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Abstract

Methods to study the behaviour of a flexible insert comprising one wall of inviscid

open and channel flows are developed. Improving the understanding of aero- and

hydro-elastic systems such as those studied here, has applications in engineering

and biomechanical systems. The aim here is to predict the conditions under

which surface instabilities will occur, and assess the flow-induced plate behaviour

of the flexible insert in both stable and unstable regimes.

The structural mechanics are modelled using a finite-difference method while

the fluid mechanics are modelled using a boundary-element method. To study

small deflections of the flexible insert, the structural and fluid mechanics are

coupled using a state-space method whereby the eigenvalues and eigenvectors of

the system are directly extracted. This allows the behaviour of a finite flexible

insert with small deflections to be characterised, and an onset flow speed for

surface instabilities to be predicted for given system parameters. An analytical

equation to predict instability onset is also derived for an infinitely long channel

with one rigid and one flexible wall.

An energy growth function is defined to consider the non-normality and tran-

sient growth of the system. Finally, full numerical simulations are performed to

consider large deflections of a flexible insert. Attention is paid to the limit-cycle

flutter type behaviour that occurs after instability onset. Results are compared

with a theoretical equation.

The main findings are that; (i) reduction in channel width will cause flow-

induced surface instabilities to occur at lower flow velocities, (ii) large-amplitude

deflections may grow from small initial disturbances after linear-instability on-

set and before onset via transient growth, and (iii) the amplitude of instability

induced surface oscillations increases as channel height decreases.
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Chapter 1

Introduction

Fluid-structure Interaction (FSI) is present in a wide variety of systems including

examples from nature, engineering and biomechanics. The complexity of the fluid

mechanics combined with a rigid or flexible body, means many FSI problems are

still not fully understood. Engineers have become increasingly interested in FSI

in recent years because of its diverse range of applications. The work presented in

this thesis concentrates on the interactions between a potential flow and a flexible

insert comprising either a single-sided open flow, one or both sides of an otherwise

rigid channel, or separating two channel flows, with the aim of understanding the

flow-induced structural instabilities and flexible insert behaviour. This may help

to aid design and improve the understanding of the structural limitations in a

variety of systems.

1.1 Motivation

1.1.1 Open Flows

Many of the investigations into the stability of a flexible surface stem from the

Kramer experiments (Kramer, 1957, 1960, 1962), but interest in the transition

delaying properties of flexible surfaces dates back much further. An analysis

into the swimming capabilities of bottle-nosed dolphins resulted in what is now

called Gray’s Paradox (Gray, 1936) where Gray estimated the maximum power

output that a dolphin could exert, and the drag forces on a dolphin (modelled

as a flat plate) in a turbulent flow. His results led him to believe that the only

1



2 Chapter 1 : Introduction

way a dolphin could reach the speeds they are known to swim at, is to delay the

transition from laminar to turbulent flow with increasing swimming speed, and

hence reduce the drag forces experienced. Although many of Gray’s assumptions

have since been proven inaccurate and Gray’s paradox solved (Fish, 2006, Fish

and Hui, 1991), there is still much evidence that compliant surfaces can delay

transition to turbulent flow.

Kramer created a range of compliant coatings to resemble dolphin skin and

found drag reductions of up to 60%. He believed that this significant drag reduc-

tion was due to the suppression of Tollmien-Schlichting waves, which are a means

by which a boundary-layer flow transitions from laminar flow to turbulence. With

the compliant coating, transition was thought to occur at much higher Reynolds

numbers. This theory was later confirmed by Gaster (1988). A comprehensive

overview into the transition delaying properties of dolphin skin and compliant

walls has been provided by Carpenter et al. (2000).

The Kramer experiments initiated much research into the transition delaying

properties of compliant coatings and flexible surfaces, in particular into optimis-

ing drag reduction. If a compliant coating is too flexible however, surfaces can

themselves become unstable and predicting the onset of surface instabilities has

been considered using a variety of methods which will be discussed in Chapter 2.

The applications of understanding this fundamental FSI problem are limited

to high (infinite) Reynolds number systems. For the open flow geometry con-

sidered in this work these applications might include engineering systems such

as the unstable vibrations of steel (flexible) plates of spillways in hydro-power

plants and hull panels of modern high-speed ships. This work also has academic

significance to further the understanding of fundamental FSI systems.

1.1.2 Channel Flows

The related problem of fluids interacting with flexible channels has a rich history

of literature including both experimental and theoretical investigations. A de-

tailed review of the history of studies involving fluid-conveying pipes is provided

by Päıdoussis and Issid (1974). One of the first notable investigations was that of

Bourrières (1939) where the equations of motion for a fluid-conveying cantilever
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pipe were derived and their solution compared with experiments. More recently,

cantilever flexible plates with applications to modelling the snoring phenomenon

have been studied by Huang (1995) and Howell et al. (2009).

More relevant to the present work are flexible pipes fixed at both ends,

where early studies of the oscillation frequencies and pipe buckling include those

of Weaver and Unny (1973), Weaver and Myklatun (1973) and Weaver and

Päıdoussis (1977). Understanding these systems has applications for a variety

of engineering systems that involve pipelines and flexible pipes, including under-

water drilling and the nuclear industry (Johansson, 1960, Miller, 1960) and also

biomechanical applications such as airways and blood vessels (Heil and Hazel,

2011).

1.2 Objectives

The aim of this work is to develop methods to model a flexible insert which com-

prises a two-dimensional open or channel ideal flow with the goal of characterising

the plate behaviour. This can be split up into a number of ‘sub-objectives’ which

are as follows:

1. Develop a potential flow model for small-amplitude deflections of a flexible

insert in an open flow.

2. Develop a potential flow model for small-amplitude deflections of a flexible

insert in a channel flow.

3. Develop a potential flow model for small-amplitude deflections of a flexible

insert separating two channel flows.

4. Develop a potential flow model to consider the transient growth and system

non-normality of a flexible plate in an open flow.

5. Develop a potential flow model for large-amplitude deflections of a flexible

insert in an open flow.

6. Develop a potential flow model for large-amplitude deflections of a flexible

insert in a channel flow.
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The schematics of some of the systems considered are shown in Figures 1.1

and 1.2. Figures 1.1 (a) and (b) show the open flow cases of Objectives 1, 4 and 5

where a simple elastic plate and a spring-backed flexible plate has been depicted

respectively. The channel flow case of Objectives 2 and 6 are illustrated in Figure

1.2 (a) and (b) for the finite and infinite cases respectively. The double sided

channel flow of Objective 3 is shown in Figure 1.2 (c).

1.3 Methodology

In order to achieve the objectives outlined, three computational methods are

developed, validated and a range of results presented. In all three methods the

structural and fluid mechanics are modelled by a finite-difference method and

boundary-element method respectively.

Objectives 1, 2 and 3 are achieved by applying a state-space method to cal-

culate the eigenvalues and eigenvectors of the system. These are then analysed,

with particular attention paid to predicting the onset and recovery of flow-induced

structural instabilities. This methodology is applied to a variety of geometries

with particular attention paid to the effect of the proximity of the rigid chan-

nel walls (when present). This modelling is applicable to small-amplitude plate

deflections.

A theoretical method is also developed for the channel flow whereby the chan-

nel is assumed to be infinitely long and the system equations are solved analyti-

cally to predict the onset of instability.

The eigenvalues and eigenvectors from the state-space method are then used

in a non-modal analysis to establish whether transient growth can cause large

plate deflections before the onset of plate instability from the linear predictions.

Finally, the finite-difference method and boundary-element method are cou-

pled to perform time-stepping numerical simulations where a flexible insert com-

prising both an open and channel flow is modelled, for both small and large

deflections.

While it is noted that in practice, many of the applications listed at the end

of Sections 1.1.1 and 1.1.2 can feature turbulent flow, the use of potential flow
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throughout the present work is justified, as flow separation is not a strong feature

of non-lifting surfaces, as considered here. If a thin boundary layer were to be

included in this research it would not have a large impact on any numerical results

for this reason and the results would stay qualitatively the same. In contrast, the

inclusion of a thin boundary layer has a much more significant impact in the case

of lifting aerofoils as flow separation is present and so inclusion of wake effects is

essential. This justification for not including a boundary layer in the case of a

non-lifting surface does not hold for very narrow channels as the boundary layer

thickness relative to the channel height may be non-negligible.

1.4 Thesis Layout

The remainder of the thesis consists of a further 5 chapters throughout which

each objective is addressed using the range of methods outlined:

Chapter 2

A literature review is provided which gives a history of previous investi-

gations into the FSI of flexible surfaces. The types of surface instabilities

will be characterised and stability classifications discussed. Investigations

of similar or relevant geometries will be considered along with comparisons

between the methods used and alternative modelling techniques.

Chapter 3

The linear potential flow model is presented in Chapter 3. Initially, the

system equations are given along with the application of the finite-difference

and boundary-element methods. The state-space method and analytical

solution are then detailed. Validation of the state-space method for the

open-flow case is presented. Validation of the channel flow geometry and

theoretical solution are presented alongside a range of results where different

types of flexible insert are considered for the channel flow including simple

plates, damped plates, flexible membranes and spring-backed plates.

Chapter 4

The transient-growth methods used are outlined and results are presented



6 Chapter 1 : Introduction

for a simple and damped plate in the open flow with comparison to other

investigations. Different mass ratios are considered and the effect of the

proximity of an upper channel wall is considered for the channel flow case.

Chapter 5

The numerical time stepping routine is described with validation given for

large deflections in the open flow and small deflections within a channel.

A theoretical investigation and an iterative method to solve the time in-

dependent system is also outlined. A range of results are presented with

comparisons between the methods and large amplitude deflections in an

open and channel flow are characterised.

Chapter 6

A summary of the overall conclusions drawn with key findings is outlined.

Comment is made on limitations and future work.
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Figure 1.1: Schematics of the open fluid-structure interaction systems studied;

(a) Finite simple elastic plate, (b) Finite spring-backed flexible plate.
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Figure 1.2: Schematics of the channel fluid-structure interaction systems studied;

(a) Finite simple elastic plate, (b) Infinitely long channel with one wall flexible,

(c) Finite flexible plate separating two channel flows.



Chapter 2

Literature Review

This chapter contains details of a variety of previous studies that are relevant

to the work presented here; flexible surfaces and compliant coatings. There is

an emphasis to the surface instabilities that occur. The types of instabilities

will first be considered with their different classifications. Investigations into the

linear and nonlinear deflections of open and channel flows for both inviscid and

viscous flows are described and relevant experiments considered.

2.1 Instability Types

Inspired by the experiments of Kramer (1960) that showed a significant drag

reduction is possible by the use of compliant coatings, an analytical investigation

by Benjamin (1960) revealed three distinct instability types present in the case

of a two-dimensional flow past a flexible boundary. This investigation used linear

theory, and so assumed that the deflections of the surface were small. Benjamin

introduced a class system for the instability types:

Class A - Tollmien-Schlichting waves present in the fluid which are stabilised

by a compliant boundary when compared with a rigid boundary, but that

are destabilised by internal damping in the flexible surface.

Class B - Surface waves which are stabilised by damping in the flexible surface

such as travelling wave flutter.

Class C - Instabilities caused by an interaction between the class A fluid waves

and the class B surface waves, similar to a Kelvin-Helmholtz instability.

9
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The properties of the compliant wall such as stiffness and surface damping, may

stabilise one type of instability at the expense of destabilising another and there

are different approaches that can be taken to optimising the overall drag reduction

of a compliant coating. This system of instability classification is the first of three

notable systems (Gad-el-Hak, 2002).

The class A instabilities, Tollmien-Schlichting waves, were first observed by

Prandtl (1921) and explained by Tollmien (1929) and Schlichting (1933) as a

means of transition from laminar to turbulent flow. These initially linear low-

amplitude waves are initiated by an external disturbance, and then either decay

or grow as they move downstream in the boundary layer. While they are low-

amplitude and linear they can be considered to be two dimensional and these

linear waves are found in approximately 80% of the transition region (Houghton

and Carpenter, 1993). Towards the end of the transition region, the waves grow

rapidly and become three-dimensional, making the boundary layer nonlinear and

complex.

The class B instability, renamed by Carpenter and Garrad (1986) as travelling

wave flutter, is similar in speed to the free-stream speed. It was investigated by

Benjamin (1960) and Landahl (1962) and requires a shear layer to grow but is

otherwise largely unaffected by viscosity.

