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                                         ABSTRACT  

 

Nitrification has been acknowledged as one of the major barriers towards efficient 

chloramination in water supply distribution systems. Many water utilities employing 

monochloramine as the final disinfectant have been encountering unwanted 

microbiologically assisted choramine decay and find it difficult to maintain desired 

chloramine residual at distribution system extremities. A novel method of using cupric 

sulphate (< 0.4 mg-Cu(II)/L) to inhibit ammonia oxidizing bacteria was recently granted 

a US patent (7465401). Efficient inhibition was achieved in bench scale work and a 

pilot reservoir in the field. However, unexpected dissolved Cu(II) loss occurred when 

copper salt was dosed into one pipe section of the Goldfield & Agricultural Water 

Supply System (G&AWSS) in Western Australia. It prevented dissolved copper from 

reaching extremities to protect chloramine from microbiologically assisted decay.  

Our previous research and evaluation of the pipe environment suggested that severe 

dissolved copper loss could be related to iron pipe corrosion due to aging of the cement-

lined steel pipe, extensive temperature fluctuation, chloramination and nitrification. A 

large amount of copper and iron found in sediments after the pipes’ flushing provided 

further evidence. Although scale formation could be a complicated process that depends 

on a variety of physical and chemical conditions and the composition of corrosion scale 

can be distinct in each particular system, based on the literature review, ferric hydroxide 

flocs are acknowledged as one of the major corrosion products. Consistent severe 

copper loss over the three-year trial indicated that iron pipe corrosion is continuously 

occurring in the distribution system and thus supplying fresh iron salts. Ferrous ions 

could be released from new crevices during the initial stage of corrosion and oxidized to 

ferric ions. Ferric ions are further converted to ferric hydroxide flocs under drinking 
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water pH and oxidation conditions. Therefore, ferrous and ferric ions as well as ferric 

hydroxide were chosen as the major corrosion products in this research.  

Bearing the goal of improving the inhibition strategy, this research investigated 

aqueous copper speciation in bulk waters, quantified dissolved Cu(II) removal by the 

iron corrosion products at trace concentrations (< 2 mg-Fe/L) and modelled dissolved 

Cu(II) loss subject to iron pipe corrosion. Mundaring raw water (MRW), which is the 

source water of G&AWSS, was employed as the main water source in this study. In 

addition, the nitrified water (NW) which was sourced from our laboratory reactors and 

the water containing humic substance (HAW) were used to investigate the effects of 

natural organic matter (NOM) of different characters on the fate of dissolved copper. 

Batch experiments were undertaken to measure Cu(II) solubility under various aqueous 

conditions. MINEQL+
®

 (chemical equilibrium modelling system) was used to analyse 

Cu(II) speciation and cross-examine aqueous Cu(II) concentrations measured in the 

laboratory experiments. Aqueous ferrous ions, ferric ions and ferric hydroxide flocs, 

which are believed to be representatives of iron corrosion products, were added at low 

concentrations to remove dissolved Cu(II) in various bulk water samples. Their ability 

to remove dissolved Cu(II) was assessed individually, then the theory that a two-stage 

corrosion process removes Cu(II) was developed. The impact of NOM character on 

Cu(II)-NOM chelation in bulk water and their subsequent removal by ferric salts were 

elucidated by means of apparent molecular weight distribution and differential 

absorption spectra analysis. Finally, the dynamic process of dissolved Cu(II) removal by 

ferric salts was investigated. Combining both equilibrium and dynamic studies of 

dissolved Cu(II) removal by ferric salts, a model was established to predict dissolved 

Cu(II) loss in a corroded iron pipe distribution system. Aquasim
®

 was used for 
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estimating parameters and simulating corrosion patterns and thus predicting Cu(II) loss 

in the field.  

Cu(II)-NOM complexes were found to be the dominant forms in MRW, NW and 

HAW. Cu(II) solubility varied slightly in these bulk waters due to different NOM 

characters. Generally, intermolecular dicarboxylate chelation was considered to be the 

dominating chelation type between Cu(II) and organic compounds in MRW and NW, 

while salicylate chelation was prevalent in HAW due to more salicylate type binding 

sites available in humic substances. The removal of dissolved Cu(II) was assumed to 

occur via a two-stage process during corrosion: Stage I-coagulation and aggregation by 

released ferrous/ferric ions; Stage II-adsorption by iron hydroxide flocs formed 

afterwards. Both ferrous/ferric ions and ferric hydroxide flocs showed considerable 

capacity to remove dissolved Cu(II). Addition of 2 mg-Fe/L ferric ions was sufficient to 

remove the majority of dissolved Cu(II) in MRW and NW. The dissolved Cu(II) 

removal by Fe(OH)3 flocs in MRW and NW could be explained as multilayer 

adsorption obeying a Freundlich isotherm. In addition, the adsorption process could be 

interfered with by the presence of heterogeneous Cu(II)-containing particles (CuO and 

Cu(OH)2), which rendered less dissolved Cu(II) removal. Cu(II)-NOM in HAW 

demonstrated a relatively high resistance to removal by ferric salts. From these 

observations, Cu(II) was thought to preferentially complex with small organic 

molecules until saturation is reached. Slightly higher Cu(II) solubility and less dissolved 

Cu(II) removal observed in NW indicated that a proportion of small soluble organic 

substances was probably produced and chelated with Cu(II) during nitrification. In 

humic acid water (HAW), Cu(II) bound with small MW organic matter could be 

shielded by a relatively high proportion of large MW organic matter. The dynamic 

process of dissolved Cu(II) removal by Fe(OH)3 flocs can be described by Pseudo 
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second order decay. From the comparison of dissolved Cu(II) loss between the 

modelling results and field data, the loss of dissolved Cu(II) could be due to removal by 

iron corrosion products and modelled by a reasonable assumption of the iron corrosion 

situation in the distribution system. At the end, Cu(II)-based inhibition and 

chloramination strategies are recommended. 
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CHAPTER 1  

 

                                    INTRODUCTION 

 

1.1 Chloramination in the Drinking Water Distribution Systems (DS) 

 

1.1.1 Characteristics of Chloramine and its Application in the Drinking Water DS 

 

Chloramines are the products of the reaction between free chlorine and ammonia. 

Chloramine species generally include monochloramine (NH2Cl), dichloramine (NHCl2) 

and trichloramine (NCl3). From a disinfection point of view, monochloramine is the 

preferred final disinfectant in many drinking water DS. Compared with chlorine, 

chloramine’s advantages are considered to be chemical stability (lower decay rates), 

sustained disinfection capability, low DBPs such as THMs, control of biofilm regrowth 

and minimal taste and odour (Kirmeyer et al., 2004). An increasing number of water 

utilities are replacing chlorine with monochloramine in long-distance water supply 

systems. However, chloramination is not as simple as an add-on process. Its application 

is subjected to operations and designs of water utilities as well as conditions in DS 

(Kirmeyer et al., 2004). It is inherently unstable in natural pH environments. Auto-

decomposition, caused by chemical reactions which result in hydrolysis, 

disproportionation and redox reactions, is inevitable. The reactions are controlled by 

temperatures, Cl2/N ratio, pH and some redox chemicals existing in natural water 

(Vikesland et al., 2001). 
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1.1.2 Nitrification and Microbiological Decay of Chloramine  

 

Subject to the qualities of the water and pipeline conditions, nitrification has been 

widely acknowledged as one of the major causes accelerating the microbiological decay 

of chloramine. Nitrifiers present in water consume free and combined ammonia from 

chloramine and convert it to nitrite (NO2
-
) and nitrate (NO3

-
) through microbiological 

reactions (Krimeyer, et al., 2004). Compared with auto-decomposition, nitrification is 

thought to accelerate chloramine decay dramatically. Once the disinfectant residuals 

decrease to a certain level, the quality of service water deteriorates and the health of 

users is undoubtedly threatened. 

 

Sathasivan et al. (2005) introduced the microbial decay factor (Fm) to quantify the 

microbiologically assisted chloramine decay in bulk water. Silver nitrate was used to 

inhibit nitrifying activity in bulk water. The difference between two decay coefficients 

(the decay coefficient of the unprocessed sample and of the inhibitor added sample) 

indicated the relative contribution of microbiologically assisted chloramine decay to 

total chloramine decay in bulk water. The ratio of microbial decay rate (km) to chemical 

decay rate (kc) is defined as the microbial decay factor (Fm). Typical results from 

G&AWSS are shown in Appendix A. The relatively high Fm indicated the severeness of 

microbiological decay. 

 

1.2 Cupric Sulphate: an Inhibitor Against Nitrification in Chloraminated Water 

and the Health Concern Regarding its Application 
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Cupric sulphate has been successfully used as a biocide to control micro-organisms and 

bacteria (fungi, algae) in water dams or reservoirs (Van Hullebusch et al., 2003). In 

laboratory experiments, copper was found to be toxic (affecting the metabolism and/or 

assimilation) to nitrifying bacteria including other micro-organisms. Recent 

investigations revealed the effectiveness of Cu(II) to inhibit ammonia oxidizing 

bacterial (AOB) growth (Koska, 2008). With encouraging results achieved at laboratory 

scale, Cu(II) was expected to be applied in water distribution systems to inhibit 

nitrifying activity and hence increase chloramine penetration to extremities.  

 

The allowable concentration of copper in water is 2 mg/L (WHO, 2008). However, for 

the aesthetic reason, the World Health Organization (WHO) guideline imposed a limit 

of not more than 1 mg/L dissolved Cu(II) in drinking water (WHO, 2008). The 

Department of Public Health (WA) has approved the use of cupric sulphate up to 0.40 

mg-Cu(II)/L in field trials. 

 

1.3 Challenges to Application of Cu(II) Salt in the Goldfields & Agricultural Water 

Supply System (G&AWSS) in Western Australia 

 

1.3.1 The Pilot Experiments in G&AWSS 

 

The WA Goldfields and Agricultural Water Supply System (G&AWSS, Figure1.1) is 

perhaps the world's most extensive water distribution system. The pipeline was 

commissioned in 1896 and was completed in 1903. This was primarily constructed to 

deliver water to the communities that had rapidly grown due to a gold rush in Western 

Australia's "Eastern Goldfields", such as Coolgardie and Kalgoorlie. The pipeline 
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connects Mundaring Weir, near Perth, Western Australia, with Mount Charlotte 

Reservoir at Kalgoorlie, 530 km (330 miles) away. It also serves towns further inland 

via extensions to the north and the south. Mundaring Weir is fed with water from 

Helena River in the Darling Scarp and has also been augmented with treated 

groundwater in recent years. It continues to operate, supplying water to over 100,000 

people and more than six million sheep in 33,000 households, mines, farms and other 

enterprises. 

 

Figure 1.1: Goldfields & Agricultural Water Supply System (Water Corporation, 

WA) 

 

Water Corporation is the owner and operator of the G&AWSS. It conducted Cu(II) 

dosing in the field to test the feasibility and efficacy of copper inhibition. Copper was 

dosed in two locations: Merredin reservoir (in 2005) and reticulating pipes at the C-K 

extension (from Cunderdin north toward Minnivale tank). Trials at Merredin suggested 

that it is possible to keep the copper concentration in bulk water to the required level 

after about two weeks of saturation. Copper sulphate (CuSO4) had been dosed 
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continuously in the C-K extension since April 2006. This was achieved by dosing 

copper sulphate solution directly into the main at the outlet of Cunderdin reservoir. 

Initially the copper sulphate was dosed at 0.25 mg-Cu/L in the bulk water. Later the 

concentration was adjusted to a higher level. It was expected that there would be some 

delay in achieving the required copper concentration at further points of the distribution 

system. At Merredin reservoir it took about two weeks to stabilize the copper 

concentration to the required level. In the C-K main, it was found that soluble copper 

concentration gradually decreased along the distribution system to an unexpectedly 

lower level. Consequently, the desired copper concentration could not be maintained to 

inhibit the growth of nitrifying bacteria at furthest points of the distribution pipe lines. 

This led to the accelerated decay of the disinfectant residuals at farthest points and 

accumulation of copper in the main in the form of sediments or in the form of adsorbed 

metals on the pipe walls closer to the dosing. 

 

1.3.2 A Summary of the Fate of Dosed Copper Salt from Previous Research 

 

Preliminary laboratory scale experiments and field data analysis was carried out as a 

master thesis (Zhan, 2007) to investigate the loss of dissolved Cu(II) after copper salt 

dosing. The achievements are summarized as follows: 

 

• The concentration of cupric ions (Cu
2+

) was negligible in Mundaring raw water at 

pH >7.0. Instead, the majority of dissolved copper were thought to be a mixture of 

organic Cu(II) complexes and inorganic Cu(II) compounds. However, 

comprehensive distribution and abundance of copper species were not identified and 

their relative proportions were not quantified. 
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• Possible factors which may control the fate of copper in bulk water samples and 

distribution systems were investigated: hydraulic conditions during copper salt 

dosing, pH, the effects from ammonia and chlorine, surface adsorption simulation 

using glass fibre filters as media and ferric chloride addition in bulk water samples. 

Adsorption onto pipe walls was considered one potential mechanism taking copper 

away from bulk waters. However, the copper removal via adsorption by glass fibre 

papers could not be used to accurately quantify copper loss in the field due to the 

complexity of pipe walls. On the other hand, ferric chloride in low concentrations 

did show considerable capacity to remove dissolved Cu(II) in various water samples. 

This formed a major portion of the thesis. 

• A large amount of Fe and Cu were found in sediments in the distribution system 

(Appendix F). When considered with laboratory results from ferric chloride 

treatment, iron salts released from pipe corrosion were thought to be one of the 

major causes sweeping Cu(II) away. This finding suggested that further 

investigation of the impact of iron pipe corrosion on copper loss was needed. 

However, more delicate and systematic experiments are required for both qualitative 

and quantitative study. 

 

1.3.3 Corrosion Potential in G&AWSS and Its Probable Impacts on Dissolved Cu(II) 

 

Concluded from the previous study (Zhan, 2007), ferric salts were indicated as a major 

cause of copper loss in pipelines. The G&AWSS is mostly made of cement-lined steel 

pipes. Considering the long history of the distribution system (some parts are one 

hundred years old), damage to the inner cement layer could occur in some places simply 

due to material aging. In addition, with a large proportion of the pipeline built above 

ground, pipes are susceptible to temperature fluctuations ranging from 4 to 50
o
C. It can 
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exacerbate the damage to pipes and accelerate the development of cracks due to 

excessive shrinkage/expansion caused by temperature fluctuation. When the iron 

surface is not protected by cement material and exposed to bulk water, it corrodes more 

easily depending on aqueous conditions. For instance, nitrification detected in some 

areas might assist the corrosion process by causing a negative Langelier Index. 

Chloramine can act as an oxidizer to accelerate iron corrosion as well. When corrosion 

happens, not only is the corroded iron surface in direct contact with dissolved copper 

contained in water, but also the released corrosion products can interact with dissolved 

Cu(II). According to the previous findings that revealed dissolved Cu(II) was removed 

by ferric salts present at low concentration, iron pipe corrosion could make a major 

contribution to removal of dissolved Cu(II) from the distribution system.  

 

Two basic aspects of the impact of iron pipe corrosion on dissolved Cu(II) loss must be 

discussed and clarified in this study. One is the potential redox reactions between free 

cupric ions (Cu
2+

) and an exposed iron surface. The other is the interaction between 

dissolved Cu(II) compounds or complexes and the released iron-containing products 

during and after iron corrosion.  

 

1.4 The Objectives and the Scope of the Research 

 

To achieve the ultimate goal of modelling dissolved Cu(II) loss in an iron pipeline, 

optimizing copper salt dosing strategy accordingly, the fate of dissolved Cu(II) when 

encountering iron pipe corrosion must be thoroughly understood. Our previous study 

only found dissolved Cu(II) as a mixture comprised of organic and inorganic copper 

compounds. Further investigation needed to be done to identify particular dissolved Cu 
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species and quantify their relative proportions in order to find the dominant dissolved 

Cu(II) species under various aqueous conditions. In addition, the major products from 

iron corrosion had to be confirmed and the dynamic process of their interaction with 

dissolved copper during corrosion had to be investigated. Furthermore, regarded as a 

crucial factor controlling Cu(II) solubility, the complexation between NOM and Cu(II) 

and their impacts on dissolved copper removal were yet to be understood. 

According to the outstanding problems above, this research focused on the following 

aspects: 

• To identify different Cu(II) species and quantify their proportions in bulk waters 

(including Mundaring source water) under various aqueous conditions, and confirm 

dominant copper species in bulk water of interest. 

• To quantify dissolved Cu(II) removal in a series of water samples by individual iron 

corrosion product separately and Cu(II) loss through corrosion process when a series 

of corrosion products are released into bulk water. 

• To elucidate the impact of NOM characteristics on Cu-NOM complexation and 

dissolved Cu(II) removal by the  iron corrosion products in a series of water samples. 

• To develop a simple model to predict dissolved Cu(II) loss in a corroded iron-pipe 

distribution system.  

 

1.5 Research Significance 

 

With the increasingly stringent requirements for drinking water quality demanded by 

the World Health Organization (WHO) and US environmental protection agency, 

allowable DBP levels continuously decrease and thus force more water utilities to 

switch to chloramination. Surveys report that 60% of US water treatment facilities are 
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using chloramine as a final disinfectant (Kirmeyer et al., 2004). As mentioned 

previously, chloramine as a secondary disinfectant has many advantages compared with 

chlorine, such as lower level DBP and more stable residual.  

However, recognizing chloramine’s potential vulnerability to the microbiological 

process known as nitrification, many utilities in Europe have given up using chloramine 

as a disinfectant. The attempt to apply copper to control or inhibit the growth of 

nitrifiers in drinking water distribution system could change the way chloramine will be 

considered. Unfortunately, dissolved copper concentration in distribution systems was 

found to decrease with distance, especially in the pipe line. After acknowledging iron 

pipe corrosion as one of the major causes of copper loss, this research focused on the 

impact of iron pipe corrosion on the fate of dissolved copper. At the end, suggestions on 

how to establish an effective inhibition system and maintain chloramine stability are 

given for water utilities. 

 

1.6 Composition of the Thesis 

 

This research was triggered by challenges encountered in the chloraminated drinking 

water distribution system where copper sulphate is dosed as an inhibitor against the 

growth of nitrifying bacteria. Based on the findings of a previous study that 

acknowledged iron pipe corrosion as one of the major causes to the loss of dosed copper, 

further qualitative and quantitative study have been carried out in this research in order 

to fully understand corrosion related copper removal and model copper loss in the 

distribution system.  
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Chapter 1 begins with advantages and disadvantages of choosing chloramine as a final 

disinfectant. The strategy of inhibiting nitrifying bacteria using cupric sulphate is 

introduced and copper loss encountered in G&AWSS is discussed. The achievements 

from previous research is summarized and given as a ground on which further study is 

based. Then, the main purpose and significance of this research are highlighted in the 

first chapter. 

 

Chapter 2 recounts valuable information reviewed from previous research related to the 

theme of the thesis. Critical points from historical research have been reinforced. The 

important aspects of the research are emphasized. 

 

Chapter 3 details water sample collection, preparation of bulk water samples, general 

methods about water analysis and reagent preparation involved in every experiment. A 

general experimental procedure is schemed and illustrated.  

 

Chapter 4 discusses Cu(II) solubility and Cu(II) speciation. It summarizes dominating 

Cu(II) species under various aqueous conditions. 

 

Chapters 5 to 9 comprise the main part of the thesis. Chapter 5 and Chapter 6 provide 

details of experiments on dissolved copper removal by iron corrosion products present 

at low concentrations. Chapter 5 investigates Cu(II) removal by ferrous and ferric ions 

which can be released from iron surface when corrosion occurs. Chapter 6 investigates 

Cu(II) removal by ferric hydroxide flocs which can be formed from released ions 

afterwards. Results and conclusions are given in each experiment. Chapter 7 processes 

experimental data from Chapter 5 and Chapter 6 and quantifies dissolved copper 

removal at each stage of iron pipe corrosion. Chapter 8 elucidates the mechanisms 
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governing Cu-NOM complexation and the impact of NOM on the fate of dissolved 

copper encountering corrosion products by analysing UV absorbance, DOC and the 

apparent molecular weight profile of experimental bulk waters. Chapter 9 establishes a 

simple model to predict copper loss in a corroded iron pipeline using Aquasim
®

. 

