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Abstract—Recently, several linear receiver algorithms have been
developed for space-time block-coded multiaccess multiple-input
multiple-output (MIMO) wireless communication systems. All
these techniques are based on the assumption that the channel
state information (CSI) at the receiver side is perfect. However, in
practical situations, the available CSI may be imperfect because
of channel estimation errors and/or outdated training.

In this paper, we develop new robust linear receiver techniques
for joint space-time decoding and interference rejection in multi-
access MIMO systems that use orthogonal space-time block codes
and erroneous CSI. The proposed receivers are based on worst-
case performance optimization. They are shown to provide a sub-
stantially improved robustness against CSI mismatches as com-
pared with the existing linear multiaccess MIMO receivers.

Index Terms—Imperfect channel state information, multiaccess
MIMO communications, orthogonal space-time block codes, ro-
bust linear receivers.

I. INTRODUCTION

SPACE-TIME coding has recently emerged as a powerful
approach to exploit spatial diversity and combat fading in

multiple-input multiple-output (MIMO) wireless communica-
tion systems [1]–[3]. Orthogonal space-time block codes (OS-
TBCs) [2], [3] represent an attractive class of space-time coding
techniques because they enjoy full diversity and low decoding
complexity. In the point-to-point MIMO communication case,
the optimal maximum likelihood (ML) detector for this class
of codes consists of a simple linear receiver that maximizes the
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output signal-to-noise ratio (SNR) and the symbol-by-symbol
detector. For each symbol, this ML detector can be interpreted
as a matched filter (MF) receiver [4].

In the multiaccess MIMO case, the ML receiver has much
more complicated structure and prohibitively high complexity
as compared with the ML receiver for the point-to-point MIMO
case. Therefore, in multiaccess scenarios, suboptimal but simple
linear receivers can be a good choice.

Several linear receiver techniques have been recently devel-
oped for space-time coded multiaccess MIMO systems [5]–[8].
For example, a minimum variance (MV) linear receiver has been
developed in [5] for direct sequence (DS) code-division multi-
access (CDMA) systems that use multiple antennas and space-
time block coding. However, the scheme proposed in [5] is re-
stricted by transmitters that consist of two antennas only. The
latter restriction is dictated by the Alamouti’s OSTBC scheme
that is adopted in [5].

Another linear technique has been proposed in [6], where a
decorrelator receiver has been developed for a DS-CDMA based
communication system. This receiver also uses the Alamouti’s
code and is limited by the assumption that the transmitter con-
sists of two antennas and that not more than two antennas are
used at the receiver. Another restriction of the receiver of [6] is
that it is applicable only to the binary phase shift keying (BPSK)
signal case.

One more linear receiver technique for the multiaccess
MIMO case has been proposed in [7]. Similar to [5] and [6],
the approach of [7] is restricted to the case of Alamouti’s code.
Another restriction of this approach is that it cannot suppress
more than one interferer.

A more general class of MV linear receivers have been re-
cently proposed in [8]. In contrast to [5]–[7], the techniques of
[8] are applicable to the general case of arbitrary OSTBCs and
multiple interferers.

A common shortcoming of the techniques in [5]–[8] is that
they use the assumption that the exact channel state information
(CSI) is available at the receiver. In practice, this condition can
be violated because of channel estimation errors that are caused
by limited/outdated training as well as the effects of multiaccess
interference (MAI) and noise.

In this paper, we develop new robust beamforming-type linear
receiver techniques for joint space-time decoding and interfer-
ence rejection. The proposed receivers can be viewed as robust
generalizations of the MV techniques of [8] and are based on the

1053-587X/$20.00 © 2005 IEEE
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worst-case performance optimization approach, which was suc-
cessfully used to develop robust techniques for adaptive beam-
forming [9]–[12], multiuser detection [13]–[15], and power con-
trol [16], [17]. The proposed worst-case optimization-based re-
ceivers are shown to provide an improved robustness in the case
of imperfect (erroneous) receiver CSI.

