
 

 

 
 
 
 

Muresk Institute of Agriculture 
Department of Applied Biosciences 

 
 
 
 
 

Ethology and production of freshwater crayfish in  
aquatic polysystems in Western Australia 

 
 
 
 
 
 
 

Timothy J. Storer 
 
 
 
 
 
 
 
 

This thesis is presented for the degree of  
Doctor of Philosophy  

of  
Curtin University of Technology 

 
 

December 2005 
 
 
 



 

 

Ethology and production of freshwater crayfish in aquatic 
polysystems in Western Australia 

Tim Storer 



 

 

Aquatic polyculture has been recognised as a potential way of increasing the cost-

effectiveness of farming marron (Cherax tenuimanus), as it can lower average costs of 

production, increase system yields, and reduce economic risks associated with 

monoculture operations. Polyculture also increases ecological stability and assists 

recycling processes, which can result in synergistic benefits to participating species. In 

aquaculture, this synergism can result in increased profitability through advanced 

growth rates and/or reduced feed input. However, many of the inherent advantages of 

aquatic polyculture rely on cohabitants occupying distinct ecological niches within the 

system. In Western Australia, opportunities to multi-crop aquatic species are limited by 

species choice due to low natural diversity and strict translocation policies. This creates 

a situation where available aquaculture species exhibit overlaps in occupied niches. 

Effects of this overlap can include direct predation, increased intraspecific conflict, and 

competition for resources such as shelter and food.  

 

Prior to this study, silver perch (Bidyanus bidyanus) were identified as a prime 

candidate for duoculture with marron, based on favourable schooling and feeding 

characteristics, and preliminary trials demonstrated commercial benefits, including 

synergistic growth advantages to marron. However, investigations also showed that 

silver perch will predate on both small and moulting crayfish under certain conditions, 

and that growth of silver perch was inhibited when held in cages to prevent predation. 

The work reported in this thesis was undertaken to address the niche overlap existing 

between marron and silver perch, and therefore assist the marron industry in Western 

Australia in implementing appropriate management strategies for diversification. 

Research focussed on investigating the ecological issues underlying interspecific 

interactions in marron polysystems, with the eventual aim of presenting information that 

could assist system managers in determining optimal conditions required to reduce 

antagonistic relationships and maximise synergism, ultimately leading to higher yields. 

 

Seven trials were conducted in three culture systems (54L aquaria, 250L aquaria and 

720m2 experimental ponds) examining the ability of marron to detect, recognise and 

respond to a range of information cues (chemical, visual, tactile) from two potential 

predators (silver perch and Murray cod), with and without competition from conspecific 

and heterospecific crayfish (Cherax albidus). The ability of marron to interpret and 

respond appropriately to these variables was tested under a range of system-specific 
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conditions, including stocking density, stocking size, shelter/habitat complexity, food 

availability, light intensity and life stage. Cage culture conditions were also examined to 

determine if the addition of shelter would mediate growth inhibition previously recorded, 

and to determine the desired stocking regime to return market sized fish in one growth 

season (8 months).     

 

Results from laboratory research and field-based trials did not support the free-range 

culture of marron and silver perch, even where turbidity and habitat complexity is high. 

Although both male and female marron (various sizes) demonstrated an ability to detect 

and differentiate between chemical and visual cues from potential predators, avoidance 

responses were only displayed upon attack from predators, or following predation of 

conspecifics; and avoidance strategies employed by marron were relatively ineffective. 

Although marron showed some capacity to recognise an impending predatory threat, 

high initial mortalities and growth inhibition due to reduced foraging, would greatly 

reduce system yields. In addition, intraspecific competition between marron is likely to 

increase as avoidance responses would lead to high relative densities within shelters. 

 

The lack of avoidance behaviour displayed by marron when only visual and chemical 

cues from predators are present strongly supports cage culture of silver perch in marron 

ponds. As marron did not appear to alter their general behaviour (e.g. foraging) based 

on cues associated with silver perch held in cages they stand to benefit from 

cohabitation. Field-trials examining the pond culture of marron and caged silver perch 

demonstrated synergistic growth advantages to marron, compared to monoculture, and 

also identified several system variables that appear to improve polyculture production. 

The addition of bank shelters (within 1m of waters edge) was suggested to give marron 

a competitive advantage when moulting, expressed through growth and survival. 

Survival of marron was also increased in caged polyculture ponds, compared to 

monoculture, most likely due to increased health status (due to improved recycling) and/

or increased habitat complexity owing to the presence of fish cages. Growth inhibition 

previously reported when silver perch are held in cages was mediated to some degree 

by cage shelters, which appeared to increase feeding behaviour, reduce general anxiety 

and resulted in increased growth. The introduction of advanced silver perch fingerlings 

in order to produce market-sized fish in one growth season was also supported. 

However, it is recommended that cage culture dynamics require further elucidation if 
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silver perch are to be commercially successful as a stand-alone crop using this grow-

out strategy. Significantly, the synergistic growth advantages experienced by marron 

when grown with fish demonstrate value from polyculture even if fish are not depended 

on as a secondary income.  In this case, other species may also provide similar 

advantages, and a native candidate such as freshwater cobbler (Tandanus bostocki) 

would also redress problems associated with translocation laws restricting the use of 

silver perch in some areas of Western Australia.  As no density effects were recorded 

in any of the trials conducted for either species, further investigation into increased 

system loads is required.  In addition, as nutrient loads, and thus phytoplankton 

density, usually increases proportionately with pond biomass it is recommended that an 

additional herbivorous species, for example white eye mullet (Mugil cephalus), be 

examined in conjunction with increased density trials.   

 

Field research reported in this thesis was carried out in earthen ponds utilising 

remediated water from a acidified mine lake.  Over a three-year period water quality 

parameters were maintained within optimal ranges for marron and silver perch, and 

survival and growth of both species was comparable to industry levels.  These results 

validate the effectiveness of mine-water treatment technology; and accordingly, results 

support commercial viability of crayfish polyculture utilising remediated acid mine 

water.  The large water resources offered by the numerous artificial lakes created from 

open cut mining has the potential to sustain a large successful aquaculture industry for 

Collie (Western Australia), and in other areas with extension of water treatment 

technology.  

 

The incorporation of caged silver perch into marron ponds not only takes advantage of 

the inherent economic and risk-spreading benefits from a diversified management 

strategy, but also incorporates a number of within-system benefits due to synergism 

between species.  The ecological approach to aquatic polyculture research reported in 

this thesis has elucidated key communication factors underlying interactions within 

crayfish polysystems, which is critical to a knowledge-based approach to system 

management. 
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Introduction 
 

This introductory chapter examines the state of world aquaculture, 

the freshwater crayfish industry in Australia, and the benefits of 

diversified production strategies for the marron industry in  

Western Australia  

 

 

 

 

 

Chapter one 

 



Chapter one: introduction                                 

 

2 

 1.1    State of the world’s fisheries 
 

World capture fishing is a US $81 billion/y industry, employing 28 million fishers and 

4.1 million vessels in 2000/2001 (FAO 2003). 

 

Commercial harvesting of the world’s oceans reached a plateau in the early 1990s 

(FAO 2002, 2004) attributed to unsustainable anthropogenic pressure on global fish 

populations (Pafit 1995, Kurlansky 1997,). Overfishing, illegal and unregistered fishing 

activities and habitat destruction have contributed to the present situation (Moore 

1999). Currently, 60% of traditional fisheries are considered at-limit or over exploited 

(Kurlansky 1997, Wainwright and Kirkness 1997, Moore 1999), with catch reductions 

in many major fisheries and complete failure of others (Table 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2    The role of aquaculture 

 
With expanding world populations demanding quality fish products, the deficit between 

supply and demand is increasing. To address this growing shortfall, aquaculture 

production has increased steadily over the past decade, growing 9-10%/y between 

1990 (13.1 million tonnes) and 2001 (37.5 million tonnes), and currently employing 

around 7 million people (FAO 2003). Of the total cultured product, inland aquaculture 

contributed almost two thirds of volume and over half of total supply was from finfish, 

predominantly freshwater species (FAO 2003).  

Decline Collapsed 

Alaskan halibut (1)  Canadian fishery (1) 

Orange roughy – 96% loss (2,3) Atlantic cod (2) 

Southern bluefin tuna – 82% loss (4) Haddock (5) 

Patagonian toothfish (5) Redfish (5) 

Northern bluefin tuna (5)          … 

Dories (5)  … 

Afonsinos (5) … 

Table 1.1    Examples of world capture fisheries in decline or collapse (2004)  

1. Pafit 1995, 2. Kurlansky 1997, 3. Mascher, 1997, 4. Wainwright and Kirkness 1997, 5. FAO 2003 
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Aquaculture production is currently estimated at over 41% of total fisheries production 

(FAOSTAT 2004). When compared with production of 29.1% in 2001 (FAO 2003), 

27.3% in 2000 (FAO 2002), 16.2% in 1990 (FAO 1997), and 3.9% in 1970 (FAO 2002) 

the industry stands as one of the worlds fastest growing sectors, expanding more 

rapidly than all other animal food producing industries (FAO 2003). However, even with 

current levels of production the need for further expansion of the aquaculture sector is 

emphasised (Bangkok Declaration and Strategy - NACA/FAO 2002) in order to 

successfully ameliorate the increasing shortfall in supply. 

 

 

1.3     Status of Australian aquaculture 
 

In Australia, the aquaculture industry has developed rapidly over the past decade and 

appears likely to make a major contribution to the future growth of Australia's food 

production and exporting industries. In 2002/03, Australia’s total aquaculture production 

was valued at AUD $743 million, 32% of the total gross value of production from 

Australian fisheries (ABARE 2003a), and followed a 14% nominal average growth rate 

over the past decade (ABARE 2003b).  

 

In 2001/2002, over 44 thousand tonnes of aquacultured product were harvested in 

Australia and over 15 million juveniles produced (mostly finfish) (AATD 2003). Species 

cultured commercially, in order of worth, included southern blue fin tuna, pearl oysters, 

salmonoids, edible oysters, prawns, barramundi, mussels, freshwater crayfish, 

microalgae, native freshwater fish, aquarium fish, crocodiles, abalone, miscellaneous 

marine finfish, eels, brine shrimp, freshwater prawns, scallops and aquatic worms. 

Over two-thirds of total production in Australia came from tuna and oysters (pearl and 

edible), with the freshwater crayfish industry considered the 8th most valuable 

aquaculture sector (AADT 2003). 

 

It has been estimated by the aquaculture industry that sales could treble to AUD $2.5 

billion by 2010 if competitive advantages to meet increasing domestic and global 

demand for aquaculture products can be successfully exploited (ABARE 2003b).  

 

One of the key groups of animals targeted for aquaculture expansion in Australia is 

freshwater crayfish (AADT 2003, ABARE 2003b), especially as culture technology is 

easily adaptable within existing farming practices. 
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1.4    Freshwater crayfish aquaculture 
 
The culture of freshwater crayfish is an established and lucrative industry worldwide. 

Globally, freshwater crayfish aquaculture contributed 685 thousand tonnes to the 

seafood industry in 2002/02, worth over AUD $3.7 billion (FAO-FIGIS 2005).  
 

 
1.5    Freshwater crayfish aquaculture in Australia 
 

In Australia, aquaculture production of freshwater crayfish is centred on three species; 

marron (Cherax tenuimanus), redclaw (Cherax quadricarinatus), and yabbies (Cherax 

albidus). Production from these species has been increasing over the past 10 years, 

and with improvements in production guidelines (Wingfield 2000), stronger and more 

unified grower associations (Wingfield 2000), cooperative marketing ventures, and 

increasing demand for aquacultured products (Wingfield 2000, ABARE 2003b), this 

trend is expected to continue (Piper 2000, ABARE 2003b).  

 

In 2001/2002, production of Australian freshwater crayfish was 297 tonnes, valued at 

AUD $4.4 million (farm gate), comprised of yabbies - AUD $2.0 million, redclaw - AUD 

$1.0 million, and marron - AUD $1.4 million (ABARE 2003a). Based on expected 

improvements in artificial diets, reduction in predation, improved water supply and 

increased capitalisation (O’Sullivan and Roberts 1999, O’Sullivan and Dobson 2000) 

commercial production of yabbies, redclaw and marron was predicted to increase by 

293%, 239% and 381%, respectively, between 1998-99 and 2004-05 (Piper 2000, 

ABARE 2003b). 

 

Market prices of Australian freshwater crayfish are expected to remain stable 

regardless of forecast increases in production (Lawrence 1998, Piper 2000), due to:  

 

• their uniqueness, high quality and rarity in overseas markets, thus, higher 

volumes are likely to find ready acceptance at current prices in Europe, Japan, 

Korea and south-east Asia and in the larger coastal cities on the eastern and 

western side of USA (Piper 2000); 

• local markets absorbing increased volumes of product without diminution in 

price as increased production leads to regular availability of quality product in 

retail and restaurant outlets (Piper 2000); 
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• the larger end of the freshwater crayfish production compares favourably on 

price and quality grounds with the smaller end of the marine crayfish product 

(Piper 2000);  

• Australian crayfish being significantly larger (100-300g+) than the main 

international competitors (Lawrence et al. 1995) (i.e. adult red swamp 

crayfish - 30-35g; Huner and Lindqvist 1995). 

 

The freshwater crayfish industry within Australia has expanded, intensified and made 

minor but encouraging technological advances over the past two decades, and with a 

stable global demand for quality product, the freshwater crayfish industry has a very 

high potential for future expansion (Bennison and Whisson 1992, Lawrence 1998, 

Piper 2000). One of the expected major contributors to industry expansion in 

freshwater crayfish is marron (Lawrence 1998). 

 

 

1.6     Marron industry in Western Australia 
 

Marron are regarded as a gourmet product by chefs, attracting a higher unit price than 

both yabbies and redclaw (FWA 2002a). Within Western Australia, commercial marron 

production is generally confined to the south-west of Western Australia, although an 

expanding industry exists in Kangaroo Island, South Australia (Piper 2000). Previous 

unsuccessful translocations of marron overseas have occurred in South Africa, 

Zimbabwe, Japan, China, USA and the Caribbean (Morrissy et al. 1990). 

 

Marron farming has received significant attention from researchers, farmers and 

investors over the past 30 years and consequently, there is now a more complete 

understanding of general biology and culture technology. However, monoculture 

practices in Western Australia have not lived up to predicted expectations, due to 

either lower than expected growth rates, environmental impediments such as drought, 

high costs of production and a lack of scientific approach (Bennison and Whisson 

1992, Morrissy et al. 1995a, O’Sullivan and Roberts 1999, ABARE 2003a).  

 

Commercial sensitivities mean that accurate information on income and operating 

costs in commercial farms is not readily available. Based on information from 

producers and processors, value and production figures for the marron industry in 
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2001/02 were calculated by the Australian Bureau of Agriculture and Resources 

Economics (2003a) (Table 1.2). 
 

 
                Table 1.2    Value and production of marron (2001/2002) (ABARE 2003a) 

 

 

 

 

 

 

 

The Western Australian Department of Fisheries reported 2001/02 production from 

187 producers (FWA 2003a), however anecdotal evidence suggests that a large 

percentage of production stems directly from a small number of farmers with ‘best 

practice’ operations (How and Lawrence 2004). Average farm production is estimated 

at around 600/kg/ha/y, however levels of up to 4000/kg/ha/y have been achieved 

(Morrissy et al. 1995a). The  WA Department of Fisheries state that for well-designed 

and managed commercial ponds, 2000 kg/ha/y of marketable product is considered 

commercially viable and a realistic goal (MGA 2002, FWA 2004). These figures are 

based on market price, with current farm gate returns of AUD $23.8/kg (ABARE 

2003b) and wholesale prices increasing with unit size (AUD $16-$30) (S. Bamess 

pers. comm. 2004). Retail prices for live marron are reported to fluctuate between 

AUD $110-140/kg (RIRDC 2002a), depending on market, supply and season. 

 

 

1.7    Impediments to expansion of the marron industry 
 

With average farm production estimates falling well below figures considered to be 

commercially attractive (How and Lawrence 2004) there are a number of production 

aspects that require elucidation and investigation. The fact that some farms have 

returned production figures in excess of 2000/kg/ha/y (Morrissy et al. 1995a, FWA 

2004) illustrates that industry potential is realistic, and progress requires greater 

communication and research. 

 

Australian marron production 58 tonnes 

Western Australian production 46 tonnes 

Net worth AUD $1.4M (farm gate) 
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The marron industry also faces a number of micro and macro-economic factors 

forming major obstacles to development. These obstacles relate predominantly to 

inherent problems associated with monoculture production, and for a product that is 

open to temporal fluctuations in factors ranging from culture environment to market 

status. Specifically, these problems include: 
 

 
Micro-economic factors (rural farming community, on-farm) 
 

• Reliance on one seasonal income source/y; 

• Fluctuations in market demand (Smailes 1997); 

• Lack of continuity of supply (Morrissy 1990, Whisson 2000); 

• Low industry volumes; 

• Competition (Whisson 2000); 

• Lack of industry communication; 

• Customer perception - inability to attract investors/finance (Whisson 2000); 

• Variation in product quality (Whisson 2000); 

• Distribution problems (Whisson 2000); 

• Processor capacity; 

• Pricing (Whisson 2000). 

 
Macro-economic factors (international, national, regional, state) 
 

• Fluctuating world economies - declining returns (Taylor 1996, Tonts et al. 

2000, Whisson 2000), rising input costs (Taylor 1996, Smailes 1997); 

• Import tariffs and trade restrictions (live product) (RIRDC 2002b); 

• Translocation policies-restrictions (Whisson 2000); 

• General instability in world markets (Whisson 2000); 

• Reduction in government support (Higgins 1999); 

• Unstable global marketplace position due to minor contribution of Australian 

freshwater crayfish. 

 
These factors represent a relatively high level of business risk and uncertainty 

confronting investors and existing operations looking towards expansion (Whisson 

2000, RIRDC 2002a). One of the tools available to farmers is to turn to risk spreading 

strategies such as diversification (Whisson 1993, Kraus 1995, RIRDC 2002a/b). 
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1.8    Diversification options in aquaculture 
 

Farm diversification is a valid form of rural adjustment where additional, 

complementary industries are added to existing operations (Anosike and Coughenour 

1990, Tonts et al. 2000, RIRDC 2002a, RIRDC 2002b). Essentially, business risk is 

spread by removing reliance on one income source through increasing product range 

(Whisson 1993, Kraus 1995). In primary industry, the risk posed by a single revenue 

stream is exacerbated as it not only relies on economic status but also favourable 

environmental conditions (Hardaker et al. 1997). The range of options for mixed 

farming enterprises are commonly divided into two sectors based of the nature of 

associated industries:  

 

Agricultural 
The combination of additional agricultural output options to traditional farming 

ventures (McMurty et al. 1997, RIRDC 2002a). This could be adding lamb 

production to a pre-existing wool enterprise, or less traditional options, such as 

combining fruit crops with aquaculture or tree plantations on livestock leases 

(RIRDC 2002a). 

  

Non-agricultural 
Non-agricultural diversification options include enterprises such as, ecotourism - 

farm based accommodation and recreation (Saunders and O’Sullivan 1998); on-

farm processing and marketing; and ’passive diversification’ options where land or 

infrastructure is leased for non-agricultural purposes (RIRDC 2002a). 

  

Farmers looking at diversification options in aquaculture have to consider the effect 

that existing or additional industries would have on water quality. Diversification of 

traditional farming operations in Australia has demonstrated successful 

implementation of aquaculture (RIRDC 2002a, Gooley and Gavine 2003). In a recent 

study by the Rural Industries Research and Development Commission (2002a) into 

the cost and benefits of farm diversification a number of case studies were profiled. 

This study included two examples involving aquaculture. Firstly, the addition of trout 

aquaculture to a sheep farm in NSW which yielded a cost-benefit ratio of 1.2 over 7 

years, and secondly, a sheep-cropping enterprise diversified with marron aquaculture 

in WA, resulting in a cost benefit ratio of 1.5 over 5 years. Other forms of aquaculture 
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diversification include value-adding, such as on-farm processing and marketing of 

stock. An example of this is the production of gourmet lemon or chilli yabbies 

(Cambinata yabbies, Western Australia). In this case, 200g jars containing 14 small 

yabby tails with an approximate net weight of 60g are sold at AUD $17.00/jar. This 

activity not only adds value to product, but allows the sale of small stock, not generally 

accepted by market. 

 

A diversification option which is practised extensively overseas (e.g. Scott et al. 1988, 

Pillay 1993, Brummett and Alon 1994, Milstein 1997) and has been recently explored 

in Western Australia for its ‘within system’ benefits is aquatic polyculture (Whisson 

2000, Whisson and Storer 2003, Storer et al. 2004a). 

 

 

1.9    Aquatic polysystems in Western Australia 
 

Aquatic polyculture is the combination of multiple aquatic crops in the same pond. The 

original technology and models for aquatic polyculture were developed in areas such 

as Israel (Peterson 2000) and China (Pillay 1993), where water resources are scarce 

and expensive, and multiple use is essential. Although the technology for aquatic 

polyculture was spawned out of necessity, intrinsic benefits have lead to technology 

being pursued around the world for economic, social and environmental advantages. 

The term ‘aquatic polysystem’ is used in this thesis to describe a system approach 

to aquatic polyculture research. This terminology was utilised to explain the 

combination of biological, chemical and physical processors that influence the 

functioning of a polyculture system, or polysystem, and the holistic approach required 

in order to optimise culture technology.  

 

A system view of aquatic polyculture would address many of economic problems 

confronting marron growers, whilst incorporating production advantages stemming 

from the use of complementary species. The benefits include: 

 

• Increased net productivity and profitability (e.g. Cohen et al. 1983, 

Swift 1993, Wahab et al. 1995, Gooley and Gavine 2003); 

• Income spreading across year; 
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• Reduced capital outlay and cost-effectiveness through resource sharing 

(Gooley 2000, McKinnon et al. 2000, Whisson 2000, Gooley and 

Gavine 2003); 

• Offsetting management and maintenance costs (Harris and Glatz 2002, 

Whisson 2000, Gooley and Gavine 2003); 

• Increased nutrient cycling through increased food web complexity 

(Cohen 1984, Gooley and Gavine 2003); 

• Lower net water usage (Gooley and Gavine 2003); 

• Improved water quality (Rouse et al. 1987); 

• Synergistic benefits including increased growth and condition of 

component species (Whisson 2000, Whisson and Storer 2003, Storer 

et al. 2004a). 

 

Although results from aquatic polysystems are encouraging, technology needs 

development and modification for each area of implementation, as site-specific 

variations in culture conditions alters system dynamics and thus, management needs. 

The key element for successful implementation of polyculture technology in new areas 

relies on the selection of component species. Species have to be chosen based on 

water quality and environmental conditions, and selection requires consideration of 

economic factors, government policy, regulatory restrictions and market opportunity 

(Spencer 2000). However, paramount to the success of aquatic polyculture is the 

selection of species displaying complementary niche occupations, to reduce competition 

or predation and maximise synergistic benefits (Rouse et al. 1987, Whisson 2000) 

 
 
1.10  Factors governing production in crayfish polysystems 
 

Marron are the base species for culture in Western Australian polysystems, as existing 

production and infrastructure is centred on pond culture of marron, and the marron 

industry stands to gain from risk spreading strategies (Section 1.7). Marron have 

demonstrated potential for duoculture with finfish (Whisson 1997, 1998, 2000, Storer 

and Whisson 2003, Storer et al. 2004a) and pelagic finfish species are the most likely 

polyculture candidate as they occupy a separate space in the water column. 
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In Western Australia, the selection of species displaying favourable qualities for 

integration into existing marron ponds is limited (Jones and Ruscoe 1996, Lambert 

1998, Whisson 1998, Whisson 2000). This is primarily due to the lack of acceptable 

native species and strict translocation policies preventing exotic introductions. The 

choice of a complementary finfish for duoculture with marron is made more difficult due 

to the evolution of marron in a relatively predator-free environment (Morrissy 1997, 

FWA 1999, Allen et al 2002). As marron are the dominant invertebrate in their natural 

environment they have not been exposed to predation pressure, and therefore it is 

unlikely that they have evolved effective avoidance strategies. The introduction of 

exotic finfish in other parts of the world has resulted in heavy predation on benthic 

macroinvertebrates (Stoddard 1987, Bradford et al. 1998, Knapp et al. 2001), and it is 

likely marron would suffer similarly.  

 

Production strategies for Western Australian polysystems need to consider ways to 

reduce overlaps in niche selection between component species in order to optimise 

production. 

 

 

1.11           Key species for culture in Western Australian polysystems 
 

1.11.1        Marron, Cherax tenuimanus  
 

Marron are a large freshwater crayfish native to permanent forested rivers in high-

rainfall areas in the south-west of Western Australia (Lawrence 1995). Marron are well 

recognised as a species with aquaculture potential (Morrissy 1992a, Jussila and Evans 

1997), being the third largest freshwater crayfish in the world (largest aquaculture 

species), having one of the highest ‘tail-with-shell’ recovery rates (42-43%, comparable 

with marine rock lobsters), and are rated as one of the finest-flavoured crustaceans 

available (Morrissy et al. 1990). 

 

The monoculture of marron is semi-intensive, carried out in purpose built ponds 

approximately 1.8m deep (standpipe). Pond depth was determined through 

investigations, promoting optimum temperature conditions (FWA 1999), although the 

marron occupy only the benthos, with pelagic regions empty. The addition of pelagic 

finfish utilises this space. 
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1.11.2         Silver perch, Bidyanus bidyanus 
 

A number of species have been investigated for polyculture potential with marron 

(Lambert 1998, Whisson 2000, Storer et al. 2004a). Of these, silver perch appear to 

have schooling and feeding characteristics (Rowland and Barlow 1991) most conducive 

to cohabitation with marron (Jones and Ruscoe 1996, Whisson 1998, Whisson 2000).  

 

Silver perch are a freshwater fish with native range extending through most of the 

Murray Darling Basin, including the western drainage of New South Wales. Silver perch 

are predominantly produced using semi-intensive pond cultures (Rowland 2002). 

Production of silver perch is principally centred in New South Wales (278 tonnes @ 

$8.81/kg (farm gate), net value - $2.45 million) (NSW Fisheries 2003) and Queensland 

(44 tonnes @ $7.66/kg (farm gate) - net value $0.34 million) (DPI 2003), with small 

quantities produced in Victoria and South Australia (PIRSA 1999). Silver perch were 

introduced into Western Australia around 1950 for aquaculture (FWA 2005), and since 

then the Silver Perch Growers’ Association has been working towards developing a 

code of practice and marketing strategies for exporting their product (FWA 2002a). In 

2001/2002 approximately 26 tonnes of silver perch valued at around $0.26 million were 

produced (ABARE 2003a). Production across the three major states in 2001-02 was 348 

tonnes valued at $3.05 million at the farm gate, and in addition to grow-out production, 

hatchery production of silver perch was 921,000 in 2001/2002, worth over $0.22 million 

(ABARE 2003a). 

 

The baseline technology for dual cropping of marron and silver perch was developed by 

Whisson (2000), with management centring on the production of silver perch within 

floating cages and culturing marron free-range in ponds. Results from these initial 

studies have shown a synergistic advantage to marron, represented by increased 

growth rates and an encouraging net increase in productivity. The recommendations 

from this preliminary investigation include the need to investigate growth-density 

relationships, habitat complexity and light intensity in order to optimise synergy. 
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1.12  Ecology and ethology of crayfish polysystems 
 

         Ecology  

         The study of the interrelationships between organisms and their environment 

         (Macquarie 1996) 

 

         Ethology  

         The behavioural study of animals in their natural habitat (Macquarie 1996) 

 

In nature, organisms have to manage conflicting demands of food gathering, predator 

avoidance and favourable abiotic environment (oxygen, temperature, shelter etc.) in 

order to maximise their fitness. Optimal foraging theory suggests that decisions are 

based on these demands through their influence on net energy gain, and predicts 

that species will evolve under natural selection to enhance fitness (Charnov 1976, 

Krebs and Davies 1978). In artificial systems, such as aquatic polyculture, where 

many environmental factors are novel and dynamic, species have to adapt rapidly, 

which results in varying levels of success and often at the consequence of fitness. In 

these situations, an understanding of pond ecology and ethology of component 

species is imperative in order to successfully manipulate system variables to optimise 

interplay between species, reducing negative interactions and maximising synergy.  

 

Many authors have identified the importance of studying behaviour and interactions 

between organisms and their environment in order to optimise production (i.e. 

Appelberg and Odelstrom 1988, Diaz et al. 1995a/b, Liu and Cai 1998, Schneider et 

al. 2004). Research suggests that the outcomes from interaction are a function of 

communication, interpretation of environmental information (visual, chemical, audio, 

tactile, electrical) and the associated behavioural responses (Ringleberg et al. 1991, 

Ringleberg 1997, Li et al. 2000, Listerman et al. 2000). The ecological basis 

governing communication and interaction incorporates the influence of the abiotic 

environment (shelter, turbidity, temperature) and temporal changes (diurnal, 

seasonal).  
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1.13  Thesis rationale 
          

Financial risk and uncertainty has characterised the Australian farming sector since 

the early 1980s (RIRDC 2002a) and marron farming has been no exception. Aquatic 

polyculture strategies address the risks associated with marron monoculture through 

diversification of product line, resource and input sharing and higher total yields 

(Whisson 2000).  

 

Successful implementation of aquatic polyculture relies on the development of 

appropriate management strategies suiting area and site-specific conditions, 

resource availability, enterprise mix and individuals concerned. The challenge of 

integrating polyculture technology in Western Australian conditions is, however, 

compounded by the lack of appropriate complementary species for duoculture with 

marron. Of species examined, silver perch has been identified as having the greatest 

potential, although the dual cropping of marron and silver perch is an example where 

polyculture species do not occupy distinctly separate niches. For the marron industry 

to take advantage of the potential rewards of marron-perch polysystems, a 

customised management strategy needs to be developed to target niche overlaps. 

This requires examination of the ecological processes governing production in these 

systems, including ethology of component species, the nature and intensity of 

interactions, and the influence of system dynamics on interrelationships. A sound 

understanding of keystone processes will enable better prediction of system 

requirements, whilst developing more flexible production guidelines, which can be 

utilised in situations using alternate component species and in operations outside of 

Western Australia. 

 

The work carried out in this thesis will assist the marron industry in Western Australia 

in providing a competitive edge through the use of polyculture technology to increase 

viability (production and profitability) of marron ponds. The research will aid farmers 

through identifying a more holistic, system level approach where ecology and 

ethology are paramount to decision processes and management strategies. 
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1.14  Aim and specific objectives 
 

To investigate the cognitive architecture of marron, that is, its ability to receive, 

process and utilise environmental information; the sensory modalities involved in intra 

and interspecific communication; how system specific factors can influence the nature 

and extent of interactions; and how each of these areas relates to production. The 

underlying goal of research is to use knowledge of species ethology and system 

ecology to shape management strategies, which will reduce antagonism and 

maximise synergism within aquatic polysystems in Western Australia. 

 

 

Specific objectives are divided into four study areas centred on investigating the 

basis for communication, interaction and response between fish and crayfish and the 

effects of interactions on production. The study areas were chosen to confront three 

levels of questioning; responses to simple cues, responses to multiple stimuli, and 

responses to multiple stimuli contingent on variations in system conditions. The 

research questions addressed in this thesis were: 

 

 

Study area one:          Interspecific chemical communication 
1. Do marron detect and respond to food odour?  

2. Are marron able to detect novel chemical signals (pheromones) from silver 

perch? 

3. Is foraging or other behaviour influenced by chemical detection of silver perch? 

4. Does response of marron to chemical cues from silver perch and food vary 

depending on crayfish size and age? 

 

Study area two:           Multiple exteroceptive cues 
1. Do marron detect visual cues from silver perch? 

2. Do marron demonstrate a cumulative or varied response to multiple information 

cues (visual and chemical)? 

3. Do marron differentiate exteroceptive cues regarding food and potential 

predation risk? 

4. Is foraging influenced by the detection of chemical and/or visual cues from silver 

perch? 
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5. How does general behaviour and avoidance strategies compare between marron 

and invasive crayfish species?  

6. Does the presence of exteroceptive cues from silver perch influence interaction 

behaviour between marron and other species of crayfish? 

7. Is individual and interaction behaviour between marron and other crayfish 

species altered between daytime and night-time conditions? 

 

Study area three:        Interaction responses to novel cues 
1. What interaction response occur between marron and a novel predatory fish? 

2. What impact does shelter and light intensity have on interaction between marron 

and a novel predatory fish? 

3. Do marron exhibit innate avoidance strategies in response to a novel predator?  

4. Do marron display recognition and learned responses to the presence of a novel 

predator? and are inducible defences effective?  

 

Study area four:          System variables  
1. How does stocking regime (relative stocking size, stocking time, density) of 

marron affect population dynamics, growth and survival of marron in ponds? 

2. How does stocking regime (relative stocking size, stocking time, density) of silver 

perch in cages affect population dynamics, growth and survival of marron in 

ponds? 

3. How does shelter complexity affect marron production in polyculture in ponds 

with caged silver perch? 

4. Does manipulation of cage culture dynamics affect silver perch condition? and 

does this affect marron production? 

5. Does polyculture produce any off-season benefits to either species, in terms of 

growth and survival? 

 

The questions within each study area are primarily addressed in subsequent chapters 

of this thesis, that is, study area one is examined in Chapter 4, area two in Chapter 5, 

area three in Chapter 6 and study area four in Chapter 7.  
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Literature Review 
 

 

This chapter provides an overview of aquatic polyculture, focusing  

on Western Australian technology and species. Discussion includes ecology of  

multi-species pond aquaculture and research relating to interspecific and  

intraspecific communication.  

 

In particular, predator-prey interactions are addressed due to 

niche overlaps existing between species available for 

culture in Western Australian polysystems 

 

‘This is an extended review to disseminate a broad research area  

and provide a solid base for future researchers’ 

Chapter two 
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2.1  Introduction 
 

In nature, aquatic systems are comprised of multiple species in virtually every case. In 

an artificial system, through informed management based on an understanding of the 

ecological processes occurring in nature, a multiple species strategy can provide 

several benefits including: increased water quality (Rouse et al. 1987, Azim and 

Wahab 2003), improved nutrient cycling (Riise and Roos 1997, Liu and Cai 1998, 

RIRDC 2002b), soil enhancement (RIRDC 2002b), and nitrogen fixing (RIRDC 2002b, 

Langdon et al. 2004). These benefits can equate to substantial increases in 

profitability for animal and plant based farming industries (e.g. Rouse and Stickney 

1982, Cohen et al. 1983, Scott et al. 1988, Swift 1993, Wahab et al. 1995). However, 

as the number of species increases, the complexity of the system increases 

disproportionately (Rouse 1987), presenting a trade off to the proponent of a multi-

species culture strategy seeking the benefits of mimicking the variety (and associated 

stability) in nature's aquatic systems. Taking advantage of these benefits requires a 

knowledge-gathering exercise that combines observation and experimentation of 

variables known to be involved (based on natural theories and understood ecosystem 

processes). Only then can the potential economic benefits of such a strategy be 

ascertained for aquaculture (Dailey 1997, Cork and Shelton 2000). 

 

An optimal environment is generally considered as one that promotes maximum 

production of the cultured animal. In practice, however, optimal environments often 

cannot be obtained economically. This leads to the need for balancing environment 

and production in an economic framework. In the case of marron polyculture in 

Western Australia, aquaculturalists are required to manipulate biotic and abiotic 

parameters within pond environments to reduce niche overlaps between component 

species (Whisson 2000). To do this aquaculturalists need to understand the ecology 

of integrated production systems and more specifically the behavioural ecology of 

cultured species. This is demonstrated historically with the complex multi-species 

cultures of China (Shepherd 1992), Asia and Europe (Milstein 1997, Reddy et al. 

2002) and Israel (Pillay 1993), where production gains stem from the selection of 

species which fill distinct synergistic niches within the system. 

 

This chapter examines the biological dynamics of multi-species systems, focusing on 

communication and interaction behaviour between conspecifics and heterospecifics, 
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and the influence of system-specific abiotic conditions. In an unstable marketplace, this 

information is vital for equipping farmers with the tools required to augment production 

through ecological management of systems and species, which may give them a 

competitive edge. 

 

 

2.2  World review - polyculture 
 

Polyculture is a multi-faceted business approach where more than one product is 

targeted within the same location (Whisson 2000). In addition to business advantages, 

polyculture can also provide benefits associated with advanced ecological stability and 

function (McKinnon et al. 2000, Gooley and Gavine 2003). One industry that has proven 

well suited to this technology is aquaculture (O’Sullivan 1996, Haroon and Pittman 

1997, Prein 2002). 
 

Traditionally, integrated aquaculture has been viewed as the combination of terrestrial 

and aquatic farming, where the output of the terrestrial crop becomes the input for the 

aquatic system. Typically, effluent from terrestrial crops is used to increase production 

of water plants and fish (Preston 2000, Barbara 2000), such as in the production of 

tilapia (Oreochromis niloticus) in ponds, which has been increased by effluent from 

adjacent pig farms (Thy and Preston 2003). In this example, pig manure is converted 

into biogas and effluent by biodigestors (Botero and Preston 1995), and the effluent is 

delivered to ponds resulting in increased phytoplankton - feed for tilapia. Aquaculture 

has been successfully integrated with a number of diverse enterprises, including: 

 

• Integration into land-based horticulture–agriculture systems (Sharma and 

Olah 1996, McMurty et al. 1997, Prein 2002); 

• Dual-cropping complementary species (Brunson and Griffin 1988, Haroon 

and Pittman 1997); 

• Generation of valuable bi-products (O’Sullivan 1996, Scott et al. 1998); 

• Crop rotation (Brown et al. 1974), where seasonal use of same system by 

alternate species can offer synergistic rewards; 

• Tourism-based services (O’Sullivan 1996, Saunders and O’Sullivan 1998);  

• Aquatic polyculture - culture of complementary aquatic species in the same 

system where niche overlaps are minimised (Brown and Gratzek 1980, 

Tucker and Robinson 1990, Milstein 1997, RIRDC 2002b). 
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Aquatic polyculture, is integrated aquaculture within a single aquatic system (Whisson 

2000), whereby outputs from one crop become inputs for another crop wholly within 

the same aquatic system. Examples of polycultures include the culture of catfish, carp, 

eels and pond snails in macrophyte ponds (World News 2005), or growing crayfish in 

rice paddies during re-flooding after summer-fall harvest of rice (Mitsch and Gooselink 

1993), where crayfish feed on detritus and crayfish-effluent increases production of 

rice crop in the subsequent season.  

 
 
2.2.1 Aquatic polyculture 
 

Aquatic polyculture has been practiced throughout the world for over a thousand years 

(Pillay 1993, Milstein 1997) and contributes a significant amount of product to world 

aquaculture production (FAO 2004). Increasing the number of species cultured not 

only takes advantage of the inherent economic and risk spreading benefits from a 

diversified industry (Section 1.8) but also incorporates a number of within-system 

benefits due to synergistic alliances formed between species. Advantages from aquatic 

polyculture include (Whisson 2000):  

 

• Greater combined production – even if individual species’ production is 

lower than achieved through monoculture (Brick and Stickney 1979, 

Hepher and Pruginin 1981, Tuten and Avault 1981, Rouse and Stickney 

1982, Pillay 1993); 

• Improved system management, where secondary species are deliberately 

stocked to improve system conditions, with a view to increase production of 

the primary species (Brown and Gratzek 1980, Tucker and Robinson 1990, 

Medley et al. 1993, RIRDC 2002b, Luong et al. 2005); examples include, 

increased nutrient cycling through addition of nitrogen fixing crops such as 

legumes, water ferns and other floating plants (RIRDC 2002b); 

• Increased cost-effectiveness, where costs can be spread between more 

than one crop (Brown and Gratzek 1980, Huner 1986, Pillay 1993); 

• Population control, where a secondary species is stocked purely to control 

the number of a primary species in an effort to improve marketable yield 

(Chervinski 1975, Dunseth and Bayne 1978, Hepher and Pruginin 1981, 

Pillay 1993, Fischer and Grant 1994); 
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• A more diverse and stable ecosystem, where niches are filled by 

compatible species, both plant and animal, for increasing aesthetics/

tourism value (O’Sullivan 1996, Saunders and O’Sullivan 1998); 

• A cost-effective and rich source of animal protein for the primary species 

(Tucker and Robinson 1990, Parker 1992, RIRDC 2002b) or the addition 

of aquatic plants for herbivorous fish (duckweed in carp polycultures in 

Bangladesh - Azim and Wahab 2003); 

• An integrated permaculture system providing outputs for domestic 

consumption (O’Sullivan 1995, O’Sullivan 1996, Amand 1997). 

 

The many benefits of multi-cropping aquatic species make polyculture an attractive 

research focus. However, the movement away from specialised monoculture 

practices does increase management concerns. Diversification often involves 

significant financial outlay, staff training for new skills required, access to new 

resources and most importantly an ability to create or respond to new market 

opportunities (RIRDC 2002b). The greater management needs of multi-species 

systems are further compounded if negative interactions exist between species. The 

selection of component species with distinct ecological requirements and with 

complementary feeding habitats is important for a properly functioning ecosystem, 

however this is often not possible. In most cases limited species selection results in 

some degree of overlap between occupants, as is the case with marron-silver perch 

duoculture in Western Australia (Whisson 2000). For aquatic polyculture to be 

successful in these situations the niche requirements of species must be identified 

and understood, and in order to mediate overlaps between species, a sound 

understanding of the ecological processes governing interactions is required.  

 

There are many examples of successful species combinations from around the world, 

producing both substantial gains in profitability and improved system sustainability, 

compared with traditional monocultures. 

 

 

2.2.2 Finfish polyculture 
 

Finfish polyculture is perhaps the most recognised and traditional form of multi-

species aquatic systems, with examples dating back to China in the tenth century 
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(Pillay 1993, Milstein 1997). Numerous beneficial species combinations have been 

explored and reported and these include such ventures as the polyculture of: 

 

• Marble goby (Oxyeleotris marmorata) and carps (Luong et al. 2005); 

• Channel catfish (Ictalurus punctatus) and rainbow trout (Oncorhynchus mykiss) 

(Beem et al. 1988); 

• Silver carp (Hypthalmichthys molitrix), grass carp (Ctenopharyngodon idella), 

bighead carp (Aristichthys nobilis), mud carp (Cirrhinus molitorella) and black 

carp (Mylopharyngodon piceus) in China (Shepherd 1992);  

• The Indian major carps, catla (Catla catla), rohu (Labeo rohita), mrigal (Cirrhina 

mrigala) and calbasu (Labeo calbasu) in Asia and Europe (Milstein 1997, Reddy 

et al. 2002);  

• Tilapia with carp and mullet (Mugil cephalus) in Israel (Pillay 1993); 

• Tilapia with a range of predatory species (Hemichromis fascatis, Ophiocephalus 

obscuris, Micropterus salmonides, Channa striata, Cichla ocellaris, Elops 

hawaiensis and Dicentrrarchus sp.) to reduce stunting due to overcrowding 

(Chervinski 1975, Dunseth and Bayne 1978, Fischer and Grant 1994, De Graaf 

et al. 1996); 

• Channel catfish (Ictalurus punctatus) with tilapia as a protein rich food source in 

the United States (Brown and Gratzek 1980, Parker 1992); 

• Baitfish in the United States (Brown and Gratzek 1980) including catfish (I. 

Punctatus) and minnows (Pimephales promelas and P. notatus), catfish with 

bluegill (Lepomis macrochirus) and bass (Micropterus salmoides), golden 

shiners (Notegmigonus crysoleucas) and fathead minnows (P. promelas) with 

freshwater prawns;  

• Milkfish (Chanos chanos) in southeast Asia (Milstein 1997), with species such as 

Penaeid shrimps, mullet (Mugil tade and M. parsia), sea bass (Lates calcarifer), 

carps, mudcrabs (Scylla serrata) and pearlspot (Etroplus surarensis) cultured in 

Taiwan, Hong Kong, Israel, Egypt and India (Pillay 1993); and 
• Salmonoids (Brown et al. 1974), trout sp. and channel catfish (Brown et al. 1974, 

Beem et al. 1988). 
 

There are also many examples of combinations that have not proven successful, often 

as a result of interspecific dynamics. Examples include: tilapia and freshwater prawns 

(M. rosenbergii), where yields of prawns were low (Brock 1988); channel catfish, silver 
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carp, bighead carp, paddlefish (Polydon spathula), freshwater prawns (M. rosenbergii) 

and freshwater crayfish (Procambarus clarkii), which resulted in reduced production of 

decapods (Green et al. 1979, Tucker and Robinson 1990); duoculture of turbot 

(Scapthalmus maximus) and Atlantic salmon (Salmo salar), where species displayed 

limited potential due to climatic and economic constraints. These examples illustrate the 

importance of species choice and appropriate management where knowledge of species 

characteristics and system niches (spatial and temporal) are matched appropriately to 

maximise success. 

 

In all polysystems, the selection of complementary component species is central to 

successful production, where appropriate choices can allow complex species rich 

systems. In the prominent carp cultures of China, where up to seven species are 

cultured in situ, the individual ecological roles of each species display synergistic 

qualities paramount to success. The five base species in these systems each fill an 

individual feeding niche, with phytoplankton consumed by silver carp, macrophytes by 

grass carp, macroplankton by bighead carp, detritus by mud carp and molluscs targeted 

by black carp (Pillay 1993). In addition, common carp (Cyprinus carpio) are often 

integrated as a scavenger. The same division of species with distinct ecological roles is 

seen in many other systems (e.g. Brown and Gratzek 1980, Tucker and Robinson 1990, 

Parker 1992, RIRDC 2002b, Luong et al. 2005), for example, mullet are used to control 

increased phytoplankton growth due to nutrients from milkfish culture, and crabs are 

incorporated in targeting macrovegetation and detritus (Pillay 1993).  

 

 

2.2.3 Decapod-finfish freshwater polyculture 
 

Due to the distinct benthic niche occupied by large decapod crustaceans (crayfish, 

prawns and shrimp) they are a common choice for polyculture with pelagic finfish 

species (Eldani and Primavera 1981, Rouse and Stickney 1982, Cohen 1984, Rouse et 

al. 1987, Brummett and Alon 1994). For this reason they are often a successful addition 

to even established multi-species fish polycultures (Green et al. 1979, Malecha et al. 

1981, Tuten and Avault 1981, Schroeder 1983), with improved yields, increased profit 

and increased ecological efficiency reported in many species combinations (Table 2.1).   
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Table 2.1    Decapod polyculture combinations displaying improved yields in freshwater 

Crustacean species Polyculture species Reference 

Freshwater crayfish  

Cherax tenuimanus  
(marron) 

Silver perch, B. bidyanus Whisson 1998, 2000; Storer et 
al. 2004a 

 Mullet (Mugil cephalus), mussels 
and shrimp. 

O’Sullivan 1995 

Cherax quadricarinatus 
(redclaw) 

Red  hybrid tilapia (Oreochromis 
hybrid) 

Barki et al. 2001 

 Carp Tucker and Robinson 1990 

Procambrus clarki  
(Red swamp crayfish) 

Various Chinese fish sp. Xinya 1995 

 Numerous predaceous finfish Huner 1976 

Freshwater prawns and shrimp   

Macrobrachium 
rosenbergii 
(Freshwater prawn) 

Channel catfish  
(Ictiobus cyprinellus) 

Huner et al 1983a; Miltner et 
al. 1983; Cange et al. 1986; 
D’Abramo et al. 1986; Heinen 
et al. 1987, 1989. 

 Fathead minnows (Pimephales 
promelas) and golden shiners 
(Notegmigonus crysoleucas) 

Perry and Tarver 1987 

 Carp sp. Malecha et al. 1981; Cohen et 
al. 1983; Miltner et al. 1983; 
Schroeader 1983;  Fitzgerald 
1988; Hulata et al. 1990; Sarig 
1992. 

 Tilapia sp. Brick and Stickney 1979; 
Cohen et al 1983; Schroeder 
1983; Meriwether et al. 1984; 
Martino and Wilson 1986; 
Rouse et al. 1987; Hulata et al. 
1990; Sarig 1992; Sadek and 
Moreau 1996. 

 Baitfish sp. Crawford and Freeze 1982; 
Perry and Tarver 1987; Scott 
et al. 1988. 

Penaeus chinensis  
(Chinese shrimp) 

Taiwan red tilapia (Oreochromis 
mossabicus and O. niloticus) and 
constricted tangelus 
(Sinonovacula constricta)  

Tian et al. 2001 

   

 Silver perch, B. bidyanus Jones and Ruscoe 1996 
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Many crustacean species have not proven amenable to polyculture (Karplus et al. 

1995, Kotha and Rouse 1997, Rouse and Kahn 1998), such as many species of 

Penaeid prawns where polyculture has resulted in half the gross revenue of 

monoculture (Shang 1983). In these cases improved management practices can 

sometimes aid in overcoming negative effects (Huner et al. 1983b, Whisson 2000). 

 
 
2.2.4 Polyculture of Australian species 
 

Diversification of aquaculture industries in Australia is a relatively new trend (Saunders 

and O’Sullivan 1998) and as such, farmers wishing to explore possible combinations 

of species have few local examples in which the potential for successful aquatic 

polyculture can be examined. However, the use of Australian species for polyculture 

has attracted overseas interest (Medley et al. 1993, Brummett and Alon 1994, Karplus 

et al. 1995) and the outcomes from research carried out can be used to infer potential 

viability of similar systems in Australia.  

 

Of the few Australian species combinations examined, the polyculture of Australian 

Cherax crayfish species with finfish appears to hold the highest potential in freshwater 

systems. Overseas aquaculturalists identified the potential of Cherax crayfish 

polycultures, with a number of investigations carried out throughout Israel and 

America, beginning in the early 1990s. These investigations were primarily focussed 

on Cherax quadricarinatus (redclaw), and demonstrated varied results. In Israel, 

Karplus et al. (1995) combined C. quadricarinatus (redclaw) with common and silver 

carp, tilapia hybrids, African catfish (Clarias gariepinus) and the carnivorous 

freshwater crab Potamon potamonius. Although fish species survived and grew well, 

crayfish survival was low (25%) with suggestions that climatic conditions were 

unfavourable to redclaw culture. These findings were supported in a study conducted 

in Alabama, USA, where redclaw were grown with tilapia (Rouse and Kahn 1998). In 

this study, a definitive comparison was made between redclaw monoculture and 

polyculture systems (not done in previous example), which revealed low survival in 

both systems (<25%). As continued studies in the region demonstrated higher survival 

of polycultured redclaw (Medley et al. 1993, Pinto and Rouse 1996, Kotha and Rouse 

1997), the negative results from the initial trials conducted by Karplus et al. (1995) and 

Rouse and Kahn (1998) were assumed related to factors other than cohabitation with 
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fish, such as reduced stock quality related to shipping conditions. Redclaw-tilapia 

duoculture in South Carolina (USA) demonstrated antagonistic interactions between 

species (Brummett and Alon 1994). In this study, tilapia growth was significantly 

reduced, with production negatively affected through disruption of feeding and 

spawning behaviour by crayfish, although crayfish showed no negative effects from 

duoculture (growth, incidence of intersexuality and percentage of berried females) and 

feed conversion of tilapia was improved compared to monoculture.  

 

In Australia, research into Cherax crayfish polyculture systems has been carried out 

over the past 10 years. Jones and Ruscoe (1996) introduced the Australian native 

silver perch to established redclaw ponds in Queensland. Although survival was 

greatly reduced by cormorant (Phalacrocorax sp.) predation and definitive conclusions 

were limited by insufficient replication, the authors reported that polyculture economics 

were favourable. In this study, a total yield of 2849 kg/ha was recorded from 

polyculture, including 2358 kg of crayfish, compared to 2285 kg in monoculture ponds 

(Jones and Ruscoe 1996).  Since then, a number of Cherax duoculture ventures have 

demonstrated positive benefits. The most encouraging results have been with 

cohabitation of silver perch (B. bidyanus) and marron. In Victoria (O’Sullivan 1996) 

and in New South Wales (O’Sullivan 1998) production of over 300 kg/ha for marron 

and 10,000-20,000 silver perch/ha were reported (O’Sullivan 1998). The greatest 

amount of work on marron-silver perch polyculture systems has been conducted in 

Western Australia, where aquatic polyculture was identified as a future priority to 

enhance marron monoculture production (Lawrence 1999). The results of this work 

are discussed in the following section. 

 

 

2.2.5 Marron polysystems 
 

The marron aquaculture industry is a prime candidate for aquatic polyculture. New 

industries, such as marron aquaculture, are more exposed to business risk due to 

evolving technologies and sudden shifts in product demand, and are therefore more 

likely to gain the greatest benefit from diversification of product lines (Whisson 2000). 

Furthermore, one of the major problems confronting marron monoculture production is 

variable growth and survival, which not only affects overall production but reduces the 

ability of farmers to quantify outputs, making meeting orders difficult. Continuity of 
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supply is a critical component for the long term success of industry, especially where 

young industries are trying to established permanent markets (Morrissy 1990, 

Whisson 2000). Aquatic polyculture has proven to reduce variability of growth and 

survival (Rouse et al. 1987, Whisson 2000). The implementation of polyculture within 

the marron industry also takes advantage of existing infrastructure that can be utilised 

with little modification and without disruption of other activities. 

 

Although polyculture may indeed hold the key to some of the problems faced by the 

marron industry, there are a few core aspects inhibiting wide-ranging implementation 

in Western Australia. Polyculture is a practice that focuses on increasing system 

yields by stocking species displaying complementary feeding characteristics (Rouse 

et al. 1987, Scott et al. 1988, Brummett and Alon 1994) and this is not the case in 

Western Australia, with species choice limited by strict translocation policies and little 

to no native candidates. The polyculture of marron and silver perch has demonstrated 

the highest potential of the limited species combinations available.  

  

Research into the commercial polyculture of marron and silver perch was pioneered 

by Dr Glen J. Whisson (1995, 1997, 1999, 2000). These studies, and the studies in 

this thesis, are the sum knowledge in the area of marron-perch polysystems. In 

Whisson’s PhD thesis (2000) ‘Investigations into the commercial polyculture of 

Cherax tenuimanus and Bidyanus bidyanus’, several conclusions were made relating 

to specific culture technology, these are discussed below. 

 

 

2.2.5.1 Interspecific interactions in free-range cultures 
 

Silver perch have been shown to predate on small and moulting marron, especially in 

clear-water systems (Whisson 1997, 2000). In one trial, marron pond yields were 

approximately half that of monoculture systems, attributed mainly to reduced survival 

(Whisson 1998). However, in this, and other free-range trials, growth rates of marron 

were favourable and suggested that correct management of niche overlaps between 

silver perch and marron could still produce commercial benefits (Whisson 2000). 
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2.2.5.2 Managing interactions 
 

Whisson (1998, 2000) trialed silver perch in purpose built floating cages within marron 

ponds, in an attempt to reduce negative interaction seen in early attempts. Although 

results were varied (growth and survival), in several systems marron production 

demonstrated a significant increase over monoculture yields. In three studies, 

increases in pond yields over monoculture were approximately 125% (Experiment 1), 

153% (Exp. 2) and 280% (Exp. 3) (Figure 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1    System yields from marron and silver perch production experiments: polyculture 

versus monoculture (Whisson 2000) 

 

Partial budget analysis indicated that culturing silver perch in floating cages in marron 

ponds could significantly increase net revenues (Whisson 2000), a result supported by 

other researchers assessing polyculture economics for other species combinations 

(Rouse and Stickney 1982, Engle and Brown 1998). Also, the culture of caged silver 

perch was seen as an effective management tool for a number of other reasons, 

including ease of stock control, grading, harvesting, and better observation of feeding 

responses and condition. 
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2.2.5.3 Problems and recommendations 
 

Although polyculture bioeconomics were favourable, many elements were less than 

desirable. Adult silver perch demonstrated reduced performance (growth and 

condition) when held in cages, and fry did not appear amenable to cage cultures at all, 

with low survival reported (Whisson 2000). In order to optimise production, cage 

culture conditions require improvement, and ideal stocking size of perch to produce 

marketable sized fish in a short grow-out period (i.e. one season) are needed. 

Although synergistic benefits to marron were revealed, survival and growth was highly 

variable (Table 2.2 and 2.3). 

 

Table 2.2    Marron survival data (%) from polyculture experiments (Whisson 2000) 

 

 

 
 
 
 
 
 
 
 

 
Table 2.3    Mean initial and final weight of marron and silver perch in free-range polyculture     

                    tanks and ponds (Whisson 2000) 

 

 

 marron  
monoculture 

free-range  
polyculture 

Caged polyculture  

 High density Low density 

Experiment 1  
Preliminary tank study 77.0 ±11.4a 89.3 ± 3.2a n/a 75.0 ± 9.7a 

Experiment 2  
Preliminary pond study 68.4 ± 9.1a 71.9 ± 5.3a 70.1 ± 9.2a 75.6 ± 2.3a 

Experiment 3  
Interaction study in tanks 85.0 ± 10.5a n/a n/a 

Experiment 5  
Commercial pond study 13.8 ± 8.7ab 9.8 ± 3.9a 29.0 ± 2.2b 27.5 ± 5.5b 

33.0 ± 11.1b 

 marron  silver perch   

 initial (g) final (g) initial (g) final (g) 

Experiment 1  
Preliminary tank study 3.5 46.0 1.0 13.5 yes 

Experiment 2  
Preliminary pond study 

17.5 122.0 0.65 148.0 no 

Experiment 3  
Interaction study in tanks 

130.0 112.0 515.0 n/a yes 

Experiment 5  
Commercial pond study  4.1 62.0 12.3 251.0 yes 

*final weight of 0+ marron harvested in Experiment 2 and 3 

Evidence of 
predation on 

marron 

yes 148.0 0.65 5.0* 17.5 

n/a 3.5* 515.0 n/a yes 
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The high variability of results suggests influence from system-specific conditions. 

Several contributing system variables have been examined, and several more 

identified (Whisson 2000). These included: turbidity, where a positive correlation (0.93 

and 1.00 R2 in two experiments) was found between marron survival and Secchi 

depth; shelter density, where increased shelter was related to increased survival of 

marron, especially juveniles; and also growth-density relationships, where variations 

in growth appeared correlated to pond biomass, even with perch in cages. The 

recommendations stemming from the research into marron-perch polysystems, 

whether for free-range or cage cultured fish, involved focus on turbidity, supplemental 

feed, stocking size of crayfish and finfish, crayfish gender, habitat complexity, life 

stage (including moulting patterns), cage culture dynamics (cage dimensions, 

materials and mesh size), relative densities, and water quality.  

 

The way each of these factors directly impact on the nature and intensity of 

interactions between participating species and their environment, and the subsequent 

effects of interaction responses need to be examined. Therefore, understanding the 

basis for communication and interaction between component species is paramount.  

 

The success of aquatic polyculture is a function of the biological and economic 

circumstances of species and environment (Pillay 1993). Optimising polyculture 

management strategies and technologies relies on research focussed on system and 

species ecology, with specific attention to niche occupation, species interaction and 

the role of system specific dynamics. The following section looks at the dynamics of 

multiple species systems and the impacts of variations in dynamics on production 

potentials for Western Australian polysystems. 

 

 

2.3 Ecology of aquatic polysystems 
 

The technology for integrating species within an aquatic biosystem has been 

developed over more than a thousand years (Pillay 1993, Milstein 1997). A review of 

literature throughout this period has demonstrated an increasing tendency of 

researchers to examine the core principles of system ecology and species ethology in 

order to explain the dynamics of multi-species systems and enable more accurate 

prediction of management requirements.  
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The major areas targeted by researchers to explain the ecological processes 

governing multi-species systems include: 

 
Biotic Factors 
 

• Community structure and trophic dynamics (Moav et al. 1977, Appelberg 

and Odelstrom 1988, Siddiqui et al. 1996); 

• Intraspecific competition (Denno et al. 1994, Diaz et al. 1995a/b, Li et al. 

2000, Listerman et al. 2000); 

• Predatory relationships (Gilinsky 1984, Boal and Marsh 1998, Brown et al. 

2000) - top down effects (Schmitz and Suttle 2001); 

• Avoidance responses (Hazlett and McLay 2000, Diaz et al. 2001, Woodley 

and Peterson 2003); 

• Synergistic conditions (Stickney 1986, Jones and Ruscoe 1996, Whisson 

1998, 2000); and, 

• Foraging efficiency (Charnov 1976, Krebs and Davies 1978, 1991, 

Kaufman et al. 1996). 

 

Abiotic factors 
 

• Turbidity (Hartnoll, 1982, Benfield and Minello 1996, Chivers et al. 1996b,  

2001, Clark et al. 2002, Reynolds 2002); 

• Habitat complexity (shelter and substrate) (Quammen 1984, Reinsel and 

Rittschof 1995, Clark et al. 2002, Gazdewich and Chivers 2002); 

• Water flow (Hansen et al. 1991, Hart and Merz 1998, Powers and Kittinger 

2002); 

• Stocking regime (density, size, timing) (Shepherd and Bromage 1992, 

Blake and Hart 1993b, Preston et al. 1999, Whisson and Storer 2003, 

Storer et al. 2004a); 

• Species selection (Cohen 1984, Head et al. 2002); 

• Specific management devices, such as cage culture (Beem et al. 1988, 

Beveridge 1996, Whisson 2000). 

 

In nature, organisms have to manage conflicting demands of food gathering, 

competition, predator avoidance, and finding a favourable abiotic environment in order 

to maximize their fitness. The following review analyses the decisions made by 

animals in respect to influences from system-specific factors, and how their decisions 
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affect production in multi-species systems. This review encompasses examples from 

both aquaculture and natural systems, including where non-endemic introductions 

have occurred, which are directly applicable to multi-species culture systems. 

 
 
2.3.1 Trophic dynamics in multi-species systems 
 

Interaction between fish and lower order consumers like macroinvertebrates plays an 

important role in the trophic ecology of aquatic systems. In an integrated pond system, 

waste serves as nutrient for phototrophic and detrivorous/heterotrophic conversion by 

plants, bacteria, and invertebrates (Li 1987, Riise and Roos 1997, Liu and Cai 1998). 

Invertebrates such as crayfish are generally considered as polytrophic omnivores 

(Momot et al. 1978, Huner 1994), accepting a range of feed types depending on the 

present dynamics of the system. Although crayfish are reported to have a predilection 

for animal protein (Momot 1995) they often target detritus (Morrissy, 1978) and 

vegetation (Moore 1986, Bird 1995), and these preferences can change depending on 

age, season and physiological state (Momot et al. 1978, Goddard 1988). Many 

problems encountered in crayfish-finfish polyculture occur because the majority of 

cultured fish are higher-order consumers, with crayfish often a principle food item. 

