, particularly to 

gain a good understanding on the resultant bioslurry fuel properties and fluid 

behaviour, benchmarking against bioslurry fuels prepared from the whole bio-oil.  
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CHAPTER 3  

METHODOLOGY AND ANALYTICAL TECHNIQUES 

 
 

3.1 Introduction 

This chapter explains the overall research methodology employed in this PhD study 

to achieve the thesis objectives outlined in Chapter 2. The detailed experimental and 

analytical techniques are described accordingly in each following chapter. 

 

3.2 Methodology 

Biomass samples were prepared from mallee trees via components separation, drying 

and cutting. Coal samples were prepared from Collie coal (the only coal being mined 

in Western Australia) by cutting and drying. Preparation of biochar and/or bio-oil 

samples was conducted using a fixed-bed reactor system and a fluidised-bed reactor 

system. Char samples produced from the slow pyrolysis of biomass and Collie coal 

samples were ground using a ball-mill system to assess the grindability of these 

chars. All fuels were also subjected to compositional/elemental analysis, particle size 

analysis, image analysis and scanning electron microscopic (SEM) analysis.  

 

Bio-oil and biochar samples were prepared from the fast pyrolysis of mallee wood 

using a fluidised-bed reactor system at 500°C. The biochar is then ground and mixed 

into the fast pyrolysis bio-oil to prepare bioslurry fuels. Further experiments were 

also designed and carried out to extract bio-oil with biodiesel to prepare two 

fractions. The biodiesel-rich fraction has the potential to be used as a liquid transport 

fuel while the bio-oil rich fraction is mixed with the ground biochar to produce 

bioslurry fuels.  

 

An array of advanced analytical instruments such as rheometer, inductively coupled 

plasma atomic emission spectroscopy (ICP-AES), gas chromatography-mass 
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spectrometry (GC-MS), optical microscope and surface tensiometer etc were 

employed to characterise the liquid and slurry products.  In this research, 

experiments or analytical analysis were replicated to ensure reproducibility of results. 

 

The overall methodology to achieve the objectives in Chapter 2 is shown in Figure 3-

1 with further explanations in the following sections. 

 

3.2.1 Properties and Grindability of Biochars Produced from Pyrolysis of 

Mallee Wood under Slow-Heating Condition 

In this study, the wood component of mallee biomass (see sample preparation in 

Section 3.3.1-a) was pyrolysed under slow heating conditions at moderate 

temperatures to produce biochars using method explained in Section 3.3.2-1. The 

wood biomass and biochar product were characterised to analyse their compositions 

and calorific value (Section 3.4.1).  

 

The grindability of biochar were then carried out using a lab-scale ball mill (Section 

3.4.2) to examine size reduction of biomass and biochars. Biochar grindability data 

were benchmarked against that of Collie coal and biomass to demonstrate the 

excellent grindability of biochars, making biochars suitable to be ground using ball 

mills in coal-based power station. The bulk densities of various fuels were measured 

using method in section 3.4.3 to evaluate the effectiveness of fuel energy 

densification. Particle size distributions (PSDs) of various samples were analysed 

using a laser-diffraction particle size analyser (Section 3.4.4).  

 

The ground biomass, biochar and coal samples were examined using SEM analysis 

as described in Section 3.4.5. Image analysis were then carried out on the collected 

SEM micrographs using a tool described in Section 3.4.6 for particle 

shape/roundness analysis. Milling power consumption is estimated based on lab 

experiments (Section 3.4.2) as an indication of energy saving. The results and 

discussion for this work are presented in Chapter 4. 
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Figure 3-1 Research Methodology 
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3.2.2 Differences in Fuel Quality and Ash Properties of Biochars from Various 

Biomass Components of Mallee Trees 

Biochar samples were produced from main mallee components i.e. wood, leaf and 

bark under slow pyrolysis (see detailed descriptions on sample preparations in 

Section 3.3.1-a and pyrolysis condition in Section 3.3.2-1).  All biomass components 

and biochars were characterised to analyse their elemental compositions (Section 

3.4.1) and major ash forming species as described in Section 3.3.7. The significant 

differences in fuel chemistry were assessed to evaluate the implications of biochar 

application, especially for ash-related problems and emissions. Grindability of 

biochar produced from each component was then carried out using a lab-scale ball 

mill (Section 3.4.2) and the grindability of various biochars was benchmarked 

against those of biomass. Energy consumption during fuel grinding were estimated 

as an indicator in energy saving during grinding. The bulk densities of various fuels 

were measured using the method described in Section 3.4.3 The particle size 

distributions (PSDs) of ground samples were analysed using a laser-diffraction 

particle size analyser (Section 3.4.4). SEM analysis (Section 3.4.5) was used to 

examine the microstructure of intact fuel samples and ground biochar particles. 

Chapter 5 presents the results and discussion for this work.  

 

3.2.3 Bioslurry Production from Mallee Wood Fast Pyrolysis Oil and Biochar  

For this part of work, mallee wood (sample preparation described in Section 3.3.1-b) 

was pyrolysed using a fluidised-bed reactor under fast heating conditions (as 

described in Section 3.3.2-2) to produce bio-oil and biochar. Various fuel properties 

of biochars were analysed, including fuel chemistry and calorific value (Section 

3.4.1), grindability (Section 3.4.2) and PSDs (Section 3.4.4), in order to prepare 

bioslurry fuels. The biochar’s surface area, porosity and ability to soak bio-oil (i.e. 

soakability) were also characterised using a method described in Section 3.4.8. 

Bioslurry fuels were prepared by mixing whole bio-oil with biochar at various 

loading levels of ground biochar (Section 3.4.9-1). The method in Section 3.4.3 for 

bulk density measurement was also used to measure bulk density of bioslurry fuels 

and further estimate energy densification. Inorganic species in fast pyrolysis bio-oil, 

biochar and bioslurry were quantified using a wet oxidation method and analysed 

using an ICP-AES (Section 3.4.7). Static stability of the bioslurry was assessed using 
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a method described in section 3.4.13. The rheological properties were conducted at 

steady mode using a Haake Mars II rheometer described in section 3.4.15. Detail 

experimental conditions, results and discussion for this study are explained in 

Chapter 6.  

 

3.2.4 Bioslurry Production from Biochar and the Bio-oil Rich Fraction after 

Bio-oil/Biodiesel Extraction 

This part of work is covered in Chapter 7. Mallee bio-oil and biochar were prepared 

from the fast pyrolysis of wood biomass using a fluidised-bed pyrolysis at 500°C 

(see description in Sections 3.3.1-b and 3.3.2-2). The bio-oil was then blended with 

biodiesel at various mass ratios (see sample preparation in section 3.3.1 and 

extraction process in section 3.4.10). The chemistry and energy content of bio-oil, 

biodiesel and bioslurry fuels were determined according the procedure described in 

section 3.4.1. Microstructures of the resulted phases were observed with an optical 

microscope (section 3.4.11). A GC-MS analysis was conducted to qualitatively 

analyse selected compounds in the different fractions (Section 3.4.14). A ball mill 

(Section 3.4.2) was used to grind the biochar and the ground biochar particles were 

analysed to get a required biochar particle size distributions (Section 3.4.4). The 

ground biochar was then mixed with selected bio-oil rich phase to produce bioslurry 

fuel at a certain biochar concentrations (Section 3.4.9-2). Bioslurry fuels using whole 

bio-oil was also prepared (Section 3.4.9-1) for benchmarking. The fuel density and 

surface tension were determined using a pcynometer and a surface tensiometer, 

respectively (Section 3.4.12). Details about measurement conditions were further 

explained in Chapter 7. Static stability of the resulted bioslurry was assessed using a 

method described in section 3.4.13. The steady and dynamic rheological 

measurements of bioslurry were conducted using a Haake Mars II rheometer 

described in section 3.4.15 with detailed experimental conditions explained in 

Chapter 7.  

 

The methodology described in Section 3.2.1-3.2.4 are summarised in Table 3-1. 
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Table 3-1 Summary of methodology 
 

Sub sections 

 

Experiment 

 

Instrument and analytical technique 

Sub section 3.2.1 

Properties and Grindability of 

Biochars Produced from 

Pyrolysis of Mallee Wood 

under Slow-Heating Condition 

 

• mallee wood biomass  was pyrolysed under slow heating 

conditions at moderate temperatures 

• The grindability of biochar were assessed using a lab-scale ball 

mill and benchmarked against those of Collie coal 

 

• compositions and calorific value of wood biomass and biochar 

product were analysed 

• fuels bulk densities were measured. 

• particle size distributions of ground were analysed using a laser-

diffraction particle size analyser  

• SEM analysis were carried out 

• image analyses of SEM pictures were conducted to determine 

particle shape/roundness  

• milling power consumption is estimated  

Sub section 3.2.2  

Difference in Fuel Quality and 

Ash Properties of Biochars 

from Various Biomass 

Components of Mallee Trees 

 

• biochar samples were produced from wood, leaf and bark under 

slow pyrolysis 

• grindability of biochar produced from each component was then 

carried out using a lab-scale ball mill 

•  grindability of various biochars are benchmarked against with 

biomass. 

• elemental compositions for all biomass components and biochars 

were characterised to analyse their major ash forming species  

• the significant differences in fuel chemistry were assessed  

• energy consumption during fuel grinding are estimated as an 

indicator in energy saving 

• the bulk densities of various fuels were measured 

• the particle size distributions (PSDs) of ground samples were 

analysed using a laser-diffraction particle size analyser 

• SEM analysis was used to examine the microstructure of intact fuel 

samples and ground biochar particles 

 

 

 

CHAPTER 3 

43 



 

 
High-energy-density Fuels from Mallee Biomass 

 

Sub section 3.2.3 

Bioslurry Production from 

Mallee Wood Fast Pyrolysis Oil 

and Biochar 

• mallee wood was pyrolysed using a fluidised-bed reactor under 

fast heating conditions to produce bio-oil and biochar. 

• bioslurry fuels were prepared by mixing whole bio-oil with 

biochar at various loading levels of ground biochar   

• various fuel properties of biochars were analysed (including fuel 

chemistry, calorific value, grindability, PSDs in order to prepare 

bioslurry fuels.  

• biochar’s surface area, porosity and ability to soak bio-oil (i.e. 

soakability) were characterised 

• bulk density of bioslurry fuels were measured to estimate energy 

densification 

• inorganic species in fast pyrolysis bio-oil, biochar and bioslurry 

were quantified using a wet oxidation method and analysed using an 

ICP-AES 

• static stability of the bioslurry was assessed 

• the rheological properties were conducted at steady mode using a 

Haake Mars II rheometer  

Sub section 3.2.4  

Bioslurry Production from 

Biochar and the Bio-oil Rich 

Fraction after Bio-oil/Biodiesel 

Extraction 

 

• mallee bio-oil and biochar were prepared from the fast pyrolysis 

of wood biomass using a fluidised-bed pyrolysis at 500°C 

• the bio-oil was blended with biodiesel at various mass ratios 

• ball mill was used to grind the biochar and analysed to get a 

required biochar particle size distribution 

•  the ground biochar was mixed with selected bio-oil rich phase 

to produce bioslurry fuel at a certain biochar concentrations 

• bioslurry fuels using whole bio-oil was also prepared for 

benchmarking  

• the chemistry and energy content of bio-oil, biodiesel and bioslurry 

fuels were determined 

• microstructure of the resulted phases was observed with an Optical 

Microscope 

• Gas Chromatograph-Mass Spectroscopy (GC-MS) analysis was 

conducted to qualitatively analysed selected compounds in the 

different fractions 

• the fuel density and surface tension were determined using a 

pycnometer and a surface tensiometer, respectively 

• static stability of the resulted bioslurry was assessed 

• the steady and dynamic rheological properties of bioslurry were 

conducted using a Haake Mars II rheometer 
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3.3 Experimental 

3.3.1 Biomass and Fuel Preparation 

Biomass and coal samples. Two species of mallee Eucalypt were employed in this 

study. The preparation for each biomass is as follows:  

(a) Slow pyrolysis experiment. Green mallee trees (age: ~ 6 years; species: E. 

polybractea; moisture: 45%) were harvested from Narrogin in the wheatbelt 

area of Western Australia. The whole trees were separated into leaf, bark and 

wood components. Samples were then prepared from each component with a 

size of ~ 1 cm x 1 cm x 0.3 mm (length x width x thickness). The dried 

biomass was stored in freezer under -4 ºC before experiments. For experiment 

explained in Chapter 4, Collie coal sample was used as a benchmark to 

compare wood biochar grindability performance. To prepare the coal, as 

mined Collie coal sample was also cut to similar size. In this study, the 

biomass samples were dried at 40 °C and Collie coal sample was dried at 105 

°C in oven to reduce the moisture contents of all fuels to be around 4 - 5%. 

Figure 3-2 shows photo of the prepared E. polybractea biomass components 

and Collie coal samples. 

 

 

 

   

Collie coal  E.polybractea 

wood 

 E.polybractea 

bark 

E.polybractea leaf 

Figure 3-2 Biomass and Collie coal samples 

 

(b) Fast pyrolysis experiment. For this experiment, mallee wood from species 

E.loxophleba (ssp. lissophloia) milled to a particle size 180-425µm was used. 

The biomass was dried at 105°C overnight before fast pyrolysis experiments.  

 

Biodiesel, fast pyrolysis bio-oil and biochar. The biodiesel (Gull Bio-D 100%, rape 

seed oil methyl esters) used in the extraction process was kindly supplied by Gull 
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Western Australia (www.gullpetroleum.com.au). The biodiesel were used within 6 

months from production date. Bio-oil and biochar produced from fast pyrolysis 

experiment (Section 3.3.2-1) was employed to prepare bioslurry.  

 

3.3.2 Reactor Systems for Pyrolysis Experiment  

1. Slow-Heating Conditions. The slow pyrolysis experiments were carried out in a 

fixed-bed reactor (length: 136 mm; ID: 102 mm), similar to the ones used in previous 

studies on the pyrolysis of Collie coal at slow heating rates.136,137 The reactor was 

externally heated by an electric furnace, with a thermocouple inserted in the sample 

bed for temperature control (Figure 3-3). Briefly, a biomass sample (~80g) were 

charged into the reactor at room temperature and the reactor was heated at 10ºC/min 

to 105ºC and hold for 20 min for drying before further heated to a desired pyrolysis 

temperature and maintained at the temperature for 30 minutes. Nitrogen was used as 

carrier gas at a flow rate 2.00 L min-1 throughout the experiment. Biochar samples 

were prepared at pyrolysis temperatures of 300-800 °C. After each experiment, the 

biochar sample were cooled, collected and stored in a desiccator. 

 

 

 

   

 

 

 

 

 

                       

                                                

 

Figure 3-3 A schematic diagram of fixed-bed pyrolysis reactor 

 

2. Fast-Heating Conditions. The fast pyrolysis experiment was carried out using a 

fluidised-bed reactor and systems for biomass feeding, char collection, vapour 

condensation, bio-oil recovery and gas analysis. The reactor (Figure 3-4) was made 

TC 

Heating 
element 

N2 inlet FI 

Thermocouple 

Sample bed 

Reactor 

Electric furnace 

Measurement of reactor 
chamber temperature 

Tar trap 

Vent 

TC = temperature controller 

FI = flowrate indicator 

Measurement of sample 
centre temperature 
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of stainless steel and comprised of two sections: a cylindrical part that has dimension 

102 mm i.d. × 320 mm long and a conical part with a height of 198 mm. Silica sand 

(size 351-401µm) was used as inert bed solid. Nitrogen was used as fluidisation gas 

and the flow rate of nitrogen was varied to obtain a constant fluidisation velocity of > 

2 times the minimum fluidisation velocity. The feeding system consists of a sealed 

hopper of 0.033m3 nominal capacity, a stirrer and a screw feeder. A feeding rate of 

~1 kg/h is used. The biomass (180-425 µm size) was directly fed into the sand bed 5 

min after the desired temperature was achieved and heated up rapidly to bed 

temperature. The char particles were separated using two cyclones in series. The 

vapour residence time in the reactor and cyclones was estimated to be ~1.4 and 

~0.7s, respectively. Bio-oil condensation and collection were conducted in three 

sequential steps comprised of two condensers and an aerosol filter. More detailed 

descriptions can be found elsewhere.99 Fast pyrolysis experiment at final reactor 

temperature 500°C was conducted to produce bio-oil and biochar samples for 

preparation of bioslurry fuels described in section 3.4.9 - 3.4.10, Chapter 6 and 7.        

  

 
Figure 3-4 A schematic diagram of the fluidised-bed pyrolyser used in this study99  

 

3.4 Instruments and Analytical Techniques 

3.4.1 Proximate, Ultimate and Calorific Value Analysis 

The proximate, ultimate and calorific value analysis of fuel samples were conducted 

at HRL Laboratory (Melbourne, Australia). Moisture, volatile matter and ash were 

determined by a Leco MAC analyser following the Australian Standards AS1038.6.4 
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and AS2434.2. Elemental analysis of carbon, hydrogen and nitrogen were measured 

with a Leco CHN analyser (Australian Standard AS2434.8). Water in liquid fuel 

samples were determined using Karl Fischer titration method according to ASTM 

E203. The calorific value of bioslurry is the summation of the fuels and biochar 

equivalent low heat value (LHV, GJ/Tonne). 

 

3.4.2 Grindability of Solid Fuels 

The most common grindability test for coal is the Hardgrove Grindability Index 

(HGI) following the standard test method ASTM D409-02. However the HGI 

method was not successfully adopted to indicate grinding performance for biomass.93 

Therefore in this research, a method that employed ball-mill grinding and direct 

particle size analysis (see section 3.4.4) was developed to assess mallee biofuels 

grindability. A series of grindability experiments using a laboratory ball mill (Retsch 

Mixer Mill MM400, 150 watt) of adjustable frequency and time was carried out for 

dried biomass and biochar. The ball mill has a pair of grinding cell that run 

simultaneously at a similar frequency. A sample (mass ~ 0.5 g) was charged into the 

grinding cell and the ball mill operated at a grinding frequency 15 Hz with 15 mm 

ball size. During grinding, a similar amount of sample was charged in the cells for all 

fuels. Various grinding time was considered. Multiple milling experiments were 

carried out in order to produce sufficient amount of ground samples for subsequent 

analysis. The milling energy consumption for grinding was also estimated based on 

electricity usage during sample milling, serving as indicators on the potential energy 

saving in grinding, benchmarking against different fuel samples.  

 

3.4.3 Bulk Density 

Bulk density of all solid fuel samples (unground and ground) were determined using 

a filling and tapping procedure.138 Briefly, a fuel sample is loaded in discrete portions 

into a glass column with known volume. After filling of each portion, the cylinder 

was tapped onto a bench until no volume change observed. The final volume and 

sample weight were recorded. Multiple measurements were done for each sample. 

For bulk density measurements, the standard error is 1.5%. 
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The bulk density of slurry fuels was measured by determining the weight of the 

slurry at a constant volume using a graduated measuring cylinder. Repeated 

measurements were performed with an error bar of 1%. 

 

3.4.4 Particle Size Analysis 

Ground fuel samples were sieved into two fractions. One is the fraction size > 1.8 

mm and the other fraction of size < 1.8 mm. The < 1.8 mm size fractions were 

analysed using a laser-diffraction particle size analyser (Malvern Mastersizer2000, 

Worcestershire U.K). The sample was mixed with sodium hexametaphosphate 

solution (10% w/v) to aid dispersion of fine particles before loading into the 

measuring chamber. Repeated measurements were done to get an average number 

and the standard error is < 1%. The particle size distributions (PSDs) were then 

constructed and the results are reported as cumulated and fraction volume percentage 

curves.  

