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SUMMARY 
Data obtained using a distributed parameter model to simulate a 
power transformer are presented.  These data could be used in the 
formulation of standard codes for interpretation of the frequency 
response analysis signatures of power transformers.  
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I. INTRODUCTION 

HE majority of transformers currently in service 
worldwide were installed prior to 1980, and consequently 

most of them are approaching or have already exceeded their 
design lifetimes [1, 2]. This poses a significant risk for utilities 
and other power network stakeholders, since the impact of in-
service transformer failure can be catastrophic. One of the 
most serious problems with an in-service transformer is 
movement of its windings due to electromagnetic forces 
generated during short circuit faults. Reduction of clamping 
pressure due to insulation aging can also cause winding 
movement, and may result in an explosion [3-6]. There are 
many causes of mechanical faults, e.g., earthquake, explosion 
of combustible gas in the transformer oil, short circuit 
currents, and careless transportation [7,8]. While a transformer 
with minor winding deformation may continue to work 
satisfactorily, its capability to withstand further mechanical or 
electrical faults will gradually decrease [9]. Therefore it is 
essential to detect any minor winding deformation as soon as 
possible, and to take appropriate remedial action. Winding 
deformation has various forms, e.g., spiral tightening, 
conductor tilting, radial/hoop buckling, shorted or open turns, 
loosened clamping structures, axial displacement, core 
movement, and collapse of the winding end supports. It is 
difficult to differentiate between these internal faults using 
conventional testing methods [10]. 
   In this article data obtained using a high frequency 
distributed parameter model to simulate a power transformer 
are presented.  Mechanical faults such as axial displacement, 
radial buckling, disk space variation, loss of clamping, 
bushing and leakage faults were simulated by modifying the 
relevant electrical parameters in the transformer model, or by 
reconfiguring the impacted disks in a 3D transformer finite 
element model. It is suggested that the resulting data could be 
used in the formulation of standard codes for interpretation of 
the frequency response analysis signatures of power 
transformers. 
  

II. FREQUENCY RESPONSE ANALYSIS 
   Frequency response analysis (FRA) is a powerful diagnostic 
technique widely used to identify internal faults within power 

transformers [11]. Transformer components such as windings, 
core and insulation can be represented by equivalent circuits 
comprising resistors, capacitors, and self / mutual inductances, 
whose values will be altered by a mechanical fault within the 
transformer. Thus the frequency response of the relevant 
equivalent circuit winding will change. Changes in 
ttransformer geometry, or in the dielectric properties of 
insulating materials due to ageing or increasing water content, 
also affect the shape of the frequency response, especially the 
resonant frequencies and their damping [8]. 
   FRA is an offline technique in which a low voltage ac signal 
is injected at one terminal of a winding, and the response is 
measured at the other terminal of the same winding with 
reference to the grounded tank. The FRA analyzer measures 
the transfer function, impedance or admittance of the winding, 
typically over the frequency range 10 Hz - 2 MHz, and one or 
all of these three properties can be used for fault diagnosis. 
Although the FRA equipment can be connected to the 
transformer in different ways [12-14], end-to-end connection 
shown in Fig. 1 is capable of detecting the main types of 
mechanical faults [14].  

 
Fig. 1. FRA end-to-end test configuration 

   The FRA signature is considered as a fingerprint of the 
transformer, which can be compared with a previous signature 
in order to detect any mechanical deformation which may 
have developed between the recording of the two signatures. 
FRA diagnosis has also been utilized recently to identify 
winding deformations in rotating machines [13]. While the 
measurement procedure using commercial test equipment is 
quite simple, skilled and experienced personnel are required in 
order to interpret the FRA signatures and identify correctly the 
type and location of a fault. Although much research has been 
done on this topic, a reliable FRA signature interpretation 
code has not yet been published.  
The authors of [14] sub-divide the FRA frequency range as 
follows: 
(a) the low frequency range (<20 kHz), within which inductive 
components dominate the transformer winding response 
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(b) the medium frequency range (20–400 kHz), within which 
the combination of inductive and capacitive components 
results in multiple resonances 
(c) the high frequency range (>400 kHz), within which 
capacitive components dominate the FRA signature [15].      
These ranges and the associated fault types are summarized in 
Table I [16, 17]. 

   TABLE I 
FRA BANDS AND THEIR SENISTIVITY TO FAULTS [16] 

Frequency Band Fault sensitivity 
< 20kHz Core deformation, open circuits, shorted turns 

and residual magnetism, bulk winding 
movement,  clamping structure loosening 

20 - 400 kHz Deformation within the main or tap windings 
> 400 kHz Movement of the main and tap windings, 

ground impedances variations 

    
III. TRANSFORMER MODEL AND SENSITIVITY ANALYSIS 

   Simplorer software was used to simulate the transformer 
model shown in Fig. 2 [17-19]. 

 
Fig. 2. 10-disk model of a transformer [17]. 

 
   The high voltage (HV) and low voltage (LV) windings are 
each assumed to consist of 10 disks. Each disk comprises a 
series resistance (Rs) and inductance (Ls), shunted by a 
capacitor (Csh) and a conductance (Gsh). The capacitance (CHL) 
between the HV and LV windings is shunted by a dielectric 
conductance (GHL), and mutual inductances (Mij) between 
coils i and j are included. The dielectric insulation (oil) 
between the LV winding and the core, and between the HV 
winding and the tank, is simulated by a capacitance (Cg) and 
dielectric conductance (G). The fault-free component values of 
the model given in [9] and [13] are listed in the Appendix.  
   In Table II the transformer model parameters, and the 
mechanical faults which influence them, are listed. Various 

mechanical faults can be simulated by changing relevant 
parameters in the transformer model. This can aid in 
establishing a standard code for FRA signature interpretation.  