The class C instabilities, occur when the surface instability interacts with a

fluid instability. These instabilities are similar to a Kelvin-Helmholz instability

which can be seen at the boundary between fluids of different velocities, such as

wind over water.

By modelling a two-dimensional, infinitely long flexible surface in an incom-

pressible potential flow, Landahl (1962) refined Benjamin’s class system. He

showed that there is an irreversible energy exchange between the fluid and solid

for class A and B instabilities. Class A instabilities are stabilised by an energy

transfer from the fluid to the surface and the opposite holds true for class B

waves.

Another classification system was devised by Carpenter and Garrad (1985,

1986). They split the instabilities into two categories: fluid-based instabilities

such as Tollmien-Schlichting waves and flow-induced surface instabilities such as



Chapter 2 : Literature Review 11

divergence.

Divergence is either a static instability or a slowly downstream-travelling in-

stability that occurs when the hydrodynamic forces on the surface are greater

than the restoring forces causing the disturbance to grow. Lucey and Carpenter

(1992) showed that under the Landahl (1962) classification scheme, divergence is

class C instability as damping does not alter its onset.

The final, notable classification is that of Huerre and Monkewitz (1990) where

the instabilities are either convective and grow spatially (Tollmien-Schlichting

waves and travelling wave flutter) or absolute where instabilities grow in time

(static divergence and the inviscid Kelvin-Helmholtz instability).

The viscous instabilities such as Tollmien-Schlichting waves and travelling

wave flutter are not considered here as a potential flow model is used throughout

this thesis. The structural instabilities of divergence and modal-coalescence flut-

ter will be considered, in particular, the instability onset speeds and how they

vary under different conditions.

2.2 Open Flow

The system depicted in Figure 1.1 (a), which is consider in Chapters 4.2.1 and

5.3.1, was first studied for aeronautical applications (Bisplinghoff et al., 1955,

Dugundji et al., 1963) both experimentally and theoretically. Experimental stud-

ies will be discussed in greater detail in Chapter 2.4. Many investigations con-

centrate on the fluid instabilities and Tollmien-Schlichting waves (Carpenter and

Garrad, 1985, Davies and Carpenter, 1997a), but more relevant to this work are

the studies that concentrate on the flow-induced surface instabilities.

The early study of Weaver and Unny (1970) for a finite flat plate in a potential

flow used a Galerkin approach to predict instabilities based upon a normal-mode

decomposition of system disturbances. This method constructs a system solution

as the sum of a set of discrete orthogonal functions usually chosen as the in vacuo

structural modes because they each automatically satisfy the boundary conditions

of the structural side of the system. They predicted that at low flow velocities

the plate is neutrally stable, first losing its stability to single mode divergence,
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and with increasing flow speed, divergence recovery occurs. At sufficiently high

flow speeds a modal-coalescence type of flutter dominates the system response.

This is also found true in the results presented in this thesis. This method is

only applicable for the linear system and has the limitations of a solution that

is dependent upon a chosen number and form of modes. The eigenvalue analysis

used in Chapter 3, while still only applicable to a linear system, has the advantage

over a Galerkin approach by not being dependent on the chosen modes. A similar

method to the Galerkin approach was adopted by Kornecki et al. (1976) who

confirmed that a plate fixed at both ends will lose its stability to divergence but

that a cantilevered plate will lose its stability to a flutter type instability.

By using a travelling-wave assumption, Carpenter and Garrad (1986) con-

sidered the stability of an infinitely long compliant surface where an analytical

solution method invokes a continuous spectrum of locally defined normal modes

to characterise system disturbances. The ensuing solutions then predict instabil-

ity in the limit of infinite time; i.e. as a boundary-value problem, in the form

of the most unstable system eigenmode. They also predicted the flow speed and

wavenumber at which divergence and modal-coalescence flutter occur in a po-

tential flow and compare the solutions with a model to incorporate the viscous

effects and a more complex model where the compliant surface is of finite length.

A similar method to that used by Carpenter and Garrad (1986) is extended in

Chapter 3.1.4 to be applicable for an infinitely long flexible channel and serves

as a useful comparison between the finite channel results of the eigen-analysis.

Since the 1990’s advances in computing capabilities have made numerical sim-

ulations more viable than in previous years. The hydroelastic behaviour of a com-

pliant wall within a potential flow was demonstrated in the linear investigations

of Lucey (1989) and Lucey and Carpenter (1992) and the nonlinear investigations

of Lucey et al. (1997). The same methodology has been used in this work to act

as a validation of the linear analysis of Chapter 3, and also extended to include

features which make it applicable to the channel flow in Chapter 5. The linear

simulations show that divergence onset is unaffected by the presence of structural

damping and takes the form of a wave travelling slowly downstream. They also

demonstrated that the role of damping is to reduce the growth rate of the in-
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stability. Numerical simulations of compliant walls interacting with a boundary

layer were presented by Alekseyev (2002), Wiplier and Ehrenstein (2000, 2001)

and Visbal and Gordinier (2004) to consider the loss of stability to the convective

Tollmien-Schlichting waves.

More recently, Pitman and Lucey (2009) presented a versatile method by

which system eigenvalues can be directly extracted from the discretised system

and this method is valid even for structurally inhomogeneous systems. Although

this approach is more computationally expensive when compared to the tradi-

tional Galerkin methods, it has the advantages of not making assumptions about

the number of modes and mode shapes to construct a solution. This method was

extended by Tan et al. (2013) to model a flexible panel with a localised stiffness

as a means to delaying the onset of divergence and has been extended for this

work to be applicable for the channel flow.

All of these linear studies for incompressible inviscid flow are in agreement

about the non-dimensional flow velocity in that a flexible panel or compliant wall

will lose its stability to divergence, and that at higher flow speeds, flutter will

occur. However, recent work shows that divergence is not necessarily the route

to large-amplitude deformations.

Schmid and de Langre (2003) and Coppola and de Luca (2010) demonstrated

theoretically that very significant transient growth of perturbations can occur

through the non-normality of the system equations. The theoretical framework

established in these non-modal analyses maximises the time-evolution of an en-

ergy norm for the fluid-structure system as an envelope over all potential initial

states. This captures the growth of disturbances that can bypass conventional

linear-instability mechanisms to reach finite amplitudes which may occur for sys-

tem control parameters (e.g. the flow speed) below the critical values based on a

modal analysis. Tsigklifis and Lucey (2013) have recently extended the modelling

of Pitman and Lucey (2009) to analyse non-modal transient growth in boundary-

layer flow over a compliant panel in a three-dimensional system. The non-modal

methodology has also been applied here in Chapter 4 for both the open and

channel flow finite geometries depicted in Figures 1.1 (a) and 1.2 (a).

Theoretical predictions of this type of phenomenon were confirmed in the ex-
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perimental studies of Hémon et al. (2006) and Schwartz et al. (2009). The papers

give the real world example that transient growth might explain the premature

structural fatigue that has been observed in structures subjected to wind. Both

papers demonstrate transient growth of energy, of an aerofoil below the critical

flutter velocity. Schwartz et al. (2009) shows that for a nonlinearly flexible aero-

foil, transient growth can cause a by-pass transition to flutter below the critical

flow velocity.

Two- and three-dimensional instabilities in a two-dimensional boundary layer

were studied by Carpenter and Gajjar (1990) who investigated how different

wall properties affect travelling wave flutter. In particular, they looked at the

differences between isotropic and anisotropic compliant surfaces. Their results

agreed with those of Benjamin (1960) in that for an isotropic wall, travelling

wave flutter is caused by an irreversible energy transfer to the wall. Both two-

and three-dimensional numerical simulations were performed by Lucey (1998) for

a finite flexible panel. They drew comparisons with previous studies where an

infinitely long panel was assumed and found that the long-time response gives

differing results but at early times, the infinite assumption is accurate, such as

the prediction of instability onset in an infinity long system as demonstrated in

Chapter 3.1.4.

Investigations into the large amplitude (nonlinear) deflections of flexible walls

include the numerical simulations of Lucey et al. (1997). They showed small

amplitude disturbances growing to nonlinear amplitudes within the divergence

range of flow speeds that are dominated by the fundamental mode. The inclu-

sion of damping caused a static buckled state with time whereas in the absence

of damping nonlinear oscillations occurred. These findings agree with those of

Reynolds and Dowell (1993) who used numerical integration of the full nonlin-

ear equations of motion. Using a CFD package, simulations were performed by

Knight et al. (2010) alongside a theoretical treatment of the two-dimensional

steady-state. Other nonlinear studies include the potential flow model of Peake

(2001), the two- and three-dimensional model of Geveci and Walker (2001) and

the computational method incorporating a boundary layer of Wiplier and Ehren-

stein (2000). A more detailed account of some of the recent methods and results
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into nonlinear aeroelasticity is provided by Dowell et al. (2003).

The nonlinear numerical simulation methods of Lucey et al. (1997) is extended

in Chapter 5 to make it applicable to the channel flow. In addition, the theoretical

steady-state analysis of Knight et al. (2010) is adapted to include further features

of the flexible insert such as flexural rigidity and divergence onset. This allows

a useful comparison between the maximum and mean-state amplitudes of an

unstable nonlinear insert.

2.3 Channel Flows

Provided here is an overview of some relevant channel-flow studies where the

channel, or part thereof, is compliant. A more detailed review of some of the

physiologically inspired research is provided by Heil and Hazel (2011). With a

flexible insert comprising the wall of a channel, the present work bears similarity

with studies of fluid conveying flexible pipes.

There is a large body of theoretical and computational modelling on viscous

flow in channels and pipes. These effectively address the low-Reynolds-number

range - unsteady laminar-flow - of fluid-structure interactions within the canonical

system. The system is shown to support a range of instabilities that include

divergence, travelling-wave flutter, Tollmien-Schlichting waves and nonlinear self-

excited oscillations.

Tollmien-Schlichting waves and flow-induced surface waves were studied in a

compliant channel by Davies and Carpenter (1997b). Considering linear deforma-

tions for an infinitely long flexible channel they showed, inter alia, that different

instabilities, for example Tollmien-Schlichting waves and travelling-wave flutter,

can interact with each other. They found that channel walls which are effective

at destabilising Tollmien-Schlichting waves are also likely to suppress divergence

when the flow is laminar.

Huang (2001) modelled small-amplitude deformations of a finite tensioned

membrane, found the eigenmodes of divergence and flutter and considered the

effect of the membrane properties and up- and down-stream channel length on

the system. Huang discovered that flutter and divergence occur at similar flow



16 Chapter 2 : Literature Review

velocities, both can occur simultaneously and that increased viscosity has a desta-

bilising effect on flutter. This differs to the inviscid results presented here where,

for a finite plate, modal-coalescence flutter occurs at a higher flow speed then

that of divergence.

Jensen and Heil (2003) developed predictions for the frequency and growth

rate of instabilities. Models for large-amplitude deformations of a finite membrane

in a channel have been developed by Luo and Pedley (1996, 2000) to simulate

sustained self-excited oscillations of the membrane. Spatio-temporal waves were

found by Pitman and Lucey (2010) and a boundary-layer model where the channel

has an inviscid core was developed by Pihler-Puzović and Pedley (2013). Other

high-Reynolds number flow studies include those of Guneratne and Pedley (2006),

Kudenatti et al. (2012) and Jensen and Heil (2003).

Pipe-buckling (divergence) and flutter have been predicted at sufficiently high

flow speeds, for example, by de Langre and Ouvrard (1999) and Doaré and de Lan-

gre (2002), in an infinitely long pipe comprising parallel flexible surfaces in the

undeformed state. In these studies, a one-dimensional (or plug) flow is assumed

in which the flow follows the curve of the deformed channel (or pipe) via the

Päıdoussis equation (Päıdoussis, 1998, 2003). Of closer similarity to the present

work are studies modelling an inviscid fluid.

All of the aforementioned channel flow studies include at least some viscous

effects which are not included in the current methods, however it can been seen

that the instabilities of divergence and flutter occur in both the viscous studies

and the potential flow models considered here.