 

3.4.5 Scanning Electron Microscope 

The detailed structure of slow pyrolysis biochars and dried biomass were examined 

using a Scanning Electron Microscope (Philips XL30). The microscopic structures of 

biochars/dried biomass particles were observed in cross-sections. To prepare the 

sample specimen, a piece of selected intact biochar or dried biomass of each 

component was arranged longitudinally then set in the epoxy resin. The specimen 

was then polished, dried in the oven (~50°C) overnight and coated with carbon to get 

a conductive medium for SEM observation. For selected ground samples, particles of 

a sample were also spread on a stub which was then carbon coated for surface 

observation. 

 

3.4.6 Particle Shape Analysis 

Particle shape analysis were carried out for selected ground fuels using a combined 

technique of SEM and image analysis, which is commonly used for the 

characterisation of char, fly ash, ash cenospheres, ash deposits and other solid 

samples.139-144 The obtained SEM images for ground samples (section 3.2.8) were 

further analysed using the UTHSCSA Image Tool program (freely available from the 

Department of Dental Diagnostic Science at the University of Texas Health Science 
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Center, San Antonio, Texas) for particle shape analysis. Detail descriptions of 

particle shape analysis are explained in Chapter 4. 

 

3.4.7 Quantification of Ash-forming Species in Solid and Liquid/Slurry Fuels 

The contents of AAEM (Ca, K, Mg and Na) and other inorganic species (Al, Fe, P 

and Si) in solid fuels (biomass components and biochars obtained with slow 

pyrolysis experiment) were analysed using an ICP-AES.145 The biomass/biochar 

samples were firstly ashed at a temperature-time program with very slow heating 

rates to a final temperature of 600°C. The ash was then fused with borate (X-ray flux 

®: 35.3% lithium tetraborate and 6.7 % lithium metraborate) in a platinum crucible 

at 950°C for 2h. The ratio of ash to borate was about 1:15. The fusion bed was 

dissolved in dilute redistilled nitric acid (10% v/v) and subjected to the ICP-AES 

analysis.  

 

Inorganic species in bio-oil and biochar (produced from fast pyrolysis experiment) 

also bioslurry were analysed following a wet oxidation procedure used in a previous 

study.146 A fuel sample was first oxidized with HNO3 (65%) before further digested 

with HClO4 (70%). The wet oxidization experiment was carried out at 150°C. The 

residue was also dissolved in 10% HNO3 for ICP-AES analysis. The ICP-AES 

analysis was conducted at Marine and Freshwater Research Laboratory, Murdoch 

University in Perth, Australia and complies with the NATA accreditation. 

 

3.4.8 Biochar Surface Area, Porosity and Soakability  

The surface area and apparent density of ground fast pyrolysis biochar were 

measured using Dubinin-Astakhov surface area and mercury intrusion porosimetry 

methods. The analysis were conducted at HRL Laboratories (Melbourne, Australia). 

The ability of biochar to soak up bio-oil was determined by adding discrete portions 

of ground biochar into bio-oil (weight predetermined) in a closed container. After 

each addition, the slurry was left to stand for 5 minutes to reach equilibrium soaking 

of bio-oil by biochar. In this experiment, the soakability of biochar is defined as the 

mass ratio of biochar to bio-oil whereby absolutely no free flowing of slurry is 

visually observed upon the addition of biochar into bio-oil.  
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3.4.9 Preparation of Bioslurry 

The preparation of bioslurry fuels were conducted using two methods: 

1. With whole bio-oil. To prepare the bioslurry, the biochar was first ground in a 

laboratory ball mill and the biochar particle size distribution was determined 

using a laser-based particle size analyser (see section 3.4.2 and 3.4.4). The 

optimum particle size of the biochar was investigated at various grinding 

time. A series of bioslurry fuels were prepared by suspending various mass 

concentrations of fine biochar particles into bio-oil (Chapter 6).  

2. With bio-oil rich fraction from extraction of biodiesel/bio-oil process. 

Bioslurry fuels were prepared by suspending fine biochar similarly ground as 

description above into selected bio-oil rich phase solution resulted from the 

extraction process in section 3.4.10 (Chapter 7).  

 

3.4.10 Extraction of Bio-oil/Biodiesel 

A series of biodiesel/bio-oil blend was prepared by mixing various mass percentage 

of bio-oil to biodiesel. The blends were kept in sealed vials and stirred continuously 

using a magnetic stirrer at room temperature for 2 hours. After that, the blends were 

left to settle overnight. A 5 ml syringe is used to separate the bio-oil rich fraction 

(bottom layer) and biodiesel rich fraction (top layer) and the mass of fractions were 

again recorded. Selected bio-oil rich fraction was employed to prepare bioslurry 

using method in section 3.4.9-2. The detail procedures are explained in Chapter 7. 

 

3.4.11 Optical Microscope 

The microstructure of bio-oil and bio-oil rich fraction were investigated using a 

Nikon Eclipse ME600 Optical Microscope equipped with a Nikon Digital Camera 

DXM 1200F and Image-Pro Plus 5.1 software. 

 

3.4.12 Density and Surface Tension 

Fuel density was determined with a pycnometer (5 mL) and the measurement was 

done multiple times with error bar of <1 %. The surface tension of liquid and slurry 

fuels were measured using a KSV Sigma 701 Surface Tensiometer using Wilhelmy 

method with a round platinum rod (diam. 1 mm) as probe.  The sample’s temperature 
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is controlled with a water bath. Sample was left for 5 min in the measuring chamber 

to reach the desired temperature before taking the first reading. The surface tension 

values reported in Chapter 7 were an average and standard deviation of 50 data 

points after the surface tension reached equilibrium. More details experimental 

conditions are explained in Chapter 7. 

 

3.4.13 Static Stability 

Examination of bioslurry stability was carried out using a standard method for coal 

water slurry.116 A bioslurrry sample (50 ml) was kept in a closed container and left to 

stand in room temperature (25°C) for 15 days. The slurry was then poured slant way 

for 30 seconds into a clean vial. The slurry container then turned upright for 4 

minutes to let the slurry flow adequately into the vial. Then, the mass of non flowing 

part of the bioslurry was determined. The stability of bioslurry can then be calculated 

using the equation SBsta  =  (1 - MB/MS)  × 100 ,where SBsta is the static stability (%), 

MS is the initial mass of the bioslurry sample (g) and MB is the mass of the non 

flowing bioslurry (g) after 15 days.  In this experiment, bio-oil without biochar 

addition was used as a blank. Repeated measurements were done on selected samples 

with an error bar of ≤ 0.3%.   

 

3.4.14 Gas Chromatography-Mass Spectroscopy (GC-MS) 

Chemical compounds in the fuels were qualitatively identified using a GC-MS 

(Agilent 6890 series GC Agilent 5973 MS detector, m/z range: 10-550amu) with a 

capillary column (0.25µm HP-5MS phase, 30m X 0.25 mm id). The temperature 

program was to reach an initial temperature 40°C, hold 3 min, ramp 15°C/min, final 

temperature 300°C and hold 5 min. The split ratio for the injector was 15:1 and the 

solvent delay time was 3 min. 

 

3.4.15 Rheological Study 

The liquid/slurry fuels rheological properties were characterised using A Haake Mars 

II rheometer fitted with a Z20 cylinder sensor system (Figure 3-3). The instrument 

was pre-calibrated by the manufacturer and equipped with Haake Thermocontroller 

TC501 to control sample temperature. With this fixture a sample volume of 8.2 mL 

is required for each measurement and placed in a cup that was inserted into a 
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tempering unit (Figure 3-3 A). During the measurement, the gap between the tip of 

the sensor (Figure 3-3 B) and the cup base was set at 4.200 mm. The fuels 

rheological behaviour was examined under steady and dynamic mode. Details 

programme for the steady, dynamic measurement and regression equation are 

explained in Chapter 6 and 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Haake Mars II rheometer Z20 cylinder sensor and cup 

Figure 3-3 Haake Mars II rheometer and Z20 sensor system 

 

3.5 Summary 

The present research uses pyrolysis as a pre-treatment step to convert biomass into 

high-energy-density fuels under slow- and fast-heating conditions using fixed-bed 

and fluidised-bed reactor systems respectively. The biochar, bio-oil and bioslurry 

fuels were characterised using an array of analytical instruments. Such analysis 

include fuel chemistry, grindability, particle size distribution, SEM, image analysis, 

ICP-AES, GC-MS, Optical Microscope, surface tensiometer and rheometer. 

 

 

 

 

A 

B 

CHAPTER 3 



                                                                                                                   
                                                                                                                                          
                                              

 
54 

 
High-energy-density Fuels from Mallee Biomass 

 

 

 

CHAPTER 4 

PROPERTIES AND GRINDABILITY OF BIOCHAR PRODUCED 

FROM THE PYROLYSIS OF MALLEE WOOD BIOMASS 

UNDER SLOW-HEATING CONDITIONS 

 
 

4.1 Introduction 

The main objectives of biomass pre-treatment are to drastically enhance biomass 

grindability and improve biomass composition to a low moisture, low H:C/O:C ratio 

and increase heating value to match with coal properties. Biomass upgrading on 

these critical aspects need to substantially increase biomass bulk density and 

volumetric energy density and improve feeding/handling properties as these are the 

key factors in realising substantial reduction in logistics cost associated with biomass 

utilisation for power generation (Chapter 2). 

 

This chapter aims to investigate the properties of biochar produced from the 

pyrolysis of mallee wood biomass (species E. polybractea) under slow-heating 

conditions and the possibility to use biochar as a solid fuel, addressing key issues 

associated with the direct use of biomass as a fuel, including being bulky, of high 

moisture, low-energy-density and poor grindability. A laboratory size ball mill was 

employed in grindability experiment to evaluate biochar grinding performance as 

well as the possibility of conducting biochar grinding with conventional ball mill in 

coal-based power stations. Fuel bulk density was measured to estimate the 

improvement of volumetric energy densification achieved via grinding. Biochar fuel 

properties and grindability data were benchmarked against Collie coal. It should be 

noted that Collie coal is the only coal currently being mined for power generation in 

Western Australia so that it makes sense to use this coal as a benchmark. 
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4.2 Methodology 

Mallee wood biomass and Collie coal samples were prepared as described in Section 

3.3.1-a in Chapter 3. These samples are referred as “dried wood biomass” sample 

and “Collie” coal sample. Biomass samples were treated at temperatures of 300, 320, 

330, 350, 400, 450 and 500ºC under slow-heating conditions according to method in 

Section 3.3.2-1 to produce biochar. These biochar samples are referred as “WC×××” 

chars, where “×××” indicates the pyrolysis temperature in degree Celsius. It should 

be noted that different to the raw biomass and coal samples, no drying was carried 

out on the biochar samples. 

 

The biochar was subjected to a series of grindability experiment (see Section 3.3.4.2) 

at various grinding time (1, 2 and 4 minutes). Grinding experiments were also carried 

out for the dried wood biomass and Collie coal samples under the same grinding 

conditions. Grinding at longer grinding time (8 and 15 minutes) were done for the 

dried wood biomass and the WC300 char for comparisons. Method described in 

Section 3.4.3-3.4.4 was used to analyse particle size of the ground fuels and bulk 

density/volumetric energy density determination respectively.  

 

The particle shapes analysis was carried out for ground fuel samples using a 

combined technique of SEM and image analysis (Section 3.4.5-3.4.6). For each 

sample, a minimum of 200 particles were analysed. Four parameters were analysed, 

including a) area - the area of the object, which is then converted into sphere 

diameter; b) major axis length - the length of the longest line that can be drawn 

through the object; c) minor axis length - the longest line that can be drawn though 

the object perpendicular to the major axis; and d) roundness, which has a value 

between 0 and 1 and a greater value indicating the object being rounder. The 

roundness of a perfect circle is 1 and as the roundness decreases from 1, the object 

departs from a circular form.  

 

4.3. Results and Discussion 

4.3.1 Biochar Yield and Properties of Biochar as a Fuel 

Figure 4-1 presented the biochar yield of mallee wood biomass as a function of 

pyrolysis temperature. As expected, the biochar yield decreases with increasing 
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pyrolysis temperature. A similar trend was also observed in previous studies on the 

pyrolysis of various biomass materials under similar conditions.103,147-149 It should be 

noted that with temperature increasing from 300 to 450ºC, biochar yield decreases 

from ~56% to ~27 % dry base (db) and the biochar yield levels off with further 

temperature increase.  
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Figure 4-1 Biochar yield of mallee wood pyrolysis in a fixed-bed reactor at various 

temperatures  

 

Proximate and ultimate analysis of biochars and the dried wood biomass are given in 

Table 4-1, along with those of Collie coal for benchmarking. It is interesting to see in 

Table 4-1 that even at a pyrolysis temperature as low as 320°C, the proximate and 

ultimate analysis of the biochar produced is similar to the Collie coal sample. Further 

increase in the pyrolysis temperature leads to the production of biochars with better 

fuel qualities. Biochar also has lower moisture, lower ash, and lower sulphur and 

nitrogen contents compared to Collie coal. It should be noted that the as-mined 

Collie coal (used to prepare the Collie coal sample in Table 4-1) and the green 

biomass (used to prepared the DWB sample in Table 4-1) have much higher moisture 

contents, that is ~25% and ~45%, respectively. The results indicated that, in 

comparison to the green biomass and as-mined Collie coal samples, biochars have 

better fuel qualities. 
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Table 4-1 Proximate and ultimate analysis of various fuels 
Code Sample Proximate analysis (%, ar)  Ultimate analysis (%, db) 

    Moisture Ash FC VM  C H N S O a 
DWB dried  wood 

biomass 
4.5 0.6 15.5 79.4  49.1 6.1 0.13 0.02 44.70 

WC300 Char 300°C 4.6 0.7 35.3 59.5  60.3 5.3 0.18 0.02 34.14 
WC320 Char 320°C 2.9 0.9 56.9 39.3  72.9 4.6 0.24 0.02 22.21 
WC330 Char 330°C 2.7 1.1 59.2 37.0  73.6 4.5 0.27 0.03 21.52 
WC400 Char 400°C 4.5 1.2 69.9 24.4  79.1 3.7 0.29 0.04 16.80 
WC450 Char 450°C 4.0 1.4 75.3 19.3  82.9 3.3 0.32 0.03 13.38 
WC500 Char 500°C 4.5 1.3 79.8 14.4  85.5 3.0 0.34 0.03 11.14 
 Collie Collie coal 5.5 8.5 51.1 34.9  74.0 4.3 1.30 0.60 19.80 
M,Moisture; FC, fixed carbon; VM,volatiles matter; ar, as received; daf, dry ash free. a By difference  

 

On the basis of the data in Table 4-1, the atomic H/C and O/C ratios of biochars, 

biomass and Collie coal are also plotted in a van Krevelen diagram for further 

comparisons, as shown in Figure 4-2.  
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Figure 4-2 Relationship between fuel H/C and O/C ratios for various solid fuels. Legends: 

DWB, dried wood biomass; WCxxx, biochar prepared from the pyrolysis of the dried wood 

biomass at xxx °C; Collie, Collie coal 
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It is known that from the combustion point of view, fuels with low H/C and O/C 

ratios are favourable since it reduces energy loss, smoke and water vapour.48 Figure 

4-2 has clearly showed that in comparison to the parent biomass, biochars have 

significantly lower H/C and O/C ratios, which decrease with increasing pyrolysis 

temperature. The pyrolysis reactions lead to a significant increase in the mass energy 

density of biochars (see part A of Figure 4-3). This can be explained with regard to 

higher energy contained in carbon-carbon bonds than in carbon-oxygen and carbon-

hydrogen bonds. Figure 4-2 also has demonstrated that biomass pyrolysis at 

temperatures as low as 320ºC produces biochars with H/C and O/C ratios similar to 

Collie coal. The data in the van Krevelen plot are in agreement with the measured 

mass energy density of various fuels, as shown in part A of Figure 4-3.  
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Figure 4-3 Mass energy density (A), bulk density (B), and volumetric energy density (C) of 

various fuels. GWB, green wood biomass; DWB, dried wood biomass; WCxxx, biochar 

prepared from the pyrolysis of the dried wood biomass at xxx °C; Collie, Collie coal 
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It is obvious that the mass energy density of biochars increases with increase 

pyrolysis temperature, due to more intensive pyrolysis reactions at higher 

temperatures. For example, the mass energy densities are 22, 28, and 32 GJ/tonne for 

the biochars produced at pyrolysis temperature of 300, 330 and 500ºC, significantly 

higher  than those of the DWB (~ 18 GJ/tonne) and the green biomass (~10 

GJ/tonne). It can also be seen that, even at a pyrolysis temperature as low as 320°C, 

the biochar mass energy density (~28 GJ/tonne) is even higher than that of Collie 

coal(~26 GJ/tonne). Therefore, biochar as a fuel achieves significant mass energy 

densification.  

 

However, fuels with high mass energy densities do not always mean that such fuels 

are not bulky, that is of high bulk densities. Disadvantages of fuels with low fuel 

bulk densities are well known, including low volumetric energy densities, process 

control difficulties, increased storage costs, expensive transportation and other 

technology limitations.6 In this study, experiments were then carried out to measure 

the bulk densities then to work out the volumetric energy densities of various fuels 

and the results are plotted in part B and C of Figures 4-3. It is interesting to see that, 

although the mass energy densities of biochars have been increased substantially in 

comparison to biomass (part A of Figure 4-3), biomass pyrolysis actually leads to a 

reduction in fuel bulk densities. This is mainly due to the fact that the fuel particles 

experienced little changes in its size and shape after pyrolysis while volatiles were 

released. These two opposite effects, that is an increase in mass energy density and 

decrease in bulk density, lead to only a slight increase in the fuel volumetric energy 

density, from ~7 GJ/m3 of the green biomass to  ~9 GJ/m3 of various biochars 

depending on pyrolysis temperature. Such biochar volumetric densities are 

significantly lower than those of Collie coal (~17 GJ/m3), suggesting that transport of 

biochar obtained from pyrolysis is still not suitable.  

 

4.3.2 Grindability of Biochar  

Part C of Figure 4-3 therefore indicates that further densification processes are still 

needed to improve the volumetric energy density of biochars. This means that 

biochar size reduction via grinding is necessary to increase bulk density, which in 

turn requiring the biochars to have a good grindability. Additionally, one of key issue 
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associated with the use of biomass as a fuel in applications such as co-firing71 is 

biomass’s poor grindability. It is therefore strongly desired for biochars to have a 

good grindability. A series of experiments was then carried out to investigate the 

grindability of the biochars, biomass and Collie coal samples using a laboratory ball 

mill, considering various grinding time including 1, 2 and 4 minutes. All fuel 

samples have a similar starting size and shape before grinding so that the grindability 

can be assessed based on the particle size distribution after grinding. In other words, 

after the same period time of grinding, the smaller particle size distribution a fuel 

sample gets the better grindability the fuel is. A specification for particle size used in 

coal combustion i.e. 80% <74-75µm16 was used as a guideline.   Figures 4-4 

presented the cumulative particle size distributions of the ground dried wood 

biomass, selected biochars, and Collie coal at various grinding time.  

 

 

Figure 4-4 Particle size distributions of selected ground fuels. DWB, dried wood biomass; 

WCxxx, biochar prepared from the pyrolysis of the dried wood at xxx °C; Collie, Collie coal 
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Figure 4-5 showed the particle size distributions of various fuels at 4 min grinding 

time. Several important observations can be made based on the data in these figures.  

