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ABSTRACT

Carrierless amplitude and phase (CAP) modulation is generally regarded
as a bandwidth efficient two-dimensional (2-D) passband line code. Tt is closcly
related to the pulse amplitude modulation (PAM) and quadrature amplitude
modulation (QAM) schemes. CAP has been proposed for various digital sub-
scriber loop (DSL) systems over unshielded twisted pairs of copper wires. In
this thesis, our main focus is on the minimum mean-square error (MMSE)
performance of the ideal (i.e., infinite length) linear and non-linear {(decision
feedback) CAP receivers/equalisers in the presence of additive, coloured Gaus-
sian noise, and/or data-like cross-talks. An in-depth analysis is given on the
performance of both receiver structures.

In the case of the linear receiver, one possible view of the overall CAP
transceiver system which includes both data and cross-talk transmission paths
is that it is a linear multiple-input multiple-output (MIMO) system. Accord-
ingly, the existing MMSE results for a general MIMO system are applicable
also to CAP systems. However, up to date, this approach was shown to be
unsuccessful in the sense that the derived MMSE expressions are too complex
and offer little insights. In our analysis, in order to find a more incisive MMSE
expression, we reconsider the problem of minimisation of the MSEs at slicers.
By exploiting the Hilbert transform pair relationship between the impulse re-
sponses of the inphase and quadrature transmit shaping filters, we are able
to obtain an elegant and more meaningful MMSE expression, as well as the

corresponding transfer functions of the optimum linear receive filters.



In the case of the nonlinear, or decision feedback equaliser (DFE), re-
ceiver, we start our analysis with the receiver structure of a generic multi-
dimensional (> 3) CAP-type system. This receiver consists of a bank of ana-
log receive filters, the number of which equals the dimension of the CAP line
code, and a matrix of cross-connected, infinite-length, baud-spaced feedback
filters. It is shown that the optimum filters and the corresponding MMSE of
the DIF'E receiver require the factorisation of a discrete-time channel spectral
matrix. This mathematically intractable step can be avoided, however, when
the DFE results are specialised to a standard 2-D CAP system where we are
able to again exploit the Hilbert transform pair relationship to derive a further
and more useful MMSE expression.

Three sets of numerical studies are given on the MMSE performance of
the CAP receivers. In the first set of studies, we model the sum of all cross-
talks as an additive, Gaussian noise source and select three test transmission
channels over which we compare the MMSE performance of the linear and
DFE receiver structures. In the second set of studies, we compare the perfor-
mance of the two receiver structures, but in a data-like cross-talk environment.
The results demonstrate the importance of NEXT equalisation in the design
of CAP receivers operating in a NEXT dominant environment. In the final
set of studies which follows from the second set of studies, we investigate the
relationship between the MMSE performance of the DFE receiver and system
parameters which include excess bandwidth, data rate, CAP scheme, and rela-
tive phase between the received signal and the NEXT signal. The results show
that data-like cross-talks can be effectively suppressed by using a large excess
bandwidth (@ > 1 in the case of a RC transmit shaping filter) alone. The

relative phase also affects the receiver performance, but to a lesser degree.
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In addition to the MMSE performance analysis, implementation issues
of an adaptive linear CAP receiver are also considered. We propose a novel
linear receiver by appending two fixed analog filters to the front-end of the ex-
isting adaptive linear receiver using fractionally-spaced equalisers (FSE). We
show that if the analog filters are matched to the transmit shaping filters,
then inphase and quadrature finite-length FSEs in the proposed receiver have
the same MMSE solution. We further propose a modified least-mean-square
(LMS) algorithm which takes advantage of this feature. The convergence anal-
ysis of the proposed LMS algorithm is also given. We show that the modified
LMS algorithm converges approximately twice as fast as the standard LMS
algorithm, given the same misadjustment, or alternatively, it halves the mis-

adjustment, given the same initial convergence rate.
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CHAPTER 1
INTRODUCTION

1.1 Digital Subscriber Lines

Over the past a few decades, the explosive growth of the Internet has cre-
ated a pressing need for higher throughputs in data communication networks.
Apart from the efforts in pushing up the data rates of existing voiceband
(analog) modems, new technologies such as fixed wireless access, broadband
satellites, and coax cable modems, etc., have been considered to address this
problem. Another possible solution is to use the existing installed telephone
network base, but with the family of newly emerged digital subscriber line
technologies known collectively as xDSL. Compared to the other solutions,
xDSL is more practical and cost-effective. It has been estimated that there
are 790 million copper pair loops installed around the world, and this copper
infrastructure represents one of the key assets owned by various telecommuni-
cation companies. Therefore, it would be sensible to re-use them as much as
possible.

The term xDSL encompasses digital subscriber line (DSL), high-speed
DSL (HDSL), asymmetric DSL (ADSL), and very high-speed DSL (VDSL).
Modems using xDSL technologies differ dramatically from traditional voice-
band modems in terms of the bandwidth utilised, and hence transmission
throughput. Typical voiceband modems are limited to frequencies ranging
from 300 Hz to 3.4 kHz, whereas xDSL modems utilise channel bandwidth of

up to 30 MHz. As a result, ADSL modems for instance, can operate at up to
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8 Mb/s, depending on the length of the transmission cables, whereas the latest
generation V.90 voiceband modem specified by the International Telecommu-
nication Union (ITU) can reach speeds of up to 56 kbps only. In order to
achieve such high data rates, there are new challenges which need to be solved
by telecommunication researchers and engineers alike.

The total channel impairment of a (subscriber) loop plant includes cable
power loss, cross-talks, additive noise, and some impulsive effects. In partic-
ular, cross-talks which can be categorised as near-end cross telk (NEXT) or
far-end cross talk (FEXT) are often the limiting factors in the speeds of xDSL
modems. However, this is not the case for voiceband modems, because be-
low the maximum 3.4 kHz, cross-talk channel loss is relatively high and hence
presents no real threat to symbol detections. For frequency bands where xDSL
modems operate, the research for suitable techniques to minimise the interfer-
ence of cross-talks is central to the design of cross-talk resistant xDSL modems.

In relation to line codes, besides the traditional bandwidth efficient line
codes such as quadrature amplitude modulation (QAM) and pulse amplitude
modulation (PAM), various other line codes have been proposed for xDSL. No-
tably among them are discrete multitone (DMT) modulation, a multi-carrier
line code that has been adopted by the ADSL ANSI standard [1], and carrier-
less amplitude and phase (CAP) modulation, a single carrier line code. DMT
uses a frequency-division multiplexing (FDM) scheme, where the total trans-
mission channel is divided into many parallel independent subchannels over
which data are transmitted. The basic idea of the subchannel transmission
is to take advantage of the fact that individual subchannels can be approxi-
mated by an ideal channel such that no equalisation is required. In contrast,

the ‘standard’ 2-D CAP! may be considered to be a special form of QAM, but

1For the rest of the thesis, we simply refer to the standard 2-D CAP as CAP
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without an explicit carrier. It uses two parallel transmit shaping filters whose
impulse responses form a Hilbert transform pair. The outputs of these filters
are combined, before entering the transmission channel. The comparison be-
tween CAP and DMT can be quite involved and is the subject of much hot
debate {2, 3]. However, both line codes have been adopted in practical xDSL
systems around the world. For the rest of this thesis, we concentrate only on
CAP and the performance of CAP receivers based on equalisation techniques.
Information on DMT or general multi-carrier modulation (MCM) methods can
be found in [4, 5].

With the Mbits/s data rates which xDSL technologies have brought to
us, a new world of communication services becomes a close reality. Among
them, we can have remote access to local area nefwork (LAN), fast access to
the Internet and multimedia databases, home shopping through the Internet,
broadcast TV and video on demand. All these services can be made available
to us through simple telephone wires. Indeed, these new technologies have the

potential to significantly improve our access to information, hence our lives.

1.2 Overview of CAP Line Code

CAP has its origin from AT&T Bell Labs. In the mid-1970s, researchers
and engineers there started to experiment with CAP transceiver systems. The
word ‘CAP’ was coined by Falconer [6] in one of his internal memorandum at
around the same time. CAP is generally known to be a bandwidth efficient
2-D passband line code and is closely related to QAM and PAM. It has been
shown that, without coding, all the bandwidth efficient transmission schemes
provide essentially the same theoretical performance in the presence of white

Gaussian noise or (stationary) sell-NEXT?, provided their design parameters

defined as the NEXT with the same spectrum as the data signal
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are properly optimised {7]. However, similar theoretical performance does not
necessarily translate into similar implementation complexity or similar per-
formance in the presence of other types of noise. One of the key aspects in
favour of CAP is that CAP systems are generally considered to have the best
possible overall performance with the smallest amount of complexity for both
coded and uncoded transceiver implementations.

Until the recent development of xDSL technologics, CAP was relatively
unknown to the general engineering and research communities. A two-part
tutorial on CAP is given in [8, 9]. In the first tutorial, general aspects of CAP
such as theory of operation, its bandwidth efficiency, and the digital implemen-
tation of a CAP transmitter are explained. In the second tutorial, the author
discusses some of the design parameters which influence the performance of
CAP systems. The emphasis of the tutorials is on high-speed LAN applica-
tions using unshielded twisted pair (UTP) wiring. Other general information
on CAP, such as receiver structures with decision feedback equalisers (DFE)
can be found in [10].

The CAP line code has been proposed for various xDSL systems. The
16-CAP scheme was adopted by the Technical Committee of the Asynchronous
Transfer Mode (ATM) LAN Forum for transmission of 51.48 Mb/s data rate
over 100 m of UTP-3 copper wires {11]. Further discussions on this standard are
given in [12]. In [13], the authors described in detail a technique called NEXT
equalisation which uses a zero-forcing equaliser. However, the technique is only
effective for data rates up to 100 Mb/s, for the given channel environment
stated in the paper. For rates higher than 100 Mb/s, NEXT cancellation is

generally required.
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More recently, in [14], a single carrier modulation (SCM) technology
which integrates both QAM and CAP line codes has been proposed for the
upcoming VDSL systems. The authors gave an overview on VDSL technol-
ogy and the main issues of VDSL system design. A dual mode CAP/QAM
blind receiver, as well as a summary of the laboratory tests and field trials
are also presented. Detailed discussions on the dual-mode receiver are given
in [15] where several blind equalisation algorithms to start-up the receiver are
compared.

The close relationship between CAP and QAM is discussed in {10} which
showed that the CAP transceiver structure can be derived from the QAM
structure. Despite this close relationship, the eye opening of CAP signals has
been shown to be much smaller than that of the corresponding QAM signals.
Hence, CAP is more sensitive to symbol timing errors [16]. The authors of [16]
then re-examined some CAP receiver structures that have been proposed in
the literature and showed that a modified QAM receiver can offer a significant
advantage over the other receiver structures through its greater immunity to
timing phase errors.

The discussions thus far pertains only to the ‘standard’ 2-D CAP line
code, in which the impulse responses of the in-phase and quadrature transmit
shaping filters form a Hilbert transform pair. It should be pointed out that this
relationship is not necessary, and 2-D transceiver systems with other combina-
tions of pulse shapes are also possible as shown in [8]. This leads to the concept
of a generic CAP transceiver structure whose design imposes no constraints
on the transmit pulse shaping filters. Further, if we expand the dimension of

the generic 2-D CAP line code to 3 or higher, the question then arises — can
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we find a new set of impulse responses suitable for the multi-dimensional sys-
tem? This question is addressed in [17] and further refined in [18]. Basically,
two approaches of expanding a 2-D CAP line code are shown. In the first
approach, a 3-D system is designed so that the new overall transfer matrix
maintains the perfect reconstruction (PR) of the transmitted information. The
impulse responses of the shaping filters are found by solving a minimax opti-
misation problem using the sequential quadratic programming algorithm {19].
In the second approach which is referred to as orthogonality division multiple
access (ODMA), the overall symbol rate for 2-D CAP is maintained in the
multi-dimensional system and the same optimisation method is used to obtain
dimensions higher than 3. This second approach, according to the author can
be categorised as a sub-group of the well known code division multiple access
(CDMA). The difference between the CDMA and ODMA is that CDMA code
(words) are generated by a pseudo-random generator, while ODMA codes are
generated by solving an optimisation problem. The second difference is that in
CDMA, the cross correlation between different users is reciprocal to the num-
ber of users due to the characteristics of the wireless channel while ODMA
can support only a small number of multiple-access users without sacrificing

bandwidth efficiency.

1.3 Summary of Contributions

Our research work addresses the issues of performance bounds of CAP re-
cetvers using linear and DFE equalisers for data transmissions over unshielded
copper wire pairs. More specifically, the contributions of this thesis are as

follows

o The optimum linear CAP receiver and the corresponding MMSE in
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the presence of either stationary or data-like cross-talks, and additive

coloured Gaussian noise, have been derived.

e The optimum DFE CAP receiver and the corresponding MMSE in the
presence of either stationary or data-like cross-talks and additive coloured

(Gaussian noise, have been derived .

e [inally, a novel adaptive linear CAP receiver was proposed and anal-
ysed. The new receiver leads to a modified least-mean square (LMS)
algorithm which is shown to approximately doubles the performance of
the standard LMS algorithm in terms of the initial convergence rate and

misadjustment.
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tional Conference on Communications, vol. 1, pp. 69-73, New York City, NY,
April-May 2002.

1.5 Thesis Outline

Chapter 2 gives an introduction to 2-D CAP line code and discusses
its bandwidth cfficiency in terms of multilevel encoding and spectral shap-
ing. Using an ideal channel, we demonstrate how a CAP receiver separates
the inphase and quadrature symbol streams. Receiver structures based on
equalisation techniques are also introduced.

Chapter 3 covers channel models applicable to the cables commonly
found in xDSL systems, the power spectra of the transmitted and received
signals, and the power spectra of the received interference and noise. The
SNR requirement is defined in relation to the system BER. For completeness,
the matched filter bound (MFB) and channel capacity are also briefly discussed
in this chapter.

Chapter 4 describes in detail the minimum mean-square error (MMSE)
performance of optimum linear CAP receivers operating in the presence of
either stationary or data-like cross-talks and background noise. First, we con-
sider CAP systems in the presence of data-like cross-talks. We show that al-
though it is possible to specialise the existing MMSE expression for a general
multiple-input multiple-output (MIMO) system to the linear CAP receiver, the
derived results appear to be rather cumbersome and do not give any insight.
Next, in order to find an alternative expression, we reconsider the problem
of minimising the MSE at the slicer. By exploiting the Hilbert transform
pair relationship between the impulse responses of the inphase and quadrature

transinit shaping filters, we obtaiu a new MMSE expression which offers better



understanding on the equalisation of data-like cross-talks.

Chapter 5 focuses on the MMSE performance of an ideal DFE receiver
under the same channel environment. Instead of the standard 2-D line code,
we start with a generic multi-dimensional CAP transceiver with data-like cross-
talks. The optimum solution of the DFEs and the corresponding MMSE are
next derived. These results are then applied to the standard 2-D CAP sys-
tem. Again, the MMSE results for the case of stationary cross-talks are also
included.

Chapter 6 provides three sets of numerical studies, based on the derived
MMSE expressions for the optimum linear and DFE CAP receivers. In the
first, and second sets of the studies, we compare the MMSE performance of the
linear and DFE CAP receivers operating in either stationary or data-like cross-
talk, and Gaussian noise environment. In the last set, of studies, using the DFE
CAP receiver as an example, we further investigate the relationship between
the MMSE performance and various system parameters in the presence of one
data-like NEXT.

Chapter 7 deals with the implementation of an adaptive CAP receiver
using fractionally-spaced equalisers (FSE). Based on an existing structure for
linear CAP receivers, a novel CAP receiver is proposed. Further, we propose a
modified LMS algorithm for the new receiver structure. Theoretical analysis on
its convergence is then given. Finally, we compare the modified LMS algorithm
against the standard LMS algorithm in terms of their initial convergence rates
and misadjustments.

Chapter 8 summarises all the work presented in the thesis. Also included
are discussions on issues which arise from this research work. From these

discussions, we offer our suggestions for further research in the area of CAP



transceiver systems.

10
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CHAPTER 2
2-D CAP TRANSCEIVER SYSTEM

In this chapter, we summarise the discussions on 2-ID CAP line code given
in [8]. We start with a review of the bandwidth efficiency of some well-known
PAM line codes, and consider two common methods to improve bandwidth ef-
ficiency, i.e., through multilevel encoding and spectral shaping. We then discuss
the CAP transceiver system and explain its principles of operation. Finally,
we introduce two CAP receiver structures, one using linear equaliser and the
other using DFE equaliser. The MMSE performance analysis of these receivers

are the main topic of discussion of the later chapters.

2.1 Bandwidth Efficiency of PAM Lines Codes

The bandwidth efficiency of a line code [8] is defined as

a bit rate in bit/s (bps)
~ bandwidth in Hz

v
We are interested in bandwidth efficiency for the simple reason that many
systems are designed to transmit at high data rates within a relatively small
bandwidth. For a given limited resource in terms of system bandwidth, band-
width efficient line codes are selected to meet the ever increasing demand on
system data rates. Two main factors that limit bandwidth efficiency are inter-
symbol interference (ISI) and channel noise. It is well known, e.g., [20] that for
ISHree signalling, the maximum symbol rate of a line code is equal to twice the

baseband channel bandwidth. This rate is called the Nyguist rate or Nyquist

signalling frequency. For a voice band modem with a bandwidth of about 3.4
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kHz, a binary line code which transmits one bit per symbol would mean a
maximum data rate of 6.8 kbps. Clearly, this data rate is unsatisfactory for
many applications to which we are accustomed nowadays. In the following, we
demonstrate via examples methods of improving bandwidth efficiency which

then lead to the bandwidth efficient CAP line code.

2.1.1 NRZ Line Code

At first, we consider the so-called bipolar non-return-to-zero (NRZ) line
code. Conceptually, the transmitter of a NRZ line code can be considered to
consist of a cascade of an encoder followed by a shaping filter! shown in Fig. 2.1.
The encoder maps the incoming bits 0 and 1 into impulses or symbols equal
to +1 and —1, respectively. This kind of encoder is called a binary encoder.
The symbols generated by the encoder are fed to a shaping filter which has
a rectangular-shaped impulse response with duration T, shown on the left of
Fig. 2.2a. In the case considered here, the pulse width T equals the time
interval between successive symbols. This time interval is called the symbol
period and its inverse 1/7" is called the symbol rate, expressed in bauds. For
the NRZ line code, the symbol rate is also equal to the bit rate, i.e., 1/T = R.

An example of a NRZ signal waveform is shown in Fig. 2.3a.

Binary Symbols Waveform
Data

I 1]
11016 ) 1

——* Encoder *» Shaping fifpter——»

Figure 2.1: Transmitter model for the NRZ line code

1This concept also applies to the other line codes discussed here.
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Figure 2.2: Shaping filters for (a) NRZ, (b) 2B1Q, (¢) PR-4

Let G,(f) denote the transfer function of the shaping filter. The mag-
nitude of G, (f) is also shown in Fig. 2.2a. If we assume that the bits to be
transmitted are randomised, then the time-averaged power spectrum of the sig-
nal generated by a NRZ transmitter will also have the same shape as the square
of the magnitude of G,{f). Note that this spectrum has nonzero frequency
components around DC. For this reason, NRZ line code is called a baseband
line code. The transfer function has its first null at 1/7° Hz as shown. It is
generally assumed that the frequency components above this first null can be
neglected for this type of signalling pulse shape, so that the effective bandwidth
denoted by W of the NRZ line code is W = 1/T'. Since R bps are transmitted
in the bandwidth of W Hz, we conclude that the bandwidth efficiency of the

NRZ line code equals R/W = 1 bps/Hz.
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Figure 2.3: Example of signal waveform for (a) NRZ, (b) 2B1Q, (¢) PR

2.1.2 2B1Q Line Code

We next consider another line code called two-binary one-quaternary
(2B1Q)). An example of a 2B1Q signal waveform is shown in Fig. 2.3b. In
terms of the transmitter model of Fig. 2.1, a 2B1Q encoder encodes pairs of
successive binary bits into one of four possible symbol values £+1, £+3. As a
result, for the same input bit rate R, the 2B1Q line code has a symbol rate,
denoted by 1/T,,, that is half the symbol rate used in the NRZ line code, i.e.,
/T = R/2=1/2T.

The shaping filter in the 2B1Q transmitter model has an impulse response
and corresponding transfer function shown Fig. 2.2b. The impulse response
has the same shape as the NRZ pulse, but twice the duration, due to the 50%
reduction in symbol rate. As a result, in the frequency domain, the transfer
function has its first null at % Hz which is the half of that used by the NRZ

line code under the same data rate. Therefore, the bandwidth efficiency of
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2B1Q line code is equal to 2 bps/Hz.
Thus, we see that by doubling the number of the symbol levels at the
encoder, the 2B1Q line code achieves twice the bandwidth efficiency of the

NRZ line code.

2.1.3 PR~4 Line Code

An alternative way of achieving better bandwidth efficiency than the
NRZ line code is demonstrated by a line code called partial response class—4
(PR~4). The block diagram of a binary PR—4 transmitter is shown in Fig. 2.4.
The binary bits are first fed to a standard NRZ transmitter. The PR-4 signal
is then obtained by subtracting a delayed version of the NRZ signal from the
present NRZ signal. The duration of the introduced delay is equal to two

symbol periods (27). An example of a PR—4 signal waveform is shown in

Fig. 2.3c.
Binary PR-4
Data Symbols NRZ T Wave form
—— B - » »
ncoder shaping flilter Y
- 2T

Figure 2.4: Transmitter model for PR—4 line code

The transmitter model in Fig. 2.1 can also be applied to this line code.
In this case, the binary encoder is the same as that used for NRZ, where the
symbol rate is equal to the bit rate, i.e., 1/T = . But, the shaping filter has
a different impulse response and its transfer function shown in Fig. 2.2¢, due
to the additional delay path. The transfer function now has its first null at

DC. Since there is no spectrum component at DC, we say that PR—4 line code
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is a passband line code. The second null at % Hz gives an effective bandwidth
of % Hz. Therefore, the bandwidth efficiency in this case is 2 bps/Hz which
is the same as that of 2B1Q.

In this example, we see that instead of using a multiple level encoder
to improve spectral efficiency, shaping filters with reduced effective bandwidth
can also be used. Apart from reducing bandwidth, passband shaping filter
has another highly attractive feature. It avoids the problem of DC coupling

associated with line codes such as the NRZ [20].

2.1.4 Comparison of Bandwidth Efficiency

From the above examples, we have shown two independent techniques to
improve the bandwidth efficiency of a line code, namely, by multilevel encoding
and spectral shaping. Let I, and I, denote the improvement factor due to
multi-level encoding and spectral shaping, respectively?. Then the bandwidth

efficiency v of a line code may be expressed as

a R

W =Ien'-[3h (21)

¥

Table. 2.1 compares the bandwidth efficiencies for the 3 line codes discussed
previously. We also include the 16-CAP scheme, which will be discussed in

later sections.

