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ABSTRACT

Texture in crystalline materials, i.e. preferred orientation (PO), is of interest in
terms of texture-property relationships and also in X-ray diffraction science because
PO can cause serious systematic errors in quantitative phase analysis using
diffraction data. The single-parameter, pole-density distribution function (PDDF),
proposed by March (1932) to represent PO in diffraction analysis, is used widely in
Rietveld pattern-fitting following a suggestion by Dollase (1986). While the March
model is an excellent descriptor of PO for gibbsite [AI{OH);] x-ray powder
diffraction (XRPD) data (O’Connor, Li and Sitepu, 1991), the model has proved to
be deficient for Rietveld modelling with molybdite [MoOQj;], calcite [CaCO;)] and
kaolinite [Al1,04.28i0,.2H,0] XRPD data (Sitepu, 1991; O’Connor, Li and Sitepu,
1992; and Sitepu, O’Connor and Li , 1996). Therefore, the March model should not
be regarded as a general-purpose PDDF descriptor.

This study has examined the validity of the March model using XRPD and
neutron powder diffraction (NPD) instruments operated, respectively, by the Curtin
Materials Research Group in Perth and by the Australian Nuclear Science and
Technology Organisation at the HIFAR reactor facility at Lucas Heights near
Sydney. Extensive suites of XRPD and NPD data were measured for uniaxially-
pressed powders of molybdite and calcite, for which the compression was
systematically varied. It is clear from the various Rietveld refinements that the
March model becomes increasingly unsatisfactory as the uniaxial pressure (and,
therefore, the level of PO) increases.

The March model has been tested with a physical relationship developed by the
author which links the March r-parameter to the uniaxial pressure via the powder
bulk modulus, B. The agreement between the results obtained from directly-
measured values of B and from Rietveld analysis with the March model are
promising in terms of deducing the powder bulk modulus from the March r-
parameter.

An additional test of the March model was made with NPD data for specimens

mounted, first, parallel to the instrument rotation axis and, then, normal to the axis.



The results have provided some further indication that the March model is deficient
for the materials considered in the study.

During the course of the study, it was found that there are distinct differences
between the direction of the near-surface texture in calcite, as measured by XRPD,
and bulk texture characterised by NPD. The NPD-derived textures appear to be
correct descriptions for the bulk material in uniaxially-pressed powders, whereas the
XRPD textures are heavily influenced by the pressing procedure.

An additional outcome of the NPD work has been the discovery, made jointly
with Dr Brett Hunter of ANSTO, that the popular LHPM Rietveld code did not allow
for inclusion of PO contributions from symmetry-equivalent reflections. Revision of
the code by Dr Hunter showed that there is substantial bias in Rietveld-March r-
parameters if these reflections are not factored correctly into the calculations.

Finally, examination of pole-figure data has underlined the extent to which
the March model oversimplifies the true distributions. It is concluded that spherical
harmonics modelling should be used rather than the March model as a general PO

modelling tool.
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LIST OF SYMBOLS AND ABBREVIATIONS

The following abbreviations are used extensively in the thesis :

ADF : angular density distribution frequency
ANSTO : Australian nuclear science and technology organisation
ESD : estimated standard deviation

FWHM : full-width at half-maximum

GOFI : goodness-of-fit index

HIFAR : high flux Australian reactor

HRPD : high resolution neutron powder diffractometer
JCPDS : joint committee for powder diffraction standards
LAC : linear attenuation coefficients

NPD : neutron powder diffraction

ODF : orientation distribution function

PDDs : pole-density distributions

PDDFs : pole-density distribution functions

PO : preferred orientation

PSDs : particle size distributions

QPA : quantitative phase analysis

RLV : reciprocal lattice vector

RD : rolling direction

ROD : random orientation distribution

SE : series expansion

D : transverse direction

XRPD : x-ray powder diffraction

ASSUMED BACKGROUND FOR THESIS

It is assumed that the readers have a basic understanding of crystallography
and diffraction principles at the level of the text "Elements of X-ray Diffraction”,
authored by B.D. Cullity (1978), 2nd edition - Addition-Wesley.
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CHAPTER 1

INTRODUCTION

1.1 Preferred Orientation (Texture) in Polycrystalline Materials

The single crystals comprising polycrystalline materials are seldomly found to
be randomly oriented. Most polycrystalline materials have at least some preferred
orientation (designated in the thesis as PO) which involves one or more
crystallographic directions being preferentially oriented in space. For example,
uniaxial-pressing of a powder with ‘platy’ grains will result in the plate surface
tending to align normal to the direction of compression. In keeping with the
literature, the term fexture is used frequently in the thesis as an alternative to PO.

PO in polycrystalline materials has been investigated for many years,
particularly in relation to metals, rocks and minerals. Metals have been the most
intensively studied class of materials and their characterisation has formed the basis
of most of the theoretical work in the field. Rocks and minerals, which have received
less attention principally due to the greater complexity of their crystal structures, can
now be studied more readily using the powerful texture computational procedures
which have been developed (Weiss and Wenk, 1985).

There are various possible physical origins of texture formation in powders:
(i) rigid particle rotation due to particle shape anisotropy, (ii) plastic deformation
caused by crystallographic gliding, (iii} twinning, and (iv) crystal fracture as well as
combinations of two or more of these processes. PO development will also depend
on the particular method of sample treatment, e.g., sedimentation and uniaxial
compaction. Further, interaction between particles of different phases may also
occur. Since the resulting PO may be dependent on the phase content, PO modelling
is especially important in quantitative phase analysis (QPA) with diffraction data.

Texture modelling is mainly conducted using the orientation distribution

function (ODF) formalism proposed initially by Bunge (1965) and Roe (1965) - see



also the review by Bunge (1982). The ODF f(g) represents the volume fraction of
crystallites in the sample having the crystal orientation g :
d7V=f(g)-dg (12
In order to describe the ODF of a polycrystalline sample it is necessary to
define (i) a sample coordinate system K, to which orientation is to be referred, and
(ii) a crystal coordinate system Ky for each crystallite - see Figure (1.1). Both the
sample and crystal coordinate systems are assumed to be (i) right-handed cartesian
coordinate systems and (ii) adapted to symmetry, i.e. crystal and sample symmetries.
The orientation of a crystallite in a sample is determined by the rotation g
which transforms the sample coordinate system into the crystal coordinate system, as
described by Bunge (1982) :
K,=¢g-K, (1.1b)

In the Bunge notation, the crystal orientation is defined by Eulerian angles :

g=(9,,9.0,) (1.1c)

see Figure (1.1a). In rolled metal sheets, the specimen coordinate system is defined

by the rolling direction (RD), the transverse direction (TD), and the normal to the

plane of sheet. The crystal coordinate system is normally defined by the principal
directions [100], [010], and [001] - see Figure (1.1b).

By an appropriate definition of the orientation element 4(g) it is possible to

normalise the ODF function f(g) such that the function integral over all of angular

space is

[rie-dg=1 (1.1d)

The ODF function cannot be measured directly. However it can be derived
from diffraction data comprising several measured pole-figures. Such measurements
require a multi-axis, pole-figure diffractometer, normally comprising a Eulerian
cradle fitted 1o a 2-circle diffractometer. A pole-figure is the angular distribution of a
chosen crystal direction h' with respect to the sample coordinate system. The h pole-

density distribution (PDD) is defined by the volume fraction dV/V of crystallites

' The terms h and hkl are used here interchangeably.



(a)

x=RD

(b)

Figure 1.1. (a) The orientation of a crystallite in a polycrystalline sample is
determined by the rotation g which transforms a sample coordinate system K, into
the crystal coordinate system Ky - see equation (1.1b). (b) The Euler angles

(p,,0,9,) of a crystal define rotation g. After Bunge (1982).



having direction h parallel to a specific sample directiony

1.2
VD _1p 3y a

The key aspects of PDD measurement are shown schematically in Figure (1.22).
Functional representations of the PDD are designated pole-density distribution

functions (PDDFs) in the thesis. The PDDF £, is normalised such that :

[Puy)dy =4z (1.3)

The PDD can be determined by x-ray powder diffraction (XRPD), by neutron
powder diffraction (NPD) or by electron diffraction using a monochromatic beam.
As shown schematically in Figure (1.2a), an incident beam will be reflected by all
crystallites with h directions parallel to the bisector between the incident and
reflected beam (within the solid angular element dQ2) provided that angle 26 between

these beams fulfils the Bragg-reflection condition

A=2-d,,-sinf,, (1.4)
The measured intensity of the reflected beam is :
dv (1.5)
L) =1, Ry %")“

where 7, is the intensity of the incident beam and R,,, is the crystallite reflectivity
which depends on the material under consideration and the reflecting lattice plane h.
Substituting equation (1.2) into equation (1.5) yields :

I,-R

ST 4Q- Py (3) 4o
4

ILu(y)=

-R
Factor (~I"4—”“-d§2) is usually unknown. Also, term dQ makes the factor
n

dependent on the experimental conditions, viz. the beam apertures. Equation (1.6)
can be written in the form
DY) = Ny - B (¥) (1.7)
where N,,, is the normalising factor.
During pole-figure measurement, diffraction vector h is made parallel,
successively, to selected sample directions y. This process generates the h PDD or h
pole-figure. The pole-figure does not involve a rotation of the crystallites about the

diffraction vector. A PDDF at y, representing the PDD, is the integral of the



material having

(a) /
Crystallites in the / An incident beam will
i i / . bereflected in all those

direction h parallel <=crystallites where the h
to the sample = T directions are parallel
direction y defines to the bisector between
the PDD of the h incident and reflected

pole-figure at point y beam

The specimen pole-
figure is rotated

The reflected beam
appears on the same
side of the surface —5So®ple

of the sample as the R0 about the normal

incident beam direction and through
the angle o about the
intersection of the
reflecting plane and
the sample plane

(b)

Measurement of
diffraction pattern =

Measurement of PDDs =

Computation of ODF = Computation of PDDF

by pole-figure inversion

7

Figure 1.2. Schematic diagrams illustratmg (a) pole-figure measurements for
determining PDDs, and (b) PDDF calculation from the ODF by pole-figure inversion
- see Section (1.1) for explanation. The axes for the ODF diagram in Figure 1.2(b)
are the Euler angles (¢,,¢.¢,) - see equation 1.1(c). Based on Bunge (1982).



ODF f(g) taken over a certain path in the Euler space, which is defined by the

condition hly:

Pu) =5 [ 1@z .
hiy
where y represents a rotation of the crystal about the common h, y direction. The
pole-figure is thus a 2D ODF. 1t is seen from equation (1.8) that the ODF is not
completely determined by one pole-figure. The missing information can be provided
from other pole-figures which are themselves integrals over the ODF but along
different paths. Bunge (1982) showed that function f(g) is uniquely determined
only by an infinite set of pole-figures i.e. the pole-figures of all crystallite directions
h. Equation (1.8) is regarded as the fundamental relation of texture analysis. The
solution of equation (1.8) for f(g) is called pole-figure inversion, see Figure (1.2b).
Texture analysis consists of solving equation (1.8) for the unknown function
f(g) using known PDDFs F,,(y) which have been extracted from measured pole-
figures. For the solution of equation (1.8), essentially four different mathematical
approaches have been described in the literature, see Table (1.1). Each of the
methods has advantages and disadvantages. The harmonic method, which provides a
concise mathematical description using a small number of coefficients, is of
considerable value in calculating physical properties. This method has been

employed in the present study.

Table 1.1
Mathematical Approaches Proposed in the Literature for Solving the
Fundamental Relation of Texture Analysis, Equation (1.8)

Mathematical Approach Method References
Discretisation Vector Williams (1968);
Ruer and Baro (1977).
Integral transformation Inversion Matthies (1979).
Probabilistic WIMV Imhof (1977);
Matthies and Vinel (1982).
Series expansion Harmonic Roe (1965); and Bunge (1965).




The vector method was proposed by Williams (1968) for analysis of biaxial
pole-figures, and subsequently refined by Ruer (1976; pp. 139-147), Ruer and Baro
(1977), and Vadon (1981). The most attractive feature of the vector method is the
simple crystallographic description of orientation relations in the pole-figure, which
conforms with the view that a polycrystal is the sum of individual grains. This
simple geometrical concept leads to mathematical analysis by linear algebra and
optimisation. A minimal amount of experimental data is required to obtain a
reasonable approximation to the true ODF. The vector method demonstrates that a
single pole-figure contains much information about the orientation distribution.

The inversion method, introduced by Matthies (1979), provides a direct
inversion formula for equation (1.8). The method makes use of Abel’s integral
transformation formula (Mulier, Esling and Bunge; 1981). This procedure provides a
straightforward solution to the pole-figure inversion problem. However, it has not
been applied to numerical calculation of f(g), see Bunge (1982).

The WIMV method, named after the method developers, was proposed
originally by Imhof (1977), and then, described in more detail by Matthies and Vinel
(1982). Subsequently, Matthies and Wenk (1985; pp. 139-147) showed that the
method (i) provides an efficient approach to calculating the true ODF from
experimental pole-figures, (ii} does not use spherical harmonics and is, therefore,
free of termination of errors and (iii) does not require manipulation of large matrices
because the ODF value for each g is calculated separately.

The series expansion method [see Section (2.2) for more details], which is
employed in the thesis, uses harmonic functions which are defined to be invariant

with respect to crystallite as well as sample symmetry (Bunge, 1982), according to:

o + + 1.9
f@=3 2 2 @ (19
“ . 1.10
R9=Y 3 z Cr 2T KK ) (110

with 7™(g) being generalised harmonics, and K;(y) and K,"(h) are surface

harmonics. The texture is then completely described by the set of coefficients C™.

The positivity of the PDDFs P, (y), defined in equation (1.10), is helpful for the



calculation of the ODF f(g) with a minimum of experimental data. A
comprehensive ODF analysis program, developed by LM2P? and SOCABIM® on
this basis, has been employed in this study. The program can automatically construct
ODFs if pole-figure data are available. The data are generally collected as XRPD

back-reflection pole figures as depicted in Figure (1.2a).

1.2 Diffraction Methods for Characterising Texture

The most common way of directly evaluating the form and extent of PO is to
measure the pole-figures for several crystallographic directions with an x-ray pole-
figure instrument [see Section (3.3) for more details]. The pole-figure is the intensity
of a particular Bragg diffraction line plotted as a function of the 3D orientation of the
specimen. It is determined with a ‘Eulerian cradle’ texture diffractometer which is
essentially a single-crystal diffractometer fitted with appropriate collimators for the
incident and diffracted beams. The instrument rotates the specimen through a broad
range of orientations while monitoring the intensity of a selected Bragg reflection.
The intensity distribution is normally displayed as a pole-figure in 2D stereographic

projection form.

PO effects may also be observed in XRPD patterns measured with
diffractometers such as the popular Bragg-Brentano instrument. It is possible to
extract PO information from such patterns if the pattern for a randomly-oriented
specimen can be modelled, or simulated, from a knowledge of the crystal structure
parameters and various other factors (e.g. line broadening) which influence the
pattern.

NPD data may be used to complement XRPD measurements on the texture
character of materials [see Section (3.3)]. The pertinent attribute of NPD in relation
to texture is the small attenuation coefficients of neutrons for most materials relative
to x-ray absorption. Therefore NPD texture information is gained from the bulk of
the sample [ca. several cm for most materials], whereas the XRPD response is

typically from the near-surface [ca. tens of pm in oxide materials]. Thus, XRPD and

? University of Metz, Laboratorie de Metaliurgie des Materiaux Polycrystallins (LM2P), lle du
Saulcy, 57045 METZ Cedex, France.
* SOCABIM, 9 bis villa du Bel-Air, 75012 Paris, France.



NPD are excellent complementary tools for characterising texture from the near-
surface into the bulk of the material.

While powder diffraction instruments and diffraction pattern modelling
procedures have been improved dramatically in recent years, specimen preparation
techniques for diffraction measurements have not reached the same stage of
development. Smith and Barrett (1979) considered specimen preparation methods for
reducing PO in powders for XRPD analysis. Although such methods may be
effective in reducing PO, there is no guarantee that the sample will be randomised.
Calvert, Sirianni, Gainsford and Hubbard (1983) used side-drifted mounting
procedures in which molybdite (MoOs) powder was mixed with silica gel with the
aim of reducing PO. It was demonstrated that the relative intensities for side-drifted
powders agreed well with the calculated values derived from the MoO; crystal
structure (Kihlborg, 1963) assuming random orientatton

Suortti and Jennings (1977) showed that such special techniques to reduce the
effect of PO cannot be used in the case of compact polycrystalline samples, and also
that the inhomogeneity of packing of the crystallites in a loosely pressed specimen
will cause uncontrollable variation in the intensity distribution, thus making accurate
intensity measurements impossible. Carefully prepared and sufficiently hard
specimens with a smooth surface should be prepared for accurate intensity
measurements. On the other hand, sufficient compression produces a homogeneous
sample with a smooth surface and reduced porosity effects, but enhanced PO of the
crystallites then becomes apparent. Various mathematical forms have been proposed
for the application of PO corrections to diffraction pattern data [see Sections (1.3)

and (1.4) below and Chapter 2].

1.3 Texture Modelling in Powder Diffraction Analysis

Powder patterns include convolved information on crystal structure (e.g. atom
positions) and bulk character (e.g. phase composition levels) which may be severely
biased when extracted from the pattern if PO is ignored or is modelled incorrectly.
Texture modelling has become an important aspect of contemporary powder
diffraction analysis as the effect is present in almost all specimens.

A Bragg intensity for direction y in the sample may be written as :



L) = ™" B () (111
where I/™%" is the ideal random orientation intensity for the defined reciprocal
lattice vector (hkl), and P, (y) is the PO correction factor - see equation (1.7). The
correction factor may be extracted from the ODF [see Section (1.1)], the ODF being
obtainable from pole-figure measurements for which the sample is tilted while
keeping the same reflection diffracting. Use of equation (1.11) with non-tilt
diffractometer data is simplified by spinning the specimen. Then the ODF can be
represented by a 2D function using the symmetrised harmonic method, which
represents pole-figures by spherical harmonic functions and may be applied to
specimens with cylindrically-symmetric PO (Jarvinen et al., 1970; and Jarvinen,
1993). The most commonly-used texture models are simple analytical forms which
can be applied to powder diffraction data produced using a sample spinner

A cylindrically-symmetric form of P, (y). based on the work of March
(1932), was proposed by Dollase (1986) to describe the PDDF in a powder sample
[see Sections (1.5) and Section (2.1) for more details]. The March-Dollase function
was subsequently introduced into the popular Rietveld (1969) refinement computer
program LHPM (Hill and Howard, 1986) to correct for the effects of PO in powder
diffraction data [see Section (3.4)]. The March model has been extensively employed
to describe the texture resulting from packing effects in Bragg-Brentano powder
diffraction samples. A partial implementation of a spherical-harmonic model (see
below) for the texture in a Rietveld refinement program was reported in which the
sample symmetry was assumed to be cylindrical (Ahtee er al, 1989; Berar and
Garnier, 1992; and Popa, 1992). Ferrari and Lutterotti (1994) described a similar
approach which also covered cylindrical sample symmetry but included a
parametrisation of the diffraction-line shifts that frequently occur in textured samples
from residual strain effects. They suggested that generalisation of the texture
problem to other sample symmetries is possible.

A method was proposed by Wenk, Matthies and Lutterotti (1994) which
combines the Rietveld method with ODF calculations. Subsequently Matthies,
Lutterotti and Wenk (1997) tested the method with the experimental neutron time-of-

flight diffraction data for deformed calcite limestone. The results showed that the

10



approach worked well with low symmetry materials and composites which have
complicated diffraction patterns.

Von Dreele (1997) described the use of generalised spherical-harmonics for
modelling in the Rietveld refinement program GSAS written by Larson and Von
Dreele (1986). Von Drecle tested the method using neutron time-of-flight data taken
from a standard calcite sample previously used in the round-robin PO study
coordinated by Wenk (1991). The results showed that the generalised spherical
harmonic method gave texture results similar to those obtained from individual pole-
figures, and that the procedure yiclded a quantitative description of the texture
simultaneously with the crystal structure.

Jarvinen et al. (1970) investigated the use of symmetrised harmonics in
applying texture corrections for axially-symmetric distribution functions. In their

approach, the h PDDF is represented by an expansion of symmetrised harmonics:

Pula)= ch 'Y;'('ghkh@hkf)' F(cosa) (1.12)
i

where i and j are integers, P,(cosa) is the Legendre polynomial, angle o. is the angle
between h and the PO direction [see Figure (1.3)), ($4u>@m) are the spherical
coordinates of the normal to plane h, Y, are the symmetrised harmonics, and the C;
are fexture parameters. Jarvinen (1993) showed that PO can be successfully

modelled in Rietveld refinements if the crystal structure of the textured material is

precisely known or if pole-figure measurements are available. In principle, the

PO direction RLYV for peak k

Figure 1.3. Orientation angle, o, between crystallographic direction h and the PO

direction.
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parameters C;; involved in the series expansion can be determined from a least-

squares analysis of a set of pole-figure observations (Valvoda, 1987). However the
number of coefficients required becomes too large to be practically applicable if the
texture is strong. Jarvinen (1995) used this approach with a surface-layer texture
model for PO corrections with XRPD data for NH,C] powder specimens.

Jarvinen ef al. (1970) showed that well-developed PO can be characterised by
several parameters when a specimen spinner is used to make the measurements. The
ODF of crystallites can be expanded in site-symmetrised harmonic functions, where
the coefficients can be determined from the pole-figures of several reflections. The
axially-symmetric ODF can be expressed as a series expansion of Legendre
polynomials and symmetrised harmonic functions possessing the Laue symmetry of
the crystal, provided that the polar-axis density possesses the Laue symmetry of the
crystal structure (Jarvinen, 1993).

Rietveld analysis with powder diffraction data, using texture corrections
according to the harmonic model {equation (1.12)], was tested by Ahtee ez al. (1989)
with samples of Ni, Mg and NaNO;. The results demonstrated that the whole-pattern
fit improved substantially when such texture corrections were employed in the
refinement. Recently, the symmetrised harmonics method has been applied to QPA
using diffraction data measured by Bragg-Brentano powder diffractometry (Valvoda;
1986, 1987 and 1992). The spherical harmonics approach, while very powerful, may
produce false texture descriptions in Rietveld analysis as the function is purely
mathematical and may therefore be influenced by systematic errors in the diffraction
data other than PO.

In Rietveld analysis, PO may be modelled with relatively-simple, axially-
symmetric PDDFs involving one variable [polar angle . - see Figure (1.3)] and one
or two refineable parameters. Use of such models, rather than the multi-parameter
harmonic approach, is clearly appealing for PDDFs which closely mimic the PO in
the material under examination. The following two sections outline the simple

cylindrically-symmetric PO models which have been proposed in the literature.
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1.4 Cylindrically-Symmetric PDDFs

Various mathematical forms have been proposed for the application of PO
corrections for materials with cylindrically-symmetric distributions, see Table (1.2).
The models make use of the orientation angle for direction h, a [see Figure (1.3)],
between h and the PO direction.

It is desirable that these distributions have one, perhaps several at most,
refineable parameters. Ideally, models should have some physical basis related to the
mechanism causing the PO. The attributes of models should include :

1. Integral of the function for a given h over all orientations is unity.
2. Symmetric across o = 0 and o = /2,

3. Smooth across o = 0 or a = /2, i.e. (§P/da ) = 0 at these angles.
4. General agreement in form with measured pole-densities.

Acceptable models should reasonably describe two general distribution types
representing (i) maximum for o = 0 and minimum for & = 7/2, and (ii) minimum for
a = 0 and maximum for o = /2. Materials which may be modelled with these
functions will fall into one of the above categories depending on whether the
crystallite shapes may be represented by disc or rod shapes and also on the sample
consolidation procedure (compaction or extension) and the sample geometry (flat-
plate or capillary).

The following review of functions proposed in the literature includes
comments on a useful evaluative method developed by Altomare ef al. (1994) who
considered a statistical procedure involving an analysis of normalised structure-

factor moduli to obtain information on PO distribution for a powder sample. The

g2
normalised intensities IEWI are defined as

N
Ep =s-Fu/lew 2 f'17
=1

where s and Fy, are the scale factor and structure factor, respectively, &y is the
Wilson statistical weight and f; is the scattering factor for the jth atom (thermal

vibration included). By definition,

<|E;,*,|2> -1
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where the average value is calculated for the complete set of reflections.
.2
Plots of <|E ,,,‘,‘ >, derived for the measured data, versus off-set angle o are

constructed for a selection of possible PO directions. These plots are then compared
with plots constructed using the PDDF function under test. Figure 1.4(a) shows a set
of plots prepared with PbS,0, powder data. The method is applicable to flat-plate
diffractometer data in reflection mode, where the crystallites are disc-shaped and the
ODF has cylindrical symmetry.