Examples of commonly aquacultured finfish that predate on marron include, flatfish 

(Pihl 1985, Wilson 1989), largemouth bass (Microperus salmoides, Lambou 1961, 

Taub 1972, Crowl 1989, Hickley et al. 1994), smallmouth bass (M. dolomieu, Rabeni 

1992), pike (Esox lucius, Elvira et al. 1996), trout (Salmo trutta and S. gairdneri, 

Momot 1967, Faragher 1983), white perch (Morone americana, Reid 1972), Murray 

cod (Gunasekera et al. 1998) and European perch (Perca fluviatilis, Blake and Hart 

1993b, Söderbäck 1994).  

 

Understanding trophic dynamics can aid management strategies in multiple species 

systems. Macroinvertebrates, such as crayfish, are essential parts of ecosystems, 

representing integral links between primary production or detritus, and higher trophic 

levels. Due to their critical link in aquatic ecology, crayfish are often incorporated into 

fish cultures for the sole purpose of nutrient capture from plant material and waste, and 

delivery to cultured fish through predation on crayfish (Schneider et al. 2004). The 

same strategies are employed where bait species are introduced to primary cultured 

species to both increase nutrition and reduce feed costs, and where live food is 
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important to stimulate feeding (some species) (Liao et al. 2001); for example, Langdon 

et al. (2004) combined dulse (red seaweed) and red abalone, where dulse was 

effective in providing food for abalone and improving water quality by removal of 

excreted ammonia.   

 

Some species of fish, such as silver perch (B. bidyanus), are polytrophic, feeding on 

aquatic vegetation (Grant 1987, Whisson 1997, FWA 1998) and macroinvertebrates 

(Barlow et al. 1986, Whisson 2000), including freshwater crayfish (redclaw; Jones and 

Ruscoe 1996, marron; Whisson 1997, 1998). Furthermore, silver perch have been 

shown to alter preference for freshwater crayfish depending on life stage and system 

conditions. Barlow et al. (1986) reported that silver perch avoided C. destructor in 

agricultural farm dams. Barlow (1991) and Lambert (1998) reported that silver perch 

will accept artificial feeds even in the presence of natural food. Jones and Ruscoe 

(1996) suggested that marron >5g are less susceptible to perch predation, while Allen 

(1995) and Hogan (1995) reported that the proportion of algae and other plant material 

in their diet increases as silver perch grow. 

 
 
2.3.2 Synergistic advantages of multi-species systems 
 

Synergism is ‘the joint action of two or more substances, so that when acting together, 

their affect is greater than the sum of the parts (Hefferenan 1992). In polyculture, 

many authors have suggested that an appropriate combination of species could lead 

to synergism in terms of growth (Sarig, 1988, Milstein, 1992). 

 

The reason polyculture is pursued despite increased management requirements, is 

both due to the direct economic advantages from risk spreading, and synergistic 

advantages stemming from increased ecological stability. The potential of polyculture 

to increase total pond yields (e.g. Rouse and Stickney 1982, Cohen et al. 1983, Scott 

et al. 1988, Swift 1993, Wahab et al. 1995) has been attributed to a more advanced 

recycling process (Cohen 1984), where benefits are associated with improved water 

quality and re-distribution of food (Rouse et al. 1987). Benthic dwellers, such as 

crayfish, can more easily convert the rich, partially digested faecal pellets from some 

species of finfish (Yashouv 1971), resulting in higher yields of crayfish. This same 

relationship has also been suggested to explain increased marron growth in 

duoculture with silver perch (Whisson 2000).  
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2.3.3 Community structure  
 

In aquaculture the complexity of the aquatic systems, and therefore management 

requirements, increases with the more species cultured.  

 

In monoculture, community structure is relatively straightforward in that intraspecific 

relationships are a generally a function of a limited number of key factors.  One of the 

core factors driving many responses is competition. Competition between individuals 

often occurs in response to limited resources, including territory, shelter, feed, or 

reproductive partners. In many aquatic species a pecking order is established where 

certain individuals have first access to the best resources. This ‘social hierarchy’ is 

dependent on a number of factors, the most common being body size (Peters et al. 

1980, Beacham 1987). However, as stable social hierarchies exist even in groups of 

similar sized animals (Giaquinto and Volpato 1997) other influences are also 

important. These influences can include: sex (Halperin and Dunham 1994), 

reproductive status (Francis 1983, Smith 1986), previous hierarchical standing (Zayan 

1974, Goncalves 1993) and prior residence in respect to shelter or territory (Zayan 

1975, Stacey and Sorensen 1991). 

 

Factors affecting dominance hierarchy form a dynamic multivariate system where the 

effect of each element can depend on the intensity of the others. For instance, a fish 

slightly smaller than the opponent may be dominant once inside its territory (Kaufman 

1983). The mechanisms involved in such events are poorly understood, but 

associative learning processes have been proposed (Francis 1983). In fact individual 

recognition is undoubtedly an important stabilising factor for social hierarchy (Holder 

et al. 1991) Social hierarchies can have negative outcomes for aquaculture 

production. For instance, rainbow trout (Oncorhynchus mykiss) in monoculture will 

establish a social hierarchy in which interrenal cell activity, and presumably the stress 

response is inversely related to position in the pecking order (Grier and Burk 1992). 

Channel catfish (I. puctatus) have been shown to grow and convert food less 

efficiently when fish of varying sizes are cultured together (Halperin and Dunham 

1993, Halperin and Dunham 1994), and in crustaceans, the use of moult inhibiting 

hormones by dominant individuals is well documented to reduce growth in 

surrounding conspecifics (Mattson and Spaziani, 1985, Skinner, 1985, Watson et al. 

1989, Hazlett 1994a, Webster 1998, Bouwma and Hazlett 2001, Gherardi et al. 2002). 
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One of the main aims of aquaculturalists is to provide enough resources so 

competition is unnecessary. This includes provision of enough feed, shelter-territory, 

optimal water quality throughout all areas of the system and providing for reproduction, 

i.e. male : female ratios, or removing reproduction from systems by culturing outside of 

reproductive season or utilising single sex cultures. Competitive interactions will 

negatively affect production either through increased mortality, or reduced growth of 

some individuals through exclusion from feed or heightened stress. Physiological and 

behavioural responses to stress redirect resources used in growth (Appelberg and 

Odelstrom 1988, Haefner and Spaargaren 1993, Jussila et al. 1997, Patterson and 

Spanoghue 1997). 

 

Long-term research into monoculture practices has lead to increasing optimisation of 

management techniques. However, these management techniques are greatly 

complicated in multiple species systems. When two or more animal species use a 

limited resource, aggressive interactions are often reported as the behavioural 

mechanism underlying resource distribution (Hazlett et al. 1996). Species stocked in 

polyculture systems may affect each other if they compete for a limited resource such 

as food, or exceed the capacity of the culture system causing degradation of the 

environment (Tomasso 1996). Some polyculture attempts have demonstrated no 

negative impact (Gherardi 1990), while others exhibit positive interactions between the 

culture species (Kakinami 1990). How species will interact with each other is difficult to 

predict without a thorough understanding of all factors involved.  

 

Understandably, predation is one of the most significant determinants of community 

structure and stability (Gilinsky 1984). In these situations, understanding the dynamics 

of interspecific interaction (predator-prey) is especially important.  

 

 

2.3.4 Predator-prey interactions  
 

Predator-prey relationships can be extremely complex within multi-species systems 

(Stein 1977, Fischer and Grant 1994), with complexity growing disproportionately with 

the number of cultured species in the system.  

 

Both predator and prey alter their behaviour in response to interaction (Croze 1970, 

Stein 1977, Beukema 1968, Schapker et al. 2002) and these alterations in behaviour 
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can influence production. In crayfish, a common response is to reduce overall activity 

or choose the most complex shelter available in the presence of fish predators (Stein 

and Magnusson 1976). Obviously, if the crayfish loses time otherwise dedicated to 

behaviours such as foraging, a reduction in growth would be expected. Predator 

avoidance responses that can have other deleterious affects on production also 

include reproductive interference (Fuelling and Halle 2004), or increasing competition 

between conspecifics (Werner 1991, Kotler et al. 1994) as densities increase in shelter 

and food choices in safe areas are more limited. The response of crayfish to potential 

threats is a multi-faceted decision process based on a range of factors primarily 

focussed on the degree of threat and necessity for food. The vulnerability of prey (or 

related success of predation) varies with many conditions - consistent across both 

freshwater (Peckarsky et al. 1990, De Nicola and McIntire 1991, Sih and Wooster 

1994) and marine benthic systems (Palmer 1988). Factors influencing prey 

vulnerability include:  

 

• Water quality (turbidity; Benfield and Minello 1996, temperature; 

Achenbach and Lampert 1997, Rincon et al. 2002, dissolved oxygen; 

Weider and Lampert 1985, Pihl et al. 1991, Breitburg et al. 1994, pH; 

Arnott and Vanni 1993, or toxicants; Hanazato 1991); 

• Water movement (Hansen et al. 1991, Hart and Merz 1998); 

• Prey size (Stein and Magnusson 1976, Rincon et al. 2002); 

• Life stage (molting; Stein 1977); 

• Reproductive stage (Rincon et al. 2002); 

• Experience of predator and prey (Chivers and Smith 1995; Mirza et al. 

2001, Gazdewich and Chivers 2002);  

• The presence of other enemies like parasites (e.g. Burns 1985, Ebert 

1995) or competitors (e.g. DeMott 1989, Boersma 1995); 

• Prevailing habitat complexity (substrate type; Quammen 1984, Reinsel and 

Rittschof 1995; shelter type; Rincon et al. 2002); 

• Availability of food (e.g. Dawidowicz and Loose 1992, DeMott 1995, 

Tollrian 1995); or,  

• Presence of alternative food sources (Whisson 2000) . 

 

An example of variations in vulnerability exists with cohabitation of crayfish and the 

predacious finfish, bass and perch. Bass and perch in freshwater lakes in Wisconsin, 
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USA, have been shown to select Orconectes propinquus that have recently moulted 

over individuals in intermoult (Stein 1977). It was also reported that targeting the 

recently moulted, softer shelled, crayfish allowed the predatory fish to consume a 

much larger sized crayfish compared with intermoult prey (Stein 1977). In addition to 

the ease of capture of moulting or immediate post-moult crayfish, as crayfish greatly 

reduce activity during ecdysis and claws are soft and ineffective, it is reported that 

recent moults have twice the amount of digestible material as intermoults (Stein and 

Magnusson 1976) making them much more attractive to predators (Dehli 1981, Blake 

and Hart 1993b). In this scenario, as appears true for marron-silver perch 

combinations (Whisson 2000), vulnerability would increase following ecdysis, therefore 

provision of suitable habitat in appropriate areas within a polyculture system may 

greatly reduce stress and mortality of moulting crayfish.  

 

Predation is a strong selective force that shapes many behavioural, life history and 

morphological traits in prey animals (Sih 1987, Dodson 1989, Lima and Dill 1990, 

Chivers and Smith 1998). However, in many manufactured polyculture systems, such 

as with marron and silver perch, species do not have the luxury of evolved specific 

avoidance tactics as species are generally novel (no previous interaction). Therefore, 

aquaculturalists need to manipulate systems to provide vulnerable species with a 

competitive edge. To do this requires an understanding of how system variables affect 

interaction.  

 

 

2.3.5 Influence of system dynamics 
 

Major factors influence both positive and negative interactions within multi-species 

systems. The way these factors influence system ecology can be linked to the energy 

rewards and losses that come from the activities of the component organisms. This 

relationship is encompassed by the optimal foraging theory.  

 

 

2.3.5.1 Optimal foraging 
 

It is thought that predators will endeavour to maximise their net energy gain when 

hunting by targeting more vulnerable prey (Stein 1977). Optimal foraging theory 

predicts that decisions made by predators in searching for food (selection of area, how 
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much time to stay in area and what food to consume) will evolve under natural 

selection to enhance fitness (Charnov 1976, Krebs and Davies 1978). Predation is 

essentially a cost-benefit approach (Mitchell and Hazlett 1996), centring on obtaining 

the highest caloric reward at the minimal energetic cost. For example, Ware (1972) 

determined that carnivorous trout would decrease substrate orientated searching if 

they achieved a reward of less than 0.058 captures per second. Kaufman et al. (1996) 

demonstrated that large snails and those requiring short handling times were chosen 

by lizards over small snails and those requiring greater handling times.  

 

Optimal foraging has been studied in many species including amphibians, fish, insects 

and birds (Krebs and Davies 1978, Jaegar and Barnard 1981, Jaegar and Rubin 1982, 

Ranta and Nuutinen 1985, Krebs and Davies 1991). Optimal foraging models predict 

that animals should (Kaufamn et al. 1996): 

 

1. Be more selective when profitable prey are common; 

2. Ignore unprofitable prey that are outside the optimal set regardless of how 

common they are; and,  

3. Should concentrate on more profitable prey. 

 

In aquaculture, predator-prey interactions among culture animals can significantly 

affect production. This can be directly through predation, or via stress responses and 

reduced foraging in prey due to predation pressure (Milinski and Heller 1978). 

Appelberg and Odelstrom (1988) reported that the presence of Perca fluviatilis 

reduced activity and foraging of Pacifastacus leniusculus, resulting in depressed 

growth. As predation is related to ease of capture, by increasing the energy required 

by predators to locate and capture prey farmers should be able to reduce or even 

prevent predation. There are a number of reported factors capable of manipulation in 

aquatic environments that can increase the cost of consuming prey. In multi-species 

systems, correct management of these factors can not only protect and reduce stress 

of prey, but also force the predatory species to accept a more cost-effective artificial 

feed. Some of the major factors are turbidity or light intensity, habitat complexity, water 

flow and aeration, stocking regime, species choice and devices tailored to certain 

situations - such as cage culture.  
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2.3.5.2 Turbidity and light Intensity 
 

Most fish depend on vision in their search of prey (Guthrie 1986). This is evident in the 

preferred hunting times of visual predators, where strong diel variations are commonly 

correlated with time of highest light penetration (Clark et al. 2002). The effect of 

turbidity, reducing light penetration, on the ecology of aquaculture systems can have 

profound effects on visual predators (Vinyard and O’Brien 1976, Confer et al. 1978, 

Gregory and Northcote 1993, Benfield and Minello 1996, Utne-Palm 2004) and thus, 

on overall production. In clear-water systems, bluegills were shown to remain within 

habitat, both artificial (Savino and Stein 1982, 1989) and natural (Stein et al. 1988, 

Werner and Hall 1988), rather than risk predation (Miner and Stein 1996). However, 

when turbidity was increased, bluegills ventured into open water where predation risk 

was reduced and as a result, foraging was increased (Miner and Stein 1996).  

 

The relationship between turbidity and predation is essentially a function of cost-

reward benefits. Turbidity has been shown to be negatively correlated with reactive 

distance (maximum detection distance) of aquatic predators (Moore and Moore 1976, 

Berg and Northcote 1985, Miner and Stein 1996, Utne 1997). With increased reactive 

distance, predators need to increase search time, therefore increasing cost of locating 

and capturing prey.  Larval striped bass preyed less on copepods in turbid water but 

continued to consume Daphnia pulex independent of turbidity (Breitburg 1988). This 

suggests that lower energy gain from the copepod was enough to make the cost-

benefit of predation unprofitable to bass. The selection of particular size classes of 

prey by predators was shown not to be influenced by turbidity in the case of bass-

daphnia (Breitburg 1988) or bluegill (Lepomis macrochiris)-daphnia (Gardner 1981), 

however overall feeding rate was significantly reduced (Gardner 1981). For a 

polytrophic predator of crayfish, such as silver perch, this suggests that manipulation 

of turbidity may greatly influence feed choice. The tendency for omnivorous species to 

quickly alter feed choice in conditions of rising turbidity is more prevalent than in 

carnivorous species (Sigler et al. 1984).  

 

Is some cases, lower level predators have adapted to feeding in turbid environments. 

Small planktivorous fish and fish larvae have adapted to low or medium-light foraging 

(Boehlert and Morgan 1985, Miner and Stein 1993, Bristow and Summerfelt 1994, 

Bristow et al. 1996, Utne-Palm 1999), where there is a reduced effectiveness of 
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predators. Rieger and Summerfelt (1997) showed improved performance and viability 

of larval walleye (Stizostedion vitreum) in conditions of low turbidity, and Atlantic 

herring (Clupea harengus) were shown to spawn in the shallow coastal water, where 

clarity is reduced by freshwater runoffs and algal blooms. The reason why some 

predators can adapt to high-turbidity feeding relates to search area. Suspended 

particles between predator and prey scatter light and interfere with detection in the 

same way that fog affects long-distance vision but has little effect on the detection of 

close objects (Utne-Palm 2004). Thus, the short reactive distance of planktivorous fish 

relative to their piscivorous predators means that they benefit more from the positive 

effects of scattering and absorbance within their relative search volume (Giske et al. 

1994, Fiksen et al. 2002). Turbidity has been demonstrated to aid juvenile fish by 

increasing their feeding rate (Gregory and Northcote 1993), migratory activity (Ginetz 

and Larkin 1976), and increasing their use of open water (Miner and Stein 1996). 

 

Some predatory species display more dynamic predatory modes in the face of 

changing turbidity. When macrophytes were eliminated and turbidity increased in 

ponds containing roach, perch and crayfish, roach were able to switch from visual to 

tactile foraging at night and were more successful predators of crayfish than perch 

(Svensson 1993). Turbidity has also been shown to increase predation rates in 

systems where light intensity and increased turbulence were tested (Chesney 1989). It 

was hypothesised that the increased turbidity increased the prey contrast (Hinshaw 

1985), increasing reactive distance (Utne-Palm 1999). It is thought that the increased 

prey contrast negates some effects of increased turbulence (MacKenzie et al. 1994, 

Fiksen and MacKenzie 2002).  

 

An understanding of both general rules and species specific characteristics is 

important to accurately manage aquatic systems. 

 
 
2.3.5.3 Habitat complexity 
 

Habitat complexity in aquatic systems including both biotic (i.e. macrophytes) and 

abiotic shelters (natural and artificial), and substrate, has frequently been shown to be 

positively correlated with survival in the presence of predators (Quammen 1984, 

Reinsel and Rittschof 1995, Clarke et al. 2002, Gazdewich and Chivers 2002). In 
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crayfish culture systems, insufficient or unsuitable shelter has been shown to have a 

negative affect on both growth (Jones and Ruscoe 2000, Naranjo-Paramo et al. 2004) 

and survival (Jones and Ruscoe 2000). In Narranjo-Paramo et al. (2004), shelter 

density supplied at 50% of the initial crayfish population (1 shelter for every 2 crayfish) 

was insufficient in attenuating the negative affects on growth and survival. The 

addition of aquatic macrophytes (Elodea and Carex sp.) to the culture of perch (Perca 

fluviatilis) and crayfish (Pacifasticus leniusculus) reduced foraging efficiency of perch 

(Blake and Hart 1993b). In contrast, increasing habitat structure has resulted in a large 

and significant increase in natural enemy abundance, and similarly, decreasing habitat 

structure significantly diminished natural enemy abundance (Langellotto and Denno 

2001). However, this generally does not apply to aquaculture where the relative 

abundance of predators is stable owing to the confined culture space. 

 

Prey gain more advantage as the structural complexity of habitat increases (Ivlev 

1961), so it is important for vulnerable prey to acquire the most complex shelter. This 

is evident with many crustaceans, where those in life stages more susceptible to 

predation frequent shelter more than those in other life stages (Stein 1977). In crayfish 

systems, gravid females are extremely aggressive in response to protection of the 

eggs they carry (Mason 1975, Stein 1977) and are the most successful life stage at 

acquiring shelter (Whisson 2000). Juvenile crayfish released from females are often 

the most susceptible to predation due to increased activity increasing potential 

interaction with predators (Magnusson 1976, Stein 1977, Doroshenko 1978, Blake and 

Hart 1993b, Svensson 1993). The lower energy stores, faster use of reserves, less 

tolerance to starvation (Svensson 1993) and increased moult frequency (Merrick and 

Lambert 1991, Huner 1994, Timmermans et al. 1995) means that juveniles must 

venture out of the safety of shelter into higher predation risk areas (Svensson 1993). 

These factors, combined with a general lack of predator recognition and avoidance 

tactics, means that farmers breeding crayfish where predators are present must 

supply a large amount of complex shelter and attempt to spread feed evenly 

throughout the system. 

 

The availability of refuge in aquatic systems can easily be controlled in aquaculture. 

Crayfish culture systems utilise a range of shelter materials, from synthetic hides 

(Fellows 1995, Whisson 1997), roof tiles (Whisson 1995a, 1997), macrophytes (Blake 

and Hart 1993b, Whisson 2000) and other materials (Hutchings 1988, Merrick and 
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Lambert 1991). The type of shelter utilised in aquaculture production systems is 

dependent on not only the benefit to the target species, but also on the ease of 

management. For example, vegetation has advantages over other artificial forms in 

that it can also provide a food source, both directly, and indirectly through associated 

invertebrates. However, in some cases vegetation can be hard to control and can 

quickly engulf a system (Pillay 1993), making drain harvesting difficult.  

 

The ability of increased habitat complexity to reduce the availability of prey species to 

predators and force predators to deliberately alter feeding habits has been shown on a 

number of occasions (Ivlev 1961, Momot 1967). However, shelter also plays an 

important role in attenuating negative effects of density (Naranjo-Paramo et al. 2004). 

This is especially evident in crayfish systems, as stocking densities are based on 

number per m2, as opposed to number per m3 in fish culture. Thus, densities can be 

increased as shelter effectively increases living space (increased surface area).  

 

One factor that must be considered when manipulating shelter complexity is that the 

provision of shelter will also increase its use, especially in the presence of predators, 

and foraging may be reduced. Shelter plays an important role in protection and stress 

reduction of stock in aquaculture systems, however, where this results in negative 

effects for production, a combination of management tools may be required, i.e. shelter 

and turbidity.  

 

 

2.3.5.4 Water flow and aeration 
 

Additional factors affecting predator success in aquatic systems include concentration 

of gases (e.g. dissolved oxygen: Pihl et al. 1991, Breitburg et al. 1994) and water 

movement (Hansen et al. 1991, Hart and Merz 1998), for freshwater (Peckarsky et al. 

1990, De Nicola and McIntire 1991, Sih and Wooster 1994) and marine benthic 

systems (Palmer 1988). Daphnia have been shown to trade off reduced predation 

mortality in a refuge against disadvantages due to unfavourable oxygen conditions 

(Lass 2001), demonstrating that environmental conditions may constrain predator 

avoidance strategies. As previously mentioned, factors such as competition and 

predation can force animals into smaller microhabitats within systems. In both 

scenarios, the provision of optimal water quality conditions is important to ensure that 



Chapter two: literature review                                                                                            

 

43 

predatory avoidance strategies are not complicated by poor water quality. Increased 

flow can also decrease predator success due to hydromechanical predator constraints 

(Weissburg and Zimmer-faust 1993, Powers and Kittinger 2002). However if 

increased flow can cause dislodgement of meiofauna, for example, predation success 

is increased (Palmer 1988). 

 
 

2.3.5.5 Stocking regime  
 

Ecological studies of invertebrate predator-prey systems have indicated that body size 

(Werner and Hall 1974, Stein 1977, Howard 1988, Persson and Greenburg 1990, 

Wahle and Steneck 1992, Blake and Hart 1993b), predator size (Blaxter and Stains 

1970), prey size (Ware 1973), swimming behaviour (Preston et al. 1999, Utne-Palm 

1999), population density (Preston et al. 1999) and encounter rate (Utne-Palm 1999) 

are important components influencing predation risk. The stocking regime (size and 

density) is especially critical where multiple species inhabit the same ecological 

structure (Tapaidos et al. 1977, Blakely and Hrusa 1989, Pillay 1993). 

 

Stocking size 
Where finfish predate on decapod species, small or juvenile prey often attract the 

highest predation intensity (Howard 1988, Wahle and Steneck 1992, Blake and Hart 

1993b). Juvenile (0+) crayfish were reported as the sole life stage selected by trout in 

a marl lake (Momot 1967). Svensson (1993) commented that moulting behaviour in 

juvenile crayfish is synchronised, a behaviour quickly capitalised on by adaptive 

predators. The size of predators is also important in the prey targeted. Huner (1986) 

demonstrated that minnows and small ornamental finfish species rarely predate on 

Procambarus clarkii, where as large catfish virtually eliminated crayfish from culture 

ponds. Generally, predator size is positively correlated with prey size; understandably 

as larger prey should provide the greatest caloric reward to the consumer. Trout 

(Oncorhynchus mykiss and O. virilis) in Lake Eucumbene, Eastern Australia, were 

shown to increase the maximum size of their crayfish prey (C. destructor) in relation to 

their own size (Faragher 1983). This trend was also seen in white perch (Morone 

americana) targeting Orconectes limosis, where crayfish size increased 

disproportionately with perch size. In contrast, Galbraith (1967) reported that perch 

and trout chose similar size prey independent of their own size. This may reflect an 

optimal cost-benefit approach for selecting the one size of prey. Similarly, P. clarkii 
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introduced into central Spain were actively predated upon by all size classes of pike 

(Esox lucius) (Elvira et al. 1996). In marron-silver perch polysystems, predation of 

marron by perch is not believed to be limited by gape size, with survival of both adult 

and juvenile marron reduced in trials conducted by Whisson (2000). Whisson (2000) 

found that survival of marron was greatly reduced in periods of mass moulting, such 

as warm summer conditions where growth rates are highest, it was suggested that 

perch attack soft post-moult individuals, regardless of size. 

 

Relative size of conspecifics is also a major factor in competition. During antagonistic 

encounters individuals match their own strength to that of the opponent, thereby 

guiding their decisions to escalate, retaliate, or retreat (Beecher 1989). Interactions 

between closely matched individuals typically escalate over time (DiMarco and Hanlon 

1997, Guiasu and Dunham 1997), and the risk of injury thereby increases with each 

step-up in intensity (Cairns and Scholz 1973, Huntingford et al. 1995). In aquaculture, 

similar sized individuals are generally the ideal, because of the requirement for final 

harvest sizes to be at a marketable level. This requirement may lead to increased 

conflict if not managed correctly. 

 

Understanding size selectivity of predators can have remarkable effects on 

interspecific relationships. Simply stocking similar sized animals in multi-species 

systems, along with continual grading, may alleviate many problems. 

 

Stocking density 
Correct stocking densities are crucial in multi-species systems (Shepherd and 

Bromage 1992), affecting production parameters, such as growth, survival, and yield 

(Morrissy 1979, Mills and McCloud 1983, Lutz and Wolters 1986, Villagran 1993). 

Several authors have studied the effects of stocking density on farming feasibility of 

crayfish species (Lutz and Wolters 1986, McClain 1995, Geddes et al. 1991, Morrissy 

et al. 1995a, Whisson 1995a, Verhoef and Austin 1999). In these investigations, an 

inverse relationship between stocking density and final size has been demonstrated, 

for example: 

 

• Marron, C. tenuimanus (Morrissy 1992b)  - Australia; 

• Redclaw, C. quadricarinatus (Pinto and Rouse 1996) - Alabama (US); 

• Redclaw (Jones and Ruscoe 2000) - Australia; 
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• Freshwater prawns, M. rosenbergii  (Brody et al. 1980, D’Abramo et al. 1989, 

Tidwell et al. 1999) - United States; 

• Red Swamp Crayfish, Procambarus clarkii (Lutz and Wolters 1986, Villagran 

1993) - United States; 

• Signal crayfish, Pacifasticus leniusculus (Savolainen et al 2004) - United States 

 

A consistent observation is that feed conversion rates (FCR) are unaffected by 

density. Thus, reduced growth must be affected by other undefined processes. 

Stocking strategies in polyculture obviously need to take into account both density and 

final size of stock, and how this equates to pond yields. Strategies should be governed 

by the feeding biology of the participating species, given the availability of natural food 

within the ecological niches, and the ultimate management objectives (Cohen 1984). 

 

Weighting the relative contributions of predation risk factors, the manner in which they 

interact, and responses to toxicant exposure requires multi-species predator-prey 

systems which consider both empirical measures of predator efficiency as well as the 

behaviour of predator and prey (Preston et al. 1999). For instance, in situations of high 

turbidity, low relative prey densities compound this relationship by increasing predator 

search time and energy use when hunting (Breitburg 1988). In order to best choose 

densities and sizes farmers should understand the biology and behaviour of the 

species they are culturing. 

 
 
2.3.5.6 Species selection 
 

Selection of potential species requires observation of economic variability, government 

policy, regulatory direction and market opportunity (Spencer 2000). Once appropriate 

and available candidates are identified, an understanding of ecological processes 

governing interaction between species is required. Some of the primary components 

of aquatic environments that can influence species choice in respect to both optimal 

growing conditions for each species and interaction ecology include: water quality, 

photoperiod, light intensity, shade, substrate, substrate cover, and depth. These 

factors can affect animals directly, or can be considered a secondary response due to 

factors such as competition (Tomasso 1996). Therefore, consideration of population 
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and community structure (density, size, size variability, monoculture, predators, 

polyculture, unwanted competitors, pathogens) and even previous interaction history, is 

also necessary. 

  

In multi-species systems one of the most important factors governing species choice is 

analysis of feeding behaviour. For instance, given that the biological basis to aquatic 

polyculture is the utilisation of different ecological niches by species possessing varying 

feeding preferences (Moav et al. 1977, Siddiqui et al. 1996, Milstein 1997), a 

scavenging omnivore like silver perch seems a suitable candidate for duoculture with 

detrivorous crayfish, such as marron. 

 

 

2.3.5.7 Cage culture 
 

Although factors such as turbidity and shelter can greatly reduce predatory interactions 

between species, predation can still occur. Even if predators do not actively seek out 

prey they will often consume them if encountered. In addition, the physical presence of 

predators, even if not directly attacking prey, can still affect stress levels in prey through 

perceived threat. In situations where free-range pond culture is not practical, such as 

when physical interaction of species within a polyculture environment results in 

competition or predation, cage culture may be applied (Masser 1988).  

 

Many freshwater finfish species have been successfully reared in cages, including 

catfish, trout, tilapia, striped bass, red drum, bluegill sunfish, crappie and carp (Masser 

1997). However, the responses to cage culture are varied. Channel catfish and rainbow 

trout appeared to benefit from polyculture in cages, producing significantly larger 

animals compared to monoculture (Beem et al. 1988), whereas silver perch have 

shown depressed growth when reared in cages (Whisson 2000). Choosing a species 

suitable for cage culture often requires a trial and error approach, however one of the 

major characteristics that aid in a species ability to perform well in cages is schooling. A 

schooling species is generally amenable to high stocking densities associated with 

cages. In the United States, catfish have been stocked at around 260 fish/m3 (Masser 

1988), and a common average production in cage culture is around 84-135 kg/m3, and 

up to 235 kg/m3 in small cages (Masser 1997).  
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The benefits of cage culture are include (Masser 1988, Beveridge 1996): 

 

• In large systems (lakes, reservoirs, rivers and oceans), aquatic species can 

be cultured which would otherwise be difficult or impossible to harvest; 

• Relatively low initial investment in existing bodies of water; 

• Easier observation of stock; 

• Greater stock control; 

• Easy and more efficient grading and harvesting, with less deleterious affects 

to stock. Drain harvesting can force stock into sediment which can clog and 

irritate gills, also cages allow removal of gut contents prior to harvest;  

• Allows combinations of species which would normally compete or predate on 

one another. 

 

A fish farmer can utilise cage culture to diversify existing monoculture practices 

without having to invest large amounts of capital for construction or equipment, and 

can therefore trial new species without unreasonable risks. However, there are also a 

number of management concerns with cage culture (Masser 1988), including:  

 

• A requirement for nutritionally complete feed - as caged species are 

prevented from accessing natural feeds in the system; 

• Water quality conditions, especially oxygen, must be maintained more 

carefully, as caged species cannot move through the system to find better 

conditions; 

• Incidence of disease and injury can be high if not closely observed as fish 

are more prone to contact with other fish or the cage structure. 

 

Stocking silver perch in cages in marron ponds is an attractive option as interspecific 

interaction is avoided, bird predation is eliminated and management of stock is more 

effective than in free-range practices (Whisson 2000). However, growth of silver perch 

is clearly reduced when stocked in cages (Rowland 1995c, Whisson 1999) with the 

growth-density relationship requiring further research due to the profound impact of 

density changes on system yields and profitability (Whisson 2000). 
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2.3.5.8 Intraspecific dynamics in multi-species systems 
 

As previously discussed, higher order consumers can force prey species into confined 

areas (i.e. shelter), increasing relative densities of conspecifics, and the potential for 

negative social interactions.  

 

Awareness of the importance of social interactions among crustaceans as a growth-

regulating factor has gradually increased over the last three decades, with many 

studies focussing on fresh and saltwater crayfish (Cobb and Tamm 1974, Nelson and 

Hedgecock 1983, Ra’anan and Cohen 1985, Karplus et al. 1992a, Karplus and Hulata 

1995). Comparisons between the growth patterns of individuals raised at the same 

density in groups or in individual cells have shown clear evidence of the importance of 

intraspecific interactions (Malecha et al. 1981, Lee and Fielder 1983, Ra’anan and 

Cohen 1984, Geddes et al. 1988). Crustaceans raised in isolation were shown to grow 

significantly more uniformly than those raised in groups, and the growth rates differed 

between separately and group-reared individuals. 

 

The particular strategies utilised in competitive encounters can provide insight into 

proper management for aquaculture to reduce negative effects from interactions. 

Strategies adopted by individuals under conflict are sensitive to absolute values, 

relative differences, and asymmetries in information of a variety of factors. These 

include: size and physical superiority (Rutherford et al. 1995, Pavey and Fielder 1996, 

Barki et al. 1997); moult stage (Tamm and Cobb 1978); gender (Sinclair 1977); prior 

residence (Peeke et al. 1995, Huntingford and deLeaniz 1997); reproductive condition 

(Debuse et al. 1999); aggressive state (Huber et al. 1997, Huber and Delago 1998); 

metabolic state (Sneddon et al. 1998); previous antagonistic experience (Rubenstein 

and Hazlett 1974, Gössmann et al. 2000); levels of social isolation (Dunham 1972); 

and assessment of both the opponent (Archer 1988) and the resource at stake 

(Hazlett et al. 1975, Sneddon et al. 1997, Vye et al. 1997).  

 

In several studies into redclaw cultures in Australia, both in tropical and sub-tropical 

conditions (Lawrence and Jones 2002), growth was shown to be inhibited with 

increasing stocking densities. Redclaw readily fight (Karplus et al. 2003) and juveniles 

compete aggressively for clumped food resources (Barki et al. 1997). Several 

indications of the involvement of social interactions in size regulation in redclaw have 
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been suggested (Barki and Karplus 2004), these are: (a) Individuals that are relatively 

small because of their lower growth rates within their broods exhibited higher growth 

rates after isolation; (b) Individuals reared in isolation attain sizes comparable to those 

of individuals in the upper quartile of the same population, suggesting that growth 

inhibition occurred under conditions of social interactions; (c) Density affected growth 

and size frequency distribution despite the fact that food was provided ad libitum.  In a 

laboratory study conducted by Barki and Karplus (2004), redclaw held at low density, 

presumably with fewer social interactions, a high proportion of juveniles attained a 

large size and growth was relatively uniform, whereas at higher density, growth was 

reduced and size variation increased. 

 

Four mechanisms relating to intraspecific interactions have been suggested to 

suppress growth in crustaceans:  

 

• Direct competition for food - dominant individuals might actively deprive 

subordinates (i.e., smaller individuals) of food. (Segal and Roe 1975); 

• Appetite suppression - antagonistic interactions can result in the establishment 

of social hierarchy, where subordinates may grow less rapidly, even with 

unlimited food, because of lower food intake (Cobb et al. 1982); 

• Decreased food conversion efficiency - smaller subordinate individuals may 

have lower food conversion efficiency due to reduced digestibility and/or a 

metabolic shift related to their lower social status (Karplus et al. 1992b); 

• Increased motor activity - small subordinate individuals may be engaged in 

continuous evasive manoeuvres to escape from dominant individuals, and the 

resulting high energy expenditure reduces their growth (Cobb et al. 1982).  

 

The sensory modalities involved in social control of growth have received considerable 

research attention over the past 20 years (e.g. Howe 1981, Malecha et al. 1981, Cobb 

et al. 1982, Nelson et al. 1983, Nelson and Hedgecock, 1983, Moore et al. 1985, 

Juarez et al. 1987). These studies demonstrated the involvement of tactile, visual and 

chemical cues, separately or in combination, in regulating the growth of conspecifics, 

illustrating the need for research into the communication and interaction responses 

within and between species. 
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2.3.6 Behavioural analysis in multi-species systems 
 

In nature, an organism's daily activities are affected by predation and predation risk, 

which may have behavioural and physiological costs that negatively affect the 

individual or translate into long-term population and community consequences. 

Obviously, in multi-species systems where niche overlap exists the negative 

interactions need to be understood and mediated in order to maximise aquaculture 

production. The importance of behavioural analysis in describing and managing 

interactions has been consistently shown. Behaviour can be conscious or unconscious, 

overt or covert, voluntary or involuntary (West-Eberhand 1989), and is the most flexible 

phenotypic feature of animals, being the direct interface between animals and a 

variable environment (Hazlett 1995). Behaviour can track environmental variation the 

fastest because the cues guiding the variability are so closely associated with changes 

in phenotype (West-Eberhand 1989).  

 

Behavioural analysis was used in all laboratory trials in this thesis to examine 

communication and interaction responses between crayfish-crayfish and crayfish-fish. 

Behavioural measures of stress are sensitive indicators of the stress response, having 

an advantage over other methodology as they are readily interpreted within an 

ecological context, thereby increasing the efficiency for extrapolation of laboratory 

results to the natural environment (Schreck et al. 1992).  
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2.4  Communication and interaction responses 
 

In monoculture operations, production is fundamentally governed by the ability of the 

farmer to select an appropriate culture species and optimise growing conditions (water 

quality, habitat and feed). 

 

In multi-species systems, management is made more complex by the addition of 

interspecific interactions, which can have both direct and indirect ramifications for 

production, such as: predation (i.e. Sih 1987, Lima and Dill 1990, Chivers and Smith 

1998); interspecific competition (Tomasso 1996); or increased resource competition 

between conspecifics (Werner 1991, Kotler et al. 1994). Therefore, management of 

interactions between component species is a key aspect of polyculture production. 

This is particularly critical in situations where component species display conflicting 

niche occupation, characteristic of Western Australian polyculture systems (Whisson 

2000) - due to paucity of available complementary species (Jones and Ruscoe 1996). 

 

Understanding the ecological basis of interactions, the way in which species 

communicate and respond, is critical in developing management strategies aimed at 

reducing negative interactions and maximising synergy (Whisson 2000). For example: 

increasing turbidity, which increases the time for searching due to increased reactive 

distances (Miner and Stein 1996, Utne 1997), can reduce predation between species 

cohabiting the same system (Gradall and Swenson 1982, Benfield and Minello 1996). 

However, if the predator relied on chemical cues to locate and capture prey, 

increasing turbidity would be ineffective. For example, Neoceratodus. forsteri (lungfish) 

were shown to effectively predate on crayfish using electric fields generated from the 

bodies of prey when all visual and chemical cues were inhibited (Watt et al. 1999). 

 

The nature and extent of communication between aquatic animals is associated with 

their ability to detect, interpret and respond to exteroceptive signals. These ecological 

and ethological cues may have chemical (e.g. Halpin 1986, Hazlett 1994a, Mirza et al. 

2001), visual (e.g. Halpin 1986, Mirza et al. 2001, Bouwma and Hazlett 2001), tactile 

(e.g. Enger et al. 1989, Mirza et al. 2001, Herbaholtz et al. 2004), acoustic-audio 

(Halpin 1986, Gil-da-costa et al. 2003, Vester et al. 2004), electric (Kalmijn 1971, 

Mirza et al. 2001, Carlson and Hopkins 2004), magnetic (Rosenthal and Ryan 2000), 

thermal (Rosenthal and Ryan 2000) or other origins (Batty et al. 2004). The ability to 

detect and respond to the various information cues available is species dependent 
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(Krebs and Davies 1993), can be hierarchal (Dawkins 1976, Enquiste et al. 1987, 

Nelson 1990) or require multiple signals (Bradbury and Vehrencamp 1998, Rekwot et al. 

2001), can change over ontogeny (Russock 1990, Stacey and Sorrensen 1991), and 

can fluctuate temporally and spatially (Dicke 2000). 

 

The following sections examine the various sensory modalities utilised by aquatic 

organisms. The responses to cues pertaining to interaction between component species 

in polyculture, and the subsequent affects on routine behaviour (i.e. food acquisition, 

intraspecific dynamics), is of particular concern and will be focused on in this review.  As 

the aim for Western Australian polysystems is to promote synergy between species that 

have less than complementary feeding niches, the following review will focus on factors 

affecting predator-prey dynamics: threat detection; predator avoidance; learning; and 

abiotic factors affecting interaction. 

 
 
2.4.1 Visual communication 
 

The visual system is a major sensory device employed in communication (e.g. Halpin 

1986, Culp et al. 1991, Rosenthal and Ryan 2000, Bouwma and Hazlett 2001, Mirza et 

al. 2001). Visual cues certainly play one of the most important roles among terrestrial or 

semi-terrestrial species (Vannini and Cannicci 1995), however their use in aquatic 

environments is varied and often dependent on water conditions (Gregory and 

Northcote 1993, Benfield and Minello 1996, Utne-Palm 2004). In clear-water systems, 

such as coral reefs, visual signals are often the main method of communication (Watson 

1999), providing early accurate information (Culp et al. 1991, Brown et al. 1997, Brown 

and Godin 1999, Murray and Jenkins 1999, Hazlett and McLay 2000, Bouwma and 

Hazlett 2001), however visual cues would be less effective in turbid environments 

(Vinyard and O’Brien 1976, Confer et al. 1978, Utne 1997). Understandably, vision is 

the most predominant communication medium utilised by diurnal (Enquiste et al. 1987) 

and non-cryptic species (Diaz et al. 1999). 

 

 

2.4.1.1 The role of visual information 
 

Visual cues in aquatic environments can communicate a variety of information. The 

various roles of visual signals include: 
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Routine behaviour 

• Food acquisition (pond snail - Andrew and Savage 2000); 

• Shelter (Forward 1988) - i.e. shell transfers in hermit crabs (Kinosita and 

Okajimi  1968, Hazlett 1996); 

• Migration (McKelvey and Forward 1995, Lass 2001). 
 

Intraspecific interactions 

• Social communication (Li et al. 2000, Listerman et al. 2000); 

• Conspecific identification (Diaz et al. 1995a/b); 

• Perception of motion, shape (Chinese Perch – Liang et al. 1998, Gastropods  

approach vertical objects - Hamilton 1977, Hamilton and Winter 1984, 

Watson 1999,  Cephalopods detect body patterning - Hanlon and Messenger 

1996) or colour (Diaz et al. 1999, Watson  1999); 

• Competition and readiness to fight (Watson 1999); 

• Male-female interactions (Zalesky et al. 1984, Rekwot et al. 2001); 

• Sex detection (Hemptinne et al. 1998,  Kodric-Brown and Strecker 2001); 

• Mate searching and selection (Diaz and Thiel 2004, Knuttel and Fiedler 

2001); 

• Courtship and reproduction (Watson 1999; female peacock blenny responds 

exclusively to male visual  features, Goncalves et al. 2002). 
 

Interspecific interactions - Predator-prey interrelationships 

• Threat detection (Brown et al. 1997, Watson 1999); 

• Prey recognition (Chinese Perch, Liang et al. 1998; Glowlight tetras, 

Kaufman et al. 1996, Boal and Marsh 1998, Brown et al.  2000)  

• Inspection of novel predators  (Dugatkin and Godin 1992, Brown and Chivers 

1996; Glowlight tetras, Brown et al. 2000); 

• Attack - disturbance pheromones from prey capture (Langdon and Hernkind 

1985; glass shrimp by fish, Clark et al.  2002); 

• Anti-predator behaviour (Herrnkind 1968, 1972, 1983; blue crabs, Diaz et al. 

1999,  Diaz et al. 2001; marine copepods, Bollens et al. 1994, Murray and 

Jenkins 1999, Woodley and Peterson 2003);  

• Predator  deterrent (fin-flicking, Heller and Milinsi 1979, Brown et al. 1999, 

Lass 2001), offering opportunity for escape (Curio 1978, Magurran 1990, 

Hasson 1991, Godin and Davis 1995a/b); 

• Capture – alarm cues (Smith 1989, Brown et al. 1999, Watson 1999). 
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2.4.1.2 Responses to visual cues 
 

Physiological (Li et al. 2000, Listerman et al. 2000, Smith et al. 2000) and behavioural 

modifications can occur in response to visual stimuli (Stein and Magnussen 1976, 

Blake and Hart 1993b, Spanier et al. 1998). Behavioural responses to the detection of 

interspecific visual cues pertaining to predators or competitors include increased 

sheltering (Lass 2001), decreased locomotion (Godin 1997), and flight responses 

(Mathis and Smith 1993b, Hazlett 1999).  

 

In the case of predation risk, responses to visual signals can be alarm signals (Smith 

and Smith 1989, Godin and Davis 1995a, Mathis et al. 1996). Visual alarm signals can 

be used to warn conspecifics, sympatrics and heterospecifics of potential danger 

(Smith and Smith 1989), resulting in increased anti-predator behaviour of those in 

visual range of the signal sender. Alarm responses have been shown to quickly 

spread through entire populations in an area (i.e. fathead and European minnows - 

Magurran and Higham 1988, Mathis et al. 1996). The release of visual alarm signals, 

such as head bobbing in gobiid species (Magurran and Higham 1988, Mathis et al. 

1996) or fin-flicking in tetras, can also function by deterring predators, and result in 

increased distance from prey, longer time to bite and less bites (Brown et al. 1999). 

They may also work in confusing predators, with responses including swarming-

aggregation-shoaling (Heller and Milinski 1979), which would reduce the chance of 

being captured for the individual (Godin 1986, Pitcher and Parrish 1993, Lass 2001). 

Visual alarm signals in response behaviours to visual predator cues may allow the 

opportunity for escape (Curio 1978, Magurran 1990, Hasson 1991, Godin and Davis 

1995a/b), for both the producer and detector (Smith 1992, Chivers and Smith 1998). 

 

Different visual signals can produce varied responses, for instance Megalopae crabs 

(post larval blue crabs) become motionless or escape by swimming directly away from 

stimulus when solid shapes are detected, however if vertical stripes are presented 

(representing sea grass or fish schools) the crabs respond with erratic swimming (Diaz 

et al. 1999). Many factors may influence responses to visual signals, from sex 

differences (Hemptinne et al. 1998) to prior learning (Mathis and Smith 1993b, Chivers 

and Smith 1998, Dicke and Grostal 2001) to ontogenetic differences (Giaquinto and 

Volpato 1997). Investigators must consider these differences if appropriate 

management strategies are to be developed. 
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2.4.1.3 Manipulating visual communication in polysystems 
 

Responses to visual cues can be advantageous in natural systems in preventing 

predation, however avoidance strategies require energy, which will indirectly affect 

growth and condition in aquaculture. The responses to predation risk can also 

disadvantage the detector if they involve movement away from optimal conditions (e.g. 

daphnia shelter in unfavourable oxygen conditions to avoid predation) (Lass 2001), 

result in lost resources (increased sheltering - reduced foraging), or if avoidance is 

carried out when not required (wasted energy) (Lima and Dill 1990). If aquaculturalists 

can prevent predation along with the associated stress, resources can be focussed on 

growth. As predation by visual predators is affected by light conditions, when visual 

interaction is manipulated, such as through increased turbidity, increased growth is 

observed (Wang et al. 2003). 

 

In many cases visual cues are sufficient in providing all information required for 

particular events (Boal and Marsh 1998, Goncalves et al. 2002). However, the addition 

of other cues, in combination with visual stimuli, often results in a more rapid and 

confident response (Andrew and Savage 2000, Bouwma and Hazlett 2001). In some 

species visual reception is important only in later life and other sensory modalities such 

as chemoreception (Giaquinto and Volpato 1997) are required in the first days of life. In 

some cases, visual stimuli seemingly offers no information (Kiesecker et al. 1996, 

Kodic-Brown and Strecker 2001). When studying the interrelationships between 

species, researchers must compare and contrast a range of information cues. 

 
 
2.4.2 Chemical communication 
 

Chemical communication is a well-known and widespread ecological phenomenon 

mediating a variety of interactions between organisms (e.g. Dicke and Sabelis 1992, 

Hazlett 1994a, Burks and Lodge 2002, Gherardi 2002) and between organisms and 

environment (e.g. Maynard Smith 1993, Andrew and Savage 2000, Grasso and Basil 

2002). Historically, the study of chemical ecology has focussed on terrestrial 

environments (Lass 2001), beginning with insects as early as 1609 (Roitberg 1992). 

More recently, the importance of chemical ecology in aquatic environments has been 

recognised (e.g. Beldon et al. 2000, Watson 1999, Rekwot et al. 2001, Burks and 

Lodge 2002). 
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The transmission of chemical information is well suited to aquatic environments with 

many compounds dissolving easily in water (Kleerekoper 1969, Hara 1994) and aquatic 

animals have evolved highly specialised receptors for detecting these compounds (Kats 

and Dill 1998, Derby 2000, Wisenden 2000, Mirza et al. 2001).  

 

In aquatic systems, chemical cues may be particularly important where vision is limited, 

such as: at night; in densely vegetated habitats; or in turbid water (Chivers et al. 1996b). 

In these situations, the ability to recognise chemical cues from faeces or other metabolic 

by-products would be an advantage over visual or tactile recognition (Stoddart 1980, 

Lass 2001). Many animals demonstrate responses to chemical cues but depend little on, 

or show no change in behaviour, when other cues are presented (Tukey 1977, Kiesecker 

et al. 1996). 

 

Chemical communication is often viewed as the primary source of information in aquatic 

environments (Chivers et al. 1996b, Kiesecker et al. 1996, Brown et al. 1997), with 

responses demonstrated in many species in all major groups of aquatic species (Kats 

and Dill 1998, Brown et al. 1999, Vet 1999, Hay 2002); for example  

 

• Finfish (Brown et al. 1999, Mirza and Chivers 2002); 

• Marine crustaceans (Forward Jr and Rittschof 1994, Welch et al. 1997); 

• Freshwater crayfish (Gebauer et al. 2002, Grasso and Basil 2002); 

• Molluscs (Morse et al. 1979, Hadfield and Scheuer 1985, Zimmer-Faust and 

Tamburni 1994, Pechenik et al. 1995, Doroudi and Southgate 2002); 

• Barnacles (Crisp and Meadows 1962, Rittschof 1985, Yule and Walker 

1985, Claire et al. 1995); 

• Amphibians (Lopez and Martin 2001); 

• Invertebrates (Black and Dodson 1990, Forward and Rittschof 1999); and, 

• Aquatic vegetation (Wolcott and De Vries 1994, Brumbaugh and 

McConaugha 1995, Forward et al. 1994, 1996, 1997). 
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2.4.2.1 The role of chemical information 
 

Chemical signals play “important roles in the loves and lives of living organisms” (Vet 

1999) 

 

Some chemicals are directly beneficial or detrimental for organisms, such as nutrients 

and toxins, while others (infochemicals) transmit information and induce a response to 

the benefit or detriment of the organisms involved (Dicke and Sabelis 1988). 

 

Chemosensory cues are perhaps the most ancestral means of information flow, 

providing strong, reliable information (Chivers and Smith 1998, Kats and Dill 1998, 

Sorenson and Caprio 1998, Vet 1999, Wisdenson 2000). Chemicals signals play an 

important role in countless interactions among organisms and steers many ecological 

and evolutionary processes (Vet and Dicke 1992, Burks and Lodge 2002). Generally, 

the term pheromone, coming from the Greek pherein (to carry) and hormon (to excite), 

has been used to describe most of the chemical signals produced in aquatic 

environments, however chemical cues are varied in their nature and roles. A number 

of terms are used to describe infochemicals, released or detected, in aquatic 

environments. These signals are defined in Figure 2.2, based on the information they 

provide and the relative costs and benefits experienced by the interacting organisms. 

 

Figure 2.2    Infochemical terminology (Dicke and Sabelis 1988, In Lass 2001) 

 Infochem icals 

Pherom ones 
M ediate interactions between individuals of the 

sam e species  

Allelochem icals 
M ediate interactions between individuals of the 

different species 

(+/-) pherom ones 
Evoke reactions benefiting the 

sender  

(+/+) pherom ones 
Evoke reactions benefiting the 

sender and receiver

(-/+) pherom ones 
Evoke reactions benefiting the 

receiver  

(+/+) Synonomes 
Evoke reactions benefiting the 

sender and receiver  

(-/+) Kairomones 
Evoke reactions benefiting the 

receiver  

(+/-) A llomones 
Evoke reactions benefiting the 

sender  
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The importance of chemically mediated interactions for population dynamics, for 

structuring communities and for cohabitation of species is increasingly recognised 

and investigated (for review see Vet 1999). The roles that infochemicals have, 

specifically relating to dynamics within polysystems, include: 

 
Routine behaviour  

• Food differentiation (Hazlett 2003); 

• Food acquisition by odour (lobsters, crayfish and crabs - Tierney and 

Atema 1988, Barnes 1997, Giri and Dunham 1999, Moore and Grills 1999, 

Hazlett 2000a, Hazlett and McLay 2000, Grasso and Basil 2002, fish - 

Mirza and Chivers 2002, Ingvarsdottir 2002, molluscs - Audesirk et al. 

1982, Andrew and Savage 2000, mammals - Jacquot and Baudoin 2002, 

reptiles - Kaufman et al. 1996, appetitive learning); 

• Sheltering – habitat selection (lobsters, crayfish and crabs - Grasso and 

Basil 2002), migration and settlement (molluscs - Pechenik et al. 1995, 

Doroudi and Southgate 2002, crabs - Gebauer et al. 2002); 

 

Intraspecific interaction  

• Social communication (Yamazaki et al. 1976, Hurst 1987, 1989, 1990a/b, 

Drickamer and Mikesic 1990, Mucignat-Caretta and Caretta 1998, Penn 

and Potts 1998); 

• Conspecific identification (lobsters, crayfish and crabs - Grasso and Basil 

2002, fish – Giaquinto and Volpato 1997, Baker and Montgomery 2001); 

• Perception of motion, shape or colour (Hargeby et al. 2004); 

• Aggregation (Deneubourg et al. 2002, sessile invertebrates - Burke 1986, 

Pawlik 1992, reef fish - Sweatman 1988, pelagic fish - Mangel and Clark  

1988, lobsters - Ratchford and Eggleston 1999); 

• Physical competition (marking territory - Crowcroft and Rowe 1963, Brown 

1985, advertise strength - Hurst 1993, suppress competitors - Hay 2002, 

deter feeding - Agarwala et al. 2003, intrasexual competition - Hurst 1993, 

Gosling et al. 1996, Drickamer 1997, identifies aggressive state - 

Breithaupt et al. 1999, Breithaupt and Atema 2000, Dulac 2000, 

Breithaupt and Eger 2002, Schapker et al. 2002, reduces antagonistic 

reactions/ decreases aggression – Giaquinto and Volpato 1997); 

• Growth inhibition (MIH - inhibit food related responses (Hazlett 1994a, 

Bouwma and Hazlett 2001, Gherardi 2002); 
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• Male-female interactions (Zalesky et al. 1984, Rekwot et al. 2001); 

• Sex determination (review by Halpin 1980, Asai et al. 2000, Kodric-Brown 

and Strecker 2001, Olivotto et al. 2002); 

• Mate location (Atema and Engstrom, 1971, Gleeson et al. 1987, Yen and 

Strickler 1996, Vickers, 2000, Diaz and Thiel 2004, crustaceans - Borowsky 

1984, 1985, Bushman and Atema 1997, Ratchford and Egglestrom 1998); 

• Mate selection (Alcock 1984, Boal and Marsh 1998, Hemptinne et al. 1998, 

Zanetti et al. 2001, Rantala et al. 2002, Diaz and Thiel 2004); 

• Courtship – readiness for mating (Dulac 2000, Frade et al. 2002, Murphy 

and Stacey 2002, in decapod crustaceans - Review, Dunham 1978, Carr 

and Derby 1986, amphipods - Dahl et al. 1970, Borowsky 1984, 1985); 

• Reproduction (gamete production - Watson 1999, Vermeirssen and Scott 

2001, synchronised reproduction - Rekwot et al. 2001, Tankersley et al. 

2002, spawning aggregations: fish - Colin 1992, sea cucumber - Watson 

1999, crabs - Stone et al. 1993, worms - Caspers 1984). 

 

Interspecific interaction 

• Sympatric communication (Hemptinne et al. 1998, Kodric-Brown and 

Strecker 2001); 

• Interspecific competition (Burks and Lodge 2002); 

• Predator-prey relationships (Larsson and Dodson 1993, Hanazato 1994, 

Chivers and Smith 1998, Preston et al. 1999, Burks and Lodge 2002); 

• Locating prey (Powers and Kittinger 2002); 

• Threat detection - predator odours (Mathis and Smith, 1993c, Covich et al. 

1994, Chivers et al. 1996b, De Meester and Cousyn 1997, Wisenden 2000, 

Tomba et al. 2001); 

• Risk assessment (Chivers and Smith 1998, Kats and Dill 1998, Head et al. 

2002), recognition (Dodson et al. 1994, Chivers and Smith 1995, Chivers et 

al. 1996b, Lopez and Martin 2001) and inspection of novel predators 

(Dugatkin and Godin 1992, Brown and Godin 1999, Brown et al. 1999); 

• Attack cues - released by predator (Chivers et al. 1996b, Hazlett and 

Schoolmaster 1998, Wisenden 2000) or disturbance pheromones (Hazlett 

1990, Wisenden 2000, Hazlett et al. 2002, Olivotto et al. 2002); 

• Anti-predator behaviour (Kiesecker et al. 1996, Kats and Dill 1998, 

Wisenden and Millard 2001, Diaz et al. 2001, Head et al. 2002), predator 
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deterrent (Hay 2002), fight or flights (e.g. Cuadras 1980, Brown et al. 

1995, Schapker et al. 2002), aggregation; 

• Capture (Hirsch and Bolles 1980, Wisenden 2000), injury-released alarm 

cues (Howe and Scheikh 1975, Hazlett 1994a, Chivers and Smith 1998, 

Mirza et al. 2001, Wisenden and Millard 2001, Gherardi et al. 2002), 

attraction to alarm cues (Wisenden and Thiel 2002); 

• Alarm signals (non-injury) (e.g. Smith 1992, Mathis and Smith 1993a, 

Brown and Godin 1997); 

• Ingestion (Wisenden 2000) - dietary cues (Howe and Harris 1978, Brown 

et al. 1995, Chivers et al. 1996b, Beldon et al. 2000, Brown and Godin 

1999, Wisenden 2000). 
 

 

The roles of chemical cues in aquatic environments are wide ranging and varied, and 

in many cases provide information overriding all other communication cues. The 

strength of chemical signals is evident in examining mating behaviour in male shore 

crabs, Carcinus maenus. When female shore crabs are ready to mate they release 

pheromones in their urine which trigger mating behaviour in males. If you dip a male 

crab, a stone or even a tennis ball into water containing the female urine the male crab 

will mate with it - overriding all other signals (Watson 1999). 
 

Chemical cues can provide valuable information regarding predator-prey ecology. 

Anti-predator behaviour is commonly associated with a response by prey animals 

following direct (i.e. visual or tactile) contact with a predator, however recent research 

has identified the potential importance of less direct factors, such as predator chemical 

cues (kairomones) (e.g. Kats 1988, Jedrzejewski et al. 1993, Koskela et al. 1996).  

 

Studying chemical communication between predator and prey is more difficult than 

other exteroceptive cues because signals are not easily detectable (Breihaupt and 

Eger 2002). This is made more difficult as the nature of the cue released depends on 

stage of predation sequence, with cues released during detection, attack, capture and 

ingestion of prey (Wisenden 2000). Behavioural and sometimes physiological 

responses are often used to gauge the effects from chemical interaction. 
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2.4.2.2 Responses to predator derived chemical cues (kairomones) 
 

Predators are believed to be important agents of selection eliciting a variety of 

adaptations in their prey (Lynch 1980, Kerfoot and Sih 1987). The responses of prey 

to kairomones are especially well investigated (Mathis and Smith 1993c, Chivers et al. 

1996b, Wisenden 2000, Tomba et al. 2001). Predator-induced responses have been 

reported for an extensive taxonomic and geographic range of prey organisms 

including plants, several invertebrate groups and vertebrates (see review by Karban 

and Baldwin 1997, Tollrian and Harvell 1999). In response to chemicals released from 

predators, animal prey organisms alter life history characteristics (e.g. Warkentin 1995, 

Laurilla et al. 1998, De Meester and Weider 1999, Stibor and Navarra 2000), 

morphology (e.g. Bronmark and Miner 1992, Stibor 1992, Tollrian 1994, McCollum and 

Leimberger 1997), body mass (Lilliendahl 1997), reproductive condition (Korpimaki et 

al. 1994) and behaviour (e.g. Krueger and Dodson 1981; De Meester 1993, Flowers 

and Graves 1997, Persons et al. 2002).  

 

Behaviour modifications in response to perceived threat from predator-derived 

kairomones will generally affect the fitness of organisms as routine behaviours, such 

as resource acquisition, is impeded. Anti-predator behaviour that can influence 

production in polysystems include general physiological stress in readiness for fight or 

flight (Cuadras 1979, 1980, Frost 1999, Li et al. 2000, Listerman et al. 2000, Schapker 

et al. 2002), increased ‘alertness’ (De Meester and Pijanowska 1996, Boersma et al. 

1998, Brewer et al. 1999), inhibited food-related responses (Hazlett 1994a, Brown et 

al. 1999, Hazlett and McLay 2000, Bouwma and Hazlett 2001), diapause/decreased 

activity (Hairston 1987, Pijanowska and Stolpe 1996, Slusarczyk 1999, Haney et al. 

2001), reduced locomotion or other movements (Hazlett and Schoolmaster 1998, 

Persons et al. 2002, Hazlett 2000a, Mirza et al. 2001), movement from preferred water 

quality conditions (Strand and Hammer 1990) or preferring shelter in least preferred 

areas which offer more protection (e.g. Boudeau et al. 1993, Rittschof 1993, Welch et 

al. 1997, Baumgartner et al. 2003), increased shelter (Appelberg et al. 1993, Baker 

and Montgomery 2001) or avoidance of risk areas (Brown et al. 1995, Persons et al. 