 

Chapter 10 summarizes the achievements from this research. Meanwhile, suggestions 

for further work and inhibition strategies for water utilities are given.  
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CHAPTER 2  

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Two basic aspects were studied in earlier research (Zhan, 2007). One was copper 

solubility in bulk water. The other aspect was possible factors affecting the fate of 

dissolved copper. It found little dosed copper could be lost as sediments or filterable 

particles in Mundaring water at the pH (7.8~8.2) usually maintained in the distribution 

system. Although it recognized that the majority of dosed copper existed in dissolved 

forms, it only divided them into two fundamental groups: inorganic and organic copper 

compounds. To further understand the fate of dosed copper, more studies were required 

to understand copper speciation and quantify the composition of dissolved copper under 

various aqueous conditions. Iron pipe corrosion was elucidated in our early study as the 

main possible reason leading to copper loss. However, it was yet to be known how 

corrosion could affect dissolved copper in distribution systems. The reason behind the 

connection between corrosion and copper loss was yet to be elucidated. In addition, 

natural organic matter (NOM), which ubiquitously exist in a diversity of natural water 

sources, were believed to play an important role in aqueous copper speciation and 

consequently could impact interactions between dissolved copper and corrosion. In 

terms of the context, detailed literature review was undertaken and provided below: 
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2.2 Copper(II) Toxicity and Inhibition 

 

The use of cupric sulphate (CuSO4) in lakes, reservoirs and other managed bodies 

remains the most effective algicidal treatment (Elder and Horne, 1978; Whitaker et al., 

1978; 1983; Haughey et al., 2000). However, copper speciation can affect its toxicity 

and bioavailability. Speciation is important because only certain forms of a given metal 

are biologically available. Speciation of many biologically active trace metals is 

controlled by complexation with strong organic ligands (Bruland et al. 1991; Sunda, 

1994). Complexation generally lowers the biological availability of a given metal 

because the free metal ions are the most biologically available forms (Sunda, 1994). 

Copper toxicity is attenuated by association with organic matter, the complexed form of 

metal being generally less toxic than the free form (Tessier and Turner, 1995; Moffett 

and Brand, 1996). Nevertheless, encouraging bench scale results were achieved when 

copper sulphate was dosed in bulk water containing NOM to inhibit nitrifying activity, 

250 µg-Cu(II)/L dissolved copper was found effective to inhibit ammonia oxidizing 

bacteria growth (Koska, 2008). Copper speciation in natural water bodies has been 

extensively studied and this information rendered insights into likely forms of copper 

under specific aqueous conditions in distribution systems.  

 

2.3 Copper solubility and speciation  

 

2.3.1 Complexation between Cu(II) and Ammonia 

 

In a chloraminated distribution system like G&AWSS, chlorine and ammonia are added 

to form chloramine. In order to maintain the chemical stability of chloramine and 
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maintain the water slightly encrustive (scale forming), pH is controlled at 8.0. Sillen and 

Martell (1971) gave a series of equilibrium constants for Cu-Ammonia complex 

formation. The higher the pH the more ammonia is present. At pH 8.5, the fraction of 

ammonia present is 5% of total ammonia-N. Current total-ammonia (NH3+NH2Cl) 

levels are in the range of 0.8 mg/L or 47 µM. Five percent of 0.8 mg/L is only 0.04 

mg/L or 2.35 µM. At this concentration, the predominant species will be Cu
2+

 (about 

95% of copper). This calculation was made assuming only Cu
2+

 and ammonia are 

present in the water. With possible combinations of other metals and ligands present in 

the water, it is expected that the Cu-NH3 complex will be much lower in concentration. 

Our previous research (Zhan, 2007) confirmed that the Cu-NH3 complex is negligible 

using Milli-Q water dosed with chlorine and ammonia at the concentrations required in 

G&AWSS.  

 

2.3.2 Cu(II) Solubility in Carbonate Buffered Water and Separation of Cu(II)-

containing Particles  

 

Snoeyink and Jenkins (1980) summarized the status of various inorganic copper 

compounds (e.g. CuCO3
o
, CuOH

-
) when they were in equilibrium with tenorite (CuO) 

in carbonate buffered water. Carbonate alkalinity is governed by the partial pressure of 

CO2 in the atmosphere, so the extent of exposure to air of a bulk water system impacts 

on the solubility of inorganic copper. Both open and closed systems and a situation in 

between can be expected to be present in G&AWSS. Depending on different ambient 

conditions, for instance, open or closed system or the content of NOM, the solubility of 

copper in bulk water is controlled by equilibrium between the soluble copper complex 

and the metastable solid phase such as cupric hydroxide (Cu(OH)2), tenorite (CuO) etc 

(Broo et al., 1999). The size of Cu(OH)2 particles varies with pH. At pH 8, which was 
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the normal pH of the water source studied in this research (Mundaring), the size of 

Cu(OH)2 particulates was reported to be about 400 nm (Sun and Skold, 2001), 

increasing with ascending pH. Our laboratory experiments proved that both Cu(OH)2 

and CuO particles could be removed by 0.2µm membrane filters (Zhan, 2007), which 

therefore were chosen to filter particulate copper formed in bulk waters. 

 

2.3.3 Impacts of Natural Organic Matter on Copper Solubility and Organo-copper 

Complexation 

 

Metal fate and transport is strongly influenced by metal speciation. In particular, 

naturally occurring organic ligands can bind metals in aqueous solution. Natural organic 

matter (NOM) is a heterogeneous mixture of potential metal binding sites. Within NOM 

the macromolecular portions are termed humic and fulvic acids (Smith and Kramer, 

2000). Wagemann and Barica (1978) claimed that only 0.5% of total Cu(II) could be 

found as cupric ions in natural water systems. Breault et al. (1996) found that in copper 

contaminated stream water, 84–99% of dissolved copper was organically bound. The 

majority of dissolved copper, existing in natural water bodies, is believed to be in the 

form of Cu-NOM complexes, because NOM contains various ligands which can bind 

with soluble copper, forming soluble or colloidal compounds (Lehman and Mills, 

1994). Edwards and Nicolle (2001) reported the effects of NOM on copper corrosion 

by-product release and found that NOM can even interfere with the formation of a solid 

scale layer of Cu(OH)2 and dramatically increase soluble copper concentration in water. 

Dodrill et al (1996) reported that even trace (0.1 mg/L) levels of NOM produce marked 

increases (>0.8 Cu mg/L) in copper release to water, while further increase in NOM 

concentration produces only slight additional increases to copper concentration. 

Hullebusch et al. (2003) suggested a proportional relation between organic copper 
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compounds and dissolved organic carbon (DOC), although the bioavailability of copper 

bound to specific organic matter is not fully understood. Sarathy and Allen (2005) 

found that conditional stability constants for copper–ligand complexes for dissolved 

organic matter (DOM) steadily increased with pH, indicating that the copper–ligand 

complexes become more stable at higher pHs. Louis et al (2009) concluded the effect of 

salinity on copper-NOM complexation by showing the increasing trend of distribution 

of apparent copper-dissolved-natural-organic-matter (DNOM) stability constants 

towards higher salinities. Despite the presence of various types of organic matter, the 

structure of fulvic acid (FA) and humic acid (HA) and their interactions with Cu(II) 

have been thoroughly studied. Binding properties of organic matter for Cu suggested 

evenly distributed proportions of strong and weak binding mechanisms, of which 

formation of organometallic compounds and chelating complexes with functional 

groups of humic substances seemed to be the major strongly and moderately binding 

mechanisms, in parallel with cation exchange as weak bounds (Twardowska and 

Kyziol, 2003). Gamble et al. (1980) demonstrated useful and convenient calculation 

procedures for the fulvic acid-Cu(II) complexing and chelation equilibrium, indicating 

the heterogeneity of naturally occurring ligands. By controlling pH values, copper 

complexometric titration gives an end point able to distinguish between intra-molecular 

bi-dentate chelation and inter-molecular pseudo-chelation during the complexation 

between Cu(II) and fulvic acid (Gamble et al., 1985). Gamble et al. (1985) also pointed 

out the aggregation employed by Cu(II) when binding poly molecules. Perdue and Lytle 

(1983) developed a Gaussian distribution model for modelling complex ligand mixtures 

in homogeneous solutions. However, due to the complexity of a mixture of binding 

ligands involved in aquatic humus, no single chemical model is suitable to describe the 

complexation between Cu(II) and humic substances.  Smith and Kramer (2000) 

modelled Cu(II) binding to Suwannee River fulvic acid (SRFA) using multiresponse 
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fluorescence. The resultant multi-response data were fit to a five-site speciation model 

for Cu-SRFA interactions. However, due to the heterogeneity of NOM, the results can 

only be interpreted as qualitative-possible average sites.  The dynamic process of 

organo-copper complexation was also studied. Calculated association rate constants 

indicate that copper complexation by DNOM takes place relatively slowly. The time 

needed to achieve a new pseudo-equilibrium induced by an increase of copper 

concentration is estimated to be from 2 to 4 hours (Louis et al., 2009). 

 

Dryer et al. (2008) compared the NOM contained in Mundaring water with that in 

Suwannee River fulvic acid (SRFA) via differential absorbance spectral analysis. Their 

research concluded that Mundaring NOM lacks phenolic chromophores, which are the 

major constituents of the hydrophobic fraction of NOM. The general postulate was 

adopted that phenolic chromophores contribute to salicylic type of bidentate chelating 

sites, which is believed to preferentially chelate with Cu
2+

 and form relatively stable 

chelates (Gamble et al., 1980). Controversially, one striking finding revealed that the 

removal of the hydrophobic acid fraction had little effect on Cu binding. In other words, 

Cu binding affinity to phenolic sites are weaker than carboxylic sites (Olsson et al., 

2007). Stability of the Cu-NOM complex is reported to be quite strong at higher pH (8 

or above) and weaker at lower pH although more binding sites are available on NOM to 

form complexes at lower pH (Takacs et al., 1999). Our previous study also showed high 

solubility of copper in natural water (Zhan et al., 2009). Therefore, NOM was believed 

to considerably enhance copper solubility in the experimental bulk waters.  

 

In G&AWSS, nitrification has been acknowledged as one of the major causes 

accelerating chloramine decay. It also is reported that nitrifiers can excrete organic 
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compounds that lead to proliferation of heterotrophic micro-organisms (Lipponen et al., 

2002). Krishna and Sathasivan (2010) found that organic matter in natural waters could 

be broken down to smaller molecules when they react with chlorine or chloramine. 

These soluble microbial products can also increase the copper concentration by forming 

organic copper complexes.  

 

2.4 Iron Pipe Corrosion Potentials and Corrosion Products 

 

2.4.1 Iron Pipe Corrosion Potentials and Impact Factors 

 

Our earlier study (Zhan, 2007) showed that iron-compounds present in natural water or 

released from distribution systems, mainly because of pipe damage or corrosion, can be 

responsible for a proportion of dissolved copper loss. Vulnerability of distribution 

systems to corrosion depends on chemical properties of water delivered (e.g. pH, 

alkalinity, dissolved oxygen, total dissolved solids) and its physical characteristics 

(temperature, velocity) as well as the nature of pipe materials (AWWARF, 1996). 

Aquatic conditions with low chloramine (less than 0.3 mg/L) and low dissolved oxygen 

(DO) can enhance severe iron release from aged cast iron pipes due to the breakdown of 

“passivated-outer-layer of scale” in reductive environment (Wang et al., 2009). 

Generally, the corrosion rate increases with increased DO concentration (Gedge, 1992). 

When DO is present in water, higher amounts of iron release is observed during 

stagnation in comparison to flowing water conditions (Sarin et al., 2004). Due to 

economic restriction, iron pipes are still in use in a considerable proportion of old water 

supply systems in Australia. Some parts are more than a hundred years old. Pipelines in 
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G&AWSS can also be subjected to an extensive temperature fluctuation causing cracks 

in cement-iron pipes.  

 

In addition, microorganisms are present in many distribution systems and they can 

influence corrosion in a number of ways (Holden et al., 1995; Emde et al., 1992). The 

role of biological activity in a water pipe can be mixed but is generally considered  

detrimental to most aspects of iron corrosion (McNeill and Edwards, 2001). Various 

bacteria can affect iron speciation by reducing ferric ions or oxidizing ferrous ions 

(Nemati and Webb, 1997; Chapelle and Lovley, 1992). Biofilm could promote 

corrosion by converting Fe to Fe(II) and Fe(III) via iron bacteria (Teng et al., 2008).  

 

Previous research has also reported possible links between certain corrosion problems 

and nitrification (Edwards and Triantafyllidou, 2007; Douglas, et al., 2004; Powell, 

2004). It has been suspected that the reduction of pH from nitrification increased 

corrosion of lead pipe (Douglas, et al., 2004). Elevated copper concentrations at the tap 

were also linked to the action of nitrifying bacteria (Murphy, et al., 1997a). The lower 

pH resulting from nitrification could be a contributing factor (Zhang, 2009). 

Nitrification can also influence corrosion through factors other than pH. It can increase 

the growth of bacteria that might stimulate microbiologically influenced corrosion 

(MIC) (Cantor et al., 2006). Zhang and Edwards (2007) reported that cast iron could 

also reduce nitrite/nitrate to ammonia, indicating that nitrified water might cause iron 

pipe corrosion. Disinfectant residuals, in general, increase corrosion rate (Benjamin et 

al., 1996). Both chloramination and nitrification are taking place along G&AWSS and 

hence these can be expected to exacerbate the corrosion problem. 

When copper sulphate is dosed into G&AWSS to inhibit nitrification, potential redox 

reactions involved are listed as follows (Snoeyink and Jenkins, 1980):   
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Reaction                                                   Standard Electrode Potentials at 25
o
C (Volt) 

   O2(ag) + 4H
+
 +4e

-
 = 2H2O                                                                         +1.27    

   NO3
-
 + 2H

+
 +2e

-
 = NO2

-
 + H2O                                         +0.84 

   Cu
2+

 + 2e
-
 = Cu(s)                                                                                   +0.34    

   Fe
2+

 + 2e
-
 = Fe(s)                                                                                                  -0.44   

 

Arranging them in an order of oxidizing capacity, one would obtain the following: 

O2>NO3
-
>Cu

2+
>Fe

2+
. In bulk water with aerating conditions or nitrification, which are 

considered possible aquatic conditions in the distribution system, direct reaction 

between Cu
2+

 and exposed iron can be overruled by the presence of stronger oxidizers 

(O2 and NO3
-
). Besides, monochloramine, which has electrochemical potential of +1.25 

at pH 8 (Snoeyink and Jenkins, 1980), is also a stronger oxidizer than Cu
2+

 that can 

corrode element iron. Our earlier study (Zhan, 2007) found little dissolved copper 

existing in natural water in the form of cupric ions. This finding further excluded the 

possible reaction between free cupric ions and iron. Therefore, the effect of iron pipe 

corrosion on dissolved Cu(II) can literally be referred to as dissolved Cu(II) compounds 

or complexes removal by released corrosion products. 

 

2.4.2 Iron Corrosion Products 

 

Iron corrosion scales include goethite (a-FeOOH), lepidocrocite (g-FeOOH), magnetite 

(Fe3O4), siderite (FeCO3), ferrous hydroxide (Fe(OH)2), ferric hydroxide (Fe(OH)3), 

ferrihydrite (5Fe2O3•9H2O), green rusts (e.g. Fe4
II
Fe2

III
(OH)12CO3) and calcium 

carbonate (CaCO3) (Benjamin et al., 1996 ; Tang et al., 2006). The scale layer may 

provide passivation by limiting the diffusion of oxygen to the metal surface. On the 
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other hand, the scale can also contribute iron to the water. This includes both soluble 

species from scale dissolution as well as scale particles that detach from the surface 

(McNeill and Edwards, 2001). High concentration of readily soluble Fe(II) content is 

present inside scales (Benjamin et al., 1996; Tang, et al., 2006). Therefore, ferrous ions 

can be released into bulk water during corrosion and oxidized to ferric particles. 

McNeill and Edwards (2001) did a comprehensive review on iron pipe corrosion in 

distribution systems. According to their research, dissolved oxygen (DO) plays an 

important role in iron corrosion.  

Fe + 0.5O2 + H2O ↔ Fe
2+

 + 2OH
-
 

DO also play a role in the oxidation of ferrous ions. 

Fe
2+

 + 0.25O2 + 0.5H2O + 2OH
-
 ↔ Fe(OH)3(s) 

Scale formation is a complicated process that depends on a variety of physical and 

chemical conditions in each particular system. It is difficult to model scale behaviour 

(McNeill and Edwards, 2001). However, McNeill and Edwards (2001) listed a few 

typical iron corrosion compounds in which ferrous hydroxide and ferric hydroxide are 

ranked top two. Therefore, among a diversity of possible corrosion products, pre-

formed ferric hydroxide flocs were chosen in this research as one of the representatives 

of corrosion products which could react with dissolved Cu(II) in distribution systems. 

Sarin et al. (2004) also reported that iron is released to bulk water primarily in the 

ferrous form. However, soluble ferrous compounds are converted into ferrous solids 

(e.g. Fe(OH)2), which may then be converted to ferric solids (e.g. Fe(OH)3) after 

reaction with oxygen (AWWARF, 1996). When a new surface of iron is exposed to 

bulk water during the initial stage of corrosion, ferrous ions and ferric ions may exist for 

a short time when they are released from iron-corroded crevices. The interactions 

between ferrous or ferric ions and dissolved copper also need to be investigated. 
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2.5 Aqueous Cu(II) Removal 

 

Heavy metals removal by ferric salts is extensively documented. Streat et al (2008) 

reported the effective arsenic removal from wastewater by granular ferric hydroxide 

through the BET (Stephen Brunauer, Paul Hugh Emmett, and Edward Teller) surface 

adsorption process. Ridge and Sedlak (2004) reported that Cu
2+

 and Cu-EDTA 

compounds up to 13 mg-Cu/L were noticeably removed by addition of FeCl3 and 

adsorption onto hydrous ferric oxide (HFO) in wastewater treatment.  Iron oxides are 

found as good absorbents to remove high concentrations of cupric ions and ammonia-

complexed copper in wastewater (Benjamin et al., 1996). It was suggested that the 

absorbent surface was composed of different binding sites: the strength of different 

binding sites varied considerably. Adsorption was also a function of metal ion 

concentrations, absorbent concentration and pH. At small adsorption densities, the 

adsorption can be described by the Langmuir Isotherm (Benjamin et al., 1996).  

 

In addition, presence of organic matter (e.g. humic substance) is reported to have effect 

on removal of metal ions. Humic substances (HS) are found in all soils and waters that 

contain organic matter. They bind metals, molecules, ions and other biopolymers 

(Davies et al., 1998). Hankins et al. (2005) reported that removal of heavy metals, such 

as Pb
2+

 and Zn
2+

, can be enhanced by binding the metal ions to humic acid (HA) and 

hence facilitate coagulation and flocculation through a complexation-flocculation 

process. Lai and Chen (2001) studied the capacity of iron-coated sand to remove cupric 

ions at relatively high concentrations (3~6 mg-Cu(II)/L) and found high removal 

efficiency at low pHs (< 7). As humic substances ubiquitously exist in natural waters, 

aqueous Cu(II) complexation with HS at very low copper concentrations (< 1 mg/L) and 
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removal of Cu-HS complexes by trace ferric salts (< 2 mg/L) are investigated in this 

research.  

 

2.6 Summary of Literature Review 

 

The literature review above can be summarized as follows: 

1. The effect of chloramination on the solubility of Cu(II) can be neglected. 

2. Cu(II) solubility can be affected by a carbon buffered system. The increased partial 

pressure of CO2 above the water surface can increase Cu(II) concentration through 

increased carbonate forming inorganic copper compounds.  

