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Abstract

In this thesis, We propose new computational algorithms and methods for solving four

classes of constrained optimization and optimal control problems.

In Chapter 1, we present a brief review on optimization and optimal control.

In Chapter 2, we consider a class of continuous inequality constrained optimization

problems. The continuous inequality constraints are first approximated by smooth func-

tion in integral form. Then, we construct a new exact penalty function, where the sum-

mation of all these approximate smooth functions in integral form, called the constraint

violation, is appended to the objective function. In this way, we obtain a sequence of

approximate unconstrained optimization problems. It is shown that if the value of the

penalty parameter is sufficiently large, then any local minimizer of the corresponding

unconstrained optimization problem is a local minimizer of the original problem. For

illustration, three examples are solved using the proposed method. From the solutions

obtained, we observe that the values of their objective functions are amongst the smallest

when compared with those obtained by other existing methods available in the literature.

More importantly, our method finds solutions which satisfy the continuous inequality

constraints.

In Chapter 3, we consider a general class of nonlinear mixed discrete programming

problems. By introducing continuous variables to replace the discrete variables, the prob-

lem is first transformed into an equivalent nonlinear continuous optimization problem

subject to original constraints and additional linear and quadratic constraints. However,

the existing gradient-based optimization techniques have difficulty to solve this equivalent

nonlinear optimization problem effectively due to the new quadratic inequality constrain-

t. Thus, an exact penalty function is employed to construct a sequence of unconstrained

optimization problems, each of which can be solved effectively by unconstrained optimiza-

tion techniques, such as conjugate gradient or quasi-Newton types of methods. It is shown

that any local optimal solution of the unconstrained optimization problem is a local op-

timal solution of the transformed nonlinear constrained continuous optimization problem

when the penalty parameter is sufficiently large. Numerical experiments are carried out

to test the efficiency of the proposed method.

In Chapter 4, we investigate the optimal design of allpass variable fractional delay

(VFD) filters with coefficients expressed as sums of signed powers-of-two terms, where the
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weighted integral squared error is minimized. A new optimization procedure is proposed

to generate a reduced discrete search region. Then, a new exact penalty function method

is developed to solve the optimal design of allpass variable fractional delay filter with

signed powers-of-two coefficients. Design examples show that the proposed method is

highly effective. Compared with the conventional quantization method, the solutions

obtained by our method are of much higher accuracy. Furthermore, the computational

complexity is low.

In Chapter 5, we consider an optimal control problem in which the control takes

values from a discrete set and the state and control are subject to continuous inequality

constraints. By introducing auxiliary controls and applying a time-scaling transformation,

we transform this optimal control problem into an equivalent optimal control problem

subject to original constraints and additional linear and quadratic constraints, where the

decision variables are taking values from a feasible region, which is the union of some

continuous sets. However, due to the new quadratic constraints, standard optimization

techniques do not perform well when they are applied to solve the transformed problem

directly. We introduce a novel exact penalty function to penalize constraint violations,

and then append this penalty function to the objective function, forming a penalized

objective function. This leads to a sequence of approximate optimal control problems,

each of which can be solved by using optimal control techniques, and consequently, many

optimal control software packages, such as MISER 3.4, can be used. Convergence results

show that when the penalty parameter is sufficiently large, any local solution of the

approximate problem is also a local solution of the original problem. We conclude this

chapter with some numerical results for two train control problems.

In Chapter 6, some concluding remarks and suggestions for future research directions

are made.
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CHAPTER 1

Introduction

1.1 Optimization

Optimization and optimal control have been studied intensively and many interesting

and powerful results are now available in the literature. They have also been applied to a

wide range of real world applications, which include portfolio optimization, minimization

of energy consumption and maximization of system performance, structural engineering,

robot arms control, DC/DC converters, resource allocation, and military defence. In

both optimization and optimal control, a decision variable is to be chosen such that a

cost function is minimized subject to a set of constraints. These constraints could be of

equality and/or inequality forms. The main difference between optimization and optimal

control is that there is a dynamic system involved in optimal control. Furthermore, the

decision variable in optimal control is a measurable function. On the other hand, it is a

vector, which is independent of time, in optimization.

A typical optimization problem can be stated as follows:

Problem P.

Minimize f(x)

subject to gi(x) ≤ 0, i ∈ I,
hj(x) = 0, j ∈ E ,
x ∈ X,

(1.1)

where x ∈ R
r is the decision vector; f(x), gi(x), i ∈ I, and hj(x), j ∈ E , are functions

defined on R
r; I and E are, respectively, the sets of indices for inequality and equality

constraints. X is a subset of Rr, which is often defined as boundedness constraints given

by a ≤ x ≤ b, where a and b are, respectively, the lower and upper bounds on the decision

vector x. The function f(x) is called the objective (or cost) function. gi(x) ≤ 0, i ∈ I,
are called inequality constraints, and hj(x) = 0, j ∈ E , are called equality constraints.

3



1.1 Optimization 4

1.1.1 Unconstrained optimization problems

Problem P with I = E = ∅ and X = R
r is called an unconstrained optimization problem.

Let this problem be denoted as Problem PU.

For completeness, we shall present some basic concepts.

Definition 1.1. A point x⋆ is called a local minimizer of the unconstrained optimization

Problem PU if there exists an ǫ > 0 such that,

f(x⋆) ≤ f(x),

for all x ∈ Nǫ(x
⋆), where Nǫ(x

⋆) = {x ∈ R
r | |x − x⋆| ≤ ǫ}, and | · | denotes the usual

Euclidean norm. A point x⋆ is called a strict local minimizer if

f(x⋆) < f(x), for all x ∈ Nǫ(x
⋆)\{x⋆}.

Definition 1.2. A point x⋆ is called a global minimizer of the unconstrained optimization

Problem PU if

f(x⋆) ≤ f(x), for all x ∈ R
r.

A point x⋆ is called a strict global minimizer if

f(x⋆) < f(x), for all x ∈ R
r\{x⋆}.

In the following theorem, we give the necessary conditions for optimality for the uncon-

strained optimization problem PU.

Theorem 1.1 (First-order necessary conditions). Suppose that x⋆ is a local minimizer of

the unconstrained optimization Problem PU, where the objective function f is continuously

differentiable in an open neighborhood of x⋆. Then, it holds that ∇f(x⋆) = 0, where

∇f(x) = [
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . .

∂f(x)

∂xr
]⊤

denotes the gradient of the objective function f at x and the superscript “⊤” denotes the

transpose.

The Hessian of the objective function f and the positive definite/semidefinite matrices

are defined in the next two definitions.

Definition 1.3. Suppose that the function f is twice continuously differentiable. Then,
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the Hessian of the function f at x is defined by

∇2f(x) =




∂2f

∂x2
1

∂2f

∂x1∂x2
· · · ∂2f

∂x1∂xr

∂2f

∂x2∂x1

∂2f

∂x2
2

· · · ∂2f

∂x2∂xr
...

...
. . .

...
∂2f

∂xr∂x1

∂2f

∂xr∂x2
· · · ∂2f

∂x2
r




.

Definition 1.4. A matrix M is said to be positive semidefinite if

x⊤Mx ≥ 0,

for all x 6= 0. Furthermore, if the above inequality holds strictly, then the matrix M is

said to be positive definite.

The second-order necessary conditions and the second-order sufficient conditions for

unconstrained optimization problems are given below.

Theorem 1.2 (Second-order necessary conditions). Suppose that x⋆ is a local minimizer

of the unconstrained optimization Problem PU. If the objective function f is twice contin-

uously differentiable in a neighborhood of x⋆, then ∇f(x⋆) = 0 and the Hessian ∇2f(x⋆)

is positive semidefinite.

Theorem 1.3 (Second-order sufficient conditions). Let x⋆ be a feasible solution of the

unconstrained optimization Problem PU. Suppose that the objective function f is twice

continuously differentiable in a neighborhood of x⋆, that ∇f(x⋆) = 0 and that ∇2f(x⋆) is

positive definite. Then, x⋆ is a strict local minimizer.

A point x⋆ is called a stationary point if ∇f(x⋆) = 0. From Theorem 1.1, we see that

any local minimizer is a stationary point.

We will present a briefly survey on some of the existing gradient-based algorithms for

unconstrained optimization problems.

A typical optimization algorithm generates a sequence of points {xk} such that the

objective function value is reduced at each iteration. To obtain such a sequence, we need

to find a descent direction at each iteration point.

Definition 1.5. A direction dk is called a descent direction of the objective function f at

xk if it satisfies (dk)⊤∇f(xk) < 0.

For a descent direction dk, there exists an ᾱ > 0 such that f(xk + αdk) < f(xk)

for each α ∈ (0, ᾱ). Any chosen αk ∈ (0, ᾱ) is called a step-length. A typical descent
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algorithm is given below.

Descent algorithm for Problem Pu

Step 0:

Choose an initial guess x0 for Problem PU and set k = 0 and the tolerance ǫ > 0.

Step 1:

Check for convergence (i.e. if |∇f(xk)| < ǫ). If it is satisfied, Stop, otherwise go

to Step 2.

Step 2:

Determine a descent search direction dk, and then find a αk such that f(xk+αkdk) <

f(xk).

Step 3:

Set xk+1 = xk + αkdk, and k := k + 1; go to Step 1.

Note that the finding of αk in Step 2 is known as a line search, which is a one-dimensional opti-

mization problem. However, finding the minimum of this one-dimensional optimization problem,

which is referred to as the exact line search, is, in general, not implementable. In practice, it

is chosen such that a sufficient decrease in the function value as well as an acceptable slope

improvement are achieved. A popular scheme for finding an acceptable step length is known as

the Armijo Rule [83].

Steepest descent method

From Definition 1.5, it is clear that the direction −g(k), where g(k) = ∇f(xk), is a descent

direction. In fact, it is the direction along which the objective function f decreases most rapidly.

Thus, it is called the Steepest Descent Direction of the function f at xk

By choosing the search direction dk as the steepest descent direction in the above descent

algorithm, we have the Steepest Descent Method. Steepest descent method is the simplest one

among all gradient-based unconstrained optimization methods. It only requires the gradient

information of the function f at the current iteration point and the function value along a line

segment. However, the convergence rate of the steepest descent method can be very slow [5,83].

Newton’s method
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Newton’s method is based on the quadratic approximation of the function f obtained by

truncating the Taylor series expansion of f(x) about x(k). That is, the objective function

f(xk + δ) is approximated by the following quadratic function

qk(δ) = fk + δ⊤gk +
1

2
δ⊤Gkδ,

where G(k) = ∇2f(xk). The next iterate xk+1 is chosen such that xk+1 = xk + δk, where δk is

the solution of

∇qk(δ) = 0.

If G(k) is positive definite, then

δk = −(Gk)−1gk.

Remark 1.1. (i). Newton’s method requires the information on f (k), g(k) and G(k), i.e. func-

tion values, and first and second order partial derivatives.

(ii). The basic Newton’s method does not involve a line search. The choice of δ(k) ensures that

the minimum of the quadratic approximation is achieved.

(iii). If G⋆ is positive definite, it has a convergence rate of second order if the starting point is

sufficiently close to x⋆

(iv). Choosing δk as the solution of ∇qk(δ) = 0 is only appropriate and well-defined if the

quadratic approximation has a minimum, i.e., Gk is positive definite. This may not be

the case if xk is remote from x⋆ where x⋆ is a local minimum.

Newton’s method

Step 0:

Choose x0 and set k = 0.

Step 1:

If gk = 0, Stop.

Step 2:

Solve Gkδ = −gk for δ = δk where gk = ∇f(xk) and Gk = ∇2f(xk).

Step 3:

Set xk+1 = xk + δk.

Step 4:

Set k := k + 1 , go to Step 1.
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Quasi-Newton methods

Quasi-Newton Methods might be the most popular unconstrained optimization methods

among all the existing methods. They do not require the computation of Hessian at each

iteration. Yet, they attain a super-linear convergence rate which is slightly inferior to that

attained by Newton’s method.

The search direction of a quasi-Newton method is of the form

dk = −(Bk)−1∇f(xk). (1.2)

Instead of choosing the matrix Bk as the Hessian of the objective function f as in Newton’s

method, Bk is a symmetric positive definite matrix which is updated at each iteration to approx-

imate the Hessian of the objective function. Note that, the positive definiteness of the matrix

Bk ensures that the search direction so generated is a descent direction.

In what follows, we shall present the updating formula for the approximation matrix Bk at

each iteration, and the updating formula for its inverse at each iteration.

From Taylor’s series expansion and the first mean value theorem for integration, we have

∇f(xk + dk) = ∇f(xk) +∇2f(xk)dk +

∫ 1

0
[∇2f(xk + pdk)−∇2f(xk)]dkdp

= ∇f(xk) +∇2f(xk)dk + o(|dk|), (1.3)

where

lim
|dk|→0

o(|dk|)
|dk| = 0.

Letting dk = xk+1 − xk in (1.3), it gives

∇f(xk+1) = ∇f(xk) +∇2f(xk)(xk+1 − xk) + o(|xk+1 − xk|). (1.4)

When xk and xk+1 are sufficiently close to a local minimizer x⋆, (1.4) can be approximately

written as:

∇f(xk+1)−∇f(xk) ≈ ∇2f(xk)(xk+1 − xk) (1.5)

The approximation matrix Bk+1 is to be constructed such that the quasi-Newton condition is

satisfied, i.e.,

Bk+1(xk+1 − xk) = ∇f(xk+1)−∇f(xk).

The updating formula for the approximate matrix Bk+1 is now available in any book on opti-

mization (see, for example, [19, 20,27]). It is given below.

Bk+1 = Bk − Bkdk(dk)⊤Bk

(dk)⊤Bkdk
+

γk(γk)⊤

(γk)⊤dk
(1.6)
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where γk = ∇f(xk+1)−∇f(xk). It can be shown (see, for example, [83] ) that if the initial guess

B0 is a positive definite matrix, then the BFGS formula will generates a sequence of positive

definite approximation matrices, where BFGS is the abbreviation of Broyden, Fletcher, Goldfarb

and Shanno. Note that in the case of quadratic objective function, Bk = ∇2f(xk) if exact line

search is adopted at each iteration.

From (1.2), we can see that it is (Bk)−1, rather than Bk, is used to generate the search

direction dk. The updating formula for the inverse matrix Hk = (Bk)−1 is given below.

Hk+1 = (I − dk(γk)⊤

(γk)⊤dk
)Hk(I − γk(dk)⊤

(γk)⊤dk
) +

dk(dk)⊤

(γk)⊤dk
.

This is the well-known BFGS formula.

Conjugate gradient methods

Conjugate Gradient Methods are originally proposed in 1952 (see [21, 33, 44]) for solving

systems of linear equations. This method was extended to solve general unconstrained opti-

mization problems because the problem of minimizing a positive definite quadratic function is

equivalent to solving a system of linear equations. Although these methods are normally less

efficient when compared with Newton or quasi-Newton methods, they are much faster than the

steepest descent method. Furthermore, conjugate gradient methods have very moderate storage

requirements. Thus, they are often used for large-scale problems when quasi-Newton methods

become problematic.

1.1.2 Constrained optimization problems

Problem P is called a constrained optimization problem when I or E or both of them are not

empty.

For constrained optimization problemP, a vector x is called a feasible solution if it satisfies all

the constraints of Problem P. The set of all feasible solutions is called the feasible region. If the

objective function is linear and all the constraints are also linear, then we say that Problem P is a

linear programming problem. Otherwise, Problem P is called a nonlinear programming problem.

Linear programming problems can be efficiently solved by many existing optimization al-

gorithms. One of the most remarkable methods is the simplex method - developed by Dantzig

in late 1940s [16]. Another type of efficient method for solving linear programming problems

is the interior point method [27, 55]. Global solutions of linear programming problems can be

obtained if the problems admit global solutions. For nonlinear programming problems, it is not

the case anymore. A global optimal solution of a nonlinear programming problem is, in general,

very difficult to obtained. Thus, for a nonlinear programming problem, it often aims to find a

local optimal solution x⋆ — a feasible solution that has less objective function value than all

those feasible solutions in a neighborhood of x⋆, rather than in the whole feasible region. An

important mathematical result for the characterization of feasible solutions is the Karush-Kuhn-
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Tucker (KKT) conditions [58], which is a set of necessary conditions for local optimal solutions.

There are many methods available in the literature for solving nonlinear programming problems.

For general nonlinear programming problems, where both the objective function and con-

straint functions are nonlinear, the sequential quadratic approximation programming with active

set strategy (see, for example, [31, 41, 42]) is a popular method. Methods developed based on

Newton’s method are also effective for solving nonlinear programming problems. For more

details, see, for example, [7, 37].

Definition 1.6. For any feasible solution x of Problem P, let A(x) be the set of those indices

defined by

A(x) = E ∪ {i ∈ I | gi(x) = 0}.

A(x) is called the active set of x. For a feasible solution x, the inequality constraint gi(x) is

said to be active if gi(x) = 0; otherwise, we say that gi(x) is inactive.

Definition 1.7 (Feasible direction cone). For a feasible point x of Problem P, a vector v is

called a feasible direction of x if the following conditions are satisfied,

v⊤∇hj(x) = 0, j ∈ E ,
v⊤∇gi(x) ≤ 0, i ∈ I ∩ A(x).

The set of all feasible directions of x is called the feasible direction cone, denoted as F(x).

To continue, we need to define Linear Independent Constraint Qualification (LICQ) and La-

grangian function. They are given below.

Definition 1.8 (LICQ). For a given feasible point x of Problem P, suppose that the gradients

of all the active constraints of the constraint functions at x are linearly independent. Then, it

is said that the Linear Independent Constraint Qualification (LICQ) is satisfied at x.

Definition 1.9. Consider Problem P. The Lagrangian function is defined by

L(x,α,β) = f(x) +
∑

i∈I

αigi(x) +
∑

j∈E

βjhj(x) (1.7)

where αi, i ∈ I, and βj , j ∈ E , are called the Lagrange multipliers for the constraints gi(x)

and hi(x), respectively.

Now, we are in the position to present the (KKT) conditions, also known as the first-order

necessary conditions, in the following theorem.

Theorem 1.4 (Karush-Kuhn-Tucker conditions). Suppose that x⋆ is a local optimal solution of

Problem P, and that the linear independent constraint qualification (LICQ) holds at x⋆. Then,

there exists vector α⋆, with components α⋆
i , i ∈ I, and vector β⋆, with components β⋆

j , j ∈ E,
such that the following conditions are satisfied

∇xL(x
⋆,α⋆,β⋆) = 0, (1.8)
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gi(x
⋆) ≤ 0, i ∈ I, (1.9)

hj(x
⋆) = 0, j ∈ E , (1.10)

α⋆
i ≥ 0, i ∈ I, (1.11)

α⋆
i gi(x

⋆) = 0, i ∈ I. (1.12)

To state the second-order necessary conditions and the second-order sufficient conditions,

we need the following definition.

Definition 1.10. Let x⋆ be a local optimal solution of Problem P, and let α⋆ be the Lagrangian

multipliers corresponding to the inequality constraints that satisfies the KKT conditions. Then,

the critical cone U(x⋆,α⋆) is defined by

U(x⋆,α⋆) = {u ∈ F(x⋆) | ∇gi(x
⋆)⊤u = 0, i ∈ I ∩ A(x⋆),α⋆

i > 0}.

Theorem 1.5 (Second-order necessary conditions). Suppose that x⋆ is a local optimal solution

of Problem P and that the LICQ is satisfied. Let α⋆ be the Lagrangian multipliers corresponding

to the inequality constraints such that the KKT conditions are satisfied. Then,

u⊤∇2
xxL(x

⋆,α⋆)u ≥ 0, for all u ∈ U(x⋆,α⋆).

Theorem 1.6 (Second-order sufficient conditions). Suppose that x⋆ is a feasible solution of

Problem P. Let α⋆ be the Lagrangian multipliers corresponding to the inequality constraints

such that the KKT conditions are satisfied. If

u⊤∇2
xxL(x

⋆,α⋆)u > 0, for all u ∈ U(x⋆,α⋆)\{0},

then x⋆ is a strict local optimal solution of Problem P.

Due to a multitude of real world applications of nonlinear constrained optimization, it has

attracted the interest of many mathematicians and engineers. Many interesting and important

theoretical results as well as numerical algorithms are now available in the literature. Examples

include penalty and augmented Lagrangian methods [6, 36, 43, 92, 93, 101] sequential quadratic

programming methods [94–96] and nonlinear interior-point methods [1, 37]. Here, we shall give

a brief review of the sequential quadratic programming approximation. For this, we shall first

consider quadratic programming.

Quadratic programming

Quadratic programming problem is an optimization problem in which the objective function
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is quadratic and the constraints are linear. It is typically stated as below.

Minimize f(x) =
1

2
x⊤Qx+ c⊤x

subject to a⊤i x ≤ bi, i ∈ I,
a⊤j x = bj, j ∈ E ,

(1.13)

where x ∈ R
r is a decision vector; Q is a positive definite symmetric r × r matrix; c ∈ R

r,

ai ∈ R
r, i ∈ I, aj ∈ R

r, j ∈ E ; and I and E are finite sets of indices. Let this problem be

referred to as Problem PQ. If Problem PQ contains only k equality constraints, k < r, i.e.,

E = {1, . . . , k} and I = ∅, then Problem PQ can be solved through solving the following system

of KKT conditions for Problem PQ.

[
Q A⊤

A 0

][
x⋆

β⋆

]
=

[
−c

b

]
, (1.14)

where A = [a1, . . . ,ak]
⊤; b = [b1, . . . , bk]

⊤; x⋆ is the solution of Problem PQ; and β⋆ is the

vector of Lagrange multipliers. To ensure that the system of KKT conditions (1.14) has a

solution, we have the following theorem [83].

Theorem 1.7. Let A be a given k × r matrix which has full row rank, and let M be a r × k

matrix such that AM=0. Suppose that the matrix M⊤GM is positive definite. Then the system

of KKT conditions (1.14) has a unique solution.

For large scale problems, system (1.14) is often solved by using iterative methods. For more

details, see, for example, [10, 34,76,102,120].

Consider the general quadratic programming problem PQ, where E 6= ∅ and I 6= ∅. We

introduce the Lagrangian function given below.

L(x,α,β) =
1

2
x⊤Qx+ c⊤x+

∑

i∈I

αi(a
⊤
i x

⋆ − bi) +
∑

j∈E

βj(a
⊤
j x

⋆ − bj).

The active set A(x) for any feasible solution x is defined by

A(x) = {i ∈ I | a⊤i x⋆ − bi = 0} ∪ {j ∈ E | a⊤j x⋆ − bj = 0}.

Let x⋆ be an optimal solution. Then, it follows that there exist Lagrange multipliers α⋆ and

β⋆ such that the following system of KKT conditions is satisfied.

Gx⋆ + c+
∑

i∈I

α⋆
i ai +

∑

j∈E

β⋆
j aj = 0,

a⊤j x
⋆ − bj = 0, for all j ∈ E

a⊤i x
⋆ − bi ≤ 0, for all i ∈ I

α⋆
i (a

⊤
i x

⋆ − bi) = 0, for all i ∈ I
α⋆
i ≥ 0, for all i ∈ I.

(1.15)
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Due to the existence of inequality constraints, the KKT system (1.15) cannot be solved

directly. General quadratic optimization problem with both equality and inequality constraints

are solved via solving a sequence of linear equality constrained quadratic optimization problems

based on active set strategy.

The main idea of this method is as follows: At each iteration, the corresponding active set is

identified. This gives rise to an equality constrained quadratic programming problem. Then, the

corresponding Lagrange multipliers are computed from the system (1.14). If all of the Lagrange

multipliers associated with the active set are non-negative, then the KKT conditions are satisfied

and an optimal solution is obtained. On the other hand, if some or all of the multipliers are

strictly negative, then the constraint corresponding to the most negative multiplier is removed

from the active set. The process is repeated until all of the Lagrange multipliers associated with

the active set are non-negative. A typical algorithm is given below.

Active set strategy for quadratic programming problem PQ

Step 0:

Choose an initial feasible solution x0 of Problem PQ and identify the corresponding

active set A(x0). Set k = 0.

Step 1:

Compute the search direction dk by solving the following problem:

min
d

f(xk + d) =
1

2
d⊤Qd+ d⊤(Qxk + c) + f(xk) (1.16a)

subject to

a⊤i (x
k + d)− bi = 0, i ∈ A(xk). (1.16b)

If d = 0 solves problem (1.16), go to Step 2; otherwise, go to Step 3.

Step 2:

Use

Qx+A⊤λ = −c

to compute the corresponding Lagrange multiplier vector λk = [λk
i , i ∈ A(xk)]. Let

j be the index such that

λk
j = min

i∈A(xk)∩I
λk
i .

If λk
j ≥ 0, xk is the optimal solution, stop; otherwise, set A(xk) = A(xk)\{j}, go

to Step 3.

Step 3:
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Let dk be the solution of problem (1.16). Compute the line search step length γk

according to γk = min{1, γ̄k}, where

γ̄k = min
i∈I\A(xk)

{bi − a⊤i x
k

a⊤i d
k

,a⊤i d
k < 0} (1.17)

and set xk+1 = xk+γkdk. If γk < 1, set A(xk+1) = A(xk)+{l}, where l ∈ I\A(xk)

is chosen such that the minimum of (1.17) is achieved. Otherwise, γk = 1, set

A(xk+1) = A(xk) .

Step 4:

Set k := k + 1, go to Step 1.