In contrast to studies using the Päıdoussis equation, the study of Weaver

and Päıdoussis (1977) features flow curvature varying across the channel (the

y-direction in Figure 1.2 (a)). They model a two-dimensional potential flow in

an infinitely long flexible channel using the travelling-wave assumption of distur-

bances in the streamwise direction and a Galerkin approach for a finite section

of the channel. They found that: (i) when the walls display sinuous behaviour,

divergence-onset flow speed increases as the channel height decreases; and (ii)

when the walls display varicose behaviour, divergence-onset flow speed decreases

as the channel height decreases. The first can be explained by the decrease in
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destabilising centrifugal force for a reduced mass of fluid traversing the curved

path of a channel deformation. The second can be understood as arising from an

increase in the gradient of flow curvature across the channel forced by a reduction

in channel height. The varicose case is similar to the channel flow system con-

sidered here as there is a variation to the streamline curvature present across the

channel width and the results shown here also show that divergence-onset flow

speed decreases as the channel height decreases.

The eigenvalues are analysed for an infinitely long channel with one rigid

and one flexible wall for an inviscid fluid by Bach et al. (2010, 2011a,b) and

for a viscous flow by Bach et al. (2012). These studies consider, amongst other

characteristics, the energy transfer and the effect of changing the mass ratio of

the system and the onset of instability is found.

Guo and Paidoussis (2000) considered the stability of a flexible plate with

various boundary conditions, inside a rigid channel. In this study the flexible

plate has flow on both sides resembling the double sided channel flow of this

work (Figure 1.2 (c)), but with the key difference that the flow is not separated.

Using a Galerkin approach it was found that a pinned-pinned plate loses its

stability to divergence, and later, single mode and coupled mode flutter. Other

notable studies of inviscid channel flows are those of Epstein et al. (1995) who

determine the effect of Mach number and mass ratio on flutter onset velocity,

Huang (1998) who consider self-excited oscillations and Mandre and Mahadevan

(2010) who compare the critical flow speeds found using a viscous and inviscid

flow.

2.4 Experimental Studies

Since the significant drag reduction that was reported by Kramer (1960), many

experiments have attempted to recreate, or refine this success. Babanko (1973)

and Babanko et al. (1969) attempted to develop a compliant coating that bet-

ter resembled dolphin skin and Gaster (1988) performed a series of experiments

which provided evidence that Tollmien-Schlichting waves are suppressed by wall

compliance. Their results agreed well with existing theoretical data. Kornecki
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et al. (1976) conducted a series of experimental and theoretical investigations

of fluids interacting with compliant panels for a variety of boundary conditions

at the leading and trailing edges of the panel. A panel with pinned boundary

conditions at both ends was shown to lose stability first to divergence agreeing

with the existing theoretical predictions. Aeroelastic stability was investigated

by Dugundji et al. (1963) who observed travelling wave flutter in a wind tun-

nel. Their results compared well with their theoretical findings for flutter speed

and wavelength but considerable differences were seen for wave speed and flutter

frequency.

Hémon et al. (2006) and Schwartz et al. (2009) have performed experiments

into transient growth, such as that demonstrated in Chapter 4. Hémon et al.

(2006) demonstrated the existence of transient growth by measuring the transient

evolution of energy where the system considered is an aerofoil subject to air flow.

Schwartz et al. (2009) showed that nonlinear flutter of a flexible aerofoil in a wind

tunnel is possible at flows speeds before the linear critical flutter velocity.

Experimental work that complements the pipe- and channel-flow modelling

includes that of Dodds and Runyan (1965) who found a critical flow velocity for

static divergence for a high-velocity fluid through a simply supported pipe and

Weaver and Päıdoussis (1977) who observed a flapping instability in a flattened

tube and found that the critical flow speed at which flapping occurred was reduced

with the gap between tube surfaces. The experiential results of Weaver and

Päıdoussis (1977) are compared to the results in Chapter 3.3.1. However, most

experimental studies - for examples see Conrad (1969), Gavriely et al. (1989),

Bertram et al. (1990), Bertram and Castles (1999) and Bertram and Elliott (2003)

- have tended to focus on large-amplitude deformations and the collapse of flexible

channels in the context of biomechanical applications such as blood-flow in the

smaller vessels. Recent reviews of the rich body of work in this field have been

presented by Grotberg and Jensen (2004) and Heil and Hazel (2011).
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2.5 Summary

It is known that compliant coatings can be used to suppress the growth of

Tollmien-Schlichting waves and hence offer significant drag reduction by means

of delayed transition to turbulence. Flexible surfaces however, can themselves

become unstable. A variety of linear-investigations have shown that flow-induced

surface instabilities exist in the forms of divergence and modal-coalescence flut-

ter and that with increasing flow speed, the surface will first lose its stability

to divergence for surfaces held at both ends. This holds true for both the open

flow and channel flows depicted in Figures 1.1 and 1.2 respectively. Experimental

and theoretical investigations indicate that nonlinear surface deformations are

possible before the linear prediction of surface instability by means of transient

growth. Studies into nonlinear deflections show that large amplitude oscillations

occur.

Although there is already rich and diverse literature covering the FSI of flex-

ible surfaces including, but not limited to, the studies discussed in this literature

review, there are many elements that remain to be understood fully. Those con-

sidered in this thesis include the effect of the proximity of the upper channel wall

on the stability bounds of a flexible channel flow, transient growth effects of a

potential flow, and the nonlinear behaviour of a flexible surface within a channel.

The remainder of this thesis will attempt to address these and is split into three

main investigations: linear disturbances, transient growth and nonlinear distur-

bances. All the work here will be using the potential flow assumption and so the

results are applicable only to high (infinite) Reynolds number systems.



20 Chapter 2 : Literature Review



Chapter 3

Linear Stability of a

Fluid-Loaded Flexible Insert

This chapter investigates the stability of a finite flexible plate in each of an open

flow, comprising one wall of an inviscid channel flow and separating two channel

flows. The method used is detailed whereby a finite-difference method to model

the structural mechanics is coupled with a boundary-element method to model

the fluid mechanics. Using a state-space formulation the eigen solution is analysed

to predict the flow speeds at which divergence instability, divergence recovery and

modal-coalescence flutter occur for given system parameters.

An open flow is considered to compare with previous investigations as a means

of validation that the structural and fluid mechanics are implemented correctly.

The new aspect of this work is to consider the stability of a flexible insert

comprising one wall of an inviscid channel flow and results are presented for

a variety of different insert types which are then compared with other studies

and experiments. A separate analytical method is developed for an infinitely

long channel where either one or both walls are flexible and this is compared

to the state-space solution for plates with a high order mode shape. Finally,

eigen-analysis is performed on a double sided channel and a range of results are

presented.

The linear assumptions made are only valid for small plate deflections and al-

though the results give accurate predictions for instability onset, to consider large

amplitude deformations, alternative modelling techniques should be considered;

21
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these are addressed in Chapter 5.

3.1 Method

3.1.1 Governing Equations

Structural Mechanics

The motion of a thin flexible plate is described by the extended and linearised

one-dimensional beam equation,

ρmh
∂2η

∂t2
+ d

∂η

∂t
+B

∂4η

∂x4
+Kη − T ∂

2η

∂x2
= −∆p(x, 0, t), (3.1)

where η (x, t), ρm, h, d and B are respectively the plate’s vertical displacement,

density, thickness, damping and flexural rigidity, K is the stiffness of the uni-

formly distributed spring foundation, T is a uniform tension and ∆p is the un-

steady pressure perturbation. The flexural rigidity is defined by,

B =
Eh3

12(1− ν2)
, (3.2)

where E is the elastic modulus and ν is Poisson’s ratio. This model is valid for

small deflections of the surface. The damping, spring and tensioned terms can be

neglected from this equation if not required for the type of flexible insert being

modelled.

To model the structural mechanics a finite-difference method, developed by

Lucey and Carpenter (1992), is used whereby the surface of the plate is discretised

into Nf mass points, located at each panel end. Each panel then has a control

point at its centre. This allows for convenient coupling with the flow mechanics.

This method was also successfully adopted by Howell (2006) and Evetts et al.

(2014) for a cantilever beam, and Pitman and Lucey (2009) and Tan et al. (2010)

for a plate with fixed end points. Hinged boundary conditions are applied to the

ends of the flexible insert of the form,

η =
∂2η

∂x2
= 0. (3.3)

The discretised insert for the case of a simple elastic plate in an open flow can

be seen in Figure 3.1 (a), along with details of the finite-difference and boundary

element methods in Figure 3.1 (b).
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(a)

(b)
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Mass points
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Mass point i− 1
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ηi

y = 0

δx

αi

Figure 3.1: (a) Schematic of the discretised open flow for a simple elastic plate

and (b) details of the boundary-element method. Adapted from Lucey et al.

(1997).

Flow Solution

Assuming an irrotational and incompressible flow allows the introduction of a

velocity perturbation φ (x, y, t) which satisfies Laplace’s equation,

∇2φ = 0, (3.4)

for modelling an ideal fluid. The fluid pressure is found from the unsteady

Bernoulli equation,

∆p = −ρfU
∂φ

∂x
− ρf

∂φ

∂t
, (3.5)
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where ρf and U are respectively the fluid density and flow speed. The linearised

(for small interfacial displacement) fluid-solid boundary conditions are,

∂φ

∂y
=
∂η

∂t
+ U

∂η

∂x
at y = 0, 0 ≤ x ≤ L, (3.6)

for the flexible surface and,

∂φ

∂y
= 0 at y = H, and y = 0, x < 0 andx > L, (3.7)

for the rigid surfaces up- and down-stream of the flexible insert (where used) and

for the rigid channel walls where H is the channel height and L is the length of

the flexible surface as demonstrated in Figure 1.2 (a). These boundary conditions

enforce the no-flux condition.

When considering a channel geometry the formulation described above as-

sumes that the pressure of the mean flow within the channel exactly balances

that outside of the channel so that in its undisturbed state the flexible insert

rests along y = 0.

When using the boundary-element method, stability is not affected by up- and

down-stream boundary conditions. Channel flows usually require prescription of

the up- and down-stream boundary conditions which, for a viscous flow, are either

velocity or pressure conditions at entry and exit. This is needed as the viscous

effects cause a pressure drop along the channel. The effect of the boundary

conditions for a finite membrane in Poiseulle Flow was considered by Huang

(2001) where it is showed that changing the boundary conditions to have an open

up- or down-stream end, changes the eigenvalues of the system.

3.1.2 Linear Pressure and State-Space Method

To solve the governing equations the method developed by Pitman and Lucey

(2009) is extended in which a finite-difference representation of the structural

dynamics is fully coupled with a boundary-element flow solution to derive a single

matrix equation from which the eigenvalues and eigenvectors are then directly

extracted. The main advantage of this method, over the traditional Galerkin

method, is that it avoids a presumption that the eigenmodes of the coupled

fluid-structure system can be readily assembled from a finite set of orthogonal
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functions that are usually the in vacuo eigenmodes of just the structure. This

advantage can be especially useful for structurally inhomogeneous flexible walls

for which analytical orthogonal functions are unwieldy or simply unavailable. A

more complete discussion of its advantages is provided in the Pitman and Lucey

(2009) paper.

The flexible and rigid surfaces are each discretised into panels (giving the

system a total of N panels) and singularities, satisfying the Laplace equation, are

distributed over each panel. The singularities chosen are sources and sinks as a

non-lifting surface is being modelled. The linearised theory developed by Lucey

and Carpenter (1992) is used wherein the singularities on the deformed insert

do not move with the displaced surface but stay fixed on the undisturbed plane

similar to the approach of thin-aerofoil theory. For details of panel methods with

aerofoils see Houghton and Carpenter (1993).

The perturbation potential given by applying the boundary-element method

is,

φ (r) =
1

2π

∫ L

0

σ (rs) ln |r − rs|ds, (3.8)

where σ is the source strength distribution, r is any point in the fluid domain

considered and rs is the locus vector of the surface-fluid interface. The strengths

of the singularities are determined by the enforcement of the kinematic boundary

conditions of Equations (3.6) and (3.7) at the control point of each panel, where

the singularity in Equation (3.8) is properly treated. The disturbance normal

velocity, tangential velocity and velocity potential are then given by,

{uN} =
[
IN
]
{σ}, (3.9a)

{uT} =
[
IT
]
{σ}, (3.9b)

{φ} =
[
IΦ
]
{σ}, (3.9c)

where
[
IN
]
,
[
IT
]

and
[
IΦ
]

are respectively the normal, tangential and potential

influence coefficient matrices and σ is the source strength vector. The linear

approximation removes the time dependence of the influence-coefficient matrices

so they need only be calculated once and also removes the time dependence on the

normal velocity influence calculated of Equation (3.9)a. The linearised normal
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influence coefficients are then, [
IN
]

=
1

2
[I] , (3.10)

where [I] is the identity matrix. This results in each singularity strength being

independent of all other singularity strengths. The boundary condition Equation

(3.6) can be applied at y = 0 when using this linear approximation. The details of

calculating the linear and nonlinear influence coefficients are included in Chapter

3.1.3.

