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Abstract

We consider a general nonlinear time-delay system in which the input signal is piecewise-constant.

Such systems arise in a wide range of industrial applications, including evaporation and purification

processes and chromatography. We assume that the time-delays—one involving the state variables

and the other involving the input variables—are unknown and need to be estimated using experimen-

tal data. We formulate the problem of estimating the unknown delays as a nonlinear optimization

problem in which the cost function measures the least-squares error between predicted and measured

system output. The main difficulty with this problem is that the delays are decision variables to

be optimized, rather than fixed values. Thus, conventional optimization techniques are not directly

applicable. We propose a new computational approach based on a novel derivation of the cost func-

tion’s gradient. We then apply this approach to estimate the time-delays in two industrial chemical

processes: a zinc sulphate purification process and a sodium aluminate evaporation process.

Keywords: parameter identification; time-delay system; nonlinear optimization; purification pro-

cesses; evaporation processes

1 Introduction

Time-delays are inherent in many industrial processes, including evaporation processes [1],

chromatography processes [2], distillation processes [3], and purification processes [4]. Such

processes can be controlled by varying certain input variables—for example, flow rates, tem-

peratures, and pressures. If the time-delays are known, then the problem of determining the

optimal input variables (as functions of time) so that the total system cost is minimized is a

type of optimal control problem. Such problems can be solved numerically using well-known

computational techniques [4, 5, 6, 7].

In many situations, however, the time-delays are not known exactly. In this case, the

delays first need to be estimated before optimal control techniques can be applied. Thus,

1



1 Introduction 2

delay estimation is a crucial issue and has attracted significant research attention over the

past decade [8]. The vast majority of delay estimation methods are only applicable to simple

systems with linear dynamics and a single delay [9, 10, 11, 12]. One of the few methods

available for handling general nonlinear systems with multiple time-delays is the optimization-

based approach developed in [13]. In this approach, the problem of estimating the time-delays

is formulated as a dynamic optimization problem in which the cost function measures the

discrepancy between predicted and observed system output at a set of sample times. Solving

this optimization problem yields the delay values that best fit the given experimental data.

The optimization-based approach developed in [13] is designed for systems with state-delays

rather than input-delays. For systems with input-delays, if the input function is smooth, then

the system dynamics will be continuously differentiable with respect to the input-delays, and

thus the approach proposed in [13] can be easily modified to estimate the input-delays in this

case. Unfortunately, the input function is often non-smooth in practical applications. For

example, in the evaporation process described in [1], the input function represents the steam

flow rate, which must be kept constant and is only changed at 5 minute intervals to ensure

process stability. Moreover, the input function represents the solution flow rate, which changes

in piecewise manner to match the scheduling of the production process. Thus, the steam flow

rate is a non-smooth piecewise-constant input function. The estimation method in [13] is not

applicable in such situations.

In this paper, we consider the time-delay estimation problem for nonlinear systems in which

the input function is piecewise-constant. Such estimation problems arise, for example, in

evaporation and purification processes [1, 4]. We assume that the system under consideration

contains one state-delay and one input-delay, both of which are unknown and need to be

estimated using experimental data. Since the input function is discontinuous, the estimation

method in [13] is not applicable in this case. The purpose of this paper is to develop a new

method for estimating the time-delays. As with [13], we formulate the delay estimation problem

as a dynamic optimization problem in which the cost function measures the least-squares

error between predicted and observed system output. The main focus of the paper is on the

derivation of a computational procedure for determining the gradient of the cost function. This

procedure, which involves integrating an auxiliary impulsive system with instantaneous jumps

forward in time, is far more complex than the procedure given in [13], which does not involve

any jumps. Moreover, because of the discontinuous nature of the input function, the cost

function’s gradient does not exist at certain points. We propose a heuristic strategy for dealing

this complication. This heuristic strategy can be combined with our gradient computation

procedure to solve the estimation problem using standard nonlinear programming algorithms.

We finally conclude the paper by showing that this approach can successfully estimate the

time-delays in two large-scale chemical engineering systems.
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2 Problem formulation

Consider the following nonlinear time-delay system:

ẋ(t) = f(x(t),x(t− α),u(t),u(t− β)), t ∈ [0, T ], (1)

x(t) = ϕ(t), t ≤ 0, (2)

where T > 0 is a given terminal time; x(t) = [x1(t), . . . , xn(t)]
⊤ ∈ Rn is the state vector ;

u(t) = [u1(t), . . . , ur(t)]
⊤ ∈ Rr is the input vector ; α and β are unknown time-delays that

need to be determined; and f : Rn × Rn × Rr × Rr → Rn and ϕ : R → Rn are given

functions. Many dynamic processes in chemical engineering—for example, the distillation

process described in [14]—can be modeled by equations (1) and (2). We assume that f , g,

and ϕ are continuously differentiable. We also assume that there exists a positive real number

L1 > 0 such that for all x′,x′′ ∈ Rn and u′,u′′ ∈ Rr,

|f(x′,x′′,u′,u′′)| ≤ L1(1 + |x′|+ |x′′|+ |u′|+ |u′′|), (3)

where | · | denotes the Euclidean norm. This assumption is standard in the control systems

literature [4, 15, 16, 17].

The output y(t) of system (1)-(2) is defined by

y(t) = g(x(t),x(t− α)), t ∈ [0, T ], (4)

where g : Rn × Rn → Rq is a given continuously differentiable function.

We refer to α as the state-delay and β as the input-delay. The exact values of these delays

are unknown; the only information we are given is that α lies within the interval [αmin, αmax]

and β lies within the interval [βmin, βmax], where αmin ≤ 0 and βmin > 0. Thus, we have the

following bound constraints:

αmin ≤ α ≤ αmax, (5)

βmin ≤ β ≤ βmax. (6)

We assume that the input signal u is a given piecewise-constant function (this is the case in

many engineering systems). Hence, u can be expressed as follows:

u(t) = σi, t ∈ [ti−1, ti), i = 1, . . . , p, (7)

where σi ∈ Rr, i = 1, . . . , p, are given vectors and ti, i = 0, . . . , p, are given time points such

that −βmax = t0 < t1 < · · · < tp = T . Equation (7) can be rewritten as

u(t) =

p∑
i=1

σiχ[ti−1,ti)(t), t ∈ [−βmax, T ], (8)

where the characteristic function χ[ti−1,ti) : R → R is defined by

χ[ti−1,ti)(t) =

1, if t ∈ [ti−1, ti),

0, otherwise.
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For each pair (α, β) ∈ [αmin, αmax]× [βmin, βmax], let x(·|α, β) denote the corresponding solution

of system (1)-(2). Substituting x(·|α, β) into equation (4) gives y(·|α, β), the predicted system

output corresponding to (α, β). Mathematically,

y(t|α, β) = g(x(t|α, β),x(t− α|α, β)), t ≤ T. (9)

Suppose that the output from system (1)-(2) has been measured experimentally at a set of

sample times {τj}mj=1 ⊂ [0, T ]. Let ŷj ∈ Rq denote the measured output at the jth sample

time. Our goal is to use the experimental data {(τj, ŷj)}mj=1 to identify the time-delays α and

β. We formulate this problem mathematically as follows.

Problem (P). Choose the state-delay α and the input-delay β to minimize the cost function

J(α, β) =
m∑
j=1

∣∣y(τj|α, β)− ŷj
∣∣2 (10)

subject to the dynamic system (1)-(2) and the bound constraints (5)-(6).

Problem (P) is a dynamic optimization problem governed by the time-delay system (1)-

(2). The most interesting aspect of Problem (P) is that the time-delays in (1)-(2) are actually

decision variables to be chosen optimally. This is highly unusual; in most optimization problems

involving time-delay systems, the delays are fixed and known, and the control input function

is the decision variable to be chosen optimally [1, 4, 8]. In Problem (P), the input function is

known, and the delays are the variables that need to be optimized.

We now conclude this section by showing that Problem (P) can be transformed into a

switched system optimal control problem.