2.2 The 2-D CAP Line Code

Fig. 2.5 shows a generic 2-D CAP transceiver system. A brief overview
of the operation of CAP transceiver system is as follows. The incoming binary
data are mapped into two multilevel pulses or symbol streams {ax} and {b;} by

the encoder. Each of the two symbol streams then passes through a separate

2], and I, will be formally defined later in this chapter



Table 2.1: Comparison of bandwidth efficiency

Transceiver Characteristic Improvement factor
line code | data | bandwidth | multilevel | spectral | bandwidth
rate ; utilisation | encoding | shaping efficiency
- loms) | MHD | ) | ) | (8= Ll
NRZ 100 100 1.0 1.0 1.0
2B1Q 100 50 2.0 1 2
PR-4 100 50 1.0 2.0 2
16-CAP 100 30 2 1.67 3.34

passbond shaping (or transmit) filter. The shaping filters are chosen in such
a way that their impulse responses are orthogonal to each other {more on the
filters later). For this reason, the filters are called inphase (I) and quadrature
(Q) filters, respectively. The corresponding output signals, which are now
called the I and @ signals, are summed before being transmitted.

At the receiver side, the reverse process takes place. The received signal
first passes through a pair of receive filters. Given an ideal AWGN channel,
the optimum receive filters are the filters that are matched to the transmit
filters, respectively. The baud rate samplers before the slicers separate I and
Q signals. The estimated symbols {@;} and {b;} from the slicers are then
decoded to recover the transmitted binary data.

In the following, we provide further details on the design of each of the
main blocks shown in Fig. 2.5. The improvement factors due to multilevel

encoding and spectral shaping are also included.
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Figure 2.5: Generic 2-D CAP transceiver system (a) transmitter (b) receiver

2.2.1 Multilevel Encoding
One-dimensional mapping

An example of 1-D mapping is shown by the 2B1(Q) line code where two
binary bits are mapped into one of four levels. In general, a block of b binary

bits requires p = 2° different. symbol levels. The line code generated is called

p-PAM line code.

Analog and digital mapping

Thus far, no assumptions have been made on the nature of the output
symbols provided by the mapping function of the encoder. For example, the
numbers £1, +3 could represent voltage levels, in which case the mapping
is analog. Alternatively, these numbers could be binary numbers in a digital
signal processing environment, in which case the mapping is digital Further,
since most errors at the receiver are likely to occur between adjacent symbols,

Gray coding can be also used in the mapping such that each symbol error will
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usually translate into only one bit error.

Independent 2-0 mapping

An example of independent 2-D) mapping is the 16-CAP scheme shown
in Fig. 2.6. In this case, blocks of four bits are encoded into two independent
symbol streams. The first two bits in each block are mapped into the symbol
a3 while the remaining two bits are mapped into the symbol b;. Thus, the 2-D
encoder generates symbol streams {ai } and {b} each with four different levels
*1, £3. Therefore, the total number of points in the signal constellation is 16.
In general, m-CAP scheme has m number of constellation points, regardless

of the mapping method used.

Binarybis | 00 | 01 | 10 | 00 | O1 | 11 |
4-PAM ‘ t ‘ T ‘ I ?J T ‘ ‘ » Symbols
! I
I I
l t ‘ | ’ f . d,
‘ RS
16-CAP | ‘ | i ‘ ‘ Symbols
ot ' o
T [ ! |
| !

Figure 2.6: Independent 2-D mapping

True 2-D mapping

Fig. 2.7 shows an example of true 2-D mapping where a block of four bits
are mapped into a 16-point signal constellation. In this case, the first two bits
in the block are used to define the quadrant and the remaining two bits are used

to define one of four possible points in each quadrant. The advantage of true
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2-D mapping becomes apparent when it is used to map a block of odd number
of bits into a pair of 2-D symbols. It can be easily verified for example, that
independent mapping cannot be used to provide a straight forward mapping

of a block of five bits in the case of the 32-CAP scheme.

& Q
00+ 0l* =+ =*01 * 00
10+ 11e + =11  + 10
I i I | - T
10 11e + <11 « 10
00 O0le —+ 01 = 00

Figure 2.7: 16-CAP signal constellation with true 2-D mapping

Encoding tmprovement factor

The formal definition of the improvement factor I, due to multilevel en-
coding is now given. The reference point for 1-D and 2-D line codes is 2-PAM
and 4-CAP line codes, respectively. Both reference line codes transmit one bit
in each symbol. Multilevel encoding reduces the bandwidth requirements with
respect to these two line codes because of the reduction in symbol rate. The
reduction is equal to the number of bits in each symbol. For instance, if a block
of m; bits are mapped into a one-dimensional symbol for a PAM line code,
then the symbol rate is reduced by a factor m; with respect to the 2-PAM line

code. Likewise, if a block of mq hits is mapped into a pair of two-dimensional
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symbols for a 2-D CAP line code, then the symbol rate is reduced by a factor
of mao/2 with respect to 4-CAP. Since m; and m, are also the ratios between
the bit rate R and the symbol rates 1/77 and 1/, the improvement factor

(Ien) due to multilevel encoding may be defined by

R
Lm = 1-D li 2.2
Ien & my T for 1-D line code (2.2a)
R
202 _ -D li 2.2b
e 2~ n for 2-D line code (2.2b}

2.2.2 Spectral Shaping
Nyquast pulse

Apart from multilevel encoding, it is also possible to improve bandwidth
efficiency by using better shaping filters. Typical impulse responses that are
suitable for baseband and passband shaping filters are from the well-known
raised-cosine (RC) family [20].

Fig. 2.8 shows the impulse responses of some baseband RC filters. The
impulse responses of the filters have value one at the origin (¢ = 0) and zero
at the time instants ¢ = £17°, £2T, ... where T is the symbol period of the
input symbol sequence. Thus, when the symbol sequence is transmitted, there
is no ISI at the epoch points ¢ = kT where % is an arbitrary integer. We call

this type of pulse a Nyquist pulse.

Excess bandwidth

For a baseband PAM line code, assuming the same symbol sequence is
being transmitted, the minimum theoretical bandwidth that a RC filter can
assume is equal to half the symbol rate, ie., B, = 1/27. Such a filter
1s in general difficult to implement and the system is sensitive to sampling

jitter, due to the abrupt slope at 1/27 Hz. Consider now a baseband Nyquist
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Figure 2.8: Baseband RC filters with roll-off factor a = 0.1,0.5, and 1, (a)
impulse response, (b) transfer function

shaping filter with bandwidth B > 1/2T. The quantity B —1 /2T is called the
excess bandwidth and is usually expressed as a percentage (a) of the theoretical

minimum 1/27. That is

1 1 B—1/2T
B i s =T L :
o7 %97 T YT Tiper (2:3)
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for baseb;z;,nd shaping filter. The transfer functions of the RC filters in the
previous example are also shown in Fig. 2.8.

The concept of excess bandwidth, defined in the baseband, can be ex-
tended to passband Nyquist pulses which have no DC component. Details on
the design of a class of passband pulses is given in the next subsection. It
can be shown that the minimum theoretical bandwidth of a passband pulse,
is equal to the symbol rate 1/7. Thus, for a passband shaping filter with

bandwidth also denoted by B > 1/T, the excess bandwidth « is given by

1 1 B-1/T
- = = = 2.
B T=% 7 T « T (2.4)

We now give the impulse response and transfer function of a RC filter.
For o < 1, the impulse response is given by

sin(nt/T) cosart/T

re(t) 2 xt/T 1- (2at/T)? (25)

and its transfer function is defined by
4
T,

0<|f|< &l —a
< JUEEE 06
3 [1—sin (51 = 7))

\ w(l-a) <|fl<5z(1+0)

[e>

Grc(f)

It is also possible to have « > 1. It is shown in later chapters that these
RC filters are effective in suppressing data-like crosstalk. In this case (o > 1),

the transfer function is given by

Grelf) 2 S (2.7)
7 [1—sin (Z(If1 - 35))]

\ Ha-1)<If< &H(1+a)

~
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In communication systems, in order to suppress channel noise, the Nyquist
pulse (RC pulse shape) used for signaling is split evenly between the transmit
and receive shaping filters [21]. The resulting pulse shape is called root-raised-
cosine (RRC) filter. Its transfer function is given by Gr.(f) = 1/G,c(f) and

impulse response is defined by

sin [7{1 — @) #'] + 4at’ cos[r(1 + a) ']
wt’ [1 — (dat’)?]

Grrelt) £ (2.8)

where ' £ /7.

Spectral shaping tmprovement factor

We now provide the formal definition of improvement factor due to spec-
tral shaping Ig,. For both the baseband and passband cases, the point of
reference is the shaping filter using 100% excess bandwidth. For the reference
baseband filter, the filter bandwidth is equal to the symbol rate 1/7. The
improvement factor for a baseband line code using a bandwidth B is defined
as 1/T + B. Similarly, for the reference passband filter, the filter bandwidth is
equal to twice the symbol rate, i.e., 2/7. The improvement factor for a pass-
band line code using a bandwidth B is thus defined as 2/T + B. Using (2.3)

and (2.4), the improvement factor (I;) due to shaping filters can be written

as
A /T 2
Iy = B T ixa for baseband (2.9a)
2/T 2
I, 221 =_-_ 2.
sh B o for passband (2.9b)

Notice that for both baseband and passband line codes, the improvement fac-
tors are identical and dependent only on « and they are upper bounded by 2

(at the smallest excess bandwidth a == 0).
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2.2.3 Inphase and Quadrature Shaping Filters
Design of shaping filters

We now show via an example how to design inphase and quadrature
shaping filters, which have a passband characteristic. For this example, the
symbol rate is 1/T = 25 Mbauds, the excess bandwidth is 20% (« = 0.2) and
the maximum system frequency is 30 MHz. The first step is to design a pair
of baseband RC filters using the same given parameters.

Let go{t) be the impulse response of a baseband RRC. Its bandwidth,
denoted by By is given by

(1+ )

7 =15 MHz (2.10)

By =

Next, we choose a centre frequency f. > 15 MHz such that the baseband filters
are shifted into the desired passband, ie., f, < f < 30 MHz, where f, is
some positive frequency point. Suppose f. = 15 MHz. The resulting passband

shaping filters are then given by
G(t) 2 V2g5(t) cos(2rft)  Glt) 2 V2 g(2) - sin(2r fot) (2.11)

where ¢;(t) and 3(¢) denote the impulse responses of the /7 and @ transmit
shaping filters, respectively. The constant /2 is included such that the energies
of the passband pulses are kept the same as those of the baseband pulses.

Notice that g,(t) is an even function of f while (%) is an odd function of f.

Hilbert transform pair

For independent symbol streams a; and &, optimal joint detection of
{ak. b} become optimal detection of {a;} and {b;}, provided the correspond-
ing signal waveforms are orthogonal to each other at decision point. In the

CAP system, the orthogonal is achieved by way of Hilbert transform pair.
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Let G,(f) and G4(f) denote the transfer functions of the I and Q shaping
filters, respectively. It can be shown that

Gi(f) = (=7) sen(f)Ge(f) (2.12)

where sgn(-) is the signum function [22]. Thus, g,(t) and g(t) form a Hilbert
(transform) pair. From (2.12), it can be shown that they are orthogonal to

each other, i.e.,

f_ " gl) - e dt = 0 (2.13)

>0

Another interesting property of pulses that form a Hilbert pair is that the
Hilbert-pair relationship still holds when the two pulses pass through the same
linear channel. Let A(¢) be the impulse response of a transmission channel.
Then, ¢:(t) ® h(t) and §:(t) ® h(t) where ‘®’ denotes convolution, are also
Hilbert transform pair. This is easily shown in the frequency domain. From
this property, we are assured that at the output of any linear channel the

orthogonality of the signalling pulses is maintained.

224 Why CAP Line Code Works

To simplify the discussion, we assume the transmission channel is an ideal
AWGN channel, i.e., A(t) = 6(¢). The transmit shaping filters have impulse
responses of g,(t) and §:(¢), respectively.

Suppose the receive filter pair shown in Fig. 2.5b have impulse responses

¢,(t) and §,(¢) and they are matched to the transmit filter pair. That is
g-(t) = q(—¢t) and gG.(¢) = g(—t) (2.14)

Note that if g,(t) is strictly causal, then g;(—%) is strictly anti-causal. In a

practical system, implementation of this type of filters requires appropriate
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truncation and delay such that the resulting filter becomes strictly causal.
Let w;(t) denote the signal at the output of inphase receive filter. At
the sampling time ¢, = k" where & is some integer, the sampled output is
given by
win(kT) = > ayp(kT — IT) + > byp(kT — IT) (2.15)
]
where channel noise is ignored for the purpose 015 this discussion, the equivalent

channels p(¢) and $(¢) are defined by

p(t) = () @ ge(—t) and  p(t) 2 Gi(t) ® ge(—t)

It can be shown that

p(t) = gre(t) cos(2mfet)  and  B(t) = go(t) sin(2m f.t) (2.16)

where g,.(t) is a baseband RC filter whereupon it can be verified that p(kT) = 0

and p(kT") = 0 for any k, except when k = 0, p(0T) = 1. Therefore, we have
wm(kT) = Q% (217)

Similarly, it can be shown that without noise and at the sampling time

ts = kT, the sampled output of the quadrature receive filter is

From the above discussion, we see that due to the orthogonality rela-
tionship (2.13) between the signalling pulses g;(t) and §(t), at t, = kT the
sarnpled outputs of the matched filter pair have no interference from the other
dimension. Hence, a 2-D CAP system may be thought as two passband PAM
subsystems in parallel. The optimality of the receive filters for a CAP re-

ceiver can be deduced from that of a PAM subsystem. That is given that
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the transmission channel is an ideal AWGN channel, the matched filter pair
gi{—t) and §,(—t) are optimal, since they maximise the SNR at the slicer. The
next question is then ‘What are the optimal receive filters, given a non-ideal
transmission channel 7’ More importantly, we would like to know what is
the achievable performance for the optimal receive filters. Answers to these

questions are provided in the later chapters of this thesis.

2.3 CAP Receiver Structure
2.3.1 Optimum Receiver

Using the argument of equivalent parallel PAM subsystems, we showed
that for an ideal AWGN channel, the optimum CAP receiver is a pair of filters
matched to the transmit and receive filters. In the presence of channel ISI,
it is well known, e.g., [5][20], that the mazimum-likelihood sequence detector
(MLSD) is the optimum receiver for detecting a sequence of data symbol. The
front-end structure of a MLSD generally consists of a matched filter and a
symbol rate sampler which is then followed by a whitening filter, provided
such a filter exists. The combination of this structure, known as whitened
matched filter (WMF), ensures a canonical equivalent channel which is monic,
causal, and minimum-phase.

The computation load for such a detector is exponential in time {(the
length of the transmitted sequence}. Although this problem can be dealt with
by a dynamic programming algorithm known as the Viterbi algorithm (VA) [23],
the resulting receiver is still quite complex. Suppose a M-QAM scheme is used
and the canonical channel is modelled by a finite impulse response (FIR} filter
of order v, then an MY-state VA will be required. It can be seen that if M

and/or v is moderately large, then the VA is generally considered to be too
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complex to implement.

2.3.2 Equalisation Based Receiver

In many cases, the performance of a suboptimal receiver based on the
equalisation techniques with symbol-by-symbol detection is comparable to that
of a sequence detector, but with a much reduced complexity. The two com-
monly known equalisation structures are the linear equaliser (LE) and the
DFE. In contrast to the MLSD, they have much simpler complexity. Perhaps,
more importantly, it has been shown [24, 25, 26| that it is not necessary to use
the optimal MLSE structure to approach the channel capacity. In particular,
[27] shows that the signal-to-noise ratio SNRyuse-pre of 8 MMSE-DFE with
an unbiased decision rule is a single parameter that can be used to characterise
an arbitrary linear Gaussian channel for coding purposes at any SNR, as long as
the performance of an ideal (no error propagation e.g., Tomlinson-Harashima
precoder) MMSE-DFE can be obtained. One of the key findings is that while
the MLSE is in principle the optimum receiver technique, the MMSE-DFE in
combination with powerful channel coding is also able to achieve near channel
capacity. This result subsumes the previous result [24] where ZF-DFE is used

on the assumption of sufficiently high SNR.

Linear CAP Receiver

Fig. 2.9a shows a CAP receiver structure which can be found in most of
the open literature. The main feature of this receiver is the use of two par-
allel FSEs. Such a filter structure was first proposed for an all digital QAM
receiver [28]. For non-ideal transmission channels, the FSE pair perform the

combined function of matched filtering and channel equalisation. The transfer
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function of the optimal FSEs and the corresponding MMSE are given in Chap-
ter 4, in the presence of either stationary or data-like cross-talks. Further, we
propose an alternative linear CAP receiver shown in Fig. 2.9b. It is shown
in Chapter 7 that both receivers offer the same MMSE performance for ideal
(infinite-length) FSEs. The important feature of the new structure is that the
finite-length I and @ FSEs have the same MMSE solution. Because of this
feature, it becomes possible to implement the standard LMS algorithm in a
different way. The new algorithm is called the modified LMS algorithm. Anal-
ysis on its convergence shows that it approximately doubles the performance

of the standard LMS algorithm [29)].
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Figure 2.9: (a) Standard CAP receiver, (b) Proposed CAP receiver
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DFE CAP Receiver

A number of CAP receivers with DFEs have been proposed in [10]. In
this thesis, we focus on the performance of the receivers with the so-called
conventional DFE structure [30]. This receiver structure is shown in Fig. 2.10,
where the feedforward filter pair consists of two parallel FSEs, and the feedback
filters consist of four cross-connected baud-rate equalisers.

The transfer functions of the optimal feedforward and feedback filters and
the corresponding MMSE are derived in Chapter 5, under the same channel
conditions as those considered in the analysis of the linear CAP receiver. Per-
formance comparisons between the receivers in Fig. 2.9 and Fig. 2.10 are given
in Chapter 6. Further, in the same chapter, we investigate the relationship
between the performance of a DFE CAP receiver and system design parame-
ters, such as CAP scheme, data rate, and excess bandwidth. Numerical results
show that under certain situations, it is also viable to have a feedback struc-
ture with only two feedback filters, i.e., without the cross-connected feedback

filters [31, 32].

b

\—-éa;f B
YT il

P ’ 7
SE £

Received » FB,
signal 7

T/M , =
v 3

FSE 4
f
N r il B e P N

PR

Figure 2.10: CAP receiver with conventional DFE structure

L

/




32

CHAPTER. 3
CHANNEL ENVIRONMENT

3.1 Channel Modelling

Channel models for twisted-pair copper wires play an important role in
the engineering of xDSL systems, and have been studied extensively in the
open literature, e.g., [4, 33, 34]. In general, two types of channel models have
been proposed, the simplified model and the two-port network model. In the
following, we give a brief introduction to these two models. More information
on the channel models for copper wire cables can be found in the references
cited. The loss model for the cross-talk channel between adjacent wire pairs

is also considered.

3.1.1 Simplified Channel Model

Simplified channel model is suitable for copper wire-pairs with a sin-
gle wire gauge and perfect termination at both ends. According to [34], the

transfer function for a copper wire-pair of length d is given by
H{d, f) = e ) - g—dalf) ,—idB(f) (3.1)
where the propagation constant v(f) is defined by
V() = alf) + 7 6(f)

and where «(f) and 8(f) are the real and imaginary parts of the propagation

constant, respectively. From (3.1), the channel attenuation or loss in units of
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dB may be written as
L,(d, f) = —20log|H(d, )| = 8.686d a(f) (3.2)

For AWG#22, #24 and #26 wire pairs, which are found in most public switched
telephone network (PSTN) systems, at frequencies f > 250 kHz!, the transfer

function of (3.1) may be approximated by

H’(d’ f) . e—d(k1ﬂ+k2f)e—j{dk3f) (3_3)
where k1, k; and k3 are constants which are related to the type of copper wire
pairs used, and are independent of cable length and frequency. Table 3.1 shows

these constants for the wire pairs, assuming the cable length d is in units of

mile and f in units of Hertz. Note the phase characteristic in (3.3) is linear.

Table 3.1: Constants for the simplified channel model

Gauge || kL (1073} ks (107%) Ky (1079)

AWG#22 3.0 0.035 4.865
AWG#24 3.8 -0.551 4.883
AWGH#26 4.8 -1.709 4.907

By absorbing the constant 8.686 into a(f) in (3.2) and using the approx-

imation in (3.3), the channel loss may also be written as

L(d, f) ~d(d\/f+Vf) (3.4)

For the wire pairs used in ATM LAN applications [12], the above approx-

imation also holds. The corresponding constants a’ and &' in (3.4) are specified

"This value is a conservative estimate and 150 kHz is quoted in [34]
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by the TIA/EIA standard [11] and reproduced in Table 3.2.

Table 3.2: TIA/EIA-568 worst-case propagation loss at 20°C

Cable L,{dB/100m) change/1°C  range(MHz)

UTP 3 || 2.32/f +0.238f + 0.00/+/f 1.2% 0.772< f < 16
UTP 4 {| 2.05V/F + 0.043f + 0.057//F 0.3% 0.772 < £ < 20
UTP 5 || 1.97/f +0.023f + 0.05//f 0.3% 0.772 < £ <100

3.1.2 'Two-port Network Model

As discussed, the channel transfer function of (3.1) applies only to chan-
nels constructed using a single wire gauge and with perfect terminations at
both ends. A typical subscriber loop plant, however, will usually consist of
many sections of different gauges and bridge taps which are un-used cables in
shunt-connection with a subscriber loop, and is terminated with a resistive
impedance. Consequently, the channel transfer function is not a simple prod-
uct of the respective transfer functions given by (3.1). To accurately represent
channels with mixed wire gauges and/or bridge taps, the concept of two-port

network with ABC'D parameter representation are normally used.

Two-port network
A stand alone two-port network is shown in Fig. 3.1a. Let v; (7;) and
vy (iz) denote the input and output voltages (currents), respectively. The

input-and-output relationship of the network may be written as

1251 A B Ua
i C D i
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where the network parameters ABCD are defined by

U1 41
A A
A2l el

Vg tg=0 2 vz=0

i ()

A vl a

cal pal

U2 ip=0 &2 ve=0

The matrix which consists of these parameters is termed the transfer matriz.

Some simple examples of transfer matrices are also shown in Fig. 3.1.

i i i1 3 i
o | - rz 3 O —
two-port v ° — ° w A
Vi network Va Y zvll
o— 0 o < o J‘ O
A B 1 2 1 o
C D 0 1 271
@) ) e}

Figure 3.1: Two-port model {a) general form, (b) series impedance, (c) shunt
impedance

In general, transfer matrices for two-port networks are complex and fre-
quency dependent. Using (3.1), it can be shown [34] that the ABCD param-

eters of a transfer matrix are given by

A(f) = D(f) = cosh(dv(f)) (3.62)
B(f) = Z,(f) sinh(d +(f)) (3.6b)
C(f) = sinh(d+(f))/Zo(f) (3.60)

where Z,(f) is the characteristic impedance and is related to the transmission

line distributed parameters R(f), L{f), G(f) and C(f) of the wire pair by

s |BR+jorfL
Zolf) = C+ j2nfC
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Two-port networks in series and parallel

We now apply the theory of the stand-alone two-port networks devel-
oped so far to two networks connected in series or parallel. The aim is to find
the ABCD parameters of the equivalent network representing the two con-
nected networks. For arbitrary number of such networks connected in series
or parallel, the equivalent network parameters can be similarly derived. The
importance of this development is that multi-gauge wire-pairs with/without
bridge taps can be modelled as two or more two-port networks in series.