The pressure perturbation at the mass points of the flexible insert is found

using Equation (3.5) in the form,

−{∆p} = 2ρfU
2
[
IT
]

[D1] {η}+ 2ρfU
[
IT
] [
D+
]
{η̇}

+2ρfU
[
IΦ
]

[D1] {η̇}+ 2ρf

[
IΦ
] [
D+
]
{η̈},

(3.11)

for the discretised system where [D+] is a spatially averaging matrix to evaluate

the pressure at the mass points of each panel, rather than the panel ends, and

[Dn] is an nth order differentiation matrix. The four terms on the right-hand

side of Equation (3.11) are the hydrodynamic stiffness, hydrodynamic damping

(middle two terms) and the hydrodynamic inertia respectively. Alternatively,

Kornecki et al. (1976) respectively describes these as the forces arising from the

centrifugal, Coriolis and linear (vertical) accelerations of fluid elements in the

flow past the deforming wall. The latter description as a Coriolis force better

indicates that the hydrodynamic-damping component of the fluid loading does

not cause energy-dissipation; its principal effect is to couple the system modes.

Equation (3.1) written in finite-difference form is,

ρmh{η̈}+ d{η̇}+B [D4] {η}+K{η} − T [D2] {η} = −∆p(x, y, t), (3.12)

and by matching the pressure at the fluid-solid boundary using Equations (3.11)

and (3.12), a single matrix equation is derived of the form,

{η̈} = [E] {η̇}+ [F ] {η}, (3.13)

where,

[E] =
[
−ρmh [I] + 2ρf

[
IΦ
] [
D+
]]−1 [

d [I]− 2ρfU
[
IΦ
]

[D1]− 2ρfU
[
IT
] [
D+
]]

(3.14)
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and

[F ] =
[
−ρmh [I] + 2ρf

[
IΦ
] [
D+
]]−1 [

B [D4] +K [I]− T [D2]− 2ρfU
2
[
IT
]

[D1]
]
.

(3.15)

Using standard state-space formulation, Equation (3.13) can be re-written as,

{ẋ} = [H] {x}, (3.16)

where,

{x} =

 {η}{η̇}
 (3.17)

and

[H] =

 [0] [I]

[F ] [E]

 . (3.18)

The eigenvalues S and eigenvectors W of this system are then extracted from

[H], where S = SR+iSI is the complex frequency of the plate, and the eigenvectors

can be used to assemble the eigenmode of the flexible insert η (x, t).

In order to solve this system of equations and extract the eigenvalues and

eigenvectors from Equation (3.16), the linear algebra toolbox ‘linalg’, which is

part of the SciPy library for the Python programming language, is used with

Python 2.7.

Variation for Double Sided Channel

When a double sided channel is being modelled, the pressure perturbation from

Equation (3.1) becomes,

∆p(x, 0, t) = ∆p1(x, 0, t)−∆p2(x, 0, t), (3.19)

where ∆p1(x, 0, t) and ∆p2(x, 0, t) are the pressure perturbations from Channel 1

and Channel 2 respectively as depicted in Figure 1.2 (c). There is now a velocity

perturbation from each of the channels, φn (x, y, t), for n = 1, 2 denoting the

upper and lower channels respectively.

The Bernoulli equation then becomes,

∆pn = −ρnUn
∂φn
∂x
− ρn

∂φn
∂t

(3.20)
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and the boundary conditions,

∂φ1

∂y
= 0 at y = H1, (3.21a)

∂φn
∂y

=
∂η

∂t
+ Un

∂η

∂x
at y = 0, (3.21b)

∂φ2

∂y
= 0 at y = −H2, (3.21c)

for n = 1, 2.

In Equation (3.13), the matrices [E] and [F ] are now defined,

[E] =
2∑

n=1

(−1)n+1 [An]
[
−2ρnUn

[
IΦ
n

]
[D1]− 2ρnUn

[
INn
] [
D+
]]
, (3.22a)

[F ] =
2∑

n=1

(−1)n+1 [An]
[
B [D4]− 2ρnU

2
n

[
ITn
]

[D1]
]

(3.22b)

where,

[An] =
[
−ρmh [I] + 2ρn

[
IΦ
n

] [
D+
]]−1

. (3.23)

for n = 1, 2.

This modelling allows each channel to have its own fluid density, flow velocity

and channel height. It is noted that this model does not include the effects of

gravity and thus fixing the dimensions of Channel 1 and varying the dimensions

of Channel 2 yields the same results as fixing Channel 2 and varying Channel 1.

3.1.3 Influence Coefficents

The influence coefficient matrices are N × N matrices outlined in boundary-

element analysis of Chapter 3.1.2. The influence coefficients stated below are

based on those of Lucey et al. (1997). For a full derivation see Lucey (1989).

The sources are distributed at the centre of each panel with length, c, and angle

between the panel and the horizontal, α.

The normal, tangential and perturbation influence coefficients are,

INim =
as
4π

ln

(
c2
m − 4ecm + 4f

c2
m + 4ecm + 4f

)
+
ac
2π

(
tan−1

(
2e+ cm

2b

)
− tan−1

(
2e− cm

2b

))
,

(3.24)
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ITim =
as
2π

(
tan−1

(
2e+ cm

2b

)
− tan−1

(
2e− cm

2b

))
− ac

4π
ln

(
c2
m − 4ec, + 4f

c2
m + 4ec, + 4f

)
,

(3.25)

IΦ
im = − e

4π
ln

(
c2
m − 4ecm + 4f

c2
m + 4ecm + 4f

)
+
cm
8π

ln

(
(c2
m − 4ecm + 4f) (c2

m + 4ecm + 4f)

16L4

)
−cm

2π
+

b

2π

(
tan−1

(
2e+ cm

2b

)
− tan−1

(
2e− cm

2b

))
,

(3.26)

respectively for i 6= m where,

as = sin (αi − αm) , (3.27a)

ac = cos (αi − αm) , (3.27b)

b = − (Xi −Xm) sinαm + (Yi − Ym) cosαm, (3.27c)

e = (Xi −Xm) cosαm + (Yi − Ym) sinαm, (3.27d)

f = (Xi −Xm)2 + (Yi − Ym)2 , (3.27e)

for panels with mass points (panel centres) given by coordinates (X, Y ).

The influence of each panel on itself (i = m) is given by,

INii =
1

2
, (3.28)

ITii = 0, (3.29)

IΦ
ii =

cm
2π

(
ln
( cm

2L

)
− 1
)
. (3.30)

These influence coefficients are used in the fully nonlinear calculations of

Chapter 5.1. By making the linear approximations that the sources lie on the

undisturbed surface (y = 0) and that α = 0, the linearised influence coefficients

can be shown to reduce to,

[
IN
]

=
1

2
[I] , (3.31)

ITim = − 1

4π
ln

(
(δx− 2 (Xi −Xm))2

(δx+ 2 (Xi −Xm))2

)
, (3.32)
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IΦ
im =

1

4π

{
(δx− 2 (Xi −Xm)) ln

∣∣∣∣δx− 2 (Xi −Xm)

2L

∣∣∣∣
+ (δx+ 2 (Xi −Xm)) ln

∣∣∣∣δx+ 2 (Xi −Xm)

2L

∣∣∣∣− 2δx

}
, (3.33)

where [I] is the identity matrix and δx = L/Nf . These linearised influence coeffi-

cients are used in the current chapter for linear analysis and in Chapter 4 for the

non-modal analysis.

3.1.4 Theoretical Analysis

In order to complement and validate the foregoing numerical approach an exten-

sion of the open-flow analysis of Carpenter and Garrad (1986) of an infinitely

long flexible plate with a uniformly distributed spring foundation is developed to

account for the effect of the rigid upper wall of the channel. This type of flexible

insert is chosen because the critical modes in its destabilisation can have much

shorter wavelengths than the wall length, thus allowing its deformation to be

approximated by a travelling wave with the form,

η = η0 exp{ik (x− ct)}, (3.34)

with the flow-velocity perturbation written as,

φ = Φ (y) exp{ik (x− ct)}, (3.35)

where k is the wavenumber, c is the complex wave speed and η0 is the amplitude

of the boundary perturbation. Solving the Laplace Equation (3.4) gives,

Φ (y) = A1 expky +B1 exp−ky, (3.36)

with unknown constants A1 and B1. By enforcing the boundary conditions in

Equations (3.6) and (3.7), A1 and B1 are found to be,

A1 =
η0i (U − c)
1− exp2kH

, (3.37a)

B1 =
η0i (U − c)
exp−2kH −1

. (3.37b)
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Use of the Bernoulli equation, (3.5), applied to the streamline along y = 0

then yields the pressure perturbation,

−∆p = ρfη0k (U − c)2 ζ exp{ik (x− ct)}, (3.38)

where ζ is a function of channel height defined by,

ζ =
1

1− e−2kH
− 1

1− e2kH
, (3.39)

that effectively accounts for the confinement effects of the channel as compared

with an open flow for which ζ = 1. Coupling this with the beam equation,

(3.1), at y = 0 (assuming small/linear deflections) for a plate with no structural

damping gives the following characteristic equation (dispersion relation) for the

complex wave speed c,

(
ρfkζ + ρmhk

2
)
c2 − (2ρfkUζ) c+

(
ρfkζU

2 −Bk4 −K
)

= 0. (3.40)

Following Carpenter and Garrad (1986), the onset of divergence instability

occurs when the phase speed, c, first becomes zero as the flow speed is increased.

Thus, the flow speed for divergence onset is that for which,

ρfkζU
2 −Bk4 −K = 0, (3.41)

and its minimum, or critical, value occurs for the wavenumber which satisfies,

∂(U2)

∂k
= 0, (3.42)

where,

U2 =
Bk4 +K

ρfkζ
. (3.43)

This minimisation yields the critical wavenumber for divergence onset, kd, and

the critical flow speed for divergence is then given by,

Ud =

(
Bk4

d +K

ρfkdζ

) 1
2

. (3.44)

The critical wavenumber is therefore seen to depend not only on the structural

parameters and fluid density but also on the channel height, H, through the

function ζ defined by Equation (3.39).
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By considering the function ζ, the asymptotic limits can be assessed. From

Equation (3.39), ζ → 1 as H →∞ and this yields,

kd =

(
K

3B

) 1
4

and Ud = 2

(
BK3

27ρ4
f

) 1
8

, (3.45a, b)

which recovers the results of Carpenter and Garrad (1986) for the open flow

(Equation (2.13) of their paper).

At a higher flow speed, modal-coalescence is known to occur when the roots

of Equation (3.40) are equal and so by setting the discriminant equal to zero, the

critical speed for modal-coalescence flutter is derived as,

Um =

(
(Bk4

m +K) (ρfζ + ρmhkm)

ρfρmhk2
mζ

) 1
2

, (3.46)

for the critical wavenumber km. It can be shown that setting km = kd yields,

Um = Ud

(
1 +

ρfζ

ρmhkd

) 1
2

, (3.47)

which again agrees with the open flow result of Carpenter and Garrad (1986)

(Equation (2.14) in their paper) in the limit H →∞ that gives ζ → 1.

To assess the effect of the channel height in the limit of very narrow channels

it is possible to show that ζ → 1/(kH) as H → 0, and this yields the divergence

and modal-coalescence speeds as,

Ud =

(
H

ρf

(
Bk4

d +K
)) 1

2

(3.48a)

Um =

(
(Bk4

m +K) (ρf + ρmhk
2
mH)

ρfρmhk2
m

) 1
2

. (3.48b)

In the results that follow, these analytical predictions and asymptotic forms

are compared with the results of the state-space analysis for finite flexible inserts.