First, from (8),

u(t− β) =

p∑
i=1

σiχ[ti−1,ti)(t− β) =

p∑
i=1

σiχ[ti−1+β,ti+β)(t) =

p∑
i=1

σiχ[vi−1,vi)(t), (11)

where vi, i = 0, . . . , p are new decision variables defined by

vi = ti + β, i = 0, . . . , p. (12)

It follows from (12) that

vi − ti = vi−1 − ti−1, i = 1, . . . , p. (13)

Substituting (11) into (1) gives

ẋ(t) = f i(x(t),x(t− α),u(t)), t ∈ [vi−1, vi) ∩ [0, T ], i = 1, . . . , p, (14)

where

f i(x(t),x(t− α),u(t)) = f(x(t),x(t− α),u(t),σi).

System (14) is a switched system in which the dynamics change instantaneously at the switching

times vi, i = 1, . . . , p.
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Problem (P) can now be restated as follows: Choose the state-delay α and the switching

times vi, i = 1, . . . , p to minimize (10) subject to the switched system (14), the initial condition

(2), and the constraints (5)-(6) and (13). This is an example of a switched system optimal

control problem. Such problems have been the subject of active research over the last decade

(see, for example, [18, 19, 20, 21, 22] and the references cited therein). In particular, the

well-known time-scaling transformation is a powerful tool for solving switched system optimal

control problems (see [15, 16, 23, 24]). Unfortunately, the time-scaling transformation is not

applicable to time-delay systems such as system (14) defined above. Thus, a new method is

needed to solve Problem (P).

3 State variation

Our goal is to solve Problem (P) using nonlinear optimization techniques. To do this, we need

the partial derivatives of J with respect to the decision variables α and β. However, since J

is not an explicit function of α and β, these partial derivatives cannot be determined using

standard differentiation rules. To derive formulae for the partial derivatives of J , we first need

to consider the state variation with respect to α and β.

3.1 State variation with respect to the state-delay

Define

ψ(t) =

ϕ̇(t), if t ≤ 0,

f(x(t),x(t− α),u(t),u(t− β)), if t ∈ (0, T ].

Furthermore, we let ∂
∂x̃

denote differentiation with respect to the delayed state argument. We

will use this notation frequently throughout the paper.

The solution x(·|α, β) of system (1)-(2) is normally viewed as a function of time, with α

and β being fixed values. By instead of fixing t ∈ (−∞, T ] while allowing α and β to vary, we

obtain the function x(t|·, ·) : [αmin, αmax]× [βmin, βmax] → Rn whose value at (α, β) is x(t|α, β).
The partial derivative of x(t|·, ·) with respect to α is called the state variation with respect to

α. The following result, which can be proved in a similar manner to the main proof in [13],

gives a method for determining this state variation.

Theorem 1. Let t ∈ (0, T ] be a fixed time point. Then x(t|·, ·) is differentiable with respect to

the state-delay α. In fact, for each (α, β) ∈ [αmin, αmax]× [βmin, βmax],

∂x(t|α, β)
∂α

= Λ(t|α, β), (15)

where Λ(·|α, β) satisfies the auxiliary time-delay system

Λ̇(t) =
∂f(x(t),x(t− α),u(t),u(t− β))

∂x
Λ(t)

+
∂f(x(t),x(t− α),u(t),u(t− β))

∂x̃
Λ(t− α)

− ∂f(x(t),x(t− α),u(t),u(t− β))

∂x̃
ψ(t− α)

(16)
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with initial condition

Λ(t) = 0, t ≤ 0. (17)

According to Theorem 1, the state variation with respect to α can be computed by solving

the auxiliary time-delay system (16)-(17). This result is a simple extension of the main result

in [13], which pertains to systems with multiple state-delays but no input delays. To solve

Problem (P), we also need the state variation with respect to β. Unfortunately, the results

in [13], which are based on the assumption that the system dynamics are continuous with

respect to the time-delays, cannot be used to determine this state variation. Indeed, since the

input function u is discontinuous, the dynamics (1) are clearly discontinuous with respect to

β. In the next subsection, we describe a new method for computing the state variation with

respect to β.

3.2 State variation with respect to the input-delay

3.2.1 Preliminaries

Before deriving the state variation with respect to β, we first need to derive several preliminary

results. Let (α, β) ∈ [αmin, αmax]× [βmin, βmax] be a fixed pair. Define

S = [βmin − β, βmax − β].

Note that S is a non-empty closed interval of positive measure. Clearly,

ϵ ∈ S ⇐⇒ β + ϵ ∈ [βmin, βmax].

Now, for each ϵ ∈ S, define

φϵ(t) = x(t|α, β + ϵ)− x(t|α, β), t ≤ T. (18)

By (2),

φϵ(t) = 0, t ≤ 0. (19)

Since the system dynamics satisfy the linear growth condition (3), it can be shown (see [13])

that there exists a positive real number L2 > 0 such that∣∣x(t|α, β + ϵ)
∣∣ ≤ L2, t ∈ [−αmax, T ], ϵ ∈ S. (20)

Our first preliminary result is stated and proved below.

Lemma 1. There exists a positive real number L3 > 0 such that for all ϵ ∈ S of sufficiently

small magnitude,

|φϵ(t)| ≤ L3|ϵ|, t ∈ (−∞, T ]. (21)
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Proof. Let ϵ ∈ S be such that

|ϵ| < 1
2
min

{
ti − ti−1

}p

i=1
.

For each i = 1, . . . , p, define

Ii = (ti−1 + |ϵ|, ti − |ϵ|).

Furthermore, for each i = 0, . . . , p, define

Ji =


[t0, t0 + |ϵ|], i = 0,

[ti − |ϵ|, ti + |ϵ|], i = 1, . . . , p− 1,

[tp − |ϵ|, tp], i = p.

Note that {Ii}pi=1 and {Ji}pi=0 form a partition of [−βmax, T ]. Also,

|Ji| ≤ 2|ϵ|, i = 0, . . . , p,

and

u(s) = u(s− ϵ) = σi, s ∈ Ii, i = 1, . . . , p. (22)

Now, if t ≤ 0, then φϵ(t) = 0 and the proof is complete. Thus, assume that t > 0. Then

|φϵ(t)| ≤ |xϵ(t)− x(t)|

≤
∫ t

0

∣∣∣f(xϵ(s),xϵ(s− α),u(s),u(s− β − ϵ))− f(x(s),x(s− α),u(s),u(s− β))
∣∣∣ds,

where xϵ(s) = x(s|α, β + ϵ) and x(s) = x(s|α, β).
Thus, since xϵ is uniformly bounded with respect to ϵ ∈ S (recall (20)) and f is continuously

differentiable, there exists a constant M1 > 0 such that

|φϵ(t)| ≤ M1

∫ t

0

|φϵ(s)|ds+M1

∫ t

0

|φϵ(s− α)|ds+M1

∫ t

0

|u(s− β − ϵ)− u(s− β)|ds.

By shifting the time variable in the second and third integrals and then using (19), we obtain

|φϵ(t)| ≤ M1

∫ t

0

|φϵ(s)|ds+M1

∫ t−α

−α

|φϵ(s)|ds+M1

∫ t−β

−β

|u(s− ϵ)− u(s)|ds

≤ 2M1

∫ t

0

|φϵ(s)|ds+M1

∫ t−β

−β

|u(s− ϵ)− u(s)|ds

= 2M1

∫ t

0

|φϵ(s)|ds+M1

p∑
i=1

∫
Ii∩(−β,t−β)

|u(s− ϵ)− u(s)|ds

+M1

p∑
i=0

∫
Ji∩(−β,t−β)

|u(s− ϵ)− u(s)|ds.

Hence, by (22),

|φϵ(t)| ≤ 2M1

∫ t

0

|φϵ(s)|ds+M1M2

p∑
i=0

|Ji|,
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where M2 = maxj ̸=k |σj − σk|. Since |Ji| ≤ 2|ϵ|, we have

|φϵ(t)| ≤ 2M1

∫ t

0

|φϵ(s)|ds+ 2(p+ 1)M1M2|ϵ|.