2002). Responses to predation pressure can result in reduced growth (Hazlett 1994a, 

Bouwma and Hazlett 2001, Gherardi 2002) reduced reproductive condition - egg 

reabsorption, starvation of offspring (Stibor and Navarra 2000), or changes in 

maturation time of animals (Lass 2001), and eventually mortality (Hazlett 1994a). 
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2.4.2.3 Alarm cues 
 

Chemical alarm cues are produced by prey on imminent danger or capture (Brown et 

al. 1995, Chivers and Smith 1998, Mirza and Chivers 2002), through chemicals 

released from flesh damage during capture of conspecifics (Pfieffer 1977, Smith 1992, 

Brown and Godin 1999, Stabell et al. 2003) or sympatric species (Smith 1992), or in 

signatures in faeces of predators after consuming prey (Stabell et al. 2003). Alarm 

substances are produced to enact predator avoidance in conspecific or other species 

(Hazlett 1994a, Chivers and Smith 1998), providing escape opportunity (Chivers and 

Smith 1995, Wisenden and Thiel 2002). Evidence also suggests that the anti-predator 

function of alarm signals exists for both signal senders and receivers (Smith 1992, 

Chivers and Smith 1998) and opportunistic predators can take advantage of alarm cues 

to locate easy prey opportunities (Wisenden and Thiel 2002). A wide diversity of 

aquatic organisms release chemical alarm cues (Murray and Jenkins 1999): including 

gastropods (Crowl and Covich 1990), aquatic insects (Chivers et al. 1996a, Wisenden 

et al. 1997), fish (e.g. Keefe 1992, Mathis and Hoback 1997, Stabell and Lwin 1997, 

Chivers and Smith 1998, Mirza et al. 2001), aquatic invertebrates (Chivers and Smith 

1998) and aquatic amphibians (Wilson and Lefcort 1993). 

 

Alarm odours are not generalised (Bryer et al. 2001), as only conspecifics and 

sometimes close sympatric species, appear capable of detecting information from the 

odours produced. Swordtail skin extract was not shown to elicit a response in minnows 

(Chivers and Smith 1994b, Chivers et al. 1995), salmonids (Brown and Smith 1997, 

Berejikian et al. 1999, Mirza and Chivers 2000), sticklebacks (Mathis and Smith 1993c, 

Brown and Godin 1997) and sculpins (Bryer et al. 2001). However, the extract will 

produce a response in swordtails (Mirza et al. 2001). In contrast, some species do not 

possess alarm pheromones (Smith 1976, Mathis and Smith 1993b, Brown et al. 1995). 

 
 
2.4.2.4 Crayfish responses to kairomones 
 

Behavioural responses to predatory odours alone have been documented for many 

species of freshwater crayfish (Listerman et al. 2000, Li et al. 2000), including Cherax 

albidus (Gherardi et al. 2002), C. tenuimanus (Gherardi et al. 2002), Astacus astacus, 

Orconectes propinquus, O. rusticus, O. virilis and Pacifastacus leniusculus (Appelberg 

et al. 1993, Blake and Hart 1993a, Willman et al. 1994, Hazlett and Schoolmaster 
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1998). Reactions to predator-derived chemical cues in freshwater crustaceans can 

include direct avoidance (Heterozius rotundifrons, Hazlett and McLay 2000), decreased 

foraging (Orconectes propinquus, Hazlett 1994a, Bouwma and Hazlett 2001, C. albidus, 

Gherardi et al. 2002), decreased locomotion and posture (Orconectes virilis - Hazlett 

and Schoolmaster 1998) and increased sheltering (Baumgartner et al. 2003).  

 

Physiological differences have also been recorded where no change in behaviour was 

seen (e.g. increased heart rate - Listeman et al. 2000, Li et al. 2000). In these cases 

researchers have suggested an increased alert status, or readiness for flight or fight  

where crayfish remain motionless until action is necessary (Hazlett 1994a).  

 
 
2.4.2.5 Factors affecting chemical communication 
 

The anti-predator responses displayed by animals to kairomones may be dependent on 

many factors, such as the degree of predation risk, requirement for resources (e.g. 

food), abiotic factors, and the age/sex and size of interacting species. Responses also 

depend on the predator avoidance strategies of different species, for example; animals 

such as zooplankton are restricted in their ability to escape due to slow swimming speed 

(Allaby 1994). In this case, natural selection may favour increased body protection, 

camouflage or early detection of predator risk (Allaby 1994). Responses also depend on 

the hunting techniques of predators (Brett 1992, Stibor and Luning 1994), i.e. some 

species aggregate to confuse predators (Hay 2002), whereas others, such as Antarctic 

krill, disperse in order to reduce target size to aerial predators, and to not provide 

predators with cost effective feeding source (Strand and Hamner 1990) 

 

The factors affecting chemical communication that have attracted the greatest research 

focus, predominantly due to ease of manipulation in aquaculture, are abiotic system 

conditions and population dynamics - size, age and sex of stock. 

 
Abiotic factors 
 

Chemical communication compounds are primarily steroidal in nature and are generally, 

if not always, hydrophobic or amphiphilic. The degree to which odours dissolve in 

suspended or deposited organic matter may affect their signalling function (Mesquita et 

al. 2003).  
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Once released into the aquatic environment chemical signals dissipate with time (Lass 

2001). This can be a result of turbulent mixing, molecular diffusion, adsorption, 

photolysis, chemical transformation, unidirectional flow in lotic habitats and bacterial 

uptake or breakdown (Atema 1995, Moore et al. 2000). Such spatio-temporal patterns 

are important as they determine signal strength and direction, and enable the receiver to 

respond appropriately. Animals detecting chemical cues would need to consider 

(consciously or subconsciously) the abiotic effects on signals in aquatic systems. 

 

Factors that can influence chemical communication, and thus vulnerability to predation, 

include: water flow (Hay 1996, Powers and Kittinger 2002) with results dependent on 

whether flow benefits predator or prey; toxicant exposure (Preston et al. 1999); 

impediment of cues in weakly acidic conditions (pH 6.0 - fathead minnows, Pimephales 

promelas, finescale dace, Leduc et al. 2004, Phoxinus neogaeus; rainbow trout, 

Oncorhynchus mykiss; brook charr, Salvelinus fontinalis, Leduc et al. 2004); low 

temperature reducing concentration (Lass 2001); and disruption by humic acid (Hubbard 

et al. 2002), metals (Webber and Haines 2003), UV radiation (Hay 1996) and nutrient 

levels (Hay 1996). Anthropogenic substances can also either mimic the effects of 

predator kairomones, or inhibit induction of defences (Barry 1999, Hanazato 1999). 

Some heavy metals and synthetic chemicals, such as insecticides and pesticides, have 

been found to induce responses in zooplankton similar to those produced by predator 

kairomones (Hanazato and Dodson 1992, 1993, Barry 1998, Michels et al. 2000). 

 

Response differences between size/age/sex 
 

The variation in anti-predator responses to kairomones between sexes, age or size of 

prey may be a result of selective predation. Pike cichlids, Crenicichla alta, selectively 

attack females in mixed sex pairs of guppies (Pocklington and Dill 1995), alarm cues 

from crushed conspecifics result in male swordfish inhabiting the top of tanks, whereas 

females seek shelter in benthic areas (Mirza et al. 2001) and many predators target 

smaller, more vulnerable prey - as with silver perch-marron polysystems (Whisson 

2000). Conspecifics have also been shown to react differently to alarm cues depending 

on the size/age class of the signal source (Mirza and Chivers 2002). How animals 

differentiate between size or age of source is unknown, whether chemical signatures in 

cues vary or whether there is a direct relationship between volume or concentration 

(Courtenay et al. 2001) of signals released. In contrast, some studies suggest that 

kairomones are unspecific chemical cues (Loose et al. 1993, von Elert and Loose 1996). 
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Ontogenetic changes in behaviour have also been recorded, where fish showed varied 

alarm status depending on age of fish producing the alarm cue, i.e. small fish reacted 

more strongly to alarm cues from small fish. Results suggest that chemicals that act as 

the alarm cue for fish of different age/size classes may be: (1) identical and that there 

may be other chemicals that allow the test fish to distinguish between cues from fish of 

different ages/sizes, or (2) the cues are not identical, but similar enough to be 

recognised (Mirza and Chivers 2002).  

 

 

2.4.2.6 Chemical communication in polysystems 
 

The widespread role of chemicals in mediating intraspecific and interspecific 

interactions has been recognised for many years (Dicke and Sabelis 1988), with 

kairomones and inducible defences regulating energy flow through systems 

(Ringleberg et al. 1991, Ringleberg 1997), shaping entire food webs. In aquatic 

polyculture, negative interactions between species could potentially be mediated by 

interference of chemolocation abilities of predators, thereby increasing the cost of 

acquiring prey. One of the main concerns in polysystems is increased intraspecific 

conflict, as predatory stress can result in responses such as increased sheltering, 

which can increase conflict amongst conspecifics due to higher relative densities within 

shelter. Few studies have tried to understand how chemically-mediated defence 

reactions influence spatial and temporal dynamics of prey populations (e.g. De Meester 

et al. 1995, Spaak and Boersma 1997, Burks and Lodge 2002), and the subsequent 

effects on intraspecific dynamics. Understanding chemical ecology of polysystems can 

provide valuable information for developing mechanisms to avoid or counterbalance 

predation risk within polyculture management strategies. 
 

 

2.4.3 Tactile communication 
 

Tactile cues (mechanoreception), or physical interaction, play an obvious role in the 

relationships between conspecifics and heterospecifics. Generally, the most evidence 

for successful use of mechanoreception is at night where other sensory modalities are 

less effective (Bouwma and Hazlett 2001). Many successful nocturnal foragers rely on 

tactile cues, including one of the largest group of organisms, arthropods (Grostal and 
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Dicke 1990, Hoffmeister and Roitberg 1997, Persons et al. 2001). The use of tactile 

information has been shown with: 

 

• Male-female interaction (Zalesky et al. 1984); 

• Predator detection (Gilbert 1980, Wurdak et al. 1983, Bollens and Frost 

1989, Herbaholtz et al. 2004); 

• Prey detection (Enger et al. 1989) and location (Persons et al. 2001); 

• Conditioned feeding (Kemenes and Benjamin 1989, Kojima et al. 1997); 

• Reproduction (Bouwma and Hazlett 2001, Herbaholtz et al. 2004) 

• Habitat selection (Scully 1983, Elwood and Stewart 1985, Hazlett 1996). 

 

A number of species have been identified as requiring tactile information for various daily, 

seasonal and reproductive activities (crayfish, Herbaholtz et al. 2004; O. propinquus, 

Bouwma and Hazlett 2001; brachyuran crab, Heterozius rotundifrons, Hazlett and McLay 

2000). In arthropods, such as freshwater crayfish, tactile cues are often detected though 

antennae (Panksepp and Huber 2004). 

 

Tactile cues reflect confident information pertaining to a range of events, however in the 

case of predator-prey relationships, tactile cues may often be too late to aid escape. The 

responses to tactile cues pertaining to threat are often obvious and strong. Reactions 

include defence (Field 1990, Hazlett and McLay 2000), aggression (fight) or evasion (flight) 

(Webb 1979, Herbaholtz et al. 2004). For example, when H. rotundifrons receives a strong 

tactile input from a predator, it displays an aggressive behaviour by spreading its chelipeds 

and stopping all movement (Field 1990, Hazlett and McLay 2000). Branchyuran crabs may 

respond with a catatonic body posture in response to being grasped (Hazlett and McLay 

2000). In the latter, the crab becomes rigid and appendages extended for several minutes, 

which has been shown as an effective predator defence mechanism, making the crab hard 

to handle and consume (Hazlett and McLay 2000). Freshwater crayfish have been shown 

to respond to tactile stimuli relating to threat by tail-flipping (Wiersma 1961), a common 

observation with all Cherax species of freshwater crayfish (Storer pers. obs.). 

 

Reactions to other forms of exteroceptive cues are often heightened, initiated faster  or 

prolonged by the coupling with tactile cues (Rekwot et al. 2001, Bouwma and Hazlett 2001, 

Hazlett 1971)  
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2.4.4 Other methods of communication 
 

In addition to visual, chemical and tactile communication, a number of other sensory 

modalities exist, including audio (Rosenthal and Ryan 2000), electrical (Himstedt et al. 

1982, Scheich et al. 1986, Gould et al. 1993), magnetic and thermo-communication. 

These information media, especially the latter two examples, are often more 

specialised, rare and therefore less studied in aquatic environments. A brief description 

of audio and electrical communication cues is provided. 

 
 
2.4.4.1 Audio 
 

The auditory system is likely to play a direct role in a number of ecological situations, 

including male-female interactions (Zalesky et al. 1984; mating calls - Bradbury and 

Vehrencamp 1998), alarm or predator startle response (Richardson et al. 1996; cod 

producing clicking sounds, Vester et al. 2004), predator detection and identification (Gil-

da-costa et al. 2003), feeding - communicating feed source to conspecifics (Lagardere 

et al. 2004), or a cumulative role with other external information cues, such as with 

signalling or priming pheromones (Rekwot et al. 2001). Acoustic signals have some 

advantages over other information signals, for example they disperse faster than 

chemical cues (Lass 2001). 

 

In invertebrates, audio signals are believed to be received via hair vibrations (Bahar 

and Moss 2004). In crayfish, hairs on the tail have been shown to pick up sound from 

both prey and predators (Bahar and Moss 2004). Teleost fishes, the largest group of 

living vertebrates, include both vocal and non-vocal species that exploit a wide range of 

acoustic niches. Behavioural studies demonstrate that temporal features within a call, 

including pulse duration, rate and number, can all be important to its communication 

value (Bass and McKibben 2003). Audio communication has been investigated in 

catfish Platydoras costatus and Pimelodus pictus, loach Botia modesta and labyrinth 

fish Trichopsis vittata (Wysocki and Ladich 2003), all of which are hearing specialists. 

Results from these species indicate that besides temporal patterns, amplitude 

fluctuations and the frequency context of sounds can be information for acoustic 

communication (Wysocki and Ladich 2003) 
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2.4.4.2 Electrical  
 

Electroreception is a specialised sensory modality, utilised by a diverse range of 

organisms (Watt et al. 1999), dominated by elasmobranches (Kalmijn 1971) and 

including numerous non-teleosts (Northcutt 1986), teleost species (Szabo 1974) and 

even primitive animals such as the platypus (Scheich et al. 1986) and star nosed mole 

(Gould et al. 1993). The importance of electrical signals for communication has been 

described in a number of species (Carlson and Hopkins 2004). The competitive 

advantage of electrical cues over more direct signals (visual, tactile and audio) is the 

ability to locate submerged or hidden prey (Kalmijn 1971, Himstedt et al. 1982, Scheich 

et al. 1986, Gould et al. 1993). Watt et al. (1999) demonstrated the ability of lungfish, N. 

forsteri, to detect weak electric fields surrounding crayfish when held in adjacent 

compartments with visual and chemical cues inhibited.  
 

 

2.4.5 Multiple component signals 
 

Previous sections have examined the roles and ramifications of the most commonly 

studied sensory modalities employed by aquatic organisms. However, ecological events 

are rarely governed solely by a single source of information. In fact, the structure of 

behaviour is often referred to as the nature of interaction between multiple sources of 

information (Hazlett 1996). 

 

Multiple cues are detected and utilised by many animals (e.g. Hazlett 1996, Kaufman et 

al. 1996, Bouwma and Hazlett 2001, Diaz et al. 2001), with information interpreted and 

memorised more efficiently than with simple signals (Goncalves et al. 2002). The 

advantage of detecting multiple cues pertaining to one ecological event is that they 

afford the organisms more security through increased confidence in information (Rowe 

1999, Goncalves et al. 2002), which results in an ecological advantage to the receiver 

(Rowe 1999). For example, some predators have developed the ability to deceive prey 

by mimicking non-threatening signals (Brown and Godin 1999), whereas prey that can 

detect a combination of cues are less likely to be mislead. 

 

The advantages of utilising multiple sensory channels are demonstrated for a range of 

species and situations. The use of chemical signals, and other sensory modalities, by 

diurnal species, which traditionally rely on visual communication (Enquiste et al. 1987) 
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has been suggested to increase the range and length of signals used in maintaining 

social hierarchy (Grier and Burk 1992). Similarly, anti-predator behaviour in the 

freshwater crayfish O. propinquus responding to visual indicators of predation threat is 

increased by the addition of an alarm cue, in that the crayfish will respond at a greater 

distance and retreat further than with visual cues alone (Bouwma and Hazlett 2001). 

Glowlight tetras have been shown to inspect the combined chemical and visual cues 

originating from novel predators, and to modify their inspection behaviour (time to 

initiate inspection, size of inspection group and inspection distance) based on additional 

information sources, such as whether the predator recently consumed conspecifics 

(Brown et al. 2000). Giaquinto and Volpato (1997) demonstrated that in developing 

social hierarchy in tilapia, if only visual cues were present then antagonistic behaviour 

continued significantly longer than with a combination of cues. 

 

Generally the rule is that sensory modalities complement each other (Giaquinto and 

Volpato 1997), however, some cues appear ineffective unless coupled. Anti-predator 

behaviour displayed by H. rotundifrons (branchyuran crab) in response to tactile input 

(Field 1990, Hazlett and McLay 2000) is prolonged by the addition of chemical or visual 

cues, although if the latter are detected alone no reaction is evident. This suggests, that 

although insufficient to elicit a response alone, some stimuli can increase the potency of 

other information media. 

 

In some cases multi-component signals are essential for communication (Bradbury and 

Vehrencamp 1998, Rekwot et al. 2001). This is seen especially in interaction between 

conspecifics. For example, courtship behaviour in many species often requires the 

coupling of vocal, tactile and/or visual displays (Bradbury and Vehrencamp 1998), often 

in combination with olfactory cues (Rekwot et al. 2001). Dependency on multiple signals 

for one event would be a disadvantage in some situations, and perhaps only applicable 

in events where speed of reaction is less essential. 

 

The final situation is where a number of signals are each capable of producing the 

same response, regardless of coupling. For example, bluegill sunfish naturally predate 

using mechanical and visual cues, although when lateral lines and eyes are blocked 

they are still effective predators, using tactile cues, with a 58% success after touching 

prey (Enger et al. 1989). This may be the epitome of ecological fitness, as responses 

do not rely on single information streams, which individually may be impeded.  
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In multi-species systems, the factors governing responses to simple tasks, such as 

locating feed, are much more complex than just being able to detect a range of 

exteroceptive cues. One of the most important abilities an organism has is to 

accurately and efficiently make decisions involving situations where information 

pertains to contrasting simultaneous events. A common example of this is the trade 

off between foraging and predation risk.  Where simultaneous and conflicting signals 

exist, poor decision-making may result in fitness loss (Dawkins 1976). To maximise 

fitness in multi-species systems, an organism must weigh responses against risks.  

 

 

2.4.6 Hierarchal and graded responses 
 

Generally, the structure of behavioural responses is said to be hierarchal (Dawkins 

1976, Enquiste et al. 1987, Nelson 1990), with some elements having higher priority 

over others (Hazlett 1996, Hazlett and McLay 2000). In the relationship between 

predator avoidance and foraging, the hierarchal dominance logically lies with 

predation risk over food acquisition (Houston et al. 1993, Werner and Anholt 1993, 

Ydenberg 1998) - living to feed another day. Combinations of snail odour (indicating 

the presence of an available shell) and predator odour in the hermit crab, Diogenes 

avarus, yield an all or none, hierarchal response. Predator odour completely overrides 

the affects on behaviour by snail odour in D. avarus unless the predator odour is very 

weak (Hazlett 1997). However, the structure of behaviour must also be taken in 

context, as obtaining food would gain increasing priority over anti-predator behaviour 

as necessity increases (Anholt and Werner 1998). Some models of behaviour assume 

a graded response, where increasing desire to feed overrides increasing levels of risk 

(Jackson and Edwood 1989). The crayfish Orconectes virilis shows feeding behaviour 

in proportion to the relative strengths of food and alarm odours (Hazlett 1999). A 

combined hierarchal and graded response structure appears to be the most 

appropriate system. Crustaceans display both graded and hierarchal responses, 

where behaviours appropriate to one input dominate over those appropriate to 

another (Hazlett 1994a, 1999). However, in many situations maximum fitness comes 

from experience, where responses are mediated by learning. 
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2.4.7 Learned behaviour 
 

“It is not the strongest of species that survive, or the most intelligent, but the ones 

most responsive to change” - Charles Darwin 

 

Altering behaviour in response to a predator can be costly concerning factors such as 

foraging success and reproduction (Gilliam and Fraser 1987, Travers and Sih 1991, 

Hedrick and Dill 1993, Godin 1995). The ability to acquire information about potential 

risks, assess and modulate responses appropriately, and retain information for future 

similar events is an important ecological tool for all organisms (Pfeiffer 1977, Brown 

and Godin 1999). Not reacting to potential threats, or failure to recognise signals, can 

increase the probability of predation (Hirsch and Bolles 1980), whereas overreaction 

or misguided responses can mean lost resources (Lima and Dill 1990, Lima 1998). 

 

In many cases predator recognition is innate (Sih and Moore 1993, Storfer and Sih 

1998), however for some species recognition requires experience (Hazlett 1971, 

Mathis and Smith 1993b, Chivers and Smith 1998, Dicke and Grostal 2001). That is, 

prey individuals must experience a predator cue and a danger cue simultaneously 

before the predator cue is treated as a danger signal (Chivers et al. 1996b, Hazlett 

and Schoolmaster 1998, Grostal and Dicke 1999, Wisenden and Millard 2001). Even 

a non-predator such as the herbivorous goldfish Carassius auratus will be treated as a 

predator following simultaneous detection by prey individuals of conspecific alarm 

odour and goldfish odour (Chivers and Smith 1994b).  

 

The ecological advantages for species capable of successfully acquiring information 

pertaining to predators is well reported. Delgado et al. (2002) demonstrated that 

predator conditioned conch move significantly less and buried themselves more 

frequently than naïve conch - resulting in significantly higher survival in conditioned 

conch. Kats et al. (1988) found that several larval amphibians collected as eggs from 

ponds containing predatory fish showed an increased shelter use when exposed to 

chemical cues from green sunfish, even in the absence of experience. In the case of 

hermit crabs, experience will decrease delay for shell changes, entry time and 

mistakes (Hazlett 1971, Gilchrist 1985) - reducing chance of predation or competition 

by other crabs, thus experience increases crab survivorship and fitness (Hazlett and 

Provenzano 1965, Hazlett 1995). Wild caught fathead minnows, Pimephales 

promelas, reacted to chemical stimuli from predatory northern pike, Esox lucius, while 
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predator naïve fathead minnows of the same size and age did not respond. Wild 

young-of-the-year minnows react equally compared with adult fish - demonstrating that 

the ability to recognise predators is learned within the first year. After holding wild 

minnows in a predator free environment for one year - no difference was seen in 

reaction to predators - suggesting that reinforcement is not required. Furthermore, 

clones from habitats with fish predators proved more responsive to fish kairomones 

than clones from fishless locations (De Meester 1996, Boersma et al. 1999). 

 

Experience also favours predators. It is assumed that predators with experience 

feeding on certain species will be a greater risk to that prey, as the predator would 

have an improved search image (Tinbergen 1960), reduced feeding neophobia (Dutoit 

et al. 1991, Greenberg 1992) increased handling efficiency or general preference for 

that prey (Persons et al. 2002). The differences between closely related species may 

best demonstrate the influence of learning and experience on genetic adaptations. 

Hazlett (1994) found that O.virilis displays anti-predator behaviour when faced with 

predatory odours, however O. propinquus does not alter its behaviour in response to 

chemical stimuli alone. Phylogenetically (Fitzpatrick 1987) and ecologically (Hazlett 

1994a) these two sympatric congeneric species are very similar, coexisting widely and 

displaying only slight differences in habitat preference. It is assumed that both species 

are faced with similar predation risks (Hobbs 1993), so it is unclear why sensitivity to 

chemical cues has only evolved in O.virilis. Hazlett and Schoolmaster (1998) 

suggested that differences may relate to the nocturnal nature of O.virilis (Hazlett and 

Schoolmaster 1998) whereas O. propinquus is more diurnal (Hazlett 1994a). As 

previously examined, in low light intensity chemical cues are favoured, and vision in 

clear-water systems (Brown et al. 1997). Also, O. propinquus possesses an alternative 

predator avoidance mechanism, a tail-flip response (Webb 1979), which can be 

displayed upon the detection of a strong visual or tactile predator stimulus (Hazlett 

1999). This may reduce need for early detection. Another example of differences 

between species can be seen with catfish, where chemical communication is 

widespread in all species, depending little on vision (Tukey 1977). However, in some 

examples chemoreception is important only in the first days of life and vision is 

predominant later (Giaquinto and Volpato 1997). The great variation between species 

relates to both evolutionary traits held by populations and also modulatory change 

developed through life experiences - learned behaviour. 
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The influence of learning on behavioural modifications in animals, as opposed to 

genotypic characteristics, can be seen in our ability to artificially alter their responses. In 

an early study, Mikhailoff (1923) trained Dardanus arrosor (hermit crab) to withdraw from 

light that they were originally attracted to, and associate a particular colour with food. 

 

Most studies suggest that previous experience, and not genetic factors, is the major 

factor in recognition of predatory cues (Semlitch and Ryer 1992, Chivers et al. 1999, 

Wildy et al. 1999, Mirza et al. 2001), as many species display the ability to acquire 

predator avoidance behaviour after short periods of interaction (Chivers and Smith 1995, 

Diaz et al. 2001). Several mechanisms for acquiring predator recognition have been 

demonstrated (Chivers and Smith 1995). These can be the association of certain cues 

with a potential threat following observation of alarm behaviour from conspecifics or 

heterospecifics reacting to danger, or pairing of alarm cues from crushed conspecifics 

with a novel threat. Predator recognition can also require direct learning, such as 

through an encounter between predator and prey. In all situations inspection is an 

important aspect of predator recognition. 

 
 
2.4.8 Predator recognition 
 

One mechanism utilised to gather information about potential threats is inspection. 

Inspection can result in learning, producing benefits through more effective responses 

(Pfeiffer 1977, Brown and Godin 1999). Inspection behaviour has been recorded in most 

animals, e.g. Ostariophysi species (almost 64% of all fish) (Mathis and Smith 1993a, 

Chivers and Smith 1995, Smith 1997, Brown and Godin 1999). 

 

Inspection generally includes approach of novel cues in a salutatory or tentative 

behaviour (Dugatkin and Godin 1992, Pitcher 1992), either individually or in groups 

(Brown et al. 1999). The high risk associated with inspection is mediated by species 

fitness, i.e. following a predation event where a large number of bacteria were 

consumed, the remaining bacteria demonstrated increased predator avoidance success 

in subsequent encounters (Shemesh and Jurkevich 2004). Variation in inspection 

behaviour can also occur, dependent on factors such as dietary cues (Brown et al. 

1999). European minnows, Phoxinus phoxinus, modify their behaviour after inspecting a 

potential predator depending on its behaviour (Murphy and Pitcher 1997). Inspection is 
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also an inherently risky behaviour (Pitcher et al. 1986, Dugatkin and Godin 1992, 

Milinski et al. 1997) with learned recognition of novel stimuli being recognised as 

dangerous for several species (Chivers and Smith 1998). Individuals that do not alter 

visual inspection behaviour of predators have a greater probability of not surviving the 

encounter (Godin and Davis 1995a/b, Brown et al. 1999). Individuals that dare 

approach predators (predator inspection behaviour) may benefit by acquiring 

information regarding the potential threat of predation (Brown and Godin 1999). 

 

The behaviour of conspecifics, sympatrics or heterospecifics is another source of 

information regarding potential threat (Brown et al. 1999). Mathis et al. (1996) have 

shown that fathead minnows and brook sticklebacks are able to acquire the 

recognition of novel predators simply by observing the anti-predator responses of an 

experienced individual. Prey has been shown to produce anti-predator responses to 

distantly related heterospecifics, especially in diet; this is most likely a result of 

experience (Chivers and Smith 1994a, Chivers et al. 1995). 

 

Learning can also occur through pairing of predatory signals, such as predator cues 

with stimuli from injured conspecifics (Magurran 1989, Chivers and Smith 1994b/c, 

Chivers et al. 1995, Hazlett et al. 2002). Chemosensory recognition of predators by 

naïve prey may be facilitated if the predators diet chemically ‘labels’ the predator 

(Chivers et al. 1996b). Pike-naïve damselflies may initially respond to chemical stimuli 

from pike based on stimuli of conspecifics or familiar heterospecifics in the pikes diet, 

and can learn to recognise chemical stimuli of pike irrespective of the pikes recent 

feeding regime based on the initial association with damselflies or minnows in the 

pikes diet (Chivers et al. 1996b). Diet-related chemical labelling of a predator has 

been demonstrated in several studies (Crowl and Covich 1990, Mathis and Smith 

1993a/b). Chivers and Smith (1995) demonstrated that snails (Physella virgata) can 

discriminate between crayfish based on diet-related cues. Predation risk is reduced in 

aquatic flatworms through avoidance behaviour in conspecifics recognising alarm 

cues following a predation event (Hews 1988, Mathis and Smith 1993, Wisenden et al. 

1999). In four species of freshwater crayfish, exposure for just two hours was 

sufficient to establish an association between novel odour and elevated predation risk 

(Hazlett et al. 2002). Fish trained with alarm signals to recognise predators gain a 

survival benefit during staged encounters (Gazdewich and Chivers 2002). An obvious 

advantage of this type of learning is seen with guppies (Poecilia reticulata), which are 
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able to differentiate between hungry and satiated predators (Licht 1989). Naïve prey 

often show no response when first presented with predator odour. However if 

presented with a novel stimulus simultaneously with a conspecifics alarm cue they 

learn to associate risk with novel stimuli. After a single exposure to both cues a novel 

cue alone elicits a full suite of anti-predator behaviour (e.g. Magurran 1989, Chivers 

and Smith 1994a). A fright stimulus was also elicited when chemical cues from pike 

combined with minnow alarm odour – this suggests that minnows can acquire 

predator recognition through releaser induced recognition learning (Chivers and Smith 

1994b). For a more detailed review of diet-related anti-predator responses see 

Chivers et al. (1996a). 

 

The ability to differentiate between different cues has been demonstrated on many 

occasions (e.g. Black and Dodson 1990, Stibor and Lüning 1994, Wisenden and 

Smith 1998). Examples include: minnows avoiding areas of a tank containing the 

faeces from pike on diets of minnows or sticklebacks but not on pike fed swordtails 

(Brown et al. 1995); juvenile A. astacus increasing shelter use following exposure to 

chemical stimuli from four different fish predator species, but not to stimuli from a non-

predatory fish (Appelberg et al. 1993); and, juvenile toads shown to avoid chemical 

cue from snakes fed juvenile toads, but not from snakes fed larval toads (or food or 

conspecifics) (Beldon et al. 2000). 
 
The behaviour of the predator may be a significant source of information (Murphy and 

Pitcher 1997), however visual cues such as behaviour and posture may prove 

unreliable as they could be manipulated by the predator (Brown and Godin 1999). 

The ability to detect multiple sources of information through inspection is critical. 

 
 
2.4.9 Behavioural plasticity 
 

The relationship between evolution and experience is obviously critical in responses 

displayed by organisms. Although experience is well supported as a major factor 

governing fitness (Magurran 1989, Chivers and Smith 1994a/b, Chivers and Smith 

1995), evolution obviously influences the ability to take advantage of experiences.  
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The three major advantages an organism can have regarding predator avoidance are: 

1. Ability to detect signals pertaining to factors such as predation risk 

2. The tools to avoid predation - capacity for flight or fight 

3. Capacity to remember vital information for future encounters - learning  

 

The role of evolution in respect to predator avoidance affects the organisms capacity for 

each of these qualities, and perhaps most important is their capacity to learn as this will 

influence both detection and avoidance strategies. 

 

Avoidance and escape behaviour is often highly developed and species specific (Gellar 

1982, Marko and Palmer 1991, Dix and Hamilton 1993). Avoidance tactics are 

commonly triggered by detection of cues associated with previous predator encounters 

(learned behaviour), however once an association is formed it will generally tend to 

decay unless reinforced (Hazlett 1995). The rate of decay has been suggested to be 

linked with the duration of learned associations (Hazlett 1995). In some species the 

memory of certain cues pertaining to an event can be retained for several months 

without reinforcement (Courtenay et al. 2001), in other cases reinforcement is not 

required at all (Tukey 1977). More impressive than this is the ability of some prey 

species to avoid novel threats, affording them time for learning to acquire appropriate 

responses. Animals that possess innate abilities to react to multiple situations, or learn 

quickly in response to novel situations, would have the greatest advantage. These 

animals often possess adaptive or plastic behaviours. 

 

Plasticity - the capacity of a given genotype to develop one of several phenotypic 

states depending on the environment (Lee 2002). 

 

Plastic response - a response of a given genotype that can vary depending on 

external   conditions (Lee 2002). 

 

DeWitt et al. (1998) stated that “Adaptive phenotypic plasticity seems like the pinnacle of 

evolution”. The ability for an organism to adapt its phenotype to changing environments 

allows a species to exploit a broader range of environmental conditions. The magnitude 

in variation ranges from relatively small changes to extreme shifts in morphology 

(Hughes and Elner, 1979, Bertness and Cunningham 1981, Johanesson 1986, Stabell 

and Lwin 1997) and life history, such as inducible defences (Lass 2001). Inducible 

defences are striking examples of phenotypic plasticity.  
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When variability in other phenotypic features is added to a consideration of the 

variability in behaviour, it emphasizes the great advantage of plasticity (Gabriel and 

Lynch 1992). Behaviour of almost all categories has been shown to be variable 

depending upon conditions and species (Lott 1991). Animals displaying plastic 

behaviour are also often successful invaders, being ‘super-competitors’. Invasive 

species display the best examples of advanced or heightened learning, with 

differences also existing in the memory capabilities of invasive and native species. 

Invasive species and populations pose major threats to biodiversity, ecosystem 

integrity, agriculture, fisheries and public health (Lee 2002). Results from an impact 

study of mosquito fish suggest that introduction of mosquito fish into naturally fishless 

wetlands may lead to a loss of diversity of their highly specialised aquatic fauna 

(Leyse et al. 2004). The negative impacts from invaders can even go to the extent of 

environmental changes. Some species, affectionately called invasive engineers, will 

alter their environment to suit themselves - often at the detriment to native inhabitants, 

a common example being beavers (Cuddington and Hastings 2004). Among species 

that are introduced, only a very small proportion become established and then 

invasive (Lee 2002). Invasive species often possess permanent defences, which will 

protect them in novel environments. Individuals of invasive species showed evidence 

of retention of the learned association longer than did individuals of the native 

species. The results are consistent with the hypothesis that invasive species have a 

greater capacity for behavioural plasticity (Hazlett et al. 2002) 

 

The freshwater crayfish marron has also been exposed to a typical invader, the 

yabby. A rapid colonisation of yabbies throughout the south-west of Western 

Australia, in areas previously inhabited by marron (Lynas et al. 2004), suggests that in 

many cases marron have been displaced. The ecological threat from the invasive 

yabby on marron is explained on the basis of its plastic behaviour, hardiness, and 

burrowing (Gherardi et al. 2002, Lynas et al. 2004). In addition, the yabby may out 

compete marron due to factors such as sex differences and body size, described in 

other native versus invader species encounters (Nakata and Goshima 2003). 

Although marron obtain a larger final size compared to yabbies, juvenile yabbies grow 

at greater initial rate and breed in their first year, unlike marron (Wingfield 2000), and 

yabbies are known to be aggressively dominant over marron of smaller size (Lynas 

2002). Researchers have hypothesised that invasive species out-compete native 

species through higher plasticity in the use of information (Hazlett 2000a, Gherardi et 
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al. 2002, Hazlett et al. 2002). It is widely accepted that invasive crayfish species are 

better equipped to process information about impeding threats than native species, 

resulting in more protective modifications to their behaviour in the presence of 

predators (Gherardi et al. 2002, Hazlett et al. 2002). Of importance is efficient leaning 

about cues associated with elevated predation risk (Hazlett et al. 2002). As marron 

are also exposed to introduced predatory fish species, primarily redfin perch, within 

their natural habitat, this may provide more evidence towards the ecological 

advantage held by yabbies. The efficient use of a wider range of ecological 

information is the basis of behavioural plasticity - promoting rapid adaptation to the 

surrounding environment and thus displacement of competitors.  

 
 

 
2.5 Anti-predator behaviour of crayfish within multi-species systems 
 
 
Where niche overlaps exist in multi-species systems the negative interactions 

between species need to be understood and mediated in order to maximise 

aquaculture production. The importance of behavioural observations in analysing 

these interactions has been a consistent theme throughout this review.  With a few 

species-specific exceptions, the predator-induced behaviours of crayfish fall into the 

following categories: reduced foraging, increased sheltering, defensive and 

aggressive postures, changes in movement or locomotion, area avoidance, no 

response, and the use of sensory systems. The typical predator avoidance responses 

of crayfish are discussed. 
 

 
2.5.1 Reduced foraging 
 

Reduced foraging is predominantly an indirect result of predator, or competitor, 

avoidance behaviours (Rahel and Stein 1988, Brown et al. 1999, Hazlett and McLay 

2000, Bouwma and Hazlett 2001). How prey balances potentially risky activities, such 

as feeding, against anti-predator demands has been a major issue in modern 

behavioural ecology (Sih 1980, 1992, Housten et al. 1993, Werner and Anholt 1993, 

Houston and McNamara 1999). In many studies, prey respond to predators by 
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reducing their activity and by increasing their use of safer microhabitats (e.g. Metcalfe et 

al. 1987, Sih 1987, Lima and Dill 1990, Kats and Dill 1998, Lima 1998, Woodley and 

Peterson 2003), with both responses resulting in reduced foraging time. In interactions 

between crayfish and predators, crayfish have been shown to completely shutdown 

food-related responses upon detection of the predation related cues (Rahel and Stein 

1988, Hazlett et al. 2002). In contrast, Hazlett (1999, 2000b) showed that feeding 

responses were intermediate but did not shutdown. It is apparent through most studies 

that animals will select less feed in more secure areas, than greater feed in areas where 

predators have more chance of acting (Stokes et al. 2003).  

 

 
2.5.2 Increased sheltering 
 

Seeking cover is one of the most prevalent danger response mechanisms, used by 

most organisms to minimise detection (Stein and Magnuson 1976, Appelberg and 

Odelstrom 1988, Blake and Hart 1993b) or utilise a safer microhabitat (Sih 1987, Lima 

and Dill 1990, Kats and Dill 1998, Lima 1998, Woodley and Peterson 2003). Sheltering 

is often used as the immediate fright response to potential danger (Heczko and Seghers 

1981, Lawrence and Smith 1989, Mathis and Smith 1993b), providing time for 

assessment of the situation. Increased shelter use may be particularly effective against 

predators that locate their prey through movement (Kiesecker et al. 1996). 

 

Shifts in microhabitat use obviously influence predations rates, but they can also have 

important impacts on species interactions, including competition among prey (Werner 

1991, Kotler et al. 1994), interactions among predators (Soluk and Collins 1988, Sih et 

al. 1998) and trophic cascades (Schmitz et al. 1997). A number of authors have 

reported that competition among prey is greatly increased due to predatory pressure 

(Werner 1991, and Kotler et al. 1994), as prey species are forced into smaller areas to 

escape danger, thus increasing the relative density. This can influence production in 

aquatic polysystems through cannibalism (Denno et al. 1994), resource competition 

(Denno et al. 1994) and increased stress (Schapker et al. 2002). Stress responses 

come from increased social interactions. During antagonistic encounters between two 

crayfish, heart and ventilatory rate correlates with the intensity of the interaction 

(Schapker et al. 2002). Prolonged exposure to high densities results in physiological 

costs, which need to be maintained through reserves otherwise be used in areas such 

as weight gain, foraging, and reproduction - thus, aquaculture production suffers. 
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2.5.3 Defensive and aggressive postures 
 
In crayfish, posture is a major signal - with raised postures displayed by aggressive or 

dominant individuals. Defensive stances in crayfish often include raised and open 

chelipeds with a low posture, often with tail curled under body (Hazlett 1994a). 

Responses to predator cues have been documented in crayfish and other 

crustaceans. Upon detection of predator odour the crayfish O.virilis switches to a 

lowered posture while decreasing non-locomotory movements (Hazlett and 

Schoolmaster 1998). In responses to conspecific cues crayfish ceases all movements 

while assuming an intermediate watchful posture (Hazlett 1994a). A response to 

tactile stimulation (grasping of prey by predator) is often a catatonic posture - rigid, 

appendage extended posture for several minutes. This has been shown to be an 

effective predator defence mechanism (Hazlett and McLay 2000), assumed to be 

either ‘playing possum’ or making the animal more difficult to handle and consume - 

increasing cost of acquisition. 

 

 

2.5.4 Changes in locomotion or movement 
 

One of the most documented responses to potential risk, or predatory stress, is 

decreased movement (Sih 1987, Blake and Hart 1993b, Hazlett and Schoolmaster 

1998, Kats and Dill 1998, Lima 1998, Hazlett 1999, Woodley and Peterson 2003). A 

reduction in activity, even cessation of activity, has been observed as an antipredator 

behaviour in many species (Heczko and Seghers 1981, Lima and Dill 1990, Godin 

1997, Smith 1997), including crayfish and other crustaceans (Hazlett 1997, 2000). 

 

Rapid escape is another common avoidance response to potential or imminent risk. 

Dashing (fast sharp bursts in varied direction) is reported in many fish species 

(Lawrence and Smith 1989, Mathis and Smith 1993b) or escape can be a direct burst 

of speed in the opposite direction to danger. Early behavioural studies noted the 

existence of rapid defence reactions in crayfish (Bethe 1897, Huxley 1880, Wiersma 

1961), where powerful tails are utilised to quickly retreat backwards. Herbaholtz et al. 

(2004) reported the following results from interactions between dragonfly nymphs and 

hatchling crayfish. During attacks, dragonfly nymphs rapidly extend their labium, 

equipped with short, sharp palps, to capture small crayfish. Crayfish respond to the 

tactile stimulus by activating neural escape circuits, generating tail-flips directed away 



Chapter two: literature review                                                                                            

 

81 

from the predator. Crayfish were reported to use all three known types of escape tail-

flips during the interactions with the dragonfly nymphs. Tail-flips generated by activity 

in the giant neurons were predominantly observed to trigger the initial escape 

response to an attack, but non-giant mediated tail-flips were often generated to 

attempt escape after capture. Attacks to the front of the crayfish triggered tail-flips 

mediated either by the medial giant neuron or by non-giant circuitry, whereas attacks 

to the rear always elicited tail-flips mediated by the lateral giant neuron. Tail-flips were 

the sole defence mechanism observed in response to attack, and were found to be a 

successful behaviour in preventing capture, with only a small percentage of crayfish 

consumed (Herbaholtz et al. 2004). 

 

The use of tail-flipping in crayfish species may be a cost-effective response to 

imminent threat, where crayfish can maintain normal behaviour until avoidance is 

absolutely necessary. Tail-flipping has been used as a measure of responsiveness in 

a number of studies (Lang et al. 1977, Copp 1986, Fricke 1986, Bruski and Dunham 

1987, Pavey and Fielder 1996, Guiasu and Dunham 1997, Kellie et al. 2001).  
 

 
2.5.5 Area avoidance 
 

A common response to danger is avoidance of risk areas (Brown et al. 1995). This 

response often lasts longer than acute reactions to predator risk. For example, 

following exposure to predatory cues, minnows were shown to relax from behaviours 

indicating fright after some time, however still avoided source areas (Brown et al. 

1995). The avoidance of certain areas in itself is not a problem, however if this also 

means movement away from more optimal conditions (i.e. better water quality or feed 

resources) this can have adverse affects on growth and survival. As the dominant 

species usually inhabits the most optimal areas of the system this is often the case. 

Lass (2001) demonstrated than daphnia traded off reduced predation mortality in a 

refuge against disadvantages due to unfavourable oxygen conditions. These results 

indicate that environmental conditions might constrain predator avoidance strategies, 

which can have flow-on effects in aquaculture. 
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2.5.6 No response 
 

In many behavioural studies, when test animals do not make significant changes, as 

measured by bodily movement, the animal is characterised as unresponsive to the 

given stimulus. This assessment may often be accurate, however, in some cases 

where no behavioural responses are recorded there are still physiological responses 

associated with heightened alertness, or readiness for flight or fight. “Alertness” is 

defined as the capability to escape the attack of a predator through an increased 

sensitivity to mechanical and light disturbance (De Meester and Pijanowska 1996). 

Schapker et al. (2002) showed that although behavioural movements of crayfish may 

not be observed, physiological measures of heart rate and ventilatory rate show 

dramatic changes in response to defined sensory stimuli. Autonomic control of the 

cardiovascular and ventilatory systems can regulate the availability of potential oxygen 

and nutrient needs of the tissue, while at the same time not appearing to cause an 

external behaviour change that could be assessed by others around it. In certain 

circumstances it is not beneficial for an animal to relay, by behavioural means, how 

agitated it may really be, but instead to be ready to deal physiologically with whatever 

quick demands are put on it for fighting or fleeing (Schapker et al. 2002). 

Unfortunately, this makes it hard for behavioural biologists to assess an animals’ 

internal state by direct bodily observations (Schapker et al. 2002). Freshwater 

crayfish, such as marron, may be a prime candidate for increasing alert status or 

readiness for flight, due to its use of a tail-flip to effectively escape imminent danger. 

Not overreacting to potential threat may afford these animals a competitive edge, 

where foraging time and other activities are not as affected. 

 

 
2.5.7 Sensory system behaviour 
 

A number of sensory devices are employed to detect a range of cues pertaining to 

predatory threat. In crayfish, the capability to detect environmental signals has been 

seen in the antennules (Tierney and Atema 1988, Hazlett 1990, Grasso and Basil 

2002), antennae (Panksepp and Huber 2004), and in hairs on claws (Takahata 1981) 

and ambulatory dactyls (Hazlett 1971). Where ‘no behavioural response’ is observed 

in response to predatory stimuli (as discussed in 2.5.8), closer observation of sensory 

activity may be especially important. The use of sensory devices by crayfish are 

described. 
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2.5.7.1 Antennules 
 

The primary olfactory sampling structures that have been observed in crayfish, 

lobsters and crabs are antennules (Grasso and Basil 2002). Hydrodynamic receptors 

located within the antennules of crayfish (Hazlett et al. 2002) provide information on 

the direction of water flow and the presence/movements of other organisms (Vogt 

2002). Through morphological, behavioural and electro-physiological studies, 

antennules for a number of decapods have been shown to be the main distance 

chemosensory organs used to detect food odours (Hazlett 1971, Tierney and Atema 

1988, exceptions in Ameyaw-Akumfi 1977) and disturbance chemicals (Hazlett 1990). 

Although the number of cells in the lobsters’ olfactory system is much lower than in a 

vertebrate olfactory system, it is a highly complex system (Derby 2000). 
 

 

2.5.7.2 Antennae 
 

Evidence demonstrates the use of antennae for various mechanosensory tasks, such 

as movement, foraging, identifying obstacles and other organisms (Panksepp and 

Huber 2004). In freshwater crayfish, antennae has been described as touch sensors 

(Withnall 2000), and observation of antennae movements within behavioural analysis 

in laboratory trials has shown usage for investigating novel system structures 

(Panksepp and Huber 2004). 
 

 

2.5.7.3 Chelipeds and ambulatory dactyls 
 
The sensory abilities of the chelipeds and ambulatory dactyls (legs) of crayfish are 

poorly represented in literature, however a number of studies have identified similar 

functions as the antennules. Hazlett (1971) reported that when various concentrations 

of fish juice were introduced to hermit crabs Petrochirus diogenes the following 

observations were made: 1). The threshold concentration for chemical elicitation of 

feeding behaviour was over ten times as high for the ambulatory dactyls as for the 

antennules; 2). Combining tactile input with chemical input decreased the behavioural 

threshold of the dactyl responses ten-fold; and 3). Ablation of the antennules was 

followed by a 100-fold increase in the behavioural sensitivity to dactyl stimulation. 

Sensory hairs on crayfish claws have been identified, and these hairs appear to be 

functionally different (Takahata 1981) suggesting a more complex role than credited. 
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2.6 Factors affecting behaviour in multi-species systems 
 

The standard interaction responses of organisms within multiple species systems, 

based on a diverse range of biotic and abiotic conditions, have been reviewed in this 

thesis. However, several factors can influence these standard responses, including 

health and stress levels (injury-nutrition), life stage and reproductive status. In addition, 

the relative risk levels faced by prey organisms at different times will affect the way 

they react (i.e. diel variations in predator feeding). These factors can have significant 

affects on decisions made by organisms. 

 

 

2.6.1 Health status 
 

The condition of an animal may affect responses to stimuli based on consequences. 

Periodic changes in conditions have been associated with moult cycle, breeding 

(Barnes et al. 1963, Du Preez and McLachlan 1983, Fernandes et al. 1994), food 

availability (Clark and Holmes 1986) and nutritional state (Stocker and Huber 2001). 

Any physical or physiological response will have a direct cost to the organism or follow-

on effects through reducing the time for beneficial behaviours. These costs can affect 

the way organisms react to subsequent events, for example, unhealthy animals may 

not have the reserves to avoid predators (Godbout et al. 2002). In multi species 

systems, physiological costs associated with interaction come from social interactions 

(Listerman et al. 2000, Li et al. 2000), direct conflict (Cuadras 1979, 1980, Schapker et 

al. 2002), and perceived predatory pressure. Woodley and Peterson (2003) found that 

long-nose killifish respond to visual cues from predators by exhibiting an elevated 

plasma cortisol consumption and mass-specific oxygen consumption rate, resulting in 

decreased growth. Alterations in behaviour induced by stress may significantly affect 

activities essential for survival, including the acquisition of food, predator avoidance 

and habitat selection (Schreck et al. 1992). In crayfish, condition was shown to affect 

the tail-flip response (Page and Cooper 2004), where loss of chelipeds rapidly alter tail-

flip frequency (Kellie et al. 2001) and stressed crayfish reacted differently to non-

stressed crayfish (Basso 2001).   
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2.6.2 Nutritional state 
 

Nutritional state has been demonstrated as a strong determinate in responses 

displayed in crayfish (Stocker and Huber 2001). During antagonistic encounters 

hungry crayfish appear to escalate reactions more rapidly, taking greater risks, while 

the presence of a food source reduced the rates at which fighting increased in intensity 

(Stocker and Huber 2001). Many studies have focused on the existence of the 

ecological trade-off between foraging and predation risk (see review by Lima 1998). 

Where resources are limiting, and thus perceived value of a resource is high, animals 

should be more persistent and willing to take greater risks (Enquist and Leimar 1987, 

McNamara and Houston 1989). As foraging becomes more and more critical, with 

extended starvation, animals will employ a risk-prone foraging strategy (McNamara 

and Houston 1986, Godin and Crossman 1994). Similarly, satiated animals will usually 

display a much more relaxed motivation towards antagonistic encounters (Wilcox and 

Ruckdeschel 1982, Lawton 1987, Griffiths 1992), especially facing heightened 

motivation of nutritionally deprived individuals where an actual food source is present 

(DiMarco and Hanlon 1997, Sirot 2000). Hungry individuals engage in more fights 

compared to satiated animals (Hazlett et al. 1975), with `less to lose' because food 

deprivation reduces chances for survival (McNamara and Houston 1989), and thus 

adopt more dangerous fight strategies. Alternatively, hungry crayfish may place 

increased value on time spent fighting because this takes away from opportunities to 

forage (Griffiths 1992). Page and Cooper (2004) supported these findings, concluding 

that sensory stimuli can produce varied responses depending on the physiological 

condition of an animal.  

 

 

2.6.3 Life stage 
 

Life stage differences in interaction responses are commonly associated with changes 

in size (Peters et al. 1980, Beacham 1987, Svensson 1993), experience (Tinbergen 

1960, Dutoit et al. 1991, Greenberg 1992, Persons et al. 2002), or development of 

defensive structures (Lass 2001) and sensory systems (Skajaa et al. 2004). The lower 

energy stores, faster use of reserves, less tolerance to starvation (Svensson 1993) 

and increased moult frequency (Merrick and Lambert 1991, Huner 1994, Timmermans 

et al. 1995) of juveniles means they must venture out of the safety of shelter into 

higher predation risk areas (Svensson 1993). In contrast, the decreased energy 
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requirements and greater experience of older individuals may result in them giving up 

searching earlier (Svensson 1993, Persons et al. 2002). Other authors have reported 

more efficient use of time and energy resources of predators due to experience 

(Tinbergen 1960, Dutoit et al. 1991, Greenberg 1992, Persons et al. 2002). 

Ontogenetic related effects on the effectiveness of predator avoidance were 

demonstrated by Skajaa et al. (2004) investigating herring larvae, Clupea harengus. 

Starved larvae showed lower responsiveness than fed, however older starved larvae 

showed higher responsiveness than younger fed larvae. The higher responsiveness in 

older individuals was explained by differences in sensory development.  
 

 

2.6.4 Reproductive stage 
 

The reproductive state of an animal can also affect interaction responses. Status 

changes associated with reproduction reflect an altered biochemical status that affects 

the responsiveness of an animal to hormones and neuromodulators, which control 

animal behavioural responses to sensory stimuli (Page and Cooper 2004). In crayfish, 

tail-flipping was reduced in stressed males, and not utilised by gravid females (Page 

and Cooper 2004). Gravid females and females with young commonly display 

increased aggressiveness (Mayer and Rosenblatt 1987, Albert et al. 1993, Mello et al. 

1999). Some behaviours of gravid females are said to be bluffing responses, versus 

true aggression in seeking out to attack an opponent (Listerman et al. 2000).  

 

These findings emphasise the importance of taking into account age and condition of 

animals when assessing stocking, shelter, feeding regimes and grading requirements 

of multi-species systems.  
 

 

2.6.5 Pulses of risk and safety 
 
The level of predation risk faced by prey species is largely a function of spatial 

variations (between different microhabitats such as between benthic and pelagic 

zones) or temporal changes (diurnal or seasonal) in the number and species of 

predators. Learning effective cost-benefit responses requires consideration of these 

spatial and temporal variations in risk in order to maximise resource utilisation with 

predator avoidance. 
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The risk allocation hypothesis predicts that prey responses to predation risk should 

depend on the pattern of risk (Lima and Bednekoff 1999, Sih et al. 2000). To fully 

understand optimal prey responses, a consideration of both the variations in the 

magnitude of risk, and the proportion of time that prey spend in each risk level is 

required (Sih and McCarthy 2002). In nature, prey probably experience a broad range 

of temporal patterns of risk. If predators are abundant and usually nearby, then prey 

might face sustained periods of risk with only occasional periods of safety. In contrast 

if predators are sparse and wide ranging then prey might experience low risk with 

only occasional pulses of danger when predators appear. Responses to risk should 

depend on whether prey experience only occasional pulses of risk in an otherwise 

safe environment, as opposed to brief periods of safety in an environment that is 

usually dangerous. 

 

If prey live with only occasional pulses of safety, then during these safe periods they 

should be very active, displaying high feeding rates. Snails held in continual risk had 

very low activity levels but showed an immediate, large increase in activity during a 

period of safety (Sih and McCarthy 2002). During the extended periods of danger, to 

meet minimum energy demands prey must still maintain low to moderate activity and 

feeding rates (Sih and McCarthy 2002). 

 

During extended periods of safety, assuming some costs of activity or a threshold 

maximum benefit of feeding, prey should show moderate feeding activity. If prey 

experience only rare pulses of risk, then during these pulses they should drastically 

reduce their activity and feeding rates (Figure 2.3) (Sih and McCarthy 2002). In 

contrast, snails held in continual safety showed moderate levels of activity, but 

surprisingly only a weak reduction in activity when exposed to a pulse of danger (Sih 

and McCarthy 2002). 
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Figure 2.3    Basic predictions of the risk allocation hypothesis (Lima and Bednekoff 1999).  

 

 

The temporal patterns of risk might depend on variations in external factors. In the 

case of nocturnal prey, the proportion of risk throughout a night changes over a lunar 

cycle (Rosenzweig 1974, Kotler 1984). Prey behaviour reflects not only the immediate 

level of risk, but also with the temporal pattern of risk. For example, Daly et al. (1992) 

showed that kangaroo rats compensate for longer periods of risk during a full-moon by 

increasing their activity at dusk and dawn (Sih and McCarthy 2002). Anecdotal 

evidence suggests that the same trend is apparent in marron (Storer pers. obs.). This 

has ramifications for experimental design - with most investigations into behaviour 

focussing on prey responses to sudden increases in predator intensity as they are 

introduced to systems. 
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2.7 Project rationale 
 

It is generally assumed that animals react based on an analysis of costs and benefits 

and therefore, that the costs of response can be measured as a function of fitness. 

Given this, assessments of the interactions between organisms in multi-species 

systems (natural or artificial) is a complex task. Researchers need to consider the 

species involved, individual variations within species (including health status, life stage 

and genetic variation), predator ecology, temporal and spatial variations, geographic 

differences, information cues available and the impact of biotic and abiotic system 

variables. 

 
…………………………………………………………………………………... …………………………………………………………………………………... 

 
 

The advantages of multi-species systems include multiple revenue sources, income 

spreading and improved system ecology. Even where species exhibit some degree of 

niche overlap resulting in competition or predation, there can still be economic 

advantages to their combined culture. Obviously, in multi-species systems where niche 

overlaps exist, the negative interactions need to be understood and mediated in order 

to maximise aquaculture production. 

 

Management practices have a major impact on crayfish yields in polyculture ponds. 

Many factors have been identified through this review that can influence the ecological 

dynamics of crayfish-finfish polyculture. These factors include the relative size of 

component species, the species involved, shelter regime, turbidity, intraspecific 

dynamics as a function of predation pressure, and cage culture techniques. 

 

Trials reported in this thesis were aimed at developing appropriate management 

strategies that can be used in optimising marron-silver perch polysystems. Trials focus 

on developing an understanding of communication between these two species, the 

nature and intensity of responses and the system-specific ecological processes 

governing them. Interaction responses were primarily examined through behavioural 

analysis, as behavioural traits have been shown to influence a key trade-off between 

resource acquisition and vulnerability to predation, and understanding trait differences 

between species can provide critical insight into their interactions. Such an approach 

should enhance our understanding of the criteria for coexistence between species that 

can interact through both competition and predation.  



Chapter three: experimental systems and species     

 

90 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Experimental Systems and Species 
 

 

This chapter explains the system dynamics used in laboratory 

and field trials and explains rationale for selection of 

species.  

 
 
 
 
 

 

Chapter three 
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3.1     Experimental systems 
 
Four aquaria-based experiments and three field trials were conducted. Facilities utilised 

for each of these investigations are described. Note: animal weights were determined 

using a KERN 430-33 electronic balance (±0.01) and water quality was measured using 

a TPS AQUA - Cond / pH (T1661) for temperature (°C), salinity (ppt), conductivity (mS) 

and pH, and dissolved oxygen (mg/L) measured using a Winlab data line oxygen meter 

(Windaus - 1115015). 

 
 
3.1.1  Laboratory experiments 
 

All aquaria-based experiments (Chapters 4, 5 and the first trial in Chapter 6) were 

conducted at the South-West Aquaculture and Environment Centre (SWAEC), a 

research facility in Collie, Western Australia (33.361ºS, 116.157ºE). Collie is 

approximately 200 km south of Perth and is located 25 km from the coast in the Darling 

Scarp. Air temperatures range from an average daily minimum of approx. 16°C in winter 

(Jun-Aug) to 30°C in summer (Dec-Feb) (Australian Bureau of Meteorology). 

 

Glass aquaria (54L and 250L) were utilised for experiments (Plate 3.1). With system 

designs varying across trials, system specifics will be discussed in applicable chapters.  

The water source for all investigations was a spring fed dam adjacent to the SWAEC 

facility. Water is pumped from this system to a 10 tonne holding tank at SWAEC where 

it is screened to 100µm before entering the facility. 

 
 

 

 

 

 

 

 

 

 

Plate 3.1      Aquaria based system used in experimental work at the South-West Aquaculture 

and Environment Centre 
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Marron and fish were placed in holding tanks prior to use in experimental systems 

(Plate 3.2 and 3.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.2      Crayfish holding systems at SWAEC, 5 tonne flat-bottom fiberglass tanks 
 
 
 

 
 
 
 
 
 

Plate 3.3      Fish holding systems at SWAEC, 4.5 tonne conical fiberglass tanks 
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3.1.2 Field investigations 
 

The three field investigations (Chapter 6 - 2nd trial, and Chapter 7) were carried out at 

the Collie Aquafarm, 15 km east of Collie townsite. This facility was designed to 

examine aquaculture as a beneficial end use for acidified mine lakes. A brief 

background of the mine lake project is provided below.  
 

 
3.1.2.1        Background: acid mine lakes in Collie 
 

Mining companies employing open pit techniques are often faced with relinquishment 

responsibilities following cessation of mining activities. Besides the usually cost-

prohibitive option of land-filling the void, a relinquishment programme could involve site 

rehabilitation that results in beneficial end-usage for local communities, including 

recreational pursuits or commercial aquaculture (ACARP 2000, Whisson and Storer 

2003). A number of water-filled coal mining voids exist in the Collie Coal Basin in the 

south-west of Western Australia. The majority of these voids are affected by 

acidification to some degree, displaying pH levels as low as 3.0 (Evans et al. 2000, 

Storer et al. 2002a). At these levels of pH, the growth, reproduction and survival of 

many aquatic organisms is severely affected, and often negated (Chiras 1994, Harries 

1997, Storer et al. 2002a).  

 

To combat this, a recent initiative has considered water remediation of these sites 

(Storer and Evans 2003, Whisson and Storer 2003). In 2000, a demonstration facility 

(the Collie Aquafarm) was constructed to investigate remediation options for a typical 

disused coal mine in the Collie Coal Basin. The site incorporated an aquaculture farm 

designed to utilise remediated mine-water for fish and crustacean farming.  