Table II 
MODEL PARAMETERS AND THE MECHANICAL FAULTS WHICH 

INFLUENCE THEM [9], [11], [17], [20]-[23] 
 

Model Parameter Type of Fault 
Inductance Ls Disk deformation, local breakdown, core 

deformation and winding short circuits. 
Shunt Capacitance 
Csh 

Disk movements, buckling due to large 
mechanical forces, moisture ingress and loss of 
clamping pressure. 

Series Capacitance 
CHL 

Ageing of insulation, moisture ingress and disk 
movement. 

Resistance Rs Shorted or broken disk, failure of caulking 
contacts and tap changer contact wear. 

    The sensitivity of the FRA signature to variation of the 
model parameters was investigated. As shown in Fig. 2, a 
sinusoidal excitation voltage (Vin) of 10 V and variable 
frequency (10 Hz to 2 MHz) is connected to one winding 
terminal, and the response at the other terminal of the winding 
(Vo) is recorded. The input/output coaxial leads used in 
practical measurements are represented by 50 Ω resistors ( Ri 
and Ro in Fig. 2). The transfer function TFdB = 20 log10 

is plotted against frequency. Fig. 3 shows the effect of 
±10% changes in the capacitances Cg and Csh of the HV 
winding on the FRA signature, compared to the base line 
(fingerprint) signature. Increasing Csh decreases the resonance 
and anti-resonance frequencies, i.e., the local minimum and 
local maximum frequencies respectively, with small changes 
in magnitude. Decreasing Csh increases the resonance and anti-
resonance frequencies. The same trends are observed for Cg 
variation. It will be seen that the impact of varying Cg and Csh 
is more pronounced at frequencies above 400 kHz. 

 

 
Fig. 3. Effect of ± 10% changes in the HV capacitance on the FRA signature, 

relative to the baseline (a) Cg , (b) Csh   
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       Fig. 4 shows the effect of changing the self (Ls) and 
mutual (Mij) inductances by ±10%. Unlike the effect of 
changes in Cg and Csh, which appears at frequencies above 400 
kHz, the effect of changes in Ls and Mij appears below 20 kHz 
and is more pronounced close to 1 MHz. This is attributed to 
the fact that the amount of magnetic flux penetrating the 
transformer core at low frequencies is significant, so that the 
core characteristics affect the FRA signature at low frequency. 
At high frequencies the magnetic flux tends to encase the core 
and the transformer capacitive components dominate the 
response.  

  

 

 
Fig. 4. Effect of ± 10% changes in the HV self/mutual inductances on the 
FRA signature, relative to the baseline (a) mutual inductance Mij (b) self 

inductance LS  

   As shown in Fig. 4, increasing Ls decreases the resonance 
and anti-resonance frequencies, with small changes in 
magnitude. On the other hand, decreasing Ls increases the 
resonance and anti-resonance frequencies, again with small 
changes in magnitude. Opposite trends are observed when the 
mutual inductances Mij are changed, i.e., increasing Mij 
increases the resonance and anti-resonance frequencies, and 
decreasing Mij decreases them, over the entire frequency range.  

 
Fig. 5. Effect of increased dielectric conductance G on the FRA signature 

   Fig. 5 shows the effect increasing the HV conductance (G) 
by 10% on the FRA signature (A decrease in conductance, i.e., 
an increase in dielectric resistance, is considered unlikely for 
transformer insulation). As shown in Fig. 5, increasing the 
dielectric conductance (G) has no effect on the resonance and 
anti-resonance frequencies. It does however slightly change 
the magnitudes of the peaks at high frequencies. This result is 
attributed to the very high dielectric resistance used in the 
simulation (7 MΩ), typical for transformer oil.  
   The effects of ±10% variations in various electrical 
parameters on the FRA resonance frequencies and magnitudes 
are summarised in Table III. 

TABLE III 
EFFECTS OF ±10% VARIATIONS IN VARIOUS ELECTRICAL PARAMETERS ON 

FRA REONANCE FREQUENCIES AND MAGNITUDES (RELATIVE TO 
FINGERPRINTS) 

Parameter 
Variations 

Frequency Range 
Low  

(<20 kHz) 
Medium  

(20–400 kHz) 
High  

(>400 kHz) 

 
 
 

Ls 
 

10% 
Increase 

Magnitude and 
resonance frequencies 

decreased 

Magnitude and 
resonance 

frequencies 
decreased 

Magnitude 
and 

resonance 
frequencies 
decreased 

10% 
Decrease 

Magnitude and 
resonance 

frequencies 
increased 

Magnitude and 
resonance 

frequencies 
increased 

Magnitude 
and 

resonance 
frequencies 
increased 

 
Csh 

 

10% 
Increase  No impact No impact 

Resonance 
frequencies, 
magnitude  
decreased 

10% 
Decrease No impact No impact 

Resonance 
frequencies, 
magnitude  
increased 

 
 
 

Cg 
 

10% 
Increase No impact No impact 

Resonance 
frequencies 

slightly   
decreased 

10% 
Decrease No impact No impact 

Resonance 
frequencies, 
magnitude  
increased 

 
 

Mij 
 

10% 
Increase 

Resonance 
frequencies 
increased 

Resonance 
frequencies 
increased 

Resonance 
frequencies 
increased 

10% 
Decrease 

Resonance 
frequencies 
decreased 

Resonance 
frequencies 
decreased 

Resonance 
frequencies 
decreased 

 
G 

10% 
Increase 

No impact No impact Magnitude 
decreased 

IV. FAULT ANALYSIS 
   In order to simulate physical faults within the transformer, 
Simplorer and Maxwell software were used to simulate a 3D 
finite element model of the single phase, shell-type 
transformer shown in Fig. 6.  
 