Penalty Function Methods

For general constrained optimization problems, penalty methods use penalty functions to

transform a constrained problem into a sequence of unconstrained problems or a single un-

constrained problem. The constraints are appended to the objective function via a penalty

parameter penalizing any violation of the constraints. By making this penalty parameter larger,

the method penalizes constraint violations more severely, and hence forcing the minimizer of the

penalty function to move closer to the feasible region of the constrained problem.

The most simple and intuitive penalty method is the quadratic penalty method. A typical

quadratic penalty function for Problem P is given below:

Minimize f(x) + σ
∑

i∈I

max{0, gi(x)}2 + σ
∑

j∈E

hj(x)
2

subject to x ∈ X.

(1.18)

where σ > 0 is the penalty parameter. By increasing σ, the constraint violations will be penalized

more and more severely. Thus, the satisfaction of the constraints will be achieved as σ → ∞.

Note that the quadratic penalty function is smooth, one can use any of the gradient-based

unconstrained optimization techniques to find the local optimal solution for each σ.

The major disadvantage of the quadratic penalty method is that it requires the penalty

parameter σ to approach to infinity for the satisfaction of the constraints. This might cause

difficulties in actual numerical computation when σ is large. To overcome this drawback, a type

of penalty function methods, called exact penalty function method, is developed. A typical exact

penalty function is defined by

p(x, σ) = f(x) + σ
∑

i∈I

max{0, gi(x)} + σ
∑

j∈E

|hj(x)|

Here, by the word “exact”, it means that when the penalty parameter σ is sufficiently large, if

the stationary point of the penalty problem is feasible for the original constrained optimization
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problem, then it is a stationary point of the original constrained optimization problem. Since

p(x, σ) consists of the term max{0, gi(x)}, it is non smooth. Thus, gradient-based optimization

techniques are not applicable. In this thesis, we will introduce new exact penalty function which

is differentiable.

Augmented Lagrangian Penalty Function Method is another important penalty function

method. For simplicity, we consider Problem P where the index set of inequality constraints I
is empty. Then, we employ the following quadratic penalty function

f(x) + σ
∑

j∈E

hj(x)
2.

Clearly, to obtain a stationary point for Problem P, it usually requires that σ → ∞. However,

if we perturb the constraint right-hand sides from 0 to δ ∈ R
|E|, where |E| denotes the size of E ,

then the corresponding quadratic penalty function becomes

f(x) + σ
∑

j∈E

(hj(x)− δj)
2. (1.19)

It is possible to obtain a stationary point of Problem P, without letting σ → ∞. In fact,

expanding (1.19) gives

f(x)−
∑

j∈E

2hj(x)σδj +
∑

j∈E

σhj(x)
2 +

∑

j∈E

σδ2j . (1.20)

For j ∈ E , set βj = −2σδj . Ignoring the last constant term, (1.20) can be written as:

LaLP (x,β) = f(x) +
∑

j∈E

βjhj(x) +
∑

j∈E

σhj(x)
2. (1.21)

Note that, if (x⋆,β⋆) is a KKT solution of Problem P, then at β = β⋆,

∇xLaLP (x
⋆,β⋆) = ∇xf(x

⋆) +
∑

j∈E

β⋆
j∇xhj(x

⋆) + 2σ
∑

j∈E

hj(x
⋆)∇xhj(x

⋆) = 0,

for any σ, which means that (x⋆,β⋆) is also a stationary point of the augmented Lagrangian

penalty function.

However, this conclusion is valid only at β = β⋆. It is not known a priori. For a given σ, it

is known that the task of finding x⋆ and β⋆ through optimizing (1.21) with respective to both x

and β simultaneously is not workable. In actual numerical computation, x⋆ and β⋆ are obtained

iteratively as follows. Choose parameters σ and β, and then optimize (1.21) with respect to

x. This gives rise to xk. With x = xk, the parameter σ and β are updated according to the

following updating rule:

βk+1
j = βk − σkhj(xk), j ∈ E ,

where σk needs to be appropriately estimated. The whole process is to be repeated until a

satisfactory result is obtained. This augmented Lagrangian penalty function method is quick
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cumbersome to apply. Furthermore, since the desired solution depends critically on the accuracy

of the estimate of β⋆, the convergence may be slow.

Sequential quadratic programming methods

For small and medium sized general nonlinear constrained optimization problems, sequential

quadratic programming (SQP) has been recognized as one of the most efficient methods.

Consider the general constrained optimization problem P. Its Lagrangian function is

L(x,α,β) = f(x) +
∑

i∈I

αigi(x) +
∑

j∈E

βjhj(x).

Let xk be an estimate of the optimal solution x⋆, and let (αk,βk) be an estimate of the optimal

Lagrange multiplier vector (α⋆,β⋆). The objective function at the current iteration point xk

can be approximated by the following quadratic function

f(xk + d) ≈ f(xk) +∇f(xk)⊤d+
1

2
d⊤Bkd (1.22)

where Bk is a positive definite matrix of the Hessian matrix of the Lagrangian function L

evaluated at (xk,αk,βk). The matrix Bk is updated according to the BFGS formula (1.6). The

constraints are linearized as follows:

gi(x
k + d) ≈ gi(x

k) +∇gi(x
k)⊤d ≤ 0, i ∈ I, (1.23)

hj(x
k + d) ≈ hj(x

k) +∇hj(x
k)⊤d = 0, j ∈ E , (1.24)

Thus, Problem P is approximated as a quadratic programming problem given below.

min
d

f(xk) +∇f(xk)⊤d+
1

2
d⊤Bkd

subject to gi(x
k) +∇gi(x

k)⊤d ≤ 0, i ∈ I,
hj(x

k) +∇hj(x
k)⊤d = 0, j ∈ E ,

(1.25)

The quadratic programming problem (1.25) is solvable by the active set strategy for quadratic

programming. Let dk be the solution of this quadratic programming problem and let λ̄k =

[(ᾱk)⊤, (β̄k)⊤]⊤ be the corresponding optimal multiplier vector. Then, the new estimates xk+1,

λk+1 and Bk+1 can be determined by

xk+1 = xk + ηkd
k, (1.26)

λk+1 = λk + ηk(λ̄
k − λk), (1.27)

Bk+1 = Bk +
gk(gk)⊤

(pk)⊤gk
− Bkpk(pk)⊤Bk

(pk)⊤Bkpk
(1.28)



1.1 Optimization 17

where

pk = xk+1 − xk, (1.29)

gk = ∇xL(x
k+1,λk+1)−∇xL(x

k,λk) (1.30)

For the step length ηk, it is chosen such that a sufficient decrease of the well-known Lagrangian

multiplier penalty function is achieved:

Pσk(xk + αdk;λk + α(λ̄k − λk))

where

Pσk(x,λ) = f(x)−
∑

j∈E

[λjhj(x)−
1

2
σj(hj(x))

2]−
∑

i∈I





λigi(x)−
1

2
σi(gi((x)))

2, if gi(x) ≥ λi/σi,

1

2
λ2
i /σi, otherwise.

Here, λi = θiσi, i ∈ I and λj = θjσj, j ∈ E . σi, i ∈ I and σj , i ∈ E are, respectively, the penalty

parameters of the inequality constraints gi and equality constraints hj . The parameters θi, i ∈ I
and θi, j ∈ E correspond to the shift of the origin.

It is shown in [27] that if σk is appropriately updated, then the sequence (xk,λk, σk) con-

verges to (x⋆,λ⋆, σ⋆), where x⋆ is a local minimum of the function Pσ⋆(x,λ⋆), which is also a

local solution of Problem P.

For more details on the theory and computational algorithms, see, for example, [5, 83].

1.1.3 Optimal control

Optimal control problems are generally more complicated than static optimization problems.

For an optimal control problem, it involves a dynamical system which does not appear in the

formulation of a static optimization problem. Furthermore, the decision variables are functions

of time in an optimal control problem, while they are constant vectors in a static optimization

problem. In this section, we shall present a brief introduction to some of the fundamental results

of optimal control theory.

Consider a dynamic system described by the following system of differential equations:

·
x(t) = f(t,x(t),u(t)), t ∈ [0, T ] (1.31)

with initial condition:

x(0) = x0 (1.32)

where x(t) = [x1(t), . . . , xr(t)]
⊤ is called the state vector at time t;

·
x(t) = dx(t)/dt; u(t) =

[u1(t), . . . , un(t)]
⊤ is called the control vector at time t; f = [f1, . . . , fr]

⊤ is a given vector-valued

function which is continuously differentiable; x0 ∈ R
r is a given vector which is referred to as

the initial state or initial condition of the dynamic system. In this system, the process evolves
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starting from the state x0 at t = 0 until the time t = T , where T is called the terminal time.

Let S be a bounded subset of R
n. A measurable function u : [0, T ] → S is called an

admissible control function. Let U be the class of all such admissible controls.

A simple optimal control problem may now be stated formally as follows. Given the dynamic

system (1.31)-(1.32), find an admissible control u ∈ U such that the following cost function:

G0(u) = Φ(x(T )) +

∫ ⊤

0
L(t,x(t),u(t))dt (1.33)

is minimized, where Φ0 and L are given continuously differentiable functions. Let this problem

be referred to as Problem PC.

Pontryagin minimum principle

To state the Pontryagin minimum principle, we first introduce the Hamiltonian function

given below:

H(t,x,λ,u) = L(t,x,u) + λ⊤f(t,x,u), (1.34)

where the time dependent Lagrange multiplier λ is called the costate vector.

The Pontryagin minimum principle is given in the following theorem, which is a first order

necessary condition.

Theorem 1.8. Consider Problem PC. Let u⋆(t) be an optimal control, and let x⋆(t) and λ⋆(t)

be the corresponding state and costate. Then,

• ẋ⋆(t) =
[∂H(t,x⋆(t),u⋆(t),λ⋆(t))

∂λ

]⊤
= f(t,x⋆(t),u⋆(t))

• x⋆ = x0

• λ̇⋆(t) = −
[∂H(t,x⋆(t),u⋆(t),λ⋆(t))

∂x

]⊤

• λ⋆(T ) =
[∂Φ(x⋆(T ))

∂x

]⊤

• min
v∈S

H(t,x⋆(t),v,λ⋆(t)) = H(t,x⋆(t),u⋆(t),λ⋆(t)) for all t ∈ [0, T ], except possibly on a

finite subset of [0, T ].

For detailed information on the Pontryagin minimum principle, see, for example, [2,3,57,137].

Bellman’s principle of optimality

By applying Bellman’s principle of optimality to the optimal control problem PC, we obtain

a sufficient condition for optimality for Problem PC. This sufficient condition for optimality is

expressed as:
∂V (t,x)

∂t
+min

v∈S
{∂V (t,x)

∂x
f(t,x, v) + L(t,x,v)} = 0, (1.35)
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which is a nonlinear partial differential equation. It is to be solved with the boundary condition

given by

V (T,x) = Φ(x). (1.36)

Equation (1.35) is the well-known Hamilton-Jacobi-Bellman (HJB) equation, and the function

V is called the value function.

For most real world problems, they are, in general, much too complex to allow for analytical

solutions by applying Pontryagin minimum principle or through solving the Hamilton-Jacobi-

Bellman equation with given boundary condition. Furthermore, there exist various kinds of

additional constraints in real world problems. Thus, numerical methods are inevitable for solving

these real world problems. For this reason, the area of computational algorithms has attracted

the interest of many engineers and mathematicians. As a result, many computational algorithms

are now available in the literature. To solve the HJB equation, numerical methods based on

finite-difference or finite-volume approximation are reported in [38, 123, 124]. However, these

methods are applicable only to small dimensional problems. The multiple shooting methods

are developed based on necessary conditions for optimality in [2, 57]. These multiple shooting

methods tend to give good solutions. However, they are rather sensitive to the choice of initial

guess of the optimal control.

The control parametrization technique [114] is a popular technique for developing computa-

tional methods for various optimal control problems. Its main idea is to approximate the control

function by a finite number of basis functions, for example, piecewise constant functions. The

coefficients of these basis functions are decision variables to be chosen optimally. By applying

this approximation scheme, an approximate optimization problem is obtained. In the classi-

cal control parametrization technique, the times at which the approximate control changes its

value—the switching time—are fixed. Intuitively, the switching times should also be regarded

as decision variables. However, the computation of the gradient of the objective function with

respect to the switching times is rather sensitive. Thus, any optimization technique using this

gradient formula tends to perform poorly. Furthermore, it requires much more work to solve the

dynamic system when the switching times are variable. To overcome these difficulties, a time-

scaling transformation—it is originally called the control parametrization enhancing technique

(CPET)—is developed in [61, 62]. By introducing a new time variable and a new control, this

technique transform the time horizon of the optimal control problem into a new time horizon in

such a way that the switching times can be chosen to be fixed in the new time horizon.

The constraint transcription method is originally developed in [113] to handle continuous

inequality constraints on the state variables of the dynamical system. It is extended in [51]

to handle optimal control problems subject to continuous inequality constraints on the state

as well as on the control. There are many computational algorithms, which are derived based

on the control parametrization technique, in conjunction with the time scaling transform and

the constraint transcription method. See, for example, [24, 66,72,104,109,112, 115,128,130]. A

general optimal control software package, MISER 3.4 [49], has been implemented based on some

of these algorithms.
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Recently, a new exact penalty function method [135] is used to handle continuous inequality

state constraints in various optimal control problems (see, for example, [52,63,132]). It leads to

effective computational algorithms for these optimal control problems with continuous inequality

state constraints.

1.2 Overview of the thesis

In the previous sections, a brief introduction to optimization and optimal control is given. The

purpose of this thesis is to develop new computational algorithms for four types of static and

dynamic optimization problems. Some of their real world applications are also addressed.

In Chapter 2, we consider a class of continuous inequality constrained optimization problems

(also known as semi-infinite programming problems) in the form given below:

min f(x) (1.37a)

subject to φj(x, ω) ≤ 0, ∀ ω ∈ Ω, j = 1, . . . , m, (1.37b)

where x ∈ R
n is the decision parameter vector, Ω is a compact interval in R, f : Rn → R is

continuously differentiable in x, and for each j = 1, . . . , m, φj : R
n ×R → R is a continuously

differentiable function in x and ω. Note that there are infinite many inequality constraints in

(1.37b). Motivated by the idea reported in [116], a new exact penalty function approach, instead

of the constraint transcription method, is introduced to handle the continuous inequality con-

straints. Furthermore, the summation of the integrals of the exact penalty functions, rather than

the summation of the integrals of the smooth approximate functions as in the case of utilizing the

constraint transcription method, is appended to the objective function forming a new objective

function. This gives rise to a sequence of unconstrained optimization problems. It is shown that

any local minimizer of the unconstrained optimization problem when the penalty parameter is

sufficiently large is a local minimizer of the original problem. This result is not available for the

constraint transcription approach reported in [116]. This is a major advancement in the study

of the solution methods for semi-infinite optimization problems.

In Chapter 3, we consider a general class of nonlinear mixed discrete programming problems

in the form given below:

min f(x, y) (1.38)

subject to Hi(x,y) = 0 i = 1, 2, . . . ,M,

Gi(x,y) ≤ 0 j = 1, 2, . . . , N.

where x = [x1, x2, . . . , xn]
⊤ ∈ R

n and y = [y1, y2, . . . , ym]⊤ ∈ D1 × · · · × Dm. Here, Rn is the

n-dimensional Euclidean space, and for each i = 1, 2, . . . ,m, Di = {ai,1, ai,2, . . . , ai,Ki
}, where

ai,j, j = 1, . . . ,Ki, are given discrete values. To solve this problem, we first define, for each
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i = 1, 2, . . . ,m,

ȳi =

Ki∑

j=1

ai,jwi,j , (1.39)

where, for each i = 1, 2, . . . ,m,
Ki∑

j=1

wi,j = 1, (1.40a)

0 ≤ wi,j ≤ 1, j = 1, 2, . . . ,Ki, (1.40b)

wi,j(1− wi,j) ≤ 0, j = 1, 2, . . . ,Ki. (1.40c)

Applying (1.39) and (1.40) to (1.38), we obtain an equivalent continuous nonlinear optimization

problem subject to original constraints as well as the newly introduced linear and quadratic

constraints. However, in view of the quadratic inequality constraints (1.40c), the equivalent

nonlinear constrained optimization problem is very difficult to solve directly by using nonlinear

optimization techniques, such as the sequential quadratic programming approximation scheme

with active set strategy. This is because they fail to satisfy the linear independent constraint

qualification. Thus, a new approach based on the exact penalty function method introduced in

Chapter 2 is used to obtain a sequence of unconstrained optimization problems. Each of these

unconstrained optimization problem is easier to solve.

In Chapter 4, we investigate the design of allpass variable fractional delay filters with sums

of signed powers-of-two coefficients and the least square criterion. The design problem can be

categorized as a constrained nonlinear integer programming problem, denoted by Problem P,

where each coefficient hn,m of the filter can be expressed as

hn,m =

b∑

i=1

di,n,m2−i, (1.41)

where di,n,m ∈ {−1, 0, 1}, i = 1, . . . , b, and b denotes the number of bits of the wordlength.

Clearly, a larger b will give rise to a more accurate approximation. It can be shown that each

coefficient has at most 2b+1 − 1 options.

We solve this problem in the following three stages:

i. Consider Problem P with its decision variables assumed to take values from R. Let this

problem be referred to as Problem P̂. Find the optimal solution, which is known as the

infinite precision optimal solution, of Problem P̂.

ii. Find a reduced search region around the minimizer of the infinite precision optimal solution

obtained in Stage (i).

iii. Find a point that minimizes the objective function within the region obtained in Stage

(ii).

For Stage (i), we use an approximation scheme reported in [17]. The objective function is

approximated by a quadratic cost function which has a unique optimal solution. Based on this
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optimal solution, a good search region containing the global solution is developed in Stage (ii) by

using a two-step scheme. Then, in Stage (iii), a new exact penalty function method is proposed

to solve the quadratic integer optimization problem containing the obtained search region as

part of its constraints.

In Chapter 5, we consider a class of optimal discrete-valued control problems. It has many

real world applications such as train control [46], switched amplifier design [110], submarine

operation [99], sensor scheduling [126] and hybrid power system design [118,127]. Our aim is to

develop an effective solution method for solving this important class of discrete-valued control

problems. To solve an optimal discrete-valued control problem, we need to determine the order

in which the different control values operate, as well as the times at which the control switches

from one value to the next. Since the ordering of control values is discrete in nature, classical

optimal control methods are not applicable to this type of problem. In this chapter, we first

apply the transformation reported in [125] so that the discrete-valued control is expressed as a

linear combination of piecewise constant controls subject to a linear equality constraint and a

set of quadratic inequality constraints. The original problem can then be written equivalently

as an optimal control problem with piecewise constant controls subject to the original inequality

constraints and the new additional constraints. Then, the time-scaling transformation [62] is

applied to the transformed problem, yielding an optimal control problem with piecewise constant

controls and fixed switching times. To solve this new problem, we introduce the exact penalty

function method reported in Chapter 2 to construct a sequence of penalized optimal control

problems. Convergence results show that when the penalty parameter is sufficiently large, a

local optimal solution of the penalized problem is also a local optimal solution of the original

optimal control problem. This penalized problem can be solved by using optimal control software

packages, such as MISER 3.4 where fmincon(MATLAB) (or NLPQLP(FORTRAN)) is used in

its optimization process. Numerical results obtained from solving two train control problems

indicate that this approach is effective.

In the last chapter, we summarize the main contributions of the thesis and discuss some

possible future research directions.



CHAPTER 2

A new exact penalty function method for

continuous inequality constrained

optimization problems

2.1 Introduction

Many real world practical problems in engineering design such as the design of earthquake

resistant structures; multi-input multi-output control systems; wide-band amplifiers; and robot

trajectory planning, are considered in [45,89–91]. In [14,78], interesting applications in statistics,

which include optimal experimental design in regression, constrained multinomial maximum-

likelihood estimation, robustness in Bayesian statistics and actuarial risk theory, are investigated.

These problems can generally be formulated as continuous inequality constrained optimiza-

tion problems in the form given below:

min f(x) (2.1a)

subject to φj(x, ω) ≤ 0, ∀ ω ∈ Ω, j = 1, . . . , m, (2.1b)

where x ∈ R
n is the decision parameter vector, Ω is a compact interval in R, f : Rn → R is

continuously differentiable in x, and for each j = 1, . . . , m, φj : R
n ×R → R is a continuously

differentiable function in x and ω. Let this problem be referred to as Problem P. This problem

is also known as a semi-infinite optimization problem (SIP).

Since there are infinite many inequality constraints in (2.1b), it is, in general, impossible

to solve Problem P analytically. In early 1970s, numerical methods for SIP are proposed in

[39]. Since 1980, SIP has become an active research area in optimization both in theory and

numerical algorithms. Many important publications have appeared in the literature. Examples

include [4,9,22,32,97], and the relevant references cited therein. There are also several excellent

review papers (see, for example, [45, 59,88]) devoted to SIP.

A popular approach to solve semi-infinite optimization problem (2.1) is to replace the com-

pact set Ω by a finite subset of Ω through certain systematic discretization scheme. This leads to

23
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a problem that has only a finite number of constraints. Then, the resulting conventional prob-

lem can be solved by applying appropriate linear or nonlinear programming algorithms. There

are basically four types of methods to generate finite subproblems for the original problem —

exchange methods, discretization methods, dual parametrization methods and the methods based

on local reduction. See, for example, [48, 69–71,73,88].

Note that the continuous inequality constraints (2.1b) can be written equivalently as

∫

Ω
max{0, φj(x, ω)}dω = 0, j = 1, . . . , m, (2.2)

However, max{0, φj(x, ω)}, j = 1, . . . , m, are non-smooth. Thus, Problem P with constraints

(2.1b) replaced by their equivalent equality constraints (2.2) cannot be solved by using any

smooth gradient-based optimization methods.

In [50], a constrained transcription method is introduced, where the continuous inequality

constraints (2.1b) are first transformed into equivalent equality constraints in integral form (2.2).

However, the integrands are nonsmooth. Thus, a local smoothing technique is used to approxi-

mate these nonsmooth integrands by smooth functions. In this way, Problem P is approximated

by a sequence of optimization problems involving inequality constraints in integral form, where

each of which can be solved by using conventional smooth gradient-based constrained optimiza-

tion methods. There are two parameters, ǫ and τ , involved in these approximate constrained

optimization problems, where ǫ > 0 controls the accuracy of the approximation and τ > 0 con-

trols the feasibility. It is shown in [50] that, for any ǫ > 0 , if τ > 0 is sufficiently small, then the

solution obtained satisfies the continuous inequality constraints (2.1b). Furthermore, the global

optimal solution of the approximate constrained optimization problem converges to the global

optimal solution of the original problem as ǫ → 0. However, it is not known if a local optimal

solution of the approximate constrained optimization problem will converge to a local optimal

solution of the original problem. In [116], the smooth approximate functions in integral form

are appended to the objective function by using the concept of the penalty function. This leads

to a sequence of unconstrained optimization problems in integral form, where each of which is

solvable by conventional smooth gradient-based unconstrained optimization techniques. Conver-

gence results and the shortcomings similar to those reported in [50] are also valid. In [117,131],

discretization methods are used, and then the nonlinear Lagrangian functions are introduced.

For all these algorithms, the feasibility condition is often missed in actual numerical calculation.

In [64, 82, 119, 129], numerical algorithms based on Newton method are developed to solve

semi-infinite programming problems, where the KKT system is formulated as a system of non-

smooth equations. However, the number of Lagrange multipliers in KKT system is not known

a priori. For this, a different formulation of KKT system is introduced in [26], where the equiv-

alent nonsmooth function of the continuous inequality constraints are approximated by smooth

functions. Then, a projected Newton-Type algorithm is used to solve the new KKT system.

For a semi-infinite optimization problem, where the objective function is quadratic and the

continuous inequality constraints are linear, it is found that dual parametrization methods are

effective (see, for example, [48,69–71,73]), where the dual problem of the linear-quadratic semi-
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infinite optimization problem, called the primal problem, is transformed into an equivalent finite

dimensional nonlinear programming problem. The global solution of the primal problem can

be obtained from that of the dual problem. However, the dual problems are equally difficult to

solve. Thus, discritization schemes of the primal problem are developed, and the corresponding

dual formulations called parameterized dual problems are constructed on this basis, efficient

computational methods, known as dual parametrization methods, are derived. It is shown

in [48] that the suboptimal solutions generated by these dual parametrization methods converge

to the optimal solution of the original semi-infinite programming problem.

For optimization problems with conventional smooth inequality constraints, the penalty

function method is, in general, recognized as an efficient method. However, to ensure that

the solution obtained is feasible, the penalty parameter σ is required to go to +∞. This is

clearly unsatisfactory. Thus, an exact penalty function, fσ(x), is introduced for these inequality

constrained optimization problems (see, for example, [13] and [106]). A main advantage of the

exact penalty function method is that a minimizer of the original problem can be obtained

without requiring the penalty parameter σ to go to +∞. In [47], by adding a new variable

ǫ, a new exact penalty function, fσ(x, ǫ), is introduced to deal the optimization problem with

inequality constraints as well as equality constraints, forming a new penalized cost function

fσ(x, ǫ), where σ is the penalty parameter. Under some mild assumptions, it is shown in [47]

that, if the value of the penalty parameter σ is sufficient large, then a local minimizer of the

penalty problem such that fσ(x
⋆, ǫ⋆) is finite is of the form (x⋆, 0), where x⋆ is a local minimizer

of the original problem.