Finally, applying the Gronwall-Bellman Lemma [17] yields

|φϵ(t)| ≤ 2(p+ 1)M1M2 exp{2M1T}|ϵ|.

This completes the proof.

For each ϵ ∈ S, define

f̄
ϵ
(s, η,σ) = f

(
x(s) + ηφϵ(s),x(s− α) + ηφϵ(s− α),u(s),σ

)
,

where, as in the proof of Lemma 1, x(t) = x(t|α, β). Then by the chain rule,

∂f̄
ϵ
(s, η,σ)

∂η
=

∂f̄
ϵ
(s, η,σ)

∂x
φϵ(s) +

∂f̄
ϵ
(s, η,σ)

∂x̃
φϵ(s− α), (23)

where

∂f̄
ϵ
(s, η,σ)

∂x
=

∂f
(
x(s) + ηφϵ(s),x(s− α) + ηφϵ(s− α),u(s),σ

)
∂x

, (24)

∂f̄
ϵ
(s, η,σ)

∂x̃
=

∂f
(
x(s) + ηφϵ(s),x(s− α) + ηφϵ(s− α),u(s),σ

)
∂x̃

. (25)

We can rewrite (23) as follows:

∂f̄
ϵ
(s, η,σ)

∂η
= ∆1(s, η,σ) + ∆2(s, η,σ) +

∂f̄
ϵ
(s, 0,σ)

∂x
φϵ(s) +

∂f̄
ϵ
(s, 0,σ)

∂x̃
φϵ(s− α), (26)

where

∆1(s, η,σ) =
{∂f̄

ϵ
(s, η,σ)

∂x
− ∂f̄

ϵ
(s, 0,σ)

∂x

}
φϵ(s), (27)

∆2(s, η,σ) =
{∂f̄

ϵ
(s, η,σ)

∂x̃
− ∂f̄

ϵ
(s, 0,σ)

∂x̃

}
φϵ(s− α). (28)

Since f is continuously differentiable and x and u are bounded, the following result is easily

established.

Lemma 2. For each σ ∈ Rr, there exists a corresponding L4 > 0 such that∣∣∣∣∂f̄ ϵ
(s, 0,σ)

∂x

∣∣∣∣ ≤ L4,

∣∣∣∣∂f̄ ϵ
(s, 0,σ)

∂x̃

∣∣∣∣ ≤ L4, s ∈ [0, T ], (29)

where | · | denotes the natural matrix norm on Rn×n.

We now show that the functions ∆1 (defined by (27)) and ∆2 (defined by (28)) are of order

ϵ.
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Lemma 3. Let δ > 0 and σ ∈ Rr be arbitrary. Then for all ϵ ∈ S of sufficiently small

magnitude,

|∆1(s, η,σ)| ≤ L3δ|ϵ|, |∆2(s, η,σ)| ≤ L3δ|ϵ|, (s, η) ∈ [0, T ]× [0, 1],

where L3 > 0 is as defined in Lemma 1.

Proof. By (21), x(s) + ηφϵ(s) → x(s) and x(s − α) + ηφϵ(s − α) → x(s − α) uniformly on

[0, T ] as ϵ → 0. Hence, since f is continuously differentiable and xϵ is uniformly bounded with

respect to ϵ, there exists an ϵ′ > 0 such that for all ϵ ∈ S satisfying |ϵ| < ϵ′,∣∣∣∣∂f̄ ϵ
(s, η,σ)

∂x
− ∂f̄

ϵ
(s, 0,σ)

∂x

∣∣∣∣ < δ, (s, η) ∈ [0, T ]× [0, 1],∣∣∣∣∂f̄ ϵ
(s, η,σ)

∂x̃
− ∂f̄

ϵ
(s, 0,σ)

∂x̃

∣∣∣∣ < δ, (s, η) ∈ [0, T ]× [0, 1].

By taking the norm of (27)-(28), and then using the above inequalities together with (21), we

obtain the desired result.

Let a and b be given constants such that a, b ∈ [0, T ]. Define

ρϵ(a, b,σ) =

∫ b

a

{
f̄

ϵ
(s, 1,σ)− f̄ ϵ

(a, 0,σ)
}
ds. (30)

Our final preliminary result is stated and proved below.

Lemma 4. For each σ ∈ Rr, there exists a corresponding L5 > 0 such that

∣∣ρϵ(a, b,σ)∣∣ ≤ L5|b− a| · |ϵ|+ L5(b− a)2 + L5

∫ max{a,b}

min{a,b}

∣∣u(s)− u(a)∣∣ds.
Proof. From (30),

ρϵ(a, b,σ) =

∫ max{a,b}

min{a,b}

{
f̄

ϵ
(s, 1,σ)− f̄ ϵ

(s, 0,σ)
}
ds+

∫ max{a,b}

min{a,b}

{
f̄

ϵ
(s, 0,σ)− f̄ ϵ

(a, 0,σ)
}
ds.

Thus,

∣∣ρϵ(a, b,σ)∣∣ ≤ ∫ max{a,b}

min{a,b}

∣∣f̄ ϵ
(s, 1,σ)− f̄ ϵ

(s, 0,σ)
∣∣ds

+

∫ max{a,b}

min{a,b}

∣∣f̄ ϵ
(s, 0,σ)− f̄ ϵ

(a, 0,σ)
∣∣ds. (31)

Consider the first integrand on the right-hand side of (31). Using (26) and (29) yields

∣∣f̄ ϵ
(s, 1,σ)− f̄ ϵ

(s, 0,σ)
∣∣ ≤ ∫ 1

0

∣∣∣∣∂f̄ ϵ
(s, η,σ)

∂η

∣∣∣∣dη
≤

∫ 1

0

{
|∆1(s, η,σ)|+ |∆2(s, η,σ)|

}
dη

+ L4|φϵ(s)|+ L4|φϵ(s− α)|.
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By Lemma 1 and Lemma 3 with δ = 1, we see that for all ϵ ∈ S of sufficiently small magnitude,∣∣f̄ ϵ
(s, 1,σ)− f̄ ϵ

(s, 0,σ)
∣∣ ≤ 2L3|ϵ|+ 2L3L4|ϵ|. (32)

Now, consider the second integrand on the right-hand side of (31). Since f is continuously

differentiable and xϵ is uniformly bounded with respect to ϵ (recall (20)), there exists a constant

M3 > 0 such that∣∣f̄ ϵ
(s, 0,σ)− f̄ ϵ

(a, 0,σ)
∣∣ ≤ M3|x(s)− x(a)|+M3|x(s− α)− x(a− α)|+M3|u(s)− u(a)|.

Recall that ẋ(s) = ψ(s) for almost all s ∈ (−∞, T ], where ψ is as defined in Subsection 3.1.

Thus,

∣∣f̄ ϵ
(s, 0,σ)− f̄ ϵ

(a, 0,σ)
∣∣ ≤ M3

∫ max{a,s}

min{a,s}
|ψ(η)|dη +M3

∫ max{a,s}−α

min{a,s}−α

|ψ(η)|dη +M3|u(s)− u(a)|

≤ M3M4|s− a|+M3M4|s− a|+M3|u(s)− u(a)|, (33)

where M4 = maxη∈[−αmax,T ] |ψ(η)|. Substituting (32) and (33) into (31) gives

|ρϵ(a, b,σ)| ≤ (2L3 + 2L3L4)|b− a| · |ϵ|+ 2M3M4(b− a)2 +M3

∫ max{a,b}

min{a,b}
|u(s)− u(a)|ds.

Taking L5 = max{2L3 + 2L3L4,M3, 2M3M4} completes the proof.

3.2.2 Main result

Armed with Lemmas 1-4, we are now ready to derive the state variation with respect to the

input-delay β. Define

I = {ti + β, i = 0, . . . , p}.