 
 
 

 
 

Fig. 6. 3D Transformer model 
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Various mechanical faults within the transformer model were 
simulated by changing the transformer coil configuration. The 
corresponding changes in the electrical parameters of the 
transformer model (Fig. 2) were calculated using the software. 
The resulting signatures were compared with the fingerprint 
signature.  

A. Loss of Clamping Pressure  
Loss of clamping pressure is a common problem, particularly 
in aged transformers. It is caused by mechanical hysteresis in 
pressboard and paper insulation [24], and leads to an increase 
in insulation conductivity because of the reduced insulation 
thickness between winding layers. It can be simulated by 
increasing the value of the shunt conductance Gsh [21]. Figs. 7 
and 8 show the effect of a 20% increase in Gsh on the FRA 
signatures of the HV and LV windings respectively; the 
resonance and anti-resonance frequencies are not shifted, but 
the magnitudes of the resonance peaks are decreased over the 
entire frequency range. The large negative spike in the HV 
winding signature around 200 kHz is thought to be an artefact 
of the software.  

 
Fig. 7. Effect of simulated loss of clamping pressure on the FRA signature of 

the HV winding  

 

Fig. 8. Effect of simulated loss of clamping pressure on the FRA signature of 
the LV winding  

B. Inter-Disk Fault 
  The inter-disk fault is one of the most common mechanical 
faults within power transformers, and approximately 80% of 
mechanical failures are attributable to it [12]. It is due to 
changes in the axial disk space (Fig.9) caused by excess 
mechanical stress and short circuit faults, and can be simulated 
by increasing the series capacitance (Csh) and the mutual 
inductance (Mij )  between the two relevant disks [25, 26]. Fig. 
10 shows the effect of a 10% increase in Csh and Mij on the HV 
FRA signature when the fault occurs at the top, middle and 

bottom of the HV winding. A 10% increase in Csh and in Mij 
corresponds to a 10% increase in Δh, the space between the 
affected disks (Fig. 9). Fig. 10 shows that this fault does not 
have a significant effect on the FRA signature at frequencies 
below 300 kHz. The resonance and anti-resonance frequencies 
above 300 kHz are decreased, and the peak magnitudes are 
changed. The frequency decreases are larger when the fault 
occurs within the top or bottom disks of the winding, rather 
than within the middle disks.   
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Fig. 9.  Interdisk fault (Δh) configuration  

 

 
Fig. 10. Effect of inter-disk fault on the FRA signature of the HV winding. 

 C. HV Winding Bushing Fault 
   This type of fault can be simulated by connecting the 
bushing T-circuit model shown in Fig. 11 between the voltage 
source Vin  and the transformer model shown in Fig. 2 [5].  
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Fig. 11. Transformer bushing model [5]  
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Fig. 12. Impact of high voltage bushing fault on the FRA signature of the HV 

winding 

   The effect of a 10% reduction in bushing capacitance (800 
pF) shown in Fig. 11 on the FRA signature is shown in Fig. 
12. A reduction in bushing capacitance corresponds to a 
reduction in the breakdown voltage of the bushing insulation.  
As shown in Fig. 12, there is no significant change in the 
signature below 600 kHz, but the resonance and antiresonance 
peaks around 700 kHz in the fingerprint disappear.  

D. Axial Displacement Fault 
This fault occurs due to imbalanced magnetic forces generated 
in a winding as a result of a short-circuit fault [21]. These 
forces cause axial movement of the winding as shown in Fig. 
13.  
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Fig. 13. Axial displacement (Δh) configuration  
   

 
Fig. 14. Impact of HV axial displacement on the FRA signature 

   The fault can be simulated by changing the values of the 
series capacitance (Csh) and mutual inductance (Mij) between 
the HV and LV windings [27]. A 10% increase in CHL and in 
Mij corresponds to approximately 10% movement Δh which is 

the ratio of the HV axial displacement and the overall length 
of the winding (Fig. 13). 
   Fig. 14 shows that such a fault has little effect on the FRA 
signature below 200 kHz.  In the range 200-400 kHz the 
resonance frequencies and magnitudes decrease. The 
resonance around 700 kHz in the fingerprint is shifted towards 
higher frequency and its magnitude increases. These trends are 
independent of the direction of the axial movement. 

E. Dielectric Leakage Current Fault  
  Ground shield damage, oil and paper aging, high moisture 
content in the winding and abrasion of solid insulation are the 
main causes of leakage current to earth through transformer 
insulation [28]. This type of fault can be simulated by 
increasing the conductance between the HV winding and the 
ground (G in Fig.2) [29]. Fig. 15 shows that this fault 
produces  small changes in peak magnitude below 200 kHz. 