3. The solubility of Cu(II) in bulk water is controlled by the equilibrium between the 

soluble copper complexes and metastable solid phase such as cupric hydroxide 

(Cu(OH)2) or tenorite (CuO), depending on open or closed system.  

4. Natural organic matter (NOM) plays an important role in governing copper 

solubility in natural water bodies. Copper solubility in Mundaring water is believed 

to be primarily controlled/enhanced by NOM. Therefore, Cu-NOM complexes are 

believed to be the dominant forms of dissolved Cu(II) in G&AWSS.  

5. Both hydrophobic and hydrophilic fractions of NOM have been reported to be able 

to chelate with dissolved copper, although the preferentiality of Cu(II) binding to 

them is not clear. 

6. Organic compounds excreted via nitrification might enhance dissolved copper 

concentration. 

7. Iron pipe corrosion is subjected to both physical and chemical aspects, e.g. extensive 

temperature fluctuation, pipe aging, chloramine, DO, nitrification etc. Low 

chloramine residual and DO can cause and accelerate aged iron corrosion and 

release Fe salts.  
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8. The direct interaction between cupric ions and exposed iron surface through redox 

reaction in G&AWSS can be excluded. The effects of iron pipe corrosion on 

dissolved Cu(II) loss therefore literally refer to the interaction between released iron 

corrosion products and dissolved Cu(II) compounds or complexes.  

9. Ferrous ions can be released into bulk water during corrosion and converted to ferric 

ions or ferric solids after reacting with oxygen.  

 

Based on these previous studies, Cu(II)-NOM complexes are unanimously 

acknowledged as the major soluble copper form in natural water, though the structure 

and preference of copper chelation with certain fractions of specific organic matter 

remains unresolved. High concentrations of cupric ions and complexed copper (up to 

500 mg/L) in wastewater can be removed by adsorption to iron oxide media and 

filtration. However, from the perspective of protecting low concentrations of dissolved 

Cu(II) in distribution systems (e.g. as a nitrification inhibitor), little research has been 

done on dissolved Cu(II) removal by iron pipe corrosion products released from 

corroded or damaged pipes in distribution systems like G&AWSS, with the Cu(II) 

present at low concentrations(< 2 mg/L). According to the 8th and 9th items 

summarized above, ferrous ions, ferric ions and ferric hydroxide flocs were chosen as 

the representatives of iron corrosion products in this research to study dissolved Cu(II) 

removal in the distribution system. Dissolved Cu(II) loss during iron pipe corrosion can 

be divided into two stages: Stage I: Cu(II) removal by fresh ferrous and ferric ions in a 

short period when they are released from corroded cavities; Stage II: Cu(II) removal by 

ferric hydroxide flocs formed afterwards. The laboratory experiments were generally 

designed based on the concept of the two-stage corrosion process. Furthermore, impacts 

of NOM on Cu-NOM chelation and their removal by corrosion products under various 

aqueous conditions are yet to be investigated.  
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CHAPTER 3  

 

SAMPLE MANAGEMENT AND METHODOLOGY 

 

3.1 Sample Sources, Collection, Preservation and Preparation 

 

3.1.1 Sample Sources, Collection and Preservation 

 

Mundaring raw water (MRW): The majority of the water samples used in the 

laboratory experiments were sourced from the outlet of Mundaring weir (the feed water 

for G&AWSS) upstream of the chloramination point. At the chloramination point, both 

ammonia and chlorine were dosed simultaneously. Containers were pre-cleaned with 

sodium hypochlorite (2~3%) to remove indigenous dissolved organic carbon (DOC). 

Milli-Q Water (18 MΩ/cm, <100 ppb-C/L) was used to wash all the containers 

afterwards. All containers were then rinsed with Mundaring raw water (MRW) three 

times prior to sample collection. MRW was stored in the refrigerator at 4
o
C and water 

quality analysis was undertaken immediately after every sample collection. Our group 

had conducted regular sample collection from Mundaring Weir every month from 2008 

to present. The quality of Mundaring water varied slightly in terms of pH (7.6~8.1), 

DOC (2.4~3.1 mg-C/L) and UV254 absorbance (0.031~0.038 cm
-1

).  

 

Prior to any bulk water experiment, Mundaring water was filtered through 0.45 µm pre-

washed cellulous acetate membrane to remove suspended solids or particles before 
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copper salt dose. Samples for ongoing experiments were normally stored in plastic jars 

at room temperature. All the stand-by samples were preserved in the refrigerator at 4
o
C 

and intact except for sampling and analysis. 

 

Nitrified water (NW): Two identical reactor systems, each assembled in series with 

five 20 L reactors (R1 to R5), were set up in the laboratory. Automatic flow rate and 

temperature control were installed for the reactors. Chloraminated Mundaring water was 

fed into the reactor, with mass ratio of (Cl:NH3-N) 4.5 to 1 maintained in the 25-litre 

feeding tank. In the start-up period, chlorine was maintained at about 1mg/L. To 

expedite nitrification and to obtain the DS inoculums, chloraminated water collected 

from G&AWSS was added into the reactors except R1. The chloramine concentration 

was gradually increased up to 2.5 mg/L in the feeding tank. Water (20 L) was fed into 

the system continuously every day to gain retention time of 20±2 hrs. Water 

temperature was maintained at 20±2
o
C in the reactors R1~R3 whereas 23±2

o
C was 

maintained in R4 and R5 in order to achieve accelerated microbial activities. By varying 

hydraulic conditions, temperature and chloramine residuals, nitrification occurring in 

the distribution system can be simulated in the laboratory. In this research, NW was 

collected from R4. NW contained 0.10 mg/L NH3-N, 0.2 mg/L NO2-N and 0.1 mg/L 

NO3-N. The levels of these inorganic nitrogen products indicated that severe 

nitrification occurred in NW (Sathasivan et al., 2008).  

 

The characteristics of the source waters are shown in Table 4.1, Chapter 4.  

 

3.1.2 Preparation of the Bulk Water Samples  
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In addition to the main source waters (MRW and NW), some other bulk waters were 

made in the laboratory offering variables needed for investigation on copper solubility 

and dissolved copper removal under different aqueous conditions. The preparation and 

characteristics of these samples are described as follows: 

 

Milli-Q Water (MQW): Milli-Q water (ultra-pure water) was produced by Purelab 

UHQ-II in order to confirm Cu(II) solubility in an open system (bulk water surface open 

to the atmosphere) at various pH. Milli-Q water was made by sending tap water through 

a series of cartridges sequentially containing or filled with reverse osmosis (RO), 

activated granular carbon, ion exchange and micro-filtration. The product had a 

resistivity of 18 MΩ/cm. DOC concentration was less than 100 ppb. In the experiment 

undertaken in the closed system, nitrogen gas was used to purge CO2 out of the sealed 

sample bottle.  

 

CaCO3 buffered water (CaBW): In order to confirm Cu(II) solubility enhanced by 

inorganic carbon through formation of inorganic copper compounds in carbon buffered 

bulk water, CaCO3 was used to make buffered solution. Calcium carbonate was dosed 

into Milli-Q water to make a CaCO3 concentration of 50 mg/L. Ion strength was 

maintained at 1.5 mmol-eq/L by adding NaCl. Considering aqueous carbon content is 

controlled by the partial pressure of CO2 in the air, both open and closed systems were 

experimented. In the open system, the bulk water was simply left in an uncapped plastic 

container. In the closed system experiment, the water sample was sealed airtight using 

plastic wraps after adding CaCO3. 

 

Mundaring water after coagulation (MCW): Ferric chloride was employed as the 

coagulant to remove coagulable NOM in MRW. Coagulation experiments showed that 
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maximum DOC removal was achieved by adding a coagulant dose of 40 mg-FeCl3/L at 

pH 5~5.5, which is in agreement with Kastl et al (2004). A jar tester was used to control 

the coagulation process. The stirring speed was set at 200rpm for the initial 2 minutes, 

after which ferric chloride was dosed. Stirring of 20 rpm was then applied for another 

20 minutes afterwards. During and after stirring and coagulation, the pH of the bulk 

water was adjusted and maintained at 5~5.5 using a HACH40d pH meter. HCl (1 N) 

and NaOH (1 N) were used to modify pH values. After the coagulation was completed, 

bulk water was kept intact for sedimentation and then filtered through 0.45 µm and 0.2 

µm polycarbonate membranes consecutively to remove flocs. NaOH (1 N) was titrated 

into the filtrate to increase the pH to 7.8±0.2. The concentration of dissolved Fe(II) or 

Fe(III)  in the filtrate was determined using atomic absorption spectroscopy in 

SGS.Pty.Ltd (WA) and found to be <0.02 mg/L.  

 

Humic acid water (HAW): Humic acid water was prepared by diluting stock HA 

solution (3 g-C/L) with MilliQ water (18 MΩ/cm, DOC<100 ppb). Humic acid was 

acquired from Sigma Aldrich
®

, containing 20% ash. HA solid was dissolved in MilliQ 

water first then centrifuged at 4000 rpm for 5 minutes to separate ash and other 

insoluble particles from the solution. The supernatant was withdrawn and filtered 

through 0.45 µm membrane to further remove insoluble impurities. The final filtrate 

was treated as the stock HA standard solution (3 g-C/L). This solution was diluted to 

give HAW, which contained 2.5±0.1 mg-C/L DOC and had UV Abs=0.248/cm (254 nm, 

10 cm quartz cell). This concentration of DOC was chosen to be as equal as possible to 

the DOC concentration in MRW. 

 

The water quality characteristics of the bulk waters are shown in Table 4.1, Chapter 4. 
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3.2 Preparation of Standard Solutions, Dissolved Cu(II) measurement and 

Analytical Methods 

 

Copper sulphate stock solution: Standard CuSO4 stock solution (1 g/L as Cu) was 

prepared by dissolving CuSO4•5H2O in Milli-Q water. The pH of the standard solution 

was maintained at 4.0 so that aqueous Cu(II) could be maintained as cupric ions. The 

volume of bulk water samples was 1.5 L, and consequently 0.375 mL~1.5 mL standard 

solution was dosed using volumetric pipettes to achieve a target concentration of 

0.25~1.0 mg-Cu/L. The relative change of sample volume was therefore within 0.1%.  

 

Ferrous and Ferric stock solutions: FeCl3•6H2O (crystal) and Milli-Q water were used to 

make ferric stock solution of 1 g-Fe
3+

/L. The FeCl3 solution was maintained at pH 

3±0.2 and ready for addition into experimental samples. FeSO4•7H2O was used to make 

ferrous stock solution of 1 g-Fe
2+

/L. To avoid gradual oxidation of Fe
2+

 to Fe
3+

, ferrous 

standard solution was made instantly before the addition without delay. 

 

Fe(OH)3 flocs suspension were made by titrating FeCl3 standard solution (1 g-Fe/L) 

with NaOH (5 N). The FeCl3 solution was maintained at pH 3±0.2 to keep all Fe(III) in 

the form of free ferric ions. FeCl3 solution was titrated by NaOH (5 N) at increments to 

make the target pH 5.0~5.1. A magnetic stirrer was used at 150 rpm during the titration 

to keep Fe(OH)3 flocs uniformly distributed in the suspension. With the fixed pH value 

and stirring speed, the variation of the size of Fe(OH)3 flocs was maintained within a 

narrow range. The particle size distribution of Fe(OH)3 was analysed by 

Mastersizer2000 Particle Size Analyzer (See Appendix B). 
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Copper measurement: The total Cu(II) concentration was analysed using the 

bicinchoninate spectrophotometric method (Hach method 8506; HACH DR2800). This 

method has a measuring range of 0.04~5 mg/L with ±20 µg/L accuracy. Samples were 

digested using nitric acid (1:1) at pH 4~6 for total copper measurement. A potable pH 

meter (HACH40d) with temperature compensation was used to measure pH values. 

Measurement of pH had an accuracy of ±0.2. As for measuring the dissolved copper 

concentration, samples were filtered through a 0.2 µm PC (polycarbonate) membrane 

and total Cu concentration in the filtrate was measured. In order to minimise interaction 

between the sample and membrane and to prevent speciation changes, the volume of the 

filtrate was chosen to represent approximately 50% of the volume of the raw sample 

(Hoffmann et al., 1981).  For instance, to obtain 50 mL filtrate, 100 mL sample water 

was added and 50mL was filtered through the filter paper. 

 

Organic carbon measurement: Water samples were filtered through a 0.45 µm 

membrane before the analysis of UV absorbance and DOC. As for the spectroscopy 

analysis, water samples used as differential absorbance references were filtered through 

a 0.2 µm polycarbonate membrane in order to keep consistency with the filtrates of 

samples containing dissolved copper.  Both spectroscopy analysis and UV abs was 

measured in a 10 cm quartz cell by Helios UV/Vis Spectrophotometer. UV absorbance 

was measured at 254 nm. DOC was analysed by GE 5310C TOC analyser with ±100 

ppb accuracy.  

 

Molecular weight distribution analysis: The apparent molecular weight distribution of 

the UV254-absorbing DOC in the samples was analysed by high performance size 

exclusion chromatography (HPSEC) according to the method of Allpike et al., (2005) 

and Warton et al. (2007), except that a Agilent 1100 Series HPLC system was used and 
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that polystyrene sulfonate standards (840 Da, 1290 Da, 3610 Da, 6520 Da, 15200 Da, 

81800 Da) were used for molecular weight calibration. SEC was performed using a 

TSK G3000SWxl (TOSOH Biosep, 5 µm resin) column and a Agilent 1100 HPLC 

instrument with diode array detection at 254 nm. The column had an internal diameter 

of 7.8 mm and a length of 30 cm, with a void volume of 5.5 mL, as determined with 

dextran blue. The eluent used was the 20 mM phosphate buffer (1.36 g/L KH2PO4 and 

3.58 g/L Na2HPO4.12H2O) at a pH of 6.85. Sample volume was 100 µL and the flow 

rate was 1 mL/minute. Samples were first filtered through a 0.45 µm nylon filter. The 

system was calibrated using a combination polystyrene sulfonate (PSS) standards of 

varying molecular weights. The calibration curve was linear (R
2
 = 0.991) over the 

apparent MW range tested. 

 

Soluble Cu(II), Fe(II) and Fe(III) concentrations in the source waters and bulk water 

samples prepared in the laboratory were measured by atomic adsorption spectroscopy 

(AAS) in SGS before any relevant experiment started. Total Cu(II) concentration was 

found to be less than 20 µg/L before the copper salt dose and the dissolved Fe(II) and 

Fe(III) was below 0.05 mg/L before ferrous or ferric salt addition. 

 

3.3 The Systematic Approach of the Research and the Scheme of the Laboratory 

Experiments  

 

As mentioned in the objectives of the research, the laboratory scale experiments focused 

on two basic aspects: one is to identify and quantify particular and dominant Cu(II) 

species under various aqueous conditions; the other is to investigate removal of 

dissolved Cu(II) by the corrosion products (ferrous ions, ferric ions and ferric hydroxide 

flocs) present at low concentrations (< 2 mg-Fe/L). Dissolved Cu(II) removal occurring 
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in each stage of the two-stage corrosion process was derived from the experimental data. 

Finally, a simple model predicting Cu(II) loss in the distribution system was established.  

 

The laboratory experimental procedures are detailed in each relevant chapter. Copper 

speciation and solubility are studied in Chapter 4. Figure 3.1 is a flowchart of the 

scheme investigating dissolved Cu(II)  removal by the corrosion products.  

 

 

 

Figure 3.1: Conceptual experimental method to investigate dissolved Cu(II) 

removal by the two-stage corrosion process 
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CHAPTER 4  

 

CHARACTERISTICS OF BULK WATERS & Cu(II) 

SOLUBILITY AND SPECIATION UNDER VARIOUS 

AQUEOUS CONDITIONS 

 

4.1 Water Quality Characteristics of Bulk Water Samples 

 

Water quality analysis has been undertaken in all bulk water samples described in 

Chapter 3. The selected water quality characteristics of the bulk water samples are 

presented in Table 4.1. 

 

Table 4.1: Water quality characteristics of the bulk water samples 

Water 

Samples 

pH 

 

UV254 

 

 

DOC 

 

 

SUVA 

 

 

Total dissolved 

Fe(II)+Fe(III) 

 

 

Ca 

 

- cm
-1

 mg-C/L L·mg
-1

·m
-1

 mg/L mg/L 

MQW 

pH=6.3±0.1 

or 

7.9±0.2 

0.003 < 0.1 _ _ _ 

CaBW 

7.9±0.2 

Open 

Closed 

0.0035 < 0.1        _ _ 
50 

50 
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MRW 7.9±0.2 0.035±0.002 2.6±0.1 1.35 <0.02 18 

MCW 7.9±0.2 0.010±0.002 0.90±0.1 1.11 <0.05 _ 

HAW 7.9±0.2 0.248±0.002 2.4±0.1 10.33 <0.02  _ 

NW 7.9±0.2 0.026±0.002 2.5±0.1 1.04 <0.02 _ 

Note: MQW-Milli-Q water; CaBW-CaCO3 buffered water; MRW-Mundaring raw water; 

MCW-Coagulated Mundaring water; HAW-Humic acid water; NW-water containing nitrifying 

bacteria. Refer to Chapter 3 for details of samples’ preparation.  

Total copper concentration was measured in Mundaring raw water and found to be less than the 

instrument detection level of 20 µg/L.  

 

 

Figure 4.1: Apparent molecular weight distribution of UV254-Absorbing DOC in 

MRW, MCW, HAW and NW 

 

Apparent molecular weight (AMW) analysis was undertaken on four NOM-containing 

samples (Figure 4.1). The DOC concentration of MRW, HAW and NW were similar, 

while MCW had a lower DOC concentration after removal of part of the DOC via 

coagulation. Despite having a slightly lower DOC concentration than MRW, HAW had 

a much higher SUVA254 than MRW (1.35 vs 10.33 L mg
-1

 m
-1

, respectively (Table 
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4.1)), indicating a substantially higher aromatic character of HAW NOM (Weishaar et 

al., 2003). The majority of UV254-absorbing DOC in MRW had an AMW distribution 

between 2000 and 3000 Da (Figure 4.1). For ease of discussion, NOM in Mundaring 

water was classified into two fractions: coagulable (removed by coagulation, i.e. the 

NOM present in MRW but not in MCW) and uncoagulable (NOMuc; NOM remaining 

post-coagulation in MCW). The majority of the 2000-3000 Da material in MRW was 

removed by coagulation, leaving part of the DOC with AMW 1000-2000 Da as the 

predominant fraction in MCW. This is consistent with the conclusion that coagulation 

removes predominantly higher MW NOM (Warton et al., 2007; Chadik and Amy, 1987; 

Allpike et al., 2005). In the NW sample, representing MRW subjected to nitrification, 

there was a noticeable increase in one lower AMW UV254-absorbing fraction, centred 

around 500 Da. Two peaks between 900~1500 Da in MRW disappeared in NW, 

possibly indicating production of more lower AMW material due to microbiological 

activity. The much higher UV254 response for DOC in HAW AMW compared to MRW 

is consistent with the much higher SUVA254 measured in the former sample. The AMW 

profiles suggest that HAW NOM is comprised of much higher MW components (2-10 

kDa) (Rajec et al, 1999) than MRW NOM (1-3 kDa) and clearly show that there is a 

substantial difference in the character of these two NOM types.    

 

4.2 Investigation of Cu(II) Solubility and Speciation in the Bulk Waters under 

Various Aqueous Conditions (Laboratory Data + MINEQL+
®

 Calculation) 

 

4.2.1 Introduction 
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The possible factors which were thought to affect Cu(II) solubility in Mundaring water 

had been investigated in our previous research (Zhan, 2007). These factors included 

stirring speed during copper salt dosing, pH, CaCO3 addition, chlorine and ammonia 

addition, NOM and bacteria. It concluded that pH, carbon buffering and NOM are the 

major factors governing Cu(II) solubility in natural waters. However, Zhan (2007) only 

elucidated that the major Cu(II) species in Mundaring raw water are comprised of 

particles, inorganic copper compounds and organic copper complexes and estimated 

their proportions. In order to further verify particular and dominant Cu(II) species in the 

distribution system, to quantify each particular copper species, more delicately designed 

experiments were required.  