The reminder of this paper is organized as follows. In Sec-
tion II, the background of the point-to-point and multiaccess flat
fading MIMO models is given, and an overview of the MV linear
receivers of [8] is presented. Section III develops the new robust
MV receivers based on worst-case performance optimization.
Simulation results are presented in Section IV, and conclusions
are drawn in Section V.

II. BACKGROUND

A. Point-to-Point MIMO Model

The relationship between the input and the output of a single-
access (point-to-point) MIMO system with transmit and
receive antennas and flat block-fading channel can be expressed
as [3]

(1)

where

are the matrices of the received signals, transmitted signals, and
noise, respectively, is the complex channel matrix,

is the block length, and denotes the transpose. Here,
, and

are the complex row vectors of the
received signal, transmitted signal, and noise, respectively.

Let us denote complex information-bearing symbols prior to
space-time encoding as and assume that these
symbols belong to (possibly different) constellations

. Let . Note that , where
is the set of all possible symbol vectors,

and is the cardinality of this set. The matrix is
called an OSTBC if [3]

• all elements of are linear functions of the com-
plex variables and their complex conju-
gates;

• for any arbitrary , it satisfies

(2)

where is the identity matrix, and denotes
the Euclidean norm of a vector or the Frobenius norm of
a matrix.

It can be readily verified that the matrix can be written
as [8], [18], [19]

Re Im (3)

where , and is the
vector having one in the th position and zeros elsewhere.

Using (3), one can rewrite (1) as [8], [18], [19]

(4)

where the “underline” operator for any matrix is defined as

vec Re
vec Im

(5)

and vec is the vectorization operator stacking all columns of
a matrix on top of each other. Here, the real matrix

is defined as [8], [19]

(6)

The matrix captures both the effects of the space-time code
and the channel. An important property of this matrix is that its
columns have the same norms and are orthogonal to each other:

(7)

In the presence of the exact CSI at the receiver, the optimal (ML)
space-time decoder uses channel knowledge to find the closest
point to the received signal in the noise-free observation space

, i.e., it obtains [3]

(8)

and then uses this index to decode the transmitted bits. Here,
is the noise-free received signal matrix that corresponds to

the vector of information-bearing symbols .
The ML receiver can also be viewed as a matched filter whose

output SNR is maximized [4]. It can be shown [8], [19] that
(8) is equivalent to the MF linear receiver, which computes the
following estimate of

(9)

and builds the estimate of the vector as

(10)

The th element of is then compared with all points in .
The closest point is accepted as an estimate of th entry of .
This procedure is repeated for all , that is, the
decoding is done symbol-by-symbol.

According to (7), the matrix in (9) is the
pseudoinverse of . Therefore, (9) can be alternatively
viewed as a decorrelator receiver.

B. Multiaccess MIMO Model

Let us now consider an uplink multiaccess MIMO commu-
nication system shown in Fig. 1. The transmitters (users) are
assumed to have the same number of transmitting antennas
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Fig. 1. Multiaccess MIMO system.

and to encode the information-bearing symbols using the same
OSTBC.1 The received signal is given by [8]

(11)

where is the matrix of transmitted signals of the th trans-
mitter, is the channel matrix between the th transmitter and
the receiver, and is the number of transmitters.

Applying the “underline” operator of (5) to (11), we have [8]

(12)

where is a vector of information-bearing symbols of
the th transmitter and, according to (6), the matrix can
be expressed as

(13)

In (13), represents the space-time signature that corre-
sponds to the th real-valued symbol transmitted by the th user
(i.e., the space-time signature that corresponds to the th com-
ponent of the vector ). Both the effects of the space-time code
and the channel of the th user are captured in the matrix (13).

C. Minimum Variance Linear Receivers

In the multiaccess MIMO case, the MF receiver of (8) be-
comes highly nonoptimal because it ignores the effect of MAI
treating it as a noise. In this case, the receiver performance is de-
termined by the signal-to-interference-plus-noise ratio (SINR)
rather than the SNR, and some cancellation of MAI is required.