 
 
3.1.2.2        The Collie Aquafarm 
 

The Aquafarm is a semi-intensive aquaculture facility, comprising six rectangular 

purpose-built earthen ponds, each 0.072 ha (40m x 18m x 1.8m depth). Ponds are 

located adjacent to an acidified water-filled mine void (Plate 3.4). As mentioned in the 

previous section, the farm was developed to demonstrate the viability of aquaculture 
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using remediated mine water, and the field trials presented in this thesis are the first 

studies carried out using this facility.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Plate 3.4       Top view of the Collie Aquafarm, showing the main system components including 

remediation system, aquaculture ponds (A to F), settling pond, and WO5h void 

 

Acidic void water (pH 3.3) is pumped to a treatment system (120L/min.) using a 

submersible pump mounted 3m below the water surface on a tethered float. Within the 

treatment system, water is passed through an experimental fluidised limestone bed 

reactor - raising pH to around 6.5, and through a macrophytes pond and compost pond 

before being stored in a settling pond above the aquaculture ponds. The role of the 

macrophyte and compost systems is to increase organic load and raise pH to its final 

level, around pH 7.3. Water is taken from just below the surface of the settling pond 

system and gravity fed through separate water intakes into each of the six aquaculture 

ponds (Plate 3.5), at a flow rate of 20L/min./pond. Excess water is removed from the 

bottom of ponds using a standpipe in the deepest section with a sheath pipe containing 

holes at the base. Out-flowing water is fed back to the mine lake via a common drain.  
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Plate 3.5       Top: showing location of ponds adjacent to mine lake. Bottom left: loose-mesh 

marron hide used in ponds. Bottom right: aquaculture pond with paddlewheel 

aerator and floating fish cage 

 
Ponds were built based on size and slope specification for commercial marron 

production (Figure 3.1). Width of Aquafarm ponds was 18m, as opposed to 25m in 

Figure 3.1. 

 
 

 

 
 

 
 

 
 
Figure 3.1    Commercial marron grow-out pond design (FWA 1999) 
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Each pond was fitted with a single 1 hp Nan Rong paddlewheel for circulation of water, 

operated for 1 hr between 0700 and 0800 throughout trial, and for 1 hr between 1500 

and 1600 in warmer conditions as required. Loose mesh marron hides (Plate 3.5) were 

used for shelter at varying densities depending on requirements of the experiment (see 

methodology sections in Chapters 6 and 7).  Large-scale floating cages (15m x 1.5m x 

0.75 depth) were utilised in each pond to hold fish. The number of cages/pond 

depended on requirements of each investigation. Cages were designed for commercial 

scale polyculture experiments in field trials carried out by Whisson (1998) (Plate 3.6), 

and replicated in this study due to previous use and success with species being 

cultured, and to allow direct comparison of results. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.6    Left: fish cage design. Right: TAFE students preparing for fish harvest 
 
 

Cages were constructed from extruded polypropylene, UV stabilised, general purpose 

mesh (Nylex corporation Pty Ltd). Mesh was 12mm x 12mm on sides and base, with a 

3m section of 6mm x 6mm oyster mesh attached to the center of the base of each 

cage to act as a feeding platform and prevent fish pellets from falling through. Cages 

were attached with 5mm rope to a 90mm stormwater grade pipe floatation system, 

coated with 100% water-based acrylic gloss paint to assist with UV protection. Each 

pipe structure had four evenly spaced triangular arches protruding above the cage to 

hold the bird netting and provide stability of structure. UV stable 25 cm2 bird netting 
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covered all cages (Plate 3.6). A freeboard of 10 cm above water surface was included 

to prevent fish escaping over the top and to reduce the effects of wave action. With the 

freeboard excluded, cage volumes were 14.63 m3. Cages were held in the center of 

each pond using guy ropes anchored to the pond embankment. All design and set-up 

aspects of cages were from Whisson (2000). 

 
Experimental aquaculture ponds were drainable, where water level could be rapidly 

dropped to a minimum height of 400 mm, and completely drained when required to 

enable controlled harvesting of crayfish. All ponds were emptied and left to dry for 2-3 

weeks prior to filling immediately before each trial. 1 tonne of course lime rock was 

spread throughout each pond before filled to increase alkalinity and calcium levels. 

 
 
3.2    Test species 
 

Research work within this thesis included investigations into a number of fish and 

crayfish species. Field trials incorporated marron, C. tenuimanus, and silver perch, B. 

bidyanus. Laboratory trials focused on marron, silver perch, Murray cod, 

Maccullochella peelii peelii and yabbies, Cherax albidus. A brief overview of the 

selection rationale for each of these species follows.  

 

3.2.1 Marron and silver perch 
 
 
Marron (Plate 3.7) were chosen as the base species for polyculture investigation as 

existing infrastructure (ponds, aeration, fencing…) in the established monoculture 

industry would mean that large capital outlay was not required to incorporate additional 

species. In addition, marron farming is generally a single crop/yr industry, which is at 

economic risk from fluctuating market prices. The addition of a second species to 

current monoculture practices will not only diversify risk, but preliminary polyculture 

data with silver perch has shown a synergistic advantage to marron, with growth rates 

increasing between 7-50% (Whisson 2000). Whisson (2000) also suggested that 

marron grown in polyculture with silver perch also demonstrate a more uniform growth. 

This would be a significant market advantage as less proportion of the harvested stock 

would fall below minimum size requirements for sale. This would also mean that less 
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animals would require on-growth to achieve market size, therefore freeing up farm 

resources. Silver perch (Plate 3.7) were selected as the main candidate for polyculture 

with marron due to existing translocation policy allowing their import into certain areas in 

Western Australia. More importantly, silver perch possess a number of characteristics 

conducive to successful culture with marron. These include schooling behaviour 

(amenable to high densities), accepting a wide range of water quality conditions, and a 

generally favorable feeding biology. Although predation of marron by silver perch has 

been recorded, management strategies targeting turbidity, habitat complexity and 

utilising cage culture have shown encouraging results. 

 

Plate 3.7    Marron, C. tenuimanus, and silver perch, B. bidyanus (juvenile) 

 

Recommendations from the preliminary work into the combination of marron and silver 

perch (Whisson 1995a, Jones and Ruscoe 1998, Whisson 1998, 2000) outlined the 

following target areas: stocking regime (density and size), effect of system variables 

(turbidity, habitat complexity) and understanding of interaction biology (Whisson 2000). 

See section 1.11 for a more detailed overview of general biology and aquaculture 

attributes of these species. 

 
 
3.2.2 Murray cod 
 

Murray cod (Maccullochella peelii peelii) (Mitchell, 1839) (Plate 3.8) are native to the 

Murray-Darling Basin and are the largest freshwater fish in Australia, growing to 1.8 m 

and weighing 83 kg (Whitley, 1955). A fish of 113.6 kg has been recorded but not 
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confirmed (Noble 1955). Due to its high aquaculture and recreational potential, Murray 

cod were previously introduced and stocked into Western Australia’s inland Wheat-belt 

area in the 1890’s (Morrissy 1970, Lawson 2002), and are currently the focus of 

translocation approval for tank-based aquaculture. This species was chosen for study 

in this thesis due to an alternate predator feeding strategy to silver perch, and literature 

suggests avoidance responses are affected by the hunting techniques of predators 

(Brett 1992, Stibor and Luning 1994). Unlike the pelagic silver perch, Murray cod are 

generally referred to as benthopelagic ambush predators (Chivers et al. 1996b), and 

are known predators of freshwater crayfish. Finally, Murray cod are a strict carnivore, 

as opposed to the polytrophic silver perch.  

 

Although cod are not a current candidate for introduction into pond systems containing 

marron, due to translocation implications and low evidence of suitability to cage culture, 

examination of marron responses to varying predator strategies is important in 

understanding their decision processes, threat detection and avoidance strategies. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Plate 3.8    Murray cod, Maccullochella peelii peelii. 
 

 
3.2.3 Yabbies 
 

‘Escape’ of yabbies from man-made impoundments has resulted in their widespread 

distribution in the south-west of Western Australia. The resulting impact on marron 

stocks is currently under debate, however it is known that yabbies will compete with 
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indigenous crayfish for resources (Morrissy and Cassells 1992, Pen and Potter 

1992). Yabbies (Plate 3.9) were chosen for study in this thesis to compare responses 

to novel finfish with that of marron. Yabbies were also utilised to determine how 

behaviour is influenced by competition between the two species. The comparison 

between marron and yabbies was made for contrast between a species evolving in a 

predator rich environment and capable of surviving and thriving in foreign systems – 

and marron, evolving in a predator free environment (Morrissy 1997, Allen et al 2002) 

and not shown to actively or successful invade other areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 3.9      Yabby, C. albidus 

 

Previous studies of the relationship between marron and yabbies have suggested 

reasons for yabbies dominance in some systems – these have included higher 

breeding frequency and dislodgement from preferred habitat. However, recent 

studies have shown yabbies to be out competed by marron under certain conditions 

(Whisson 2003). Previous behavioural studies into the response of yabbies to 

potential threat (Gherardi et al. 2002, Height and Whisson 2004) will allow direct 

comparison to investigations in this thesis. 
 

____________________________________________________________________ 

The common name, yabby, is used in reference to C. destructor, C. albidus, and C. 

rotundus. For ease of discussion, making no assumptions of lineage, yabbies used in 

trials in this thesis are referred to as C. albidus, as this is more commonly used when 

referring to Western Australia stock (C. Lawrence pers. comm. 2005). 
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Chemical communication by marron 
 

 

This chapter covers one laboratory investigation (T4:1) aimed at 

elucidating the ability of freshwater crayfish to detect and 

differentiate between chemical cues from food and potential 

kairomones from fish, and determining whether detection ability is 

affected by size or sex of crayfish. 

 
 
 
 
 

 

Chapter four 
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CHAPTER FOUR 
Chemical communication by marron 

 

 

To understand the complex relationships between marron and silver perch, an examination 

of the nature and extent of communication between the two species, and in particular any 

predatory or competitive interactions, is required in order to manage antagonism and 

maximise synergism with the goal of optimising system yields. 

 

The focus of this preliminary experiment was chemical communication, one of the major 

information media controlling interactions in aquatic environments (e.g. Chivers et al. 

1996b, Kiesecker et al. 1996, Brown et al. 1997). Chemical signals have a number of 

features that make them particularly suited to communication in aquatic systems; they are 

water soluble, quickly released into the medium, non-volatile and stable over a wide range 

of temperature (Loose et al. 1993). The use of chemical cues in interspecific interactions, 

where signals from one species produces a reaction in another (allelochemicals), is well 

documented (e.g. Kats and Dill 1998, Brown et al. 1999, Vet 1999, Hay 2002).  

 

The effect of food cues on reactions to predatory signals is another element requiring 

elucidation. Animals encountering both a risk cue and an alternative stimulus (i.e. food) 

often cannot simultaneously respond to each stimulus (e.g. Hazlett and McLay 2000, 

Hazlett and Rittschof 2000). When animals are presented with multiple cues, a trade-off 

must often be made in response to those cues (Lima and Dill 1990, Pecor and Hazlett 

2003). Due to this, tritrophic investigations have gained growing consideration for their 

importance in understanding the dynamics of adaptive antipredator behaviour (Sih 1980, 

Werner and Mittelbach 1981, Sih 1982, Abrams 1982, 1984, Werner and Peacor 2003, 

Bolker et al. 2003). 

 

The aim of this experiment was to determine whether marron could detect chemical cues 

from the novel silver perch, and what responses, if any, they would employ. Differences 

between size classes and sex of marron in their abilities to detect and respond to cues was 

also tested, and this was done in the presence of food to determine if feeding responses 

were inhibited, promoted or unaffected by the fish cues.  

 

The null hypothesis for this experiment was:  
 

Ho:   Marron, being a non-invasive species (Gherardi et al. 2002), will not react to silver 

perch odour (being a non-native species), regardless of size or sex of crayfish. 
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4.1             Materials and methods 
 

4.1.1          Site and culture system 
 

This experiment (T4:1) was conducted in the aquarium system at the South-West 

Aquaculture and Environment Centre (SWAEC) located in Collie, Western Australia. 

Twenty-four glass aquaria (300 mm x 300 mm x 600 mm) were used (Plate 4.1), 

described in Section 3.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Plate 4.1    Experimental systems, 54L glass aquaria - filled to 25L 

 
 
4.1.2          Experimental stock 
 

Marron (Plate 4.2), reared in monoculture ponds in Pemberton (34.449ºS, 116.039ºE), 

were transferred to holding tanks at SWAEC in January 2003. Silver perch were 

sourced from ponds at Parkerville, Western Australia (32°S, 116°E) and kept in 

holding tanks at SWAEC for two weeks prior to the trial. Holding systems are detailed 

in Section 3.1.1. 
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4.1.3           Experimental design 
 

Eight marron (1:1 sex ratio) in three size-classes (Plate 4.2): small (5.6 ± 0.79g); 

medium (78.6 ± 2.97g); and large (230.8 ± 4.2g), were distributed using an 8x3 random 

block design into the twenty four aquaria, each with 25L of water (19.8±0.05ºC).  

Individual aquariums were visually isolated from other aquaria, and contained a piece of 

polyvinyl chloride tube (length 150 mm, diameter 50 mm) for shelter. Constant aeration 

was supplied using a single air stone in each aquarium. As with all studies examining 

response to chemical cues, chlorinated water was added and subsequently cured using 

hypochlorite for use in experimental systems to prevent introduction of external 

chemical information. 
 

 
           SMALL (~6g)                                MEDIUM (~80g)                        LARGE (~230g) 

Plate 4.2    marron size classes used in experiment - small, medium and large 

 
 

Following acclimatisation to individual aquariums (24h), behavioural records were taken 

every 15s for 5 min. during two time periods; (A) a 5 min. control period following 

injection of 10 ml of distilled water (control water), and immediately afterward, (B) a 5 

min. period following the injection of test solution, according to Hazlett (1999) and 

Gherardi et al. (2000). Thus, each experiment lasted 10 min., the injection of control 

water always preceding the injection of test water. All tests were carried out between 

1200 and 1700h. 

 

 

4.1.4           Preparation of test solutions 
 

Test solutions were (1) 10 ml of food odour (FOOD), or (2) 10 ml of food odour plus 5 ml 

of silver perch culture water (F+PCW). The FOOD solution was prepared by macerating 

75g of commercial crayfish pellets (Glen Forrest Stockfeeders Pty Ltd, Appendix D) in 

600 ml of distilled water and filtering with coarse filter paper. The F+PCW solution 
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incorporated 10 ml of food solution combined with 2.5 ml of water from a holding tank 

containing silver perch with an average weight of 419.8 ± 38g at a density of 20 kg/m3, 

and 2.5 ml from a tank containing silver perch, with an average weight of 102.8 ± 5.2g, 

also at a density of 20 kg/m3. Silver perch were held in these two size classes to exclude 

any variation in crayfish response due to fish size. The use of silver perch culture water 

was to attempt to capture natural chemical cues (allelochemicals) released by the fish.  

 

Control water and test solutions were added via syringes to the corner of the aquarium 

furthest from the crayfish. All test solutions were prepared immediately before testing 

(Hazlett 1994a/b). Test solutions (1) and (2) were tested in each aquarium over the two-

day trial period. The order of delivery was randomly determined within the three size 

classes. That is, four marron of each size received test solution (1) on the first day, and 

test solution (2) on the second day. The situation was reversed for remaining tanks in 

each size-class. 

 

To determine the speed of dispersion of test solutions throughout systems a replicated 

test using food dye was trialed prior to all experiments (Appendix E). The dye test 

demonstrated that the added solution would reach all areas of the experimental systems 

within 20 s of injection. 

 

 

4.1.5           Behavioural responses 
 

Behaviour analysis was used to gauge responses of crayfish to test solutions using 

recording protocols previously developed to document observations. The fundamental 

recording protocol used for tank-based experiments in this chapter, and in Chapter 5, 

was developed by Hazlett (1994a), and has been previously used in a number of 

crayfish behavioural studies (Hazlett and Schoolmaster 1998, Hazlett 1999, Hazlett 

2000a, Gherardi et al. 2002, Hazlett et al. 2002). The protocol involved; reaction time 

and time spent in a range of behaviours (%) and posture (%), recorded for every 15s 

period. The reaction time being the time lapsed following injection of control water or test 

solutions before a change in behaviour or posture, if any, was recorded. When no 

obvious modification of behaviour was observed throughout the 5 min. period a reaction 

time of 315 s was assigned to allow statistical analysis and draw direct comparison with 

previous trials using the same methodology (Gherardi et al. 2002). 
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Behavioural observations were:  

 

(a)     in shelter 

(b)    locomotion  

(c)     general feeding movements 

(d)    flicking of antennules 

(e)     movement of antennae  

(f)     climbing  

(g)    cleaning  

 

 

Posture was also recorded as ‘lowered’, ’intermediate’ and ‘raised’, defined by Hazlett 

(1994a) as follows: ‘Lowered’: the body is in contact with the substratum, the 

chelipeds drawn in towards the body, and the tail fan curled under the abdomen; 

‘Intermediate’: the body is held just off the substratum, the tips of the chelae lightly 

touching the substratum and the tail fan nearly perpendicular to the substratum; and, 

‘Raised’: the body is elevated off the substratum, the chelipeds held off the 

substratum and parallel to it or higher, and the abdomen or tail fan extended.  

 

This protocol was adapted from Hazlett (1994a) in two ways for use in this 

investigation. Locomotion was recorded where a change in location was observed, as 

opposed to ‘movement of ambulatory legs’, previously described. In initial 

observations, marron displayed a ‘leg sway’ where individuals lay to one side and 

move legs back and forwards, which could be described as movement. The leg sway 

displayed by marron could also be interpreted as a scraping feeding response, 

however neither explanation appeared applicable on close observation. The second 

alteration pertained to feeding movements, which were previously broken up into 

searching of chelae, searching of ambulatory legs and sham feeding - where legs are 

taken to mouth. In this trial the three feeding types were combined as one 

observation. Variations in responses of crayfish to interspecific cues have been 

described by many authors (Hazlett and Schoolmaster 1988, Willman et al. 1994, 

Mitchell and Hazlett 1996) and this demonstrates that behavioural protocols must be 

flexible, especially when dealing with new species.  
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4.1.6           Feeding 
 

While in holding systems, silver perch were fed commercial pellets (Glen Forrest 

Stockfeeders Pty Ltd, Appendix C). To reduce effects from general metabolites such 

as ammonia, silver perch were starved for three days prior to experimentation. Marron 

were fed on commercial crayfish pellets (Wesfeeds Pty Ltd, Appendix D) until 24 h 

prior to trial. This was done to ensure marron would recognise food solution and 

secondly to ensure responses to food odour weren’t exaggerated by starvation, whilst 

not feeding during the trial to prevent ammonia build-up. 

 
 
4.1.7          Statistical analysis 
 

Reaction time, behaviour and posture for individuals during control periods were 

compared using t-tests (Selvanathan et al. 2000) to evaluate background differences 

between the size-classes and sex of marron. For comparison between control water 

and test solutions for each size-class of marron, reaction time, behaviour and posture 

were analysed using paired t-tests (Selvanathan et al. 2000). For comparison 

between test solutions within each size class for the same test, the magnitude of 

change (difference in absolute values) in the reaction time (s) and in behaviours and 

postures (%) between the control water and test solutions was determined for each 

individual. This was necessary as background differences were displayed within size-

classes of marron. Responses within each size-class to the test solutions were 

compared with a Kruskal-Wallis one-way analysis of variance (Selvanathan et al. 

2000). Wilcoxon Signed Ranks test was used to compare differences between size 

classes (Selvanathan et al. 2000). All percentage data were subject to arcsine 

transformation prior to analysis (Zar 1984). 

 

Paired t-tests were carried out between responses recorded in day 1 versus day 2 to 

determine if differences existed for reasons such as learning or potentially increased 

responses to food as requirement increased. No statistical variations were found, 

P>0.1. 
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4.2    Results 
 

4.2.1          Size class differences in response to control water 
 

No significant differences were recorded in reaction time, behaviour or posture 

between small, medium and large marron in response to 10 ml distilled water during 

the control periods (P>0.01) (Figure 4.1, Appendix B - Table I).  
 

Although no statistical differences were reported in general behaviour of the different 

size classes of marron, a number of trends were apparent (Figure 4.1). Shelter was 

preferred by small and medium marron (35.7 ± 12.4% and 36.9 ± 11.8%) compared 

with larger marron (14.6 ± 9%). Climbing was most common in medium (16.7 ± 8.7%) 

and larger marron (12.9 ± 5.9%), with little climbing observed in the small size class 

(1.0 ± 0.5%).  
 

 

Figure 4.1    Intraspecific size-class differences in marron response to control water 
Values are control means ± standard error. 
 

 

4.2.2          Sex differences in response to control water 
 

Apart from large male marron preferring low posture (85.2 ± 13.4%, P<0.001) 

compared with large females (with no individuals recorded in this posture) (Figure 

4.2), and large females found significantly more in intermediate posture (P<0.05), no 
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differences (P>0.05) between sex were recorded in reaction time, behaviour and 

posture in response to 10 ml of control water during the control periods (Figure 4.2, 

Appendix  B - Table I).  

Figure 4.2     Male-female crayfish responses to control water: i) small marron, ii) medium 

                               marron, iii) large marron  
Values are the mean (± SE) of the two control periods. Significant differences between sexes for the 

same behaviour are indicated by *P<0.05, **P<0.01.  
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4.2.3          Control water versus test solutions 
 

Reaction time to test solutions was faster compared with control water for all crayfish 

size-classes, with the only non-significant finding in medium marron responding to the 

combined food and perch culture water solution (P = 0.196) (Figure 4.3, Appendix B - 

Table I). 

 

Figure 4.3    Reaction times of marron (small, medium and large) to control and test solutions.  
Data is the average response ± SE, with significant variations compared between control water and test 

solution. Where letters (control vs. food solution) or numbers (control vs. perch conditioned water-PCW) 

are different within each marron size class a significant difference was found. *P<0.05, **P<0.01.  

—————————————————————————————————————– 

 

 

Compared with control water, locomotion increased in response to food for small (P = 

0.027), medium (P = 0.075) and large marron (P = 0.038) (Figure 4.4). Locomotion 

also increased following injection of F+PCW in small (+ 34.7 ± 11.9%), and large 

marron (+ 12.7 ± 5.2%), however no significant variations were demonstrated 

(P>0.05) (Figure 4.4, Appendix B Table I).  
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General feeding activity increased with test solutions for all size classes, although only 

statistically significantly to P<0.05 for medium marron and food solution (Figure 4.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4   Responses of marron (small, medium and large) to test solutions: i) Locomotion 

                      ii) Feeding behaviour 
Data is the average response ± SE, with significant variations compared between control water and test 

solution. Where letters (control vs. food solution) or numbers (control vs. food and perch conditioned 

water - PCW) are different within each marron size class a significant difference was found (P<0.05).  
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4.2.4          Comparison between test solutions 
 

Analysis of the magnitude of change between test solutions (Table 4.1) showed two 

significant results: Large marron reacted significantly faster in response to food solution 

compared to the food solution combined with perch conditioned water (PCW) (P<0.05), 

and locomotion recorded in medium marron was significantly less (P<0.05) in the 

presence of food + perch-conditioned water than food alone. However analysis of data 

showed results to be more a function of variations in control behaviour (Figure 4.4). 

 

Table 4.1    Magnitude of change between control water and test solutions in reaction time 

                      (s), behaviour and body posture (%) 

Comparisons among test odours (F = food, PCW = food + perch culture water) within groups used 

Wilcoxon Signed Ranks Test (X2, df 2). Tests ranked in decreasing order of magnitude of change. *P<0.05 
 

Feeding activity in large marron also appeared inhibited by perch-conditioned water, 

although only significant to P<0.1, with large standard errors. 
 

 

4.2.5          Comparison between size classes 
 

No significant differences (P>0.05) were found between marron size class in response 

to test solutions (Table 4.2), with one exception: Small and medium marron utilised 

shelter significantly more than large marron when responding to F+PCW (P<0.05). As 

large marron were rarely recorded in shelter in response to either control or test 

conditions, this difference is related to increased sheltering by small marron when 

F+PCW was added, and a higher use of shelter by medium marron throughout the trial. 

Observation Small Marron Medium Marron Large Marron 

    
Reaction Time 0.4200 0.2540 1.992*PCW>F 
In Shelter 1.3420 0.6740 1.0000 
Locomotion 0.3390 2.032*PCW>F 1.2610 
General feeding movement 1.0540 0.1050 1.6250 
Antennule flicking 0.6740 0.6740 0.4050 
Antennae movement 0.6310 1.0230 0.5520 
Lowered posture 0.5350 1.0000 1.0000 
Intermediate posture 0.4050 0.3140 1.6040 
Raised posture 0.7300 0.3140 1.0690 
Cleaning 0.2720 0.0000 0.8160 
Climbing 1.0690 0.3650 0.9210 
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Table 4.2      Magnitude of change between size-classes of marron responding to test 

                     solutions in reaction time (s), behaviour and body posture (%) 

Comparisons between marron sizes (S = small, M = medium, L = large) for each test odour (FOOD, 

FOOD+PCW = food + silver perch culture water), used Kruskal-Wallis test. Marron sizes ranked in 

decreasing order of magnitude of changes. * P<0.05, **P<0.01 

 
 

Although not significant when examined individually, a number of trends were apparent 

when responses across all behaviours were examined together (Table 4.3). The 

duration of  average responses to test solutions for many behaviours were prolonged in 

small marron.  

 

Table 4.3     Magnitude of change between control water and test solutions between size classes 

                    of marron. Negative values represent reduced activity compared to control. 

 

Secondly, the magnitude of behavioural change across a range of behaviours displayed 

an overall difference in the responses of large marron to the different test solutions 

(Figure 4.5), where as reaction differences were less pronounced in other groups.  

Observation FOOD FOOD + PCW 

Reaction Time 0.1870 2.6770 
In Shelter 0.0000 6.2620*S=M>L 
Locomotion 1.9930 3.1840 
General feeding movement 1.4640 4.8590 
Antennule flicking 1.2420 5.2260 
Antennae movement 4.0860 1.0810 
Lowered posture 2.8100 4.3290 
Intermediate posture 0.1610 2.8320 
Raised posture 0.2520 3.0790 
Cleaning 0.7380 1.0690 
Climbing 4.5810 1.5540 

 small medium large 

locomotion +35.4 ± 11.7 -6.3 ± 9.7 +18.0 ± 7.1 

Feeding behaviour +21.1 ± 11.7 +15.8 ± 7.0 +9.3 ± 4.5 

Antennule flicking +6.5 ± 3.4 -12.8 ± 9.1 -8.6 ± 6.5 

Antennae movements +29.3 ± 10.9 +0.6 ± 10.5 +11.5 ± 5.1 

Raised posture +26.5 ± 13.9 -20.2 ± 9.5 +14.6 ± 8.7 
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Figure 4.5      Magnitude of change in behavioural responses (reaction time, locomotion, 

feeding activity, antennae movement, antennule flicking and shelter occupation) 

of three marron size groups to the two test solutions (food and food + perch 

conditioned water).  
 

Where significant differences exist between size groups different letters are provided, and different numbers provided 

where differences exist between test solutions (P<0.05). SM - small marron, MM - medium marron, LM - large marron 
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In response to perch-conditioned water, large marron displayed a greater change in 

reaction time (indicative of faster reaction), and reduced changes in locomotion, 

feeding activity and antennule flicking, than compared with response to food alone. 

Similarly, comparison of responses between small and large marron reacting to fish 

conditioned water showed smaller marron were feeding, sheltering and using 

antennae more than larger individuals, as well as displaying higher overall activity. 

The high standard errors displayed in results, due to relatively large variations in 

background behaviour of marron across populations, resulted in mostly insignificant 

relationships between groups, and as such the relationships described in this 

paragraph were significant to only P< 0.1. 

 
A summary of results for this trial is provided in Appendix  B, Table II. 
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4.3             Discussion 
 

In order to optimise polyculture management strategies, the factors that influence the 

occurrence of predation events and predation stress within a specific multi-species 

system require elucidation. In respect to the polyculture of marron and silver perch, 

where perch can be held within cages - preventing physical interaction - the most 

important questions relate to stress associated with perception of risk. That is, 

whether marron production can be affected by cues from perch held in cages. This 

was the first attempt to examine the ability of marron to recognise novel chemical 

cues from a non-indigenous fish species, silver perch. Behavioural responses of 

marron to the chemical signatures of the silver perch, found in their culture water, are 

discussed on the basis of whether interaction responses were positive or negative in 

respect to polyculture production. A number of outcomes were apparent relating to 

chemosensory perception in marron, size-dependent responses to cues and the 

ability of marron to detect and accurately respond to fish odour. 
 

 

4.3.1 Chemosensory perception in marron  
 

Decapod crustaceans, such as lobsters, crayfish and crabs rely heavily on their sense 

of olfaction for locating food, shelter, conspecifics and heterospecifics (Grasso and 

Basil 2000, Diaz et al. 2001, Derby 2000). The behavioural responses of marron to 

chemical stimuli examined in this trial support these investigations, where reactions to 

test solutions were significantly faster compared to controls, as well as high overall 

usage of antennules (the major chemosensory organ in crayfish) in response to test 

solutions (72.7±20.4% of time). In addition, locomotion and feeding behaviour 

increased significantly in all size classes in response to test solutions, suggesting 

recognition of food-derived cues. These results are evidence of chemosensory 

perception in marron, as previously described in other freshwater crayfish species 

(Head et al. 2002, Jacquot and Baudoin 2002, Stabell et al. 2003).  
 

 

4.3.2          Size-dependent responses to chemical cues 
 

Size-dependent responses to chemical cues in decapod species have not been widely 

investigated. However, knowledge of size-dependent responses involving freshwater 
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crayfish could underpin polyculture management strategies. The incorporation of life 

stage or size in stocking regimes could aid in maximising productivity with manipulation 

of system variables to accommodate biological changes over the culture period. For 

example, if smaller marron are more prone to exhibit stress related responses 

associated with detection of cues from fish held in cages, management may require 

stocking after a certain growth period.   

 

Results in this study showed no significant differences (P<0.05) between size classes 

of marron in their behavioural responses to solutions containing perch odour, with one 

exception. Small and medium marron were found to shelter significantly more than 

large marron when PCW was added to aquaria. The lack of sheltering by large marron, 

combined with more frequent climbing, may be a function of stock size versus shelter 

rather than actual differences in responses to odours between size classes of marron. 

Although shelters were capable of holding large marron, as seen with the few records 

taken, the use of larger shelters, along with larger aquaria, is recommended in future 

studies. 

 

Although individual behavioural responses were not significant, smaller marron 

demonstrated a more positive and sustained reaction to odours when all behavioural 

responses were examined holistically. Smaller marron displayed a longer duration of 

locomotion, feeding, antennule flicking, antennal movement and increased use of 

raised posture. One likely explanation is the increased energy requirements in younger 

crayfish (Svensson 1993), where they forage longer in search of food associated with 

cues. In contrast, the decreased energy requirements, and potentially increased 

experience, of older individuals may result in them giving up searching earlier 

(Svensson 1993, Persons et al. 2002) if unsuccessful in locating the food source in a 

small amount of time. Other authors have reported more efficient use of time and 

energy resources of predators due to experience (Tinbergen 1960, Dutoit et al. 1991, 

Greenberg 1992, Persons et al. 2002). This trend was not attributed to higher general 

activity in smaller marron, as control responses were similar between size classes.  
 

 

4.3.3          Chemosensory detection of fish odours  
 

Previous studies state that detection of chemical stimuli from a predator or competitor 

species often results in a behavioural change normally characteristic of either flight or 



Chapter four: chemical communication in marron       

 

118 

fight (Hazlett 1999, Schapker et al. 2002). A ‘decrease’ in locomotion (Blake and Hart 

1993a, Hazlett and Schoolmaster 1998, Hazlett 1999) and feeding behaviour (Ivlev 

1961, Momot 1967) is often indicative of a response to scents from a predator. Many 

animals initially respond to a cue associated with elevated predation risk, such as 

predator odour, with an almost complete cessation of feeding activities (the 

hierarchical model of the structure of behaviour) (Hazlett 1999). Crayfish, in contrast, 

usually show a significant reduction in feeding activity in the presence of predatory 

cues, but do not completely stop feeding (the alternation model) (Hazlett 1999). The 

theory explaining why crayfish can maintain a certain level of feeding in the face of 

danger is based on the possession of a rapid escape mechanism, the ‘tail-flip’. Tail-

flipping is a behaviour elicited by tactile stimuli, offering an alternative to ceasing 

motion - rapid escape (Hazlett 1999, Bouwma and Hazlett 2001). These reactions to 

‘predator stress’ were in contrast to the findings of this trial, as marron increased 

duration of feeding and locomotion in response to F+PCW, compared with control 

responses. Similarly, the use of shelter as a predator avoidance strategy (Stein 1977, 

Appelberg and Odelstrom 1988, Blake and Hart 1993b) was not observed in this trial 

in response to F+PCW. These findings suggest that marron did not detect or were not 

reacting to chemical cues found in silver perch tank water. One explanation is that 

species evolving in areas of particularly high and diverse predation pressure should 

be more sensitive to predation-risk cues, than those evolving in relatively risk-free 

environments, such as marron, as they may not have developed effective response 

strategies. 

 

Although few significant differences were found between responses to food and 

responses to F+PCW, a trend was seen when results of large marron were compared 

holistically. In response to F+PCW (compared to food alone), large marron exhibited a 

faster reaction time (P<0.05), reduced feeding (P<0.1), reduced locomotion 

(significant increase with food, but not to PCW) and increased antennule flicking. This 

may suggest that large marron reduce activity when exposed to fish cues, which is a 

common threat response to potential risk (Ivlev 1961, Momot 1967, Hazlett and 

Schoolmaster 1998, Hazlett 1999, Schapker et al. 2002). This conclusion would 

support other studies where larger, more mature individuals display greater avoidance 

responses due to experience (Hazlett 1995, Mathis et al. 1996, Mirza et al. 2001). If 

marron, especially larger individuals, indeed detected fish odours, a number of factors 

may explain the lack of significant variations in behaviour.  
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Firstly, marron did not perceive the cues as related to predation risk. As silver perch 

are not a native predator and test animals had no previous experience with this fish 

species, it can be hypothesised that experience is required for recognition of threat. 

The existence of recognition and learned responses is well supported by literature (e.

g. Mathis and Smith 1993b, Delgado et al. 2002, Donaldson et al. 2002, Gazdewich 

and Chivers 2002), in particular, a lack of response to unfamiliar fish odours has been 

demonstrated in a number of crayfish species (Hazlett et al. 2002). Many 

investigations also outline the need for alarm odours (crushed conspecifics or 

sympatrics) in order to produce an avoidance response (Hazlett and Schoolmaster 

1998), especially if cues are novel (Chivers et al. 1995, Chivers and Smith 1994b). 

This explanation can be further justified by the low level of behavioural plasticity 

exhibited by marron (a non-invader), reported by Height and Whisson (2003) and 

Gherardi et al. (2002). A low behavioural plasticity is understandable for this species, 

as marron have evolved in an environment in which they are the dominant macro-

invertebrate with almost no natural aquatic predators (Morrissy 1997, FWA 1999, 

Allen et al 2002), thus utilisation of chemical cues to assess predation risk was 

probably not warranted. The yabby, Cherax albidus, a close relative of marron, 

evolved under conditions of high aquatic diversity with many natural fish predators. 

Recognition of predator odours (familiar and novel) in yabbies is well supported 

(Height and Whisson 2003, Gherardi et al. 2002).  

 

A second reason for the lack of avoidance response in marron was that the possibility 

of predation was outweighed by a requirement to feed. C. tenuimanus were not fed for 

1 day prior to experimentation, and the nature of feeding ecology suggests that if 

nutrition becomes critical, predator avoidance may become less of a priority 

(Svensson 1993). The period of starvation before the trial was to prevent deterioration 

of water quality from wastes expelled by marron once placed in experimental systems, 

and was believed an insufficient time to warrant exaggerated feeding responses in 

marron, however this should be investigated further. 

 

Thirdly, marron were aware of the threat but only increased alarm status - not altering 

behaviour immediately. Studies have shown physiological responses to predatory 

stress, which were not detected through behavioural observation (Schapker et al. 

2002). An increased ‘alert’ status in marron may increase readiness for flight or fight, 

whilst not wasting excessive resources until situations become critical. The 



Chapter four: chemical communication in marron       

 

120 

possession of a strong predator avoidance strategy, the ‘tail-flip response’, which can 

be utilised for rapid escape from danger (Bethe 1897, Huxley 1880, Wiersma 1961, 

Webb 1979, Bouwma and Hazlett 2001) could allow species, such as the marron, to 

maintain normal activity until a strong visual or tactile stimulus is apparent. Other 

studies have shown similar results as those reported in this trial, where although 

chemical cues are detected, avoidance responses were only detected behaviourally 

following visual or tactile predator cues (Hazlett and McLay 2000, Karplus and Barki 

2004).  

 

 

4.4             Conclusions  
 

The use of chemosensory perception by marron was demonstrated through 

responses to food odour, although it is unclear whether marron detected cues from 

silver perch. Further research is warranted to determine the major factors governing 

predator detection and/or avoidance in marron. Several areas should be addressed, 

these include the use of kairomones familiar to the test subject - as threat detection 

may require ‘recognition’, the use of alarm odours (crushed conspecifics or predators 

fed on a diet of conspecifics), and the role of other exteroceptive cues, independent 

and in combination with kairomones. All future trials should be tested in the context of 

predator-prey ecology. 

 

 

 

 

 

 

—————————————————————————————————————— 

 
The null hypothesis Ho (4.1) was accepted, with silver perch odour not producing a 

behavioural reaction in marron, regardless of size or sex. 
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Visual and chemical cues 
 

This chapter covers two laboratory trials examining the 

behavioural responses of marron to chemical and/or visual 

signals from a potential predator.  

 

Responses of individual marron to predatory cues (T5:1)  is 

compared with responses under cohabitation with a congeneric 

crayfish, the yabby (T5:2), to determine any effects from factors 

such as competition  

 

 

 

 

 

 

Chapter five 
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CHAPTER FIVE 
Visual and chemical communication in marron    

 

 

Understanding the triggers for predator avoidance in marron has obvious ramifications 

for management strategies in polyculture. In the previous chapter, marron demonstrated 

responses to chemical cues in food, however, results did not confirm detection of cues in 

fish conditioned water, with no significant predatory avoidance strategies observed. This 

lack of apparent predator recognition may be attributed to an evolution void of natural 

predators (Morrissy 1997, FWA 1999, Allen et al 2002), where cues were not perceived 

as threatening, or simply that marron make use of other information sources. In this 

chapter, the role of visual predatory stimuli is examined, both alone and in combination 

with chemical cues.   

 

The use of visual signals has previously been demonstrated in decapod crustaceans 

(e.g. Mathis and Smith 1993b, Godin 1997, Hazlett 1999, Hazlett and McLay 2000) and 

in clear-water systems visual signals are most often the main method of communication 

(Watson 1999), providing early accurate information (Culp et al. 1991, Brown et al. 1997, 

Brown and Godin 1999, Murray and Jenkins 1999, Hazlett and McLay 2000, Bouwma 

and Hazlett 2001). As marron have evolved in clear-water rivers and streams (Morrissy 

1997, Allen et al 2002), visual information regarding predation could understandably be 

the major sensory device used by marron, and may explain lack of responses in the first 

trial (T4:1). In many cases visual cues are sufficient in providing all information required 

for particular events (Goncalves et al. 2002), however, the use of compound information, 

or multiple cues (i.e. visual and chemical) pertaining to the same event, has been shown 

to elicit faster, more confident responses (Goncalves et al. 2002). Multiple cues are 

detected and utilised by many animals (e.g. Hazlett 1996, Kaufman et al. 1996, Bouwma 

and Hazlett 2001, Diaz et al. 2001), with information interpreted and memorised more 

efficiently than with simple signals (Goncalves et al. 2002). The advantage of detecting 

multiple cues pertaining to one ecological event is that they afford the organisms more 

security through increased confidence in information (Rowe 1999, Goncalves et al. 

2002), resulting in an ecological advantage to the receiver (Rowe 1999). Anti-predator 

behaviour in the freshwater crayfish O. propinquus responding to visual indicators of 

predation threat was increased by the addition of a chemical alarm cue, in that the 

crayfish responded at a greater distance and retreated further than with visual cues 
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alone (Bouwma and Hazlett 2001). Some species of crabs (Hazlett and McLay 2000, 

Bouwma and Hazlett 2001) do not appear to alter their behaviour in response to 

chemical cues that indicate an increased risk of predation. However, anti-predator 

behaviour displayed by H. rotundifrons (branchyuran crab) in response to tactile input 

was prolonged by the addition of chemical or visual cues (Field 1990, Hazlett and 

McLay 2000). This suggests that although some info-cues are insufficient to elicit a 

response when presented alone, they may increase the potency of other information 

media. Therefore, although marron did not appear to respond to chemical cues from 

fish, the combination with visuals cues may produce a response. 

 

The aim of the first trial in this chapter (T5:1) was to examine the responses of marron 

to visual and/or chemical cues from silver perch.  

 

The second trial in this chapter (T5:2) investigates responses of marron to visual and/

or chemical cues from silver perch, under cohabitation with a congeneric crayfish, the 

yabby. In Chapter 4, it was hypothesised that lack of behavioural changes in marron to 

potential predator cues may be associated with increased alert status, where marron 

physiologically prepare themselves for flight or fight, and would only react when risk 

becomes imminent. To investigate this, shelter was limited to determine whether 

marron may be forced to prematurely react to predator cues due to the need to acquire 

shelter earlier as a result of competition with yabbies. Yabbies have been previously 

shown to react to a range of predatory cues (Gherardi et al. 2002).      

 

 

The null hypotheses for the first trial in this chapter (T5:1) were: 

 

Ho :  Marron will show no alteration in behaviours associated with detection of visual 

cues from silver perch held in bags, or chemical cues from culture water        5.1 

 

H0 :  Marron will not demonstrate avoidance responses to either visual and/or 

chemical cues from silver perch                                                                       5.2 
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5.1    Responses of marron to visual and chemical cues from silver perch  
 

5.1.1          Site and culture system 
 

This experiment (T5:1) was conducted at the South-West Aquaculture and 

Environment Centre (SWAEC), located in Collie, Western Australia. Twenty four glass 

aquaria (300 mm x 300 mm x 600 mm) were used. All standard experimental 

conditions were replicated from Chapter 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Plate 5.1    Experimental glass aquaria (54L, filled to 25L), showing fish bags. 

 

 
5.1.2          Experimental animals 
 

Juvenile marron were chosen for this study as results from Chapter 4 demonstrated no 

differences in size related responses (Figure 4.1). Smaller marron were also thought to 

be the most vulnerable to predation and least inhibited in small aquariums. Marron, 

reared in monoculture ponds in Pemberton (34ºS, 116ºE), were collected and 

transferred to holding tanks at SWAEC in April 2003. Marron were fed commercial 

marron pellets (Wesfeeds Pty Ltd, Appendix D). Silver perch were sourced from ponds 

at Parkerville, Western Australia (32’S, 116’E). All fish were held in holding tanks at 

SWAEC and fed commercial fish pellets (Glen Forrest Stockfeeders Pty Ltd, Appendix 

C). The size of silver perch was 115.3 ± 6.2g. Fish of comparable size were shown to 
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predate on juvenile marron in investigations carried out by Whisson (2000). Fish size 

was limited to reduce stress, as larger fish were observed to be more anxious in bags. 

 

 

 

 

 

 

 

 

 
Plate 5.2    Left: marron in aquarium next to shelter, background - fish in bag. Right: silver 

                   perch held in bags. 

 

As with all studies examining response to chemical cues, chlorinated water was cured 

for use in experimental systems to prevent introduction of external chemical 

information. 
 

 
5.1.3          Experimental design 
 

Twenty four marron (1:1 sex ratio) (6.5 ± 0.65g) were randomly distributed into the 

twenty four aquaria, each filled with 25L of water (water temperature - 19.86 ± 0.9ºC).  

Individual aquariums were visually isolated, and contained a piece of polyvinyl 

chloride tube (length 100 mm, diameter 50 mm) for shelter. Constant aeration was 

supplied. Tanks were assigned to one of three treatments using a randomised block 

design. Treatments were:  

 

 

 

 

 
 

 

The latter treatment was included to determine any effects on marron behaviour in 

response to bags per se. Bags were commercial clear plastic fish transport bags 

1. marron monoculture 

2. marron with a bag containing one silver perch 

3. marron with an empty bag. 
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(Aquasonic Pty Ltd). Each silver perch was double-bagged and bags were leak-tested 

(1 minute visual observation) before and after the trial to ensure no chemical cues were 

released from bags into experimental systems.  

 

Following acclimatisation to individual aquaria (24h), behavioural records were taken 

every 15 s during two time periods; (A) a 5 min. control period following injection of 10 

ml of distilled water (control water); and, immediately afterward, (B) a 5 min. period 

following the injection of test solution according to Hazlett (1999). Thus, each 

experiment lasted 10 min., the injection of control water always preceding the injection 

of test water. All tests were carried out between 1200 and 1700h. Test solutions were 

(1) 10 ml of food odour (FOOD), or (2) 10 ml of food odour plus 5 ml of silver perch 

culture water (F+PCW). Preparation of food solution followed methods outlines in 

Section 4.1.4. The PCW incorporated 2.5 ml of water from a holding tank containing 

silver perch with an average weight of 433.6 ± 45g at a density of 20 kg/m3, and 2.5 ml 

from a tank containing silver perch, with an average weight of 131.1 ± 5.9g, also at a 

density of 20 kg/m3. The culture water from silver perch held in two size classes was 

combined in this way to exclude any variation in crayfish response due to fish size. 

 

Silver perch culture water was utilised in an attempt to capture allelochemicals, as in 

Experiment 1. To reduce effects from general metabolites such as ammonia, fish were 

starved for three days prior to experimentation. Marron were fed until 24 h prior to trial. 

This was done to ensure marron would recognise food solution, and secondly to ensure 

responses to food odour weren’t exaggerated by starvation, whilst not feeding during 

the trial to prevent any effects from nitrogenous wastes. 

 

Control water and test solutions were added via syringes to the corner of aquaria 

furthest from the crayfish. All test solutions were prepared immediately before testing 

(Hazlett 1994a/b). Each test solution was randomly delivered to four of the eight 

replicate tanks in each treatment, including two tanks containing male marron and two 

with female marron. A dye test (Appendix E) confirmed diffusion of injected solutions 

throughout systems within 20 s. The experiment was repeated on the following day, 

with all conditions and stock identical to previous day, except the test solution used on 

day 1 was reversed on day 2. That is, test solutions (1) and (2) were tested in each 

aquarium over the two-day trial period. 
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Behaviour analysis was used to gauge responses of crayfish to test solutions. The 

same behavioural observations and recording protocols utilised in Section 4.1.5 were 

followed.  

 
 
5.1.4          Water quality 
 

Total ammonia (ppm), salinity (ppt), conductivity (mS), pH, nitrite (ppm), nitrate (ppm) 

and temperature (°C) were recorded daily. All levels remained within optimum ranges 

for all test animals and no significant variation between experimental systems was 

recorded. Temperature in this trial was 19.86±0.07°C. 

 

 

5.1.5          Statistical analysis 
 

Reaction time, behaviour and posture for individuals during control periods was 

compared using t-tests (Selvanathan et al. 2000) to evaluate background differences 

between the monoculture, marron+bag and marron+fish treatments. For comparison 

between control water and test solutions for each treatment, reaction time, behaviour 

and posture were analysed using paired t-tests (Selvanathan et al. 2000). For 

comparison between tests solution within each treatment, for the same test, the 

magnitude of change (difference in absolute values) in the reaction time (s) and in 

behaviours and postures (%) for each individual between control water and test 

solutions, was calculated. Responses within treatment groups to the test solutions 

were compared with a Kruskal-Wallis one-way analysis of variance (Selvanathan et al. 

2000). Wilcoxon Signed Ranks test was used to compare differences in response to 

each test solutions between the monoculture, fish in bag, and fish with no bag 

treatment groups (Selvanathan et al. 2000). All percentage data were subject to 

arcsine transformation prior to analysis (Zar 1984). 
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5.1.6   Results 
 
5.1.6.1      Behaviour of marron in monoculture, empty bag and fish in bag 

treatments in response to control water 
 

Marron in aquariums containing bagged silver perch displayed increased antennule 

flicking compared to monoculture treatment (P<0.01) and increased antennae 

movement compared to empty bag treatment (P<0.05) (Figure 5.1). Marron with fish 

chose lower posture significantly more than other groups (P<0.05), intermediate 

posture significantly less (P<0.05), and climbed more (P<0.05) than marron with only 

an empty bag in the aquarium.  

 

 

Figure 5.1  Behaviours displayed by marron in each treatment block, recorded following 

                      addition of control water.  
Significant variations between treatments within each behaviour are identified by different letters (P<0.05). 

 

 
5.1.6.2       Gender differences in response to control and test solutions 
 

No significant differences (P>0.1) between sexes were recorded in reaction time, 

behaviour and posture in response to 10 ml of distilled water during the two control 

periods. 
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5.1.6.3       Control water versus food and F+PCW solutions 
 

Reaction times were lower in all treatments for food and F+PCW solutions compared 

with control solution (Figure 5.2, Appendix B - Table III). The degree of change in 

reaction time between control and food solutions were 138.75±47.33 s (P=0.259) for 

marron held in monoculture, 159.38±43.63 s (P=0.008) where an empty bag was 

used, and 187.5±28.21 s (P<0.001) where silver perch were held in bags. In response 

to the F+PCW solution, reaction times increased by 196.88±41.41 s (P=0.005) in 

monoculture treatment aquaria, 132.86±40.78 s (P=0.051) with empty bags in 

aquaria, and 106.88±40.95 s (P=0.056) for marron held with bagged silver perch. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2  Reaction times of marron held in 1. monoculture (mono), 2. with an empty bag, 

                      3. with bagged fish, in response to control and test solutions (food, and F+PCW - 

                      food +perch culture water).  
Data is the average response ± SE, with significant variations compared between control water and test solution. 

Significant variations are identified by ** (P<0.01) when differences existed between the control and test responses 

within each treatment. 

 

Locomotion, feeding activity, antennule flicking and antennae movements of marron 

increased in response to both test solutions in all treatments when compared to 

control (Figure 5.3, Appendix B - Table III), with one exception -  antennule flicking in 

the marron + bagged fish treatment responding to food. In this exception, antennule 

flicking was also high in response to control water.  
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Figure 5.3    Behavioural responses of marron held in 1. monoculture (mono), 2. with an empty 

                      bag, 3. with bagged fish, in response to control and test solutions (food, and 

                      F+PCW) for locomotion, feeding behaviour, antennule flicking and antennae 

                      movements.  
Data is the average response ± SE, with significant variations compared between control water and test solution. 

Significant variations are identified by * (P<0.05) when differences existed between the control and test responses 

within each treatment. 
 

 

In monoculture, marron exposed to food alone displayed significant increases in 

locomotion (P=0.032) and general feeding (P=0.032), and marked increases in 

antennule flicking (P=0.054) and antennae movements (P=0.051). In response to 

conditioned water marron in monoculture increased feeding activity significantly 

(P=0.021) and showed marked increases in antennule flicking (P=0.057). In the 

marron + empty bag treatment, antennule flicking was significantly increased in 

response to both test solutions (Food P=0.019, F+PCW P=0.040), compared with 

control. In response to the food and culture water solution, antennae movement was 
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significantly increased (P=0.037), and higher results were seen in locomotion 

(P=0.053) and general feeding movements (P=0.063). When marron responses were 

examined in the presence of silver perch held in bags no statistically significant 

findings were apparent, however shelter, locomotion, feeding, antennule and antennae 

movements all increased in response to both test solutions, with the one exception 

previously stated. No significant changes in posture, cleaning or climbing were 

recorded in treatment groups (Appendix B - Table III). 

 

 

5.1.6.4       Comparison between test solutions and monoculture, empty bag and 
bagged fish treatments 

 

No significant differences (P>0.05) were found in behavioural responses of marron 

between test solutions (Table 5.1).  

 
Table 5.1   Magnitude of change between control water and test solutions in reaction time (s), 

behaviour and body posture (%).  

Comparisons among test odours (FOOD, F+PCW = food + silver perch culture water) within groups, used 

Kruskal-Wallace test.  

 

 

No statistical differences were seen in responses of marron to either test solution 

(P>0.05) between treatment groups (Table 5.2). 

 
 
 

 monoculture marron + empty bag Marron + fish 

Reaction Time 0.9110 0.9830 2.2400 
In Shelter 1.3420 Data sets identical 0.4470 
Locomotion 1.1530 1.1530 0.8450 
General feeding movements 0.5930 0.5080 0.4230 
Antennule flicking 0.5600 0.5600 1.2600 
Antennae movement 1.1830 0.1050 0.9800 
Lowered posture Data sets identical 1.0000 1.0000 
Intermediate posture 0.9340 0.4050 1.2140 
Raised posture 1.1530 0.1350 0.4050 
Cleaning 0.5350 0.3780 0.1050 
Climbing 0.9440 0.2720 0.4050 
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Table 5.2     Magnitude of change between control water and test solutions in reaction time 

                     (s),     behaviour and body posture (%) 

Comparisons between visual stimuli (MM = marron monoculture, MB = Marron and empty bag, MF = 

marron and fish in bag) for each test odour (FOOD, F+PCW = food + silver perch culture water), used 

Wilcoxon Signed Ranks Test (X2, df 2). * P<0.05, **P<0.01                                                        
                   
                                                                                   
A summary of results for this trial is provided in Appendix  B, Table IV. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 FOOD F + PCW 

Reaction time 1.4970 3.0040 
In shelter 0.4480 2.5570 
Locomotion 2.9100 0.5020 
General feeding movement 0.9440 0.3990 
Antennule flicking 4.4950 0.4380 
Antennae movement 0.6670 0.9390 
Lowered posture Data sets identical 2.8750 
Intermediate posture 0.2250 2.7820 
Raised posture 0.2680 1.2760 
Cleaning 2.8380 1.4650 
Climbing 0.3210 0.3440 
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5.1.7          Discussion 
 
 
5.1.7.1        Responses of marron to visual cues associated with silver perch held 

in bags  
 

The behaviour of marron held in aquaria containing silver perch in bags (T2) showed a 

number of significant variations compared with marron in treatments without silver perch 

(T1 and T3). Marron displayed significant increases in antennule flicking and antennae 

movements, choice of low posture and increased climbing when exposed to cues 

associated with bagged silver perch, compared to marron in treatments without silver 

perch (T1 and T3). The behaviour of marron in T2 is consistent with anti-predator 

responses. Hazlett (1990) and Gherardi et al. (2002) showed that in freshwater crayfish, 

increased use of antennules is seen with detection of environmental signals pertaining 

to threat. Lowered posture has previously been correlated to responses to predatory 

cues in the crayfish Orconectes virilis (Hazlett and Schoolmaster 1998), and escape 

responses (Lawrence and Smith 1989, Mathias and Smith 1993b, Herbaholtz et al. 

2004) or avoidance of high risk areas (Brown et al. 1995), such as climbing, is a  

documented predator avoidance strategy.  

 

Visual detection of threat is commonly used in aquatic environments (Brown et al. 1997, 

Watson 1999), controlling a range of anti-predator behaviours in many species 

(Herrnkind 1968, 1972, 1983), including decapods (Bollens and Frost 1989, Diaz et al. 

1999, Hazlet and McLay 1999, Woodley and Peterson 2003). Visual cues are often the 

primary source of information in environments where vision is high, such as in systems 

of low turbidity (Watson 1999) providing early accurate information (Culp et al. 1991, 

Brown and Godin 1999, Hazlett and McLay 2000, Bouwma and Hazlett 2001). The 

evolution of marron in clear-water rivers and streams in the south-west of Western 

Australia supports these findings, where visual location of potential threats may be the 

most effective early warning system. As predators of marron are limited (Morrissy 1997, 

FWA 1999, Allen et al 2002) and generally confined to terrestrial species (Rowland 

1995b), such as birds and water rats, the use of chemical triggers is arguably much less 

important, and may explain the lack of avoidance responses in the previous chapter.   
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Although marron behaviour was altered when held with bagged silver perch, the 

responses to food solutions showed no variations with other treatments. As predator 

avoidance responses are often characterised by feeding inhibition (Rahel and Stein 

1988, Brown et al. 1999, Bouwma and Hazlett 2001), this suggests that marron did 

not associate cues from fish in bags with high or immediate threat. Observed 

behavioural changes to visual cues may simply be related to curiosity. Another 

explanation is that responses of marron were not detected through analysis of 

behaviour. As in Chapter 4, crayfish may increase alertness, or readiness for flight or 

fight, which may not be detected as a significant change in observed behaviours 

(Hazlett 1994a, Listerman et al. 2000, Li et al. 2000). Crayfish have been shown to 

continue feeding behaviour following identification of risk (Hazlett 1999, 2000b), 

presumedly relying on rapid avoidance responses, such as tail-flips, to escape attack. 

 

 

5.1.7.2       Chemosensory detection of food odour 
 

Chemical communication is a well-known and widespread ecological phenomenon 

mediating a variety of interactions between organisms and their environment (e.g. 

Maynard Smith 1993, Andrew and Savage 2000, Grasso and Basil 2002). Recognition 

of chemical cues associated with potential food sources has been demonstrated in 

many decapod species (Tierney and Atema 1988, Barnes 1997, Giri and Dunham 

1999, Hazlett and McLay 2000, Moore and Grills 1999, Hazlett 2000a, Grasso and 

Basil 2002) and associated with typical behavioural changes including increased 

searching-locomotion (Tierney and Atema 1988, Giri and Dunham 1999, Hazlett and 

McLay 2000, Grasso and Basil 2002), feeding behaviour (Hazlett 1999, 2000b, 

Gherardi et al. 2002, Hazlett 1971) and use of chemosensory devices (Tierney and 

Atema 1988, Hazlett 1990, Grasso and Basil 2002). The ability of marron to detect 

and recognise cues relating to food was apparent in findings in this study, supporting 

observations made in Chapter 4. Marron in all treatment groups responded positively 

to cues in both test solutions examined, with significantly faster reaction times and 

significant increases in feeding activity, locomotion, antennule flicking and antennae 

movement, compared to control solutions. Antennules and Antennae are the primary 

device used by freshwater crayfish in detecting chemical cues (Hazlett 1971, Tierney 

and Atema 1988, Grasso and Basil 2002, Hazlett et al. 2002). 
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5.1.7.3       Chemosensory detection of fish odour 
 
Chemical information pertaining to predation risk is commonly associated with anti-

predator behaviour by the receiver (Kiesecker et al. 1996, Kats and Dill 1998, Wisenden 

and Millard 2001, Diaz et al. 2001, Head et al. 2002). Typically, behavioural responses to 

predatory odours include: 

 

• inhibited food-related responses (Hazlett 1994a, Brown et al. 1999, Hazlett and 

McLay 2000, Bouwma and Hazlett 2001);  

• reduced locomotion or other movements (Hazlett 1997, Persons et al. 2002, 

Hazlett 2000a, Mirza et al. 2001);  

• avoidance of risk areas (Brown et al. 1995, Persons et al. 2002), such as tail-

flipping (Bethe 1897, Huxley 1880, Wiersma 1961); 

• increased shelter (Appelberg et al. 1993, Baker and Montgomery 2001). 

 

For each of the typical kairomone-induced avoidance behaviours listed above, the 

opposite reaction was displayed by marron in this trial in response to the F+PCW test 

solution, and no significant variation in responses between solutions (Food and F+PCW) 

was found. 

 

The lack of variation between the behaviour of marron responding to food solution and 

responses to F+PCW solution, suggests that marron do not detect fish cues in silver 

perch culture water. Another explanation is that marron detect chemical cues from silver 

perch, but do not associate them with potential risk, or that risk level was not high 

enough to warrant behavioural change. In many species, recognition of threat from novel 

predators requires association of predatory cues with known risk cues, such as alarm 

odours (Mathis et al. 1996), and in some cases avoidance behaviour is only triggered 

following physical interaction with a predator (Chivers and Smith 1995, Diaz et al. 2001).  

 
 
5.1.7.4       Cumulative effects from the combination of visual and chemical cues 
 

Although marron behaviour was altered by cues associated with silver perch in bags, the 

addition of chemical cues in perch culture water did not result in any cumulative effects. 

That is, marron exposed to both visual and chemical signals from silver perch showed no 
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variation in behaviour compared with treatments containing no silver perch. In fact, 

marron in all treatments, for both test solutions, increased feeding behaviour, 

locomotion, and use of sensory systems (antennules and antennae). These 

behaviours are indicative of food-related responses (Hazlett 1971, Tierney and Atema 

1988, Hazlett 1990, Grasso and Basil 2002), not avoidance Brown et al. 1999, Hazlett 

2000a, Hazlett and McLay 2000, Mirza et al. 2001). This demonstrates that foraging 

holds a higher hierarchal standing for marron than behavioural responses to both 

silver perch odour and visual cues from bagged silver perch. 

 

 

5.1.8          Conclusions 
 

Results from this study support findings in the previous chapter which demonstrate 

the ability of marron to detect and respond to cues in the test solutions provided, 

however as no significant differences were found between test solutions, it is still 

unknown whether detection of chemical cues from silver perch, found in their culture 

water is made. The questions remaining are whether marron detect allelochemicals 

from silver perch and do not associate the cues with risk (which if true may mean 

segregation is required, e.g. cage culture) - or do not interpret cues as a high enough 

risk to warrant a change in behaviour (which would further question what level of risk 

is required produce a reaction in marron and would avoidance strategies be effective). 

The most important finding of this trial was the apparent avoidance responses 

displayed by marron when exposed to visual cues from silver perch held in bags.  
 

 

 

The null hypothesis H0 (5.1) was accepted, as although marron detected visual cues 

from silver perch in bags, whether they could discern chemical cues 

associated with silver perch in the F+PCW solution was unclear 

 
The null hypothesis H0 (5.2) was rejected as although marron did not demonstrate 

avoidance responses to chemical cues from silver perch (as stated by H1), 

responses were seen where visual cues were presented (not stated by H1). 

 
 
 



Chapter five: visual and chemical cues             

 

137 

5.1.9          Limitations and recommendations 
 

Examinations of the complexity of interactions between marron and fish were extended 

in this study, through incorporation of visual cues associated with fish, alone and in 

combination with chemical cues. Future studies need to further extend investigations 

into the ecological basis of interaction, incorporating additional sources of information in 

an arena that includes competition and natural behaviours of fish. To do this a number 

of modifications to experimental design need to be examined, these include: 
 

Larger systems with less restriction of predator behaviour 
Predator behaviour has been shown to effect prey response (Dugatkin and Godin 

1992, Murphy and Pitcher 1997, Brown et al. 2000). The trial reported in this chapter 

may have been limited by behaviour of bagged fish, in so far as silver perch may have 

been anxious due to their environment and not concerned with predation of marron. 

Recommendations would be to trial responses in larger systems, where fish could be 

held in separate compartments to crayfish, and therefore move more freely. 
 