 

4.2.2 Methodology  

 

Similar methodology used in our previous research was adopted to investigate copper 

solubility subject to various conditions: MilliQ water (DOC<100 ppb, 18 MΩ/cm), 

CaCO3 buffered Milli-Q water (50 mg-CaCO3/L), MRW, MCW, HAW and NW (Table 

4.1).  

 

A 1 mL aliquot was withdrawn from CuSO4 stock solution (1 g-Cu(II)/L) and added 

into 1 L of the bulk water of interest, aiming to make a total Cu(II) concentration of 1 

mg-Cu(II)/L. Bulk water samples had then been left intact at the ambient temperature 

(15~25
o
C) for 48 hours to allow Cu-NOM complexation and the formation of CuO or 

Cu(OH)2(s) to reach equilibrium (Appendix C).  Dissolved Cu(II) was measured 2, 4, 24 

or 48 hours after copper dosing.  
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As mentioned earlier, copper solubility can be affected by the partial pressure of CO2 in 

contact with the water surface (Snoeyink and Jenkins, 1980) and therefore both open 

and closed systems were investigated in CaCO3 buffered water (CaBW). In the open 

system, the bulk water surface was open to the atmosphere (LgPCO2=-3.50) without 

capping the containers during the course of the entire experiment. Nitrogen gas was 

used to purge CO2 out of the sealed jar to create a closed system during the experiment 

and storage.  

 

To investigate the effect of pH on copper solubility, two different pHs (6.3 and 7.8) 

were trialled in Milli-Q water (MQW). 

 

The copper solubility measured in MQW and CaBW was cross-examined with the data 

calculated using MINEQL+
®

 (chemical equilibrium modelling system). Due to the 

complexity of binding ligands in NOM, it was difficult to decide the equilibrium 

coefficients for Cu-NOM chelation in MRW, MCW, NW and HAW and program them 

into MINEQL+
®

. However, the quantification of Cu-NOM in these samples can be 

deduced from the results achieved in the other bulk water samples investigated.  

 

4.2.3 Results and Discussion 

 

The comparison of the results between laboratory experiments and software prediction 

are shown in Table 4.2.  

 

Table 4.2: Major copper (II) species in the bulk water samples (CuSO4 was dosed 

at 1000 µg-Cu/L in each testing bulk water) 
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Bulk Water 

Conditions 

Intermediate
1
 / 

Equilibrated
2
 

Copper Species 

MINEQL+
®

 

Calculation 
Laboratory Data 

MQW 

pH=6.3±0.1, Open 

system 

Cu
2+

 Cu
2+

=1 mg/L 

Dissolved copper was measured 

at 0.98 mg/L 1 day after Cu 

dose 

MQW 
pH=7.5±0.2, Open 

system 

Cu(OH)2  / CuO 

Cu
2+

=3 µg/L 

+ 

CuO(s) 

Dissolved copper (< 20 µg/L) 

was measured both 2hrs and 2 

days after Cu dose 

CaBW 
solution, 

pH=7.5±0.2, Open 

system 

CuCO3
o
, CuOH

+
  

and Cu(OH)2 / 

only CuO 

Total soluble 

Cu=9 µg/L 

+ 

CuO(s) 

100 µg/L and 10 µg/L dissolved 

Cu were found 2 hrs and 1 day 

after Cu dose respectively, the 

latter occurs when the system is 

in equilibrium with CuO  

CaBW 
 solution, 

pH=7.5±0.2, 

Closed system 

Cu
2+

, CuCO3
o
, 

CuOH
+
 and 

Cu(OH)2 

Cu
2+

=30 µg/L, 

CuOH
+
=30 

µg/L, 

CuCO3
o
= 48 

µg/L 

+ Cu(OH)2(s) 

150 µg/L dissolved Cu was 

measured 1 day after Cu dose. 

The system may be in 

equilibrium with Cu(OH)2(s) 

MRW 
pH=7.9±0.2, 

DOC=2.6±0.1 mg-

C/L, Open system 

CuCO3
o
, CuOH

+
 , 

Cu(OH)2 and Cu-

NOM / CuO and 

Cu-NOM 

*Dependent on 

availability of 

binding ligands 

of MRW NOM 

950 µg/L and 840 µg/L 

dissolved Cu was found 2 hrs 

and 1 day after Cu dose 

respectively. The latter occurs 

when the system reaches 

equilibrium with both CuO and 

Cu-NOM complexes 

MCW 
pH=7.9±0.2, 

DOC=0.9±0.1 mg-

C/L, Open system 

CuCO3
o
, CuOH

+
 , 

Cu(OH)2 and Cu-

NOM / CuO and 

Cu-NOM 

*Dependent on 

availability of 

binding ligands 

of MRW NOM 

340 µg/L dissolved Cu was 

found 1 day after Cu dose when 

the system reached equilibrium 

with both CuO and Cu-NOM 

complexes 

NW  

pH=7.9±0.2, 

DOC=2.5±0.1 mg-

C/L, Open system 

CuCO3
o
, CuOH

+
 , 

Cu(OH)2 and Cu-

NOM / CuO and 

Cu-NOM 

*Dependent on 

availability of 

binding ligands 

of MRW NOM 

900 µg/L dissolved Cu was 

found 1 day after Cu dose when 

the system reached equilibrium 

with both CuO and Cu-NOM 

complexes 

HAW  

pH=7.9±0.2, 

DOC=2.4±0.1 mg-

C/L, Open system 

CuCO3
o
, CuOH

+
 , 

Cu(OH)2 and Cu-

NOM / CuO and 

Cu-NOM 

*Dependent on 

availability of 

binding ligands 

of MRW NOM 

940 µg/L dissolved Cu was 

found 1 day after Cu dose when 

the system reached equilibrium 

with both CuO and Cu-NOM 

complexes 



39 

 

Note: Intermediate
1
 Copper Forms: possible Cu species existing in bulk water only 2 hours after 

dosing CuSO4. 

Equilibrated
2
 Copper Forms: possible Cu species existing in bulk water 1 day after copper dose 

(Appendix C). 

*Cu-NOM chelation coefficient is dependent on a series of binding ligands varying in different 

NOM-containing water samples. They were not programmed into MINEQL in this study. 

Alternatively, the proportion of Cu-NOM was deducted from the difference between the total 

dissolved Cu(II) and the sum of inorganic copper compounds plus free cupric ions.   

 

According to Table 4.2, the concentration of Cu
2+

 is negligible in all the bulk waters at 

pH >7.5±0.2, which covered the optimum pH range (pH 8.0) for chloramine in the 

distribution system. At equilibrium with CuO(s) in the open system, Cu-inorganic 

compounds can be neglected, though increased inorganic carbonate in CaBW did 

increase Cu(II) solubility via formation of inorganic copper compounds (e.g. CuOH
+
, 

CuCO3
o
) in the closed system. However, compared with 1 mg/L copper dose, 150 µg/L 

inorganic dissolved Cu(II) found in 50 mg-CaCO3/L buffered water in the closed 

system was still a small proportion. Much less inorganic copper compounds can be 

expected in MRW with only 9.3 mg-CaCO3/L of alkalinity. Therefore, the dominant 

dissolved copper species in NOM-containing bulk waters (MRW, MCW, NW and 

HAW) must be Cu-NOM complexes. Strikingly enhanced Cu(II) solubility in MRW, 

NW and HAW was attributed to dissolved natural organic matters (NOM). For instance, 

in Mundaring raw water (MRW), with an initial copper salt dose of 1000 µg/L, 840 

µg/L dissolved Cu(II) was found to be in the form of Cu-NOM complexes. The 

remaining 160 µg-Cu/L filtered out as copper particles possibly comprised of Cu(OH)2 

and CuO. In the distribution system starting from Mundaring weir, the dosed copper 

would exist mainly in the form of Cu-NOM complexes. NW and HAW also had high 

Cu(II) solubility, with 900 and 940 µg/L remaining as dissolved copper respectively. 
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Compared with Mundaring raw water (MRW) in which 840 µg/L dissolved Cu(II) was 

measured after a 1000 µg-Cu(II)/L dose, Mundaring water after coagulation (MCW) 

saw much less dissolved copper remaining (340 µg/L). To complete the comparison 

between these two samples, copper was dosed to achieve 250 and 400 µg-Cu(II)/L in 

the duplicate samples of MRW and MCW in an open system. Figure 4.2 shows 

dissolved Cu(II) concentrations in MRW and MCW when different copper salt dose 

was varied. 
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Figure 4.2: Copper solubility in MRW and MCW at various copper salt doses (e.g. 

“Cu-250”: Copper dose is 250 µg-Cu(II)/L). 

 

According to Figure 4.2, dissolved Cu(II) (mostly Cu-NOM) was almost equal in MRW 

and MCW when the copper dose was 250 µg-Cu(II)/L and 400 µg/L, with only 20~30 

µg/L and 50~80 µg/L, respectively, found to be in the particulate forms. However, 

copper solubility became strikingly different between MRW and MCW when the 

copper dose was increased to 1000 µg-Cu(II)/L. In MRW, the majority of dosed copper 

(840 µg/L) was converted to dissolved Cu-NOM, but in MCW only 340 µg/L existed 
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mainly as dissolved Cu-NOM. Figure 4.2, therefore, indicated that coagulable NOM in 

MRW contributed significantly to increasing Cu(II) solubility in the bulk water by 

forming Cu-NOMc (Cu-coagulable-NOM complex) when the copper dose was 

relatively high. However, at low copper doses (250 µg-Cu(II)/L and 400 µg-Cu(II)/L), 

uncoagulable NOM remaining in Mundaring water (MCW) was still capable of 

maintaining Cu-NOMuc (Cu-uncoagulable-NOM complexes) at similar concentrations 

as found in MRW. When the copper dose was further increased to 1 mg/L, the 

uncoagulable NOM was saturated.  

 

4.2.4 Conclusion 

 

In summary, at pH 7.6~8.0, the usual range of pH maintained in G&AWSS, cupric ions 

are negligible. As the source water of G&AWSS, little inorganic Cu(II) compounds 

existed in Mundaring raw water after copper dosing. Cu(II) solubility was strikingly 

enhanced by NOM contained in the water samples like MRW, MCW, NW and HAW, 

though less Cu-NOM was found in MCW in which only uncoagulated NOM was 

available to complex with copper. The dominant Cu(II) species in the distribution 

system were concluded to be in the form of Cu-NOM complexes. The following 

chapters hence describe the details of investigation of the fate of Cu-NOM in the waters 

containing trace iron corrosion products.  

 

 

 

 

 

 

 



42 

 

CHAPTER 5  

 

REMOVAL OF DISSOLVED Cu(II) BY LOW-LEVEL 

FERROUS/FERRIC IONS IN BULK WATERS 

 

5.1 Introduction 

 

Based on the concept of the two-stage corrosion process, dissolved Cu(II) removal by 

ferrous, ferric ions and ferric hydroxide flocs was investigated. As previously discussed, 

ferrous ions can be released into water when freshly corroded surface is exposed or 

passivated-out-layers is broken down and converted to ferric ions in a short time. This 

chapter, therefore, studied the removal of dissolved Cu(II) by either ferrous or ferric 

ions present at low concentrations (< 2 mg/L). When ferrous or ferric ions are released 

into bulk water, they may interact with dissolved Cu(II) for a short time (< 5 mins). 

Ferric hydroxide flocs will be formed afterwards due to the prevalent pH (> 7.6) in the 

distribution system. The interaction between dosed copper and the flocs will last for a 

relatively long time until equilibrium is achieved. Consequently, dissolved Cu(II) 

measured at the end would be the equilibrium dissolved Cu(II) concentration. In other 

words, it was the result from the completed two-stage corrosion process.  

 

5.2 Experimental Procedure and Method  
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In this experiment, MRW, HAW and NW were chosen for the following reasons: MRW 

is the source water for G&AWSS and hence the main interest of investigation. NW is 

the nitrified product water of MRW from the laboratory reactor, which has similar DOC 

concentration but slightly different characteristics in terms of NOM content. In addition, 

nitrification was observed in G&AWSS. It can affect the fate of dosed copper. HAW 

was made to have a similar DOC concentration as MRW, but it had strikingly different 

characteristics of NOM, which is mainly composed of hydrophobic chromophores. 

Investigation of these three types of waters can help to understand the impact of NOM 

on dissolved copper. In each type of bulk water, two different doses of copper salt were 

applied by adding aliquots of an aqueous copper sulphate solution (1 g-Cu(II)/L) into 

1.5 L bulk water, with the aim to make initial Cu(II) concentrations of 400 and 1000 µg-

Cu(II)/L. The samples dosed with copper salt had been kept intact at room temperature 

(20~30
o
C) for 24 hours. Then, the dissolved Cu(II) concentration in each sample was 

measured before addition of the ferrous or ferric ions in order to know the initial 

dissolved Cu(II) concentration (i.e. Cu(II) containing particles Cu(OH)2 and CuO can 

form after copper salt dose).  

 

To investigate dissolved Cu(II) removal by adding Fe
2+

 ions at different concentrations, 

trace FeSO4 was released into each bulk water sample containing a known dissolved 

copper concentration. The appropriate Fe(II) concentration was achieved by adding 

aliquots of FeSO4 stock solution (1 g-Fe(II)/L) (The preparation of FeSO4 solution is 

detailed in Chapter 3). Tested Fe(II) concentrations were 0.1, 0.3 0.5, 1.0 and 2 mg-

Fe(II)/L. A jar tester was used to stir (60 rpm for 30 mins) bulk water during and after 

ferrous ion addition. After the jar test, the samples were left for sedimentation for 4 

hours (4 hours was found to provide sufficient time to reach equilibrium between 

dissolved Cu(II) species and Fe(OH)3 flocs; See Figure 9.1 in Chapter 9). During this 
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time, the pH of each sample was monitored and adjusted to around pH 7.8-8.2 by 

adding HCl solution (1 N) or NaOH solution (1 N), as necessary. Subsamples were then 

filtered through 0.2 µm polycarbonate membranes and the Cu(II) concentration 

remaining in the filtrate was measured. The copper removal was calculated as the 

difference between the dissolved Cu(II) in the bulk water before and after Fe(II) salt 

treatment.  

 

The same procedure was followed for adding Fe
3+

 ions to remove dissolved Cu(II) in 

the bulk waters. Instead of adding FeSO4 solution, FeCl3 (1 g-Fe(III)/L) was used.  

 

5.3 Results and Discussion 

 

Figure 5.1, 5.2 and 5.3 show the removal of dissolved Cu(II) by either ferrous or ferric 

ions in MRW, NW and HAW respectively. The results are plotted as final remaining 

dissolved Cu(II) concentration, after the iron treatment in the form of ferrous or ferric 

ions at different concentrations.  
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Figure 5.1: Dissolved Cu(II) removal by ferrous & ferric ions in MRW (“MRW-400 

µg-Cu(II)/L-Fe
3+

”: In MRW, 400 µg-Cu(II)/L copper salt was dosed and Fe
3+

 ions were 

added to remove dissolved Cu(II). The other legends can be interpreted analogously.) 

 

In Mundaring raw water (MRW) (Figure 5.1), initial dissolved Cu(II) concentrations of 

840 and 340 µg-Cu(II)/L were measured at 0 mg-Fe/L addition for copper doses of 

1000 and 400 µg-Cu(II)/L respectively. The minimum addition of Fe
2+

 (0.1 mg-

Fe(II)/L) removed 160 µg/L dissolved Cu(II) from the bulk water from an initially 

dosed copper of 1000 µg-Cu/L (empty square dots). In the bulk water dosed with 400 

µg-Cu(II)/L copper salt, little dissolved Cu(II) was left after 2 mg/L Fe
2+

 treatment 

(empty triangle dots). Compared with Fe
2+

, Fe
3+ 

addition (solid dots) led to the same 

trend of copper removal and showed only a slightly stronger capacity. However, 

considering the dissolved Cu(II) measurement has ±20 µg/L error, the capacity between 

these two types of ions cannot be explicitly differentiated. In the bulk water with 400 

µg/L initial copper dose, two data series (triangle dots) overlapped, indicating the 

comparable capacity of Fe
2+

 and Fe
3+

 ions to remove dissolved copper in MRW. 
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Figure 5.2: Dissolved Cu(II) removal by ferrous & ferric ions in NW (“NW-400 µg-

Cu(II)/L-Fe
3+

”: In NW, 400 µg-Cu(II)/L copper salt was dosed and Fe
3+

 ions were 

added to remove dissolved Cu(II). The other legends can be interpreted similarly.) 

 

In the nitrified water (NW) (Figure 5.2), dissolved Cu(II) concentrations of 900 and 

360~380 µg-Cu(II)/L at 0 mg-Fe/L addition were measured after 1000 and 400 µg-

Cu(II)/L copper salt were dosed respectively. Despite the slightly higher initial 

dissolved copper concentrations found in NW than in MRW, a similar trend of 

dissolved Cu(II) loss was observed in NW for Fe
2+

 or Fe
3+

 ion treatment. However, 

compared with MRW, slightly more dissolved Cu(II) was removed in NW after the 

corresponding Fe
2+

 or Fe
3+

 ion treatment. This difference may be contributed to by the 

change of NOM composition during the nitrification. The detailed explanation is given 

in Chapter 8. 
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Figure 5.3: Dissolved Cu(II) removal by ferrous & ferric ions in HAW (“HAW-400 

µg-Cu(II)/L-Fe
3+

”: In HAW, 400 µg-Cu(II)/L copper salt was dosed and Fe
3+

 ions were 

added to remove dissolved Cu(II). The other legends can be interpreted analogously.) 

 

In the humic acid water (HAW) (Figure 5.3), 920~940 and 400 µg-Cu(II)/L existed as 

dissolved copper for 0 mg-Fe/L addition after 1000 and 400 µg-Cu(II)/L copper salt 

were dosed respectively. Generally, less dissolved Cu(II) removal by either Fe
2+

 or Fe
3+

 

ions was observed in HAW than in MRW or NW. Neither ferrous nor ferric ions at 0.5 

mg/L (overlapped triangle dots) removed dissolved Cu(II) in the waters dosed with 400 

µg-Cu(II)/L copper salt. After the maximum addition of Fe
2+

 or Fe
3+

 (2 mg-Fe/L), 240 

and 100 µg/L dissolved Cu(II) still remained respectively. Ferric ions showed much 

larger capacity than ferrous ions to remove copper in HAW. The difference in behaviour 

of copper removal observed in HAW may have been caused by the distinct 

characteristics of HAW NOM. The details related to Cu-NOM chelation and its impact 

on dissolved Cu(II) removal are discussed in Chapter 8. 
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 5.4 Conclusion 

 

Although NOM contained in bulk waters enhanced Cu(II) solubility through forming 

Cu-NOM complexes, dissolved Cu(II) is still vulnerable to the iron corrosion products 

even when they were present at low concentrations (< 2 mg/L). Both ferrous and ferric 

ions showed considerable and similar capacity to remove dissolved Cu(II) in the 

Mundaring water and the nitrified water (NW). Cu-NOM in humic acid water (HAW) 

demonstrated relatively high resistance to Cu(II) ion removal. However, 2 mg/L ferric 

ions were still able to remove the majority of dissolved Cu(II) in HAW.  
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CHAPTER 6  

 

REMOVAL OF DISSOLVED Cu(II) BY LOW-LEVEL 

FERRIC HYDROXIDE FLOCS IN BULK WATERS 

 

6.1 Introduction 

 

Chapter 5 discussed dissolved Cu(II) removal by ferrous and ferric ions which could be 

released into bulk water at the early stage of iron corrosion. The final dissolved Cu(II) 

concentration was measured after iron salt treatment at various additions. However, 

ferrous or ferric ions are believed to be only existing in bulk water for a short time at pH 

7.6~8.0. Soluble ferrous ions are converted into ferrous solids (e.g. Fe(OH)2), which 

may then be converted to ferric solids (e.g. Fe(OH)3) after reaction with oxygen 

(AWWARF, 1996). The conversion to Fe(OH)3 flocs in bulk water were also observed 

in our laboratory experiments. The growing Fe(OH)3 flocs started to be visible to naked 

eyes within 5 minutes after ions addition. It indicated that longer lasting interaction 

occurred, indeed between dissolved copper and Fe(OH)3 flocs. The dissolved Cu(II) 

finally remaining in bulk water is hence governed by the equilibrium reached between 

dissolved Cu(II) and Fe(OH)3 flocs. This chapter investigated removal of dissolved 

Cu(II) by Fe(OH)3 flocs.  
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6.2 The Experimental Procedure and the Method  

 

MRW, MCW, HAW and NW were chosen for the experiments. In each type of bulk 

water, different copper doses (250, 400 and 1000 µg-Cu(II)/L) were applied in its 

duplicates. The same procedure of aqueous copper dosing and dissolved Cu(II) 

measurement before Fe(OH)3 addition was followed, as illustrated in 5.2 (Chapter 5). 

