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Importance of dispersion in density functional calculations of cesium chloride and its related halides
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The ionic compound cesium chloride adopts a cubic crystal structure bearing the same name. However, ab
initio electronic structure calculations based on density functional theory methods using generalized gradient
approximation functionals do not predict that cesium chloride adopts this phase. In this paper we apply
semiempirical methods (density functional theory plus a pairwise dispersion correction) to account for missing
van der Waals interactions within cesium chloride. The C6 and R0 dispersion parameters for cesium are established
within Grimme’s DFT + D2 formalism. Inclusion of the dispersion corrections is found not only to improve the
quality of structures in comparison to experiment for all cesium halides, but also leads to the correct prediction
of the ground-state phase under ambient conditions.
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I. INTRODUCTION

It is widely assumed that the alkali-metal halides represent
simple model systems that are well understood and require lit-
tle further exploration by quantum mechanical methods. Most
alkali-metal halides adopt the rocksalt NaCl (B1) structure, in
which the coordination number is six. Only three compounds
(CsCl, CsBr, and CsI), adopt the CsCl (B2) structure where
the coordination number is eight. Under pressure the B1
alkali-metal halides transform to the B2 phase,1 while CsCl
transforms from B2 to B1 above 742 K (Ref. 2). The relative
stability between the B1 and B2 phases is textbook material
and is conventionally explained using simple ionic models
or radius ratio rules.3 It is therefore somewhat ironic that
conventional density functional theory (DFT) calculations,
based on the widely used generalized gradient approximation
(GGA), do not predict that CsCl adopts the phase that bears its
name, with instead the rocksalt B1 structure being favored. In
this manuscript we explore this unexpected behavior, which is
also shared by CsBr and CsI.

The energetic balance between competing phases in the
alkali-metal halides has been studied for the best part of a
hundred years. As far back as the 1930s it was reported by
Born and Mayer4,5 and London6 that an accurate description
of the stability of the CsCl-type structure for CsCl, CsBr, and
CsI required the treatment of both zero point energy effects
and dispersion, with the latter contributing around 1%–5%
of the lattice energy. Although a small fraction of the total
binding energy, this difference may be sufficient to explain the
transition from the NaCl- to CsCl-type structure. Given that
standard exchange-correlation functionals that depend only
on the density and its first derivative at a single point in space
are unable to capture the van der Waals (vdW) interactions
that arise from dynamical correlation, this may explain this
incorrect prediction.

There have been a number of theoretical studies of the
competition between the B1-B2 structures for simple binary
salts.7–14 Many of these studies have employed approximate
methods, rather than a full quantum mechanical treatment.
For example, the self-consistent atomic deformation method8

has been employed to compute the relative energy of these
two structures for the alkali-metal halides. This approach was
found to give a lower energy for the B1 structure in all cases.
While this is correct for the majority of alkali-metal halides, it
is naturally in error for CsCl, CsBr, and CsI. In the case of CsCl,
the B1 structure was favored over B2 by 0.10 eV (Ref. 8). This
is only a marginal quantitative improvement over a previous
spherical ion result (0.13 eV) obtained by Cortona.9 Further
investigations examined whether treating the heavier Cs ions
relativistically would improve the result, but this failed to alter
the finding.10

Pyper has suggested11 that dispersion plays an important
role in stabilizing the B2 phase in CsCl, and his most recent
calculations12 using the relativistic integrals program15,16 pre-
dict that the B2 phase is 0.078 eV/f.u. more stable than B1. The
importance of dispersion has been questioned by Florez et al.13

who performed ab initio perturbed ion (AIPI) calculations17,18

on CsCl and found the correct phase ordering without taking
explicit account of dispersion. However, these calculations
incorrectly predicted that RbF and CsF also prefer the B2
structure, rather than the B1 phase seen experimentally. A later
study on CsCl using the AIPI method and improved functionals
by Aguado14 found an energy difference of approximately
0.14 eV/f.u. in favor of B2, but the predicted lattice constant
was 3% larger than the experimental value extrapolated to zero
Kelvin.