Fig. 3.2 shows some examples of two two-port networks in series and
parallel. For the series connection, using (3.5), we may write input and output

voltage and current relationship as

Ui Ay By A, B U
_ 2 D2 3 (3.7)

i] Cl D1 CQ D2 iS
in which we simply substitute the output voltage and current of the first two-
port network with the transfer matrix and output voltage and current of the

second two-port network. The equivalent transfer matrix of the two series-

connected two-port networks is then defined by

Aeq Beq a Al Bl AZ B2 (38)
Ceq Deq Cl Dl Cf2 DQ
In contrast, the equivalent transfer matrix for two two-port networks

connected in parallel is not as compact. Again, using (3.5), and the following

equations
Legr =11 + I} and Lo =IL+ I (3.9)

where [.,1 and /.2 denote the input and output currents of the equivalent

transfer matrix, respectively. It can be shown [33] that the equivalent transfer
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matrix can be written as

Ag Bey | , 1 A1By + B Ay By By (3.10)
Ceq Deq Bl + B2 TQI BID2 + DIBQ
where the term 7o = (B1 — Bl)(Cl + Cg) — (A1 — Ag)(Dl — Dg)
o— —a0 C O
vlo_ N, Vzl N, _m_olva vllc N, Olvz
] B
@) P}

Figure 3.2: Two two-port networks (a) in series, {b) in parallel

3.1.3 Cross-Talk Models

One of the main characteristics of data transmission using unshielded
copper wire pairs is the existence of cross-talks from adjacent pairs of cop-
per wires. In many situations, they are the key limiting factors of the data
throughput of the communication system. Depending on the relative location
of the source of the disturbing signal with respect to the receiver, the cross-
talk signals can be classified as being near-end cross-talk (NEXT) or far-end
cross-talk (FEXT) as shown in Fig. 3.3a.

In system analysis, we model the total interference from cross-talks as
being either a stationary Gaussian noise or a data-like signal. These two models
represent two extreme situations that cross-talks may exhibit in a practical
system. Which model to chose depends on the actual applications. In some

applications such as HDSL systems [35], there is a large number of wire pairs in



38

cable
@ v, () /7_ Pair j N\
N
; (a)
x| L ANEXT e JFEXT x¢(t)
WGN
o trans- » NEXT
— mitter
interference (b)
symbals
data
R symbols
+—] shicer [* receiver loop [ :::;:r ———

noise

Figure 3.3: (a) NEXT and FEXT generation in a cable {b) simulation system
model with NEXT

close proximity to the wire pair under consideration, and the total interference
from these adjacent wire pairs may be best described by the stationary model
through application of the central limit theorem.

In other applications such as ATM LAN using a UTP-3 wire pair [36],
the number of adjacent wire pairs is much less and the total interference is
generally dominated by the interference from one wire pair. In this case, the
data-like model for the total interference is more appropriate.

Fig. 3.3b shows the simulation block diagram with NEXT. When the
switch shown is connected to the noise source, the resulting cross-talk is sta-
tionary. On the other hand, when the switch is connected to the interference
symbols, the resulting cross-talk i1s data-like.

Cross-talk channel losses are typically measured. From these measure-
ments, the loss models of the cross-talk channels are generated. In ATM LAN

applications, NEXT is in general far more damaging than FEXT [10]. For the
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rest of this thesis, we deal only with NEXT channels.
Let X(f) be the transfer function of a NEXT channel. Then, the worst-

case pair-to-pair NEXT loss model can be approximated by

IX(IP=xf? & L(f) 2 =10log,|X(f)|* = Kp — 15logye f  (3.11)

where for a given UTP cable, ¥ and K, are some constants specified by the

TIA/EIA standard [11], and are reproduced in Table 3.3.

Table 3.3: TIA/EIA-568 worst-case pair-to-pair NEXT loss

TIA/EIA Coupling Pair-to-Pair Frequency
Cable coefficient x | NEXT loss L, | range (MHz)
UTP 3 7.39 x 107° 43— 15log f | 0772 < f <16
UTP 4 2.34 x 107® 58 — 15log f | 0.7T72 < f <20
UTP 5 5.87 x 1077 64 — 151og f 072 < f <

100

3.2 Signal-to-Noise/Interference Ratio

In Chapters 2, we showed that a CAP system may be thought as con-
sisting of two passband PAM subsystems in parallel. In general, transmitted
PAM signals are cyclostationary [37]. In other words, their autocorrelation
functions are periodic in time, with period equalling the symbol duration. To
avoid the complexity due to this periodicity, the received power {(or spectrum)

of a CAP signal is often averaged? over its symbol period 7.

2With respect to the power spectrum of CAP signals, we always assume that the averaging
process is implied
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3.2.1 Signal Spectrum

The output power of a CAP transmitter is defined by

_ 1 T ) B 20.2 )
A OL Ty =t (.12

where s,(t) is the transmitted CAP signal, B is the passband bandwidth® , and
G:(f) is the transfer function of the inphase shaping filter. The integrand on
the right of (3.12) may be thought as the power spectrum of the transmitted

signal, i.e.,
2
PSDA(f) 2 224G~ PSD(f) & PSDA()- [H(PP

where H(f) is the transfer function of the transmission channel, and PSD,(f)
is the power spectrum of the received signal. The received signal power is given

by

0 / PSD,(f)df

3.2.2 Signal-to-Noise Ratio

The SNR at the input of a CAP receiver may be described by the received
(average) SNR and the spot SNR which is SNR evaluated at a given frequency
point. Let S,(f) denote the power spectrum of the channel noise. The spot

SNR is the defined by

~ PSD;
and the received SNR is defined by
5 o P _ [5PSD(f)df
SNR, = =— = 3.14)
Fo [ 8.(f)af (

3We assume that the lower band edge is at DC for convenience
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Note, B, is the total noise power within the system bandwidth only. In the
case of white noise whose spectrum is a constant denoted by Nj, then the

average SNR is given by

Iy
2BN,

SNR,, = (3.15)

3.2.3 Signal-to-Interference Ratio
When NEXT is present at the input of a CAP receiver, its power spec-

trum and received (average) power are defined by
B

PSD,(f) £ PSD,(f)  |X()f — B, 2 / PSD, (f) df

B

Analogous to channel noise, the spot signal-to-interference ratio is defined by

a PSDAS) _ [H{AI

SIR(f} = = 3.16
U= BsD,(7) = IX (PP (810
and the average signal-to-interference ratio is defined by
_ B
_ PSD«(f)d
SIR & B _ L () (3.17)

Note that SIR(f) is independent of the power spectrum of the transmitted
signal PSD(f).

3.2.4 Matched Filter Bound
The concept of matched filter bound (MFB) is based on the idea that
under certain assumptions on the channel [5], no receiver can have a lower error
probability than the matched filter receiver for a one-term signal sequence.
Firstly, we consider a 1-ID PAM system over an additive Gaussian noise
channel. Suppose only one pulse is transmitted such that there is no ISI, and

the design of the optimum receive filter is to maximise the SNR at the slicer.
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This is called isoloted pulse case. The resulting optimum filter is a matched
filter and the maximum SNR is defined as the matched filter bound (MFB).
Consider next the standard 2-D CAP system. Under the same channel
condition we design each receive filter as if it is a 1-D PAM system, i.e., the
other dimension is ignored. Again, one pulse is transmitted in each dimension
such that there is no ISI. Using the Hilbert transform pair relationship and
assuming perfect symbol synchronisation, it can be easily shown that there is
no co-channel interference (CCI) at the outputs of the matched filters and at
the optimum sampling time. Let p(¢) and §(t) denote the I and @ equivalent
channels, respectively, and their Fourier transforms be given by P(f) £ F[p(t)]
and P(f) £ F[(t)]. The optimum receive filters which maximise the SNR at

the slicers, are then the matched filters given by

P a o P
"o M4 Gl =Engy

where Gp;(f) and G.;(f) are the inphase and quadrature matched filters,

Gmf(f) =K (3.18)

respectively, and K, is an arbitrary non-zero constant. The SNR at the opti-

mum sampling instant is given by

_ o [P PGP
SNR, s = o f_ . mdf (3.19)

In the case of white channel noise, i.e., 5,(f) = Ny where N is some positive

constant, the matched filter pair may be written as

Gus(f) =P*(f) and Gup(f) = P*(f) (3.20)

From (3.19), the SNR at the slicer is given by

a? a2

SNR, s = N L (3.21)
0
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where o7 is defined by

3.3 System BER

Due to channel impairments, received signal samples before the slicer
form a ‘cloud’ (of points) centered around certain points on a Cartesian plot.
They are called constellation points. Assuming the sum of interference and
background noise is white and Gaussian, a basic slicer first measures the Fu-
clidean distance between the point which corresponds to the received signal
sample and all the constellation points. It then determines the transmitted
symbol from the constellation point which has the least distance to the point
specified by the received signal sample. It can be shown, e.g., in [5], that the
manimum distance receiver design is optimum in the mazimum likelihood (ML)
sense. Further, the BER can be estimated from the well-known complemen-
tary distribution function, denoted by Q(z) which for a zero-mean Gaussian

random variable X with variance 2 = 1,

Q(x)é\/% f e~ o

3.3.1 Signal Constellations

In Chapter 2, we gave a brief introduction on the constellation of the 16-
CAP scheme. In general, for a m-CAP scheme, the number of bits-per-symbol
is determined by b = log, m. For example, for the 4, 8, 16—, and 32-CAP
schemes, the number of bits-per-symbol is 2, 3, 4, and 5, respectively. The

type of constellations used for even b is called the QAM constellation, and for
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odd b, the cross constellation. Examples of a QAM and a cross constellation
are shown in Fig. 3.4.

Let the constellation points used by CAP have levels +1d, +3d, -- -,
where d is some constant that normalises the symbol variance of the CAP

scheme. It can be readily shown that the symbol variance o? is given by

d*(m —
ol = % for even b (3.22a)
d* 31
2= (o — b 3.22b
3 (32m 1)  for odd ( )

Thus, by choosing d as shown in Fig. 3.4, the symbol variances of both con-

stellations equals 1.

ot o , 2/v1o
2/’\/_5 L) * a
—
| | T ] J. :.[ | 4 | T } ] l- I
| | 1 i | I i 3 i 3 -
16-CAP 32-CAP

Figure 3.4: Normalised 2-D constellations for {a) 16-CAP, (b) 32-CAP
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3.3.2 SNR Requirements
Assuming the total distortion at the slicer has a Gaussian amplitude
distribution, then the bit-errvor rate (BER) of both the QAM and cross con-

stellations are upper-bounded by* (e.g., [4]).

1 . ‘
P, <4(1 - \—/-_T;L-)Q(w %), for even b (3.23a)
1 3 SNRy oy
< — : ;
P <4(1 m)@(,! e ) for odd b (3.23b)

Since ¢(z) is a decreasing function of z, SNR, .y may be thought of as being

the minimum required SNR at the slicer. In ATM LAN applications [11],
the specified BER is P. = 107, Using (3.23), the corresponding minimum
required SNR for different CAP schemes are calculated and the results in units

of dB are shown in Table. 3.4.

Table 3.4: Minimum required SNR (in dB) for a BER of P, = 1071°

m-CAP 4 8 16 32 64 128

b 2 3 4 3 6 7

SNRorer || 16.21 | 19.82 | 23.29 | 26.33 | 29.55 | 34.47

3.4 Channel Capacity
Finally, for completeness, we briefly discuss the Shannon channel capac-

ity and the maximum data rate for an uncoded CAP system given fixed BER.

it appears that exact versions of these equations have recently been published [38].
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3.4.1 Shannon Channel Capacity

The fundamental theorem governing the maximum capacity of a channel
is given by the famous Shannon-Hartley law [39]. Without going into details,
the theorem is based on the fact that as the number of signal levels increases at
the same average signal power, the slicing levels get closer together until they
become comparable with the AWGN fluctuations. For an ideal AWGN channel

with bandwidth B, the maximum capacity (bps) of the channel is given by
C = B log,(1 + SNR) (3.24)

where SNR is in units of Watt-to-Watt. Note (3.24) applies to both baseband
and passband systems for the same transmitted power constraint, because that
the baseband channel may be viewed as the passband channel for the specific

carrier frequency f. = £. The maximum attainable bandwidth efficiency is

5

then given by

v, = log,(1 + SNR) (3.25)

3.4.2 Maximum Data Rate

The channel capacity in (3.24) serves as the ultimate bound on the rate
of reliable information transmission over bandlimited AWGN channels. Often
in practice, we would like to know the maximum data rate of an uncoded
CAP system®, for a given channel and required BER. The relationship was
completely addressed in [27] as an optimisation problem where for some target

BER, system bit rate is maximised over some class of transmission schemes

®the discussions shown here are equally applicable to passhand PAM JQAM systems
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which combine coding, shaping and equalisation. One of the key concepts pro-
posed in the optimisation is the ‘SNR gap’, or SNR,,orm, which was originally
proposed by Price [24] for ZF-DFE. In the following, assuming ideal bandlim-
ited AWGN channel, a simple, alternative expression for the maximum data
rate of an uncoded system is derived.

For a given QAM or cross constellation, the BER of a CAP system may

be expressed as [3]
Dmin)
20,

PEZKC'Q( (326)

where K is the average number of the nearest neighbouring points in the
constellation at the minimum distance D,,;, between pairs of constellation
points, and ¢? is the noise variance at the slicer.

Suppose symbol sequences take on the levels +1, +3,---. As discussed
previously, the SNR at the slicer is maximised by the matched filter p(—t)
where p(t) is the impulse response of the transmit RRC filter. Then, it can be
readily shown that Dy, = 202 and 02 = Ny ;. Hence, the maximum SNR

at the slicer is given by

0_2 . 0_2
SNR, = 5 = (3.27)

Now, since for a passband system, B7' = 1 at the maximum symbol rate

without ISI, (3.27) can be written as

0.2,0.2

- P 2
SNR, = — (3.28)

Using (3.28), we can re-write (3.26) in the following form

P=K..Q ( SNR") (3.29)

a2
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For m—CAP using a QAM constellation® and d = 1, (3.22) gives
08 = —— (3.30)

For a given P,, let A be the value such that P, = K, - Q(A). Using (3.30) and

AéMSz?" — m=1+—§—2-SNRO (3.31)

Further, at the maximum date rate, the bandwidth efficiency of the CAP

(3.29), we have

system can be written as

_logym

== -] .
BT 0gy M (3.32)

Ve

Finally, using (3.31) and (3.32), the maximum data rate of the CAP system is

given by

3
Rouz = B log,(1 + R SNR,) (3.33)

Comparing (3.33) to the Shannon capacity in (3.24), we see that the
minimum value of A is v/3 and Rmer < C. Under the constraint of BER,
the maximum system data rate is reduced, due to the scaling factor % <1
Further, it appears that the A defined herein and the SNR,,orm, in [24, 27] have

the following relationship

2
SNRypyrn = ‘% (3.34)

The A can be evaluated as follows. For a given BER, e.g., P, = 1077,

ignoring the constant K.(=1)7, A can be estimated from solving

1077 = \/% f e X2 (3.35)
T JA

8The procedures shown for the QAM constellations also apply to the cross constellations
"In most practical situations, the contribution of K. to the BER is relatively small,
compared to the argument in the Q function.




Table. 3.5 shows A against different BERs

Table 3.5: A vs BER in the Q(x) function

BER

102

1074

1078

108

10710

A

2.58

3.89

4.89

5.80

6.53

49
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CHAPTER 4
MMSE PERFORMANCE - LINEAR CAP RECEIVER

4.1 Introduction

In Chapter 2, we introduced two CAP receiver structures based on the
linear equaliser (LE) and DFE. Here we note that although symbol-by-symbol
detection receivers are suboptimal, combining them with powerful coding tech-
niques can, however, improve their performance to approach near channel ca-
pacity, in particular when the MMSE criterion is used [27, 46].

In this chapter, we first formulate the MMSE problem for a linear CAP
receiver operating in the presence of data-like cross-talks and coloured Gaus-
sian noise. Since the overall transceiver system including both data and in-
terference symbol path may be viewed as a special case of the linear MIMO
system considered in [40], we next summarise the existing MMSE results of
the MIMO system.

Following the same procedures as in [40], we then reconsider the MMSE
problem for CAP receiver, where in the derivation, we make explicit use of
the Hilbert pair relationship of the transmit shaping filters. As will be shown
below, compared to the existing results, the derived results appear to provide
better insights into the performance of the optimum (MMSE) linear receiver
in the presence of data-like cross-talk. Although we only consider the optimi-
sation of the MIMO receiver, it is worth noting that the joint optimisation of
the transmit and receive filters in linear MIMO systems was first considered

in [41]. Yang and Roy [42] readdressed the problem but for a more general
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class of MIMO systems where the system bandwidth is no longer limited to
the Nyquist bandwidth, and arbitrary combinations of different numbers of
input and output users and different numbers of channel inputs and outputs
are possible.

Finally, we apply the derived MMSE results to the case of stationary
cross-talk. Simulation results for both data-like and stationary cross-talk cases

are also given.

4.2 System Model

Fig. 4.1 shows the system model of a 2-D CAP system subject to multiple
data-like cross-talks and additive background Gaussian noise!. This model is
also applicable to systems with stationary sell-NEXT which is modelled as
another Gaussian noise source as shown in Chapter 3. In this case, we simply
set the cross-talk channels in the model to zero, and the spectrum of n(t)
equals the sum of the background noise and stationary cross-talk spectra. On
the receiver side, only the inphase subsystem is shown, since the [ and @
subsystems are independent of each other. The following treatment of the
inphase receive filter is also applicable to the quadrature receive filter.

Let {al”} and {af)} denote the two desired data symbol sequences and
{bf), 1 <! < L} the interference symbol sequences. Stacking both the data

and interference symbols at time % into a vector, we write
T &7 W
u, = [ak:? bk:]

where a] £ [ay, by] and bY £ [by, ..., by,].

The equivalent 7 and ¢) channels, denoted by p(¢) and p(t), consist of

!Shaping filters and the actual transmission channels are not shown explicitly in the
diagram
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ln(t)

g(t) M jj {51:1)}
r{t) t= kT

(1)
{ak—}> pit)

EN N

b)

11

)

Figure 4.1: Linear transceiver system model for 2-D CAP in the presence of
data-like cross-talk

the inphase and quadrature shaping filters, respectively, and the transmission
channel. Similarly, the equivalent cross-talk channels, denoted by ¢,(t), 1 <
I < L, consist of the shaping filters and their respective transmission channels.

Expressing all the equivalent channels in the form of a single vector, we write
g (t) = [p7, d"l(®)

where p” = [p, pland q¥ £ [q1, . .., qz,]. The received signal may be expressed

as
r(t) 2 ) gl (t —IT)w +n(t)
]
where n(t) is background WGN. Note that we assume that fixed timing offset
for the interferers are aggregated into ¢; for 1 < i < L, and interferers transmit

at the same symbol rate.

Let g(t) be the inphase receive filter. At the sampling instant t, = kT,
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the sampled output of the received signal is given by

w(kT) £ [r ® gJ(k7) = Y g ® &/ |(kT — IT)w + [g ® (kT)
i

where ‘®’ denotes convolution and

g @ g 2 f o)t —r)dr and [g@nl(e) 2 / g(r)n(t — ) dr

The error at the slicer is defined by e(kT) £ a; — w(kT) and the MSE
at the slicer is defined by ¢ £ E[e?(kT)]. The optimisation problem is to
find the optimum receive filter, denoted by g,(¢), such that £ is minimum. In

mathematical terms, the optimum recetve filter is given by

arg{mlnE } (4.1)

g(t)

4.3 MMSE Results — Data-Like Cross-Talk
In the following derivations (and for the rest of this thesis), we assume

the data and interference symbol sequences satisty the following conditions.
Ela)] = EpH] =0
E[alp] =0 vm,n,1,j € Z. (4.2)
Elal}a?] = EBD] = 6261

i.e., all the symbol sequences consist of i.i.d zero-mean uniformly distributed

symbols. Further, we assume that the slicers always make correct decisions.

4.3.1 Existing MIMO Results
According to [40], the structure of the optimum receive filter is shown

in 4.2 where the total cross-talk sequences af and its equivalent channel PT(f)
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a'g) * 2
{_}.. P(S) n(t)l P (e {&}(‘)}
S,

z" _
i F(/) D"

Figure 4.2: Structure of the optimum receive filter

are defined by

al 2 [a?, b, ..., b))

BT(f) £ (P, Qr,...,Qu1(f)

Note the quadrature equivalent channel P(f) = F[p(t)] is treated as a part of
total interference channel, as far as the detection of the data symbols trans-
mitted over the inphase channel is concerned. The MMSE equaliser (receive
filter} estimates all Ly + 1 interference symbols, in addition to the desired data
symbol. Since the interfering symbols are superfluous, the MMSE equaliser
consists of a total of L; + 2 signal paths, each containing a matched filter fol-
lowed by a tapped-delay-line filter, the outputs of which are summed to form
the estimate of the current data symbol.

The total tapped-delay-line filter can be expressed as

where z £ /27T and E(z) and F(z) are included to represent processing of
the cross-talk data sequences. Note that E{z) and F{(z) are not shown in the

Fig. 4.2 since the detection of the interference symbols sequence {a;} is not
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required. The entries C(z) and D(z) are given by

N [1+ ¢25P|q?

{14 028P][1 + 0257] — | 0282
ot 8PP

" ST @+ AT )

(4.3a)

(4.3b)

where 8P = [SPP]¥ | the notation [-]¥ denotes Hermitian transpose, and on the
unit circle, S7, S? and SPP are given by
. k
I fT 4L 2g —
)& L SIPG+ RS+
Ty & 2 g-1 &
SP( = ZlP f + SHf+ T)
S (e IT) £ = ZP f + ST+ RIP( + )
T T T

Corresponding to the optimum receive filter, the system MMSE is given
by

MMSE=T [ C(e*™ T df (4.4)
2T

where C'(e*™7) is evaluated from (4.3 )2

Theoretically, it is possible to specialise the general result of (4.4) to the
case of an optimum linear CAP receiver operating in the presence of data-
like cross-talk. Such an approach was undertaken in [10, 43], but the derived
results are complicated and do not offer any insight into the performance of the
optimum CAP receiver. To the author’s best knowledge, no simple meaningful
MMSE expression is currently available.

Following the procedures in [40], but with the inclusion of the Hilbert
pair property of the shaping filters in the derivation, we show next that an

simple, elegant MMSE expression is possible.
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4.3.2 Direct Derivation

Expanding the RHS of (4.1) and using the assumptions of (4.2), we have

£ =g~ 20" fp(—-'f)g(r) dr
+ o2 // gl (mT — n)g(mT — m)g(n)g(m) dn dr
n / f Rulm — 12)g(m)g(r) dry dry (4.5)

where R,(my — 1) = E[n(r)n(rz)]. Define & £ £07% and R,y £ 072R,.