However, the latter analysis does not clearly distinguish between divergence and

modal coalescence for a spring-backed wall. As the flow speed increases the

plate’s behaviour shows a transition from divergence to modal coalescence. This

type of gradual transition from divergence, as opposed to an explosive onset

of flutter, was also found in the numerical simulations of Lucey and Carpenter

(1992). It is therefore difficult to compare the foregoing analytical predictions for

modal-coalescence flutter onset (Equations (3.46) and (3.48b)) with the results
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of the state-space solution. Thus, only divergence onset for spring-backed flexible

plates is considered because this instability yields the critical flow speed and is

also shown to be a travelling-wave type of dynamic instability in Pitman and

Lucey (2009).
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3.2 Validation of the Open Flow Model

It is noted here that the analytical method has already been validated in Section

3.1.4 in the limit of H →∞ by comparison with the open flow results of Carpenter

and Garrad (1986). For finite channel heights, validation by means of comparison

with the results from the state-space method when applied to higher order plate

types is presented in the results Section (3.3.1).

For the state-space method, the effect of the upper channel wall (the new

aspect of this work) will also be demonstrated in the results section by means of

comparison with experimental data (Weaver and Päıdoussis, 1977) for plates of

lower order mode in Section 3.3.1, and by comparison with other studies (Weaver

and Päıdoussis, 1977) and the analytical method for plates with a higher order

mode shape in Section 3.3.1. The remainder of this chapter validates the correct

implementation of the structural and fluid mechanics using the finite-difference

and state-space methods.

3.2.1 Structural Mechanics

To validate the structural mechanics and finite-difference method, the eigenvec-

tors calculated by the state-space method, when the fluid density is set to zero,

can be compared with the in vacuo modes of form,

η = η0 sin
(nπx
L

)
, (3.49)

where n is the mode number. Similarly, the imaginary part of the state-space

eigenvalues, SI, can be compared with the theoretical angular frequency of a plate

in vacuo, S0, which is well known to be,

S0 =
(nπ
L

)2

√
B

ρmh
. (3.50)

By setting the fluid density to zero, the plate behaves as in vacuo, as all the fluid

mechanics are neglected from the calculations.

The properties used to produce these results are: L = 0.6 m, h = 0.0025 m,

H = 0.6 m, ρm = 2600 kg/m3, B = 76.62 N/m2 and ρf = 0 kg/m3 and this gives

a theoretical value of S0 = 94.13 rad/s from Equation (3.50) when calculated for

the first mode, n = 1.
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Figure 3.2: (a) Theoretical in vacuo frequency of the first mode, calculated from

Equation (3.50) and the lowest imaginary eigenvalue calculated from the state-

space method for different discretisations. (b) Theoretical in vacuo frequency

calculated from Equation (3.50) for the first ten modes and the lowest ten imag-

inary eigenvalues calculated from the state-space method when Nf = 200.



36 Chapter 3 : Linear Stability of a Fluid-Loaded Flexible Insert

Figure 3.2 (a) shows the theoretical value of the first mode frequency, S0 =

94.13 rad/s, plotted as a dotted line. Also plotted is the lowest (first mode)

imaginary part of the eigenvalues found from the state-space method, SI. When

Nf = 10 the percentage error of the state space method is only 0.82% indicating

that in the absence of a fluid, this low level of discretisation is sufficiently accurate.

The method becomes more accurate as Nf is increased, with a percentage error

of 0.0021% when Nf = 200.

Figure 3.2 (b) plots Equation (3.50) as it varies with the mode, n. Also shown

on Figure 3.2 (b) is the imaginary part of the lowest ten eigenvalues calculated

from the state space method when Nf = 200. This demonstrates that the state-

space method for a plate in vacuo is sufficiently accurate for up to mode ten

when Nf = 200. Although it appears that there is no change in the accuracy,

the percentage error between the state space method and theoretical equation

increases from 0.0021% when n = 1 to 0.21% when n = 10. This indicates that

for a plate displaying a higher order mode shape, the discretisation should be

increased in order to maintain the same level of accuracy.

The data presented here clearly shows that the structural mechanics is ac-

curately modelled by the state-space application of the finite-difference method

that is used in this work.

3.2.2 State-Space Method

Using the state space method to predict divergence and modal-coalescence onset

for a flexible plate in an open flow is well established and here a simple elastic plate

is considered to validate the application of the fluid mechanics. Validation of dif-

ferent plate types (including plates with structural damping and spring-backing)

in an open flow will be presented in Section 3.3 along with an investigation into

the effect of the channel wall.

To provide a convenient comparison with similar studies, the results are pre-

sented using a non-dimensional scheme based upon L and L/U as the character-

istic length and time scales. The system behaviour can then be summarised by
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its dependence upon three non-dimensional parameters, namely, the mass ratio

µ =
ρfL

ρmh
, (3.51)

and the non-dimensional stiffness ratio,

ΛF =
ρfU

2L3

B
, ΛM =

ρfU
2L

T
, (3.52a, b)

defined respectively for simple flexible plates and tensioned membranes, and the

non-dimensional channel height H/L. Note that the inclusion of structural damp-

ing introduces a further control parameter to the base system. For the spring-

backed flexible plate, or compliant wall, L no longer represents the characteristic

length scale and therefore appropriate alternatives are found and discussed in

Section 3.3.1.

Because the time-scale L/U is inappropriate for plate vibrations at zero flow

speed, the non-dimensional frequency, S ′ = S/S0, used in the results is based

upon the angular oscillation frequency of the fundamental mode of the plate in

vacuo, given by Equation (3.50).

The eigenvalue solution shown in Figure 3.3 shows excellent agreement with

the previous investigations of Pitman and Lucey (2009) (Figure 3 of their pa-

per) and Tan et al. (2013) (Figure 4 of their paper) which were themselves val-

idated against a Galerkin analysis. The divergence-onset prediction of ΛF = 40

(for Nf = 200) also agrees with the findings of, for example, Weaver and Unny

(1970), Lucey and Carpenter (1992), Garrad and Carpenter (1982), and Tan et al.

(2013) which use Galerkin, analytical, numerical simulations and eigenvalue meth-

ods respectively, thereby validating the present computational modelling and its

implementation.

Figure 3.3 also shows the effect of the discretisation level on the eigenvalue

solution. It can be seen that as Nf → ∞ the solution converges. For the simple

plates and tensioned membranes that are typically characterised by a low-order

mode shape, Nf = 200 is used throughout, while the spring-backed (compliant

wall) requires a greater discretisation due to the higher-order mode shape of the

wall. For spring stiffnesses K = 3.68× 106, 3.68× 107 and 3.68× 108 N/m3 it is

found that Nf = 480, 800 and 1420 respectively, are sufficient to achieve the same
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level of numerical convergence based on the critical mode at which divergence

occurs.
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Figure 3.3: Variation of the real (growth/decay) and imaginary (oscillatory) parts

of the first two eigenvalues with stiffness ratio (non-dimensional flow speed) at

different discretisations when H/L =∞.
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3.3 Results

Before progressing, comment is made on the location of the fluid entry and exit

boundary conditions. Assessment of the effect of the length chosen for rigid-

channel walls up- and down-stream of the flexible insert as seen in Figure 1.2 (a)

shows that for wide channels (H/L > 1.5) and very narrow channels (H/L < 0.1,

such as when the spring-backed flexible plate is being considered) changing Lr

does not change the eigenvalue solution and therefore when modelling a spring-

backed flexible plate we use Lr = 0. For all other channel heights, as when

considering a simple elastic plate, a damped plate and a tensioned membrane,

Lr = 2L is sufficiently large for the up- and down-stream rigid walls of the channel

not to influence the numerical evaluations to within less than 1%. With the

flexible insert modelled by Nf panels (or equidistantly spaced collocation points),

the upper rigid wall therefore comprises 5Nf panels so that the system has a total

of N = 10Nf panels. However, for the spring-backed plate the system has a total

of N = 2Nf panels.

3.3.1 Single Sided Channel

Simple Elastic Plate

Herein, the flexible insert studied has the structural dynamics of a flexible plate

that, for example, could correspond to a thin aluminium panel. Illustrative di-

mensional properties used in this section are h = 0.0025 m, ρm = 2600 kg/m3,

B = 76.62 Nm, d = 0 Ns/m3, K = 0 N/m3, L = 0.6 m, Lr = 1.2 m and T = 0

N/m. A dense fluid such as water is considered with fluid density ρf = 1000

kg/m3. The combination of solid and fluid densities along with the plate geom-

etry yields the mass ratio µ = 92.3 used to generate the non-dimensional results

presented in Figures 3.4 and 3.5. The variation with the stiffness ratio (non-

dimensional flow speed) of the real and imaginary parts of the eigenvalues for

two contrasting channel heights, H/L = 2 and 0.1, are shown in Figure 3.4. The

real part of the eigenvalue determines the growth/decay rate of plate deflections

and the imaginary part determines the oscillation frequency of each mode. Each

complex eigenvalue, S, has a complex conjugate but only the positive imaginary
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Figure 3.4: Variation of the real (growth/decay) and imaginary (oscillatory) parts

of the first two eigenvalues with stiffness ratio (non-dimensional flow speed) for

two non-dimensional channel heights for mass ratio µ = 92.3. The vertical dashed

lines indicate divergence onset, divergence recovery and flutter onset for the case

H/L = 2.
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values are shown in this figure (and for the remainder of results presented) as a

negative oscillation frequency has no physical interpretation in this work. Note

that only the lowest two eigenvalues are plotted in this figure although all 2Nf

eigenvalues of the complete fluid-structure system are calculated.

In Figure 3.4, there are four zones of ΛF (for each channel height) that corre-

spond to four distinct types of plate behaviour (Pitman and Lucey, 2009). These

zones are delineated here by vertical dashed lines for the H/L = 2 case. The first

is the pre-divergence zone, when the eigenvalue of the fundamental mode has an

imaginary but no real part, hence the plate displays neutrally stable oscillatory

motion where the plate is oscillating but no growth occurs. When the eigenvalue

first has a real part, divergence instability sets in and the plate deflection ampli-

fies, with no oscillation. For higher ΛF the real part again becomes zero returning

the plate to the neutrally stable oscillatory motion - this range of flow speeds is

known as divergence recovery. The final type of behaviour with increased ΛF is

initiated by the coalescence of the fundamental and second modes and the plate

undergoes a flutter-type motion consisting of both growth and oscillation. For

the case H/L = 2, Figure 3.4 shows that the transitions - called divergence on-

set, divergence recovery and flutter onset - between these four zones occur at

ΛF = 40, 277 and 316 respectively. For the results at H/L = 2 the eigenvalue

solution agrees very closely with that for the open-flow shown in Figure 3.3; thus

after H/L = 2, upper-wall effects have become negligible.

The present linear theory predicts the aforementioned zones of wall behaviour

that would occur if the applied flow velocity could be established instantaneously.

However, in a physical situation the flow velocity would be increased from zero

over a finite period of time. Thus, as soon as the flow velocity exceeds that of

divergence onset, the wall deformation would grow to reach large amplitudes (for

example, see Lucey et al. (1997)), thereby violating the linear assumptions of the

present modelling. However, if the flow velocity were increased rapidly from zero

so that nonlinear divergence instability did not have sufficient time to become

established, then the phenomena of divergence recovery and modal-coalescence

flutter for linear disturbances could be realised.

The continuous variations with channel height of divergence onset, divergence
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Figure 3.5: The effect of channel height on the FSI of a flexible plate for µ =

92.3: (a) Variation of stiffness ratio values at instability onset or recovery with

channel height, and (b) The variation with channel height of Mode 1 and Mode 2

oscillation frequency at zero flow speed and modal-coalescence flutter frequency

at onset. In both (a) and (b), the dashed lines indicate values for the equivalent

open flow.
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recovery and flutter-onset stiffness ratio, ΛF
c (threshold flow speed for a given

flexible plate and fluid), are presented in Figure 3.5 (a). The horizontal dashed

lines indicate corresponding values for an open flow, i.e. with H = ∞. In the

asymptotic limit of increasing channel height, the present results for channel flow

approach those for an open flow and that beyond H/L = 1 the upper channel

wall has effectively ceased to have an effect on the plate’s stability characteristics.

Below H/L = 1, decreasing the channel height monotonically reduces ΛF for

divergence onset. Divergence first occurs at the flow speed for which the plate’s

restorative forces exactly balance the hydrodynamic stiffness, the first term on the

right-hand side of Equation (3.11). Clearly, the magnitude of the hydrodynamic

stiffness has been increased by reducing the channel height because a lower critical

speed for the instability ensues. At first sight, it might appear that the increase

to the hydrodynamic stiffness is caused by the plate deformation changing the

effective value of U in Equation (3.11). However, this would be a nonlinear effect

because it implies a change to the mean state of the system. In the present linear

analysis, the increase to the magnitude of the hydrodynamic stiffness is caused by

the effect of the upper channel wall which increases (decreases) the gradient, in

the y-direction, of streamline curvature for a plate deformation into (out of) the

channel. This occurs because the upper boundary, that has zero curvature, must

always remain a streamline of the perturbed flow as it surmounts the deformation

of the flexible insert in the lower channel wall.