Using the model (12) and assuming without any loss of gen-
erality that the first transmitter is the transmitter-of-interest, we
can express the output vector of a linear receiver as [8]

(14)

1These assumptions are only needed for notational simplicity and can be re-
laxed; see [8].

where

is the real matrix of the receiver coefficients, and
is the estimate of the vector at the receiver output. The vector

can be interpreted as the weight vector for the th entry of
.
Given the matrix , the estimate of the vector of informa-

tion-bearing symbols of the transmitter-of-interest can be com-
puted as

Using such a linear estimate, the th information-bearing
symbol can be detected as a point in , which is the nearest
neighbor to the th entry of .

Using the framework of (14), we can interpret the MF receiver
in (9) as a linear receiver with the following coefficient matrix:

(15)

The similarity of the vectorized multiaccess MIMO model
(12) and models used in array processing gives an opportunity
to design the matrix using the MV principle [20]. Using the
MV approach, in [8], it has been proposed to estimate each entry
of by minimizing the receiver output power while preserving
a unity gain for this particular entry of , that is

subject to (16)

for all , where

is the sample estimate of the full-rank covariance
matrix

of the vectorized data (12), is the th received data block,
is the number of data blocks available, and denotes the

statistical expectation.
The solution to (16) is given by [8]

(17)

with . The form of the obtained MV receiver
(17) is similar to that of the minimum variance distortionless
response (MVDR) receiver used in beamforming [20] and the
minimum output energy (MOE) receiver used in multiuser de-
tection [21]. Although the receiver (17) is able to reject MAI,
it does not fully cancel self-interference [5], which, for each

, is caused by other entries of than the th one. Note
that the complete cancellation of self-interference is a very de-
sirable feature because, otherwise, the symbol-by-symbol de-
tector becomes nonoptimal [8].
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To incorporate the self-interference cancellation feature into
(16), it was proposed in [8] to use additional zero-forcing con-
straints for all . These constraints guar-
antee that self-interference is completely rejected.

With such additional constraints, the problem (16) can be re-
formulated as [8]

tr subject to (18)

where tr denotes the trace of a matrix. Using the Lagrange
multiplier method, the solution to (18) can be written in the fol-
lowing form [8]:

(19)

Note that the linear receivers (17) and (19) can be used not
only in the case of multiaccess MIMO systems with OSTBCs
but in a more general case as well, where linear (not necessarily
orthogonal) STBCs are used.

To improve the performance in the case of imperfect CSI
and sample size, it was proposed in [8] to apply fixed diagonal
loading (DL) to (17) and (19). Then, the DL-based modification
of the MV receiver (17) can be written as

(20)

with

(21)

where is the diagonally
loaded sample covariance matrix, and is the fixed DL factor.

Similarly, the DL-based modification of the MV receiver (19)
takes the form

(22)

Simulation results in [8] have demonstrated that the receiver
(22) usually outperforms (20). Unfortunately, it is not clear from
[8] what the proper choice of in (21) and (22) is and how it
depends on the norm of the CSI errors. Furthermore, it is well
known that the optimal choice of the DL factor is scenario de-
pendent [9], [15]. Therefore, the robustness of the fixed DL re-
ceivers (20) and (22) may be insufficient.

III. ROBUST MINIMUM VARIANCE RECEIVERS

In this section, we develop generalizations of the techniques
(17) and (19), which are robust against imperfect channel
knowledge at the receiver. Let us assume that the true channel
matrix is not available at the receiver. The only available
quantity is its estimate , which represents a distorted (mis-
matched) copy of . Let us introduce the error matrix

(23)

between the true channel matrix and its presumed (esti-
mated) value , and let the Frobenius norm of this error matrix
be upper bounded by a known constant , that is

(24)

Let us define the mismatched space-time signatures
of the desired user through the

matrix

(25)

The following Lemma will be needed to derive our robust MV
receivers.