The following summary describes the functions which have been reported in
the literature. These are summarised in Table (1.2), and compared graphically in
Figures 1.4(b) and (c). The functions represent two general PO categories depending
on whether the PO factor is a maximum or minimum at o = 0, and vice-versa at o =

/2.

@ Guaussian ti e a (1967) and Rietv 1

Function la (max. at a = 0) P (a)=exp(-G-a’) (1.14a)
The function is not symmetric or smooth at o. = /2, and is not normalisable.

Also, Sasa and Uda (1976) and Toraya and Marumo (1981) pointed out that PDDFs

calculated with this function disagree considerably with measured distributions.

Function 1b (min. at o = 0) Py (a)=exp[G(z/2— )] (1.14b)
The function is not smooth or symmetric at o = 0, and also provides PDDFs

which are too low at high-angle o values (Sasa and Uda, 1976; Toraya and Marumo,

1981).

© Profiles investi ish and Huang (1983) and by Will, Parrish and Huan
(1983}

Function 2a (max. at a = 0} P (@) =exp[G(z /2 - a)*] (1.15qa)
Function 2b (min. at o = 0) P, (a)=exp(G-a’) (1.15h)

They found that these expressions gave lower crystallographic figures-of-merit
for Si, ®-Si0, and «-Al,O; powders compared with those observed using the

Gaussian function 1.14(a).
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3.50
Experimental Data
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Function 6 (March model)
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Figure 1.4(a). Variation of the distribution of PbS,0; experimental data <|Ew’2>

versus orientation angle o for the plane (002). The best-fitting von-Mises function
shown in the diagram has a G-parameter of 0.893; and the best-fitting March-Dollase
function has a PO r-parameter of 0.717. After Altomare ef al. (1994).
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PO correction factor, P, (a)
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Fig. 1.4(b). Variation of single-parameter PDDFs with orientation angle o -
distributions with maximum at & = 0, minimum at o = /2, see functions (1) - (8) in

Table (1.2). Plots given for the PO parameter of 0.60.
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PO correction factor, P, (a)
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Fig. 1.4(c). Variation of single-parameter PDDFs with orientation angle o -
distributions with minimum at o = 0, maximum at o = #/2, see functions (1) - (8) in
Table (1.2). Plots given for the PO parameter of 0.60 for functions (1) - (5) and (8),
whereas the plots for functions (6) and (7) are for parameter values 1.59 and -0.70,

respectively.
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Function (2a) is not symmetric or smooth at o = 0 whereas (2b) is not smooth

at o = /2. These functions are not normalisable and do not mimic published pole-

figures.

© Functi k d Valv 1

Function 3a (max. at ¢ = 0) P, (a) = exp(-G-sin® @) (1.16a)
Function 3b (min. at a =0) P, () = exp(-G- cos’ @) (1.16b)
® Functi r apkov voda 4

Function 4a (max. at a = 0) P, (&) = exp[-G(1 - cos’ )] (1.16¢c)
Function 4b (min. at o =0) P, () = exp[-G(1-sin’ a)] (1.16d)

By direct measurement of the orientation distributions in Mg and Mg;Cd
powder samples, obtained from texture goniometer measurements, it was found that
a cylindrically-symmetric, needle-type texture was present in the samples. The data
were modelled with the functions 1.16(a) and (c).

Functions 3(a), (b} and 4(a) and (b) have zero derivatives at o« = 0 and o = /2,

but are non-symmetric across o = 0.

©_Gaussian-r ncti se a_an 197 Toraya
Marumo (1981)

Function 5a {max. at a = 0) P, () =b+(1+b)-exp[-Ga’] (1.17a)
Function 5b (min. at a = 0) Po(@)=b+(1+b)-explG(x/2~a)*] (1.170)

With these expressions, the value of b becomes indeterminate as PO parameter
G approaches 0. The functions are non-symmetric at o = 0 and n/2, and not smooth

at o. = 0. They do not match published pole-figures.

Functions (6) and (7), see following outline, are generally superior to functions
(1) - (5) in that they
1. may represent distributions which have either a maximum or minimum at o =0,
2. may be normalised, and

3. are symmetric and smooth across o = ¢ and o = n/2.
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Function 6 Py (@) =[r* cos’ a+r7 sin’ a]™ (1.18)

where r is the single parameter controlling distribution shape. This function, which

enjoys widespread use in Rietveld analysis, is considered in Section (1.5).

© Thev ; istribution function pr Altom L (1

Function 7 P, (@) = exp[G - cos(2a)] (1.19)
which can provide distributions similar to those for the March type (function 6)
although the function does not have a physical basis.

Both the March-Dollase and the von Mises profiles were tested by Altomare et
al. (1994) with PbS,0; XRPD data. The Rietveld crystallographic figures-of-merit
results obtained with the two functions agreed well. Peschar, Schenk and Capkova
(1995) showed that Rietveld-von Mises calculations for CaCO;, NaNO;,
CaMg;(CO;),;, ZnF,, Mg and YBC gave excellent results with XRPD data.
Subsequently, Altomare ef al. (1996) considered function (7) in terms of possible
complications caused by reflection overlap. The Rietveld refinement results showed
that direct methods analysis was successful when the von Mises function was
employed for PO corrections. Similarly, Lasocha and Schenk (1997) found that
agreement between calculated and measured XRPD patterns improved dramatically
when the von Mises function was employed in Rietveld refinements with Bragg-
Brentano XRPD data for ZnMo,.0,0.3.75H;0, (NH,);.M0,.0,,.H,0 and
K;.Mo0;.0,4.H,0.

® Cernvy, Valv nd Chla neralised PO int liowi rmalised
form
Function 8 P, (a) = A-exp[-G{l ~cos” a}] (1.20)

where o is the angle between the Bragg RLV and the PO axis, G and n are free
parameters and A is a normalisation constant. Rietveld analysis results obtained by

Cerny et al. (1995) for a heavily-textured Mg(OH), specimen showed that the
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agreement between the calculated and measured XRPD patterns improved
dramatically when function ('8) was employed.

The March (1932) PO model, function (6), proposed by Dollase (1986) for PO
modelling with diffraction data, has proved to be the most popular of the simple
cylindrically-symmetric models described in the literature. In view of the
significance of the function for PO modeiling, and the emphasis on the model in the

thesis, the function is overviewed separately in the following section.

1.5 The March Model for Cylindrically-Symmetric PDDFs
The March mode!, function (6) - equation (1.18), is based on the rotation of

isolated, rigid, planar “marker” grains in an inert, homogeneous matrix, in response

to a volume-conserving, axially-symmetric compression [see Section (2.1) for further

details]). Parameter r is an index of the extent of PO rather than a representation of
the fractional measure of crystallite random orientation in the material, see Figure

(1.5).

The model is applicable to crystals of any symmetry and does not require use
of data acquired with a multi-axis diffractometer. The two assumptions implicit in
the model are:

(i) the distribution function describing the orientation of crystallites is axially-
symmetric (this assumption is usually satisfied for pressed powder samples and
can be ensured by spinning the flat-plate sample about its cylindrical axis
during data collection); and

(i) the crystallites are assumed to be disc-shaped. In a (pressed) flat powder
sample, every crystallite in the sample, with any orientation with respect to the
sample surface, can be arbitrarily rotated around its prominent direction (i.e.

around the normal to the planar surface of crystallite).
The March model has an important advantage over other PO mathematical

models which have been proposed [see Table (1.2)}, in that the function £, (a) is

normalisable over the full angular range of o :
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PO correction factor, P, (a)
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Fig. 1.5. The variation of the March-Dollase PO factor (function 6) with orientation
angle o for different values of March r-parameter. The March PDDF value ranges
from 1> at o = 0° to r'* at o = 90° according to the amount of sample deformation

and also depends on particle morphology.
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/2 (1.21)
[Puta)-da=1

0
whereas the other functions are unnormalised. The normalisation property is
important in that changes in the PDDF shape conserves the total intensity within the
diffraction pattern. Therefore, scale factors obtained by Rietveld refinement with the
March model should be more reliable than those obtained using unnormalised PO
models, and scale factors derived with the March model should be more reliable for
absolute phase composition analysis.

Dollase (1986) described Rietveld evaluations of the March model using
XRPD data sets for calcite [CaCO;] and huntite [CaMg;(CO;),] powders. The degree
of PO for the calcite powders was too weak to demonstrate any superiority of the
March formula over the other expressions [see Table (1.2)]. However refinements
conducted with two huntite specimens, corresponding to both low- and high-
orientations, clearly demonstrated the superiority of the March formula. The low-
orientation and high-orientation huntite samples gave substantially superior matches
between calculated and observed patterns when the March model was employed.

Li, O’Connor, Roach and Cornell (1990) and O’Connor, Li and Sitepu (1991)
described a line ratio PO correction method, based on the March model, for applying
PO corrections to XRPD Bragg intensities, which was evaluated with gibbsite
[AI(OH);] data. They concluded from this study that the March model is
an excellent descriptor of PO in gibbsite. Sitepu (1991); O’Connor, Li and Sitepu
(1992); and Sitepu, O’Connor and Li (1996) subsequently extended the
earlier work on gibbsite to other materials [molybdite (MoQ;), calite
(CaCO,) and kaolinite (Aly04.28i0,.2H,0)). The results indicated that the model
has some deficiencies for Rietveld modelling.

Judson et al. (1994) showed that the Rietveld-March calculations for barium
copper ytirium oxide (YBa,CuO,.,) superconductor thin films with strong single-
pole orientation provided excellent results with XRPD data. Similarly, Iyengar and
Percec (1994) found that agreement between the observed and calculated patterns
improved dramatically when the March model was employed in Rietveld

refinements with Bragg-Brentano XRPD data for high-density polyethylene.
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1.6 Study Objectives

The objective of the thesis study was to extend the work of Li ef al. (1990);
O’Connor, Li and Sitepu (1991, 1992); Sitepu (1991); and Sitepu, O’Connor and Li
(1996) on the general applicability of the March (1932) model for modelling PO with
both XRPD and NPD powder data, with reference to\ :

e the reliability of the March model,

e its use in correcting powder diffraction intensities for PO bias.

1.7 Research Plan

In order to fulfil the objectives of this study, the following broad research plan
was formulated :

1. Investigate differences between (i) PO correction factors derived from
diffraction pattern data and (ii) PO correction factors for selected
powders obtained from texture diffractomeiry.

2. Examine the validity of the March PO model for powder diffraction
characterisation of materials.

The study was to be conducted using uniaxially-pressed powders for which the
pressure would be varied systematically. X-ray and neutron powder diffractometry

would be used in order to obtain near-surface and bulk information, respectively.

1.8 Thesis Structure

Chapter 1 summarises the literature on powder diffraction PO modelling
methods for use in materials characterisation. Fully-general methods for modelling
PO, which require many-parameter computations, are first surveyed and then the
simple single- or several-parameter functions for cylindrically-symmetric PO
distributions are considered. Particular attention is given to the March-Dollase
formula for modelling cylindrically-symmetric distributions. The Chapter concludes
with a statement of study objectives and the associated research plan.

Chapter 2 reviews in considerably greater detail than Chapter 1 the literature
on the aspects of PO which are of central importance to the thesis. In particular, the

Chapter focuses on (i) PO modelling with the March model and (ii) modelling PO
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with texture diffractometry data. The material on the March model includes a
discussion on an important aspect of Rietveld modelling with the March model
which emerged during the course of the thesis, viz. the need for Rietveld programs to
factor symmetry-equivalent Bragg reflections into the computations.

Chapter 3 contains an overview of experimental design, followed by a rationale
for materials selection, the powder diffraction and pole-figure methods, the methods
for Rietveld analysis of diffraction data, and the PO mathematical modelling
determination. The Chapter also describes the rationale adopted in comparing
PDDFs derived from the texture measurements using Eulerian cradle and obtained
from Rietveld-March calculated data sets of molybdite and calcite specimens. The
Chapter outlines a method developed during the study whereby the March r-
parameter may be used to quantify the bulk modulus of a powder.

Chapter 4 considers the diffraction pattern experiments for molybdite and
calcite powders, with particular reference to the validity of the March model and the
directly-measured PDDFs. ‘

Chapter 5 describes texture diffractometry experiments from similar
perspective to those considered in Chapter 4.

Finally, Chapter 6 gives an overview of the results with reference to the

objectives.
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CHAPTER 2

ASSESSMENT OF PREFERRED ORIENTATION WITH
DIFFRACTION DATA

Following the general review provided in Chapter 1, this chapter considers in
detail the basis of the two texture modelling procedures applied in the thesis - use of
the March formula to extract texture information from powder pattern data, and the

direct measurement of pole-figures by texture diffractometry.

2.1 March Model
2.1.1 Model Features

The March (1932) model was introduced and considered briefly in Section
(1.5). Further details, including a summary of the mathematical derivation of the
March model provided in Appendix (1), are considered here.

Four features of the March PDDF were noted by Dollase (1986). First, the
March model has a valid theoretical basis related to the major mechanism (grain
rotation) that produces PO. The second feature is that the model has a true
probability distribution with unit integral which means that a change in PO
parameter, 1, should not produce a change in the Rietveld scale factor [see Section
(3.4)]. Third, the model applies to both platy and acicular grains. Fourth, the model
has a single variable parameter, r, the March coefficient, that characterises the
strength of the PO. Even for samples developing PO due to mechanisms other than
compaction and grain settling, fitting a March model allows estimation of an
intuitively-simple, specimen-compaction correction which is useful for quantitative
comparison of samples.

The value of the PDDF for the model ranges from rtor” according to the
amount of sample deformation. The same expression is used for a PDDF maximum
ata = 0 (r < 1.0) or a PDDF maximum at o = n/2 (r > 1.0). Because the orientations
of platy and acicular crystallites are differently defined relative to their respective

morphologies, there is a different relationship between the March parameter, r, and
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the sample compaction or extension for the two limiting crystallite shapes. In the

case of platy crystallites :
r=— (2.1)

where d is the sample thickness after axial extension or compaction, and the form

=0 (2.2)

applies to acicular crystallites.

Application of the model requires two assumptions to be made {Dollase, 1986),
viz.:

e The distribution function of the pole HKL, representing the preferentially-
oriented direction, has its maximum normal to the specimen surface for
symmetric diffraction. This requirement can be satisfied by rapidly spinning a
flat-plate specimen around the diffraction vector.

e The distribution is axially-symmetric, corresponding to so-called disc- or rod-
shaped behaviour. In a flat sample, the discs will have their prominent faces more

or less aligned parallel to the sample surface.

2.1.2 Derivation of the March-Dollase PO Correction Factor

The March model treats the development of PO in a homogeneously deformed
medium according to the reorientation of linear and planar indicators. Because
deformation is homogeneous, the effect of deformation is to reorient lines and
planes.

Owens (1973) used a geometrical approach in his development of the March
model according to the movement of linear markers. This approach has the virtue of
avoiding the complex tensor mathematics described in the March paper and of
making the deformation more evident. Chen (1991) modified the analysis of angular
density distribution frequency (ADF), described by Owens (1973), which showed
that the pre- and post-deformational ADF of linear and planar elements in a
specimen (f and F, respectively) are related by the quadratic elongation, A%, of the

strain, g, [see Appendix (1)]
F=()"f 2.3)
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assuming a constant-volume strain, i.e. strain normalised to unit volume. Term A is
calculated from the transposed inverse of the strain, €.

In the following derivation, equation (2.3) is extended in sample coordinates,
X ;» and reference coordinates, ® X, which coincide with the principal axes, E,, of

a strain, ¢. The sample and reference coordinates are related to each other by Euler
angles (¢,,8,9,)- see Figure (2.1). Initial reference coordinates, “.X;, are parallel

to the sample coordinates, Sx ;> and auxiliary axes, Rx ]', facilitate the Euler angle
operation. The square symbol in the figure represents the maximum principal
direction of ADF, the circle represents the intermediate principal direction of ADF,
the triangle is the minimum principal direction of ADF; and the filled circles

represent the auxiliary coordinate axes.

Ky "X,

Figure (2.1) A lower hemisphere equal-area projection illustrates the interrelations

between the sample coordinates, *X;, the reference coordinates, "X, and the

principal axes of the ADF, E,, by the Euler angles, (¢,,¢.¢,). After Chen (1991).
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The observed x-ray intensity I should be proportional to the pole-distribution
frequency of the strain markers, and the distribution frequencies F and f can be
replaced by x-ray intensities I and q, respectively, and augmented by a background

level, B. As a result,

1=(2)"q+B (2.43)
or
1 3/2
I = + B 2.4b
[SRTAT(RS)ZA SR] q ( )

where *R is the unit vector representing the direction of an angular pole-density in

the sample coordinates; A is the transformation matrix relating the principal stretch

axes to sample coordinate [see Appendix (1)]; ®S is the stretch tensor in reference
coordinates which coincide with its principal axes; and q is the x-ray intensity of a
hypothetical, randomly-distributed undeformed sample.

Equation (2.3) indicates that the strain tensor and the ADF of a specimen share
principal directions. Thus, the principal directions of the strain tensor can be pre-
determined by visual inspection. This procedure reduces the number of unknowns
from seven to four and one can express equation (2.4b) in reference coordinates

which coincide with principal axes (Chen, 1991):

sin** 6, sin** g,
58

where (*&,,%@,) are the spherical coordinates, with respect to sample orientation,

Ik(R9k5R¢k) =1i‘sl25in2R9kCOSZR¢k +( )"'Sz?cosm‘gk] q+B (2.3)

for the orientation (B,,T,) of the goniometer sample stage (Wenk, 1985); and S, and
S, are the maximum and minimum March stretches, respectively.

Consider a planar powder diffraction sample formed by a volume conserving,
cylindrically-symmetric, flattening such that the initial sample thickness d, is
reduced to a thickness d. Assuming that the initial grain orientation was random,
what is the degree of PO in the sample? This is precisely the March model for
producing PO in a powder diffraction sample.

As the sample flattening is axially symmetric about the sample normal, the

stretch tensor axial lengths in the sample plane are equal,
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S =S5,

and the stretch tensor axial length along the sample normal,
§; = di‘, =r

Since,
$,8,8; =1,

substituting equations (2.6) and (2.7) into equation (2.8) gives :

8 =8=r"

and substituting equations (2.7) and (2.9) into equation (2.5) yields :

LG, ) =] st G o g, 457 g+ o 6] g+ B
Since,
(cos’ g, +sin’*g,) =1,

equation (2.10) yields :
Rp R 1. 2R 2 _apg 1TV
1,(*6,." ¢,y =[r sin "6, +7* cos 6] q+B
Thus, the PO intensity correction factor is,

L -3/
P, =[r 'sin’?@, +rzcos”9k]

(2.6)

Q.7

(2.8)

2.9

(2.10)

2.11)

2.12)

where 4, is the angle between the diffracting plane normal and the sample normal -

denoted as o in equation (6) of Table (1.2).

If the grain shape is axially-symmetric, as often applies for hexagonal and

trigonal grains, the polar axis density P also can be looked upon as axially-

symmetric, with regard to the z-axis - see Figure (2.2) which shows the intensity

measurement for a flat, rotating specimen using the conventional Bragg-Brentano

measuring geometry. If the sample is inclined so that the angle between the polar

axis and the scattering vector is o [Figure (2.2b)], only grains whose scattering

vector is on the circle O(hkl,o) will contribute to the reflection (hkl). O(hkl,a) is a

circle on the unit sphere, whose center is in the direction of the plain normal N™ and

whose radius corresponds to the pole angle .
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(a) b Az ()

(a) (b)

Figure 2.2(a). (a) Bragg-Brentano geometry. Flat sample rotated around polar axis P
coinciding with scattering vector S. (b) Direction of polar axis P in crystallographic

coordination system of a grain (monoclinic case). After Jarvinen (1993).

@) (b)

Figure 2.2(b). (a) The sample is inclined from the upright position at an angle a. (b)

Orientation of the polar axis P in the grain coordinate system. After Jarvinen (1993).
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2.1.3 PO Correction Procedures
Two key aspects of PO computation with the March model are considered here

- definition of PO direction and the inclusion of reflection symmetry equivalence.

Choice of PO Direction

The PO direction is usually taken from the literature according to the cleavage
plane of the material. If there is no cleavage information available, then the PO plane
may be determined by trial and error - see, for example, the work of Will, Parrish
and Huang (1983) and Will, Belloto, Parrish and Hart (1988) in which the plane
giving the lowest Bragg R-factor was used as the PO direction.

An additional aspect of PO direction, which emerged in this study, is that the

PO directions for XRPD and NPD data for the same material may be different [see
Sections (4.3.2) and (4.4.2)].

Reflection Symmetry-Equivalence

For PO direction [HKL], the intensity I, of a single reflection hkl, making an

angle o with the preferentially-oriented planes (HKL), will be modified according to:

Ia = 5 Lp [Frsal” Prace(00) (2.13)
where s is the scale factor, Lp is the combined Lorentz, polarisation and
monochromator factors, th|<1|2 is the absolute square of structure factor and Pyy; (o)
is the PO correction factor as shown in equation (2.12).

The total intensity resulting from a set of m symmetry-equivalent planes can be
denoted

Ly = 5 Lp [Frl” mug P (00) (2.14)
in which my, is the multiplicity of the reflection hkl.

Except for special PO directions {equation (2.13)], symmetry-equivalent
reflections will contribute in different ways to the total intensity observed at 28. It is
possible that each reflection plane (hkl); from a set of m symmetry-equivalent planes
{hkl} makes a different angle o; with the PO plane (HKL). As a result, the total
intensity resulting from a complete set of m symmetry-equivalent planes, taking into

account the PO, becomes :
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Io=5Lp [Fua” D, Prke(%) 2.15)
=l
where a is the angle between (HKL) and the i" member of the set of m symmetry-
equivalent diffracting planes. In the absence of PO, the summation in equation (2.15)
should reduce to myy, so the relation between observed intensity in the presence of
PO, [1,6{0bs)], and that of a uniform sample, L¢(random), can be expressed as :

Lo0bs) = Py Lyp(random) (2.16)
L

with Pua= M 2, Pxe(e) 21D
J=

The summation in equations (2.15), (2.16) and (2.17) is known as the
generalised multipticity term (Dollase, 1986; Capkova, Peschar and Schenk; 1993).

2.1.4 Prior Studies of the March Model by Curtin Materials Research Group

The present study was preceded by investigations, conducted by the Curtin
Materials Research Group, on the suitability of March model for PO corrections in
powder diffraction analysis. It is relevant, in the context of the present study, to
summarise these experiments.

Table (2.1) summarises Rietveld-March results for gibbsite, calcite and
molybdite, molybdite diluted with 50% by weight silica gel, and kaolinite,
respectively. These four materials all show pronounced PO. It is evident that
Rietveld refinement improved the internal agreement between these scale factors for
each material when the March model was employed (O’Connor, Li and Sitepu, 1991,
Sitepu, 1991; O’Connor, Li and Sitepu, 1992; and Sitepu, O’Connor and Li, 1996) -
see Table (2.1). The marginal gains in Ryp for kaolinite suggest that the March
model is less appropriate for this material than gibbsite, molybdite and calcite. The
quality of the Rietveld refinements involving random orientation and March PO
models may also be gauged from the diffraction pattern plots. Figure 2.3(a),
reproduced from O’Connor, Li and Sitepu (1991), shows the agreement between
calculated and measured XRPD patterns for a highly-oriented gibbsite sample for
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Table 2.1
Figures-of-Merit Single-Phase Rietveld Refinements [see Section (3.4)] with
Gibbsite, Calcite, Molybdite and Kaolinite XRPD Data Using Random Orientation
and March PO Models. (O’Connor, Li and Sitepu; 1991 and 1992)

The assumed PO directions for gibbsite, calcite, molybdite and kaolinite XRPD data

were <001>, <104>, <010> and <001>, respectively.