Weaver and Päıdoussis (1977) theoretically analysed a channel-flow system

for inviscid flow with both walls flexible using both a Galerkin approach, where

each wall was on periodic supports, and a travelling-wave approach weighted for

transverse curvature. In each analysis they considered the two cases of walls

moving in phase (sinuous) and 180◦ out of phase (varicose); the latter is closest

to the system studied in the present work because it involves a variation to

streamline curvature across the channel. Using the Galerkin analysis, Weaver

and Päıdoussis (1977) found that reducing the channel height caused a maximum

reduction in the critical flow velocity for divergence of 29%, which corresponds

to approximately a 54% decrease in ΛF. This finding differs from the results

presented herein where the critical non-dimensional flow speed for divergence
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reduces to zero as H/L → 0. However, for this limit, our results agree with

those of the travelling-wave analysis of Weaver and Päıdoussis (1977). Weaver

and Päıdoussis (1977) also show that above H/L = 1, in both of their theoretical

models, the critical flow velocity for divergence is the same as for the open-flow

case; a similar value for this threshold is demonstrated in the results of Figure

3.5 (a).

Also included as an insert in Figure 3.5 (a) are experimental data reported by

Weaver and Päıdoussis (1977) in Figure 8 of their paper. A flattened tube was

constricted, effectively creating flow between parallel flexible walls, and the flow

velocity at which a flapping instability occurred, associated with divergence as

opposed to flutter, was recorded for various constrictions. A best-fit line of their

results was converted into the non-dimensional scheme given by Equations (3.51)

and (3.52)a by setting H = 0.5b where b was the gap between their surfaces -

because they considered two flexible surfaces instead of just one - and setting

L = 0.5λ where λ was the observed wavelength of the flapping. Good agreement

is found between the predictions presented here and these experimental results

for small H/L.

Figure 3.4 (b) also shows how channel height affects further features of the FSI

system. Reducing the channel height decreases the frequency and growth/decay

rate at a given flow speed. At zero stiffness ratio (zero flow speed) a lower

channel height results in lower oscillation frequencies for both the fundamental

and second mode, implying a higher fluid inertia, the fourth term on the right-

hand side of Equation (3.11). This is due to the additional y-constraint on the

decay of fluid perturbation imposed by the upper channel wall. Thus, for narrow

channels, fluid perturbations due to the flexible-plate motion extend a significant

distance upstream and downstream of the moving-wall section as reflected by

the need to model the rigid upstream and downstream regions, described earlier.

A further consequence is that reducing the channel height reduces the initial

frequency difference, at ΛF = 0, between the fundamental and second modes.

Modal-coalescence then occurs at a lower value of ΛF and the size of the static

divergence loop becomes smaller. Thus, while reducing the channel height leads to

a reduction in the critical flow speed for divergence onset, beyond that threshold
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both the range of flow speeds over which divergence occurs and its growth rate

are reduced. However, the more violent flutter instability beyond divergence sets

in at a lower flow speed and frequency.

The effect, as a continuous variation, of the upper channel-wall height on

the first and second mode frequency at zero flow speed is shown in Figure 3.5

(b) along with the frequency at which modal-coalescence occurs. These results

suggest that channel-height may have a significant effect on transient growth

within the system through non-normality because Coppola and de Luca (2010)

show that the frequency spacing between the lowest two modes is directly linked

to the beating frequency of transient growth; this will be investigated in Chapter

4.

Damped Plate

The effect of including structural damping in the system is now considered. For

simplicity, a dashpot-type damping, seen in Equation (3.1), with d = 7500 Ns/m3

is used and the remaining system parameters are the same as in Section 3.3.1.

This value is chosen to facilitate appropriate comparison with the open-flow re-

sults presented in Pitman and Lucey (2009) and its value represents an amplitude

attenuation of 50% per cycle of the fundamental in vacuo plate mode.

Figure 3.6 shows the effect of including structural damping in the system that

yielded Figure 3.4 (a). As would be expected, in the pre-divergence regime of

stiffness ratio, the effect of structural damping is to attenuate the modes that

were neutrally stable for the elastic plate. Turning to the range of stiffness ratio

that yields instability, it is evident that the inclusion of structural damping both

increases the size of the divergence loop and rotates it anticlockwise about the

SR = 0 axis. This occurs because the dashpot-type damping exercises a greater

effect at the higher modal frequencies that are obtained at lower values of ΛF.

However, the combination of these two effects upon the divergence loop is such

that for each channel height the divergence-onset stiffness ratio remains the same

as for the plate with no damping; this is most evident for the case H/L = 2 in

Figure 3.4 (a) for which the divergence-onset threshold has been marked with

the dashed line ΛF = 40, the same threshold shown in Figure 3.4 (a). This is
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Figure 3.6: The effect of channel height on the stability of a structurally damped

plate with mass ratio µ = 92.3: (a) Variation of the real (growth/decay) and

imaginary (oscillatory) parts of the first two eigenmodes with stiffness ratio (non-

dimensional flow speed) for two non-dimensional channel heights; the vertical

dashed lines indicate divergence and flutter onset for the case H/L = 2, and (b)

Variation of the stiffness ratio values at instability onset or recovery with channel

height; the dashed lines indicate values for the equivalent open flow.
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to be expected because divergence onset occurs as a static phenomenon and the

absence of motion means that structural damping does not play a part in its

determination. Thus, the continuous variation of divergence-onset stiffness ratio

with channel height, presented in Figure 3.6 (b) is identical to that seen in Figure

3.5 (a).

At post-divergence stiffness ratios structural damping exercises significant

changes in the morphology of the eigenvalue solution that are similar to those

found by Pitman and Lucey (2009) for the open-flow case. Firstly, there is no

divergence-recovery zone, because the real parts of the fundamental and second

modes are no longer symmetrical about SR = 0. Secondly, instead of a distinct

point at which coalescence of the oscillatory-part of the frequency occurs, there is

now a gradual transition in the unstable behaviour of the plate from divergence

to flutter. The same modification (as compared with that for an elastic plate) to

the eigenvalue solution morphology is also found when very low levels of damping

are included. These effects, and the relationship between divergence and flutter,

were demonstrated and discussed in the numerical work of Lucey and Carpenter

(1992).

For the H/L = 2.0 case, the channel is sufficiently wide enough that the upper

channel wall has no effect on the eigenvalue solution and the results in Figure 3.6

(a) agree with the open flow results of Pitman and Lucey (2009), indicating that

the inclusion of structural damping has been correctly implemented. Figure 3.6

(b) gives a complete data set for the stability bounds of a damped plate as they

vary with H/L.

Effect of Mass Ratio

The results for the simple elastic plate and structurally damped plate pertain

to the mass ratio µ = 92.3. Attention is now turned to the effect of channel

height on the system behaviour for two lower values of mass ratio, µ = 9.23 and

µ = 0.923. The physical data used is as for the simple elastic plate but with the

fluid density changed to ρf = 100 kg/m3 and ρf = 1 kg/m3; the latter case closely

represents air flow past an aluminium plate.

Figure 3.7 (a) shows the eigenvalue solutions at a channel height H/L = 0.1
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Figure 3.7: The effect of channel height on the stability of an elastic flexible

plate for different mass ratios, µ: (a) Real and imaginary parts of the first two

eigenvalues as a function of stiffness ratio (non-dimensional flow speed) at H/L =

0.1, and (b) Variation of stiffness ratio values at instability onset or recovery with

channel height.
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for each of µ = 9.23 and 0.923. For µ = 9.23 the solution morphology is seen to

be the same as that in Figure 3.4 (a). The continuous variation of divergence-

onset, divergence recovery and flutter-onset threshold values, ΛF
c , with channel

height are presented in Figure 3.7 (b) and are seen to follow very similar trends

to the corresponding results for an undamped plate with µ = 92.3 in Figure 3.5

(a). This finding agrees with Weaver and Päıdoussis (1977) who concluded that

the overall effect of the upper-channel wall proximity is largely unchanged by the

mass ratio.

In contrast, for the mass ratio µ = 0.923 in Figure 3.7 (a), a change to solution

morphology has occurred. While the critical mode continues to be Mode-1 diver-

gence with its onset stiffness ratio unchanged by mass ratio for a given channel

height (since the instability is static exactly at onset) divergence recovery does

not occur with increasing ΛF, but instead Mode-2 divergence occurs and, with

further increases, the two divergence modes coalesce to give flutter. The quan-

titative summary of the respective threshold values as they vary with channel

height is presented in Figure 3.7 (b). This different sequence of instability transi-

tions has been presented and its physical causes explained in Tan et al. (2013) for

the corresponding open-flow configuration. What can be concluded from the new

results of the present paper is that reducing the channel height does not modify

the special solution morphology that applies at very low mass ratios and that for

sufficiently wide channels (H/L > 1), the system behaves like the open flow.

Tensioned Membrane

To complete the investigation of flexible inserts comprising a single structural

component, for which the lowest-order modes of deformation based on insert

length give the critical values at destabilisation, a tensioned elastic membrane is

considered. The system parameters are the same as for the simple elastic plate

but with the flexural rigidity set to zero, B = 0 Nm and a tension of T = 10000

N/m applied. The system has the same mass ratio as for the simple elastic

plate, that is µ = 92.3. This type of insert has more relevance to applications in

biomechanics than the preceding flexible-plate systems.

Figure 3.8 (a) displays the dependence of system eigenvalues on the stiffness
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ratio (non-dimensional flow speed), ΛM, defined using the membrane tension as

seen in Equation (3.52b). The frequencies are now non-dimensionalised by the

theoretical angular oscillation frequency of the fundamental mode of the mem-

brane in vacuo,

S0 =
(π
L

)√ T

ρmh
. (3.53)

The eigenvalue solution is qualitatively similar to that of the simple elastic plate,

the physical interpretation of which, discussed therein, carries across to the phe-

nomenology of the tensioned membrane. Although divergence, divergence re-

covery and flutter now occur at much lower values of the stiffness ratio, the

dimensional flow speeds at which instabilities set in is within the same order of

magnitude for the physical data given, when compared with the simple elastic

plate.

The interaction of a tensioned membrane with viscous channel flow has re-

ceived significant attention. Studies such as those of Luo and Pedley (1996), Luo

and Pedley (2000), Huang (2001) and Jensen and Heil (2003) model unsteady

laminar flow and (with the exception of Huang (2001)) large amplitude deforma-

tions. Therefore, direct comparison with the present results that use ideal flow

can only be at a very broad level. What the two types of system are seen to have

in common is that reductions to the membrane tension - that increase the value

ΛM in the present work - cause the onset of instability to occur at a lower flow

speed or Reynolds number. In studies of viscous flow, the channel height deter-

mines the Reynolds number and thus its reduction would be stabilising because

the overall balance between inertial forces and viscous forces changes in favour

of the latter. In the present system the opposite is true because the destabilising

inertial forces are intensified by reductions to the channel height with no amelio-

rating viscous effects. This effect is summarised in Figure 3.8 (b). It is noted that

the absence of viscous effects in the present modelling renders the results non-

physical for extremely low values of H/L. As a landmark, below H/L = 0.003 the

dimensional data that is used here would yield Reynolds numbers in the laminar

range of flow speeds, when using the kinematic viscosity of water at 20◦C and

the flow speed at divergence onset as the characteristic speed; this limitation also

applies to the flexible-plate cases analysed in the previous results.
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Figure 3.8: The effect of channel height on the stability of a tensioned mem-

brane with mass ratio µ = 92.3: (a) Variation of the real (growth/decay) and

imaginary (oscillatory) parts of the first two eigenvalues with stiffness ratio (non-

dimensional flow speed) for two non-dimensional channel heights; the vertical

dashed lines indicate divergence onset, divergence recovery and flutter onset for

the case H/L = 2, and (b) Variation of stiffness ratio values at instability onset or

recovery with channel height; the dashed lines indicate values for the equivalent

open flow.
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Finally, in common with the flexible-plate results of Figure 3.4, the effects

of channel height become insignificant for H/L greater than 1, beyond which

the system behaves identically to that of a tensioned membrane subjected to an

open-flow.