Further, we write
Alt,7) 2 gl (mT — t)g(mT — 1) + Ry (t ~ 7)

and
A0 2 [ aterigtr)ds
Using these definitions, the MSE of (4.5) may be expressed as
g=1- 2/p(~'r)g(r) dr + /[Ag](r)g(T) dr (4.6)

Using standard calculus of variation techniques, e.g., [44], it can be shown

that the optimum receive filter satisfies
[ A9 i = pi-) (4.7
Expanding the above equation, we write
S &7 (nT —tk(nT) + [ Rult=Dglr)dr =p(-t)  (48)

where

g ® g)(mT) = k(mT)
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Take Fourier transforms (F) of both sides of (4.8)
G (HK(E™T) + S (N)G(S) = P*(f) (4.9)

whete Gu(f) & Flg(t), K(e277) 2 X K(mT)e /7, §,(f) & FIRo(0),
G(f) £ Flg(t)], and P(f) £ Fp(t)].

Since K(e??7/T) is periodic with period T, we write Kp(f) £ K(e?2™/7).
Using the well known relationship

Kr(f) = 5 3 Gl + m)GUf + %)

we can expand the first term in the LHS of (4.9) as follows

GH () (f) = P(f) S0 PUF + )G + )

FP()R Y P+ )G + 2) +QENR(f)  (4.10)
{
where Q(f) 2 (@1, -, Q)7 () and Kp(f) is defined by
Rr(f)2 7 Y QU + )G + %)
{

Define f € [w%, %] and for an arbitrary value of f, we may write
f=Ff+ % where &k is some suitable integer (more on & later). Substituting

/= F+ £ into (4.9) and using (4.10), after some re-arrangement, we have
1 P TR N
'T';P (f+?)P(f+T)G(f+f)
R N U
+§:;P (f+F)PUf +5)G(F + )

_ ek
+ZI:WMG(f+ :T”) =P (f+ ?) (4.11)

where Wy, is defined by

Wi(f) = —%QH(er ;)Q(H {;) + S (f +

_ I .
?)Ozk
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For a given system bandwidth By, 2, (4.11) represents a set, of equations
for |k| < K where the integer K is selected such that By, < 5=+%. Combining

all such equations, we have

W+ %P*PT + %P*fﬂ” G, = P* (4.12)

where matrix W £ [W}] has its entries from {W},;, —K < I,k < K} with
k and [ corresponding to the row and column indices, respectively, and the

vectors G,, P and P are defined by

G- %) ] [ P(7- %) | Pk ]

_ G(f — &=L _ F_K-1 o PrF_ K21
() 2 (f:T),P()éP(f:T),P()é (f —57)
| G(F+ %) | | P(f+ %) | P(f+E)

Assuming the optimum solution exists, from (4.12), we have, for the optimum

linear CAP receiver

1 I,
G, = [W + =P"PT + _P"PT| P* (4.13)

T T

where for ease of notations, we omit the variable f in G,(f), P(f), and P(f).

Note that by definition, G,(f) completely specifies the desired optimum trans-

fer function G,(f) within the frequency band of interest (Bgys).

Now, we find the MMSE of the optimum linear receiver, denoted by £/ . .
Substituting (4.7) into (4.6) and using Parseval’s theorem, it can be shown

that

= 1= [ =gty dr =1 [ PG &

=1- ng PTG, df (4.14)

37

S

2For convenience, we assume the lower band edge is at DC
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and substituting (4.13) into (4.14), we get

7 1~ -1t
e o=1- f " o {WE + ?P*PT} P df (4.15)
o
where Wg is defined as
1
Wz 2 W4+ -PPT
T
Using the matriz inversion lemma, we can write
1~ - -1 lw*lf)*f)TW—l
Wi+ —P*PT} =Wy - L £ £ 4.16
[ ETT 71+ APTWIP (4.16)
Further, we express
Wil = (RW™! — %W‘lP*PTW‘I)R‘l (4.17)

where R(f) £ 1+ L1PTW1P*,
Substituting (4.16) and (4.17) into the integrand of {4.15), it can be

shown that the integrand contains the following terms

PTWZ'P*=T-TR™! (4.18a)
PTW;'P* = R'PTW1P* (4.18b)
PTWP* = RPTW-1p* (4.18¢)
1+ %PTWEIP* =R-— R—I-TQI-PTw-IP* . PTW-1p* (4.18d)

We now prove that the real part of f’TWBlP* is zero. Firstly, define the

unitary matrix

Then, we have

P(f) = A(HP(S) (4.19)

It is shown in Appendix A that when cross-talks have the same 2-D CAP line
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code,
AWIA =W or  AFWT = WIAH (4.20)
Let PTW 1P* £ ¢/ + jV where o' and ¥ are some real-value functions of f.
Using (4.19), (4.20) we have
2¢/ =PTW 'P* + PAW™IP = PAW (A + AP =0
Since PAW P = PTW-1P*, then PTW~1P* is the complex conjugate of
PTW-1P* Therefore, using (4.18), we have
%PTW;}P_’* - PTW3'P* = TH*R™? (4.21)
where b(f) £ LIm{PTW~1P*}. Substituting (4.21) into (4.18), the MMSE

- T

in (4.15) now becomes

o T TH? T R
g =1- - = - = = =3 4
min /:_T[T R R(R?-bﬂ)]df T/_% ¥

We note that R(f) is even whereas b(f) is odd. Hence,

%—1 d %——1 d
,/_LR-l-b f_[LR—b f
2T T

and the final MMSE expression can be written as

;o [T 1
Enin _T/-E% el (4.22)

where R(f) and #{f) are given by

- 1 1 -
R(f)=1+?PTW“1P* and b(f):?lm{PTW‘lP*}
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4.3.3 Discussion

First, for the simplest case when the roll-off factor @ = 0, we have & =
—1,0,and 1. It can be seen that W is then diagonal, due to the zero excess
bandwidth. This is equivalent to the case when cross-talk is modelled as
stationary noise. Indeed, this is the expected result, because it is only under
this condition (o = Q) that the baud-rate sampled sequence of a PAM signal
is stationary, rather than cyclostationary [37).

Next, for non-zero excess bandwidth, the non-diagonal terms in W have
the potential to reduce the contribution of interference to the MMSE shown
in (4.22). This reduction depends on the relative phase between the signal
and cross-talk channels, as indicated by PTW~!P* and PTW~1P~ in R(f)
and b(f), respectively. Numerical results which support these observations
are given in Chapter 5 where DFE CAP receivers are analysed in the same
channel environment. In contrast, the general MMSE expression in (4.4) does

not appear to offer similar insights.

4.4 MMSE Results — Stationary Cross-Talk

For stationary cross-talks which are modelled as another stationary addi-
tive Gaussian noise, we can incorporate it into the channel background noise.
In Fig. 4.1, we set the cross-talk channels @;(f) = 0 for 1 <{ < L, and the
new channel noise now has the combined spectrum of the background and
cross-talk spectra. In this case, W () reduces to S,(f + LT

Define

gn’(f) £ dla’g [S'n,’(

h|
|
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then
W=S8, and W!=§8 (4.23)

Assuming S,/(f) # 0 for |f| € Bgys (and for the rest of this thesis), we define

L(f) = |P{f)|?/Sw(f). Expanding R{f) and b(f), it can be shown that the
sum Sy, (f} £ R(f) + b(f) is given by

K
=200+ S+ areampri] 1 @29
k=1

To simplify the expression further, define a new variable f+ ¢ [0, %]

Firstly, for 0 < f < %, we substitute f with f* into (4.24)

2 & k 1
£+ - E £+ - £ -
Secondly, for —5= < f < 0, we substitute f with f* — = into (4.24)
o(F) = § jr (F* + Lot (4.26)
Sr T 2T — T

Now, assuming I'(f) = 0 for f > B,,s, we can combine (4.25) and (4.26) into

a single equation
K 1
fr < fr< = 4.27
rb f Z ) 0 = f =T ( )

k:
In summary, for stationary cross-talk, the MMSE of (4.22) may be writ-
ten as
;n:vln =T / ' 2 K 1 k
0 7o (f+5)+1

Recognising that we can also express the quantity

df (4.28)

£

L gy O P
VST 50

T
where SNR,,(f) is the spot SNR at the input of the receiver defined by (3.13)

— SNR,(f) (4.29)
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in Chapter 3, we may also write (4.28) in the following form [45]

1

T 1
‘o7 d 4.30
Emin /o 25 oSNR, (f + &) +1 / (4:30)

The transfer function of the optimum linear CAP receiver can be found

as follows. Since @Q(f) =0 for 1 <1 < L, then from (4.9), we write

Sw(HG(F) = P*(N[L - Kr(f) — jsen(f)Kr(f)] (4.31)

where Kr(f) and Kr(f) are defined by

I|I>

TZP f+ )G(f + )

%;ZPf+ )

Ko(f) and Kp(f) may be viewed as the folded spectrum of K(f) and K(f)
which are defined by

GUf) = g5 X () (4.32)

and from (4.29), we get
K(f)=T(N)X{[) (4.33a)
K(f) = (=) sen(/)T(£)X(f) (4.33b)

It is shown in Appendix B that X(f) is given by

-1

X(9) = |30 + ) +1] (4.31)
k=0

where f+ = |f] — "—”% for some positive suitable integer m*. Equation (4.34)
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may be interpreted as follows — for an arbitrary frequency point f, the value
X(f) is given by the function of f* shown in the RHS of (4.34), and f¥ is
related to f by some suitable integer m™* such that the quantity 0 < |f]|— mT+ =

ft < 1. This relationship is shown in Fig. 4.3,

YT

2T YT yr 7

Figure 4.3: Relationship between f and fT

Substituting (4.34) into (4.32), the transfer function of the optimum

inphase receive filter is given by

SANP) (4.35)
oD+ +1 '

Similarly, it can be shown that the transfer function of the optimum

Gio(f) = Go(f) =

quadrature receiver filter is given by

S (AP (f)
qu = 4.36
()= st 51 (136)

In the case where channel noise is just white, i.e., S/ (f) = 072Ny, (4.35)

and (4.36) may be written as

o oty
O = TG+ P o (450
Gyolf) = P (/) (4.38)

B el P+ R+ No
Moreover, if the transmission channel is ideal, i.e., P{f) = G:(f), then (4.37)
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and (4.38) reduce to the simple matched filter pair

0.2
Golf) = 23 P () (4:39)
Gool ) = s () (4.40)

From (4.28), the corresponding MMSE for an ideal transmission channel is

given by

= (4.41)

Define the SNR. at the slicer SNR, mmse = ”?2 and recognising that SNR,,,; =

;—Z from (3.21) in Chapter 3, we have the following well-known relationship [46]

SNR g mmse = SNRo s +1 (4.42)

4.5 Simulation
4.5.1 System Setup

The simulation model for the linear CAP transceiver system is shown in
Fig. 4.4. On the transmitter side, the passband inphase and quadrature trans-
mit filters are given by g.(t) £ go(t) cos(2n f.t) and §(t) £ g,(t)sin(2n f.t),
where g,(t) is the impulse response of a RRC filter with roll-off factor a = 1.2

whose transfer funetion is given by (2.7). For convenience, we select f. = (124;);)

such that the starting frequency of the system bandwidth is at DC. One data-
like self-NEXT is generated using an inphase and a quadrature shaping filter
identical to g;(t) and §,(t), respectively. The 16-CAP scheme is used to trans-
mit data at a rate of 51.48 Mb/s, and its constellation is normalised so that the
total transmitted power is 1 Watt. The channel noise power spectrum is fixed

and computed assuming that the transmitted signal has a 30 MHz bandwidth
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and a SNR,, = 30 dB at the receiver.

The transmission channel is 100 m of UTP-3 copper wire pair. It is
modelled by the simplified channel model given by (3.4). The NEXT channel
model is given by (3.11). The parameters for both channel models are given
in Table 3.2 and Table 3.3 in Chapter 3. Note that for convenience, we extend
the frequency range of the models to include frequencies from near DC to over
30 MHz. We assume the transfer functions of the data and cross-talk channels
have only amplitude distortion, i.e., they have linear phase. Further, we also
assume the relative phase between the transfer functions, denoted by ¢, is zero
at all frequencies. The phase effects on the performance of the linear receiver
are left to Chapter 6 where the linear and DFE CAP receivers are compared.

On the receiver side, the optimum receive (analog) filters are simulated
by the two FSEs shown in Fig. 4.4. In order to reduce aliasing due to the finite
length of the FSEs, 8 time oversampling is used for the FSEs, each of which
has 320 taps, covering 40 symbol periods. The standard LMS algorithm [47]
is used for the adaptive FSEs. The optimum transfer function for the inphase
F'SE is estimated from its average weights at convergence. System performance

is evaluated by the SNR at the slicer.

4.5.2 Numerical Results

The simulated and theoretical curves for the optimum transfer functions
are shown in Fig. 4.5. From the figure, it can be seen that the transfer func-
tions follow each other closely. Further, we compare these curves with those
shown in [13], since both use almost identical set of simulation parameters,
except for the FSE length, number of simulation runs and averaging method

in obtaining the optimum filter weights. We note that both simulation curves
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Figure 4.4: Simulation model of a linear CAP transceiver system, one NEXT

are remarkably similar. The theoretical curves in [13] differ from the simu-
lated curves, since the theoretical curves are derived under the zero-forcing
condition.

Our simulation also shows that if data-like sell-NEXT is present, the
LMS convergence speed is relatively slow, compared to the case without. The
same result has been observed in [13], where the authors further suggest that
the slowness of the convergence may be due to the fact that the adaptive FSE
tries to jointly equalise the channel and suppress the selt-NEXT. Fig. 4.5 clearly
shows this dual function of the equaliser. However, due to time limitation, this

issue 1s not investigated further in this thesis.
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We also include the simulation curves for AWGN only which are shown
in Fig. 4.6. Comparing this optimum transfer function with that shown in
Fig. 4.5, we see that there is significant change in shape. Also, in the absence
of the self-NEXT, the LMS algorithm converges after 500 symbols, in contrast
to the 20,000 symbols required when the self-NEXT is present.

The MMSE performance results are given in Table 4.1. In the table, we
include the average signal-to-background-noise (SNR,,) and the average signal-
to-interference ratios (SIR) at the input of the CAP receiver. The quantity
SNR, , and SNR, ,, are the SNR at the slicer with and without the presence of
the sel: NEXT, respectively. The results show that although SIR is relatively
high at the input, it can be effectively suppressed by the linear receiver, due
to the extra degree of freedom introduced in the signal bandwidth by the large

roll-off factor. This technique is called NEXT egualisation in [13).

Table 4.1: MMSE performance of the optimum linear CAP receiver over a 100
m UTP-3 cable, 51.84 Mb/sec, roll off factor & = 1.2, one data-like self- NEXT,
relative phase ¢ = 0

SNR, | SIR | SNR,,. | SNR,,

3

Computed || 28.25 | 12.75 | 25.2 31.6

Simulated 28.5 13 25.0 31.5

4.6 Summary

In this chapter, we studied the MMSE performance of a linear CAP
receiver operating in the presence of additive background noise, and either
stationary or data-like cross-talks. We started with a general model with mul-

tiple data-like cross-talks. This model can be viewed as a special case of a
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Figure 4.5: Linear CAP transceiver operating at 51.84 Mb/sec over 100 m
of UTP-3 cable, 16-CAP scheme, a = 1.2, one data-like self-NEXT, relative
phase ¢ = 0, and AWGN (a) magnitude of the optimum transfer function, (b)
weights of the optimum FSE

MIMO system. Although the MMSE solution for the MIMO system exists,

it is relatively complex and does not offer any insights into the operation of
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Figure 4.6: Linear CAP transceiver operating at 51.84 Mb/sec over 100 m of
UTP-3 cable, 16-CAP scheme, a = 1.2, and AWGN only, (a) magnitude of
the optimum transfer function, (b) weights of the optimum FSE

the CAP receiver. We then gave a direct derivation. Using the Hilbert pair

relationship in the derivation, we arrived at an elegant and more meaningful
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MMSE expression, as well as the corresponding transfer functions of the opti-
mum [ and ¢} receiver filters. The new MMSE results were then specialised to
the case where only stationary cross-talk is present. Simulation results were

also given to support our theoretical analysis.
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CHAPTER 5
MMSE PERFORMANCE - DFE CAP RECEIVER

5.1 Introduction

In Chapter 4, we analysed the MMSE performance of a linear CAP re-
ceiver operating in the presence of either stationary or data-like cross-talks,
and background noise. In this chapter, we investigate the MMSE performance
of another popular receiver structure. This structure employs a non-linear
equaliser called the decision feedback equaliser (DFE) operating under the
same channel conditions. The nonlinearity of the DFE stems from the feed-
back of the estimated symbols by a slicer which is non-linear in nature.

The type of issues that are addressed here belongs to the category of
MMSE analysis of a MIMO system with a DFE which was studied by a number
of authors. Among them, Duel-Hallen [48] studied the performance of a MIMO
DFE for an asynchronous CDMA channel; Yang et al [49] presented results on
the joint transmitter and receiver optimisation of a MIMO system with a DFE
by minimising the geometric mean-square of the error at the slicer (defined as
the determinant of the error covariance matrix}; Tidestav et al [50] considered
a MIMO DFE system with emphasis on the realizability of the feedforward
filter in a IIR channel environment; and the performance of a finite-length
MMSE-DFE in a MIMO environment was investigated in [51].

With respect to the approach used in the previous chapter, a different ap-
proach is used in the derivation of the optimum DFE in this chapter. Firstly,

we study the MMSE performance of a generic multi-dimensional (multi-D)
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CAP transceiver system using an ideal DFE in the receiver, in the presence
of multiple data-like interferers. The results from the study is then applied to
the standard 2-D CAP transceiver system with which we are familiar from the
discussions in the previous chapters. In doing so, we gain additional under-
standing of the standard 2-D CAP transceiver system in relation to a multi-D
CAP system.

The DFE receiver for a generic multi-D CAP transceiver system consists
of a bank of receive filters, the number of which equals the dimension of the
CAP line code, and a full cross-connected feedback matriz filter. Using spectral
matriz factorisation, the optimum DFE and the corresponding MMSE at the
slicer can be found. However, both results are in general difficult to compute,
since they require the factorisation of the channel spectral matrix. In special-
ising the results to the standard 2-D CAP line codes, we exploit the Hilbert
transform pair property of its transmit shaping filters to obtain an explicit
expression of the MMSE. Here, we would like to stress that our aim is to find
the MMSE performance of the DFE receiver for the 2-D CAP line code. The
additional results on the multi-D CAP line code should be viewed in light of
our objective in finding the results for the 2-D CAP transceiver system.

This chapter is organised as follows. First, we describe the model of a
generic multi-D CAP system and formulate the problem of finding the transfer
function of the optimum DFE and corresponding MMSE. Next, we show the
derivations of the optimum DFE and the MMSE. Finally, we specialise the
MMSE results to the standard 2-D CAP system.

5.2 System Model
The system model for a generic multi-D CAP transceiver system with

data-like cross-talks is shown in Fig. 5.1, in which all quantities are assumed



74

to be real. Similar to the linear system model, this model also applies to the
situation when cross-talk is modelled as anther Gaussian source. In this case,
we set the cross-talk channels to zero, and spectrum of the channel noise in
the figure now equals the combined spectra of both the background noise and

the stationary cross-talk.

n(t
o r(t) t= kT ~(1]
a El B {t) o N gl (t) ,_\ .:+ Wl j’__ {ak;}
v 5 —
- . ' ml
ma) W, é‘k“"a’
* Yo | G @ T &)
b(l) (t) e e mLa
_ &l
. T Y
L) X
G s

Figure 5.1: System model for a multi-dimensional CAP with data-like cross-
talks

We define firstly the input data signal a(t) and cross-talk signal b(t) as

follows
al(t) & [a(l), . .,a”‘“}](t) and bT(t) £ [b(l), LB
where L, is the dimension of the CAP line code, Ly is the number of cross-talks

a®(t) 23 al's(t —nT) and 6O 23 06(t —nl)

n n

{3
T

and where a! and 5 denote the nth symbol in the Ith input data symbol

and interferer symbol sequence, respectively. The total input signal u(¢) can
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then be expressed as
u’(1) 2 a7, b7)(1).

Let p7(t) £ [p1,...,ps,](t) be the impulse responses of the equivalent data
channels which consist of the shaping filters and transmission channel, g7 £
[q1. - - -, qr,){t) be the impulse responses of the equivalent interference channels
which consist of the shaping filters and cross-talk channels. Note that for the
generic multi-D CAP system, the shaping filters can assume any pulse shapes.
In other words, this structure is the most general among all the CAP-like
structures. Combining all the impulse responses of the equivalent channel, we

define

g (8) £ [p,- . pra @, - q () = [PT, Q7] ().

The received signal r(t) is then given by

r(t) £ g € u)(t) + n(t)

= i gl (t —IT)w; + n(t)

l=—00
where w; £ u(I7"), and n(t) is the channel noise.
Let gZ(t) & [g1,...,91,](t) denote the bank of receive filters. The output

of g.(£) is given by
Vi) £ [o, . ](t) = g7 @ (1),

At the sampling instant ¢, = kT where & is an arbitrary integer, the sampled

signal before the slicer is given by

wl(kT) £ [wn, ..., w,|(kT) = vI(kT) — mT (kT)
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where the feedback signal m(&T) is given by
m(kT) £ Z F.a(kT — nT)

in which a7(nT) £ [a&”, e ,a,({'“}] denotes the estimated symbol vector at
t = nT and the matrix sequence {F,} is the impulse response of the cross-
connected feedback matrix filter F. We denote the (7, j)th elements of F,, by
fi,1<4,§ < La.

The error e(kT’) at the input to the slicers is defined by
e (kT) & [ex, ..., e1,](kT) = w' (kT) — a (kT)
and the MSE at the slicer is defined by

2 E [|le(kD)13]

where |||, denotes the mathematical 2-norm. The optimisation problem we
addressed is the derivation of the optimum g.(¢} and F that minimise .
Let g,(¢) and F, denote the optimum receive and feedback filter respectively.

Mathematically, they are the solutions to the following problem

(&(t), Fu] — arg {[ min P [Je(7)) ]} (5.1)

5.3 MMSE Results — Data-Like Cross-Talks
5.3.1 MMBSE - Multi-Dimensional CAP

Since all signals shown in Fig. 5.1 are real, we write the MSE as follows

e = E [e" (kI)e(kT)] = tr E [e(kT)e” (kT)] (5.2)
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where ‘tr’ denotes trace. Expanding e(kT)eT (kT) and using the assumptions

(4.2}, it is shown in Appendix C that

E.(g. F) = Ef(g., F) + E;(g.) (5.3)

where the matrices E,., E; and E, are defined by

E. £ Ele(kT)eT(kT)) o~

o o]

E; £ Z(/ g-()p” (=7 +1T) d’r-Fa)(/ g (T)pT (=t +1T)dr — F)T (5.4)

{=1
Eg é // A(‘Tl, T2)gr(T])gf(T2) dT1 dTg

- [ e (=~ [p-rglDdr+1

The scalar A{7, ) is defined by

+ Z P’ (=1 — mT)p(-=72 — mT) + 07 ro(m1 — 72)

where 1,(7) £ Ein(t + 7)n(t)].