In this chapter, a new exact penalty function approach is proposed for solving semi-infinite

optimization problems, where an objective function is to be minimized subject to continuous

inequality constraints. It is based on [135,136]. In this approach, the summation of the integrals

of some smooth approximation functions is appended to the objective function forming an exact

penalty objective function fσ(x, ǫ). This gives rise to a sequence of optimization problems

subject to ǫ > 0. We shall show that any local minimizer of these optimization problems is a

local minimizer of the original problem when the penalty parameter is sufficiently large. This

property is not shared by the approaches reported in [116], [117], [50] or [131]. Clearly, this is a

major advancement in the study of solution methods for semi-infinite optimization problems.

The rest of the chapter is organized as follows. In Section 2.2, we give a new exact penalty

function and analyze its convergent properties. In Section 2.3, we devise an algorithm for solving

Problem P via solving a sequence of optimization problems subject to ǫ > 0. Several examples

are solved by using the algorithm proposed. Section 2.4 concludes the chapter.
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2.2 New exact penalty function method

Consider Problem P. For each x ∈ R
n, max{φj(x, ω), 0} is a continuous function of ω, since φj

is continuously differentiable. Define

Sǫ = {(x, ǫ) ∈ R
n × R+ : φj(x, ω) ≤ ǫγWj, ∀ ω ∈ Ω, j = 1, . . . , m}, (2.3)

where R+ = {α ∈ R : α ≥ 0}, Wj ∈ (0, 1), j = 1, . . . , m, are fixed constants and γ is

a positive real number. Clearly, Problem P is equivalent to the following problem, which is

denoted as Problem P̂.

min f(x) (2.4a)

subject to

(x, ǫ) ∈ S0, (2.4b)

where S0 = Sǫ with ǫ = 0.

We assume that the following conditions are satisfied:

(A1). There exists a global minimizer of Problem P, implying that f(x) is bounded from below

on S0.

(A2). The number of distinct local minimum values of the objective function of Problem P is

finite.

Motivated by the exact penalty function introduced in [47] and the constraint transcription

method for converting continuous inequality constraints into a sequence of inequality constraints

in integral form (see [50] and [138]), we introduce a new exact penalty function fσ(x, ǫ) defined

below:

fσ(x, ǫ) =





f(x), if ǫ = 0, φj(x, ω) ≤ 0 (ω ∈ Ω),

f(x) + ǫ−α∆(x, ǫ) + σǫβ , if ǫ > 0,

+∞, otherwise.

(2.5)

where ∆(x, ǫ), which is referred to as the constraint violation, is defined by

∆(x, ǫ) =

m∑

j=1

∫

Ω

[
max

{
0, φj(x, ω)− ǫγWj

}]2
dω, (2.6)

α and γ are positive real numbers, β > 2, and σ > 0 is a penalty parameter. We now introduce

a surrogate optimization problem, which is referred to as Problem Pσ, as follows:

min fσ(x, ǫ) (2.7a)

subject to

(x, ǫ) ∈ R
n × [0,+∞). (2.7b)
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Intuitively, during the process of minimizing fσ(x, ǫ), if σ is increased, ǫβ should be reduced,

meaning that ǫ should be reduced as β is fixed. Thus ǫ−α will be increased, and hence the

constraint violation will also be reduced. This means that the value of

[
max

{
0, φj(x, ω)− ǫγWj

}]2

must go down, leading to the satisfaction of the continuous inequality constraints, i.e.,

φj(x, ω) ≤ 0, ∀ ω ∈ Ω, j = 1, . . . ,m.

In the next section, we shall show that, under some mild assumptions, if the parameter σk is

sufficient large (σk → +∞ as k → +∞) and (x(k),⋆, ǫ(k),⋆) is a local minimizer of Problem Pσk
,

then ǫ(k),⋆ → ǫ⋆ = 0, and x(k),⋆ → x⋆ with x⋆ being a local minimizer of Problem P. The

importance of this result is quite obvious.

2.2.1 Convergence analysis

Taking the gradients of fσ(x, ǫ) with respect to x and ǫ gives

∂fσ(x, ǫ)

∂x
=

∂f(x)

∂x
+ 2ǫ−α

m∑

j=1

∫

Ω
max

{
0, φj(x, ω)− ǫγWj

}∂φj(x, ω)

∂x
dω, (2.8)

∂fσ(x, ǫ)

∂ǫ
= −αǫ−α−1

m∑

j=1

∫

Ω

[
max

{
0, φj(x, ω)− ǫγWj

}]2
dω

−2γǫγ−α−1
m∑

j=1

∫

Ω
max

{
0, φj(x, ω) − ǫγWj

}
Wjdω + σβǫβ−1

= ǫ−α−1

{
− α

m∑

j=1

∫

Ω

[
max

{
0, φj(x, ω)− ǫγWj

}]2
dω

+2γ

m∑

j=1

∫

Ω
max

{
0, φj(x, ω)− ǫγWj

}
(−ǫγWj)dω

}
+ σβǫβ−1.

(2.9)

For every positive integer k, let (x(k),⋆, ǫ(k),⋆) be a local minimizer of Problem Pσk
.

To obtain our main result, we need

Lemma 2.1. Let (x(k),⋆, ǫ(k),⋆) be a local minimizer of Problem Pσk
. Suppose that fσk

(x(k),⋆, ǫ(k),⋆)

is finite and that ǫ(k),⋆ > 0. Then

(x(k),⋆, ǫ(k),⋆) /∈ Sǫ,

where Sǫ is defined by (2.3).

Proof. Since (x(k),⋆, ǫ(k),⋆) is a local minimizer of Problem Pσk
and ǫ(k),⋆ > 0, we have

∂fσk
(x(k),⋆, ǫ(k),⋆)

∂ǫ
= 0. (2.10)
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On the contrary, we assume that the conclusion of the lemma is false. Then, we have

φj(x
(k),⋆, ǫ(k),⋆) ≤ (ǫ(k),⋆)

γ
Wj,∀ ω ∈ Ω, j = 1, . . . ,m.

Thus, by (2.9) and (2.10), we obtain

0 =
∂fσk

(x(k),⋆, ǫ(k),⋆)

∂ǫ
= βσkǫ

β−1 > 0.

This is a contradiction, and hence completing the proof.

To continue, we introduce

Definition 2.1. It is said that the constraint qualification is satisfied for the continuous inequal-

ity constraints (2.1b) at x = x̄ , if the following implication is valid. Suppose that

∫

Ω

∑

j

ϕj(ω)
∂φj(x̄, ω)

∂x
dω = 0.

Then, ϕj(ω) = 0, ∀ω ∈ Ω, j = 1, . . . ,m.

Let the conditions of Lemma 2.1 be satisfied. Then, we have

Theorem 2.1. Suppose that (x(k),⋆, ǫ(k),⋆) is a local minimizer of Problem Pσk
such that

fσk
(x(k),⋆, ǫ(k),⋆) is finite. If (x(k),⋆, ǫ(k),⋆) → (x⋆, ǫ⋆) as k → +∞, and the constraint qualification

is satisfied for the continuous inequality constraints (2.1b) at x = x⋆, then ǫ⋆ = 0 and x⋆ ∈ S0.

Proof. From Lemma 2.1, it follows that (x(k),⋆, ǫ(k),⋆) /∈ Sǫ(k),⋆ . Furthermore,

∂fσk
(x(k),⋆, ǫ(k),⋆)

∂x

=
∂f(x(k),⋆)

∂x

+2(ǫ(k),⋆)−α
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}∂φj(x
(k),⋆, ω)

∂x
dω

= 0,

(2.11)

∂fσk
(x(k),⋆, ǫ(k),⋆)

∂ǫ

= − α(ǫ(k),⋆)−α−1
m∑

j=1

∫

Ω

[
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}]2
dω

− 2γ(ǫ(k),⋆)γ−α−1
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),∗, ω)− (ǫ(k),⋆)γWj

}
Wjdω (2.12)

+ σkβ(ǫ
(k),⋆)β−1

= (ǫ(k),⋆)−α−1

{
− α

m∑

j=1

∫

Ω

[
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}]2
dω
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+ 2γ

m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
(−(ǫ(k),⋆)γWj)dω

}

+ σkβ(ǫ
(k),⋆)β−1

= 0.

Suppose that ǫ(k),⋆ → ǫ⋆ 6= 0. Then, by (2.12), we observe that its first term tends to a finite

value, while the last term tends to infinity as σk → +∞, when k → +∞. This is impossible for

the validity of (2.12). Thus, ǫ⋆ = 0.

Now, by (2.11), we obtain

(ǫ(k),⋆)α
∂f(x(k),⋆)

∂x
+ 2

m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}∂φj(x
(k),⋆, ω)

∂x
dω

=0. (2.13)

Thus,

lim
k→+∞

{
(ǫ(k),⋆)α

∂f(x(k),⋆)

∂x

+2

m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}∂φj(x
(k),⋆, ω)

∂x
dω

}

= 2

m∑

j=1

∫

Ω
max

{
0, φj(x

⋆, ω)
}∂φj(x

⋆, ω)

∂x
dω = 0.

(2.14)

Since the constraint qualification is satisfied for the continuous inequality constraints (2.1b) at

x = x⋆, it follows that, for each j = 1, . . . , m,

max
{
0, φj(x

⋆, ω)
}
= 0,

for each ω ∈ Ω. This, in turn, implies that, for each j = 1, . . . , m, φj(x
⋆, ω) ≤ 0, ∀ ω ∈ Ω. The

proof is completed.

Corollary 2.1. If x(k),⋆ → x⋆ ∈ S0 and ǫ(k),⋆ → ǫ⋆ = 0, then ∆(x(k),⋆, ǫ(k),⋆) → ∆(x⋆, ǫ⋆) = 0.

Proof. The conclusion follows readily from the definition of ∆(x, ǫ) and the continuity of φj(x, ω).

Remark 2.1. The existence of an accumulating point of the sequence (x(k),⋆, ǫ(k),⋆) is assured

if the following condition is satisfied

f(x) → ∞, as |x| → ∞.

In [47], the construction of the form of the exact penalty function fσ(x, ω) is such that it is

continuously differentiable in Sǫ when ǫ > 0. Its limit is continuous on the part of the boundary

when its values are finite. In particular, fσ(x, 0) is finite when x is such that φj(x, ω) ≤ 0,
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∀ ω ∈ Ω, j = 1, . . . , m. In what follows, we shall turn our attention to the exact penalty function

constructed in (2.5). We shall see that, under some mild conditions, fσ(x, ω) is continuously

differentiable with continuous limits.

Theorem 2.2. Assume that φj(x
(k),⋆, ω) = o((ǫ(k),⋆)δ), δ > 0, j = 1, . . . , m. Suppose that

γ > α, δ > α, −α− 1 + 2δ > 0, 2γ − α− 1 > 0. Then

fσk
(x(k),⋆, ǫ(k),⋆)

ǫ(k),⋆→ǫ⋆=0−−−−−−−−−→
x(k),⋆→x⋆∈S0

fσk
(x⋆, 0) = f(x⋆), (2.15)

∇(x,ǫ)fσk
(x(k),⋆, ǫ(k),⋆)

ǫ(k),⋆→ǫ⋆=0−−−−−−−−−→
x(k),⋆→x⋆∈S0

∇(x,ǫ)fσk
(x⋆, 0) = (∇f(x⋆), 0). (2.16)

Proof. By virtue of the conditions of the theorem, it follows that, for ǫ 6= 0,

lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

fσk
(x(k),⋆, ǫ(k),⋆)

=

lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

{
f(x(k),⋆)

+(ǫ(k),⋆)−α
m∑

j=1

∫

Ω

[
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}]2
dω + σk(ǫ

(k),⋆)β
}

= f(x⋆) + lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

m∑
j=1

∫
Ω

[
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}]2
dω

(ǫ(k),⋆)α
.

(2.17)

For the second term of (2.17), it is clear from Lemma 2.1 that

lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

m∑
j=1

∫
Ω

[
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}]2
dω

(ǫ(k),⋆)α

= lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

∑

j∈J ′

∫

Ω

[
(ǫ(k),⋆)−

α
2 φj(x

(k),⋆, ω)− (ǫ(k),⋆)γ−
α
2 Wj

]2
dω.

(2.18)

Here, J ′ denotes the index set such that for any j ∈ J ′, max
{
0, φj(x

(k),⋆, ω) − (ǫ(k),⋆)γWj

}
=

φj(x
(k),⋆, ω)− (ǫ(k),⋆)γWj . Since γ > α and δ > α, we have

lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

∑

j∈J ′

∫

Ω

[
(ǫ(k),⋆)−

α
2 φj(x

(k),⋆, ω)− (ǫ(k),⋆)γ−
α
2 Wj

]2
dω = 0. (2.19)

Combining (2.17) and (2.19) gives

lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

fσk
(x(k),⋆, ǫ(k),⋆) = fσk

(x⋆, 0) = f(x⋆). (2.20)
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Similarly, we have

lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

∇(x,ǫ)fσk
(x(k),⋆, ǫ(k),⋆)

= lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

[
∇xfσk

(x(k),⋆, ǫ(k),⋆) ∇ǫfσk
(x(k),⋆, ǫ(k),⋆)

]T
.

(2.21)

where

lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

∇xfσk
(x(k),⋆, ǫ(k),⋆)

= lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

{∂f(x(k),⋆)

∂x

+2(ǫ(k),⋆)−α
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj}
∂φj(x

(k),⋆, ω)

∂x
dω

}

= ∇xf(x
⋆) + lim

ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

2
∑

j∈J ′

∫

Ω

[
(ǫ(k),⋆)−αφj(x

(k),⋆, ω)

−(ǫ(k),⋆)γ−αWj

]∂φj(x(k),⋆,ω)
∂x dω

= ∇xf(x
⋆).

(2.22)

while

lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

∇ǫfσk
(x(k),⋆, ǫ(k),⋆)

= lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

{
(ǫ(k),⋆)−α−1

{
− α

m∑

j=1

∫

Ω

[
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}]2
dω

+2γ

m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
(−(ǫ(k),⋆)γWj)dω

}

+σkβ(ǫ
(k),⋆)β−1

}

= lim
ǫ(k),⋆→ǫ⋆=0

x
(k),⋆

→x
⋆∈S0

{
− α

∑

j∈J ′

∫

Ω

[
φj(x

(k),⋆, ω)(ǫ(k),⋆)−
α+1
2 − (ǫ(k),⋆)γ−

α+1
2 Wj

]2
dω

+2γ
∑

j∈J ′

∫

Ω

[
φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

](
− (ǫ(k),⋆)γWj

)
(ǫ(k),⋆)−α−1dω

}

= 0.

(2.23)

Thus, the proof is completed.

Theorem 2.3. There exists a k0 > 0, such that for any k ≥ k0, every local minimizer

(x(k),⋆, ǫ(k),⋆) of the penalty problem with finite fσk
(x(k),⋆, ǫ(k),⋆) has the form (x⋆, 0) where x⋆ is

a local minimizer of Problem P.

Proof. On the contrary, we assume that the conclusion is false. Then, there exists a subsequence

of {(x(k),⋆, ǫ(k),⋆)}, which is denoted by the original sequence, such that for any k0 > 0, there
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exists a k′ > k0 satisfying ǫ(k
′),∗ 6= 0. By Theorem 2.1, we have

ǫ(k),⋆ → ǫ⋆ = 0, x(k),⋆ → x⋆ ∈ S0, as k → +∞.

Since ǫ(k),⋆ 6= 0 for all k, it follows from dividing (2.12) by (ǫ(k),⋆)β−1 that

(ǫ(k),⋆)−α−β

{
− α

m∑
j=1

∫

Ω

[
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}]2
dω

+2γ
m∑
j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}(
− (ǫ(k),⋆)γWj

)
dω

}
+ σkβ = 0.

(2.24)

This is equivalent to

(ǫ(k),⋆)−α−β

{
− α

m∑
j=1

∫

Ω

[
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}]2
dω

+2γ
m∑
j=1

∫

Ω

[
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}(
− (ǫ(k),⋆)γWj

)

+max
{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
φj(x

(k),⋆, ω)

−max
{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
φj(x

(k),⋆, ω)
]
dω

}
+ σkβ = 0.

(2.25)

Rearranging (2.25) yields

(ǫ(k),⋆)−α−β(2γ − α)

{ m∑

j=1

∫

Ω

[
max

{
0, φj(x

(k),⋆,ω)

−(ǫ(k),⋆)γWj

}]2
dω

}
+ σkβ

= 2γ(ǫ(k),⋆)−α−β
m∑
j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
φj(x

(k),⋆, ω)dω.

(2.26)

Letting k → +∞ in (2.26) gives

2γ(ǫ(k),⋆)−α−β
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
φj(x

(k),⋆, ω)dω → +∞. (2.27)

Define

yk = (ǫ(k),⋆)−α−β
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
dω. (2.28)

From (2.27) and (2.28), we have

yk → +∞ , as k → +∞. (2.29)

Define

zk = yk/|yk|. (2.30)
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Clearly

lim
k→+∞

|zk| = |z∗| = 1. (2.31)

Dividing (2.13) by |yk| yields

∂f(x(k),⋆)
∂x

|yk| +
2(ǫ(k),⋆)−α

|yk|
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆,ω)

−(ǫ(k),⋆)γWj

}∂φj(x
(k),⋆, ω)

∂x
dω = 0.

(2.32)

Note that x(k),⋆ → x⋆ as k → +∞ and that
∂f(x)

∂x
and, for each j = 1, . . . , m, φj and

∂φj(· , ω)
∂x

are continuous in R
n for each ω ∈ Ω, where Ω is a compact set. Then, it can be shown that

there exist constants K̂ and K, independent of k, such that, for all k = 1, 2, · · · ,

|∂f(x
(k),⋆)

∂x
| ≤ K̂, (2.33)

|∂φj(x
(k),⋆, ω)

∂x
| ≤ K, for j = 1, · · · ,m. (2.34)

By substituting (2.28) and (2.30) into (2.32), we obtain

∂f(x(k),⋆)
∂x

|yk|(ǫ(k),⋆)β +
2(ǫ(k),⋆)−α−β

|yk|
m∑

j=1

∫

Ω
max

{
0,φj(x

(k),⋆, ω)

−(ǫ(k),⋆)γWj

}∂φj(x
(k),⋆, ω)

∂x
dω = 0.

(2.35)

Note that

1

|yk|(ǫ(k),⋆)β =
1

|(ǫ(k),⋆)−α−β

m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
dω|(ǫ(k),⋆)β

=
1

|
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
dω|(ǫ(k),⋆)−α

.
(2.36)
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From Theorem 2.2, we have φj(x
(k),⋆, ω) = o((ǫ(k),⋆)δ) and γ > α, δ > α. Thus

lim
k→+∞

|
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
dω|(ǫ(k),⋆)−α

= lim
k→+∞

|
m∑

j=1

∫

Ω
max

{
0, o((ǫ(k),⋆)δ)− (ǫ(k),⋆)γWj

}
dω|(ǫ(k),⋆)−α

= lim
k→+∞

|
m∑

j=1

∫

Ω
max

{
0, o((ǫ(k),⋆)δ)(ǫ(k),⋆)−α − (ǫ(k),⋆)γ−αWj

}
dω|

= lim
k→+∞

|
m∑

j=1

∫

Ω
max

{
0,

o((ǫ(k),⋆)δ)

(ǫ(k),⋆)δ
(ǫ⋆)δ−α − (ǫ⋆)γ−αWj

}
dω|

= 0,

(2.37)

and hence,

lim
k→∞

1

|yk|(ǫ(k),⋆)β → +∞. (2.38)

From (2.33) and (2.38), it is clear that

|∂f(x(k),⋆)
∂x |

|yk|(ǫ(k),⋆)β → +∞, k → +∞. (2.39)

On the other hand,

∣∣∣2(ǫ
(k),⋆)−α−β

|yk|
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}∂φj(x
(k),⋆, ω)

∂x
dω

∣∣∣

≤ 2(ǫ(k),⋆)−α−β

|yk|
m∑

j=1

∫

Ω

∣∣∣max
{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}∂φj(x
(k),⋆, ω)

∂x

∣∣∣dω

=
2(ǫ(k),⋆)−α−β

|yk|
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}∣∣∣∂φj(x
(k),⋆, ω)

∂x

∣∣∣dω

≤ 2(ǫ(k),⋆)−α−β

|yk|
m∑

j=1

∫

Ω
max

{
0, φj(x

(k),⋆, ω)− (ǫ(k),⋆)γWj

}
Kdω

= 2Kzk,

(2.40)

where zk is defined by (2.30). Clearly, |zk| = 1. Thus, it follows from (2.40) that 2Kzk is

bounded uniformly with respect to k. This together with (2.39) is a contradiction to (2.35), and

hence completing the first part of the proof .

For sufficiently large k, every local minimizer (x(k),⋆, ǫ(k),⋆) has the form (x⋆, 0). It is obvious

from Theorem 2.1 that x⋆ is a feasible point of Problem P. This indicates that there is a

neighborhood of x⋆, such that for any feasible x of Problem P

f(x) = fσk
(x, 0) ≥ fσk

(x⋆, 0) = f(x⋆).

Therefore, x⋆ is a local minimizer of Problem P. This completes the proof.
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We may now conclude that, under some mild assumptions and the constraint qualification

condition, when the parameter σ is sufficiently large, a local minimizer of Problem Pσ is a local

minimizer of Problem P.

Results presented in Theorem 2.1, Corollary 2.1, Theorem 2.2 and Theorem 2.3. form the

foundation for constructing a computational method to be presented in Section 2.3.

2.3 Algorithm and numerical results

Here, we use the optimization tool box fmincon within MATLAB environment to solve the

optimization Problem Pσ, where the integral appeared in fσ(x, ǫ) is calculated by using the

Simpson’s Rule. For Simpson’s Rule, the global error is of order h4, where h is the discretization

step size. Thus, the required accuracy of the integrations can be easily achieved if the discretiza-

tion step size is sufficient small.

In the following, we give definitions to the terms used.

σ − The penalty parameter which is to be increased in every iteration.

ω̄ −The point at which max
1≤j≤m

φj(x
(k),⋆, ω̄) = max

1≤j≤m
max
ω∈Ω

φj(x
(k),⋆, ω).

g − The value of max
1≤j≤m

max
ω∈Ω

φj(x
(k),⋆, ω).

f − The objective function value.

ǫ − A new variable which is introduced in the construction of the exact penalty function.

ǫ⋆ − A lower bound of ǫ(k),⋆, which is introduced for avoiding ǫ(k),⋆ → 0.

With the new exact penalty function, we can construct an efficient algorithm, which is given

below:

Algorithm 2.1

Step 1 set σ(1) = 10, ǫ(1) = 0.1, ǫ⋆ = 10−9, β > 2, choose an initial point (x0, ǫ0), the iteration

index k = 0. The values of γ and α are chosen depending on the specific structure of Problem

P concerned.

Step 2 Solve Problem Pσk
, and let (x(k),⋆, ǫ(k),⋆) be the minimizer obtained.

Step 3 If ǫ(k),⋆ > ǫ⋆, σ(k) < 108,

set σ(k+1) = 10 × σ(k), k := k + 1. Go to Step 2 with (x(k),⋆, ǫ(k),⋆) as the new initial point in

the new optimization process

Else set ǫ(k),⋆ := ǫ⋆, then go to Step 4

Step 4 Check the feasibility of x(k),⋆ (i.e., whether or not max
1≤j≤m

max
ω∈Ω

φj(x
(k),⋆, ω) ≤ 0).

If x(k),⋆ is feasible, then it is a local minimizer of Problem P. Exit.

Else go to Step 5

Step 5: Adjust the parameters α, β and γ such that conditions of Lemma 2.1 are satisfied. Set

σ(k+1) = 10σ(k), ǫ(k+1) = 0.1ǫ(k), k := k + 1. Go to Step 2.

Remark 2.2. In Step 3, if ǫ(k),⋆ > ǫ⋆, we obtain from Theorem 2.1 and Theorem 2.3 that

x(k),⋆ is not a feasible point. This means that the penalty parameter σ may not be large enough.
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Thus we need to increase σ. If σk > 108, but still ǫ(k),⋆ > ǫ⋆, then we should adjust the value of

α, β and γ, such that conditions assumed in Theorem 2.2 are satisfied. Go to Step 2.

Remark 2.3. Clearly, we cannot check the feasibility of φj(x, ω) ≤ 0, j = 1, . . . , m, for every

ω ∈ Ω. In practice, we choose a set Ω̂, which contains a dense enough of points in Ω. Check the

feasibility of φj(x, ω) ≤ 0 over Ω̂ for each j = 1, . . . , m.

Remark 2.4. Although we have proved that a local minimizer of the exact penalty function

optimization problem Pσk
will converge to a local minimizer of the original Problem P, we need,

in actual computation, set a lower bound ǫ⋆ = 10−9 for ǫ(k),⋆ so as to avoid the situation of being

divided by ǫ(k),⋆ = 0, leading to infinity.

Example 2.1. The following example is taken from [35], and it is also used for testing the

numerical algorithms in [116,117,131]. In this problem, the objective function:

f(x) =
x2(122 + 17x1 + 6x3 − 5x2 + x1x3) + 180x3 − 36x1 + 1224

x2(408 + 56x1 − 50x2 + 60x3 + 10x1x3 − 2x21)
(2.41)

is to be minimized subject to

φ(x, ω) ≤ 0 , ∀ ω ∈ Ω, (2.42)

0 ≤ x1, x3 ≤ 100, 0.1 ≤ x2 ≤ 100, (2.43)

where Ω = [10−6, 30] and (i =
√
−1), while

φ(x, ω) = ℑT (x, ω)− 3.33[ℜT (x, ω)]2 + 1.0,

T (x, ω) = 1 +H(x, iω)G(iω),

H(x, s) = x1 + x2/s+ x3s,

G(s) =
1

(s+ 3)(s2 + 2s+ 2)
.