 

Fig. 15. Effect of leakage fault on the FRA signature 

F. Short Circuit Fault 
  This fault is due to erosion of  the winding and conductor 
insulation, due to vibrations generated by electromechanical 
forces. The erosion may lead to excessive current in the 
winding [27]. The fault can be simulated by short circuiting 
the series resistance Rs and the series inductance Ls of the HV 
winding (Fig.2) [30]. Fig. 16 shows that it fault has little effect 
on the signature at frequencies below 200 kHz. At higher 
frequencies the magnitude is slightly increased and the 
resonance frequencies are slightly decreased. The same fault 
has a greater effect when it occurs at the top or bottom of the 
winding rather than in the middle.   
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Fig. 16. Impact of HV winding short circuit fault on the FRA signature when 
it occurs (a) at the top of the winding, (b) at the middle and bottom of the 

winding 
   
G. Radial Displacement Fault 
  Windings may be subjected to radial forces arising from the 
interaction of the winding current with the magnetic flux. 
Fig.17 shows a radial dislocation between the LV and HV 
windings. Large radial forces may lead to winding buckling 
[31]. This fault can be simulated by decreasing the capacitance 
to ground (Cg), the capacitance between the HV and LV 
windings (CHL), and the mutual inductance (Mij) of the 
impacted disks [32]. A simultaneous decrease of 10% in each 
of these three parameters corresponds to a 10% radial 
displacement Δw of the impacted disks as shown in Fig. 17. 
Δw is calculated as the ratio of the radial displacement of the 
impacted disks to the diameter of the disk. The FRA responses 
of the HV and LV windings are shown in Fig. 18 (a) and (b) 
respectively. 
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HV 

LV 

Δw Core

 
               

Fig. 17.   Radial fault (Δw) configuration  
 
    

  

 
Fig. 18.  Impact of radial fault on the FRA signature (a)HV (b) LV winding 

  Fig. 18 (a) shows that the resonance frequencies of the HV 
winding are increased slightly at frequencies above 400 kHz. 
In the LV winding an increase occurs at frequencies above 20 
kHz.  

   Table IV is a listing of the various fault types and their 
effects on the FRA signature. It could be used in the 
formulation of standard codes for power transformer FRA 
signature interpretation. 
 

TABLE IV 
IMPACT OF VARIOUS FAULTS ON TRANSFORMER FRA SIGNATURE 

Fault Type Frequency Range 
< 20kHz 20-400 kHz > 400 kHz 

Axial 
Displacement 

No impact 
 

Resonance 
frequencies and 

magnitude 
decreased 

Resonance 
frequencies and 

magnitude  
increased 

Radial 
Displacement 

Resonance 
frequencies 
increased 

Resonance 
frequencies 
increased 

Resonance 
frequencies 
increased 

High Voltage 
Bushing 

No impact 
 

No impact 
 

Magnitude 
decreased, one 

resonance 
frequency 
disappears 

Dielectric 
Leakage 
current 

Magnitude 
decreased 

Magnitude 
decreased 

No impact 

 
Inter Disk 

No significant 
impact 

Resonance 
frequencies and 

magnitudes 
increased 

Resonance 
frequencies and 

magnitudes 
increased 

 
Short Circuit 

No significant 
impact 

Resonance 
frequencies 

decreased and  
magnitudes 
increased 

Resonance 
frequencies 

decreased and  
magnitudes 
increased 

Loss of 
Clamping 
Pressure 

Magnitude 
decreased 

Magnitude 
decreased 

Magnitude 
decreased 

    
V. CONCLUSION 

    This  paper presents a comprehensive analysis of the effects 
of various faults on the FRA signatures of a transformer 
simulated by a high frequency model. The faults were 
simulated through changes in the values of some of the 
electrical components in the model. It was found that radial 
displacement of a winding alters the FRA signature over the 
entire frequency range (10 Hz-1 MHz), whereas changes due 



 

to axial displacement occur only at frequencies above 200 
kHz. A table listing various transformer faults and the 
associated changes in the FRA signature was compiled, and 
could be used in the formulation of standard codes for power 
transformer FRA signature interpretation. 

APPENDIX  
TRANSFORMER MODEL COMPONENT VALUES [9, 13] 

 Rs Ls Csh Cg Chl 1/G 
HV 1.2Ω 180µH 0.013nF 3nF 5nF 7 MΩ 
LV 0.5Ω 65µH 0.026nF 6nF 5Nf 7 MΩ 
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Abstract— There is now convincing evidence that poor diet, 
in combination with physical inactivity are key determinants 
of an individual’s risk of developing chronic diseases, such as 
obesity, cancer, cardiovascular disease or diabetes. Assessing 
what people eat is fundamental to establishing the link 
between diet and disease. Food records are considered the 
best approach for assessing energy intake. However, this 
method requires literate and highly motivated subjects and 
adolescents and young adults are the least likely to 
undertake food records. The ready access of the majority of 
the population to mobile phones has opened up new 
opportunities for dietary assessment. In such systems, the 
camera in the mobile phone is used for capturing images of 
food consumed and these images are then processed to 
automatically estimate the nutritional content of the food. A 
vital step in this process is the estimation of the volume of the 
food in the image. In this paper we propose a food volume 
estimation approach which requires only a stereo pair of 
images to be captured. Our experimental results show that 
the proposed approach can provide an accurate estimate of 
the volume of typical food items in a passive manner without 
the need for manual fitting of 3D models to the food items. 