First, as expected, the dried wood biomass exhibits a poor grindability. After 

grinding for 2 minutes, the size reduction is very small, with over 90% of the 

particles of sizes >1.8 mm. In fact, because the dried woody biomass is also hard to 

be ground, even after 15 minutes grinding, the cumulative percentage of the ground 

sample only reaches 19% for particles of sizes less than 75 µm (Figure 4-4). On the 

contrary, biochars have excellent grindability, indicating that the pyrolysis reactions 

weakening the wood fibre structure and biochars become brittle and easily ground 

into fine powders.  
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Figure 4-5 Particle size distributions of selected ground fuels at 4 mins grinding time. DWB, 

dried wood biomass; WCxxx, biochar prepared from the pyrolysis of the dried wood at xxx 

°C; Collie, Collie coal 

 

Second, Figure 4-4 also demonstrated that the particle size distributions of all fuel 

samples (dried wood biomass, biochars, and Collie coal) decrease with grinding 

time. For each fuel sample, a grinding limit seems to exist beyond which additional 

grinding only leads to slightly further size reduction. In other words, once the 

grinding limit is reached, what can be ground under the grinding conditions would 
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have been mostly ground. The dried wood biomass for example, takes 15 min to 

reach the grinding limit, whereas for the biochars only 2 min grinding time are 

needed, indicating a better grindability of biochars in comparison to biomass. 

 

Third, it is interesting to note in Figure 4-5 that, compared to the dried wood 

biomass, even mild treatment by pyrolysis at a temperature as low as 300ºC leads to 

a significant increase in the fuel grindability, resulting in ~28% of the particles in the 

ground WC300 biochar sample being less than 75 µm after only 2 minutes grinding. 

An increase in the pyrolysis temperature from 300 to 330°C leads a further apparent 

increase in biochar grindability but higher pyrolysis temperature only slightly 

enhance biochar grindability. The data suggested that thermal treatment of biomass 

at temperature <330°C lead to biochar structure changes that have significant 

impacts to fuel grindability.  

 

Lastly, Figure 4-5 indicated that the grindability of biochars is similar to, although is 

not as good as, that of Collie coal. Under the current grinding conditions, Collie coal 

gives the highest size reduction (74% cumulative percentage particle below 75 µm) 

after 2 minutes, among all fuel samples. Whereas the build-up problem on ball 

charges bed is often seen during the grinding of dried woody biomass, the problem 

diminishes during biochar grinding. Such an observation is of critical importance to 

practical applications. It is well known that ball mill, which is widely used in coal-

fired power stations, is less suitable for grinding biomass because its gravity impacts 

and tumbling actions only flatten rather than shortening biomass fibres, as 

experienced in the previously unsuccessful trials71-74 (Table 2-3 Chapter 2). The 

excellent grindability of biochars opens the opportunity to use ball mill systems to 

co-mill coal and biochars, addressing the key issue of poor milling performance 

associated with the direct use of biomass as a fuel in the co-utilisation processes of 

biomass and coal. According to the electricity usage of the ball mill during grinding, 

further calculations were also conducted to illustrate the potential energy saving 

achievable during milling of biochar in comparison to biomass. It is estimated that 

biochar grinding requires an electricity consumption of 2.5-10.0 kWh/kg (similar to 

Collie coal) compared to over 37.5 kWh/kg for biomass grinding, indicating a drastic 

milling energy saving of ~73-93%, depending on the pyrolysis temperature at which 
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the biochar was produced. Certainly, the excellent grindability of biochars would 

also help to address other related issues e.g. fuel blockage, feeder limitation and so 

forth. The bulk density and volumetric energy density of the ground fuel samples, 

prepared from dried woody biomass, biochars and Collie coal at various grinding 

times, are plotted in Figure 4-6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4-6 Bulk energy density (A) and volumetric energy density (B) of various fuels as a 

function of grinding time. DWB, dried wood biomass; WCxxx, biochar prepared from the 

pyrolysis of the dried wood biomass at xxx °C; Collie, Collie coal 

 

As results of size reduction of fuel samples after grinding, the bulk density and 

volumetric density of all fuel samples first increase with grinding time and then  

level off with further grinding. In the case of the dried wood biomass, considerably 

long grinding time (15 minutes) is required to reach the plateau values of the bulk 

density and volumetric energy density, and only 2 minutes grinding is required for 

biochars. Part A of Figure 4-6 clearly indicated that the rapid size reduction of 
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biochars during grinding as results of the excellent grindability of biochars can 

achieve significant increases in the bulk density of the ground biochars after a 

grinding time as short as 1 or 2 minutes. Apparently, the size reduction of biochars 

after grinding leads to a significant removal of the inter- and intra-particle voids, 

which are commonly experienced by large biomass particles during packing. Part A 

of Figure 4-6 showed that the bulk densities of biochar samples after 2 minutes 

grinding are 600-700kg/m3, which are only slightly lower than that of the ground 

Collie coal (~830 kg/m3), but this is already a significant improvement from the 

unground biochars (~300 kg/m3). The increase of biochar bulk density closer to that 

of the Collie coal sample has significant economic impact to the improvement of 

biomass/coal fuel handling characteristics especially for blending process control as 

mixing fuels of similar densities can avoid sedimentation problem and produce a 

homogenised mixture.  

 

As results of the excellent grindability of biochars, the significant increase in the 

bulk densities of biochars after grinding also leads to the significant increase in the 

volumetric energy densities of biochars after grinding. Part B of Figure 4-6 clearly 

demonstrated that, after only 1 to 2 minutes grinding, the volumetric energy densities 

of the ground biochars prepared from the pyrolysis at a temperature of 330°C or 

higher are ~17 – 23 GJ/m3, which are already equal or better than ~17 GJ/m3 of 

unground Collie coal sample and 10 GJ/m3 for the green biomass as well as 

significant increases from ~7 – 9 GJ/m3 for the unground biochars. Similar to the 

trend observed for the bulk density, the volumetric energy density of biochars and 

Collie coal reached the plateau values after grinding for 2 minutes. Therefore, the use 

of biochar has the potential to reduce biochar transport costs to be at least at a similar 

level of Collie coal. In Figure 4-6, the bulk and volumetric energy densities of 

WC300 leveled after 4 minutes grinding. For subsequent grindability experiment, 4 

minutes are then taken as the optimal grinding time for all wood biochars.  

 

4.3.3 Particle Shape  

The grinding of various fuel samples may also produce particles of largely-different 

shapes. The SEM micrographs of all ground samples are shown in parts (a) to (h) of 

Figure 4-7.  
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(a) Ground DWB after 1 min grinding 
time 
 

(b) Ground DWB after 4 mins grinding 
time 

(c) Ground WC300 after 1 min grinding 
time        

(d) Ground WC300 after 4 mins grinding 
time 

 
 
 
 
 
 
 
 
 

   

(e) Ground WC500 after 1 min grinding 
time 

(f) Ground WC500 after 4 mins grinding 
time 

(g) Ground Collie coal after 1 min 
grinding time 

(h) Ground Collie coal after 4 mins 
grinding time 

 
Figure 4-7 Images of ground fuel samples. (Legends: DWB, dried wood biomass; WCxxx, biochar prepared from the pyrolysis of the dried wood 

biomass at xxx °C; Collie, Collie coal) 
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It can be seen in part a of Figure 4-7 that the wood biomass particles have anisotropic 

nature which means wood strength is with the grain and same along the directions of 

fibres. Because of its fibrous nature, grinding of the dried wood biomass produces 

long fibrous particles. Although the particles > 1.8 mm were removed by sieving, the 

length of some particles in the ground biomass sample was still many times larger. 

This is because when the ground biomass particles are sieved manually, the 

orientation of long thin particles enable them escape through the specified sieve 

holes as the shortest dimension of the particles are typically much less than the size 

of the mesh. Parts c-h Figures 4-7 showed that compared to dried woody biomass, 

ground particles derived from biochars and Collie coal sample are much shorter and 

the shapes appear rounder.  

 

A quantitative assessment was then carried out on key shape parameters (i.e. 

roundness and major/minor axis length ratio, MMALR) for the particles in the 

ground samples of the dried wood biomass, selected biochars and the Collie coal 

sample. A low roundness and high MMALR indicated that the particle is long and 

fibrous. On the contrary, a high roundness and low MMALR reflected that the 

particle is short and round. Figure 4-8 presented the results of the dried woody 

biomass, biochars and the Collie coal sample at 1 and 4 minutes grinding time. 

 

Figure 4-8 clearly showed that the particles in the ground biomass sample are large, 

long and fibrous. An increasing grinding time leads to reduced particle size while the 

MMALR remains high. In contrast, the particles of the ground biochars and the 

Collie coal sample are much shorter and rounder. Increasing the grinding time from 1 

to 4 min leads to only slight changes in the particle shapes of the ground biochars. 

Figure 4-8 also indicated that at the same grinding time, the particles in the ground 

biochars prepared at a high pyrolysis temperature generally have a higher roundness 

and a lower MMALR. Therefore, biochar as a fuel not only has an excellent 

grindability but also leads to the production of short and round particles after 

grinding. Compared to the long and fibrous particles in the ground biomass sample, 

the short and round shapes of ground biochar particles are favourable in many 

practical applications particles of such characteristics are known to enhance 

fluidisation behaviour34 and have desired fuel frictional properties.150 
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Figure 4-8 Major/minor axis length ratio and roundness of fuel particles after grinding for 1 

min (A and B) and 4 mins (C and D). DWB, dried wood biomass; WCxxx, biochar prepared 

from the pyrolysis of the dried wood biomass at xxx °C; Collie, Collie coal 

 

Most importantly, in applications such as gasification and liquefaction, particle 

quality similar to those obtained in this study was found to positively improve 

combustibility, reactivity and process efficiency.82 

 

4.4 Conclusions 

The use of biomass directly as a fuel suffers from low bulk density, low energy 

density and poor grindability. This study shows that biochar produced from biomass 

pyrolysis can be a good fuel, addressing the key issues associated with biomass 

utilisation. Biochar has a high mass energy density but is still bulky. The excellent 

grindability of biochars enables it to be earlier ground to achieve a similar volumetric 

energy density to coal. Grinding of biochars is of low energy consumption also 

produces biochar particles that are short, round and favourable for practical 

applications.  
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CHAPTER 5 

SIGNIFICANT DIFFERENCES IN FUEL QUALITY AND ASH 

PROPERTIES OF BIOCHARS FROM VARIOUS BIOMASS 

COMPONENTS OF MALLEE TREES 

 
 

5.1 Introduction 

A main strategy in biomass pre-treatment is to transform wide streams of biomass 

into a more homogenised fuel (Chapter 2) to benefit fuel handling and process 

design. The first step of this transformation requires fundamental understanding on 

unique properties of each biomass components/types of interest. Mallee biomass is 

produced from the harvest and chipping of whole mallee trees so that it contains 

three main components i.e. wood, leaf and bark. For power generation, mallee 

biomass can either partitioned or used as a whole biomass. The latter approach is 

more likely to be applied in future large scale application.20  The data in Chapter 4 

demonstrated that the biochars derived from slow pyrolysis of mallee wood exhibit 

improved fuel properties, grindability and volumetric energy density and closely 

matched to those of Collie coal. With regard to different scenarios of mallee biomass 

application, properties of fuel derived from other mallee components also need to be 

understood. This chapter continues the work in Chapter 4 and focuses on 

investigating the key differences in the fuel quality and ash properties of biochars 

produced from the slow pyrolysis of various mallee components. The objective of 

this chapter is to identify advance fuel characteristics and undesirable issues that 

each components might imposed in various scenarios of mallee biomass utilisation. 

This corresponds to the second thesis objective outlined in Chapter 2. 
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5.2 Methodology 

Firstly, sample from various components of mallee trees were prepared as described 

in Section 3.3.1-a in Chapter 3. Biochar samples were prepared at pyrolysis 

temperatures of 300-800ºC (Section 3.3.2-1). These biochar samples were referred as 

“LC×××”, “BC×××” or  “WC×××” chars, where the prefix “LC” refers to leaf char, 

the prefix “BC” denotes bark char, and “WC” represents wood char, while the suffix  

“×××” indicates the pyrolysis temperature (in degree Celsius).  

 

The grindability of the biochars were assessed using a ball mill (see Section 3.4.2) at 

4 minutes grinding time, that is the optimal grinding time for wood biochars as 

explained in Chapter 4. Fuel particle size, bulk and volumetric energy density were 

determined according to method in Section 3.4.3-3.4.4. The detailed structure of 

biochars and dried biomass were examined using SEM (Section 3.4.5). The contents 

of AAEM (Ca, K, Mg and Na) and other inorganic species (Al, Fe, P and Si) in 

biomass components and biochars were analysed using an ICP-AES following ash 

fusion with borate (Section 3.4.7).  

 

5.3. Results and Discussion 

5.3.1 Partition and Compositions of Mallee Biomass Components  

On a dry basis, the whole mallee tree samples comprised mainly of wood (60 wt% 

dry basis (db), leaf (27 wt% db) and a smaller fraction of bark (13 wt% db). Table 5-

1 presented proximate and ultimate analysis of dried leaf, wood and bark.   

 

Table 5-1  Proximate and ultimate analysis of biomass 

Dried 
biomass 

Proximate analysis (%, ar) Ultimate analysis (%, daf) 
M Ash FC VM C H N S Oa 

leaf 4.8 4.1 18.5 72.6 54.3 6.7 1.15 0.09 37.8 

bark 6.6 7.1 17.6 68.7 43.1 5.2 0.31 0.04 51.4 

wood 4.5 0.6 15.5 79.4 49.1 6.1 0.13 0.02 44.7 

    a  by difference  
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Concerning the biomass ash content, bark notably has the highest ash followed by 

leaf. It is generally accepted76 that high ash level in bark and leaf is an indicator of 

the nutrient concentration (especially K) within an actively metabolizing part of a 

tree.  It is known that, for many Eucalyptus species,151 seasonal bark shedding occurs 

where old bark is shed and replaced with new tissues. In leaf and tree crown, 

nutrients from the soil are fixed before being relocated to other parts of the tree.76 For 

volatile matter, wood has the highest level although the differences among the three 

components are not as pronounced as ash. Knowledge of the biochar ash properties 

and where it originates is essential for the design of appropriate reactors and the 

understanding on ash-related issues such as fly ash and ash deposit formation or 

logistics concerning ash disposal/storage/utilisation.152 Leaf biomass obviously 

shows high level of nitrogen and sulphur. During combustion, nitrogen in fuel is 

largely responsible for nitric oxides (NOx) while sulphur mainly form SOx and 

sulphates with AAEM species. Not only NOx and SOx contribute to emission 

problem, high concentration of SOx in flue gas during combustion could also cause 

serious corrosion in heat exchanger parts.152   

 

5.3.2 Differences in Biochar Yield and Fuel Chemistry  

The biochar yield decreases with increasing pyrolysis temperature, as shown in 

Figure 5-1. Within the temperature range studied, bark pyrolysis gives the highest 

char yield (~60% db at 300ºC, ~38% db at 500ºC) while wood is the lowest. Despite 

higher char yield, the bark biochar (Table 5-1) has a high ash content, which 

increased with increase pyrolysis temperature. Although bark only contributes to 13 

wt% db of the entire biomass of mallee trees, the high ash level is expected to 

potentially impose ash-related problems. As expected, in terms of moisture, C, H, O 

and volatiles, the data in Tables 5-1 and 5-2 clearly show that biochars in general 

have better fuel qualities than dried biomass.  
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Figure 5-1 Biochar yield of mallee partitions in a fixed-bed reactor at various 

temperatures. (Legends: LC, biochar prepared from leaf component; BC, biochar 

prepared from bark component; WC, biochar prepared from wood component) 

 

 

Table 5-2 Proximate and ultimate analysis of biochars 

 
Biochar 

Proximate analysis (%, ar) Ultimate analysis (%, daf) 
M Ash FC VM C H N S Oa 

 
Leaf Component 

LC300 
LC400 
LC500 

3.4 
4.2 
4.2 

6.5 
10.3 
11.9 

28.8 
51.4 
63.3 

61.3 
34.1 
20.6 

64.2 
65.4 
70.2 

5.8 
3.8 
2.5 

1.62 
1.84 
2.09 

0.07 
0.02 
0.08 

28.3 
28.9 
25.1 

 
Bark Component 

BC300 
BC400 
BC500 

5.2 
5.8 
3.3 

10.6 
13.9 
17.9 

31.4 
45.3 
52.9 

52.8 
35.0 
25.9 

51.4 
55.3 
61.1 

4.1 
2.9 
2.1 

0.46 
0.47 
0.56 

0.02 
0.01 
0.06 

44.0 
41.3 
36.2 

 
Wood Componentb 

WC300 
WC400 
WC500 

4.6 
4.5 
4.5 

0.7 
1.2 
1.3 

35.3 
69.9 
79.8 

59.5 
24.4 
14.4 

60.3 
79.1 
85.5 

5.3 
3.7 
3.0 

0.18 
0.29 
0.34 

0.02 
0.04 
0.03 

34.1 
16.8 
11.1 

       a  by difference, b data taken from Chapter 4 
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All biochar have low moisture content (~ 3-6%), which is desired in thermochemical 

processes. The oxygen and volatiles in biochars decrease with increasing pyrolysis 

temperature; however there is no significant difference of all biomass components. A 

combination of high oxygen and volatiles content could potentially enhance the 

release of inorganic vapours during combustion.65 As mentioned previously, N and S 

content in leaf are higher than bark and wood. For leaf biochars obtained at 300, 400 

and 500ºC, N content in the leaf biochars increased significantly with pyrolyis 

temperature. Sulphur contents in all biochars are typically low.  As a rule of 

thumb,152 sulphur-related emission problems are not expected to be an issue when the 

sulphur content in the fuel is less than 0.2 wt% db, which is indeed the case for the 

biochars produced from all biomass components.  

 

5.3.3 Significant Differences in Biochar Grindability  

After 4 minutes grinding, the particle size distributions (PSDs) for selected ground 

biochars are shown in Figure 5-2. Generally, the grindability of all of the biochars is 

increased with pyrolysis temperature. In Figure 5-2, BC300 followed a similar trend 

with wood biochars (see discussion in Chapter 4). The volumetric percentage of 

particle size < 50 µm obtained from ground BC300, BC400 and BC500 were a few 

time higher than WC300, WC500 and WC500 which indicated that bark biochars 

were easier to grind than wood biochars. Almost all particles in the ground biochars 

of bark and wood components fall between 0.5 to 1000 µm in volumetric size. 

However, leaf biochars behaved differently during grinding. By sieving, the total 

percentage of ground LC300 < 1.8 mm size is ~69% (similar with ground dried 

leaves), compared to 100% for ground BC300 and WC300. In Figure 5-2, the PSD 

curves of ground leaf biochars typically have distinct multiple peaks, in comparison 

to overlapping curves of bark and wood biochars giving ground BC and WC a more 

even particle size distributions. For example, the PSD curve of LC400 biochar shows 

two peaks: one in the size range of 0.5-500 µm and the other is in the size range of 

>500 µm. A similar ‘tail’ also appears even in the PSD curves of the ground LC500 

and LC800 biochars. The data suggested that leaf contain special structures which 

are hard to grind. 
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Figure 5-2 Particle size distributions (PSDs) of selected ground biochars. (Legends: LC, 

biochar prepared from leaf component; BC, biochar prepared from bark component; WC, 

biochar prepared from wood component) 
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5.3.4 SEM Imaging  

Further efforts were then taken to examine the microstructure of biomass and 

biochars using SEM and the images are shown in part a to l of Figure 5-3. The SEM 

images in Figure 5-3 clearly shown the abundance of oil glands in mallee leaf. It is 

known that E. polybractea (blue mallee) leaf has relatively high density of oil 

glands,153 ranging from ~260 to 500 glands/cm2 (i.e. around 3000 to 3260 glands per 

leaf). It was also found that the oil gland’s diameter is positively correlated with leaf 

age.153 As shown in the image of longitudinal section (l.s.) of dried leaf (Figure 5-3 

a), oil glands in the leaf of this study are scattered enclosures ~ 200-250 µm in 

diameter. Part d-h of Figure 5-3 clearly demonstrated the presence of large fragments 

of oil glands in the ground leaf biochars at all temperatures, suggesting that the oil 

gland structures are strong and proved to survive thermal degradation at 350ºC, 

500ºC even as high as 800ºC.  