From (5.3), the MMSE is found in two steps as follows. Firstly, we fix
the receive filter g,(¢) and optimise with respect to the feedback matrix filter
F. Given the optimum F,, the receive filter g,(¢) is then optimised. The trace
of E. in (5.3) is minimised when the trace of E; is minimised, since E, does
not depend on F. It is clear from (5.4) that the optimum filter F, is selected

when E; = 0. That is, the {th coefficient of the optimum filter F,, must satisfy

FO,J:/gT(T)pT(JT—T)dT for 1> 1. (5.5)
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This equation shows that, due to the full cross-connected structure, the opti-

mum feedback filter F, completely cancels out the postcursor ISI due to the

equivalent data channel. It, however, has no effect on the cross-talk signal.
We next solve for the optimum receive filter. Let A be an integral oper-

ator with kernel A(m, =) and we write

[Ag,)(t) & /A(t, 7)g.(7) dr.

Then

E, = / g8l () dt - [ g 0)pT(—)de
- [p(-tgf @ dr+1 (56)

Define matrix J as follows

J(t.g (1) £ [Ag]()g; (t) — g ()P (—t) — p(—t)gl (t) + 6()L.
Then

trBE, = /.tr.](t,gr(t))dt. (5.7)

Thus, the optimisation problem becomes a one-dimensional variational prob-
lem [44]. A brief derivation of the optimum function g,(¢) is described below.

Consider the family of functions which contains the extremal g,(¢)

g(t) = g,(t) + no(t)

where the vector o(t) is some suitable point function and p is a scalar constant.
Note that in doing so, we restrict g(t) to a subset of the set of admissible

functions. However, it is clear that this subset of functions must contain the
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extremal when g = 0. For a fixed o(t), from (5.7), we write

trE, (1) = tr / Jit, g.(£) + po(t)] dt. (5.8)

The stationary function can be found by taking the derivative with respect to u
at p = 0 and setting the result to zero. Using Leibniz’s rule for differentiation

under the integral sign, we have

[trE ()] ] e J[t, go(8) + po(t)] dé = 0, (5.9)

Since A(t, 7} is symmetric, after some algebra, (5.9) simplifies to

[tl‘E ()]

/ {f (t,7)go(t)dt — p(—7)} dr =0. (5.10)

By the fundamental lemma of the calculus of variations [44], the stationary

function, and hence the extremal g,(¢) in (5.10), must satisfy the following

condition

[ A dt = p(-) (5.11)

Substituting (5.11) into (5.6), we find that the minimum tr E, is given by

(B, Jein = Lo f T () (¢) dt. (5.12)

Before solving for the optimum receive filters g,(t), we first investigate
its structure. Expanding the LHS of (5.11) and after some simplification, we

get

20

=Y Kq(T-t)+ > Kp(IT —1) +/-rn:(t—7')go('r) dr (5.13)
l=—0ca

I=—00
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-2

A
where r,, = 07 *r, and

K 2K(T) 2 (g, 2 q7I(0T) and K, 2 K(T) 2 [g, ® p7|(IT).

Re-writing (5.13) in the following form

| / roo(t — 7)go(7) dr

=Y (I -K)p(T-t)+ > (-Ki)q(T -1). (5.14)

I=co l=—co
Equation (5.14) reveals the structure of the optimum receive filters. On the
RHS, the first summation corresponds to the cascade of the matched filters
p(—t) and enti-causal tapped-delay-line filters with coefficients {I8; — K;} for
[ < 0. The second summation is interpreted as a cascade of the matched filters
q(—t) and tapped-delay-line filters with coefficients {—K;} for —co < { < oo,
The LHS of the equation is the convolution of the auto-correlation function of
the channel noise and the optimum receive filters. A block diagram description
of the optimum receive filters g,(¢) is shown in Fig. 5.2, where the matched
filters are normalised by the scaled spectrum of the channel noise and the
tapped-delay-line filters are implemented in digital form.

Next, we derive the explicit formula for the optimum receive filter g,(¢

)
and an expression for the MMSE at the slicer. Let P(f) £ F[p(t)] and Q(f) £
Flat)

K_(¢9) £ Z Kie % and K 838 Z K, e 7

I=—00 l=—00

where # £ 27 fT. We use (-)_ to denote the transformation of a sequence with
subscripts from —oc to 0. A related operator (-}, denotes the transformation

of a sequence with subscripts from 1 to oo, e.g., K, (/) £ 5 Kie 7%,
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Figure 5.2: Equivalent structure for the optimum feedforward filters of a DFE

Taking Fourier transforms of both sides of (5.13), we get
P*(f) = K(e”*)Q(f) + K_())P*(f) + S ()Go(f) (5.15)

where Sp(f) £ Flrp(t)] and G,(f) £ Flg.(t)].
Now, let f denote frequency within the Nyquist interval {— 2T, 2T] Then,
any frequency point f can be written as f = f + k/T where k is some integer

(more on k later). Replacing f with f + &/T in (5.15), we obtain, after some

simplification
PY( ZG f+ )QT(f + = )Q*(f+ )
L-—oc
e s K A NP
+K_(e)P*{(f + ?) + Sulf + ?)Go(f*" T) (5.16)

where we made use of the fact that K_(&?%) is periodic in # with a period of

27, or equivalently periodic in f with a period of 1/7, and K{e??) was replaced
by the RHS of

() = 2 3 Golf + 2Q7(F +

;) (5.17)
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Recall now the definition given in Chapter 4

WidlF) 2 2Q(F + H)QU + 2) + ST + 2)bu

From (5.16), we obtain for integer &

Pt = 3 WilG(F+ 2) + K ()P (F+7).  (5.18)

l=—0a

= &

Note that since | f | < %, the frequency support of this equation is

determined by the integer £. Combining all such equations for values of |k| <

K where K is selected such that the system bandwidth B,,, < % + K/T, and

define
| PT(-%) Q-5 |
sne | FEE L ape | GO
| PT(T+%) | | GTF+F)
then,
B(f) = P*(KZ(e?) + WG, (f) (5.19)

where the matrix W £ [W ]| (f) for —K < I,k < K. It is easily shown that
W is Hermitian and positive definite assuming S,(f) > 0 (or equals zero but

only at isolated frequency points) for |f| < B,,,. Hence,

Go(f) = W (/)P (NI - KI()]. (5.20)

The anti-causal coefficients of the function K _(e’%) can be solved using spectral

maitrix factorisation as follows.

From (5.20), pre-multiplying both side by LP7(f) and defining M £
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PH(fYW-1P()!, and using the fact that K(e/?) = LGZ(f)P(f), we have
K(e’) = [I - K_(e/")]M. (5.21)

From this equation, it is clear that M may be thought as a function of /¢ and
in the following, we write M(e’) instead. Express K(e/?) as K = K_(e/) +

K., (e’®). Then
K () [T+ M(&)] + K, () = M(e).

In the z domain, we express M(e?), K_(e) and K, (e/?) as M(z), K_(2)

and K , () respectively. Let ®(z) £ I+ M(z), then
K1 (2) + K_(2)®(z) = M(2). (522)

Note that ®(z) may be viewed as a matrix polynomial in z and its matrix co-
efficients are real, since the underlying system model contains only real signals.

From spectral matrix factorisation, we may write
&(z) = H(z " YH"(2) (5.23)

where H(z) £ 37,2, I'iz~! for some matrix coefficients I'; which are determined
by the actual factorisation algorithms. Note that H(z) is causal and all the
poles and zeros of its determinant are inside the unit circle, and hence its
inverse H™1(z) is also causal and stable. Also, H(z) is unique up to an unitary
matrix post-multiplication [52, 53].

Substituting {5.23) into (5.22), we get

Ko (2)HT(2)™t = K_(2)H(z"1) = H(z~!) — H (2)~1. (5.24)

'Thus M is also positive definite
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Equating coefficients with the like powers of z on both sides of (5.24), we get
K. () = I - [ " H() (5.25)
Finally, substituting (5.25) into (5.21), we obtain in z notation
K(z) =[T5] "H(z"")""M(2)

=T H(z™) ' H(zT)H(z) - 1]

=[] HT(2) - H(z™1)7]. (5.26)

From our previous discussions, we see that, given the optimum solutions

F, and g,, the MMSE is given by

er i = trEg(g,, Fo)

min

=trEf(g,, F,) + tr Ey(g,) = tr E,(g,) (5.27)
where €/, £ £,.m/0%. Substituting (5.12) into (5.27), we have
“on = Lo~ [ B (-t)galt) o = Lo - r K, (5.28)

Further, from (5.26)

Ko = [[g]7'[I5 — Tyl =1 [elg] ™" (5.29)
thus,
gl = tr[Dele |t (5.30)

In summary, we have completely solved the optimisation problem for a
generic multi-dimensional CAP transceiver system, operating in the presence of
data-like cross-talks. The optimum receive filter g,(¢) and ideal feedback filter
F, are given by (5.5), (5.20) and (5.25), and the corresponding MMSE is given

by (5.30). From these equations, it is clear that both the optimum DFE and the
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MMSE depend on the factorisation of the spectral matrix ®(z). Algorithms
for such factorisation exist, as shown in [52] [53] for spectral matrices in the

form of a rational function of z.

5.3.2 MMSE for Standard 2-D CAP

In the case of the standard 2-D CAP schemes, the two transmit filters
form a Hilbert transform pair [§]. In this section, we show that it is possible to
exploit this condition to derive an explicit expression for the MMSE without
actually performing the spectral matrix factorisation.

In his treatment on the most general form of a QAM system, Falconer [54]
showed that for a passband QAM system, explicit factorisation of the spectral
matrix may be avoided in the MMSE expression. We show that the same is
also true for standard 2-1) CAP, in the presence of data-like cross-talks.

Define the matrix E., £ [Fgfg] ! Note that for standard 2-D CAP, E,

is a (2 x 2) symmetric matrix. Under this situation, it can be shown that

tr(E,] > 24/det(E,) (5.31)

which holds with equality if and only if E, is a scalar multiples of the identity

matrix I, or so-called scalar matriz [54]. From (5.23), it follows that
det[®(e’?)] = det[H(e™7?)] det[HT (&/%)]. (5.32)
Hence, from one-dimensional factorisation

det[E,] = exp {Hﬂ% /_ﬂ In [det ®(e’%)] d@} : (5.33)

w
We now prove that E. is a scalar matrix. For the standard 2-D CAP
scheme, the inphase and quadrature shaping filters form a Hilbert transform

pair. Denote the impulse responses of the equivalent [ and ¢} data channels by
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p(t) £ pi(t) and p(t) £ py(t) respectively. Their Fourier transforms, denoted
by P(f) 2 Flp(t)] and P(f) & F[(t)], have the following relationship

P(f) = (=j)sgn(f)P(f) for —oo< f<oo (5.34)

Define two new vectors

[ P(F-EK) | [ -y |
pie | PE=5D | a pepe | V-5
| P(f+5) | P(F+E) ]

In terms of P(f) and P(f), the matrix P(f) and M may be re-written as

P [P,f)] and M=~ (5.35)

T'| pAW-'P PAW-P

_ 1 [ PYW-'P PHW-P }
Again, as in Chapter 4, we make use of the Hilbert pair relationship of
the standard 2-D CAP receiver. Using (4.19) and (4.20), we have the diagonal

terms of M satisfy
PHW P = PAARWIAP = PYW'P. (5.36)

Next, assume the non-diagonal term PFW=1P on the RIS of M in (5.35)
equals o’ + 7 where o’ and ¥ are some real numbers. The sum of the non-
diagonal terms of the Hermitian matrix M is given by

PH¥W-P + PAW 1P = 2¢/

=PHW-IAP + PEARW 1P (5.37)

= PHW-1(AH + A)P = 0.
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The matrix ®(e’®) thus has the form

b=T+M=

R jb
(5.38)
—jb R

where

Al Hyy-1 Al Hyr—11
R(J) 2 ZP"W™'P +1 and b(f)_TIm{P W P}

Note that since W is positive definite, R(f) > 0. Also, it is easily shown that

R(f) is even and b(f) is odd. Therefore, using arguments similar to those

in [54], we conclude that E., is indeed a scalar matrix and

tr[E,] = 24/det(E,). (5.39)

For convenience, the derivation of (5.39) is given in Appendix D.

From (5.38), we recognise that

det (®) = (R+b) (R—b) > 0. (5.40)

Since R(f) > 0 from definition, both (R+b) and (R —b) are positive. Re-write

(5.40) as follows

In [det (®(’))]

= In [R(f) + b()] + In [R(F) = b(F)) - (5.41)

Observe that since R(f) is even and b(f) is odd, hence

[ mlrg) -wplae= [ mlrO+uple. a2

m ki

Therefore, from (5.33)

_.1
2T

det(E,) = exp {——QT/ﬁ In[R(f)+b(f)] df} : (5.43)
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Finally, from (5.30), (5.39) and the above equation, the MMSE of a standard

2-D CAP receiver is given by

e —2exp {—T / _T In[R(f) + b(f)] df} . (5.44)
—r
Define the SNR at the slicer as
SNR, £ ,i
Then from (5.44), we have
SNR, = exp {T / _ In [R(f) + b(f)] df} | (5.45)
~ar

5.4 MMSE Results — Stationary Cross-Talk

As in Section 4.4, if the total interference of all cross-talks is modelled by
a stationary Gaussian noise, then we simply combine it with the background
noise and set the cross-talk channels zero, ie, Q)(f) = 0 for 1 < 1 < L.

Accordingly, the elements of W become
=k
Wk,l - S’R’(.f + ?)th —K S la k S K (546)

and it follows that

-1 = —1¢F k F k 2
PAWIP = kzZ_K Sut 7+ HIP + )] (5.47a)
PYW P = PYW AP
PP SO TR T
= (=) D_ sea(f + =)Sw(F + 2P+ 2)] (5.47b)
k=—K

Therefore, using (5.47), we have

R =0D =7 [2 00+ 2+ atsa(MIND] +1 )
k=0
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where I'(f) = |P(f)125'(f) same as that defined in Chapter 4. Using the
same argument as from (4.24) to (4.27), we conclude that the MMSE expression

for the stationary noise only environment is given by

1 K
' —expd =1 [T |2 L ]
e —exp{ T/O ln[TgF(f-kT)—i—l df (5.49)
Similar to the MMSE of the linear CAP receiver, we can re-write the
MMSE expression of (5.49) in terms of the input SNR,(f) which now has

the same spectral shape as the sum of the spectra of the stationary cross-talk

signals and background noise, i.e.,

1

s':exp{—Tf:m[ 3 SNRﬂ(f+;)+1]df} (5.50)
k=0

In the case where the noise spectrum is white, 1.e., Sp{f) = Ny, (5.50)

simplifies to

1

' T NO
g =exps T In 557 =K P

df} (5.51)

5.5 Simulation
5.5.1 System Setup

The simulation model for a 2-D CAP transceiver system with a DFE
is shown in Fig. 5.3. The CAP transmitter, and transmission and cross-talk
channels are identical to those used in Chapter 4, except that we simulate the
system performance for 4 different roll-off factors (a). As before, the relative
phase between the received signal and interference is also fixed to ¢ = 0 and
the effect of different ¢ on the MMSE performance is left to the following

chapter.
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Figure 5.3: Simulation model of a DFE CAP transceiver system, one data-like
NEXT

On the receiver side, the optimum analog feedforward (FF) filters are sim-
ulated by two adaptive FSEs, and the ideal feedback (FB) matrix filter is sim-
ulated by four cross-connected, baud-spaced, adaptive, finite-length equalisers.
Both the FF and FB filters have the same length of 257. As before, the sam-
pling rate of the FSEs is selected such that there is no aliasing in the input
signal samples. The standard LMS algorithm is used for the adaptive DFEs.

System performance is evaluated in terms of the SNR at the slicer.
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Table 5.1: SNR, (dB) at slicer for 100 m of UTP-3 cable in the presence of
one seli-NEXT and AWGN

R =5148 Mb/s, SNR,, = 30 dB, ¢ = 0

Computed || 22.65 23.92 | 25.37 | 26.16
Simulated || 21.65 23.21 | 24.79 | 26.06

5.5.2 Results

Table 5.1 shows both the computed and simulated values of SNR,, for 4
different roll-off factors. We notice that as the excess bandwidth increases the
performance also improves. From o = 0.2 to 1.5, the improvement is about
4.5 dB which is quite significant for many applications. However, the tradeoff
of this improvement is that the required bandwidth for & = 1.5 is more than
double that for a = 0.2. Clearly, further investigation is required in selecting
various system parameters to achieve best performance. This issue is the main
topic of the next chapter.

The theoretical transfer function of the optimum DFE requires the com-
putation of G, in (5.20) which in turn requires the spectral matrix ®(z) to be
factorised. For the given transmission and NEXT channels (given in a contin-
uous or analog form), this is non-trivial since one is required to explicitly write
®(z) in the desired form(s) as specified by the factorisation algorithms [52, 53].
Notwithstanding, we plot the transfer functions of the simulated optimum FF
filters in Fig 5.4 and compare them to the corresponding optimum linear re-
celvers.

As in the linear case, the equalisation of NEXT can be seen from the
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Figure 5.4: Optimum transfer functions with =0.2, 0.7, 1 and 1.5, data rate
R = 51.84 Mb/s and SNR;, = 30 dB with respect to a system bandwidth of
30 MHz and ¢ =0

estimated transfer functions of the optimum FF filters shown as solid curves
in Fig 5.4. In all these curves, we first notice that there are two regions in
frequency where the gain is significant, albeit in the case of @ = 0.2, the area
of upper frequency region is rather small compared to the lower frequency
region. The same feature can also be found in the transfer function of the
optimum linear receiver shown in Chapter 4. Next, for approximately the
same value of a, we also notice that compared to the optimum linear receiver,
the magnitude of the transfer function of the optimum FF filters is flatter in

the lower frequency region. We give our explanations as follows.
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From the derivations in the previous and this chapters, we see that when
operating in the presence of data-like cross-talks, both the linear and DFE
recelvers try to jointly equalise the ISI and cross-talk channels within the
system bandwidth. Note that the FB filters play no role in suppressing data-
like interference. Thus, the optimum FF filters utilise the extra bandwidth
in very much the same way as the receive filters in the linear recetver in the
equalisation of data-like cross-talks. For the ISI channels, it is well known [5]
that because of the FB filters, the FF filters are required to only partially
equalise the channels and the resulting channels are causal. This gives the FF
filters extra degrees of freedom in manipulating the signal spectra. As a result,
the noise variance at the slicer given by the transfer functions of the optimum

FF filters is no greater than that by the optimum linear receivers

5.6 Summary

In this chapter, we analysed the MMSE performance of a 2-D CAP re-
ceiver with ideal DFEs operating in the presence of channel background noise,
and either stationary or data-like cross-talks. First, we considered the system
model for a multi-D CAP system. It was shown that the optimum solution
and the MMSE required the factorisation of a discrete channel spectral ma-
trix. Although there exist algorithms that will perform the factorisation, to
the author’s best knowledge, they are limited in the sense that they require
the channel spectral matrix to satisfy certain conditions. Next, we applied
the derived results to a standard 2-D CAP system. By exploiting the Hilbert
transform pair property of the shaping filters in the standard 2-D CAP sys-
tem, we were able to circumvent the need to factorise the channel spectral
matrix and derive a more meaningful MMSE result. Also, by using the 2-D

MMSE result, we gave the MMSE expression for the case when cross-talks were
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modelled as another additive Gaussian noise source. Finally, we simulated the
FF and FB filters of the optimum DFE by adaptive FSEs and a finite-length
baud-rate, matrix equaliser. The CAP system considered was operating in
the presence of a single data-like self- NEXT. The predicted MMSE results are

closely matched by the simulated results.
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CHAPTER 6
PERFORMANCE EVALUATIONS

In Chapters 4 and 5, we derived the optimumn linear and DFE CAP receivers
and their corresponding MMSE. The derivations took into account both sta-
tionary and data-like cross-talks. In this chapter, based on the previously
derived results, we conduct a number of numerical studies on the performance
of linear and DFE 2-D CAP receivers.

First, we investigate the performance of the optimum linear and DFE
CAP receivers in a stationary cross-talk environment. Three transmission
channels selected from the test channels for xDSL systems [33] are used. We
consider two interference scenarios, both of which are often found in xDSL
applications. In the first scenario, the spectrum of the interference source
has the same spectrum as the transmitted CAP signal. The corresponding
NEXT is called (stationary) sel-NEXT. In the second scenario, there are four
different interference sources, namely, DSL, HDSL, T'1, and another CAP. The
total effect of these NEXT sources is called (stationary} mized-NEXT.

Next, we compare the performance of the optimum linear and DFE re-
ceivers over 100 m of UTP-3 cable in a single data-like cross-talk and AWGN
only environment. We show two sets of numerical results computed with the
same set of parameters, except for different background noise levels.

Finally, using the DFE CAP receiver as an example, we study the rela-
tionship between data-like NEXT suppression and system parameters which

include excess bandwidth, data rate, CAP scheme, and relative phase between
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the received signal and the NEXT signal.

6.1 MMSE Results - Stationary Cross-Talk

The MMSE results of the linear and DFE CAP receivers are examined
for a single-loop HDSL (SHDSL) system operating at a data rate of B, = 1.6
Mbits/s over the three selected test channels. For a transmitted power fixed
at 13.5 dBm and background noise spectrum of -140 dBm/Hz, the system
performance is evaluated in terms of the performance margin which will be
defined shortly. A block diagram description of the system in the presence of
stationary NEXT is shown in Fig. 6.1

received
transmitter »- loop -
performance
signal-to-noise margin
-
calculator
interference —
PsD
disturber “p NE)I{T " required SNR
couplng for a given BER
AWGN

Figure 6.1: Block diagram for performance evaluation in the presence of sta-
tionary NEXT

6.1.1 Test Channels and NEXT Channel

Denote the test channels by test channel A, B, and C. The first two
test channels are single AWG#24 and AWG#26 wire pairs of variable lengths.
The third channel consists of 7.7 kilo feet (kft) of AWG#26 wire pair, with a
bridge tap of length 0.6 kft at 1.8 kft from one terminal. Fig. 6.2 shows the

configurations of these test channels.
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test channel A

© (variable length) #24 C

test channel B

(variable length) #26

test channel C

O .
59 kft #26 1.8 kit #26

0.6 kft #26

Figure 6.2: Test channels for stationary cross-talk

The test channels are described by their insertion loss which is defined
by

.y Zt+Zs
Hin(f) = Z(CZ,+ D)+ AZ, + B

where Z; and Z; are the source and terminal impedances, respectively, and

ABCD are the 2-port parameters of the channel discussed in Chapter 3. For
a zero-length transmission cable, we have A = D = 1land ¢ = D = 0
which translates to H;,(f) = 1. For a non-zero length cable, the reduction
of the received signal power (in dB) is equal to 20log{H;,(f)|. The insertion
losses and the corresponding impulse responses of the selected test channels,
terminated by 100 £2 impedances are computed from the data given in [33].
The results are shown in Fig. 6.3.

The transfer function of the NEXT channel, denoted by Xx(f), is the
15 dB/decade model defined in Appendix B of the ADSL specification [1]. It



98

0 (a) (b}
Iy 0.04f —¢hA|
15K ’ chB
0.035¢ | =-chC | A
20+
0.03F \
= 0.025F |
o
'_530' g 0.02f
E L
Sast g ootsf i
g oot} Y
—40 T
1 ~
0,005 i =
45 [ 1
0l )
“=r -0.005}
-85 " : - ’ - 001

0 1 2 He 4 5 o 01 02 03 04 05 06 07 08 08
5
%10 second x10™"

Figure 6.3: (a) Transfer functions, (b) impulse responses of test channels
A (9 kft), B (9 kft), and C

is given by
IXn(f)]? 2 0.882 x 10714 NO6 f1.5

where N = 49 is the number of NEXT disturbers. Note that for a given CAP

input signal, the output of Xy (f) models the sum of 49 sel-NEXT signals.