 

In order to evaluate the effect of the pre-formed Cu(II) particles (e.g. Cu(OH)2, CuO(s)) 

on dissolved Cu(II) removal by Fe(OH)3, the post-Cu(II)-dose samples were divided 

into two groups. In one group (MRW and MCW), pre-formed particles were allowed to 

remain in bulk waters during Fe(OH)3 treatment. In the other (MWF, NW and HAW), 

the pre-formed Cu(II) particles were filtered out by a 0.2 µm polycarbonate membrane 

before Fe(OH)3 treatment (MWF: MRW with pre-formed Cu(II) particles removed by 

filtration). 

 

Fe(OH)3 flocs were added into each water sample and its duplicates at different 

concentrations (0.5, 1.0 and 2 mg-Fe(III)/L). The same procedure of jar test and 

dissolved copper measurement after Fe(OH)3 treatment was followed, as illustrated in 

5.2 (Chapter 5).  

 

6.3 Results and Discussion 

 

6.3.1 The Adsorption of Dissolved Cu(II) by Fe(OH)3 Flocs in Tested Bulk Waters 

 



51 

 

Figure 6.1~ 6.5 show the removal of dissolved Cu(II) by Fe(OH)3 flocs in MRW, MFW, 

NW, MCW and HAW sequentially. As mentioned earlier, in MWF, NW and HAW, 

after copper dosing, any particulate copper formed before Fe(OH)3 treatment was 

removed through 0.2 µm filtration. For MRW and MCW, the filtration step was not 

exercised. 

 

Figure 6.1: Dissolved Cu(II) removal by Fe(OH)3 flocs in MRW 

 

 

Figure 6.2: Dissolved Cu(II) removal by Fe(OH)3 flocs in MWF 
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Figure 6.3: Dissolved Cu(II) removal by Fe(OH)3 flocs in NW 

 

 

Figure 6.4: Dissolved Cu(II) removal by Fe(OH)3 flocs in MCW 
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Figure 6.5: Dissolved Cu(II) removal by Fe(OH)3 flocs in HAW 

 

In MRW and MWF (Figure 6.1 and 6.2), before ferric flocs addition, initial dissolved 

Cu(II) concentrations of 220, 350 and 840 µg/L were measured when Cu(II) was dosed 

at 250, 400 and 1000 µg/L respectively. NW had a slightly higher Cu(II) solubility than 

MRW and MWF (Figure 6.3, 6.1 and 6.2), as 900 µg/L dissolved Cu(II) was found at 0 

mg-Fe(III)/L addition after 1000 µg-Cu(II)/L copper salt dosing. Similar Cu(II) 

solubility as that in MRW or MWF was found in MCW (Figure 6.4) when Cu(II) was 

dosed at 250 and 400 µg/L. However, much less dissolved Cu(II) (360 µg/L) was 

measured when Cu(II) was dosed at 1000 µg/L in MCW, as discussed in Figure 4.2.  

 

In the samples dosed with 1000 µg-Cu(II)/L copper salt (round dots), the maximum 

Fe(III) addition (2 mg-Fe(III)/L) left only 300, 230 and 230 µg/L dissolved Cu(II) in 

MRW, MWF and NW respectively (Figure 6.1~6.3). Addition of the flocs at a 

concentration of 2 mg-Fe(III)/L removed most of the dissolved Cu(II) in MRW, MCW, 

MWF and NW (Figure 6.1~6.4) when the 250 or 400 µg-Cu(II)/L copper salt was 
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dosed, indicating the considerable impact of trace ferric hydroxide flocs on the 

concentration of dissolved copper. 

 

The relative capacity of NOM to stabilize soluble Cu(II) was found to be stronger in 

HAW than in NW or MRW with higher concentrations of dissolved Cu(II) measured in 

HAW at all floc concentrations (Figure 6.5). Removal of dissolved Cu(II) by ferric 

hydroxide flocs was lower in HAW than in MRW or NW. For instance, only 20µg/L 

dissolved Cu(II) was removed by 2 mg-Fe(III)/L flocs when copper was dosed at 

250µg/L. These observations can be attributed to the distinct character of HAW NOM 

which gave higher SUVA (Table 4.1) and contained more large MW components as 

evidenced in the AMW profile (Figure 4.1). Adsorption of Cu(II) in HAW did not obey 

Freundlich isotherm.  

 

This phenomenon is related to the distinct characteristics of HAW NOM in terms of its 

ability to adsorb onto the ferric flocs or complex with Cu(II). When ferric hydroxide 

flocs were added at low concentrations (< 2 mg/l), it was believed that the majority of 

available adsorption sites on the coagulants were preferentially and readily occupied by 

large organic molecules (Volk et al., 2000). On the other hand, the complexation 

between Cu(II) and organic molecules starts preferentially from small molecular weight 

compounds (evidence is provided in Chapter 8). Consequently, the relatively small 

Cu(II)-NOM complexes were shielded from ferric adsorption by those large organic 

molecules in HAW which were not bound with copper. Therefore, the Freundlich 

adsorption relationship attempted only between Cu(II)-NOM complexes and Fe(OH)3 

flocs could not be established since in HAW a significant proportion of available 

adsorption sites on Fe(OH)3 flocs were occupied by the large organic matter which were 

not complexed with copper. The degree to which Cu(II)-NOM involved in adsorption is 
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dependent on the proportion of large organic molecules and the concentration of ferric 

flocs. When small molecules of NOM are saturated through complexation with Cu(II), 

the increased copper dose can result in Cu(II) complexation with large molecules which 

can be more easily removed by the ferric flocs. Meanwhile, increasing ferric addition 

can also remove more Cu(II)-NOM if most of the Cu(II) binding free molecules have 

been occupied by Cu(II) through complexation. It explains in Figure 6.5 why little 

Cu(II)-NOM was removed in 250 µg/L copper dose case while 1000 µg/L copper dose 

saw more copper removal. The elucidation of above theory was further supported by the 

discussion of apparent molecular weight analysis and UV254 absorbance analysis in 

Chapter 8.  

 

The laboratory results were tested against known adsorption isotherms, Freundlich, 

Langmuir and BET. Freundlich isotherm was found to be capable of explaining the 

observed dissolved copper removal. In Figure 6.1~6.4, the dashed lines derived from the 

Freundlich adsorption isotherms are compared against the measured results (discrete 

points) following the formula: 

 

n
F CudissolvedmEquilibriuK

ConcIIIFe

removalCuDissolved 1

)__(
_)(

__
×=  

 

Each dashed line represents the model predicted dissolved Cu(II) removal through 

adsorption at different Fe(III) concentrations when copper salt was dosed at a specific 

concentration. For example, the red dashed line in Figure 6.2 (labelled as “MWF-

1000µg-Cu(II)/L-Freundlich”) demonstrates the trend of dissolved Cu(II) adsorption by 

Fe(OH)3 flocs in increments when 1000 µg-Cu(II)/L was dosed.  
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The experimental results from other bulk water samples were also tested against the 

known adsorption isotherms. Freundlich adsorption isotherm was found to be capable of 

modelling dissolved Cu(II)-Ferric flocs interaction in MRW, MWF, NW and MCW 

(except for 1000 µg-Cu(II) copper salt dose in MCW, the discussion is given in 6.3.2). 

The best fit parameters for Freundlich isotherms are shown in Table 6.1. 

 

Table 6.1: The parameters adapted in Freundlich Adsorption Isotherm  

Variables 

&Constants 

Cu removal/µg 

Fe(OH)3 
KF 

Final 

Dissolved 

Cu(II) 

n R
2
 

Unit µg/µg  µg/L   

MRW 
Y=(Cuo-[Cu])/ 

Fe(III) Conc 
0.0031 C 1.19 0.98 

MWF 
Y=(Cuo-[Cu])/ 

Fe(III) Conc 
0.0030 C 1.16 0.99 

MCW 
Y=(Cuo-[Cu])/ 

Fe(III) Conc 
0.0028 C 1.17 0.99 

NW 
Y=(Cuo-[Cu])/ 

Fe(III) Conc 
0.0002 C 0.73 0.98 

Note: Cuo: dissolved bulk copper concentration at 0-mg-Fe(III)/L addition  

          C: dissolved copper concentration after Fe(OH)3 treatment 

          Freundlich isotherm: y = KFC
1/n

 

          R
2
: coefficient of determination 

 

Adsorption phenomenon generally occurred between dissolved copper and Fe(OH)3 

flocs, as shown by the well-matched (R
2
=0.98 in MRW, R

2
=0.99 in MWF, R

2
=0.99 in 

MCW and R
2
=0.98 in NW) Freundlich isotherm curves calculated from the adapted 

parameters in Table 6.1. Considering “KF” and “n” reflect the characteristics of 

adsorbent (Fe(OH)3 flocs) and adsorbate (Cu-NOM), it is reasonable to see similar KF 
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and n values (KF=0.003, n=1.16~1.19) for MRW and MWF due to their common 

composition in NOM spectrum. 

  

 

Figure 6.6: The comparison of dissolved Cu(II) removal by Fe(OH)3 flocs from 

MWF and NW 

 

Since higher dissolved Cu(II) concentrations were observed at 0 mg-Fe/L in NW than in 

MRW or MWF as, more Cu(II) may have been complexed with NOM in NW than in 

MRW or MWF. A direct comparison of Cu(II) removal between MWF and NW is 

given in Figure 6.6. Slightly less dissolved Cu(II) was removed in NW than in MWF for 

250 and 400 µg-Cu(II)/L copper doses while Cu(II) removal was similar in both waters 

for 1000 µg-Cu(II)/L copper dose. Considering the measuring error of ±20 µg/L, the 

difference shown in Figure 6.6 is not significant. However, the same Freundlich 

isotherm parameters adopted for MRW or MWF could not be fit to NW. Instead, 

different “KF” and “n” values were calculated for NW (KF=0.0002, n=0.73). “KF” and 

“n” values are interpreted in Freundlich Adsorption Isotherm in terms of fundamental 
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kinetics and diffusion based properties (Skopp, 2009). Skopp (2009) suggested that 

“KF” is related to the diffusion coefficient of an adsorption-desorption dynamics and 

“n” reflects the probability distribution for a molecule to access adsorption sites. The 

different KF and n values are believed to be related to soluble microbial products from 

nitrification (Krishna and Sathasivan, 2010), which were chelated with dissolved copper 

and had a different character from Cu-NOM complexes formed in MRW or MWF. The 

detailed discussion is given in Chapter 8. 

 

Figure 6.4 shows the removal of dissolved Cu(II) in MCW containing only 

uncoagulable NOM (NOMuc). Therefore, Figure 6.4 can be regarded as the removal of 

Cu(II)-NOMuc. Despite the difference in DOC concentration between MRW (2.6 mg-

C/L) and MCW (0.9 mg-C/L), for 250 and 400 µg-Cu/L copper doses, similar trends 

(MCW “n=1.17” and “KF=0.0028”) of Cu(II) removal were observed for these waters, 

indicating that the same type and number of Cu(II)-NOM complexes (i.e. mostly Cu(II)-

NOMuc) may have formed. 

 

6.3.2 The impact of pre-formed Cu(II)-containing particles on dissolved copper 

removal 

 

Some deviation of the experimental data from the Freundlich isotherm was observed in 

MRW at 1000 µg-Cu(II)/L copper dose (red dashed line in Figure 6.1). It shows the 

impact of pre-formed Cu-containing particles (CuO and Cu(OH)2) on dissolved Cu(II) 

removal.  When copper is added to bulk water it potentially forms either particulate or 

stay as dissolved. Dissolved copper can be measured easily by filtering through 0.2 µm 

filter paper. However the amount not appearing in the dissolved form can be considered 
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particulate copper (e.g. CuO(s) and Cu(OH)2). If the particulates are removed prior to 

ferric hydroxide floc addition, one can easily find the impact of particulates which 

existed in the water before ferric salts were added. This is similar to the case of MWF. 

When 1000 µg-Cu(II)/L copper was dosed (Figure 6.2), 160 µg-Cu/L as particulates had 

been removed from the reaction system before ferric hydroxide was added. In this 

experiment, 350 µg-Cu(II)/L remained in MWF after 1 mg-Fe(III)/L Fe(OH)3 treatment, 

while 410 µg-Cu/L was measured in MRW in which these pre-formed copper 

particulates remained. This indicates that the presence of these copper particulates 

prevents removal of some of the dissolved Cu(II)-NOM from the flocs. However, one 

could note that the pre-filtration step had little effect on dissolved Cu(II) removal at the 

two lower Cu(II) dose cases (250 and 400 µg-Cu(II)/L) due to negligible Cu(II) 

particles formed in MRW.  

This impact from the particles became obvious when 1000 µg-Cu(II)/L copper salt dose 

was practiced in MCW (Figure 6.4).  Only around 350 µg-Cu/L remained in MCW at 0 

mg-Fe(III)/L addition, slightly higher than that remained in solution (340µg-Cu(II)/L) in 

the 400 µg-Cu/L copper dose experiment. Sufficient Cu(II) complexing sites on the 

lower concentration of NOMuc must only have been available to complex with around 

350 µg-Cu/L, with the remaining copper presumably forming precipitates such as 

Cu(OH)2 and CuO(s). When Fe(OH)3 floc was added, the presence of this large 

proportion of Cu-containing particles severely interfered with dissolved copper removal. 

With 2 mg-Fe/L, only 60 µg/L Cu-NOMuc was removed. This dramatic change in the 

dissolved Cu(II) removal could be due to preferential adsorption of the large copper-

based precipitates on the Fe(OH)3 flocs, consistent with similar effect observed in 

MRW for 1000 µg-Cu(II)/L copper salt dose experiment.  
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6.4 Conclusion 

 

Fe(OH)3 flocs showed considerable capacity to remove dissolved Cu(II) from the water 

sourced from Mundaring weir and NW. The interaction between dissolved Cu(II) and 

Fe(OH)3 flocs can be explained by multilayer adsorption, obeying the Freundlich 

isotherm. The characteristics of NOM contained in bulk waters have effects on both Cu-

NOM complexation and dissolved Cu(II) removal. Both coagulable and uncoagulable 

NOM are capable of binding with Cu(II). Highest resistance of dissolved Cu(II) 

removal and strongest adsorption of NOM to ferric flocs were observed in humic acid 

containing water (HAW) while smaller molecules, with which dissolved Cu(II) is 

believed to be preferentially bound, are shielded by a relatively large amount of large 

organic molecules from ferric flocs adsorption. However, this postulate needed further 

investigation in order to reveal the mechanisms governing Cu-NOM chelation and the 

fate of Cu-NOM in bulk waters with various NOM compositions when either NOM or 

Cu-NOM complex are removed by iron corrosion products. Heterogeneous copper 

species (e.g CuO(s) and Cu(OH)2 particles) can reduce adsorption of dissolved Cu(II) on 

Fe(OH)3 flocs, the degree of which is dependent on the  proportion of the particles. It 

was thought that the particulate copper interfered Cu-NOM adsorption.  

 

The details of Cu-NOM chelation and the interpretation of different Cu-NOM behaviour 

during the Fe treatment are discussed in Chapter 8. However, before exploring the 

mechanisms behind Cu-NOM chelation, it is necessary to summarize dissolved Cu(II) 

removal by released iron corrosion products (Fe
2+

/Fe
3+
→Fe(OH)3 flocs) through two-

stage corrosion process. This process is illustrated and summarized in Chapter 7 by 

combining the results achieved in Chapter 5 and Chapter 6. 
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CHAPTER 7  

 

DISSOLVED Cu(II) REMOVAL BY LOW-LEVEL IRON 

CORROSION PRODUCTS VIA TWO-STAGE PROCESS: A 

NOVEL MODELLING APPROACH 

 

7.1 Introduction 

 

According to the concept demonstrated in Figure 3.1,  removal of the dissolved Cu(II) 

takes place in two stages in sequence after corrosion occurs (Figure 7.1): Stage I- 

removal by Fe
2+

 or Fe
3+

 ions; Stage II- removal by Fe(OH)3 flocs formed from the 

released ions. Removal by Fe
2+

 or Fe
3+

 need not be differentiated, because the release of 

Fe
2+

 from pipe walls and its transformation to Fe
3+

 can happen quickly and the impact 

of both types of ion on copper removal was found to be similar in Chapter 5. 

 

Figure 7.1: Iron salts being released via the two-stage iron corrosion process 

 

Chapter 5 revealed the sum of dissolved Cu(II) removal of Stage I and Stage II by 

adding the ions while Chapter 6 focused on the removal occurring only in Stage II by 

adding pre-formed ferric hydroxide flocs. However, the removal of dissolved Cu(II) 
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occurring only in Stage I was yet to be quantified. This was accomplished by 

reprocessing the laboratory results from the previous two chapters. 

 

7.2 Method of Data Processing from Chapter 5 and Chapter 6 

 

In Stage I, dissolved Cu(II) removal is achieved by the freshly released ions (Fe
2+

 and 

Fe
3+

) through coagulation and neutralization. It is followed by Stage II, the removal 

through adsorption by the Fe(OH)3 flocs which formed afterwards.  

 

The figures in Chapter 6 show that the equilibrium concentration of dissolved Cu(II) 

that finally remains is not only governed by ferric floc addition but also the  initial 

Cu(II) concentration before the adsorption process starts (i.e., before adding ferric 

hydroxide flocs). By re-arranging the figures shown in Chapter 6, Figure 7.2 to 7.4 

show the relationship between the Cu(II) concentrations before and after adding ferric 

hydroxide flocs at various concentrations. Therefore, the intermediate dissolved Cu(II) 

concentration, i.e. after Stage I but before Stage II, can be found when equilibrium 

Cu(II) concentration and ferric flocs addition are known. For instance, in MRW (Figure 

7.2), the equilibrium Cu(II) concentration of 80 µg/L corresponds to an intermediate 

Cu(II) concentration of 220 µg/L, according to the Freundlich isotherm curve of MRW-

Fe 1 mg (when 1 mg/L ferric flocs is added). When a batch experiment as described in 

Chapter 6 is carried out, the intermediate Cu(II) concentration is exactly the result of the 

copper dose. In the above example, 220 µg/L dissolved Cu(II) can be found after 250 

µg/L Cu(II) is dosed.  
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The dissolved Cu(II) concentration remaining in the bulk waters after addition of Fe
2+

 

or Fe
3+

, as shown in Figure 5.1 to 5.3, was the final equilibrium Cu(II) concentration 

after both Stage I and Stage II were completed in sequence. For example, when 400 

µg/L copper was dosed, 350 µg/L initial dissolved Cu(II) was found. After adding 1 

mg/L ferric ions, the final dissolved Cu(II) concentration of 80 µg/L was measured. So, 

the process of copper removal can be calculated as follows: 

350 µg/L - Cu(II) removed in Stage I = intermediate dissolved Cu(II)  

Intermediate dissolved Cu(II) - Cu(II) removed in Stage I = 80 µg/L 

According to the previous discussion, the intermediate dissolved Cu(II) can be located 

in Figure 7.2. In this example, it was 220 µg/L. Therefore, Cu(II) removal in Stage I is 

calculated as 350 µg/L - 220 µg/L = 130 µg/L. 