 

When subjected to milling, the presence of tough oil glands in leaf is the main reason 

of the observed poor grindability of leaf biochars. For example, large fragments of 

oil gland walls are the sources of large particles (>100µm) in the ground leaf chars, 

(e.g. LC500 sample, see part f of Figure 5-3). Such SEM observation is consistent 

with the observed ‘tail’ in the PSD curves of leaf biochars, as shown in Figure 5-2, 

although an absolute conclusion cannot be withdrawn because the particle size 

determination mentioned in Section 5.3.3 was based on volumetric size (i.e. 

irregularly shaped particles were measured and converted into its equivalent sphere 

volumes) compared to SEM imaging, which is of an area-based size.  

 

The data in Figure 5-2 and SEM images in Figure 5-3 clearly demonstrated that the 

biological structure of the parent biomass plays a key role in the grindability of the 

biochars prepared from the pyrolysis of this biomass. In the case of leaf chars, a 

possible key limiting factor of grindability is the abundance of oil glands present in 

the leaf and heterogeneity of its cellular structures. Besides oils glands, the leaf is 

formed by epithelium, spongy mesophyll cells, and vascular bundles.54 Mallee wood 

biomass (see Figure 5-3 b) clearly showed its anisotropic and fibrous nature. Dried 

bark was observed as loosely packed fabric cells (Figure 5-3 c).  
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Figure 5-3 Images of unground and ground fuel samples. (Legends: LC, biochar prepared from leaf component; BC, biochar prepared from bark component; WC, 

biochar prepared from wood component) 

    

(a) Dried leaf biomass, l.s.  arrow- oil gland 
enclosure. 

(b) Dried wood biomass, l.s. (c) Dried bark biomass, l.s. (d) LC350, l.s. arrow-oil gland enclosure 

    

(e) LC500, l.s. arrow-oil gland enclosure (f) Ground LC500. arrow-oil gland remnant (g) LC800, l.s. arrow-oil gland enclosure (h) Ground LC800. arrow-oil gland remnant 
 
 
 
 
 
 
 
 
 
 
 

   

(i) WC500, l.s. (j) Ground WC500 (k) BC500, l.s. (l) Ground BC500 
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Biologically, wood components of a tree comprised mainly of dead hollow vascular 

tissue whose major function is to transport water and minerals to the upper part of the 

tree.  Bark contains cork cells, which is a spongy hydrophobic material that protects 

the tree.54 Unlike leaf biochars, bark and wood biochars seems to have a more 

homogenous appearance. In this set of experiments, the distinct structural differences 

among leaves, bark and wood, either biological or chemical, are believed to 

contribute towards the general difference in grindability, because biomass 

components may differ not only of cellular organisation but cell wall compositions. 

Comparing intact bark/wood biochars with their parent biomass (see Figures 5-3 b, 

5-3 c as well as Figures 5-3 i and 5-3 k), cell boundaries of biochars (especially 

BC500) are no longer clearly visible, which suggests severe thermal degradation of 

biomass after slow pyrolysis. Grinding of BC500 and WC500 resulted in small and 

more even size particles (see Figure 5-3 j and 5-3 l). 

 

However, in LC500 and LC800 char samples (Figure 5-3 e and 5-3 g), the oil glands 

enclosure seems to remain intact after thermal treatment which later significantly 

affected leaf biochars grindability as mentioned previously. The grindability data and 

SEM observation of leaf, bark and wood biochars are valuable to predict how whole 

mallee biochar may behave during milling. Wood biochars with its high grindability 

is desirable to give good fuel handling characteristics and reduce milling energy (see 

discussion in Chapter 4). The data in Figures 5-2 shows that grindability of bark is 

similar to that of wood. As in a fuel processing unit, biochar will be subjected to 

milling and cutting as a crucial step to reduce its size.16 The size reduction problems 

including high milling energy/cost and low bulk/volumetric density are likely be 

imposed by leaf due to the presence of dense and tough oil glands in leaf and 

structural heterogeneity. 

 

5.3.5 Differences in Biochar Energy Densities  

Figure 5-4 presented the bulk and volumetric density of the biochars before and after 

grinding for 4 minutes.  In Figure 5-4, the bulk density of fuels before grinding (0 

min) indicated that slow pyrolysis of leaf and wood biomass actually produced 

biochars with lower bulk density compared to dried biomass. Bulk densities of bark 

biochar are only slightly higher than bark biomass. This indicated that in spite of 
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significant mass loss occurred during pyrolysis, there are little changes in particle 

size and shape.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-4 Bulk density and volumetric energy density of various fuels. (Legend: 

DB, dried biomass, and Cxxx, biochar prepared at xxx°C)  

 

After 4 minutes grinding, all fuels have improved bulk density. With the exception of 

leaf biochars, bulk density of ground bark and wood biochars have increased 

substantially after grinding. The similar trend in bulk density of the bark and wood 

biochars is consistence with that in the grindability in the bark and wood biochars 

(see discussion in Section 5.3.3). Largely attributed to the oil glands remnants, the 

bulk densities of the leaf chars are only slightly higher or even lower (e.g. LC300) 

than that of the dried leaf.  

 

The significant difference in the compositions, heating value and grindability after 

pyrolysis lead to significant differences in the volumetric energy density of biochars 

prepared from bark, wood and leaf. As shown in Figure 5-4, the unground wood 
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biochars (0 min) obtained at 300, 400 and 500ºC have the highest volumetric energy 

density among all fuels. The unground bark biochars also have a slight higher 

volumetric energy density of the dried bark biomass. Besides fuel chemistry, ash 

contents and grindability are the other two key factors which can significantly 

influence the volumetric energy density of a biochar after grinding (see Figure 5-4 

d). Due to the ash content is negatively correlates to heating value,83 one would 

expect that bark biochars would have the lowest energy density compared to wood 

biochars and leaf biochars. However, as results of the excellent grindability of bark 

biochars, the volumetric energy density of bark biochars are actually higher than leaf 

biochars.  For example, BC500 has a volumetric energy density of ~15 GJ/m3, in 

comparison to ~14 GJ/m3 of LC500 and ~22 GJ/m3 of WC500. 

 

It is interesting to note that in Figure 5-4, unground dried leaf has the highest 

volumetric energy density among the raw components. Dried leaf biomass contains 

eucalyptus oil76 which contributes to its high gross heating value. During pyrolysis, 

volatilisation of extractives proceeds as temperature increases. As mentioned in 

Section 5.3.3, the grindability of LC300 has not improved much, while mass loss 

proceeds at this low temperature, therefore resulting in a reduction of the bulk and 

volumetric energy densities of LC300 in comparison to that of the ground dried 

leaves. There is only a slight increase in the volumetric energy density of leaf 

biochars until the pyrolysis temperature increases to 400°C, suggesting that the poor 

grindability limits the potential of leaf biochars for energy densification via grinding. 

Certainly, such limitations may also have significant implication to the design of 

transport, storage facilities and the overall supply chain of these fuels.   
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5.3.6 Differences in Biochar Ash Properties  

The key inorganic species in dried biomass and biochars are presented in Table 5-3.  

Bark biomass and biochars have the highest calcium content among all fuels samples 

analysed. Leaf biomass and biochars have high contents of K and Na while wood 

biomass and biochars have low contents of ash and AAEM species. 

 

Table 5-3 Contents (wt% db) of inorganic species, including AAEM species in fuel 

samples 

  Inorganic Species (wt% db) 
Samples  Ca K Mg Na Si Al Fe P 
DWB 0.104 0.090 0.041 0.012 0.0027 0.0021 0.0018 0.0138 
DLB 1.152 0.438 0.113 0.452 0.1037 0.0464 0.0226 0.1247 
DBB 4.010 0.258 0.220 0.125 0.0335 0.0087 0.0090 0.0310 
         
WC300 0.178 0.158 0.071 0.023 0.0031 0.0007 0.0012 0.0308 
WC350 0.299 0.274 0.115 0.041 0.0015 0.0007 0.0015 0.0460 
WC400 0.363 0.333 0.145 0.055 0.0027 0.0012 0.0021 0.0545 
WC450 0.328 0.356 0.150 0.047 0.0022 0.0011 0.0021 0.0547 
WC500 0.421 0.370 0.164 0.056 0.0023 0.0016 0.0043 0.0623 
         
LC300 1.933 0.733 0.188 0.752 0.1389 0.0711 0.0317 0.1777 
LC350 2.154 0.875 0.236 0.875 0.1885 0.0875 0.0377 0.2222 
LC400 3.412 1.267 0.331 1.365 0.2340 0.1170 0.0517 0.3022 
LC450 3.367 1.638 0.419 1.456 0.2639 0.1456 0.0637 0.4095 
LC500 3.907 1.474 0.403 1.596 0.2773 0.1447 0.0639 0.3496 
         
BC300 6.326 0.423 0.374 0.194 0.0241 0.0085 0.0092 0.0413 
BC350 7.935 0.529 0.463 0.248 0.0193 0.0106 0.0098 0.0546 
BC400 7.938 0.582 0.484 0.308 0.0277 0.0104 0.0135 0.0588 
BC450 8.599 0.609 0.537 0.287 0.0502 0.0107 0.0107 0.0681 
BC500 10.527 0.732 0.595 0.325 0.0300 0.0150 0.0148 0.0731 
 

 

Figure 5-5 showed retentions of Ca, K, Mg  and Na at all pyrolysis temperature are 

~100%, suggesting all AAEM species in the biomass are retained in the biochars 

after pyrolysis. This is expected under the pyrolysis conditions in this study, which 

used large biomass particles and a slow-heating rate. 
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Figure 5-5 Retention of AAEM species in (○) leaf biochar, (□) wood biochar, and  

(   ) bark biochar as a function of pyrolysis temperature 

 

Several indices (Table 5-4) have been developed for relating fuel chemistry to 

propensity of ash fouling and slagging. It has been suggested that indices used in 

combustion study (e.g. alkali indices) must be determined directly from the fuel 

sample instead of calculating backward from elemental analysis of ash as the latter 

technique is prone to error.154 Based on our data in Figure 5-5, relevant to the present 

scope of work, the ratios of Si/K and Ca/K are considered and of interest to evaluate 

the slagging propensities of mallee biochars as fuels. Thermodynamically, formation 

of Ca-silicates is more favoured than of Mg-silicates and K-silicates.155 Because the 

melting point of Si-oxides and Ca-silicates are much higher than K-carbonate and 

chloride, fuels with higher Si/K and Ca/K ratios generally have a low propensity of 

slagging and fouling during combustion. Therefore, the ratios of Si/K and Ca/K for 

leaf, bark and wood biochars are presented in Figure 5-6.  
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Table 5-4 Indices in applications of biomass for fuel generation 
Indications Indices 

 
Computation and unit Threshold value 

Fouling,  slagging 
behaviour, biomass 
combustion properties65 

Alkali index  
 
 

(1/Q)Yf
a (YK2Oa + YNa2Oa) 

 
kg alkali GJ-1 or lb alkali MMBtu-1 
 
Q  = heating value of fuel 
Yf

a = mass fraction of ash in fuel 
YK2Oa + YNa2Oa = mass fractions of K2O and 
Na2O in ash 

>0.17 kg alkali GJ-1 (0.4 lb alkali 
MMBtu-1) -fouling is probable 
 
> 0.34 kg alkali GJ-1 (0.8 lb MMBtu-1)- 
fouling is certain  

Potential fraction of 
alkali could be reacted 
as chloride and sulphate 
by Cl and S from fuel, 
biomass combustion 
properties65 

Stoichiometric ratios of Cl 
and S to K and Na in fuels 
 
 

(Cl + 2S)/(K+Na) 
 
molar 

Ratio value of 1 or above– sufficient 
Cl and S in fuel to completely react 
with the alkali 
 
Ratio value below 1 – excess of alkali 

Fouling tendency of fuel 
ash, biomass combustion 
properties65 

Base- to-acid ratio (Rb/a) 
 

 (Fe2O3 + CaO +MgO +K2O + Na2O)/ (SiO2 + 
TiO2 +Al2O3) 
label for each compound = its weight 
concentration in ash 
 
dimensionless 

For coal, minimum Rb/a = 0.75 
 
For biomass, minimum Rb/a tends to 
appears at < 0.75 

Slagging tendency, 
energy crops quality 17,79 

Ratios between K, Ca and 
Si 

Si/K and Ca/K 
 
dimensionless 

High Si/K or Ca/K - lower slagging 
tendency 

Slagging reasons in 
stemwood pellets 
combustion156 

Compositions of Si, Al 
and Fe oxides of fuel ash 

 Weight concentration of SiO2, Al2O3 and 
Fe2O3 of fuel ash 
 
 Weight % of fuel ash 

~20-25 wt% SiO2 ,   
~ 4-5 wt% Al2O3 and Fe2O3 of fuel ash 
– slag/deposits formed 
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Figure 5-6 Relationship between fuel Si/K and Ca/K ratios. LCxxx-biochar prepared 

from dried leaf biomass at xxx ºC; BCxxx-biochar prepared from dried bark biomass 

at xxx ºC; WCxxx-biochar prepared from dried leaf biomass at xxx ºC. DLB-dried 

leaf biomass; DBB- dried bark biomass; DWB- dried wood biomass 

 

It is interesting to see that leaf, bark and wood biochars as fuels could be placed into 

three distinct groups in terms of ash properties, i.e. wood or wood biochars has low 

Si/K and Ca/K ratios; bark and bark biochars have a high Ca/K ratio but a low Si/K 

ratio; and the leaf and leaf biochars have high Si/K and Ca/K ratios. Therefore, 

biochars produced from the wood biomass component seem to have a high slagging 

propensity, followed by bark biochars and leaf biochars. 

 

5.4. Conclusions 

This chapter reports the significant differences in the fuel quality and ash properties 

of biochars produced from the slow pyrolysis of various mallee biomass components. 

This enables the potential biomass components which may cause problems in 

downstream utilisation of whole mallee biomass. Compared to the parent biomass 

components, it is obvious that biochars of all mallee components as fuels have better 

fuel qualities, such as low moisture, good grindability and high energy density. There 

are significant differences in the grindability of different biochars. Leaf biochars 
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have the poorest grindability among all biochars, due to the presence of abundant 

tough oil glands in leaf. Even at a pyrolysis temperature of 800°C, after grinding, the 

oil gland enclosures remained intact. There are also significant differences in ash 

properties of biochars as fuels. Wood biochars have low Si/K and Ca/K ratios hence 

may have a high propensity of slagging in comparison to bark and leaf biochars. 

Therefore, in using the bulk biochar of the whole mallee biomass, grinding problem 

is more likely to arise from leaf fraction while ash related problems could be more 

likely to be due to the wood and bark components. 
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CHAPTER 6 

FUEL AND RHEOLOGICAL PROPERTIES OF BIOSLURRY 

PREPARED FROM THE BIO- OIL AND BIOCHAR OF MALLEE 

BIOMASS FAST PYROLYSIS 

 

 

6.1 Introduction 

Previous investigations were conducted on using biomass directly to prepare 

biomass-based slurry fuels (see those included in Table 6-1). However, for bioslurry 

fuels prepared from bio-oil and biochar from biomass fast pyrolysis, little technical 

information can be found in the literature, although the concept was attempted by 

commercial developers (e.g. “BioOil Plus” from Dynomotive126 and “Bioliq” from 

Karlsruhe125). For mallee biomass, so far no work has been conducted on the 

production and properties of bioslurry from this abundant biomass in WA. Based on 

the requirements of slurry fuels as listed in Tables 2-6 and 6-1, developments of 

bioslurry fuels from mallee bio-oil/char components will be more likely targeted for 

boilers and gasifiers systems since the characteristics of bio-oil and biochar 

individually are suitable for these applications. 

 

This study focuses on investigating the key fuel properties of bioslurry fuels prepared 

from bio-oil and biochar of mallee biomass fast pyrolysis as outlined in the third 

thesis objective in Chapter 2. The main objectives are to produce bioslurry fuels with 

not only good fuel properties but also stable at optimum biochar loading, with 

desirable rheological behaviour. Besides the characterisation of fuel properties and 

stability, temperature and time-dependent steady rheological measurements were 

conducted at room and elevated temperatures. Other important aspects, such as 

inorganic species in bioslurry fuels, were also measured and benchmarked against 

the specifications of slurry fuels for combustion and gasification applications. 
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Table 6-1 Summary of reviews in recent developments of biomass-derived slurry fuels 
Reference Type of 

slurry fuel 
Preparation and study 
 

Slurry fluid behaviour Key findings  

Al-
Amrousi  et 
al.157 

fuel oil-water-
charcoal 
emulsion. 

charcoal derived from camphor. Effect 
of surfactants: anionic 
(dodecylbenzenesulfonic acid sodium 
salt), non ionic ( dodecylphenol 
ethoxylate) on slurry stability, viscosity 
and corrosion inhibition. 

emulsion viscosity increased with 
increased of charcoal content, 
viscosity decreased with increased 
of water content. 

stable emulsion obtained at 15-20 wt% 
charcoal with 15-20 wt% water and 65 wt % 
fuel oil, slurry calorific value between 31-42 
GJ/Tonne, non anionic surfactants showed 
higher efficiency of stabilizing properties and 
corrosion inhibition in steel tanker. 
 

Benter et 
al.127 

biomass-
diesel-
kerosene 
slurry 

mixture of diesel, kerosene and ground 
Pinus radiata wood: preparation of 
slurry in uncontrolled temperature (min 
15°C, max 25°C), effect of addition of 
non anionic surfactant (Sapogenat T-
080/ T-139 and castor-oil based 
thickener (Rheocin) on slurry stability 
and viscosity. 
 

all slurries showed pseudoplastic 
behaviour. 

adding ethanol and water (15-20 wt %) with 
20 wt % wood loading produce stable 
suspension for more than 30 days, similar  
effect with addition of Rheocin. Slurry with 
smaller wood mean particle diameter (35 µm) 
showed increase sedimentation stability than 
large particle (68 µm mean diameter).   
 

Natarajan 
et al.158 

corn starch-
water slurry 
(CSWS) 

effect of corn starch concentration and 
thickener (polyacrylic acid) on slurry 
stability, rheology and viscosity. 
 

 a minimum viscosity observed at 
45°C due to swelling of biomass. 
Beyond 60°C, slurry gelled 

slurry with 0.15% polyacrylic acid and 40% 
corn starch have favourable rheological 
property for injection and pumping. Slurry 
with ≥ 0.15% polyacrylic acid is stable on 
storage for 2 months. 
 
 
 

Henrich 
and 
Weirich125 

bio-oil/biochar 
slurry 

test performance of gasification of 
bioslurry in Pressurised Entrained Flow 
Gasifier. Bioslurry produced using 2 
steps method: fast pyrolysis of straw at 
500°C to produce bio-oil and char, char 
and bio-oil are then mixed as bioslurry. 

 viscosity decreased with increasing 
char particle size 

energy content in slurry up to 90% of the 
biomass energy. The two steps process of 
bioslurry production is feasible for dry 
herbaceous biomass, maximum char size 0.3 
mm, stable slurry with 25 wt% char loading 
was prepared from beechwood pyrolysis.  
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Raju  et 
al.159 

biomass-water 
slurry 

synthesis of transportation fuel from 
biomass (agricultural waste) -water 
slurry. 

pumpable slurry at 40 and 60 wt% 
biomass in water. 

improvement of slurry production by mixing 
of water and biomass are at low temperature 
~200°C under nitrogen (150 psi). Slurry 
contained 60% solid or 38% carbon by 
weight. 
 