6.1.2 Transmitted Spectra

The transmitter block in Fig. 6.1 generates the PSD of the CAP signal of
the interest. The CAP spectrum has the shape of a passband RC filter, with
a lower band edge at DC. For a given roll-off factor o, the centre frequency f.

of the CAP spectrum is given by

1+ a

fc: 5T

where T is the symbol period of the 2-D CAP line code. The CAP spectrum
is modelled by

Km fngl"'a’

PSDewe(f) = KO%[COS’JT('%;—l-l-é)“l-l], l-a< f<l+a (6.1)
—200 dBm/Hz, a2 l+a
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where K, is some constant such that the output power of the CAP transmitter
is at 13.5 dBm, the stop band spectrum is simulated by the -200 dBm/Hz term,

and f, is the normalised frequency given by

fo 22T\ f = [

The disturber block in Fig. 6.1 generates the stationary interference spec-
trum PSD,(f). We consider two interference scenarios. In the first scenario,
the transmitted interference spectrum is the same as that of a transmitted

CAP signal

PSD.(f) = PSDewe(f) (6.2)
In the second scenario, the transmitted interference spectrum consists of the
sum of the spectra of a DSL, HDSL, T1, and another CAP signal, i.e.,

where, according to Appendix B of the ADSL specification [1], the spectra of
these interfering signals, all with the same transmitted power of 13.6 dBm, are

given by

. 00514 2( f

PSDDSL(f) = 80 x 10° s1nc

» 0.06 1

PSDHDSL(f) = m Sincz(

1)
392 % 10°/ 1 4 (

R
196x103)

o 02592 L, 2 f
FSDn(f) = Torcros St (1.544 ) (55 5T 10)
1 1

1+ (5dm) 1+ (2207




100

6.1.3 Received Spectra
From the transmitted signal and interference spectra, the received signal
and NEXT spectra are computed as follows. The received signal spectrum is

computed from
PSD,(f) = |Hin(f)I* - PSDexe(f) (6.4)

and the received NEXT spectrum from

PSDx(f) = | Xu(f)[? - PSD,(f) (6.5)

Fig. 6.4a shows the spectra of the transmitted and received signals and
mixed-NEXT for test channel A. The cable length is 9 kft and oo = 0.15. The
transfer functions of the test and NEXT channels are also shown in the figure.
The corresponding results for test channel C are shown in Fig. 6.4b, except
that we now have stationary sell-NEXT. We have not included the spectra for
test channel B, since it is similar to test channel A, except the latter has much

less channel loss than the former.

6.1.4 Performance Margin

In the presence of stationary cross-talk and background noise, the theo-
retical MMSE and normalised SNRs at the slicer for the linear and DFE CAP
receivers are given in Chapters 4 and 5. For convenience, we repeat below the
normalised SNRs which are given by (4.28) and (5.49). For the linear CAP

receiver
1K

SNR, = {T/T (3" sINR(s + ;) + 1]_1df}_1 (6.6)
O Tk

0

and for the DFE CAP receiver

T k
SNR, = exp{T] In [Z SINR(f + ?) + 1] df} (6.7)
0 k=0
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Figure 6.4: Spectra at the input of CAP receiver for roll-off factor o = 0.15, (a)
test channel A (9 kft) with mixed-NEXT, (b) test channel C with self-NEXT

where SINR( f) is the frequency-dependent signal-to-interference-plus-noise ra-

tio (SINR) at the input of the receiver and it is defined by

. PSD())
SINR(S) = 535,01 + Su()

For a given BER, assuming the sum of residual ISI, filtered total inter-
ference and noise has a Gaussian amplitude distribution, the required SNR

denoted by SNR, re¢ is given by (3.23). SNR, res for various QAM and cross
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Table 6.1: Required SNR (in dB) for QAM and cross constellations

P.=10"7| P,=101

(xDSL) | (ATM-LAN)
16-CAP || 21.64 23.29
32-CAP |  24.69 26.33
64-CAP | 27.91 29.55
128 CAP || 30.84 32.47
256-CAP | 34.00 35.63

constellations are shown in Table 6.1
The system performance is evaluated by the performance margin which

is defined by
A, £ SNR,(in dB) — SNR, ;¢ (in dB) (6.8)

where positive margins are generally required. In order to accommodate for
hardware implementation losses, A,, is often required to be at least 6 dB. An-
other useful practical performance criterion is the mazimum reach of a cable.
The maximum reach is defined as the cable length beyond which the perfor-
mance margin drops below a desired performance margin. The advantage of
the maximum reach criterion is that it enables comparisons between different

CAP schemes as shown in the numerical results below.

6.1.5 Numerical Results
Fig 6.5 shows the system performance margins for test channel A with
respect to a required BER P, = 1077, This test channel includes mixed-NEXT

and background noise. As can be seen, the system performance depends on
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Figure 6.5: Performance margins for linear and DFE CAP receivers, test chan-
nel A, P. = 1077, a = 0.15, mixed-NEXT, background noise level of —140
dBm /Hz, roll-off factor o = 0.15

the CAP scheme. Suppose the desired performance margin is 6 dB. For the
linear receiver, the maximum reach of the cable length with respect to the
desired P, is 6.4 kft while for the DFE receiver, the maximum reach is 7 kft.
In both cases, the applicable CAP scheme is the 16-CAP.

Fig. 6.6 shows the system performance margin for test channel B, with
respect to the same P,. This test channel has only stationary selt- NEXT and
background noise. At the 6 dB margin points, the maximum reach is 5.2 kft
for the linear receiver using the 32-CAP scheme and it is 6.5 kft for the DFE
receiver using the 16-CAP scheme.

We note that, despite under the much worse interference condition, test
channel A (AWG#24) has a longer reach than test channel B (AWG#26) for
both the linear and DFE receiver structures. The reason is that the AWG#24

cable has much less attenuation than the AWG#26 cable. For oo = 0.15, the
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Figure 6.6: Performance margins for linear and DFE CAP receivers, test chan-
nel B, P, = 1077, o = 0.15, self-NEXT, background noise level of —140
dBm/Hz

difference in attenuation is about 7 to 8 dB at the center frequency point
£ = 230 kHz.

The performance margins for test channel C in the presence of stationary
self-NEXT and mixed-NEXT plus background noise are shown in Table 6.2.
The margin computed with the MFB is also included for comparison. From
the Table, we notice that both the linear and DFE receivers have negative
performance margins. In the case of stationary self-NEXT, the best margin is
-2.28 dB achieved by a DFE receiver using the 16-CAP scheme. In comparison,
from Fig. 6.6, the DFE receiver with the same CAP scheme achieves a 1 to
2 dB performance margin for the same cable but without bridge tap. The 3 to
4 dB performance drop is due to the bridge tap which causes a deep null near

250 kHz as shown in Fig. 6.3.
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Table 6.2: Performance margins (dB) for test channel C and noise spectrum
of -140 dBm/Hz

mixed NEXT + noise | self NEXT 4 noise

MF | Linear | DFE MF | Linear | DFE

16-CAP || -2.0 | -10.73 | -7.34 || 16.7 | -10.13 | -2.28

32-CAP | -249 | -12.24 | -8.01 || 15.7 | -11.36 | -2.37

64-CAP || -3.49 | -13.65 | -8.94 || 14.16 | -12.31 | -2.74

128-CAP || -4.49 | -13.90 ; -9.53 || 12.64 | -11.61 | -2.89

Also from Table 6.2, we observe that in the presence of selt NEXT, the
performance achieved by the linear and DFE receiver is well below that com-
puted with the MFB. For the same channel, but in the presence of mixed-
NEXT, the performance gap is much smaller. Owur explanations for the per-
formance gaps are given as follows.

First, recall in Chapter 3 that a MF maximises the SNR at the slicer
without taking into consideration the channel ISI, whereas the linear or DFE
recetvers try to achieve a balance between minimising noise enhancement and
at the same time equalising ISI. Therefore, the performance margins for the lin-
ear and DFE receivers are bounded by that computed with the MFB. Second,
from Fig. 6.4, we observe that in the passband, the spectra of mixed-NEXT
and self-NEXT are significantly different. That means that in terms of SNR
loss due to the equalisation of the channel ISI, the equalising methods are

much more effective in the presence of mixed-NEXT than self-NEXT.
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6.2 MMSE Results — Data-like Cross-Talk

The MMSE performance results are now examined for the linear and
DFE receivers in the presence of a single data-like cross-talk. In contrast to the
case of the stationary cross-talk, the performance results are highly dependent
on the system excess bandwidth, among the other system parameters. For
this reason, we use a different approach to compare of the two receivers. In
the following, We show the performance margin vs data rate for various CAP

schemes, while keeping the length of the cable and system bandwidth the same.

6.2.1 System Model

A 2-D CAP system model with a single data-like self-NEXT is shown in
Fig. 6.7. The transmitter consists of a 2-D encoder {not shown) and 7 and @
RRC shaping filters. The output power of the transmitter is fixed to 1 Watt.
The DFE receiver consists of a pair of FF analog filters and an infinite-length
FB cross-connected matrix filter. For the linear receiver, we simply set the
feedback paths to zero.

The transmission channel is 100 m of UTP-3 wire pair. The channel
transfer function is described by the worst-case propagation loss model which
was discussed in detail in Chapter 3. The pair-to-pair NEXT loss for the
same UTP cable is also discussed in Chapter 3. Fig. 6.8 shows the worst
case propagation loss and pair-to-pair NEXT loss for the cable, based on the
parameters given in Table 3.2 and 3.3. For a given input SNR, the background
AWGN spectrum at the receiver input can be computed by assuming the signal
spectrum is uniform over 30 MHz bandwidth of the transmission channel and

zero outside the bandwidth.
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Figure 6.8: Worst-case propagation loss and pair-to-pair NEXT loss for 100 m

of UTP-3 cable

6.2.2 SNR Calculation

The normalised MMSE expressions for the linear and DFE receivers op-

erating in the presence of data-like cross-talks are derived in Chapter 4 and 5.

For convenience, we repeat the corresponding MMSE for each dimension of

the receivers below. For the linear receiver,

;o [T 1
Em‘“‘Tf;T R(F) + 60

and for the DFE receiver,

df

-

Chin = XD {—T 77 e+ o) df} .

—oT

where

T

R()2 ~P*W'P+1 and b(f)2 %Im {PHW*lf’}

(6.9)

(6.10)



109

[ P75 | [ (- |
_ P(f- 53 _ P(f— £
P(f) 2 (f =) and B() 2 (f—5#)
| P(f+%) | PT+E)

where P(f) and P(f) are the transfer functions of the equivalent [ and @
channels, respectively. The matrix W(f) £ [W,] for —K < k,I < K can be
computed from

Wial) & 2Q7(F+ £)QU + ) + (7 + )6

where Q(f) consists of the transfer functions of all the equivalent cross-talk
channels and S,/(f) is the normalised spectrum of the background noise.

From the normalised MMSE expressions in (6.9) and (6.10}, the SNR at

the slicer is given by

1
SNR, = — (6.11)

‘smin

From (6.11) we can compute the performance margin using (6.8) in the same

way as we did in the stationary cross-talk case.

6.2.3 Maximum Data Rate

In Chapter 3, we briefly discussed the maximum data rate of an uncoded
system in an ideal bandlimited Gaussian channel. To this author’s best knowl-
edge, the maximum data rate under interferences such as data-like cross-talk
is still an open issue. However, it is reasonable to assume that the maximum
data rate is loosely bounded by a pair of bounds which can be computed de-

pending on how the sum of cross-talks is treated. Using (3.33), the lower
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bound is computed by treating the total data-like interference as another ad-
ditive Gaussian noise source which has the same average power spectrum as
the sum of all interference spectra. The upper bound is computed, assuming
that data like interference has no effect on the achievable rate. Table 6.3 shows
the data rate bounds vs input SNR (SNRy,) using the receive signal and noise
spectra, given the targeted BER of P, = 1071, as specified in the ATM LAN

application [12].

Table 6.3: Upper and lower bounds for the maximum data rate of an uncoded
system in presence of one data-like NEXT, given BER = 10~%°

SNR;, (dB) || lower bound | upper bound
20 37.12 Mbps | 66.00 Mbps
30 51.22 Mbps | 148.83 Mbps
40 57.47 Mbps | 244.03 Mbps

6.2.4 Numerical Results

First, from Fig. 6.9a, it can been seen that the negative performance
margins means that in general the uncoded system can not satisfy the BER
requirement, of 1071% unless coding techniques are also utilised; CAP receiver
with DFE performs marginally better than LE. The gap is small at the lower
end of data rates and is getting larger at the other end of data rates. This
indicates that as data rate increases, receivers with DFE tend to hold the per-
formance better than with LE; Under the channel condition, 16-CAP scheme
has the highest performance margin which is 2 dB over 32-CAP and 4-5 dB
over 64-CAP. A clear indication of this is that one should optimise symbol

rate so as to achieve the best performance;
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Next, in Fig. 6.9b where SNR;, = 30 dB, we see quite a different. picture
compared to that in Fig. 6.9a where the performance curves for different CAP
schemes are almost parallel to each other. For the DFE receiver, at data rates
below 80 Mb/s, the 32-CAP scheme has the best performance margin, while
the 64-CAP scheme is the best scheme at rates above 80 Mb/s. For the linear
receiver, the best schemes are now the 64— and 128~-CAP schemes at the lower
and upper range of data rates with the cross-over rate at around 88 Mb/s.
More importantly, at SNR of 30 dB, the 16-CAP scheme now has the worst
or next worst performance margin. This is somewhat quite unexpected result.
An additional plot where SNR;,, = 40 dB is shown in Fig 6.11.

In summary, for linear Gaussian channel, CAP receivers based on equal-
isation techniques perform significantly different with or without data-like
cross-talks. In the latter case, suppression of the data-like cross-talk by the
recelvers is just as important as conventional channel equalisation. In the next
section, we investigate in detail how to achieve an effective suppression of the

cross-talk by judicious selection of system parameters.

6.3 NEXT Equalisation vs System Parameters

In this section, using the DFE CAP receiver as an example, we inves-
tigate the relationship between data-like NEXT suppression and the system
parameters which include excess bandwidth, data rate, CAP scheme, and rel-
ative phase between the received signal and the NEXT signal. Our choice of
the DFE CAP receiver is due mainly to the extra degree of freedom it has
over a linear CAP receiver. In terms of the equalisation of data-like NEXT,
the behaviours of the linear receiver and the FF filters in the DFE receiver are
similar, as indicated by the simulation results in Chapter 4 and 5. We expect

the conclusions drawn here are also useful in the design of linear receivers in
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Figure 6.9: Performance margin vs data rates, for system bandwidth of 30

MHz, 100 m of UTP-3 cable, and one data-like NEXT, (a) SNRy, = 20 dB,
(b) SNR;, = 30 dB

the same NEXT environment.

6.3.1 Performance vs Excess Bandwidth

Fig. 6.10 plots three sets of SNR, curves against roll-off factor a, under

three different input SNRs (SNR;,), for a system bandwidth of 30 MHz and
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Figure 6.10: SNR at slicer vs roll-off factor «, for system bandwidth of 30
MHz, 16-CAP, 100 m of UTP-3 cable, and one data-like NEXT

the 16-CAP scheme. Note that since the bandwidth is fixed, larger o means
smaller system data rate. This figure also compares the performance between
a DFE with a cross-connected FB matrix filter and a DFE with a non-cross-
connected FB matrix filter. In the later case, we simply set the respective
coefficients of the FB matrix filter to zero.

From these curves, it can be seen that high values of SNR, can be
achieved by using relatively large roll-off factor (> 1). The slopes of these
curves indicates that the optimum « is around 1.2 in the sense that moving
away from this point will result in either little performance gain or a large
drop in the SNR at the slicer. This is particularly true for high SNR;,. At low
SNR,,, it is less obvious, because of the high input noise level.

We next compare the solid curves with the dotted curves. One prominent

feature in the comparison is that at large «, the performances of the two DFE
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structures are almost indistinguishable. The explanation for this is that the
FF filters alone almost completely suppress the cross-talk and the CCIL. In
the implementation of such systems, this result can mean significant hardware

savings.

6.3.2 Performance vs Data Rate

Fig. 6.11 plots the performance margin against data rate for rates from
70 to 100 Mb/s and for a desired BER of P, = 107!° and SNR;,, of 40 dB. From
the figure, we see that positive performance margins can be achieved for the
range of data rates studied and the CAP scheme with the highest performance
margin depends on the data rate. Between 75 and 98 Mb/s, 64 CAP has
better performance whereas 32-CAP and 128-CAP are better at lower and
higher data rates, respectively.

For each of the given data rates, the roll-off factors for the various CAP
schemes are listed in Table 6.4. The number in bold corresponds to the CAP
scheme which gives the best performance under the system condition. It can
be seen that in a data-like NEXT dominant environment, the choice of CAP

schemes depends strongly on the roll-off factor c.

Table 6.4: Roll-off factors o vs data rates R in Mb/s, given a bandwidth of 30
MHz, input SNR of 40 dB, 100 m of UTP-3 cable and one NEXT; bold font
indicates the CAP scheme achieving the best performance margin

R=T0 | R=75 | R=80 | R=85 | R=90 | R=95 | R=100

16-CAP 0.71 0.60 | 050 | 041 033 | 026 0.20

32-CAP 1.14 | 1.00 | 0.88 | 0.76 0.67 | 0.58 0.5

64-CAP 1.5 1.4 1.25 | 1.12 | 1.00 | 0.89 0.8

128-CAP || 2.00 1.80 1.63 | 1.47 1.33 1.21 1.1
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Figure 6.11: Performance margin vs data rates, for system bandwidth of 30
MHz, input SNR of 40 dB, 100 m of UTP-3 cable, and one data-like NEXT

6.3.3 Performance vs Input Noise

Fig. 6.12 shows SNR, versus data rate, for a = 1.2, 16-CAP, and 2
different values of SNR;,. We notice that for the same SNR;;,, the two SNR
curves for the systems with and without NEXT are approximately parallel to
each other. This suggests that the performance drop due to the addition of
data-like NEXT is independent of the system data rate.

From Fig. 6.10, we see that data-like NEXT can be suppressed by choos-
ing a large excess bandwidth. The question is then whether we should choose
a large excess bandwidth in order to suppress data-like NEXT or a small band-
width to reduce noise enhancement. Numerical studies on this issue are shown
in Fig. 6.13 where we plot the difference in SNR, between systems with o = 1.2
and 0.2 as a function of input SNR, for 16-CAP and data rates of B = 20,
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Figure 6.12: SNR at slicer versus data rate, 16-CAP, roll-off factor a = 1.2
with and without data-like NEXT

40 and 60 Mb/s. This figure shows that in the presence of data-like NEXT,
it is not always advantageous to use large excess bandwidth, especially at low
SNR,,. However, in data-like NEXT dominant environment (high SNR;,,),

there is a clear advantage in using large excess bandwidths.

6.3.4 Performance vs Relative Phase

In the final study, we investigate the effect of the relative phase between
the received signal and the data-like cross-talk on the system performance. The
whole data symbol period is equally divided into 8 time slots which represent 8
relative phases, denoted by ¢, for 0 < k < 7. The first phase ¢ indicates that
the peaks of the impulse responses of the equivalent channel and the NEXT
channel are aligned; For the second phase ¢;, the impulse responses of the
equivalent NEXT channel is shifted by -}g of a symbol period T, relative to the

equivalent channel; and so on. The performance margin vs relative phase is
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Figure 6.13: Difference in SNR, between systems with a = 1.2 and 0.2 versus

SNR,,, 16-CAP

Table 6.5: Performance margin in dB vs relative phase, given R = 51.84 Mb /8
Byys = 30 MHz, a = 1.3 and 16-CAP

®o

b1

®2

3

P4

b5

b5

b7

Ap || 26.3

27.0

28.3

29.3

20.6

29.2

28.2

26.9

shown in Table 6.5.

The results in Table 6.5 clearly show that the difference in performance

margin is about 3.3 dB between the best and worst phases. This feature is

unique in a sense that it shows the nature of the interference signal. It was

suggested in [55] that we adjust the relative phase of the signals transmitted

in adjacent pairs of wires in order to achieve the optimum performance.
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6.4 Summary

In this chapter, we conducted a number of numerical studies for linear
and DFE CAP receivers. First, we concentrated on the MMSE performance
over three different test channels in the presence of stationary cross-talks. The
results showed that as expected, the DFE receiver always performs better than
the linear receiver, because of its extra degree of freedom in spectral shaping;
Amongst the CAP schemes under consideration, we found that the 16-CAP
scheme achieves the best performance result. The 32-CAP scheme is only
marginally worse off than 16-CAP scheme; The performance gaps between
the MFB and linear/DFE receiver were also shown, which suggest that the
receiver structures based on equalisation are more effective in the presence of
white noise-like interference spectrum than sell-NEXT interference spectrum.

second, we studied the performance of the two receiver structures over a
fixed length channel in the presence of a single data-like cross-talk. The results
suggested that at relatively low input SNRs, in terms of performance margin,
the CAP schemes follow the same order as in the stationary cross-talk case.
However, at relatively high input SNRs, the suppression of data-like NEXT
plays a key role in system performance which leads to the next study.

Following the previous study, the objective of the third and final study
was to investigate the relationship between the performance margin and var-
ious design parameters in the presence of a single data-like cross-talk. The
results showed that data-like NEXT can be effectively suppressed by the use
of large excess bandwidth (& > 1); As a result, symbol rate is also reduced by
a factor of 2.

It should be pointed out that for the same bandwidth, a carefully de-

signed TDMA or FDMA scheme will also virtually eliminate interference from
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another user. These schemes have different design philosophy from cross-talk
suppression by large excessive bandwidth. In theory, TDMA or FDMA scheme
guarantees each user a interference free time slot or frequency band. In con-
trast, large excess bandwidth technique relies on the assumption that among
the multiple users, there is only one dominant data-like interferer, and re-
ceiver performs joint optimisation on noise filtering, channel equalisation, and
interference suppression.

In the NEXT dominated and high SNR environment, system perfor-
mance improvement is dependent on the effective suppression of data-like
NEXT. In a low SNR environment, care needs to be taken in the choice of
excess bandwidth, since it is possible that noise enhancement resulting from
large excess bandwidth outweighs the benefit of the NEXT suppression; The
system performance is also affected by the relative phase between the data and
the cross-talk signals. The results indicated that the performance gap between
the best and the worst phase is about 3.3 dB. This suggests that one way of
improving the system performance is to optimise the relative phase between

the transmitted signals on adjacent wire pairs as suggested in [55].
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CHAPTER 7
ADAPTIVE EQUALISERS

7.1 Introduction

In this chapter, we propose a new adaptive linear CAP receiver and study
its convergence characteristics. The new receiver structure is based on the ex-
isting receiver discussed in Chapter 2. We show that the I and @ finite-length
I'SEs of the new receiver have identical MMSE solutions. This particular fea-
ture enables the implementation of a improved adaptive algorithm based on
the standard LMS algorithm. For this reason, we call the new algorithm the
modified LMS. Theoretical analysis and simulation results show that the mod-
ified LMS algorithm more than doubles the performance of the standard LMS

algorithm in terms of initial convergence rate or misadjustment.