Lemma 1: For any OSTBC

for all (26)

where

(27)

Proof: See Appendix A.
The sought robust modification of (16) should minimize the

output power subject to the constraint that the distortionless
response is maintained for the set of mismatched real-valued
space-time signature vectors

This formulation corresponds to the spherical uncertainty set
case [9]. Then, the robust modification of (16) can be written
as the following optimization problem:

subject to

(28)

for all . The main modification of (28) with re-
spect to (16) is that for each , instead of requiring fixed dis-
tortionless response toward the single mismatched space-time
signature , in (28), such distortionless response is main-
tained by means of inequality constraints for a continuum of
all space-time signatures given by the set . If (24) is satis-
fied, then from (28), it follows that the distortionless response
is also maintained for the true space-time signature

. The constraints in (28) guarantee that the dis-
tortionless response will be maintained in the worst case, i.e.,
for the particular vector , which corresponds to the
smallest value of .

Using Lemma 1, this problem can be transformed to

subject to

(29)
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for all . The problem mathematically similar to
(29) arises in adaptive beamforming [9], [12] and multiuser de-
tection [15]. Using the results of [9], it can be straightforwardly
shown that in the case of a moderate mismatch parameter (i.e.,
in the case when ), this problem is equiv-
alent to

subject to (30)

for all . Applying the Lagrange multiplier
method to (30), for each , we obtain that the
solution to (30) is given by the equation

(31)

where is the unknown Lagrange multiplier. To get around the
problem of computing , let us assume that constant modulus
symbol constellations are used. Hence, the vector can be
rescaled by an arbitrary constant without affecting the receiver
performance [15]. Using this fact and rescaling as

, we can rewrite (31) as

(32)

Note that the term can be interpreted as an adaptive
diagonal loading factor, which is optimally matched to the given
level of the channel uncertainty. To solve (32), we can apply a
technique similar to that developed in [15]. From (32), we obtain
that the optimal value of can be found as the root of the
following nonlinear equation:

(33)

where

(34)

is the eigenvalue decomposition of

diag

is the diagonal matrix of the eigenvalues of

and denotes the th element of a vector.
Standard methods such as Newton–Raphson technique can

be applied to solve (33); see [15] for more details. Once this
equation is solved, the obtained value of can be inserted
into the right-hand side of (32) to compute the optimal vector

. Repeating this procedure for all , we obtain
the optimal weight matrix , which is the solution of (28).

Next, let us develop a robust modification of the receiver (19).
To obtain such a modification, we should add worst-case zero-
forcing constraints for self-interference. Following this idea and
taking into account that, in this case, it is impossible to re-
ject self-interference completely, we add to (29) additional con-
straints to limit the contribution of self-interference to the re-

ceiver output power. Then, for each , our problem takes the
following form:

subject to

(35)

where the matrices and are defined as

respectively, is the value that limits the contribution of self-
interference in the uncertainty region , and is the
upper bound for .

Lemma 2: For any OSTBC

(36)

Proof: See Appendix B.
Using triangle and Cauchy–Schwartz inequalities along with

and Lemma 2, we have

(37)

It can be readily verified that all the inequalities in (37) become
equalities if

(38)

Using the latter observation and (37), we have that

(39)

Note that to zero-force self-interference in the uncertainty re-
gion as much as possible, the parameter in (35) should be
chosen as small as possible (subject to the constraint that this
problem remains feasible). The problem of potential infeasi-
bility, and correspondingly, the problem of choice of can be
avoided by treating as a variable to be minimized. Following
this idea, let us add to the objective function in (35). In ad-
dition, let us use (39) to simplify the second constraint in (35).
Then, we obtain the following problem:

subject to

(40)

Now, let us convert this problem to the convex second-order
cone programming (SOCP) form [22]. The canonical SOCP
problem has the following formulation [22]:

subject to

(41)
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where are the optimization variables, and
, and are the problem

parameters. Here, is the set of all real numbers. The constraint

is known as the second-order cone (SOC) of dimension .
To convert the optimization problem (40) to the canonical