Increasing need for crayfish to respond to potential threat  
As crayfish have at their disposal the ability to rapidly respond to predation through tail-

flipping, there may have been reduced need to demonstrate avoidance responses, as 

close refuge was provided allowing escape in the face of imminent danger. A way to 

increase the need for early avoidance strategies could be the addition of competition, 

where detection of threat in limited refuge may result in early competition for refuge. 

Future recommendations include the use of multiple animals with limited shelter. 
 

Increased duration of risk to crayfish 
Lima and Bednekoff (1999), noted that many laboratory experiments stimulate a 

scenario with extended periods of low risk and only occasional pulses of danger. That 

is in most cases, investigators hold prey without predators and study how prey respond 

when predators are added, as was the case in this trial. This protocol, chosen for 

practical purposes and not for a fit to reality, might incorrectly estimate the effects of 

risk in marron-perch polysystems where marron should experience more sustained 

predatory pressure from silver perch. Observation of crayfish behaviour over extended 

periods of sustained risk should enable better prediction of production outcomes in 

polyculture systems with silver perch. As behaviour is controlled by both the endocrine 

system, and the nervous system (Hazlett 1995), it makes sense that responses should 

be examined both as an initial reaction, and changes over time.  
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5.2      The effect of visual and chemical cues from silver perch on marron 
behaviour under cohabitation with the yabby, a congeneric crayfish 

 

 
 

Previous trials have shown a lack of avoidance by marron in response to chemical and 

visual cues from a potential predator, especially when faced with food-derived cues. One 

explanation for these results is that marron increase alert status in response to potential 

threat, maintaining feeding and responding only when attack is imminent. One factor that 

may trigger avoidance responses in marron is competition, in that individuals competing 

for resources such as shelter may force marron to respond to potential threat more 

immediately. Competitive interactions and habitat use in aquatic systems are largely a 

function of predation risk (Miner and Stein 1996). The addition of a sympatric crayfish that 

is known to respond to exteroceptive cues from potential predators, such as the yabby 

(Gherardi et al. 2002), may also produce alarm responses detected by marron. Alarm 

cues have been shown to produce responses in normally non-reactive animals 

(Gazdewich and Chivers 2002). In a previous study, comparing responses of marron and 

yabbies, it was shown that both species will react to odour from each other (Gherardi et al. 

2002). This may be due to co-inhabiting systems for the past 70 years (Lawrence and 

Morrissy 2000), phylogenetic inertia (Hazlett 1990), or related to similar methods of 

chemical detection (Rittschof 1993, Hazlett 1994b).  

 

In this trial (T5:2), one marron and one yabby were held together in a 250L aquarium, with 

silver perch held in the same system and separated by partitions allowing or preventing 

the transfer of visual and or chemical cues from fish. Large experimental systems were 

used in this trial, following suggestions that behaviour of fish and crayfish may have been 

limited by the size of aquaria used in previous studies. This trial aimed to determine if 

behavioural responses of marron to silver perch cues were influenced by competitive 

interaction, or alarm responses, of yabbies in response to cues from silver perch. Flow 

between compartments containing crayfish and those containing silver perch was 

constant, therefore any allelochemicals released by silver perch would be present for the 

duration of analysis, where as in previous trials solutions were introduced once at the 

beginning of each observation period. Chemical signals in aquatic environments have 

been shown to quickly decay (Lass 2001, Mesquita et al. 2003), which may have affected 

responses in previous trials.  

 

Behavioural observations were extended in this trial to view crayfish behaviour over longer 

periods than previous trials. This incorporated observation of night-time behaviour, which 

is of particular importance as marron are primarily nocturnal (Morrissy and Caputi 1981). 
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.The null hypothesis for T5:2 was: 
 

Ho :  Marron will not display avoidance behaviour in response to cues presented from 

silver perch, regardless of cohabitation with yabbies.                                      5.3 

 
 
 
5.2.1          Background 
 

The invasive yabby (Cherax albidus) affects indigenous marron (Cherax tenuimanus) 

populations in Western Australia by its highly competitive behaviour (Gherardi et al. 

2002, Lynas et al. 2004). While, past research has shown that cohabitation of these 

species usually results in displacement of marron (Height and Whisson 2004), a 

recent study of Lake Moyanup in Western Australia reported marron re-establishing 

itself alongside a resident yabby population (Whisson 2003). A contributing factor to 

this finding could be the presence of crayfish predators within the system, a factor 

described by Pöckl and Pekny (2002) as strongly influencing displacement of crayfish 

species. Stimuli from potential predators like non-native silver perch (B. bidyanus), 

invoke predator-avoidance responses increasing competition within and between prey 

species (Werner 1991, Kotler et al. 1994).  

 

 

Figure 5.4   Distribution of yabbies (a) and marron (b) in the south-west of Western Australia. 

(a) Zones 2/3 are permitted culture zones for yabbies (FWA 2002b). (b) Natural 

and extended habitat of marron (FWA 1999). 
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In aquatic environments, accurately assessing predation risk will ultimately determine 

the success of species like freshwater crayfish (Pfeiffer 1977, Brown and Godin 1999, 

Delgado et al. 2002). Understanding the nature of this recognition then becomes 

important in explaining the relative status of component species within multi-species 

systems. There are several sensory modalities utilised in recognising predators in 

aquatic environments, including visual cues (Brown et al. 1997, Hazlett and McLay 

2000), tactile (Culp et al. 1991), aural (Rekwot et al. 2001, Vester et al. 2004), and 

chemical (Kiesecker et al. 1996, Brown and Godin 1999, Mirza et al. 2001). Chemical 

cues are particularly important to nocturnal species like freshwater crayfish, and 

include scents released by predators (Chivers et al. 1996b, Hazlett and Schoolmaster 

1998, Kats and Dill 1998) and odours given off by prey damaged during predation 

(Howe and Scheikh 1975, Hazlett 1994a, Chivers and Smith 1998).  

 

Recent studies on freshwater crayfish species residing in south-west Western Australia 

have focused on chemo-detection abilities and avoidance strategies in response to 

conspecific alarm odours and chemical cues released from potential predators 

(Gherardi et al. 2002, Height and Whisson 2004). Results indicate that individual 

yabbies display a high level of behavioural plasticity, while marron has demonstrated 

behavioural modifications to chemical cues in food odour (Gherardi et al. 2002, Height 

and Whisson 2004), indicating a potentially higher level of predation risk from non-

indigenous species. The aim of T5:2 was to observe responses of marron and yabbies 

to multiple cues (visual and/or chemical) from non-indigenous silver perch - a potential 

predator of both crayfish species (Whisson 2000, Prokop 2002). The direct influence of 

these cues on intraspecific interactions and predator avoidance behaviour was 

examined under limited shelter conditions to promote competition. 

 

 

5.2.2          Research design 
 
5.2.2.1       Experimental systems and stock 

 

Marron, C. tenuimanus (89.4±6.2g) and yabbies, C. albidus (63.9±6.2g) of comparable 

physical body and claw sizes were reared in monoculture ponds and transferred to 

holding tanks at the South-West Aquaculture and Environment Centre in Collie, 

Western Australia (33ºS, 115ºE). Marron were sourced from Pemberton (Forest Fresh 
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Marron Pty Ltd), and yabbies from Mulataga Aquaculture, Perth (Mulataga Pty Ltd). 

Glass observation tanks (250L, Plate 5.3) were partitioned and one compartment 

stocked with a single crayfish of each species (both sexes) and a single piece of 

shelter (PVC pipe - length 160 mm x diameter 75 mm). Partitions were either 

permeated or solid - to allow or prevent the exchange of chemical cues from a single 

silver perch (323.6±82.5g) placed in the adjacent compartment. Dye tests were 

carried out on all tanks to confirm water exchange was, or was not, occurring between 

compartments, as designed. Where exchange was permitted, complete mixing of 

water throughout the aquarium was observed in approximately 30 s (Dye test, 

Appendix E). Partitions were clear or darkened to manipulate visual signals from fish. 

Five treatments were tested (Table 5.3, Plate 5.3) and replicated in five homogeneous 

tanks. One male and one female crayfish were stocked in four of the five treatments, 

with the final treatment examining single sex interactions. In a replicate trial on the 

following day the sex of crayfish introduced to aquaria was reversed from day 1. 

 
Table 5.3    Experimental design showing treatment allocation of cues from silver perch 

T1 - Control (T2 = with fish)          T3 - Chemical cues        T4/T5 - Visual & Chemical cues 

Plate 5.3  Visual (left), chemical (centre) and visual-chemical (right) treatment systems 

 

Aquaria were filled with 230L water at 20.1±0.08°C (Appendix A). Each aquarium was 

aerated using two Aquaclear 150 filter-pumps (without media), one in each 

Treatment Central Partition Design Water 
Flow 

Silver 
Perch 

Stimuli Tested 

1: Control Plastic mesh (10 mm) YES NO Crayfish only 

2: Visual Plastic mesh / Clear Glass NO YES Visual cues 

3: Chemical Plastic mesh / Opaque Glass YES YES Chemical cues 

4: Vis/Chem Plastic mesh YES YES Visual/Chemical 
cues 

5: Single Sex Plastic mesh YES YES Visual/Chemical 
single sex 
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compartment. All aquaria were visually isolated to minimise disturbances to crayfish. 

Silver perch were not fed for three days prior to testing, and marron for 1 day prior, 

with both species not fed over the two-day trial period. As with all studies examining 

response to chemical cues, chlorinated water was cured for use in experimental 

systems to prevent introduction of external chemical information. 

 
 
5.2.2.2       Experimental procedures  
 

Behavioural observations were carried out in three time periods; 1. Following 

introduction of crayfish to aquaria, 2. Following introduction of silver perch to aquaria 

containing crayfish, and 3. Nocturnal behaviour of crayfish recorded after silver perch 

had been in systems for 4 h. Marron and yabbies were introduced simultaneously to 

fishless aquaria between 0900 and 1130 h, where behavioural observation were 

conducted immediately after the addition of marron and yabbies to each system. A 

settlement time of 4 h was provided to allow acclimatisation of crayfish to aquaria prior 

to the introduction of fish. Night time behaviour of crayfish was observed using night 

vision goggles (Plate 5.4), between 1900 and 2100 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plate 5.4   Top: night-vision goggles used in nocturnal observations. Bottom: yabby and 

                     marron observed through night goggles 
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Behavioural reactions to treatments were recorded using two separate observation 

protocols, a ‘5-minute test’ and a ‘2 hour test’. These tests examined different aspects 

of crayfish behaviour prior to, and following, fish introduction. 

 

 

5.2.2.3       5-minute test 
 

The 5-minute test involved recording crayfish behaviour every 15s over a 5 min. 

period, following protocols outlined in Section 4.1.5. The 5-minute test was carried out 

in time period 1, following simultaneous introduction of crayfish to aquaria, and in time 

period 2, following the introduction of silver perch to systems. The 5-minute test was 

not carried out in time period 3 as observation of minute details, such as antennule 

flicking, was difficult to accurately discern using night vision goggles. 

 

In addition to the standard behaviour protocols described in Section 4.1.5, analysis 

was extended to incorporate interaction behaviour between the crayfish. The 

additional records were: number of approaches, whether interaction was aggressive 

or non-aggressive (NAI), and which species was the aggressor when conflicts were 

observed.  

 
 
5.2.2.4       2-hour test 
 

The 2-hour test was a simplified behavioural analysis carried out on all systems for 

30s every 15 min., over 2 h. The 2-hour test was conducted in each of the three time 

periods:  

 

1) following introduction of crayfish,  

2) following introduction of silver perch,  

3) 4 h after introduction of silver perch - to observe nocturnal behaviour.  

 

Observations made for each tank were; tank position of marron, yabby and silver 

perch (plotted on a plan-view of the aquarium to show relative position of each 

species); shelter use; number of conflicts (and dominant species); number of non-

aggressive interactions (NAI); shelter evictions and climbing on tank divider (screen).  
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5.2.2.5       Water quality 
 

Total ammonia (ppm), salinity (ppt), conductivity (mS), pH, nitrite (ppm), nitrate (ppm) 

and temperature (°C) were recorded daily. All levels remained within optimum ranges for 

test animals with no significant variation between experimental systems (Appendix A).  

 
 
5.2.2.6       Statistical analysis 
 

The percentage time spent in each behaviour over the 5-minute and 2-hour tests was 

calculated then arcsine transformed prior to analysis (Zar 1984). Analysis of variance 

(ANOVA) between treatment means for each behaviour, for both species, was 

conducted and post hoc significance (P<0.05) tested (Selvanathan et al. 2000). Where 

variances were equal significance was determined by Tukey’s HSD (reported), 

Bonferroni  and Scheffe’s F-Test, where equality was not assumed Dunnett’s T3 

(reported) and Tamhane were examined (Selvanathan et al. 2000). In the first time 

period, prior to introduction of silver perch, the analysis described above was used to 

compare background differences between systems and blocks. Comparisons between 

species responses to treatments, and between sexes and days were made using 

independent t-tests (Selvanathan et al. 2000).  

 

Comparisons were also made between crayfish behaviours recorded with the 5-minute 

test in the first time period and behaviours observed in the control treatment in the 

second time period. This was done using independent t-tests for each crayfish species 

to determine if general controlled behaviour was altered over time (Selvanathan et al. 

2000).  

 
 
* Behaviour of marron and yabbies following introduction to aquaria was compared 

between aquaria, with no significant variations found (P>0.1). This was done to ensure 

that variations in screen design between compartments had no influence on crayfish 

behaviour prior to introduction of silver perch in the second time period.  
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5.2.3       Results  
 

5.2.3.1    5-minute test: crayfish behaviour following introduction to aquaria 
 

The behaviours of marron and yabbies, recorded following introduction to experimental 

systems, showed no significant variations between species in both individual behaviour 

(Figure 5.5) or interaction behaviour (Figure 5.6).  

 

Figure 5.5   Behavioural responses of marron and yabbies following introduction to aquariums 
Data is time spent in each behaviour (± standard error). Lposture = low posture, Iposture = intermediate 

posture, Rposture = raised posture, A-movement = antennae, A-flicking = antennules.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6   Interaction responses of marron and yabbies following introduction to aquariums 
Data is time spent in each behaviour (± standard error). M = marron, Y = yabby, NAI = non-aggressive 
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No significant variations between behaviour of males and females, for both species, 

were found following introduction to aquariums, in individual behaviour (Figure 5.7) or 

interaction behaviour (Figure 5.8).  

Figure 5.7     Behavioural responses of male and female marron and yabbies following 

introduction to aquariums 
Data is time spent in each behaviour (± standard error). Lposture = low posture, Iposture = intermediate 

posture, Rposture = raised posture, A-movement = antennae, A-flicking = antennules  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8      Interaction responses of male and female marron and yabbies following 

introduction to aquariums 
Data is time spent in each behaviour (± standard error). M = marron, Y = yabby, NAI = non-aggressive 
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High standard errors in all data (Figure 5.5-5.8) signify large variations in behaviour 

between individuals within each species, as was seen in T4:1 and T5:1.  
 

 
5.2.3.2     5-minute test:  comparing control responses of crayfish in time period 

1 and 2 
 

Comparisons between control behaviours of marron and yabbies recorded 

immediately following introduction, compared with observations made within the 

control (no fish) treatment following introduction of silver perch revealed a number of 

significant changes. These changes indicate alterations in general and interaction 

behaviours after 4 h of cohabitation (being the time lapsed between time period 1 and 

time period 2). The behavioural differences between the two time periods were a 

significantly higher time spent in locomotion and increased use of antennae for both 

species (P<0.001) recorded following introduction of crayfish to fishless aquaria, than 

compared to 4 hours later. In addition, yabbies approached marron significantly more 

in the first time period (P<0.01), resulting in significantly higher non-aggressive 

interactions overall (P<0.001). Marron also chose raised posture more often in the first 

time period (P<0.01) and lowered posture in the second time period (P<0.05).  

 

No differences between sex in either species occurred between the control behaviours 

recorded in either time period using the 5-minute test (P>0.1). 
 

 

5.2.3.3     5-minute test: Response of crayfish to silver perch cues 
 

Both marron and yabbies displayed significantly faster reaction times when presented 

with visual, chemical and visual/chemical cues from silver perch (P<0.05), compared 

to control treatment responses (Figure 5.9, Appendix B Table Va/b).  

 
Marron responses to silver perch cues 
 

Use of antennae and antennules increased in response to all cues from silver perch 

tested, compared to control (Figure 5.9, Appendix B Table Va/b), with significant 

increases between control and visual + chemical treatments (T4 and T5) for both 

antennae and antennules, and also between control and chemical cues alone for 

antennule flicking (P<0.05).  
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Yabby responses to silver perch cues 
 

In responses to silver perch cues, yabbies demonstrated similar reactions as were 

seen in marron (Figure 5.9), with increased use of antennules in response to all 

treatments compared to control, however only significant (P<0.05) between control 

responses and reaction to chemical cues alone. Antennae movement in yabbies was 

also increased when responding to fish cues (Figure 5.9), however no significant 

differences were apparent (P>0.05), and little difference existed between response to 

control versus chemical cues alone. Yabbies chose low posture significantly more in 

response to chemical cues than compared to all other treatments (P<0.05) (Figure 5.9).   

 

 

General  responses to silver perch cues 
 

No significant differences were seen in response of either crayfish to treatments in 

shelter usage, locomotion, climbing, feeding, cleaning, raised or intermediate posture 

(Figure 5.9), however a number of general trends were apparent: Shelter was rarely 

occupied by yabbies across all systems, with similar results seen in marron. However, 

marron utilised sheltered more in the chemical treatment than other groups (Figure 

5.9). The amount of locomotion recorded in both species generally increased where 

combined cues were tested (T4 and T5), although a marked increased was recorded in 

yabbies responding to visual cues alone. Climbing appeared to increase in marron in 

response to all fish cues tested, with little climbing observed in control (Figure 5.9). 

Yabbies were rarely observed climbing across all treatments. Finally, raised posture 

was most common in marron in the chemical, and chemical and visual treatments (T4 

and T5) compared to response in control and visual treatment groups (Figure 5.9). 

Yabbies rarely chose raised posture, and showed little difference between groups 

(Figure 5.9). Cleaning and feeding behaviours were not included in Figure 5.9 as were 

rarely recorded and showed no significant differences between treatments (P>0.1).  
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Figure 5.9     Behaviours of crayfish (marron and yabbies) in response to a range of 

exteroceptive cues from silver perch.  
Data is mean time spent in each behaviour for crayfish within each treatment. Where letters are different 

across treatments for each species a significant difference was found. 
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In the interaction behaviours recorded for both species, no significant variations were 

seen across treatment groups for either species (Figure 5.10).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.10    Interaction responses displayed by marron and yabbies within each treatment. 
Data is the mean (± SE) recorded for all individuals of each species in each treatment over trial period. 
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cues between species 
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Table 5.4     Variation in response of marron and yabbies to cues from silver perch.  

Subscript ‘M’ (marron) or ‘Y’ (yabby) denotes the dominant species. 

 

Although not statistically significant (P>0.05), marron utilised shelter more in 

response to chemical cues (P=0.06); climbed more and used antennae more in the 

single sex treatment (P=0.061, P=0.056, respectively); displayed raised posture more 

in response to visual + chemical cues (T4) (P=0.064); and chose lower posture in 

response to visual cues (P=0.071) than yabbies.  

 

 

5.2.3.5       Comparisons between sexes and days 
 

The responses of marron and yabbies recorded between the two trial days, between 

time periods, and within each treatment, showed no significant variation (P>0.1). 

Comparison between males and females of both species for each treatment and time 

period also showed no significant variations (P>0.05), with one exception, female 

marron showed increased locomotion (18.1 ± 8.09% of time) compared to males 

(3.81 ± 1.7% of time) in the control group in the second time period (P=0.036). This 

difference did not appear to affect comparison between treatments or species. 

 
 

Behaviours 

TREATMENTS 
Control Visual Chemical Vis/Chem 

p value  p value  p value  p value  p value  

Reaction to fish 0.529 M>Y 0.943 M>Y 0.533 Y>M 0.202 M>Y 0.714 Y>M 

Shelter 0.581 M>Y 0.749 Y>M 0.086 M>Y 0.556 M>Y 1.000 M=Y 

Locomotion 0.989 Y>M 0.047 Y>M 0.654 M>Y 0.810 M>Y 0.885 Y>M 

Low Posture 0.766 M>Y 0.071 M>Y 0.045 Y>M 0.808 M>Y 0.281 M>Y 

Intermediate posture 0.109 Y>M 0.007 M>Y 0.401 Y>M 0.189 Y>M 0.142 Y>M 

Raised Posture 0.281 M>Y 0.760 M>Y 0.123 M>Y 0.064 M>Y 0.180 M>Y 

Cleaning 0.905 Y>M 0.855 M>Y 0.343 M>Y 0.129 M>Y 0.365 M>Y 

Antennae Movement 0.280 Y>M 0.339 Y>M 0.278 M>Y 0.414 M>Y 0.056 M>Y 

Antennule Flicking 0.495 Y>M 0.648 Y>M 0.591 Y>M 0.546 M>Y 0.362 M>Y 

Climbing 0.343 M>Y 0.221 M>Y 0.144 M>Y 0.211 M>Y 0.061 M>Y 

Approach 0.825 M>Y 0.407 Y>M 0.290 Y>M 0.343 M>Y 1.000 M=Y 

    Aggression 0.265 M>Y 0.485 Y>M 0.736 Y>M 0.343 M>Y 0.289 M>Y 

    NAI 1.000 M=Y 1.000 M=Y 0.320 Y>M 0.825 M>Y 0.207 M>Y 

Single Sex V/C 
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5.2.3.6       2-hour test: behaviour of crayfish across all time periods 

 
Analysis of interspecific aggression between both crayfish species (encounters and 

subsequent fights) showed a number of significant outcomes. Aggressive encounters 

were more frequent following introduction of crayfish to fishless systems compared to 

interactions following introduction of fish (P<0.001) and at night (P<0.01) (Table 5.5). 

Marron were the dominant species following aggressive encounters in all three time 

periods at P<0.01, P<0.05 and P<0.001, respectively. In total, fifty-four fights were 

recorded in the 2h following crayfish introduction, 15 following addition of fish and 22 

at night (Table 5.5). For these three tests, marron was the aggressor or dominant 

crayfish in 88%, 93% and 95% of conflicts, respectively. Non-aggressive interactions 

(NAI) (Table 5.5) were also highest in the period following introduction of crayfish (30 

records), and rarely seen at night (4 records) Comparison of all interactions over the 

three time periods showed that 64.3% of encounters were aggressive when only 

crayfish were present, 48.4% following introduction of silver perch and almost 85% at 

night.  

 

No significant differences were seen between interactions recorded between blocks or 

between treatments in each of the time periods. The only remarkable finding between 

treatments was seen following introduction of silver perch, where no encounters were 

recorded when crayfish were exposed to chemical cues alone.  
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Table 5.5     Variation in individual and interaction responses of crayfish to exteroceptive cues    

                     from silver perch.  

Cell data was pooled across 10 tanks in each treatment (over 2 days) and 9 data points per tank (45 

possible records). Shelter data has been displayed as a percentage of time in shelter. Shelter evictions were 

all by marron, therefore no descriptors are included. Screen (M:Y) = number of marron on screen : number 

of yabbies on screen. M = marron, Y = yabby. NAI = no aggressive interactions. 

 

Analysis of shelter acquisition, use, and evictions showed a significantly higher use of 

shelter by both species following introduction of silver perch cues, compared with the 

other time periods (P<0.01). The combined shelter usage (marron and yabbies) 

following addition of crayfish was 7.25% of time in the first 2 h - increasing to over 25% 

following introduction of fish - and dropping to 7.5% at night. Yabbies sheltered for 

37.8% of time in the control treatment, reducing use of shelter to 17.8%, 13.3% and 13% 

  Aggressive encounters 

NAI Shelter 
eviction 

Screen 
(M:Y)    Dominant species 

  No. M Y M Y 

TEST PERIOD 1: Initial crayfish interaction   Recording time 0900-1130  

Block (1) 12 10 2 5 33.3 0 0 14:5 

Block (2) 12 10 2 5 0 0 0 17:7 

Block (3) 9 7 2 6 2.2 11.1 0 13:1 

Block (4) 11 8 3 8 11.1 4.4 0 12:1 

Block (5) 10 5 5 6 8.9 2.2 0 22:9 

TOTALS  54 40 14 30 25 8 0 78:23 
TEST PERIOD 2: Following introduction of perch    Recording time 1400-1630  

Control (1) 7 7 0 1 44.4 37.8 0 17:0 

Visual (2) 4 3 1 5 22.2 17.8 0 19:0 

Chemical (3) 0 0 0 5 71.1 2.2 1 22:0 

Vis/chem. (4) 2 2 0 3 11.1 13.3 2 31:3 

Single sex (5) 2 2 0 2 33.3 13.3 1 18:10 

TOTALS  15 14 1 16 82 38 4 107:13 
TEST PERIOD 1: Nocturnal activity in presence of 
perch  

Recording time 1900-2100  

Control (1) 6 6 0 1 8.9 4.4 6 11:8 

Visual (2) 5 3 1 1 11.1 11.1 0 19:8 

Chemical (3) 4 4 0 0 4.4 2.2 3 11:7 

Vis/chem. (4) 2 2 0 2 4.4 11.1 4 26:11 

Single sex (5) 5 5 0 0 11.1 6.7 4 21:8 

TOTALS  22 20 1 4 18 16 17 88:42 

% time in shelter 
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in the visual, visual and chemical and single sex treatments and almost never 

sheltering in the presence of chemical cues. Contrastingly, marron inhabited shelter in 

over 70% of records when only chemical cues were present. Marron also dominated 

shelter under single sex conditions (M-33%, Y-13.3%) although shelter usage 

between crayfish was approximately even in the control (M-44.4%, Y-37.8%), visual 

only (M-22.2%, Y-17.8%) and visual and chemical (M-11.1%, Y-13.3%) groups. 

General observation suggested marron were out-competing and evicting yabbies from 

shelter, especially when only chemical fish cues were present. This was supported by 

the observation of shelter evictions, which were only recorded in time periods 2 and 3, 

and only for marron removing yabbies. Marron displayed significantly more climbing 

on the screen between the crayfish and fish compartments than yabbies in all time 

periods (P<0.05), although direct observations suggested that this behaviour was 

associated with ordinary foraging. 

 

A summary of results for T5:2 is provided in Appendix  B, Table VI, VII. 

 

 
 
5.2.4          Discussion 
 

Marron were the target species for polyculture research reported in this thesis and as 

such, much of the discussion for this trial centres on responses of marron to the 

various exteroceptive cues presented. The role of yabbies in this investigation was 

designed to examine how interaction and competition can affect marron behaviour. In 

saying this, attention to the behaviours exhibited in yabbies responding to the various 

cues from silver perch allows reference to the different evolutionary systems of marron 

and yabbies, and increases overall knowledge of freshwater crayfish perception and 

response. 

 
 

5.2.4.1       Behaviour of interacting crayfish - when no fish cues were present 
 

Studies reported in this thesis, and also by Gherardi et al. (2002) and Height and 

Whisson (2004) have examined the baseline behaviour of both marron and yabbies 

when held alone in aquaria, each using the 5-minute test protocol (see Section 4.1.5). 

This was the first attempt to examine the effects of interspecific interaction on the 

baseline behaviours of both species. Comparison between results from these studies 
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with results from this trial shows that except for increased locomotion and antennae 

movements displayed by both species following introduction to aquaria (time period 

1), individual behaviours of marron and yabbies (not including interaction parameters, 

i.e. approaches) were all within ranges previously described when held alone. It may 

be assumed that the increases in locomotion and antennae use seen in the first period 

were associated with exploration of new environment, and establishment of 

dominance between species.  

 

When behaviours recorded using the 2-hour test protocol are examined a clear 

physical dominance displayed by marron is apparent, which was not obvious using the 

5-minute analysis protocol. If it is assumed that the most accurate indication of 

dominance relationships between the two crayfish species would be seen in the 

second and third time periods, after species have established dominance hierarchies, 

results showed that marron were the victor in almost all aggressive encounters, 

monopolised shelter and screens, and shelter competitions always resulted in the 

exclusion of yabbies. Based on these results it could be concluded that cohabitation of 

the two species would result in marron out-competing yabbies. A number of studies 

have examined situations where yabbies have been introduced into systems 

containing marron (Morrissy and Cassells 1992, Pen and Potter 1992, Lynas et al. 

2004). In these studies, introduction of the invasive yabbies usually resulted in 

displacement of marron (Height and Whisson 2004), where marron are adversely 

affected by the highly competitive (Morrissy 1983; Morrissy 1997, Lawrence et al. 

2001, Lynas 2002, Lynas et al. 2004) and plastic behaviour of yabbies (Gherardi et al. 

2002, Height and Whisson 2004). The observed physical dominance of marron over 

yabbies in T5:2 does not confuse previous findings, as it should be noted that direct 

interaction between competing crayfish species constitutes only part of the 

displacement scenario. For example, yabbies are favoured as an invader owing to a 

higher breeding frequency and burrowing capability (Lawrence and Jones 2002).   

 

Behaviours of both crayfish species examined at night time showed no significant 

differences when compared with previous periods, however the number of aggressive 

conflicts increased and the use of shelter and climbing reduced. These observations 

are consisted with increased activity displayed by crayfish in this time period, being 

predominantly nocturnal or crepuscular (Morrissy and Caputi 1981, Molony and Bird 

2002). As in the first period, increased activity would have directly increased the 

chance of encounter. 
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5.2.4.2       Detection of fish cues 
 

Both crayfish species were clearly able to detect cues presented from silver perch 

(visual, chemical, visual/chemical combination), with significant increases in reaction 

time, antennule flicking and antennule movement across all treatments compared with 

control. 

 

5.2.4.3       Responses to chemical cues from silver perch 
 

As mentioned in the previous section, both crayfish species responded significantly to 

silver perch odours (Treatment 3), with faster reaction times and increased use of the 

primary olfactory device of freshwater crayfish - the antennules (Grasso and Basil 

2002, Tierney and Atema 1988, Hazlett 1990). In addition, yabbies significantly 

increased use of a low posture in the chemical treatment compared with control 

systems. These observations support the chemo-detection ability of marron and 

yabbies suggested by Gherardi et al. (2002) and Height and Whisson (2004), and in 

T4:1 and T5:1.  

 

Although eliciting significant behavioural responses in both species, chemical cues 

presented in this trial did not produce feeding activity in either species. In previous 

trials, where food and fish cue combinations were used (Gherardi et al. 2002, Height 

and Whisson 2004) feeding was significantly increased. Even if the dominance 

relationship between marron and yabbies prevented feeding in yabbies, it is still likely 

that foraging responses would be seen in marron if they perceived fish as food. Hazlett 

(1999, 2000b) reported that in other species of freshwater crayfish when faced with 

imminent predatory risk, behaviour is commonly inhibited, but rarely prevented. These 

findings provide evidence for the ability of marron, and yabbies, for chemo-

differentiation of signals pertaining to food and those pertaining to silver perch. The 

ability of freshwater crayfish to detect odours associated with potential predatory 

species has been shown in many previous studies (Hazlett 1997, Hazlett and 

Schoolmaster 1998, Persons et al. 2002, Hazlett 2000a, Mirza et al. 2001). 

 

Comparisons between marron and yabbies in response to chemical cues from silver 

perch showed that yabbies selected shelter significantly less than marron. 

Examination of shelter rates in the control tanks, suggest that this was due to 
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increased use by marron, rather than reduced use by yabbies, and that the different 

shelter rates were only apparent in the chemical treatment. The increased use of 

shelter is a common antipredator response displayed by many species (Kats and Dill 

1998, Lima 1998, Woodley and Peterson 2003), including freshwater crayfish (Stein 

and Magnuson 1976, Appelberg and Odelstrom 1988, Blake and Hart 1993b), 

however, a behaviour not seen in previous trials involving marron (Gherardi et al. 

2002, Height and Whisson 2004). Interestingly, previous trials have shown the reverse 

trend. Height and Whisson (2004) showed a significantly increased use of shelter by 

yabbies in response to chemical cues from freshwater cobbler and redfin perch, 

compared with marron. Although it is difficult to draw clear conclusions, it is plausible 

that marron were responding to an increased desire to shelter by yabbies, which may 

be evident in the first observations of shelter evictions in this period, which were only 

recorded in treatments containing chemical cues. Previous studies have reported that 

yabbies exhibits a higher degree of behavioural plasticity compared to marron when 

faced with chemical information (Gherardi et al. 2002 and Height and Whisson 2004), 

although there was limited evidence in this trial to support this. 

 

 

5.2.4.4       Responses to visual cues from silver perch 
 

Behavioural responses to visual cues (presented alone) were apparent in this 

investigation, with significantly increased reaction times in both species. Although no 

significant differences were seen in other behaviours, compared to control, antennule 

and antennae movement were increased for both species. This supports findings from 

T5:1, where significant increases in antennule flicking, low posture and climbing were 

also found in response to visual cues from silver perch (Section 5.1.7.1). The use of 

visual cues as the primary information source, especially in clear-water conditions 

indicative of the natural rivers systems in south-west Western Australia has previously 

been demonstrated (Culp et al. 1991, Brown et al. 1997, Brown and Godin 1999, 

Murray and Jenkins 1999, Hazlett and McLay 2000, Bouwma and Hazlett 2001). In 

addition, the use of visual information in threat detection is commonly reported in 

aquatic environments (Brown et al. 1997, Watson 1999). 

 

Although detection of visual cues was apparent for both species, only marron showed 

significant responses, compared to yabbies or other treatments. Marron were shown 
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to move less and remain in an intermediate posture more than yabbies, and shelter use 

was markedly reduced when compared to control, chemical and chemical and visual 

cues treatments. This may be attributed to the distinct evolution of these species, with 

marron naturally occurring in clear-water systems, whereas yabbies are more often 

found in highly turbid environments (Johnson 1986) where visual information would be 

less essential. 

 

5.2.4.5        Responses to combined cues from silver perch 
 

As no significant differences existed between crayfish held where visual and chemical 

cues were presented together, these treatments will be discussed as one group. 

 

ehavioural responses of marron and yabbies when exposed to multiple cues from silver 

perch supported the ability of both species to detect chemical and/or visual cues, with 

significant increases in reaction time for both. Comparison between species revealed no 

significant differences in responses, however, compared to control responses, yabbies 

exhibited a significantly reduced use of low posture in when cues were combined, and 

marron showed a significant increased in use of antennules and antennae. These 

differences compared with control may suggest differences in the weight given to the 

type and complexity of information by each species. 

 

Although not significant, one important observation was that the speed of reaction in 

both species was faster when cues were combined, than compared with all other 

treatment groups, and had much lower standard errors - suggesting more uniform 

responses across the population. This would support other authors reporting that the 

use of multiple sources of information pertaining to one ecological event can produce a 

more confident response (Rowe 1999, Goncalves et al. 2002). This more definitive 

response when multiple cues were presented may suggest hierarchal learning 

depending on the nature of information received, similar to the hierarchy described by 

Nelson (1990). 

 
 
5.2.4.6        Differentiation of exteroceptive cues from silver perch by crayfish 
 

When the responses of crayfish to the various information cues presented in this trial 

were compared between treatments, to determine whether crayfish were capable of 
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differentiating cues, only one significant variation was found: increased use of low 

posture displayed by yabbies responding to chemical cues (Figure 5.9).  

 

The response of yabbies to chemical cues, compared to responses in other treatments, 

may support differentiation between information media. In addition to significantly lower 

posture, yabbies utilised antennules more and reduced locomotion when only chemical 

cues were present, compared to other treatments (Figure 5.9). Both of these responses 

have previously been associated  with detection of predatory odours (Grasso and Basil 

2002, Hazlett et al. 2002). In addition, this was the only treatment where no aggressive 

interactions occurred (Table 5.5), suggesting that perhaps yabbies had reduced activity 

and were not encountering marron as often.  However, yabbies showed no significant 

variations between responses when visual cues were presented alone, and when 

combined with chemical cues. 

 

The responses of marron between treatment groups were less obvious, however a 

general trend of increased locomotion, antennae movements, raised posture and 

climbing was seen where multiple cues were present (T4 and T5), compared to all other 

groups. This results could suggest that marron were actively seeking, or avoiding, the 

source of the info-cues, and that confidence in responses was increased compared to 

where individual cues were presented alone. In some species often the first reaction is 

to take an aggressive or defensive stance (Field 1990, Hazlett and McLay 2000). An 

initial reaction of this kind may be indicative of species such as freshwater crayfish, 

possessing both an effective attack-defence system ‘claws’ and a rapid escape 

mechanism ‘tail-flip’. When H. rotundifrons receives a strong tactile input from a 

predator, it displays alternative predator avoidance behaviour by spreading its 

chelipeds and stopping all movements (Field 1990, Hazlett and McLay 2000). The 

behaviours demonstrated by marron indicate a heightened level of aggression when 

silver perch cues were detected.  

 

Both marron and yabbies displayed a more rapid reaction, with lower standard errors, 

when multiple cues were present. Multi-component signals have previously been 

associated with more definitive responses, as they afford the organisms more security 

through increased confidence in information (Rowe 1999, Goncalves et al. 2002). 
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5.2.4.7       Comparing diurnal changes in behaviour 
 

The comparisons made between day and night-time behaviours of marron and 

yabbies are important as both species are predominantly nocturnal foragers (Morrissy 

and Caputi 1981, Molony and Bird 2002). An extensive literature search on laboratory 

behaviour trials involving freshwater crayfish failed to find evidence of nocturnal 

behaviour, which would present a general limitation in many studies.  

 

In this study, nocturnal behaviour of crayfish resulted in reduced shelter use, reduced 

climbing, increased rates of eviction of yabbies, and increase in aggressive 

encounters. These results suggest that crayfish were more active at night, therefore 

not utilising shelter and resulting in more encounters. However, we must consider that 

the period used to compare night-time behaviour equates to 4 h after silver perch 

were introduced. Therefore, results could reflect acclimatisation of crayfish to the 

presence of silver perch. Also, natural nocturnal behaviours of crayfish could be 

affected by their introduction to systems only 8 h previously, therefore few conclusions 

can be made to natural behaviours in this period. However, based on results, further 

investigation of nocturnal behaviour is warranted. 

 

 

5.2.4.8       Effectiveness of avoidance responses produced by crayfish 
 

The effectiveness of avoidance responses displayed by crayfish in response to any of 

the cues presented is difficult to ascertain as threat is arguable. As with T4:1 and 

T5:1, crayfish have been shown to detect and potentially differentiate cues from silver 

perch however, no obvious avoidance behavioural was consistently found in either 

species. Common risk related responses include reduction in overall activity (Stein 

and Magnusson 1976, Kats and Dill 1998, Lima 1998, Hazlett 1999, Woodley and 

Peterson 2003), choice of the most complex shelter available (Stein and Magnusson 

1976, Appelberg and Odelstrom 1988, Blake and Hart 1993b) and increasing 

competition (Werner 1991, and Kotler et al. 1994). In this trial, reduction in activity in 

the face of silver perch cues was not apparent, as locomotion increased from control 

in all treatments for each species. Use of shelter as an avoidance response was also 

not consistent with findings in this study, where no significant changes in shelter 

usage were found. Finally, the amount of interspecific competition decreased after 
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silver perch were added to experimental systems. This lack of obvious avoidance 

behaviours may signify limited avoidance strategies of the crayfish species examined, 

or as previously suggested, may be related to the suggestions by Hazlett (1999, 

2000b) that some species only reduce normal behaviour in response to threat. In 

some cases, where no behavioural responses are recorded, there may still be 

physiological responses associated with heightened alertness or readiness for flight or 

fight (De Meester and Pijanowska 1996, Schapker et al. 2002). In contrast, the 

evolution of marron in predominantly predator-free environments (Morrissy 1997, FWA 

1999, Allen et al 2002) may mean marron haven’t been required to evolve predator 

avoidance tactics, thus leaving them vulnerable to predation in polyculture systems. 

Alternatively, marron may require detection of an alarm odour to elicit an avoidance 

response (Hazlett and Schoolmaster 1998), especially if cues are novel (Chivers et al. 

1995, Chivers and Smith 1998). To confirm the existence of avoidance responses 

possessed by marron and yabbies and determine their effectiveness, studies involving 

direct physical interaction with predators are required, in both the laboratory and field. 
 

 

 

5.2.5          General conclusions 
 

This trial confirmed the chemo- and photo-sensory ability of both crayfish species, and 

their capacity to differentiate and respond to environmental information based on the 

nature of stimulus (food versus fish cues). However, results showed an absence of 

significant avoidance behaviour in marron. These findings may be a function of the 

natural selection of marron species in fishless regions where it is the largest, dominant 

invertebrate; or they may reflect an alternate predator response mechanism such as 

tail-flipping, which would be consistent with increased alert status but lack of 

behavioural change to perceived threat. Outcomes from the 2-hour test support the 

need for more extensive behavioural analysis in future interaction trials, as dominance 

relationships appear to develop over time exceeding 5 min. 

 

An understanding of the factors governing interactions between these congeneric 

crayfish species and identifying the triggers for predator avoidance in marron has 

obvious ecological ramifications for wild-stock conservation and in developing 

strategies for the uncontrolled release of non-endemic species into natural waterways. 
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An understanding of the ecological roles of aquatic species also has direct application 

in developing management tools that may be employed in marron polyculture systems 

to mediate negative interactions between cohabitants exhibiting overlapping feeding 

regimes. The most encouraging finding for polyculture of this species is that even 

though marron detect fish cues behavioural responses were not evident. Therefore, if 

cages were employed in polyculture with a predatory species, or system variables 

altered to reduce effectiveness of predatory strategies, marron would maintain growth 

as they would not be directing energy to avoidance.  

 

 

5.2.6 Recommendations 
 

Results from T5:2 identify the need to examine marron behaviour under physical 

interaction with predators, to determine if marron display avoidance strategies, such 

as tail-flipping, and whether avoidance strategies are effective.   

 

A second recommendation of this trial is to investigate genetic variability of crayfish to 

determine if certain individuals have more capacity for predator detection and 

avoidance, or related features. This suggestion comes from the high variation 

recorded in individual marron behaviour, represented by high standard errors, even 

under controlled conditions, in this and T4:1 and T5:1  

 
 
 
 
 
 
 
____________________________________________________________________ 
The null hypothesis Ho (5.3) was rejected. Marron detected both visual and chemical 

cues from silver perch, however avoidance behaviour in response to cues from silver 

perch was not supported.  
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Crayfish-finfish interactions within a communal system 
 

 

This chapter examines direct interspecific interaction between 

marron and two finfish (Murray cod and silver perch) 

under varied conditions of habitat complexity and light 

intensity in one laboratory (T6:1) and one field trial (T6:2).  

 
 
 
 
 
 
 

 

Chapter six 
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CHAPTER SIX 
Crayfish-finfish interactions within a communal system 

 
 
Previous attempts at eliciting responses from marron exposed to chemical and visual 

cues from silver perch showed no discernable predator avoidance strategies. In order 

to determine whether this would equate to increased predation, marron were observed 

in communal systems with potential finfish predators.  

 

This chapter incorporates two experiments. The first trial (T6:1) examined behavioural 

responses of marron to Murray cod, a known predator of crayfish (Allen et al. 2002). 

This trial was conducted in aquaria under varying conditions of shelter and light 

intensity. The second trial (T6:2) was conducted in earthen ponds, where marron and 

silver perch were held free-range under varied shelter regimes. 
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6.1       Predator-prey interactions between Murray cod and marron 
 
 

 

In this trial, Murray cod (Maccullochella peelii peelii) were chosen to examine the 

adequacy of predator responses used by marron (if any) as they are a strict carnivore 

and a renowned voracious crayfish predator (Allen et al. 2002). Due to this, It was 

hypothesized that the Murray cod would prey on marron more than the polytrophic 

silver perch. Murray cod were also chosen for this investigation as they are currently 

under review for translocation into and within Western Australia (FWA 2003b). 

 

As foraging efficiency is a function of prey accessibility, vulnerability and abundance of 

alternative food sources (Mitchell and Hazlett 1996), shelter and light intensity were 

manipulated in this trial to examine their effects on predator-prey dynamics between 

marron and Murray cod. Turbidity, being negatively correlated with light intensity, has a 

profound influence on predator-prey interaction owing to its impact on reactive 

distances or maximum detection distance (Miner and Stein 1996). Similarly, shelter 

complexity affects capture and search time (Quammen 1984, Clarke et al. 2002, 

Gazdewich and Chivers 2002, Naranjo-Paramo et al. 2004), and therefore contributes 

energy cost to predators.  

 
 

 

The null hypotheses for T6:1 were: 

 

H0 :   Marron survival is not influenced by the presence of Murray cod                     6.1 
 

H0:   Shelter will have no effect of marron survival                                                   6.2 
 

H0 :   Light intensity will have no effect on marron survival                                        6.3 

 

 

If survival of marron in the presence of Murray cod is shown to be influenced by factors 

including shelter and light intensity, this will demonstrate whether manipulation of 

system variables in ponds has the potential to increase polyculture production of 

marron in the presence of predatory finfish. 
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6.1.1          Aim 
 

This trial aimed to investigate the nature and intensity of interspecific interactions 

between marron and a crayfish predator, Murray cod. 

 

 

6.1.2          Objectives 
 

1. To compare predation success of Murray cod on juvenile marron with or 

without shelter, and in low and natural light intensity. 

 

2. To examine natural predator avoidance strategies displayed by marron in 

response to the novel finfish predator under varied shelter and light 

conditions. 

 

3.      To determine if marron are capable of learning avoidance responses to 

the threat from Murray cod. 
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6.1.3          Materials and methods 
 

6.1.3.1       Site and culture system 
 

This experiment (T6:1) was conducted at the South-West Aquaculture and Environment 

Centre (SWAEC), located in Collie, Western Australia (see 3.1.1). Sixteen 250L glass 

aquaria (50 x 50 x 100 cm) were used for this experiment (Plate 6.1).   
 

 

 

 

 

 

 

 
 

 

 

 

 

Plate 6.1    250L glass aquaria used in T6:1 
 

 

6.1.3.2       Experimental animals 
 

Juvenile marron (4.24±0.7g) were selected for this trial as this is the common stocking 

size in earthen ponds in the marron monoculture industry (Maguire 2004), and would be 

a life stage vulnerable to predation due to small size (relative to gape of Murray cod). 

Juvenile marron were removed from monoculture brood ponds in Pemberton (34ºS, 

116ºE) in April 2004 and transferred to holding tanks at SWAEC. Following a two-day 

acclimatisation in holding tanks marron were transferred to experimental systems. 

Twelve Murray cod  (1090±182g) (Plate 6.2) were sourced from a commercial grow-out 

facility at Ludlow(*), Western Australia (33ºS, 116ºE) and acclimatised in 5 tonne 

holding tanks at SWAEC for three weeks prior to commencement of the trial. Gapes of 

cod were >40 mm (cv. girth of juvenile marron at maximum of 15 mm). Murray cod were 

introduced to systems 2 days after introduction of crayfish.  

 

*Note: cod were raised in tanks on pelleted diets.  
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Plate 6.2        Murray cod (986g) next to marron (2.3g) in an experimental aquarium, showing size 

differential 
 

 
6.1.3.3       Experimental design 
 

Twenty marron (1:1 sex ratio) and one Murray cod were placed into each of the sixteen 

experimental aquaria. A control (no fish) and three treatments were tested (Table 6.1):  
 

Table 6.1    Treatment groups used to compare marron-Murray cod interactions 

 

The control and treatments 1 and 2 were under ambient light conditions (12 hours daylight). 

Each group was represented in four replicate tanks (16 total). Synthetic loose-mesh marron 

hide material (Custom Networks Pty Ltd) was provided in treatments requiring shelter. 

Mesh hides offered increased complexity for juvenile marron compared with PVC pipe 

shelters. Shelter material covered approximately one quarter of each aquarium (Plate 6.3). 

In the 0% light intensity treatment all light was blocked using a heavy grade black plastic 

sheet. A plastic viewing window was made in one end, where night vision goggles (Night 

Optics D-2MV) were used to examine behaviour and survival (Plate 6.3).  
 

 shelter Light intensity marron Murray cod 

Treatment 1 no ambient yes yes 

Treatment 2 yes ambient yes yes 

Treatment 3 yes 0% yes yes 

Control yes ambient yes no 
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Plate 6.3     Left: loose meshing used as complex marron hide. Right: Viewing window in 0% 

                    light intensity treatment 

 

Survival and shelter use were recorded twice daily (0900h and 1700h) for 14 days. 

Shelter use was recorded if marron were wholly within, or less than 50 mm from, 

shelter. Data were recorded for crayfish gender, which was determined by permanent 

silver marks placed on both sexes prior to commencement of trial (both sexes were 

marked to ensure no gender bias). Animals were not fed for three days prior to or 

during trial. Feed was not provided during trial in an effort to observe differences as 

state of hunger becomes more critical for both predator and prey.  

 

 

6.1.3.4       Statistical analysis 
 

Survival between blocks was compared with one-way ANOVA, with post hoc testing 

consisting of Scheffe’s F-test (reported), Bonferroni and Tukey. Survival was 

compared between treatment groups used ANOVA with Tamhane’s T2 post hoc 

(Selvanathan et al. 2000). Shelter occupation between treatments and blocks was 

compared using univariate analysis under Scheffe, Bonferroni and Tukey (reported) 

post hoc tests (Selvanathan et al. 2000). Relationships between  shelter and survival 

for treatments in each time period were assessed using one way ANOVA using 

Tamhane’s T2 and Dunnette’s T3 (reported). A two independent samples test with 

Mann Whitney U-Test was used to compare survival with time of day (mortality 

recorded at night and during day). All percentage data were subject to arcsine 

transformation prior to analysis (Zar 1984). Water quality was compared between 

ponds at each sample point (2 months) by one way ANOVA using Tamane’s T2 

(Selvanathan et al. 2000). 
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6.1.3.5       Water quality 
 

All systems were maintained with two external biological-chemical filters and two air-

stones for each aquarium. Water quality measurements - total ammonia (ppm), salinity 

(ppt), conductivity (mS), pH, nitrite (ppm), nitrate (ppm) and temperature (°C) were 

recorded daily. All levels remained within optimum ranges for Murray cod (NSW 

Fisheries 2005) and marron (FWA 1999) and no significant variation between systems, 

blocks or treatments was recorded (Appendix A). Water temperature across all 

systems was 18.2±0.1°C. 

 

 

6.1.4           Results 
 

6.1.4.1       Predation 
 

Murray cod predated heavily on marron in all treatments (Figure 6.1). The highest 

mortality was observed when shelter was not provided, with no crayfish remaining after 

12 days. Mortality when shelter was provided in 0% light intensity was also high, 85% 

after 12 days, followed by shelter (T3) which had 25-45% mortalities in three aquaria 

and 80% in one. Two or three mortalities were recorded in each of the four control 

aquariums, attributed to moulting and subsequent cannibalism.  

 

Figure 6.1    Survival of marron (± SE) over 14 days in all treatments. 
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Marron mortality was significantly higher during the night (P<0.01) in all treatments, 

with only 15 of the 195 total mortalities recorded observed during daylight hours. Of 

the 15 day-time mortalities, over half were recorded in the 0% light intensity group 

(Table 6.2). No gender bias occurred for crayfish mortalities (P>0.1). 

 

 

Table 6.2     Total marron mortalities recorded in each treatment during the day, and night  

 

 

 

 

 

 

 

 

 

 

Predation rates between treatments varied over time (Figure 6.1). Predation was 

strongest until day 4 in the 0% light intensity treatment, compared to control (P<0.01), 

no shelter (P=0.014) and shelter (P<0.01), respectively. However, overall mortality 

was greatest in T2, containing no shelter, being significantly different to the control 

and sheltered groups after day 5 (P<0.01) and compared to the 0% light treatment 

after day 9 (P<0.05). Predation levels in the sheltered treatment was significantly less 

than other treatments following day 5, and only greater than the control at day 14 and 

day 15 (P<0.05).  

 
 
 
6.1.4.2       Shelter occupation and behavioural observations 
 

Shelter usage (Figure 6.2) in the four aquariums comprising the control group was 

approximately 80% over the first 8 days, and gradually declined thereafter 

(approximately 40% at day 14). Shelter use was relatively low in treatments containing 

fish until after the first predation events were recorded on day 4. On days 1 to 3 

marron appeared unconcerned about the presence of the predator, with individuals 

Treatment group Marron mortalities during 
day 

Marron mortalities during 
night 

Control 1 8 

Shelter 4 33 

Shelter + 0% light intensity 8 60 

No Shelter 2 78 

Total Mortalities 15 180 
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distributed evenly across the tank bottom (Plate 6.4). On occasions when cod 

approached marron (within 20 mm) the crayfish displayed strong defensive stances 

(Plate 6.4). There was almost 100% shelter use after 2-3 days in 0% light intensity 

(T3), and after 8 days in the shelter treatment (T2). Although no shelter was provided 

in T1, marron displayed avoidance behaviour after 4-5 days (Plate 6.4). In all 

treatments, shelter use decreased in the last 2-3 days of the trial. Note: data 

demonstrates an increased shelter usage, rather than increase percentage usage due 

to predation on individuals outside of shelter. In T4, the numbers of marron in shelter 

increased from 7.5±0.7 to 17.5±0.3 by day 3 (100% of remaining marron), and in T3, 

numbers of marron in shelter increased from 6.0±1.2 to 16.25±1.2 by day 6 (94% of 

remaining marron). 

 

Figure 6.2   Shelter occupation by marron in treatment groups. No shelter was provided in T2.

           

Shelter occupation was higher in the control group in the first two days compared to 

the 0% light intensity treatment (P<0.01), and for the first five days compared to 

marron in the sheltered treatments (P<0.01).  Shelter use in the control was lower 

than other treatments following these periods (P<0.05). Comparison between 

treatments showed significantly more sheltering in the 0% light intensity group 

between day 2 and day 6 (P<0.01), although similar levels among all groups 

thereafter (P>0.1). 
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Plate 6.4   Top: marron disregard presence of cod. Bottom left: defensive behaviour displayed 

by marron following approach by cod. Bottom Right: remaining individuals 

displaying avoidance, these were the final three individuals remaining in the tank.  
 

 

6.1.5          Discussion  
 

In previous chapters, marron have not displayed avoidance tactics however their 

ability to detect both visual and chemical cues pertaining to fish, was demonstrated.  

 

6.1.5.1       Predation  
 

Although Murray cod were shown to successfully predate on marron in all treatments 

their effectiveness was reduced by both shelter and light. The role of shelter in 

reducing mortality is consistent with findings by Jones and Ruscoe (2000), where 

mortality rates of redclaw (Cherax quadricarinatus) were high when insufficient 
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amounts of shelter were provided in ponds containing silver perch. As 83% of marron 

were consumed in the 0% light intensity treatment, compared to natural light where over 

50% of marron remained at the trial completion, there appears to be an advantage to 

the predator where visual detection is reduced. This is in contrast to the results from a 

number of studies, where prey have been shown to gain an ecological advantage at 

night as detection distances of predators are reduced (Vinyard and O’Brien, 1976, 

Confer et al. 1978, Gregory and Northcote 1993, Benfield and Minello 1996, Utne, 

1997, Utne-Palm 2004). Closer examination of predation between the ambient and 0% 

light intensity treatments reveal that predation rates are relatively similar, although 

predation was more immediate following introduction of cod to the 0% light intensity 

systems. One argument for this result is that Murray cod are more stressed following 

introduction to full-light aquariums, and therefore less inclined to forage compared to 

Murray cod introduced to the darkened aquaria. With this said, significantly more 

marron were predated upon during the night in all treatments. As marron are generally 

more active at night, this may result in increased frequency of contact with the Murray 

cod. If the period of heightened nocturnal activity was prolonged by being held in 0% 

light intensity, this may explain greater mortality. 

 

One factor that may have affected predation on marron was the use of pellet-reared 

Murray cod. It is unsure what effects Murray cod reared on crayfish as a primary food 

source would have on predation rates. However, in a pilot study carried out following 

this trial where twenty marron and twenty yabbies were introduced to a 250L aquarium 

containing one crayfish-reared cod the following observations were made over 4 h. Cod 

approached marron 51 times, resulting in 47 tail flicks and 3 mortalities. Yabbies were 

approached 22 times, resulting in only 2 tail flicks but 14 mortalities (Storer pers. obs.). 

Yabbies occupied shelter more than marron, which may explain reduced interaction with 

cod. Although this trial requires repeating in a more robust scientific manner, results do 

suggest potentially effective avoidance in marron, even compared to strategies 

employed by the invasive yabby - which evolved in the same river systems as cod.  

 

 

6.1.5.2        Avoidance strategies and learning 
 

The lack of sheltering by marron in the initial stages of this trial and increased shelter 

use of marron following predation of conspecifics by Murray cod demonstrates an initial 
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naivety by marron followed by rapid learning of avoidance. The avoidance strategies 

appeared relatively effective where refuge was adequate, with predation rates 

reducing markedly as trials progressed. As suggested in previous chapters, the lack of 

avoidance to potential risks by marron may be attributed to reliance of tail-flipping. 

The use of tail-flipping was not observed in this trial, although this is not unusual as 

predation events were rarely observed. The effectiveness of the tail-flip in the confined 

space of aquarium may be limited, as tail-flips are short bursts of speed generally 

used to rapidly leave danger areas. This may explain high mortalities of marron 

recorded where no shelter was provided, as tail-flips would be most effective if used to 

quickly retreat into close refuge. 

 
 
6.1.5.3       Effect of starvation 
 

One of the most common trade-offs animals experience is between foraging activities 

and the risk of predation (Werner and Anholt 1993, Skalski and Gilliam 2002). In most 

species, foraging activities increase the risk of predation (Wisenden et al. 1999), so 

choices regarding the levels of foraging activities must be made utilising cues about 

the risk of predation. One would predict greater risk taking as food motivation 

increases.  Marron and Murray cod were not fed throughout trial duration, and all 

treatments showed reduced shelter use in the last few days of this trial. This may 

reflect increased foraging due to starvation. Shelter use by marron in control tanks 

was greatly reduced compared to treatment groups, dropping to less than 50% use 

after 14 days, compared to 80% in treatment tanks. The increased activity outside of 

refuge under controlled conditions may reflect active searching for food, which was 

inhibited by presence of Murray cod.   

 

In contrast to these findings, Anholt et al. (2000) measured the activity levels of 

anuran tadpoles under combinations of levels of food availability and predation risk 

cues. They found the same relative magnitude of predation cue effects at all food 

levels, indicating no shifts in the nature of the interaction of the two inputs.  
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6.1.6           Concluding remarks 
 

Although some marron remained after 14 days where shelter was provided, 

extrapolation of results (Figure 6.1) suggests that all marron would have eventually 

been consumed, especially as requirement to obtain food increased. In the context of 

field-based polyculture systems, the free-range cohabitation of Murray cod and marron 

appears impractical. Even if predation could be prevented under free-range conditions 

(e.g. cage culture techniques for Murray cod), the general stress and requirement of 

marron to shelter would greatly affect growth, survival and reproduction. One factor that 

may have influenced survival in this experiment was starvation. However, with naturally 

varying levels of starvation existing in most systems, and the need for marron to 

venture out of shelters to feed, this was not believed to be a major factor influencing 

extrapolation of results to polyculture. 

 

Many aquatic animals have been translocated into Western Australia over the last 

century to improve recreational fishing (Allen 2002, FWA 2002b), control unwanted 

pests (Allen 2002), and develop aquaculture industries (FWA 1998, FWA 2002b). 

Adverse impacts of these translocations have included reduction in the abundance of 

some native species, threatened genetic integrity, and the introduction of pathogens 

(FWA 2003b). Murray cod, native to the Murray-Darling Basin (South East Australia), 

have already been approved for use in recirculating aquaculture systems in Western 

Australia (FWA 2003b). The potential for duoculture of Murray cod with the native 

marron is unknown, and the effects of accidental release of Murray Cod into local 

waterways unquantified. However, Murray cod are an aggressive ambush predator and 

are known to consume freshwater crayfish (Allen et al. 2002). In the event of accidental 

release of Murray cod, strong predation of marron is certain based on results in this 

trial. Further, stimuli from potential crayfish predators invoke predator-avoidance 

responses, potentially reducing foraging, increasing shelter competition and affecting 

other niche requirements, which has obvious ramification fro polyculture production.  

 

The most important finding to come from this investigation was the learning capabilities 

of marron, evident in sheltering behaviour, avoidance of high risk areas and reduce 

mortality in sheltered treatments. Although this may not produce benefits where marron 

and Murray cod are concerned, this may have important ramifications for the 

duoculture of marron and silver perch. For a polytrophic predator of crayfish, such as 
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silver perch, the tendency for them to quickly alter feed choice in conditions of 

increased cost of capturing prey is more plausible than for strictly carnivorous species 

(Sigler et al. 1984).  

 

 

The null hypothesis Ho (6.1) was rejected. Murray cod predated strongly on marron 

in all treatments. 

 

The null hypothesis H0  (6.2) was rejected as predation of marron by Murray cod 

was reduced where shelter was provided. 

 

The null hypothesis H0  (6.3) was rejected, as higher mortality was recorded in the 

low light intensity treatments. This outcome was believed to be associated with 

the increased activity of marron at night, increasing encounter rate with Murray 

cod. As Murray cod are ambush predators they may rely less on visual cues. 

 

 

 

6.1.7          Recommendations 
 

Further study into the duoculture of marron and Murray cod is warranted, focussing 

on the suitability of Murray cod to cage culture.   

 

A strong recommendation of this trial is to examine interspecific interactions between 

marron and silver perch under varied shelter and light intensity conditions. Due to the 

influence of diurnal changes on species interaction dynamics and system conditions, 

it is recommended that these examinations be completed in the field.  
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6.2    Predator-prey interactions between silver perch and marron 
 
 
Although marron displayed a lack of obvious predator avoidance strategies when 

exposed to chemical and visual cues from silver perch in Chapters 4 and 5, the first 

trial in this chapter indicated possible learning under physical threat from Murray cod. 

Whether avoidance tactics evolved through interaction with Murray cod, or existing 

tactics were employed once marron associated Murray cod with predatory risk, is 

unknown. Marron survival in T6:1 demonstrated that the initial tactics employed by 

marron were not effective in preventing predation, and even following avoidance, 

predation events were still common. However, this result must be taken in context of 

environmental conditions. Marron were exposed to a large predator in a confined area 

and although use of habitat complexity significantly increased survival, starvation may 

have made remaining in shelter difficult.  