First, consider the following auxiliary system:

Γ̇(t) =
∂f(x(t),x(t− α),u(t),u(t− β))

∂x
Γ(t)

+
∂f(x(t),x(t− α),u(t),u(t− β))

∂x̃
Γ(t− α),

(34)

where, for each t ∈ I ∩ (0, T ],

lim
t→(ti+β)+

Γ(t) = lim
t→(ti+β)−

Γ(t) + f̄
ϵ
(ti + β, 0,σi)− f̄ ϵ

(ti + β, 0,σi+1), (35)

and

Γ(t) = 0, t ≤ 0. (36)

Let Γ(·|α, β) denote the unique right continuous solution of (34)-(36). We have the following

important result.
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Theorem 2. Let (α, β) ∈ [αmin, αmax]× [βmin, βmax) be a fixed pair such that

ti + β /∈ {0} ∪ {tj, j = 0, . . . , p}, i = 0, . . . , p.

Furthermore, consider a fixed time point t ∈ (ti−1 + β, ti + β) ∩ (0, T ], where i ∈ {1, . . . , p}.
Then

lim
ϵ→0+

ϵ−1φϵ(t) = Γ(t|α, β), (37)

where φϵ is as defined in (18).

Proof. Let

ai = max{ti−1 + β, 0}.

Then

x(t) = x(ai) +

∫ t

ai

f̄
ϵ
(s, 0,σi)ds. (38)

Let ϵ ∈ S be sufficiently small so that 0 < ϵ < min{tj − tj−1}pj=1 and t > ti−1 + β + ϵ. Define

aϵi = max{ti−1 + β + ϵ, 0}.

Then

xϵ(t) = xϵ(aϵi) +

∫ t

aϵi

f̄
ϵ
(s, 1,σi)ds. (39)

We can write (39) as follows:

xϵ(t) = xϵ(ai) +

∫ aϵi

ai

f̄
ϵ
(s, 1,σi−1)ds+

∫ t

aϵi

f̄
ϵ
(s, 1,σi)ds

= xϵ(ai) +

∫ aϵi

ai

{
f̄

ϵ
(s, 1,σi−1)− f̄ ϵ

(s, 1,σi)
}
ds+

∫ t

ai

f̄
ϵ
(s, 1,σi)ds, (40)

where σi−1 is arbitrary if i = 1 (in this case, we must have aϵi = ai = 0 when ϵ is sufficiently

small, because β < βmax). From (38) and (40), we have

φϵ(t) = xϵ(t)− x(t)

= φϵ(ai) +

∫ t

ai

{
f̄

ϵ
(s, 1,σi)− f̄ ϵ

(s, 0,σi)
}
ds+

∫ aϵi

ai

{
f̄

ϵ
(s, 1,σi−1)− f̄ ϵ

(s, 1,σi)
}
ds.

Thus,

φϵ(t) = φϵ(ai) +

∫ t

ai

{
f̄

ϵ
(s, 1,σi)− f̄ ϵ

(s, 0,σi)
}
ds− ρϵ(ai, a

ϵ
i ,σ

i) + ρϵ(ai, a
ϵ
i ,σ

i−1)

+ (aϵi − ai)
{
f̄

ϵ
(ai, 0,σ

i−1)− f̄ ϵ
(ai, 0,σ

i)
}
,
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where ρϵ is as defined in (30). By the fundamental theorem of calculus,

φϵ(t) = φϵ(ai) +

∫ t

ai

∫ 1

0

∂f̄
ϵ
(s, η,σi)

∂η
dηds− ρϵ(ai, a

ϵ
i ,σ

i) + ρϵ(ai, a
ϵ
i ,σ

i−1)

+ (aϵi − ai)
{
f̄

ϵ
(ai, 0,σ

i−1)− f̄ ϵ
(ai, 0,σ

i)
}
.

Using (26),

φϵ(t) = φϵ(ai) +

∫ t

ai

∫ 1

0

{
∆1(s, η,σ

i) + ∆2(s, η,σ
i)
}
dηds

+

∫ t

ai

∂f̄
ϵ
(s, 0,σi)

∂x
φϵ(s)ds+

∫ t

ai

∂f̄
ϵ
(s, 0,σi)

∂x̃
φϵ(s− α)ds− ρϵ(ai, a

ϵ
i ,σ

i)

+ ρϵ(ai, a
ϵ
i ,σ

i−1) + (aϵi − ai)
{
f̄

ϵ
(ai, 0,σ

i−1)− f̄ ϵ
(ai, 0,σ

i)
}
.

(41)

We can express the solution of the auxiliary system as follows:

Γ(t) = Γ(a+i ) +

∫ t

ai

∂f̄
ϵ
(s, 0,σi)

∂x
Γ(s)ds+

∫ t

ai

∂f̄
ϵ
(s, 0,σi)

∂x̃
Γ(s− α)ds. (42)

Thus, from Lemma 2 and equations (41) and (42),∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ ∣∣γi(ϵ)

∣∣+ ϵ−1

∫ t

ai

∫ 1

0

{
|∆1(s, η,σ

i)|+ |∆2(s, η,σ
i)|
}
dηds

+

∫ t

ai

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds+ ∫ t

ai

L4

∣∣ϵ−1φϵ(s− α)− Γ(s− α)
∣∣ds

+ ϵ−1
∣∣ρϵ(ai, aϵi ,σi)

∣∣+ ϵ−1
∣∣ρϵ(ai, aϵi ,σi−1)

∣∣,
where L4 is the constant defined Lemma 2 and

γi(ϵ) = ϵ−1φϵ(ai)− Γ(a+i ) + ϵ−1(aϵi − ai)
{
f̄

ϵ
(ai, 0,σ

i−1)− f̄ ϵ
(ai, 0,σ

i)
}
. (43)

Recall that aϵi − ai ≤ ϵ and ti−1 + β ̸= tj for all j. Thus, we may assume that ϵ is sufficiently

small so that u(s) = u(ai) for all s ∈ [ai, a
ϵ
i ]. It then follows from Lemma 4 that∣∣ρϵ(ai, aϵi ,σi−1)

∣∣ ≤ 2L′
5ϵ

2,
∣∣ρϵ(ai, aϵi ,σi)

∣∣ ≤ 2L′′
5ϵ

2,

where L′
5 and L′′

5 are the constants in Lemma 4 corresponding to σi−1 and σi, respectively. By

the above inequalities and Lemma 3, assuming that ϵ is sufficiently small,∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ 2TL3δ + 2L′

5ϵ+ 2L′′
5ϵ+

∣∣γi(ϵ)
∣∣+ ∫ t

ai

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds

+

∫ t

ai

L4

∣∣ϵ−1φϵ(s− α)− Γ(s− α)
∣∣ds, (44)

where δ > 0 is arbitrary and L3 is the constant defined in Lemma 1. Performing a change of

variable in the second integral on the right-hand side of (44) yields∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ 2TL3δ + 4L5ϵ+

∣∣γi(ϵ)
∣∣+ ∫ t

ai

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds

+

∫ t−α

ai−α

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds

≤ 2TL3δ + 4L5ϵ+
∣∣γi(ϵ)

∣∣+ µi(ϵ) +

∫ t

ai

2L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds,
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where L5 = max{L′
5, L

′′
5} and

µi(ϵ) =

∫ ai

ai−α

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds.

Assuming that δ is sufficiently small so that ai + δ ≤ t,

∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ 2TL3δ + 4L5ϵ+

∣∣γi(ϵ)
∣∣+ µi(ϵ) +

∫ δ

ai

2L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds

+

∫ t

δ

2L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds, (45)

Now since Γ is a piecewise continuous function, there exists a constant M1 > 0 such that

|Γ(s)| ≤ M1, s ∈ (−∞, T ].