 

Following the same procedure, the intermediate dissolved Cu(II) in NW and HAW can 

be located in Figures 7.3 and 7.4 respectively. The Stage I dissolved Cu(II) removal can 

be calculated accordingly.  
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Figure 7.2: Dissolved Cu(II) after Fe(OH)3 treatment vs before the treatment in 

MRW 

 

 

Figure 7.3: Dissolved Cu(II) after Fe(OH)3 treatment vs before the treatment in 

NW 
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Figure 7.4: Dissolved Cu(II) after Fe(OH)3 treatment vs before the treatment in 

HAW 

 

 

7.3 Results and Discussion 

 

Figures 7.5 to 7.10 demonstrate the two-stage process and show the removal of 

dissolved Cu(II) at each stage. The pink dots represent the total removal occurred during 

both first and second stages. By extracting the information from Chapter 5 and 

following the procedure described above in Section 7.2, the calculated removal in Stage 

I is plotted in blue dots. The vertical distance between the blue line and the pink line in 

each figure consequently represents the removal only in Stage II (the adsorption 

process).   
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Figure 7.5: Removal of dissolved Cu(II) through the two-stage corrosion process in 

MRW: 1000 µg/L copper dose case 

 

 

Figure 7.6: Removal of dissolved Cu(II) through the two-stage corrosion process in 

MRW: 400 µg/L copper dose case 
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Figure 7.7: Removal of dissolved Cu(II) through the two-stage corrosion process in 

NW: 1000 µg/L copper dose case 

 

Figure 7.8: Removal of dissolved Cu(II) through the two-stage corrosion process in 

NW: 400 µg/L copper dose case 
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Figure 7.9: Removal of dissolved Cu(II) through the two-stage corrosion process in 

HAW: 1000 µg/L copper dose case 

 

Figure 7.10: Removal of dissolved Cu(II) through the two-stage corrosion process 

in HAW: 400 µg/L copper dose case 

 

Figures 7.5 and 7.6 show the two-stage removal of dissolved Cu(II) in MRW when 

copper was dosed at 1000 and 400 µg-Cu(II)/L respectively. The minimum gap between 
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the blue and the pink lines was observed when trace ions (0.1 mg /L) were added, 

indicating that Stage I was responsible for the majority (70%) of total copper removal. 

However, with increasing addition of the ions from 0.3 to 2.0 mg/L, the Cu(II) loss 

contributed by the adsorption in Stage II was augmented and accounted for 40~50% and 

25~65% of the total removal when copper was dosed at 1000 and 400 µg-Cu(II)/L  

respectively. Generally, total removal of dissolved Cu(II) showed a power increase with 

increased ion addition. The removal occurring in Stage I increased linearly with ion 

addition of more than 0.5 mg/L. 

 

The striking feature observed in Figure 7.5 and 7.6 is that the two curves are close to 

parallel for the ion addition of 0.5 mg/L and above. In other words, the removal 

occurring in Stage II did not increase proportionally even though the ion addition was 

increased. This can be attributed to the decreasing intermediate Cu(II) concentration 

when the ion addition was increased to remove more Cu(II) in Stage I. According to the 

Freundlich adsorption relationship, the removal in Stage II is not only augmented by 

increasing the Fe(OH)3 floc concentration but also diminished with the intermediate 

Cu(II) concentration at the beginning of Stage II. Table 7.1 gives the calculation step by 

step and demonstrates how the removal in Stage II is governed by both increased ion 

addition and diminished intermediate Cu(II) which are counteracting each other.  

Table 7.1 Calculation Table of Cu(II) Removal via Two Stage Corrosion Process 

(MRW) 

Ion 

Addition 

(mg/L) 

Cu(II) 

Dose 

(µg/L) 

Initial 

Cu(II) 

(µg/L) 

Removal 

in Stage I  

(µg/L) 

Intermediate 

Cu(II) (µg/L) 

Equilibrium 

Cu(II) 

(µg/L) 

Removal in Stage II  

(µg/L) 

0.5 1000 840 320 520 320 200 

1 1000 840 360 480 190 290 

2 1000 840 460 380 90 290 

0.5 400 350 60 290 180 110 

1 400 350 130 220 80 140 

2 400 350 250 100 20 80 
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The same trend of removal was observed in NW (Figure 7.7 and 7.8). Copper removal 

occurring in Stage I dominated when only 0.1 mg-Fe/L ferric ions were added. At the 

higher ion addition, 30~50% copper loss was attributed to the adsorption process in 

Stage II.  

 

A strikingly different result was observed in HAW (Figure 7.9 and 7.10). Only 16% of 

total dissolved Cu(II) loss occurred in Stage I when 0.5 mg-Fe/L ions were added into 

the sample with a copper salt dose of 1 mg-Cu(II)/L (Figure 7.9). In Figure 7.9, the 

maximum proportion of Cu(II) loss in Stage I accounted for 50% when 1 mg-Fe/L ions 

were added. Figure 7.10 shows that even generally, a smaller proportion of total Cu(II) 

loss happened in Stage I, with no copper removal during Stage I at 0.5 mg-Fe/L ion 

addition and maximum 16% of total Cu(II) loss occurring in Stage I at 2 mg-Fe/L ion 

addition. As discussed earlier, less dissolved Cu(II) was removed in HAW due to its 

distinct NOM character. In addition, the proportion of total dissolved Cu(II) removal 

contributed by Stage I was generally smaller in HAW. In other words, Cu(II) loss in 

HAW mainly happened during the adsorption process. This finding again indicated the 

impact of large organic molecules in HAW on the coagulation process occurring in 

Stage I, i.e. coagulation, employing ferric ions, mainly removed large molecules while 

the majority of Cu(II) chelated with relatively small molecules.  

 

7.4 Conclusion 

 

The removal of dissolved copper was achieved via the two-stage process sequentially 

occurring during corrosion: Stage I-coagulation and aggregation by ferrous/ferric ions; 

Stage II-adsorption controlled by iron hydroxide flocs, which formed from dosed 
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ferrous/ferric ions. Both ferrous/ferric ions and iron hydroxide flocs demonstrated 

considerable capacity to remove dissolved copper in bulk waters. MRW and NW 

showed nearly equal impacts of each stage on dissolved Cu(II) loss, except for the case 

of 0.1 mg-Fe/L ferric ion addition in which the total dissolved Cu(II) removal had 

nearly finished in Stage I. The degree of dissolved Cu(II) removal can be affected by the 

NOM composition in bulk waters. The effect of coagulation on Cu(II) removal in Stage 

I was attenuated in HAW due to the presence of large organic molecules. Therefore, less 

dissolved Cu(II) removal was observed in HAW. This observation is consistent with 

what was discussed in Chapter 5 and Chapter 6: both Fe(OH)3 flocs and ferrous/ferric 

ions show weaker capacity to remove dissolved Cu(II) in HAW than in MRW. 
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CHAPTER 8  

 

MECHANISMS GOVERNING Cu-NOM CHELATION AND 

THE EFFECT OF NOM CHARACTERISTIC ON 

DISSOLVED COPPER REMOVAL BY Fe(II)/Fe(III) SALTS 

8.1 Introduction 

 

In terms of the results shown in Chapter 5 and Chapter 6, differences in Cu(II) solubility 

and the behaviour of dissolved copper removal were observed between three major 

experimental water samples: Mundaring weir water, the water containing nitrifying 

bacteria and humic acid water. According to the AMW profiles in Figure 4.1, both 

Cu(II) binding preferentiality and distinct NOM character are thought to play an 

important role in Cu-NOM chelation and dissolved Cu(II) removal. However, further 

investigation is required to understand the mechanisms behind this. The comparison 

with respect to Cu-NOM chelation and dissolved Cu(II) removal was made between 

MRW, NW and HAW in the following discussion.  

 

8.2 Mundaring raw water (MRW) vs Nitrified water (NW) 

 

As discussed in previous chapters, Cu(II) solubility was slightly higher in NW than 

MRW and dissolved Cu(II) in NW also manifested a slightly stronger resistance to 

Fe(OH)3 adsorption than that in MRW when the copper salt dose was either 250 or 400 
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µg-Cu(II)/L (Figure 6.6, Chapter 6). Chapter 6 provides the explanation based on the 

AWM profile (Figure 4.1), showing additional peaks of UV254-absorbing DOC 

emerging in NW AWM in a low molecular weight range. However, the difference in 

AWM profile between MRW and NW is not explicit enough to distinguish their NOM 

composition.  

 

Dryer et al. (2008) proposed a novel method called differential absorbance spectra to 

differentiate various compositions of NOM and characterized their complexation with 

copper. Therefore, NOM was believed to be chiefly responsible for the high solubility 

of copper found in the experimental bulk waters. Cu-NOM complexation was analysed 

by employing the differential absorbance spectroscopy principle:  

))()((
1

)( _ λλλ referenceCuCu

cell

Cu AA
DOCl

A −
×

=∆  

ACu_reference is the absorbance of the experimental sample containing no copper. Based on 

the spectra of samples obtained for the complexation of copper experiment with similar 

dissolved organic carbon (DOC) but different NOM composition, it could render an 

explanation of distinct dissolved copper removal among various samples. 

 

Figure 8.1 shows the variation of the spectra of MRW NOM when copper salt was 

dosed in increments (250, 400 and 1000 µg-Cu(II)/L) into MRW, using the spectrum of 

MRW NOM with 0 µg-Cu(II)/L copper salt dose as a reference line. Three curves are 

dominated by a peak at around 275 nm, with growing absorbance by increasing Cu(II) 

concentration. It indicates the prevalent fraction which tended to bind copper and form 

Cu-NOM complexes.  
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Figure 8.1: Differential absorbance spectra of MRW NOM bound with Cu(II) 

 

 

Figure 8.2: Differential absorbance spectra of NW NOM bound with Cu(II) 

 

The peaks in the same wavelength range (~275 nm) can be found in the spectra of NW 

NOM (Figure 8.2), indicating a common fraction contained in both NW NOM and 
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MRW NOM which is able to chelate with Cu(II). This explains some resemblance 

observed in copper removal (Figure 6.6) between MRW and in NW, which is probably 

attributed to the common fraction of DOC which was chelated with Cu(II) in both 

waters. Nevertheless, NW showed one additional narrow peak at 215 nm, indicating a 

proportion of smaller soluble organic substances produced to chelate with Cu(II) during 

nitrification. 

 

NW can be expected to have more organic compounds of small molecular weight. 

When MRW was fed into the system, chlorine and chloramine were dosed 

consecutively. When organic matters react with chlorine and chloramines, they can be 

broken down to ones of smaller molecular weight (Sathasivan et al., 1999). During 

nitrification, higher microbiological activities are possible. Such microbial processes 

may break down organic matters present in the water or may produce soluble microbial 

products (SMP) (Krishna and Sathasivan, 2010), possibly resulting in low molecular 

weight organic compounds. The production of SMP from nitrifying bacteria may 

increase metal solubility (e.g. Cu) via complexation (AWWARF&DVGW-TZW, 1996). 

Slightly higher absorbance and the additional peak indicated the possibility that there 

can be smaller molecular weight organic compounds, like SMP, produced and chelated 

with Cu(II). This might explain why slightly higher dissolved copper was found in NW 

than MRW before Fe addition.  

 

8.3 Mundaring raw water (MRW) vs Humic acid water (HAW) 

 

During the course of the experiments on dissolved Cu(II) removal by Fe(OH)3 flocs 

from MRW and HAW, the analysis of AMW distributions of UV254-absorbing DOC 

was conducted. It compared the AMW distribution of DOC with and without dosed 
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copper as well as before and after the treatment by Fe(OH)3 flocs. The results of change 

of AMW distribution in MRW and HAW are presented in Figure 8.3 and 8.4, 

respectively. The samples with a copper dose of 400 µg/L (MRW-400µg-Cu(II)/L; 

HAW-400µg-Cu(II)/L) and Fe(OH)3 addition of 0.5mg/L (MRW-400µg-Cu(II)/L-

0.5mg-Fe/L, HAW-400µg-Cu(II)/L-0.5mg-Fe/L) were used for the AMW distribution 

analysis. 

 

 

Figure 8.3: AMW distributions of UV254-absorbing DOC in MRW after Cu(II) salt 

dose (400 µg/L) and Fe(III) treatment (0.5 mg/L)  

 

In the MRW samples, addition of copper considerably increased the UV254 Abs at the 

MW range between 2000~4000 Da. This increase reflects a restructuring of DOC after 

the organic matter complexes or chelates with copper, perhaps through intermolecular 

bidentate chelation between smaller organic molecules. The removal of Cu-NOM by 0.5 

mg-Fe/L Fe(OH)3 is also concentrated on a narrow spectrum between 2500 Da and 

3500 Da. According to Dryer et al. (2008), the hydrophobic fraction of NOM, which is 

generally rich in phenolic chromophores, is depleted in Mundaring water, because the 
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water comprises partly of groundwater treated by alum coagulation. Therefore, the 

increased UV254 Abs can be attributed to the conversion of the hydrophilic fraction in 

the MRW DOC to a hydrophobic fraction through complexation with copper, which 

was acting as a bridging ion able to aggregate two or more small molecules to form big 

molecules.  

 

 

Figure 8.4: AMW distributions of UV254-absorbing DOC in HAW after Cu(II) salt 

dose (400 µg/L) and Fe treatment (0.5 mg/L) 

 

By contrast to the corresponding situation of MRW, dosed copper did not change the 

AMW profile of DOC in HAW (Figure 8.4). However, the addition of Fe(OH)3 flocs 

had considerably reduced UV254-absorbing DOC on a more extensive AMW range 

(2000-6000 Da), indicating that Fe(OH)3 flocs removed the large MW components. 

This is in line with previous observations that coagulation readily and preferentially 

remove hydrophobic fractions mainly contained in aquatic humic material with high 

MW (Volk et al., 2000). In addition, little dissolved Cu(II) removal by 0.5 mg/L 
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Fe(OH)3 as discussed previously (Figure 6.5) indicates that dosed Cu(II) may 

preferentially chelate with small MW components or a hydrophilic fraction in HAW and 

consequently be shielded from Fe(OH)3 adsorption by large MW components or 

hydrophobic fractions that are not bound with copper, especially when the copper dose 

is less than 400 µg/L (binding sites on small molecules in HAW are still not saturated) . 

 

Gamble et al. (1980) reported two general types of bidentate chelating sites for 

dissolved Cu(II): salicylate and dicarboxylate type (Figure 8.5). The dicarboxylate type 

could be both intra-molecular and inter-molecular, depending on the functional groups 

available. According to the shift of UV254-absorbing DOC in MRW to higher AMW 

upon addition of copper (II), intermolecular dicarboxylate chelation is mainly 

responsible for copper binding in MRW resulting in the aggregation of small molecules, 

while salicylate chelation may be more prevalent in HAW in which the NOM may 

contain more salicylate type binding sites. 
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Figure 8.5: Cu(II) chelation with two types of bidentate chelating sites 
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Figure 8.6: Percentage increase of UV254 absorbance vs Dissolved Cu(II) 

concentration in MRW and HAW  

 (Percentage increase of UV254 absorbance=
)(

)()(

IIutCuUVabswitho

IIutCuUVabswithoIIuUVabswithC − ) 

 

Figure 8.6 shows the impact of Cu-NOM complexation on UV254 absorbance of MRW 

DOC and HAW DOC by plotting the percentage increase of UV254 absorbance of MWR 

and HAW DOC against dissolved Cu(II) concentration in increments. One thing that 

needs to be emphasized is that DOC was measured before and after copper dose, and no 

change of DOC was found in both waters. Therefore, change in UV254 Abs can 

equivalently represent the change in SUVA254, which is a good indicator of the humic 

fraction of DOC (Weishaar, et al., 2003).  

 

The UV254 absorbance of either MRW DOC or HAW DOC increased linearly when 

increasing Cu(II) concentration in the bulk water. It shows that UV254 absorbance was 

increased by 70% when 840 µg/ L dissolved Cu(II) was dissolved in MRW. The 

SUVA254 of MRW was correspondingly increased from 1.35 to 2.30 L·m
-1

·mg
-1

. In 
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HAW, only a 9% increase was calculated accordingly. The significant change in 

SUVA254 of MRW DOC gives another point of evidence that dosed Cu(II) restructured 

the MRW DOC by bridging small molecules to form big ones via intermolecular 

dicarboxylate chelation, or converted some hydrophilic fractions to hydrophobic 

fractions through aggregation. The continuous removal of Cu-NOMuc by Fe(OH)3 flocs 

from MCW, which was previously discussed, also indicates that this aggregation could 

facilitate removal of the uncoagulable NOM (e.g. dominating NOM in MCW) by first 

converting them to coagulable NOM. On the other hand, the increase of UV254 

absorbance caused by chelation between dissolved Cu(II) and small molecules in the 

HAW could be overshadowed by the originally high MW DOC with hydrophobic 

fractions mainly contained in the HAW, and hence made the percentage increase 

relatively insignificant. 

 

 

Figure 8.7 Reduction of UV254 absorbing DOC in MRW and HAW containing 

Cu(II) vs the removal of dissolved Cu(II) via Fe(OH)3 adsorption (Legends: “HAW-
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1000µg-Cu(II)/L”: copper was dosed at 1000 µg-Cu(II)/L in humic acid sample. The 

others can be interpreted analogously.) 

 

Figure 8.7 shows how the UV254 absorbing DOC was changing in dissolved Cu(II) 

containing MRW and HAW when Fe(OH)3 flocs were added in increments to remove 

Cu(II). The reduction of UV254 absorbance after Fe(OH)3 treatment (0.5, 1.0 and 2 mg-

Fe/L) is plotted against removal of dissolved Cu(II) for different copper salt doses (250, 

400 and 1000 µg-Cu(II)/L). Three solid lines connect experimental data points from 

MRW at three different copper doses (250, 400 and 1000 µg-Cu(II)/L). Counterparts 

from HAW are connected by dashed lines. The strikingly different slopes between solid 

lines and dashed lines, which represent the ratio of Cu(II) removal to the reduction of 

UV254 absorbance, reflect the degree to which dosed Cu(II) complexed with NOM and 

was subsequently removed via Fe(OH)3 adsorption. Dissolved Cu(II) remained almost 

unremoved by the flocs in HAW for the 250 µg-Cu(II)/L copper dose case, though 

UV254 abs dropped by 0.07 after 2 mg-Fe(III)/L treatment. On the contrary, MRW 

showed a radical copper loss of 200 µg/L. This result supports the previous deduction 

that a relatively small amount of dosed copper (e.g 250 µg/L) may preferentially chelate 

with small hydrophilic molecules available in HAW. Increasing the copper dose made 

the binding sites on small molecules gradually saturated and then the dosed Cu(II) 

would have started complexing with large molecules in the hydrophobic fraction of 

HAW material, which was then readily removed upon Fe(OH)3 addition. 

 

8.4 Conclusion 
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The dosed copper used to inhibit nitrification in G&AWSS mainly existed in the forms 

of various Cu-NOM complexes. Acting as a bridging substance, the majority of dosed 

copper can aggregate small organic molecules by chelating on hydrophilic binding sites, 

which are dominant in the NOM of Mundaring water and the nitrified water. In bulk 

water containing large organic molecules with a hydrophobic fraction (e.g humic acid 

water), dosed copper salt still prefers to chelate with small molecules rather than large 

molecules until the saturation of this complexation is reached by increased copper dose. 