 

To determine whether the avoidance tactics demonstrated by marron in response to a 

fish predator would equate to reduced predation in polyculture ponds, survival and 

growth of marron was observed in free-range pond systems with silver perch. Silver 

perch were chosen for this study, not only as the prime duoculture candidate with 

marron, but also as they are an omnivorous species (Grant 1987, Barlow et al. 1986, 

Whisson 1997) and therefore, more likely to alter preference for freshwater crayfish if 

costs associated with capture increase (Barlow et al. 1986). To examine this, crayfish 

habitat complexity was manipulated, under natural conditions of light and turbidity. 

Feed was supplied to satiation for both marron and silver perch, providing an alternate 

food source for silver perch and reducing time required by crayfish for locating feed.  

 

In this trial (T6:2), berried marron (approx. 110 g) were introduced into ponds in 

November, where hatchling-juvenile marron would be released from tail shortly after. 

One female marron of this size is reported to release between 150 and 250 hatchlings 

(FWA 1999). Survival of marron between hatchling and juvenile stages in monoculture 

is highly variable (FWA 1999), although in optimal conditions Whisson (1997) reported 

64 surviving juveniles per female.  
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6.2.1          Aim 
 

The aim of this trial was to examine the effectiveness of avoidance tactics of marron to 

silver perch in earthen ponds under varying shelter conditions. 

 

6.2.2          Objectives 
 

1.    To compare survival of 0+ marron and adult females in the presence of silver 

perch under no shelter and under high density shelter conditions 

 

2.    To examine growth rates of 0+ marron in the presence of silver perch under no 

shelter and under high density shelter conditions 

 

3.    To compare and contrast growth and survival of free-range silver perch 

between sheltered and un-sheltered ponds, and based on marron production. 

 
 

The null hypotheses for T6:2 were: 

 

Ho :   Survival of both hatchling-juvenile marron and brood females will not be effected 

by silver perch                                                                                                 6.4 
 

H0 :   Shelter will not influence survival of marron in the presence of silver perch     6.5 
 

H0 :   Shelter will not effect growth rates of marron and silver perch                          6.6 
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6.2.3           Materials and methods 
 

 
6.2.3.1        Culture system and site 
 

Trial T6:2 was conducted at the Collie Aquafarm field research site (Section 3.1.2.2). 

Ponds were emptied and left to dry for two weeks prior to the start of this trial, at which 

time 1 tonne of lime rock was added to each pond to increase alkalinity and calcium 

before being filled.  

 

 
6.2.3.2        Experimental design 
 

One hundred berried marron (110g) and 150 silver perch (270.9 ± 61.1g) were 

introduced to each of six experimental ponds (0.072 ha). As growth of berried marron 

was not a core objective of this study, initial weights were not recorded to reduce 

handling stress and time out of water for berried marron. To allow some degree of 

reference an average marron weight of 110g was assigned to each animal, based on 

results from sample population of 30 individuals not used in the study. Two treatments 

were examined in three replicate ponds; 1. 140 loose-mesh shelters (Section 3.1.2.2) 

per pond (approx. 1 per 5m2) and, 2. no shelter (Figure 6.3). Following detection of 

juveniles (length 20-30 mm) in shelters, ponds were drained and all stock collected, 

weighed and counted.  

 

Treatments were randomly allocated in three replicated ponds. 
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Figure 6.3    Design and allocation of sheltered and non-sheltered treatments ponds 

 

 

 
6.2.3.3       Experimental animals 
 

Marron and silver perch (Plate 6.5) used for this trial were raised in ponds at the Collie 

Aquafarm. Three weeks prior to the trial, all ponds were drained and stock collected 

and transferred to holding tanks at the South-West Aquaculture and Environment 

Centre (SWAEC) (Section 3.1.1). As female marron were newly berried they were 

transported to and from site in 600L fish transporters to protect eggs. Berried stock 

held at SWAEC were kept at low densities (1/m2) in 5 tonne flat-bottom fibreglass 

tanks. Water quality was kept within optimal ranges and holding systems were left in 

darkness.  

 

Ponds 2, 3 and 6 

150 Silver perch 
100 Berried marron 

Ponds 1, 4 and 5 

Inlet pipe         Drain pipe         Paddlewheel           Shelter 

150 Silver perch 
100 Berried marron 
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Plate 6.5    Experimental animals. Left: berried marron (101g). Right: silver perch (364g) 

 
 

The number of eggs/marron, estimated from a total count of eggs on 10 specimens to 

determine average fecundity, was 119±13. The marron used in this trial were 2 yrs of 

age. 

 
 
 
 
6.2.3.4        Supplemental feed 
 

Silver perch and marron were fed commercial preparations (Appendix C and D, 

respectively) three times per week, between 1600-1800 h. Marron and perch were fed 

at a rate determined by feeding animals in each replicate to satiation once per month 

(Table 6.3). Marron feed rates were determined using feeding trays located around 

each pond, which were 1m square mesh (300 um) feeding platforms (Figure 6.4). 

Platforms were monitored after 8 h and feed rates increased or decreased accordingly.  
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Figure 6.4    Feeding platform used to determine feeding rate for marron in ponds.  

                     Clearance of feed placed on mesh base (shaded area) checked after 8 h.  

 

 

Satiation levels for perch were initially determined 30 min. after feeding using feeding 

platforms installed in each cage (Section 3.1.2.2). However, as turbidity increased 

observation of general feeding behaviour, such as surfacing, was used to determine 

rate, as feeding platforms (0.75m under water surface) were no longer visible. 

Feeding was stopped 4 days prior to harvest to reduce gut contents. 

 

 

Table 6.3     Feeding rates for marron and silver perch 

December and March data was from 26 days and 22 days production, respectively.  

 

Feed supplied (kg)  

Month  Marron 

each pond Pond 1 Pond 2 Pond 3 Pond 4 Pond 5 Pond 6 

December 1.9 10.3 10.1 9.7 10.1 10.3 10.3 

January 1.9 10.6 11.2 10.8 10.85 10.95 11.1 

February 3.3 7.8 7.8 7.5 7.8 7.8 7.3 

March 1.5 7.3 7.3 7.3 7.3 7.3 7.3 

Total 8.6 36 36.4 35.3 36.05 36.35 36 

Silver perch   

1 m 1 m 

Rope 

Rope 

Mesh base 
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6.2.3.5       Trial duration 
 

Marron were introduced on 29 November 2004 and harvested on 26 March 2005. 

Silver perch were introduced three days after marron to allow berried females to 

acclimatise to conditions and to locate and inhabit shelters where provided, giving a 

trial duration of 117 days. 

 

 

6.2.3.6       Statistical analysis 
 

Silver perch and marron data were analysed for differences in weight and length using 

a one-factor ANOVA and Scheffe’s F-test (reported), along with Bonferroni and Tukey, 

to rate significant difference between treatment means (Selvanathan et al. 2000). 

Comparison between treatments for marron and perch weight was compared using T-

tests (Selvanathan et al. 2000). Independent samples t-tests were utilised in 

comparing length-weight ratios between treatments for both marron and silver perch, 

and Binomial Tests examined differences in survival of marron and perch, and 

number of juveniles, between treatments. Water quality treatment means were 

compared using a one-factor ANOVA and Scheffeis F-test (Selvanathan et al. 2000). 

 

 

6.2.3.7       Water quality 
 

Water quality was monitored twice weekly, providing pH, dissolved oxygen, salinity, 

conductivity, and temperature data for each aquaculture pond (Appendix A). All 

parameters were within optimal ranges for both test species (Morrissy 1994, Rowland 

1995). 
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6.2.4  Results 
 
6.2.4.1       Female (adult) marron 
 

Survival, average weight and growth over the 117 day trial period (Figure 6.5) showed 

a number of significant variations between treatments. Survival of adult female marron 

was low across all ponds, however significantly improved in the sheltered treatments, 

compared to non-sheltered (P<0.01) (Figure 6.5). Average weight was significantly 

greater in the non-sheltered treatment ponds (P<0.01) (Figure 6.5),  

 
 

Figure 6.5      Avg. survival (%) and weight (g) (±SE) of adult female marron over three 

replicate ponds in the sheltered and non-sheltered treatments, over 117 days. 
Significant differences were reported between treatments where different superscripts are provided. 
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The length-weight ratio of marron was significantly higher in animals harvested from 

non-sheltered ponds (P=0.013) (Figure 6.6), which equates to marron in non-sheltered 

ponds being heavier than those in sheltered treatment ponds, at equal lengths. 

 

Figure 6.6    length-weight ratios of marron in sheltered and non-sheltered treatments.  
Treatment means are significantly different (P<0.05). 

 

Marron harvested from the six ponds appeared to be in good condition, with <3% 

missing claws or legs, and all with high vigour (active, not sluggish). A large 

percentage of marron (>80%) were covered with algae (20% had moulted) . 

 

 
6.2.4.2       Juvenile marron 
 

The numbers of juveniles collected in the three replicate ponds in each treatment were 

significantly greater in the sheltered systems (P<0.01) (Figure 6.7), with 80, 175 and 

80 marron collected in the three sheltered ponds, and 15, 5 and 11 in non-sheltered 

ponds. Based on mortality levels of brood females, this data equates to approximately 

2.13 juveniles per surviving female in the sheltered treatment and 0.94 juveniles per 

surviving female in the non-sheltered treatment. Weight of juveniles was significantly 

higher in the non-sheltered systems at 2.3±1.24g (P<0.05), compared with juveniles 

from sheltered ponds, 1.4±0.2g (Figure 6.7). The overall number of juveniles recovered 

from all ponds was greatly reduced from expected levels from monoculture operations 
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which, based on results from Whisson (1997), could have been in excess of 6400 

individuals/pond, or accounting for survival of brood females; 3200 individuals/

sheltered pond and 700/non-sheltered pond.  

 

Figure 6.7   Number and weight (g) of juveniles/pond in sheltered and non-sheltered ponds. 
Significant differences were reported between treatments where different superscripts are provided. 

 

Juvenile marron were all harvested in good condition, as with adults, appendages 

were generally intact and vigour was high. No algal growth was apparent on juveniles. 

 

 
 
6.2.4.3        Silver perch production 
 

Production of silver perch in sheltered ponds was significantly greater in average 

weight (g) (P=0.013) and growth (g) (P=0.012), compared to non-sheltered ponds. 

Silver perch in sheltered ponds reached an average weight of 429.5±9.58g compared 

to 396.05±9.18g in non-sheltered systems (Figure 6.8). Survival of silver perch was 

high in all ponds, 97±4% (SD), with no significant variation between ponds or 

treatment groups (P>0.1). 
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Figure 6.8   Survival (%), weight (g) and growth (g) of silver perch over three replicate 

ponds in the sheltered and non-sheltered treatments, over 117 days. 
Significant differences were reported between treatments where different superscripts are provided. 
 

The length-weight relationships between silver perch across treatment conditions 

showed no significant difference (P=0.147) (Figure 6.9), however population variations 

(SE) were significantly increased in non-sheltered treatments (P<0.05). 

 

Figure 6.9   Length-weight ratios of silver perch in each treatment group.  
Significant differences were reported between treatments where different superscripts are provided. 
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6.2.4.4        Additional observations 
 

In previous trials conducted at the Collie Aquafarm, where marron were held in 

monoculture, a large number of dragonfly nymphs and tadpoles were evident during 

spring-summer. These species are commonly associated with negative effects on 

marron production, where tadpoles consume marron feed (Parker 1996), and perhaps 

target juvenile marron, and dragonfly nymphs are a confirmed predator of hatchling 

crayfish (Bird 1995, Jones 1995, Herbaholtz et al. 2004). In this trial, no observation of 

either species was made. 

 

The presence of what appeared to be a single cormorant (Phalacrocorax sp) was 

noted intermittently throughout the trial duration. The cormorant was almost always 

observed on or around Ponds 3 and 6, both non-sheltered treatments. In order to 

determine an appropriate harvest time, a small number of pond shelters were checked 

weekly to observe numbers and sizes of marron. Almost no hatchlings and few 

juveniles were recorded in any of the checks made. Finally, filamentous green algae 

growth was apparent on shelters (Ponds 1, 4 and 5). 

 

 

 

 

 

6.2.5  Discussion 
 

6.2.5.1        Silver perch production 
 

Silver perch production (growth and survival) was similar to production data from 

previous trials based in earthen ponds. In this study silver perch, stocked at 2,083/ha 

in 0.072 ha ponds, gained on average between 125 and 158g (depending on 

treatment) over the 3-4 month trial period (Figure 6.8). In a study conducted by 

Rowland (1994), silver perch held in monoculture in 0.4 ha ponds (14,500/ha), 

increased 202g over a 7 month duration (September-March), grown from juveniles. 

Whisson (2001) reported average weight gains of 251g for silver perch cultured free-

range in 0.1 ha marron ponds (1,800/ha), between November-July. Silver perch grown 

free-range with redclaw in 0.1 ha ponds between October and April displayed mean 
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weights of around 340g, being introduced at 18g (Jones and Ruscoe 1996), although 

survival was low (14.3%). Survival of silver perch was high in all ponds (94-100%), 

which is consistent with other studies where bird predation was not a major 

contributing factor (Rowland et al. 1994, Rowland 1995b, Jones and Ruscoe 1996). 

Whisson (1997) reported an average silver perch survival of 96% in tanks, and in 

separate study where perch were held free-range in three earthen ponds (0.1 ha) 

perch survival was 92.4±3% (Whisson 2000). The comparable growth and survival to 

silver perch monocultures (i.e. Jones and Ruscoe 1996) demonstrates that marron 

provide little to no negative effects from interaction. Similar results have been 

demonstrated with other species combination involving fish and crayfish. Red swamp 

crayfish (Procambrus clarkii) were not shown to influence survival of carp or tilapia 

fingerlings (Xinya 1995), and is consistent with previous studies examining interaction 

between marron and silver perch in tanks (Whisson 1997). In other situations, crayfish 

have had deleterious affects on cohabiting fish species, including spawning and 

feeding interference of tilapia by redclaw (Cherax quadricarinatus), and overall low 

production of fingerling catfish (Ictalurus punctatus) attributed to the presence of 

freshwater prawns (Macrobrachium rosenbergii) (Heinen et al. 1989). 

 

Although survival of silver perch was high in all ponds, the single mortality recorded in 

the sheltered ponds compared to 27 perch unaccounted for in the non-sheltered 

ponds may be attributed to avian predation, as no carcases were recovered. 

 

As marron survival was reduced significantly in non-sheltered treatments compared to 

sheltered, it could be assumed that perch would display increased growth in these 

ponds. However, silver perch appeared to gain an advantage from culture in sheltered 

ponds, with average growth significantly reduced where no shelter was provided 

(Figure 6.8). The use of shelter within ponds may have contributed directly to the 

increased growth of perch in a number of ways. Silver perch being omnivorous may 

have gained increased feed and nutrition from algae observed growing on shelters. 

The shelter may have also reduced general stress levels, or stress associated with 

potential avian predation.  
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6.2.5.2       Marron production 
 

A number of key differences were found in adult and juvenile marron production between 

the sheltered and non-sheltered treatment ponds. The most remarkable findings related 

to low overall survival of marron (adult and juvenile) compared to monoculture 

expectations, and increased mortality in ponds with no shelter. 
 

The total number of juveniles recovered from all ponds were greatly reduced compared to 

monoculture broodstock-pond expectations. Female marron commonly produce between 

150 and 250 prejuveniles (FWA 1999), with Whisson (1997) reporting survival rates of 

around 64 juveniles/surviving female. This data would equate to a potential 6400 juveniles 

in each experimental pond in this trial (based on 100 broodstock). An overriding factor 

was apparent, and several mechanisms may explain the low survival experienced in all 

ponds. These reasons include:  
 

• Heavy silver perch predation on both juveniles and broodstock. Stein (1997) 

demonstrated that certain life-stages are more attractive than others to fish 

predators. With the loss of broodstock in all ponds, juveniles numbers could have 

been greatly influenced if predation occurred prior to release of juveniles (eggs-

hatchlings), or similarly predation pressure on broodstock may have affected 

husbandry, i.e. reduced fanning or early release of eggs/pre-juveniles; 

• Age of broodstock - broodstock in this trial were in their second year, with ideal 

brood-age around 3 yrs (FWA 1999);  

• Handling of broodstock - the experiment required handling of fecund females. 

Handling stress can also lead to premature release of eggs and pre-juveniles from 

tail (Huner and Lindqvist 1991, Kuris 1991); 

• High temperatures. Temperature may have been a contributing factor, as previously 

suggested by Whisson (2001). Marron are stressed over 24°C (Morrissy 1990) and 

in Queensland in the late 1990’s environmental condition (particularly high 

temperatures) were attributed to collapse of the marron farming industry (Morrissy 

1992a, Jones and Ruscoe 1996). In this trial, 42 days were recorded where 

temperatures exceeded 24°C, and three days over 26°C. 

 

Low survival of juveniles has been reported in a number of freshwater crayfish species. 

Austin (1998) and Yeh and Rouse (1994) reported substantial losses in redclaw ponds, 



Chapter six: crayfish-finfish interactions within a communal system   

 

192 

up to 50%; Corey (1991) documented losses in the North American species 

Orconectes propinquus; and Morrissy (1970) stated high variability in the fecundity of 

marron. The factors affecting reproduction in decapods has been attributed to a 

number of factors, including physical dislodgement by abrasion, maternal activities and 

handling; infertility and interrupted development by genetic or environmental factors; 

and, infections, parasitism and predation (Huner and Lindqvist 1991, Kuris 1991). 

 

It is difficult to draw conclusions from previous research into growth and survival of 

juvenile marron, in either polyculture or monoculture as most studies involved higher 

densities of marron stocked as juveniles. This appears to be the first study looking at 

juvenile production as a function of silver perch interaction in broodstock ponds. 

Whisson (1997) did report numbers and weight of juveniles retrieved from grow-out 

ponds, where 64 juveniles were recovered per surviving female, however number of 

berried females and fecundity could not be determined in this study. Studies examining 

survival of juvenile marron in monoculture operations have described a period of high 

mortality occurring in early grow-out of 0+ marron (Villarreal 1988, Bennison and 

Morrissy 1991, Morrissy et al. 1995a/b) and as marron mature, survival stabilises 

(Morrissy 1992b). This increased risk period for mortality of juvenile marron would 

have undoubtedly contributed to findings in this trial, compounded by polyculture 

interactions. Silver perch interaction has previously been attributed to reduced survival 

of 0+ marron (Whisson 1997). Therefore, if free range polyculture is carried out, the 

practice of stocking late 0+ marron should lead to higher overall survival. 

 

Although the reasons for low survival of juvenile marron cannot be confirmed, 

observation of pond hides revealed few juveniles in the weeks and months preceding 

harvest. Due to this, it is assumed that marron were targeted at either broodstock or 

hatchlings stages, prior to development into juveniles. The ability of silver perch to 

predate on adult marron, which exceed gape size of the silver perch, has previously 

been demonstrated (Whisson 1997). In situations of low turbidity, silver perch have 

been shown to predate both on juvenile marron, and on larger marron - using their 

gregarious, schooling behaviour to attack large post moult individuals.  

 

The survival of marron, both adult and juvenile, did show a significant improvement 

where shelter was provided (Figure 6.5 and 6.7). In sheltered ponds, survival of adult 

females averaged 49.7 individuals/pond and returned an average of 105.7 juveniles, 
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whereas ponds without shelter averaged only 11 adults and 10.3 juveniles/pond. In 

many studies, the addition of submerged refuge in increased the opportunity for prey 

escape by restricting predator movements and obstructing sight (Gillinsky 1984, Diehl 

1988), and in reducing crayfish activity and intraspecific interactions, lowering the risk of 

predator encounters (Westin and Gydemo 1988, Geddes et al. 1993).  

 

These correlations between increased broodstock survival with juvenile survival 

suggest that the addition of shelter offered more protection of broodstock, which 

equated to increased number of juveniles. This supports the previous assumption that 

low overall survival was associated with predation of adult marron. In addition, as the 

number of juveniles per surviving adult was approximately 2.13 in sheltered ponds, 

compared to 0.94 in non-sheltered ponds, this also demonstrated that survivability of 

juveniles is increased once released from adult. 

 

Although the addition of shelter resulted in increased survival of adult and juvenile 

marron in ponds, decreased average weight of marron was also recorded (Figure 6.5 

and Figure 6.7), which was significant for adult females (P<0.01). The weight 

differences in marron grown with or without shelter may be due to a combination of a 

number of contributing factors. These include: 

 

• Growth-density relationships: less competition in non-sheltered ponds where 

survival was reduced resulted in increase food availability, and reduced stress 

from less intraspecific competition. However, as feeding rates and shelter were 

relatively high for the final harvest numbers this is unlikely; 

• Size selectivity of predators: silver perch may have targeted smaller individuals, 

and due to the increases mortality in non-sheltered ponds more smaller marron 

were removed - increasing average weight.  

• Increased sheltering reduced foraging time. In T6:1, following identification of risk 

marron remained in shelter. In T6:2, this would equate to reduced foraging in 

ponds with shelter, however in the non-sheltered ponds marron may have foraged 

more resulting in increased growth, as sheltering was not an option. 

 

The length to weight ratios of adult marron were significantly increased in non-sheltered 

ponds, which relates to increase weight per length over individuals in sheltered 

systems. One explanation may be reduced moulting in marron where shelter was not 

provided. During the inter-moult stage of freshwater crayfish, weight increases without 
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discernable change in length. Marron in the non-sheltered treatments may have 

resisted moulting to reduce vulnerability to predation. During moulting, and 

immediately following, marron are highly vulnerable to predators as their protective 

exoskeleton is soft, their chelae used in defence are soft, their activity is reduced, and 

the nutritional value to predator is said to increase markedly (Stein and Magnusson 

1976, Dehli 1981, Blake and Hart 1993b). However, if marron were moulting more 

frequently in sheltered treatments, then overall weight of marron would be expected to 

be greater than in non-sheltered systems, which was not found. 

 

 

 

 

 

 

 

 

 

____________________________________________________________________ 

The null hypothesis Ho (6.4) was rejected. Mortality of both juvenile and brood 

marron was high in all treatments. 

 

The null hypothesis H0  (6.5) was rejected as survival of brood and juvenile marron 

was increased where shelter was provided.  Being omnivorous, it is assumed 

silver perch would be more inclined to choose alternate feed if marron 

demonstrated avoidance that would increase cost of capture to perch, in 

keeping with foraging theory.  

 

The null hypothesis H0  (6.6) was rejected as growth of marron was not increased 

where shelter is provided. Whether this was due to reduced foraging as marron 

spent more time in shelter, or whether this was a function of prey size selectivity 

by silver perch, is uncertain. Silver perch displayed growth advantages when 

shelter was provided. 
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6.2.5.3        Additional remarks 
 

The presence of dragonfly nymphs and tadpoles were not observed in ponds in this 

trial, however in other monoculture investigations carried out in the same systems, 

large populations of both species were found (T7:1 and T7:2). These species have 

deleterious affects on marron production, due to predation on hatchlings-juvenile 

marron by dragonfly nymphs (Bird 1995, Herbaholtz et al. 2004), and competition for 

feed by tadpoles (Parker 1996). It is apparent from results in this trial, that although 

silver perch predate on marron, they also predate on the predators and competitors of 

marron. The introduction of a few silver perch in marron ponds, to target tadpoles and 

dragonfly nymphs, may prove advantageous when compared against some degree of 

predation on marron, especially in marron grow-out ponds - as larger marron would be 

at less risk from silver perch than juveniles. Likewise, if silver perch held in cages have 

similar effects on populations of tadpoles and dragonfly nymphs, this would prevent 

any impact to marron. Further investigation is required. 
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Marron-silver perch polyculture production in ponds 
 

 

This chapter incorporates two field trials, a pilot study (T7:1) 

and a commercial grow-out trial (T7:2) used to gauge the 

impacts of a range of system variables on polyculture 

production of marron and caged silver perch 

 

 
 
 
 
 

 

Chapter seven 
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CHAPTER SEVEN 
 

 

Results from laboratory studies in Chapters 4, 5 and 6 demonstrated a lack of effective 

avoidance strategies displayed by marron, and resulting high predation when held with 

predatory fish (Chapter 6). Following these results, field investigations described in this 

chapter focussed on the culture of caged silver perch in marron ponds. The use of cage 

culture was employed not only to protect marron from predation, but as marron do not 

appear to exhibit avoidance responses to exteroceptive cues from silver perch (Chapter 4 

and 5), it was hypothesised that marron would not suffer from the physiological or 

behavioural stress that is often associated with perceived risk (Schreck et al. 1992, 

Schapker et al. 2002, Woodley and Peterson 2003).  

 

The studies presented in this chapter explore recommendations from a previous study 

with marron and caged silver perch (Whisson 2000): expanding knowledge of growth-

density relationships (stocking size and density of both marron and silver perch), and the 

effects of varied habitat complexity. Examination of cage culture conditions was also a 

key focus of trials in this chapter, following reports of reduced growth of silver perch when 

held in cages (Whisson 2000). 
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7.1   Effects of silver perch density in cages on polyculture production in 
ponds (pilot study) 

 
 

7.1.1          Introduction 
 

Stocking silver perch in cages in marron ponds is an attractive option because 

interspecific interaction is avoided, bird predation is eliminated and management of stock 

is more effective than free range practices (Whisson 2000). However, in studies 

conducted to date, growth of silver perch is clearly reduced when held in cages (Rowland 

1995c, Whisson 1999), with the growth-density relationship requiring further research due 

to its profound impact on system yields and profitability (Whisson 2000).  

 

The first pond trial (T7:1) examined the polyculture of marron and caged silver perch in 

earthen ponds, where the impacts of silver perch density (100/cage and 200/cage) on 

production of marron and silver perch was tested. As previous data has indicated inhibited 

growth of silver perch in cages (Rowland 1995c, Whisson 1999), silver perch stocking size 

was increased from fingerlings (Whisson 2000) to advanced juveniles. This was done to 

determine whether this size of silver perch was amenable to cage culture - with the idea of 

stocking larger perch in an attempt to culture market sized fish in one season. 

 
 

The null hypotheses for T7:1 were: 
 

H0 :   Growth of marron under cohabitation with silver perch will show no variation 

compared to growth in monoculture                                                                         7.1 
 

H0:    No growth-density effects will be observed for either species, based on the 

         densities examined                                                                                                 7.2 
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7.1.2 Aim  
 

The aim of this preliminary pond trial was to evaluate growth, survival and polyculture 

production of marron (Cherax tenuimanus) and juvenile silver perch (Bidyanus 

bidyanus) in earthen ponds, with perch reared in floating cages.  

 

 

7.1.3          Objectives 
 

1. To assess marron growth and survival in an earthen polysystem containing 

caged silver perch. 
 

2. To examine growth of advanced juvenile silver perch (~200g) at two 

densities (100 and 200) in floating grow-out cages within marron ponds. 
 

3. To gather data regarding synergistic effects of caged silver perch on 

marron, and determine any correlation between marron growth rate and 

perch density. 
 

4.      To discuss results in light of communication factors documented in 

previous laboratory trials (T4:1, T5:1, T5:2, T6:1) 
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7.1.4          Experimental design 
 

Research was conducted in six experimental aquaculture ponds at the Collie Aquafarm 

(Section 3.1.2.2). All ponds were equipped with bottom drainage, paddlewheel aeration 

and mesh shelters for crayfish (50 shelters per pond). One floating fish cage (15m x 

1.5m x 0.75m) (Section 3.1.2.2) was placed in the centre of each pond (Plate 7.1). 

 

Plate 7.1    Aquaculture research ponds with paddlewheel and fish cage. 
 

 

Marron and silver perch were sourced from monoculture ponds in Pemberton (34ºS, 

116ºE) and immediately introduced to ponds. Fifty marron (71.5 ± 0.4g) were stocked in 

each pond on 15 March 2002. Silver perch (199.4 ± 0.6g) had previously been 

introduced to cages on 28 December 2001, according to following treatments:  

 

 

 

 

 

 

 
 

Each treatment was replicated in two ponds, allocated using a random block design. 

Silver perch and marron were fed commercial preparations (Appendix C and D) three 

Treatment Marron  
(number/pond) 

Silver perch  
(number/cage) 

1 50 0 

2 50 100 

3 50 200 
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times per week. Silver perch were fed at a rate determined by feeding each treatment 

to satiation once per month, while marron were fed the equivalent of 1.5 % of biomass 

per day in each pond. Thirty silver perch were randomly sampled from each cage bi-

monthly and weighed individually. Marron were harvested on the 13-15 June 2002, 

and weighed individually, representing a grow-out period of 90 days. Silver perch were 

harvested and weighed on 16 July 2002 after 200 days.  

 

Water quality was monitored twice weekly by recording pH, dissolved oxygen, salinity, 

conductivity, and temperature in each aquaculture pond. Treatment means were 

compared using a one-factor ANOVA (water quality data in Appendix A). Temperature 

averaged (±SE) 21.9±1.4°C between December 2001 and April 2002, and 14.8±1.0°C 

between May and July 2002. 

 

 

7.1.5 Statistical analysis 
 

Silver perch and marron data were analysed for differences in survival, initial and final 

weight, increase in biomass, and combined pond yield using a one-factor ANOVA and 

Scheffe’s F-test to rate significant differences between treatment means.  
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7.1.6  Results 
 

Marron reared in polyculture ponds with silver perch demonstrated a significant increase 

in final weight and SGR over the 90-day trial, compared to marron held in monoculture 

(Table 7.1). Marron survival averaged 75.7% in all ponds, with no significant differences 

between treatments (P>0.05) (Table 7.1). Almost all marron mortalities were recovered 

from pond banks, above the water line, with injuries indicative of bird predation. No 

density effect was apparent for silver perch stocked in cages (Table 7.1), with a 41% 

average increase in biomass recorded over the duration of the trial, and no significant 

variations in survival or growth between treatments (P>0.1). Silver perch survival was 

high in all ponds, averaging 97.4% (Table 7.1). 

 
 

Table 7.1  Growth and survival of marron and silver perch reared in polyculture (± SE) 

Values in the same row for same species followed by the same superscript are not significantly different 

(P<0.05). Pond biomass for silver perch is identical to cage biomass 

 

 

The marron - silver perch polyculture regime resulted in significantly higher pond yields 

over marron monoculture ponds (P<0.05), with yields from medium density polyculture 

ponds increasing biomass by an average of 13.8 kg (Figure 7.1).  

 

 
 
 

 Marron, C. tenuimanus 

 0 fish/cage 100 fish/
cage 

200 fish/
cage 

100 fish/ 
cage 

200 fish/ 
cage 

Initial weight (g) 71.6 ± 0.5a 71.2 ± 0.1a 71.8 ± 0.3a 200.1 ± 0.21 198.8 ± 0.61 

Final weight (g) 100.5 ± 4.1a 117.8 ± 1.6b 107.2 ± 1.2ab 286.2 ± 4.31 276.5 ± 24.91 

Survival (%) 82 ± 11.3a 80 ± 0.1a 65 ± 24.1a 98 ± 2.01 96.75 ± 1.81 

Pond biomass (kg/ha) 4.1 ± 0.6a 4.7 ± 0.1a 3.5 ± 1.0a 28.1 ± 0.11 53.6 ± 5.82 

Silver perch, B. bidyanus 

SGR (%/day) 0.39 ± 0.02a 0.58 ± 0.01c 0.46 ± 0.00b 0.18 ± 0.021 0.16 ± 0.031 
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Figure 7.1   Pond yields: marron monoculture versus marron-perch polyculture  
*P<0.05; **P<0.01 

 

No significant differences occurred between ponds for water quality (P<0.05) (Appendix 

A). Temperature during the culture period for silver perch averaged 19.2 ± 3.8°C, with 

108 days over 20°C. Temperature during the culture period for marron averaged 18.0 ± 

3.2°C, with 21 days over 20°C. 

 

  

7.1.7          Discussion 
 

Results from this trial were consistent with several other studies demonstrating 

significantly higher net yields from polyculture ponds compared to monoculture (Perry 

and Tarver 1987, Brummett and Alon 1994, Wahab et al. 1995, Jones and Ruscoe 

1996). Further, evidence of synergism was seen with increased growth of marron when 

cultured in the same system with silver perch, compared to production in monoculture 

ponds (Table 7.1). While this result is only preliminary due to the low replication of 

treatments, it concurs with previous findings by Whisson (1998, 2000) and warrants 

further investigation at commercial densities. 

 

Marron survival was affected by bird predation in some ponds, with evidence of eaten 

carcasses on pond banks, however levels in most ponds (~80%) compare favourably to 
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industry standards (Morrissy 1992b). Silver perch showed high survival in all ponds, 

equal or above documented levels (Rowland 1995b, Rowland et al 1984), and showed 

no sign of predation, almost certainly due to bird netting over the cages. However, the 

presence of avian predators on, or in the air above, cages may have increased stress to 

fish, warranting further investigation.  

 

The use of floating cages in aquaculture ponds offers the farmer several benefits, 

including protection from bird predation, and management efficiencies in terms of 

feeding, grading, harvesting, and inspection (Karlsen 1993, Beveridge 1996, Whisson 

2000). However, the negative effects of higher densities are compounded in cages (e.g. 

flyer/runt flattening of population distribution), with regular grading an important 

requirement of this type of culture (Beveridge 1996). Other studies have stocked 

relatively small silver perch (<20g) in cages, recording decreased growth at higher 

densities in all cases (Whisson 1998, 2000). In the present study, advanced juveniles 

(~200g) were stocked in cages to provide preliminary growth-density data for this size 

class. No density effect was apparent in terms of growth or survival when silver perch 

were stocked at 100 (1.36 kg/m3) or 200 (2.72 kg/m3) per cage, indicating that higher 

densities should be examined for this size class, with a view to single summer grow-out 

periods. However, growth of silver perch throughout all cages (0.16-0.18%/day) was 

lower than reported free-range growth data (1.20±0.02%/day, Whisson 2000), which is 

not unexpected as this trial was predominantly conducted under low water 

temperatures, towards the end of the growth season. Thus, given optimal conditions, 

increased growth may have resulted in density-effects.   

 

 
7.1.8           Limitations and recommendations 
 

As this was a pilot study, stocking densities were kept low, and treatments were 

examined in only two replicate ponds. This was done to provide a research base for 

future work, without jeopardising large numbers of stock. Additional limitations exist as 

the facility used was in its first year of operation. In aquaculture involving benthic 

foragers such as marron, ponds may require a few years of operation before sufficient 

development of benthos is able to supplement the diet of crayfish (Morrissy et al. 

1995b).  Bird netting is recommended to reduce avian predation, however due to the 

expense of netting material, other options should be explored. 
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While the grow-out period for silver perch was 200 days, the timing of stocking and 

harvest only allowed a relatively short growing period, as silver perch require water 

temperatures above 25°C for optimum growth (Rowland 1994c). In this study, average 

pond temperature was 19.2±3.8°C, with only three months recording averages higher 

than 20°C. It is therefore recommended that further research be conducted over a 

complete growing season (October to April).  
 

Improvement of cage conditions, incorporating stress alleviation and encouraging growth 

of natural feed, may increase growth of silver perch and should be examined further, and 

as no growth-density effects were found, increased densities should be examined. 

 
 
7.1.9           Concluding remarks 
 

This trial was conducted using remediated water from an acid mine lake (Section 

3.1.2.2). The trial reported here has, for the first time, demonstrated the potential for 

commercial aquaculture as a beneficial end use option for final mining lakes within the 

Collie Coal Basin. Water quality data indicated that remediation was successful, 

providing a 5 ML aquaculture farm with water that sustained aquatic life and facilitated 

fish and crayfish growth and survival over an extended period. Results from this initial 

pilot study has demonstrated the adequacy of the Collie mine lake water treatment 

system and Aquafarm ponds for use in subsequent investigations. 

 

 As no growth-density effects were apparent, further study should focus on increased 

density of both species. Continued examination of habitat complexity in respect to pond 

management and production potential is also supported, in particular a method of 

removing all shelters efficiently and quickly. Finally, the use of advanced sized silver 

perch to produce market sized stock demonstrated no negative affects on stock, further 

examination should be carried out over the full growth season (Oct-April) to determine 

whether market sized fish can be produced in one growth season. 
 
The null hypothesis Ho  (7.1) was rejected. Marron grown in duoculture with silver 

perch grew significantly more than monocultured marron.  
 

The null hypothesis H0 (7.2) was accepted. No growth-density effects were observed 

for either species at the densities examined. 
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7.2      Effect of increased pond density and habitat complexity on 
polyculture production of marron and caged silver perch  

 
 
Preliminary research conducted in the first trial of this chapter (T7:1) demonstrated 

successful polyculture of marron and silver perch in ameliorated mine lake water at 

relatively low densities. As no negative growth-density relationships were apparent, trial 

T7:2 examined increased densities of both marron and silver perch. Growth-density 

relationships for silver perch were examined through the use of two cages/pond 

(compare one cage/pond in T7:1). Multiple cages were examined to determine if 

production aspects were influenced more by relative density (in cages) or pond density, 

allowing comparison of results between treatments and within systems.   

 

Habitat was included in silver perch cages for the first time, in an effort to improve cage 

conditions. The addition of habitat to cages was to reduce stress to silver perch from 

external disturbance, such as the presence of avian predators, and also to encourage 

growth of periphyton (assemblage of attached aquatic plant and animal organisms on 

submerged substrates), providing a supplemental feed for silver perch.  

 

Growth inhibition of fish in cages has been attributed to reduced access to natural feed 

(Masser 1988), which could explain poor growth of caged silver perch reported in 

previous trials (Whisson 2000). Given the feeding biology of silver perch (Rowland and 

Kearney 1992, Lambert 1998), they would naturally target aquatic insects, detritus and 

crustaceans. The use of periphyton in aquaculture has previously been used with 

success, based on the finding that many herbivorous and omnivorous fish prefer feeding 

on benthic, epilithic or periphytic algae, rather than on small phytoplankton (Scott and 

Crossman 1973, Horn 1989, van Dam et al. 2002). Providing ponds with artificial 

substrates stimulates the growth of attached organisms that are more easily harvested 

by fish (Keshavanath et al. 2004) and several experiments in which artificial substrates 

were added have shown that periphyton can increase the production of fish compared to 

systems without substrates (Pardue 1973, Hem and Avit 1994, Wahab et al. 1999, Azim 

et al. 2001, Keshavanath and Wahab 2001, Keshavanath et al. 2001).  

 

Note: In this trial, for the first time, commercial marron shelters were provided in 

attached lines. The use of single synthetic loose-mesh hides in marron ponds is a 

common practice, however hides must be removed prior to drain harvesting, as marron 

will often remain in hides on the banks, leaving them exposed to air and high 
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temperatures. If hides are left in ponds they can be annoying obstacles to the removal of 

marron. The addition of shelter lines assists in shelter removal prior to drain harvesting 

and are also an effective removal tool for sampling. Shelter harvests, prior to draining 

ponds, can reduce the number of marron forced into mud and sediment, which can have 

deleterious affects on the survival and condition of stock. Vibrio and Aeromonus bacteria 

multiply in gills due to trapped sediment (Morrissy 1995, FWA 1999, Lawrence and 

Morrissy 2000), often resulting in mortality or reduced marketability due to the increased 

onset of tail blisters (Storer 2002, Storer et al 2002b). Although this was not a research 

aim, results will be discussed in respect to management techniques for marron farming. 
 

 

 
 
 
The null hypotheses for T7:2 were: 
 

H0 :  Growth of marron under cohabitation with silver perch will show no variation 

compared to growth in monoculture                                                                      7.3 
 

H0 :  Habitat provided in floating cages will have no influence on growth of silver perch 

                                                                                                                              7.4 
 

H0:   No growth-density effects will be observed for either species, based on the 

densities examined                                                                                               7.5 
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7.2.1          Aim   
 

The aim of this experiment (T7:2) was to further investigate optimal stocking densities 

for polyculture of marron and silver perch in commercial-scale ponds, focussing on the 

effects from cage culture conditions and underlying factors previously described. 

 
 
7.2.2          Objectives 
 

The specific objectives of T7:2 were to: 

 

1. Compare growth, survival, condition, harvest sex ratio and population 

distribution of marron reared with caged silver perch at two densities. 

 

2. Compare growth, survival and condition of silver perch reared in cages at 

100 and 200 fish/cage, contrasting data with pond density. 

 

3. Investigate the effect of cage shelters on the general behaviour, growth, 

survival and condition of silver perch. 

 

4. Evaluate the influence of the fish cage itself on a polyculture system housing 

silver perch in cages. 

 

5.      Discuss implication for the production of market sized silver perch for a one-

year grow-out cycle. 
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7.2.3           Materials and methods 
 
Research was conducted in six experimental aquaculture ponds at the Collie 

Aquafarm (Section 3.1.2.2). All ponds were equipped with bottom drainage, 

paddlewheel aeration and mesh shelters for crayfish (70 shelters/pond, approx. 

1/10m2). Silver perch were housed in two floating fish cages (15m x 1.5m x 0.75m) 

(Section 3.1.1) held in the centre of each pond (Figure 7.2). All ponds were dried and 

cleaned prior to the commencement of the experiment. One tonne of coarse lime rock 

was added to each pond prior to filling to maintain alkalinity and increase calcium 

throughout the trial period. Note: bird netting ponds is recommended, although not 

used in this trial as was outside budget. 

 
 
7.2.3.1        Experimental design 
 

The experiment comprised three treatments, with two replicates allocated to ponds 

using a random block design. Treatments were: 
 

 

         1.   600 free-range marron and 0 silver perch 
 

         2.   600 free-range marron and 100 silver perch in two cages (i.e. 200/pond) 
 

         3.   600 free-range marron and 200 silver perch in two cages (i.e. 400/pond).  
 

 

The densities chosen for this study were below commercial monoculture densities for 

both marron and silver perch, however the combined polyculture biomass was the 

highest tested to date with this combination of species.  

 

Four shelter lines were introduced to each pond - two lines of 25 shelters and two lines 

of 10 shelters. Placement of the shelters was as per Figure 7.2, with shelters on each 

line approximately 1m apart. Shelter lines were initially placed 3-5m from the pond 

bank, at a depth of between 0.7m and 1.2m (Plate 7.2), however one shelter line was 

moved closer to the edge of each pond (<0.5m depth) after the first month (see 

7.2.4.2. Thirty loose-mesh shelters were also provided in each fish cage (approx. 2/

m2) (Plate 7.3).  
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Figure 7.2    Treatment design and allocation to ponds 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Plate 7.2    Aquaculture ponds at the Collie facility. Foreground: two floating fish cages.  

                   Background: monoculture pond. Shelter lines visible in both ponds 
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Plate 7.3    Left: pond shelters arranged in lines, Right: shelter provided in fish cages 

 
 
7.2.3.2        Duration 
 

The experiment was conducted between March and November 2004. Silver perch 

were introduced to ponds between the 12 and 21 March, and marron one month later, 

between the 12 and 21 April. Final harvest was between the 10 and 19 November 

2004. Total grow-out period was 243 days for silver perch and 213 days for marron.  

 

 

7.2.3.3        Experimental animals 
 

Marron and perch were sourced from monoculture ponds in Pemberton (34ºS, 116ºE). 

Marron (82.0±9.3g) were randomly distributed in all ponds at a stocking density of 

0.83/m2 (600/pond). Sex ratios of marron were exactly 2:3 (M:F) in each pond, based 

on availability of stock. Silver perch (184±35.6g) were weighed and distributed into 

floating cages. Population distributions of marron and silver perch at stocking showed 

no significant variation (P>0.05).  

 
 

7.2.3.4        Water quality measurements 
 

Water quality was monitored twice weekly, providing pH, dissolved oxygen, salinity, 

conductivity, temperature and turbidity data (Appendix A) and treatment means were 

compared using a one-factor ANOVA.  
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7.2.3.5       Supplemental feeding 
 

Silver perch and marron were fed commercial preparations (Appendix C and D, 

respectively) three times per week, between 1600-1800 h. Marron and perch were fed 

at a rate determined by feeding each treatment to satiation once per month (Table 

7.2). Marron feed rate was determined using feeding trays located around each pond, 

which were 1m square mesh (500 um) feeding platforms (Figure 6.4). Clearance of 

feed placed on feeding platforms was monitored after 8 h and levels increased or 

decreased accordingly. Note: feeding rates were also subject to manipulation 

depending on phytoplankton densities, with reductions in feed made where secchi 

depth was recorded less than 300 mm.  

 

Satiation levels for silver perch were initially determined 30 min. after feeding based on 

clearance of feeding platforms installed in each cage (Section 3.1.2.2). However, as 

turbidity increased, observation of general feeding behaviour was used to determine 

feed rate, as feeding platforms (0.75m under water surface) were no longer visible. 
 
 

Table 7.2    Marron and silver perch feeding schedule 

Missing feed data for silver perch in Pond 3 was due to a fish-kill, explained in Section 7.2.3.8.  

 
 
 

Feed supplied (kg)  
Month  Marron  Medium density perch High density perch 

Each pond Pond 2 Pond 3 Pond 4 Pond 5 

March  4.3 4.3 8.7 8.7 

April 2.2 15.2 15.2 30.4 30.4 

May 6.0 7.0 6.4 16.2 15.2 

June 2.2 4.7 - 6.1 9.4 

July 4.4 2.6 - 4.7 3.9 

August 4.1 2.8 - 5.5 6.6 

September 3.2 6.2 - 9.6 12.4 

October 5.3 4.1 - 9.1 9.6 

November 2.2 
 

2.2 - 4.9 5.7 

Total 29.503 kg 49.192 kg 25.928 kg 95.171 kg 101.77 kg 
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7.2.3.6       Sampling procedures and measurements 
 

Weight, size (length and width) and survival of marron (C. tenuimanus) and silver perch 

(B. bidyanus) were recorded, with growth and biomass calculated. Length-weight and 

sex ratios of marron was also recorded at all sample points. Silver perch and marron 

were sample-harvested every two months, where 30% of silver perch per cage and 

10% of marron per pond were examined. Marron sampling was done using shelter 

harvesting, where a two-hand net (1.5m x 0.75m and 5 mm x 5 mm mesh size) was 

placed under each loose mesh marron hide to capture marron as the hide was pulled 

above the pond surface. This sampling procedure was tested in ponds prior to this trial, 

with results showing that the sample population was significantly similar  to pond 

population (P<0.05). Silver perch were sampled using a purpose built grader-net with 

slightly smaller dimensions than the internal dimensions of fish cages (1.45m x 0.7m) 

to prevent movement of fish past the grader (Plate 7.4). Silver perch were transferred 

to smaller cages adjacent to the pond edge to reduce time out of water during 

sampling.  All stock was weighed using portable scales (0.01g), on moist soft mats, and 

returned immediately to ponds or cages. All stock was removed from water, weighed, 

length, sexed (in marron), checked for injuries, and returned to water within 10 s.  

 

Plate 7.4      Silver perch being harvested from fish cage using a purpose built grader-net 
 

 

Final harvest was conducted between 17 and 26 November. All fish were removed 

from cages and basic morphometric measurements made on all individuals. As many 

marron as possible were removed from ponds using shelter harvest, the remainder 

were collected in drain harvesting, conducted between 0600 and 0900 h, when 

temperature and light intensity were low.  Note: as many marron were berried in 

November collections, data were only collected from males and non-berried females. 

This was done so data were not biased by variations due to females carrying eggs.  
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7.2.3.7       Statistical analysis 
 
Univariate one-way ANOVA using Tamhane’s T2 method and Dunnett’s T3 procedure

(reported), was used to compare population distributions (initial and final) for both 

marron and silver perch between ponds and treatments, and also average growth (g) 

and length-weight ratios for both marron and silver perch between treatment groups 

(Selvanathan et al. 2000). Percentage survival between ponds was compared with 

Chi2 (marron) and Binomial (silver perch) non-parametric tests (Selvanathan et al. 

2000). Reproduction (percentage berried females) was compared with the Chi2 test. 

Growth rates of marron and silver perch in each treatment between sample points 

were analysed with Independent samples t-test for each time period. Specific growth 

rates (SGR) of marron and perch were determined using the following formula: SGR = 

(Ln(Wf) - Ln (Wi))*100/t, where Wf = final weight in g, Wi = initial weight in g, and t = 

growth period in days (Hopkins 1992). SGR is expressed as the percentage weight 

increase (g) per day. Feed conversions rates (FCR) were not determined for marron 

as survival could only be computed at final harvest. FCR for silver perch was 

determined as the amount of weight gained per kilogram of feed, where FCR = pond 

biomass (kg) / feed (kg), over the same period. FCR’s and SGR were compared with 

Independent samples t-tests.  

 

 

7.2.3.8      Outlier analysis 
 

On June 3 2004 (72 days after trial started), a malfunction was discovered in the water 

treatment system supplying water to Pond 3 (high density perch treatment), resulting 

in low pH in this pond. Following pond harvest, only 2% of the initial number of silver 

perch introduced to Pond 3 remained, compared to an average of 92±7.5%% for all 

other ponds. Pond 3 silver perch data were subsequently removed from analysis. No 

impact from Pond 3 conditions was apparent in marron survival, therefore data is 

included in results for comparisons with production in other ponds, however data were 

not included in treatment comparisons, for obvious reasons.  

 

A discussion of factors contributing to the problems encountered in Pond 3 is provided 

in limitations (section 7.2.6).  
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7.2.4         Results 
 
7.2.4.1        Marron growth 
 

Growth of marron in all ponds was statistically similar (P>0.01) during the first 6 

months, however in the final sample point (October-November), where temperatures 

approached 20°C, marron reared in polyculture demonstrated significantly increased 

growth over monoculture (P<0.01), and weight of marron in high density polyculture 

systems was significantly greater than in medium density ponds (P=0.024) (Figure 7.3).   

 

Marron growth was clearly influenced by water temperature. Comparisons of growth 

over time for each treatment showed significant increases between April and June 

(P<0.01) and between October and November (P<0.05), however no significant change 

between June and October (P>0.1) (Figure 7.3). Marron in Ponds 2, 3, 5 and 6 showed 

negative growth between June and August, when temperatures were below 13°C, and 

marron from Ponds 1 (monoculture) and 4 (high density polyculture) showed only 

minimal increases. 
 

Figure 7.3      Average weight (g) (±SD) of marron grown in each treatment pond. 
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Comparison between marron growth in Pond 3 to all other ponds showed no 

significant variation with polyculture systems (P>0.1), but significantly higher growth 

compared to monoculture (P<0.05).  

 

Specific growth rate (SGR) (see section 7.2.3.7 for formula) of marron in each sample 

period were compared between treatments (Figure 7.4). SGR was directly correlated 

with temperature (Figure 7.4), with significantly reduction between July and October 

(<15°C), compared to data in April-June and for November (P<0.05), where 

temperatures were between 15-20°C. The most significant increases in growth rates 

were recorded in November (P<0.01), where temperatures reached 20°C. In 

November, SGR of marron grown in polyculture were significantly higher than data 

recorded in previous sample periods (P<0.05), and compared against data from 

monoculture ponds (P<0.01).  

 
 

Figure 7.4       Specific growth rates of marron in each treatment, and in Pond 3 (fish kill) for 

each sample period. 
Data for marron in high density polyculture and monoculture ponds is the average of two replicate ponds, 

medium density polyculture only incorporates one pond, due to fish kill in replicate pond. Pond 3, where the 

fish kill occurred, is included for reference. Where different descriptors are present within each treatment a 

significant variation (P<0.05) was found. 
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No significant differences in length-weight ratios of marron were apparent between ponds 

throughout the sample period (P>0.1).  

 

Population distributions were similar between all treatments (P>0.1), except for a few fliers 

recorded in polyculture ponds (Figure 7.5). Data were only presented from October due to 

a large number of berried females in each pond in November, and weights from berried 

animals would have influenced weight distributions, which would not be indicative of 

optimal growth.  

 

 

Figure 7.5   Population distribution of marron in each treatment in October 

 
 
 
 
 
7.2.4.2        Marron survival 
 
Marron survival was relatively low in all ponds, between 26.5-53.3% (Figure 7.6), although 

survival rates were higher in polyculture ponds (P<0.01). Survival between medium and 

high density polyculture was statistically similar (P>0.1).  
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Figure 7.6     Survival of marron held in monoculture, and in medium and high density silver 

perch treatment ponds 

 

 

Approximately 90% of marron mortalities observed in ponds were recorded in the first 

month, with numerous carcasses observed just above water level. Autopsy of mortalities 

revealed than 96% of individuals possessed either an endoskin or had recently moulted, 

being soft and possessing large gastroliths. The occurrence of dead moulting marron 

above the water level suggested avian predation (terrestrial predation was prevented by 

perimeter fence). This was consistent with damage to carcasses (Plate 7.5).  

 

 

 

 

 

 

 

 
 

 

 

Plate 7.5    Damage to the side of carapace, indicative of bird predation 
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Following these observations, one shelter line was placed along the bank of each pond 

(within 300 and 600 mm from waters edge) and no significant mortalities were recorded 

following its inclusion. In addition, regular checks of bank shelters revealed large 

numbers of moulting marron inhabiting the refuge. 
 

 

7.2.4.3        Marron reproduction 
 

Marron reproduction was high in all ponds (76.3±7.5% of all females) (Figure 7.7), with 

no significant variations reported between ponds or treatments (P>0.1). Fecundity was 

visually reduced in monoculture ponds, although as egg counts were not carried out this 

could not be quantified . 

Figure 7.7    Percentage of female marron berried in each pond 
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between October and November alone. No significant variations in growth or survival 

were apparent between cages in each pond (P>0.1). Five silver perch were found free-

range in Pond 2 in November, with counts showing that these fish escaped from cage 1.   

 

 

Figure 7.8   Silver perch average growth (±SD) for each cage.  
Key descriptors: i.e. P4 (200) C2 = Pond 4, 200 fish in cage 2. 

 

 

Water temperature data demonstrated a direct correlation with growth of silver perch. 

Between June and August, when temperatures were below 15°C, silver perch showed 

negative growth in three ponds, and negligible growth in others. Highest growth was 

recorded where temperatures approached and exceeded 20°C (March-April and 

October-November).  

 

Specific growth rates (SGR) (see Section 7.2.3.7 for formula) demonstrated significant 

changes in growth rates between sample points (Figure 7.9), correlated with 

temperature. SGR was significantly reduced between July and August compared to all 

other periods (P<0.05), and SGR significantly greater between October and November 

(P<0.05) than all other periods. No significant differences (P>0.1) were apparent 

between medium and high density cultures.  
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Figure 7.9     SGR of silver perch in medium and high density ponds over each sample period 

along with average temperatures over the same sample periods 
 

Data for high density polyculture is the average of two replicate ponds, medium density polyculture only 

incorporates Pond 2, due to fish kill. Where different descriptors are present within each treatment a 

significant variation (P<0.05) was found. 

—————————————————————————————————————— 

 

 

Feed conversion ratios (FCR) (see section 7.2.3.7 for formula) were calculated for 

silver perch in each sample period (Figure 7.10). FCR for silver perch showed no 

significant variations (P>0.05) between medium and high density treatments, however 

feed conversion was significantly reduced during July and August (P<0.05), and 

significantly improved in November (P<0.01), compared to other sample periods. FCR 

recorded through September-October were also higher (P<0.05) than all other periods, 

with the exception of November.  
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Figure 7.10   Feed conversion ratios (Wt increase of fish per 1 Kg feed supplied) for silver perch in 

medium and high density cultures. Includes average water temperature data (°C) 

through each sample period. 
Data for high density polyculture is the average of two replicate ponds, medium density polyculture incorporates Pond 2 data 

only, due to fish kill. Where different descriptors are present for each treatment a significant variation (P<0.05) was found. 

————————————————————————————————————— 

 

Length-weight ratios for silver perch showed an increased spread in population distribution 

(Figure 7.11) compared to initial data, with weight of silver perch increasing at a greater 

rate than length.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.11   Length-weight distribution of silver perch in March and November. 
Data was taken from a sample population of 60 fish in each time period.   
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Population distribution showed no variation between silver perch grown in medium or 

high density polyculture (P>0.1). 
 

 

7.2.4.5        Silver perch survival 
 

With the exception of data from Pond 3, silver perch exhibited high survival in all ponds, 

92±7.5%, with no significant differences apparent between ponds or treatment groups 

(P>0.1, Figure 7.12).  

 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.12 Survival of caged silver perch in medium and high density treatment ponds 
Values represent average of two cages in Pond 2, and four cages in Ponds 4 and 5. 
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7.2.4.6       Additional observations 
 

Tadpoles (Litoria moorie) and dragonfly nymphs (suborder Anisoptera) were observed in 

large numbers in the monoculture ponds (in excess of 1000 tadpoles and 1000 nymphs 

per pond), to a lesser extent in the high density polyculture treatments ponds (Ponds 4 

and 5) (10-20 of both species), and neither species were collected in pond 2 (medium 

density treatment) (Plate 7.6). Both species were only recorded in the November drain 

harvest, and observed only a few weeks prior, which is consistent with breeding times.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Plate 7.6    Dragonfly nymphs and tadpoles collected in monoculture ponds 
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7.2.4.7       Polyculture production 
 

Marron biomass and survival was significantly higher in polyculture ponds compared 

with monoculture (P<0.05) (Figure 7.13).  

 

Silver perch displayed a significant increase in biomass over the trial duration 

(P<0.01), with high survival in all treatments (Figure 7.13). Silver perch increased in 

average biomass in the medium density ponds from 509.4±2.95 kg/ha to 1050.6 kg/ha 

(increase of 541.2 kg/ha) and from 1027.2±1.97 kg/ha to 2057.9±69.5 kg/ha (increase 

of 1030.7 kg/ha), in the high density ponds. 

 

 

Figure 7.13    The calculated biomass of marron and silver perch (kg/ha) for each treatment in 

                        March-April and November, including survival descriptors. 
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7.2.5          Discussion 
 

 
7.2.5.1       Silver perch survival 
 

Silver perch survival was high in all ponds (92.0±7.5%). These levels of survival were 

indicative of previous investigations where bird predation has not been a major factor 

(Rowland et al. 1994, Rowland 1995a, Whisson 1998, 2000, 2001). This was not 

unexpected, as climatic conditions through with the trial period (lower temperatures) are 

associated with lower disease (Anderson and Norton 1991, Soltani et al 1996) and better 

water quality, as wastes are reduced accordingly with lower feeding and digestion 

(Belkovskiy et al. 1991). The high survival and good condition of fish in both polyculture 

treatments supports the use of caged silver perch in marron ponds, where high predation 

in free range systems, seen in T6:2, is prevented. As survival of silver perch was highest 

in the high density polyculture, and no significant differences were seen in survival of 

silver perch between treatments, no density effect is apparent and continued 

investigations into increased densities is recommended.  

 

 

7.2.5.2       Marron survival  
 

Marron survival in this trial (between 26.5-53.3%) was lower than results from higher 

density monoculture studies (Villarreal 1988, Bennison and Morrissy 1991, Whisson 

1995a, Whisson 1999), where survival is commonly between 80-90%. The reduced 

overall survival of marron suggests an overriding factor affecting all ponds. A probable 

cause was bird predation, supported by high numbers of carcasses recorded on, or 

above, the water line in the first month of the trial (Section 7.2.4.2), and with injuries 

commonly associated with bird predators.  

 

As marron mortalities were almost entirely made up of moulting or recently moulted 

individuals, this suggests that predators targeted marron at this stage in the growth 

cycle. During moulting, marron are often observed around edges of water bodies, due to 

avoidance of high cannibalism risk areas (Storer pers. obs.). However, this also leaves 

marron more exposed to terrestrial predators, as crayfish would be more visible in the 

shallower water.  Moulting and soft post-moult marron have been shown to be exposed 

to greatly increased risk from predation due to these factors (Stein 1977, Dehli 1981, 
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Blake and Hart 1993b). In addition, the number of marron mortalities observed around 

pond banks was greatly reduced following the placement of one shelter line along the 

edge of each pond, and weekly observation of shelters showed large numbers of moulting 

marron inhabiting the shallow refuges. As a management tool, the use of bank shelters 

appears successful. However, it is suggested that bank shelters be used in conjunction 

with perimeter fencing to prevent access of terrestrial predators, i.e. wading birds or 

foxes, which may be able to remove marron from shelters placed in shallow water.  
 

Barlow and Bock (1984) have shown that bird predation on outdoor aquaculture ponds 

will occur in 90% of farms by the third year of operation, even where farms are situated 

over 60 km from other permanent water bodies. As the Aquafarm site is nearing the end 

of the third year of operation, increased anti-bird predation measures for marron appear 

necessary if future trials are to be conducted without loss of experimental stock. In 

addition, bird predation is said to increase with increasing densities (Barlow and Bock 

1984), as was the trend with successive Aquafarm trials. 
 

The impact of polyculture on survival of marron does suggest some benefits from caged 

silver perch, as survival of marron was significantly higher in polyculture treatments 

compared to monoculture. It is unclear whether marron gain a competitive edge from 

interaction factors, for example increased nutrition due to nutrients in silver perch waste, 

or whether the presence of floating cages increases refuge complexity and so reduces 

the effectiveness of bird predation. If both factors increase marron survival, perhaps the 

latter plays a more influential role as survival of marron between polyculture densities 

showed no discernable difference.  

 

The lack of significant variation in survival of marron and silver perch between medium 

and high density polyculture treatments shows no density effect, and suggests optimal 

stocking regimes for marron and/or silver perch exceeds those investigated. 
 

 

7.2.5.3       Growth of marron and silver perch 
 

Specific growth rates of marron and silver perch between July and October (Winter) was 

low across all ponds (marron - Figure 7.4 and silver perch - 7.9), with net increases in 

average weight of 1.7±3.9g for marron and 5.6±4.9g silver perch over this period. A 

previous study conducted by Morrissey (1995) showed that growth of marron over these 
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months was marginal, if occurring at all (Table 7.3). Note: Sept. was start of growth 

records in Table 7.3. Morrissy (1995) reported optimal growing temperature for marron 

at around 24°C, whereas in this trial, only 29 days were recorded where temperatures 

were over 20°C, and only 3 days between 24 and 26°C. Similar results have been seen 

in silver perch (Whisson 2000), with winter conditions often resulting in reductions in 

weight, as fish utilise reserves to maintain survival. Weight reduction of silver perch was 

recorded in three of the six ponds studied between June and August  (Figure 7.8).   

 

Although growth rates were low, silver perch in all ponds displayed a significant 

increase in biomass over the trial duration (P<0.05), which is remarkable when 

considering that they experienced only 41 days over 20°C and 11 days above 24°C. 

Approximately 25°C is considered optimal for silver perch (Rowland 1994c). No density 

effects were apparent between the two treatment densities of silver perch (P>0.1). 