Keywords- dietary assessment; food records; feature 
detection; volume estimation; disparity map; depth map 

I.  INTRODUCTION  

Preventing disease through improving nutrition is a 
global health priority [1]. Approximately 30% of all 
cancers have been attributed to dietary factors [2]. The 
strongest evidence for diet increasing cancer risk is 
specifically with overweight and obesity, high 
consumption of alcoholic beverages, aflatoxins and 
fermented foods. A diet of at least 400 g per day of fruits 
and vegetables appears to decrease cancer risk. However, a 
key barrier to linking dietary exposure and disease is the 
ability to measure dietary factors, including intake of food 
groups such as fruits and vegetables, with specificity and 
precision [3].  

Assessing what people eat is fundamental to 
establishing the link between diet and disease. However, it 
is now more challenging to do this as consumers have 
moved away from eating a traditional ‘meat and 3-veg’ 
meal at home to purchasing more take-away food and 
eating out [4, 5]. With this greater proportion of foods 
eaten away from home [6, 7], it is now becoming 

increasingly difficult for consumers to accurately assess 
how much they have eaten or the composition of their 
meal.  

Food records are considered the best approach for 
assessing energy intake (kilojoules). With a paper-based 
food record, subjects are asked to record their food and 
fluid intake for between 3-7 days. This method requires 
literate and highly motivated subjects. Research has shown 
adolescents and young adults, who typically have 
unstructured eating habits and frequently snack, are the 
least likely to undertake food records [8].  

With advances in technology it is now timely to 
explore how mobile devices can better capture food intake 
in real-time by potentially reducing the burden of the 
recording task to both the subject and the researcher. The 
ready access of the majority of the population to mobile 
phones has opened up new opportunities for dietary 
assessment which are yet to be leveraged. Tufano et al. [9] 
in a review of eHealth (web and mobile phone) 
applications refers to this as ‘technology convergence’ in 
which real-time or near-real time multimedia 
communication capabilities can occur.  

The integrated camera in the mobile phone is used for 
capturing images of food consumed. These images are then 
processed to automatically estimate the nutritional content 
of the food items for record keeping purposes and to 
provide feedback to the patient. To estimate the nutritional 
content of food items in an image the food item must be 
recognized and the mass of the food item must be 
estimated. A vital step in estimating the mass of the food 
item is to estimate its volume as this can then be used in 
conjunction with a density database of food items to 
estimate the mass of the food in the image. Previous 
approaches to volume estimation of food have included 
passive and active approaches which require the user to 
capture form one image up to several pairs of images of 
the food item. 

Shang et al. [10, 11] proposed an active approach to 
food volume estimation using structured light. In their 
proposed system a laser module is attached to a mobile 
phone. This module produces a rectangular grid pattern 
with the brightness of the lines decreasing according to the 
distance from the center of the pattern. Grid lines are 
extracted from the camera image and a depth map is 
created from multiple pairs of images after a calibration 
stage. This depth map can be used to create a 3D surface 



and the volume inside this surface is taken as the volume 
of the food item. 

Martin et al. [12] proposed a system to estimate 
volume based on a single image of the food. They assumed 
that the foods captured in the image are approximately 
bowl-shaped and inferred the volume of the food item 
from the surface area of the food. They essentially use a 
predefined linear relationship between surface area and 
volume. This technique relies on the validity of the bowl 
shape assumption and is relatively inaccurate for foods that 
do not satisfy this assumption (spherical fruit for example). 

Weiss et al. [13] used a system that required three 
images of the food item and a calibration grid pattern. This 
allowed the height of the food item above a reference 
plane to be estimated and from this height the volume of 
the food between this 3D surface and the plate was 
estimated. The requirement to capture three images was a 
disadvantage of this system as this is considered to be 
overly burdensome to the participants. 

Chen et al. [14] proposed a system that requires only a 
single image of the food item. The user then manually 
selects one of a number of predefined geometric models 
such as a cube, sphere etc. A 3D/2D registration step then 
automatically aligns the 3D model to the 2D projection of 
the food item in order to estimate the scale and pose o the 
3D model which best matches the 2D projection of the 
food item. After calibration, the volume of the 3D model at 
the registered pose and scale is taken as the volume of the 
food item. This reported estimation errors for this 
technique were approximately 5% for food items which 
had a shape that matched one of the pre-defined models 
and 10% for irregularly shaped objects. 

Woo et al. [15] proposed a similar approach which also 
included irregularly shaped 3D models which consisted of 
the surface shape of the food item extended towards the 

surface of the plate to create an irregular prismatic model 
of the food item. They also allowed manual refinement of 
the 3D model where the user defined the distance to extend 
the prismatic model. Chae et al. [16] used 3D model 
templates for specific common food items including 
liquids in clear near-cylindrical containers and bread slices. 
The proposed techniques provided a method for 
automatically determining the 3D shape of these specific 
food items (by automatically determining the thickness of 
the slice of bread on a plate for example). 

In this paper we propose a food volume estimation 
approach similar to that proposed by Weiss et al.. However 
our proposed approach requires only a stereo pair of 
images to be captured. The proposed approach also 
includes a novel slice based estimation approach to 
estimate the volume of a food item from a partial point 
cloud of the surface of the food item. The proposed 
approach can be used to estimate the volume of any 
irregularly shaped food item. 