When ferric salts were added into bulk waters, they tended to coagulate or adsorb 

relatively large molecules first. Therefore, the presence of large MW organic matters 

might, to some degree, shield the dissolved Cu(II) bound with small molecules from 

removal. 
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CHAPTER 9  

 

MODELLING THE LOSS OF DISSOLVED Cu(II) IN A 

CORRODED STEEL PIPELINE 

 

 

9.1 Introduction 

 

The previous chapters discuss the dominant species of dissolved Cu(II), quantify 

removal of the dissolved Cu(II) by trace ferrous/ferric salts based on the laboratory 

scale batch experiments and elucidate the mechanisms behind Cu-NOM complexation 

and the interactions between Cu-NOM and Fe(II)/Fe(III) salts. However, the previous 

experiments only investigated the Cu(II) loss after the reactions between dosed Cu(II) 

and Fe(II)/Fe(III) salts reached equilibrium status. In order to track the dissolved Cu(II) 

loss against elapsed time in the pipeline where the corrosion products are being 

continuously released, the dynamic process of copper removal by Fe(II)/Fe(III) salts 

must be studied.  

 

Parameters of the model were initially derived from the results of removal of dissolved 

Cu(II) by Fe(OH)3 flocs due to the following reasons: 

• Compared with Fe
2+

 or Fe
3+

 ions, Fe(OH)3 flocs are the long-lasting products 

adsorbing Cu(II) in bulk water (Fe
2+

/Fe
3+

 ions can only exist for less than 5 

minutes after being released into bulk water in terms of the observation during 

bulk water experiments).  
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• The well-established Freundlich isotherm can help find the equilibrium Cu(II) 

concentration, which is an important factor in the model when various copper 

and Fe(OH)3 doses are studied. 

 

To make up for the proportion of Cu(II) removal contributed by Fe
2+

 or Fe
3+

 ions, a 

coefficient is introduced to the model, based on the difference in capacity to remove 

Cu(II) between Fe
2+

/Fe
3+

 ions and Fe(OH)3 flocs, as discussed in Chapter 7.  

 

Employing the C-K Extension main in G&AWSS as a prototype, where the field pilot 

experiment of copper dose has been undertaken, a simple pipeline model was 

established, with a series of predetermined parameters with respect to hydraulic 

conditions, copper doses and corrosion patterns. The parameters employed in the model 

with regard to the dynamic process of copper removal by ferric salts were derived from 

the experimental results. The model was programmed using Aquasim
®

. 

 

9.2 The Dynamic Process of Dissolved Cu(II) Removal by Ferric Hydroxide Flocs 

in Mundaring Raw Water 

 

9.2.1 Experimental Procedure 

 

Chapter 6 discusses dissolved Cu(II) removal by Fe(OH)3 flocs at various copper doses 

and Fe(OH)3 additions. This experiment followed the same procedure as described in 

Chapter 6 (refer to Chapter 6, the Experimental Procedure and Method) with respect to 

copper salt dose, Fe(III) addition, dissolved Cu(II) measurement and bulk water jar test. 

The bulk water was sourced from Mundaring raw water (MRW). Doses of 250 µg-Cu/L 
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and 400 µg-Cu/L Cu(II) were used, with 1 mg-Fe/L addition. A 1000 µg-Cu/L Cu(II) 

dose was used with various Fe(OH)3 additions of 0.5, 1 and 2 mg-Fe/L. However, 

instead of measuring equilibrium dissolved Cu(II) concentration remaining in the bulk 

water after Fe(OH)3 treatment, aliquots were withdrawn from the bulk water at 

designated time intervals (5, 10, 20, 30, 60, 120 mins) during the jar test. By measuring 

the dissolved Cu(II) concentration in each aliquot, the decay of dissolved Cu(II) 

concentration was monitored in the course of ferric hydroxide treatment. 

 

9.2.2 Results and Discussion 

 

Figure 9.1 shows the decay of dissolved Cu(II) concentration after adding Fe(OH)3 

flocs. According to Figure 9.1, the rate of dissolved Cu(II) decay obeyed the Pseudo 

second order, regardless of different copper doses and ferric hydroxide floc additions.  

 

)__(

)__(__ 2

CuCeCuCin

CuCeCuCFeCk

dt

CudC

−

−××
−=         (E1)        

 “k”: Reaction rate constant 

“C_Cu”: Current dissolved Cu(II) concentration 

“Ce_Cu”: Equilibrium dissolved Cu(II) concentration  

“C_Fe”: Fe(OH)3 flocs concentration in the bulk water 

“Cin_Cu”: Input dissolved Cu(II) concentration before ferric dose 
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Figure 9.1: The dynamic process of dissolved Cu(II) removal by Fe(OH)3 flocs  

Note: The dots of various types represent the measured results of the experiment. The calculated 

modelling results from the pseudo second order equation are represented by different lines. The 

parameters of Pseudo second order equation were estimated with Aquasim
®

.  

Legends’ Interpretation   

“Meas_Cu400_Fe1”: Measured Cu concentration during the experiment. Cu dose was 400 µg/L; Fe 

dose was 1mg/L.  

“Calc_Cu400_Fe1”: Calculated Cu concentration obeying pseudo second order after Aquasim 

parameter estimation. Cu dose was 400 µg/L; Fe(OH)3 addition was 1mg/L. 

The rest of the legends can be interpreted analogously. 

 

Table 9.1: The parameters of pseudo second order decay estimated by Aquasim
®

 

Cu salt dose  

(µg-Cu/L) 

Cin_Cu 

(µg/L) 

C_Fe 

(µg/L) 

k 

(L/h·µg) 

Ce_Cu * 

(µg/L) 

250 250 1000 0.00390 50 

400 370 1000 0.00385 140 

1000 880 500 0.00385 510 

1000 850 1000 0.00401 350 

1000 850 2000 0.00402 220 
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Ce_Cu*: The equilibrium dissolved Cu(II) concentrations were abstracted from Chapter 6 

(Figure 6.2). “Ce_Cu” was input into equation (E 1) to help estimate the parameter “k”. 

 

Table 9.1 summarizes the Pseudo second order parameters input into the model that was 

estimated by Aquasim
®

. The equilibrium concentration of dissolved Cu(II) (Ce_C) 

depends on the Cu(II) dose (Cin_Cu) and Fe(OH)3 concentration (C_Fe) present in the 

bulk water, which can be calculated using the Freundlich isotherm, as discussed in 

Chapter 6.  

 

Another essential parameter that controls the reaction rate is “k”, the pseudo second 

order rate constant. Although “k” varied slightly on Table 9.1 with different Cu(II) 

doses and Fe(OH)3 additions, it is still reasonable to take the average value of 

“0.00392” as representative of the rate constant in E 1 to describe the dynamic decay of 

dissolved Cu(II) in Mundaring bulk water. This value has 2% relative standard 

deviation (RSD), indicating that it could be easily generalized. 

 

Therefore, the rate of copper loss through Fe(OH)3 adsorption is a function of Cu(II) 

dose (Cin_Cu) and Fe(OH)3 concentration (C_Fe). To predict dissolved Cu(II) loss in a 

corroded pipe present with ferric salts, a simple model must be established with a series 

of predetermined parameters such as hydraulic conditions, Cu(II) dosing patterns and 

ferric addition patterns.   

.   
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9.3 Modelling the Dissolved Cu(II) Loss in a Corroded Steel Pipe Releasing Ferric 

Salts 

 

9.3.1 Introduction of the Pipe Model 

 

The pilot Cu(II) salt dosing has been carried out in the CK Extension main. The Cu(II) 

salt dose was varied occasionally. Dissolved Cu(II) concentration had been monitored at 

CK12km and CK58km (See Appendix D). Figure 9.2 shows the pipe model based on 

the CK extension prototype. Cu(II) salt was dosed at the inlet of the pipe with discharge 

Qin.  

 

 

 

Figure 9.2: The sketch of CK Extension main  

 

Pipe information: 

The length of the pipe: 58km 

The diameters of the pipe: ø450mm  

The average discharge: Qin=5 ML/d 

 

9.3.2 Cu(II) Salt Dosing and the Fe-time Release Pattern 

 

Although the trial continued for a much longer time, data obtained in the initial period 

was used to validate the model. The dose of Cu(II) salt varied between 220 and 410 
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µg/L during the 104-day trial in 2006 between late April and early August (See 

Appendix D). One ideal way to simulate iron corrosion is to consider a uniform 

distribution of iron release points along the pipe. Due to lack of available data, it is very 

difficult to locate the actual corroded cavities in the field and quantify the iron release. 

However, iron release cavities could be reasonably assumed and three points shown in 

Figure 9.2 were found to be able to simulate the Cu(II) concentration which had been 

regularly monitored at two locations: CK12Km and CK58Km. Large amounts of copper 

sediments were also found and analysed at these two locations. 

9.3.3 The methodology and the numerical solutions  

 

 

 

 

Figure 9.3: The concept of modelling bulk water travel through a pipeline 

containing a series of Fe release points 

 

The La Grange method was employed to calculate dissolved Cu(II) loss in a bulk water 

travelling through a pipeline as shown in Figure 9.3. According to Figure 9.2, when a 

bulk water is travelling through a pipeline containing a series of Fe addition points, 

ferric concentration (C_Fe) in the bulk water changes as it passes by each Fe release 

point.  

 

Ferric concentration accumulated in the bulk water: C_Fe = F (t, m)  

“m”: the number of Fe release cavities 

 

A series of the ion addition points  
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The function of dynamic process of Cu(II) decay: C_Cu = Ψ (C_Fe, Cin_Cu, Ce_Cu, t). 

It is governed by pseudo second order:  

           
)__(

)__(__ 2

CuCeCuCin

CuCeCuCFeCk

dt

CudC

×−

×−××
−=

α

α
                (E 2) 

E 2 is slightly different from E 1 with one coefficient “α ”. “α ” is introduced to adjust 

equilibrium dissolved Cu(II) concentration when ferrous or ferric ions are initially 

released from corroded iron walls instead of Fe(OH)3 flocs. In this model, the value of 

α = 0.5 was chosen. (See Appendix E for the detailed discussion with regard to α value 

assessment). 

 

The function of equilibrium status: Ce_Cu=ƒ (Cin_Cu, C_Fe). It is obeying Freundlich 

adsorption isotherm. 

n

F CuCeK
FeC

CuCeCuCin /1_
_

__
×=

−
                                           (E 3) 

According to Table 6.1 (Chapter 6), KF= 0.003; n=1.16.  

 

Hence, dissolved Cu(II) concentration at time t1 after the bulk water has passed the first 

Fe release cavity can be calculated by integrating E 2: 

 

∫∫
×−

×
−=

×−

1

0
1

1
_

_ 2

1 __

_

)__(

_ tCuC

CuCin CuCeCuCin

dtFeCk

CuCeCuC

CudC

αα
∈t [0, t1] 

So, 

1

11

11 __

_

__

1

__

1

CuCeCuCin

tFeCk

CuCeCuCinCuCeCuC ×−

××
+

×−
=

×− ααα
  

 

When the bulk water passes by the second Fe release point at t2: 
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1

1
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ttFeCk
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−××
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…… 

Dissolved copper concentration after nth Fe release point can be expressed as: 

m

mmm

mttm CuCeCuCin

ttFeCk

CuCeCuCCuCeCuC
m

__

)(_

__

1

__

1 1

1

×−

−××
+

×−
=

×−

−

=
−

ααα
 

∈t [tm-1, tm]                                                                                                     

                                                                                                                       (E 4) 

“Ce_Cum” is the result from E 3 after calculating C_Fe with a corresponding time 

interval.  

 

9.3.3 Modelling Results and Discussion 

 

The La Grange method discussed above was programmed into the modelling software 

Aquasim
®

. The data in Appendix D were input into Aquasim
®

 to help assess the time 

patterns of iron release and simulate dissolved Cu(II) removal along the pipe. 
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Figure 9.4 Comparison of dissolved Cu(II) concentration between the field data 

(CK12km and CK58km) and the modelling results 

Legends: “Cu(II) dose”- Cu(II) salt dose at the inlet of CK Extension main; 

“Cumeas_CK12”-measured dissolved Cu(II) concentrations at CK12km in the field; 

“Cal Cu(II) CK12”-calculated dissolved Cu(II) concentrations at CK12km by the 

model. The data with regard to CK58km can be interpreted analogously.   

 

Cu(II) input varied between 250 µg/L and 400 µg/L in the model to reflect the actual 

copper dose in the field. The Fe-time release pattern (Fe release vs elapsed time) was 

manipulated to achieve the best match between calculated Cu(II) concentration and the 

corresponding measured one. The equilibrium Cu(II) concentration (Ce_Cu) is 

governed by Cu(II) input and iron release. Two dashed lines were produced from the 

model representing the calculated dissolved Cu(II) concentration at CK12km and 

CK58km. They were compared with the measured dissolved Cu(II) concentrations in 

the field (the scattered circles and triangles in Figure 9.4). A good match was found 

between measured dissolved Cu(II) concentration and calculated one. The only point 

straying a little far away from the CK58km modelling curve happened at 1776 hours 

Error point 
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(circled in Figure 9.4 as an error point). It showed that the measured Cu(II) 

concentration in the field was about 60 µg/L lower than what the model calculated. It 

might be due to the instrumental measuring error of ±20 µg/L and testing error in the 

field. Nonetheless, this point does not affect the general accuracy of the modelling 

results. 

 

 

Figure 9.5 Fe-time release patterns at the three corroded cavities in the 104-day 

field trial  

 

Figure 9.5 shows the Fe-time release pattern adopted for the modelling during the 

simulation. In the real system, corroded cavities upstream of the pipeline are saturated 

first and followed with downstream ones. This explains the striking discrepancy of iron 

release in the initial 500 hours (Figure 9.5) between the first corroded point and the 

second and third points, indicating how the corroded cavities along the pipeline were 

being saturated. In addition, other factors can cause copper loss other than corrosion 

alone. For example, biofilms can sequester copper. The demand in fact coming from the 
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biofilm could be the reason leading to the high calculated iron release rate at the early 

stage in the model that only considered corrosion process. The effect from biofilms 

would diminish and become saturated as equilibriums were achieved, leaving corrosion 

to be the dominant mechanism. Therefore, what was observed after 1776 hours in the 

model was considered to reflect the actual iron release. The average iron release of 80 

g/d/km was hence calculated by integrating the area (after 1776 hours) below the 

corresponding curve and multiplying it by the water discharge.  

 

Generally, this model prediction, irrespective of the fact that pre-existing iron or biofilm 

sequestration was not assumed to exist, has shown interesting and useful insight into the 

processes happening in the pipeline. Modelling copper sequestration by the biofilm is 

out of scope for this study. However, proper incorporation will lead to a better 

prediction in the future. 

 

9.4 Conclusion 

 

The dynamic process of adsorption of dissolved Cu(II) by Fe(OH)3 flocs can be 

described as Pseudo second order adsorption. It can combine with Freundlich isotherms, 

which were used to find equilibrium dissolved Cu(II) concentrations when different 

copper doses and Fe(OH)3 additions were experimented, to model dissolved Cu(II) loss 

in the pipeline. A coefficient “” can be added in the Pseudo second order equation if 

Cu(II) loss in corrosion Stage I (Cu(II) removal by ferrous and ferric ions) is 

considered. The iron pipe corrosion model established based on the dynamic process of 

adsorption is capable of simulating the trend of Cu(II) loss by reasonably assuming iron 

corrosion scenarios in the CK Extension pipeline.  However, the modelling result 
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indicated that the other mechanisms (e.g. pre-existing iron sediments and biofim) might 

have also contributed to the copper loss. The fate of dissolved copper in the distribution 

system can be better predicted by properly incorporating copper removal by pre-existing 

iron sediments and biofilm. 
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CHAPTER 10  

 

SUMMARY, DISCUSSION AND RECOMMENDATIONS 

 

10.1 Summary and Discussion 

 

10.1.1 Cu(II) Solubility and Speciation in Bulk Waters  

 

Both Cu(II) solubility and speciation in bulk water depend on aqueous conditions, 

including pH, carbonate alkalinity, DOC concentration and NOM character. In this 

research, Cu(II) species are categorized into four basic forms: free cupric ions, inorganic 

Cu(II) compounds, Cu-NOM complexes and Cu(II)-containing particles. Dominant 

Cu(II) species under various aqueous conditions and their proportions in different bulk 

water samples were quantified. Results are summarized as follows: 

 

The concentration of free cupric ions (Cu
2+

) is negligible (< 10 µg/L) at pH > 7.5, which 

is the usual pH maintained in the water distribution system.  

 

In open and closed (depending on partial pressure of CO2) systems, Cu(II) solubility is 

controlled by the equilibrium with tenorite (CuO(s)) and copper hydroxide (Cu(OH)2(s)) 

respectively. Increasing aqueous carbonate concentration (CO3
2-

, HCO3
-
) can slightly 

increase dissolved Cu(II) concentration through formation of inorganic Cu(II) 

compounds (CuOH
-
, CuCO3

o
), around 10% of dosed copper salt was found to be 

dissolved Cu(II) when 50 mg/L CaCO3 was added in the Milli-Q water.  
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Cu(II) solubility is dramatically increased in the source water (MRW) of G&AWSS, the 

water containing nitrifying bacteria (NW) and humic acid water (HAW) due to NOM 

contained in these bulk waters. Cu-NOM complexes were found to be the dominant 

dissolved Cu(II) forms in these bulk water samples which had a DOC concentration of 

around 2.5 mg-C/L, though Cu(II) solubility slightly differed in these bulk waters due to 

different NOM character. 

 

10.1.2 Cu(II)-NOM Chelation in the Bulk Waters 

 

In Mundaring water, dosed Cu(II) is able to chelate with both coagulable and 

uncoagulable NOM. The deprivation of coagulable NOM (Mundaring water after 

coagulation) can considerably decrease Cu(II) solubility: only 350 µg/L dissolved Cu(II) 

was found when a high copper salt dose was added (1000 µg/L) in MCW, much lower 

than that (840 µg/L) in MRW in the corresponding situation, indicating that coagulable 

NOM can also bind with Cu(II).   

 

Acting as a bridging substance, the majority of dosed copper can aggregate small 

organic molecules via intermolecular dicarboxylate chelation which is thought to be a 

dominating chelation between Cu(II) and organic compounds in MRW, MCW and NW. 

In the bulk water containing large organic molecules with a hydrophobic fraction (e.g 

HAW), salicylate chelation may be prevalent due to availability of more salicylate type 

binding sites. Moreover, the dosed Cu(II) is believed to preferentially chelate with small 

molecular weight (MW) organic compounds rather than large MW ones until the 

saturation of this complexation reaches by increased Cu(II) dose. Once they are 
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saturated even higher molecular weight NOM were found to be chelating with dissolved 

Cu(II), as it was concluded from the behaviour of chelation in MRW and MCW. 

  

10.1.3 Dissolved Cu(II) Removal by Low-level Iron Corrosion Products via Two-stage 

Corrosion process and the Impact of Bulk Water NOM Character on the Removal 

 

Iron pipe corrosion has been identified as one of the main causes leading to dissolved 

Cu(II) loss in the distribution system. Considerable dissolved Cu(II) removal by 

corrosion products (Fe
2+

, Fe
3+

 and Fe(OH)3) at low concentration (< 2 mg/L) was 

observed in the laboratory scale experiments. The data obtained by the metal analysis of 

sediments collected from the field also show a high proportion of both Cu(II) and Fe 

contents.  

 

The removal of dissolved Cu(II) occurs via a two-stage process sequentially during 

corrosion: Stage I-coagulation and aggregation by released ferrous/ferric ions; Stage II-

adsorption imposed by iron hydroxide flocs formed afterwards. MRW and NW showed 

nearly equal contribution from each stage to dissolved Cu(II) removal, except the case 

of 0.1 mg-Fe/L ferric ions addition in which the total dissolved Cu(II) removal had 

nearly finished in Stage I. The degree to which dissolved Cu(II) was removed can be 

affected by NOM composition in bulk waters. The effect of coagulation on Cu(II) 

removal in Stage I was attenuated in HAW due to the presence of large organic 

molecules. Therefore, less dissolved Cu(II) removal was observed in HAW. 