Here, ℑT (x, ω) and ℜT (x, ω) are, respectively, the imaginary and real parts of T (x, ω). The

initial point is [50, 50, 50]⊤ . Actually, we can start from any point within the boundedness

constraints (2.43).

For the continuous inequality constraint (2.42), the corresponding exact penalty function

fσ(x, ǫ) is defined by (2.5) with the constraint violation ∆(x, ǫ) given by

∆(x, ǫ) =

∫

Ω

[
max

{
0,ℑT (x, ω)− 3.33[ℜT (x, ω)]2 + 1.0− ǫγWj

}]2
dω.

Simpson’s Rule with Ω = [10−6, 30] being divided into 3000 equal subintervals is used to evaluate

the integral. The value obtained is highly accurate. Also, these discretized points define a dense

subset Ω̂ of Ω. We check the feasibility of the continuous inequality constraint by evaluating the

values of the function φ over Ω̂. Results obtained are given in Table 2.1 and Table 2.2.

As we can see, as the penalty parameter, σ, is increased, the minimizer approaches to the

boundary of the feasible region. When σ is sufficiently large, we obtain a feasible point. It has
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σ ω̄ g f
10 5.35 1.7599e-005 0.178251096
102 5.64 8.2356e-006 0.174782133
103 5.63 -2.0612e-005 0.174778004

Table 2.1: Result for Example 2.1

σ x1 x2 x3 ǫ

10 21.796685 49.5750243 31.7018582 0.000264
102 17.3494249 48.9435269 34.5556544 0.0001
103 17.3937883 48.7713471 34.5227014 0.00001

Table 2.2: Result for Example 2.1

the same objective function value as that obtained in [117]. However, for the minimizer obtained

in [117], there are some minor violations of the continuous inequality constraints (2.42).

Example 2.2. Consider the problem:

min x21 + (x2 − 3)2

subject to x2 − 2 + x1 sin(
t

x2−ω ) ≤ 0, ∀ t ∈ [0, π]

−1 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2.

where ω is a parameter which controls the frequency of the constraint. As in [117], ω is chosen

as 2.032.

In this case, the corresponding exact penalty function fσ(x, ǫ) is defined by (2.5) with the

constraint violation given by

∆(x, ǫ) =

∫ π

0

[
max

{
0, x2 − 2 + x1 sin(

t

x2 − ω
)− ǫγWj

}]2
dt.

Simpson’s Rule with interval [0, π] being divided into 1000 equal subintervals is used to evaluate

the integral. These discretized points also form a dense subset Ω̂ of the interval [0, π]. The

feasibility check is carried over Ω̂. By using Algorithm 2.1 with the initial point taken as

(x01, x
0
2), the solution obtained is (x⋆1, x

⋆
2) = [0, 2]⊤ with the objective function value f⋆ = 1. The

results are presented in Table 2.3 and Table 2.4.

σ ω̄ g f
10 1.41 3.735773915e-008 1.000000669
102 1.41 3.735773916e-008 1.000006691
103 1.41 3.735773916e-008 1.00006691
104 1.41 3.735773916e-008 1.000669101
105 1.049 2.45667159e-007 1.000011501

Table 2.3: Result for Example 2.2
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σ x1 x2 ǫ

10 3.735773981e-008 2.0000 5.481e-004
102 3.735773981e-008 2.0000 5.481e-004
103 3.735773981e-008 2.0000 5.481e-004
104 3.735773981e-008 2.0000 5.481e-004
105 -5.504846644e-006 1.9999 10−7

Table 2.4: Result for Example 2.2

It is observed that for sufficiently large σ, the minimizer obtained by the proposed method

has the same minimum with the results obtained in [117]. Moreover, the continuous inequality

constraints are satisfied for all t ∈ [0, π].

Example 2.3. Consider the problem:

min (x1 + x2 − 2)2 + (x1 − x2)
2 + 30[min{0, x1 − x2}]2

subject to x1 cos t+ x2 sin t− 1 ≤ 0, ∀ t ∈ [0, π].

Again, Simpson’s Rule with the interval [0, π] being partitioned into 1000 equal subintervals

is used to evaluate the corresponding constraint violation in the exact penalty function. These

discretized points also define a dense subset Ω̂ of the interval [0, π], which is also used for checking

the feasibility of the continuous inequality constraint. Now, by using Algorithm 2.1 with the

initial point taken as [0.5, 0.5]⊤, the result obtained are reported in Table 2.5 and Table 2.6.

σ ω̄ g f
10 0.786 0.02497208416 0.3292584852
102 0.786 0.00400356933 0.3409679661
103 0.78 -0.00029665527 0.3437506884
104 0.78 -0.00000024678 0.3432592109

Table 2.5: Result for Example 2.3

σ x1 x2 ǫ

10 0.7247764975 0.7247530305 0.04447211922
102 0.7100525572 0.7098229283 0.006961707112
103 0.7113565666 0.7024091525 0.000000009999
104 0.7115629913 0.7026219620 0.00000000100

Table 2.6: Result for Example 2.3

By comparing our results with those obtained in [35, 50, 116, 117], it is observed that the

objective values are almost the same. However, for our minimizer, it is a feasible point while

those obtained in [35,50,116,117] are not.
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2.4 Conclusions

In this chapter, a new exact penalty method is proposed for solving an optimization problem with

continuous inequality constraints. Compared with the existing schemes, our algorithm can be

classified as an outer approximation method as the optimal solution is approached from outside

the feasible region. Thus, there is no need to find an interior point to start with. Furthermore,

our method is based on exact penalty function, so the penalty parameter σ doesn’t need to

go to ∞. Furthermore, any local minimizer of the penalized optimization problems is also a

local minimizer of the original semi-infinite optimization problem when the penalty parameter

is sufficiently large. This represents an important advancement in the solution method of semi-

infinite optimization problems. From the numerical simulation, we observe that the minimizers

obtained for all the test examples are feasible. This is an important feature of the method

proposed, indicating that the proposed exact penalty method is effective when compared with

other existing methods.



CHAPTER 3

An exact penalty function method for

nonlinear mixed discrete programming

problems

3.1 Introduction

For a vast number of applications in areas such as engineering design, computational chemistry,

computational biology, communications and finance, some of the decision variables are continu-

ous, while others are to be chosen from sets of discrete values. These problems can be formulated

as mixed discrete nonlinear programming problem (MDNLP). In [53], an overview of applications

of MDNLP is given, which include process design, process synthesis, process operations, facility

location and allocation, facility planning and scheduling, topology of transportation networks,

combinatorial optimization problems and other bilinear problems. For other applications, see,

for example, [11, 28,65,107].

In a MDNLP, there involve discrete-valued variables. Thus, traditional gradient-based meth-

ods are not applicable. Theoretically, MDNLP is NP-hard, meaning that it is not possible to

solve a MDNLP in polynomial time. Nevertheless, many efficient methods are now available in

the literature for solving mixed discrete programming problems. In [105], Branch-and-Bound

methods (BBM) are developed to solve mixed discrete linear programming problems and mixed

discrete nonlinear programming problems.

In [100,121], by regarding the discrete variables as continuous, the mixed discrete nonlinear

programming problems are solved by continuous optimization techniques. Then, the discrete

variables are obtained by rounding off those continuous variables to the closest discrete values.

The idea is intuitive and has been widely used. However, the solution obtained may be far

from optimal, and may even be infeasible. In [8, 74, 75], a method is proposed by combining

linear programming technique with Branch-and-Bound method, where the Branch-and-Bound

method is applied to linear subproblems. However, if the number of discrete variables is large,

the number of nodes created in the branching process becomes very large, and subsequently

the computational cost will be very high. A detailed literature survey on Branch-and-Bound

40
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methods can be found in [68].

In [23, 30, 87], a special class of integer programming problems is considered where the

objective function is quadratic and the constraints are linear. This class of integer programming

problems is known as the linear quadratic integer programming problem. The convex relaxation

and Lagrangian decomposition schemes are used in [111] and [139]. On the other hand, the

canonical duality is used in [23] and [29].

In [125], a general class of mixed discrete nonlinear programming problems is considered.

By introducing additional new variables, it is shown that the original mixed discrete nonlinear

programming problem is transformed into an equivalent optimization problem involving only

continuous and binary variables. For the binary variables, they are transformed into continuous

variables subject to additional quadratic and linear constraints. Thus, an equivalent constrained

nonlinear optimization problem with continuous variables is obtained, where the constraints

consists of the original constraints plus the newly introduced quadratic and linear constraints.

However, the resulting constrained optimization problem is very difficult to solve due to the

additional quadratic constraints.

In [77] and [80], penalty function methods are employed for nonlinear optimization problems

with binary variables, where a relaxation is made. In the relaxed problems, all variables are

continuous. However, the obtained continuous constrained problem is also not easy to solve. For

other continuous optimization approaches for solving discrete optimization problems, we refer

to [84–86].

This chapter is based on [133]. We first use the idea in [125] to transform the mixed discrete

nonlinear programming problem into a conventional nonlinear optimization problem. Then, a

new approach based on the exact penalty function method introduced in [135] is used to obtain

a sequence of unconstrained optimization problems. Each of these unconstrained optimization

problem can be solved by gradient-based methods. We will show that, under some mild assump-

tions, any local minimizer of the unconstrained optimization problem is a local minimizer of the

original problem when the penalty parameter is sufficiently large. Numerical experiments show

that the method proposed is effective.

3.2 Mixed discrete nonlinear programming problems

Consider a mixed discrete nonlinear programming problem given below:

min f(x,y)

subject to Hi(x,y) = 0 i = 1, 2, . . . ,M,

Gi(x,y) ≤ 0 j = 1, 2, . . . , N.

where x = [x1, x2, . . . , xn]
⊤ ∈ R

n and y = [y1, y2, . . . , ym]⊤ ∈ D1 × · · · × Dm. Here, Rn is the

n-dimensional Euclidean space, and for each i = 1, 2, . . . ,m, Di = {ai,1, ai,2, . . . , ai,Ki
}, where
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ai,j, j = 1, . . . ,Ki, are given discrete values. Let this problem be denoted as Problem P.

To transform Problem P to a constrained optimization problem with continuous variables,

we define, for each i = 1, 2, . . . ,m,

ȳi =

Ki∑

j=1

ai,jwi,j , (3.2)

where, for each i = 1, 2, . . . ,m,
Ki∑

j=1

wi,j = 1, (3.3a)

0 ≤ wi,j ≤ 1, j = 1, 2, . . . ,Ki, (3.3b)

wi,j(1− wi,j) ≤ 0, j = 1, 2, . . . ,Ki. (3.3c)

Now, consider the following problem, which is denoted as Problem P̄.

min f̄(x,ω) (3.4a)

subject to h̄i(x,ω) = 0 i = 1, 2, . . . ,M, (3.4b)

ḡi(x,ω) ≤ 0 j = 1, 2, . . . , N, (3.4c)
Ki∑

j=1

wi,j = 1, i = 1, 2, . . . ,m, (3.4d)

Ki∑

j=1

wi,j(1− wi,j) ≤ 0 i = 1, 2, . . . ,m, (3.4e)

0 ≤ wi,j ≤ 1 j = 1, 2, . . . ,Ki, i = 1, 2, . . . ,m. (3.4f)

where x = [x1, x2, . . . , xn]
⊤ ∈ R

n, ω=[(ω1)
⊤, . . . , (ωm)⊤]⊤ with ωi=[ωi,1, . . . , ωi,Ki

]⊤, i =

1, . . . ,m, while

f̄(x,ω) = f(x,y)

h̄i(x,ω) = Hi(x,y), i = 1, . . . ,M

ḡj(x,ω) = Gi(x,y), j = 1, . . . , N

Here, y = [y1, . . . , yk]
⊤ with yi =

Ki∑
j=1

ai,jωi,j, i = 1, . . . , k. Clearly, Problem P̄ is a nonlinear

optimization problem with conventional equality and inequality constraints.

From Theorem 3.1 in [125], we note that, for each i = 1, 2, . . . , k, the solution of (3.4) is

that only one of the wi,j , j = 1, 2, . . . ,Ki, can be taken as one, while others are all zeros. This

indicates that for each i = 1, . . . , k, ȳi can only take a discrete value from the set Di, implying

that Problem P is equivalent to Problem P̄.

In principle, the constrained optimization problem P̄ appears solvable by existing optimiza-

tion techniques, such as those implemented in the optimization software packages. For example,

fmincon within MATLAB or NLPQLP within FORTRAN environment. However, Problem
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P̄ is not easy to be solved directly due to the quadratic constraints (3.4e). Numerous numerical

experiments are carried out solving some test examples considered in Section 3.3. However,

both of the optimization packages fail to find feasible solutions of the test problems due to the

inequality constraints (3.4e).

Motivated by the idea presented in Chapter 2, we will introduce an exact penalty function

to transform Problem P̄ into a sequence of unconstrained optimization problems, such that each

of these unconstrained optimization problem becomes solvable by gradient-based optimization

techniques. Furthermore, we will show that a local minimizer of the unconstrained optimization

problem is a local minimizer of Problem P̄ if the penalty parameter is sufficiently large.

3.2.1 Exact penalty function method

Consider Problem P̄. It can be expressed as the following conventional constrained optimization

problem, which is referred to as Problem P̂.

minF (z)

subject to Hi(z) = 0, i = 1, 2, . . . ,M

Gi(z) ≤ 0, i = 1, 2, . . . , N

where z = [(x)⊤, (ω)⊤]⊤ ∈ R
r with r = n+

m∑
i=1

Ki,

F (z) = f̄(x,ω)

Hi(z) = h̄i(x,ω), i = 1, . . . ,M

Hi+M (z) =
Ki∑
j=1

ωi,j − 1, i = 1, . . . ,m

Gi(z) = ḡi(x,ω), i = 1, . . . , N

Gi+N (z) =
Ki∑
j=1

ωi,j(1− ωi,j), i = 1, . . . ,m

GN1+j+i(z) = ωi,j − 1, j = 1, . . . ,Ki; i = 1, . . . ,m

GN2+j+i(z) = −ωi,j, j = 1, . . . ,Ki; i = 1, . . . ,m

Here, N = N +m+ 2
m∑
i=1

Ki, M = M +m, N1 = N +
m∑
i=1

Ki, and N2 = N1 +
m∑
i=1

Ki.

As in Chapter 2, we introduce an exact penalty function, which is denoted as Fσ(z, ǫ), defined

below:

Fσ(z, ǫ) =





F (z) if ǫ = 0, z is feasiable for Problem (P̂)

F (z) + ǫ−α∆(z, ǫ) + σǫβ if ǫ > 0

+∞ otherwise

(3.6)
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where ǫ is a newly introduced variable, and the constraint violation ∆(z, ǫ) is defined by

∆(z, ǫ) =

N∑

i=1

[
max

{
0, Gi(z)− ǫγ

}]2
+

M∑

i=1

(
Hi(z)− ǫγ

)2
(3.7)

Here, α, β and γ are positive real numbers, and σ is a penalty parameter. Similarly, we define

Sǫ = {[z⊤, ǫ]⊤ : Hi(z) = ǫγ , i = 1, . . . ,M ; Gi(z) ≤ ǫγ , i = 1, . . . , N} (3.8)

where R+ = {α ∈ R : α ≥ 0}. The definition below gives the linearly independent constraint

qualification.

Definition 3.1. For a given z⋆ ∈ R
r, let A(z⋆) be the set of those indices i ∈ {1, . . . , N}

such that for i ∈ A(z⋆), Gi(z
⋆) = 0. Suppose that the gradients of the active constraints, i.e.,

Gi(z
⋆) = 0 for i ∈ A(z⋆), and the equality constraints Hi(z

⋆) = 0 for i = 1, . . . ,M , which are

evaluated at z = z⋆, are linearly independent. Then, it is said that the linearly independent

constraint qualification (LICQ) is satisfied at z = z⋆.

Now, consider the following optimization problem, which is denoted as Problem Pσ.

min Fσ(z, ǫ)

subject to (z, ǫ) ∈ R
n × [0,+∞)

Clearly, Problem Pσ is a conventional unconstrained optimization problem. In fact, any local

minimizer of ProblemPσ is a local minimizer of Problem P̂ if the penalty parameter is sufficiently

large. This together with other relevant results are presented in the next section.

3.2.2 Convergence analysis

Let {σk}∞k=1 be an increasing sequence of penalty parameters such that σk → ∞. Furthermore,

let (z(k),⋆, ǫ(k),⋆) denote the solution of Problem Pσk
corresponding to σk. We assume that the

following hypotheses are satisfied:

(H1) F , Gi, i = 1, . . . , N , and Hi, i = 1, . . . , M , are continuously differentiable in R
r.

F (z) → ∞, as |z| → ∞.

(H2) The linearly independent constraint qualification is satisfied at z = z⋆, where z⋆ is a local

minimizer of Problem P̂.

(H3) max{0, Gi(z
(k),⋆)} = o

(
(ǫ(k),⋆)δ1

)
, i = 1, . . . , N ; Hi(z

(k),⋆) = o
(
(ǫ(k),⋆)δ2

)
, i = 1, . . . ,M ,

where δ1 and δ2 are positive constants, and

lim
η→0

o(ηι)

ηι
= 0

with ι being δ1 or δ2.
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The following two Lemmas show that the sequence (z(k),⋆, ǫ(k),⋆) of local minimizers will

converge to a feasible point of Problem P̂. They are needed in the proofs of Theorems 3.1-3.3

to be given below.

Lemma 3.1. Let (z(k),⋆, ǫ(k),⋆) be a local minimizer of Problem Pσk
. Suppose that Fσk

(z(k),⋆, ǫ(k),⋆)

is finite and that ǫ(k),⋆ > 0. Then

(z(k),⋆, ǫ(k),⋆) /∈ Sǫ(k),⋆

where Sǫ(k),⋆ is defined by (3.8) with ǫ = ǫ(k),⋆.

Proof. Since (z(k),⋆, ǫ(k),⋆) is a local minimizer of Problem Pσk
and ǫ(k),⋆ > 0, it is clear that

∂Fσk
(z(k),⋆, ǫ(k),⋆)

∂ǫ

=

(ǫ(k),⋆)−α−1

{
− α∆(z(k),⋆, ǫ(k),⋆) + 2γ

( N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
(−(ǫ(k),⋆)γ)

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)
(−(ǫ(k),⋆)γ)

)}
+ σkβ(ǫ

(k),⋆)β−1

= 0

(3.10)

If the conclusion of the lemma is false. Then, we have

Hi(z) = ǫγ , i = 1, . . . ,M,

Gi(z) ≤ ǫγ , i = 1, . . . , N.
(3.11)

Substituting (3.11) to (3.10) gives

0 =
∂Fσk

(z(k),⋆, ǫ(k),⋆)

∂ǫ
= σkβ(ǫ

(k),⋆)β−1 > 0

This is a contradiction, and hence completing the proof.

Lemma 3.2. Let (z(k),⋆, ǫ(k),⋆) be a local minimizer of Problem Pσk
such that Fσk

(z(k),⋆, ǫ(k),⋆) is

finite and ǫ(k),⋆ > 0. Suppose that (z(k),⋆, ǫ(k),⋆) → (z⋆, ǫ⋆) as k → +∞, and that the hypotheses

(H1)-(H3) are satisfied. Then, ǫ⋆ = 0 and z⋆ ∈ S0, where S0 is defined by (3.8) with ǫ = 0.

Proof. It follows from Lemma 3.1 that (z(k),⋆, ǫ(k),⋆) /∈ Sǫ(k),⋆. Moreover,

∂Fσk
(z(k),⋆, ǫ(k),⋆)

∂z

=

∂F (z(k),⋆)

∂z
+ 2(ǫ(k),⋆)−α

[ N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}∂Gi(z

(k),⋆)

∂z

+
M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∂Hi(z

(k),⋆)

∂z

]

= 0

(3.12)
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Suppose that ǫ(k),⋆ → ǫ⋆ 6= 0. Then, by (3.10), we observe that its first term tends to a finite

value, while the last term tends to infinity as σk → +∞, when k → +∞. This is impossible for

the validity of (3.10). Thus, ǫ⋆ = 0. Now, by (3.12), we obtain

(ǫ(k),⋆)α
∂F (z(k),⋆)

∂z
+ 2

[ N∑

i=1

max
{
0,Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}∂Gi(z

(k),⋆)

∂z

+
M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∂Hi(z

(k),⋆)

∂z

]
= 0

(3.13)

Thus,

lim
k→+∞

(ǫ(k),⋆)α
∂F (z(k),⋆)

∂z
+ 2

[ N∑

i=1

max
{
0,Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}∂Gi(z

(k),⋆)

∂z

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∂Hi(z

(k),⋆)

∂z

]

= 2
[ N∑

i=1

max
{
0, Gi(z

⋆)
}∂Gi(z

⋆)

∂z
+

M∑

i=1

Hi(z
⋆)
∂Hi(z

⋆)

∂z

]
= 0.

(3.14)

Since the LICQ is satisfied at z = z⋆, it follows that,

Hi(z
⋆) = 0, i = 1, . . . ,M,

Gi(z
⋆) ≤ 0, i = 1, . . . , N.

(3.15)

The proof is completed.

The main convergence results are presented in the following three theorems.

Theorem 3.1. Suppose that the hypotheses (H1)-(H3) are satisfied, and that γ > α, δ =

min(δ1, δ2) > α, −α− 1 + 2δ > 0, 2γ − α− 1 > 0. Then

Fσk
(z(k),⋆, ǫ(k),⋆)

ǫ(k),⋆→ǫ⋆=0−−−−−−−−−→
z(k),⋆→z⋆∈S0

Fσk
(z⋆, 0) = F (z⋆)

∇(z,ǫ)Fσk
(z(k),⋆, ǫ(k),⋆)

ǫ(k),⋆→ǫ⋆=0−−−−−−−−−→
z(k),⋆→z⋆∈S0

∇(z,ǫ)Fσk
(z⋆, 0) = (∇F (z⋆), 0)
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Proof. It follows from the conditions of the theorem that, for ǫ(k),⋆ 6= 0,

lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

Fσk
(z(k),⋆, ǫ(k),⋆)

=

lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

{
F (z(k),⋆) + (ǫ(k),⋆)−α

[ N∑

i=1

(
max

{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
})2

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)2]

+ σk(ǫ
(k),⋆)β

}

= F (z⋆) + lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

N∑
i=1

(
max

{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
})2

+
M∑
i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)2

(ǫ(k),⋆)α

(3.16)

For the second term of (3.16), it is clear from Lemma 3.1 that

lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

N∑
i=1

(
max

{
0, Gi(z

(k),⋆, ω)− (ǫ(k),⋆)γ
})2

+
M∑
i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)2

(ǫ(k),⋆)α

=

lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

∑

i∈I′

(
(ǫ(k),⋆)−

α
2 Gi(z

(k),⋆)− (ǫ(k),⋆)γ−
α
2
)2

+
M∑

i=1

(
(ǫ(k),⋆)−

α
2 Hi(z

(k),⋆)− (ǫ(k),⋆)γ−
α
2
)2

(3.17)

Here, I ′ denotes the index set such that for any i ∈ I ′, max
{
0, Gi(z

(k),⋆)−(ǫ(k),⋆)γ
}
= Gi(z

(k),⋆)−
(ǫ(k),⋆)γ . Since γ > α and δ > α, we have

lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

∑

i∈I′

(
(ǫ(k),⋆)−

α
2 Gj(z

(k),⋆)− (ǫ(k),⋆)γ−
α
2
)2

+
M∑

i=1

(
(ǫ(k),⋆)−

α
2 Hi(z

(k),⋆)− (ǫ(k),⋆)γ−
α
2
)2

= 0

(3.18)

Combining (3.16) and (3.18) gives

lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

Fσk
(z(k),⋆, ǫ(k),⋆) = Fσk

(z⋆, 0) = F (z⋆) (3.19)

Similarly, we have

lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

∇(z,ǫ)Fσk
(z(k),⋆, ǫ(k),⋆)

= lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

[
∇zFσk

(z(k),⋆, ǫ(k),⋆) ∇ǫFσk
(z(k),⋆, ǫ(k),⋆)

]⊤ (3.20)
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where

lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

∇zFσk
(z(k),⋆, ǫ(k),⋆)

= lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

{∂F (z(k),⋆)

∂z
+ 2(ǫ(k),⋆)−α

[ N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}∂Gi(z

(k),⋆)

∂z

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∂Hi(z

(k),⋆)

∂z

]}

= ∇zF (z⋆) + lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

2
{∑

i∈I′

[
(ǫ(k),⋆)−αGi(z

(k),⋆)− (ǫ(k),⋆)γ−α
]∂Gi(z

(k),⋆)

∂z

+

M∑

i=1

(
(ǫ(k),⋆)−αHi(z

(k),⋆)− (ǫ(k),⋆)γ−α
)∂Hi(z

(k),⋆)

∂z

]}

= ∇zf(z
⋆)

(3.21)

while
lim

ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

∇ǫFσk
(z(k),⋆, ǫ(k),⋆)

= lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

(ǫ(k),⋆)−α−1

{
− α∆(z(k),⋆, ǫ(k),⋆)

+2γ

(
N∑
i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
(−(ǫ(k),⋆)γ)

+
M∑
i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)
(−(ǫ(k),⋆)γ)

)}
+ σkβ(ǫ

(k),⋆)β−1

= lim
ǫ(k),⋆→ǫ⋆=0

z
(k),⋆

→z
⋆∈S0

−α∆(z(k),⋆, ǫ(k),⋆)

(ǫ(k),⋆)α+1

+2γ

( ∑
i∈I′

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
(−(ǫ(k),⋆)γ−α−1)

+
M∑
i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)
(−(ǫ(k),⋆)γ−α−1)

)

+σkβ(ǫ
(k),⋆)β−1

= 0

(3.22)

Thus, the proof is completed.