II. THE MOBILE PHONE BASED DIETARY ASSESSMENT 

SYSTEM 

The food volume estimation procedure proposed in this 
paper will be utilized in the mobile phone based dietary 
assessment system that has been developed as part of the 
Technology Assisted Dietary Assessment (TADA) project. 
The system architecture for this system is shown in Figure 
1. The users of the system are given a mobile phone with a 
built-in camera, network connectivity, and integrated 
image analysis and visualization tools to allow their food  
and beverage intake to be recorded. The process starts with 
the user sending the food image and contextual metadata 
(date, time, geo-location, etc.) to the server via the data 
network (step 1). The user places a fiducial marker in each 
image that allows the images to be spatially and color 
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Figure 1. System architecture for the TADA dietary assessment system. 



calibrated. Food identification (and in the future volume 
and density estimation) is performed on the server (steps 2 
and 3) for finding the nutrient information (step 6). The 
database contains information on the most commonly 
consumed foods, their nutrient values, and weights and 
densities for typical food portions. The food database uses 
image based features, referred to as Visual 
Characterization Metrics (VCMs) (step 7), to index the 
nutrient information. Finally, these results are sent to the 
researcher for further analysis (step 8) and future 
developments will incorporate user feedback including 
food group analysis and dietary recommendations (step 9). 

III. 3D RECONSTRUCTION OF FOOD ITEMS 

In order to estimate the volume of any food object in 
the image based dietary assessment system, firstly we need 
to reconstruct the 3D shape of the food. The three 
dimensional (3D) reconstruction of objects from 
single/multiple view/s is an on-going research area in the 
field of computer vision. Humans interpret depth using 
various visual cues to understand the third dimension of an 
object, in the 3D world. However, for a given two 
dimensional (2D) image, we have the ability to visualize 
the third dimension through information on perspective 
projection from the images. The interest lies in the process 
of gathering this 2D image data and processing it to create 
the 3D structure. Hence, 3D reconstruction involves the 
use of techniques in computer vision to add the missing 
dimension to create the 3D space from 2D images.  

To describe the process of mage acquisition we will 
use the pinhole camera model, which projects 3D objects 
onto a 2D image plane. We will then introduce the basic 
geometry used for the reconstruction of points in 3D space 
using two different (calibrated) camera viewpoints. 
Finally, a simple algorithm which can be used to recover 
the 3D position of such points from their 2D views will be 
explained. 

A. Pinhole Camera Model 

A point in 3D space w=[X, Y, Z]T and its projection in a 
2D image plane m=[x, y]T can be represented using the 
pinhole camera model as shown in Figure 2(a). The 
relationship of the projection between the two planes can 
be expressed using the homogeneous coordinate: 

 wMm ~~   (1) 

Here M is the perspective projection matrix which can be 
represented as 

 ]|[ tRKM   (2) 

K is the camera matrix containing internal parameters, 
given by 
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where xfk , yfk , f is the focal length, xk  and  
v

k  

are the distortions along the image plane, s is the skew 
factor, and ),( 00 yx  is the principal point, i.e. the point 
where the optical axis intersects with the image plane.   

B. Epipolar Geometry 

Epipolar geometry refers to the intrinsic projective 
geometry between two views. It is independent of the 
structure in the scene and only depends on the cameras’ 
intrinsic parameters and relative positions. Suppose a point 
X in 3D space is captured by two views, at x in the left 
view and x′ in the right view as shown in Figure 2(b). Then 
image points x and x′, space point X, and camera centers C 
and C′ are coplanar. This plane is called the epipolar plane 
and can be determined by the ray back-projecting from x to 
X and the base line joining the camera centers. The points e 
and e′ where the base line of the cameras intersects with 
the image planes are called epipoles. Epipoles are actually 
the images of the camera centers and all epipolar lines 
must pass through them. In the context of stereo matching 
algorithms for depth estimation, the search for x′ that 
corresponds to x can be constrained to the epipolar line 
instead of the whole image. Further details of epipolar 
geometry and its terminology can be found in [17]. 

C. Fundamental Matrix 

The fundamental matrix F is a 3x3 matrix with rank 2 
and satisfies the condition that, for any pair of 
corresponding points x and x′ in the two images, the 
following equality holds: 

 x′TFx = 0 (4) 

 
 

(a) Pinhole camera model 
 

 
(b) Epipolar geometry 

 
Figure 2. Camera and projection  

 



According to epipolar geometry, x′ lies on the epipolar line 
l′ = Fx. Hence x′T l′ = 0 and then x′TFx = 0. We use the 
strong camera calibration method where the fundamental 
matrix can be computed using the calibrated camera 
projection matrices P and P′. Given P and P′, the 
fundamental matrix F can be represented by 

 F = [e]×P′P+ (5) 

where P+ is the pseudo-inverse of P, i.e. PP+ = I, and [a]× 

is defined as in (6) when a= Taaa ),,( 321 . 
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The fundamental matrix, F can be computed using 
corresponding points from two views. Given x = (x,y,1)T 
and x′=(x′,y′,1)T, the equation (4) can be rewritten as 

 0)1,,,,,,,,(  fyxyyyxyxyxxx  (7) 

where f = (f11, f12, f13, f21,f22, f23, f31, f32, f33)
T and fij are the 

corresponding elements of F. With a set of n point 
matches, a set of linear equations are obtained as follows 
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F can be computed by solving this set of equations and 
will be used in the rectification process, which is essential 
for depth map calculation.  