 

Both ferrous/ferric ions and iron hydroxide flocs demonstrated considerable capacity to 

remove dissolved Cu(II) in bulk water. Ferrous and ferric ions show considerable and 

similar capacity to remove dissolved Cu(II) in the Mundaring water (MRW) and the 
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water containing nitrifying bacteria (NW). Cu-NOM in humic acid water demonstrated 

relatively high resistance to removal by the ions. However, 2 mg/L ferric ions were still 

able to remove the majority of dissolved Cu(II) in HAW.  

 

Fe(OH)3 flocs show fair capacity to remove dissolved Cu(II) from MRW and NW. The 

interaction between dissolved Cu(II) and Fe(OH)3 flocs in the Mundaring water and 

NW can be explained as multi-layer adsorption obeying the Freundlich isotherm. Cu(II) 

containing particles (e.g. CuO(s), Cu(OH)2) remaining in bulk water can reduce the 

flocs’ capacity to remove dissolved Cu(II), depending on the  proportion of the particles. 

It may be due to preferential adsorption of the large copper-based precipitates on the 

Fe(OH)3 flocs. Fe(OH)3 flocs show much weaker capacity to remove dissolved Cu(II) 

from HAW. 

 

The characteristics of NOM contained in bulk waters have effects on both Cu-NOM 

complexation and dissolved Cu(II) removal. Dosed Cu(II) is thought to be preferentially 

complexed with small organic molecules. The similar Freundlich isotherm parameters 

found in the Mundaring water and coagulated Mundaring water, when 250 and 400 µg-

Cu(II)/L copper salt doses were added, indicate dosed Cu(II) may preferentially chelate 

with uncoagulable NOM in the Mundaring water. Slightly high Cu(II) solubility and 

less dissolved Cu(II) removal observed in NW indicate a proportion of small soluble 

organic substances produced to chelate with Cu(II) during nitrification. In humic acid 

water (HAW), Cu(II) bound with small MW organic matter is shielded by a relatively 

high proportion of large MW organic matter, as coagulation preferentially removes 

larger molecular compounds. It explains why the much lower removal of dissolved 

Cu(II) was observed in HAW. 
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10.1.4 Modelling Cu(II) loss in a Corroded Iron Pipeline 

 

The dynamic process of dissolved Cu(II) removal by Fe(OH)3 flocs can be described as 

Pseudo second order decay. It can be combined with Freundlich isotherms, which were 

used to find equilibrium dissolved Cu(II) concentrations when different copper doses 

and Fe(OH)3 additions were used, to model dissolved Cu(II) loss in the pipeline. From 

the comparison of dissolved Cu(II) loss between the modelling results and the field data 

in the CK Extension, it demonstrated that the loss of dissolved Cu(II) can be explained 

by removal caused by iron corrosion and modelled by reasonably presuming an Fe 

corrosion situation in the CK Extension pipeline.  

 

10.2 Recommendations for Cu(II)-based Inhibition and Chloramination Strategies 

 

Single-point cupric sulphate dose has been continuously carried out at the CK main of 

G&AWSS. Iron pipe corrosion is inevitable for this historic pipeline project, 

considering pipe aging, extensive temperature fluctuation, chlorination and nitrification. 

The laboratory scale experiments in this study, the sediment data collected from the 

field and the comparison between the Cu(II) loss modelling results with the ones 

occurring in the field all point to a serious threat from corrosion to maintaining an 

expected soluble Cu(II) concentration in pipelines. Although corrosion is believed to be 

a key factor causing dissolved Cu(II) loss, other factors such as Cu(II)-sulphide 

precipitation and Cu(II) accumulation on a biofilm cannot be ruled out, as they were not 

fully investigated. Consequently, maintaining the expected soluble Cu(II) concentration 

(0.25~0.40 mg/L) has become a key challenge in the field.  
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By dosing cupric sulphate the nitrifying activity is successfully inhibited based on 

bench scale work as long as the required soluble Cu(II) concentration is maintained 

(Koska, 2008). Similar results were found in the field. Free cupric ions are believed to 

be the most toxic Cu(II) species (Allen and Hansen, 1996). This study shows that the 

majority of dosed Cu(II) exist in the forms of Cu(II)-NOM complexes. In this sense, 

Cu-NOM is the one that inhibited nitrification in the bench scale work. Further work 

needs to be done on effectiveness of various Cu(II) species.  

 

Our recent study found that dosed Cu(II) only marginally reduced chloramine decay, by 

controlling nitrification, possibly due to a soluble microbial product produced under 

severe nitrification conditions (Sarker and Sathasivan, 2010). This finding renders 

another challenge of controlling the chloramine residual in the distribution system.  

 

To summarize, the recommendations for further research are made as follows: 

 

• To further investigate impacts and contributions from the factors other than 

corrosion (e.g. Cu(II)-sulphide precipitation, Cu(II) accumulation on biofilm) on 

dissolved Cu(II) loss in the distribution system.  

 

• To identify the effectiveness of Cu(II)-NOM on inhibiting nitrifying bacteria 

and continue the study on alternative Cu(II) species (e.g. a suitable Cu(II) 

complexing agent) for inhibition since cupric ions rarely exist in the distribution 

system. 
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• To consider alternative copper salt dosing strategies in the field: instead of one-

point dose, re-dose of copper salt or dosing copper into reservoirs may be 

investigated. 

 

• To investigate the synergistic effect of copper and chloramine and understand 

exactly where copper could be dosed. 
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Appendix A 

 

Results of Total Chloramine Decay 

Chemical Decay vs Microbiologically Assisted Decay 
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Figure A1 Comparison between an Inhibited and an Unprocessed Sample (sample 

1) (total decay: concentration due to total decay; chemical decay: concentration due to 

chemical decay) 
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Figure A2 Comparison between an Inhibited and an Unprocessed Sample (sample 

2) (total decay: concentration due to total decay; chemical decay: concentration due to 

chemical decay) 

 

Note: Sample 1 and Sample 2 were collected from two places within the C-K reticulation system, where 

nitrification was detected. Silver nitrate was used as an inhibitor. 

Sample 1: Kc = 0.0021 hr
-1

   Km = 0.0039 hr
-1

   Fm = 1.86 (Fm = Km/Kc) 

Sample 2: Kc = 0.0032 hr
-1

   Km = 0.0045 hr
-1

   Fm = 1.41 (Fm = Km/Kc) 
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Appendix B 

 

Particle Size Distribution of Ferric Hydroxide Flocs used in 

Dissolved Cu(II) Removal Experiments 
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Figure B: Particle size distribution of Fe(OH)3 flocs used in the dissolved Cu(II) 

removal experiments 
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Appendix C 

 

Dissolved Cu(II) Concentration in Mundaring Bulk Water 

after Cu Salt Dose 
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Figure C: Dissolved Cu(II) concentration vs elapsed time after Cu salt dose in 

Mundaring raw water 

 

Figure C demonstrates that 24 hours after Cu salt dosing is a sufficient time to stabilize 

dissolved Cu(II) concentration in Mundaring raw water.   
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Appendix D 

 

Field Data: Cu Salt Dose and Dissolved Cu(II) Concentration 

Monitored at CK12km and CK58km in the Main of the CK 

Extension 
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Figure D: Cu salt dose and dissolved Cu(II) concentrations measured in the field 

(CK12km and CK58km) during the 104-day pilot copper dose experiment in the 

CK Extension Pipeline in 2006 

 

The Cu salt dose as a function of time was programmed into the model in Chapter 9 to 

help calculate the dissolved Cu(II) concentrations at CK12km and CK58km when a 

certain corrosion pattern was presumed.  
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Appendix E 

 

Comparison of Dissolved Cu(II) Removal in Mundaring Raw 

Water by Ferric Hydroxide Flocs and Ferric Ions 
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Figure E: Comparison of dissolved Cu(II) removal in Mundaring raw water by 

ferric hydroxide flocs and ferric ions 

Legends:  

“Cu1000-Fe(OH)3”: Cu salt dose was 1000µg/L; Fe(OH)3 flocs were added to remove dissolved 

Cu(II). “Cu1000-Freundlich-MWF”: The Freundlich isotherm curve connecting the measured 

results from “Cu1000-Fe(OH)3”. “Cu1000-Fe
3+

”: Cu salt dose was 1000µg/L; ferric ions were 

added to remove dissolved Cu(II). 

The other legends can be interpreted analogously.  

 

Figure E shows that the equilibrium dissolved Cu(II) concentration (Ce_Cu: refer to 

Chapter 9) after ferric ion treatment at each Fe dose (0.5, 1.0 and 2.0 mg-Fe/L) was half 

of that when Fe(OH)3 flocs were used. Therefore, an “α ” value of 0.5 was adopted in 

E2 (Chapter 9).  
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Appendix F 

 

Field Data on Contents of Sediments Collected from the CK 

Extension 
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Table F: Composition of Cu, Fe and Ca in Sediments along C-K Extension (by courtesy of Water Corporation, WA) 

 

                                                       C-K 58km                                                C-K 12km 

       Date  
Fe 

(mg/kg) 

Cu 

(mg/kg) 

Ca 

(mg/kg) 

Cu/Fe 

ratio (%) 
   Date 

Fe 

(mg/kg) 

Cu 

(mg/kg) 

Ca 

(mg/kg) 

Cu/Fe 

ratio (%) 

8/06/2006 45630 1168 132043 2.56 8/06/2006 39283 338 3571 0.86 

21/06/2006 127167 4818 6061 3.79 21/06/2006 77405 958 7742 1.24 

1/08/2006 219747 5914 6593 2.69 1/08/2006 57057 7696 7143 13.49 

28/08/2006 72359 5848 4655 8.08 28/08/2006 32405 6378 5405 19.68 

28/09/2006 174975 10404 8750 5.95 28/09/2006 99575 19225 10000 19.31 

25/10/2006 85686 9261 11429 10.81 25/10/2006 33208 13917 33333 41.91 

24/11/2006 86251 10969 5490 12.72 24/11/2006 87466 14972 2500 17.12 

25/01/2007 57741 3690 5926 6.39 23/02/2007 118625 9894 6250 8.34 

23/02/2007 118188 15375 18750 13.01 20/04/2007 126455 20091 18182 15.89 

20/04/2007 249896 14302 8333 5.72 25/05/2007 32228 24735 7353 76.75 

25/05/2007 214727 12955 3030 6.03 27/07/2007 34392 7468 2400 21.71 

27/07/2007 157686 13817 4615 8.76           

    Average 134171 9043 8056 6.74   67100 11424 9444 17.03 

 

Note: 

Along the main pipeline from the copper dosing point to the service water tank, sediments have been drawn and analysed at two places. One is 

12 km away from the dosing point (C-K12km), the other is 58 km away (C-K58km). To collect sediments, target pipe sections were flushed 

using the associated hydrant.
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Appendix G 

 

AQUASIM Model Output of Cu(II) Loss along CK Extension 
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 ************************************************************************  AQUASIM Version 2.1f (win/mfc) - List File  ************************************************************************  Name of plot: Cuw   Type: Argument Value Argument Value Argument Value Argument Value Argument Value Variable: t C_Cuw t Cin_Cu t Cumeas_CK12km t Cumeas_CK58km t C_Cuw Parameter:           CalcNum:  0  0  0  0  0 Compart.:  bw_20  bw_1  bw_6  bw_20  bw_4 Zone:  Bulk Volume  Bulk Volume  Bulk Volume  Bulk Volume  Bulk Volume Time/Space:  0  0  0  0  0 Unit: h ug/l h ug/L h ug/L h ug/L h ug/l Legend:  Cal Cu(II) CK58  Cu(II)  dose  Cumeas_CK12  Cumeas_CK58  Cal Cu(II)-CK12  0 230 0 230 0 180 0 4 0 230  10 164.6 20 230 20 180 20 4 10 202.4  20 48.51 96 250 96 160 96 20 20 178.6  30 20.61 120 230 120 140 120 20 30 175.8  40 13.3 144 240 144 180 144 20 40 167.8  50 11.42 264 290 264 170 264 20 50 160.7  60 11.27 504 240 504 170 504 40 60 155.1  70 11.68 600 240 600 120 600 35 70 150.6  80 12.26 768 280 768 150 768 40 80 146.7  90 12.92 1008 320 1008 140 1008 50 90 143.5  100 13.58 1272 280 1272 130 1272 50 100 139.4  110 13.81 1440 380 1440 230 1440 50 110 133  120 13.78 1608 410 1608 210 1608 70 120 128.2  130 13.91 1680 350 1680 250 1680 70 130 131.8  140 14.29 1776 330 1776 250 1776 20 140 145.7 
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 150 14.85 2496 300 2496 250 2496 80 150 165.8  160 15.66       160 172.7  170 16.52       170 171.6  180 17.21       180 170.2  190 17.67       190 169  200 17.92       200 168.1  210 18.07       210 167.3  220 18.18       220 166.8  230 18.27       230 166.3  240 18.36       240 165.9  250 18.45       250 165.7  260 18.53       260 165.5  270 18.54       270 164.2  280 18.3       280 163  290 18.11       290 162.8  300 18.16       300 162.6  310 18.4       310 162.4  320 18.76       320 162.3  330 19.19       330 162.2  340 19.66       340 162  350 20.16       350 161.9  360 20.7       360 161.8  370 21.27       370 161.8  380 21.88       380 161.7  390 22.53       390 161.6  400 23.23       400 161.6  410 23.99       410 161.6  420 24.8       420 161.6  430 25.69       430 161.6  440 26.64       440 161.6  450 27.68       450 161.7  460 28.82       460 161.8  470 30.07       470 161.9  480 31.44       480 162.1  490 32.96       490 162.3  500 34.64       500 162.5  510 36.59       510 162.8  520 38.89       520 158.2  530 40.78       530 152 
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 540 41.62       540 146.6  550 41.44       550 141.8  560 40.68       560 137.5  570 39.69       570 133.7  580 38.67       580 130.1  590 37.68       590 126.9  600 36.72       600 123.8  610 35.98       610 122.8  620 35.48       620 124.2  630 35.16       630 126  640 35       640 127.8  650 35.02       650 129.6  660 35.17       660 131.4  670 35.39       670 133.3  680 35.64       680 135.2  690 35.89       690 137.1  700 36.14       700 139  710 36.39       710 140.9  720 36.64       720 142.9  730 36.88       730 144.9  740 37.13       740 146.9  750 37.37       750 148.9  760 37.62       760 151  770 37.86       770 153  780 38.05       780 154  790 38.23       790 154  800 38.48       800 153.8  810 38.81       810 153.7  820 39.15       820 153.6  830 39.48       830 153.5  840 39.79       840 153.4  850 40.09       850 153.3  860 40.39       860 153.2  870 40.7       870 153.2  880 41       880 153.1  890 41.3       890 153.1  900 41.61       900 153  910 41.92       910 153  920 42.22       920 152.9 
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 930 42.53       930 152.9  940 42.84       940 152.9  950 43.15       950 152.8  960 43.46       960 152.8  970 43.77       970 152.8  980 44.08       980 152.8  990 44.4       990 152.8  1000 44.71       1000 152.8  1010 45.01       1010 152.7  1020 45.05       1020 151.7  1030 44.92       1030 151.1  1040 44.79       1040 150.6  1050 44.71       1050 150.1  1060 44.68       1060 149.6  1070 44.7       1070 149.1  1080 44.73       1080 148.6  1090 44.77       1090 148.1  1100 44.82       1100 147.6  1110 44.87       1110 147.1  1120 44.91       1120 146.6  1130 44.96       1130 146.1  1140 45.01       1140 145.6  1150 45.06       1150 145  1160 45.11       1160 144.5  1170 45.16       1170 144  1180 45.21       1180 143.5  1190 45.26       1190 143  1200 45.31       1200 142.5  1210 45.36       1210 142  1220 45.42       1220 141.4  1230 45.47       1230 140.9  1240 45.53       1240 140.4  1250 45.58       1250 139.9  1260 45.64       1260 139.4  1270 45.69       1270 138.8  1280 46.11       1280 140.7  1290 47.2       1290 144.7  1300 48.26       1300 149  1310 49.03       1310 153.3 
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 1320 49.57       1320 157.8  1330 50.03       1330 162.3  1340 50.48       1340 166.9  1350 50.93       1350 171.7  1360 51.36       1360 176.5  1370 51.79       1370 181.4  1380 52.21       1380 186.4  1390 52.63       1390 191.6  1400 53.03       1400 196.8  1410 53.43       1410 202.2  1420 53.82       1420 207.8  1430 54.2       1430 213.5  1440 54.58       1440 219.3  1450 54.69       1450 222.3  1460 54.63       1460 222.2  1470 54.96       1470 221.6  1480 55.81       1480 221.1  1490 56.97       1490 220.5  1500 58.24       1500 220  1510 59.53       1510 219.5  1520 60.84       1520 219.1  1530 62.2       1530 218.6  1540 63.59       1540 218.2  1550 65.04       1550 217.8  1560 66.53       1560 217.4  1570 68.07       1570 217  1580 69.66       1580 216.7  1590 71.3       1590 216.3  1600 73.01       1600 216  1610 74.73       1610 215.3  1620 75.38       1620 212.9  1630 75.19       1630 214  1640 74.68       1640 216  1650 74.06       1650 218.4  1660 73.58       1660 221.4  1670 73.35       1670 225.2  1680 73.28       1680 230.2  1690 73.92       1690 236.9  1700 75.16       1700 237.4 
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 1710 76.27       1710 236.5  1720 76.98       1720 235.6  1730 77.22       1730 234.6  1740 77.07       1740 233.7  1750 76.7       1750 232.7  1760 76.25       1760 231.8  1770 75.78       1770 230.9  1780 75.33       1780 230.1  1790 75.14       1790 230.1  1800 75.15       1800 230  1810 75.34       1810 229.9  1820 75.68       1820 229.8  1830 76.1       1830 229.6  1840 76.54       1840 229.5  1850 76.99       1850 229.4  1860 77.45       1860 229.3  1870 77.92       1870 229.2  1880 78.39       1880 229  1890 78.87       1890 228.9  1900 79.36       1900 228.8  1910 79.85       1910 228.7  1920 80.35       1920 228.6  1930 80.85       1930 228.5  1940 81.36       1940 228.3  1950 81.88       1950 228.2  1960 82.41       1960 228.1  1970 82.94       1970 228  1980 83.49       1980 227.9  1990 84.04       1990 227.8  2000 84.6       2000 227.6  2010 85.16       2010 227.5  2020 85.74       2020 227.4  2030 86.32       2030 227.3  2040 86.91       2040 227.2  2050 87.51       2050 227.1  2060 88.12       2060 226.9  2070 88.74       2070 226.8  2080 89.37       2080 226.7  2090 90.01       2090 226.6 
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 2100 90.66       2100 226.5  2110 91.32       2110 226.4  2120 91.99       2120 226.2  2130 92.67       2130 226.1  2140 93.36       2140 226  2150 94.06       2150 225.9  2160 94.78       2160 225.8  2170 95.51       2170 225.7  2180 96.25       2180 225.6  2190 97       2190 225.5  2200 97.76       2200 225.3  2210 98.54       2210 225.2  2220 99.33       2220 225.1  2230 100.1       2230 225  2240 101       2240 224.9  2250 101.8       2250 224.8  2260 102.6       2260 224.7  2270 103.5       2270 224.6  2280 104.4       2280 224.4  2290 105.3       2290 224.3  2300 106.2       2300 224.2  2310 107.1       2310 224.1  2320 108.1       2320 224  2330 109       2330 223.9  2340 110       2340 223.8  2350 111       2350 223.7  2360 112.1       2360 223.6  2370 113.1       2370 223.4  2380 114.2       2380 223.3  2390 115.3       2390 223.2  2400 116.4       2400 223.1  2410 117.6       2410 223  2420 118.7       2420 222.9  2430 119.9       2430 222.8  2440 121.2       2440 222.7  2450 122.4       2450 222.6  2460 123.7       2460 222.5  2470 125       2470 222.4  2480 126.4       2480 222.3 
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 2490 127.8       2490 222.1  2500 129.2       2500 222.1 