He et al.160 biomass-water 
slurry 

coal-water slurries, biomass water 
slurries and commingled biomass and 
coal water slurries: rheological 
properties, effect of hydrothermal 
process to increase solid loading.  
 

larger particle size slurries have 
better pumpability. Slurry 
pumpability decreases with 
increase concentrations of biomass. 

hydrothermal process increase solid loading 
to 35% of biomass water-slurry and to 45 % 
solid loading in commingled slurries with 
viscosity less than 700mPa.s. 

Li et al.161 algae-coal-
water slurry  

preparation of coal slurry with algae: 
pre-treatment method to reduce 
viscosity of algae, rheological 
properties, gasification characteristics. 

 slurry exhibits pseudoplastic 
behaviour and shear thinning. 

pre-treatment method:  anaerobic 
fermentation, chemical treatment, high speed 
shearing and heating result to decrease algae 
viscosity and increase algae solid loading. 
Max solid loading 62.5 wt%, stability higher 
than coal-water slurry. Algae slurry promote 
gasification rate. 
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6.2 Methodology 

6.2.1 Preparation of Bioslurry 

The bio-oil and biochar for preparing the bioslurry samples were freshly produced 

from the fast pyrolysis of mallee wood of species Eucalyptus loxophleba (spp 

lissophloia) according to method described in Section 3.3.2-2, Chapter 3. To prepare 

the bioslurry, the biochar was first ground in a laboratory ball mill (see Section 3.4.2) 

and the biochar particle size distribution was determined using a laser-based particle 

size analyser using method in Section 3.4.4. The optimum particle size of the biochar 

is investigated at various grinding time i.e. 2, 6, 8, 10 and 20 minutes. The surface 

area, apparent density and soakability of ground biochar were determined according 

to descriptions in Section 3.4.8 (Chapter 3).  

 

A series of bioslurry fuels were prepared by suspending various mass concentrations 

of fine biochar particles into whole bio-oil (see Section 3.4.9-1). Based on the 

present fast pyrolysis yields of bio-oil (61% db) and biochar (14% db), bioslurry with 

various char loading ranging from 8 to 20 wt% were prepared. The slurries were 

stirred and kept in closed plastic vials to avoid vaporizations or sample loss. Bulk 

density and static stability of bioslurry were measured using method explained in 

Sections 3.4.3 and 3.4.13.  The calorific value of slurry is the summation of the bio-

oil and biochar equivalent low heat value (LHV, GJ/Tonne). Inorganic species in 

biochar, bio-oil and the resulted bioslurry fuels were measured using a wet oxidation 

method and ICP-AES (Section 3.4.7)  

 

 

6.3 Results and Discussion 

The rheological properties of bioslurry were characterised using a Haake Mars II 

rheometer equipped with a Z20 cylinder sensor system (see Section 3.4.15). In this 

experiment, the changes of viscosity and shear stress as a function of shear rate at 

25°C and 50°C were determined at maximum shear rate of 500s-1 under steady 

measurement. The curve of shear stress versus shear rate were fitted by the Power 

Law τ  = Kγn, where τ  is shear stress (Pa), γ is the shear rate (s-1), K and n are 

rheological constants, referred to as the fluid consistency coefficient and flow 

behaviour index respectively. For n =1, the equation reduces to Newton’s law of 
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viscosity. Therefore departure of n from 1 indicates the degree of deviation from 

Newtonian behaviour. The behaviour is pseudo-plastic for n <1 and dilatant for n 

>1.162 To validate the effect of time-dependent /thixotropy behaviour of the bioslurry, 

a plot of shear stress versus shear rate was made as the shear rate was increased to a 

maximum of 300 s-1, then hold at this shear rate for 30s before decreased to the 

starting point. The thixotrophy test was also measured at 25°C and 50°C. Fresh 

bioslurry samples were used for all measurements described in this experiment.  

 

6.3.1 Properties of Ground Biochar for the Preparation of Bioslurry Fuels 

The particle size distributions (PSD) of the biochar sample at various grinding times 

are shown in Figure 6-1. As mentioned in Table 2-6 (Chapter 2), the applications of 

coal slurry in boilers require coal particle size of 80% < 74-75 µm.109,110,115,163 Figure 

6-1 shows that with the present laboratory ball mill, desirable size reduction of 

biochar can be achieved within an optimal grinding time of 8 mins. Increased 

grinding time up to 20 mins further reduced the size only slightly. For example, 

biochar ground after 8 mins has 88% of all particles with size < 75µm, in comparison 

to only slight increase to 92% after 20 mins grinding.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1 Particle size distributions of ground biochar at various grinding time 
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Since 8 mins grinding time produced biochar particle that met the requirement for 

boiler fuels, biochar powder obtained at this grinding time is used to prepare 

bioslurry throughout the study. The PSD of ground biochar at 8 mins is given in 

details in Figure 6-2. The PSD has 10, 50 and 90 % under size (D10, D50, D90) of 3.94, 

22.72 and 79.60 µm respectively. As shown in the previous investigation biochar 

clearly has excellent grindability in comparison to biomass (see Chapter 4 and 5). 

The excellent biochar grindability not only alleviates problems like fuel blockage and 

incomplete burnout but most importantly, the data showed that preparation of 

bioslurry from biochar is a better option than the slurry fuels prepared from biomass 

(e.g. biomass-water slurry fuels in a previous study 127). The extensive energy 

requirement for grinding biomass to the required fine size dictated that biomass-

water slurry fuels are not feasible 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-2 Particle size distributions of ground biochar at 8 mins grinding time 
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Biochar surface area measured using Dubinin-Astakhov method was 244 m2/g. It 

was also found that biochar porosity is primarily due to macropores (65%) and 

mesopores/transitional pores (35%). Volume in pores with radius greater than 

1.00µm (macropores), radius between 0.01-1.00µm (mesopores) and radius smaller 

than 0.01µm (micropores) are 0.7312, 0.4007 and 0.0001 cc/g respectively, giving 

the total pore volume 1.1320 cc/g. The porosity of biochar suggests mallee biochar is 

a good candidate for slurry preparation since it was reported previously164 that coals 

having about 35-55% of their total open pore in the transitional range are most 

suitable for adsorption of organic molecules from solution. After grinding, the 

biochar has an apparent density of 538 kg/m3. The experimental data show that the 

biochar soaked up to 1.4 times bio-oil of the biochar's weight at the maximum before 

sufficient interparticle lubrication was achieved to form flowing slurry, enabling 

significant volumetric energy densification. 

 

6.3.2 Fuel Properties and Significant Energy Densification via the Preparation 

of Bioslurry  

The ash content in biochar (Table 6-2) was much higher than bio-oil. This is 

expected as at the pyrolysis temperature (500°C), the majority of inorganic species in 

biomass were mostly retained in biochar during fast pyrolysis process. 

 
Table 6-2 Ultimate and proximate analysis of biomass, biochar and bio-oil 

 

Fuel Proximate analysis (% ar)  Ultimate analysis (% daf) 
MC Ash VM FC  C H N O* 

biomass^ - 0.5 81.9 17.6  48.4 6.3 0.1 45.2 
biochar 4.4 4.0 20.5 71.1  71.2 3.1 0.41 16.6 
bio-oilar 21.1 0.03 Nd Nd   40.9 7.2 0.13 51.7 

^- dry base (data was taken from ref99), nd- not determined, *- by   difference. 
 

It should be noted that there was ~0.4 wt% char fines entrained in bio-oil during the 

condensation process, contributing to the presence of ash in bio-oil. Compared to 

bio-oils reported previously (10-35 wt%, wet basis), 121,128,165 the moisture content in 

the bio-oil in this study is ~21%, which itself is below the maximum water content 

(<32 wt%, see Table 2-6 Chapter 2) allowed for applications in engines. The nitrogen 

contents in the biochar and bio-oil are much lower than the limits for combustion in 
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boilers (Table 2-6 Chapter 2), and that of ultra clean coal (N content ~1.07 %) as 

reported previously.111 

 

Figure 6-3 showed the bulk and volumetric energy densities of bioslurry, along with 

bio-oil (denoted as 0 wt% char loading in the figure) and green chipped biomass 

(BM).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-3 Mass energy, bulk and volumetric energy densities of fuels. BM- biomass 
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Obviously, bioslurry have higher bulk and energy densities than biomass and bio-oil. 

At 20 wt% biochar loading, the bioslurry has a bulk density of 1.27 Tonne/m3 and a 

volumetric energy density of ~23 GJ/m3, achieving significant volumetric energy 

densification from ~5 GJ/m3 of the green chipped biomass. Although there is only a 

slight increase in bulk density compared to bio-oil, the addition of biochar with a 

higher mass energy density has resulted in an increase in volumetric energy density 

of bioslurry being 14% (at 20% char loading) higher than bio-oil. The data have 

significant implications towards the cost reduction in fuel logistics (collection, 

handling, transport and storage). For example, a typical 20 MW straw-fired power 

station requires 150,000 wet tonnes/yr of biomass involving 40 road transport vehicle 

delivery per day. Biomass fuels with relatively higher bulk densities such as coppice 

requires 135,000 wet tonnes/yr biomass with around 50% lesser lorry movement.21 In 

case of mallee green biomass, the transport cost increase almost linearly as feedstock 

collection distance increase.20 It was estimated that mallee green biomass 

transportation cost has increased from A$32.0 gt-1 at 10 km to almost doubled 

(A$47.5gt-1) at 100km and to A$73.5gt-1 at 250 km. Therefore, a much higher 

density bioslurry is expected to substantially reduce the transportation cost of mallee 

green biomass.  

 

6.3.3 Inorganic Species in Bioslurry Fuels  

Table 6-3 presents the contents of various inorganic species in biochar, bio-oil and 

selected bioslurry fuels. It can be seen that the inorganic elements in biochar and bio-

oil are predominantly alkali and alkaline metallic (AAEM) species, i.e. calcium, 

potassium, magnesium and sodium. For bioslurry, the data are reported as both 

directly measured and estimated based on the percentage of biochar and bio-oil in the 

slurry. As expected, it can be seen in Table 6-3 that both the measured and estimated 

values are in good agreement. This suggests that the inorganic species in bioslurry 

fuels can be estimated directly from their initial concentrations in biochar and bio-oil. 

  

It is known that one of the major issues for biomass combustion are ash-related 

problems associated with AAEM species which can form alkali sulphates, chlorides 

or alkali silicates.45 The lower melting points (<700°C) of alkali sulphates and 
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silicates form deposits on the reactor wall and particles bed leading to bed sintering 

and defluidisation27,69. The highly stable potassium chloride is one of the major 

causes of slagging and fouling problems in combustion.65 To minimise the ash-

related problems such as sintering, agglomeration, erosion, deposition and corrosion, 

it has been suggested152 that the contents of Ca, K and S in fuels need to below 

accepted limits, i.e. <35 wt% for Ca and < 7.0 wt% (db) for K, as well as S <0.1 

wt%(db)  for sulphur related corrosion and <0.2 wt%(db) for SOx emission. 

 

Table 6-3 Elemental analysis of fuels 

 

The data in Table 6-3 showed that the concentrations of these species in the bioslurry 

fuels prepared are all below the guideline limits, suggesting that the combustion of 

bioslurry will probably not going to impose significant ash-related problems 

associated with the species listed in Table 6-3. In fact, the S content in bio-oil, 

biochar and bioslurry are also very low compared to coals (ultra clean coal S~0.25%, 

Jincheng coal S~ 0.49 %) and sewage sludge (0.88%)111 used to prepare other slurry 

fuels, a clearly advantageous in utilising bioslurry in state of the art combustion 

systems.  

 

 

Element 
(wt% ar) 

  Fuels   

bio-oil biochar bioslurry, 
8 wt% biochar 

bioslurry, 
14 wt% biochar 

bioslurry, 
20 wt% biochar 

Ca measured 0.0008 1.3429 0.1112 0.1952 0.2493 
 estimated   0.1030 0.1906 0.2572 
K measured 0.0016 0.6661 0.0469 0.0878 0.1121 
 estimated   0.0512 0.0938 0.1308 
Mg measured 0.0019 0.2893 0.0228 0.0437 0.0547 
 estimated   0.0238 0.0420 0.0589 
Na measured 0.0045 0.2077 0.0182 0.0241 0.0258 
 estimated   0.0200 0.0333 0.0448 
Fe measured 0.0006 0.0996 0.0081 0.0145 0.0167 
 estimated   0.0081 0.0147 0.0163 
P measured <0.0200 0.1181 0.0097 0.0176 0.0231 
 estimated   0.0090 0.0170 0.0234 
S measured 0.0060 0.0313 0.0068 0.0096 0.0104 
 estimated   0.0079 0.0096 0.0108 
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6.3.4     Bioslurry Static Stability  

In the literature, various settling tests were conducted for characterising bioslurry 

stability. For example, it can be done via measuring the volume ratio of clear to 

sediment phase,127,166 or rod drop method111 to determine the formation of sediment 

over time (usually in hours) and weight ratio of bottom part to top part after settling 

is allowed to occur for a certain period.116,162 Due to the dark brown colour nature of 

the bioslurry in this study, determining meniscus between clear and sediment layers 

was difficult. Rod drop method was found unreliable as the bioslurry tends to stick to 

the glass rod leading to loss of substantial amount of sample during measurement. 

Therefore, this study adapted a standard method for coal water slurry116 to assess 

bioslurry stability. The static stability of bioslurry at different biochar loading is 

presented in Figure 6-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-4 Static stability of fuels 

 

The stability of bioslurry was found to decrease steadily with the increase of solid 

loading but all bioslurry samples have good stability (>70% as required for coal-

water-slurry). It was also observed that the soft sediment settled at the bottom of the 

container can be easily mixed back with the liquid part by stirring. The static stability 

data has significant impact on process design and handling of bioslurry especially in 
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the aspect of continuous stirring requirement and/or the use of stabilizing agent to 

minimise settling.  

 

6.3.5 Rheological Property of Bioslurry  

The changes of shear stress and viscosity of the slurry as a function of shear rate are 

demonstrated in Figure 6-5. At 25°C, the bioslurry generally exhibits non-Newtonian 

behaviour especially for biochar loading 11-20 wt%. The shear thinning or 

pseudoplastic behaviour is characterised with the decrease of viscosity as the shear 

rate increase. This type of fluid behaviour is common in COM, CWS, coal-algae 

slurry, coal-sewage sludge slurry and to a certain extent coal-biomass 

slurries.110,112,115,160,162 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-5 Shear stress and apparent viscosity of fuels as a function of shear rate 

 

For bioslurry at 8 wt% concentration and bio-oil, slight shear thinning occurs at low 

shear rate (below 30s-1) but the overall behaviour is predominantly Newtonian. A 

similar behaviour is also observed at 50°C. The data for shear stress dependent on 
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shear rate for non-Newtonian bioslurry (11-20 wt%) at 25°C were fitted with the 

Power Law equation as described in Section 6.2.1. The values of the flow behaviour 

index n for the slurry fuels are given in Table 6-4.  

 

Table 6-4 Flow behaviour index, n of bioslurry (25°C) 

Bioslurry Biochar loading (wt%) 

 11 14 17 20 

flow behaviour index, n 0.9746 0.9447 0.8913 0.8344 

 

All of the n values are less than 1.00, indicating the bioslurry show pseudoplastic 

behaviour. With the increasing of biochar concentration, the n values become 

smaller, showing increasing deviation from Newtonian behaviour. The understanding 

of fluid behaviour for bioslurry is useful to predict bioslurry spraying and 

atomisation characteristics. For instance, the Sauter mean diameter (SMD) of a spray 

for Newtonian fluids increase as the viscosity increase. The SMD for non-Newtonian 

fluids however can be affected by the elasticity and shear thinning behaviour.167 The 

high pressure accumulator-type injection system also requires pseudoplastic 

behaviour to produce desirable spray pattern.168 

 

The apparent viscosity for bioslurry obtained at shear rate 100s-1 measured at 25 and 

50°C are presented in Figure 6-6. An earlier study suggested that the maximum 

viscosity for safe handling of CWS in boilers is 1000 mPa.s at 100s-1.112 For a 

pressurised gasification reactor, the maximum viscosity is ~700 mPa.s.160 In Figure 

6-6, the maximal viscosity is ~453 mPa.s for the highest concentration of biochar (20 

wt%) at 25°C. At 50°C, the viscosity is reduced to ~300 mPa.s. This data indicated 

that bioslurry can be easily pumped at 25°C and elevated temperature in both boilers 

and pressurised gasifiers thus open the opportunity for deploying these fuels in those 

applications. To minimise aging reactions, it is also desirable to have targeted 

viscosity number at room temperature.   
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Figure 6-6 Apparent viscosity of fuels at shear rate 100s-1. Guideline limit:  1000 

mPa.s in boilers, 700 mPa.s in pressurised gasifier 

 

Bioslurry fuels at biochar concentration 14-20 wt% also exhibit thixotropic 

behaviour at both measured temperatures. For these bioslurry fuels, the shear 

thinning behaviour also depends on time. For thixotropic fluids, the viscosity 

decrease with time at a constant shear rate and can be characterised  with a hysteresis 

loop (see descriptions in a previous publication169) as shown in Figure 6-7. The area 

of hysteresis loop for biochar concentration of 20 wt% is larger than 14 wt% 

concentration. This type of fluid behaviour is also prevalent at high concentration of 

COM,110 indicating the amount of biochar/solid plays an important role in forming a 

spatial structure in the multiphase bio-oil/ liquid medium.167 It is believed that along 

the upward ramp, the shearing effect broke the agglomerated char in bioslurry giving 

the shear thinning effect. Since the spatial structure has been broken permanently, the 

changes of shear stress were no longer same during the downward ramp. The 

agglomerated char structure is suggested to loosen more easily at higher 

temperature.167 Therefore, the area of hysteresis loop for biochar concentration 20 

wt% at 50°C is smaller than 25°C.  
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Figure 6-7 Thixotropic behaviour of fuels 

 

 

6.3.6 Benchmarking of Bioslurry against Other Slurry Fuels and Implications 

Table 6-5 listed a summary of the results in this study, benchmarking against the 

requirements of slurry fuels for combustion application. It is clear that the fuel and 

rheological properties of the bioslurry fuels prepared in this study can meet the slurry 

fuel specifications for applications in combustion/gasification systems especially 

boilers and gasifiers. The results suggested that a bioslurry-based bioenergy supply 

chain is competent to replace fossil-based slurry fuels in large-scale coal-based 

power plants for substantial emission reduction.  
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Table 6-5 Benchmarking of bioslurry against fuel requirements51,109-116,118-121,123-

126,170,171 in combustion 

Property Bioslurry in this study Fuel requirements in 
combustion/gasification51,109-116,118-

121,123-126,170,171 
particle size 
distribution 

88% < 75 µm 80% < 74-75 µm 

porosity   35% are transitional pores 35-55% transitional pores is suitable 
for adsorption of organic molecules  

bulk density, 
Tonne/m3 

1.25-1.27  0.6-0.9 or higher 

inorganic 
species, wt% 

  

     N <0.4 <0.6 
     S <0.011 <0.1 
     Ca <0.25 <35 
     K <0.13 <7.0 

static stability, % 79-90 >70 
fluid behaviour non-Newtonian pseudoplastic non-Newtonian pseudoplastic 
viscosity at shear 
rate 100 s-1 

max 453 mPa.s max 1000 mPa.s in boiler 
700 mPa.s in pressurised gasifier 

 

 

6.4 Conclusions 

This study demonstrates that bioslurry has desirable fuel properties which meet 

specifications for combustion/gasification applications. The excellent grindability of 

mallee wood biochar enables the preparation of bioslurry at the desired size 

requirement instead of grinding raw biomass. Bioslurry has high volumetric energy 

density which is expected to significantly reduce logistic cost often associate with 

utilising green biomass. Bioslurry is also relatively stable with 50% less than 

viscosity number required in boilers and pressurised gasifiers. At high biochar 

concentrations (e.g. 11-20 wt%), bioslurry fuels are non-Newtonian fluids with 

pseudoplastic behaviour. The contents of AAEM, N and S in the bioslurry fuels are 

also well below the limits. Therefore, bioslurry can potentially replace conventional 

fuel use in large-scale coal-based energy plants, particularly applications in boilers 

and gasifiers. 
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CHAPTER 7 

PREPARATION OF BIOSLURRY FUELS FROM BIOCHAR 

AND THE BIO-OIL RICH FRACTIONS AFTER BIO-

OIL/BIODIESEL EXTRACTION 

 
 

7.1 Introduction 

Chapter 6 illustrates the favourable fuel and rheological properties of bioslurry fuels, 

produced from bio-oil and bio-char that are products of mallee biomass fast 

pyrolysis, for combustion and gasification applications. However, so far the 

preparation of such bioslurry fuels use the whole bio-oil produced from the fast 

pyrolysis of biomass such as mallee. Such an approach may not be the best option for 

bio-oil utilisation. It is known that bio-oil contains a wide range of components and 

some of which are suitable for value-added applications.52,55 For example, significant 

R &D have been carried out to develop various technologies for bio-oil upgrading 

and refining for the production of liquid transport fuels, including direct biodiesel 

extraction,106 esterification,172,173 catalytic upgrading,129,132 hydrotreating174,175 and 

emulsification with diesel123,133 or biodiesel134,135 with the aid of a surfactant.  