Given the broad success and computational feasibility
of DFT for many problems, the failure of many current
exchange-correlation functionals to properly describe disper-
sion interactions has been a significant limitation, at least
quantitatively. Consequently, there has been considerable
recent interest in approaches that make some allowance for
long-range dispersive interactions within the framework of a
DFT calculation. One approach is to use an explicitly nonlocal
exchange-correlation functional that depends on the density
and its gradient simultaneously at two points in space. This
allows the asymptotic two-body limit of a 1/r6 interaction to be
recovered, though it should be noted that this is not appropriate
for all systems.19–21 Alternatively, Grimme22 has advocated a
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semiempirical approach in which the dispersion contributions
are additively included into a standard DFT calculation in the
manner of an interatomic potential. Critical to this approach
is that the dispersion contribution is damped at short range
to avoid duplicating contributions that are captured by the
exchange-correlation functional. A number of parametriza-
tions have been proposed by Grimme for the combination
of DFT calculations employing the generalized-gradient ap-
proximation (GGA) with supplementary dispersion terms. The
original DFT + D (Ref. 23) and DFT + D2 (Ref. 22) employed
empirical dispersion coefficients and interpolation formulas
while the more recent DFT + D3 method (Refs. 24 and 25) uses
an ab initio approach to calculate the dispersion coefficients.
Of these various methods, the DFT + D2 approach is the most
widely used. Recently the DFT + D3 method was privately
implemented26 but is not yet publicly available. Beyond these
methods there are many alternative dispersion corrections,
including those of Becke, Johnson,27,28 and co-workers who
have derived schemes to determine the dispersion parameters
for any system, including solids, from the properties of the
exchange hole.

In this work we examine the influence of dispersion
interactions on the relative energetics of the B1 and B2
structures using Grimme’s DFT + D2 method. Currently the
literature parametrization does not include elements from
cesium onwards and so the appropriate dispersion parameters
must first be derived. Following this we examine whether the
lack of long-range dispersion interactions might indeed be the
reason for the failure of current GGA calculations to correctly
predict that cesium chloride should adopt the CsCl structure.

II. METHODOLOGY

All calculations have employed Kohn-Sham density func-
tional theory (DFT) as implemented within the Vienna ab
initio simulation package (VASP).29,30 The effective potential
due to the core electrons and nucleus combined was described
using the projector augmented wave (PAW) method.31 The
PAW potentials used here have nine valence electrons for Cs
and seven valence electrons for F, Cl, Br, and I. Convergence
tests showed that kinetic energy cut-offs of 550 eV for CsF
and 500 eV for CsCl, CsBr, and CsI, were sufficient for the
plane-wave expansion of the valence electron wave functions.
The auxiliary grid that is used to expand the electron density
and augmentation charges employed a kinetic energy cutoff
that was four times that of the wave function. For the exchange-
correlation functional both the local density approximation
(LDA) and generalized gradient approximation (GGA) of
Perdew-Burke-Ernzerhof (PBE)32 were used. Sampling of
the Brillouin zone was performed using a k-point mesh
constructed according to the Monkhorst-Pack scheme. Here
k-point meshes of 10 × 10 × 10 and 6 × 6 × 6 were used
for the cesium chloride (B2) and rocksalt (B1) structures,
respectively. During structural relaxation of each phase, all cell
parameters and internal atomic positions were simultaneously
relaxed. In all cases the total electronic energy was converged
to better than 10−7 eV within the self-consistent field, while the
geometry optimization was considered to be converged when
the energy change between minimization steps was less than
10−6 eV. Cohesive energies were determined by combining the

bulk energy with spin-polarized atomic reference calculations
for the constituent neutral species.

The long-range dispersion (van der Waals) contribution
was described using the pragmatic DFT + D2 approach of
Grimme,22 which involves adding a semiempirical dispersion
term to the conventional Kohn-Sham33 DFT energy:

EDFT+D2 = EDFT + Edispersion. (1)

This dispersion contribution takes the following explicit
form:

Edispersion = −s6

Nat−1∑
i=1

Nat∑
j=i+1

f (rij ) × C
ij

6

r6
ij

, (2)

where s6 is a global scaling factor that only depends on
the density functional used (taking the value s6 = 0.75 for
PBE; Ref. 22), Nat is the number of atoms in the system,
C

ij

6 is the dispersion coefficient for the atom pair ij , and
rij is the interatomic distance. The term f (rij ) is a damping
function that avoids the r→0 singularity and also removes
the contribution from the empirical dispersion term in the
regions where the exchange-correlation contribution is large
and thereby reduces duplication of any short-range van der
Waals contributions. The function f (rij ) takes the form,

f (rij ) = 1

1 + e-d(rij /R
ij

0 -1)
, (3)

where R
ij

0 is the sum of the atomic vdW radii. In the DFT + D2
formalism the value of the damping parameter d is 20.0 and the
cutoff radius for the pairwise interactions is 30.0 Å. In order to
facilitate general applicability without having to parametrize
each specific interaction, the following combination rules are
used to generate the pairwise dispersion coefficients C

ij

6 and
vdW radii R

ij

0 :

C
ij

6 =
√

Ci
6 · C

j

6 (4)

and

R
ij

0 = Ri
0 + R

j

0 . (5)

When the DFT + D2 method was proposed, the van der
Waals parameters C6 and R0 were only determined for
the elements of the first five rows of the periodic table.
Accordingly, we first need to extend this parametrization to
include appropriate values of C6 and R0 for Cs, as will be
described in the next section.

III. RESULTS

A. Derivation of parameters

There are several methods in the literature that have been
used to compute the van der Waals parameters required for the
empirical dispersion correction of density functional theory.
For example, time-dependent density functional theory can
be used to determine the properties of atoms within specific
crystalline structures.34 In the present work we adhere to the
structure-independent approach proposed by Grimme. In the
original DFT + D scheme the atomic C6 coefficients were
taken from the work of Wu and Yang35 and averaged over
the possible hybridization states of the atoms. The errors

054112-2



IMPORTANCE OF DISPERSION IN DENSITY . . . PHYSICAL REVIEW B 88, 054112 (2013)

due to the use of atomic instead of hybridization-dependent
C6 coefficients were later estimated by Grimme22 to be on
the order of 10%–20% of the binding energy. In order to
obtain C6 parameters for larger portions of the periodic table
in a consistent manner, he proposed a simple computational
scheme for atomic C6 coefficients in the updated DFT + D2
version. In this new scheme, the C6 parameter is derived from
the London formula for dispersion and is based on the atomic
ionization potentials (Ip) and static dipole polarizabilities (α).
The C6 coefficient (in units of J nm6mol−1) for a single atom
is then given as;

C6 = 0.05 × NIpα, (6)

where Ip and α are in atomic units (i.e., Hartrees and Bohr,
respectively) and N is the number of electrons for the noble
gas atom from the same row. Accordingly, N has the value 2,
10, 18, 36, 54, and 86 for atoms in rows 1 through 6 of the
periodic table, respectively.

In Grimme’s DFT + D2 scheme, the C6 parameters were
calculated based on DFT/PBE0 calculations of atomic ion-
ization potentials Ip and static dipole polarizabilities α. To
reproduce binding energies and bond lengths of the lighter
elements and noble gas systems, the proportionality constant in
Eq. (6) was adjusted. However, this approach provided a poor
definition of C6 for elements from Group I, Group II, and the
transition metals due to significant differences between the free
atom and the atom as found in typical bonding environments.
Accordingly, Grimme chose to treat atoms in Groups I and II
by averaging the C6 coefficient of the preceding noble gas atom
with the following Group-III element. Naturally, this approach
cannot be employed for Cs as there is no subsequent Group-III
value available.

In our approach to estimating C6 for Cs, we applied Eq. (6)
to all Group-I elements using the first and second ioniza-
tion potential Ip and the corresponding atomic and ionic
polarizabilities (α) to describe neutral and single ionized
atoms, respectively. The resulting C6 parameters are listed in
Table I; also shown in the table are the C6 parameters from
the DFT + D2 scheme.22 A graphical comparison between the

TABLE I. Comparison between dispersion coefficients C6 com-
puted using Eq. (6) and available DFT + D2 values in Ref. 22.
Calculated data for both neutral and singly ionized cations is shown.
All C6 values are expressed in units of J nm6 mol−1. The quantity N

is defined in the text. Ionization potential data (Ip) are from Ref. 36.
Polarizability data (α) are from Ref. 37.