Specimen Random Orientation March Model
code* Rexp Ryp Rp Ryp Ry r
Gibbsite
SD 9.3 17.2 5.9 17.1 5.5 1.032
LP 100 257 12.2 18.4 4.7 0.758
BR 7.4 324 144 203 52 0.609
Calcite
SD 10.4 204 9.8 18.4 4.4 0.949
LP 10.4 213 10.3 19.6 53 0.904
BR 10.7 32.1 222 25.5 10.8 0.793
Molybdite
SD 7.7 33.8 22.8 23.4 11.9 0.755
LP 6.2 65.3 58.9 254 8.9 0.463
BR 7.2 72.6 64.2 28.6 10.8 0.550
Kaolinite
SD 7.8 21.9 8.5 21.7 7.3 0.882
LP 7.5 24.0 8.7 23.8 8.6 0.681
BR 8.3 235 8.1 20.7 5.8 0.669
*SD = samples mounted by side-drifting.

LP = samples mounted by lightly front-pressing with a glass slide.

BR = samples mounted by back-pressing into briquettes at a pressure of 6 bar for 7 seconds with

a Hertzog HDIF machine.
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Figure 2.3(a). Measured XRPD pattern for a highly-oriented gibbsite (March
parameter r = 0.61) and corresponding calculated patterns following Rietveld
refinement. After O’Connor, Li and Sitepu (1991).
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Figure 2.3(b). Logarithmic plot of March r-parameter from Rietveld refinements,
versus measured line ratio, My for gibbsite specimens. The unbroken line is the
theoretical r-Mg relation [see equation (2.18)]. After O’Conneor, Li and Sitepu
(1991).
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which the Rietveld-March r-parameter was 0.61. The agreement was clearly superior
when the March model was applied.

In assessing the effectiveness of the March model, O’Connor, Li and Sitepu
(1991) proposed an alternative method for PO corrections in which the r-parameter
was derived analytically from the intensity ratio of a pair of lines with different
orientation angles, oy. Such intensity ratios were designed morphological ratios, Mg,
by O’Connor, Li and Sitepu (1991).

The validity of the March model for gibbsite XRPD data was tested by
O’Connor, Li and Sitepu (1991) with My, values for the (002) line for which « = 0°
and the line doublet (110/200) for which o ~ 90°. The theoretical relationship
between My and the March r-parameter was given by :

r=115-M,"" (2.18)

Figure 2.3(b), from O’Connor, Li and Sitepu (1991), shows the excellent fit of
log(r)-versus-log(Mp) for a suite of gibbsite samples with differing degrees of PO.
The figure shows a linear relation between log(Mg) and log(r) which confirms with
the theoretical expression. It is evident from the plot that the March model is an
excellent descriptor of PO in gibbsite.

Additional r-My analysis performed with XRPD data for molybdite, calcite and
kaolinite, did not show close agreement between the measured and theoretical plots
which had been observed for gibbsite [O’Connor, Li and Sitepu (1992)]. The line
pair selected for molybdite was (020) [o = 0°] and (110) [a = 74°]. The relationship
between My and the March r-parameter for the line pair was given by :

M, = 041100756 + 0.9244r7)*? (2.19)
Selection of line (104) for calcite was obvious [o. = 0°]. However it was not possible
to select a second line with a close to 90°. Line (110) [ = 52.6°] was chosen on the
basis as it is well-resolved, albeit relatively weak. The relationship for this line pair
was,

M, = 667(0.3688 +0.6312r7)"? (2.20)
The line pair selected for kaolinite was (001) [ = 0°] and (060) [ = 90°] for which,

M, =10(0.0010 + 0.9989r)*? (2.21)
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Figure (2.4) reproduced from O’Connor, Li and Sitepu (1992), shows plots of
r-versus-Mp for molybdite, calcite and kaolinite XRPD data. The plots trend in the
general manner expected for r-versus-Mg, but do not agree closely with the
theoretical plots. The linear regressions fit for the molybdite, calcite and kaolinite

measured data were given by

M, =076r"% (2.22)
M, =867 (2.23)
M, =388 " (2.24)

The r-values from Rietveld refinements exceed the values from line rationing
analysis for all molybdite and kaolinite samples whereas the trend was reversed for
the calcite results. These inconsistencies between the experimental and theoretical

indicate shortcomings in the March model for these materials.

2.2 Texture Analysis with Eulerian Cradle Powder Diffraction Data
2.2.1 ODF Principles

Figure (2.5) shows there are three different reference frames that must be
considered, viz. (i) the coordinate system K, attached into the measuring instrument,
(1i) the coordinate system K bound to the sample and (iii) the crystal coordinate
system K, fixed to every crystallite in the specimen. The ODF of a crystallite is
defined as the rotation g that makes the coordinate systems K, and K, coincide.
Bunge (1982) described that this rotation can be executed in many different ways for
the use of the rotation g [equation (1.1b)]. In Figure (2.5a) the rotation is represented
with the three angles 3, @ and y [in the Bunge (1982) notation : 8=¢;, ¢=¢ and
Y=, see equation (1.1c)]; where 8 and ¢ are the direction angles of the axis P and y
represents the rotation of Q axis (as well as also R axis) around the P axis.

The ODF 1{g), is a function of ¢,, ¢ and ¢, [see equation (1.1¢)]. The crystal
system K, can be chosen in various ways, according to the space group symmetry of
the material. The ODF must be invariant to the symmetry operations of the crystal.
For this reason the symmetrised harmonic functions [equation (1.12)] are excellent
for modelling the orientation distribution of crystallites. On this basis Bunge (1982)

created a useful and reliable approach for texture analysis - see following summary.
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Figure 2.4. Plots of log(r)- versus- log(My) for molybdite, calcite and kaolinite
XRPD data. The heavy lines indicate the relationship derived with the March
formula. The broken line is the regression line for the measured data. After

O’Connor, Li and Sitepu (1992).
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smi /™20 _  DETECTOR

Figure (2.5). Coordinate system fixed (a) to the measuring instrument, (b) to the

sample and (c) to a crystallite. After Jarvinen (1993).
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Specification of the Crystal Orientation
The sample direction y is defined with respect to the sample coordinate system
K 4 either by cartesian coordinates or by spherical polar coordinates (Bunge, 1982)
Y = {iyys) = (e fi (2.25)
The crystal coordinate system Ky consists of the same crystal directions in each
crystallite, but it has a different orientation with reference to the sample coordinate
system. The crystal direction h is specified in the crystal coordinate system Ky either
by cartesian coordinates or by spherical polar coordinates (Bunge, 1982)
h={h.h.h)={0.r} (2.26)
Figure (2.6a) shows the crystal coordinate system parallel to the sample coordinate

system. It is then rotated successively about the

Z' axis = [001] through the angle ¢ . (2.27a)
x' axis = [010] through the angle @ (2.27b)
z' axis = [001] through the angle ¢, (2.27¢)

The angles @,, ¢, ¢, described the final orientation of the crystal coordinate system
Ky with respect to the sample coordinate system K, [see equation (1.1c)]. All
possible orientations can be obtained within the range :

0<@ <27, 0Z4<m, 0<¢,=<27 (2.28)

The three rotations in equation (2.27) may be expressed in matrix form :

s, sing, 0 1 0 0 cosg, sing, 0
g, =|—sing, cosp 0| gg=|0 cosg sing| g =|-sing oms@ 0 (2.29)
0 0 1 0 -—sing cosg 0 0 1
The g is expressed by
g=1{p,.0.0,} =g, g} ‘£, (2.30)

cos@, cos@, —sing, sing,cosg  sing, cos@, +cose, sing, cos¢  sing, sing
=| ~cos¢, cos@, —sing, sing, cosg —sing, cose, +cosg, sing, cosg cos, sing
sing, sing —cosg, sing cosg

The three rotations in equation (2.27) can be carried out graphically using the 2D
stereographic projection. If the x-y plane of the sample coordinate system is chosen
as the projection plane, then the points representing the crystal x,y .,z axes are
obtained by the orientation [see Figure (1.1b)]. By using this procedure, it is possible

to represent an orientation given in Euler angles by poles in the pole-figure.
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Figure 2.6. On the definition of the Euler angles {¢,,d,9,}. After Bunge (1982).
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Figure 2.7. The Euler space corresponding to the definitions of the Euler angles
(¢,6¢,). After Bunge (1982).
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If the Euler angles are chosen as ¢, ¢ and ¢, [see equation (2.28)] and are
represented in cartesian coordinates one specific orientation space which may be
called the Euler space is obtained - see Figure (2.7). Each crystal orientation _is
represented by a point in the Euler space, and each point in the Euler space
represents a crystal orientation. The Euler space is thus the space in which f(g)
[equation (1.1a)] is to be represented.

Bunge (1982) showed that the ODF [equation (1.1)] must be invariant with
respect to all crystal symmetry rotations g°. Sometimes the orientation arrangement
of the crystals in the sample may have symmetries g®. These statistical symmetries
are called sample symmetries. The ODF must then be invariant with respect to these
symmetries

fg -g-g)=rs(2) (2.31)

From the definition of the Euler angles [equation (1.1¢)] it follows that they are
periodic with period 2n. Thus the Euler space can be continued periodically to
infinity outside the range given in equation (2.28). The ODF is then a 3D periodic
function that has internal symmetries according to equation (2.31). The symmetries
in the Euler space can thus be described by a space group determined by the crystal
and sample symmetry which reduces the level of calculations to determine the ODF.

In Section {1.1) the relation between pole-figures and the ODF f(g) :

R = %-bl{f(g)dx y=@h)  g=londe @3
This equation is expressed in terms of the crystal direction h defined in the crystal
coordinate system Kg [equation (2.26)] with respect to the crystal axes.

Texture analysis consists in solving the integral [equation (2.32)]. The
unknown function f{g) is to be found using the known PDDF Py(y) which is deduced
from the pole-figures. Unfortunately, this is not a unique problem. There exist
several corresponding ODFs for a given set of pole-figures. This ambiguity is linked
with the existence of an inversion centre in the crystal symmetry and in the
diffraction experiment (Friedel’s Law). Then the ODF f(g) can be split into two parts
(Bunge, 1982, 1985, 1986 and 1992) :

f@=7F@®+7@® (2.33a)
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with [Fe)ydg= R (2.33b)

hly

and with [f®)dg=0 (2.33¢)

hly

where }(g) is called the non directly-determinable part of the ODF (or odd-part of

the ODF) which does not contribute to the PDDF. f(g) is called the directly-
determinable part of the ODF (or even-part of the ODF) which is directly related
with the PDDFs obtained from diffraction experiments.

In the harmonic method (Bunge, 1982) the ODF is calculated in two stages (i)

the directly-determinable part £(g) is calculated using pole-figures data, and (ii) the
not directly-determinable part is calculated using a positivity criterion. The harmonic
method is outlined in further detail below.

2.2,.2 The Mathematical Fundamentals of the Series Expansion Method for
Analysing Pole-Figures Data
Most practical texture determinations are carried out with the series expansion
method due to several valuable advances of this method compared with other

methods described in Section (1.1). Dahms and Bunge (1989); Bunge (1982, 1985,

1986 and 1992); Bunge and Park (1996) highlighted the series expansion advantages:

¢ The representation of an arbitrary function by a system of orthogonal functions
provides a most economic way to approximate this function rapidly with a small
number of approximation steps.

o The coefficients of the series are the most comprehensive and sometimes the
most concise representation of a texture function. They are very well suited to
express several kinds of related functions such as pole figures, inverse pole
figures, anisotropies of physical properties efc.

o The low-order terms of the series have a physical meaning of their own. Hence,
these quantities have to be calculated anyway, even if other inversion methods
are used to calculate the ODF.

Bunge (1982) showed that an analytical solution to equation (2.32) is the

harmonic function X' (y) and 7,""(g) which is given by
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1 2 .
—_ . n . =—> K™ K" 2.
J;i'} (®)-dy = K" (h)- K'(y) (2.34)

There is one such function 7™ (g) for every possible combination of the indices [,
m, and n. The functions with low values of / being long-wave functions, those with
high / values being short-wave functions, which means long or short angular
distances between neighbouring maxima and minima of the functions.

In can be shown that any function f(g) can be composed by adding fuhctions
T™(g) in appropriate amounts [equation (1.9)]. This equation is the general
principle of series expansion, which is well-known in the form of Fourier analysis.
The harmonic functions 7;""(g) are functions of three variables, and their form is
more complicated than the Fourier analysis, but the principle is the same. Similatly,
the function Py(y) can be composed of functions K;'(y) [equation (1.10)].
Substituting equations (1.9) and (1.10) into equation (2.32) and take equation (2.34)

into account, then the relation between the coefficients C; and F,"(h) is given by :

47 .
Fr(0) =~ 2CK" () (2.35)

where K;™(h) is the complex-conjugate quantity.

If the coefficients C/ and F,"(h) fulfil equation (2.35) then the functions f(g)
and P,(y) fulfil the fundamental relation of texture analysis {equation (2.32)]. Thus,
the solution of equation (2.35) provides the solution of equation (2.32). Equation
(2.35) is a system of linear equations with C;™ as unknowns. There is one such
system for every combination of the indices / and n. It contains (2/ +1) unknowns,
- corresponding to the values of the index m with (—/<m<+/). The number of
equations in this system is given by the number of different pole-figure P,(y). Thus,
the coefficients C/” can be determined uniquely up to /=L if the coefficients
F" (h) are known for (2/ +1) different pole-figures.

In equation (2.35) the functions 7;""(g) with different values of m correspond
to different crystal symmetries. If the function f(g) corresponds to triclinic crystal
symmetry, then all values of m are needed in series expansion. If the crystal

symmetry is higher, then only a selection of m values is required. Figure (2.8) shows
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that symmetry reduces the number of unknowns in equation (2.35) and the number
of pole-figures needed to solve equation (2.35).

The coefficients F;"(h) of the series expansion of the pole-figure Py(y) must be
known in order to solve equation (2.35). They can be obtained if equation (1.10) is

multiplied by K:.”' (y) and integrated overy :

[R@) Ky =Y 3@ [K3)-K (5)dy 2.36)

I=0  p=-1

and if the orthogonality relation of the harmonic functions is applied
[k (@.p) K" (a.P)sinadadf =5, -5, . 2.37)
then F,"(h) becomes :

\ Fr )= [R)-K"(y)dy (2.38)
The solution of equation (2.32) by the harmonic method is thus contained in
equations (2.38), (2.35) and (1.9). It can be seen from equation (2.38) that the

measured pole-figure Py(y) is developed into a series with the coefficients F"(h)

which is analogous to the Fourier analysis and will be called texture analysis. Then

equation (2.35) is solved for unknowns C; which is called coefficients
transformation. Therefore, the function f(g) can be finally synthesised for any
desired value of g, which is called texture synthesis in analogy to Fourier synthesis.
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Figure 2.8. The number of independent harmonic functions of degree / for various
symmetries. After Bunge (1982).

45



CHAPTER 3

EXPERIMENTAL PROGRAM

3.1 Experimental Design

Experiments were designed to meet the study objectives stated in Section (1.6)
and according to the broad research plan presented in Section (1.7). The principal
aspects of experimental design were : -
(i) selection of the materials,
(ii) strategies for powder diffraction data measurement and

(iii) diffraction data analysis.

Materials Selection
The principal criteria for materials selection were : -

1. Availability of information on the general form of pole-density distributions
(PDDs) for prospective materials, including knowledge that the PDDs for the
selected materials would be unipolar.

2. Substantial sensitivity of the PDDs to pressure in cylindrical compacted
specimens.

3. Suitability of the materials for both XRPD and NPD experiments in relation to
influences which might degrade the data - principally sources of systematic error
other than PO, such as microabsorption and extinction.

4. Conformity of the common crystallite shapes in the selected materials with the
rod- or disk-shaped crystallites modelled in the March (1932) theory.

5. Chemical purity as impurities might alter the texture and also introduce spurious
data into the diffraction patterns.

Further details on the rationale for selecting specimens for the study are given

in Section (3.2).
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Powder Diffraction Experiments
The strategic issues considered in planning the XRPD and NPD experiments,
were: )
e Measurement of diffraction data for near-surface characterisation of texture by
XRPD and also of bulk texture by NPD so that texture would be fully
characterised. |
¢ Direct determination of PDDFs by texture diffractometry for appraisal of March-
model PDDFs determined by Rietveld pattern-fitting.

e Collection of diffraction patterns using uniaxially-pressed cylindrical compacts
for which the pressure would be varied systematically.

¢ Range of PO values to be studied for each material would be extended by

analysing additional powders containing 50% silica gel (Calvert et al., 1983).

- Sitepu (1991), O’Connor, Li and Sitepu (1991, 1992) and Sitepu, O’Connor
and Li (1996) employed various sample milting/mounting combinations to produce a
wide range of PO effects with gibbsite, molybdite, calcite and kaolinite specimens.
On the basis of these studies, molybdite and calcite powders were selected for the
thesis project - see Table (3.1).

Table 3.1
March r-parameters from Molybdite and Calcite XRPD Data (Sitepu, 1991)
Sample PO r-parameter calculated from Rietveld” refinements
with the March model
Molybdite’ Calcite
Side-drifted 0.679(2) 0.957(4)
[0.774(4)]
Light-front-pressing 0.498(2) 0.879(8)
[0.679(3)]
Briquetted at 6 bar for 7 s 0.475(2) 0.814(3)
[0.664(3)]

*Rietveld analysis with March model did not involve summing of equivalent
reflections [see Section (3.4)]. The assumed PO directions for molybdite and calcite
were <010> (Kihlborg, 1963) and <104> (Dollase, 1986), respectively.

*Values for molybdite (100% by weight) and mixed with 50% by weight silica gel
are given in the first line and in square brackets, respectively. The uncertainties are
in parentheses.
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XRPD data were to be collected for each material using two sample mounting
procedures designed to extend the range of PO conditions :
¢ side-drifting,

e uniaxial-pressing with systematically-varied pressures.

Diffraction Data Analysis

Each diffractometry data set was to be analysed by Rietveld analysis with
particular reference to PDD character, and PDDs were to be measured independently
using x-ray and neutron pole-figures with a view to using these data to assess the

validity of PDDs from Rietveld modelling.

3.2 Materials Selection and Pelletising

The specimens selected for the study were chosen to satisfy the objectives
stated in Section (3.1) - specifically to provide a wide range of PO conditions in the
selected materials,
¢ molybdite [MoQ4]
s calcite [CaCOs].

The molybdite and calcite materials were obtained from BDH Chemicals
Limited, Poole, England and AJAX Chemical Pty. Limited, Auburn, Australia,
respectively, as ANALAR analytical reagents.

The particle size distributions (PSDs) for the molybdite and calcite as-received
powders, mecasured with a Malvern Master Sizer laser instrument, are shown in
Figures 3.1(a) and (b). Table (3.2) gives an analysis of the PSDs in terms of XRPD
intensity reproducibility according to Klug and Alexander (1974). The results
indicate that intensity reproducibility for both molybdite and calcite discrete Bragg
peaks should be approximately of 8% and 5%, respectively. It was evident from the
results that the PSDs for molybdite and calcite as-received were adequate, based on

the criteria given in Table (3.2).
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Table 3.2

Target Particle Sizes from Klug and Alexander (1974) and PSDs for the
As-received Molybdite and Calcite Powders (Sitepu, 1991)

Sample LAC"  Intensity Reproducibility (Klug
(cm") and Alexander, 1974)

Measured D[v,0.5]" in um

[Figures 3.1(a) and (b}]

Sum 10um 15um As-received
Molybdite = 501 2.5% 6.8% 12.5% 10.8
Calcite 190 1.6% 3.8% 6.9% 13.4
100 ¢ bttt 20
D[v,0.5] = 10.8 ym
% 501 o
9 Mﬂ_‘-ﬂ-‘_ﬂml{o JALLL L Tt oy et .1‘4 0
Particle Size (um) 000
Figure 3.1(a). PSDs for molybdite as-received samples. Median volumetric D[v,0.5]
is 10.8pm.
100 - ————— + 20
D[v,0.5] = 13.4 ym '
] al
s
cyo 50 | 110
0 e LSS S S
1 100 1000

10
Particle Size (xm)

Figure 3.1(b). PSDs for calcite as-received samples. Median volumetric D[v,0.5] is

13.4pm.

? linear attenuation coefficients, CuKa. radiation (1.541844).

& volumetric median value for PSD.

49



Molybdite Powders

PO is generally substantial in molybdite powders due to the blade-like needle
shape. Calvert et al. (1983) demonstrated the considerable sensitivity of molybdite
diffraction patterns to sample preparation and mounting by examining data for
samples prepared by spray-drying, side-drifting and pressing.

In view of the substantial variation in the March r-parameter which can be
obtained with molybdite [see Table (3.1)] the material was regarded as an excellent
choice for the study. Further attractions were :

(i) consistency of the platy crystallite shapes with the theoretical requirement for the
March model that crystallites should be either disk- or rod-like, and

(ii) availability of a detailed description of the crystal structure in the literature
{Kihlborg, 1963).

Additional molybdite powders, to which 50% silica gel had been added, were
examined in the XRPD diffraction experiments to extend the range of March r-values

obtained in the study.

Calcite Powders

Calcite was selected in view of the results reported by Dollase (1986) which
indicated that PO was moderate for the samples examined in that study, ca
r=0.89(5). The material was thought to merit inclusion in the present study as

a means of testing the reliability of the correction procedures for values of March PO

r-parameter close to 1.0 - see Table (3.1). Further attractions were :

(i) consistency of the flat-plate particle shape commonly observed in calcite appears
to satisfy the disk-shaped crystallite form - one of the 2 crystallite types modelled
by the March function, and

(ii) the crystal structure of calcite is well known (Megaw, 1970 and 1973).

As for molybdite, the set of textures examined was extended by preparing

additional calcite powders mixed with silica gel.
Sample Pelletising Procedures for Diffraction Experiments

Side-drifted mounting was employed to produce XRPD mounts with minimal
PO for each of the materials investigated. The side-drifting was performed by fixing
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a glass slide to the front surface of the x-ray sample holder and then loading the
material through the gap between the slide and holder by tapping with a spatula. The
glass slide was then carefully removed leaving the sample securely packed in the
holder when the holder had sufficient material in place.

Samples with a range of textures were prepared by uniaxial-pressing at
different pressures. For XRPD, approximately 3.5g of powder was compacted in a
cylindrical steel die 19mm in diameter [see Table (3.3)]. The set of discs examined
by XRPD diffractometry was also used in the XRPD texture work. A separate set of
discs (approximately 15g of powder) was pressed for the NPD experiments as the
relatively weak beam intensities required use of more volumuous specimens. The

heights of the XRPD and NPD discs were approximately 0.5¢m and 3cm,

respectively.
Table 3.3
Sample Pelletising Procedures
Pelletising Pressure Molybdite Specimen Calcite Specimen
Conditions (MPa) Codes’ Codes’
XRPD NPD XRPD NPD
Not pressed 0 MOX MON Cox CON
MOX(S) MON(S) COX(S) -
Uniaxial-pressing 44 M2X M2N Cc2X C2N
M2X(S) M2N(S) C2X(8) -
66 M3X M3N - -
M3X(S) M3NGS) - -
88 M4X M4N C4X C4aN
M4X(S) - Cax(s) -
110 M5X MSN - -
MS5X(S) MSN(ES) - -
132 - - C6X C6N
- - C6X(S) -
176 - - C8X C8N
- - C8X(S) -
¢ Speci Codes:
First letter: M and C for molybdite and calcite, respectively.
Second letter: Digit represents pressure in x1000Ibs units (conversion factor,
10001bs units to MPa =22).
Third letter: X for XRPD, N for NPD.

Fourth letter (parentheses): (S) signifies that 50% by weight silica gel has been added.
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3.3 Powder Diffractometry Measurements

X-ray Diffraction Pattern Measurements
Step-scanned patterns were measured at Curtin University of Technology with

a Siemens D500 Bragg-Brentano x-ray powder diffractometer fitted with a graphite

diffracted-beam monochromator [see Figure (3.2)]. The Bragg-Brentano

parafocussing geometry uses a diverging beam from a line source which is directed
to the sample through an incident beam aperture, designated the divergence slit
system [I and II in Figure (3.2)]. The conical diffracted radiation beam for each
reciprocal lattice vector is sampled by the detector aperture (IV). Slit II, situated in
the diffracted beam, is an antiscattter slit. Off-plane divergence is reduced by a soller
slit placed between the specimen and detector.