The above results indicate that the constructed exact penalty function is continuously differen-

tiable with its gradients having finite limits.

From Lemmas 3.1, 3.2 and Theorem 3.1, we will show that the sequence (z(k),⋆, ǫ(k),⋆) of the

local minimizers will converge to a feasible point of the original problem P̂ with finite objective

function value. Furthermore, this feasible point is a local minimizer of Problem P̂. These results

together with the exactness of the proposed penalty function (3.6) are presented in the following

as a Theorem.

Theorem 3.2. Let (z(k),⋆, ǫ(k),⋆) be a local minimizer of Problem Pσk
. Suppose that (z(k),⋆, ǫ(k),⋆) →

(z⋆, ǫ⋆) as k → +∞, and that the parameters α, γ and δ satisfy the same conditions as in The-
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orem 3.1. Then, there exists a k0 > 0, such that ǫ(k),⋆ = 0, and z(k),⋆ is a local minimizer of

Problem P̂, for k ≥ k0.

Proof. We follow the idea of the proof given for Theorem 2.3. To begin, we assume that the

conclusion is false. Then, there exists a subsequence of {(z(k),⋆, ǫ(k),⋆)}, which is denoted by the

original sequence, such that for any k0 > 0, there exists a k′ > k0 satisfying ǫ(k
′),⋆ 6= 0. By

Lemma 3.2, we have

ǫ(k),⋆ → ǫ⋆ = 0, z(k),⋆ → z⋆ ∈ S0, as k → +∞

Since ǫ(k),⋆ 6= 0 for all k, we have

∂Fσk
(z(k),⋆, ǫ(k),⋆)

∂z

=

∂F (z(k),⋆)

∂z
+ 2(ǫ(k),⋆)−α

[ N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}∂Gi(z

(k),⋆)

∂z

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∂Hi(z

(k),⋆)

∂z

]

= 0

(3.23)

∂Fσk
(z(k),⋆, ǫ(k),⋆)

∂ǫ

=

(ǫ(k),⋆)−α−1

{
− α∆(z(k),⋆, ǫ(k),⋆) + 2γ

( N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
(−(ǫ(k),⋆)γ)

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)
(−(ǫ(k),⋆)γ)

)}
+ σkβ(ǫ

(k),⋆)β−1

= 0

(3.24)

Dividing (3.10) by (ǫ(k),⋆)β−1, we obtain

(ǫ(k),⋆)−α−β

{
− α∆(z(k),⋆, ǫ(k),⋆) + 2γ

( N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
(−(ǫ(k),⋆)γ)

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)
(−(ǫ(k),⋆)γ)

)}
+ σkβ = 0

(3.25)
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This is equivalent to

(ǫ(k),⋆)−α−β

{
− α∆(z(k),⋆, ǫ(k),⋆) + 2γ

(
N∑
i=1

[
max

{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}(

− (ǫ(k),⋆)γ
)

+max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
Gi(z

(k),⋆)−max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
Gi(z

(k),⋆)
]

+
M∑
i=1

[
(Hi(z

(k),⋆)− (ǫ(k),⋆)γ)
(
− (ǫ(k),⋆)γ

)
+

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)
Hi(z

(k),⋆)

−
(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)
Hi(z

(k),⋆)
])}

+ σkβ = 0

(3.26)

Rearranging (3.26) yields

(ǫ(k),⋆)−α−β(2γ − α)∆(z(k),⋆, ǫ(k),⋆) + σkβ

= 2γ(ǫ(k),⋆)−α−β

( N∑

i=1

max
{
0, Gi(z

(k),⋆)−(ǫ(k),⋆)γ
}
Gi(z

(k),⋆)

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)
Hi(z

(k),⋆)

)
(3.27)

Letting k → +∞ in (3.27) gives

2γ(ǫ(k),⋆)−α−β

( N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
Gi(z

(k),⋆)

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)
Hi(z

(k),⋆)

)
→ +∞

(3.28)

Define

y(k) = (ǫ(k),⋆)−α−β
( N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
+

M∑

i=1

∣∣(Hi(z
(k),⋆)− (ǫ(k),⋆)γ

)∣∣
)

(3.29)

From (3.28) and (3.29), we have

y(k) → +∞ , as k → +∞ (3.30)

Dividing (3.12) by |y(k)|(ǫ(k),⋆)β yields

∂F (z(k),⋆)
∂z

|y(k)|(ǫ(k),⋆)β +
2(ǫ(k),⋆)−α−β

|y(k)|
[ N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}∂Gi(z

(k),⋆)

∂z

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∂Hi(z

(k),⋆)

∂z

]
= 0

(3.31)
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This is equivalent to

∣∣∣∣
∂F (z(k),⋆)

∂z

|y(k)|(ǫ(k),⋆)β
∣∣∣∣ =

2(ǫ(k),⋆)−α−β

|y(k)|
∣∣∣

N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}∂Gi(z

(k),⋆)

∂z

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∂Hi(z

(k),⋆)

∂z

∣∣∣.

(3.32)

Note that, z(k),⋆ → z⋆ as k → +∞. Thus, for a ξ > 0, there exists a sufficiently large K̄, such

that for all k > K̄, z(k),⋆ ∈ Nξ(z
⋆), where Nξ(z

⋆) is a ξ - neighborhood of z⋆. It is clear from

hypothesis (H1) that there exists a constant C, independent of k > K̄, such that, for all k > K̄,

∣∣∣∂F (z(k),⋆)

∂z

∣∣∣ ≤ C (3.33)

∣∣∂Gi(z
(k),⋆)

∂z

∣∣ ≤ C, i = 1, . . . , N, and
∣∣∂Hi(z

(k),⋆)

∂z

∣∣ ≤ C, i = 1, . . . ,M (3.34)

For the RHS of (3.32), when k > K̄, we have

2(ǫ(k),⋆)−α−β

|y(k)|
∣∣∣

N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}∂Gi(z

(k),⋆)

∂z

+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∂Hi(z

(k),⋆)

∂z

∣∣∣

=

2
∣∣∣

N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}∂Gi(z

(k),⋆)

∂z
+

M∑

i=1

(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∂Hi(z

(k),⋆)

∂z

∣∣∣

∣∣∣
N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
+

M∑

i=1

∣∣(Hi(z
(k),⋆)− (ǫ(k),⋆)γ

)∣∣
∣∣∣

≤
2

[ N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
C +

M∑

i=1

∣∣∣
(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∣∣∣C

]

N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
+

M∑

i=1

∣∣∣
(
Hi(z

(k),⋆)− (ǫ(k),⋆)γ
)∣∣∣

≤ 2C (3.35)

On the other hand, from (3.29), we note that

1

|y(k)|(ǫ(k),⋆)β
=

1

∣∣∣
N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
+

M∑

i=1

∣∣(Hi(z
(k),⋆)− (ǫ(k),⋆)γ

)∣∣
∣∣∣(ǫ(k),⋆)−α
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From the hypothesis (H3), we have max{0, Gi(z
(k),⋆)} = o((ǫ(k),⋆)δ1), Hi(z

(k),⋆) = o((ǫ(k),⋆)δ2)

and γ > α, δ = min(δ1, δ2) > α. Thus

lim
k→+∞

∣∣∣
N∑

i=1

max
{
0, Gi(z

(k),⋆)− (ǫ(k),⋆)γ
}
+

M∑

i=1

∣∣(Hi(z
(k),⋆)− (ǫ(k),⋆)γ

)∣∣
∣∣∣(ǫ(k),⋆)−α

= lim
k→+∞

∣∣∣
N∑

i=1

max
{
0, Gi(z

(k),⋆)(ǫ(k),⋆)−α − (ǫ(k),⋆)γ−α
}
+

M∑

i=1

∣∣((ǫ(k),⋆)δ−α − (ǫ(k),⋆)γ−α
)∣∣
∣∣∣

For any i ∈ 1, . . . , N , if Gi(z
(k),⋆) ≤ 0, then it is clear that

lim
k→∞

max
{
0, Gi(z

(k),∗)(ǫ(k),⋆)−α − (ǫ(k),⋆)γ−α
}
= 0.

On the other hand, we have

max{0, Gi(z
(k),⋆)} = Gi(z

(k),⋆) = o((ǫ(k),⋆)δ1),

and

lim
k→∞

max
{
0, Gi(z

(k),⋆)(ǫ(k),⋆)−α − (ǫ(k),⋆)γ−α
}
= lim

k→∞
max

{
0, (ǫ(k),⋆)δ−α − (ǫ(k),⋆)γ−α

}
= 0.

Thus,

lim
k→+∞

∣∣∣
N∑

i=1

max
{
0, Gi(z

(k),⋆)(ǫ(k),⋆)−α − (ǫ(k),⋆)γ−α
}
+

M∑

i=1

∣∣((ǫ(k),⋆)δ−α − (ǫ(k),⋆)γ−α
)∣∣
∣∣∣

= 0

which means that
1

|y(k)|(ǫ(k),⋆)β → +∞, k → +∞ (3.36)

From (3.33) and (3.36), it is clear that

|∂F (z(k),⋆)
∂z |

|y(k)|(ǫ(k),⋆)β → +∞, k → +∞ (3.37)

Thus, (3.35) together with (3.37) contradicts the validity of (3.32), and hence completing the

first part of the proof .

For sufficiently large k, every local minimizer (z(k),⋆, ǫ(k),⋆) has the form (z⋆, 0). It is obvi-

ous from Lemma 3.2 that z⋆ is a feasible point of Problem P̂. This indicates that there is a

neighborhood of z⋆, such that for any feasible z of Problem P̂

F (z) = Fσk
(z, 0) ≥ Fσk

(z⋆, 0) = F (z⋆).

Therefore, z⋆ is a local minimizer of Problem P̂. This completes the proof.
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Theorem 3.2 indicates that, under some mild assumptions, a local minimizer of the penalty

Problem Pσ is a local minimizer of Problem P̂, when the parameter σ is sufficiently large.

3.3 Numerical results

To test the method proposed, we consider some examples in this section. The equivalent con-

strained continuous optimization problems are solved by using the optimization tool box fmincon

within MATLAB environment. For the newly introduced variables wi,j in (3.2) and (3.3), a nat-

ural way is to set their initial values as:

wi,j = 1/Ki, j = 1, 2, . . . ,Ki (3.38)

Example 3.1 (Pressure vessel design problem)

min f(x,y) = 0.6224x1x2y1 + 1.7781x22y2 + 3.1611x2y
2
1 + 19.84x1y1

subject to

g1(x,y) = 0.0193x1 − y1 ≤ 0

g2(x,y) = 0.00954x1 − y2 ≤ 0

g3(x,y) = 750× 1728 − πx21x2 − 4
3πx

3
1 ≤ 0

g4(x,y) = x2 − 240 ≤ 0

x1 ∈ [0,∞), x2 ∈ [0,∞)

y1 ∈ {1.125 + 0.0625(j − 1) : j = 1, 2, . . . , 7}
y2 ∈ {0.625 + 0.0625(j − 1) : j = 1, 2, . . . , 7}.

Using transformation (3.2), the discrete variables y1 and y2 are replaced by the newly introduced

variables w1,j, j = 1, . . . , 7, and w2,j, j = 1, . . . , 7. That is,

y1 =

7∑

j=1

[1.125 + 0.0625(j − 1)]w1,j , (3.39a)

y2 =

7∑

j=1

[0.625 + 0.0625(j − 1)]w2,j . (3.39b)

Substituting (3.39) into the original problem, we obtain an equivalent nonlinear constrained

optimization problem with continuous variables. Then, by introducing the corresponding penalty

function defined by (3.6), we obtain a sequence of unconstrained optimization problems. Each

of these unconstrained optimization problems is solved by the optimization toolbox fmincon

within MATLAB environment. We set the initial values for xi, i = 1, 2, wi,j , j = 1, . . . , 7; i = 1, 2,

as x1 = 50, x2 = 100, wi,j = 1/7, i = 1, 2; j = 1, 2, . . . , 7. The penalty parameter is chosen as

108.

Applying our method, only one minimizer is found, which is x⋆ = [67.6351, 1.51×10−7 ]⊤, y⋆ =

[1.375, 0.875]⊤ with f(x⋆,y⋆) = 1845.1. From Table 3.1, we see that a substantial improvement
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is achieved when compared with the results obtained in [105] and [125]. In fact, we have obtained

the global minimizer.

Table 3.1: Result for Example 3.1

x⋆ y⋆ f(x⋆,y⋆)
Our result [67.6351, 1.51× 10−7]⊤ [1.375, 0.875]⊤ 1845.1

Result in [125] [58.2902, 43.6972]⊤ [1.125, 0.625]⊤ 7198.0
Result in [105] [48.3515, 111.9893]⊤ [1.125, 0.625]⊤ 7790.6

Example 3.2 (Three-bar truss problem)

min f(x) = 2x1 + x2 +
√
3x3

subject to

g1(x) = −1 +

√
3x2 + 1.932x3

1.5x1x2 +
√
2x2x3 + 1.319x1x3

≤ 0

g2(x) = −1 +
0.634x1 + 2.828x3

1.5x1x2 +
√
2x2x3 + 1.319x1x3

≤ 0

g3(x) = −1 +
0.5x1 − 2x2

1.5x1x2 +
√
2x2x3 + 1.319x1x3

≤ 0

g4(x) = −1− 0.5x1 − 2x2

1.5x1x2 +
√
2x2x3 + 1.319x1x3

≤ 0

xi ∈ {0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2}, i = 1, 2, 3.

As it is pointed out in [125], the global minimizer is x⋆ = [1.2, 0.5, 0.1]⊤ with f(x⋆) = 3.0732.

Using our method with the initial points chosen as:

wi,1 = wi,2 = · · · = wi,7 = 1/7, for i = 1, 2, . . . , 3.

and the penalty parameter chosen as 108, a local minimizer, which is x̂ = [1.2, 0.5, 0.2]⊤ with

f(x̂) = 3.2464, is obtained. This local minimizer obtained by our method is slightly inferior to

the global minimizer obtained in [125].

In the following, three large scale nonlinear integer programming problems with 100 discrete

variables are considered to test the performance of our method. These three problems are

modified from those considered in [81], where the discrete sets for x are integers uniformly

distributed from −5 to 5. In this situation, the discrete variables could be regarded as continuous

ones. Then, the optimal values of the discrete variables are obtained by searching around the

optimal values of the continuous variables. In the modified examples considered in this section,

the discrete variables are chosen from D1×· · ·×D100, where Di = {−4,−1, 0, 1, 4}, i = 1, . . . , 100.

These integer values are not uniformly distributed.

Example 3.3
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min f(x) = (x1 − 1)2 + (x100 − 1)2 + n

100∑

i=1

(100 − i)(x2i − xi+1)
2

subject to

xi ∈ Di = {−4,−1, 0, 1, 4}, i = 1, . . . , 100.

The global minimizer is x⋆ = [1, 1, . . . , 1]⊤ with global minimum f(x⋆) = 0

Example 3.4

min f(x) =

99∑

i=1

[
100(xi+1 − x2i )

2 + (1− xi)
2
]

subject to

xi ∈ Di = {−4,−1, 0, 1, 4}, i = 1, . . . , 100.

The global minimizer is x⋆ = [1, 1, . . . , 1]⊤ with global minimum f(x⋆) = 0

Example 3.5

min f(x) =

100∑

i=1

x4i +

( 100∑

i=1

xi

)2

subject to

xi ∈ Di = {−4,−1, 0, 1, 4}, i = 1, . . . , 100.

The global minimizer is x⋆ = [0, 0, . . . , 0]⊤ with global minimum f(x⋆) = 0.

For Examples 3.3 − 3.5, our method is used with the initial values chosen as:

wi,1 = wi,2 = · · · = wi,5 = 1/5, i = 1, . . . , 100.

and the penalty parameter chosen as 109 for each example. The results obtained for these

examples are shown in Table 3.2. From which, we see that our method finds global minimizers

Table 3.2: Results for Example 3.3, 3.4 and 3.5

Example x⋆ f(x⋆)
3.3 [1, 1, . . . , 1]⊤ 0
3.4 [1, 1, . . . , 1]⊤ 0
3.5 [0, 0, . . . , 0]⊤ 0

for all these three examples. This indicates that the proposed method is an effective approach

for large scale nonlinear integer programming problems.
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3.4 Conclusion

This chapter considered a class of nonlinear mixed discrete programming problems. It is first

transformed into an equivalent constrained optimization problem involving only continuous vari-

ables. However, this transformed problem is difficult to solve by using standard optimization

techniques. A new exact penalty function method is proposed to construct a sequence of un-

constrained optimization problems, each of which can be solved effectively by standard uncon-

strained optimization techniques, such as conjugate gradient or quasi-Newton methods. From

the numerical simulation studies, we see that the proposed method is effective.



CHAPTER 4

Design of allpass variable fractional delay

filter with signed powers-of-two coefficients

4.1 Introduction

Digital filters with tunable fractional phase-delay or fractional group delay, referred to as vari-

able fractional delay (VFD) filters, are useful in various signal processing applications, including

timing offset recovery in digital receivers, comb filter design, sampling rate conversion, speech

coding, time delay estimation, one-dimensional digital signal interpolation and image inter-

polation. For details, see [15, 17], where a range of applications have been considered. For

finite impulse response (FIR) based VFD filters, an appropriate optimization problem can be

formulated. It is relatively easy to solve this approximate problem, meeting the desired char-

acteristics [15,25]. The design of allpass VFD filters is more involved. It has been investigated

in [54, 79]. The key advantage of allpass VFD filters is that they can achieve higher design

accuracy than FIR filters, yielding smaller frequency response errors for applications that re-

quire unity gain. However, since an allpass VFD filter has infinite impulse response, adjusting

its coefficients will cause transients. In general, the transients depend on the magnitude of the

input signals, how often and how large the coefficients are changed and how fast the impulse

responses decay. Efforts to minimize the transient can be found in [98].

In [12], the design of allpass VFD filters with least squares and minimax group delay errors is

investigated. The design of minimax phase error allpass VFD filters is discussed in [108]. In [17]

and [122], the design of an allpass VFD filter with minimum integral squared error is developed.

The obtained filters might have large deviation from the desired response, especially at the

cutoff frequencies. In addition, several restrictions are required for the VFD filter specification.

In [18], the minimax optimization problem is solved by fixing the coefficient of the denominator

and iteratively updating the numerator coefficients. The designed allpass filters might have large

integral squared error. These papers are mainly concentrate on the design of allpass VFD filters

with infinite precision coefficients.

For ease in practical implementation, we investigate, in this chapter, the design of allpass

VFD filters with signed powers-of-two coefficients and the least square criterion. It is based

on [134]. By using the approximation scheme obtained in [17], the objective function is approxi-

57
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mated by a quadratic cost function which has a unique optimal solution. Based on this optimal

solution, a good search region containing the global solution is then developed by using a two-

step scheme. Then, a new exact penalty function method is proposed to solve the quadratic

integer optimization problem with the constraints being the obtained search region. Design ex-

amples demonstrate the effectiveness of the proposed method over the traditional quantization

method.

The outline of this chapter is given as follows. The problem formulation is given in Section

4.2. The proposed solution method is given in Section 4.3. Simulation results are discussed in

Section 4.4 and finally some concluding remarks are made in Section 4.5.

4.2 Problem formulation

Consider the design of an allpass filter with coefficients an(p), 1 ≤ n ≤ N , which depend on a

tuning parameter p. More specifically, each coefficient an(p) is expressed as a polynomial of p

given below:

an(p) =

M∑

m=1

hn,mpm (4.1)

where the parameter p is varied in the range P = [p1, p1 + 1] , and p1 denotes the lower bound.

For ease in practical implementation, the coefficients hn,m are expressed in the form of sum of

signed powers-of-two terms as given below:

hn,m =

b∑

i=1

di,n,m2−i (4.2)

where di,n,m ∈ {−1, 0, 1}, i = 1, . . . , b; b denotes the number of bits of the wordlength; n =

1, . . . , N ; and m = 1, . . . ,M . Let N1 denote the total allowable number of signed-powers-of-two

terms used. Then, we have the constraint

M∑

m=1

N∑

n=1

b∑

i=1

|di,n,m| ≤ N1 (4.3)

The frequency response of the allpass filter is given by

H(ω, p) = aN (p)+···+a1(p)e−j(N−1)ω+e−jNω

1+a1(p)e−jω+···+aN (p)e−jNω

= e−jNω
1+

N∑

n=1
an(p)ejnω

1+
N∑

n=1
an(p)e−jnω

= e−jNω
1+

N∑

n=1

M∑

m=1
hn,mpmejnω

1+
N∑

n=1

M∑

m=1
hn,mpme−jnω

.

(4.4)
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Let

R(ω, p) = 1 +
N∑

n=1

M∑
m=1

hn,mpmejnω

= 1 +
N∑

n=1

M∑
m=1

hn,m cos(nω)pm + j
N∑

n=1

M∑
m=1

hn,m sin(nω)pm

= 1 + c⊤Hp+ js⊤Hp

(4.5)

with

p⊤ = [p p2 · · · pM ]

c⊤ = [cos(ω) cos(2ω) · · · cos(Nω) ]

s⊤ = [sin(ω) sin(2ω) · · · sin(Nω) ]

H =




h11 h12 · · · h1M

h21 h22 · · · h2M
...

...
. . .

...

hN1 hN2 · · · hNM



.

The equation (4.4) can be stated as:

H(ω, p) = e−jNω · R(ω, p)

R∗(ω, p)
(4.6)

where ∗ is the complex conjugate operator.

Let us specify the desired frequency response Hd(ω, p) which is given by

Hd(ω, p) = e−j(N+p)ω (4.7)

for all ω ∈ Ω = [0, απ], where α > 0 is a real number. The design objective is to choose the

coefficients hn,m in the form of (4.2) such that

p1+1∫

p1

απ∫

0

W (ω, p)
(
H(ω, p)−Hd(ω, p)

)2
dωdp (4.8)

is minimized, subject to constraint (4.3), where W (ω, p) is a positive weighting function. It is

assumed that W (ω, p) is separable, i.e.,

W (ω, p) = W1(ω)W2(p)

where W1(ω) and W2(p) are piecewise constant functions. Let this problem be referred to as

Problem P.

Noting that, for each n = 1, . . . , N and m = 1, . . . ,M , hn,m has at most 2b+1 − 1 options.

Thus, Problem P is a constrained nonlinear integer programming problem, which is very difficult

to solve. A natural way to reduce the complexity is to reduce the number of options for each hn,m.

Since the objective function of Problem P is quadratic, the discrete points in the neighborhoods
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of the infinite precision solution of Problem P are good choices for each hm,n. We shall solve

Problem P in three stages:

i. Find the optimal infinite precision solution for Problem P.

ii. Find a reduced search region around the minimizer obtained in stage (i).

iii. Find a point that minimize the objective function (4.8) within the region obtained in stage

(ii).

For stage (i), many existing methods (see, for example [17] and [12]) can be used, producing good

approximations to the infinite precision solution of Problem P. The best approximate solution

obtained is by the noniterative method reported in [17]. The main idea of the noniterative

method is summarized as follows. Using H(ω, p) to approximated Hd(ω, p) can be equivalently

stated as using
R(ω, p)

R∗(ω, p)

to approximate
e−j(ωp/2)

ej(ωp/2)
.

If
R(ω, p)

R∗(ω, p)
≈ e−j(ωp/2)

ej(ωp/2)
,

then,

R(ω, p)ej(ωp/2) ≈ R∗(ω, p)e−j(ωp/2).

Since

R(ω, p)ej(ωp/2) =
[
R∗(ω, p)e−j(ωp/2)

]∗
,

it follows that

I[R∗(ω, p)e−j(ωp/2)] ≈ 0,

where I[R∗(ω, p)e−j(ωp/2)] denotes the imaginary part of R∗(ω, p)e−j(ωp/2).

Thus, the minimization of the expression (4.8) can be achieved approximately through the

minimization of the error given below:

G(H) =

p1+1∫

p1

απ∫

0

W (ω, p)I[R∗(ω, p)e−j(ωp/2)]2dωdp

=

p1+1∫

p1

απ∫

0

W (ω, p)
[
− sin

(ωp
2

)
(1 + c⊤Hp)− cos

(ωp
2

)
s⊤Hp

]2
dωdp.

(4.9)
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Expanding (4.9) gives

G(H) =

p1+1∫

p1

απ∫

0

6∑

i=1

W1(ω)W2(p)gi(ω, p)dωdp (4.10)

where

g1(ω, p) = sin2
(ωp

2

)

g2(ω, p) = 2 sin2
(ωp

2

)
c⊤Hp

g3(ω, p) = sin2
(ωp

2

)
c⊤Hpp⊤H⊤c

g4(ω, p) = cos2
(ωp

2

)
s⊤Hpp⊤H⊤s

g5(ω, p) = sin(ωp)s⊤Hp

g6(ω, p) = sin(ωp)c⊤Hpp⊤H⊤s.

(4.11)

Applying Taylor series expansion to the sine and cosine terms within g2(ω, p) to g6(ω, p) gives

G(H) =

p1+1∫

p1

απ∫

0

W1(ω)W2(p) sin
2
(ωp

2

)
dωdp+

+∞∑

i=1

(
tr[HA1i] + tr[HA2iH

⊤A3i]

+ tr[HA4iH
⊤A5i] + tr[HA6i] + tr[HA7iH

⊤A8i]
)

where tr(·) denotes the trace of a matrix. The definitions of A1i to A9i are given below:

A1i =
(−1)i−1

(2i)!