7.2 Derivation of the New Receiver
The proposed receiver is motivated by the transfer functions of the opti-
mum [ and ¢ receivers given by (4.35) and (4.36), which we reproduce below

for convenience

o ()P

| )
Guld) = Tz:k T+ b+ 7
(P)
Gonlf) = Tzk SO (72)

where S,(f) is the spectrum of channel noise, P(f) is the transfer function

a WP

of the inphase equivalent channel, and I'(f) = 5.7 The summation in the

denominator represents spectrum folding of T'(f) as discussed in Chapter 4.
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The above equations can be re-written in the following form

Giolf) = GHHW(S) (7.3)
Goolf) = GL(HW () (7.4)
where W (f) is defined by
Wi & oS0

CEYLT(F )+l
and where C(f) is the transfer function of the transmission channel.

From (7.3), we may view the transfer function G;(f) of the optimum
inphase filter as the cascade of the transfer functions, G;{f) and W(f). Simi-
larly, Go(f) for the optimum quadrature filter is the cascade of G,(f) and the
same W (f). Note that G3(f) and G(f) are simply filters that are matched to
the transmit filter pair G¢(f) and G,(f) and therefore they are known, whereas
the filter represented by W (f) is channel dependent and hence is unknown.

Based on the above observations, we propose a new receiver structure as
shown in Fig. 7.1. The main difference between the new and existing receiver
shown in Chapter 2 is the addition of two fixed front-end analog filters that
are matched to the transmit filter pair. It is clear that this structure change
does not effect the MMSE of the original linear receiver provided the sampling
rate before the F'SEs is sufficiently high such that there is no aliasing, and
the FSEs have infinite number of taps. However, in the following, we prove
that as a result of the two fixed filters, both equalisers have the same MMSE

solutions.
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Figure 7.1: Proposed adaptive linear CAP receiver

7.2.1 MMSE Solution

Define hi;(t) £ g,(t) @ c(t) & g:(—t) where h;(t) is the equivalent channel
from the input of the inphase shaping filter to the output of the inphase re-
ceive, filter, and ¢(t), ¢:(t) and §/(t) denote the transmission channel, inphase
transmit filter and receive filter, respectively. Similarly, the equivalent chan-
nels resulting from the other combinations of the I and @ inputs and outputs

can be defined in the same way as follows

Note, both the transmission channel and transmit filters are not shown in
Fig. 7.1. Let Hy(f}, Hiy(f), Hgi(f), and Hy(f) be the Fourier transforms of

the corresponding equivalent channels. In the frequency domain, it can readily
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be shown from the above definitions that

Hy(f) = Heg(f) = |Gr{S)IC(S) (7.5a)
Hy(f) = —Hig(f) = (—1) sen(NIGr(HIC(S) (7.5b)

where G,(f) is the transfer function of the RC filter defined in Chapter 2.
Define H(f) 2 Hy;(f) and H(f) £ H,(f) and denote the corresponding
impulse responses by A(t) and h(t). The input signals to the I and Q equalisers

are given then by

z;(t) £ z4(t) + 2(t)

2q(t) £ 24 (t) + £(2)

where
T.i(t) & i [ah(t —IT) + bih(t — 1T)]
I=—oc
Tog(t) 2 Zx: [ih{t —IT) — aih(t — IT)]
and o

2(t) & /n(fr)gt('r —t)dr and () £ /H(T)gt(T —t)dr

Let w; and w, denote the weight vectors of the I and @ equalisers.

Suppose both equalisers have the same length N such that

Wy = [w(z],wi: :wN—l]T
wy 2 [wd,wl,. . wh )"

At the sampling instants ¢, = k7! where k is an integer, the outputs of the

"The sampling phase is absorbed into the channel ¢(¢)
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equalisers, denoted by y;(kT") and y,(kT") are given by
yi(kT) £ wlx(kT)  and  y,(kT) & wlx,(kT)

where x;(kT") and x,(kT) are vectors consisting of the input samples to the

FSEs. We can express x;(kT") and x,(kT) as follows
xi(kT) 2 x4 (kT) +2z(kT)  and  x,(kT) £ x,,(kT) + Z(kT)

where x4 (kT), Xoo(kT), 2(kT) and Z(kT) are defined by

) 2 [2a(kT), 2 (kT = To), ..., 2:(kT — (N — DT,)]
4 [msq KT, (kT —To), ..., 2og(KT — (N — 1)T3)]
T) 2 [2(kT), 2(kT = To),..., 2(kT — (N ~ 1)T})]
2 [3(kT), 2(kT = T,), ..., 5(kT — (N — 1)T)]

where T is the tap delay of the FSEs. It is selected such that there is no aliasing
in the samples of the input signals. Typically, 7/T, equals some integer such
that the output sequence can be easily decimated.

The MSEs at the slicers are defined by

£; L E[|ak_Ai — yz(kT)|2] (76&)

£q = El|bi-a, — y(KT)}?] (7.6b)

where A; and A, are the I and ) system delays in units of 7" and a;_a, and
by A, are the desired symbols. We seek the optimum solutions, denoted by

Wi, and w,, to the following minimisation problems

Wy, = a,rg(glin) Ellax—a, — wi(kT)?] (7.7a)

Woo = arg min E||be_a, — yo (kT[] (7.7b)

(Aqu
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Assuming the transmission channel is time-invariant and channel noise
n(t) is stationary, the MSEs at the slicer are independent of time ¢, = k7". For
convenience, we set £ = 0. Keeping A; and A, fixed for the time being, we
firstly find the optimum solutions denoted by W;,q and wy.g, by minimising the
MSEs with respect to the equaliser weight vectors w; and w,. This is a well

known problem, e.g., [56] and wy,y and w,.q satisfy the following equations

Aéwiod = d% and Aqwqod = dq (78)
where
A; 2 Ex(0T)xT (07, A, £ Elx,(07)x (0T)]
d'.i % E[G,_AZXQ(UT)], dq % E[b—Aqxq(OT)]

Assuming that the input symbols are independent of channel noise, A;

and A, may be written as

A=A, +A, (7.9)
A=A, +A; (7.10)
where
A, £ Blx,(0T)x%(07)), Agy 2 Ex0q(0T)x,(0T)
and
A, £ E[z(0T)z7 (0T))], A; 2 FE0D)ZT(0T)]

From the above definitions, the elements of A, and A,, are given by

Agli ] = E[msé(*iTS)msi(_jTS)]

Asliy J] = Blasg(—iT)zs(—iT)]
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for 0 <¢,7 < N — 1. Assuming the 7 and @ symbol sequences consist of i.i.d

data symbols and expanding the RHS, it can be shown that

Asi[":;j] = Asq[i:j}

=0 Z —iTy ~ ATYA(—§T, — T} + h(—iT, — IT)R(—57, — IT)] (7.11)

where o2 is the symbol variance.

Similarly, the elements of A, and A; are given by

Az[zrj] = E[Z(—ZTS)Z(—_?J—;)]
A:E[la.}] = E[é(_?’Ts)E(—JTs)]

Now, since

n(7T)g(kTs + 7)dr

m= [
/n (KT, + 1) dr
it follows that
Adivg) = [[ Buln = m)adiTy + m)o s + 72) dr
where R,(r1 — ) £ E[n(ri)n(r)]. Let u = iTy + 7 and s = jT; + 75. Then
Adisi= [[ RulmT 40— gu)ats) duds
where m £ j — i. Define
2 / Balt +u — )gu(u)gi(s) duds

Note that the RHS of the above expression represents the convolution of g,(—#),

9:(t) and Ry (t), Le., R,(t) = g(—1t) ® g:(t) @ R (t). Let S.(f) £ F[R,(#)] and



S.(f) £ F[R,(t)]. Then, in the frequency domain, we have
S:(f) = G (FIPSA(S)
Using (7.12), we may express the elements of the A, as follows
ALfig) = Ru(mT) = [IGUR)PSH P21 of
Using the same procedure, it can be shown that
Asfid] = RemTy) = [IGUHPS.(em™ort af
Now, since |G,(f)| = |G+(f)], from (7.13) and (7.14) we have
At 5] = Asli, ]
and from (7.11) and (7.15), we conclude that

Ai:AqéA
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(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

Note that A is not a Toeplitz matrix, due to the fractionally-spaced

sampling at the equaliser. Following the same arguments as in [57], it can

be shown that A is always invertible, regardless of the input noise condition,

provided the roll-off factor is less than 100%. Accordingly, from (7.8), the

optimum solutions may be written as
Wiod = A_ldi
Wood = A——ldq
where d; and d, are given by

dt‘ [Z] = E{QAAixsi(_iTs)]

d,[i] = Eb_a, Teq(—iT5)]

(7.17a)

(7.17b)

(7.18a)

(7.18b)
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for 0 < i < N — 1. Expanding the RHS of {7.18), it is readily shown that
di[i} = *h(AT —iT,) (7.19a)
d,[i] = o*h(A,T —iT,) (7.19b)
We next optimise the MSE at the slicer with respect to the system delays

Ay and A,. Substituting (7.17) into (7.6) and after simplification, the I and

2 MMSEs denoted by €; min and £4min, are given by

Eimin — 0'2 Hi\ln(l - d?Akldi) (720&)
Equmin = O° rgin(l — df;A”ldq) (7.20b)
q

Substituting (7.19) into (7.20), by inspection, it is clear that the expressions
in the RHS of both (7.20a) and (7.20b) are equal, provided A; = A,. Thus,

assuming the global optimum solution exists, we have
Ap=A7p = A, (7.21)
and
Eimin = Eg,min (7-22)
Let d, 2 d,, = d,, denote the vectors corresponding to the optimum system

delay A,. Since wi,g and wyeg are functions of system delay only, we finally

have

Wio =Wy = A7Nd, (7.23)

7.2.2 Proposed Adaptive Algorithm
By adding two fixed front-end filters to the standard CAP linear receiver,

we have shown that the optimum 7 and @ finite-length FSEs are identical. In
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this subsection, we show how this feature of the receiver structure can be ex-
ploited to improve the performance of stochastic-gradient adaptive algorithms,
such as the standard LMS algorithm [47] and its variants.

In the standard LMS algorithm, the gradient of the quadratic error sur-
face is estimated by a one-point sample mean. Thus, the estimate is far from
being accurate or, simply ‘noisy’. In the proposed CAP receiver, in order to
improve the accuracy of this estimate, we propose a modified LMS algorithm,
based on the standard LMS algorithm. The modified LMS algorithm is given
by

w(n+ 1) = w(n) + pne(n)x;(n) + e,x,(n)] (7.24)
where as shown in Fig. 7.1, w(n) is the common weight vector for both I and
@ equalisers, ji,, is the algorithm step size. Note that (7.24) is updated at the
symbol rate and for clarity we omit 7" in the equation.

The basic idea of the new algorithm is that we force the 7 and () equalis-
ers to have the same convergence in the mean and to get a better estimate of
the true gradient, we use both the / and @ errors at the slicers. Such an idea
is similar to the block LMS algorithm [58]. The main difference is that com-
pared to the standard LMS algorithm, our algorithm approximately doubles
the convergence performance as will be shown shortly, whereas the block LMS
algorithm maintains similar performance level.

For comparison purpose, the standard LMS algorithm for the existing

receiver is shown below.

wiln+ 1) = w,(n) + pe'(n)x(n) (7.258)

wy(n + 1) = wy(n}) + pel(n)x(n) (7.25b)

where, in order to differentiate the errors at the slicer, we now use e'(n} and
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e?(n) to denote the inphase and quadrature errors for the standard LMS algo-

rithm.

7.3 Convergence Analysis

In this section, we derive the learning curves for both the modified LMS
and standard LMS adaptive algorithms defined by (7.24) and (7.25). These
adaptive algorithms are then compared in terms of their initial convergence
rates and misadjustment, which will be defined shortly. Simulation results are

also given to confirm our theoretical analysis.

7.3.1 Independence Assumptions

As with common practice, we make use of the well known independence
assumption (IA) e.g., [59, 60, 56] in order to make the analysis mathemati-
cally tractable. However, it should be pointed out that although IA has little
relationship with the underlying physical scenario, it is known to lead to rea-
sonable results in many scenarios as is in the case presented below. In fact,
recent studies show that it is not necessary to use IA in order to perform
convergence analysis. Detailed discussions on convergence without IA can be
found in [61, 62].

Without going details, IA simply states that the sequence {x(n)} for all
n is treated as an iid sequence; the minimum (in the least mean square sense)
I and @ symbol estimation error, denoted by € and e? are independent of
x(n). From the IA, we can deduce the following two results.

First, since x(n) is correlated with the desired symbol denoted by a,,, then
x(n) is independent of all the previously transmitted symbols, a,, as, ..., @y 1,
where the starting symbol is a;. The same arguments also holds for b, and

b, by, ..., ba_1. Second, it will be shown that the I and Q weight-error vectors



dw;(n) and dwy(n) (defined shortly) depend only on all the x{1),x(2),...,x(n—
1), and therefore, dw;(n) and dw,(n) are independent of x(n).

IA is also applicable to the modified LMS algorithm. In this case, we
assume that the sequences {x;(n)} and {x,{n)} are iid sequences; the minimum
(in the least mean square sense) { and  symbol estimation error, denoted by
eio(n) and ego(n), are independent of {x;(n)} and {x,(n)}, respectively. Note
that x;(n) and x,(n) are correlated. Again, like the standard LMS case, the
relationships between x;(n} (x4(n)) and inphase (quadrature) data symbols,
and between x,;(m) or x,(m) for 1 < m < n and the weight-error vector dw(n),

also hold.

7.3.2 Standard LMS

The convergence analysis for the FSEs has already been shown in [63].
Here, using the inphase FSE as an example, we give an outline of the key steps
and the main results. Let w,, be the weight vector of the optimum inphase
F'SE. At the sampling time t; = nT, the FSE tap weight vector is expressed

as
W; (n) =W;, + 5W@(ﬂ) (726)

where dw;(n) is called the weight-error vector. The estimation error at the

slicer is given by
&'(n) £ a, — W (n)x(n)

Note this error is zero-mean, since the symbol and hence the equaliser input

vector, are zero-mean. Using (7.26), it is easily shown that

e'(n) = e (n) — dw! (n)x(n) (7.27}
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where €!(n) £ a{n) — w2 x(n). The inphase MSE at the slicer is defined as
& 2 E[le'(n)?]

Using (7.27) and the A, and expanding the RHS of the above equation, it can

be shown that
ei(n) = g5 + E[0w] (n)Azdw,(n)] (7.28)

where £, £ E[(el)?(n)] is the MMSE of the existing receiver structure and
A, 2 EXT(n)x(n)].

The second term in (7.28) may be viewed as the excess MSFE denoted by
gt £ E[dw](n)Azdw;(n)]. Let P be the unitary matriz which diagonalises

the matrix A,, i.e., A, = PD,P7T, then the excess MSE may be written as

er{n) = E[vT(n)D,v(n)] (7.29)

€T

where v(n) £ PTdw,(n). Also, applying P to the input data vector x(n), we
denote the transformed vector by s(n) £ PTx(n). Substituting (7.27) into the
LMS algorithm of (7.25), and then pre-multiplying both side by PT and after

some simplification, we obtain
v(n+1) = [[— ps(n)s” (Iv(n) -+ peis(n) (7.30)

It can be seen that the weight-error vector v(n) (or w;(n)) is correlated with
all the previous s{m) (or x(m)} for 1 <m < n — 1, assuming x(1) is the first

data vector and therefore, from IA, it is independent of s(n) (or x(n})).
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Substituting (7.30) into (7.29) and expanding the RHS, we get

et(n+1) = E[v'D,v — pv'D,ss’v — pvTss' Dv + p?vTssTD,ssTv
+ petviD,s — uleiviss'D,s
+ peisTD,v — pleis™ D ssTv
+ (57D,
where we have omitted the time index (n) on the RHS for clarity. Using again

the IA, the expectation of the terms inside the bracket are given by

ENVTD,v] = £ _(n)
EvTD,ss’v] = EvIss"D,v] = E[v D2v]|
El(e})*s"Dys) gy, = tr Elss" D) &5, = tr[D?] &5

ElevID,s| = E[¢|E[v'D,s] = 0,

and,
EleivTssTD,s| = Eels"D,v] = Elels" D, ss”v] =0
To simplify the derivations further, the authors in [63] assumed that the
elements in s are iid random variables such that they have the same kurtosis

k £ E[s}]/(F[s?])? where s, is the ith element of the vector s. By expanding

vTssTD,ss"v, it can be shown that [63)
EvTssTD,ss™v] = e, (n)NA2 .+ (k — 1)E[vTD3v] (7.31)

where N is the number of significant eigenvalues in A, (or D.), X; is the ith

largest eigenvalue, and A2, 2 -L 5™ A2 Summarising all the expectation

rms N, Lai=1
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terms, we obtain
fer(n + 1) = iy (n) — 2uE[VTDIV] + (el (n) N, AL,
+ (6 ~ VE[TD3v] 4 p? tr[D3]e,, (7.32)

In order to obtain a more mathematically tractable formula, the authors

further assume that
ENVTD2v] = AE[vID,v] = Al (n) (7.33b)
where X is defined as A £ N%, Z;El A;. Note that the approximations become
exact when all the eigenvalues in D, are equal. Then, (7.32) becomes
Sea(n + 1) = vze(n) + p? tr[Dl]eso (7.34)

where ¥ 2 1—2uA+p?22  (Ns+x—1). Solving the difference equation (7.34),

Tms

we obtain

n

) . 1—
i) = 7"<La(0) 4 DT

for the excess MSE. In terms of the normalised MSE, it can be shown from

(7.35)

(7.35) that

1—
gi(n) = 7"£(0) + (1 — v*)z4o + p* tr[D3]ey, (7.36)

Ly

Note that in order for (7.35) and (7.36) to converge, it is necessary that
|7| < 1. Thus, from the definition of v, we obtain

2X
A2 (N +r—1)

s

D<p< (7.37)

The learning curve described by (7.36) is often characterised by its ini-

tral convergence rate and misadjustment. The initial convergence rate for the
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inphase learning curve is defined by

Lay {51(0) - Ei(OO)}

Ti gi{(1) — g;(o0)
where 7; is called the time constant, and £;(0), £;(1) and &;(cc) are computed
from (7.36). The corresponding misadjustment is defined by

£z (00)

M; &

Eio

where £, (00) is computed from (7.35).

7.3.3 Modified LMS

The common weight vector w for the 7 and @ equalisers in Fig. 7.1 can

be written in the following form
w(n) =w, + dw(n) (7.38)

where w, is the optimum weight vector and dw(n) is the weight-error vector.

The I and @ errors e;(nT") and e,(n7") at the slicer are defined by

ei(n) & a, — wl (n)x(n)

eg(n) £ by — w' (n)x,(n)
Using (7.38), we have

ei(n) = e,o(n) — dw? (n)x;(n) (7.39a)

eq(n) = ego(n) — dwT(n)x,{(n) (7.39b)
where e;,(n) and e,,(n) are given by

eio(n) 2 a, — wlx;(n)

€go{T) = by — ngq(n)
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The inphase MSE at the slicer is defined by
e(n) £ El(e;)*(n)]
Expanding the RHS, using (7.39) and the orthogonality principle, it can be
shown that
£(n) = z, + E[éw” (n)Adw(n)] (7.40)

where ¢, £ Ele},(n)] = E[eZ,(n)] and A is defined as A £ E[xx7] = E[x,x7],
as derived previously. The second term in (7.40) can be thought as the excess

MSE which we denote by
ex(n) 2= E[ow (n)Adw(n)|

Similarly, we can derive the same expression as the RHS of (7.40) for the
quadrature MSE at the slicer. This result shows that the I and @ equalisers not
only have the same MMSE solutions, but also the same MSE at any sampling
time.

Let Q be the unitary matrix such that
Q"AQ=D

where D is a diagonal matrix which contains the eigenvalues {#;} of A. Linear

transformations of dw(n), x;(n) and x,(n) by DT give
u(n) £ Q7w(n),  ti(n) 2 QTx(n),  ty(n) £ QTxy(n)

Now, substituting (7.38) into the modified LMS algorithm (7.24) and

after some simplification, we get

dwin+1) = 0w — pp[xx? + quﬂéw + ftml€i0X; + €40%y] (7.41)
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where for clarity we have omitted (n) on the RHS of the equation. Pre-
multiplying both side of (7.41) by Q7 and using the definitions for u(n), t;(n),

and t,(n), we have

u(n +1) = u(n) — pnT(n)u(n) + s (n) (7.42)
where T(n) and r,(n) are defined by

T(n) & QT [xix! + Xx21Q = t;t] + t tl

ri(n) 2 Q¥ (ex; + €qoXq) = €ioti + Egoty

Substituting (7.42) into z.,(n) and expanding the result, it is shown in

Appendix E that £.,(n) satisfies
e + 1) = €0u(n)ym + 202 2, tr[D?] (7.43)
where 7, is given by
Y 21— Al + 202 02 (Nins + K + 1)

in which #n, is the kurtosis defined by «,, £ E[z?]/(E[z?])?, N is the number

of significant eigenvalues in {6;}, and 8 and #2__ are the average and RMS

rms

average of the significant eigenvalues, i.e.,

— A 1 Nms 2 A 1 jvms 2
62— > 6 and 6,2 > 6;
™8 =1 =1

where the eigenvalues {6,} are arranged in descending order, i.e., 8 > 6y >
> Oy,

Solving the first order difference equation (7.43), we have

1 -

1_7m

Eex(N) = Tm€ea(0) + 2#37; tr[DQ]Eo (7.44)
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Finally, from (7.44) the learning curve of the modified LMS is given by

1 =5

() = 7e(0) + (1= 70 + 20, D)oo (7.45)

- Tm

Again, for (7.44) and (7.45) to converge, it is necessary that |y,| < 1, or

from the definition of |7,

(7.46)

0 < < 26
Hom H?%ms(NmS + mm + 1)

As in the previous case for the standard LMS algorithm, the initial con-

vergence rate and misadjustment for the modified LMS algorithm are given

by

% L1n {Eg:—zgg} and Mg & Eex(o0)

where £(0), (1), and £(cc) are computed from (7.45); €..(0c) and &, from

o

(7.44) and (7.20), respectively.

7.4 Simulation Results

Our simulation consists of 100 m of UTP-3 cable, the SNR at the input
to the CAP receiver set to 30 dB, 16-CAP scheme with a symbol rate of
12.96 Mbaud, and a RRC filter with a roll-off factor of 1.0. For convenience,
the starting frequency of the passband shaping filter is at DC and the centre
frequency is at 12.96 MHz. The FSEs have 25 taps with an over sampling
rate of 4. In addition, the fixed front-end receive filters of the new receiver is
treated as part of the transmission channel.