SOCP problem, we now use the Cholesky decomposition of

(42)

where is an upper-triangular matrix. Using (42), we obtain
that

(43)

Making use of (43) and introducing a new auxiliary variable ,
which satisfies the inequality , the optimization
problem (40) can be equivalently rewritten as

subject to

(44)

The first and the second constraints in (44) are already written
in the SOCP form. Let us now convert the third constraint of
(44) into SOCP constraints. Introducing auxiliary variables
and , this constraint can be written as

(45)

Replacing the third constraint in (44) with (45), we finally obtain
the following equivalent form of the problem (35):

subject to

(46)

where . Comparing (46) with the canonical
form of a SOCP problem given in (41), one can easily see
that if , then we have five SOCs with

and . Here,
denotes an matrix with all zero entries.

Problem (46) represents a convex SOCP problem that can
be straightforwardly and efficiently solved using interior point
algorithms [22], [23].

Note that (46) can be solved for each value of
independently. In addition, in contrast to our first

robust receiver (32), the receiver (46) is not restricted by con-
stant modulus symbol constellations.

It is also worth noting that the proposed receivers (32) and
(46) do not need any knowledge of the channel matrices of in-
terfering users.

A. Computational Complexity

The main computational cost of our first receiver (32) is deter-
mined by the matrix inversion and eigendecomposition opera-
tions in (32) and (34), respectively. Therefore, the complexity
of this receiver is . The complexity of our second
receiver (46) is mainly determined by the complexity of the
corresponding interior point algorithm used to solve the SOCP
problem (46) and is equal to per iteration [22]. Typ-
ically, less than ten to 15 iterations are required to converge
(a commonly accepted fact in the optimization community [9],
which is also gained by our extensive simulations).

Summarizing, our second receiver may have slightly higher
computational complexity than the first one and also requires
a specific built-in convex optimization software. This moderate
increase in the implementational complexity of (46) is compen-
sated by its more general application to nonconstant modulus
signal constellations and, as shown in the next section, by re-
markable performance improvements over (32).

IV. SIMULATIONS

Throughout the simulations, we assume a single receiver of
antennas. The number of transmitters varies in different

simulation examples. The interfering transmitter uses the same
OSTBC as the transmitter of interest. The interference-to-noise
ratio (INR) is equal to 20 dB, and the QPSK modulation scheme
is used. All plots are averaged over 1000 independent simulation
runs. In each simulation run, the elements of the true channel
matrices (for ) are independently drawn from
a complex Gaussian random generator with zero mean and unit
variance.

The proposed robust receivers (32) and (46) are compared to
the MF receiver (15) and the DLMV receiver (22). Note that
the imperfect CSI case is assumed, i.e., all these receivers use
the presumed (erroneous) channel matrix rather than the
true channel matrix . In each simulation run, each element
of the presumed channel matrix is generated by drawing
a complex Gaussian random variable with zero mean and the
variance and adding this variable to a corresponding
element of the matrix . Moreover, the performance of the
so-called informed MV receiver is tested and included in all
plots. The latter receiver corresponds to the ideal case when (19)
is used with the exactly known . Obviously, this receiver does
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Fig. 2. SER versus SNR; first example. The numbers in the figure legend refer
to the equation number of the corresponding receiver in the text.

Fig. 3. SER versus number of data blocks; first example. The numbers in the
figure legend refer to the equation number of the corresponding receiver in the
text.

not correspond to any practical situation and is included in our
simulations for the sake of comparison only (as a benchmark).

The SeDuMi convex optimization MATLAB toolbox [23]
has been used to solve the SOCP problem (46). The SeDuMi
toolbox applies an interior-point method that is computation-
ally efficient. We have observed that the interior-point method
typically converges in less than 15 iterations.

The diagonal loading factor of is used in the
DLMV receiver, where is the noise variance. Note that this
is a popular ad hoc choice of [8], [9].