Ip α C6 C6

Species N (eV) (a.u.) (This work) (Grimme)

Li 10 5.39 163.98 16.25 1.61
Li+ 10 75.64 0.19 0.27
Na 18 5.14 159.26 27.067 5.71
Na+ 18 45.28 1.00 1.57
K 36 4.34 292.87 84.09 10.80
K+ 36 31.63 5.40 11.17
Rb 54 4.18 319.19 132.28 24.67
Rb+ 54 27.29 9.08 24.57
Cs 86 3.89 402.19 247.47
Cs+ 86 23.11 15.81 57.74
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FIG. 1. (Color online) Comparison between selected Group-I
dispersion coefficents calculated in this work and those in the Grimme
DFT + D2 functional. The values taken in the present work are those
for ionized cations, as listed in Table I.

DFT + D2 values and our own computed values of C6 for
ionized cations is provided in Fig. 1. For the heavier cations
(K+ and Rb+), our computed C6 values for ionized cations
are strikingly close to those reported by Grimme. This is an
important observation as it provides a strategy for estimating
C6 for Cs. Also apparent from this table is a large difference in
C6 between the neutral and ionized cases, with the former being
much higher than those reported by Grimme. This behavior is
consistent with Grimme’s observation that neutral atoms are an
inappropriate reference point when calculating C6 values from
atoms in many bonding environments. For the lighter cations
(Li+ and Na+) our calculated values deviate from those of
Grimme, but this difference is peripheral to this work as the
important behavior is the trend for heavy elements. Taking the
second ionization potential of Cs (Ip = 23.11 eV) [Ref. 36]
and the polarizability of the Cs+ cation (α = 15.18 a.u.) (Ref.
37), leads to a calculated value of C6 = 57.74 J nm6 mol−1

for Cs. This value is used throughout the remainder of this
manuscript.

As a general comment we note that Fig. 1 shows the
expected trend in which C6 increases with atomic number
due to the lower effective nuclear charge experienced by
the valence electrons, making them more polarizable. As
a result, dispersion plays an increasingly important role
in the phase stability of compounds as one moves down
Group I. An example of this importance can be seen in a
recent DFT/GGA study of pressure-induced (B1→B2) phase
transitions in rubidium halides.38 The calculated transition
pressures are significantly larger (typically by a factor of
four) than experimental values, a discrepancy that may well
be due to the absence of dispersion interactions in the DFT
scheme. Indeed, in earlier interionic force calculations on the
same system by Cohen and Gordon,39 they pointed out that if
the dispersion contributions could be incorporated into their
calculations, they would have been likely to have obtained
better agreement with experiment.

In Grimme’s DFT + D and DFT + D2 functionals the van
der Waals radius employed in the damping function (R0)
was determined for each element using the 0.01 a.u. electron
density contour in ROHF/TZV calculations of atoms in their
electronic ground state. This contour value was scaled by a
factor of 1.22 in DFT + D and 1.10 in DFT + D2. To determine
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FIG. 2. (Color online) Graphical representation of (a) the data
shown in Table II demonstrating the close relationship between the R0

parameter in the DFT + D2 formalism (red squares) and the Shannon
ionic radius for six-coordinate cations (green triangles), and (b) the
ratio of the Shannon radii to Grimme R0 values (red squares). The
blue circle denotes the ratio corresponding to the estimated value of
R0 for Cs that is used in this work.

a value of R0 for Cs, we first compared the R0 values for Li,
Na, K, and Rb from DFT + D2 against standard ionic radii.40

Since the ionic radius is a function of the coordination number,
it is necessary to standardize on a consistent environment.
Although the CsCl structure involves eightfold coordination,
it is more reasonable to choose sixfold radii as a reference,
given that octahedral environments predominate amongst the
Group-I halides.

As shown in Fig. 2(a), there is a close correlation between
the Shannon ionic radii and the values of R0 used in the
DFT + D2 method. Figure 2(b) and Table II present the ratio
between R0 and the six-coordinate Shannon ionic radius for
the Group-I elements. It can be seen that the Shannon radii
and Grimme R0 values are largely close to each other with
the former being slightly larger by a near constant ratio. In
this regard, Li+ is somewhat the exception with a marginally
greater difference between the values. Excluding this element,

TABLE II. Comparison between the damping function parameter
(R0) in the DFT + D2 approach22 and Shannon ionic radii40 for
six-coordinate cations. The DFT + D2 data are for Li-Rb, while the
Shannon data are for Li-Cs. The value of R0 for Cs is estimated as
described in the text by scaling the Shannon radius by a factor of
1.019.