Data collection details are given in Table (3.4). The basis on which various
conditions/settings were selected follows.

e the divergence slit provided specimen coverage ranging from ~40.2mm to
3.9mm over the 20 data collection range so that the sample fully collected the
incident beam over the range;

o the depth of powder in the sample cup exceeded the calculated infinite depth
range for the powders employed: 4um to 42um for MoO; and 11pum to 110pum
for CaCO; for the 20 range;

o the receiving slit was selected to approximately match the effective focal spot
width of the tube;

» data were not recorded below 10° in 20 because Bragg peaks do not occur below
this angle for the materials considered, and data were collected to 26 = 130°
because the Bragg intensities were barely observable beyond this angle;

¢ counting time of 1s/step ensured reasonable intensity counting statistics;

¢ a detector step size of 0.04° was employed to provide adequate sampling of the
peaks (FWHM = 0.1 - 0.3°) which is consistent with the guidelines described by
Hill and Madsen (1984, 1986) and Hill (1993) who showed that increasing
counting times beyond one ls/step, and reducing the step size below 0.04° 26
made negligible improvement to Rietveld parameter estimated standard

deviations and R-factors;
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X-RAY tube

Figure 3.2

detector slit

detactor

aperture slit

secondary-
maonochromater

2theta (20)

theta ()

Schematic  diagram of Bragg-Brentano x-ray powder

diffractometer used for pattern measurements (taken from Siemens, 1986; p2/2).

Table 3.4
XRPD Pattern Measurement Conditions

Instrument:

Radiation :

Optics :

Specimen :

Detection :

Acquisition:

Siemens D500

Cu-anode tube, type FF Cu 4KE 60kV 1.5kW, operated at 40kV and
30mA

Effective focal spot size, 0.04x8mm’>

Unfiltered

Wavelength: CuKo = 1.54184, Ko, = 1.54060A Ko, = 1.544394

Bragg-Brentano, measuring circle diameter = 401mm
Incident beam divergence = 1°, receiving slit = 0.05°
Scatter slits divergence = 1°

Soller slit divergence = 1°

Holder - circular format, diameter =23 mm
Rotation ‘on’ for all measurements

Graphite diffracted beam monochromator set for CuKa
Nal scintillator with pulse height analysis

Angular range in 26, 10° - 130°
Step size, 0.04°
Counting time, 1 s/step
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e the full-width at half-maximum (F WHM) resolution curve, for the diffractometer
obtained with a NIST LaB, sample, is provided in Figure (3.3) which shows the
values for U, V, W and y (pseudo-Voigt function) are 0.0069, -0.0078, 0.0193
and 0.213, respectively. For comparison, the FWHM resolution function of the
HRPD neutron diffractometer for an a-Al,O; sample is also plotted in Figure
(3.3) with the U, V and W values are being 0.058, -0.114 and 0.122, respectively
(Howard, Ball, Davis and Elcombe; 1983).

1.00

HRPD and XRPD resolution curves
0.80

T T T T T T T T T [ T T 1%

0.20

T

XRPD
000IllIlIlI!llllLll|||||||l||11[ll||t||III

(]

20 40 60 80 100 120 140 160
26 ()

Figure 3.3. FWHM curve for (a) Siemens D500 x-ray diffractometer (Bragg-
Brentano optics) using LaB, sample and (b) HRPD Debye-Scherrer instrument for
a-Al,O5 sample.

Texture X-ray Diffractometry

Pole-figure measurements were performed at Curtin University of Technology
with a Siemens D5000 diffractometer fitted with a Siemens open-circle Eulerian
cradle. Figure (3.4) shows a schematic diagram of the four-circle diffractometer
instrument. Angles x and ¢ correspond to the pole-figure angles o and B for the
pole-figure measurements described in Section (2.3). The instrument design details

and data acquisition conditions are given in Table (3.5).
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Figure 3.4. Schematic diagram of x-ray texture diffractometer incorporating an open

Eulerian cradle. (a) Vertical plane defined by incident and diffracted beams and (b)
Eulerian cradle.



Table 3.5
XRPD Texture Diffractometry Measurement Conditions

Instrument: Siemens D5000

Radiation : Cu-anode tube, type FL Cu 4KE FE 801013 60kV 2.2kW, operated at
40kv and 30mA
Effective focal spot size, 0.04x 12mm’ (long fine focus, short anode)
Ni filter used for pattern measurements, unfiltered for pole-figure
measurements
Wavelengths: CuKa = 1.54184, Ko, = 1.540604 Ka, = 1.544394
Specimen coverage : Smmx20mm

Optics : Parallel-beam, measuring circle diameter = 500mm
Eulerian cradle - diameter 37mm
Divergence - incident beam = 1°, diffracted beam = 0.05°
Scatter slits divergence = 1°
Soller slit divergence = 1°

Detection : Nal scintillator with pulse height analysis
Acquisition: Ranges for pole-figures - 0-60° for y, 0-360° for ¢

Step sizes, Ay =A@ =5°
Counting time, 14 s/step.

Data were measured using quasi-parallel beam optics. The incident beam was
directed to the specimen through aperture slits. The diffracted radiation passed
through a third aperture (receiving slit) and pre-detector slit.

The bases on which various conditions/settings were selected are as follows :

e The pole-figure data collection process was managed with the Siemens TEXDS
software package.

e During pole-figure measurement, the counter was fixed to record the Bragg peak
and the specimen was rocked using the y and ¢ axes.

e In x-ray texture studies conducted by Wenk et al. (1984) and neutron texture
round-robin studies coordinated by Wenk (1991), the precision of the pole-figure
data was excellent when Ay = Ap = 5°. As a result, the same increment was

employed in this study.

56



e Out-of-plane divergence was controlled by soller collimators placed between
focus and specimen, and between specimen and scatter slit.
e The diffractometer did not permit spinning of the sample to ensure rotational
symmetry.
Prior to pole-figure measurement, a set of suitable Bragg-reflections was
selected, and the 26-values for the local background measurements were determined.
The texture intensity measurements were converted to PDDs by a two-step
procedure involving (i) correction for defocussing and (ii) normalisation.
Defocussing corrections (Chernock and Beck, 1952; Chernock et al, 1953;
Huijser-Gerits and Rieck, 1974) were applied using a texture diffractometry data set
collected with a side-drifted a-Al,05; powder which was assumed to be randomly-

oriented. The 26 background-corrected intensity values, recorded at intervals of 5° in
¢ for each y setting, were averaged to provide the mean intensity [ »- The intensity

correction factor for each y was taken to be the ratio,

r

C(x) = If 3.1

where I; is the intensity at , = 0.

The measured PDDs for the textured specimens were then derived from the
defocussing-corrected intensities according to the following description in which 7 ;
represents the intensity of the textured specimen after averaging over the 72 ¢
settings. A plot of I -versus-y was fitted with a polynomial :

I, —a,+ay+ay ray (3.2a)
Normalisation was then performed with the expression :

60*
[1,-dx
PDD=-' (3.2b)

60"

Jaz
0

Results for the defocussing and normalisation measurements are reported in

Section (5.2).
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Neutron Diffraction Pattern Measurements

NPD data were collected at room temperature with the high-resolution, fixed-
wavelength, multi-detector powder diffractometer (HRPD) at the Australian Nuclear
Science and Technology Organisation {ANSTO) High Flux Australian Reactor
(HIFAR) at the Lucas Heights research Laboratories, near Sydney, NSW. The HRPD
instrument has been described by Howard, Ball, Davis and Elcombe (1983); Howard
and Kennedy (1994); Kennedy (1995); and Knott (1998). A schematic diagram of
the instrument is shown in Figure (3.5), and the instrument settings used for data
collection are given in Table (3.6). Figure (3.3) shows the resolution function for the
instrument.

The effective angular range of the 24-detector HRPD instrument was 0° to
154°. The step size chosen was 0.05° so that sufficient steps were taken through each
peak. The resolution is approximately 0.25° at best, and therefore approximately 10
steps were taken over each peak.

Counting times for HRPD to obtain reasonable counting statistics are sample
dependent, typically ranging from 20s to more than 100s. The times chosen for
measurement of all molybdite and calcite samples varied between 40 and 50 s/step
to ensure reasonable counting statistics. A wavelength of 1.494 was chosen because
of its comparability with the XRPD CuKa wavelength, 1.54184.

Data were recorded for the compacted specimens described in Table (3.3). For
each specimen, patterns were acquired for two mounts, (i) with the specimen
cylinder axis coincident with the HRPD rotation axis and (ii) normal to the axis. The
patterns recorded by each detector were merged during data reduction to allow for

counter offsets and relative detection efficiency.

Neutron Texture Diffractometry

Pole-figure measurements were performed at room temperature with the fixed-
wavelength four-circle, single crystal diffractometer (2TANA) at the ANSTO
HIFAR facility. The maximum 26 is approximately 118°, and over this range, the
reflection FWHMs are typically 0.4° at 20 = 5°, increasing to approximately 0.75° at
20 = 105°. A schematic diagram of the instrument is shown in Figure (3.6), and the

settings employed for pole-figure measurements are given in Table (3.7).
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Figure 3.5. Schematic diagram of the HRPD neutron diffractometer used for pattern
measurements (Howard, Ball, Davis and Elcombe, 1983).

Table 3.6
NPD Pattern Measurement Conditions

Instrument: HRPD

Radiation: Ge single crystal monochromator, take-off angle = 120°
Wavelength = 1.493 A

Optics: Debye-Scherrer
Specimens: e Vanadium can (16mm diameter, 5cm height) for non-pressed
materials

e Uniaxially-pressed cylinders (19mm diameter, 3cm height)
¢ Rotation ‘on’ for all measurements

Detection: 24 *He detectors, separated by 5° in 20
Acquisition: Angular range in 26, 10 - 154°

Step size, 0.05°
Counting time, approx. 40-50 s/step (controlled by beam monitor)
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Figure 3.6. Schematic diagram of single crystal diffractometer (2TANA) used for

neutron texture measurements.

Table 3.7
Neutron Texture Diffractometry Measurement Conditions

Instrument: 2TANA

Radiation: Cu single-crystal monochromator, take-off angle = 58°
Wavelength = 1.2374

Optics: Single-crystal
Detection: 1 *He detector
Acquisition: Ranges for pole-figures: 0 - 90° for %, 0 - 270° for ¢

Step size, Ay =A@ =30°
Counting time, approx. 6-7 s/step (controlled by monitor)

60



Settings for texture analysis were chosen as follows. The incident beam slit
was remaved and the detector slit was completely open, with the entire cross section
of the detector (10mm in diameter) being active. While use of uncollimated optics
reduced data collection times to realistic levels, this resulted in the Bragg lines being
broader than in the powder pattern measurements with HRPD.

The instrument was used to measure pole-figures for
(i) one calcite powder, i.e. using a 16mm vanadium can sample holder and
(ii) two compacted calcite powders, which had been uniaxial-pressed for 88 and 176

MPa, respectively, along the cylindrical axis (see Table 3.3). Six Bragg-peaks
(012), (104), (006), (113) and (018) were chosen according to the JCPDS pattern
number 5-586.
Based on preliminary scans, peak positions were selected at 20 values of 18.62°,
23.59°, 25.18°, 31.52° and 37.82°. Corresponding positions for measuring the
background were at 20 = 17.5°, 22.5°, 26.5°, 32.5° and 38.5°. A monitor count was
chosen to provide approximate counting statistics of 10%. On this basis, the time

required to measure the 5 peaks and background was approximately 8 minutes.

3.4 Rietveld Analysis of Diffraction Data
(i) Rietveld Method Principles

Rietveld (1967, 1969) described a structure refinement method involving the
use of whole-pattern powder diffraction data. Initially, the technique was restricted to
the determination of structural parameters, viz. atom positions, temperature factors,
site occupancy values and lattice parameters. Subsequently, the Rietveld method has
been developed to characterise macroscopic descriptors (Young, 1993) - notably
phase composition, texture, crystallite size, crystallite strain and extinction. The
method may be used with XRPD and NPD data.

The basis of the Rietveld procedure is to minimise the residual:

N
R=Ywl;-¥,[ (3.3)

i=1
over the N measurements comprising the diffraction pattern, using iterative least

squares. Here, Y, is the observed intensity at the ith point in the pattern, ¥, is the

i
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corresponding calculated intensity and w; is a weighting factor. The values of w; are
normally set according to Poisson counting statistics :

|
= 3.4
"=y (3.4)
The expression for ¥, employed in this study [see (iv) following for program
details] is that for a flat, infinitely-thick specimen, with the summations being taken

over neighbouring Bragg reflections and component phases according to :

Y, =53 L,|F| $26,-26,)P, +1, (35
i

where 28, and 26, are the detector angles corresponding to point i and Bragg
peak j, respectively.
Term s is the phase scale factor which in effect scales the calculated pattern for

the phase to the measured pattern. The refined, or best, value for s will resuit in the

approximation :
Sx =YK, 66

Term L is the product of the three factors -

Li=Lr,-p; m (3.78)
where :
Lr; is the Lorentz factor :
1
r = —— (3.7b)
(2sin” @, -cos@))
p; is the polarisation factor. For unpolarised x-ray radiation, p; has the value :
(1+ Kcos® 26)
.= 3.7
Py 1+ K (3.7¢)

where K is cos? 28,, when a diffracted beam monochromator is used (8 being the
monochromator Bragg angle), and K = 1 when a monochromator is not employed.
For the graphite monochromator used in this study, 26,, = 26.6° (JCPDS pattern 25-
0284) and K =0.8.
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m; is the multiplicity corresponding to the number of equivalent reflections for a

given Bragg peak - specification of the space group with Rietveld programs yields
the multiplicities.
Factor | F;| is the modulus of structure factor Fi(hkl) for Bragg peak j,

produced by summing over the k atoms in the unit cell:

Fihkl)= D_ fi - o, - exp[2mi{hx, + ky, +1z}] - Ty (3.8)
P

where f, is the scattering factor of atom k (x-ray and neutron scattering factors,
International Tables for X-ray Crystallography, 1995 Volume C, pp. 476 - 486 and
pp. 384 - 391, respectively); oy is the site occupancy factor; h, k and I are the Miller
indices; X;, ¥, and z are the atom fractional position co-ordinates and Ty are the
Debye-Waller factors :

T, = exp(-B, sin’8 / 1% (3.9)
for temperature factor By assuming isotropic motion.

Various mathematical forms are available in Rietveld software to represent the
peak profile function, §(26, - 26). The pseudo-Voigt function, comprising a sum of
Lorenztian and Gaussian components, was used for all refinements in the study, for
both XRPD and NPD data. The function is given by :

-1
CUZ (29_29)2
20 -28 )=y -—=—.|1+C, — i
¢( i _;) Y E'Hk { ] HjZ

Clll (29, _29 )2
+(1-y)- m -exp[-—C, —Hz—’ (3.10)

j
where C, = 4, C; = 4 In 2, H; is the FWHM of the jth Bragg reflection and v is the
Lorentzian-Gaussian mixing parameter.
H; has the form derived by Caglioti, Paoletti and Ricci (1958) for crystal-
monochromated neutron diffractometry,
H?=Utan’ 6,+Vtan 6, + W @3.11)
where U, V and W are refinable parameters.
Peak asymmetry was modelled using the function
A =1 - AS{sign(26, - 268,)] (26, - 20, cot(8) (3.12)
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involving asymmetry parameter AS (Rietveld, 1969; Howard, 1982).
Term Yy, the background component of the pattern, was modelled in the

present study with the polynomial expression :

4
Yoi = Z B, (291)m (3.13)
m=-1
where the B, are refinable parameters.
Term P, the PO factor, was modelled in this study with the March function

described in Chapter 1 equation (1.18).

(ii) Estimates of Precision for the Refinement Parameters
The estimated standard deviations (esds) for the Rietveld parameters were

derived with the expression for parameter j :

N

wa'

_ -1 =l
o. =M. -

¥, - L)
J ril N—P

(3.14)

where N is the number of observations, P is the number of parameters being refined
and ij'l is the diagonal element obtained by inversion of the normal matrix with

elements My given by :

oY aY.. Y
M =—§ 2w, | (Y. -Y.)- LI ¢ 1. ci 3.15
k - i {(a c:) 5,’5,]‘:1 |:9 :| l:?k} ( )

J

where x; and x, are adjustable parameters.

The reliability of the esds has been discussed by Sakata and Cooper (1979),
Pawley (1980), Prince (1981, 1985, 1993), Cooper (1982), Baharie and Pawley
(1983), Hill and Madsen (1986) and Hill and Cranswick (1994). The esds are correct
only if there are no systematic errors in the measured data or deficiencies in the

model. Otherwise the values will be underestimated.

(iii}) Refinement Quality Measures
Refinement quality is assessed using figures-of-merit and difference plots, the
former comprising two types of profile R-factors, a goodness-of-fit index (GOFI)

and phase Bragg R-factors (Rg). The profile R-factor is given by :
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R, = ‘T (3.16}
and the corresponding weighted form is,
) 112
Z wr‘lK -, i
R, =| (3.17)
2 W; - Y; :
=l
Ideally Ryp has value,
172
Ry =| =T (3.18)
Wi '}:2
i=1
The GOFI is given by :
GOFI = [;:i]2 (3.19)
EXP

A fully-refined model with ‘perfect’ data would give GOFI = 1.0 (Prince, 1993).
The Bragg R-factor is defined by :

I, -1

2|0 =L

Ry="t—— (3.20)

2!

were I, and I;; are the observed and calculated Bragg intensities for reflection j, the

observed intensities being determined assuming they are in the same proportion as
their calculated counterparts. Factor I, is calculated, as described by Rietveld (1969),
with the expression,
(3.21)
i=1

where the summation is taken over all observed profile intensities, Y; which can
theoretically contribute to the observed integrated intensities I,

Factor Ry is a measure of agreement between the observed and calculated

Bragg intensities, based on crystal structure parameters. Hill and Madsen (1987)
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emphasised that Ry relies more heavily on crystal structure parameters than other
agreement indices.

Of the three R-factors, Ryp is the most valuable as the numerator is the quantit.y
minimised by least-squares in the Rietveld refinement process. In addition to the R
factors, difference plots were used to compare the agreement between calculated and
observed patterns. For example, Figure (3.7) shows the agreement between measured
and calculated XRPD pattern-fitting improved dramatically when the March formula
(equation 1.18) was used for the molybdite M4X sample - briquetted for 88MPa.

(iv} Rietveld Software
The Rietveld program used in the present study was a PC version of the LHPM

program (Hill and Howard, 1986) developed by Howard and Hunter (1996). A

notable aspect of the doctoral study concerned recognition of the need to allow for

symmetry-equivalent reflections, as proposed by Dollase (1986). It was discovered
during the PhD study that the LHPM Rietveld program, used initially by the author,

did not allow for éontributions from symmetry-equivalent reflections.

General strategies for performing Rietveld refinements have been described by

Kisi (1994). The following details pertain to the XRPD and NPD calculations

performed in this study :

» structural parameters for the molybdite and calcite phases are given in Tables
(3.8) and (3.9), respectively - all positional parameters were fixed at the
published values, and the thermal parameters and cell parameters were refined;

s the background component of the XRPD and NPD patterns, Yp;, was modelled
with a 4-parameter polynomial as defined in equation (3.13);

s zero point 20, (off-set in the 20 scale of the goniometer);

¢ phase scale factor;

e March parameter r; for the phase according to a specified direction of PO.

The directions of PO used for the XRPD refinements were <010> for MoO;

and <104> for CaCO; as recommended by Kihlborg (1963) and Dollase (1986),

respectively. For NPD, the PO directions for MoO, was <010> and for CaCO; was

<001> (Peschar et al., 1995) as the <001> gave NPD pattern fits superior to those

obtained with the <104> direction (see Section 4.4.2).
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Figure 3.7. Agreement between calculated and measured XRPD patterns for
molybdite powder specimen (M4X - briquetted for 88MPa) following Rietveld
refinement with the March model. The observed data are indicated by plus sign and
the calculated profile is the continuous line in the same field. The set of vertical lines
below the profiles represent the positions of all possible Bragg reflections. The lower
plot is the difference between the measured and calculated patterns on the same scale
as the measured and calculated patterns.
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Refinements were carried out until all parameter shifts were less than 0.1 of the
corresponding esd and results were also monitored by observing the figures-of-merit

and difference plots.

Table 3.8
Crystal Structure Model for Molybdite, MoO5 (Kihlborg, 1963)

Atom Wyckoff X y z B (A)?
Position Code'®
Mo 4(c) 0.087 0.102 0.250 0.230
o) 4(c) 0.500 0.435 0.250 0.561
0(2) 4(c) 0.521 0.087 0.250 0.628
0(3) 4(c) 0.037 0.221 0.250 0.951

e Space group : Pbnm (No. 62).
e Unit cell parameters: a = 3.9628 A, b = 13.855 A, ¢ = 3.6964 A and
o=p=y=90°

Table 3.9
Crystal Structure Model for Calcite, CaCO5 Megaw (1970 and 1973)

Atom Wyckoff X y z B (A)?
Position Code'!
Ca 6(b) 0.000 0.000 0.000 0.183
C 6(a) 0.000 0.000 0.250 0.183
O 18(e) 0.257 0.000 0.250 0.244

» Space group : R3¢ (No. 167)
e Unit cell parameters : a=4.990 A, b=4.990 &4, ¢ =17.002 A, o =B =90°
andy= 120°.

10 Co-ordinates, 4(c) = X,y,1/4; 1/2-X,1/2+y,1/4; 1/2+X,1/2-y,3/4; X,y,3/4.
'' Co-ordinates 6(b)=0,0,0; 0,0,1/2.
6(a) = 0,0,1/4; 0,0,3/4.
18(e) = x,0,1/4; 0,x,1/4; -X,%,1/4; -x,0,3/4; 0,-X,3/4; X,X,3/4.
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3.5 Physical Modelling of March Parameter-Versus-Pressure for

Uniaxially-Pressed Cylinders

The NPD data were collected for two configurations, (i) ‘normal mount’ with
the specimen cylindrical axis coincident with the instrument rotation axis, and (ii)
‘transverse mount’ with the cylindrical axis normal to the instrument axis - see
Figure (3.8).

Expressions were developed by the author in the course of the study (see
following derivation) which link the March r-parameter to the compaction pressure
via the bulk modulus of the powder. The expressions provide a novel method for the
determination of bulk modulus from diffraction data. Section (4.5) describes use of
the formulae in evaluating the March model.

The relationship between the compaction pressure and March r-parameter has
been developed from the definition of bulk modulus :

volume stress AP

B =—
volume sirain AV IV

Hl

(3.22)

where AP is the compaction pressure and AV/V is the fractional volume change. It
may be assumed that the radius remains constant as the powder is pressed in a rigid

die. Then, denoting the radius as R, initial height as d,, and the change in d,, as Ad,
V =r R, (3.23a)
and AV =7 R*Ad (3.23b)

Substituting equations 3.23(a) and (b) into equation (3.22) yields :

d AP
_=1-— .
p (3.24)

[1]

The March r-parameter is now introduced using the relationships,

r= for platy crystallites, and (3.25a)

Q.|:;_

L}

A |~

r= for acicular crystallites (Dollase, 1986). (3.25b)
The r-AP relationship should therefore have the forms,

r=1- A—;— for platy crystallites, and (3.26a)
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Compression axis

'Y
¥

S, C) where : S, is incident beam,
S is scattering vector,
S, is diffracted beam.

N

T Instrument rotation axis

—

(a) Normal mount - instrument rotation and specimen compression axes coincident.

Compression axis 1: / \ > .

T Instrument rotation axis

N

(b) Transverse mount - instrument rotation and specimen compression axes
perpendicular.

Figure 3.8. Orientation for the compressed molybdite and calcite powders for the
NPD measurements. In (a) the compression axis is normal to the plane defined by the
incident and diffracted beams; whereas (b) depicts the compression axis in the plane
of the incident and diffracted beams.
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r=[1- %]" for acicular crystallites. (3.26b)

For platy _crystallites, a plot of r-versus-AP should be linear, and would yield the bulk
modulus, whereas a plot of 1/r-versus-AP would be required for acicular crystallites:
Expressions are now relating March parameters ry (for the normal mount) and

ry (for transverse mount).