 
Table 7.3   The average weight and biomass increases of marron (0+,1+ and 2+) and feed 

delivery and conversion by month, with associated temperature (Morrissy 1995) 

 

As was expected, specific growth rates of marron and silver perch in this trial were 

significantly higher between October and November, where temperatures exceeded 

20°C, compared with growth in all other periods. In the final sample point, SGR of 

marron in polyculture ponds was 1.04 ± 0.1%/day (Figure 7.4), which is equal or 

greater than growth rates recorded in previous monoculture trials with marron (Whisson 

1995a, 1999). The high growth of marron and silver perch where temperatures were 

greater than 20°C is consistent with findings from Morrissy (1995) and Rowland (1994). 

The increased growth rates in October-November, and to a lesser extent in April-June, 

Month   » Apr May Jun Jul Aug Sept Oct Nov 

Temp °C   » 16.8 13.4 10.8 11.8 12.2 15.9 19.2 19.2 

0+ Feed as %bw/day 1.3 0.7 0.5 0.4 0.4 1.9 2.3 3.6 

1+ Feed as g/m2/wk 20.1 12 9.4 8.2 8.1 4.2 6.7 14.7 

 Marron biomass(kg) 25.2 29.5 30.6 31.2 31.5 4.4 5.3 7.4 

 Marron mean weight (g) 52 58 64 68 71 7.2 10 13 

 Feed as %bw/day 1 0.6 0.5 0.5 0.5 0.4 0.7 1.5 

2+ Feed as g/m2/wk 31.2 20.3 17.8 16.5 16 8.5 4.6 29.7 

 Marron biomass (kg) 45.8 48 48 47.4 46.4 32.9 31.4 30.8 

 Marron mean weight (g) 156 169 173 174 175 85 91 95 

Age class 
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is also consistent with significantly increased clearance and feed conversion rates 

recorded in these periods (Figure 7.10). Feed conversion rates (FCR) recorded for 

silver perch in September-October (around 1:1), and in November (approximately 2:1), 

were similar to previous studies with silver perch; where perch were stocked at either 

7000 or 21000/ha in 0.1 ha ponds an average FCR of 1.6 to 2.0:1 was recorded 

(Rowland 1995b) and in 0.4 ha ponds at similar densities FCR was 0.7:1 (Rowland 

1994a). The data recorded in November in this trial was comparable to that achieved 

by channel catfish cultures which are near 2.0:1 (Rowland 1994b). 

 

The average weight of silver perch over the trial duration (approx. 8 months) increased 

by 188.6±9.8g across all ponds, with no significant difference between treatments. This 

is similar to previous pond based monoculture studies where silver perch increased an 

average 202g in 6 months (Rowland 1994c) and 402g in 14 months (Rowland 1995a), 

despite growth in this trial predominantly recorded during winter, when growth is 

greatly depressed (Rowland 1994c).  

 

The question of whether silver perch stocked at the size used in this trial could reach 

market size in one growth season is difficult to comment on as the trial was largely 

conducted outside of optimal conditions. However, inferences can be made based on 

growth data recorded for silver perch in November, where temperatures were close to 

optimum levels. Based on an average growth of silver perch between October and 

November (30 days) of +66.43g, and working on the assumption that growth would 

remain stable between September and April, silver perch would need to be stocked at 

around 100g. Using this stocking size, average size of silver perch should be 565g, 

which should allow for more than 80% of stock over 500g, based on population 

distribution assessments made in November. 

 

 

7.2.5.4        Marron reproduction 
 

As this trial was primarily conducted throughout Winter and into Spring, it allowed 

investigation of interaction effects on reproduction rates of marron. Percentages of 

females berried in all ponds were significantly similar, and equal to or exceeding levels 

expected in monoculture, with 76.3±7.5% of females berried (1.5 yr/old) across all 

ponds, compared to industry levels of 75% for 2.5 yr/old brood females (Morrissy 
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1992a). The high level of reproduction recorded was somewhat unexpected, as ponds 

were only in their second year of operation. Marron production in new ponds is reported 

as being sub-optimal in the first years of operation (Morrissy et al 1995b), due to 

insufficient benthos development - as marron are omnivorous and gain essential nutrition 

from detritus (Moloney 1996). In normal circumstances, benthic richness would develop 

in ponds as new water is supplied containing nutrients, organic matter and invertebrate 

species, and due to feeding and nutrients from stock (Morrissy 1992a).  

 

 
7.2.5.5        Impact of polyculture on marron production 
 

A definitive advantage to marron grown in cohabitation with caged silver perch was 

apparent in all ponds, with significantly higher survival, overall growth and specific 

growth rates of marron compared to their monoculture counterparts. Higher biomass 

from polyculture compared to combined monoculture, has been demonstrated in many 

studies (Guerrero and Guerrero 1977, Cohen et al. 1983, Scott et al. 1988, Brummett 

and Alon 1994, Wahab et al. 1995, Jones and Ruscoe 1996, Perry and Tarver 1997, 

Whisson 1999, 2001). Results in this trial, as supported by previous studies into marron 

and silver perch polycultures by Whisson (1998, 1999), indicate that the increase in 

overall biomass is predominantly due to increased marron production.  

 

The superior growth displayed by crayfish in the presence of fish has been suggested as 

a function of increased nutrition from partially digested wastes products from fish 

(Yashouv 1971, Rouse et al. 1987), or from increased ecological stability due to more 

complex food webs (Cohen 1984, Rouse et al. 1987). In the latter, marron may have 

access to more diverse natural feeds as macro-invertebrate populations become more 

rich and diverse as a direct response to increased nutrients and associated 

phytoplankton. The synergistic advantages apparent in marron growth and survival were 

more remarkable when considering that significant growth was recorded in only one 

month of the trial. Note: Figure 7.5 showed flier animals in polyculture ponds, indicative 

of animals that have gone through an extra moult compared to the rest of the population 

(following step-wise growth patterns). Although all fliers detected were found in 

polyculture ponds, as this was represented by only a small percentage of the population, 

no definitive conclusions can be made. However, this does support improved success of 

marron in duoculture with silver perch.  
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The higher survival of marron in polyculture systems may be attributed to abiotic 

conditions, where marron gain a competitive edge over marron grown in monoculture 

due to cages, providing increased refuge from avian predators. Whether survival is 

increased by factors pertaining to ecological stability or directly from increased shelter 

is not a critical element of polyculture production management, however this may 

illustrate the need for greater habitat complexity in monoculture practices. 

 

In addition to the apparent synergistic advantages to marron, the introduction of silver 

perch at medium and high densities showed no obvious density effects to either marron 

or silver perch. This was the highest silver perch number and biomass trialed in 

commercial sized marron ponds. However, when Whisson (2000) tested cage densities 

in excess of those examined in this trial, where silver perch were held at 180/cage and 

380/cage, density effects were exhibited. It is difficult to draw direct comparisons 

between these trials, as Whisson (2000) introduced juveniles to cages, as opposed to 

advanced sized fingerlings in this trial. A number of factors may explain why density 

effects recorded by Whisson (2000) were not apparent in this study. One obvious 

explanation is that although pond densities of silver perch were increased, cage 

densities were less than trialed by Whisson (2000), as in this trial pond densities were 

divided between two cages. This may suggest that multiple lower density cages in 

marron ponds may be more profitable than single high density systems. Another 

possibility is that because trials in this thesis were conducted in the cooler off-season 

conditions, growth and activity of silver perch would have been reduced, which would 

influence density effects. In saying this, no effect was seen in the final data points 

where temperatures were adequate for good growth.  

 

As survival, growth and condition of marron and silver perch showed no significant 

variations between treatments further investigations into increased densities of marron 

and/or silver perch is recommended. Future trials should compare growth of silver 

perch held in cages, where pond densities are fixed and cage densities altered through 

the use of multiple cages, as relative density, not pond density, may be the primary 

limiting factor in growth-density relationships. These comments must be taken in 

context with the timing of this trial, as optimal conditions would result in larger pond-

cage biomass than tested in this trial and a density effect may become apparent.  

 



Chapter seven: marron-silver perch polyculture production in ponds 

 

232 

When examining the results to determine if any density effects were apparent it is 

difficult to draw comparisons with the monoculture treatment as a negative specific 

growth was recorded in the final data point (Figure 7.4). This negative result was not 

expected as conditions, in respect to temperature and flow-on effects, were the most 

conducive to growth in this period. From this it is suggested that the significantly higher 

mortalities suffered in the monoculture ponds resulted in the skewed growth data, 

whereby the loss of a greater percentage of larger marron resulted in the illusion of 

decreased average weight.  
 

A final impact of polyculture on marron production is also suggested, pertaining to 

populations of dragon fly nymphs and tadpoles. As previously mentioned, both these 

species have been reported for the varied adverse effects they can have on marron 

production. Specifically, tadpoles have been linked with competitive relationships with 

marron, both species targeting artificial pelleted feed (Parker 1996), and dragonfly 

nymphs are notorious predators of hatchling and juvenile crayfish (Bird 1995, Jones 

1995) - obviously the latter is only problematic in brood ponds. The densities of each 

species were shown to be dramatically reduced in polyculture ponds, compared to 

monoculture. Although they still existed in polyculture systems, numbers were in the 

10’s-100’s, as opposed to 1000’s-10000’s in monoculture systems. Silver perch have 

previously been shown to predate on both species when held in free-range (T7:1), and 

fish are generally considered an ideal natural bio-control for these species in marron 

ponds (Parker 1996). However this is the first report of clearance effects when silver 

perch are held in cages. One additional findings was in Pond 2, where five escapee 

silver perch were discovered at final harvest. In this pond, neither dragonfly nymphs or 

tadpoles were found. These findings suggest a secondary benefit from the culture of 

marron and silver perch not yet identified. This may have contributed to synergistic 

growth advantages of marron previous reported (Whisson 2000) due to a greater 

supply of feed available for marron (with loss of tadpoles) and higher survival of 

juveniles (through loss of dragonfly nymphs). Further investigation is recommended to 

determine if economical benefits exist (from increased FCR and survival of marron) 

from stocking a low number of free range silver perch (or other species), compared to 

any economic disadvantages from antagonistic interactions between silver perch and 

marron.  
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7.2.5.6        The effect of habitat complexity on marron production 
 

A number of key observations were made throughout this investigation concerning the 

use of shelter lines. The lines were generally shown to be an effective tool for 

harvesting and sampling populations, and for easy removal of shelters prior to harvest. 

Removal of all 100 shelters from each pond took less than 10 min. for one person, 

where previous attempts at moving individual loose mesh shelters has taken between 

20-30 min. (depending on levels of sediment, Storer pers. obs), and for removal of 

more traditional shelters, such as tiles and half tyres the job can take over an hour 

(Storer pers. obs). In the 30 pond samples of marron taken (6 ponds and 5 sample 

points), approximately 100-200 marron were removed from 1-2 shelters lines by 

carefully pulling lines close to one bank and dropping a 20m weighted net behind the 

shelter line. After shelter lines were gently shaken to dislodge marron and removed, 

the net was pulled to the bank. The entire process from dragging shelter lines in, to 

removal of the final marron from the net took between 7 and 11 min. This was shown 

to be an effective and efficient method for researchers needing to check sample 

populations of crayfish held in free range ponds, and could also be easily adapted for 

farmers partaking in either shelter harvest or assessing growth and stage of marron 

development. One effective management strategy was the use of shelters close to the 

bank to protect moulting marron from stress and direct predation. The reduction in 

observable mortalities was significant in this trial, and requires further investigation.   

 

Finally, the presence of cages in ponds may have had a beneficial role in marron 

survival, where monoculture (without cages) suffered higher mortalities. The role of the 

cages as a refuge is further supported when compared with results in T7:1, where no 

variation in survival was recorded between monoculture and polyculture ponds, as in 

T7:1 empty cages were used in monoculture ponds. This finding requires further 

investigation as it could have ramifications for monoculture habitat management.  

 

 

7.2.5.7        The effect of cage shelters on silver perch production 
 

The addition of shelters to cages containing silver perch appeared to reduced feeding 

neophobia, with more rapid initiation of feeding responses, and increased duration of 

feeding compared to previous trials where cage shelters were not used (T7:1). 

Similarly, silver perch held with shelter did not demonstrate startle responses to 
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external disturbances, which are a common reaction when workers move around 

ponds. It is difficult to draw conclusions from these observations, as feeding and 

general behaviour of silver perch was not quantified. However, more conclusive 

evidence was apparent in feed conversion ratios (FCR) of silver perch. FCR of silver 

perch between October and November was between 1.81 and 2.15 (increase in weight 

of fish (kg) per kg of feed). These FCR data were higher than previously recorded for 

caged silver perch culture, where upper levels of between 1.24 and 1.48 have been 

reported (Rowland 1994b, Whisson 2000). The increased FCR of silver perch where 

cage shelters were provided may suggest increased amounts of supplemental feed. As 

high levels of filamentous algae were observed attached to cage shelters, along with 

associated invertebrates assemblages recorded within cages, both of which are natural 

feed for silver perch (Grant 1987, Barlow et al. 1986), this is supported. In addition, 

SGR of silver perch in T7:2 was approximately 0.7%/day (November data), where cage 

shelters were provided. This level was much higher than data in T7:1, with a maximum 

SGR of 0.18±0.02%/day, where no shelter was provided. This data based on fish of 

similar size, and temperature of both trials was approximately 20°C over period where 

FCR was calculated. 

 

The use of shelter in production cages is rarely reported, but where used is has been 

reported to reduce effects from crowding (Deady et al. 1995, Flemming and Hone 

1996). The role of shelter in negating stress from potential predation has also been 

shown (Appelberg et al. 1993, Baker and Montgomery 2001, Lass 2001), which may 

explain increased feeding responses of silver perch in T7:2. Continued investigation into 

cage shelters in silver perch culture is clearly required, however any studies must 

consider the potential adverse effects shelters may have on water circulation through 

cages, as water quality problems associated with poor circulation have previously been 

identified (Masser 1988). 

 

 

7.2.6 Limitations 
 

Most of the trial period was outside of regular commercial grow-out season for marron 

and silver perch. This was due mainly to delays associated with malfunction (and 

subsequent replacement and installation) of the pump used to provide water to the 

Aquafarm. The mine lake utilised as a water source in trials in this chapter had been 
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filling naturally over the past two years, and recent increases in water level resulted in 

the pump moorings breaking. Once a new pump was sourced and a new mooring 

system designed the stock originally sourced for this trial had grown larger than 

required and population distributions varied too greatly for the study. Once new stock 

was located and transported to site the trial was initiated in March (optimal growing 

season between November and March). However, as little data exists on off-season 

production aspects for marron and silver perch, this trial offered valuable information 

otherwise difficult to collect on a commercial scale. In addition, the trial was extended 

into the first period of optimal growth conditions (October-November), where following a 

long period of acclimatisation and ecological stabilisation, optimal growth data for both 

species should be obtainable. 

 

A further limitation of this trial was the loss of almost all silver perch from Pond 3 after 

only 72 days. The sudden mortality of fish was due to adverse water quality conditions, 

attributed to failure of the water treatment system which delivered water to Pond 3. All 

results and discussion pertaining to the fish kill in Pond 3 was presented in Storer et al. 

2004b and documented by Ingram (2004). A more detailed description can be found in 

these publications. 

 

 

 

 

 

____________________________________________________________________ 

 

The null hypothesis Ho  (7.3) was rejected. Marron grown in duoculture with silver 

perch grew significantly more over the trial period.  
 

The null hypothesis H0 (7.4) was rejected. SGR and FCR of silver perch were and in 

excess of T7:1 where no shelter was provided, and similar to free-range data from 

literature (Whisson 2000). 
 

The null hypothesis H0 (7.5) was accepted. No growth-density effects were observed 

for either species at the densities examined. 
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CHAPTER 8 
Integrated analysis of behavioural observations 

 

 

While examining the nature of communication between marron and silver perch in 

Chapters 4, 5 and 6, several factors featured consistently in the behavioural responses 

of experimental subjects to the various exteroceptive cues tested. How these 

responses influence system dynamics (and production in culture systems) will be 

discussed in this chapter, which compares and contrasts all findings in light of previous 

research.  
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8.1    Resting behaviour of marron 
 

Behaviour recorded in the control periods of each laboratory investigation in this thesis 

provided an opportunity to examine the resting behaviour of marron; that is, the 

behaviour of marron when not confronted by cues from food or potential predators. 

Resting behaviour of marron was examined between size classes and gender, when 

marron were held alone and under cohabitation with a congeneric crayfish. For 

discussion, marron behaviour recorded in T4:1, T5:1 and T5:2 was compared against 

behaviours recorded in two other trials involving marron - Gherardi et al (2002); and, 

Height and Whisson (2004). In these comparative studies crayfish behaviour was 

recorded using observation protocols outlined in Chapter 4 and 5, experimental set-up 

was replicated, and all studies were conducted in south-west Western Australia, 

allowing direct comparison based on experimental techniques and climate. The trial 

conducted by Gherardi et al. (2002) was located in Perth (32°S, 116°E), all other trials 

were carried out in Collie (33°S, 115°E). Temperature across all trials was 19.7°C-21°C.  

 

 

8.1.1 Influence of size class on marron resting behaviour 
 

Several consistencies were apparent in the resting behaviours exhibited by marron 

when held under controlled conditions in 25L glass aquaria in T4:1 and T5:1. Table 8.1 

provides a summary of these results, with comparisons to the trials conducted by 

Gherardi et al. (2002) and Height and Whisson (2004).  

 

Resting behaviour of marron was relatively similar between the trials conducted and the 

different marron sizes examined. Time spent in locomotion (range 11.2-25.2%, of time 

spent), antennae movement (range 6.9-18.8%), shelter (22.5±12.7%), climbing 

(14.6.0±8.9%) and cleaning (range 0-4.7%) was consistent across all trials. Feeding 

activity was also similar (range 0-6.1%) when results from Gherardi et al. (2002) were 

not included (Table 8.1). Increased feeding activity reported by Gherardi et al. (2002) 

(48.5±5.2%) may be attributed to a minor variation in the recording protocol used. As 

stated in Section 4.1.5, marron display a ‘leg-sway’ which may be interpreted as 

scraping (feeding behaviour), however this behaviour was not included in observations 

made in this thesis, or by Height and Whisson (2004). Gherardi et al. (2002) also 

demonstrated increased locomotion and reduced shelter usage by marron, compared 



Chapter eight: Integrated analysis of behavioural observations             

 

239 

with other trials (Table 8.1). These variations in data may be due to human 

interpretation of recording protocols, or variations associated with location of trials (e.g. 

water source). 

 

 
Table 8.1     Behaviour of marron held under control conditions in 25L aquaria.  

Sizes of marron are: small <8g; medium 30-90g; and large >200g. NR = not reported. Data are percentage 

of time spent in each behaviour. T4:1 = 1st trial in Chapter 4,  T5:1 = 1st trial in Chapter 5 

 

 

Antennule flicking showed the most variation between trials (45.8±31.9%). Closer 

examination of this data revealed that the large variation was due to differences 

between trials, as comparison of data between size classes within Chapter 4 showed 

relatively consistent results (73.6±8.6% of time spent). Antennules are reported to be 

the primary olfactory sensing devices in crayfish (Hazlett 1971, Tierney and Atema 

1988, Grasso and Basil 2002); as such, variations in activity between trials may reflect 

differences in water chemistry. It is therefore recommended that a standard protocol for 

water quality be developed for future trials - an obvious method would be chlorination 

and subsequent de-chlorination of water to remove any biotic influences.  

 

 

 T4:1 T5:1 T4:1 Height and 
Whisson 2004 

Gherardi et 
al. 2002 

T4:1 

Marron size >> Small Small Medium Medium Medium Large 
BEHAVIOUR (mean ± SE) (mean ± SE) (mean ± SE) (mean ± SE) (mean ± SE) (mean ± SE) 

Shelter 35.7±16.1 12.5±8.5 36.9±16.3 12.4±5.4 4.2±4.2 15.0±13.4 

Locomotion 11.2±6.9 17.3±8.5 19.4±7.8 11.8±2.2 25.2±6.6 18.7±10.3 

Feeding 6.1±3.8 0.0±0.0 0.6±0.6 4.4±0.9 48.5±5.2 1.2±1.2 

A-flicking 67.0±8.6 9.5±3.6 83.3±12.9 32.6±5.5 12.0±2.3 70.4±13.0 

A-movement 8.2±6.4 18.8±8.3 6.9±9.7 17.5±1.2 NR 17.7±11.2 

Low posture 25.5±15.7 0.0±0.0 12.5±8.2 31.3±5.6 15.1±16.8 41.7±18.6 

Inter-posture 24.2±15.4 59.2±12.0 40.8±17.6 26.4±5.0 NR 33.7±16.5 

Raised posture 50.3±18.8 40.8±12.0 46.7±17.6 16.5±1.5 39.6±8.5 24.6±14.4 

Cleaning  1.7±1.1 0.0±0.0 1.5±1.2 5.3±2.9 NR 4.7±2.9 

Climbing 1.0±0.7 15.5±8.5 16.7±12.6 25.8±0.0 NR 13.8±8.1 
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8.1.2     Resting behaviour displayed by male and female marron 
 

Gender differences in the behaviours displayed by marron were compared in control 

periods in T4:1 and T5:1. In all trials, small and medium marron displayed no gender 

differences (P>0.05) in behaviour or posture (Figure 4.2). Large marron showed only 

two significant gender differences, where large males preferred low posture (P<0.001) 

and large females preferred intermediate posture (P<0.05) (Figure 4.2). 

 

As marron in T4:1 and T5:1 were held in solitude, the lack of differences were not 

unexpected, as gender variations are most commonly reported in response to 

intraspecific interactions, such as resource competition (Zayan 1974, Goncalves 1993, 

Halperin and Dunham 1994, Hazlett et al. 1996), reproductive behaviour (Francis 1983, 

Smith 1986) or dominance disputes (Peters et al. 1980, Beacham 1987, Page and 

Cooper 2004). 

 

 

8.1.3          Marron behaviour under cohabitation with congeneric crayfish 
 

An understanding of the way crayfish respond to interaction with other crayfish has 

ramifications for both commercial aquaculture and wild stock management. To address 

this, resting behaviour of marron, recorded in control groups in T4:1 and T5:1, was 

compared with data recorded in T5:2, where marron were held with yabbies (Table 8.2). 

The behaviour of yabbies, held alone, was incorporated into Table 8.2 from data 

obtained from Gherardi et al. (2002) and Height and Whisson (2004). Yabby resting 

behaviour was included to examine whether behavioural modifications are most 

common in marron or yabbies following cohabitation, and to gain insight into dominance 

hierarchies between the species. This relationship is particularly important in light of the 

invasion of yabbies into natural marron habitats in Western Australia (Campbell and 

Whisson 2002, Lynas et al. 2004).  

 

Under cohabitation in aquaria, both marron and yabbies displayed altered resting 

behaviours in the period immediately following initial introduction, compared to 

behavioural data obtained in previous trials where crayfish were held alone (Table 8.2).  
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Table 8.2     Behaviour of marron held under control conditions in 25L aquaria with yabbies 

Crayfish sizes are MM-medium marron, MY-medium yabby. TP1 = introduction, TP2 = 4 h after introduction. 

NR - not reported.  Data are percentage of time spent in each behaviour. T4:1 = 1st trial in Chapter 4,  T5:1 = 

1st trial in Chapter 5, T5:2 = 2nd trial in Chapter 5.. 

 

 

The behaviour displayed by crayfish in the first time period (following introduction to 

aquariums) is indicative of generally heightened activity, with both species decreasing 

shelter use, selecting raised posture and increasing locomotion and antennae movement 

(Table 8.2). This behaviour has previously been associated with the development of 

dominance hierarchies between crayfish (Field 1990, Hazlett and McLay 2000), or simply 

a common period of searching the new environment (Tierney and Atema 1988, Hazlett 

1990, Panksepp and Huber 2004). As the behaviour of crayfish in the 2nd time period had 

returned to levels indicative of resting behaviour (when held alone), no significant effects 

from cohabitation on the resting behaviour of crayfish, given a period of adjustment, were 

apparent. If nothing else, these results support allowances for ‘settling time’ when 

observing crayfish behaviour in communal systems. Whether interactions between 

marron and yabbies would influence responses to signals from factors such as food or 

potential predators is discussed in Section 8.3.   

 NO  
INTERACTION INTERSPECIFIC INTERACTION NO INTERACTION 

 T4:1, T5:1 
Average 

 Data  

T5:2 
(TP1) 

T5:2 
(TP2) 

T5:2 
(TP1) 

T5:2 
(TP2) 

Height & 
Whisson 

2004 

Gherardi 
et al. 
2002 

Crayfish size >> MM MM MM MY MY MY MY 

BEHAVIOUR (mean ± SD) (mean ± SE) (mean ± SE) (mean ± SE) (mean ± SE) (mean ± SE) (mean ± SE) 

Shelter 24.6 ± 17.4 4.00±13.4 20.0±13.3 1.0±3.4 11.0±9.9 75.0±7.3 8.9±1.0 

Locomotion 15.6 ± 5.3 44.57±25.1 10.5±5.9 64.2±21.3 11.0±3.6 2.9±1.2 15.7±2.6 

Feeding 2.50 ± 2.7 0.00±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.1±0.1 21.7±1.3 

A-flicking 58.0 ± 35.9 46.86±27.5 38.1±8.0 12.0±11.8 49.1±10.9 58.5±5.5 16.3±3.5 

A-movement 12.20 ± 7.5 64.76±24.8 5.7±2.1 47.1±23.5 14.7±7.8 2.9±1.2 NR 

Low posture 21.9 ± 13.3 8.76±22.8 48.6±12.5 49.7±29.3 40.5±15.0 85.3±5.5 59.7±3.3 

Inter - posture 33.6 ± 10.2 30.10±23.2 16.7±10.1 26.9±19.7 48.6±13.3 12.6±5.0 NR 

Raised posture 31.6 ± 21.4 51.43±32.1 10.5±7.5 16.8±14.4 1.9±1.9 2.1±1.5 3.3±1.4 

Cleaning  3.40 ± 2.7 2.67±8.1 4.3±2.9 0.8±1.8 4.8±5.1 6.9±2.9 NR 

Climbing 21.3 ± 6.5 4.95±11.8 1.0±1.0 1.3±4.7 0.0±0.0 0.0±0.0 NR 
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8.2    Perception of exteroceptive cues by marron 
 

The roles of visual, chemical, tactile and other information media are varied and wide 

ranging, as reflected by the extensive reviews in Sections 2.4.1 to 2.4.4. Information 

cues can be produced and utilised by both predator (Liang et al. 1998, Brown et al.  

2000, Powers and Kittinger 2002) and prey (Mathis and Smith 1993c, Brown et al. 

1997, Wisenden 2000). They are affected by factors such as water quality (Atema 

1995, Hay 1996, Mesquita et al. 2003) and flow dynamics (Atema 1995, Lass 2001, 

Powers and Kittinger 2002). Responses to cues vary depending on conspecific and 

heterospecific competition (Werner 1991, and Kotler et al. 1994), predator behaviour 

and status (Dugatkin and Godin 1992, Brown and Chivers 1996, Brown et al. 2000), 

sex of prey (Pocklington and Dill 1995), ontogenetic stage (Mirza and Chivers 2002), 

species involved (Halpin 1986, Mirza et al. 2001), previous interaction (Zayan 1974, 

Goncalves 1993), and by system variables, including shelter (Rittschof 1993, Welch et 

al. 1997, Baumgartner et al. 2003) and turbidity (Confer et al. 1978, Guthrie 1986, 

Utne-Palm 2004). The investigations carried out in this thesis were designed to 

encompass a range of individual and combined cues, under varying conditions. 

 

When investigating the factors governing communication and interaction responses 

between species for the first time, a broad range of questions exist:  

 

• What environmental triggers are involved in communication? 

• Do combined cues elicit more confident and accurate responses? 

• How do responses influence production? 

• What role do system variables play in influencing interaction responses? 

 

In previous studies examining communication in decapods, many information sources 

have been highlighted, each with different roles and carrying varying amounts of 

weight in the decision processes of different species. The primary information sources 

used by species in aquatic environments are reported to be; chemical (Dicke and 

Sabelis 1992, Hazlett 1994a, Burks and Lodge 2002, Gherardi et al. 2002), visual 

(Culp et al. 1991, Rosenthal and Ryan 2000, Mirza et al. 2001) and tactile (Hoffmeister 

and Roitberg 1997, Bouwma and Hazlett 2001, Persons et al. 2001). Authors have 

examined other information cues, including electrical and audio, however as the 
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investigations carried out in this thesis are the preliminary examinations involving marron, 

only the most common sources were examined, laying a foundation for future work. 

 
 

8.2.1 Chemosensory perception in marron 
 

Chemical signals are one of the most studied information media in aquatic 

environments - providing strong, reliable information (Sorenson and Caprio 1998, Vet 

1999, Wisdenson 2000), especially where vision is limited (Stoddart 1980, Chivers et al. 

1996b). Chemicals carry information between species (allelochemicals) (Dicke and 

Sabelis 1988) and between conspecifics (pheromones) (Dicke and Sabelis 1988), and 

provide information pertaining to food (Tierney and Atema 1988, Hazlett 2003), shelter 

(Grasso and Basil 2002), potential threats (De Meester and Cousyn 1997, Wisenden 

2000, Tomba et al. 2001) and reproductive partners (Yen and Strickler 1996, Vickers 

2000, Diaz and Thiel 2004). As the use of cage culture of silver perch is a potentially 

viable management option for polyculture in marron ponds (Whisson 2000), chemical 

cues from silver perch may offer the most significant challenge to control if found to 

produce stress responses in marron. Problems associated with tactile cues can be 

alleviated by cages, and visual cues can be reduced with increased turbidity, however 

chemical cues are much more pervasive within an aquatic system. The most relevant 

questions regarding chemical communication of marron in polyculture centre on the 

ability of marron to detect and adequately modulate responses to novel cues associated 

with potential fish predators, primarily silver perch. In addition, the way marron respond 

to cues from food, with and without cues relating to potential risk, is particularly important 

as this relates to the effect of fish on marron production. The studies employed in this 

thesis aimed at determining the ability of marron to detect and respond to food-derived 

chemical cues, and the subsequent inhibition (if any) of feeding in response to potential 

kairomones. 
 

 

8.2.1.1        Detection and response to food odour 
 

Response of marron to food odours alone were examined in T4:1 and T5:1, and included 

comparisons between size classes. Table 8.3 details results from these trials and 

incorporates data from Gherardi et al. (2002). Preparation of food solutions was 
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standardised across all trials, following procedures outlined in Gherardi et al. (2002), 

allowing a valid comparison. Data from Height and Whisson (2004) was not included in 

Table 8.3, as behavioural response to food solutions were not published.  

 

Table 8.3    Magnitude of change between responses to control water and food solution in 

reaction time (s), behaviour and posture (%).  

T-tests compared differences between solutions in all trials. ^P<0.1, * P<0.05, **P<0.01. T4:1 = 1st trial in 

Chapter 4,  T5:1 = 1st trial in Chapter 5. NR = no result published. Sizes of marron are: small <8g; medium 

30-90g; and large >200g.  

 

 

Results show that marron responded consistently to food-derived chemical cues in all 

trials. Behaviours recorded were typical of responses indicating increased searching 

(increased locomotion, antennae movement and feeding behaviour) associated with 

foraging (Sih 1987, Lima and Dill 1990, Kats and Dill 1998, Lima 1998, Woodley and 

Peterson 2003). This indicates that crayfish were readily detecting the presence of 

chemical stimuli, as has been documented for O. propinquus, O. rusticus and O. virilis 

exposed to food (Hazlett 1994a; 2000). Results concur with Height and Whisson (2004) 

where significant increases in marron feeding behaviour were recorded when food cues 

were added. 

 T4:1 T5:1 T4:1 Gherardi  
et al. 2002 

T4:1 

Marron size >> Small Small Medium Medium Large 

BEHAVIOUR (mean ± SE) (mean ± SE) (mean ± SE) (mean ± SE) (mean ± SE) 

Reaction time -152.1±50.4 * -138.8±47.3 -144.4±53.2 * -32.5±11.1 -148.1±41.0 ** 

Shelter 0.0±0.0 +4.8±4.8 +19.1±13.0 0.0±0.0 0.0±0.0 

Locomotion +36.1±11.5 * +29.2±10.9 * +17.3±8.2 ^ +15.8±3.3 +23.2±9.1 * 

Feeding +17.7±10.9 +21.4±8.1 * +16.1±6.4 * +18.5±4.2 +17.9±8.3 ^ 

A-flicking +11.6±5.6 +38.1±11.6 ^ -12.5±5.7 +14.2±3.0 ** -22.0±8.6 

A-movement +26.5±11.2 ^ +26.8±10.5 ^ +17.3±7.6 ^ NR +11.9±5.8 

Low posture -11.6±7.8 0.0±0.0 0.0±0.0 -19.0±6.5 * -1.8±1.8 

Inter-posture +17.0±8.2 -30.9±13.3 +14.9±10.6 NR +3.6±2.3 

Raised posture +21.8±13.7 +31.0±13.3 -14.9±10.6 -14.4±4.1 -1.8±1.8 

Cleaning  +6.1±2.1 +3.0±2.0 0.6±0.6 NR -0.6±0.6 

Climbing +5.4±3.1 +6.6±5.3 -15.5±11.0 NR -1.8±1.3 
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Comparisons between marron of different size classes showed similar responses to 

food cues, although smaller marron generally sustained responses longer (locomotion, 

antennule flicking and antennae movement) (Table 8.3). One likely explanation is the 

increased energy requirements and higher replenishment frequency in younger crayfish 

(Svensson 1993), foraging longer in search of food. In contrast, the reduced relative 

energy requirement, increased storage capability and increased experience of older 

individuals (Stein 1977, Dutoit et al. 1991, Greenberg 1992) may result in them giving 

up searching earlier, if unsuccessful in locating the food source quickly .  
 

As both farm-reared (Table 8.3) and wild-stock (Height and Whisson 2004) marron 

responded to food solution, it is assumed that marron instinctively associate certain 

cues, at least in commercial pellets, with food. However, it is unknown whether marron 

have the ability to differentiate cues. For instance, as marron have few natural 

predators and are the dominant invertebrate in freshwater systems in south-west 

Western Australia (Morrissy 1997, FWA 1999, Allen et al 2002), they may associate 

cues from novel predators with food. The responses of marron to food, when presented 

with cues from potential predators is, discussed below. 
 

 

8.2.1.2        Detection and responses to food combined with fish kairomones 
 

The ability of marron to detect chemical signatures from silver perch, found in their 

culture water, was examined in T4:1 and T5:1. These trials were primarily targeted at 

expounding the role of fish kairomones on feeding responses displayed by marron, and 

as such fish cues were combined with food odours. Any inhibition of behaviour, 

especially feeding, in response to fish odour would have deleterious results for marron 

production in polyculture, even with caged fish. The responses of marron to silver perch 

kairomones combined with food is displayed in Table 8.4, representing changes in 

behaviour compared with control responses.  
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Table 8.4   Magnitude of change between responses to control water and food solution with fish 

culture water combined with reaction time (s), behaviour and posture (%).  

T-tests compared differences between solutions in all trials. ^P<0.1, * P<0.05, **P<0.01. T4:1 = 1st trial in 

Chapter 4,  T5:1 = 1st trial in Chapter 5. Sizes of marron are: small <8g; medium 30-90g; and large >200g.    

 

The ability of marron to detect cues found in the food + silver perch conditioned water 

solution (F+PCW) was confirmed, with significantly faster reaction times at P<0.01 in 

three of the four silver perch treatments (Table 8.4). These results supported Height and 

Whisson (2004), where significantly faster reaction times (P<0.05) to both redfin perch 

(Perca fluviatilis) and freshwater cobbler (Tandanus bostocki) solutions were reported. 

Redfin perch and cobbler are known predators on marron (Allen et al. 2002), with 

freshwater cobbler being the only large naturally occurring finfish in rivers and streams 

in the south-west of Western Australia (Allen et al. 2002), and redfin perch introduced to 

South-West waters over 100 years ago (Arthington and McKenzie 1997). Data from 

Gherardi et al. (2002) were not included as responses to kairomones were not tested.  

 

The responses of marron to F+PCW showed similar trends as in reactions to food 

alone, however the behavioural changes to F+PCW were less pronounced. For 

example; in response to food - locomotion, feeding and antennae movement of marron 

showed increases in all studies reported (Table 8.3); however in response to F+PCW - 

only feeding behaviour showed consistent increases between the trials examined, and 

 T4:1 T5:1 T4:1 T4:1 
Marron size >> Small Small Medium Large 

BEHAVIOUR (mean ± SE) (mean ± SE) (mean ± SE) (mean ± SE) 

Reaction time -189±37.5 ** -197±41.4 ** -146.3±40.7 -248±19.7 ** 

Shelter -15.0±11.9 -12.5±12.5 +13.1±7.0 -0.8±0.7 

Locomotion +34.7±11.9 +12.5±8.1 -29.8±11.1 +12.7±5.2 

Feeding +24.5±11.3 ^ +18.5±6.2 * +15.5±7.6 ^ +0.8±0.7 

A-flicking +1.4±1.3 +26.8±11.8 ^ -13.1±12.4 +4.8±2.6 

A-movement +32.0±10.6 +9.7±5.9 -16.1±13.4 +11.1±4.4 

Low posture -20.4±13.6 0.0±0.0 +1.2±1.2 +3.2±2.8 

Inter-posture -35.4±13.0 +20.2±12.4 +26.8±9.0 -31.0±15.7 

Raised posture +31.3±14.1 ^ -20.2±12.4 -25.6±8.5 +31.0±15.7 

Cleaning  +2.7±1.3 +4.2±3.5 +5.4±3.5 -7.9±4.6 

Climbing +20.4±13.6 -14.3±7.0 -9.5±6.5 +9.5±4.4 
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only marginally in large marron (Table 8.4). Although feeding responses appeared 

unaffected by fish odours, the lack of other behavioural changes in marron responding 

to F+PCW, compared to responses to food, may suggest some degree of inhibition. 

Reduced feeding, but not cessation, has been shown in other crayfish in response to 

risk cues (Hazlett 1999, 2000b). One explanation is that crayfish may increase alert 

status - defined as the capability to escape the attack of a predator through an increased 

sensitivity to mechanical and light disturbance (De Meester and Pijanowska 1996). By 

utilising powerful tail-flips to rapidly escape imminent danger (Hazlett 1999, Herbaholtz 

et al. 2004), crayfish could be given an ecological advantage over other species, where 

they can maintain normal behaviour until avoidance is absolutely necessary. 

 

In T4:1, direct comparative analysis of behavioural responses between F+PCW and 

food alone, detected two significant differences (Table 4.1). These were reduced 

locomotion in medium marron, and a faster reaction time exhibited by larger marron in 

response to F+PCW. Large marron also displayed a general reduction in feeding, 

locomotion and antennule flicking in response to F+PCW, compared to food alone 

(Figure 4.5). These results suggest that larger marron may reduce overall activity when 

exposed to fish cues, which is a typical response to potential threat (Ivlev 1961, Momot 

1967, Hazlett and Schoolmaster 1998, Hazlett 1999, Schapker et al. 2002). These 

findings support other studies where larger, more mature, individuals display greater 

avoidance due to experience (Pfeiffer 1977, Brown and Godin 1999, Hazlett 1971). In 

T5:1, no discernable differences were found between responses to food and F+PCW, 

however, only small marron were utilised, displaying similar results to the same size 

class in Chapter 4. 

 

In summary, results in T4:1 and T5:1 did not confirm any inhibitive effects from fish 

odours on behaviour of marron. In particular, small marron demonstrated no significant 

alteration in behaviour between food and food combined with fish cues, and although it 

was suggested that some behavioural modulation was made in larger marron, this was 

only backed up statistically by increased reaction time. As marron have evolved in 

systems devoid of natural predators (Morrissy 1997, FWA 1999, Allen et al 2002), they 

may not recognise silver perch odour, as chemical risk cues may be entirely novel. 

Regardless of whether marron are detecting danger or not, the lack of feeding inhibition 

is encouraging for polyculture using caged fish, as marron should not suffer 

unnecessary stress responses or be affected through behaviour alterations commonly 

associated with avoidance strategies.  
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8.2.1.3       Detection and responses to fish kairomones 
 

In T5:2, marron were exposed to silver perch culture water, without food cues, to 

determine whether marron could detect signals pertaining to potential threat. Although 

chemical cues from silver perch elicited significant behavioural responses in marron 

(faster reaction time and increased antennule flicking) (Figure 5.9), they did not 

stimulate feeding activity. In previous trials, where food and fish cue combinations were 

used, feeding was significantly increased (Gherardi et al. 2002, Height and Whisson 

2004). Hazlett (1999) reported that behaviour of Orconectes virilis is commonly inhibited 

when faced with imminent predatory risk, however does not completely shut-down. 

These findings provide evidence of the ability of marron to chemo-differentiate between 

signals pertaining to food and those pertaining to silver perch. The ability of freshwater 

crayfish to detect odours associated with potential predatory species has been shown in 

many previous studies (Hazlett 1997, Hazlett and Schoolmaster 1998, Persons et al. 

2002, Hazlett 2000a, Mirza et al. 2001). 

  

Although results indicate that marron can differentiate between chemical cues in silver 

perch culture water and chemical cues from food, as marron did not display significant 

avoidance responses upon detection of fish cues (Figure 5.9), the ability of marron to 

associate cues with potential threat was not supported.  

 

 

8.2.2          Photo-sensory perception in marron 
 

If marron do not interpret chemical signals from silver perch as potential risk, do they 

respond to other exteroceptive signals from potential predators?  The use of visual cues 

by marron for detecting fish was examined in T5:1. This investigation compared the 

ability of marron to identify visual signals from silver perch, and examined whether 

responses could be associated with apparent risk status.  

 

When exposed to cues from bagged silver perch, marron increased antennule flicking, 

antennae movements, and chose low posture more frequently, compared with marron in 

fishless treatments (Figure 5.1). These differences support detection of visual cues 

associated with fish in bags, with both the antennules (Tierney and Atema 1988, Hazlett 

1990, Grasso and Basil 2002) and antennae (Panksepp and Huber 2004) shown to be 

the primary devices used to detect environmental signals. That is, once marron visually 
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detect fish they activate other sensory devices. However, behavioural studies have shown 

that freshwater crayfish use antennae for investigating ‘novel system 

structures’ (Panksepp and Huber 2004), which may mean that the increased activity of 

antennae may be a response to the bag, not the silver perch within. To address the 

finding of Panksepp and Huber (2004), direct comparisons were made between the ‘fish in 

bag’ treatment and the treatment containing ‘bag only’. Results showed clear differences, 

with marron assuming lower posture and using antennae significantly more when fish 

were present in bags. Lowered posture has previously been recorded in responses to 

predatory cues in the crayfish Orconectes virilis (Hazlett and Schoolmaster 1998), with 

defensive stances in crayfish characterised by low posture, often with tail curled under 

body (Hazlett 1994a), as was seen in this trial. This suggests that marron were not only 

detecting visual cues from silver perch, but also responding to a potential threat.  

 

The use of visual cues in threat detection is common in aquatic animals (Brown et al. 

1997, Watson 1999), controlling a range of anti-predator behaviours in many species 

(Herrnkind 1968, 1972, 1983), including decapods (Bollens et al. 1994, Murray  and 

Jenkins 1999, Diaz et al. 2001, Woodley and Peterson 2003). Visual cues are often the 

primary source of information in environments where vision is high, such as in systems of 

low turbidity (Watson 1999) providing early accurate information (Culp et al. 1991, Brown 

et al. 1997, Murray and Jenkins 1999, Bouwma and Hazlett 2001). The evolution of 

marron in clear-water rivers and streams in the south-west of Western Australia (Allen et 

al 2002) may support these findings, where visual identification of potential threats may be 

the most effective early warning system. As natural predators of marron are limited 

(Morrissy 1997, Allen et al 2002) and generally confined to terrestrial species, such as 

birds and water rats, the use of chemical triggers is arguably much less important, and 

understandable within an evolutionary context.   

 

Whether the behavioural modifications displayed by marron in response to visual cues 

from bagged silver perch would equate to noticeable impacts on aquaculture production 

requires an examination of responses to the presence of food cues, to determine whether 

foraging is affected. Further, as behavioural responses of marron to visual cues from silver 

perch were detected in T5:1, an examination of combined cues (visual and chemical) is 

warranted. Although silver perch odour did not produce crayfish avoidance responses in 

T4:1, the combination of cues has been shown to elicit stronger, more confident 

responses in the receiver. Anti-predator behaviour displayed by H. rotundifrons 

(branchyuran crab) in response to tactile input is prolonged by the addition of chemical or 



Chapter eight: Integrated analysis of behavioural observations             

 

250 

visual cues, however if visual and chemical cues are detected alone no reaction is evident 

(Field 1990, Hazlett and McLay 2000). This suggests, that although insufficient to elicit a 

response alone, some stimuli can increase the potency of other information media.  

 

 

8.2.3          Combined exteroceptive signals 
 

Almost all researchers agree that behaviour is hierarchical, in that some elements have 

asymmetrical influence over the other elements (Dawkins 1976, Nelson 1990, Houston et 

al. 1993, Werner and Anholt 1993, Ydenberg 1998). It is predicted that animals assessing 

multiple sources of information concerning one ecological category (i.e. predation risk) will 

exhibit more contingencies (switches in asymmetry rules) (Hazlett 1996, Hazlett and 

McLay 2000). In previous sections the ability of marron to detect visual cues from bagged 

fish, and chemical cues from food has been demonstrated, however whether or not 

marron can differentiate chemical cues pertaining to potential threat (silver perch) was 

inconclusive.  

 

In T5:1, behavioural responses of marron to multiple cues (visual and chemical) revealed 

no differences in response to F+PCW between crayfish held with or without bagged silver 

perch. In addition, marron exposed to the F+PCW, increased feeding behaviour, 

locomotion, and use of sensory devices (antennules and antennae), which are behaviours 

indicative of food-related responses (Tierney and Atema 1988, Hazlett 1990, Grasso and 

Basil 2002). These results suggest that visual cues are insufficient in inhibiting feeding, 

when presented alone, or in combination with chemical cues from silver perch.  

 

In T5:2, a further comparison of the responses of marron to visual and chemical cues from 

silver perch was examined. In this trial, silver perch and marron were housed in larger 

compartments to increase freedom of movement (Plate 5.3). However, no significant 

differences were seen when comparing the responses of marron to cues presented alone, 

with the responses of marron to combined cues (visual and chemical). An incidental 

observation was that reaction times were faster and standard errors lower in marron 

responding to combined cues, compared to all other treatments. This may indicate an 

increased level of confidence in responses, as marron reacted more immediately and 

consistently. An increased confidence with combined cues has previously been described 

by Goncalves et al. (2002). Although not significant, a behavioural trends was apparent 
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when data was examined more holistically, where marron responded to combined cues 

with increased locomotion and climbing, choice of raised posture and increased use of 

antennae compared to cues separately (Figure 5.9). High variation in responses 

precluded low significance values. Large differences within populations were 

experienced in all laboratory studies in this thesis, and in trials conducted by Gherardi 

et al. (2002), and Height and Whisson (2004). Replication in each of these studies was 

based on eight animals per treatment, however evidence suggests that for this type of 

research, minimum replication number needs to be increased. 

 

 

8.3              Effects of competition on responses 
 

T5:2 compared the responses of marron to visual and/or chemical cues from silver 

perch, under free-range conditions with yabbies. This trial was designed to determine if 

competition would force marron to respond more decisively to cues. One hypothesis 

stemming from results in T4:1 and T5:1, was that marron would not display clear 

avoidance responses to cues from silver perch as they rely on their ability to quickly tail-

flip away from danger (i.e. towards shelter). In this trial, shelter was limited so that on 

detection of cues marron may be more inclined to claim shelter prematurely, as waiting 

for more imminent signs of threat may result in exclusion from refuge by resident 

(yabbies). Similarly, previous studies into yabby behaviour (Gherardi et al. 2002) have 

referred to a high behavioural plasticity exhibited by yabbies, and increased avoidance 

responses over marron when faced with alarm cues from crushed conspecifics 

(Gherardi et al. 2002). Earlier detection of potential threats by yabbies should result in a 

heightened response in marron, reacting to yabbie behaviour.  

 

In all comparisons between responses to the varying exteroceptive cues presented, no 

discernable differences were seen when comparing marron behaviour when held with 

or without yabbies. An examination of the interaction responses between marron and 

yabbies recorded using the 2-hour protocol in T5:2 (Table 5.5). Results demonstrated 

an overwhelming dominance of marron due to greater occupation of shelter, exclusively 

evicting yabbies from shelter, and being the victor in 34 out of 36 aggressive 

encounters following the introduction of silver perch to systems (Table 5.5). These 

results, taken together, suggest that marron behaviour is not inhibited by competition 

with yabbies. 
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8.4    Effectiveness of marron interaction responses under predation pressure  
 

Investigations in Chapter 4 and 5 demonstrated that marron can detect and differentiate 

both visual and chemical cues pertaining to silver perch, although displaying a distinct 

lack of avoidance responses upon detection of food-derived chemicals. These 

observations indicate that marron either do not interpret cues from silver perch as risk 

related, or that foraging holds hierarchal dominance over avoidance of potential threat. It 

can now be hypothesised that marron held with silver perch would be heavily predated 

on, unless avoidance responses of marron (if any) are triggered upon a more imminent 

predation threat.  

 

To address this hypothesis, the effectiveness of potential avoidance strategies employed 

by marron were examined in two free-range trials with known crayfish predators - Murray 

cod (Allen et al. 2002) and silver perch (Jones and Ruscoe 1996, Whisson 2000, Allen et 

al. 2002). Previous research has highlighted the role of light intensity and shelter 

complexity in influencing interactions between predator and prey (Guthrie 1986, 

Rittschof 1993, Baumgartner et al. 2003, Utne-Palm 2004). As such, both factors were 

manipulated to gauge effects on marron avoidance strategies - given earlier findings of 

the complex nature of multiple exteroceptive cues (i.e. visual and chemical) and the 

importance of shelter. 

 

Low survival of marron was observed in T6:1 and T6:2, which was not unexpected 

based on results from the previous laboratory investigations. In T6:1, marron mortalities 

reached 100% in 13 days, where no shelter was provided, and were greater than 80%, 

where shelter and 0% light intensity was trialed (Figure 6.1).  In T6:2, free-range culture 

of marron and silver perch resulted in survival levels of between 11% and 49.7% of large 

marron across all ponds, along with low survival of juveniles (Figure 6.5) compared with 

industry averages (Whisson 1997, FWA 1999). In both field and laboratory trials, shelter 

afforded a distinct advantage to marron (Figure 5.1 and 5.6). However, predation was 

still significant at >40% and >50% mortality in shelter treatments for T6:1 and T6:2, 

respectively. Predation rates are likely to be understated within an industry context, as 

both laboratory and field trials were carried out over relatively short periods compared to 

aquaculture production cycles. Finally, where shelter was provided in 0% light intensity 

conditions, predation was greater than in ambient light (>80% mortality versus <50%). 

This suggests that marron survival is not advantaged by low light - a somewhat 

perplexing assertion (discussed in Section 8.5). 
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Although shelter showed the greatest benefits to marron, appearing to negate to some 

degree, the predation pressure by both Murray cod and silver perch, the high predation 

recorded would still suggest that free-range culture of marron in ponds with predatory 

fish (including omnivorous species such as silver perch) is impractical. Poor suitability 

of a number of crustacean species to polyculture with finfish has previously been 

described (Karplus et al. 1995, Kotha and Rouse 1997, Rouse and Kahn 1998), such 

as with many species of Penaeid prawns where polyculture has resulted in half the 

gross revenue of monoculture (Shang 1983). In these cases improved management 

practices can sometimes aid in negating negative interactions (Huner et al. 1983b, 

Whisson 2000). It is clear that successful polyculture of marron and silver perch relies 

on the development of management practices surrounding cage culture. The success 

of marron within this type of culture system is supported by laboratory results in 

Chapters 4, 5 and 6, as marron should show no negative impacts linked to avoidance 

behaviour from this type of culture system.  

 

 

8.4.1 Adaptability of marron to novel predators 
 

An interesting finding from behavioural observations in T6: 1, was the indication that 

marron could be ‘learning’ in response to threat from Murray cod. Following predation of 

conspecifics, marron were shown to occupy shelter, and where no shelter was provided 

marron remained in corners or along edges of aquaria (Plate 6.4). Previous studies in 

this thesis have shown a general disregard displayed by marron in the face of novel 

predator cues (Chapter 4 and 5), however these observations may suggest that marron 

require experience in order to associate novel cues with threat. The requirement of 

experience in order to formulate effective response has been seen in many other 

species (Mathis and Smith 1993b, Chivers and Smith 1998, Dicke and Grostal 2001, 

Hazlett 1971). In some cases, prey individuals must experience a predator cue (such as 

predator odour) and an danger cue (such as alarm odour or prey breakdown products) 

simultaneously before the predator cue is treated as a danger signal (Chivers et al. 

1996b, Hazlett and Schoolmaster 1998, Grostal and Dicke 1999, Wisenden and Millard 

2001).  

 

Following development of avoidance responses seen in T6:1, marron survival was still 

significantly reduced, supporting the conclusion that free-range polycultures would not 
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result in high survival, of even ‘experienced’ marron. These observations warrant 

further investigation into the ability of experienced individuals to recognise threat cues 

following initial periods of interaction. Future studies sould incorporate comparison 

between farm marron (used in trials) and wild stock marron, examining avoidance to 

natural predators, such as freshwater cobbler or redfin perch (introduced species in 

Western Australian waters). Perhaps genetic improvement programs targeting 

polyculture attributes in marron, such as avoidance responses, could provide a realistic 

opportunity to create an economic free-range polysystem. 
 

 

8.5    Diurnal changes in behaviour 
 

Nocturnal behaviours of marron were recorded in T5:2, and indirectly in T6:1. Results 

highlighted variations in individual and interaction behaviour between day and night 

time observations which, if nothing else, demonstrate a potential flaw in many 

behavioural studies involving nocturnal species carried out only during daylight hours 

(e.g. Gherardi et al 2002, Hazlett et al 2002, Height and Whisson 2004).  
 

Results showed that during nocturnal periods, the frequency of interactions between 

marron and yabbies was increased (T5:2) (Table 5.5), and predation of marron by 

Murray cod grew 12-fold (T6:1) (Table 6.2). The increased activity displayed by marron 

at night, being primarily nocturnal foragers (Morrissy and Caputi 1981, Molony and Bird 

2002), would no doubt have contributed to the higher mortalities in this period when 

held with Murray cod, where frequency of interaction would have been increased. This 

may explain previous suggestions (Section 8.4) that marron are disadvantaged by low-

light conditions. 
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CHAPTER 9 
General discussion 

 

 

The research in this thesis was undertaken to assist Western Australian marron 

growers, and other rural industries, attempting to diversify their income base whilst 

optimising pond yields through a combination of marron and silver perch within a single 

system. An understanding of the ecological, biological and chemical processors 

contributing to production within these systems is crucial to successful planning and 

management of this diversified strategy.  

 

……………………………………………. 

 

 

 

Although multi-species systems offer a range of business advantages, management is 

often undermined through increased complexity of culture. The trials carried out in this 

thesis were aimed at building an understanding of the communication between 

component species and relating the resulting interaction responses to production 

changes. A more thorough understanding of the way cultured species ‘act’ and ‘react’ 

will provide farmers with a greater ability to predict outcomes from manipulation of 

system variables, thereby reducing the time required to develop appropriate 

management strategies for optimising production.  

 

This final chapter discusses the implications of results in this thesis for polyculture 

system management and more specifically, integration of silver perch into marron 

ponds in south-west Western Australia. 
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9.1    Implications for polyculture system management 
 

One of the underlying reasons for investigating the interaction ecology of marron and 

silver perch in this thesis was to determine whether free-range polyculture conditions 

could be manipulated in a way that would reduce niche conflicts, whilst enabling optimal 

production of both species - given that silver perch displayed inhibited growth in cages 

(Whisson 2000, Storer and Whisson 2003). The results of laboratory and field trials 

(Chapter 4,5 and 6) strongly suggest that free-range polyculture is unlikely to be 

economical using current practices, as marron display poor avoidance strategies and 

suffer high predation, even where complex shelter and low light conditions were 

provided (Chapter 6).  

 

Examining the ability of marron to detect visual and chemical cues from silver perch was 

also done to provide insight into whether marron would be negatively affected by stress 

responses from caged silver perch. However, the behaviour of marron in response to 

predatory cues supports the use of cage culture of silver perch, where lack of avoidance 

or obvious modification in behaviour of marron to both chemical and visual cues 

(Chapter 4,5) suggests that caged fish would have little to no negative effect on marron, 

and therefore marron production should not be negatively affected.  

 

In light of these findings, two field trials were conducted within this thesis to investigate 

key variables in the production of marron and caged silver perch in polyculture (Chapter 

7). Given that one of the main problems with holding fish in cages is inhibition of growth, 

this was also accommodated in research designs by examining a range of densities and 

stocking sizes, and through the addition of cage shelters. A core focus of field research 

was investigating growth-density relationships for both marron and silver perch, to 

determine maximum holding capacity for both species, under varying system conditions.  

 

A review of the literature identified several key factors believed to be associated with 

depressed growth of fish in cages, these include: poor water quality (Huguenin 1997, 

Masser 1997), overcrowding (Huguenin 1997, Masser 1988, Whisson 2000), increased 

stress due to visual exposure to predators (Masser 1988), and limited access to natural 

feeds, especially for omnivorous species (Masser 1988). Assuming adequate water 

quality is maintained in ponds containing cages, poor water quality within cages is likely 

to be associated with insufficient water exchange between cages and ponds, which may 
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result in low levels of oxygen and high nitrogenous waste, localised within the cage 

(Masser 1988). Water movement through cages is affected by factors such as pond 

circulation levels, mesh size, algal fouling and stocking densities. In trials conducted in 

this thesis, problems associated with cage water quality were addressed: mesh size of 

cages was standardised, where the largest mesh size preventing escape of fish was 

used to maximise flow through cages, cages were aligned with paddlewheel aerators to 

maximise water throughput (Plate 7.2), and in T7:2, two cages were employed to 

reduce cage stocking densities while maintaining pond densities, thus reducing 

impedance of water flow by fish. 

 

In the two field trials reported in Chapter 7 (T7:1 and T7:2), the other factors influencing 

production of fish in cages (overcrowding, stress due to high visibility to predators and 

access to natural feed) were examined. This was done through manipulation of stocking 

regime (i.e. stocking size, cage densities and pond density) and habitat complexity 

within cages. Cage shelters were tested for the first time in silver perch culture to 

investigate their effect on stress, and in an attempt to encourage epiphytic growth, 

which could be accessed as feed by silver perch. Cage shelters were monitored for any 

affects on water quality due to resistance of flow through cages. Total pond yields were 

examined under various density regimes, and the role of shelter (amount and 

placement) was investigated. Ultimately, marron were the primary species in all 

research, with the underlying aim of commercialising polyculture through maximising 

yields in existing marron farming operations. As such, discussion primarily examines 

research outcomes related to marron production.  

 

 

9.1.1          Density interrelationships associated with marron production 
 

The potential for density effects on marron production under polyculture regimes was 

examined in field trials in Chapter 7. Results from these trials were compared to data 

from the only other reported trial using commercial-sized floating fish cages to culture 

silver perch in marron ponds, conducted by Whisson (2000). Unlike trials in this thesis, 

Whisson (2000) examined production over the optimal growth season, and introduced 

juvenile marron and silver perch to systems (as opposed to advanced fingerlings used 

in this thesis).     
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A clear advantage to marron grown in polyculture was apparent in all trials conducted. 

Marron production showed significant increases in growth rate (T7:1 and T7:2), pond 

yield (T7:2, Whisson 2000) and survival (T7:2, Whisson 2000), when silver perch were 

present in the system (Table 9.1). Comparison between densities of silver perch showed 

no negative effects on marron production (final weight, survival, yield) across all trials 

(Table 9.1). Further, results showed positive density relationships in marron production, 

where a significant increase in weight and pond yield was recorded for marron grown in 

the highest perch density (0.56/m2), compared with 0.28/m2 (T7:2). This result is 

supported by Yashouv (1971), who documented increased growth of benthic species in 

the presence of silver carp (Hypophthalmichthys molitrix), attributing higher growth to 

nutritional faecal deposition from carp - resulting in higher polyculture yields.  
 

 

Table 9.1     Marron production from polyculture with different densities of silver perch 

 

Although growth rates from trials reported in Chapter 7 were low, due to off-season 

production, the specific growth rates of marron recorded in November in T7:2, where 

temperatures were reaching optimal levels, are more in line with commercial 

requirements (Table 9.1). Previous trials examining marron monoculture have returned 

Whisson (2000) Chapter 8 November-July

marron 
density 
(#/m2)

perch pond 
density     
(#/m2)

pond 
biomass 

initial kg/ha

pond biomass 
final kg/ha

survival    
(%)

average 
initial Wt (g)

average    
final Wt (g)

SGR       
(%/day)

3 0.00 123 ± 19.5a 229 ± 149a 13.8 ± 8.7a 4.1 ± 0.65a 61.8 ± 12.9a 0.73 ± 0.06a

3 0.18 123 ± 19.5a 380 ± 35a 27.5 ± 5.5a 4.1 ± 0.65a 48.4 ± 5.9a 0.68 ± 0.03a

3 0.36 123 ± 19.5a 374 ± 16a 31.3 ± 1.0a 4.1 ± 0.65a 39.8 ± 1.4a 0.63 ± 0.00a

Storer (2005) Chapter 7 T7:1 - January-July        T7:2 - March-November

marron 
density 
(#/m2)

perch pond 
density     
(#/m2)

pond 
biomass 

initial kg/ha

pond biomass 
final kg/ha

survival    
(%)

average 
initial Wt (g)

average   
final Wt (g)

SGR       
Overall 
(%/day)

SGR        
T2: Nov 
(%/day)

0.07 0.00 49.7 ± 0.28a 56.9 ± 7.3a 82 ± 11.3a 71.6 ± 0.5a 100.5 ± 4.1a 0.39 ± 0.02a

0.07 0.14 49.4 ± 0.14a 65.4 ± 0.9a 80 ± 0.1a 71.2 ± 0.1a 117.8 ± 1.6b 0.58 ± 0.01c

0.07 0.28 49.9 ± 0.14a 48.5 ± 13.2a 65 ± 24.1a 71.8 ± 0.3a 107.2 ± 1.2ab 0.46 ± 0.00b

0.83 0.00 682.8 ± 5.5a 246.4 ± 49.6a 30.7 ± 5.9a 81.9 ± 0.7a 96.3 ± 8.4a 0.08 ± 0.6a n-0.25 ± 0.2a

0.83 0.28 684.6 ± 1.0a 330.8 ± 0.0b 53.3 ± 0.0b 82.2 ± 0.1a 129.1 ± 0.0b 0.21 ± 0.0b 1.11 ± 0.0b

0.83 0.56 682.7 ± 3.5a 463.3 ± 102.4c 40.5 ± 8.2b 82.0 ± 0.5a 136.9 ± 0.9c 0.24 ± 0.0b 0.96 ± 0.0b

T7
:1

T7
:2
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specific growth rates between 0.99%/day and 1.2%/day under optimal conditions of 

temperature (Morrissy et al. 1995a, Whisson 1995b, Whisson 2000), compared with 0.96-

1.11%/day recorded in November in T7:2. In addition, average water temperature across 

all ponds in November was 20.5±0.1°C, which was still below optimal growth conditions, 

at around 24°C for marron (Morrissy 1990). This suggests that growth rates of marron 

may increase further in polyculture with silver perch, exceeding rates experienced in 

previous monoculture studies. Although results in November were only reflected in one 

data point, the result was consistent across all ponds. 