Element R0 (Å) Shannon (VI) (Å) Ratio

Li 0.825 0.90 1.091
Na 1.144 1.16 1.014
K 1.485 1.52 1.024
Rb 1.628 1.66 1.020
Cs 1.776a 1.81 1.019

aThis work
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FIG. 3. (Color online) Energy differences (eV/f.u.) between the
B1 and B2 phases of CsX (X = F, Cl, Br, I) calculated using LDA
(circles), PBE (squares), and PBE + D2 (triangles) functionals.

the ratio of the Shannon ionic radii to Grimme R0 is 1.019 ±
0.005 for Na+, K+, and Rb+. Based on this average ratio for
the heavier Group-I cations, we have estimated the R0 value
for Cs to be 1.776 Å. According to Grimme’s philosophy,22

a Group-II element has the same C6 and R0 values as that
of the Group-I element in the same row. Consequently, the
parameters determined here for Cs can also be applied to
barium.

B. Application to cesium halides

Using the fitted C6 and R0 parameters values for Cs+ and
the available parameters for the halogens,22 we performed both
standard (LDA and PBE) and DFT + D2 dispersion-corrected
PBE calculations for the cesium halides (CsF, CsCl, CsBr, and
CsI). In the following we will denote the latter calculations
as PBE + D2 to emphasize the functional employed. Figure 3
shows the energy difference between the B1 and B2 phases
of Cs halides as calculated at the LDA, PBE and PBE + D2
levels; the quantitative values are listed in Table III along with
the cohesive energies. The energy difference �E is defined
such that a positive value indicates the B1 structure is favored,
while conversely a negative value indicates that B2 is favored.
Although the LDA approach is generally less accurate than
GGA, typically overbinding in comparison with experiment,
here it successfully predicts the experimentally observed phase
for all of the Cs halide compounds. The same is true for the
PBE + D2 calculations, which show a small systematic shift
relative to the LDA energetics in favor of the B2 phase. At
the PBE level, however, all four Cs halides are predicted to
adopt the rocksalt B1 phase. In other words, calculations at
the PBE/GGA level do not predict that CsCl adopts the CsCl
structure. The same error is seen for CsBr and CsI, which also
adopt the B2 phase under ambient conditions. We note that
our energy differences for CsCl using the LDA and PBE + D2
functionals are similar to those calculated by Pyper12 and
Aguado14 who reported values of 0.078 and 0.14 eV/f.u.,
respectively,

Cohesive energies calculated using the PBE + D2 func-
tional (Table III) compare very well with experiment41 for the
B2 phases where the difference is less than 0.16 eV/f.u. This
performance is superior to the other two functionals examined
which have larger discrepancies; for LDA the maximum
discrepancy for B2 phases is 0.30 eV/f.u., while for PBE it is
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TABLE III. Cohesive energies (eV/f.u.) for the B1 and B2 phases
of CsX (X = F, Cl, Br, I) calculated using LDA, PBE, and PBE + D2
functionals. The energy difference �E is defined in the text. The
experimentally preferred phases are B1 for CsF and B2 for CsCl,
CsBr, and CsI. This trend is reproduced by the LDA and PBE + D2
functionals, but not with PBE.

Structures B1 (NaCl) B2 (CsCl) �E

CsF
LDA −8.24 −8.13 0.11
PBE −7.19 −6.97 0.22
PBE + D2 −7.94 −7.86 0.08
Experiment41 −7.48

CsCl
LDA −6.89 −6.94 −0.06
PBE −6.13 −6.04 0.10
PBE + D2 −6.68 −6.84 −0.16
Experiment41 −6.74

CsBr
LDA −6.39 −6.45 −0.06
PBE −5.68 −5.60 0.08
PBE + D2 −6.29 −6.48 −0.19
Experiment41 −6.48

CsI
LDA −5.80 −5.88 −0.07
PBE −5.13 −5.07 0.06
PBE + D2 −5.81 −6.02 −0.21
Experiment41 −6.18

substantially greater at 1.11 eV/f.u. In contrast, none of the
functionals predict the cohesive energy particularly accurately
for the B1 phase of CsF, with PBE being the closest.