Therefore, it follows from Lemma 1 that for all sufficiently small ϵ > 0,∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ ≤ L3 +M1, s ∈ (−∞, T ]. (46)

Substituting (46) into (45) gives∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ 2TL3δ + 4L5ϵ+

∣∣γi(ϵ)
∣∣+ µi(ϵ) + 2L4(L3 +M1)δ

+

∫ t

δ

2L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds, (47)

Note that this inequality holds for all t ∈ [ai + δ, ti + β) and t = (ti + β)−, uniformly with

respect to ϵ ≤ δ. Thus, by the Gronwall-Bellman Lemma [17],∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ (

2TL3δ + 4L5ϵ+ |γi(ϵ)|+ µi(ϵ) + 2L4(L3 +M1)δ
)
exp{2L4T}. (48)

This inequality holds for all ϵ of sufficiently small magnitude.

Now, suppose that t ∈ (ti−1 + β, ti + β) ∩ (0, T ] for i = min{j : tj + β > 0}. Then ai = 0,

and thus by (2) and (36),

µi(ϵ) =

∫ 0

−α

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds = 0.

Since by assumption ti−1 + β < 0, aϵi = ai = 0 for all sufficiently small ϵ. Thus,

γi(ϵ) = ϵ−1φϵ(0)− Γ(0+) = 0.

Substituting µi(ϵ) = 0 and γi(ϵ) = 0 into (48) gives∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ (2TL3δ + 4L5ϵ+ 2L4(L3 +M1)δ) exp{2L4T}. (49)

Since δ > 0 was chosen arbitrarily and ϵ can be made arbitrarily small, this shows that (37)

holds for i = min{j : tj + β > 0}. Moreover, the derivation leading to (49) shows that (37)

also holds for t = (ti + β)−. It is also clear that (37) holds for all t ∈ (−∞, 0].
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Now, suppose that (37) holds for all t ∈ (−∞, tk+β)\{tj +β}kj=0 and t = (tk+β)−, where

min{j : tj + β > 0} ≤ k ≤ p− 1. (50)

We will show that (37) holds for all t ∈ (tk + β, tk+1 + β) and t = (tk+1 + β)−. The result will

then follow by induction.

Let t ∈ (tk + β, tk+1 + β), where k satisfies (50). By our inductive hypothesis, for almost

all s ∈ (−∞, tk + β),

lim
ϵ→0+

ϵ−1φϵ(s) = Γ(s). (51)

In view of (46) and (51), we can apply Lebesgue’s dominated convergence theorem to obtain

lim
ϵ→0+

µk+1(ϵ) = lim
ϵ→0+

∫ tk+β

tk+β−α

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds = 0. (52)

Furthermore,

γk+1(ϵ) = ϵ−1φϵ(tk + β)− Γ((tk + β)+) + f̄
ϵ
(tk + β, 0,σk)− f̄ ϵ

(tk + β, 0,σk+1)

= ϵ−1φϵ(tk + β)− Γ((tk + β)−).

Thus, by our inductive hypothesis,

lim
ϵ→0+

γk+1(ϵ) = 0. (53)

By combining equations (52) and (53) with (48) for i = k + 1, we see that (37) holds for

t ∈ (tk + β, tk+1 + β). Similar arguments show that (37) also holds for t = (tk+1 + β)−. The

proof then follows by induction.

Theorem 2 shows that ϵ−1φϵ → Γ(·|α, β) as ϵ → 0+. We now derive the analogous result

for ϵ → 0−.

Theorem 3. Let (α, β) ∈ [αmin, αmax]× (βmin, βmax] be a fixed pair such that

ti + β /∈ {0} ∪ {tj, j = 0, . . . , p}, i = 0, . . . , p.

Furthermore, consider a fixed time point t ∈ (ti−1 + β, ti + β) ∩ (0, T ], where i ∈ {1, . . . , p}.
Then

lim
ϵ→0−

ϵ−1φϵ(t) = Γ(t|α, β). (54)

Proof. Let ai and aϵi be as defined in the proof of Theorem 2. Furthermore, let ϵ ∈ S such that

min{tj−1 − tj}pj=1 < ϵ < 0 and t < ti + β + ϵ. Then

x(t) = x(aϵi) +

∫ ai

aϵi

f̄
ϵ
(s, 0,σi−1)ds+

∫ t

ai

f̄
ϵ
(s, 0,σi)ds,

where σi−1 is arbitrary if i = 1 (in this case, we must have ai = aϵi = 0). Moreover,

xϵ(t) = xϵ(aϵi) +

∫ ai

aϵi

f̄
ϵ
(s, 1,σi)ds+

∫ t

ai

f̄
ϵ
(s, 1,σi)ds.
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Thus,

φϵ(t) = xϵ(t)− x(t)

= φϵ(aϵi) +

∫ ai

aϵi

(
f̄

ϵ
(s, 1,σi)− f̄ ϵ

(s, 0,σi−1)
)
ds+

∫ t

ai

(
f̄

ϵ
(s, 1,σi)− f̄ ϵ

(s, 0,σi)
)
ds.

This equation can be rewritten as follows:

φϵ(t) = φϵ(aϵi)− ρϵ(ai, a
ϵ
i ,σ

i) + (ai − aϵi)
{
f̄

ϵ
(ai, 0,σ

i)− f̄ ϵ
(ai, 0,σ

i−1)
}

+

∫ ai

aϵi

{
f̄

ϵ
(ai, 0,σ

i−1)− f̄ ϵ
(s, 0,σi−1)

}
ds+

∫ t

ai

{
f̄

ϵ
(s, 1,σi)− f̄ ϵ

(s, 0,σi)
}
ds,

where ρϵ is as defined in (30). Using the fundamental theorem of calculus and (26),

φϵ(t) = φϵ(aϵi)− ρϵ(ai, a
ϵ
i ,σ

i) +

∫ ai

aϵi

{
f̄

ϵ
(ai, 0,σ

i−1)− f̄ ϵ
(s, 0,σi−1)

}
ds

+ (ai − aϵi)
{
f̄

ϵ
(ai, 0,σ

i)− f̄ ϵ
(ai, 0,σ

i−1)
}
+

∫ t

ai

∂f̄
ϵ
(s, 0,σi)

∂x
φϵ(s)ds

+

∫ t

ai

∂f̄
ϵ
(s, 0,σi)

∂x̃
φϵ(s− α)ds+

∫ t

ai

∫ 1

0

{
∆1(s, η,σ

i) + ∆2(s, η,σ
i)
}
dηds.

Recall that ti + β ̸= tj for all i and j. Thus, we may assume that ϵ is sufficiently small so that

u(s) = u(aϵi) for all s ∈ [aϵi , ai]. It then follows from Lemma 4 that∣∣ρϵ(ai, aϵi ,σi−1)
∣∣ ≤ 2L5|ϵ|2.

Furthermore, assuming that ϵ is sufficiently small, by using the similar arguments to those in

the proof of Lemma 4, one can show that there exists a constant M5 > 0 such that∫ ai

aϵi

∣∣f̄ ϵ
(ai, 0,σ

i−1)− f̄ ϵ
(s, 0,σi−1)

∣∣ds ≤ M5ϵ
2.

Hence, as in the proof of Theorem 2,∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ ∣∣γi(ϵ)

∣∣+M5|ϵ|+ 2L5|ϵ|+ 2L3Tδ +

∫ t

ai

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds

+

∫ t

ai

L4

∣∣ϵ−1φϵ(s− α)− Γ(s− α)
∣∣ds, (55)

where δ > 0 is arbitrary and

γi(ϵ) = ϵ−1φϵ(aϵi)− Γ(a+i ) + ϵ−1(ai − aϵi)
{
f̄

ϵ
(ai, 0,σ

i)− f̄ ϵ
(ai, 0,σ

i−1)
}
.

Simplifying (55) gives∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ ∣∣γi(ϵ)

∣∣+M5|ϵ|+ 2L5|ϵ|+ 2L3Tδ + µi(ϵ) +

∫ t

ai

2L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds,

where

µi(ϵ) =

∫ ai

ai−α

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds.
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Assuming that δ > 0 is sufficiently small so that ai + δ ≤ t,∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ ∣∣γi(ϵ)

∣∣+M5|ϵ|+ 2L5|ϵ|+ 2L3Tδ + µi(ϵ)

+

∫ ai+δ

ai

2L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds+ ∫ t

ai+δ

2L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds, (56)

Now since Γ is a piecewise continuous function, there exists a constant M1 > 0 such that

|Γ(s)| ≤ M1, s ∈ (−∞, T ].