We assume that the equalisers are sufficiently long such that the MMSEs
for both standard and proposed receivers are the same, i.e., £, = €,. This

is a valid assumption, as indicated in Section 7.2. We compare the modified
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LMS algorithm with the standard LMS algorithm in terms of their initial con-
vergence rates and misadjustments. Since these two parameters are generally
inter-dependent [56], we compare either the initial convergence rates or the
misadjustments while forcing the others parameters to be the same. In this
way, we make the comparison as fair as possible.

In the evaluation of (7.36) and (7.45), we assume that x = k,, ~ 1.64
where x,, is computed from the symbol sequence of the 16-CAP scheme, and
Ns = Nps &~ 12 for the channel which is found by inspecting the calculated

results.

Comparison of initial convergence rates

As indicated above, in order to maintain the same misadjustment, we
first select the step size y for the standard LMS algorithm and then use (7.35)
to find the misadjustment. From this misadjustment, we then compute the
step size for the modified algorithm. Alternatively, we can merge these two
step into a single equation which is given by

242 tr[D2) 0

2 te[D2]62,, (N, + 5 + 1) — tr[D2(1 - ) (7.47)

M =

Fig. 7.2 plots the normalised MSE against time in units of symbol pe-
riod. The ‘noisy’ lines show the MSE learning curves of the adaptive algo-
rithms, whereas the smooth lines are the predicted learning curves as given
by (7.36) and (7.45) for the standard and modified LMS, respectively. It can
be seen that both algorithms have as expected, the same misadjustment, but
at different convergence rates. The calculated initial convergence rates for the
standard and modified LMS are 7! = 0.03 and 7' = 0.058, respectively
for a misadjustment of 10%. The convergence rate of the proposed adaptive

algorithm is thus approximately double that of the standard LMS algorithm.
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We obtain similar results for other values of misadjustment.

5 T T T T T T T T T
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-5} ! 4
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©
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-351
_40 1 1 1 1 L 1

1 1 1
(o 50 100 150 200 250 300 350 400 450 500
symbol period

Figure 7.2: Comparison of initial convergence rates with same misadjustment,
averaged over 60 trials

Comparison of misadjustments

In the second simulation, we fix the convergence rate while comparing
the misadjustments. But first, we would like to simplify the convergence cal-
culation. The simplification is illustrated through the convergence rate of the
modified LMS algorithm. Since €(0) > £(1) > e(00), the initial convergence

rate can be approximated by

S’

sl
~ In el (7.48)

I

-

For the normalised learning curves (¢(0) = 1), it can be seen from (7.48),

that in order to achieve the same convergence rates for both algorithms, we
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have €;(1) = (1). Using (7.36) and (7.45), we can write

2(tr[ D)o + Opns(Ns + 5 + 1)) i, — 404t

+ 2uX — P A2

rms

Ny +#—1) — g2 tr[D3e, =0 (7.49)
r

where 1 — ¢, =~ 1. Therefore, the initial convergence rates of the standard and
modified LMS algorithms can be made the same by first selecting a step size
i then using (7.49) to find the corresponding fiy,.

Fig. 7.3 plots the simulated and predicated learning curves. We observe
that both algorithms have approximately the same initial convergence rates
while the misadjustments differ. The calculated values of the misadjustment
for the standard and modified LMS algorithms are 0.67 and 0.17, respectively.
In other words, the misadjustment of the proposed algorithm is less than half

of that of the standard LMS algorithm.
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symbol period

Figure 7.3: Comparison of misadjustments with same initial convergence rate,
averaged over 60 trials
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7.5 Summary

In this chapter, we considered an alternative linear CAP receiver struc-
ture based an existing linear CAP receiver using two parallel FSEs. The main
difference between the two receivers is that the new receiver has two fixed
analog filters which are matched to the transmit filter pair, followed by a
pair of FSEs. The MMSE for finite-length FSEs was then derived. Results
showed that the equalisers in the new receiver have the same MMSE solutions.
Using this feature, we proposed a modified LMS algorithm which was then
analysed. We showed that compared with the standard LMS algorithm, the
new algorithm approximately doubles the initial convergence rate for the same
misadjustment, or alternatively, it more than halves the misadjustment for the

same initial convergence rate. Simulation results were also given.
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CHAPTER 8
CONCLUSIONS

8.1 Concluding Remarks

The key driving force behind the current research on CAP systems is
that they have the same bandwidth efficiency as their corresponding QAM
systems, but with a transceiver structure that is surprisingly simple to im-
plement. This feature alone makes CAP the ideal replacement line code for
many communication systems, in particular xDSL systems using QAM/PAM
line codes.

With the target xDSL systems in mind, we studied the channel and in-
terference models for the types of cables commonly found in existing PSTNs.
Apart from the usual channel impairments such as time dispersion and back-
ground noise, cross-talks from adjacent copper wire pairs can also limit the
data throughput of these systems. In our system analysis, we considered two
types of cross-talk models, namely, the stationary model and data-like model.
The choice of cross-talk models depends on the cable of interests. If there is
a large number of {unsynchronised) interferers and none of them is dominant,
then, by invoking the central limit theorem, their total effect can be modelled
as an additive Gaussian noise source. On the other hand, if there is only a very
limited number of interferers and one or two of them are dominant, then the
data-like model is more appropriate. The former interference model is often
applicable in xDSL systems, whereas the latter model is applicable in appli-

cations such as ATM LAN over UTP-3 cables. It should be pointed that the
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two aforesaid cross-talk models represent the two extreme cases in an actual
system.

In recent years, significant research efforts around the world have been
directed towards an understanding of the CAP line code. As part of this world
wide research effort, our focus is on the MMSE performance of linear and DFE
CAP receivers, operating in the presence of stationary and/or data-like cross-
talks and additive Gaussian channel noise. The study of linear CAP receivers
could have been approached by specialising the existing results for a general
linear MIMO system, but to the author’s best knowledge, this approach has
not produced any more meaningful solutions that offer further insights into the
performance of the CAP systems than what has already been shown. Treating
both linear and DFE CAP receivers as new problems, we reconsidered these
MMSE problems with special consideration of the Hilbert pair relationship
between the transmit filter pairs.

Our new results provide better understanding of both receiver structures.
To be more specific, in the linear receiver case when both data-like cross-talks
and noise are present, the derived transfer functions of the optimum receive
filter pair are given in frequency intervals of 1/7° Hz where the contribution of
the cross-talk in each interval is clearly represented. And when only channe]
noise is present, the derived expressions can be further simplified to a form
similar to that found in a QAM system.

In the DFE case, we provided a method of computing the transfer func-
tions of the optimum feed-forward and feed-back filters, provided the channel
spectral matrix can be factorised into a product of minimum and maximum
phase terms. The MMSE expression for the DFE receiver provides an impor-

tant performance bound in the engineering design of such systems. Apart from
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these immediate applications, the derived results also give further insights into
some of the known engineering issues such as the effects of the relative phase
of the cross-talk signals on the system performance as discussed previously.

To further our understanding of the CAP line code, three sets of numer-
ical studies were conducted, based on the derived results. In the first set of
studies, we compared the MMSE performance of a linear and a DFE CAP
receiver in a stationary cross-talk environment. In order to determine the
effectiveness of the receiver structures based on equalisation techniques, our
comparisons also included the results computed with the MFB. In the second
set of studies, we compared the MMSE performance of a linear and a DFE
CAP receiver in a data-like cross-talk environment. The results demonstrated
the importance of NEXT equalisation in the design of a CAP transceiver sys-
tem operating in data-like NEXT dominant environments. In the final set of
studies, we further investigated the relationship between the performance of
a DFE CAP receiver and various system parameters, in the presence of data-
like NEXT. Much information on the performance of linear and DFE receiver
structures has been revealed in these studies. It complements the existing
knowledge on CAP receivers obtained through the use of finite length receive
filters. Without the limitation imposed by the finite length of the receive fil-
ters, we were able to gain a clearer and hence better understanding of these
issues.

In addition, we also considered a novel adaptive linear CAP receiver,
based on an existing adaptive lincar CAP receiver structure. The main feature
of the proposed receiver structure is that the optimum / and @ FSEs have the
same transfer functions. Based on the standard LMS algorithm, a modified

LMS algorithm was proposed for the new receiver structure. Analysis and
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simulation results showed that the initial convergence rate of the modified
LMS algorithm is approximate twice as fast as that of the standard LMS
algorithm, given the same misadjustment; alternatively, given the same initial
convergence rate, the misadjustment of the modified LMS algorithm is less

than half of that of the standard LMS algorithm.

8.2 Suggestions for Future Work

Although significant research efforts have been recently put into the stan-
dard 2-D CAP line code, there remain many unknowns. The purpose of our
current work is twofold — to further our understanding of CAP systems, and to
stimulate further researches on issues arising from this work. In the following,
we summarise some of these issues which are directly related to the research
work presented in this thesis.

One clear omission is research on related hardware issues. In particular,
we would like to know what are the expected performance levels of the linear
and DFE CAP receivers with finite-length FSEs. This issue is particularly im-
portant in the presence of data-like cross-talks. Compared to the simulation
results in Fig. 4.6, the results in Fig. 4.5 indicate that the FSEs require a rela-
tively large number of taps to approach the performance of the ideal equalisers.
In another words, we can expect a significant performance drop as a result of
the constraint on the number of taps. Another hardware related design issue is
the implementation of the fixed front-end (analog) filters shown in Chapter 7.
Since these filters are typically implemented as digital filters, an important
design issue is to try to achieve simultaneously the Hilbert pair relationship
and a close approximation of the passband RRC filter characteristics.

The second omission is research on the convergence characteristics of the

adaptive equaliser in the presence of data-like cross-talks. The learning curves
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shown in [13] which are confirmed by our simulation results, reveal that the
total convergence process can be divided into two stages . The explanations
given by the authors of [13] are as follows. In the first stage, the equaliser
mainly ‘sees’ ISI, therefore it follows the same curve for the situation when
there are no data-like cross-talks. After the removal of enough ISI, the equaliser
starts to jointly equalise the remaining ISI and the data-like cross-talk. The
convergence rate in the second stage is much slower than that in the first
stage, due to this joint equalisation. Theoretical analysis on the convergence
characteristics is required in order to fully understand this observation.
Finally, from the above discussions, we see that the performance of CAP
receivers based on the conventional linear and DFE receiver structures will be
severely degraded due to the limitation on system bandwidth or the number of
equaliser taps, or both, in the presence of data-like cross-talk. This indicates
that research on new CAP receiver structures are required to effectively combat

this type of interference.
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APPENDIX A
PROOF OF ATW-IA =W-!

let Qm(f) and Qn(f) be the inphase and quadrature equivalent channels of

the mth interferer which uses the same 2-D CAP line code. Then
Ly/2

Do (@5 + Pl + )+ QP+ 2P+ )]+ N

Wialf) = - {
" (A1)

T
where —K < k,I < K are the row and column indices, respectively, and
f € [—%, %] Without loss of generality, in the equation we assume that
channel noise is white. The upper triangle of matrix W may be divided into

6 regions depending on the values of £ and ! as shown below

Consider the matrix elements in each region. From (A.1) and recall that
E(f) = (~§) sgn(f)(f), we have

1. k=1 case

T2
W= { o 1Qn(T+ I + 10l F+ 2] b+ N 0

m=1



2. 0> >k case

3. 1>0>k case

| Dot

Wi == Z[Q* (f + )Qm(f + )

+ (DT + PN + )] =0

4. k>1>0 case

Ly/2 ]

Wi = % >olan(F+ %)Qm(er 7

FOI@ + 2N -1+ )]
Lb/2

=—ZQ* f+ )Qn(f + = )%0

9. k<0, I =0case

1 e koo
Wi, = T Z[Qm(f + ?)Qm( )

+ G0 + 2)(=1) s F)Qm(P)
Ls/2

=—[1—so~n 1Y Qu(F+ )@m( )

m=1

149
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6. k=10, [ >0 case

<A
Wi =7 Do lQn(Nen(f+ 'f)
m=1

+um@6wmﬂvm%d+%n
Lo/2

= 7l + 5D D @57+ 7).

Since W is Hermitian, the elements in the lower triangle region follows imme-
diately.
Now, consider the situation where f > 0 and K = 3 (for other values of

K, the steps are very similar), then W can be written as follows

W — Aﬁxe‘} 0(3)(4)
44
0(4)(3) Aggx )

where A7 £ Wi for =3 < k,1 < —1 and ALY £ (W] for 0 < k,1 <3.

[Aﬁxm]—l 0(3)(4) ]
W= { :

Then

x Ax4)q_
0 (ALY
For f >0, A(f) = diag[4,...,7,—4,...,—j]. Therefore,
3 4
AEWIA = WL (A.2)

For f < 0, it is easily shown that W has the following form

Agzile} 0l4x3)
W =
QB3x4) Ag;XB)

, (A.2) is also true.
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APPENDIX B
SOLUTION TO X(f)

Define f* € [0, oo) and the related notation f~ € (—oc, 0). We write
f*=F+ 5. Then, for f >0, X(f) may be expressed as

+ . m+

X(f*) = L= Kn([ + =) =3 Kel(F + )]
=1-Kr(f) - i Kr(f)
£ XF(f) (B1)

Similarly, for f < 0, we have

X(=f*) =1~ Kp(~f) +j Kr(-])

(=5) (B.2)

lIe-

!

X

Now, we express Ko(f) and Kr(f) in terms of the folded spectrum of K(f)

and K(f) respectively, i.c.,

Kr(f) = = > K(f+ ) (B.3a)
Brlf)=3 Y K(F+7) (B.3b)
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and

Next, substituting (B.4) and {B.5) and back into (B.1) and (B.2), and

solving for X7 (f) and X7 {(f), we obtain

X)) =X(=1") =X7(f) = Xz (=)
1

RS p i (N0} +1

(B.6)

From the above equation, we notice first that X (f) is an even function of f,
and secondly the denominator on the RHS is the same as S.(f) in (4.24).
Finally, using the same technique as for S,5(f), we get
_ 1

RN TR

where f+ = |f| - m%’ for some suitable integer m™.

X(5) (B.7)
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APPENDIX C
EXPANSION OF MSE

For convenience, we repeat (5.2} below
e = E[e” (kT)e(kT)] = trE [e(kT)e (kT)] . (C.1)

The term of e(¥T)eT (kT') can be expanded as follows

e(kT)e? (kT)
= fw(kT) — a(kT)][w’ (kT) — a’ (kT)]
= w(kTYw(kT) — w(kT)a” (kT)

— a(kT)wT (kT) + a(kT)aT (kT). (C.2)

Expanding each term on the RHS of (C.2) further and taking their expectations

with respect to all symbols, we get

Elw(kT)w" (kT)]
= -/-/[0'2 Z gl (—m — mT)g(—73 — mT) + ra(m — 72)]
g-(1)g; (ro)drdr

—0*} / g (10T (=7 + IT)FTdr
=1

-y / Fip(—7 +1T)g? (7)dr
=1

[es]
+O'QZFJF;F (03)
=1
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where ro(r) £ E[n(t - rn()],
Plw(kT)a" ()] = o* [ g (r)p(~1)ds
and
Ela(kT)al (jT)] = 02,1

In summary, the expectation of (C.2) can be written as

E. =

o0

JIIY gn - mtgcn—m) + o7t - )

m=—oc

g (n1)e; (r2)dridm
- Z /gr(r)pT(—T +IT)F]dr
=1 "

o0 o0
-3 f Fip(—7 +IT)gl (r)dr + > F/F]
=1 I=1

- / g (1)pT (—7)dr — / p(—r)gT(r)dr +1 (C.4)

where E, £ Ele(kT)e’ (kT)]/o.
We now re-write summation term >, g7g; in the above equation as
follows

oo o0 0 00
> glee= Y d'a+ > pp+> p'p (C.5)
Mm=—00 . =]

m=—0C m=—0Q
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Substituting (C.5) into (C.4), we define the matrix E; as follows

Note Ey can be factorised into the following form

Ef =
o0

Zx/g@nﬁpf+nwf—Ex/gﬁmﬂ_r+wwf—mf.(C@

i=1

Next, we define

Alry, 1) 2 Z a’(—m — mTq(—71 — mT)

m=--00
0

Z pT(—Tl —mTYp(—re — mT) + J_2rn(1‘1 — Ta).

m=—00

_i...

Note that A is symmetric, i.e., A(m, 72) = A(72, 71). Then, equation (C.4) can

be written as
E.(g:,F) = E¢(g-, F) + E4{g,) (C.7)

where the matrix E, is given by

Eg é // A(Tl,Tg)gr(Tl)gg(Tg)dTld’Q

- [ etr)pT(=rydr - [ pnefnar +1
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APPENDIX D
PROOF THAT E, IS A SCALAR MATRIX

The matrix ®(z) £ I + M(z) can be diagonalised by the unitary matrix

galll’
21, 1
That is
R-b 0
TP = : (D.1)
0 R+b

But ®(e’?) is positive definite since M(e??) is positive definite. Therefore, the
diagonal entries of ¥ @ W are positive real functions of f.

Now, since [ In(R=+b)d8 > —o0, then from one-dimensional factorisa-
tion theory, e.g. [5], there exist sequences a(z) and 3(z)

e"e E ame ™ and (e} & E Be”im?

m=0

with ag and 3 being real and positive, such that 72 ®W¥ = VV where V is
defined as
a 0

0 g
Thus,

® = (TVEH)(wvHgH)

=Uu# (D.2)
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where
o+  ~jla-
UL wveH — je=F) (D.3)
Jjla—3) o+ 3
Let Uy denote the DC term in U=3%"_ U, e 7™, It follows from
(D.3) that

ag+ 3 —jlag — 5
U, = o+ o (o — Bo) (D.4)
Jlao—Bo) o+
Now, the matrix E, can also be written as
E, = [U,Uy]™" = 7
—Jjy =z
where z and y are some real values. But, from the definition, E, cannot be

complex, we thus conclude that y = 0, or E, is a scalar matrix.
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APPENDIX E
CONVERGENCE OF THE MODIFIED LMS ALGORITHM

For convenience, the equation (7.42) is repeated below

u(n + 1) = u(n) — g T(n)a(n) + p,r(n) (E.1)
Using (E.1) and expanding .., we get
Eex(n+1) = E[uTDu — tmuDTu + pu? Dry
~ T TDu + 2 uTTDTu — 42 u" TDr,
+ pimtf Du — g2 1y DTu + pi2, 17 Dry] (E.2)

Now, using IA, each of the expectation terms in the above equation can be

evaluated as follows
E[u"Du] = z.,(n)
E[u"DTu] = E[u”D(t;t] + t,t7)u]
+ E[u"Dt;t]u] + E[u" Dt tlu]
= 2E[u"D*u’]

where we have used Eft;t]] = E[t,t]] =D

E[u"Dr;] = E[u"D(e;st; + egoty)] = 0
E[u"TDu] = E[u”(t;t] + t,t7)Du] = 2E[u”Du]
E[uTTDr,] = E[u"TD(eit; + egt,)] = 0
E[r{Du] = E[r{DTu] =0
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and

E[r;Dry) = E[(ewnt] + egoti )D{ewt; + egoty)]

= 2¢,tr[D?]

The evaluation of the term E[uTTD’I‘u] 1s not straight forward, as will be
shown below.

First, we expand the expectation

E[u"TDTu] = E[u”(t;t] + t,t] )D(t:t7 + t,t])u]

= 2E[u"t;t] Dt;t]u] + 2E[u”t;t] Dt,t7u] (E.3)

Note that the first term on the RHS of (E.3) is identical to (7.31), except that
the corresponding quantities are now for the modified LMS. Therefore, we can

immediately write

E[u"t;t] Dtt]u] = eea(n)N, 62, + (Km — 1) E[uT D] (E.4)

rms

where N is the number of significant eigenvalues {#;} of D, and 6?__ is the
RMS average of the significant eigenvalues, i.e., 67,,, £ - SN 87, assuming
the eigenvalues are arranged in descending order. A related quantities € is
defined by 8 £ L 37" g,

We now evaluate the second expectation term E[u”t;t] Dt tTu]. Ex-

pressing the 7 and @ vectors t; and t, as follows

ti =11+t + 37 (E.5a)

ty = tio + by + 7 (E.5b)

where the transformed vectors tiy, ti3, ts), tog, Z; and Z, correspond to the

original vectors which consist of samples from their respective signals z;;{),
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212(t), 221(t), z22(t), 2(f) and Z(¢) which are defined by

on(t) £ Y ah(t—IT), T2 2= Y ah(t-IT)
l=—e0 i=—o00

Q}'gl(t) = Z b]jb(t — JT), oo A Z b[h(t — lT)
l=—0c0 l=—o0

and, z(t) and Z(t) are the filtered J and @ noise components, which have been
defined previously. Using (E.5), we can expand t;t7 and tqtg" in the following

form

tit] = tut]) + tith +tuzl +tarth + tortd, + toyz!
+ 2], + 25, + 7oz, (E.6a)
tt] = tiot], -+ tiatdy + 1077 + tostD, + tootl, + topz”

+ Zits + Zt L, - 27T (E.6b)

Before expanding E[tit?thtg], we consider the following two expressions.

First, consider
B0 + 7)) = N [ g(6)a(s - r)ds (B7)

It can be scen that for 7 = 0, E[2(¢)Z(t)] = 0, which means that the diagonal
elements in E[zz”] = 0. Based on this observation, we can assume that com-

pared with the other terms in (E.6), the contribution by E[zz”] is negligible,

le.,
Ejzz"] =~ 0 (E.8)
Second, consider the (m, n)th elements of E[t;;t%,] which can be written
as
EltytL)[m, n] = o* i h(—mT, — IT)h(—nT, — IT) (E.9)

I=—00
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We assume that the transmission channel has a linear phase. For the UTP
cables, this is a valid assumption as can be seen from the corresponding sim-
plified channel model discussed in Chapter 3. Further, we assume that the
optimum sampling phase which is absorbed into the channels, is such that for
some integer k,, h(t — k,T;) is an even function of ¢ and hence fz(t — kT,) is
an odd function of t. The validity of this assumption has been observed in our
simulation studies. Under these assumptions, it is easily verified the diagonal
terms of Eft11t%) equal 0.

As for the non-diagonal elements of E[t;;t%,], the overall contribution to
E[u”tt7 Dt t]u] is relatively small, compared to that from F[t,;t7], whose
elements are given by

Eltuthlm,n] = 0> A(—mT, — IT)h(—nT, — IT) (E.10)
{

In order to see this, using 100 m of UTP-3 cable we plot values of E[t;t7,][0, n]
and Eft;17][0,n] for 0 < n < 30 in Fig.E.1 where the horizontal axis cor-
responds to the index n. From the above discussions, we conclude that the

contribution of E[t1;t]] is negligible, i.e.,
Eltyut]] ~0 (E.11)
Using IA, (E.8) and (E.11), it now follows that
Ett] Dt t]] ~ D? (E.12)
Finally, substituting (E.4) and (E.12) into (E.3), we have

TS

E[u" TDTu] ~ 2e., ()62 (Ns + £ + 1) (E.13)
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Figure E.1: Comparison of first row vectors in E[t1,t7] (co-channel) and
E[t11t7] (cross-channel)

and, summarising all the expectation terms on the RHS of (E.2), we have

Een(n+1) 2 ep(n) [1 — dpum + 205,07 (N5 + ki + 1)] +2u2e, tr[D?] (E.14)
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