The relative importance of dispersion can be quantified
from Table III by comparing the cohesive energies of the
PBE and PBE + D2 calculations. This energy difference is
surprisingly invariant, falling in the range of 0.55–0.75 eV/f.u.
for the B1 structures and 0.80–0.95 eV/f.u. for the B2
structures; the average values are 0.65 and 0.88 eV/f.u.,
respectively. There is no apparent trend down the group,
suggesting that the increasing C6 coefficient associated with a
higher atomic number is counteracted by the larger lattice
parameter. Accordingly, the dispersion contribution to the
cohesive energy is roughly constant for a given structure type.
We note that the average dispersion contribution in the B2
structures is larger than its B1 equivalent by a ratio of 8:6,
which matches that of the coordination numbers of the two
structures.

Although the dispersion force is comparatively weak, it is
always attractive and hence its inclusion always decreases the
cell volume. This behavior is evident in Fig. 4 which plots cell
volumes for the B1 and B2 phases of the cesium halides at 0 K.
Experimental values for the cell volumes at 0 K were corrected
from the lowest measured temperature (293 K for CsF, 5 K for
CsCl, and 20 K for CsBr and CsI) using experimental thermal
expansion data.42,43 In the case of the B1-CsCl phase the
experimental value at 450 K was corrected to 0 K by assuming
that this phase has the same thermal expansion coefficient
as the B2 phase. Whereas the PBE functional consistently
overestimates the volume (by an average of 9%), the LDA
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FIG. 4. (Color online) Cell volumes (Å3/f.u.) for the B1 and B2
phases of CsX (X = F, Cl, Br, I) calculated using LDA (circles),
PBE (squares), and PBE + D2 (triangles) functionals. Experimental
values (crosses) for the cell volumes were corrected from the lowest
measured temperature to 0 K using the available thermal expansion
data (see text for details).

functional conversely underestimates the same quantity (by
an average of 7%). In every case the PBE + D2 functional
provides an excellent prediction of the cell volume with an
average difference of only 0.9%. Furthermore, the PBE + D2
results are far closer to the extrapolated experimental values at
0 K than those obtained in calculated by Aguado14 and Pyper12

for which the cell volume at zero Kelvin is overestimated by
8.7 and 5.3%, respectively.

C. Sensitivity analysis

Given that the parameters C6 and R0 are empirically
determined, it is instructive to perform a sensitivity analysis
of their effects. For this we have chosen to focus on the
compound CsCl, using the lattice parameter of the B2 phase
and the energy difference between the B1 and B2 phases to
highlight the effect of varying C6 (Fig. 5) and R0 (Fig. 6).
The vertical dashed line in each figure indicates the parameter
value used elsewhere in this work. Also included in Figs.
5(a) and 6(a) using solid horizontal lines are the experimental
lattice parameter at both 300 K and 0 K, which is corrected
using the available thermal expansion data, and the value
computed by Pyper.12 The B1-B2 energy difference calculated
by Pyper12 and Aguado14 is also shown, with the latter
being closer to our PBE + D2 result of 0.16 eV/f.u. Both the
lattice parameter and the B1-B2 energy difference demonstrate
great sensitivity to the choice of C6 and R0 parameters, as
would be expected. When either C6 increases or R0 decreases,
the dispersion forces become stronger, which increases the
binding in CsCl and makes the B2 phase more stable than
the B1 structure. Our C6 and R0 parameters for Cs in the
DFT + D2 calculations are obtained independently and rely
only on the physical properties of the Cs cation. By employing
these parameter values, the calculated cell lattice parameter of
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B2-CsCl happens to be very close to that of the experimental
value extrapolated to 0 K. While this represents a useful further
validation of our choice of parameters, it should be noted that
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FIG. 6. (Color online) R0 (Å) sensitivity analysis for (a) CsCl
lattice parameter (Å) and (b) its energy difference between B1 and B2
phases �E (eV/f.u.). Also shown are experimental lattice parameters
at 0 K and 300 K, and the values computed by Pyper.12 C6 is fixed
at 57.74 J nm6mol−1. The dashed vertical line indicates the value
(1.776 Å) used in this work.

the DFT + D2 should formally be corrected for zero point
energy effects in order to equate it to the experimental value at
absolute zero. However, for the relatively heavy atoms present
in CsCl it is unlikely that the zero point vibration will lead to
a substantial expansion of the unit cell.