 

Particularly, it is worth to note that García-Perez et al106 developed a method that 

used biodiesel to extract some of the best fuel fractions of bio-oil, resulting in a 

biodiesel/bio-oil fuel blend that is proven to be a good transport fuel. Monolignols, 

furans, sugars, extractive-derived compounds and a small fraction of oligomers were 

the main bio-oil compounds extracted in biodiesel. The addition of these bio-oil 

fractions to biodiesel did not seem to greatly influence the calorific value of resulting 

bio-oil/biodiesel blend. A subsequent investigation was also carried out to apply the 

same method for extracting bio-oil produced from mallee biomass fast pyrolysis, 

leading to similar conclusions.176  
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Therefore, instead of using the whole bio-oil for preparing bioslurry fuels, it is 

plausible to use biodiesel for bio-oil extraction first that enable a better use of bio-oil. 

The best (high-quality) components in the bio-oil can be extracted into the produced 

biodiesel/bio-oil blend that can be used as a liquid transport fuel (as shown in 

previous studies106,176). The residue bio-oil rich fraction (low-quality) after biodiesel 

extraction can then be used to prepare bioslurry fuels. This is the idea proposed in 

this study as an alternative approach for bio-oil utilisation and bioslurry fuels 

preparation. Therefore, the main objectives of this work are to investigate the quality 

of the resulted bioslurry fuels benchmarked against those slurry fuels produced from 

whole bio-oil.  

 

7.2 Methodology 

This study employed three fuel samples i.e. biodiesel, fast pyrolysis bio-oil and 

biochar (see Chapter 3 Section 3.3.1-a). A series of bio-oil/biodiesel blend samples 

(method previously described in Section 3.4.9-3.4.10 ) were prepared by mixing 80, 

60, 40 and 20 mass % of bio-oil to biodiesel, corresponding to 0.25, 0.67, 1.50 and 

4.00 mass ratios of biodiesel to bio-oil, respectively. The blends were kept in sealed 

vials and stirred continuously using a magnetic stirrer at room temperature for 2 hrs. 

After that, the blends were left to settle. A 5 ml syringe is used to separate the 

biodiesel rich fraction (top layer) and the bio-oil rich fraction (bottom layer) and the 

mass of resulted fractions were recorded. Hereafter, the bio-oil rich and biodiesel 

rich fractions are denoted as BORx.xx and BDRx.xx whereby “BOR” refers to “bio-

oil rich fraction”, “BDR” means “biodiesel rich fraction” and “x.xx” refers to the 

initial mass ratio of biodiesel to bio-oil. The proximate and ultimate analysis of the 

fuels prepared are shown in Table 7-1. Bioslurry fuels were then prepared by 

suspending the fine biochar particles into bio-oil and the selected bio-oil rich fraction 

solutions resulted from the biodiesel extraction process (also see Section 3.4.9-

3.4.10). Bioslurry fuels with biochar loading of 10 and 20 wt% were prepared. 

Hereafter, the bioslurry fuels prepared with the original bio-oil are denote as “BO-

10%” and “BO-20%” whereas bioslurry fuels prepared from the bio-oil rich phase 

are denoted as “BOR x.xx-10%” and “BOR x.xx-20%” corresponds to 10 or 20 wt% 

biochar loading, respectively.  
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The microstructures of bio-oil and the bio-oil rich fractions were examined using a 

Nikon Eclipse ME600 optical microscope (Section 3.4.11). Fuel density was 

determined with a pycnometer (5 mL) and the measurement was done multiple times 

with deviations of < 1%. The surface tension of fuels was measured using a KSV 

Sigma 701 Surface Tensiometer, following the Wilhelmy method (see Section 

3.4.12). The sample temperature is controlled with a water bath. Sample was left for 

5 min in the measuring chamber to reach the desired temperature before taking the 

first reading. The result reported was an average of 50 data points after the surface 

tension reached equilibrium with error bar <2%. Density and surface tension 

measurements were conducted at both 25°C and 40°C. 

 

Chemical compounds in the fuels were qualitatively indentified using a GC-MS 

(Section 3.4.14). A Leco AC350 calorimeter was used to measure calorific value of 

the fuels. The calorific values of bioslurry fuels are estimated based on the 

percentage of liquid fuels and biochar and their respective low heating values (LHV, 

GJ/Tonne). A standard method for coal-water-slurry116 was employed to examine 

bioslurry stability as described in Section 3.4.13. The fuels rheological properties 

were characterised using A Haake Mars II rheometer fitted with a Z20 cylinder 

sensor system (Section 3.4.15). Calibrations of the instrument were done before and 

after measurements to ensure the reliability of results in this study. In the steady 

mode, the changes of viscosity and shear stress as a function of shear rate was 

measured at a maximum shear rate of 1000s-1. The fluid behaviour can then be 

characterised based on the shear stress versus shear rate relationship, typically fitted 

in the form of Power Law τ  = Kγn, K is fluid consistency coefficient and n is flow 

behaviour index. When n =1, the Power Law equation is reduced to Newton’s law of 

viscosity. The departure of n from 1 illustrates the degree of deviation from 

Newtonian behaviour; typically the behaviour is pseudo-plastic for n <1 and dilatant 

for n >1162. 

 

This study also carried out the dynamic measurement of the storage (elastic) modulus 

G΄ and loss (viscous) modulus G˝ as a function of stress and frequency on bioslurry 

fuels to examine viscoelastic behaviour. A stress sweep test was performed at 0.1Hz 

between shear stress 0.001-1000.00Pa to determine the linear viscoelastic region. For 
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selected bioslurry fuels, frequency sweeps between 0.1-10 Hz were conducted at 

4.00Pa. All steady and dynamic measurements were carried out at 25°C and 40°C. 

Fresh fuel samples were used for all measurements conducted in this study.  

 

7.3 Results and Discussion 

7.3.1 Fuel Chemistry 

Table 7-1 compares some fuel properties of the bio-oil, biodiesel, resulted bio-oil 

rich and biodiesel rich fractions.  

 

Table 7-1 Fuel properties and heating values. BOR x.xx – bio-oil rich fraction 

obtained from biodiesel extraction at a biodiesel to bio-oil ratio of x.xx; BDR x.xx – 

biodiesel rich fraction obtained from biodiesel extraction at a biodiesel to bio-oil 

ratio of x.xx 

 (wt %, ar)   Ultimate analysis (% daf)   Heating value 
Fuel water ash  C H N S O*  LHV (GJ/Tonne) 

bio-oil 33.7 0.09  42.3 7.3 0.06 0.02 50.3  17.3 
BOR 0.25 33.7 0.04  41.4 7.6 0.07 0.02 50.9  16.9 
BOR 0.67 34.1 0.03  43.3 8.1 0.11 0.01 48.5  17.1 
BOR 1.50 35.0 0.04  40.2 7.8 0.11 0.01 51.9  16.4 
BOR 4.00 38.7 0.06  37.9 7.8 0.14 0.01 54.2  15.4 
biodiesel 0.3 <0.01  77.1 11.7 0.05 0.01 11.1  39.6 
BDR 0.25 1.0 <0.01  75.0 11.0 0.02 0.01 14.0  38.4 
BDR 0.67 1.1 <0.01  75.6 11.1 0.03 0.01 13.3  38.6 
BDR 1.50 1.0 <0.01  75.7 11.2 0.02 <0.01 13.1  38.8 
BDR 4.00 0.6 0.03  76.0 11.2 0.04 <0.01 12.8  39.2 

* by difference; LHV – low heating value 
 

It is observed in Table 7-1 that the water content for resulted bio-oil rich fractions 

and biodiesel rich fractions were significantly increased compared to the original bio-

oil and biodiesel before extraction. A similar trend of water content increase in 

biodiesel-rich phase was also reported for extraction of mallee bio-oil/biodiesel 

carried out at 60°C, 30 min previously which was related to extraction of water 

soluble compounds from bio-oil into biodiesel.176 In such a case, supposedly the bio-

oil rich fraction should have less water content after extraction instead of increasing 

as observed in Table 7-1.  

 

In this experiment, the water content was determined with Karl Fischer Titration 

according to ASTM E203. Although the exact mechanisms are unknown at present, 
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there are at least two possible reasons responsible for the increase of fuels water 

content after extraction process. Firstly, it could possibly resulted from interference 

of certain chemicals such as aldehyde, ketones and acetic acid (which are known to 

exist in bio-oil55) that react with methanol in the reagent during the titration process 

to form water.177 Secondly, some mechanisms such as condensation reactions can 

increase the amount of water content in bio-oil (as reported previously during bio-oil 

aging178). However in the present experiment, fresh bio-oil was used and the 

extraction process was conducted at room temperature to minimise aging reactions. 

Therefore the reactions in which water is formed as a byproduct can possibly occur 

during the extraction process itself as the increased water content is corresponding to 

decrease in the fuels heating value i.e up to ~11% in the case of BOR 4.00 (Table 7-

1).  

 

The data in Table 7-1 also suggested that a slight decrease in the carbon and 

hydrogen content and increase in the oxygen content of the biodiesel-rich fractions 

has limited impact on the fuel heating values of the biodiesel-rich fractions. This 

trend is in good agreement with previous results.176 A van Krevelen plot in Figure 7-

1 showed the relationship between fuel hydrogen to carbon ratio and oxygen to 

carbon ratio and further verifies the trend for LHV in Table 7-1. Figure 7-1 also 

suggests that biodiesel extraction at low extraction ratio (0.25 and 0.67) yielded bio-

oil rich fractions with minimal changes in C, H and O contents and (therefore) with 

similar LHV in comparison to the whole bio-oil. Table 7-1 showed that all fuels have 

very low sulphur contents well below the guideline limit (S <0.1 wt% as required for 

preventing corrosion152). The nitrogen contents in the biodiesel rich fractions have 

decreased and an increase in nitrogen contents by more than twice are also evidenced 

in the bio-oil rich fractions. However, overall, the nitrogen contents in the fuels are 

still less than the guideline value (N < 0.4 wt% for combustion or gasification 

applications152). From fuel requirements for practical applications (e.g. combustion 

and gasification) and supply chain point of view, fuel with low water content and 

high (volumetric) energy density is favoured for stable combustion/gasification, 

reducing flue gas volume (hence reactor sizes) and minimising fuel 

transport/handling cost which are the key hurdles limited biomass utilisation in the 

industry.6,19,121 Therefore, based on the data in Table 7-1 and Figure 7-1, bio-oil rich 

CHAPTER 7 



                                                                                                                   
                                                                                                                                          
                                              

 
105 

 
High-energy-density Fuels from Mallee Biomass 

fraction that has similar fuel chemistry and LHV with the whole bio-oil i.e BOR 

0.67, was chosen as an example to prepare bioslurry fuels for further investigations, 

benchmarking against those bioslurry fuels prepared using the original whole bio-oil.  
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Figure 7-1 van Krevelen diagram showing relationship of fuel H/C ratio to O/C ratio. BOR 

x.xx – bio-oil rich fraction obtained from biodiesel extraction at a biodiesel to bio-oil ratio of 

x.xx, BDR x.xx – biodiesel rich fraction obtained from biodiesel extraction at a biodiesel to 

bio-oil ratio of x.xx 

 

7.3.2 Solubility of Bio-oil in Biodiesel 

The relationship of initial biodiesel/bio-oil ratio vs the ratio of biodiesel rich/bio-oil 

rich fraction is shown in a linear plot (Figure 7-2A). The slope (K) has been used as 

an indicator of the solubility of bio-oil in biodiesel106,176 with higher K value 

corresponds to increase bio-oil solubility.  The average K value (K~1.32, deviations 

< 1%) obtained in this experiment  is comparable to those obtained from sugar rich-

polar oil obtained from Auger pyrolysis of pine chip (1.0 < K < 1.4)106 and slightly 

higher than bio-oils extracted at 60°C in previous work (mallee bio-oil, K~1.2; pine 

bio-oil, K~1.23).176  
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Figure 7-2 Extraction curve of biodiesel/mallee bio-oil blends 

 

It is worth to note that in the extraction process, the separation of the resulted 

biodiesel and bio-oil rich phases was preliminary attempted using a glass separation 

funnel but was unsuccessful. The two layers/fractions were visibly separated at the 

bottom of funnel after an overnight standing period. However, during the separation 

process, it was observed that the bottom layer (bio-oil rich fraction) tends to stick on 

the funnel wall while the biodiesel rich fraction rushed down causing remixing of the 

fractions. Therefore, the separation process was preceded with a syringe instead. 

Even so, it was difficult to get a complete separation of the final thin biodiesel/bio-oil 
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interface. Fine char particles in bio-oil were observed to migrate to the interface that 

also made a complete separation almost impossible.  

 

From the view point of fuel applications, it is more favourable to have the fine 

biochar particles retained in bio-oil rich fraction than in biodiesel rich fraction 

because the bio-oil rich fraction will be used to prepare bioslurry fuels. Therefore, 

after separation the resulted bio-oil rich fractions were left with a thin layer of 

biodiesel (~1 mm thick) on the surface. Close examinations with optical microscope 

of various fuel samples are shown in Figure 7-3 (200X magnification). In Figure 7-3 

a, chars particles are finely disperse in the original bio-oil. In the bio-oil rich 

fractions (Figure 7-3 b to 7-3 d), the char particles were highly concentrated around 

the margin of biodiesel droplets, indicating the affinity of fine biochar particles to the 

bio-oil/biodiesel interface. This surface-active char behaviour was also reported in 

some of the previous studies on bio-oil.167,179 After the layer separation, only an 

increased mass of biodiesel rich fractions and decreased mass of bio-oil rich fractions 

were recorded and not vice-versa. The photomicroscopy evidence also shows that the 

biodiesel fraction is immiscible with bio oil rich phases. Therefore the solubility of 

biodiesel in bio-oil is limited.  

 

The concentration of bio-oil fractions (Cbio-oil) in the biodiesel rich phase can be 

calculated from the K value using the equation Cbio-oil = (K-1) / (K  ×  ((Mbiodiesel / 

Mbio oil) + 1)), where Mbiodiesel and Mbio-oil are the initial mass of biodiesel and bio-oil 

used for preparing the fuel blends.176 Figure 7-2B shows the estimated concentration 

of bio-oil extracted in biodiesel rich phases. It can be seen that there is a substantial 

proportion (as high as ~21%) of bio-oil were extracted by biodiesel at a 

biodiesel/bio-oil ratio of 4.  
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c. BOR 1.50 d. BOR 4.00 

 

Figure 7-3 Photomicroscopy of fuels. BOR x.xx – bio-oil rich fraction obtained from 

biodiesel extraction at a biodiesel to bio-oil ratio of x.xx 

 

7.3.3 Fuels Density, Surface Tension and GC-MS 

Practical application of liquid fuels requires desired performance of sprays quality in 

atomisation, which is known to be determined by the fuel’s surface tension, density 

and viscosity.180-182 In general, spray atomisation quality is expected to degrade by 

high viscosity, density and surface tension.182 Table 7-2 presented the density of 

various fuels while Figure 7-4 shows the equilibrium surface tension obtained at 

25°C and 40°C, benchmarking against those of medium and heavy fuel oils in 

practical applications.  

 

 

100 µm 100 µm 

100 µm 100 µm 

CHAPTER 7 



                                                                                                                   
                                                                                                                                          
                                              

 
109 

 
High-energy-density Fuels from Mallee Biomass 

 

Table7-2 Fuel density and equilibrium surface tension. BOR x.xx – bio-oil rich fraction 

obtained from biodiesel extraction at a biodiesel to bio-oil ratio of x.xx; BDR x.xx – 

biodiesel rich fraction obtained from biodiesel extraction at a biodiesel to bio-oil ratio of 

x.xx; BO-10% and BO-20% – bioslurry fuels prepared from the whole bio-oil with 10 wt% 

and 20 wt% biochar loading, respectively; BOR 0.67-10% and BOR 0.67-20% – bioslurry 

fuels prepared from bio-oil rich fraction after biodiesel extraction (at a biodiesel to bio-oil 

ratio of 0.67) with 10 wt% and 20 wt% biochar loading, respectively. 