 

The advantages of polyculture on crayfish production has previously been documented 

(Tuten and Avault 1981, Rouse and Stickney 1982, Pillay 1993, Saunders and O’Sullivan 

1998). In many cases the growth benefits observed in crayfish cultured with fish have 

been attributed to synergism between species, with benefits including: improved nutrient 

cycling (Riise and Roos 1997, Liu and Cai 1998, RIRDC 2002b), soil enhancement 

(RIRDC 2002b), and nitrogen fixing (RIRDC 2002b, Langdon, Evans and Demetropoulos 

2004). In all field studies reported in this thesis, or by Whisson (2000), no negative 

aspects were identified pertaining to marron production with caged perch. Based on the 

increased yields of crayfish seen in trials reported, the incorporation of caged silver perch 

in marron farms is recommended, regardless of whether silver perch are grown 

commercially. That is, the benefit to marron production per se exceed the costs 

associated with silver perch and cages. 

  

Low survival of marron was experienced in all trials, including monoculture treatments 

(Table 9.1), which suggests an overriding factor was responsible. In Chapter 7, high 

mortality rates were predominantly associated with external predation, with carcasses 

often found above water line. In light of perimeter fencing (preventing access to land-

bound predators) and analysis of injuries sustained by marron mortalities, avian 

predators are believed to be accountable for the majority of deaths, in both monoculture 

and caged-silver perch treatments. In marron pond culture, the benefits of bird netting 

cannot be understated, with survival rates of marron commonly reported above 85% 

where avian predation is not evident (Villarreal 1988, Bennison and Morrissy 1991, 

Whisson 1995a). 
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9.1.2          Density interrelationships associated with silver perch production 
 

The foundation study into density interrelationships between silver perch held in cages 

was conducted by Whisson (2000), where cage densities of 17.4/m3, 52.2/m3, 87.0/m3 

and 121.7/m3 were examined. Results from this study detailed specific growth rates of 

1.76±0.01%/day, 1.37±0.01%/day, 1.33±0.03%/day and 1.04±0.07%/day, respectively. 

These results clearly showed a direct negative relationship between density and 

growth of silver perch, based on production of silver perch in small circular cages 

(diameter 1.5 m, mesh size 6 mm2, depth 0.75 m).  

 

A number of factors may contribute to negative density relationships demonstrated by 

caged silver perch, these factors may be associated with system density - such as 

impacts on water quality, or localised density (cage density) - such as competition for 

feed, injury from contact with other fish or the cage structure, and hierarchy-related 

stressors from overcrowding. Field trials in Chapter 7 were designed to address some 

of these factors, where silver perch densities were manipulated by both cage density 

and pond density (multiple cages), using large cages (Plate 3.6).  
 

 

9.1.2.1       Density of silver perch in grow-out cages 
 

Whisson (2000) reported reduced SGR and final weight of caged silver perch, 

compared to free-range culture (P<0.01), and a negative correlation between growth 

and cage density. Based on these results, Whisson (2000) recommended further 

examination of densities effects alongside manipulation of system variables, in an 

attempt to optimise cage culture environment. Production of silver perch held in grow-

out cages in T7:1 and T7:2, with comparison to the trial conducted by Whisson (2000), 

provides some insight into factors affecting growth of silver perch in cages. Results are 

summarised in Table 9.2, with cage biomass listed for each trial associated with the 

following stocking densities: 100/cage - 6.84/m3, 180/cage - 12.3/m3, 200/cage - 13.7/

m3 and, 360/cage - 24.7/m3. Although cage densities of silver perch were reduced in 

trials in this thesis, compared with maximum tested by Whisson (2000), cage biomass 

was significantly higher due to larger stocking size of silver perch (Table 9.2). 
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Table 9.2    Production of silver perch held in large floating cages at a range of stocking densities. 

Results from T7:1 and T7:2, and by Whisson (2000, Chapter 8).  

 

In all trials, survival was comparable to industry standards for silver perch monocultures 

(> 90%, Rowland 1994, Rowland et al. 1994c, Rowland et al. 1995), which provides 

evidence that basic cage conditions (water quality and nutrition) were adequate.  

 

Comparisons of cage production of silver perch to free-range data was not made, as 

production in trials in Chapter 7 was not carried out during optimal growth periods, and 

therefore any differences could be attributed to climate. However, results failed to 

demonstrate any density effects over the ranges tested, with production comparisons 

(SGR and final average weight) between the two densities tested (100/cage and 200/

cage), similar in both trials. A number of contributing factors may provide some 

explanation of these results. Growth rates reported in this thesis, especially T7:2, were 

non-linear due to being conducted over the off-season. Relatively lower growth rates over 

this period, compared to results from Whisson (2000), would relate to reduced time, or 

capacity, to established density effects, as the growth-density relationship for silver perch 

is a typical inverse function (Rowland et al. 1994, Rowland 1994c, Rowland et al. 1995). 

Similarly, silver perch in T7:1 and T7:2 were stocked at an advanced size (~200g), with 

the coefficient of variation (cv) for T7:1 = 22.9, and for T7:2 = 19.9 (T7:2), compared with 

data from Whisson (2000) for fish of similar size (~150g) at cv (%) = 41.56. That is, silver 

perch were of more uniform size in T7:1 and T7:2, compared to Whisson (2000). This 

Whisson (2000) Chapter 8 November-July

initial cage 
biomass (kg/m3)

final cage 
biomass (kg/m3)

survival      
(%)

average initial 
Wt (g)

average final 
Wt (g)

SGR         
(%/day)

180/cage 0.30 ± 0.01a 1.88 ± 0.05a 91.7 ± 1.8a 12.3 ± 1.03a 151.5 ± 5.2a 0.96 ± 0.01a

360/cage 0.61 ± 0.03b 3.19 ± 0.14b 93.1 ± 2.1a 12.3 ± 1.04a 95.9 ± 6.5b 0.85 ± 0.03b

Storer (2005) Chapter 7 T7:1 - January-July T7:2 - March-November

initial cage 
biomass (kg/m3)

final cage 
biomass (kg/m3)

survival      
(%)

average initial 
Wt (g)

average   
final Wt (g)

SGR          
trial 2: Nov       

(%/day)

100/cage (T1) 1.36 ± 0.00a 1.92± 0.01a 98 ± 2.0a 200.1 ± 0.2a 286.2 ± 4.3a 0.18 ± 0.021a

200/cage (T1) 2.73 ± 0.01b 3.66 ± 0.36b 96.75 ± 1.8a 198.8 ± 0.6a 276.5 ± 24.9a 0.16 ± 0.031a

100/cage (T2) 1.26 ± 0.01a 2.59 ± 0.08a 84.3 ± 0.0a 183.3 ± 0.8a 378.3 ± 11.8a 0.68 ± 0.00a

200/cage (T2) 2.52 ± 0.01b 5.06 ± 0.24b 95.75 ± 5.3a 184.7 ± 0.6a 370.5 ± 15.2a 0.68 ± 0.00a
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stocking strategy would be equivalent to mid-season grading under optimal conditions, 

which has previously been shown to reduce density-effects (Huguenin 1997). The use of 

cage shelters in T7:2 could also play a role in negating density effects, through reduced 

stress and increased nutrition. The role of cage shelters is discussed in Section 9.1.6. 

 
 
9.1.2.2       Cage density versus pond density 
 

In the previous section, cage densities were examined to determine if growth depression 

experienced by silver perch in cages were related to overcrowding. The problem of 

overcrowding has previously been suggested as a cause of reduced silver perch growth 

in cages (Whisson 2000), however this was not apparent in field trials conducted. 

Another potential influence on growth of caged perch is total system load (i.e. total pond 

biomass). This was tested through the addition of multiple cages in T7:2, with two cages 

each stocked with silver perch at the same density as in the previous trial, effectively 

doubling pond density. This stocking regime also allowed comparison to Whisson (2000), 

as pond densities and total biomass were in excess of those previously examined. 

Maximum pond density in T7:2 was 0.56 silver perch/m2, initial biomass of 513.1 kg/ha 

and final biomass at 986.2 kg/ha; compared to Whisson (2000) with a maximum pond 

density of 0.36/m2, initial biomass of 61.5 kg/ha, and final biomass of 446.8 kg/ha.  

 

No density effects with increased pond biomass (200/pond versus 400/pond) were 

recorded within T7:2, and no density effects between T7:1 and T7:2 containing the same 

cage treatment densities were apparent. This may indicate that density has a greater 

ecological role in growth inhibition than biomass, and as such growth-density effects on 

production may be attenuated by splitting pond biomass into multiple reduced-density 

cages. As many of the factors associated with the effect of overcrowding on growth (food 

competition, stress and injury) would be addressed with multiple lower density cages, 

increased production is explicable. As pond densities in Chapter 7 were the highest 

trialed for marron-perch polysystems, and no density effects were apparent between 

treatments, this would suggest that pond carrying capacity was not reached under the 

experimental conditions. Any conclusions must account for the culture occurring in less 

than optimal conditions, however, growth rates recorded in all ponds in the final data 

point, where conditions were conducive to production, does provide further support for 

increasing pond densities further. 
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9.1.3          Optimal stocking densities 
 

Results from both marron and perch indicate that optimal densities of both species are in 

excess of those trialed. However, it is possible that given optimal conditions, increased 

biomass of fish and marron may have produced minor density effects. In addition, results 

must be taken in light of reduced survival of marron in both trials, which reduces overall 

system loads - although due to the relatively low waste output from marron (compared 

with perch) this is not believed to be a major contributing factor. 

 
 

9.1.4     Market-sized silver perch in one growth season? 
 

Stocking size of silver perch was increased from fingerlings (<15g) in the previous trial 

conducted by Whisson (2000), to advanced juveniles (approx. 185g) in trials reported in 

Chapter 7. The introduction of advanced silver perch helped determine whether the initial 

increase in cage biomass would compound negative density effects previously reported 

(Whisson 2000) or whether, given inhibited growth of perch in cages, silver perch could 

obtain market size in one growth season. As growth of silver perch did not appear 

influenced by the densities examined in Chapter 7, preliminary evidence supports the 

option of cage stocking advanced fingerlings under polyculture conditions. In addition, 

the use of advanced fingerlings demonstrated potential production benefits associated 

with lower final population variation compared to introduction of juveniles (Whisson 

2000), which relates to a greater proportion of the population reaching market size in a 

given time (reduced runts). This finding reiterates the need for continual grading of caged 

fish, regardless of stocking size.  
 

The required stocking size of caged silver perch to achieve market weight in one growth 

season is difficult to predict as field trials in this thesis were not conducted during optimal 

conditions, however inferences can be made based on growth data recorded for silver 

perch in November, where temperature were close to optimum. Based on an average 

growth of silver perch between October and November (30 days) of 66.43±5.8g, and 

conservatively assuming that growth would remain stable between September and April, 

silver perch would need to be stocked at around 100g to reach market size (500g) in one 

season. At this stocking size, average size of silver perch should be >560g at the end of 

the April, which should allow for more than 80% of stock over 500g, based on population 

distribution assessments made in November. This speculation is based on the 

understanding that many factors will influence results, and requires further examination .  
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9.1.5          Habitat complexity in ponds 
 

The role of habitat complexity on interrelationships between crayfish and potential finfish 

predators was assessed in laboratory and field studies in Chapter 6 (T6:1, T6:2), where 

the addition of shelter resulted in significantly increased survival of marron (P<0.05). 

This concurs with many authors studying the affects of shelter in reducing predation 

(Stein and Magnusson 1976, Rincon et al. 2002, Naranjo-Paramo et al. 2004). 

However, where shelter was employed in T6:2, growth rates of marron were reduced. 

This result may have been due to high mortalities influencing population distribution, 

however, as marron were observed remaining in shelter in response to predators in 

T6:1 reduced growth may be a function of inhibited foraging. Other studies examining 

crayfish response to predators have previously described reduced foraging (Hazlett 

1994a, Bouwma and Hazlett 2001, Gherardi et al. 2002). These results should not limit 

production of marron with caged perch, as laboratory investigations suggest that marron 

do not respond with avoidance tactics to cues associated with fish in cages. 

 

The use of shelter in the field trials carried out in Chapter 7 was not investigated 

directly, however a number of outcomes are worthy of discussion. Analysis of marron 

carcasses discovered in all field trials indicated bird predation, with injuries consistent 

with avian attack, and dead animals almost always found out of water. Previous studies 

involving freshwater crayfish (Cherax species) cultured in ponds have shown highly 

susceptibility to avian predators, such as cormorants (Jones and Ruscoe 1996). In 

addition, a high percentage of the marron mortalities recovered were moulting or 

immediate post-moult crayfish. This suggests that either birds targeted the softer 

shelled marron, or more likely, that moulting marron were inhabiting shallow bank 

regions to escape cannibalism, and were therefore more exposed to avian predators. 

These observations imply that shelter complexity or density was insufficient in 

preventing bird predation. Although bird-netting would appear to be the only way to 

totally protect stock, the introduction of shelters along pond banks in T7:2 demonstrated 

encouraging results, with a clear decline in the number of marron carcasses found in 

and around ponds. It is assumed that the exposed shallow bank-regions of ponds would 

also contribute to the number of moult-deaths in marron ponds, regardless of bird-

netting, due to increased stress levels of marron in this vulnerable area. It is suggested 

that even with pond netting, shelter placed along edges will increase marron survival 

during moulting, as stress is reduced as animals are less exposed to predation or 

cannibalism. 
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9.1.6          Habitat complexity in cages 
 

The use of habitat within silver perch cages in T7:2 was investigated following significant 

increases in silver perch growth where shelter was provided in free-range systems in 

T6:2. It was hypothesised that silver perch in this trial gained benefit from reduced stress 

due to refuge from avian predation and/or nutritional benefit from epiphytic growth on 

shelters. Increased epiphyte growth on submerged materials and the associated 

advantages due to exploitation by fish as food, has previously been shown (Masser 

1988). 
 

The addition of cage shelters appeared to reduce feeding neophobia of silver perch, with 

more rapid initiation of feeding responses, and increased duration of feeding compared 

to previous trials where cage shelters were not used (T7:1). Similarly, silver perch held 

with shelter did not demonstrate startle responses to external disturbances, which are a 

common reaction when workers move around ponds. It is difficult to draw conclusions 

from these observations, as feeding and general behaviour of silver perch was not 

quantified. However, more conclusive evidence was apparent in feed conversion ratios 

(FCR) of silver perch. FCR of silver perch between October and November was between 

1.81 and 2.15 (increase in weight of fish (kg) per kg of feed). These FCR data were 

higher than previously recorded for caged silver perch culture, where upper levels of 

between 1.24 and 1.48 have been reported (Rowland 1994b, Whisson 2000). The 

increased FCR of silver perch where cage shelters were provided may suggest 

increased amounts of supplemental feed. As high levels of filamentous algae were 

observed attached to cage shelters, along with associated invertebrates assemblages 

recorded within cages, both of which are natural feed for silver perch (Grant 1987, 

Barlow et al. 1986), this is supported. In addition, SGR of silver perch in T7:2 (approx. 

0.7%/day, November), where cage shelters were provided, was much higher than in 

T7:1 (maximum of 0.18±0.02%/day), where no shelter was provided (temperature of 

both trials was approximately 20°C over period where FCR was calculated). 
 

The use of shelter in production cages is rarely reported, but where used is has been 

reported to reduce effects from crowding (Deady et al. 1995, Flemming and Hone 1996). 

The role of shelter in negating stress from potential predation has also been shown 

(Appelberg et al. 1993, Baker and Montgomery 2001, Lass 2001), which may explain 

increased feeding responses of silver perch in T7:2. Continued investigation into cage 

shelters in silver perch culture is clearly required, however any studies must consider the 
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potential adverse effects shelters may have on water circulation through cages, as 

water quality problems associated with poor circulation have been identified (Masser 

1988). 
 

 

9.1.7          Off-season production 
 

During winter months in south-west Western Australia water temperatures are generally 

below 15°C. As this falls well below optimal conditions for marron (Morrissy 1995) and 

silver perch (Rowland and Barlow 1991), growth in these periods is often negligible, 

with both species even reported to lose weight in some instances as they use reserves 

to maintain homeostasis (Morrissy et al. 1995a, Whisson 2000, Storer et al. 2004a).  
 

Although assessment of off-season production in this thesis was not an original aim, it  

was worth investigating in light of potential benefits to species that come with combined 

culture, which may relay to production improvements during off season.  Results from 

Chapter 7 showed no identifiable benefits from polyculture during winter months, with 

SGR and FCR of both marron and silver perch displaying low to negative production. 

Based on growth data during winter (marron - Figure 7.3, silver perch -  7.8), stocking 

of both marron and silver perch would appear to be most profitable around July-August 

for silver perch, and September-October for marron, allowing a period of acclimatisation 

before temperatures begin to reach appropriate levels for growth. This finding concurs 

with results from partial budget analysis conducted by Whisson (2000). 
 

 

9.2    Impact of polyculture on marron-silver perch production 
 

The theme underpinning all investigations reported in this thesis pertains to the 

capacity of polyculture to increase the production of marron in ponds, and achieve 

greater overall system yields for marron farmers. If multiple species can be grown in 

combination, without direct conflict or niche interference, then logically overall 

production will benefit from business advantages such as risk spreading (diversified 

income streams) and increased profitability compared to monoculture (resource 

sharing). However, the most impressive benefits from polyculture often come when 

species complement each other, resulting in synergistic advantages, increasing the 

profitability of one or more of the component species - either by reducing the amount of 

artificial feed required (due to nutrient cycling), and/or increased growth of species 

compared to their respective monoculture.  
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9.2.1  Impacts on survival 
 

Survival of silver perch was high in all field trials in this thesis (Table 9.3), with levels 

comparable to optimal levels previously reported (Rowland 1994, Rowland et al. 1994c, 

Rowland et al. 1995). However, marron survival displayed high variability in ponds trials 

reported in this thesis (T7:1,T7:2), and those used for comparison in Table 9.3. The low 

overall survival was not found to be correlated with tested variables (marron or silver perch 

density), and showed no significant difference between monoculture and polyculture 

treatments in trials described in Table 9.3, with one exception: in T7:2, survival was 

significantly improved in polyculture ponds compared with monoculture. In all trials, low 

survival of marron was attributed mainly to avian predators, which may explained 

increased survivability of marron in polyculture ponds in T7:2 - due to fish cages providing 

increased protection from birds.  
 

 
Table 9.3     Survival of marron and caged silver perch in trials reported in this thesis, compared to 

previous studies conducted by Whisson (2000).  

Significant differences exist where different superscripts are denoted along the same row . 

 

 

9.2.2  Impacts on marron yields 
 

Marron displayed significantly faster growth rates when stocked with silver perch in T7:1 

and T7:2, resulting in significant increases in pond yield in T7:2 (Table 9.4). The increased 

growth rates of polycultured marron in all field studies in this thesis, compared to 

monocultures, demonstrates improved system ecology where multiple species are grown 

  Monoculture Low density  
polyculture 

High density  
polyculture 

T7:1 
Chapter 7  

Marron (%) 82 ± 11.3a 80 ± 0.1a 65 ± 24.1a 

Silver perch (%) N/A 98 ± 2.01a 96.8 ± 1.8a 
T7:2 
Chapter 7  

Marron (%) 30.7 ± 5.9a 53.3b 40.5 ± 8.2b 
Silver perch (%) N/A 84.5 95.8 ± 5.3 

Whisson (2000) 
Chapter 5  

Marron (%) 68.4 ± 9.1a 75.6 ± 2.3a 70.1 ± 9.2a 

Silver perch (%) N/A 94.2 ± 0.8a 93.9 ± 1.6a 

Marron (%) 13.8 ± 8.7a 27.5 ± 5.5a 31.3 ± 1.0a 
Silver perch (%) N/A 91.7 ± 1.8a 93.1 ± 2.1a 

Whisson (2000)  
Chapter 8  
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together. Improvements in production due to polyculture have previously been shown (e.

g. Scott et al. 1988, Wahab et al. 1995, Whisson 2000); for example, red swamp crayfish 

(P. clarkii) pond yields were almost doubled compared to monoculture when channel 

catfish (I. punctatus) were introduced into cages within crayfish ponds (Konikoff 1976). 

The ecological benefits that appear to be harnessed by crayfish within these systems 

have previously been discussed. Cohen (1984) suggested that increases in yields were 

due in part to a recycling process occurring within the system. Rouse et al. (1987) cited 

re-distribution of food and water quality improvements as likely polyculture benefits. In 

respect to marron-perch polycultures, Whisson (2000) suggested that silver perch only 

partially digest feed, leaving highly nutritious faecal pellet for benthic dwellers. This 

concurs with Yashouv (1971), who hypothesised that rich faecal pellets produced by 

some fish species could result in improved yields of omnivorous species, such as crayfish.  
 

 
Table 9.4     Marron pond production: monoculture versus polyculture with caged silver perch. 

Results from this thesis are compared with previous trials investigating marron-perch 

culture (Whisson 2000). 

Significant differences exist where different superscripts are denoted along the same row .  

 

Another potential ecological benefit from combining silver perch in marron ponds may be 

related to removal of crayfish competitors/predators. One observation made in all field 

studies in this thesis, was the reduction of tadpoles and dragonfly nymphs in ponds where 

silver perch were held, even when in cages. As has previously been discussed (Section 

 
Pond density  

of marron (/m2) 

Production (kg/ha± standard error) 
 Monoculture Low density  

polyculture 
High density  
polyculture 

T7:1 
Chapter 7 0.07 56.9 ± 7.3a 65.4 ± 0.9a 48.5 ± 13.2a 
(ponds - 0.072 ha)  Pond density of silver perch (/m2) = 0.14 and 0.28  

T7:2 
Chapter 7 0.83 246.4 ± 49.6a 330.8b 463.3 ± 102.4c 
(ponds - 0.072 ha)  Pond density of silver perch (/m2) = 0.28 and 0.56  

Whisson (2000) 
Chapter 5 2.00 1432 ± 137a 1986 ± 18a 1736 ± 148a 

(ponds - 0.024 ha)  Pond density of silver perch (/m2) = 0.25 and 0.50  

Whisson (2000)  
Chapter 8 3.00 229 ± 149a 380 ± 35a 374 ± 16a 
(ponds - 0.024 ha)  Pond density of silver perch (/m2) = 0.18 and 0.36  
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6.2.4.4), both dragonfly nymphs and tadpoles display overlaps in niche occupation with 

marron. Tadpoles compete with marron of all sizes for feed (Parker 1996), such as 

artificial pellets, which would not only reduce growth of marron but will reduce 

profitability to farmers due to lost feed. Dragonfly nymphs will predate on marron at 

hatchling-juvenile stages (Bird 1995, Jones 1995), and most likely target eggs on 

females. Methods of controlling these pest species requires investigation, for example: 

a small number of silver perch released free-range into marron ponds as biological 

controls may provide more benefits than disadvantages.  
 

 

9.2.3  Impacts of polyculture on system yields 
 

In all studies examining marron polyculture with caged silver perch (using grow-out 

cages), the combination of species resulted in significant increases in system yields 

compared to marron monoculture (Figure 9.1). These results are supportive of 

numerous other studies demonstrating significantly higher yields from polyculture (e.g. 

Perry and Tarver 1987, Brummet and Alon 1994, Wahab et al. 1995, Jones and Ruscoe 

1996, Whisson 2000).  

Figure 9.1    System yields from marron and silver perch production experiments: monoculture 

versus polyculture  
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9.3             Mine lake aquaculture 
 

The three preliminary trials conducted at the Collie Aquafarm (T6:2,T7:1,T7:2) 

demonstrated that experimental ponds could sustain a level of growth and survival 

comparable to industry standards, for both marron and silver perch. This demonstrates 

that the acid water treatment system (Section 3.1.2.2), was successful in providing water 

capable of sustaining aquatic life and more importantly, aquaculture. Assuming that 

problems encountered with aluminium are controlled, future studies should investigate 

increased pond densities in order to determine maximum profitability, and therefore 

commercial viability, of aquaculture as a beneficial end use for mine lakes.  
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9.4    Summary: research questions addressed 
 

Study area one: Interspecific chemical communication 

• Do marron detect and respond to food odour? YES 

• Are marron able to detect novel chemical signals (pheromones) from silver perch? YES 

• Is foraging or other behaviour influenced by chemical detection of silver perch? NO 

• Does response of marron to chemical cues from silver perch and food vary depending on 

crayfish size and age. NO 

 
Study area two:    Multiple exteroceptive cues 

• Do marron detect visual cues from silver perch? YES 

• Do marron demonstrate a cumulative or varied response to multiple information cues (visual 

and chemical)? ASSUMED, but inconclusive 

• Do marron differentiate exteroceptive cues regarding food and potential predation risk? YES 

• Is foraging influenced by the detection of chemical and/or visual cues from silver perch? NO 

• How does general behaviour and avoidance strategies compare between marron and invasive 

crayfish species? No significant differences, other than increased dominance displayed 
by marron 

• Does the presence of exteroceptive cues from silver perch influence interaction behaviour 

between marron and other species of crayfish? NO 

• Is individual and interaction behaviour between marron and other crayfish species effected by 

diurnal changes in conditions? YES - only as function of increased activity of crayfish 

 

Study area three:  Interaction responses to novel cues 

• What are the results of interaction between marron and a novel predatory fish, Murray cod? 

Ineffective avoidance strategies result in high predation of marron 

• What impacts do shelter and light intensity have on interaction with Murray cod? High 

mortality under all conditions, although shelter reduced predation rates on marron 

• Do marron exhibit innate avoidance strategies in response to Murray cod? NO 

• Do marron display recognition and learned responses to the presence of Murray cod? and are 

inducible defences effective?  YES 

 

Study area four:   System variables  

• How does stocking regime of marron effect population dynamics, growth and survival of 

marron in ponds? No density effects were apparent 

• How does stocking regime of silver perch in cages effect population dynamics, growth and 

survival of silver perch in ponds? No density effects on either species,  

• Does stocking advanced fingerlings have the potential to produce market sized fish in one 

season? Yes 
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• How does shelter complexity affect marron production in polyculture in ponds with caged 

silver perch? Increased survival of marron 

• Does manipulation of cage culture dynamics (shelter) effect silver perch condition?  

Increased foraging and assumed benefits to growth and stress reduction 

• Does polyculture provide any off-season benefits in growth or survival of marron or silver 

perch? Inconclusive 

 

 
9.5    Conclusions 
 

Attempting to understand the way species detect, interpret and react to the range of 

biotic and abiotic factors in their environment in order to drive management is an 

approach to aquaculture not previously conducted in Western Australia. Altering system 

variables can greatly influence interaction in multi-species systems and therefore affect 

productivity. However, as the effects of changing system dynamics are not ubiquitous 

between species combinations and between systems, management often requires a 

site-specific and species-specific approach. Historically, the development of 

management strategies that optimise production are arrived at by trial and error which, 

especially with complex aquatic polycultures, can take significant time. If researchers 

understand the way target species receive and act on information pertaining to a range 

of ecological events, more educated manipulation of variables would be possible - 

significantly reducing time taken to improve production. 

 

Polyculture has clearly been shown as a way of improving marron production yields, 

total pond yields and profitability. Several system variables appear to improve 

polyculture production of marron and silver perch, including cage shelters, appropriate 

placement of pond shelters, stocking regime, and multiple lower-density cages for silver 

perch (versus single high density systems). The importance of ecological approaches 

to understanding interaction within multi-species systems cannot be understated. The 

complex interrelationships between species and the natural and artificial variables 

require interaction-based analysis, where multi-factor algorithms can be utilised to allow 

comparison of many variables at the same time, incorporating spatial and temporal 

variations in a range of production variables and system conditions. The many biotic 

and abiotic conditions influencing interactions within polysystems necessitates a 

multidisciplinary approach in order to optimise production. 
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9.6    Recommendations  
 

Laboratory behavioural studies:  

• The water source used to hold animals should follow a standard preparation (i.e. 

chlorination, and subsequent dechlorination) to remove any chemical cues that may 

be present, allowing closer comparison between trials.  

• Due to high standard errors in behavioural responses of crayfish seen in this thesis, 

it is recommended that where only one crayfish is examined per replicant, the 

minimum replicant number be increased to twelve.  

• Behavioural protocols require adaptation for each species tested, as small 

differences in behaviour of crayfish species (i.e. ‘leg sway’ in marron) can influence 

data analysis.  

• Future laboratory studies should examine the role of experience in crayfish 

responses to predators, where wild-stock responses (system with predator) could be 

compared to farm-stock (no predators). Variations in avoidance responses between 

individuals within species should be examined through genetic assessment, to 

determine whether animals with greater fitness in the presence of predators can be 

selected for. 

 

Field trials: 

Optimal stocking densities in the duoculture of marron and silver perch requires 

investigation to determine viability of this diversification option. Production must be 

examined during the optimal growth season, with bird-netted ponds. Given these 

conditions, it is recommended that the medium silver perch density trialed in this thesis 

(100/cage and 2 cages) be used as the base level, increasing densities in additional 

treatments.  

 

A number of key factors affecting polyculture production were outlined in Section 9.5, 

requiring further elucidation (i.e. interaction ecology between component species, shelter 

complexity and management - including crayfish pond habitat and cage shelters for fish, 

stocking regime), however, some additional elements warrant mention. Although increased 

turbidity did not advantage crayfish survivorship in trials in this thesis, this is still believed 

to be a key production element due to its relationship with pond productivity and activity 

levels of crayfish. As polyculture system load increases, turbidity will become progressively 

more important and it is therefore recommended that additional polyculture species that 

would target phytoplankton in ponds be investigated (e.g. mullet, Mugil cephalus). Further, 

additional finfish require evaluation for cage culture with marron - to determine whether 
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marron growth advantages seen with silver perch would occur with other species (e.g. 

freshwater cobbler, Tandanus bostocki). Finally, as it was hypothesised that access to 

supplemental feed by silver perch, associated with epiphytes on cage shelters, led to 

increased growth - it is recommended that future investigations target feed quality for caged 

fish. 
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Appendix A      Water quality data - all investigations 

 
Chapter 4          Chemical communication 
Behavioural responses of marron (Cherax tenuimanus) presented with silver perch 

(Bidyanus bidyanus) culture water 

 

Average data from 24 experimental aquaria (25L) 

 
 
Chapter 5          Visual and chemical cues 
Responses of marron to visual and chemical cues from silver perch (T5:1) 
 

Average data from 24 experimental aquaria (25L) 
 

 29-Jan (03) 30-Jan (03) 31-Jan (03) 

Water quality parameters day 1 - introduction  
(±SD) 

test day 1 
(±SD) 

Test day 2 
(±SD) 

Temperature (°C) 19.84 (0.09) 19.8 (0.00) 19.9 (0.04) 

pH 7.12 (0.01) 7.09 (0.01) 7.06 (0.01) 

Salinity (ppk) 0.23 (0.01) 0.23 (0.00) 0.22 (0.00) 

Conductivity (mS) 0.53 (0.00) 0.53 (0.00) 0.53 (0.00) 

Dissolved oxygen (mg/L) 8.23 (0.02) 8.22 (0.01) 8.20 (0.02) 

Ammonia (NH3) (mg/L) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

 31-Mar (03) 1-Apr (03) 2-Apr (03) 

Water quality parameters day 1 - introduction  
(±SD) 

test day 1 
(±SD) 

Test day 2 
(±SD) 

Temperature (°C) 19.90 (0.07) 19.89 (0.04) 19.78 (0.08) 

pH 7.09 (0.10) 7.07 (0.06) 7.04 (0.03) 

Salinity (ppk) 0.23 (0.01) 0.23 (0.01) 0.22 (0.01) 

Conductivity (mS) 0.53 (0.01) 0.53 (0.01) 0.53 (0.00) 

Dissolved oxygen (mg/L) 8.16 (0.06) 8.13 (0.08) 8.19 (0.06) 

Ammonia (NH3) (mg/L) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 
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Chapter 5          Visual and chemical cues 

Responses of marron to visual and chemical cues in cohabitation with the congeneric 

crayfish, yabby, Cherax albidus (T5:2) 

Average data from 25 experimental aquaria (250L) 
 

 

Chapter 6          Predator-prey interactions 
Predator-prey interactions between Murray cod (Maccullochella peelii peelii) and 

marron (Cherax tenuimanus) in the laboratory 

 

Data from 16 experimental aquaria (250L), over 14 days 
 
 

 12-Dec (03) 13-Dec (03) 

Water quality parameters test day 1 (±SD) Test day 2 (±SD) 

Temperature (°C) 20.13 (0.06) 20.01 (0.10) 

pH 7.01 (0.08) 7.01 (0.12) 

Salinity (ppk) 0.22 (0.01) 0.23 (0.02) 

Conductivity (mS) 0.53 (0.05) 0.53 (0.02) 

Dissolved oxygen (mg/L) 8.20 (0.00) 8.21 (0.06) 

Total Ammonia (mg/L)  0.00 (0.00) 0.00 (0.001) 

Nitrite (mg/L) 0.00 (0.00) 0.00 (0.00) 

Nitrate (mg/L) 0.00 (0.00) 0.00 (0.00) 

 27-Apr to 11-May (04) 

Water quality parameters Average all tanks for duration 
of trial (±SD) 

Temperature (°C) 18.15 (0.08) 

pH 7.11 (0.15) 

Salinity (ppk) 0.23 (0.03) 

Conductivity (mS) 0.53 (0.02) 

Dissolved oxygen (mg/L) 7.4 (0.03) 

Ammonia (NH3) (mg/L) 0.001 (0.0015) 
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Chapter 6          Predator-prey interactions 

Predator-prey interactions: between silver perch (Bidyanus bidyanus) and marron 

(Cherax tenuimanus) in the field 

 
MONTHLY AVERAGE OF ALL PONDS 

Average data from six aquaculture ponds (0.072 ha), measured between 1500-1700 

 
 
POND AVERAGE OVER TRIAL DURATION 

Average data between December and March in all ponds, measured between 1500-1700 

Water quality parameters December 
(±SE) 

January 
(±SE) 

February 
(±SE) 

March  
(±SE) 

Temperature (°C) 24.23 (0.09) 24.3 (0.05) 22.68 (0.09) 22.23 (0.09) 

pH 7.56 (0.03) 7.72 (0.03) 7.44 (0.09) 7.36 (0.11) 

Salinity (ppk) 0.67 (0.00) 0.80 (0.01) 0.88 (0.01) 0.90 (0.01) 

Conductivity (mS) 1.42 (0.04) 1.60 (0.02) 1.64 (0.01) 1.79 (0.02) 

Dissolved oxygen (mg/L) 7.68 (0.03) 7.47 (0.05) 7.65 (0.06) 7.60 (0.08) 

Ammonia (NH3) (mg/L) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

Alkalinity (mg/L) 52.1 (2.99) X X 41.67 (3.81) 

Turbidity (visible depth/cm) >50 48 (0.06) 41 (1.6) 38 (2.9) 

Water quality  
parameters 

Pond 1 
(±SD) 

Pond 2
(±SD) 

Pond 3
(±SD) 

Pond 4  
(±SD) 

Pond 5  
(±SD) 

Pond 6  
(±SD) 

       
Temperature (°C) 
 

23.59 
(1.72) 

23.45 
(1.75) 

23.53 
(1.86) 

23.33 
(1.73) 

23.61 
(1.73) 

23.80 
(1.7) 

pH 
 

7.32 
(0.52) 

7.43 
(0.48) 

7.53 
(0.31) 

7.65 
(0.24) 

7.67 
(0.24) 

7.68  
(0.25) 

Salinity (ppk) 
 

0.81 
(0.1) 

0.79 
(0.1) 

0.80  
(0.1) 

0.80 
(0.1) 

0.77 
(0.09) 

0.78  
(0.1) 

Conductivity (mS) 
 

1.60 
(0.18) 

1.58 
(0.19) 

1.58 
(0.18) 

1.58 
(0.19) 

1.53 
(0.15) 

1.62  
(0.5) 

Dissolved oxygen (mg/L) 
 

7.42 
(0.4) 

7.64 
(0.3) 

7.57  
(0.4) 

7.70  
(0.3) 

7.60 
(0.33) 

7.56  
(0.4) 

Ammonia (NH3) (mg/L) 
 

0.00  
(0) 

0.00  
(0) 

0.00  
(0) 

0.00  
(0) 

0.00  
(0) 

0.00  
(0) 

Alkalinity (mg/L) 
 

45.37 
(1.67) 

42.17 
(4.66) 

46.88 
(3.11) 

45.33 
(1.98) 

43.73 
(2.66) 

41.22 
(3.6) 

Turbidity (visible depth/cm) 45 (2.1) 42 (5.4) 44 (2.9) 42 (4.1) 43 (4.3) 47 (1.2) 
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Chapter 7          Polyculture of marron and caged silver perch in the field 
Effects of silver perch density in cages on polyculture performance of both species 

(pilot study) (T7:1) 
 

Average data from six aquaculture ponds (0.072 ha), measured between 1500-1700 

 
 
Chapter 7          Polyculture of marron and caged silver perch in the field 
Effects of increased pond densities and cage shelters on polyculture production of 

marron and silver perch  (T7:2) 

Average data from six aquaculture ponds (0.072 ha), measured between 1500-1700 

 

Water quality  
parameters 

Mar-April 
(±SE) 

May-June 
(±SE) 

July-Aug 
(±SE) 

Sept-Oct 
(±SE) 

November 
(±SE) 

Temperature (°C) 21.5 (0.14) 14.69 (0.06) 12.36 (0.07) 16.88 (0.04) 20.48 (0.12) 

pH 7.64 (0.09) 7.06 (0.19) 7.82 (0.12) 7.99 (0.06) 7.57 (0.05) 

Salinity (ppk) 0.68 (0.01) 0.43 (0.01) 0.49 (0.01) 0.48 (0.01) 0.57 (0.01) 

Conductivity (mS) 1.19 (0.01) 0.87 (0.01) 1.01 (0.01) 1.13 (0.07) 1.17 (0.01) 

Dissolved oxygen (mg/L) 8.58 (0.08) 9.57 (0.05) 10.01 (0.07) 8.99 (0.06) 8.13 (0.11) 

Ammonia (NH3) (mg/L) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

Alkalinity (mg/L) (SD only) 41.67 (5.59) no data 22.33 (6.98) 41.67 (8.52) no data 

Turbidity (visible depth/cm) 39 (5.6) 41 (4.1) 32 (1.9) 28 (4.2) 22 (5.9) 

Water quality  
parameters 

Dec
(±SE) 

Jan 
(±SE) 

Feb 
(±SE) 

Mar  
(±SE) 

Apr 
(±SE) 

May  
(±SE) 

Jun  
(±SE) 

Jul 
(±SE) 

Temperature (°C) 22.8 
(0.8) 

23.38 
(0.9) 

21.78 
(1.51) 

21.77 
(0.86) 

19.67 
(0.63) 

15.85 
(0.52) 

14.9 
(0.45) 

13.76 
(0.48) 

pH 7.36 
(0.1) 

7.45 
(0.2) 

8.73 
(0.5) 

8.12 
(0.2) 

7.81 
(0.2) 

7.42 
(0.2) 

7.62 
(0.2) 

7.61 
(0.2) 

Salinity (ppk) 0.54 
(0.03) 

0.58 
(0.03) 

1.29 
(1.47) 

0.68 
(0.02) 

0.62 
(0.02) 

0.52 
(0.02) 

0.5 
(0.03) 

0.5 
(0.03) 

Conductivity (mS) no data 1.3 
(0.06) 

1.39 
(0.11) 

1.44 
(0.02) no data 1.07 

(0.0) 
1.0 

(0.03) no data 

Diss. oxygen (mg/L) 10.44 
(0.11) 

10.34 
(0.09) 

10.14 
(0.73) 

10.32 
(0.15) 

10.42 
(0.15) 

10.48 
(0.11) 

9.96 
(0.15) 

10.51 
(0.12) 

Ammonia (NH3)(mg/L) 0.00 
(0.0) 

0.00 
(0.0) 

0.00 
(0.0) 

0.00 
(0.0) 

0.00 
(0.0) 

0.00 
(0.0) 

0.00 
(0.0) 

0.00 
(0.0) 

Turbidity (visible 
depth/cm) 48 (1.1) 48 (0.9) 45 (1.1) 28 (4.3) 27 (4.0) 22 (3.1) 26 (2.5) 19 (1.3) 
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Appendix B     Summary tables for behavioural recordings 

 
Chapter 4           Chemical communication  
           

Table I           Mean values (s.e.) of the reaction time (s), behaviours and body posture (%) 

in the presence of two different odours (FOOD, F+CW = food and silver 

perch culture water) 
 

Table II          Summary table - results from Chapter 4 

           

 

Chapter 5           Visual and Chemical cues 
 

Table III         T5:1: Mean values (s.e.) of the reaction time (s), behaviours and body 

posture (%) in the presence of two different odours (FOOD, F+P = food and 

silver perch pheromones) 

 

Table IV         Summary table - results from T5:1  

 

                       

Table Va        T5:2: Reaction time, behaviours and body posture of C. tenuimanus 

presented with visual and/or chemical cues from B. bidyanus 

 

Table Vb        T5:2: Reaction time, behaviours and body posture of C. albidus presented 

with visual and/or chemical cues from B. bidyanus 

 

Table VI         T5:2: Summary of interaction response of crayfish in control treatments for 

each test. 

 

Table VII        T52: Summary of response of crayfish to exteroceptive cues from silver 

perch. 
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Table II                   Summary table - significant results from Chapter 4 

 

Summary of behavioural responses of marron to control and test solutions. Statistical 

differences accompanying results are indicated by * = P<0.05, ** = P<0.01, NS =non-significant 

(P<0.1).  

 

Size-class response to control water signif. 

Note: high population variations (standard errors) within size classes  
Shelter rarely utilised by large marron NS 

Sex-related differences in response to control water  

LM: Low posture preferred by males v intermediate posture by females  ** 

MM: females sheltered more than males NS 

Control water v test solutions  

Reaction time: faster for all crayfish sizes to both test solutions */** 

Locomotion Increased in response to test solutions for all crayfish sizes (NS for F+PCW  
responses) 

* 

Feeding: Increased in response to test solutions (only significant in MM and food solution) * 

Comparison between test solutions  

LM reacted faster responding to F+PCW than food solution * 

LM displayed inhibited feeding with F+PCW (P<0.1) NS 

MM reduce locomotion in F+PCW * 

Comparison between size-classes  

SM and MM used shelter frequently more than LM in response to F+PCW * 

Overall Trends  

SM sustained feeding, locomotion, antennule flicking, antennae movement and raised  
posture longer in response to test solutions than MM and LM 

N/A 

LM reacted faster to F+PCW (*), with less pronounced changes to locomotion, feeding 
and antennule flicking, than in response to food solution alone 

N/A 
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Table IV                 Summary table - significant results from T5:1 

 

Summary of behavioural responses of marron to control and test solutions. Statistical differ-

ences accompanying results are indicated by * = P<0.05, ** = P<0.01, NS =non-significant 

(P<0.1).  

Abbreviations for treatments are MONO - monoculture, MBAG - marron with empty bag, and MSP - mar-

ron with silver perch in bag, FOOD - food solution, F+PCW - food with perch conditioned water. 

General responses to control water significance 

Marron held in aquaria containing fish in bags showed a number of significant 
differences in background behaviours to other groups: 

 

— Increased antennule flicking compared to monoculture treatment ** 

— Increased antennae movement compared to marron with empty bags in aquaria * 

— Chose low posture more frequently compared to both groups * 

— Chose intermediate posture less frequently than both groups * 

— Increased climbing compared to marron with empty bags in aquaria * 

No significant differences were recorded in behaviour between ‘Monoculture’ and 
‘Marron with empty bag’ treatments  

NS 

Sex-related differences in response to control water  

No significant difference found N/A 

Control water v test solutions  

Reaction Time - faster for all groups in response to both test solution  

— significant for: MONO and F+PCW, MBAG and FOOD, MSP for FOOD * 

Locomotion - increased for all groups in response to test solutions  

— significant for: MONO and FOOD, MONO and F+PCW * 

Feeding activity - increased for all groups in response to test solutions  

— significant for: MONO and FOOD * 

Antennule flicking - increased for all groups in response to test solutions  

— significant for: MBAG and FOOD, MBAG and F+PCW * 

Antennae movement - increased for all groups in response to test solutions  

— significant for: MBAG and F+PCW * 

Comparison between test solutions  

No significant differences found N/A 

Comparison between treatments for each test solution  

No significant differences found N/A 
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‘Control’ had no fish cues and ‘single sex’ was in presence of both visual and chemical stimuli. 
Analysis of variance and post-hoc (Equal variances - Tukey’s (reported), Bonferroni, Sheffe; Non-
equal variances - Dunnett’s T3 (reported) and Tamhane) were used to determine differences 
between treatments for each behaviour. *P<0.05, ** P<0.01, ***P<0.001 

Table Va     Data represent differences in reaction time, behaviours and body posture of          
C. tenuimanus presented with visual and/or chemical cues from B. bidyanus 

Mean ± S.E.
Control 286.50 28.50 0.000 ∗∗∗ 0.000 ∗∗∗ 0.000 ∗∗∗ 0.000 ∗∗∗
Visual 54.00 29.26 0.963 0.920 0.873

Chemical 78.00 39.55 0.571 0.493
Vis/Chem 24.00 4.00 1.000
SingleSex 19.50 3.20
Control 20.00% 13.33 0.807 0.800 1.000 0.972
Visual 3.33% 3.33 0.195 0.807 0.989

Chemical 42.86% 15.18 0.800 0.428
Vis/Chem 20.00% 13.33 0.972
SingleSex 10.00% 10.00
Control 10.48% 5.93 1.000 1.000 0.821 0.781
Visual 13.33% 6.76 1.000 0.977 0.947

Chemical 14.29% 4.97 0.950 0.913
Vis/Chem 22.38% 5.55 1.000
SingleSex 24.76% 7.51
Control 48.57% 14.53 1.000 0.987 0.897 0.967
Visual 46.19% 14.02 0.998 0.957 0.994

Chemical 30.48% 12.64 1.000 1.000
Vis/Chem 29.52% 12.31 1.000
SingleSex 28.10% 12.65
Control 16.67% 10.05 1.000 0.982 1.000 0.998
Visual 15.71% 8.58 0.888 0.979 0.950

Chemical 33.33% 13.49 1.000 1.000
Vis/Chem 29.05% 10.52 1.000
SingleSex 31.43% 11.75
Control 10.48% 7.47 0.992 0.782 0.549 0.439
Visual 20.00% 10.64 0.999 0.984 0.980

Chemical 31.43% 12.96 1.000 1.000
Vis/Chem 37.62% 12.77 1.000
SingleSex 39.05% 11.17
Control 4.29% 2.88 1000.000 0.984 1.000 1.000
Visual 2.38% 1.91 1.000 1.000 1.000

Chemical 1.43% 1.43 0.973 0.997
Vis/Chem 3.81% 1.98 1.000
SingleSex 3.33% 2.25
Control 5.71% 2.11 0.347 0.533 0.033 ∗ 0.007 ∗∗
Visual 30.95% 9.13 0.998 0.783 0.443

Chemical 27.62% 7.27 0.593 0.274
Vis/Chem 41.43% 11.75 0.980
SingleSex 53.33% 8.21
Control 38.10% 8.03 0.194 0.001 ∗∗ 0.030 ∗ 0.004 ∗∗∗
Visual 69.52% 8.49 0.312 0.918 0.513

Chemical 89.05% 6.31 0.803 0.997
Vis/Chem 73.81% 11.63 0.943
SingleSex 89.52% 2.91
Control 0.96% 0.96 0.857 0.750 0.872 0.172
Visual 16.67% 10.27 1.000 1.000 0.704

Chemical 20.48% 11.56 0.999 0.820
Vis/Chem 15.71% 10.95 0.684
SingleSex 37.62% 13.19
Control 3.81% 3.31 0.634 0.634 0.853 0.752
Visual 0.48% 0.48 1.000 0.995 1.000

Chemical 0.48% 0.48 0.995 1.000
Vis/Chem 1.43% 1.43 1.000
SingleSex 0.95% 0.95
Control 12.86% 9.42 0.294 0.326 0.360 0.433
Visual 0.48% 0.48 1.000 1.000 0.999

Chemical 0.95% 0.95 1.000 1.000
Vis/Chem 1.43% 1.43 1.000
SingleSex 2.38% 1.63
Control 0.00% 0.00 0.999 1.000 0.802 0.059
Visual 0.48% 0.48 0.999 0.920 0.110

Chemical 0.00% 0.00 0.802 0.059
Vis/Chem 1.90% 1.45 0.466
SingleSex 4.76% 2.24

Non Aggressive 
interation

Behaviour 
observations Treatment % Time spent in 

behaviour v Visual Treatment v Chemical Treatment v Vis/Chem Treatment v Single sex Treatment

Aggressor

Locomotion

Intermediate 
posture

Cleaning

Climbing

In Shelter

Raised Posture

Antennae 
Movement

Marron (C. cainii)

Low Posture

Antennule   Flicking

Reaction Time (sec)

Approaches

Marron (C. tenuimanus) 
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‘Control’ had no fish cues and ‘single sex’ was in presence of both visual and chemical stimuli. 
Analysis of variance and post-hoc (Equal variances - Tukey’s (reported), Bonferroni, Sheffe; Non-
equal variances - Dunnett’s T3 (reported) and Tamhane) were used to determine differences 
between treatments for each behaviour. *P<0.05, ** P<0.01, ***P<0.001 

Table Vb      Data represent differences in reaction time, behaviours and body posture of  
                     C.albidus presented with visual and/or chemical cues from B. bidyanus 

Means ± S.E.
Control 255.00 40.00 0.000 ∗∗∗ 0.014 ∗ 0.000 ∗∗∗ 0.000 ∗∗∗
Visual 51.00 29.51 0.544 0.933 0.952

Chemical 115.50 43.76 0.156 0.179
Vis/Chem 18.00 2.00 1.000
SingleSex 21.00 2.44
Control 10.95% 9.94 0.998 1.000 1.000 1.000
Visual 5.24% 5.24 1.000 0.999 0.999

Chemical 9.52% 9.52 1.000 1.000
Vis/Chem 10.00% 10.00 1.000
SingleSex 10.00% 10.00
Control 10.95% 3.55 0.074 1.000 0.878 0.464
Visual 35.71% 7.65 0.083 0.426 0.850

Chemical 11.43% 4.03 0.898 0.495
Vis/Chem 19.52% 7.22 0.950
SingleSex 26.19% 8.47
Control 40.48% 15.00 0.358 0.285 0.678 0.306
Visual 17.62% 6.70 0.003 ∗∗ 0.984 1.000

Chemical 72.38% 11.94 0.015 ∗ 0.002 ∗∗∗
Vis/Chem 25.24% 11.02 0.970
SingleSex 15.71% 5.41
Control 48.57% 13.33 1.000 0.662 1.000 1.000
Visual 59.05% 9.23 0.283 0.999 1.000

Chemical 18.10% 10.01 0.647 0.364
Vis/Chem 50.48% 11.47 1.000
SingleSex 57.14% 10.55
Control 1.90% 1.90 0.466 0.978 0.962 0.364
Visual 16.67% 9.29 0.811 0.857 1.000

Chemical 7.62% 6.07 1.000 0.713
Vis/Chem 9.05% 3.65 0.769
SingleSex 20.48% 8.16
Control 4.76% 15.06 0.900 0.602 0.688 0.769
Visual 1.90% 6.02 0.980 0.993 0.999

Chemical 0.00% 0.00 1.000 0.999
Vis/Chem 0.48% 1.51 1.000
SingleSex 0.95% 3.01
Control 14.76% 7.76 0.246 1.000 0.768 0.762
Visual 43.81% 8.33 0.228 0.976 0.931

Chemical 14.29% 7.68 0.740 0.731
Vis/Chem 32.86% 8.05 1.000
SingleSex 31.90% 6.55
Control 49.05% 10.91 0.551 0.011 ∗ 0.865 0.439
Visual 75.24% 7.34 0.284 1.000 1.000

Chemical 92.86% 2.58 0.225 0.605
Vis/Chem 69.05% 10.68 0.999
SingleSex 76.67% 8.62
Control 0.00% 0.00 0.970 1.000 1.000 0.137
Visual 1.90% 1.45 0.990 0.970 0.406

Chemical 0.48% 0.48 1.000 1.000
Vis/Chem 0.00% 0.00 0.137
SingleSex 7.14% 4.45
Control 2.86% 2.86 0.955 0.954 0.637 0.883
Visual 1.43% 1.02 1.000 0.959 0.999

Chemical 1.43% 0.73 0.959 0.999
Vis/Chem 0.00% 0.00 0.991
SingleSex 0.95% 0.95
Control 1.43% 1.43 1.000 1.000 0.961 0.999
Visual 1.90% 1.90 1.000 0.961 0.995

Chemical 1.43% 1.02 0.801 0.988
Vis/Chem 0.00% 0.00 0.961
SingleSex 0.48% 0.48
Control 0.00% 0.00 1.000 0.479 0.999 0.999
Visual 0.48% 0.48 0.524 1.000 1.000

Chemical 9.05% 8.53 0.615 0.615
Vis/Chem 1.43% 1.02 1.000
SingleSex 1.43% 1.02

Non Aggressive 
interation

Antennule   Flicking

Climbing

Approaches

Aggressor

Intermediate posture

Raised Posture

Cleaning

Antennae Movement

v Vis/Chem Treatment
% Time spent in 

behaviour v Visual Treatment v Chemical Treatment v Single sex Treatment

Yabby (C. destructor)
Behaviour 

observations Treatment

Reaction Time (sec)

In Shelter

Locomotion

Low Posture

Yabbie (C. albidus) 
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Table VI          Summary of interaction response of crayfish in control treatments for each time 

period: 1. following introduction of crayfish; 2. following introduction of silver perch; 

3. nocturnal behaviour. (T5:2).  

 

 

Statistical differences accompanying results are indicated by * = P<0.05, ** = P<0.01, NS =non-

significant (P<0.1). TP refers to time period, NAI - non-aggressive interaction  

 

 

 

Interaction between C. tenuimanus and C. albidus (no fish cues) 
Time period 1  

        5-minute test No significant differences between species, sex, blocks or days 

       2-hour test C. tenuimanus dominant in interactions, and displayed increased 
use of shelter and screen 

Time period 2  

        5-minute test No significant differences between species, sex, blocks or days 

       2-hour test C. tenuimanus dominant, with increased use of screen 

Time period 3  

       2-hour test C. tenuimanus dominant, increased use of screen and evicted C. 
albidus from shelter 

5-minute test (TP1 vs. TP2) Locomotion, antennae movement and NAI’s increased in TP1 for 
both species 

 Number of approaches by C. albidus and raised poster in C. 
tenuimanus in TP1 

2-hour test (TP 1-3) Number of aggressive encounters and NAI’s reduced in TP2 and 
TP3 

 C. tenuimanus dominant species in all TP’s, with aggression in C. 
albidus rarely seen in TP 2 and TP3 

 Shelter use highest in TP2, with C. tenuimanus acquiring shelter 
more often than C. albidus in all TP’s (sig. In TP1 and TP2). C. 
tenuimanus evicted C. albidus from shelter in TP3, no eviction by 
C. albidus in any TP’s 

 C. tenuimanus climbed on screen more than C. albidus in all TP’s 
and mostly in TP2 

Comparisons between control behaviour over time periods  
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Table VII         Summary of response of crayfish to exteroceptive cues from silver perch (time 

period 2), results from T5:2 
 

Statistical differences accompanying results are indicated by * = P<0.05, ** = P<0.01, NS =non-

significant (P<0.1).  NS - Non-significant results, TP - time period, Tx - treatment + No. 

Reaction time and behaviour of crayfish in response to silver perch in time period 2 

5-minute test Reaction to all fish cues significantly faster than control for both species 

 Trend 1: Increased antennae use in response to all fish cues for both 
species (except between control and T3 for C. albidus - no difference) 

 Trend 2: Increased antennule movements in response to all fish cues for 
species 

 Trend 3: Increased climbing in perch treatments in C. tenuimanus 

15-minute test Less aggressive encounters in response to test solutions (NS) 

Behaviour of crayfish in response to chemical cues alone (T3) 

5-minute test (TP2) C. tenuimanus used antennules more than in control 

 C. albidus chose low posture compared to T2, T$ and T%, and used 
antennules more than in control 

 C. albidus chose low posture more than C. tenuimanus 

2-hour test (TP2 vs. TP3) Only treatment to not observe aggressive interactions (TP2) 

 Highest shelter rate for C. tenuimanus and lowest for C. albidus (TP2) 

 No difference between T3 and other treatments in TP3 

Behaviour of crayfish in response to visual cues alone  (T2) 

5-minute test (TP2) No sig. differences were seen between treatments, however, shelter use 
reduced markedly compared to control (T1), T3 and T4. 

 C. tenuimanus moved less and showed greater use of intermediate posture 
than C. albidus. 

2-hour test (TP2 vs. TP3) No significant differences reported in TP2 or TP3 between treatments 

Behaviour of crayfish in response to combined cues  (T4/T5) 

5-minute test (TP2) Reaction times fastest with multiple cues for both species (T4/T5) (NS) 

 Less use of low posture comp[ared to chemical cues alone for C. albidus 

 Increased use of antennules and antennae compared with control for C. 
tenuimanus within T4/T5 

2-hour test (TP2 vs. TP3) No diffs between T4 and T5, or between these and other treatments 

2-hour test (TP2 vs. TP3) Reduction in shelter use and climbing at night, increased eviction of C. 
albidus by C. tenuimanus, and increased aggressive encounters (C. 
tenuimanus dominant) at night compared to directly after introduction of 
silver perch (NS) 

Comparison of treatment responses between day and night time 
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Appendix C      Silver perch pellet feed formulation 
 
 
 
Table IV   Formulation and biochemical composition of commercial silver perch  
                 pellets used for all experiments (Glen Forrest Stockfeeders Pty Ltd) 
 
 
 
 
 

Ingredients % 
Fish meal  27.0 
Soybean meal 20.0 
Blood meal        2.0 
Corn gluten meal 4.0 
Wheat 28.4 
Sorghum   11.0 
Millrun       2.0 
Cod liver oil 1.0 
Di-calcium phosphate 2.0 
Vitamin/mineral premix 2.5 
L-methionine     0.15 
  
Proximate composition            % 
Crude protein 35.6 
Crude fat   5.5 
Linoleic series fatty acids 1.1 
Fibre           4.4 
Carbohydrate 52.1 
  
 g/Kg 
Total methionine 7.4 
Total lysine 22.6 
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Appendix D     Marron pellet feed formulation 
 
 
Table V     Formulation and biochemical composition of commercial marron 
pellets used for all experiments (Wesfeeds Pty Ltd) 
 
 

Protein 23% 
Fat 6% 

Crude Fibre 8.3% 

Calcium 2.9% 

Phosphorous 1.0% 

Salt 0.3% 

Metabolisable energy 9.9 MJ/kg 

Vitamin A 1700 IU/kg 

Vitamin E 10 mg.kg 

Nicotinic acid 33 mg/kg 

Folic acid 0.8 mg/kg 

Thiamine 2.5 mg/kg 

Copper 0.8 mg/kg 

Vitamin D 250 IU/kg 

Vitamin K 0.3 mg/kg 

Calcium pantothenate 21 mg/kg 

Riboflavin 3 mg/kg 

Biotin 125 mg/kg 

Choline 170 mg/kg 

Iodine 0.1 mg/kg 

Iron 2 mg/kg 

anganese 10 mg/kg 

Zinc 4 mg/kg 
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Appendix E      
 
 
Dye test 
 
In T4:1 and T5:1 the ability for crayfish to detect odours from both food and fish culture 
water was tested through injection of cues by syringe into each 54L experimental  
aquaria.  
 
To determine the rate of diffusion of injected material throughout the system, a dye test 
was performed. This test involved injection of equal volume of food dye into ten separate 
aquaria (these systems were not used for experiments) and recording the time taken for 
the colour to reach all parts of the aquarium. This test was repeated twice with each 
aquaria, therefore the test was carried out a total of 30 times.  
 
 
 
Results  
 
The diffusion rate of dye throughout aquaria was consistent for all test systems, the 
following results were recorded. 
 
 
Table A       Total diffusion time of coloured dye in 54L aquaria 

 
Total diffusion of liquid throughout aquaria was achieved in 15.03 ± 2.00 s after infection, 
across all aquaria. Diffusion time was less than 20 s for all aquaria tested. 
 
 
This test was repeated for experiments in T5:2, using 250L aquaria, where time taken for 
dye to move from 1 compartment of aquarium to completely fill the second compartment 
was recorded. The results were as follows:  

Dye test No. Diffusion 
time 

Dye test No. Diffusion 
time 

Dye test No. Diffusion time 

1 15 11 14 21 19 

2 13 12 15 22 18 

3 14 13 14 23 15 

4 17 14 11 24 17 

5 14 15 14 25 12 

6 14 16 15 26 17 

7 15 17 18 27 14 

8 12 18 18 28 19 

9 15 19 14 29 15 

10 15 20 13 30 15 
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Table B        Total diffusion time of coloured dye in 250L aquaria 

 
Total diffusion of liquid throughout aquaria was achieved in 26.2 ± 2.4 s after infection, 
across all aquaria. Diffusion time was less than 30 s for all aquaria tested. 

Dye test No. Diffusion 
time 

Dye test No. Diffusion 
time 

Dye test No. Diffusion time 

1 28 11 29 21 23 

2 29 12 29 22 21 

3 28 13 29 23 26 

4 27 14 28 24 28 

5 23 15 28 25 25 

6 28 16 29 26 24 

7 26 17 26 27 25 

8 24 18 26 28 25 

9 25 19 25 29 28 

10 29 20 24 30 21 