P, = [r" sin? @ + r? cos’ a]_m (3.27)

4 , ,
P(a= 5) = r,,m, for vertical mounting

Then, (3.28)

Pa=0)=r, =3, for horizontal mounting
Taking the March-Dollase PO correction factor for the transformation to be
constant because it is symmetric across ¢ = 0 and a = n/2 [see Sections (1.4) and

(1.5)}, equation (3.27) yields the relationship :

ry=r," (3.29)

It follows that :
r,=(1- %)’”z for platy crystallites (3.30)
r, =(1- %)1’2 for acicular crystallites (331

3.6 Bulk Modulus Measurements

In view of the relationship linking March parameter r and the compaction
pressure AP via the powder bulk modulus B [equation (3.26)], B measurements were
conducted to permit comparison with Rietveld-derived bulk modulus. Measurements
were made with four powders - molybdite, molybdite diluted with 50% by weight
silica gel, calcite and calcite diluted with 50% by weight silica gel. Bulk modulus
measurements were made with powder samples using the die which had been
employed to prepare samples for NPD.

Approximately 15g of powder was placed in a cylindrical steel die assembly
of diameter 19mm - see Figure (3.9). The plunger was then inserted into the die and
allowed to stablise. The distance between the compressor and the top of die (L),
corresponding to the initial (unstressed) height of the cylindrical powder volume,

was measured using a vernier calliper to an accuracy of 0.02mm. The die was
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positioned under the uniaxial press and the designated pressure was applied. The
reduced length (L) was then measured. For molybdite, this procedure was performed
for pressures of 44MPa, 66MPa, 88MPa and 110MPa and for calcite samples using
pressures of 44MPa, 8§MPa, 132MPa and 176MPa. These pressure selections were
the same as those employed for both XRPD and NPD. The same procedure was
applied to diluted material with 50% by weight silica gel.

Values of B were extracted from plots from plots of I-versus-P [Section (4.5)].

Plunger— L -————— - AL

Figure 3.9. The cylindrical steel die assembly used for direct measurement of bulk
modulus.

3.7 Texture Computations from Pole-Figure Measurements Using
Series Expansion

The calculation of PDDs from pole-figure measurements was carried out in

three steps - see Section (2.2) for details.

In the first step, called texture analysis, the coefficients F;"(h) are calculated

according to equation (1.10). This step requires multiplication of the experimental
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pole-figures by the spherical harmonics of all required orders ! and »n and

integration over the whole sphere. It is assumed here that the pole-figure is known all

over the sphere. .
In the second step, called coefficients transformation, systems of linear

equations are to be solved (one for each combination of / and n) for the unknown

C™, the coefficients of the ODF according to equation (2.35).

In the third step, termed texture synthesis, the orientation density f{¢,¢¢,) is
calculated for every required orientation @;$¢, according to equation (1.9). Usually,
function f{@,0¢,) is required for the complete range of orientation parameters, and
the calculation is carried out in equiangular steps A@, A Ag,. This operation
requires calculation of a very large number of orientation points. If the range [see
equation (2.28)] used in the experimental work was 6°, then there are 60 x 30 x 60 =
108,000 points that are printed out by the computer in 2D sections. A more elegant
way is to contour each 2D section by interpolation between grid points and plotting

of lines corresponding to equal density.

Texture Analysis Software

Texture analysis was conducted with the texture diffractometry data using the
ODF-AT software system developed by LM2P'* and SOCABIM". Normalised
PDDs were assembled using a two stage process (i) Procedure 1 - construction of
PDDs from single Bragg-peak data following normalisation by series expansion (SE)
analysis, and (ii) Procedure 2 - re-construction of PDDs following SE analysis of the
full set of Bragg-peak data.

Procedure 1 is confined to the determination of normalisation factors for the
PDD measurements and to the subsequent construction of pole-figures using the
single Bragg-peak data. Procedure 2, which requires the procedure 1 analysis as a
preliminary step, is a more sophisticated method which provides re-constructed
PDDs using the entire set of diffraction data.

The schematic in Figure (3.9) summarises the procedure for computing PDDs

once the pole-figure has been measured.

12 University of Metz, LM2P, Ile du Saulcy, 57045 METZ Cedex, France.
¥ SOCABIM, 9 bis villa du Bel-Air.
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I SELECT DIFFRACTION DATA SETS FOR PDD
NORMALISATION BY SE METHOD

Procedure 1 I [SET PARAMETERS FOR ANALYSIS |

I1I { COMPUTATION OF "NORMALISATION FACTORS|

IV |CONSTRUCTION OF PDDs |

v
» V SET PARAMETERS FOR RECONSTRUCTION
ANALYSIS

Procedure 2

VI COMPUTATION OF RECONSTRUCTION
COEFFICIENTS

3 VII  |RE-CONSTRUCTION OF PDDs |

Figure 3.10. Procedure for assembling pole-figures from PDD measurements (see
footnotes 12 and 13).

Procedure 1

The crystal symmetry must be specified plus the rank for pole-figure harmonic
expansion / in equation (1.10) and Table (3.10). Orthorhombic symmetry was
nominated for molybdite and hexagonal symmetry for calcite. When selecting the

value of [, the user must verify that sufficient pole-figures are available for the

computation - see Figure (2.8). Once the C;" coefficients of the series expansion of
f(g) are calculated it is possible to recalculate any pole-figure. Procedure 1

generates a partial set of C; coefficients (for / = even) which are used with

equation (1.10) to calculate normalisation factors.

Procedure 2

Once the even C;™ coefficients had been calculated during the texture analysis
it is possible to start the texture synthesis. The texture synthesis consists in
calculating the values of f{g) [the directly-determinable part or even part of the ODF]

or the values of the complete ODF f(g) on a regular grid in the Euler space [equation
(2.33a)].
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The maximum rank of even coefficients for molybdite and calcite specimens
are < 30 and < 22, respectively, which they must be equal to (or less than) the / used
for texture analysis. The maximum rank of odd coefficients for molybdite and calcite
powders were employed < 21 and < 17, respectively (Bunge, 1982). When the
positivity technique was used for the calculation of a complete ODF, the
convergence was obtained in 10 cycles. The steps in ¢,,¢ and ¢, in the Euler
.space were fixed as well as the maximum value for @, [15° < @, £360°% 6° < ¢ <

90°; 6° < ¢, < 9°] - see Bunge (1982).
Table 3.10
Typical values for final / (Bunge, 1982)

The necessary minimal number of pole-figures (experimental + supplementary) for

analysis is indicated in parentheses.

Crystal
symmetry —  Cubic Hexagonal Tetragonal Trigonal Orthorhombic
Texture type

i

sharp texture 34(=3) 28(25) 22(=6) 22(=8) 22(212)

weak texture 22(22)  16(23) 16(5) 16(26) 12(27)
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CHAPTER 4

RIETVELD TEXTURE ANALYSIS EXPERIMENTS

4.1 Pre-amble

PDDF modelling with x-ray data was conducted with molybdite and calcite
specimens with a view to using these data to examine the validity of the March
model. Parallel modelling with neutron data was carried out in order to compare the
bulk, or global, texture information with the near-surface characterisations performed
with x-ray data.

A valuable result from the study is the distinct difference observed for calcite
between the direction of near-surface texture, as measured by XRPD, and bulk
texture characterised by NPD.

The chapter provides appraisals of the March model in terms of the
deterioration in the quality of Rietveld fits as the powder compression pressure
increases. The appraisal includes a detailed examination of the relationship between

March parameter r and uniaxial pressure developed in the study [see Section (3.5)].

4.2 Rietveld Computations

The parameters refined in all Rietveld computations were the instrument zero-
point; polynomial background parameters; phase scale factor; profile parameters for
the pseudo-Voight function [U, V, W, As and y - see Section (3.4)]; lattice
parameters; atom positional parameters; atom isotropic thermal parameters; and
phase March r-parameter.

Table (4.1) shows the XRPD refinement trials with calcite samples in which
<104> was assumed to be the direction of PO. It is evident that the summing of
symmetry equivalents gave significantly improved figures-of-merit. Also, the r-
parameters determined with summing of equivalents were substantially higher for all

data sets. Thus, neglect of symmetry equivalents summing biases the parameter
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Table 4.1.
Influence of Equivalent Reflection Summing on March r-parameter

and Figures-of-Merit - Calcite Powders (100%) - XRPD Data

e PO direction assumed to be <104>. Results for summing and non-summing of
equivalent reflections are given in the first and second lines, respectively.

o Inclusion of equivalent reflection summing did not influence results for (i)
molybdite with PO direction <010> or (ii) for calcite with PO direction <001>.

Results not included.

Figures-of-Merit

Pressure Sample March
(MPa) Code’ Rexp  Rp Ryp Ry  GOFI  Parameter
r
0 C0X 13.93 15.67 23.61 430 287  0.965(8)

1563  23.61 4.34 2.87 0.989(6)

44 C2X 1291 1642 2332 550 326  0.682(4)
1753 2435 826 356  0.825(5)

88 C4X 11.13 1588  28.10 6.71 6.37 0.460(3)
17.70  30.44 8.01 7.47 0.556(4)

132 C6X 920 1519 2651 821 831  0437(3)
1692 2878 887 979 05224

176 C8X 8.60 1528  26.00 7.97 9.13 0.424(3)
16.71  28.24 8.42 10.77 0.507(4)

¥ See Table (3.3); Sample Pelletising Procedures.
Symbol: C = calcite
X =x-ray
Digit represents pressure in x1000lbs units (conversion factor, 10001bs units to MPa =22).
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values. The summing of equivalent reflections did not influence results for (i)
molybdite XRPD and NPD data with PO direction <010> or (ii) caicite NPD data
with PO direction <001>.

4.3 X-ray Diffraction Experiments

4.3.1 Molybdite X-ray Experiments
Molybdite (100% by weight)

Figure (4.1) compares the measured XRPD data for the 100% molybdite non-
pressed sample and one of the pressed powders - that prepared with a pressure of
110MPa. The comparison shows the influence of pressing on the intensities. For
example, the intensities for the three most intense lines (020) at 20 = 12.77°, (040) at
20 = 25.70° and (060} at 20 = 39.66° increase from 9,050, 11,750 and 6,050 by
factors of 4.4, 5.2 and 5.1, respectively, whereas the intensity of the line (110} at 26
= 23.33° reduces from 3,880 by a factor of 0.9. These dramatic changes contrast with
the subtle intensity shifts found in the corresponding sets of NPD data for molybdite
- [see Section (4.4) Figure (4.8)]. It is evident that the XRPD PO bias, deriving from
the near-surface texture, differs radically from the bulk texture influencing the NPD
intensities.

Table (4.2) compares the Rietveld refinement results for parallel calculations
involving PO and random orientation. The values for the figures-of-merit - Rp, Ryp,
Rg - all decreased substantially when the March model was applied. It is noted,
though, that the weighted R-factors Ry, still substantially exceeded the ‘expected’
values Rgyp when the March model was applied.

The Ryp and Ry factors for the molybdite samples, all of which show
substantial PO, ranged between 49.9 - 87.0% and 37.9 - 79.6%, respectively, before
the March model was employed; whereas the corresponding values with the March
model, 24.3 - 25.5% and 5.6 - 10.1%, were substantially lower. It is noted in drawing
these comparisons, that the Ryp value should be close to Rgyp if the model is
basically correct, i.e. GOFI = 1.00, ideally. The GOFI for the refinements with the
March model ranged from 8.1 for the ‘random’ powder (MOX) to 17.4 for the most
heavily pressed (M5X). These results show that the March model does not fit the
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(a) XRPD / molybdite 100% / non-pressed - MOX

5000 9,050 111.750 6,050

4000':

3000—_

2000—_

1000j
—-JL JM
g — T T 1 r Ty T 1 o T T T
10 30 50 70 80 110 130

20 ()
(b) XRPD / molybdite 100% / 110MPa - M5X
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Figure 4.1. Comparison of molybdite XRPD patterns for (a) non-pressed mount and
(b) powder pressed at 110MPa.
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e Assumed direction of PO, <010> (Kihlborg, 1963).
e Values for random orientation (r = 1.000) model given in parentheses.

Table 4.2.
XRPD Rietveld Refinement Results for Molybdite Powders

¢ Data for undiluted specimens are given in the first two lines of results for each
pressure, and results for specimens diluted with silica gel (50% by weight) given

in third and fourth lines.
Figures-of-Merit
Pressure Sample Rexp Rp Ryp Ry GOFI March r-
(MPa) Code"’ Parameter
0 MOX 895 19.06 2550  10.11 8.13 0.611(2)
(40.81) (49.90) (37.95) (31.10)
MOX(S) 835 16.06 2044 9.00 6.00 0.742(3)
(23.25) (29.06) (20.74) (12.12)
44 M2X 789 1686 24.73 9.15 9.81 0.459(2)
(59.47) (68.43) (57.77) (75.09)
M2X(S) 8.67 1652 2134 9.37 6.06 0.665(3)
(28.42) (36.10) (29.51) (17.32)
66 M3X 831 1470 2451 8.45 0.42 0.455(2)
(70.60) (76.75) (72.30) (133.4)
M3X(S) 9.09 16.14  20.61 10.27 5.14 0.618(2)
(34.44) (42.65) (36.63) (22.00)
88 M4X 720 1475 2434 6.04 11.43 0.402(2)
(72.07) (80.55) (74.74) (125.2)
M4X(S) 926 1632  21.55 9.76 5.41 0.588(2)
(37.09) (46.62) (40.83) (25.33)
110 M5X 6.00 1425 2507 5.63 17.42 0.373(2)
(78.03) (86.98) (79.57) (21.01)
MSX(S) 771 1441 18.62 5.83 9.12 0.586(2)
(52.49) (63.17) (67.05) (26.67)

¥ See Table (3.3); Sample Pelletising Procedures.

Symbol: M = molybdite
X =x-ray

§ =silica gel addition
Digit represents pressure in x10001bs units (conversion factor, 10001bs units to MPa =22).
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well as it might. Note also that the disagreement between Ry and Rexp for gibbsite
refinements by O’Connor, Li and Sitepu (1991) with the March model was also
substantial.

The variation of the March PO parameter with uniaxial pressure is shown in
Figure (4.2a). The results show that the r-parameters trend in the manner expected
from equation (3.26a), viz. a linear reduction in r as briquetting pressure increases.
The r-pressure results are considered further in Section (4.4).

Side-drifting failed to produce an r-value close to 1.0 thus indicating that the
technique produced samples with substantial residual PO. This observation was also
made in the molybdite XRPD study of O’Connor, Li and Sitepu (1992). While the
preparation of spray-dried molybdite powders reported by Calvert ef al. (1983) did
produce randomised powders, it is evident that side-drifting is inadequate for this
purpose.

The difference plots shown in Figure (4.3) show residual features which
probably indicate inadequacies in the March model for representing texture in the
material. While the plots show that the March model was effective in substantially
improving agreement between calculated and measured data, it appears on this basis

that the model is not ideal for molybdite.

Molybdite diluted with silica gel (50% by weight)

Figure (4.4) demonstrates the influence of dilution on the diffraction pattern for
the molybdite powder with a compression of 88MPa, M4X. Inspection of the two
patterns shows a substantial reduction in the Bragg intensities when the powder is
diluted. The reduction factor is not linear across the patterns as dilution reduces the
level of PO.

The March PO parameters and refinement indices for the diluted molybdite
samples are given in Table (4.2). When the March mode! was not employed in the
Rietveld refinements, the Ryp and Ry values ranged between 29.1 - 63.2% and 20.7 -
67.1%, respectively. The corresponding factors with the March model, 18.6 - 21.6%,
and 5.8 - 10.3%, were substantially lower as was also observed for the undiluted
samples. Again, as for the 100% molybdite powders, the GOFI values substantially
exceeded 1.00, ranging from 5.1 to 9.1.
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Figure 4.2. Variation in March PO parameter with uniaxial pressure for XRPD (a)
molybdite and (b} calcite. Linear regressions shown for both suites of molybdite, and

for 50% diluted calcite. Second order polynomial fit shown for the pure calcite
specimens.

82



Counts

-10000 4

10000

Q.

10000

(a) Molybdite non-pressed sample - MOX (XRPD)

PORE LB

3

I A A i el

105

s T4 %0

60 ST
Angle (degrees)

(b) Molybdite sample pressed at 110MPa - MSX (XRPD)

[ 61,125

30,713

[V ——
UL AR A
5 Arfagle (degre?lés)t v E

Figure 4.3. Agreement between calculated and measured XRPD patterns for selected
molybdite powder specimens following Rietveld refinement with the March model.
The observed data are indicated by plus signs and the calculated profile is the
continuous line in the same field. The set of vertical lines below the profiles
represent the positions of all possible Bragg reflections. The lower plot is the
difference between the measured and calculated patterns on the same scale as the
measured and calculated patterns.
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Figure 4.4. Influence of 50% silica gel addition on the molybdite XRPD data -
specimen M4X(S) pressed at 88MPa.

84



All r-values show a substantial increase following dilution. As for the
undiluted molybdite powders, the r-pressure plot [see Figure (4.2)], is linear as
expected - see further discussion in Section (4.5). The r-intercept for the r-pressure
plot for zero pressure 0.59 is closer to zero then the value for the undiluted set 0.73
thus showing that dilution did reduce PO. The results show that side-drifting failed to

produce a randomised powder, even with dilution.

4.3.2 Calcite X-ray Experiments
Calcite (100% by Weight)

Figure (4.5) shows the differences between the XRPD patterns for the side-
drifted powder (COX) and the most heavily pressed powder (C8X). The patterns
shows the well-known response of the (104) line to pressure, the initial intensity
5,805 increasing by a factor of 8.4. Also, it is instructive to note that numerous other
lines respond readily to pressure, some increasing and others reducing.

The refinement indices and r-parameters are given in Table (4.3). The r-value
for the randomised sample (C0X) is 0.96(1), indicating that the value differs only
marginally from the ideal (1.00) which contrasts with the much smaller values for
molybdite side-drifted powders. Also, the GOFI value (2.9, both for random model
and when using the March model) again shows that assuming random orientation is
basically correct.

As the pressure is applied, the fit indices for the random orientation model
become progressively inferior to the refinements with PO. While the March model
substantially improves the agreement between measured and calculated patterns [see
also difference plots in Figure (4.6)], the GOFI increases as the applied pressure
increases - from 3.3 (COX) to 9.1 (C8X). Therefore, as with the 2 sets of molybdite
results, the capacity of the March model to provide satisfactory agreement steadily
diminishes as PO becomes more substantial.

The variation in r-parameter with applied pressure, as shown in Figure (4.2b),
is not linear whereas the corresponding relationships for both molybdite powder
suites were both linear. There is a linear decrease in parameter to 88MPa beyond

which the r-value reaches a plateau which is not completely unexpected as the r-
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Figure 4.5. Comparison of calcite XRPD patterns for (a) non-pressed mount and (b)
powder pressed at 176MPa.
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Table 4.3.
XRPD Rietveld Refinement Results for Calcite Powders

e Assumed direction of PO was <104> Dollase (1986).
| J

Values for random orientation (r = 1,000) model given in parentheses.

o Data for undiluted specimens are given in the first two lines of results for each
pressure, and results for specimens diluted with 50% by weight silica gel given in

third and fourth lines.
Figures-of-Merit
Pressure Sample Rexp Rp Ryp Rp GOFI March r-
(MPa) Code'® Parameter
0 CoxX 13.93 15.67 23.61 4.30 2.87 0.965(8)
(15.71) (23.62) (4.45) (2.87)
COX(S) 1042 1591 20.28 4.37 3.79 0.930(5)
(15.99) (2031) (4.34) (3.80)
44 C2X 1291 1642 2332 5.50 3.26 0.682(4)
(22.39) (29.10) (17.35) (5.08)
C2X(S) 13.12 1924 2496 6.42 3.62 0.746(1)
(24200 (30.67) (12.24) (5.40)
88 C4X 11.13 1588  28.10 6.71 6.37 0.460(3)
(52.02) (60.27) (51.72) (29.29)
C4X(S) 10.71 18.07  23.87 6.69 4.96 0.631(6)
(26.71) (33.46) (1937) (9.66)
132 C6X 920 15119 2651 8.21 8.31 0.437(3)
(55.21) (63.23) (56.58) (47.25)
C6X(S) 11.95 1955 2544 8.44 4.54 0.599(5)
(28.07) (34.61) (25.07) (8.29)
176 C8X 8.60 1528  26.00 7.97 9.13 0.424(3)
(57.03) (65.07) (58.77) (57.16)
C8X(S) 13.29 1777 2430 7.13 3.34 0.514(4)

(2722) (37.01) (14.98) (7.59)

' See Table (3.3); Sample Pelletising Procedures.
Symbol: C = calcite
X = x-ray
S =silica gel addition

Digit represents pressure in x 10001bs units (conversion factor, 1000Ibs units to MPa =22).
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Figure 4.6. Agreement between calculated and measured XRPD patterns for selected
calcite powder specimens following Rietveld refinement with the March model. The
observed data are indicated by plus signs and the calculated profile is the continuous
line in the same field. The set of vertical lines below the profiles represent the
positions of all possible Bragg reflections. The lower plot is the difference between
the measured and calculated patterns on the same scale as the measured and

calculated patterns.
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parameter cannot increase indefinitely with pressure. This behavior is discussed later

in the chapter [Section (4.5)].

Calcite diluted with silica gel (50% by weight)

Figure (4.7) shows the influence of the silica gel addition on the appearance of
the pattern for calcite specimens with the compression of 144MPa, C6X(S). A
substantial reduction in the Bragg intensities is shown in the diluted diffraction
pattern compared with undifuted. As for the diluted molybdite pattern, the reduction
factor is not linear across the pattern as dilution reduces the PO level.

Figure (4.2b) shows that the r-pressure plot is linear and similar in gradient to
the plots for molybdite and the diluted powders. Thus, the apparent saturation of the
relationship observed for the 100% calcite powder was not found for the diluted suite
of calcites. As the pressure increases, the refinements for the diluted materials all
provide superior fits compared with those assuming random orientation. Also, the
GOFI values are much closer to 1.00 than the corresponding values for the molybdite
powders, the largest GOFI for a diluted calcite being 5.0 for C4X(S) and the lowest
being 3.6 for C2X(8S).

4.4 Neutron Diffraction Experiments

The NPD results should be considered in light of the fundamentally different
nature of the information provided, viz. that the PO influence comes from the bulk of
the specimen, whereas the XRPD results presented in Section (4.3) involve near-
surface information. The NPD results for “normal” mounts, for which the cylinder
axis is coincident with the rotation axis of the Debye-Scherrer instrument used for

data collection.

4.4.1 Molybdite Neutron Experiments

Figure (4.8) shows the differences between the NPD patterns for the side-
drifted powder (MON) and the most heavily compressed powder (M5N). In contrast
to the XRPD data [see Figure (4.1)], the differences between the two NPD patterns

are more subtle.
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Assumed direction of PO, <010> (Kihlborg, 1963).
Values for random orientation (r = 1.000) model given in parentheses.

Table 4.4
NPD Rietveld Refinement Results for Molybdite Powders - Cylindrical
Specimens Mounted Parallel to Instrument Rotation Axis

(Normal Mounts)

Data for undiluted specimens are given in the first two lines of results for each
pressure, and results for specimens diluted with silica gel (50% by weight) given

in third and fourth lines.
Figures-of-Merit
Pressure Sample Rexp Rp Rwp Rp GOFI March r-
(MPa) Code"’ Parameter
0 MON 548 10.26 12.61 5.47 5.30 1.031(3)
(10.41) (12.79) (5.50)  (5.45)
MON(S) 3.28 4.97 591 3.42 3.25 1.092(8)
(5.08) (6.06) (3.97) (3.41)
44 M2N 5.31 8.32 9.99 5.53 3.54 1.178(2)
(10.48) (13.23) (9.37) (6.22)
M2N(S) 2.86 3.79 4.56 2.54 2.54 1.129(8)
(3.95) (4.78) (3.28) (2.79)
66 M3N 9.26 1094 13.32 5.30 2.07 1.183(6)
(12.92) (15.86) (9.41) (2.93)
M3N(S) 2.37 3.23 3.90 2.14 2.71 1.145(8)
(3.38) (4.16) (2.89) (3.07)
88 M4N 5.39 8.15 9.82 548 3.32 1.203(4)
(10.80) (13.89) (10.25) (6.63)
M4N(S) Not Measured
110 MS5N 5.32 8.40 10.06 5.78 3.58 1.212(4)
(11.18) (14.42) (10.77) (7.35)
MS5N(S) 3.07 5.05 7.07 4.57 5.31 1.187(7)
(523) (7.26) (5.71) (5.60)

' See Table (3.3); Sample Pelletising Procedures.