 Fuels 
 

Density 
(Tonne/m3)  

Equilibrium surface tension 
(mN/m) 

25°C 40°C  25°C 40°C 
bio-oil 1.18 1.17  30.2 25.5 
Biodiesel 0.87 0.86  32.7 31.5 
fuel oil (medium)181 NA 0.94  NA 23.0 
fuel oil (heavy)181 NA 0.97  NA 23.0 
BOR 0.25 1.18 1.17  23.3 22.0 
BOR 0.67 1.18 1.17  21.8 21.4 
BOR 1.50 1.18 1.16  29.5 20.1 
BOR 4.00 1.18 1.17  22.8 24.4 
BDR 0.25 0.90 0.89  26.1 24.2 
BDR 0.67 0.89 0.88  25.1 23.9 
BDR 1.50 0.89 0.88  27.8 25.6 
BDR 4.00 0.88 0.87  26.0 23.9 
BO-10% 1.21 1.20  33.4 31.5 
BO-20% 1.24 1.22  33.6 32.0 
BOR 0.67-10% 1.22 1.20  33.2 32.4 
BOR 0.67-20% 1.25 1.23  35.0 32.0 
NA – data not available      
 

It can be seen that extraction of bio-oil with biodiesel has minimal effect on density 

of the resulted fractions and the bioslurry fuels. As seen in Table 7-2 and Figure 7-4, 

it is also interesting to see that the resulted bio-oil rich fractions and biodiesel rich 

fractions have significant lower equilibrium surface tension than the original bio-oil 

and biodiesel used to prepare the blends.  The surface tension of the biodiesel-rich 

fractions is up to 24% less than the original biodiesel although there is no apparent 

correlation between fuel surface tension reduction and the extraction ratio. 
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Figure 7-4 Surface tension of various fuels. BOR x.xx – bio-oil rich fraction obtained 

from biodiesel extraction at a biodiesel to bio-oil ratio of x.xx; BDR x.xx – biodiesel 

rich fraction obtained from biodiesel extraction at a biodiesel to bio-oil ratio of x.xx 

 

Further GC-MS analysis was then carried out to provide insights on the key 

compounds (particularly of phenolic compounds and levoglucosan) in the fuels that 

may be responsible for such a reduction in the surface tension of these fuels. Figure 

7-5 presented the GC-MS identified compounds of interest for bio-oil, biodiesel, and 

selected resulted fractions (BOR 0.67 and BDR 0.67). It should be noted that only 

compounds within the GC-MS detection capability are reported. For a similar mallee 

bio-oil, García-Perez et al.176estimated that chemical from phenols, furans and 

carboxylic acids families are the most solubilised in biodiesel and the extraction of 

phenolic compounds into biodiesel enhances the oxidation stability of biodiesel. 
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4 
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6 
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(Z)- 

D Hexadecanoic acid, methyl ester 
E Heptadecanoic acid, methyl ester 
F 
 

9-Octadecenoic acid, methyl ester, 
(Z)- 

G Octadecanoic acid, methyl ester 
H 11-Eicosenoic acid, methyl ester 
I Eicosanoic acid, methyl ester 

 

 

Figure 7-5 GC-MS of selected compounds in bio-oil, biodiesel and resulted fractions. BDR 0.67 – 

biodiesel rich fraction obtained from biodiesel extraction at a biodiesel to bio-oil ratio of 0.67; BOR 

0.67 – bio-oil rich fraction obtained from biodiesel extraction at a biodiesel to bio-oil ratio of 0.67. 
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In Figure 7-5 - it is clearly evidenced that a phenolic compound (matched to peak 10 

in bio-oil) was detected in BDR 0.67, indicating extraction of this compound from 

bio-oil to biodiesel rich-phase. It is known that emulsifiers developed from 

phenolates in bio-oil have surfactant characteristics that improve the stabilisation and 

handling of petroleum emulsions.183 The results presented here appear to suggest that 

phenolic compounds may also have a positive role in reducing the surface tension of 

resulted biodiesel rich fractions as shown in Figure 7-4.  

 

It is further noteworthy to highlight that the surface tension of bio-oil measured in 

this study is ~30 mN/m at 25°C, in consistence with the values reported in the 

literature for other bio-oils such as 29.2 mN/m for a bio-oil that its origin and the 

method used for surface tension measurement were not detailed in the reference,128 

31-39 mN/m for a bio-oil from softwood bark and hardwood rich in fibers and 

measured using Du Nuoy ring method120 and 34.66 mN/m for a bio-oil from a 

hardwood and measured using pendant drops method.167 The surface tension of 

biodiesel measured in this study is ~25.5 mN/m at 40°C, which is similar to that of 

saturated methyl esters (carbon number 8:0) reported for biodiesel fuels.184 It can 

also been seen in Figure 7-5 that some peaks for methyl esters are present in the 

BOR 0.67 sample, most likely resulting from the thin layer of biodiesel covering left 

after fraction separation as explained previously. The thin biodiesel covering is also 

likely responsible for the decreased surface tension of the bio-oil rich fractions as 

shown in Table 7-2 and Figure 7-4. However, it should be noted that such reductions 

in the surface tension of bio-oil rich fractions did not have significant effect on the 

surface tension of the prepared bioslurry fuels e.g. BOR 0.67-10% and BOR 0.67-

20% which are almost similar to BO-10% and BOR-20%.  

 

 

 

 

 

 

 

CHAPTER 7 



                                                                                                                   
                                                                                                                                          
                                              

 
113 

 
High-energy-density Fuels from Mallee Biomass 

7.3.4 Fuel Volumetric Energy Density and Stability  

The volumetric energy density of bio-oil, bio-oil rich fractions and bioslurry fuels are 

presented in Figure 7-6.  
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Figure 7-6 Volumetric energy density of various fuels. GB – green biomass; WP – wood 

pellets; TOP – torrefaction in combination with pelletizing; BOR x.xx – bio-oil rich fraction 

obtained from biodiesel extraction at a biodiesel to bio-oil ratio of x.xx; BDR x.xx – 

biodiesel rich fraction obtained from biodiesel extraction at a biodiesel to bio-oil ratio of 

x.xx; BO-10% and BO-20% – bioslurry fuels prepared from the whole bio-oil with 10 wt% 

and 20 wt% biochar loading, respectively; BOR 0.67-10% and BOR 0.67-20% – bioslurry 

fuels prepared from bio-oil rich fraction after biodiesel extraction (at a biodiesel to bio-oil 

ratio of 0.67) with 10 wt% and 20 wt% biochar loading, respectively. 

 

In consistence with the data trend  presented in Chapter 6, the result demonstrated 

that the preparation of bioslurry fuels via suspending fine ground biochar particles 

into bio-oil achieves a significant volumetric energy densification. The volumetric 

energy density of the various bioslurry fuels prepared is up to ~24 GJ/m3 (at 20 

wt%biochar loading) in comparison to ~5 GJ/m3 of green chipped biomass (as 

reported previously (see Chapter 6). The bioslurry energy density is reduced from 24 

to 22 GJ/m3 when the biochar loading decreases 20 to 10 wt% in the bioslurry fuels. 

Overall, such a volumetric energy densification through bioslurry fuels is significant, 

in comparison to other biomass pre-treatment methods for energy densification such 
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as pelletizing and torrefaction in combination with pelletizing (TOP) that achieved 

moderate fuel volumetric energy densities (11-19 GJ/m3).19  

 

An increase in biodiesel/bio-oil ratio during extraction from 0.25 to 0.67 leads to a 

minimal effect on the density and heating value of the bio-oil rich fractions (Table 7-

1 and 7-2). The volumetric energy density of the bio-oil rich fractions is similar to 

that of the original bio-oil. Furthermore, bioslurry fuels prepared with BOR 0.67 at 

10 wt% and 20 wt% biochar loading have a similar volumetric energy density in 

comparison to the bioslurry fuels prepared from bio-oil (i.e. BO-10% and BO-20% in 

Figure 7-6). These results have significant practical implications, suggesting that the 

preparation of bioslurry fuels from bio-oil rich fraction is indeed viable to produce 

equivalent high-energy density fuels favourable for transport. The bioslurry fuels 

prepared using BOR 0.67 also have similar stability in comparison to those using the 

original bio-oil. For example, the bioslurry fuels at 20 wt% biochar loading i.e BOR 

0.67-20% and BO-20% have stability values of 71.7 % and 72.1%, respectively.  

 

7.3.5 Rheology of Bioslurry Fuels Prepared from the Bio-oil Rich Fractions 

after Biodiesel Extraction  

Commercial applications of slurry fuels depend upon a number of properties 

including slurry stability, pumpability and atomisation quality.112,116,160,185 It was 

suggested that the maximum viscosity for safe pumping of coal water slurry is 1000 

mPa.s at 100s-1 for combustion applications in boilers112 and ~700 mPa.s for 

gasification applications in pressurised gasifiers160. The results presented in Chapter 

6 have demonstrated that bioslurry fuels prepared from the whole bio-oil are well 

within such specifications. Figure 7-7 shows the apparent viscosity of bio-oil rich 

fractions and bioslurry fuels obtained with max shear rate 1000 s-1 at 25°C and 40°C. 

It can be seen that at 100s-1, all fuels exhibit viscosity well below the guideline 

limits. At these temperatures, the viscosity of both the original bio-oil and bio-oil 

rich fractions are < 50 mPa.s while those of the bioslurry fuels are <300 mPa.s at 

25°C and < 200 mPa.s at 40°C, respectively. Therefore, similar to the bioslurry 

prepared from the whole bio-oil, the bioslurry fuels prepared from the bio-oil rich 

fractions (after biodiesel extraction) can also be pumped safely at room temperatures, 

which is desired in order to minimise the bioslurry aging.132 
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Figure 7-7 Apparent viscosity of various fuels as a function of shear rate. BOR x.xx – bio-oil 

rich fraction obtained from biodiesel extraction at a biodiesel to bio-oil ratio of x.xx; BO-

10% and BO-20% – bioslurry fuels prepared from the whole bio-oil with 10 wt% and 20 

wt% biochar loading, respectively; BOR 0.67-10% and BOR 0.67-20% – bioslurry fuels 

prepared from bio-oil rich fraction after biodiesel extraction (at a biodiesel to bio-oil ratio of 

0.67) with 10 wt % and 20 wt % biochar loading, respectively. 

 

 

A slight shear thinning effect is also evidenced in Figure 7-7 at very low shear rate 

(<50 s-1) for bio-oil and bio-oil rich phases but in overall the fluid behaviour are 

dominantly Newtonian. For bioslurry fuels i.e BO-10%, BOR 0.67-10%, BO-20% 

and BOR 0.67-20% the curves show non-Newtonian pseudoplastic behaviour, which 

is common for slurry fuels (eg. coal-oil mixture, coal-water slurry, coal-algae slurry, 

coal-sewage sludge slurry and coal-biomass slurries110,112,115,160,162). While BO-20% 

has slightly higher viscosity than BOR 0.67-20% at 25°C, such differences diminish 

as temperature increases to 40°C (see Figure 7-7).  
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Fuel atomisation involves conversion of a volume of liquid into waves, ligaments 

and ultimately small droplets.185 The prediction of atomisation quality can be made 

using slurry viscosity measured at high shear rate 1000-10 000 s-1,185 followed by the 

estimation of the spray droplets’ Sauter Mean Diameter (SMD) that largely depends 

on slurry properties via the Ohnesorge number.181,185 Ohnesorge number relates the 

fuel viscous forces to inertial and surface tension forces and can estimated using the 

following equation, Ohnesorge number (dimensionless) = ηF / (σL ρF DF)0.5, where 

ηF  is the apparent viscosity of fuel, σL is the surface tension of liquid, ρF is the 

density of fuel and DF  is the diameter of fuel passage).181,185 Fuels with a higher 

Ohnesorge number are expected to produce larger SMD after spray.  

 

Table 7-3 presented the Ohnesorge number of fuels estimated based on fuels density, 

viscosity and surface tension at 40°C as comparison to heavy fuel oil under similar 

operating conditions. It can be seen that the bio-oil rich fractions and BOR 0.67-20% 

have a slightly higher Ohnesorge number than the whole bio-oil and BO-20%. 

However, in comparison to heavy fuel oil, atomisation of BO-20% and BOR 0.67-

20% is estimated to produce much smaller droplets (favourable for practical 

applications), with significantly reduced SMDs by ~51% and ~46% respectively. 

 

The viscosity curves of bioslurry fuels are then fitted with the Power Law equation 

(Section 7.2) to estimate the flow behaviour index n, as shown in Table 7-4.  In 

general, the flow behaviour index n decrease with increasing biochar loading in the 

bioslurry fuels. It is also evidenced that bioslurry fuels prepared from bio-oil rich 

phases (BOR 0.67-10% and BOR 0.67-20%) show more deviations from Newtonian 

behaviour in comparison to those (i.e. BO-10% and BO-20%) prepared from the 

whole bio-oil.  
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Table 7-3 Estimation of Ohnesorge number based on fuel properties at 40°C. BOR x.xx – 

bio-oil rich fraction obtained from biodiesel extraction at a biodiesel to bio-oil ratio of x.xx; 

BO-10% and BO-20% – bioslurry fuels prepared from the whole bio-oil with 10 wt% and 20 

wt% biochar loading, respectively; BOR 0.67-10% and BOR 0.67-20% – bioslurry fuels 

prepared from bio-oil rich fraction after biodiesel extraction (at a biodiesel to bio-oil ratio of 

0.67) with 10 wt% and 20 wt% biochar loading, respectively 

 

Fuel Density Surface tension Viscosity at 1000 s-1 Ohnesorge number 

 Tonne/m3) (mN/m) (mPa.s) (dimensionless) 

bio-oil 1.17 31.5 15.6 0.31 

BOR 0.25 1.17 24.2 15.8 0.36 

BOR 0.67 1.17 23.9 15.8 0.36 

BOR 1.50 1.16 25.6 14.6 0.32 

BOR 4.00 1.17 23.9 14.4 0.33 

BO-10% 1.20 32.4 31.4 0.60 

BOR 0.67-

10% 1.20 31.5 29.7 0.58 

BO-20% 1.22 32.0 62.7 1.20 

BOR 0.67-

20% 1.23 32.0 69.4 1.33 

heavy fuel 

oil175 0.97 23.0 567.0^ 61.50 

^ shear rate not specified    

 

Table 7-4 Flow behaviour index, n of various fuels. BO-10% and BO-20% – bioslurry fuels 

prepared from the whole bio-oil with 10 wt% and 20 wt% biochar loading, respectively; 

BOR 0.67-10% and BOR 0.67-20% – bioslurry fuels prepared from bio-oil rich fraction after 

biodiesel extraction (at a biodiesel to bio-oil ratio of 0.67) with 10 wt% and 20 wt% biochar 

loading, respectively 

 

Temperature Flow behaviour index, n for bioslurry 
(°C) BO-10% BO-20% BOR 0.67-10% BOR 0.67-20% 

25 0.9978 0.8619 0.9889 0.8571 

40 0.9906 0.8624 0.9706 0.8369 
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The dynamic measurement is used to evaluate viscoelasticity behaviour of a material. 

The viscoelastic behaviour properties of a material are represented by the moduli G΄, 

G˝ and the phase angle/ loss tangent (tan δ) parameter. The storage (elastic) modulus 

G΄ measures the deformation energy stored in the material during the shear process. 

Material with high G΄ value shows reversible deformation behaviour therefore G΄ 

represents the elastic behaviour of a material. The value of loss (viscous) modulus G˝ 

indicates the deformation energy used by the material during the shear process. The 

G˝ represents the energy dissipated or consumed during frictional process of 

molecules/particles movement i.e viscous behaviour of a material.186,187 

 

In practical applications, the value of G΄ and G˝ can be used to predict the SMD 

during fuel atomisation. Fuels that have stronger G΄ value over G˝ tend to produce 

sprays with high SMDs due to more energy needed to overcome restoring force 

associated with elastic behaviour before a drop can forms as experienced in coal 

water slurry atomisation.188 Knowledge about viscoelasticity is also useful to 

determine type of atomisation. It was suggested that viscoelastic fluid was suitable to 

be atomized using effervescent atomisation189 that is a twin-fluid atomisation 

technique requires bubbling a small amount of gas into the liquid before exiting the 

nozzle.190 The loss tangent (tan δ) is another important viscoelastic 

parameter120,186,191 and it ranges from 0 ≤ tan δ ≤ ∞  or 0°≤ δ ≤  90°, with a case of 

tan δ =1° indicating the gel point i.e threshold from liquid-like to solid-like 

behaviour.186,192 The phase angle or the loss tangent (tan δ) can be estimated by 

taking the ratio of G˝/G΄. The lower the tan δ values are, the more solid-like the 

material under investigation.191,193 The stress dependence of G΄ and G˝ for bioslurry 

fuels at 25°C and 40°C are presented in Figure 7-8.  

 

For BO-10% and BOR 0.67-10% at 25°C, a decrease of the G΄ modulus is observed 

with stress increase whereas the modulus G˝ is independent of stress until it reaches 

~100 Pa. The linear viscoelastic (LVE) regions for BO-10% in which both G΄ and G˝ 

are independent of stress is between ~0.1 to 50 Pa whereas for BOR 0.67-10% at ~1-

50 Pa. A similar trend is observed at 40°C. Therefore, for BO-10% and BOR 0.67-

10%, the modulus G˝ > G΄ indicating that the slurries are dominantly fluid-like 

materials.186 However, a different behaviour is exhibited for BO-20% and BOR0.67-
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20% that indicate limited LVE regions. A plateau is shown at low stress < 0.02 Pa 

(see BO-20% at 25°C, 40°C also BOR 0.67-20% at 40°C in Figure 7-8). The LVE 

region obtained in stress sweep measurement is important as a basis for other 

dynamic rheological measurement such as frequency sweep whereby a stress value 

applied has to be chosen within the LVE region. According to the rheoemeter’s 

specifications, 194  it is also recommended that the stress value picked is at least five 

times more than the specified minimum torque. Therefore, in case of BO-20% at 

25°C and 40°C also BOR 0.67-20% at 40°C, to choose a stress value < 0.02 Pa for 

other dynamic measurements must be viewed with caution. Beyond 0.02 Pa, the 

moduli show steep decrease, indicating that the network structures in the material 

start to break, lose its elasticity and become completely fluid.  

 

Similar with bioslurry fuels at 10 wt% char concentration, the modulus G˝ > G΄ for 

BO-20% and BOR 0.67-20% suggesting that the slurries behave like fluid in the 

LVE regions. The viscoelastic behaviour of BO-20% and BOR 0.67-20% also 

depends on temperature. At 40°C, an additional short plateau are seen for BO-20% 

and BOR 0.67-20% at ~10-50 Pa however such a trend is not observed at 25°C. In 

this experiment, all fuels exhibit strong G˝ > G΄ within the range of shear stress 

measured therefore the viscoelastic behaviour is expected to positively impact the 

formation of sprays droplet during atomisation which is in agreement with the 

estimated Ohnesorge number discussed previously.  

 

It is also interesting to note that for all bioslurry fuels in Figure 7-8, a sharp decrease 

in G΄ is evidenced at ~100 Pa, followed by a steep increase towards 1000 Pa that is 

accompanied by a slight increase in G˝. The data suggest that at ~100 Pa, 

rearrangement around the bioslurry fuels’ network structures do take place although 

the bioslurry fuels are still dominantly fluid-like. The values of δ for all measurement 

in stress sweep fall within 0º to 90º which is typical for viscoleastic material.186 

 

In order to further validate the fuels viscoleastic dependence on frequency, a set of 

frequency sweep experiment was then conducted for BO-10% and BOR 0.67-10% at 

stress 4.0 Pa and frequency 0.1-10 Hz, with the results presented in Figure 7-9.  
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Figure 7-8 Storage (G΄ ) and loss (G˝)  moduli of fuels as a function of stress. BO-10% and 

BO-20% – bioslurry fuels prepared from the whole bio-oil with 10 wt% and 20 wt% biochar 

loading, respectively; BOR 0.67-10% and BOR 0.67-20% – bioslurry fuels prepared from 

bio-oil rich fraction after biodiesel extraction (at a biodiesel to bio-oil ratio of 0.67) with 10 

wt% and 20 wt% biochar loading, respectively. 
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Figure 7-9 Storage (G΄) and loss (G˝)  moduli of fuels as a function of frequency. BO-10% 

and BO-20% – bioslurry fuels prepared from the whole bio-oil with 10 wt% and 20 wt% 

biochar loading, respectively; BOR 0.67-10% and BOR 0.67-20% – bioslurry fuels prepared 

from bio-oil rich fraction after biodiesel extraction (at a biodiesel to bio-oil ratio of 0.67) 

with 10 wt% and 20 wt% biochar loading, respectively. 

 

Initially, G˝ > G΄ and the magnitudes for both moduli are very small. However, for 

bioslurry fuels, a strong dependence of the moduli on frequency is clearly evidenced. 