Therefore, it follows from Lemma 1 that for all sufficiently small ϵ < 0,∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ ≤ L3 +M1, s ∈ (−∞, T ]. (57)

Substituting (57) into (56) gives∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ M5|ϵ|+ 2L5|ϵ|+ 2L3Tδ +

∣∣γi(ϵ)
∣∣+ µi(ϵ) + 2L4(L3 +M1)δ

+

∫ t

δ

2L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds, (58)

Finally, by applying Gronwall’s Lemma [17] yields∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ (

M5|ϵ|+ 2L5|ϵ|+ 2L3Tδ +
∣∣γi(ϵ)

∣∣+ µi(ϵ) + 2L4(L3 +M1)δ
)
exp{2L4T}.

(59)

This inequality holds for all ϵ of sufficiently small magnitude.

Now, suppose t ∈ (ti−1 + β, ti + β) ∩ (0, T ] for i = min{j : tj + β > 0}. Then ai = 0, and

thus by (2) and (36),

µi(ϵ) =

∫ 0

−α

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds = 0.

Also, since aϵi = ai = 0,

γi(ϵ) = ϵ−1φϵ(0)− Γ(0+) = 0.

Substituting µi(ϵ) = 0 and γi(ϵ) = 0 into (59) gives∣∣ϵ−1φϵ(t)− Γ(t)
∣∣ ≤ (L6|ϵ|+ 2L5|ϵ|+ 2L3Tδ) exp{2L4T}.

Since δ > 0 was chosen arbitrary and ϵ can be made arbitrarily small, this shows that (54)

holds for i = min{j : tj + β > 0}. It is clear that (54) also holds for all t ∈ (−∞, 0], and for

t = a+i .

Now, suppose that (54) holds for all t ∈ (−∞, tk + β) \ {tj + β}kj=0 and t = (tk−1 + β)+,

where

min{j : tj + β > 0} ≤ k ≤ p− 1. (60)

We will show that (54) holds for all t ∈ (tk + β, tk+1 + β) and t = (tk + β)+. The result will

then follow by induction.
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Let t ∈ (tk + β, tk+1 + β), where k satisfies (60) above. By our inductive hypothesis, for

almost all s ∈ (−∞, tk + β),

lim
ϵ→0−

ϵ−1φϵ(s) = Γ(s). (61)

As in the proof of Theorem 2, we can apply Lebesgue’s dominated convergence theorem to

obtain

lim
ϵ→0+

µk+1(ϵ) =

∫ tk+β

tk+β−α

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds = 0. (62)

We have

γk+1(ϵ) = ϵ−1φϵ(tk + β + ϵ)− Γ((tk + β)+) + f̄
ϵ
(tk + β, 0,σk)− f̄ ϵ

(tk + β, 0,σk+1)

= ϵ−1φϵ(tk + β + ϵ)− Γ((tk + β)−).

Hence,

γk+1(ϵ) = ϵ−1φϵ(ak)− Γ(a+k ) + ϵ−1

∫ tk+β+ϵ

ak

{
f̄

ϵ
(s, 1,σk)− f̄ ϵ

(s, 0,σk)
}
ds

−
∫ tk+β

ak

∂f̄
ϵ
(s, 0,σk)

∂x
Γ(s)ds−

∫ tk+β

ak

∂f̄
ϵ
(s, 0,σk)

∂x̃
Γ(s− α)ds

= ϵ−1φϵ(ak)− Γ(a+k ) + ϵ−1

∫ tk+β+ϵ

ak

∫ 1

0

∂f̄
ϵ
(s, η,σk)

∂η
dηds

−
∫ tk+β

ak

∂f̄
ϵ
(s, 0,σk)

∂x
Γ(s)ds−

∫ tk+β

ak

∂f̄
ϵ
(s, 0,σk)

∂x̃
Γ(s− α)ds.

Using (26), we obtain

γk+1(ϵ) = ϵ−1φϵ(ak)− Γ(a+k ) + ϵ−1

∫ tk+β+ϵ

ak

∫ 1

0

{
∆1(s, η,σ

k) + ∆2(s, η,σ
k)
}
dηds

+

∫ tk+β+ϵ

ak

∂f̄
ϵ
(s, 0,σk)

∂x

{
ϵ−1φϵ(s)− Γ(s)

}
ds

+

∫ tk+β+ϵ

ak

∂f̄
ϵ
(s, 0,σk)

∂x̃

{
ϵ−1φϵ(s− α)− Γ(s− α)

}
ds

−
∫ tk+β

tk+β+ϵ

∂f̄
ϵ
(s, 0,σk)

∂x
Γ(s)ds−

∫ tk+β

tk+β+ϵ

∂f̄
ϵ
(s, 0,σk)

∂x̃
Γ(s− α)ds.

Thus, using Lemma 2 and Lemma 3,

∣∣γk+1(ϵ)
∣∣ = ∣∣ϵ−1φϵ(ak)− Γ(a+k )

∣∣+ 2L3Tδ +

∫ tk+β+ϵ

ak

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds

+

∫ tk+β+ϵ

ak

L4

∣∣ϵ−1φϵ(s− α)− Γ(s− α)
∣∣ds+ L4M1|ϵ|+ L4M1|ϵ|

≤
∣∣ϵ−1φϵ(ak)− Γ(a+k )

∣∣+ 2L3Tδ + 2L4M1|ϵ|

+

∫ tk+β

ak

L4

∣∣ϵ−1φϵ(s)− Γ(s)
∣∣ds+ ∫ tk+β

ak

L4

∣∣ϵ−1φϵ(s− α)− Γ(s− α)
∣∣ds
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Using the Lebesgue dominated convergence theorem and the induction hypothesis, the two

integrals converge to zero as ϵ → 0−. It follows also from the induction hypothesis that the

first term converges to zero as ϵ → 0−. Thus,

lim
ϵ→0−

∣∣γk+1(ϵ)
∣∣ = 0. (63)

Combining equations (62) and (63) with (59), for i = k + 1, we see that (54) holds for all

t ∈ (tk + β, tk+1 + β). The proof then follows by induction.

Together, Theorems 2 and 3 show that the state variation with respect to β is given by

Γ(·|α, β). This is stated formally in the following theorem.

Theorem 4. Let (α, β) ∈ [αmin, αmax]× (βmin, βmax] be a fixed pair such that

ti + β /∈ {0} ∪ {tj, j = 0, . . . , p}, i = 0, . . . , p.

Furthermore, consider a fixed time point t ∈ (ti−1 + β, ti + β) ∩ (0, T ], where i ∈ {1, . . . , p}.
Then

∂x(t|α, β)
∂β

= Γ(t|α, β). (64)

4 Computational algorithm

In this section, we will develop a computational algorithm for solving Problem (P). Our ap-

proach is to view Problem (P) as a nonlinear programming problem in which α and β are

the decision variables to be chosen optimally. On this basis, Problem (P) can, in principle,

be solved using standard nonlinear programming algorithms such as the SQP method. Such

nonlinear programming algorithms typically rely on the partial derivatives of the cost function

to compute search directions leading to profitable areas of the research space. Thus, to solve

Problem (P) as a nonlinear programming problem, we need to derive the partial derivatives of

J with respect to both α and β.