In the first example, transmitters with an-
tennas per transmitter are assumed, and the full-rate Alamouti’s
OSTBC is used [2]. In this example, the pa-
rameter is used in our robust receivers (32) and (46).
It should be noted that this value of is nearly optimal for this
example. In Fig. 2, the symbol error rates (SERs) of all the re-
ceivers tested are displayed versus the SNR for . Fig. 3

Fig. 4. SER versus SNR; second example. The numbers in the figure legend
refer to the equation number of the corresponding receiver in the text.

Fig. 5. SER versus number of data blocks; second example. The numbers in
the figure legend refer to the equation number of the corresponding receiver in
the text.

shows the SERs of the same receivers versus the number of data
blocks for SNR dB.

In the second example, we assume transmitters. Each
transmitter has antennas, and the -rate

orthogonal design STBC from [3] is used. The parameter
is taken (which is nearly optimal for this example).

Fig. 4 shows the receiver SERs versus the SNR for ,
whereas Fig. 5 displays the receiver SERs versus the number of
data blocks for SNR dB.

In the third example, we assume transmitters. Each
transmitter has antennas, and the half-rate

orthogonal design STBC from [3] is used. The parameter
is taken in this example. Fig. 6 displays the SERs

versus SNR of all the receivers tested for , whereas
Fig. 7 shows the receiver SERs versus the number of data blocks
for SNR dB.

From Figs. 2–7, it follows that in all examples, the proposed
robust receivers (32) and (46) provide better performance
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Fig. 6. SER versus SNR; third example. The numbers in the figure legend refer
to the equation number of the corresponding receiver in the text.

Fig. 7. SER versus number of data blocks; third example. The numbers in the
figure legend refer to the equation number of the corresponding receiver in the
text.

tradeoffs over the whole tested SNR range as compared to
the other receivers (including the informed MV receiver).
As expected, the receiver (46) substantially outperforms (32)
because the former technique takes advantage of an additional
nulling of self-interference; see [8] and the discussion therein.
Furthermore, as it can be expected from [8], these performance
improvements of (46) relative to (32) are especially pronounced
at high SNRs. It can be observed from Figs. 2, 4, and 6 that
very substantial performance improvements over the DLMV
receiver at high SNR values are achieved in our robust receivers
at the price of slightly worse performance at low SNR values
(where both the DLMV and our techniques perform quite well).
Such performance degradation of the DLMV receiver at high
SNR values can be explained by the fact that this receiver uses
the fixed diagonal loading factor. The poor performance of
the informed MV receiver is due to its insufficient robustness
against finite sample effects.

V. CONCLUSION

New linear receiver techniques for joint space-time decoding
and interference rejection in multiaccess MIMO systems have
been developed. These techniques use orthogonal space-time
block codes and have an improved robustness against CSI er-
rors. The proposed algorithms are based on worst-case perfor-
mance optimization and can be implemented in a computation-
ally efficient way. They have been shown to provide a substan-
tially improved robustness against CSI mismatches as compared
with the existing nonrobust multiaccess MIMO receiver algo-
rithms.

APPENDIX A
PROOF OF LEMMA 1

Let

.

Using this notation, from (13), we obtain

Using the linearity of the underline operator (5), the vector
can be written as

(47)

Using (5) along with well-known properties of the Kronecker
product and the vec operator [24], (47) can be rewritten as

vec Re
vec Im

Re vec
Im vec

Re Im
Im Re

vec Re
vec Im

Using this equation, the Euclidean norm of can be ex-
pressed as

vec Re vec Im

vec Re
vec Im

(48)

For any OSTBC, the following property holds [4], [19]:

(49)

Using (49), (48) can be simplified as

vec Re vec Re

vec Im vec

(50)

Lemma 1 is proven.
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APPENDIX B
PROOF OF LEMMA 2

Using the definition of the Frobenius norm along with Lemma
1 (i.e., using the constraints ), we
obtain

tr

(51)

where the inequality in the third row of (51) becomes an equality
if and only if . Hence, from (51), we
conclude that

(52)

and Lemma 2 is proven.
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