Symbol: M = molybdite
N = neutron
S = silica gel addition

Digit represents pressure in x10001bs units {(conversion factor, 10001bs units to MPa =22).
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molybdite and (b) calcite. Linear regressions shown for the three suites of samples.
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The refinement results for the “normal” mounts are given in Table (4.4) and
the plot of r-versus-pressure is given in Figure (4.9). It is seen from the table that the
values for Ryp and Ry for the pressed materials all decreased substantially when PO
was included in the model. However, the GOFI figures-of-merit still substantially
exceeded the 'expected’ value 1.00 when the March model was applied to the data for
the pressed samples. In contrast with the results for the molybdite XRPD data, the
GOF1 does not increase markedly as the pressure increases. Therefore it might be
concluded that the March model provides better PO modelling for the XRPD data.

It is interesting to note that the unpressed sample gave results consistent with
the material being randomly oriented which contrasts with the strong PO indicated
by the XRPD data for side-drifting.

Figure (4.10) shows the difference plots for randomly-oriented specimen
(MON) and the most heavily pressed powder (M5N) for the normal mount data. The
agreement between measured and calculated patterns improved substantially when
the March model was employed. Moreover, the GOFI ranges from 2.1 to 5.3 which
are approximately 0.23 and 0.31 times the corresponding XRPD GOFIL.

The expected linear form of the r-versus-pressure plot has been tested [see
Figure (4.9)] against a linear regression fit. It is not clear from the scatter of points in
the plot that the relation is linear. The gradient of the regression plot [see Figure
(4.9)] is close to that for the XRPD analysis but reversed in sign [see Figure (4.2)].

Table (4.5) shows the PO refinement results for the transverse mounts, i.e. with
the sample rotation axis parallel to the Debye-Scherrer instrument rotation axis. The
r values show a clear linear decrease with pressure as expected [see Figure (4.11)]
which compares the r-pressure relationships for the normal and transverse mounts).
As for the normal mount results, the GOFI values indicate that the quality of the
March model refinements did not deteriorate with the application of pressure.
Interpretation of the results, in terms of the reversal in gradient of the r-pressure plot
according to mounting mode, is addressed in Section (4.6).

As for the molybdite XRPD data, results are also presented for a suite of
specimens diluted with 50% by weight silica gel [sece Table (4.4), Figure (4.9) and

Figure (4.12)]. The results show that dilution had a small, but discernible, influence
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Figure 4.10. Agreement between calculated and measured NPD patterns for selected
molybdite powder specimens following Rietveld refinement with the March model -
normal mounts. The observed data are indicated by plus signs and the calculated
profile is the continuous line in the same field. The set of vertical lines below the
profiles represent the positions of all possible Bragg reflections. The lower plot is the
difference between the measured and calculated patterns on the same scale as the
measured and calculated patterns.

95



Table 4.5
NPD Rietveld Refinement Results for Molybdite Powders - Cylindrical
Specimens Mounted normal to Instrument Rotation Axis

(Transverse Mounts)

¢ Assumed direction of PO, <010> (Kihlborg, 1963).
s Values for random orientation (r = 1.000) model given in parentheses.

Figures-of-Merit

Pressure Sample Rexp Rp Ryp R GOFI March r-
(MPa) Code'® Parameter

44 M2N 5.27 7.19 8.86 3.77 2.83 0.959(5)
(7.40) (9.12) (4.49) (3.00)

66 M3N 592 830 995 429 283  0951(3)
(8.65) (10.34) (5.15) (3.06)

88 MA4N 545 770 932 398 292  0.950(3)
(8.06) (9.71) (4.84) (3.17)

110 M5N 539 737 898 391 278  0.944(2)
(7.80)  (9.51) (497) (3.12)

** See Table (3.3); Sample Pelletising Procedures.
Symbol: M = molybdite
N = neutron
Digit represents pressure in x1000lbs units (conversion factor, 1000lbs units to MPa =22).
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on the PO for NPD data. It appears that the bulk texture is influenced by dilution, but
considerably less than the effect seen with the XRPD data were the interaction
between the mineral grains and the walls of the press (i) markedly influences the
observed texture, and also (ii) because of the interaction is reduced more readily by

dilution with silica gel which diminishes the grain-press interaction.

4.4.2 Calcite Neutron Experiments

The calcite experiments were confined to undiluted powders mainly due to the
limited access to the NPD facilities for the project.

Figure (4.13) compares the normal-mount NPD pattern for the unpressed
material {(CON) with that for the most heavily-pressed powder (C8N). The
differences are evident, but not dramatic, which contrasts starkly with the sensitivity
of the XRPD pattern to pressure. As for the molybdite NPD data, the influence of
pressing on the bulk texture is less evident for the calcite NPD data than found for
the XRPD data.

The results for the unpressed calcite powder in Table (4.6) and Figure (4.9b)
show that this powder is essentially random, and that the application of pressure
increases the r-parameter linearly from 1.0 as expected from equation (3.26).

Figure (4.14) shows that the agreement between the calculated and measured
NPD patterns improved when the March model was used. The GOFI for all samples
ranged from (i) 2.2 to 3.3 for the normal mount when <001> was taken to be the
direction of PO - see Table (4.6) and (ii) 2.2 to 2.4 for the transverse mount - see
Table (4.7).

For the normal mount, the GOFI for the NPD data were 0.7 and 0.4 lower than
both for the lowest and highest GOFI of the XRPD data when the PO direction of the
latter was taken to be <104>. It is interesting to note here that the PO direction of the
near-surface derived from the XRPD data is different from that for the bulk sample
obtained from NPD data. This observation is possibly an additional reason why the
plots of r-versus-pressure are (i) linear and positive in slope for the NPD data and (ii)

non-linear and negative of slope for XRPD data.
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Table 4.6

NPD Rietveld Refinement Results for Calcite Powders - Cylindrical

Specimens Mounted paraliel to Instrument Rotation Axis

(Normal Mounts).

e Data for specimens given in first and second lines for each pressure obtained
when assumed directions of PO were <001> and <104>, respectively.

e Values for random orientation model (r = 1.000) given in the second line.

Figures-of-Merit

Pressure Sample PO March
(MPa) Code' direction Rgyp Rp Ryp Rp GOF1  Parameter
r

0 CON <Q01> 928 11.10 13.59 4.02 2.15 1.021(3)
<104> 11.10  13.61 4.12 2.15 1.070(1)

(11.24) (13.72) (449) (2.19)
44 C2N <001> 447 6.74 8.09 4.01 3.28 1.082(2)
<104> 7.51 8.94 5.93 4.01 1.189(7)

(8.60) (1038) (8.04) (5.39
88 C4N <001> 447  6.11 7.22 3.50 2.61 1.141(2)
<104> 7.80 935 7.78 4.38 1.276(8)

(9.19) (11.68) (10.81) (6.83)
132 C6N <001> 577  7.55 9.00 3.37 243 1.173(3)
<104> 10.16  11.97 5.40 4.31 1.320(9)

(12.03) (14.95) (13.11) (6.71)
176 C8N <001> 435  6.58 7.91 3.19 3.30 1.203(2)
<104> 10.11 1225 1072 7.92 1.357(9)

(12.29) (15.96) (14.50) (13.45)

1% See Table (3.3); Sample Pelletising Procedures.
Symbol: C = calcite

N = neutron

Digit represents pressure in x1000Ibs units (conversion factor, 10001bs units to MPa =22),
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Figure 4.14. Agreement between calculated and measured NPD patterns for selected
calcite powder specimens following Rietveld refinement with the March model -
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NPD Rietveld Refinement Results for Calcite Powders - Cylindrical

Table 4.7

Specimens Mounted normal to Instrument Rotation Axis

(Transverse Mount).

e Data for specimens given in first and second lines for each pressure obtained
when assumed directions of PO were <001> and <104>, respectively.

¢ Values for random orientation model (r = 1.000) given in the second line.

Figures-of-Merit

Pressure Sample PO March
(MPa) Code™ direction Rexp Rp Ryp Rg GOFI  Parameter
r

44 C2N <001>  5.75 7.45 8.93 432 2.41 0.983(2)
<104> 7.46 8.95 4.40 242 0.948(8)

(7.53) (9.04) (440) (247
88 C4N <001> 534 6.72 7.93 3.92 2.21 0.964(2)
<104> 6.83 8.06 4.13 2.28 0.913(7)

(7.04) (8.32) (4.59) (2.43)
132 C6N <001> 622  7.89 9.66 347 241 0.949(2)
<104> 8.29 9.99 4.42 2.58 0.883(7)

(8.72) (10.57y (5.36) (2.89)
176 C8N <001> 543 6.85 8.25 3.37 2.31 0.942(2)
<104> 7.23 8.68 431 2.55 0.874(6)

(7.76) (9.33) (5.40) (2.95)

* See Table (3.3); Sample Pelletising Procedures.

Symbol: C = calcite
N = neutron

Digit represents pressure in x10001bs units (conversion factor, 10001bs units to MPa =22).
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It is evident from Tables (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7) that the GOFI
figures-of-merit for all NPD data of molybdite and calcite powders are closer to the
ideal value 1.0 for a correct model than the figures-of-merit for XRPD data. The
agreement indices for calcite indicate that the March model was more effective for
the NPD data. The inferior agreement between the calculated and measured XRPD

data sets for calcite is discussed in Section (4.6).

4.5 Bulk Modulus Measurements

The procedure used to measure bulk modulus is described in Section (3.6).
These measurements were performed to assess the quality of the bulk moduli derived
from Rietveld analysis.

Figures 4.15(a) and (b) show plots of powder cylinder length L. versus uniaxial
pressure for molybdite and calcite powders. Equation (3.22) was used to estimate the
bulk modulus for each powders - see Table (4.8) for results.

Interpretation of the results in Table (4.8) requires some preliminary comment
on the assumption underpinning the methods used to determine bulk moduli,
(i) directly from compression measurements and (ii) from plots of Rietveld #
parameter versus uniaxial pressure. For both methods it was assumed that the
pressure-volume relationship is linear for the samples examined, whereas the powder -
volume is expected to plateau as the pressure increases, signifying that the porosity
has become minimal.

It must be also emphasised that the bulk moduli values estimated in this study
apply to powders, whereas bulk moduli values in the literature mainly refer to single
crystals or densified polycrystalline solids such as sintered ceramics and metals - for
example Chang and Ahmad (1982) quote a value of 7.3x10* MPa for calcite,
measured for single crystal material, which is two orders of magnitude greater than
the results reported here for powders. The true bulk moduli for such solids relate to
the resistance of the unit cell to compression, whereas powder values reported relate

to the extent to which powders with substantial porosity may be densified.

104



(@)

0F Molybdite
9 ?\O\T\‘e\e—\
T 5 Diluted
o 8r
- B
© Undiluted
g |
6 [ 1 | L ! 1 | I
0 50 40 60 80 100 120 140 160 180
Uniaxial Pressure (MPa)
(b)
10
- Calicite
HO
9
E
L 8
=

l ] l
20 40 60 80 100 120 140 160 180

[e2}
e ™

Uniaxial Pressure (MPa)
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Table 4.8
Comparison Between Bulk Modulus (B) Values Obtained From Direct Measurement
and Derived From Rietveld Analysis with the March Model

Material Pressure Bulk modulus, Bulk modulus
values, MPa  (measured), MPa  (Rietveld), MPa
NPD XRPD
Molybdite
Undiluted All values 1500 £ 50 630+ 21 480t 14
445110 3040 £ 50 1801 £ 141 552140
Diluted All values 3000 £ 200 1160 £ 8 660 £ 42
Calcite
Undiluted All values 1000 + 100 970+ 10 130 £ 27
0,44 330 721 289
44176 2100 £ 50 1136 + 45 707 + 60
Diluted All values 1050 = 50 not measured 450 + 26
0,44 500 57
44176 1550 £ 50 824 + 11

The clear difference between bulk and near-surface texture, observed from the

NPD and XRPD Rietveld results for calcite, suggest that the direct measurement

results might be expected to conform more closely with the NPD bulk modulus
values than with those from XRPD.

The plots in Figure (4.15) and the estimated bulk moduli in Table (4.8) indicate

the following :

e The plots for diluted molybdite in Figures (4.2) and (4.15) are close to linear, and
the bulk modulus measured directly is x3 that for the Rietveld NPD analysis.

e The two plots for undiluted molybdite are also near-linear, and the bulk modulus

measured directly again exceeds the Rietveld NPD results.

¢ The plots for calcite in Figure (4.15) show clear indications of ‘plateauing’ as the

pressure increases, ie. non-linearity in the pressure-volume relationship. A

similar plateauing effect is seen for the undiluted calcite Rietveld plots in Figure

(4.2), although the plateauing is less evident for the diluted calcite Rietveld

results.
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e The molybdite bulk moduli from the NPD Rietveld plots, while comparable with
the ‘directly measured’ values, are both approximately 60% of the corresponding
measured value, indicating some possible deficiency in the March formalism.

¢ The XRPD bulk modulus estimates are systematically less than the NPD values,
perhaps indicating that the near-surface nature of the assessment for XRPD
provides a texture fundamentally different from that of the bulk.

o By contrast, the calcite NPD results for undiluted powder agree closely with the

directly measured value.

4.6 Discussion
Adeguacy of the March Model for PO Analysis

Figure (4.16) shows the variation in GOF]I figure-of-merit with pressure. When
the March model was employed in the Rietveld refinements, the GOFI for the
undiluted molybdite (100%) XRPD data and that diluted with 50% silica gel ranged
from 8.1->17.4 and, 5.159.1, respectively. The corresponding factors for the
molybdite NPD data, 2.1-5.3 and 2.5—5.3, were substantially lower than those for
the XRPD data. It is evident from these results that the quality of the Rietveld ‘fit’
diminishes progressively as the level of PO increases [see March r-parameter values
in Tables (4.2), (4.3), (4.5) and (4.7)]. The lower values obtained for the NPD
refinements may be attributed to the generally lower PO levels observed for the bulk
material. These comments are supported by the plots of GOFI-versus-r in Figure
(4.17). As for molybdite, the plots of GOFI-versus-pressure and GOFI-versus-r
[Figures (4.16) and (4.17)] results in the same conclusions.

The results in Figure (4.17) clearly show the increasing inadequacy of the

March model as the PO becomes more pronounced.

Pressure-PO Relationships
The results in Section (4.5) [Figure (4.15) and Table (4.8)] have shown that the
March model provides bulk material results which point to inadequacies in the

Rietveld model.
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Figure 4.16. Variation in GOFI figures-of-merit with uniaxial pressure for XRPD
and NPD data of (a) molybdite and (b) calcite.
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Figure 4.17. Variation in GOFI figures-of-merit with March r-parameter for XRPD
and NPD data of (a) molybdite and (b) calcite.
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Figure 4.18. March plots of log ryftransverse)-versus-ry(normal) derived from
Rietveld analyses for (a) molybdite and (b) calcite. The linear regression lines are
shown.
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Figure (4.18) gives additional evaluations of the NPD March model results in
Tables (4.4), (4.5), (4.6) and (4.7). The log-log plots test the actual form of the ry-ry,
relationship which was proposed in Section (3.5) [equation (3.29)] to be of the form,

T
Ty =1y

according to the March model. Both log-log plots show excellent linearity. However,

the actual exponent values are 0.34 and 0.36, rather than 0.50, which may indicate a

relationship,

-1/3

=~

Py ®Fy

Again, this finding points to a deficiency in the model.

Texture Differences for the Bulk and Near-Surface Material
When <104> was taken to be the PO direction for the highly-oriented calcite
specimens, the GOFI for the XRPD data gave better results than <001> which

appeared to be most appropriate direction for the NPD.
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CHAPTER 5

TEXTURE ANALYSIS FROM POLE-FIGURE
MEASUREMENTS

5.1 Introduction

The application of Rietveld texture modelling with Bragg-Brentano data, with
molybdite and calcite powders, was presented in Chapter 4. This chapter presents the
results of directly-measured texture distributions using diffractometers fitted with
Eulerian cradle attachments whereby the specimen may be tilted relative to the plane
defined by the incident beams. The purpose of these texture diffractometer
assessments was to examine the texture distributions in more detail than is possible
by Rietveld analysis, with particular reference to assessing the extent of agreement
between the two approaches for texture characterisation.

Figure (5.1) depicts, in diffractometer space, the linkages between the PDD as
sampled with Bragg-Brentano and texture diffractometry geometries. The following
equivalences are noted for the cylindrically-symmetric distributions considered in
this study -

(i) The Bragg-Brentano PO intensity correction function, Py(a), for Bragg
plane h tilted at angle o to the plane of PO H, assuming cylindrical
symmetry, should be the same as the PDD for H, Py(y), which is
measured directly by texture diffractometry [see also Figures (1.2a), (3.4),
(3.7) and equations (1.9}, (1.10), (3.2)]). Therefore, PH(d) derived using
Rietveld analysis of Bragg-Brentano data, should agree with the PDD for
H measured by texture diffractometry.

(ii) The PDDs from texture diffractometry for Bragg plane H, inclined at any
general angle o to H, should agree with the March-mode! value of Py(ct)
at tilt angle x=0° if there are no deficiencies in the latter.

Before presenting the results for molybdite and calcite, details are given of

some experimental information too detailed for inclusion in Chapter 3.
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incident diffracted
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Figure 5.1. Diagram showing the equivalence between (1) angle o between vector h
(general Bragg plane) and the PO direction H in Bragg-Brentano diffractometry and
(ii) the H-plane tilt angle ¥ in texture diffractometry.

5.2 X-ray Pole-Figure Measurements

5.2.1 X-ray Data Processing
Background corrections
Figure (5.2) shows the method used to correct the Bragg peak intensities for
background intensity. The mean background at the Bragg peak position is given by
Ip = 0.5 {I{20p + A20)} + {20y - A(26)}] 5.1
the background being measured on either side of the Bragg peak for off-set angle
A(28). For each peak, a suitable off-set was determined by scanning the peak prior to

the pole-figure measurements.

Defocussing corrections and normalisation

The procedures employed to apply defocussing corrections to the measured
pole-figures were outlined in Section (3.3). Further details are described here and
typical results are provided.

An a-Al,O, powder was used to provide pole-figure for instrument
defocussing corrections. The corundum was Linde-type 1.0C powder of nominal
particle size 1.0pum, marketed by Union Carbide. The specimen was mounted by
side-drifting with the aim of obtaining a randomly-oriented specimen. Prior to pole-

figure data collection, the mounted powder was analysed by Bragg-Brentano
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Intensity

diffractometry to check the degree of randomisation according to the March r-
parameter which would be 1.000 for a randomly oriented powder. Rietveld analysis
of the data provided a value r = 0.997(4), indicating a highly random powder.

The o-Al,0; <104> reflection was selected to measure pole-figure data for
defocussing corrections, this reflection being chosen as it has the strongest intensity -
JCPDS pattern 5-586. The pole-figure is shown in Figure (5.3), and Table (5.1)
presents the mean values of background and peak intensities, averaged over ¢ for
each y setting, which were used to construct the defocussing correction function - see
Section (3.3) for details of the procedure. A program written by the author, was used
to produce the data in Table (5.1). Figure (5.4) shows the defocussing correction
function derived in this way.

The ¢-averaged intensities were normalised over the measured range of ¥,
according to Section (3.3). As the measurements did not extend beyond y = 60°, this

procedure is described as ‘quasi-normalisation’.

400
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Figure 5.2. Estimation of the background diffraction intensity.
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Figure 5.3. Measured a-Al,0; powder <104> XRPD pole-figure, uncorrected for
defocussing. The contour levels are in random density units.

Table 5.1
Measurements for X-ray Pole-Figure Defocussing Corrections with a-Al,0; Powder

Measurements made with <104> line. Values for Ix and Bx taken over the
range ¢ = 0 - 360°, with step Ay = Ap = 5°.

x> (%) B,” (x 107) ( L “x (10™) ( counts)
counts)

0 5.2 59.6
- 5.9 56.1
10 7.0 494
15 8.5 42.6
20 10.3 36.1
25 12.2 30.9
30 13.4 26.7
35 13.5 233
40 13.0 20.2
45 11.8 17.7
50 10.5 15.3
55 9.1 13.1
60 7.7 11.0

2y = tilt angle

= B, = mean background intensity

2] = mean intensity uncorrected for background
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Figure (5.5) shows the ‘quasi-normalisation’ results for the <110>, <113> and
<024> pole-figure data for the same material after normalisation and then correcting
for defocussing with Figure (5.4). The results appear to show that the method
successfully removed defocussing bias.

The series expansion (SE) analysis procedure described in Section (3.6) was
employed to provide an additional assessment of the validity of the a-AlLO;
defocussing correction procedure. The measured pole-figures for the <104>, <110>,
<113> and <024> lines, after correction for defocussing according to the plot in
Figure (5.4), were normalised by SE analysis. Figures (5.6) and (5.7) show the pole-
figure results for <104> and <204> by the quasi-normalisation method and after SE
analysis.

The pole-density values for the <104> data ranged from 0.996—1.001 for
quasi-normalisation (x=0 to 90°) and, 1.54—0.51 for SE analysis. The corresponding
spreads in pole-densities, following SE analysis, were [Figure (5.7)]

s (uasi-normalisation x=0 to 60°

(i) 2.28 — 0.93 for <110>,

(i1) 1.32 - 0.79 for <113> and

(iii) 1.31 — 0.65 for <024>.

e recalculated from (x=0 to 90°)

(1) 0.23 > 1.61 for <110>,

(i) 0.81 — 1.73 for <113> and

(iii) 0.76 — 1.29 for <024>.

The figure shows the quality of normalisation and defocussing following SE analysis

which is inferior in quality to that shown in Figure (3.5).

5.2.2 Molybdite X-ray Pole-Figures

Figure (5.8) shows 2D and 3D colour representations of the <020> XRPD
pole-figures for 2 of the 5 molybdite samples, MOX (side-drifted) and M5X (most
heavily pressed), after (i) correction for defocussing with the <104> Al,O; pole-
figure data and (ii) normalisation. The complete set of 2D and 3D representations for

the directions <020>, <110>, <021>, <111> and <150>, for all samples, are shown
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Figure 5.4. Determination of ¢-averaged x-ray pole-figure defocussing correction
function using a side-drifted a-Al,O, powder. Constructed with <104> pole-figure
data in Table (5.1).
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Figure 5.5. Quasi-normalised PDDs for the <104> o-Al,0; powder pole-figure in
Figure (5.3) and for the <110>, <113> and <024> pole-figures after correction for
defocussing using the function in Figure (5.4).
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<104> Pole-figure after correction for defocussing and quasi-normalisation

Levels: B. 60 .79 @ 8@ B8 ©

<104> Pole-figure recalculated following SE analysis with data for <104>,
<110>, <113> and <024> lines

Levels: @ 680 2 BB © 9

Figure 5.6(a). <104> pole-figure for a-Al,0; side-drifted sample. Above:- pole-
figure after defocussing corrections and quasi-normalisation (y = 0 to 60°). Below:-
pole-figure recalculated (y = 0 to 90°) after SE analysis. The contour levels are in
random density (mrd) units.
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<024> Pole-figure after correction for defocussing and quasi-normalisation

Levels: @.7@ 2.BR B B® B.3 10 1.1 1.3

<024> Pole-figure recalculated following SE analysis with data for <104>,
<110>, <113> and <024> lines

Levels: @.80 @.9 1@

Figure 5.6(b). <024> pole-figure for a-Al,0; side-drifted sample. Above:- pole-
figure after defocussing corrections and quasi-normalisation (x=0 to 60°). Below:-
pole-figure recalculated (y=0 to 90°) after SE analysis. The contour levels are in
random density units.
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Normalised pole-figures following SE analysis with data for <104>, <110>,
<113> and <024> lines

3

Normalised pole-figures

Intensity correction factor
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X

Recalculated pole-figures following SE analysis with data for <104>, <110>,
<113> and <024> lines
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Recalculated pole-figures
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Intensity correction factor
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X
Figure 5.7. Pole-figures for a-Al,Q; side-drifted sample following SE analysis.
Above:- pole-figure after defocussing corrections and quasi-normalisation (3, = 0 to
60°). Below:- pole-figure recalculated after SE analysis (¥ = 0 to 90°).
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(b)
Figure 5.8. 2D and 3D representations of the molybdite <020> XRPD pole-figures:
(a) side drifted - M0X, (b) briquetted for 110MPa - M5X. The contour levels are in

random density units.
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in Appendix (2). The plots in Appendix (2) are not given in their original colour
form with colour-coded contour levels as the cost of colour-copying these diagrams
was prohibitively expensive. The original diagrams have been archived. It is evident
from Figure (5.8a) that the side-drifted material has substantial texture, as indicated
also by the Rietveld modelling results in Chapter 4. This observation ﬁnderlines the
value of using pole-figure measurements to test randomness in powders which have
been prepared for XRPD analysis.