Spring-Backed Flexible Plate

The stability of a flexible plate supported by a uniformly distributed spring foun-

dation is now considered. The introduction of a further structural component

- the spring backing - creates significantly different stability characteristics be-

cause, for example, divergence onset is now determined by the combination of

plate flexure, spring stiffness and the hydrodynamic-stiffness fluid loading. In

particular, it is no longer the low-order modes having wavelengths of the order

of the plate length that are the first to be destabilised as found for the inserts

without spring-backing. Accordingly, the plate length, L, is not a suitable char-

acteristic length for the FSI system and the following non-dimensional scheme,

based upon a local characteristic length (ρmh/ρf), is introduced following Lucey

and Peake (2003) wherein,

H ′ =
Hρf

ρmh
, U ′ =

U (ρmh)3/2

ρfB1/2
and K ′ =

K (ρmh)4

Bρ4
f

. (3.54a, b, c)

Thus, Equations (3.54)a and b replace the control parameters that are the mass

ratio, µ, and stiffness ratio, ΛF, defined respectively by Equations (3.51) and

(3.52), while the spring foundation introduces the additional control parameter,

K ′. The length of the flexible insert, L, contributes the further control parameter,

L′ = (Lρf) / (ρmh), but it will be seen this has only a marginal influence on system

response for the cases studied herein where the wavelength of the critical mode

is much shorter than the panel length, a situation promoted by increases either

to insert length or the stiffness of the spring foundation.

The system parameters used here are h = 0.01 m, ρm = 852 kg/m3, B =

0.0444 Nm, d = 0 Ns/m3, L = 0.6 m, Lr = 0 m, T = 0 N/m and ρf = 1000

kg/m3, with spring-backing of strengths K = 3.68 × 106 N/m3, K = 3.68 × 107

N/m3 and K = 3.68 × 108 N/m3 considered. The illustrative physical data

given for this system is close to those of the compliant walls investigated by
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Figure 3.9: The variation of the real and imaginary parts of the 40 lowest, positive

eigenvalues with flow speed for a spring-backed flexible plate with mass ratio

µ = 70.4 in an open flow. The vertical dashed line indicates the critical flow

speed at which the eigenvalues first have a positive real value.
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Figure 3.10: The variation of the real and imaginary parts of the 40 lowest,

positive eigenvalues with flow speed for a spring-backed flexible plate with mass

ratio µ = 70.4 in a channel flow with H ′ = 0.7. The vertical dashed line indicates

the critical flow speed at which the eigenvalues first have a positive real value.
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Carpenter and Garrad (1986), Lucey et al. (1997) and Pitman and Lucey (2009)

that were chosen to represent water interacting with the compliant coating of

Kramer (1960) that showed the best performance for transition postponement in

an open boundary-layer flow.

Figures 3.9 and 3.10 respectively show the dependence of the lowest 40, posi-

tive eigenvalues of the FSI system on the flow speed for the equivalent open flow

and for a channel with H ′ = 0.7 when K ′ = 4.367. In these figures the onset of

divergence occurs when the real part of an eigenvalue first becomes positive; the

flow speed at which this occurs is marked in each of Figures 3.9 and 3.10 by a

vertical dashed line. For the open-flow case (H ′ = ∞), divergence onset occurs

at U ′ = 2.34. By plotting the associated eigenvector, or tracing the mode that

first crosses the SI = 0 axis in Figure 3.9, the critical mode is found to be 24,

giving the critical wavelength, λ′s = 5.87 where λ′s = (λsρf) / (hρm). These critical

values agree well with the predictions of U ′ = 2.30 and λ′s = 5.72, given by Equa-

tions (3.45) that recovered the analytical expressions of Carpenter and Garrad

(1986) for a corresponding compliant wall of infinite length. It is remarked that

λ′s/L
′ = 0.0834 for the critical mode arising at divergence onset in Figure 3.9,

thus, at this very small value of the ratio of disturbance wavelength to insert

length, the actual length of the flexible insert has little influence on the critical

mode and flow speed for divergence onset.

At flow speeds just above divergence onset, Pitman and Lucey (2009) showed

that divergence instability is realised as slow downstream-travelling amplifying

waves, a form that is predicted by a travelling-wave theory based upon a wall

of infinite extent. This realisation of divergence instability as slow downstream-

travelling waves continues to hold in the present channel-flow system.

Comparing the result of Figure 3.9 with that of Figure 3.10 it is seen that finite

channel height reduces the critical flow speed for divergence onset, although the

solution morphology of the eigen-system is largely unchanged. The critical mode

now has a wavelength λ′s = 6.12 which is longer than that of the corresponding

open-flow case. The variation of divergence-onset flow speed with channel height

is summarised in Figure 3.11 (a) for the parameters used to generate Figure 3.10

and two further levels of foundation spring-stiffness, K ′. Also included in this
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figure are the analytical predictions of Equation (3.44) based upon the assumption

of an infinitely long flexible insert for each of the spring foundations. As would be

expected, the lines of critical flow speed are displaced upwards for higher values of

K ′; a stiffer wall has a higher critical speed. It is also noted that the wavelength

of the critical mode becomes shorter as K ′ is increased. For each of the pairs of

lines associated with a K ′, the effect of reducing the channel height is seen to

be destabilising and this effect begins to occur below values of H ′ that are lower

when K ′ is higher. Thus, the effect of channel height scales with the wavelength

of the critical mode. This suggests that a general result for all spring-backed

flexible plates is attainable. An alternative non-dimensional system is therefore

considered by defining channel height relative to critical wavelength, H/λs, and

non-dimensionalising the flow speed as a stiffness ratio defined as,

ΛI =
ρfU

2

(BK3)1/4
, (3.55)

which is based upon the length scale and flow-to-structural pressure ratio implicit

in Equations (3.45)a, b and discussed in Lucey et al. (1997). Re-plotting all of the

data in Figure 3.11 (a) gives the result of Figure 3.11 (b) in which the different

K ′-curves have collapsed onto a single variation of divergence-onset flow speed

with channel height.

Having definitively characterised the divergence-onset results from the state-

space analysis of an insert with finite length, albeit long relative to the wavelength

of the critical mode, attention is now given to the validity of the analytical pre-

diction based upon the assumption of an insert of infinite length. The latter is

plotted in Figure 3.11 (b) along with the results of the asymptotic limits, H → 0

and H → ∞, given by the non-dimensionalised forms of Equations (3.45b) and

(3.48a) respectively. The two methods clearly agree well and it is noted that the

percentage difference between the two methods (being 2.43% for H/λs > 0.6)

reduces with the channel height so that, for example, at H/λs = 0.02 there is a

0.2% difference. The simple asymptotic forms, Equations (21b) and (24a), are

seen to yield excellent agreement with the results of full theoretical treatments

over a surprisingly wide range of each of the low and high values H/λc for which

they are solutions in the exact limit.

To explain why there is better agreement as the channel is made narrower,
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Figure 3.11: The dependence of divergence-onset flow speed of a spring-backed

flexible plate on channel height comparing the results of analytical and state-

space forms for three different spring foundations: (a) using the non-dimensional

scheme of Lucey and Peake (2003) and (b) a non-dimensional scheme based upon

that used in Lucey et al. (1997) including, as dot-dashed lines, the asymptotic

results of Equations (3.45b) and (3.48a) of the analytical predictions.
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Figure 3.12 (a) compares insert deformations for the case K ′ = 4.367 and chan-

nel height H ′ = 2.0 (effectively an open flow) at divergence onset (U ′ = 2.3) as

assumed in the travelling-wave solution (upper panel) and as calculated using

the state-space solution (lower panel). It is evident that while both support a

critical mode with the same wavelength, the latter features an amplitude modu-

lation, the shape of which is very close to that of the fundamental mode that has

been sketched in using a dashed line. Amplitude modulation was shown in the

divergence waves predicted by Pitman and Lucey (2009) for an open flow at flow

speeds higher than that of divergence onset; their results also identify unstable

states where the amplitude modulation takes the shape of the second and third

modes of the overall panel. However, it is most likely that the lowest energy state

- that of the fundamental - would dominate the physical destabilisation of the

finite flexible wall. Figure 3.12 (b) makes the same comparison as Figure 3.12

(a) but now for channel flow with H ′ = 0.5, again exactly at divergence onset

(U ′ = 1.47). For the finite wall (lower panel) there is now little evidence of ampli-

tude modulation in the calculated deformation and therefore the form assumed in

the travelling-wave assumption of disturbances (upper panel) yields results that

more closely agree with the exact representation of the compliant insert.

To demonstrate how the condition of finiteness affects the hydrodynamic load-

ing, Figure 3.12 (c) shows the spatial variation of the coefficient of the hydrody-

namic stiffness term in Equation (3.11) for a uniform deformation amplitude, as

assumed in the analysis of a flexible wall of infinite length, for each of H ′ = 0.5,

H ′ = 2.0 and the corresponding open flow each at the flow speed of divergence

onset. Clearly the pressure evaluation based upon the assumption of an infi-

nite flexible wall (not plotted) would yield a constant value across the wall for

each case in Figure 3.12 (c). For the finite-wall pressure evaluation, the pressure

loading is seen to be constant across the middle region of flexible wall but there

is significant variation adjacent to the leading and trailing edges of the flexible

panel. This reflects the fact that for a finite insert, each spatial location is unique

with respect to the hydrodynamic influence it receives from the effect of bound-

ary deformations upstream and downstream of it. For open flows, a discussion,

and mathematical demonstration, of the spatial variation of hydrodynamic forces
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Figure 3.12: Flexible-wall deformation at divergence onset when K ′ = 4.367 as

assumed in the analytical method (upper) and as predicted by the state-space

solution (lower) when: (a) H ′ = 2.0, and (b) H ′ = 0.5. (c) The spatial varia-

tion of the hydrodynamic-stiffness coefficient for uniform deflection amplitude at

divergence onset for the open flow and the two channel heights used for (a) and

(b).



Chapter 3 : Linear Stability of a Fluid-Loaded Flexible Insert 61

over a compliant wall of finite length is presented in Lucey and Carpenter (1993b)

and the special modelling required to model finite panels using travelling-wave

approaches is presented in Peake (2004). It is the imbalance between structural

forces and pressure loading for uniform amplitude that leads to amplitude mod-

ulation - the state in which these forces are exactly balanced across the entire

flexible wall - when a finite wall is correctly analysed. However, what the results

Figure 3.12 (c) clearly show is that as the channel height is reduced, the extent of

the influence of the leading- and trailing-edge effects on the pressure reduces and

therefore the assumptions in the travelling-wave model are less restrictive in its

representation of a truly finite compliant wall interacting with an inviscid fluid

flow.

The present travelling-wave analysis is now extended to include spring-backed

flexible plates to replace both rigid walls of the channel so as to compare the

findings with those of Weaver and Päıdoussis (1977). The methods outlined in

Section 3.1.4 are modified to make both channel walls flexible by changing the

boundary conditions to,

∂φ

∂y
=
∂η

∂t
+ U

∂η

∂x
at y = η,H + η. (3.56)

The variation of divergence-onset flow speed with channel height for K ′ =

4.367 are presented in Figure 3.13 using a non-dimensional flow velocity defined

by Weaver and Päıdoussis (1977) wherein V̄ = U/c and c is a reference free-wave

speed of the flexible wall; for a spring-backed flexible plate c is given by,

c =

√
1

ρmh

(
Bk4 +K

k2

)
. (3.57)

To generate a reference value, k is chosen to be the critical wavenumber defined

by Equation (3.45a). Both in-phase (sinuous) and out-of-phase (varicose) defor-

mations of the flexible channel are plotted as well as the results for a channel

with just one flexible wall and the corresponding predictions of the state-space

solution when the insert is very long. When both walls of the channel are flexible,

the present results show close qualitative agreement with the results of Weaver

and Päıdoussis (1977) shown in Figure 6 of their paper that were obtained using

a travelling-wave assumption for the stream-wise variation of wall deformations
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combined with a modal weighting to account for transverse three-dimensional

effects. Exact quantitative agreement could not be expected because of the

transverse effects in Weaver and Päıdoussis (1977) that increase the divergence-

onset flow speed as compared with a two-dimensional analysis and because in

the present study a spring-backed flexible-plate is used. The present results, like

those of Weaver and Päıdoussis (1977) show that the divergence-onset flow speed

tends to infinity for in-phase (sinuous) deformations as the channel height is re-

duced and serve as a further source of validation. For this case, the flow does not

vary across the channel cross-section; it is effectively one-dimensional, following

the curved contour of the deformed channel. Destabilisation occurs when the

centrifugal force of the fluid flow exceeds the restorative forces of the channel

walls. Clearly the centrifugal force depends upon the mass of fluid, hence the

channel height, traversing the curved path and therefore reducing channel height

increases the required flow speed for destabilisation.