IV. PROPOSED FOOD VOLUME ESTIMATION APPROACH 

Accurate estimation of food portion size from the 
captured views is one of the challenging problems for the 
automatic nutritional analysis of food. We have developed 
a method to automatically estimate the portion size of a 
variety of foods through volume estimation. Our proposed 
volume estimation process requires a set of two 2D images 
to be taken from the left side and the right side of the food 
items located on the user’s plate. The food volume 
estimation procedure consists of 6 steps: feature matching, 
rectification, camera calibration, disparity & depth map 
generation, 3D structure reconstruction and 3D volume 
estimation. Figure 3 shows a flowchart of the proposed 
volume estimation approach.  

 

 
 

Figure 3. Flow chart of the proposed food estimation approach 
 



A. Feature Matching 

Feature matching identifies the corresponding feature 
points between the stereo pairs and is used for image 
rectification. In this paper, we use the SIFT algorithm [19] 
on the left and right images in order to determine the 
corresponding feature points. The SIFT algorithm extracts 
the local features of the objects at particular interest points. 
The extracted features are not only invariant to image scale 
and rotation but also robust to changes in illumination, 
noise, and minor changes in viewpoint. These properties 
make the extracted features highly distinctive allowing 
correct object identification with low probability of 
mismatch. As the rectification process requires at least 8 
correct matches, we select the correct matches from the 
checker board pattern and segmented food region and we 
remove the rest. An example of the matched points 
between the stereo images of an apple are shown in 
Section VI. 

B.  Stereo Rectification 

The fundamental matrix can reduce the search of 
corresponding points from the whole image to the epipolar 
line. In practice, a pre-processing procedure known as 
rectification is usually required in most stereo-matching 
based disparity and depth estimation algorithms. In our 
rectification, a pair of images taken from different 
viewpoints are transformed and re-sampled to produce a 
pair of rectified images in which the epipolar lines are all 
parallel with the x-axis and are the same in both views. 
Consequently, the disparity only exists in the x-direction. 
In fact, if the epipolar line is parallel with the x-axis after 
transformation, the epipole will be transferred to the 
infinite point with the 2D homogeneous image coordinate 
equal to (1,0,0)T [17]. Suppose, in the partially transformed 
left view, a point of interest u0, i.e. the center of the image, 
is the origin and the epipole e with a 2D homogenous 
image coordinate (f,0,1)T lies on the x-axis, then e can be 
transferred to the infinite point with the following 
transformation 
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Finally, the required transformation for rectification of the 
original left view is given by the product H = GRT where 
T is the translation taking u0 to the origin, R is a rotation 
around the origin taking e to the x-axis and G is the 
transformation which maps e to the infinite point. As for 
the corresponding rectification transformation H′ for the 
original right view, it can first be computed using a 
similar method and then optimized by minimizing the sum 

of squared distance   2),( ii xHHxd , where ix  and 

ix are corresponding points and ),( ji xxd  is the distance 

between the points ix  and jx . A complete tutorial of 

image rectification with detailed analysis can be found in 
[17]. The rectification results for a pair of apple images 
are shown in the experimental results (Section V). 

C. Camera Calibration 

Camera calibration is a necessary step in 3D 
reconstruction to extract metric information from 2D 
images [18]. In our system, we consider a very simple 
protocol, which involves the use of a calibrated fiducial 
marker. It consists of a checker board (color) with known 
dimensions placed in the field of view of the camera as 
shown in Figure 3. This allows us to identify the scale and 
pose of the food item to be estimated and also allows color 
correction of the images.  

The camera parameters consist of intrinsic parameters 
(focal length, principal point, distortion and skew) and 
extrinsic parameters (camera orientation and translation).  
In our food volume estimation process, we use the fiducial 
marker as a reference to measure the amount of the food 
present in the plate. 

D. Disparity and Depth Map Generation 

A disparity map is a depth map where the depth 
information is derived from offset images of the same 
scene. Depth maps can be generated using various other 
methods, such as time-of-flight (sonic, infrared, laser), 
which we will not explore here. Although these active 
methods can often produce far more accurate maps at short 
distances, the passive method has its benefits, including 
applicability at long distances. 

The depth information from the active approaches [20] 
are either not accurate enough or based on strong 
assumptions i.e. shape priors or static objects which make 
them not suitable for multi-view reconstruction 
applications. In contrast, passive techniques rely solely on 
images captured by cameras and depth from these 
approaches (e.g., stereo matching) is straightforward and 
reliable. The simple principle of depth estimation from 
stereo matching is illustrated in Figure 4, where B is the 
length of the baseline joining the camera centers, f is the 
camera focal length and disparity = |x – x’|. Then 

 
disparity

Bf
depth   (10) 

which means depth is inversely proportional to disparity 
and disparity is often treated as synonymous with inverse 

 
Figure 4. Depth vs. disparity 



depth. The disparity map generated using normalized cross 
correlation for the apple image is shown in the 
experimental results (Section VI).  

E. 3D Reconstruction 

Once the disparity map is estimated, we can convert 
these disparities into depth using equation (10). With the 
depth map and knowledge of the intrinsic parameters of 
the camera, we are able to back project image pixels into 
3D points [17, 18]. One way to compute the camera 
intrinsic parameters is with the MATLAB Camera 
Calibration Toolbox [21] from the California Institute of 
Technology. Such a tool will produce an intrinsics matrix, 
KK, of the form: 
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where fc  is a 2×1 vector which contains the focal length 
in pixels, cc is a 2×1 vector which stores the principal 
point coordinate, calpha _ is the skew coefficient (the 

angle between the x and y axis) and kc is a 5×1 vector, 
represents the image distortion coefficients. 