Using Theorem 1, partial derivatives of J with respect to α is given by

∂J(α, β)

∂α
= 2

m∑
j=1

(
y(τj|α, β)− ȳj

)⊤∂g(τj|α, β)
∂x

∂x(τj|α, β)
∂α

+ 2
m∑
j=1

(
y(τj|α, β)− ȳj

)⊤∂g(τj|α, β)
∂x̃

∂x(τj − α|α, β)
∂α

= 2
m∑
j=1

(
y(τj|α, β)− ȳj

)⊤∂g(τj|α, β)
∂x

Λ(τj|α, β)

+ 2
m∑
j=1

(
y(τj|α, β)− ȳj

)⊤∂g(τj|α, β)
∂x̃

Λ(τj − α|α, β), τ̄j ∈ [0, T ], (65)

where

∂g(τj|α, β)
∂x

=
∂g(x(t|α, β),x(t− α|α, β))

∂x(t|α, β)
,

∂g(τj|α, β)
∂x̃

=
∂g(x(t|α, β),x(t− α|α, β))

∂x(τj − α|α, β)
.
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Unfortunately, the derivation given above is not valid for the partial derivative of J with

respect to β because the state variation with respect to β may not exist in two situations: i) for

some values of β (recall that the state variation only exists when ti+β /∈ {0}∪{tj, j = 0, . . . , p}
for each i = 0, . . . , p); ii) at some time points when t ∈ {ti + β}pi=0. To overcome the first

difficulty, we first calculate the value of the cost function with the pair (α, β), if the cost

function’s value is satisfied, then (α, β) is the optimal solution; or else we perturb β slightly.

The perturbation procedure is given by

β̄ =

β, if ti + β /∈ {0} ∪ {tj, j = 0, . . . , p}, i = 1, . . . , p,

β + ϵ, if ti + β ∈ {0} ∪ {tj, j = 0, . . . , p}, i = 1, . . . , p,

where ϵ is a small number such that β + ϵ ∈ B and ti + β /∈ {0} ∪ {tj, j = 0, . . . , p} for

all i = 1, . . . , p. On the other hand, to overcome the second difficulty, we need to consider a

modified cost function in which the experimental data are slightly perturbed. The perturbation

procedure is designed to ensure that none of the new sample times coincide with points in

{ti + β̄}pi=0 ∩ (0, T ]. Details are given below.

After arriving at a new delay pair (α, β̄) at some points during the optimization process,

we define the perturbed sample times as follows:

τ̄j =

τj, if τj /∈ {ti + β̄}pi=0,

τj + ϵj, if τj ∈ {ti + β̄}pi=0,
(66)

where ϵj, j = 1, . . . ,m, are small number chosen such that τj + ϵj ∈ [0, T ] \ {ti + β̄}pi=0. The

corresponding output points are defined as follows:

ȳj =

ŷj, if τj /∈ {ti + β̄}pi=0,

ŷj + δj, if τj ∈ {ti + β̄}pi=0,

where δj, j = 1, . . . ,m, are computed using the original experimental data together with an

appropriate interpolation technique. Our new objective function is

J̄(α, β̄) =
m∑
j=1

∣∣y(τ̄j|α, β̄)− ȳj
∣∣2 ≈ J(α, β̄).

The partial derivative of J̄ with respect to β̄ can be determined in a similar manner to the

derivation of ∂J
∂α

given above:

∂J̄(α, β̄)

∂β̄
= 2

m∑
j=1

(
y(τ̄j|α, β̄)− ȳj

)⊤∂g(τ̄j|α, β̄)
∂x

Γ(τ̄j|α, β̄)

+ 2
(
y(τ̄j|α, β̄)− ȳj

)⊤∂g(τ̄j|α, β̄)
∂x̃

Γ(τ̄j − α|α, β̄).

(67)

Since it is unlikely that many of the sample times will lie in the set {ti + β̄}pi=0, there should

be no noticeable difference between minimizing J̄ and minimizing J . Indeed, our numerical
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results in the next section indicate that this is precisely the case. Thus, during the course of

the optimization process, we compute ∂J
∂β̄

using (65) and we approximate ∂J
∂β̄

using (67). This

heuristic strategy for determining the cost function and its gradient at a given pair (α, β̄) is

described below.

Step 1. Obtain x(·|α, β̄), Λ(·|α, β̄), and Γ(·|α, β̄) by solving the enlarged time-delay system con-

sisting of the original system (1)-(2) and the auxiliary systems (16)-(17) and (34)-(36).

Step 2. Use x(τ̄j|α, β̄), j = 1, . . . ,m to compute y(τ̄j|α, β̄) through equation (9).

Step 3. Use y(τ̄j|α, β̄), j = 1, . . . ,m to compute J(α, β̄) through equation (4).

Step 4. Use x(τ̄j|α, β̄), y(τ̄j|α, β̄), Λ(τ̄j|α, β̄), j = 1, . . . ,m to compute ∂J(α,β̄)
∂α

through equation

(65).

Step 5. Perturb the time points according to (66). Obtain x(τ̄j|α, β̄), and Γ(τ̄j|α, β̄), j = 1, . . . ,m

by interpolation, and then calculate y(τ̄j|α, β̄).

Step 6. Use x(τ̄j|α, β̄), y(τ̄j|α, β̄), Γ(τ̄j|α, β̄), j = 1, . . . ,m to compute ∂J(α,β̄)

∂β̄
through equation

(67).

5 Numerical examples

5.1 Example 1: Zinc Sulphate purification

For our first example, we consider the industrial zinc sulphate purification process described

in [25]. In this process, zinc powder is added to a zinc sulphate electrolyte to induce deposition

of harmful cobalt and cadmium ions. This is a key step in the production of zinc.

The rates of change of cobalt and cadmium ion concentrations in the electrolyte are de-

scribed by the following differential equations:

V ẋ1(t) = Qx0
1 −Qx1(t− α)− c1u(t− β)x1(t− α) + c3x2(t− α), (68)

V ẋ2(t) = Qx0
2 −Qx2(t− α)− c2v(t)x2(t− α) + c4x1(t− α), (69)

and

x1(t) = 3.3× 10−4, x2(t) = 4.0× 10−3 t ≤ 0, (70)

where x1 is the concentration of cobalt ions; x2 is the concentration of cadmium ions; and u and

v are control variables that correspond to the zinc powder reaction surface areas (proportional

to the amount of zinc powder added to the reaction tank).

Furthermore, V is the volume of the reaction tank (V = 400 m3); Q is the flux of solution

(Q = 200 m3/h); c1, c2, c3, c4, are model parameters; and x0
1 and x0

2 are the concentrations

of cobalt and cadmium ions at the inlet of the reaction tank, respectively (x0
1 = 6× 10−4g/L,

x0
2 = 9 × 10−3g/L). Reference [25] considers the parameter identification problem for system
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Tab. 1: Control values and switching times for Example 1.

i 1 2 3 4 5 6 7 8

t̄i 1 2 3 4 5 6 7 8

σi × 10−5 1.08 1.57 1.24 1.56 1.59 1.43 1.25 1.25

σ̄i × 10−5 5.20 4.70 4.97 4.60 4.53 4.64 4.74 4.62

(68)-(70) with a given state time-delay of α = 2. Here, the zinc powder is added with time-delay

β. We assume that the system parameters equal to the optimal values reported in [25]:

c1 = 7.828× 10−4, c2 = 2.823× 10−4, c3 = 16.67, c4 = 7.107× 102. (71)

These values were obtained using data from a real zinc production factory in China. We assume

that the terminal time is T = 8. We set the input variables u and v as equal to the optimal

control functions obtained in [25]:

u(t) =σi, t ∈ [ti−1, ti), i = 1, . . . , 8, (72)

v(t) =σ̄i, t ∈ [ti−1, ti), i = 1, . . . , 8, (73)

where the values of ti, σ
i, and σ̄i, k = 1, . . . , 8 are given constant listed in Table 1. The output

of the system is the concentration of cadmium ions:

y(t) = x2(t). (74)

Given system (68)-(70) with data (71) and inputs (72)-(73) our goal is to identify the delays α

and β. We simulate system (68)-(70) with [α̂, β̂]⊤ = [2, 0.25] to generate the observed data in

Problem (P). The observed data ŷj = x2(τj|τ, α) is sampled at τj = j/5, j = 1, . . . , 40. Thus,

our identification problem is: choose α and β to minimize

J(α, β) =
40∑
j=1

∣∣y(τj|α, β)− ŷj
∣∣2 = 40∑

j=1

∣∣x2(τj|α, β)− x2(τj|α̂, β̂)
∣∣2. (75)

subject to the dynamic system (68)-(70).