The quasi-normalisation method described in Sections (3.3) and (5.2.1) was
used to generate the PO correction factors for the pole-figure data - see Figures (5.9)
- (5.13). The set of pole-figures for the side-drifted powder, MOX, are self-consistent
in that they show in detail the texture character in each material. The <020> set
[Figure (5.9)] show that the initial texture increases substantially with the application
of 44MPa pressure, and then more slowly for 66, 88 and 110MPa. The other pole-
figures are generally consistent with this behaviour with the exception of the M5X
plot for <150> (110MPa) which is unexplained.

Figure (5.14) shows the <020> pole-figures for the molybdite samples M0X
and M5X derived by SE analysis, and Table (5.2) gives the results of an analysis of
the entire set of the <020>, <110>, <021>, <111> and <150> pole-figures for all 5
samples. The PDD values obtained by quasi-normalisation and those extracted from
Rietveld analysis with the March model are included for comparison. The results
show that there are distinct differences between the PDDs. obtained by quasi-
normalisation and by SE. On this basis, SE analysis should be preferred in future
studies.

Section (5.4) provides further comments on the pole-figure and March results.

5.2.3 Calcite X-ray Pole-Figures

Figure (5.15) shows 2D and 3D colour views of the <104> XRPD pole-figures
for 2 of the 5 calcite samples, COX (side-drifted) and C8X (most heavily pressed),
after (i) correction for defocussing with the <104> AL, O; pole-figure data and (ii)
normalisation. The complete set of 2D and 3D representations for the directions

<104>, <021>, <006>, <110>, <113> and <202>, for all samples, are shown in
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PDDs

<020> Molybdite X-ray Pole-Figures
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side-drifted - MOX; briquetted for 44MPa - M2X; briquetted for 66MPa - M3X;
briquetted for 88MPa - M4X; and briquetted for 110MPa - M5SX.

Figure 5.9. ‘Quasi-normalised” PDDs for the molybdite <020> XRPD pole-figures:
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Figure 5.10. ‘Quasi-normalised” PDDs for the molybdite <110> XRPD pole-figures:
side-drifted - MOX; briquetted for 44MPa - M2X; briquetted for 66MPa - M3X;
briquetted for 88MPa - M4X; and briquetted for 110MPa - M5X.
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<021> Molybdite X-ray Pole-Figures
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Figure 5.11. ‘Quasi-normalised’ PDDs for the molybdite <021> XRPD pole-figures:
side-drifted - MOX; briquetted for 44MPa - M2X; briquetted for 66MPa - M3X;
briquetted for 88MPa - M4X; and briquetted for 1 10MPa - M5X. '
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<111> Molybdite X-ray Pole-Figures
2 \
i
D
4
2]
o
o
n_ -
1 and
¢
0 T T T T T T T T T T T T 1 1 1 1 T ] T ) T T T 1 1 L T ¥ 4
0 10 20 30 40 50 60

x(°)

Figure 5.12. ‘Quasi-normalised’ PDDs for the molybdite <111> XRPD pole-figures:
side-drifted - MOX; briquetted for 44MPa - M2X; briquetted for 66MPa - M3X,
briquetted for 88MPa - M4X; and briquetted for 110MPa - M5X.
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<150> Molybdite X-ray Pole-Figures
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Figure 5.13. ‘Quasi-normalised’ PDDs for the molybdite <150> XRPD pole-figures:
side-drifted - MOX; briquetted for 44MPa - M2X; briquetted for 66MPa - M3X
briquetted for 88MPa - M4X; and briquetted for 110MPa - M3X.
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(a) SE analysis - normalised

MOX M3SX

. 53 3
Levels: B.B@ B.3@ @ &8 E % Levels: @.88 1.6

(b) SE analysis - recalculated

MO0X MS5X

Levels: 2 18 B.5@

Figure 5.14. The molybdite <020> XRPD normalised (above) and recalculated
(below) pole-figures from SE analysis. The contour levels are in random density
units.
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Table 5.2

Molybdite Minimum and Maximum XRPD PDD Values from SE analysis

SE Analysis
Code hkl Normalised Recalculated Quasi-  March
Pole-Figure Pole-Figure Normalis model
ation
Minimum Maximum Minimum Maximum  x=0°

MOX 020 -0.3 2.8 -0.4 4.1 2.3 4.4
M2X -0.2 6.2 -0.8 5.3 3.5 10.3
M3X -0.1 12.7 -0.3 7.1 3.8 10.6
M4X 0.1 11.6 -0.2 8.1 3.6 15.4
M5X 0.0 7.7 -0.3 49 4.4 19.3
MOX 110 0.1 2.4 0.2 1.9 0.8 0.5
M2X -1.1 4.1 -0.6 29 1.3 0.4
M3X 0.5 2.9 0.1 2.3 1.1 0.3
M4X 0.7 1.8 0.5 1.8 0.8 0.3
M35X 0.7 4.4 0.5 3.5 1.6 0.3
MOX 021 -0.6 2.2 0.0 1.8 0.6 0.6
M2X -2.0 29 -0.8 28 0.5 0.4
M3X 0.5 22 0.2 1.8 0.4 0.4
M4X 0.3 2.0 -02 1.8 0.2 0.4
MS5SX 0.4 2.0 0.1 1.7 0.5 0.3
MOX 111 -0.3 2.4 0.3 2.0 0.8 0.5
M2X -15.9 6.8 -6.9 4.4 1.6 0.3
M3X 0.4 23 -0.1 1.9 0.7 0.3
M4X 0.1 2.0 0.3 1.9 0.4 0.3
M5X -0.2 2.8 -0.1 2.2 1.1 0.2
MOX 150 -1.3 5.0 -0.4 42 3.1 1.4
M2X -2.8 3.7 -0.7 53 0.0 1.3
M3X -1.4 4.7 -0.9 34 2.0 1.3
M4X -6.2 2.5 -0.5 3.1 1.1 1.1
M5X -0.2 2.5 -0.1 2.2 -10.4 1.0
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Figure 5.15. 2D and 3D representations of the calcite <104> XRPD pole-figures: (a)
side drifted - COX and (b) briquetted for 176MPa - C8X. The contour levels are in
random density units.
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Appendix (2). As for the corresponding molybdite plots, the calcite diagrams in
Appendix (2) are not given in their original colour form with colour-coded contour
levels as the cost of colour-copying these diagrams was prohibitively expensive.

It is interesting to examine the <104> pole-figures in light of this direction
clearly being the PO direction for the calcite XRPD data from the results in Chapter
4. In contrast with the corresponding molybdite plots [Figure (5.8)], the COX pole-
figure is reasonably consistent with the expectation that side-drifting produced a
randomly-oriented powder, and that the application of uniaxial pressure will have
caused substantial orientation along <104>. As for the molybdite plots, pole-figure
assessment is clearly of value for the assessment of randomness in powders for
XRPD powder pattern analysis.

The quasi-normalisation method described in Sections (3.4) and (5.2.1) was
used to generate the PO correction factors for the pole-figure data - see Figures
(5.16) - (5.21). The set of pole-figures for the side-drifted powder, MOX, are self-
consistent in that they show in detail the texture character in each material. The
<104> set [Figure (5.16)] show that the substantial texture develops along this
direction with the application of 44MPa pressure, but the values for x = 0° do not
show a further increase as the pressure increases to 66, 88 and 110MPa. This
behaviour is qualitatively consistent with the plots of March r-parameter versus
pressure shown in Chapter 4, i.e. the texture along <104> plateaus as the pressure
increases.

The pole-figures for the other directions [Figures (5.17) - (5.21)] indicate the
complex manner in which the PDD changes with the application of pressure. These
show that the assumption that the texture has a unipolar distribution about <104> is
only a crude approximation when substantial pressure is applied.

Figure (5.22) shows the <104> pole-figures for the molybdite samples MOX
and M5X derived by SE analysis, and Table (5.3) gives the results of an analysis of
the entire set of the <104>, <021>, <006>, <110>, <113> and <202> pole-figures for
all 5 samples. The PDD values obtained by direct measurement and those extracted
from Rietveld analysis with the March model are included for comparison. The

comments made in Section (5.2.2) for molybdite [Table (5.2)] also apply here.
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PDDs

<104> Calcite X-ray Pole-Figures

x(%)

Figure 5.16. ‘Quasi-normalised’ PDDs for the calcite <104> XRPD pole-figures:
side-drifted - COX; briquetted for 44MPa - C2X; briquetted for 88MPa - C4X;
briquetted for 132MPa - C6X; and briquetted for 176MPa - C8X.
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<021> Calcite X-ray Pole-Figures
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Figure 5.17. ‘Quasi-normalised’ PDDs for the calcite <021> XRPD pole-figures:
side-drifted - COX; briquetted for 44MPa - C2X; briquetted for 88MPa - C4X;
briquetted for 132MPa - C6X; and briquetted for 176MPa - C8X.
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Figure 5.18. ‘Quasi-normalised” PDDs for the calcite <006> XRPD pole-figures:
side-drifted - COX; briquetted for 44MPa - C2X; briquetted for 88MPa - C4X;
briquetted for 132MPa - C6X; and briquetted for 176MPa - C8X.
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Figure 5.19. ‘Quasi-normalised’ PDDs for the calcite <110> XRPD pole-figures:
side-drifted - COX; briquetted for 44MPa - C2X; briquetted for 88MPa - C4X;
briquetted for 132MPa - C6X; and briquetted for 176MPa - C8X.
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Figure 5.20. ‘Quasi-normalised” PDDs for the calcite <[13> XRPD pole-figures:
side-drifted - COX; briquetted for 44MPa - C2X; briquetted for 88MPa - C4X;
briquetted for 132MPa - C6X; and briquetted for 176MPa - C8X.
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Figure 5.21. ‘Quasi-normalised’ PDDs for the calcite <202> XRPD pole-figures:
side-drifted - COX; briquetted for 44MPa - C2X; briquetted for 88MPa - C4X;
briquetted for 132MPa - C6X; and briquetted for 176MPa - C8X.
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(a) SE analysis - normalised

cox C8X
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(b) SE analysis - recalculated
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Figure 5.22. The calcite <104> XRPD normalised (above) and recalculated (below)
pole-figures from SE analysis. The contour levels are in random density units.

138



Calcite Minimum and Maximum XRPD PDD Values from SE analysis

Table 5.3

SE Analysis .

Code khl Normalised Recalculated Quasi-  March
Pole-Figure Pole-Figure Normalis model
ation
Minimum Maximum Minimum Maximum x=0°

CoxX 104 0.6 1.9 0.5 1.4 0.7 1.1
C2X -0.6 6.2 -0.6 34 3.1 3.2
C4X -0.1 1.4 -3.6 6.0 32 10.3
CeX -2.6 0.0 2.7 34 3.1 12.0
C8X 0.0 14.9 -1.9 6.8 3.2 13.1
CoxX 021 2.7 2.8 -0.4 1.9 1.1 1.0
C2X -2.8 53 -0.7 34 1.5 0.9
C4X -7.2 13.0 2.2 7.4 2.1 0.6
C6X -32 7.6 -1.9 4.1 1.2 0.6
C8X -1.5 2.8 -1.8 52 -0.8 0.6
CoX 006 -0.5 3.9 0.0 25 1.0 1.0
C2X -1.4 5.4 -0.8 5.0 1.6 1.1
Cax -33.2 153 -23.3 13.1 3.6 0.8
C6X -11.7 2.7 -10.7 16.2 1.2 0.7
C8X -9.0 19.6 -6.2 15.7 2.8 0.7
CoxX 110 0.5 1.2 0.5 2.0 0.7 1.0
C2X 0.1 2.1 -0.4 34 0.9 0.9
C4X -3.3 9.8 -5.4 104 1.1 0.6
C6X -3.6 13.8 -54 8.6 1.5 0.5
C8X -1.0 1.9 -1.8 6.9 2.5 0.5
CoX 113 0.4 1.9 0.6 1.4 0.7 1.1
C2X -0.4 1.7 -0.8 3.5 3.7 1.5
C4X -1.6 7.0 -1.9 7.8 1.2 1.5
Cex -0.3 5.3 -1.0 4.8 1.0 1.4
C8X -3.6 14 -2.8 5.5 5.3 1.4
CoX 202 0.4 1.9 0.7 1.4 0.6 1.1
C2X 2.3 9.8 -1.3 54 1.7 1.6
C4x -4.0 10.2 -4.0 7.6 1.7 1.6
CeX -2.0 4.6 -2.0 3.5 1.9 1.5
C8X -0.8 4.7 -0.3 3.7 1.1 1.5
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Section (5.4) provides further comments comparing the pole-figure and March
results.

5.3 Neutron Pole-Figure Measurements
5.3.1 Neutron Data Processing

The procedures used to obtain the PDD for each of the selected Bragg
reflections were essentially the same as that followed for the XRPD texture data
processing described in Section (5.2.1). Defocussing corrections were not employed
in generating the neutron-pole figures as these are not required for the transmission

geometry employed to acquire the NPD data.

5.3.2 Calcite Neutron Pole-Figures

Figure (5.23) shows 2D and 3D views of the calcite <006> NPD pole-figures
for 2 of the 3 calcite samples, CON (not pressed) and C8N (most heavily pressed).
The complete set of 2D and 3D representations for the directions <104>, <021>,
<006>, <113> and <018>, for all samples, is given in Appendix (2). The plots in the
Appendix are not shown in their original colour format with colour-coded contour
levels as the cost of colour-copying these diagrams was prohibitively expensive. The
original diagrams have been archived.

The discussion on the calcite NPD Rietveld modelling results in Chapter 4
concludes that the direction of PO for bulk calcite material, as measured by NPD, is
<001> whereas <104> is the most appropriate PO direction for the XRPD data. The
plots in Figure (5.23) for specimen CON are consistent with the Rietveld analysis of
this powder which indicated an essentially random powder (r = 1.000). The subtle
differences between the CON and C8N pole-figures are consistent with the Rietveld
r-parameter for C8N being slightly less than unity.

As for the XRPD pole-figures, quasi-normalisation was used to generate PO
correction factors from the pole-figure data - see Figures (5.24) - (5.28). The set of
pole-figures for the side-drifted powder, CON, are consistent with the XRPD results

in that <006> shows less variation with % than that observed for the other directions,
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Figure 5.23. 2D and 3D representations of the calcite <006> neutron pole-figures: (a)
non pressed - CON, and (b) briquetted for 176MPa - C8N. The contour levels are in

random density units.
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Figure 5.24. ‘Quasi-normalised’ PDDs for the calcite <104> neutron pole-figures:
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non pressed - CON; briquetted for 88MPa - C4N; and briquetted for 176MPa - C8N.
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Figure 5.25. ‘Quasi-normalised’ PDDs for the calcite <012> neutron pole-figures:
non pressed - CON; briquetted for 88MPa - C4N; and briquetted for 176MPa - C8N.
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Figure 5.26. ‘Quasi-normalised” PDDs for the calcite <006> neutron pole-figures:
non pressed - CON; briquetted for 88MPa - C4N; and briquetted for 176MPa - C8N.
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Figure 5.27. ‘Quasi-normalised” PDDs for the calcite <113> neutron pole-figures
non pressed - CON; briquetted for 88MPa - C4N; and briquetted for 176MPa - C8N.
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Figure 5.28. ‘Quasi-normalised’ PDDs for the calcite <018> neutron pole-figures:
non pressed - CON; briquetted for 88MPa - C4N; and briquetted for 176MPa - C8N.
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(a) SE analysis - normalised

CON C8N
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(b) SE analysis - recalculated
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Figure 5.29. The calcite <006> neutron pole-figures normalised (above) and
recalculated (below) after SE analysis. The contour levels are in random density
units.

147



Calcite Minimum and Maximum NPD PDD Values from SE analysis

Table 5.4

SE Analysis
Code hkl Normalised Recalculated Quasi- March
Pole-Figure Pole-Figure Normalis model
ation
Minimum Maximum Minimum Maximum x=0°
CON 104 0.2 1.3 0.7 1.1 1.1 0.9
C4N 0.2 1.3 0.4 1.2 0.8 0.7
C8N 0.2 13 0.5 1.1 0.9 0.6
CON 012 0.2 1.3 0.8 1.2 1.1 1.0
C4N 0.2 1.3 0.8 1.2 1.1 0.9
C8N 0.2 1.2 0.8 1.2 0.9
CON 006 0.2 1.4 0.5 1.3 1.1 1.0
C4N 0.1 1.6 0.2 1.6 0.6 0.9
C8N 0.1 1.6 0.3 1.6 0.6 0.8
CON 113 0.2 13 0.8 1.3 1.1 1.0
C4N 0.2 1.2 0.8 1.4 . 0.8
C8N 0.2 1.2 0.8 1.4 1.1 0.7
CON 018 0.2 1.5 0.4 1.3 1.0 1.0
C4N 0.1 1.5 0.1 14 0.6 0.9
C8N 0.1 1.5 0.2 1.4 0.7 0.9
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including <104>. The influence of pressure on the <006> pole-figure [Figure (5.26)]
shows consistency with the XRPD diffractometry results [Section (4.4.2)] in that (i)
the <006> PDD responds to pressure more readily than do the other directions
examined here, and (ii) the reduction in PDD for x = 0° to values well below unity
agrees with there being Rietveld r-parameter values less than 1.00 for NPD data.

The texture-pressure responses for the set of directions examined is more
complex than might be expected from the NPD Rietveld r-pressure plot [Figure
(4.11b)] again indicating that the March model gives texture character descriptions
which might be described as simplistic.

Figure (5.29) shows the <001> pole-figures for the calcite samples CON and
C8N derived by SE analysis, and Table (5.3) gives a numerical summary of the
features of PDDs extracted using the <012>, <104>, <006>, <113> and <018> pole-
figures. The PDD values obtained by direct measurement and those extracted from

Rietveld analysis with the March model are included for comparison.

5.4 Discussion

The pole-figure measurements have confirmed the findings in Chapter 4 from
Rietveld refinements that bulk material textures, as obtained by NRPD, are
profoundly different from those derived by XRPD. The near-surface character of the
XRPD measurements means that the x-ray texture results may be, at least in large
part, attributed to effects induced by uniaxial pressing. Therefore, the XRPD-derived
textures are unlikely to provide useful information on the ‘true’ texture of the
powder, even for the near-surface, when pressing is employed. However, it seems
likely that NPD does provide reasonable descriptions of bulk textures in uniaxially-
pressed powders.

Figures (5.30) - {5.32) show comparisons of the PDDs from pole-figure
analysis and the corresponding plots from the Rietveld analyses. The agreement is
satisfactory for the limited NPD data available [see calcite results in Figure (5.32),
and Tables (5.2) and (5.3)], but poor for the XRPD data [Figures (5.30) and (5.31)].
The apparent ‘failure’ of the Rietveld model is obvious from the much higher PDD
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Figure 5.30. Plots of molybdite XRPD <020> PDDs derived from pole-figures and
Rietveld r-parameters: non pressed - MOX; briquetted for 44MPa - M2X; briquetted
for 66MPa - M3X; briquetted for 88MPa - M4X; and briquetted for 110MPa - M5X.
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Figure 5.31. Plots of calcite XRPD <104> PDDs derived from pole-figures and
Rietveld r-parameters: non pressed - C0X; briquetted for 44MPa - C2X; briquetted
for 132MPa - C6X; briquetted for 88MPa - C4X; and briquetted for 176MPa - C8X.
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Figure 5.32. Plots of calcite NPD <006> PDDs derived from pole-figures and

Rietveld r-parameters: non pressed - CON; briquetted for 88MPa -

briquetted for 176MPa - C8N.
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values obtained as y approaches zero. The poor agreement obtained for the XRPD
data may be attributed to the complexity of the near-surface pole figures obtained
with x-rays, and to the inability of the Rietveld model to accommodate these

complexities.
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CHAPTER 6

CONCLUSIONS

6.1 Review of Study Objectives

The statement of objectives in Section (1.6) needs to be restated in

summarising the results reported in Chapters 4 and 5:

to extend the work of Li et al. (1990), Sitepu (1991); O’Connor, Li
and Sitepu (1991, 1992), and Sitepu, Q’'Connor and Li (1996) on the
general applicability of the March (1932) model for modelling PO
with both XRPD and NPD powder data, with reference to :

® the reliability of the March model and

e its use in correcting of powder diffraction intensities for

PO bias.

6.2 Conclusions

The conclusions reached in the study are the following:

The March model appears to provide adequate PO representations for moderate
levels of PO only. The method gave increasingly unsatisfactory GOFI values for
r-parameters less than approximately 0.9. It is therefore recommended that
spherical harmonic modelling be employed for more substantial levels of PO in
that spherical harmonic modelling does not suffer from the approximation made
Jor the March model.

The XRPD results (pole-figure and Rietveld), which might be expected to
provide details of the near-surface texture, appear to largely reflect the near-
surface texture induced by uniaxial pressing.

In contrast to the XRPD textures, the descriptions from NPD analysis are
probably correct for the bulk material and not substantially influenced by the

pressing procedure.
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A formalism developed in the study for converting the March r-parameter to a
bulk modulus estimate (and, therefore, a measure of powder compressibility) has
been largely validated by direct measurements of bulk modulus.

The differences in textures obtained by XRPD and NPD is exemplified by the
surprising result that the calcite PO direction is clearly different for the 2 data
sets.

The testing of powder randomness by directly measuring the pole-density is a
valuable tool for x-ray powder diffractometry when random powders are
required.

A useful outcome of the NPD work has been the discovery that some Rietveld
codes, including the LHPM software used extensively in Australia, have not
correctly allowed for symmetry-equivalent reflections. Symmetry-equivalent
reflection contributions must be taken into account by Rietveld programs in

modelling texture.
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APPENDIX 1

DERIVATION OF MARCH MODEL EXPRESSION

March Theory of the Reorientation of Tabular Marker by Homogeneous Strain

March’s (1932) theory, models the reorientation of tabular grains in a material
under compression. The theory considers the movement of planes passing through the
center of the sphere. This mapping of the grains into the unit sphere neglects their detailed
shapes and their positions.

Let the original rock have a uniform distribution of marker grain orientations.
Consider only those grains and planes in the unit sphere that have their poles in a small
circular area with a diameter of the elemental size, d. Designate the center of that area as
the pole of the sphere. Then all traces of the planes with poles inside the elemental area lie
in a narrow equatorial zone of width d, and planes with poles at the boundary of the
elemental area have traces tangent with the two boundaries of the elemental zone. Now
apply a strain at constant volume to the unit sphere, keeping in mind that the strain affects
the planes themselves but not the poles.

An axial symmetric strain shortens the polar axis and enlarges the equator, thus
transforming the sphere into an oblate spheroid. The strain not only makes the equatorial
zone thinner but it also moves it to a greater distance from the center of the spheroid. Both
effects influence the orientation of the marker planes. Because the most strongly inclined
planes of the original set must remain tangent to both boundaries, the thinning of the
equatorial zone reduces the maximum angle possible between planes belonging to the set.
The stretching of the distance from the center in each of two principle directions further
reduces this angle. Thus the elemental area occupied by the poles of the deformed planes
on the surface of an undistorted unit sphere serving for reference is reduced by three
factors. The number of planes and thus of poles occupying the elemental area, on the
other hand, remains unchanged, and the pole density increases accordingly.

Axial symmetry was here introduced only for conceptual simplicity; symmetry does

not alter the effect of strain on the density distribution near one of the principle axes.
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Actually, original and final densities of poles can be compared in any direction, but this
requires care with the choice of an appropriate coordinate system. It will, therefore, be
sufficient to follow March’s (1932) example and to give the formula relating the final
pole densities in the principal directions of the strain to an original unitary and uniform

density. The relationship is :
g=p " =1 (A1)

where p, is a principal pole density, normalised by dividing it by the average pole density
for all orientations, and where ¢, is a principal strain, expressed in the standard way as
the change of length divided by the original length. The March (1932) model of the
reorientation of tabular marker by homogeneous strain as shown in equation (A1) can be

mathematically derived by using geometrical relationships approach as shown below.