This camera matrix relates 3D world coordinates to 
homogenized camera coordinates via 

    Tworldworldworld
T

cameracamera ZYXKKYX .1   (12) 

If we know the intrinsic matrix, we can back project each 
image pixel into a 3D ray that describes all the world 
points that could have been projected onto that pixel on the 
image plane. However, the distance of that point to the 
camera is unknown. This can be recovered by the disparity 
measurements of the stereo depth map as 
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Here the pixel disparities are unitless; hence they cannot be 
used directly in this equation. Also, if the stereo baseline 
(the distance between the two cameras) is not well-known, 
then it introduces more unknowns. Thus we transform this 
equation into the general form 
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There are two unknowns in this equation, thus we solve 
using least squares by collecting a few corresponding 
depth and disparity values from the fiducial marker and 
using them as tie points.  

In our reconstructed 3D scene, we see only the front 
view is reconstructed leaving the other part unconstructed. 
The reason for this is the back view was occluded and we 
cannot recover the occluded scene thus we use a 
symmetric reconstruction approach to recover the occluded 
regions. Symmetry is a universal concept in nature, 
science, and art. In the physical world, geometric 
symmetries and structural regularity occur at all scales, 
from crystal lattices and carbon nano-structures to the 
human body, architectural artifacts, and the formation of 
galaxies [22]. Naturally many food objects are symmetric 

in the real world e.g. apple, orange, pineapple etc. If we 
can reconstruct half of the food object, we can often easily 
reconstruct the other half using symmetry.  

F. Volume Estimation 

In the previous step, the 3D structure of the food item 
is reconstructed as a 3D point cloud (a set of vertices in a 
three-dimensional coordinate system). Although point 
clouds can be viewed and inspected directly, they are not 
generally directly usable in most 3D applications, and 
therefore are usually converted to polygons or triangular 
mesh models, NURBS surface models, or CAD models 
through a process commonly referred to as surface 
reconstruction [23].  

In our system, we convert the reconstructed 3D point 
cloud into a series of slices. We accomplish this by 
dividing the point cloud into several slices. These slices 
contain exactly the same information as the initial point 
cloud - the (x,y,z) coordinates of the points. The points of 
each slice are co-planar, and so we can process each slice 
as a 2D set of points, instead of a 3D object. The new 
slices in the 3D body help to access the local information 
of a particular slice and the information between adjacent 
slices efficiently, allowing the reconstruction of global 
structure and the shape of the food object.  

We divide the point cloud along the z-axis, which 
represents the depth information. In our setting, the 
distance between pixels in the x-axis and y-axis is 1mm   
and between two slices is also 1 mm. We convert each 
slice into binary data. The volume estimation process can 
be performed in two steps: Firstly, the formation of the 2D 
slices from the 3D point cloud.  Secondly, the total volume 
( TV ) of the food object is the summation of the individual 

volume ( kV ) for each slice which obtained from the 
previous step. If S is the total number of slices, then we can 
compute the total volume as follows 

 



S

k
kT VV

1

 (15) 

V. EXPERIMENTAL RESULTS 

To test accuracy of the proposed food volume 
estimation approach, we performed validation experiments 
on 6 fruit items namely: apple, orange, pear, banana, 
pineapple and kiwi-fruit a shown in Figure 5. A pair (left 
and right) of images for each category of fruit was 
captured using an IPhone 4S. The step by step results of 
the proposed approach are shown in Figure 6 for the apple 
food item. Table I shows the estimated volume of each 
food item using or proposed approach and the ground truth 
volume of the food found using water displacement. The 
average percentage error for our proposed approach is on 
average 7.75 % for these food items which is comparable 
with the accuracy of other more complex approaches.  

Our experiments show that the less textured food items 
may lead to erroneous 3D volume estimation, which can 
be improved by using an algorithm having better dense 
matching. Non-uniform lighting condition also can lead to 
larger errors in the volume estimates.  

 
 
 



TABLE I.  VOLUME ESTIMATION ERROR (%) 

Food Item Ground 
truth (ml) 

Estimated 
(ml) 

Error (%)

Apple  185 181.5 2.7
Orange 118 112.6 4.6
Pear 230 195.1 15.1
Banana 155 146.5 5.4
Pineapple  1547 1404.2 9.4
Kiwifruit 120 108.8 9.3

Average Error 7.75
 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed a food volume 
estimation approach by geometrically reconstructing the 
objects from a pair of stereo images. We consider a free 
hand approach where the user can capture pictures with 
minimal restrictions on the position and distance between 
the cameras.  Our image acquisition step requires the 
inclusion of a fiducial marker in each food image. We 
obtained the camera parameters and back projected the 
image plane into 3D world coordinates. We performed 
experiments for 6 different kinds of popular fruits and 
estimated their respective volume. Our experimental 
results show that the proposed approach can provide an 
accurate estimate of the volume of typical food items in a 
passive manner without the need for manual fitting of 3D 
models to the food items. 

In future work, we intend to use a 3D stereoscopic 
camera to obtain the 3D structure and the volume of the 
food which will eliminate the need for the user to capture 
two images of the food item and for the complicated 
rectification process.  
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