Note that at the optima value, τj ∈ I happens q − 1 times. We solve this problem using a

Matlab program that integrate the SQP optimization method with the gradient computation

algorithm described in Section 4.

Computational results with different initial guesses are shown in Table 2. The optimization

trajectories with initial guess α = 3, β = 3 are displayed in Figure 1. In Table 2 and Figure 1,

αk and βk are the values of α and β at the kth iteration during the optimization process, while

k = 0 denotes that of the initial guess. N1 denotes the times when tj + β ∈ {ti, i = 1, . . . , 8},
j = 1, . . . , 8 during the convergence progress. N2 denotes the times when τj ∈ {ti + β, i =

1, . . . , 8}, j = 1, . . . , 40 during the convergence progress. We can see from Table 2 and Figure 1

that the optimal trajectory converges to the observed data well with any initial guesses.
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Tab. 2: Numerical convergence of the cost values in Example 1.

Initial guess Cost value at the kth iteration N1 N2

No. α0 β0 k = 0 k = 5 k = 10 k = 20

1 0.5 0.5 5.865×10−5 9.001×10−8 8.396×10−25 1.151×10−27 0 0

2 1.0 1.0 4.171×10−5 6.265×10−8 2.218×10−21 2.287×10−34 3 0

3 3.0 2.0 9.169×10−5 2.007×10−5 6.624×10−7 8.209×10−27 3 0

4 3.0 3.0 7.828×10−5 2.122×10−6 2.318×10−8 1.141×10−26 6 0
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α0=3,  β0=3

observed data

Fig. 1: Numerical convergence of the output trajectory in Example 1 for initial guess No.4.

5.2 Example 2: Sodium aluminate evaporation

We now consider another industrial evaporation process described in [1]. The purpose of this

process is to improve the concentration of the mother liquor to reach specific concentration

requirement, such that the acid and caustic materials can be re-used. Due to the hysteresis

during the solution flowing through the evaporation vessel, the changes of the input solutions

can not cause an effect on the changes in the evaporation vessel instantaneously. Thus, there

are delays existing in process. For simplicity, we just consider the last two evaporators. The

variables that are of interest are the Sodium hydroxide concentration, temperature, and level

of the solution in each of the evaporation vessel. Thus, the dynamics in these two evaporation
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vessels can be presented by the following differential equations:

dh1(t)

dt
=

F01(t− β)ρ0(t− α) + F2(t− β)ρ2(t− α)− F1(t)ρ1(t) + V0

A1ρ1(t)
, (76)

dh2(t)

dt
=

F0(t− β)ρ0(t− α)− F2(t)ρ2(t)

A1ρ2(t)
, (77)

dC1(t)

dt
=

F01(t− β)C0(t− α) + F2(t− β)C2(t− α)− F1(t)C1(t)

A1h1(t)
− dh1(t)

dt

C1(t)

h1(t)
, (78)

dC2(t)

dt
=

F0(t− β)C0(t− α)− F2(t)C2(t)

A2h2(t)
− dh2(t)

dt

C2(t)

h2(t)
. (79)

dTi(t)

dt
=

∆Qi(t)

Aihi(t)cpi(t)
− Ti(t)

cpi(t)

dcpi
dt

− Ti(t)ρi(t)

hi(t)

dhi(t)

dt
, i = 1, 2, (80)

where i, i = 1, 2, refer to the ith evaporator; h, T , and C are the state variables representing the

level, temperature, and concentration of the solution in the evaporation vessel, respectively; A

is the cross-sectional area of the evaporation vessel; F is the flow rate of the product solution; V0

is the mount of vapor form other heat sources mixed with the solution; F0 is the flow rate of the

feed; C0 is the concentration of the feed; ∆Qi, i = 1, 2, are the heat changes in the evaporation

vessel depends on the live steam flow rate; cp and ρ are the specific heat capacity and the

density of the solution, respectively, which depend on the concentration and temperature. cp,

ρ, and ∆Q are calculated by using the formulas given in [1].

The initial conditions for system (76)-(80) are

x(t) = [h1(t), h2(t), C1(t), C2(t), T1(t), T2(t)]
⊤

= [1.91, 110.6, 73.0, 1.91, 97.2, 54.5]⊤, t ≤ 0. (81)

Here, the inputs are u = [u1, . . . , u5]
⊤ = [F1, F2, F0, F01, V ]⊤, where V denotes the live steam

flow rate. α is an unknown state-delays, β is an unknown input-delay. Assume that the

terminal time of this system is T = 240 minutes. The input function is

uk(t) = σi
k, t ∈ [ti−1, ti), k = 1, 2, 3, 5, i = 1, . . . , 24, (82)

and

u4(t) = 0.165, t ∈ [0, 240], (83)

where σi
k , i = 1, . . . , 24, are given constant whose heights are shown in the Figure 2. The

output is

y(t) = [C1(t), C2(t)]
⊤, t ≤ 240.

We use the output trajectory of (76)-(81) with [α̂, β̂] = [15, 6]⊤ to generate the observed data

for Problem (P). We set

ŷj = [x2(τj|α̂, β̂), x5(τj|α̂, β̂)]⊤, j = 1, . . . , 24.
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Fig. 2: Inputs of Example 2

where, τj+1 − τj = 10, Thus, our identification problem is: choose α and β to minimize

J(α, β) =
24∑
j=1

|y(τj|α, β)− ŷj|2

=
24∑
j=1

|x2(τj|α, β)− x2(τj|α̂, β̂)|2 + |x5(τj|α, β)− x5(τj|α̂, β̂)|2 (84)

subject to the dynamic (76)-(81).

We solved this problem using a Matlab program that integrates the SQP optimization

method with the gradient computation algorithm described in Section 4. The convergence

progress of the program is shown in Table 3 for four sets of initial guesses. The convergence

progress corresponding to the initial guess α = 36, β = 36, is shown in Figure 3. In Table 3

and Figure 3, αl and βl are the values of α and β at the lth iteration, while l = 0 denotes that

of the initial guess. N1 denotes the times when tj+β ∈ {ti, i = 1, . . . , 24}, j = 1, . . . , 24, during

the convergence progress. N2 denotes the times when τj ∈ {ti + β, i = 1, . . . , 24}, j = 1, . . . , 24

during the convergence progress. We can see that the optimization results converge from the

initial guesses to the optimal solution.

6 Conclusion

In this paper, we develop a gradient-based computational method for solving a time delay

identification problem, while the input function of the nonlinear time-delay system is piecewise-

constant. We assume that the time-delays—one involving the state variables and the other

involving the input variables—are unknown and need to be estimated using experimental data.

This method is unified in the sense that the gradient of the cost function with respect to the

input delay is obtained by a auxiliary delay-differential system from t = 0 to t = T with jump

conditions at the delayed control switching time points. The industrial examples demonstrate
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Tab. 3: Numerical convergence of the cost values in Example 2.

Initial guess Cost values at the ith iteration N1 N2

No. α0 β0 l = 0 l = 5 l = 10 l = 20

1 12 12 0.077 4.462×10−3 2.782×10−8 2.446×10−8 1 0

2 24 24 0.559 4.496×10−4 3.259×10−7 4.684×10−8 2 0

3 30 30 0.939 5.300×10−3 3.259×10−7 4.524×10−8 1 0

4 36 36 1.170 8.751×10−1 1.728×10−4 8.455×10−8 0 0

5 48 48 1.628 8.862×10−4 6.432×10−7 4.802×10−8 0 0
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Fig. 3: Numerical convergence of the output trajectory in Example 2 for initial guess No.4.
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that this approach is highly effective. In particular, it converges quickly even when the initial

estimates for the delays and parameters are far away from the optimal values.
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