March Model Derivation Using Geometrical Principles
(i} Linear Markers Approach

Consider a spherical portion of the specimen of radius r, containing numerous
linear markers. Each marker represents a vector directed outward from the sphere centre,
and the markers are assumed to have a uniform distribution of orientations prior to

deformation - see Figure (Al). After deformation due to a stress applied along axis x,, the
original sphere becomes a triaxial ellipsoid with principal semi-axes 7, .

In order to model the deformation, a conical element subtending a small solid angle
éw,, on the undeformed sphere is considered. The axis of the conical element x, , and &,

is the radius of the circular base of the conical element. The solid angle subtended by the

circular base is :

B =

a

ﬁ(a'l)z
2

’

a

(A2)

After deformation, the base of the conical element will then be an ellipsoid, with the solid

angle subtended by the base of the deformed cone being given by :
o' =123 4, (A3)
(rn)
If the specimen undergoes dilatation D (i.e. a change in volume) during the

deformation, then D is the ratio of final volume (r,%,r,) to initial volume (r’):
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®

Figure Al. Rotation of linear markers during deformation. (a) Sphere of specimen before

deformation. (b) Same specimen, deformed into triaxial ellipsoid. Strain is homogeneous.
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D=—~ (A4)
ro
Equation (A3) then becomes :
oo L n.
= (= AS
dw D (ra) (A3)

The total number of marker orientation vectors within any conical volume element
of powder is equal to the product of the angular density distribution p and the solid angle
Ze subtended by each conical element. This number is conserved under deformation,
such that,

P, = p G (A6)
where p, and p  are the initial and final angular density values, respectively.

Substitution of equation (A6) into (AS) gives :

SR
=5 (A7)
The angular density of the marker population after deformation in terms of a uniform

distribution can be written as :

p =L (A8)
P
Also note that :
RS (A9)

¥

where ¢, is the elongation strain in the direction of the principle radius vector r,.
Substitutions of equations (A8) and (A9) into equation (A7) gives :
pl’DV =(1+g)) (A10)

The relationship between the strain and the orientation distribution becomes

4

€ =P (Al1)

if the volume is conserved.

(i) Planar Marker Approach
For the case of passive platy markers, represented by particles of planar arrays in the

medium, consider the same sphere of specimen of initial radius », in which a large

168



number of planar markers are embedded. Let the each marker orientation be represented
by a plane passing through the sphere center and having a pole vector directed outward
from the sphere center.

Figure (A2) shows the material sphere which are deformed by a general strain, as i-n

the linear markers case, and those the coordinate directions, x,, to coincide with the

principal strain directions. The sphere is a triaxial ellipsoid with principal semi-axes of 7,
in the x; directions after deformation.

Consider all planar markers having great-circle projections that are contained within
a zone of width &, =&,, centered about the x,x, plane, on the surface of the
undeformed material sphere. These planar markers orientations about the x,x, plane

range across an angle of &8, = &9, , where

3, =22 (A12)

and 0, =2 (A13)
) r

o

A cone with its axis in the x, direction would be defined by the poles of these planar
markers. Suppose the diameter of the circular area subtended by the cone on the sphere
surface is &5, . Figure (A2) shows that in the undeformed sphere :

& =a&,; &=, M =40,;and X, =W, (Al4)
The part of the surface of sphere subtended by the angle can be assumed to be a planar

surface because the conical element is taken to be arbitrarily small. The area, 4,, of this

circular surface is

4, = %(5&1)2 (A15)
The solid angle, dw,, subtended by the conical element is
A 073
G = o _E(_l)z (A16)

o [
r 4 7,

o

After deformation, the zone containing the planes under consideration has a width :

& =& &, = ﬁz(fr-'") cand &, =&, (- (A17)
° r

o
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(a)

X3
(b)
X
a0
Y[ _ .
63'3' ‘5293 = = ty X3
— "
v 70000
&, 4

Figure A2. Rotation of the planar markers during deformation. (a) Sphere of specimen
before deformation. (b) Same specimen, deformed into triaxial ellipsoid. Strain is

homogeneous.
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Because the change in width is a strain function only in the x, direction and is
independent of any strains in the x, and x, directions, the deformed zone width is
uniform around the entire material ellipsoid. This results from the strain homogeneity in

the material. The markers planes orientations around the x, x; plane range across angles

of &9, in the x, direction and &9, inthe x, direction, where using equations (A17)

2, =% &( ) (A18)
rz o
and o0, =% ‘%2( e (A19)
r3

The planar markers poles under consideration lie within a cone that subtends an elliptical

area on the surface of the materials ellipsoid about the x, direction after deformation.

The elliptical area principal axes, A, are

T

A =26,y (A202)
and A= %(r,‘aa;)z (A20b)

Substitution of equations (A18) and (A19) into equations A20(a) and (b) gives :

A =EBp ) )’ (A20c)
4 r, r2r3
The solid angle, éw ', subtended by conical element can be written as below :
-4 - (A21a)
(n) '
Substitution of equation (A20c) into equation (A21a) yields :
r
o' =@y O (A21b)
To nh

As it has shown in equation (A14) that &, = &, then equation (A16) can be substituted
into equation (A21b) to give :
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‘33
o' = aw, ) (A22)

_ nnr. 3
Substitution of equation (A4) into equation (A22) gives :

2e - p(ly” (A23)

The planar markers number within the zone under consideration remains constant
throughout the deformation process. Therefore, equation (A6) also describes the poles
conservation within conical elements that subtend solid angles of dw, and dw before

and after deformation, respectively. Substitution of equation (A6) into (A23) gives :

2 - pdy? (A24a)
po rO
After deformation, pi = £ (A24b)
P,

where p, be the angular density in the x; coordinate direction of the markers population,

expressed as multiples of a uniform population distribution. Substitution of equation

(A24a) into (A24b) yields :
n -
pi = D) ? (A25a)

Substitution of equation (A9) into (A25a) gives :
p;, =D(g, +1)7 (A25b)
Equation {(A25b) is the generalised relationship in principal coordinates between planar
markers poles PO, p,, and strain, &,. The equation of March for strain as a function of
poles PO can be written as :
g =D"p " -1 (A26)
It can be seen that equation (A26) is analogous to equation (A10) which gives the March
relationship for strain as a function of poles PO for linear markers orientation. If volume
is conserved equation (A26) can be written as below:
g=p"" -1 (A27)
Equation (A27) is the most commonly used formulation of the March (1932) theory
where &; is a principal strain at constant volume, defined as a ratio of length change of a

material line to its original length, and p, is the normalised frequency of poles of the
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basal planes of the strain markers in one of the principal directions. March considered the
geometry of passive markers, originally oriented at random, and allowed to deform
homogeneously within a matrix taken to have experienced no volume change. To apply
March model, one must make the untested assumption that the only mechanism by which
markers respond to the deformation is passive rotation. Etheridge and Oertel (1979)
showed other possible mechanisms of PO such as intracrystalline deformation,
recrystallisation or preferred crystallisation which must be excluded.

It is useful to understand the March’s simple theory geometric foundations because
the theory has proved to be adequate for many purposes. Such understanding is needed to
judge whether the theory is applicable in a particular instance or not. Lipshie (1984)
provided the most complete derivation of the March model and demonstrated how its
application works. Oertel (1985) developed a procedure to estimate March strain in rock
from the degree of phyllosilicate PO by combining March (1932) theory and transmission
XRD technique. Qertel’s experimental results showed that the March model has been
highly successful in describing, in detail, the textures found in natural and synthetic
deformed materials and in quantitative relating deformation to PO. Oertel (1985)
indicated also that the formula for rdd-shaped markers finds application more rarely
because a rodlike crystal habit is uncommon among the rock-forming minerals and also
because those minerals that have such a habit, like the amphiboles, do not diffract x-rays
sufficiently strongly from the crystallographic plane normal to the long dimension of the
grains to allow their use on the x-ray pole figure goniometer. This apparatus, however, is
usually the most convenient tool for the estimation of the orientations distributions of

large number of grains in a materials [see Section (3.3)].

Extended March (1932) Equations

Owens (1973) derived a generalised March equation relating the angular
distribution frequency (ADF) of planar elements to the strain in a rock. Chen (1991) used
XRPD method to obtain the ADF data and determined the stretch tensor from the ADF by
taking advantage of today’s powerful personal computer. The strain results obtained by
Chen from the Cambrian Slate Belt, North Wales, from Dorothea Quarry that consists of
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muscovite and chlorite with quartz and minor albite and hematite specimens were
{0.7740.05, 0.30£0.04, -0.57+0.00]. These results were in good agreement with that
measured directly from ellipsoidal strain indicators, the so-called “reduction spots”, i.e
[0.80, 0.31,-0.57], respectively (Wood and Oertel; 1980).

Based on the theory given by March (1932), Owens (1973) derived the modification
of an angular density distriBution [ADDY] (i.e., number of lines divided by the solid angle)
of linear elements under strain. The concept used by Owens was that the number of lines
contained within a material cone, defining an element of solid angle, remains constant
during deformation. As a result, the ADD will alter under strain only in so far as the solid
angle alters. March (1932) used the geometrical approach to derive the variation in solid
angle. Following March [equation (A4)], the relationship between the volume of the cone
after and before strains can be written as :

Volume after strain = Dilatation x Volume before strain

%r}avf = 8] x %rfaw,. (A28a)

o, =[Sl dw, (A28b)
f

ow, =|8|(4)’ dw, (A28¢)

The relationship between the initial (f}) and final (f;) angular densities can be obtained by
substitution of equation (A28c) into equation (A6), i.e.

fw, . 1
£y =522y = Ly (a29)
T e, 3]

If f; has a uniform density, p, then equation (A29) can be written as :
1
ACEANT A 10,.8,) (A30)
This is the expression given by March (1932) which the angular density expressed in a
direction (&,,8,) as a function of (&,,8,).
Owens (1973) generalised equation (A30) to cover any varying, initial distribution,

fi(8;,4,)ywhich explicitly required the relationship between (6,,6,) and (8,,8,) as

shown below :
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1
ff(91=¢f)=Efu(9p¢;)ﬁ(9,~,¢.-) (A31)
or ry(0s.8,)= Sr(6,.4,) (A32)
It can be seen from equations (A31) and (A32) that if the angular density, f;(6,,9,), 1s
known, in direction before and after strains according to equation (A32) which a vector

oriented along (#,,4,) moves to (6,,4,), then the angular density after strain in the
direction (8,4, ) can be calculated from equation (A31).

Owens (1973) showed that, after a constant-volume deformation, the poles have the
frequency distribution described by equation (A31). Chen (1991) modified equation
(A31), ie. the frequency distribution, F, in an arbitrary direction into the following
equation :

F=(a"f - (A33)
where f is the initial pole distribution frequency which is assumed to have been uniform
for all orientation, and A is the elongation in that arbitrary direction. The distribution
frequencies F and f can be replaced by x-ray intensities, I and q, and B is augmented by a
certain background noise level because the diffracted x-ray intensity is linearly
proportional to the pole distribution frequency of strain markers. Equation (A33) can be
written as follows :

I=(2)"q+B (A34)
As shown in Figure (2.1) in Section (2.1.2) that equation (A34) can be extended in (i)
sample coordinates, X, and (ii) reference coordinates, ®X,, which coincide with
principal axes, S;, of a strain, €. The Euler angles (@,,4,p,) relates these two
coordinates in which the coordinates transformation was shown in the text of the Figure
(2.1) above. However, the symbols used in Figure (2.1) such as E,E, and E, are
changing to S,, S, and S, in following discussion. Following the transformation in
Figure (2.1) which is equivalent to Figure (2.6) and equations 2.27(a), (b) and (c¢) in
Chapter 2 Section (2.2.1); it can be seen immediately that the initial sample coordinates
and the final sample coordinates are related by an orthogonal transformation matrix, A,

which has three independent coefficients. As indicated by Bunge (1982), the three
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rotations of equations 2.27(a), (b) and (c) may be expressed in matrix form [equations
(2.29) and (2.30)].

The orientation g{o,de,] of two coordinate systems with respect to each others can
be written also in the form a,. As a result, the orientation of the reference coordinate
system “X, with respect to the sample coordinate system *X, may be illustrated as if a
moveable coordinate system is brought at first into coincidence with * X, and then rotated

through a; 1o come into coincidence with ® X, according to the following equation :

fx, =a,.jSXj (A35)
The inverse transformation from reference to sample coordinate is :

X, =[a,]" %%, (A36)
The inverse of the matrixa; is equal to its transpose :

[a,]" =[a,] (A37)
The components of the matrix are not independent. They must obey the orthonormality
relations :

a; ay =0, (A38)
and

a,-ay =0, (A39)

where &, is the Kronecker symbol

lfori=k

O = {O;)ri * k (440)

Equations (A38) and (A39) expresses the fact that the rows and columns of the matrix are

unit vectors that are mutually perpendicular. That the components of the matrix are not

independent is a drawback of this representation, especially when considering continues

ODFs, which one wants to express in terms of independent variables. An advantage of the

matrix representation of rotation is that the resultant rotation of two or more rotations can
easily be expressed by matrix muitiplication.

The condition of volume constancy implies that the principal stretches are by :
S, =(g,+1) (A41)

and
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§:8-8§=1 (A42)

Thus the stretch tensor in reference coordinates is :

S 0 0
1
Re 1=10 0 A43
[ ”] SIS3 ( )
0 0 S

Let in reference coordinates,®S, having two independent coefficients, be the matrix
‘notation for the stretch [R S; ] In sample coordinates, the tensor, *S, is related to*S by a

transformation with the matrix, A, as a operator :

5§=A"%S 4 (A44)
The components of the tensors in sample coordinates, are combinations of five
coefficients, (¢, ¢,@,) from A, (§,,5,) and *s as shown in equation (Ad44). The
reciprocal relation of equation (A44) can be written as :

s=48 A (A45)
Let a material line be represented by a vector in the sample coordinates, *», which is
deformed to a unit vector, * R(|* | = 1) by astretch °S :

SR=°S r (A46)
The deformed state has to taken into account then deduce from it the shape of the original

as given below :

Sr="5"' *R (A47)
The square length of ®r is given by :

o <5 o (%)
Substituting equation (A47) into equation (A48) yields :

5" = SRS R)=SRT 87 557 SR (A49)

and substituting equation (A44) into equation (A49) gives :

57" =5R7 (47 ("87')* 4)°R (A50)
In the direction of *R, the elongation direction, A*, defines by

'R

lZ

 _

(A51)
E
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According to Owens (1973), a material plane deformed by the stretch, °S, the marker

pole in the initial state, /, is related to its deformed counterpart, L, by (°*S™')". Hence,

the quadratic elongation in the direction of L, parallel to R, is :

3n
- 1 ,
A m(SRT(AT(rS)Z A) SRJ q+B (ASZ)

There are seven coefficients in the equation (AS52); in addition to q and B, five are
embedded in the (47 (’S)? 4) terms.

One can express the equation {A52) in principal reference coordinates to reduce the
coefficients to four. To describe orientation, a set of angular variables, ("8, " ¢), related

to the reference coordinates was described such as :

R
X
tan(* 6) = — le (AS3a)
R (RX2+RX 2)112
and tan(" g) = ~—1 2 (A53b)
X;
Hence :
®X, = sin(* @) cos(* @) (A54a)
* X, = sin(* @) sin(* ¢) (A54b)
*X, =cos(* 9) (A54c)
Let a powder line be represented by a vector, *r, and be deformed
"R"R|=1 (A55)
by the stretch * S. In analogy with equations (A46), (A47), (A48) and (AS1):
R R=RS Rr (A56)
fr=ts *R (AS7)
|*r|="R" *r (AS8)
|
and A =5 (A59)

I

With equations (A56), (A57), and (A58), equation (AS52) can be written as :
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n
1
A= . A60

(RRT(J‘S)ZA RR] q ( )

Let the unit vector, *R, have an orientation (* 8,% ¢) and thus components :
[&]=[sin" 6cos" 4,sin" Gsin® g, cos" 9] (A61)
Expand the matrix notation of equations (A60) by substituting equations (A43) and

(A61), then the observed x-ray intensities, /,, with orientations (*8,,% ¢,) becomes:

- 2R - 2R
sin “ @,sin" " ¢,

2 o2
13

I!(Rgnﬂﬁji): 812 SiHZRel 00528'#1 +

-32
+82 cos’ "9,] q (A62)

The March-Dollase PO Correction Factor for Powder Diffraction

Consider a planar powder diffraction sample formed by a volume conserving,
cylindrically-symmetric compression such that the initial sample thickness d, is reduced
to d. As the samplecompression is axially symmetric the stretch tensor axial lengths in the

sample plane are equal,

S, =85, (A63)
and the stretch tensor axial length along the sample normal is defined as the March PO
parameter,

d

S,=—-= A64

1T r (A64)

(1]

Furthermore, as sample volume is conserved, the product of the stretch tensor axial length

is unity.
$.S,8, =1 (A65)
Substitution of equations (A63) and (A64) into equation (A65) vields :
S, =8, =r" (A66)
Substitution of equations (A64) and (A66) into equation {A62) gives :
sin2 R 9 Sin2 R¢ E&
uf a2 2
I:(Rgnkiﬁr):[r ' sin RBJCOSZR¢J+ r:rz =47’ cos RBI:| q (A67)
which simplifies to
Rp R -1 2R 2 g -
L,(%6,%p,)=[r"sin’®0, +r* cos 9,] g (A68)
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or

I:(RBJsR¢:): P -q
where :

-] - 2p 2 28 =32
P,=[r sin &, +r°cos " 8,

where @, is the angle between the diffracting plane normal and the sample normal.
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APPENDIX 2

POLE-FIGURE DATA FOR MOLYBDITE AND CALCITE

A2.1. XRPD Molybdite

Figure A2.1.1(a). 2D and 3D representations of the molybdite <020> XRPD pole-
figures: (a) side drifted - MOX and (b) briguetted for 44MPa - M2X. The contour
levels are in random density units.
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Figure A2.1.1(b). 2D and 3D representations of the molybdite <020> XRPD pole-
figures: (c) briquetted for 66MPa - M3X, (d) briquetted for 88MPa - M4X and (e)
briquetted for 110MPa - M5X. The contour levels are in random density units.



Figure A2.1.2(a). 2D and 3D representations of the molybdite <110> XRPD pole-
figures: (a) side drifted - MOX, (b} briquetted for 44MPa - M2X, and (c) briquetted
for 66MPa - M3X. The contour levels are in random density units.
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Figure A2.1.2(b). 2D and 3D representations of the molybdite <110> XRPD pole-
figures: (d) briquetted for 88MPa - M4X and (e) briquetted for 110MPa - M5X. The
contour levels are in random density units.
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Figure A2.1.3(a). 2D and 3D representations of the molybdite <021> XRPD pole-
figures: (a) side drifted - M0X, (b) briquetted for 44MPa - M2X, and (c) briquetted
for 66MPa - M3X. The contour levels are in random density units.
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Figure A2.1.3(b). 2D and 3D representations of the molybdite <021> XRPD pole-
figures: (d) briquetted for 88MPa - M4X and (e) briquetted for 110MPa - M5X. The
contour levels are in random density units.




Figure A2.1.4(a). 2D and 3D representations of the molybdite <111> XRPD pole-
figures: (a) side drifted - MOX, (b) briquetted for 44MPa - M2X, and (c) briquetted
for 66MPa - M3X. The contour levels are in random density units.
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Figure A2.1.4(b). 2D and 3D representations of the molybdite <111> XRPD pole-
figures: (d) briquetted for 88MPa - M4X and (e) briquetted for 110MPa - M5X. The
contour levels are in random density units.
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Figure A2.1.5(a). 2D and 3D representations of the molybdite <150> XRPD pole-
figures: (a) side drifted - MOX, (b) briquetted for 44MPa - M2X, and (c) briquetted
for 66MPa - M3X. The contour levels are in random density units.
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Figure A2.1.5(b). 2D and 3D representations of the molybdite <150> XRPD pole-
figures: (d) briquetted for 88MPa - M4X and (e) briquetted for 110MPa - M5X. The
contour levels are in random density units.
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A2.2. XRPD Calcite
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Figure A2.2.1(a). 2D and 3D representations of the calcite <104> XRPD pole-
figures: (a) side drifted - COX and (b) briquetted for 44MPa - C2X. The contour
levels are in random density units.
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Figure A2.2.1(b). 2D and 3D representations of the calcite <104> XRPD pole-
figures: (c) briquetted for 88MPa - C4X, (d) briquetted for 132MPa - C6X and (e)
briquetted for 176MPa - C8X. The contour levels are in random density units.
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Figure A2.2.2(a). 2D and 3D representations of the calcite <012> XRPD pole-
figures: (a) side drifted - COX, (b) briquetted for 44MPa - C2X and (¢) briquetted for
88MPa - C4X. The contour levels are in random density units.
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Figure A2.2.2(b). 2D and 3D representations of the calcite <012> XRPD pole-
figures: (d) briquetted for 132MPa - C6X and (e) briquetted for 176MPa - C8X. The

contour levels are in random density units.
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Figure A2.2.3(a). 2D and 3D representations of the calcite <006> XRPD pole-
figures: (a) side drifted - COX, (b} briquetted for 44MPa - C2X and (c) briquetted for
88MPa - C4X. The contour levels are in random density units.
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Figure A2.2.3(b). 2D and 3D representations of the calcite <006> XRPD pole-
figures: (d) briquetted for 132MPa - C6X and (¢) briquetted for 176MPa - C8X. The

contour levels are in random density units.
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Figure A2.2.4(a). 2D and 3D representations of the calcite <110> XRPD pole-
figures: (a) side drifted - C0X, (b) briquetted for 44MPa - C2X and (c) briquetted for
88MPa - C4X. The contour levels are in random density units.
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Figure A2.2.4(b). 2D and 3D representations of the calcite <110> XRPD pole-
figures: (d) briquetted for 132MPa - C6X and (e) briquetted for 176MPa - C8X. The
contour levels are in random density units.
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Figure A2.2.5(a). 2D and 3D representations of the calcite <113> XRPD pole-
figures: (a) side drifted - COX, (b) briquetted for 44MPa - C2X and (c) briquetted for
88MPa - C4X. The contour levels are in random density units.
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Figure A2.2.5(b). 2D and 3D representations of the calcite <113> XRPD pole-
figures: (d) briquetted for 132MPa - C6X and (e) briquetted for 176MPa - C8X. The
contour levels are in random density units.
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Figure A2.2.6(a). 2D and 3D representations of the calcite <202> XRPD pole-
figures: (a) side drifted - COX, (b) briquetted for 44MPa - C2X and (c) briquetted for
88MPa - C4X. The contour levels are in random density units.
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Figure A2.2.6(b). 2D and 3D representations of the calcite <202> XRPD pole-
figures: (d) briquetted for 132MPa - C6X and (e) briquetted for 176MPa - C8X. The
contour levels are in random density units.



A2.3. NPD Calcite

Figure A2.3.1. 2D and 3D representations of the calcite <104> NPD pole-figures: (a)
side drified - CON, (b) briquetted for 88MPa - C4N and (c) briquetted for 176MPa -
C8N. The contour levels are in random density units.
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Figure A2.3.2. 2D and 3D representations of the calcite <012> NPD pole-figures: (a)
side drifted - CON, (b) briquetted for 88MPa - C4N and (c) briquetted for 176MPa -
C8N. The contour levels are in random density units.
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Figure A2.3.3. 2D and 3D representations of the calcite <006> NPD pole-figures: (a)
side drifted - CON, (b) briquetted for 88MPa - C4N and (c) briquetted for 176MPa -
C8N. The contour levels are in random density units.
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Figure A2.3.4. 2D and 3D representations of the calcite <113> NPD pole-figures: (a)

side drifted - CON, (b) briquetted for 88MPa - C4N and (c¢) briquetted for 176MPa -

C8N. The contour levels are in random density units.
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Figure A2.3.5. 2D and 3D representations of the calcite <018> NPD pole-figures: (a)
side drifted - CON, (b) briquetted for 88MPa - C4N and (c) briquetted for 176MPa -
C8N. The contour levels are in random density units.

207



	10544_downloaded_stream_10544
	10545_downloaded_stream_10545
	10546_downloaded_stream_10546
	10547_downloaded_stream_10547
	10548_downloaded_stream_10548
	10549_downloaded_stream_10549
	10550_downloaded_stream_10550
	10551_downloaded_stream_10551
	10552_downloaded_stream_10552
	10553_downloaded_stream_10553