∫ p1+1

p1

W2(p)p
2ipdp

∫ απ

0
W1(ω)ω

2ic⊤dω

A2i =

∫ p1+1

p1

W2(p)p
2ipp⊤dp

A3i =
(−1)i−1

2(2i)!

∫ απ

0
W1(ω)ω

2icc⊤dω

A4i =





∫ p1+1

p1

W2(p)pp
⊤dp, if i = 1,

A2(i−1), if i = 2, 3, · · · .
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A5i =





∫ απ

0
W1(ω)ss

⊤dω, if i = 1,

(−1)i−1

2(2i − 2)!

∫ απ

0
W1(ω)ω

2(i−1)ss⊤dω, if i = 2, 3, · · · .

A6i =
(−1)i−1

(2i)!

∫ p1+1

p1

W2(p)p
2i−1pdp

∫ απ

0
W1(ω)ω

2i−1s⊤dω

A7i =

∫ p1+1

p1

W2(p)p
2i−1pp⊤dp

A8i =
(−1)i−1

(2i− 1)!

∫ απ

0
W1(ω)ω

2i−1sc⊤dω

A9i =
A⊤

8i +A8i

2

It is reported in [17] that for a moderate large L, for example, L = 9, a sufficiently accurate

approximation of the optimal solution H can be obtained by the following equation

cs(H) =
{ L∑

i=1

[
A2i ⊗A3i +A4i ⊗A5i +A7i ⊗A9i

]}−1
{
− cs

[ L∑

i=1

(A⊤
1i +A⊤

6i

2

)]}
, (4.12)

where ⊗ and cs(H) denotes, respectively, the Kronecker product and the column string of the

matrix H.

We now consider the following problem, which is referred to as Problem P̃.

min G̃(H)

subject to

hn,m =
b∑

i=1

di,n,m2
−i, (4.13)

M∑

m=1

N∑

n=1

b∑

i=1

|di,n,m| ≤ N1 (4.14)

where

G̃(H) =

p1+1∫

p1

απ∫

0

W1(ω)W2(p) sin
2(
ωp

2
)dωdp +

9∑

i=1

(
tr[HA1i] + tr[HA2iH

⊤A3i]

+ tr[HA4iH
⊤A5i] + tr[HA6i] + tr[HA7iH

⊤A8i]
)
,

b denotes the number of bits in the wordlength, N1 is the maximum allowable number of nonzero
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coefficients.

In the next section, we shall introduce a novel computational approach to obtain a reduced

discrete search region which contains the optimal solution of Problem P̃. Then, an exact penalty

function method is developed to search for the optimal solution of Problem P̃ from the obtained

reduced discrete search region.

4.3 Solution method for problem P̃

Since equation (4.12) gives a very good approximation to the solution to the minimization

of (4.8), our method for solving Problem P̃ is now divided into two steps: (i) Searching for

a desirable reduced discrete search region around the solution of (4.12); and (ii) Finding the

optimal solution from the reduced discrete search region.

4.3.1 Construct reduced search region

To construct the reduced discrete search region, it is carried out by two algorithms. They are

based on the fundamental results to be presented in Theorem 4.1 and Theorem 4.2 below. For

the proof of Theorem 4.1, we need the following lemma.

Lemma 4.1. Let i and j be any integers such that i, j > 0. If i < j, then

2−i − 2−j = 2−(i+1) + · · ·+ 2−j . (4.15)

Proof. Since i < j, we have

2−i = 2−(i+1) + 2−(i+1)

= 2−(i+1) + 2−(i+2) + 2−(i+2)

= 2−(i+1) + 2−(i+2) + 2−(i+3) + 2−(i+3)

= 2−(i+1) + 2−(i+2) + 2−(i+3) + · · ·+ 2−j + 2−j

(4.16)

Thus,

2−i − 2−j = 2−(i+1) + · · ·+ 2−j .

To proceed, we need the following definition:

AC =
{
x ∈ R

b
∣∣∣

b∑

i=1

xi2
−i = C, xi ∈ {−1, 0, 1}

}
,

where C ∈ S =
{ b∑

i=1
xi2

−i
∣∣∣ xi ∈ {−1, 0, 1}

}
.
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Theorem 4.1. Let n+ and n− denote, respectively, the numbers of “ 1 ” and “ −1 ” in x.

Then, for any C ∈ S, there exists a unique x⋆ ∈ AC such that n⋆
+n

⋆
− = 0.

Proof. If C = 0, we just let x⋆ = [0, · · · , 0]⊤. Thus,

n⋆
+ = n⋆

− = 0,

and hence the existence is established. For the uniqueness of x⋆, assume that there exists another

x′ = [x′1, · · · , x′b]⊤ 6= x⋆ such that

b∑

i=1

x′i2
−i = 0, x′i ∈ {−1, 0, 1}, i = 1, · · · , b. (4.17)

Clearly, n′
+ > 0 and n′

− > 0. Let r denote the smallest index such that x′r 6= 0. By applying

Lemma 4.1, we can always obtain a vector x̄ = [x̄1, · · · , x̄b]⊤, satisfying

b∑

i=1

x̄i2
−i = 0,

and for each i = 1, · · · , b,



x̄i ∈ {0, 1}, and n̄+ > 0 if x′r = 1,

x̄i ∈ {0,−1}, and n̄− > 0 if x′r = −1.
(4.18)

This is impossible. Thus, there exists no such x̄ and hence x′. This shows the uniqueness for

the case of C = 0.

Now, suppose that

C =
b∑

i=1

xi2
−i > 0, xi ∈ {−1, 0, 1}.

Clearly, n+ > 0. To prove our result, we assume, on the contrary, that n− > 0 for any x ∈ AC .

Let l denote the smallest index such that xl = −1. Note that C > 0, and that

2−l = 2−(l+1) + 2−(l+2) + · · · + 2−(l+n) + · · · . (4.19)

There must exist an index k < l such that

xk = 1, xk+1 = · · · = xl−1 = 0.

From Lemma 4.1, we have

xk2
−k + · · ·+ xl2

−l = 2−k − 2−l = 2−(k+1) + · · ·+ 2−l. (4.20)

It is clear that all the coefficients in the RHS of (4.20) are 1. One can always apply this procedure

until all the resulting coefficients, denoted as x⋆i , i = 1, · · · , b, are greater or equal to zero. This
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is a contradiction to n⋆
− > 0. The existence of x⋆ is proved.

To prove the uniqueness of x⋆, we assume that there exist another x′ ∈ AC such that

b∑

i=1

x⋆i 2
−i =

b∑

i=1

x′i2
−i = C, x⋆i , x

′
i ∈ {0, 1}, i = 1, · · · , b. (4.21)

It follows from (4.21) that
b∑

i=1

(x⋆i − x′i)2
−i = 0.

From previous result, we have x⋆ = x′. The uniqueness of x⋆ is proved.

For the case of C < 0, the proof is similar.

From Theorem 4.1, we see that for any C ∈ S, there exists a unique y such that

b∑

i=1

yi2
−i = C,





yi ≥ 0, if C > 0,

yi = 0, if C = 0,

yi ≤ 0, if C < 0.

(4.22)

It follows from Lemma 4.1 and Theorem 4.1 that for α = {α1, . . . , αb}, and β = {β1, . . . , βb},
any equivalent transform

b∑

i=1

αi2
−i =

b∑

i=1

βi2
−i = C, αi, βi ∈ {−1, 0, 1},

can be achieved by applying equation (4.15) in Lemma 4.1. Furthermore, the non-zero elements

in the LHS of equation (4.15) is less than or equal to that of the RHS of (4.15) when j − i ≥ 2.

Based on this nice property, we shall first devise an algorithm for finding a ȳ such that the

number of non-zero elements is minimized. This least number is denoted as χC , where

χC =

b∑

i=1

|ȳi| = min

b∑

i=1

|xi|,

and

b∑

i=1

ȳi2
−i =

b∑

i=1

xi2
−i = C, xi ∈ {−1, 0, 1}.

Algorithm 4.1

Step 1:

For any C such that C > 0, find the y according to (5.27).

Step 2:
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Find all the terms “0, 1, · · · , 1︸ ︷︷ ︸
m

” in (y1, · · · , yb), where m ≥ 2 . Replace each of them

by “1, 0, · · · , 0,︸ ︷︷ ︸
m−1

−1”. Let the resulting coefficients be denoted as (ỹ1, · · · , ỹb).

Step 3:

Find all the terms “−1, 1” in (ỹ1, · · · , ỹb). Replace each of them by “0, −1”. Let

the resulting coefficients be denoted as (ȳ1, · · · , ȳb).

Stop.

The following theorem shows that the ȳ = [ȳ1, · · · , ȳb]⊤ obtained by Algorithm 4.1 has the

least number of non-zero elements.

Theorem 4.2. For any C > 0, where C ∈ S, let ȳ = [ȳ1, · · · , ȳb]⊤ be the coefficient vector

obtained by Algorithm 4.1 such that

b∑

i=1

ȳi2
−i = C, ȳi ∈ {−1, 0, 1}.

Then, ȳ has the least number of non-zero elements .

Proof. Clearly, after Step 2 of Algorithm 4.1, the replaced coefficients (ỹ1, · · · , ỹb) has following
features:

(a) Suppose that (ỹ1, · · · , ỹb) contains the term “1, 1”. Then, the “1, 1” must be contained

in the structure of “0, 1, 1, 0, · · · , 0,︸ ︷︷ ︸
k

-1”, where k ≥ 1. In this case, there is no need to

replace the term “0, 1, 1” within “0, 1, 1, 0, · · · , 0,︸ ︷︷ ︸
k

-1” by “1, 0, -1”. This is because if we

do so, we get “1, 0, -1, 0, · · · , 0,︸ ︷︷ ︸
k

-1”, which has the same number of non-zero elements.

(b) Suppose that (ỹ1, · · · , ỹb) contains the term “-1, 1”. Then, this term must be contained

in the structure of “0, -1, 1, 0, · · · , 0,︸ ︷︷ ︸
k

-1”, where k ≥ 1.

For (b), we can apply Step 3 to convert the term “0, -1, 1, 0, · · · , 0,︸ ︷︷ ︸
k

-1” into “0, 0, -1, 0, · · · , 0,︸ ︷︷ ︸
k

-1”, where k ≥ 1. Let the resulting coefficients be denoted as (ȳ1, · · · , ȳb).
Now, it is easy to see that Lemma 4.1 cannot be applied to (ȳ1, · · · , ȳb) to reduce the non-

zero elements any further, this means that (ȳ1, · · · , ȳb) has the least non-zero elements such that
b∑

i=1
|ȳi| = C.

Remark 4.1. For the case when E < 0, a procedure similar to that reported in Algorithm 4.1

can be used to obtain a ȳ which contains the least number of non-zero elements. Also note

that, the results presented in Theorem 1 and Theorem 2 are important properties of binary

representations, Algorithm 1 is the Canonical-Signed Digit (CSD) representation.
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Now, we are in the position to present an algorithm to find the desired reduced discrete

search region for Problem P.

Algorithm 4.2:

Step 1:

Find the infinite precision solution H⋆ of Problem P.

Step 2:

For each hn,m, n = 1, · · · , N and m = 1, · · · ,M , consider the following two cases:

I. h⋆n,m ∈ S. Define Mn,m =

{(
h⋆n,m
χh⋆

n,m

)}
where χh⋆

n,m
is obtained from h⋆n,m by

applying Algorithm 4.1.

II. h⋆n,m /∈ S. There are three cases to be considered.

1. There exist two constants Cn,m
1 , Cn,m

2 ∈ S such that h⋆n,m ∈ (Cn,m
1 , Cn,m

2 ).

Let Mn,m =

{(
Cn,m
l

χCn,m
l

)
,

(
Cn,m
u

χCn,m
u

)}
, where Cn,m

l is the largest feasible lower

bound of h⋆n,m in S and Cn,m
u is the least feasible upper bound of h⋆n,m in S.

2. h⋆n,m > max(S). Let Mn,m =

{(
max(S)
χmax(S)

)}
.

3. h⋆n,m < min(S). Let Mn,m =

{(
min(S)
χmin(S)

)}
.

Step 3:

For each n = 1, · · · , N and m = 1, · · · ,M , let M1
n,m be the set that contains the

first element of each of all 2-dimensional vectors in the set Mn,m. Furthermore,

let M2
n,m be the set which contains the second element of each of all 2-dimensional

vectors in the set Mn,m, and let

χM =

N∑

n=1

M∑

m=1

max(M2
n,m).

If χM ≤ N1, then, for each n = 1, · · · , N and m = 1, · · · ,M , hn,m ∈ M1
n,m. Stop. Other-

wise, go to Step 4.

Step 4:

Increase the size of Mn,m as follows. For each n = 1, · · · , N and m = 1, · · · ,M ,

consider the following two cases:
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(I) h⋆n,m ∈ S. If h⋆n,m > 0, define the set

Mn,m =
{(0

0

)
, · · · ,

(
Cn,m
s−1

χCn,m
s−1

)
,

(
Cn,m
s

χCn,m
s

)
,

(
h⋆n,m
χh⋆

n,m

)
,

(
Cn,m
t

χCn,m
t

)
,

(
Cn,m
t+1

χCn,m
t+1

)
, · · ·

}
.

(4.23)

On the other hand, if h⋆n,m < 0, define the set

Mn,m =
{
· · · ,

(
Cn,m
s−1

χCn,m
s−1

)
,

(
Cn,m
s

χCn,m
s

)
,

(
h⋆n,m
χh⋆

n,m

)
,

(
Cn,m
t

χCn,m
t

)
,

(
Cn,m
t+1

χCn,m
t+1

)
, · · · ,

(
0

0

)}
.

(4.24)

Here,

Cn,m
s = max{C ∈ S|C < h⋆n,m, χC < χh⋆

n,m
},

Cn,m
s−1 = max{C ∈ S|C < Cn,m

s , χC < χCn,m
s

},

and

Cn,m
t = min{C ∈ S|C > h⋆n,m, χC < χh⋆

n,m
},

Cn,m
t+1 = min{C ∈ S|C > Cn,m

t , χC < χCn,m
t

}.

(II) h⋆n,m /∈ S. There are three cases to be considered.

1. There exist two constants Cn,m
1 , Cn,m

2 ∈ S such that h⋆n,m ∈ (Cn,m
1 , Cn,m

2 ). If

h⋆n,m > 0, let

Mn,m =
{(0

0

)
, · · · ,

(
Cn,m
s−1

χCn,m
s−1

)
,

(
Cn,m
s

χCn,m
s

)
,

(
Cn,m
l

χCn,m
l

)
,

(
Cn,m
u

χCn,m
u

)
,

(
Cn,m
t

χCn,m
t

)
,

(
Cn,m
t+1

χCn,m
t+1

)
, · · ·

}
.

On the other hand, if h⋆n,m < 0, let

Mn,m =
{
· · · ,

(
Cn,m
s−1

χCn,m
s−1

)
,

(
Cn,m
s

χCn,m
s

)
,

(
Cn,m
l

χCn,m
l

)
,

(
Cn,m
u

χCn,m
u

)
,

(
Cn,m
t

χCn,m
t

)
,

(
Cn,m
t+1

χCn,m
t+1

)
, · · ·

(
0

0

)}
.

Here, Cn,m
l is the largest feasible lower bound of h⋆n,m in S and Cn,m

u is the

least feasible upper bound of h⋆n,m in S, where

Cn,m
s = max{C ∈ S|C < Cn,m

l , χC < χCn,m
l

},
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Cn,m
s−1 = max{C ∈ S|C < Cn,m

s , χC < χCn,m
s

},

and

Cn,m
t = min{C ∈ S|C > Cn,m

u , χC < χCn,m
u

},

Cn,m
t+1 = min{C ∈ S|C > Cn,m

t , χC < χCn,m
t

}.

2. h⋆n,m > max(S). Let

Mn,m =
{(0

0

)
, · · · ,

(
Cn,m
s−1

χCn,m
s−1

)
,

(
Cn,m
s

χCn,m
s

)
,

(
max(S)
χmax(S)

)}
.

3. h⋆n,m < min(S). Let

Mn,m =
{(min(S)

χmin(S)

)
,

(
Cn,m
t

χCn,m
t

)
,

(
Cn,m
t+1

χCn,m
t+1

)
, · · · ,

(
0

0

)}
.

Here,

Cn,m
s = max{C ∈ S|C < max(S), χC < χmax(S)},

Cn,m
s−1 = max{C ∈ S|C < Cn,m

s , χC < χCn,m
s

},

and

Cn,m
t = min{C ∈ S|C > min(S), χC < χmin(S)}

Cn,m
t+1 = min{C ∈ S|C > Cn,m

t , χC < χCn,m
t

}.

Stop.

Remark 4.2. The idea of Algorithm 4.2 is somewhat similar to that of quantization method.

In the traditional quantization method, a discrete feasible solution is directly assigned to the

coefficient cn,m which has the largest absolute value. Instead, our algorithm find a search

region for each of the coefficient, where the search region is obtained by adopting the idea of

quantization—that is to expand the search region of the coefficient which has the least deviation

from its infinite precision solution. Thus, our algorithm produces more options for each of the

coefficients. It is easy to see that the quantization solution is contained in the obtained search

region. After applying Algorithm 4.2, the search region of Problem (P ) is approximated by a

greatly condensed set. However, it is still a difficult integer programming.

In the next subsection, we will introduce a newly developed exact penalty function method

to solve the approximate problem.
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4.3.2 A new exact penalty function method

For each hn,m, where n = 1, · · · , N and m = 1, · · · ,M , let the set M1
n,m be obtained by

Algorithm 4.2. Suppose that

M = {M1
1,1, · · · ,M1

N,M}.

Then, Problem P̃ can be equivalently stated as follows:

min G̃(H) (4.25)

where hn,m ∈ M1
n,m, n = 1, · · · , N and m = 1, · · · ,M . Let this problem be referred to as

Problem Pd.

Clearly, Problem Pd is a standard integer programming problem. We adopt the idea intro-

duced in Chapter 3 to solve this problem.

First, we assume that for each n = 1, · · · , N and m = 1, · · · ,M , M1
n,m has ln,m distinct

elements, i.e.

M1
n,m = {u1n,m, · · · , uln,m

n,m }, n = 1, · · · , N and m = 1, · · · ,M .

Then, we introduce new variables αn,m,j satisfying

ln,m∑

j=1

αn,m,j = 1, n = 1, · · · , N, m = 1, · · · ,M, (4.26)

αn,m,j(1− αn,m,j) ≤ 0, n = 1, · · · , N, m = 1, · · · ,M, j = 1, · · · , ln,m, (4.27)

0 ≤ αn,m,j ≤ 1, n = 1, · · · , N, m = 1, · · · ,M, j = 1, · · · , ln,m. (4.28)

Now, we consider the following problem:

min G̃(H) = Ḡ(α)

where

α = [α1,1,1, · · · , α1,1,l1,1 , · · · · · · , αN,M,1, · · · , αN,M,lN,M
]⊤, (4.29)

hn,m =

ln,m∑

j=1

αn,m,ju
j
n,m, n = 1, · · · , N ; m = 1, · · · ,M . (4.30)

subject to
N∑

n=1

M∑

m=1

ln,m∑

j=1

αn,m,jχuj
n,m

≤ N1 (4.31)

and constraints (4.26), (4.27) and (4.28). Let this problem be referred to as Problem P̄.

Noting that, for each n = 1, · · · , N and m = 1, · · · ,M , the solution of (4.26)-(4.28) is that

there exists only one k ∈ {1, 2, · · · , ln,m} such that αn,m,k = 1, while αn,m,j = 0 for all j 6= k.
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This indicates that for each n = 1, · · · , N and m = 1, · · · ,M , hn,m can only take a discrete

value from the set M1
n,m, implying that Problem Pd is equivalent to Problem P̄.

As it is noted in Chapter 3, the inequality constraints (4.27) are very difficult to be satisfied

by using existing optimization techniques. Thus, as in Chapter 3, we shall introduce a new exact

penalty function given below:

Fκ(α, ǫ) =





Ḡ(α), if ǫ = 0, α is feasible for Problem P̄,

Ḡ(α) + ǫ−η∆(α, ǫ) + κǫβ, if ǫ > 0,

+∞, otherwise,

where ǫ > 0 is a new decision variable, and the constraint violation ∆(α, ǫ) is defined by

∆(α, ǫ) =

N∑

n=1

M∑

m=1

ln,m∑

j=1

max
{
0, αn,m,j(1− αn,m,j)− ǫγ

}2

+

N∑

n=1

M∑

m=1

( ln,m∑

j=1

αn,m,j − 1− ǫγ
)2

+

N∑

n=1

M∑

m=1

ln,m∑

j=1

max
{
0, αn,m,j − 1− ǫγ

}2

+

N∑

n=1

M∑

m=1

ln,m∑

j=1

max
{
0, −αn,m,j − ǫγ

}2

+max
{
0,

N∑

n=1

M∑

m=1

ln,m∑

j=1

αn,m,jχu1
n,m

−N1 − ǫγ
}2

.

Here, β, γ and η are positive real numbers, and κ is a penalty parameter.

Now, consider the following problem:

min Fκ(α, ǫ)

subject to ǫ > 0
(4.32)

Let this problem be called Problem Pκ.

In what follows, we shall give a brief introduction on the convergence result of the proposed

method.

A Convergence Analysis

Let {κk}∞k=1 be an increasing sequence of penalty parameters such that κk → ∞. Furthermore,

let (α(k),⋆, ǫ(k),⋆) denote the solution of Problem Pκk
corresponding to κk. We assume that the

following hypotheses are satisfied:

(H1) The objective function as well as all constraint functions are continuously differentiable

with respect to their respective augments.

(H2) The linearly independent constraint qualification (LICQ) given in Definition 3.1 is satisfied
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at α = α⋆, where α⋆ is a local minimizer of Problem P̄.

(H3) Let Gi, i = 1, · · · , 3
N∑

n=1

M∑
m=1

ln,m and Hi, i = 1, · · · , N × M , denote, respectively, the

inequality and equality constraints in Problem P̄. Then, it holds that

max{0, Gi(α
(k),⋆)} = o

(
(ǫ(k),⋆)δ1

)
, i = 1, · · · , 3

N∑

n=1

M∑

m=1

ln,m;

and

Hi(α
(k),⋆) = o

(
(ǫ(k),⋆)δ2

)
, i = 1, · · · , N ×M,

where δ1 and δ2 are positive constants, and

lim
ς→0

o(ςι)

ςι
= 0,

with ι being δ1 or δ2.

The main convergence results are presented in the following three Theorems. Their proofs

are similar to those given for relevent theorems in Chapter 3, and hence are omitted.

Theorem 4.3. Suppose that the hypotheses (H1)-(H3) are satisfied, and that γ > η, δ =

min(δ1, δ2) > η, −η − 1 + 2δ > 0, and 2γ − η − 1 > 0. Then, as α(k),⋆ → α⋆ ∈ S0 and

ǫ(k),⋆ → ǫ⋆ = 0, it holds that

Fκk
(α(k),⋆, ǫ(k),⋆) −→ Fκk

(α⋆, 0) = F (α⋆),

∇(α,ǫ)Fκk
(α(k),⋆, ǫ(k),⋆) −→ ∇(α,ǫ)Fκk

(α⋆, 0) = (∇F (α⋆), 0).

Proof. The proof is similar to that given for Theorem 3.1 and hence is omitted.

The above results indicate that the constructed exact penalty function is continuously dif-

ferentiable with its gradients having finite limits.

In the next theorem, it is shown that the sequence (α(k),⋆, ǫ(k),⋆) of the local minimizers

will converge to a feasible point of the original problem P̄ with finite objective function value.

Furthermore, this feasible point is a local minimizer of Problem P̄.

Theorem 4.4. Let ǫ(k),⋆ → ǫ⋆ = 0, α(k),⋆ → α⋆ ∈ S0 be such that Fκk
(α⋆, ǫ⋆) is finite. Then,

α⋆ is a local minimizer of the original Problem P̄.

Proof. The proof is similar to that given for Lemma 3.2 and hence is omitted.

The exactness of the proposed penalty function is given in the following theorem.

Theorem 4.5. Let (α(k),⋆, ǫ(k),⋆) be a local minimizer of Problem Pκk
. Suppose that (α(k),⋆, ǫ(k),⋆)

→ (α⋆, ǫ⋆) as k → +∞, and that the parameters η, γ and δ satisfy the same conditions as stated

in Theorem 4.3. Then, there exists a k0 > 0, such that for k ≥ k0, ǫ
(k),⋆ = 0, and α(k),⋆ is a

local minimizer of Problem P̄.
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Figure 4.1: Absolute error of variable frequency response (Infinite precision solution)
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Proof. The proof is similar to that given for Theorem 3.2 and hence is omitted.

Theorem 4.5 indicates that, under some mild assumptions, a local minimizer of the penalty

Problem (Pκ) is a local minimizer of Problem P̄, when the penalty parameter κ is sufficiently

large.

4.4 Simulation result

Consider the design of an allpass variable fractional delay filter, where the bandwidth under

consideration for the filter is from 0 to 0.6π. The length of each FIR filters used in the Farrow

structure is L = 4 with N = 8. The number of bits is b = 10 and the range for p is chosen

as ∆ = [−0.5, 0.5]. The maximum allowable number of nonzero SPT term is N1 = 67. The

weighting functions are set as:

W1(ω) = 1, forω ∈ [0, 0.6π],

W2(p) = 1, for p ∈ [−0.5, 0.5].