As frequency increases, both moduli increased rapidly whereby G΄ increased at 

greater rate than G˝. At 25°C, the crossover frequency (G΄ is equal to G˝) for BO-

10% and BOR 0.67-10% is very similar that is 3.1 Hz and 3.21 Hz respectively, 

suggesting the transition of the network structures from fluid to solid-like 

materials.186 Furthermore, at 40°C, for the bioslurry fuel prepared from the whole 

bio-oil with 10% biochar loading (i.e.BO-10%), the crossovers occur at three 

frequencies, i.e 1.52 Hz, 1.97 Hz and 2.32 Hz while at frequencies > 2.32 Hz, the 

bioslurry fuel shows gel-like behaviour. However, at 40°C, for the corresponding 

bioslurry fuels prepared from the bio-oil rich phases (i.e. BOR 0.67-10%), the first 
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crossover occurs at a much higher frequency of 2.92 Hz where, the material change 

to solid-like beyond this value and before the network structure rearranged again to 

fluid-like behaviour at 7.02 Hz.  

 

As shown in Figure 7-10, the bioslurry fuels prepared at 10% char loading show a 

typical viscoelastic behaviour in which the tan δ value steeply decreases with 

increasing frequency until it reaches a plateau at frequency > ~ 2.0 Hz . The dotted 

line marks tan δ =1° (G˝ = G΄ ) in the figure which indicates the gel point, crossover 

of solid-state and liquid-state. A case of tan δ > 1 (G˝ > G΄ ) indicates the behaviour 

of a viscoelastic liquid while that of tan δ < 1 (G΄ > G˝) shows behaviour of a 

viscoelastic gel/solid.186 Obviously, the values of tan δ also depend on the 

temperature, as shown in Figure 7-10 for the BO-10% and BOR 0.67-10% bioslurry 

fuels. At 40ºC, the gel point for BO-10% occurred at lower frequency (but for BOR 

0.67 at higher frequency) than those at 25ºC, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7-10 Value of fuels tan δ as a function of frequency. BO-10% – bioslurry fuels 

prepared from the whole bio-oil with 10wt% biochar loading; BOR 0.67-10% – bioslurry 

fuels prepared from bio-oil rich fraction after biodiesel extraction (at a biodiesel to bio-oil 

ratio of 0.67) with 10 wt% biochar loading 
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7.4 Implications  

Table 7-5 presented a summary of results in this study to compare bioslurry fuels 

properties prepared using the bio-oil rich fractions (BOR 0.67 as an example), with 

those prepared from the whole bio-oil. In most of the key fuel properties such as 

density, volumetric energy density, static stability, viscosity and fluid behaviour, the 

bioslurry fuel prepared from the bio-oil rich phase have fuel properties that are 

similar to (if not better than) those prepared from the whole bio-oil. Therefore, the 

comparisons in Table 7-5 clearly suggest that it is viable and favourable to utilise the 

bio-oil rich phases after biodiesel extraction for producing bioslurry fuels.  

 

Table 7-5 Summary of bioslurry fuels prepared using bio-oil rich fractions, 

benchmarking against those prepared using the whole bio-oil 

Property Bioslurry derived from 
bio-oil rich fraction 

Bioslurry derived from 
the whole bio-oil 

density (Tonne/m3) 1.20-1.25 1.20-1.24 
volumetric energy density 
(GJ/m3) 

~22-24 ~22-24 

equilibrium surface tension 
(mN/m)  

32.0-35.0 31.5-33.6 

viscosity at 100s-1 (mPa.s) max ~178 max ~206 

viscosity at 1000 s-1 (mPa.s) max ~ 69 max ~ 63 

static stability, % ~72 % ~72% 

fluid behaviour  non-Newtonian 
pseudoplastic, 
dominantly fluid-like in 
LVE region 
 

non-Newtonian 
pseudoplastic, 
dominantly fluid-like in 
LVE region 

Ohnesorge number 0.58-1.33 0.60-1.20 

 

The new strategy firstly involves blending of bio-oil with biodiesel in a vessel for 

extraction. After extraction, due to the immiscible nature, phase separation takes 

place in the vessel to form a biodiesel rich fraction (top layer) and the residue bio-oil 

rich fraction (the bottom layer). The biodiesel rich fraction in the top layer contains 

the desirable fractions (relatively high value and small volume) of bio-oil that have 

been extracted into biodiesel, and is a good biodiesel/bio-oil blend that has been 

demonstrated as a suitable liquid transportation fuel.106,176 The bio-oil rich fraction 
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(relatively low value and high volume) in the bottom layer is the fractions of bio-oil 

and is more suitable to be mixed with biochar (after grinding) for producing bioslurry 

fuels for combustion and gasification applications. 

 

Therefore, based on the results in this paper, a new strategy is proposed for more 

effective and better utilisation of bio-oil from biomass fast pyrolysis, as shown in 

Figure 7-11.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7-11 A proposed strategy for the coproduction of biodiesel/bio-oil blend (as a liquid 

transport fuel) and bioslurry fuel (as a high-energy-density fuel for combustion and 

gasification applications) from bio-oil and biochar products of biomass fast pyrolysis 

 

7.5 Conclusions 

This study demonstrates the feasibility of utilising the bio-oil rich fractions from bio-

oil/biodiesel extraction for the production of bioslurry fuels. Via bio-oil/biodiesel 

extraction, the phenolic compounds in bio-oil extracted into biodiesel reduce surface 

tension of the resulted biodiesel rich fractions (i.e. the biodiesel/bio-oil blends). Bio-

oil/biodiesel extractions at low biodiesel to bio-oil mass ratios lead to little changes 
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in the heating values of the resultant bio-oil rich fractions. Mostly important, this 

study shows that such bio-oil rich fractions were suitable to be mixed with ground 

biochar for preparing bioslurry fuels. The bioslurry fuels prepared using the bio-oil 

rich fraction after biodiesel/bio-oil extraction (biodiesel to bio-oil ratio 0.67) have 

similar fuel quality in compared to those prepared using the whole bio-oil. Bioslurry 

fuels derived from both media have good atomisation quality, stability, and 

pumpability. Based on estimated Ohnesorge number under similar condition, BO-

20% and BOR 0.67-20% are estimated to produce droplets with SMDs of ~51% and 

~46% smaller than heavy fuel oil respectively. The bioslurry fuels also dominantly 

behave like fluid in the linear viscoelastic region with G˝ > G΄. Results of steady and 

dynamic measurement indicate that bioslurry fuels produced in this study have 

favourable rheological behaviour for fuel handling and atomisation.  A new bio-oil 

utilisation strategy is then proposed via coproduction of a biodiesel/bio-oil blend, 

which incorporates extractable bio-oil compounds into the blend and can be used as a 

liquid transportation fuel, and a bioslurry fuel that is prepared by mixing the rest low-

quality bio-oil rich fraction with ground biochar and can be used as a high-energy-

density fuel for applications e.g. stationary combustion and gasification. 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

8.1 Introduction 

In this chapter, the key findings are highlighted to conclude the present study. This 

research has obtained essential knowledge on mallee biomass pre-treatment via low-

temperature pyrolysis to produce high-energy-density fuels. Such a strategy 

addresses the undesired features of biomass that impose key hurdles in the wide 

adoption of biomass in the efficient and effective utilisation for power generation. 

These undesired features of biomass as a direction fuel include it bulky and fibrous 

nature, low grindability, low volumetric energy density and fuel chemistry mismatch 

with coal. The versatility of pyrolysis process within moderate temperature window 

successfully produced high-energy-density and high quality solid and/or liquid 

biofuels which offer clear advantages over green biomass. The excellent grindability 

of mallee biochar measured with ball milling technique was firstly reported in this 

field. Such a finding is of great importance to elucidate the transformation of bulky, 

low energy density mallee green biomass into a more homogenised high volumetric 

energy biofuel favourable for transport. The significant difference in structural, fuel 

chemistry and grindability among biochars produced from various mallee 

components were also revealed. Using bio-oil and the ground biochar to prepare 

bioslurry fuels also opens an opportunity to achieve drastic fuel energy densification 

and good fuel matching in biomass/coal co-processing applications. This study also 

developed an innovative strategy to coproduce a transport liquid fuel and a bioslurry 

fuel by extracting the high quality bio-oil compounds into biodiesel and employing 

the residual low-quality bio-oil rich fraction for a bioslurry fuel which is suitable for 

combustion and gasification applications. This chapter also provides some 

recommendations for future research in this area.   
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8.2 Conclusions 

8.2.1 Properties and Grindability of Biochar Produced from the Pyrolysis of 

Mallee Wood Biomass under Slow-heating Conditions 

• After pyrolysis, the fuel properties (e.g. fuel chemistry and grindability) of 

biochar depend strongly on pyrolysis temperature. 

 

• Even at a pyrolysis temperature as low as 320ºC, the biochar produced has fuel 

chemistry similar to Collie coal. At higher temperatures, biochar with even 

better fuel chemistry thus higher heating value was produced. 

 
• In comparison to that of biomass, the grindability of biochar is drastically 

improved at pyrolysis temperatures of 300-330ºC but only slight further 

improvement was evidenced at temperature >330ºC. 

 

• The excellent grindability of biochar leads to effective size reduction, enabling 

significant fuel energy densification by a factor of 2 compared to biomass.  

 
• Volumetric energy densities of ground biochars (at pyrolysis temperatures > 

330ºC) are ~17-23 GJ/m3, comparable to that of Collie coal (~17 GJ/m3).  

 
• Based on our estimation, the excellent grindability of biochar can significantly 

reduce fuel milling energy consumption by up to 93% in comparison to that of 

green biomass. The similarities in grindability between biochars and Collie coal 

indicate that it is possible to co-mill biochar with coal using conventional ball 

mills infrastructure in coal-based power stations.   

 
• Ground biochar particles have favourable shapes which have a high roundness 

and a low aspect ratio similar to those of Collie coal, favourable for achieving 

easy fuel handling, good fluidisation and better conversion during 

combustin/gasification  

 
 
 
 

CHAPTER 8 



                                                                                                                   
                                                                                                                                          
                                              

 
128 

 
High-energy-density Fuels from Mallee Biomass 

8.2.2 Significant Differences in Fuel Quality and Ash Properties of Biochars 

from Various Biomass Components of Mallee Trees 

• Mallee biomass that was harvested from a whole mallee tree consists of three 

major biomass components, i.e. wood (60 wt% dry base, db), leaf (27 wt% db) 

and bark (13 wt% db).  
 

• The distribution of the pyrolysis products during the pyrolysis of wood, bark 

and leaf varies significantly from component to component. The pyrolysis of 

mallee bark gives the highest biochar yield. The nitrogen and sulphur contents 

of all biochars were well below guideline limits for combustion applications.  

 
• While bark only makes up ~13% of the whole biomass, its biochars has the 

highest ash content (~7%, as received).   The knowledge on ash-forming 

species in biochar is also essential to understanding ash-related issues 

associated with biochar utilisation as a fuel. 
 

• The grindability of biochars obtained from individual componentss increases 

with pyrolysis temperature. Bark biochars have the highest grindability. While 

the grinding bark and wood biochars leads to a more even particle size 

distribution, that of leaf biochars results in a distinct multiple-peaks particle 

size distribution. 

 

• The biological structure of the parent biomass plays a key role to determine 

grindability behaviour of the biochars prepared from leaf, wood and bark. Raw 

bark and wood appear more homogenous in their biological structure while leaf 

has a heterogeneous structure with a large number of oil glands widely 

distributed in leaf. While wood and bark biochars exhibit diminished cell 

boundary due to pyrolysis, the oil glands in cross sections of leaf biochars are 

still clearly intact even at a pyrolysis temperature of 800ºC. 

 
• The large number of oil glands in leaf is the most likely reason responsible for 

the poorer grindability of leaf biochars in comparison to wood and bark 

biochars. This is reflected in less volumetric energy densification for ground 
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leaf biochars. For example, leaf biochar obtained from pyrolysis at 500ºC has a 

energy density of ~14 GJ/m3 compared to ~22 GJ/m3 for wood biochar 

obtained under similar conditions.   

 
• Under the conditions (slow heating, large particle size), almost 100% of AAEM 

species in the biomass are retained in the biochars after pyrolysis at 300-500ºC. 

Bark biochars have the highest ash and calcium content. Leaf biochars have 

high potassium and sodium contents while wood biochars have low ash and 

AAEM species. Based on Si/K and Ca/K ratios of biochars, wood biochars 

have a high slagging propensity, followed by bark biochars and leaf biochars.  

 
• The data indicate that in the utilisation of bulk biochar from the whole mallee 

biomass, leaf biochar is more likely to impose grinding issue while ash related 

problems (if any) would be possibly arisen from wood and bark biochars. 

 

8.2.3 Fuel and Rheological Properties of Bioslurry Prepared from the Bio-oil 

and Biochar of Mallee Biomass Fast Pyrolysis 

• This study successfully demonstrated the preparation of bioslurry fuels from a 

mixture of bio-oil with biochar at various biochar loading (8-20 wt%).  

  

• Due to its excellent grindability, the biochar can easily ground to produce a 

particle size distribution of 88% < 75µm, meeting the size requirement for 

combustion/gasification applications. The ground biochar is very porous with 

~35% of the pore volume are mesopores so that it has a high bio-oil soakability 

(~1.4 time of its weight). 

 
• Bioslurry with 20 wt% biochar loading achieves a volumetric energy density of 

~23 GJ/m3, considerably higher than ~5 GJ/m3 for green chipped biomass.  

 
• The concentrations of N, S, Ca and K in the prepared bioslurry can be 

estimated from those of biochar and bio-oil and are well below the guidelines 

limits for combustion and gasification requirement. 
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• All bioslurry samples prepared in this study have good stability > 70% as 

required for combustion/gasification applications. These fuels also have desired 

rheological properties. The slurry fuels have maximum viscosity < 453 mPa.s 

when measured at 25ºC and 50ºC, well below the guideline limits (1000 mPa.s 

for boilers and 700 mPa.s for gasifiers).  

 

• The dependence of viscosity and shear stress with shear rate indicates that 

bioslurry fuels have non-Newtonian pseudoplastic or shear thinning behaviour. 

This is favourable for high pressure accumulator-type injection system. At a 

higher biochar loading, bioslurry fuels show more deviations from Newtonian 

behaviour.  

 
• Bioslurry fuels at biochar loadings of 14-20wt% also exhibit thixotropic 

behaviour that is related to the break-up of spatial structures between char 

particles and multiphase domain in bio-oil medium. Such a behaviour is 

consistence with other slurry fuels reported in the literature. 

 

8.2.4 Preparation of Bioslurry Fuels from Biochar and the Bio-oil Rich 

Fractions after Bio-oil/Biodiesel Extraction 

• An innovative strategy has been proposed for alternative approach of bio-oil 

utilisation and bioslurry fuels preparation. It has demonstrated the feasibility to 

first extract high quality bio-oil compounds into biodiesel then use the residual 

bio-oil rich fraction for preparing bioslurry fuels.  

 

• The bio-oil rich fractions is significantly higher than the original bio-oil and 

biodiesel before extraction, suggesting that water can be produced by either  

certain reactions during extraction or interference of certain chemicals from 

bio-oil (e.g. aldehyde, ketones and acetic acid) during Karl Fischer titration. 

 

• During bio-oil/biodiesel extraction, up to ~21 % of bio-oil can be extracted by 

biodiesel at an extraction ratio of 4.0. After extraction, phase separation leads 

to two layers. However, practically, it is difficult to achieve complete 

separation of the biodiesel rich fraction (top) and the bio-oil rich fraction 
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(bottom) due to the affinity of fine char particles in bio-oil towards the bio-

oil/biodiesel interface.  

 
• Bio-oil/biodiesel extraction at low extraction ratios (i.e. 0.25 and 0.67) leads to 

minimal changes in C, H and O contents and heating values of the bio-oil rich 

fractions. The bioslurry fuels also have low sulphur and nitrogen contents 

which are well below the guideline (S <0.1 wt%, N <0.4 wt%). 

 
• GC-MS data demonstrated that mainly bio-oil phenolic compounds are 

extracted into the biodiesel rich fractions (biodiesel/bio-oil blends). The 

extracted phenolates appear to play a positive role in lowering surface tension 

of biodiesel rich fractions. 

 
• The volumetric energy densities of bioslurry fuels prepared using the whole 

bio-oil or the bio-oil rich fractions are similar, up to ~24 GJ/m3 significantly 

higher than that of the green chipped biomass (~5 GJ/m3).    

 
• The extraction process has minimal effect on density and stability of the 

resulted bioslurry fuels prepared from the bio-oil rich fractions. It was 

estimated that atomisation of BO-20% and BOR 0.67-20% produce much 

smaller droplets with significant reductions in Sauter Mean Diameters by ~51% 

and ~46% respectively compared to heavy fuel oil. 

 

• All bioslurry fuels prepared in this study can be pumped safely with viscosity 

obtained at 100s-1 was ~300 mPa.s at 25ºC and <200 mPa.s at 40ºC much less 

than the guideline number i.e 1000 mPa.s and 700 mPa.s. 

 
• All slurry fuels demonstrated a non Newtonian pseudoplastic behaviour and the 

bioslurry prepared from bio-oil rich fraction exhibit more deviations from 

Newtonian behaviour than that from the whole bio-oil. 

 
• A series of stress sweep experiments show that all bioslurry fuels exhibit clear 

viscoelasticity behaviour with value of 0º < δ < 90º and dominantly fluid-like 

behaviour with G  ̋ > G΄ in the linear viscoelastic region. Such a slurry fluid 
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behaviour is favourable to produce small droplets, in agreement with the 

estimated results on Sauter Mean Diameter in fuel atomisation 

 
• The bioslurry fuels also show the strong dependence of its fluid behaviour on 

frequency in frequency sweep experiments. At an increasing frequency, the 

value of tan δ decrease drastically before reaching a plateau at frequency > ~2.0 

Hz that mark tan δ = 1 or gel point, indicating the transition of fluid-like to gel-

like behaviour of viscoelastic material.   

 
8.3 Recommendations 

Based on the data collected in this study, various new research gaps have also been 

identified leading to recommendations for future research as follows: 

 

1. In this study, the grindability experiments were carried out using a small lab-

scale ball mill. While the results are sufficient to compare the grindability of 

various fuels, future experiments at a large-scale is required, particularly for the 

estimation of grinding energy consumption. Experiments should also be carried 

out for both the grinding of individual fuels and the co-milling of biochar/coal. 

 

2. For overall fuel supply chain and application of mallee biomass components, 

other co-production strategy can be considered for better use of the biomass 

and overcome some of the limitations observed in the present study. For 

example, apart from using whole mallee leaf biomass directly from the field as 

feedstock, one approach is to use spent leaf i.e. leaf residue after distillation of 

eucalyptus oil as a value-added product. Since the extraction of eucalyptus oil 

involves exudation the oil from leaf oil gland therefore the oil gland are 

ruptured during the process, it will be interesting to know if spent leaf produces 

biochar with improved grindability in comparison to those prepared from whole 

leaf. Since distillation requires either boiling the leaf in water 

(hydrodistillation) or heating it in hot steam (steam distillation) which is 

believed to leach out some of the ash forming species, the effect of this ash 

reduction in subsequent applications of spent biomass-derived biochar 

especially appears also to be favourable. Future study is recommended on these 

important aspects.  
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3. The fuel quality of biochar (Chapter 4 and 5) and bioslurry (Chapter 6 and 7) 

are below the guideline limits for combustion and gasification applications, 

However, combustion and/or gasification experiments need to be carried out to 

collect data for practical evaluations. Atomisation of bioslurry fuels need also 

be carried out to further validate the slurry atomisation/spray behaviour.   

 
4. The current study highlight the utilisation of bio-oil rich fraction from bio-

oil/biodiesel extraction ratio 0.67 to prepare bioslurry as an example of a new 

co-production strategy for bio-oil application to produce a transportation fuel 

and a bioslurry fuel. However, further experimental studies are required to 

evaluate the performance of these fuels in practical applications.  
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