An alternative strategy to obtain values for R0 and C6

would have been to fit the parameters to the available
experimental properties. However, given that the present
systematic approach has managed to deliver both physically
reasonable structures and phase stabilities, this would have
been less satisfying and may have led to a less transferable
parametrization.

IV. DISCUSSION AND CONCLUSIONS

In this work, we have examined the failure of density
functional theory based on a widely used generalized gra-
dient approximation, namely PBE, to correctly predict that
CsCl should adopt the cesium chloride structure at standard
conditions. Although not exhaustively examined, we strongly
suspect that this failure will also occur with other GGA
exchange-correlation functionals in the literature. Given that
the local density approximation yields the correct result,
the overestimation of volume is clearly correlated with the
error in the relative phase energies. As nearly all GGA
functionals similarly underestimate the binding of solids, it
appears reasonable that the failure will be widespread. It
might be expected that the family of GGA functionals that
are specifically parametrized for solids or from the Airy gas,
such as Wu-Cohen44 and AM05,45 respectively, could give
improved results. Hence we have tested the performance of
a solid-state parameterized GGA, namely PBEsol,46 for the
B1-B2 energy difference in the case of CsCl. While the
relative energy is reduced to 0.03 eV/f.u. with this functional,
as compared to 0.10 eV/f.u. from PBE, the result remains
qualitatively incorrect.

As a result of the erroneous predictions arising from the use
of GGA functionals alone, we have examined the influence
of including semiempirical long-range dispersion via the
DFT + D2 methodology of Grimme and co-workers. Although
the dispersion energy corrections are small as a fraction of the
overall cohesive energy, we find that it plays a vital role in
determining the phase stability of CsCl, CsBr, and CsI. The
importance of the dispersion correction can also be seen in
the results of calculations using a wide range of functionals,
including PBEsol, the screened hybrid, HSE06 (Ref. 47), and
also the hybrid functional, PBE0 (Ref. 48). Table IV presents
the energy difference �E between B1- and B2-type CsCl as

TABLE IV. The energy difference �E (eV/f.u.) between B1-
and B2-type CsCl calculated by using the exchange-correlation
functionals PBEsol, HSE06, and PBE0. �E is defined as B2-B1,
such that a positive value indicates the B1 structure is favored, while
conversely a negative value indicates that B2 is favored.

Functional PBEsol HSE06 PBE0

Without D2 0.028 0.082 0.077
�E

With D2 −0.194 −0.225 −0.231
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determined using PBEsol, HSE06, and PBE0. All of these
functionals exhibit the same qualitative result as for PBE, i.e.,
the incorrect order of stability for CsCl. Addition of dispersion
corrections to any of these functionals leads to the correct order
of phase stability, thereby showing that dispersion is indeed
the single most important factor.

In the present work the C6 and R0 parameters for cesium
in the dispersion correction have been empirically determined
based on a combination of theoretical arguments and extrap-
olation of data for the alkali-metal cations. Importantly, no
specific reference is made to the target cesium halide structures
to which the parameters have been applied. Despite this,
and the demonstrated sensitivity of the results to the choice
of dispersion parameters, the values determined here (i.e.,
57.74 J nm6mol−1 for C6 and 1.776 Å for R0) give not only
the correct relative phase stabilities, but also superior lattice
parameters relative to the other functionals examined. With
one exception, the cohesive energies are also in improved
agreement with the experimental values. Finally, we also note

that the magnitude of the dispersion energy contribution for the
cesium halides does not exhibit a systematic variation with size
or atomic number of the ions, although the underlying C6 and
R0 parameters obviously do. It appears that the increased lattice
parameter for larger ions offsets the corresponding increase
in polarizability. Instead, the crucial factor that corrects the
relative stability of the B1 and B2 phases is that the total
dispersion energy is found to be proportional to the first
coordination number of the structure, which is sufficient for
CsCl to favor the cesium chloride structure, just as we would
expect.
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