From (4.12), it follows that the infinite precision solution of (4.25) is −223.2442 dB. Figure

4.1 shows the corresponding absolute error of the variable frequency response.

For comparison, we apply our method and quantization method to Problem P̃. The basic

idea of the quantization procedure (see [67]) is briefly stated below. First, obtain the infinite-

precision solution of Problem P̃. Then, the algorithm assigns one SPT term at a time to the

coefficient which has the largest absolute value of the solution, such that the difference between

the SPT term and the coefficient is minimized. After a coefficient has received a SPT term, the

corresponding value of the coefficient is decreased by the allocated SPT term. The process is
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Figure 4.2: Absolute error of variable frequency response (Proposed method)
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repeated until the maximum allowable number of the SPT term is reached.

The results obtained by proposed method and the quantization procedure are given in Table

4.1. Figure 4.2 shows the absolute error of variable frequency response obtained by our method.

Table 4.1: Objective function value [dB]

Proposed Method Quantization
-134.9939 -114.0715

Figure 4.3 shows the absolute error of variable frequency response obtained by quantization

method. Figure 4.4 shows the maximum radius of the poles of the filter obtained by our

method as the value of the fractional-delay varies. Obviously, all the poles are inside the unit

circle, meaning that the filter obtained is stable.

It is clearly seen from Figure 4.2 and Figure 4.3 that our method can achieve a much higher

accuracy when compared with that obtained by the quantization method. To make a more

comprehensive comparison between the quantization method and the proposed method, a range

of values of N1 is chosen. The result is shown in Table 4.2 and Figure 4.5

It is clear from Table 4.2 that the curve generated by the proposed method is monotonically

decreasing. Except the case of having the same objective function value for both methods when

the maximum allowable number of nonzero SPT terms is N1 = 1, the proposed method can

always achieve a much better objective function value when compared with those obtained by

the traditional quantization method.
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Figure 4.3: Absolute error of variable frequency response (Quantization method)
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Figure 4.4: Maximum pole radius (Proposed method)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fractional−Delay (p)

M
ax

im
um

 P
ol

e 
R

ad
iu

s



4.5 Conclusion 76

Table 4.2: Objective function value [dB]

N1 Proposed Method Quantization Stability
1 -44.57932465 -44.57932465 stable
2 -52.78539948 -31.78914912 stable
3 -54.39156437 -32.19192863 stable
4 -58.33215624 -32.23734926 stable
5 -59.57329168 -32.51561199 stable
6 -65.58700394 -42.52760972 stable
7 -68.02584876 -42.55855436 stable
8 -68.9149 -42.99028226 stable
9 -70.0226 -42.98284857 stable
10 -70.94982679 -43.09320262 stable
11 -71.27931426 -49.93136406 stable
12 -73.53893253 -49.88524948 stable
13 -74.8817593 -50.29020691 stable
14 -74.88505584 -50.29843054 stable
15 -74.99477304 -50.57351345 stable

4.5 Conclusion

In this chapter, the design of allpass variable fractional delay filter with signed powers-of-two

coefficients is approximated by a quadratic integer programming problem. We developed a

two-step scheme for constructing a desired reduced discrete search region containing the global

minimizer of the problem. Then, an exact penalty function method is introduced to solve the

quadratic integer programming problem from within the obtained reduced discrete search region.

Simulation result shows that the proposed method is effective.
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Figure 4.5: Comparison of Objective function value
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CHAPTER 5

Optimal discrete-valued control computation

5.1 Introduction

In many practical optimal control problems, the control is only allowed to assume values from

a finite number of values. Such problems are called optimal discrete-valued control problems.

Optimal discrete-valued control problems arise in many applications, including train control [46],

switched amplifier design [110], submarine operation [99], sensor scheduling [126] and hybrid

power system design [118, 127]. To solve an optimal discrete-valued control problem, we need

to determine the order in which the different control values are operated, as well as the times

at which the control switches from one value to another. Since the ordering of control values is

discrete in nature, classical optimal control methods are not applicable to this type of problem.

In [46], the driving strategy for a diesel train traveling on a level track is considered. The

train only has three modes of operation— accelerate, coast and brake — and thus the problem

of controlling the train so that fuel consumption is minimized is an optimal discrete-valued

control problem. An optimality condition is derived in [46] for solving this problem. However,

this condition is only applicable to the train problem, and is not applicable to general optimal

discrete-valued control problems.

In [62], a time-scaling transformation technique is developed for solving optimal discrete-

valued control problems. Under this transformation, the original problem with variable control

switching points is transformed into an ordinary optimal control problem with known and fixed

switching points. Thus, the transformed problem can be solved by many existing optimal control

methods. However, the time-scaling transformation introduces many additional switches, and

therefore the transformed problem is not equivalent to the original problem.

In [125], a new approach is proposed for solving nonlinear mixed discrete programming

problems. The idea is to introduce a set of new continuous variables and transform the mixed

discrete programming problem into a conventional optimization problem involving only con-

tinuous variables. In principle, this new problem can be solved by using existing nonlinear

programming techniques. However, the transformation introduces additional equality and in-

equality constraints, for which the quadratic inequality constraints are extremely difficult to

satisfy in practice.

In Chapter 2, an exact penalty method is proposed for solving semi-infinite programming

78
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problems. This method is adapted in [63] to develop an effective algorithm for solving optimal

control problems with continuous inequality constraints via solving a sequence of penalized opti-

mal control problems. It is shown that, under some mild assumptions, if the penalty parameter

is sufficiently large, the solution obtained for the corresponding penalized optimal control prob-

lem will satisfy the continuous inequality constraints of the original optimal control problem.

Furthermore, a local optimal solution of the penalized optimal control problem is also a local

optimal solution of the original optimal control problem.

This chapter is based on [63, 133, 135, 136]. We consider a class of optimal discrete-valued

control problems, where there is an upper bound on the maximum number of control switches.

We first apply the transformation reported in [125], under which the discrete-valued control

is expressed as a linear combination of piecewise constant controls subject to a linear equality

constraint and a set of quadratic inequality constraints. The original problem can then be written

equivalently as an optimal control problem with piecewise constant controls subject to the

original inequality constraints and the new constraints. Then, the time-scaling transformation

[62] is applied to the transformed problem, yielding an optimal control problem with piecewise

constant controls and fixed switching times. To solve this new problem, we introduce an exact

penalty function to construct a sequence of penalized optimal control problem. Convergence

results show that when the penalty parameter is sufficiently large, the penalized optimal control

problem is equivalent to the original problem. This penalized optimal control problem can be

solved by existing optimal control software packages. Numerical results obtained from solving

two train control problems show that the approach proposed is effective.

5.2 Problem formulation

5.2.1 A discrete-valued control problem

Consider the following dynamic system on the time horizon [0, T ]:

ẋ(t) = f(x(t),u(t)) (5.1)

with the initial and terminal conditions

x(0) = x0, x(T ) = xf , (5.2)

where x ∈ R
n is the state vector, T is a given terminal time, and x0 and xf are given vectors.

We assume that the function f : Rn ×R
r → R

n is continuously differentiable with respect to its

arguments.

Let

U = {u1,u2, · · · ,um},

where each uj ∈ R
r is a given vector. We assume that the control u is a discrete-valued control

taking values in U. Thus, u is completely determined by specifying:
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• The order in which it assumes the different values in U (the so-called switching sequence);

and

• The times at which it switches from one value in U to another (the so-called switching

times).

In this chapter, we assume that there is an upper bound N on the maximum number of control

switches. A function u : [0, T ] → U with at most N switches/discontinuities is called an

admissible control. Let U denote the class of all such admissible controls.

Our optimal discrete-valued control problem is stated as follows: Given the dynamic system

(5.1)-(5.2), find an admissible control u ∈ U such that the cost function

J(u) =

∫ T

0
L0(x(t),u(t))dt (5.3)

is minimized subject to the constraints

gi(x(t),u(t)) ≤ 0, t ∈ [0, T ], i = 1, 2, · · · , p. (5.4)

Let this problem be referred to as Problem P. Here, we assume that the functions L0 and

gi, i = 1, · · · , p, are continuously differentiable with respect to each of their arguments.

Most numerical techniques for solving nonlinear optimal control problems— for example, the

control parametrization (see [114]) and the state discretization (see [40, 56]) — are applicable

only when the control range is a continuous set. Thus, such methods are not applicable to

Problem P, in which the control range consists of a finite number of discrete points.

The time-scaling transform introduced in [62], which is also called the control parametriza-

tion enhancing technique (CPET), is an effective method for solving optimal discrete-valued

control problems. This transformation involves expanding the number of control switches to

allow for every possible switching sequence, and then mapping the switching times to fixed

points in a new time horizon. This yields a new optimal control problem that can be solved

using standard optimal control techniques, see, for example, [114]. However, this transformation

introduces many “artificial” switches, and thus the optimal control obtained is always having

many more switches than the maximum allowable number of switches. Consequently, the trans-

formed optimal control problem obtained by using the time-scaling transformation introduced

in [62] is not equivalent to the original problem. We will introduce an equivalent transformation

in the next section.

5.2.2 Problem transformation

Let V denote the class of all piecewise constant functions mapping [0, T ] into R
m with no more

than N switches/discontinuities. Let v ∈ V , where v(t) =
[
v1(t), v2(t), · · · , vm(t)

]⊤
, be an

auxiliary control function.
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We impose the following constraints:

m∑

j=1

vj(t) = 1, t ∈ [0, T ], (5.5a)

vj(t)(1− vj(t)) ≤ 0, t ∈ [0, T ], j = 1, 2, · · · ,m, (5.5b)

0 ≤ vj(t) ≤ 1, t ∈ [0, T ], j = 1, 2, · · · ,m. (5.5c)

The constraints (5.5) ensure that at each time t ∈ [0, T ], there exists exactly one j ∈ {1, · · · ,m}
such that vj(t) = 1 and vk(t) = 0 for all k 6= j.

To continue, we let

ū(t) =

m∑

j=1

vj(t)uj . (5.6)

Since v ∈ V and constraints (5.5) hold, ū(t) ∈ U for all t ∈ [0, T ]. Moreover, since v contains

at most N switches, so does ū. It follows that ū is an admissible control for Problem P. In fact,

it is easy to see that any admissible control for Problem P can be written in the form of (5.6).

Thus, by substituting u(t) = ū(t) into the dynamical system (5.1), we obtain

ẋ(t) =

m∑

j=1

vj(t)f(x(t),uj). (5.7)

Similarly, the constraints (5.4) become

m∑

j=1

vj(t)gi(x(t),uj) ≤ 0, t ∈ [0, T ], i = 1, 2, · · · , p. (5.8)

Our new optimal control problem is stated as follows: Given the dynamic system (5.7) with the

initial and terminal conditions (5.2), find a control v ∈ V such that the cost function

J̄(v) = J(ū) =

m∑

j=1

∫ T

0
vj(t)L0(x(t),uj)dt

is minimized subject to constraints (5.5) and (5.8). Let this problem be referred to as Problem

P̄.

It is clear that Problems P̄ and P are equivalent. Thus, we have the following result.

Theorem 5.1. Let v⋆ =
[
v⋆1 , v

⋆
2 , · · · , v⋆m

]⊤ ∈ V and

ū⋆(t) =
m∑

j=1

v⋆j (t)uj .

Then v⋆ is an optimal control for Problem P̄ if and only if ū⋆ is an optimal control for Problem

P.

Problem P̄ is a standard optimal control problem subject to the continuous inequality con-
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straints (5.8) and the newly introduced constraints (5.5). In principle, many optimal control

software packages — for example, MISER [49]— can be used to solve this problem. However,

in reality, there are three major difficulties that prevent us from solving Problem P̄ directly:

• The switching times for the new controls vj are decision variables.

• The feasible region defined by the constraints (5.5) is a disconnected set.

• The newly introduced quadratic constraints (5.5b) are very difficult to deal with by stan-

dard gradient-based optimization techniques.

We can overcome the first difficulty by applying the time-scaling transformation (see [62]), in

which the variable switching times are mapped into fixed switching times. For the second and

third difficulties, we will introduce an exact penalty function method as in [63] and Chapter 2-4.

The details are given in the next section.

5.3 Solution procedure

5.3.1 Time-scaling transformation

Recall that the control v ∈ V in Problem P̄ has at most N switches. Let τk denote the kth

switching time. Then

0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τN+1 = T.

We map these switching times to fixed time points as follows. Let s ∈ [0, N + 1] be a new time

variable, and let t be related to s through the following differential equation:

ṫ(s) = µ(s),

t(0) = 0,
(5.9)

where µ(s) = θk = τk − τk−1 for s ∈ [k − 1, k), k = 1, · · · , N + 1. We can express the piecewise

constant function µ as follows:

µ(s) =

N+1∑

k=1

θkχ[k−1,k)(s),

where χI is the indicator function of I defined by

χI(s) =




1, if s ∈ I,

0, otherwise.
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Let θ = [θ1, · · · , θN+1]
⊤ ∈ R

N+1, and note that θk = τk− τk−1 is the duration of the kth control

value. For each k = 1, · · · , N + 1, we have

t(k) =

∫ k

0
µ(s)ds

=

∫ k

0

[
θ1χ[0,1)(s) + · · ·+ θN+1χ[N,N+1](s)

]
ds

= θ1 + · · ·+ θk = τk.

This shows that the transformation (5.9) maps each integer k to the kth switching time. Fur-

thermore,

t(N + 1) =

∫ N+1

0
µ(s)ds =

N+1∑

l=1

θl = T. (5.10)

Clearly,

0 ≤ θk = τk − τk−1 ≤ T, k = 1, · · · , N + 1. (5.11)

Thus,

0 ≤ µ(s) ≤ T, s ∈ [0, N + 1].

Under the time-scaling transform, the control vj in Problem P̄ becomes

ṽj(s) = vj(t(s)) =
N+1∑

k=1

ξjkχ[k−1,k)(s),

where ξjk is the value of vj on [τk−1, τk). Constraints (5.5) become:

m∑

j=1

ξjk = 1, k = 1, · · · , N + 1, (5.12a)

ξjk(1− ξjk) ≤ 0, j = 1, · · · ,m, k = 1, · · · , N + 1, (5.12b)

0 ≤ ξjk ≤ 1, j = 1, · · · ,m, k = 1, · · · , N + 1. (5.12c)

Define

ξj = [ξj1, · · · , ξj(N+1)]
⊤ ∈ R

N+1

and

ξ = [ξ⊤1 , · · · , ξ⊤m]⊤ ∈ R
m×(N+1).

Now, by applying the time-scaling transform to Problem P̄, the dynamical system (5.7) becomes

dx̃(s)

ds
= µ(s)

m∑

j=1

ṽj(s)f(x̃(s),uj) =
N+1∑

k=1

m∑

j=1

θkξjkf(x̃(s),uj)χ[k−1,k)(s), (5.13)

where

x̃(s) = x(t(s)).
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The initial and terminal conditions (5.2) become

x̃(0) = x0, x̃(N + 1) = xf . (5.14)

Problem P̄ may now be written equivalently as the following problem, which we call Problem

P̃: Given the dynamic system (5.13)-(5.14), find θ ∈ R
N+1 and ξ ∈ R

m×(N+1) such that the

cost function

J̃(θ, ξ) =

∫ N+1

0
L̃0(s, x̃(s),θ, ξ)ds, (5.15)

where

L̃0(s, x̃(s),θ, ξ) =
N+1∑

k=1

m∑

j=1

θkξjkL0(x̃(s),uj)χ[k−1,k)(s),

is minimized subject to the constraints

g̃i(s, x̃(s), ξ) =
N+1∑

k=1

m∑

j=1

ξjkgi(x̃(s),uj)χ[k−1,k)(s) ≤ 0,

s ∈ [0, N + 1], i = 1, · · · , p,
(5.16)

and constraints (5.10), (5.11) as well as (5.12).

In the next section, we will introduce an exact penalty function for Problem P̃.

5.3.2 An exact penalty function

Problem P̃ is an optimal control problem subject to the linear constraints (5.10), (5.12a) and

(5.12c), the quadratic constraints (5.12b), and the nonlinear continuous inequality constraints

(5.16). The continuous inequality constraints (5.16) are continuously differentiable with respect

to each of their arguments. By adopting the idea introduced in Chapter 2 and [63], we construct

the following exact penalty function:

Fκ(θ, ξ, ǫ) =





J̃(θ, ξ), if ǫ = 0, and (θ, ξ) is feasible

for Problem P̃,

J̃(θ, ξ) + ǫ−α∆(θ, ξ, ǫ) + κǫβ, if ǫ > 0,

+∞, otherwise,
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where ǫ > 0 is a new decision variable, and the constraint violation ∆(θ, ξ, ǫ) is defined by

∆(θ, ξ, ǫ) =
N+1∑

k=1

m∑

j=1

max
{
0, ξjk(1− ξjk)− ǫγ

}2
+

N+1∑

k=1

m∑

j=1

max
{
0, ξjk − 1− ǫγ

}2

+

N+1∑

k=1

m∑

j=1

max
{
0,−ξjk − ǫγ

}2
+

N+1∑

k=1

{ m∑

j=1

ξjk − 1− ǫγ
}2

+

p∑

i=1

∫ N+1

0
max

{
0, g̃i(s, x̃(s), ξ)− ǫγ

}2
ds+

(
t(N + 1)− T − ǫγ

)2

+

N+1∑

k=1

max{0,−θk − ǫγ}2 + (x̃(N + 1)− xf − ǫγ)2.

Here, α, β and γ are positive real numbers, and κ is a penalty parameter. Next, we define

Sǫ =
{
(θ, ξ,ǫ) ∈ R

N+1 × R
m×(N+1) × [0,∞) :

t(N + 1)− T = ǫγ

x̃(N + 1)− xf = ǫγ

− θk ≤ ǫγ , k = 1, · · · , N + 1,
m∑

j=1

ξjk − 1 = ǫγ , k = 1, · · · , N + 1,

ξjk(1− ξjk) ≤ ǫγ , j = 1, · · · ,m, k = 1, · · · , N + 1,

ξjk − 1 ≤ ǫγ , j = 1, · · · ,m, k = 1, · · · , N + 1,

− ξjk ≤ ǫγ , j = 1, · · · ,m, k = 1, · · · , N + 1,

N+1∑

k=1

m∑

j=1

ξjkgi(x̃(s),uj)χ[k−1,k)(s) ≤ ǫγ , i = 1, 2, · · · , p, s ∈ [0, N + 1].
}
.

(5.17)

Now, consider the following problem: Given the dynamical system (5.13)-(5.14), find a triple

(θ, ξ, ǫ) ∈ R
N+1 × R

m×(N+1) × [0,∞) such that the penalty function Fκ(θ, ξ, ǫ) is minimized.

This problem is referred to as Problem P̃κ.

In the next section, we will see that, under some mild assumptions, when the penalty parameter

κ is sufficiently large, the satisfaction of the constraints (5.10), (5.11), (5.12) and (5.16) will be

achieved, i.e. ∆(θ, ξ, ǫ) = 0 for ǫ = 0. Furthermore, an optimal solution of Problem P̃κ is an

optimal solution of Problem P̃.

5.3.3 Convergence results

To obtain our main result, we need the following definition.
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Definition 5.1. Suppose that the following implication holds:

M∑

ι=1

∫ N+1

0
ϕι(s)

∂Gι(s, x̃(s),θ
⋆, ξ⋆)

∂ξ
ds+

N∑

η=1

∫ N+1

0
ϕη(s)

∂Hη(s, x̃(s),θ
⋆, ξ⋆)

∂ξ
ds = 0

=⇒ ϕι(s) = 0 and ϕη(s) = 0

for all s ∈ [0, N+1]. Then, we say that the constraint qualification is satisfied for the constraints

Gι and Hη at (θ, ξ) = (θ⋆, ξ⋆), where Gι, ι = 1, · · · ,M = p + (3m + 1)(N + 1), and Hη,

η = 1, · · · , N = N + 3, are, respectively, the inequality constraints and the equality constraints

of Problem P̃.

Let {κl}∞l=1 be an increasing sequence of penalty parameters such that κl → ∞. Further-

more, let (θ(l),⋆, ξ(l),⋆, ǫ(l),⋆) denote a local optimal solution of Problem P̃κl
. We assume that

the following hypotheses are satisfied.

(H1) The constraint qualification defined in Definition 5.1 is satisfied at (θ, ξ) = (θ⋆, ξ⋆), where

(θ⋆, ξ⋆) is a local optimal solution of Problem P̃.

(H2) There exists real numbers δ1 > 0 and δ2 > 0 such that

lim
l→∞

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)}

(ǫ(l),⋆)δ1
= 0, ι = 1, . . . ,M,

and

lim
l→∞

Hη(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

(ǫ(l),⋆)δ2
= 0, η = 1, . . . , N.

Theorem 5.2. Suppose that (θ(l),⋆, ξ(l),⋆, ǫ(l),⋆) → (θ⋆, ξ⋆, ǫ⋆) as l → +∞, and that the hypothe-

ses (H1)-(H2) are satisfied. Then, ǫ⋆ = 0 and (θ⋆, ξ⋆) ∈ S0, where S0 is defined by (5.17) with

ǫ = 0.

Proof. From Lemma 2.1 and Theorem 2.1, we can follow similar arguments to show that

(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆) /∈ Sǫ(l),⋆ . Thus, we have

∂Fκ(θ
(l),⋆, ξ(l),⋆, ǫ(l),⋆)

∂ξ

=

∫ N+1

0

∂H̃
(
s, x̃(s),θ(l),⋆, ξ(l),⋆, λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)

∂ξ
ds

=

∫ N+1

0

∂L̃0(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
ds

+ 2(ǫ(l),⋆)−α

∫ N+1

0

M∑

ι=1

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆) (5.18)

− (ǫ(l),⋆)γ}∂Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
+

N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)
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− (ǫ(l),⋆)γ
)∂Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

∂ξ
ds

+

∫ N+1

0

(
λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)⊤∂ f̃(s, x̃(s),θ(l),⋆, ξ(l),⋆)

∂ξ
ds

=0,

where H̃
(
s, x̃(s),θ(l),⋆, ξ(l),⋆, λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)
is the Hamiltonian function for the exact

penalty function (ǫ > 0) given by

H̃
(
s, x̃(s),θ(l),⋆, ξ(l),⋆, λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)

= L̃0(s, x̃(s),θ, ξ) + (ǫ(l),⋆)−α∆(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

+
(
λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)⊤
f̃(s, x̃(s),θ(l),⋆, ξ(l),⋆),

(5.19)

λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆) is the costate vector determined by the following system of co-state

differential equations:
(dλ̃(s)

ds

)⊤
= −∂H̃

∂x̃
,

with the boundary condition (
λ̃(N + 1)

)⊤
= 0,

where dx̃(s)/ds=f̃(s, x̃(s),θ(l),⋆, ξ(l),⋆), and

∂Fκ(θ
(l),⋆, ξ(l),⋆, ǫ(l),⋆)

∂ǫ
= (ǫ(l),⋆)−α−1

(
− α

∫ N+1

0

M∑

ι=1

[max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ}]2

+
N∑

η=1

[Hη(s, x̃(s),θ
(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ ]2ds

+2γ

∫ N+1

0

M∑

ι=1

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ}(−(ǫ(l),⋆)γ)

+

N∑

η=1

(Hη(s, x̃(s),θ
(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ)(−(ǫ(l),⋆)γ)ds

)
+ κlβ(ǫ

(l),⋆)β−1

= 0,

(5.20)

Suppose that ǫ(k),⋆ → ǫ⋆ 6= 0. Then, by (5.20), it can be shown by invoking hypotheses (H2)

and Lebesgue dominated convergence theorem [103] that its first term tends to a finite value,

while the last term tends to infinity as κl → +∞, when l → +∞. This is impossible for the

validity of (5.20). Thus, ǫ⋆ = 0.
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From (5.18), we have

∫ N+1

0

∂L̃0(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
ds

+2(ǫ(l),⋆)−α

∫ N+1

0

M∑

ι=1

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

−(ǫ(l),⋆)γ}∂Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
+

N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

−(ǫ(l),⋆)γ
)∂Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

∂ξ
ds

+

∫ N+1

0

(
λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)⊤∂ f̃(s, x̃(s),θ(l),⋆, ξ(l),⋆)

∂ξ
ds

= 0.

Thus,

lim
l→∞

{∫ N+1

0

∂L̃0(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
ds

+ 2(ǫ(l),⋆)−α

∫ N+1

0

M∑

ι=1

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

− (ǫ(l),⋆)γ}∂Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
+

N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

− (ǫ(l),⋆)γ
)∂Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

∂ξ
ds

+

∫ N+1

0

(
λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)⊤∂ f̃(s, x̃(s),θ(l),⋆, ξ(l),⋆)

∂ξ
ds

}

= 0.

Again, by invoking Lebesgue dominated convergence theorem, it follows that the first and third

terms converge to some finite values. On the other hand, the second term tends to infinite,

which is impossible, and hence

∫ N+1

0
lim
l→∞

{ M∑

ι=1

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

− (ǫ(l),⋆)γ}∂Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
+

N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

− (ǫ(l),⋆)γ
)∂Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

∂ξ
ds
}

=

M∑

ι=1

∫ N+1

0
max{0, Gι(s, x̃(s),θ

⋆, ξ⋆)



5.3 Solution procedure 89

}∂Gι(s, x̃(s),θ
⋆, ξ⋆)

∂ξ
ds+

N∑

η=1

∫ N+1

0
Hη(s, x̃(s),θ

⋆, ξ⋆)

∂Hη(s, x̃(s),θ
⋆, ξ⋆)

∂ξ
ds

= 0.

Since the constraint qualification is satisfied for the constraints Gι and Hη at (θ, ξ) = (θ⋆, ξ⋆),

it follows that, for each ι = 1, · · · , p+ (3m+ 1)(N + 1) and η = 1, · · · , N + 3,

max{0, Gι(s, x̃(s),θ
⋆, ξ⋆)} = 0, Hη(s, x̃(s),θ

⋆, ξ⋆) = 0,

for each s ∈ [0, N + 1]. This, in turn, implies that, for each ι = 1, · · · , p+ (3m+ 1)(N + 1) and

η = 1, · · · , N + 3,

Gι(s, x̃(s),θ
⋆, ξ⋆) ≤ 0, Hη(s, x̃(s),θ

⋆, ξ⋆) = 0,

for each s ∈ [0, N + 1]. The proof is completed.

Theorem 5.3. Suppose that γ > α, δ = min(δ1, δ2) > α, 2δ > α+ 1, 2γ > α+ 1. Then

Fκl
(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

ǫ(l),⋆→ǫ⋆=0−−−−−−−−−−−−−−−−→
(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

Fκl
(θ⋆, ξ⋆, 0) = J̃(θ⋆, ξ⋆),

∇Fκl
(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

ǫ(l),⋆→ǫ⋆=0−−−−−−−−−−−−−−−−→
(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

∇Fκl
(θ⋆, ξ⋆, 0) = (∇J̃(θ⋆, ξ⋆), 0).

Proof. From the conditions of the theorem and the definition of Fκl
(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆), it follows

that, for ǫ(l),⋆ 6= 0,

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

Fσk
(z(k),⋆, ǫ(k),⋆)

= lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{
J̃(θ(l),⋆, ξ(l),⋆) + (ǫ(l),⋆)−α∆(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆) + κ(ǫ(l),⋆)β

}

= lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{
J̃(θ(l),⋆, ξ(l),⋆) + (ǫ(l),⋆)−α

[ M∑

ι=1

∫ N+1

0

(
max{0, Gι(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

−(ǫ(l),⋆)γ}
)2
ds+

N∑

η=1

∫ N+1

0

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ
)2
ds
]
+ κ(ǫ(l),⋆)β

}
.

(5.21)

By arguments similar to those given for the proofs of Lemma 6.4.3 and Lemma 6.4.4 in [114],

we can show that

lim
(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

J̃(θ(l),⋆, ξ(l),⋆) = J̃(θ⋆, ξ⋆). (5.22)
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Substituting (5.22) into (5.21) gives

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

Fσk
(z(k),⋆, ǫ(k),⋆)

= J̃(θ⋆, ξ⋆) + lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{
(ǫ(l),⋆)−α

[ M∑

ι=1

∫ N+1

0

(
max{0, Gι(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

−(ǫ(l),⋆)γ}
)2
ds+

N∑

η=1

∫ N+1

0

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ
)2
ds
]}

= J̃(θ⋆, ξ⋆) + lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{ M∑

ι=1

∫ N+1

0

(
max{0, (ǫ(l),⋆)−α

2 Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

−(ǫ(l),⋆)γ−
α
2 }

)2
ds+

N∑

η=1

∫ N+1

0

(
(ǫ(l),⋆)−

α
2 Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ−
α
2

)2
ds
}
.

(5.23)

Since γ > α, δ > α, applying Lebesgue dominated convergence theorem to (5.23) gives

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{ M∑

ι=1

∫ N+1

0

(
max{0, (ǫ(l),⋆)−α

2 Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

−(ǫ(l),⋆)γ−
α
2 }

)2
ds+

N∑

η=1

∫ N+1

0

(
(ǫ(l),⋆)−

α
2 Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ−
α
2
)2
ds
}

=

M∑

ι=1

∫ N+1

0
lim

ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

(
max{0, (ǫ(l),⋆)−α

2 Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ−

α
2 }

)2
ds

+
N∑

η=1

∫ N+1

0
lim

ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

(
(ǫ(l),⋆)−

α
2 Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ−
α
2
)2
ds

= 0.

(5.24)

Combining (5.23) and (5.24) gives

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

Fκl
(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆) = Fκl

(θ⋆, ξ⋆, 0) = J̃(θ⋆, ξ⋆).

For the second part of the theorem, we need the gradient formulas of J̃(θ, ξ). They are:

∂J̃(θ(l),⋆, ξ(l),⋆)

∂ξ
=

∫ N+1

0

∂H̄
(
s, x̃(s),θ(l),⋆, ξ(l),⋆, λ̃(x̃(s),θ(l),⋆, ξ(l),⋆)

)

∂ξ
ds, (5.25)

∂J̃(θ(l),⋆, ξ(l),⋆)

∂θ
=

∫ N+1

0

∂H̄
(
s, x̃(s),θ(l),⋆, ξ(l),⋆, λ̃(x̃(s),θ(l),⋆, ξ(l),⋆)

)

∂θ
ds, (5.26)



5.3 Solution procedure 91

where H̄ is the Hamiltonian function defined by

H̄
(
s, x̃(s),θ(l),⋆, ξ(l),⋆, λ̃(x̃(s),θ(l),⋆, ξ(l),⋆)

)

= L̃0(s, x̃(x),θ
(l),⋆, ξ(l),⋆) +

(
λ̄(x̃(s),θ(l),⋆, ξ(l),⋆)

)⊤
f̃(s, x̃(s),θ(l),⋆, ξ(l),⋆), (5.27)

λ̄(x̃(s),θ(l),⋆, ξ(l),⋆) is the costate vector determined by the following system of co-state differ-

ential equations: (dλ̄(s)
ds

)⊤
= −∂H̄

∂x̃
,

with the boundary condition (
λ̄(N + 1)

)⊤
= 0.

By an augment similar to that given for the proof of Theorem 5.2 in [63], we can show that, for

each s ∈ [0, N + 1],

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

|λ̄(x̃(s),θ(l),⋆, ξ(l),⋆)− λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)| = 0. (5.28)

By (5.18) and (5.19), we have

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

∇ξFκl
(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

= lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{∫ N+1

0

∂L̃0(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
ds

+ 2(ǫ(l),⋆)−α

∫ N+1

0

M∑

ι=1

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆) (5.29)

− (ǫ(l),⋆)γ}∂Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
+

N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

− (ǫ(l),⋆)γ
)∂Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

∂ξ
ds

+

∫ N+1

0

(
λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)⊤∂ f̃ (s, x̃(s),θ(l),⋆, ξ(l),⋆)

∂ξ
ds
}

= lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{∫ N+1

0

∂L̃0(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
ds

+

∫ N+1

0

(
λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)⊤∂ f̃ (s, x̃(s),θ(l),⋆, ξ(l),⋆)

∂ξ
ds
}

+ lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{
2(ǫ(l),⋆)−α

∫ N+1

0

M∑

ι=1

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

− (ǫ(l),⋆)γ}∂Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
+

N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)
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− (ǫ(l),⋆)γ
)∂Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

∂ξ
ds
}
.

Then, by Lebesgue dominated convergence theorem, it follows from (5.28) that

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{∫ N+1

0

∂L̃0(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
ds

+

∫ N+1

0

(
λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)⊤∂ f̃(s, x̃(s),θ(l),⋆, ξ(l),⋆)

∂ξ
ds
}

=

∫ N+1

0
lim

ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

∂L̃0(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
ds (5.30)

+

∫ N+1

0
lim

ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

(
λ̃(x̃(s),θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

)⊤∂ f̃(s, x̃(s),θ(l),⋆, ξ(l),⋆)

∂ξ
ds

=

∫ N+1

0

∂L̃0(s, x̃(s),θ
⋆, ξ⋆)

∂ξ
ds+

∫ N+1

0

(
λ̄(x̃(s),θ⋆, ξ⋆)

)⊤∂ f̃(s, x̃(s),θ⋆, ξ⋆)

∂ξ
ds

=∇ξJ̃(θ
⋆, ξ⋆).

Similarly, since δ > α, γ > α, it follows from the Lebesgue dominated convergence theorem that

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

2(ǫ(l),⋆)−α

∫ N+1

0

M∑

ι=1

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

− (ǫ(l),⋆)γ}∂Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
+

N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

− (ǫ(l),⋆)γ
)∂Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

∂ξ
ds
}

=2

∫ N+1

0
lim

ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{ M∑

ι=1

max{0, Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆) (5.31)

− (ǫ(l),⋆)γ}(ǫ(l),⋆)−α ∂Gι(s, x̃(s),θ
(l),⋆, ξ(l),⋆)

∂ξ
+

N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

− (ǫ(l),⋆)γ
)
(ǫ(l),⋆)−α∂Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)

∂ξ

}
ds.

=0.

Substituting (5.30) and (5.31) into (5.29) gives

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

∇ξFκl
(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆) = ∇ξJ̃(θ

⋆, ξ⋆). (5.32)
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Similarly, we can show that

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

∇θFκl
(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆) = ∇θJ̃(θ

⋆, ξ⋆). (5.33)

On the other hand, we note that

lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

∇θFκl
(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

= lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{
(ǫ(l),⋆)−α−1

{
− α∆(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

+ 2γ
(∑

ι

max
{
0, Gι(s, x̃(s),θ

(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ
}
(−(ǫ(l),⋆)γ)

+

N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ
)
(−(ǫ(l),⋆)γ)

)}
+ κlβ(ǫ

(l),⋆)β−1

}

= lim
ǫ(l),⋆→ǫ⋆=0

(θ(l),⋆,ξ(l),⋆)→(θ⋆,ξ⋆)∈S0

{−α∆(θ(l),⋆, ξ(l),⋆, ǫ(l),⋆)

(ǫ(l),⋆)α+1

+ 2γ
(∑

ι

max
{
0, Gι(s, x̃(s),θ

(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ
}
(−(ǫ(l),⋆)γ−α−1)

+
N∑

η=1

(
Hη(s, x̃(s),θ

(l),⋆, ξ(l),⋆)− (ǫ(l),⋆)γ
)
(−(ǫ(l),⋆)γ−α−1)

)
+ κlβ(ǫ

(l),⋆)β−1
}

=0.

Thus, the proof is completed.

Theorem 5.4. Suppose that (θ(l),⋆, ξ(l),⋆, ǫ(l),⋆) → (θ⋆, ξ⋆, ǫ⋆) as l → +∞, and that the param-

eters α and γ satisfy the same conditions as in Theorem 5.3. Then, there exists a l0 > 0 such

that ǫ(l),⋆ = 0 and (θ(l),⋆, ξ(l),⋆) = (θ⋆, ξ⋆), for all l ≥ l0. Furthermore (θ⋆, ξ⋆) is a local optimal

solution of Problem P̃.

Proof. The proof is similar to that given for Theorem 3.2 and hence it is omitted.

From the results above, we can conclude that under some mild assumptions, for a sufficiently

large κ, a local optimal solution of Problem P̃κ is a local optimal solution of Problem P̃. This

solution can then be used to construct a corresponding local solution of Problem P.

Problem P̃κ is a standard optimal control problem with fixed switching points and can be

readily solved by various existing optimal control techniques. Here, the optimal control software

package MISER 3.3 [49] is used. In the next section, two practical problems concerning optimal

driving strategies for trains are solved by the method proposed.
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ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7
1.5 1 1.4 0.1 -0.015 -0.00003 -0.000006

Table 5.1: Values of ζi, i = 1, · · · , 7.

5.4 Numerical results

5.4.1 Optimal train control on a level track

The following model for the motion of a train is given in references [46,62]:

ẋ1 = x2,

ẋ2 = ϕ(x2)u1 + ζ2u2 + ρ(x2),

where x1 is the train’s distance along the track, x2 is the train’s speed, u1 is the fuel setting and

u2 models the deceleration applied to the train by the brakes. The function ϕ, which models

the tractive effort, is defined by

ϕ(x2) =





ζ1/x2, if x2 ≥ ζ3 + ζ4,

ζ1/ζ3 + η1(x2 − ζ3 + ζ4)
2

+ η2(x2 − ζ3 + ζ4)
3,

if ζ3 − ζ4 ≤ x2 < ζ3 + ζ4,

ζ1/ζ3, if x2 < ζ3 − ζ4,

where ζ1, ζ2, ζ3 and ζ4 are constants, and

η1 = ζ1

[( 1

ζ3 + ζ4
− 1

ζ3

) 3

4ζ24
+

1

2ζ4(ζ3 + ζ4)2

]
,

and

η2 = ζ1

[
−

( 1

ζ3 + ζ4
− 1

ζ3

) 3

4ζ34
− 1

4ζ24 (ζ3 + ζ4)2

]
.

The function ρ, which models the resistive deceleration due to friction, is given by

ρ(x2) = ζ5 + ζ6x2 + ζ7x
2
2.

The constants ζi, i = 1, · · · , 7, are defined in Table 5.1. The initial and terminal states are

x(0) = [0, 0]⊤, x(1500) = [18000, 0]⊤ .

This means that the train starts from the origin at rest and comes to rest again 18, 000 meters

away at t = 1500. Since the train is not allowed to go backwards, a non-negativity constraint is

imposed on the speed,

x2(t) ≥ 0, t ∈ [0, 1500].
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Figure 5.1: The trajectory x1(t) against t

The train driver can choose from three operation modes for the train: accelerate (powered by the

engine), coast (no power), and brake (decelerate by the brakes). These three modes correspond

to the following values for u = [u1, u2]
⊤, i.e.,

U =
{
[1, 0]⊤, [0, 0]⊤, [0,−1]⊤

}
.

The objective is to minimize the fuel consumption, i.e.,

min : J(u) =

∫ 1500

0
u1(t)dt.

Here, we assume that the maximum number of switches is N = 2. We apply our method in

conjunction with MISER 3.3 to solve the problem.

Figure 5.1 and Figure 5.2 show the optimal trajectory of x1 and x2, respectively. From the

figures, we see that the train accelerates for the first quarter of the journey, then coasts almost

until the end. Figure 5.3 shows that the brakes are applied briefly at the end before the train

stops.

Figure 5.4 and Figure 5.5 show the optimal controls u1 and u2, respectively. We see that

the control u2 stays zero for almost the entire time horizon, and assumes the value −1 less than

two seconds before the end.

The minimum fuel consumption is 205.06. This is slightly higher than the result of 202.67

reported in [62], which was obtained using the time scaling transform (also called the control

parametrization enhancing transform) directly with 6 switching points. It is worth noting that

our method obtains the same result as in [62] when we increase the maximum number of switches
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Figure 5.2: The speed x2(t) against t
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Figure 5.3: The state space plot of x2 against x1
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Figure 5.4: The optimal control u1 against t
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Figure 5.5: The optimal control u2 near the terminal time
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to N = 6. More importantly, unlike the direct application of the time scaling transform, our

method ensures that the constraint on the maximum number of switches is always satisfied.

5.4.2 Optimal train control on an uneven track

We now consider a more complicated train control problem [46, 60]. The dynamics for this

problem are

ẋ1 = x2,

ẋ2 = ϕ(x2)u1 + ζ2u2 + ρ(x2) + ϑ(x1),

where x1, x2, u1, u2, ϕ(·) and ρ(·) are as defined in Section 5.4.1, and ξi, i = 1, · · · , 7, are as

defined in Table 5.1. The function ϑ(·) is the gravitational acceleration due to the non-constant

gradient of the track given by

ϑ(x1) =





0, if x1 ≤ 20000 − ζ8,

−0.05{ (x1−20000)2

ζ28
+ (x1−20000)

ζ8
+ 1}, if 20000 − ζ8 < x1 ≤ 20000,

−0.05{− (x1−20000)2

ζ28
+ (x1−20000)

ζ8
+ 1}, if 20000 < x1 ≤ 20000 + ζ8,

−0.1, if 20000 + ζ8 < x1 ≤ 25000 − ζ8,

−0.05{− (x1−25000)2

ζ28
− (x1−25000)

ζ8
+ 1}, if 25000 − ζ8 < x1 ≤ 25000,

−0.05{ (x1−25000)2

ζ28
− (x1−25000)

ζ8
+ 1}, if 25000 < x1 ≤ 25000 + ζ8,

0, if x1 > 25000 + ζ8,

where ζ8 = 300.

The initial and terminal states are

x(0) = [0, 0]⊤, x(2800) = [50000, 0]⊤ .

Again, we have a non-negativity constraint on x2 to prevent the train from going backwards:

x2(t) ≥ 0, t ∈ [0, 2800].

We also impose a speed limit on the train that decreases as the train moves further along the

track:

0.0002x1(t) + x2(t) ≤ 28, t ∈ [0, 2800].

The control u = [u1, u2]
⊤ is now restricted to the discrete set

U =
{
[1, 0]⊤, [0, 0]⊤, [0,−1]⊤, [2, 0]⊤

}
.

The objective is

min J(u) =

∫ 2800

0
u1(t)dt
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Figure 5.6: The trajectory x1(t) against t

Here, we assume that the maximum allowable number of switches is N = 8. Using our method,

the problem is again solved by MISER 3.3. Figure 5.6 and Figure 5.7 show the optimal trajectory

of x1 and x2, respectively. Figure 5.8 and Figure 5.9 show the optimal controls u1 and u2,

respectively. Note that the optimal control does not assume the value [2, 0]⊤. From Figure 5.10,

we can see that the continuous inequality constraint is satisfied throughout the entire period of

the time horizon.

To solve this highly complex problem, we first used our method to determine the optimal

switching sequence. After identifying the optimal switching sequence, we then applied the time

scaling transform directly with the control sequence fixed to refine the switching times. The

minimum fuel consumption is 937.42. This is better than the result obtained in [60], which uses

the time scaling transform directly. There are 18 switching points, giving rise to a larger fuel

consumption of 938.63.

5.5 Conclusion

In this chapter, a new computational method was proposed for solving optimal discrete-valued

control problems. By introducing new controls and applying an equivalent transformation, the

original problem becomes a standard optimal control problem subject to equality and inequality

constraints. Then, an exact penalty method is employed to solve the transformed problem.

Our numerical results for the train control problems in Section 5.4 show that this approach is

superior to the direct application of the time scaling transform, which leads to many artificial

switches. Our optimal solutions require less switchings and always satisfy the constraint on the

maximum allowable number of switchings.
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Figure 5.7: The speed x2(t) against t
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Figure 5.8: The optimal control u1 against t
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Figure 5.9: The optimal control u2 near the terminal time
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Figure 5.10: The plot of speed limit constraint



CHAPTER 6

Summary and suggestions for future research

directions

6.1 Summary of the main contributions

In this thesis, we considered three optimization problems and a discrete-valued optimal control

problem. We developed new algorithms and methods to solve these problems numerically. This

involved a variety of novel techniques, including a new exact penalty function and the way of

generating reduced search region for a particular application in signal processing. We summarize

our main contributions below.

In Chapter 1, we provided a brief survey on optimization and optimal control.

In Chapter 2, we considered a class of continuous inequality constrained optimization prob-

lems. The major challenge for this type of problems is that they contain infinite many inequality

constraints. Instead of using the well-known constrained transcription method, we developed a

computational scheme based on a new exact penalty function for solving this class of problems.

To handle the continuous inequality constraints, we introduced a new variable and append the

constraint violation to the objective function, forming a new objective function subject to the

nonnegativity constraint on the new variable. We have shown that under some mild assump-

tions, a local minimizer of the new optimization problem is a local minimizer of the original

problem when the penalty parameter is sufficiently large. This property is not shared by the

approaches reported in [116], [117], [50] or [131]. Clearly, this is a major advancement in the

study of solution methods for semi-infinite optimization problems.

In Chapter 3, we considered a class of nonlinear mixed integer programming problems. Since

discrete-valued variables are involved, traditional gradient-based optimization methods are not

applicable. To overcome this difficulty, we first introduce new variables to transform the mixed

discrete nonlinear programming problem into an equivalent conventional nonlinear optimization

problem. Then, we applied a new exact penalty function method to obtain a sequence of

unconstrained optimization problems. Each of these unconstrained optimization problems can

be solved by gradient-based optimization methods such as quasi-Newton methods. We also

showed that under some mild assumptions, a local minimizer of the unconstrained optimization

problem is a local minimizer of the transformed nonlinear constrained optimization problem

102
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which is equivalent to the original problem when the penalty parameter is sufficiently large.

Several numerical experiments were carried out, the results show that the method proposed is

effective.

In Chapter 4, we considered the design of allpass variable fractional delay filters with sums

of signed powers-of-two coefficients and the least square criterion. This problem is a typical

integer programming problem. However, this particular problem is not easy to solve due to the

following two reasons:

i) Each element of the decision variable is to be chosen from a corresponding set which

contains a tremendous number of options. These options are not uniformly distributed.

ii) Due to the specific structure of these coefficients together with the constraints on the

total allowable number of signed-powers-of-two terms, the problem is extremely difficult

to solve by conventional integer programming techniques.

To reduce the computational complexity, we investigated the problem and develop a two-step

computational scheme to find reduced search region. The size of the obtained search region

for each element is much smaller, and hence the computation complexity is greatly reduced.

Furthermore, we have shown that under some mild assumptions, the new reduced search region

still contains the global minimizer of the design problem. Then, we applied the techniques

introduced in Chapter 3 to transform this problem into an equivalent conventional continuous

optimization problem. Finally, an exact penalty function method is introduced to solve the new

problem. Simulation was carried out to test the efficiency of the proposed method. Comparing

our results with those obtained by the traditional quantization method, it is clearly seen that

our results are much superior to those obtained by the quantization method.

In Chapter 5, we considered a class of discrete-valued optimal control problems, where there

is an upper bound on the maximum number of control switches. The time-scaling transform

introduced in [62], which is also called the control parametrization enhancing technique (CPET),

is an effective method for solving optimal discrete-valued control problems. However, it intro-

duces many more “artificial” switches, and hence the optimal control obtained is always having

many more switches than the maximum number of allowable switches. Thus, the transformed

optimal control problem obtained by using the time-scaling transformation is not equivalent to

the original problem.

To obtain an equivalent transformation, we first introduce new control functions taking

values from a compact set. Then, the original controls are replaced by the newly introduced

controls to form a conventional optimal control problem. Furthermore, additional constraints

are imposed such that the problem with new control functions is equivalent to the original

discrete-valued optimal control problem. Finally, we applied the exact penalty function method

to solve this problem. Numerical results obtained from solving two real practical train control

problems show that our approach is effective.



6.2 Future research directions 104

6.2 Future research directions

In this thesis, our main work is in the development of computational algorithms for solving

several types of optimization and optimal control problems based on a new exact penalty function

method. It is observed that these algorithms are computationally very effective for solving

all the problems under consideration. To make significant advancement, it requires further

understanding of the properties of this penalty function. On this basis, new and more efficient

computational algorithms could be derived for solving existing optimization and optimal control

problems and new unconventional optimization and optimal control problems arising in the

study of real world practical problems.

In Chapter 2, the optimization problem under consideration is an optimization problem

subject to continuous inequality constraints. The exact penalty function is introduced to these

continuous inequality constraints. In the construction of the penalty function, some approximate

functions of the continuous inequality constraint functions are constructed. Then, the sum of

their integrations is appended to the cost function, forming a penalized cost function with a

new decision variable. It gives rise to a sequence of penalized optimization problems, each of

which can be solved by gradient-based optimization techniques. It is known that many optimal

filter design problems in signal processing can be formulated as optimization problems subject

to continuous inequality constraints, and hence the method proposed in Chapter 2 is applicable.

However, in many of these signal processing problems, the argument ω involved in the continuous

inequality constraints is two, rather than one, dimensional as given below.

gi(ω,x) ≤ 0, for all ω ∈ Ω ⊂ R
2, i = 1, . . . ,m.

Furthermore, these continuous inequality constraints are very sensitive with respect to ω near the

cut-off frequency. The integrations of the approximate functions constructed from the continuous

inequality functions cannot be carried out analytically. Thus, it is inevitable to use the numerical

integration scheme. Due to the specific structures of these signal processing problems (see, for

example, the one considered in Chapter 4), it is found that the approach based on the numerical

integration is not satisfactory. Thus, it is important to devise a systematic approach to deal

with the continuous inequality constraints based on the idea proposed in [17]. Furthermore, can

this idea be applied to deal with continuous inequality constraints with structures different from

those of the signal processing problems? These questions are both mathematically challenging

and practically significant.

A second future research direction is to develop new exact penalty functions for optimiza-

tion problems and optimal control problems subject to inequality constraints, which are more

effective and contain better mathematical properties. In particular, the constraint qualifications

introduced in Definition 2.1 and Definition 5.1 are rather strong. Could the constraint qualifi-

cation given in Definition 2.1 and Definition 5.1 be relaxed such as the one given below?

Let x̄ be such that
∂φj(x̄,ω)

∂x , j = 1, . . . ,m. are linearly independent for each ω ∈ Ω. Then it
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is said that the constraint qualification is satisfied for the continuous inequality constraints φj,

j = 1, . . . ,m, at x = x̄.

Similarly, could the constraint qualification given in Definition 3.1 be relaxed?

In Chapter 3 and Chapter 5, we develop a novel transformation to convert the discrete

optimization and discrete optimal control problems into ones with continuous decision variables.

The transformed continuous optimization and continuous optimal control problems are then

solved by conventional gradient-based optimization techniques. A natural question to ask is

whether or not methods based on highly efficient interior point type of method can be developed?

Furthermore, what are the limitations of this approach?

All the optimization methods developed in this thesis are for finding local optimal solutions

at the very best. In practice, a local optimal solution, if found, may be very far away from the

global optimal solution, yielding an unsatisfactory cost value. Thus, it is of practical important

to incorporate global optimization methods in the study of the solution methods for these

optimization and optimal control problems. This is an interesting future research direction with

great practical significance.
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