When out-of-phase (varicose) motion of the walls occurs, the present results

indicate that reducing the channel height is destabilising and that in the limit
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One flexible wall: state-space prediction
One flexible wall: analytical solution
Two flexible walls: analytical, in phase
Two flexible walls: analytical, out of phase

Figure 3.13: Analytical prediction for one and two flexible-channel walls compared

with the state-space results.
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H → 0, instability occurs at zero flow speed; this echoes the findings of Weaver

and Päıdoussis (1977). The results in Figure 3.13 for one flexible wall show

the same trends as those of varicose motion although the destabilising effects of

channel height occur at lower values of channel height. When the channel height

for the two-sided flexible insert is twice that used in the analysis of a one-sided

flexible insert, exact collapse of results occurs showing that the straight channel

centreline of the former has the same effect as the flat upper wall in the one-sided

spring-backed flexible plate case.

The present investigation of a spring-backed flexible plate as one wall of a

fluid-conveying plane channel has resulted in the characterisation of divergence

onset as a single variation of non-dimensional critical flow speed with channel

height that accounts for all of the system’s physical parameters. This definitive

quantification shows that reducing the channel height has a destabilising effect, in

that it reduces the critical flow speed, and that channel-height effects scale with

the wavelength of the critical divergence mode. The analytical treatment, based

upon a travelling-wave assumption of disturbance form is shown to agree well

with the predictions of the state-space solution that correctly accounts for the

finiteness of the flexible insert. The relatively small differences in the predictions

of the two methods developed here has been explained as arising from amplitude

modulation of the critical mode when fixed leading- and trailing-edge are strictly

enforced. However this disparity has been shown to reduce as channel height is

decreased. Finally, simple asymptotic forms of the full analytical solution have

been shown to provide excellent approximations of critical speed over significant

ranges of both small and large channel heights.

3.3.2 Double Sided Channel

Attention is now turned to the case of a flexible insert comprising a section of

one wall of a surface that separates two channel flows that are otherwise rigid,

conveying a potential flow as depicted in Figure 1.2 (c).

The properties in each the results presented here are kept constant so as to

focus on the effect being varied and are, unless otherwise stated: L = 0.6 m,

h = 0.0025 m, H1 = 0.6 m, ρm = 2600 kg/m3, B = 76.62 N/m2 and ρ1 = 1000
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kg/m3 with no structural damping, spring-backing or tension. These dimensions

give a mass ratio µ = 92.3.

When the properties of the two channels differ, ΛF refers to the properties of

channel one and the results are presented in terms of a variable κ which relates

the properties of Channel 2 to those of Channel 1, i.e. U2 = κUU1 or ρ2 = κρρ1.

Setting the fluid density in one channel to ρf = 0 kg/m3 reproduces the open

flow result of Figure 3.3 when the channel walls are sufficiently far away.

Varying the Channel Height

The system considered here is one where each channel has the same system prop-

erties, i.e. ρ1 = ρ2, U1 = U2 and H = H1 = H2. The eigenvalue curves for various

channel heights, H, are shown in Figure 3.14 (a). In each case, the four distinct

flexible-wall behaviour types noted for the single sided channel in Section 3.3.1:

pre-divergence, divergence, divergence recovery and modal-coalescence flutter are

still present. In this case however the critical stability bounds are altered from

the single sided channel, even as H/L→∞.

The results presented here can be compared to those of Guo and Paidoussis

(2000) when they consider pinned-pinned boundary conditions. The form of the

eigenvalue solutions are largely the same except that their finite length central

surface does not appear to experience divergence recovery, likely due to flow not

being completely separated by the central surface.

It can be seen from Figure 3.14 (a) that reducing the channel height causes

each instability type to occur at a lower non-dimensional flow velocity, and the

values of the imaginary part of the eigenvalues are reduced; thus at a zero flow

speed the narrower channel causes the wall to oscillate at a lower frequency.

This is due to an increase in pressure on the flexible wall caused by the closer

proximity of the outer walls. It can also been seen that the form of the eigenvalue

curves is unchanged by the parameter H. Guo and Paidoussis (2000) and Epstein

et al. (1995) show that reducing the channel height causes both divergence (Guo

and Paidoussis (2000)) and flutter (Epstein et al. (1995)) to occur at lower flow

velocities which agrees with the results found here.

The effect of H on the critical flow velocity of each instability type is shown
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Figure 3.14: Effect of varying the channel height, H = H1 = H2, (a) Eigenvalue

curves at three different non-dimensional channel heights, (b) Summary of the

effect of channel height on the onset of divergence, divergence recovery and modal-

coalescence flutter.
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in Figure 3.14 (b) and it can be seen that they asymptotically approach a value

where the flexible-wall behaviour is no longer affected by the upper and lower

rigid walls at sufficiently large H. This happens at approximately H/L = 1

which agrees with Guo and Paidoussis (2000) although in both results it can

be seen that there is still a very small effect from the channel walls for greater

channel widths, more noticeably for modal-coalescence. We note that the critical

non-dimensional flow velocities for divergence, divergence recovery and modal-

coalescence are ΛF = 20, 137, 160 respectively for H/L large enough that the

presence of the outer walls is small enough that the critical flow velocities do not

vary significantly for wider channels. These are approximately half the critical

values found by Tan et al. (2010) and shown in Section 3.3.1 which is to be

expected as the pressure is doubled by the presence of fluid on both sides of the

wall. This serves as a source of validation that the state-space method has been

correctly applied to this geometry.

Varying the Channel Densities

Here the effect of varying the fluid density in Channel 2 and maintaining the fluid

density of Channel 1 as a constant (ρ1 = 1000 kg/m3) is considered. The channel

heights are set equal at H1 = H2 = 0.6 m, hence H1/L = H2/L = 1. The fluid

density of Channel 2 is given by ρ2 = κρρ1 and the effect of varying κρ on the

eigenvalues is shown in Figure 3.15 (a). It can be seen that reducing the fluid

density in channel two results in instability onset occurring at higher applied flow

speeds due to the decrease in the pressure on the flexible wall. This effect has

been summarised in Figure 3.15 (b). Again, it can also be seen that the form of

the eigenvalue curves remains unchanged and that the frequency decreases with

κρ.

When the fluid density in Channel 2 is zero, the system can be considered as

being the same as the open flow case and the eigenvalues for large enough H/L

are the same as shown in Tan et al. (2010). This also agrees with the results of

Section 3.3.1 for large values of H/L and the onset speed of divergence ΛF = 40

recovers the well known value for the open flow (Weaver and Unny (1970), Pitman

and Lucey (2009) and Tan et al. (2010)).
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Figure 3.15: Effect of varying the fluid density in one channel for H1/L = H2/L =

1, (a) Eigenvalue curves at three different fluid densities, (b) Summary of the

effect of fluid density on the onset of divergence, divergence recovery and modal-

coalescence flutter.
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Channels of Differing Flow Velocities

To consider channels of different flow velocities the height and fluid density of

each channel is maintained (H1 = H2 = 0.6 m, hence H1/L = H2/L = 1 and

ρ1 = ρ2 = 1000 kg/m3) and the flow velocities in each channel are related by κU ,

so that U2 = κUU1.

When 0 ≤ κU ≤ 1, reducing κU causes instability onset to occur at higher ap-

plied flow velocities as can be seen in Figure 3.16 (a). In this case the eigenvalues

do not change with κU at a zero flow velocity because only the fluid inertia forms

the pressure load at U1 = U2 = 0, i.e. when ΛF = 0.

However when −1 ≤ κU < 0, the eigenvalue curves change qualitatively as

well as quantitatively as can be seen in Figure 3.16 (b). At κU = 0.0 in Fig-

ure 3.16 (a), the divergence-recovery zone is noticeably smaller and has disap-

peared completely when κU = −0.5 as shown in Figure 3.16 (b). Instead of the

divergence-recovery zone, the second mode destabilises before modal-coalescence

occurs and the flexible wall displays a new type of behaviour known as second

mode divergence. Modal-coalescence then occurs (ΛF = 225 for κU = −0.5) and

at even higher flow velocities the second mode divergence takes place again as

can be seen in the κU = −0.75 case. The form of these eigenvalue curves remains

constant as κU continues to decrease for −1.0 < κU ≤ 0.0, where the range of non-

dimensional flow speeds at which modal-coalescence flutter occurs gets smaller as

κU decreases. At κU = −1.0 there is no modal-coalescence between modes 1 and

2 and beyond ΛF = 175 mode 2 divergence is the dominant instability.

A summary of the onset of each instability type as it varies with κU is shown in

Figure 3.17 where the two cases of divergence recovery can be seen for negative

κU . It can be seen in Figure 3.17 that divergence onset is symmetrical about

κU = 0, indicating that divergence onset is only affected by the magnitude of the

flow velocity and not the direction. This does not hold true for modal-coalescence.

The non-dimensional deflections of the flexible wall shown in Figure 3.18 for

(a) κU = 1.0 and (b) κU = −1.0 demonstrate that when each channel has equal

but opposite flow velocities, the wall deflections are symmetrical about the mid-

point of the flexible wall. This does not occur in all other cases as the channel

with the greatest flow velocity causes the beam deflections to be skewed in the
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direction of the flow.
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Figure 3.16: Effect of channels of different flow velocities where U2 = κUU1 , (a)

Eigenvalue curves at three different values of κU for 0 ≤ κU ≤ 1, (b) Eigenvalue

curves at three different values of κU for −1 ≤ κU ≤ 0.
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Figure 3.17: Summary of the effect of varying κU on the onset of each instability

type for −1 ≤ κU ≤ 1.
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at ΛF = 45 for (a) κU = 1.0 and (b) κU = −1.0. The bold line indicates the final

position of the flexible wall.
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3.4 Summary

3.4.1 Single Sided Channel

An extension of the modelling of Pitman and Lucey (2009) that comprises a

hybrid of computational and theoretical methods has been developed to study

the stability of a flexible insert in one wall of an otherwise rigid channel conveying

an inviscid flow. Results for the case where the upper channel wall is sufficiently

far from the lower wall in which the flexible insert is embedded recover the results

of previous studies of the classical problem of a flexible panel or compliant wall

interacting with an open flow. For flexible inserts comprising a structure for

which the critical mode at instability onset is much shorter than the panel length,

an analytical solution has been developed. In the limit of infinite channel-wall

separation, this solution recovers the equivalent formulae derived for an open flow.

These limiting cases serve to validate each of the two approaches developed, that

account for the confinement effects of finite channel height.

A comprehensive investigation of the stability of a range of flexible-insert

types has been conducted using an eigen-analysis of the fluid-structure system.

In all cases it was found that reducing the channel height causes the onset of

divergence and modal-coalescence flutter to occur at lower flow velocities and

the frequency of both system modes prior to instability onset and flutter to be

reduced. These effects have been quantified in non-dimensional form. For simple

plates and membranes, there is a channel height-to-insert-length, H/L, typically

unity, above which the effects of the upper wall are negligible irrespective of the

mass ratio of the FSI system and whether structural damping is included.

For the more complex structure of a spring-backed flexible plate (or compliant

wall), it is found that the effect of the channel height scales with the wavelength

of the critical mode as opposed to the overall length of the flexible insert. When

comparing the two methods developed and deployed for this type of flexible wall,

it has been shown that the analytical solution based upon a travelling-wave form

of wall deformation, predicts divergence-onset flow speeds that agree very well

with the corresponding analysis of a finite insert using the state-space solution.

The agreement improves as the channel height is decreased. This has been shown
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to arise from a reduction, as the channel height is decreased, in the amplitude

modulation of the divergence mode that occurs when fixed insert ends are mod-

elled. This finding suggests that the classical hydrodynamic-stability approach

used to make more complete fluid-flow models tractable, for example when per-

turbations to mean flow velocity profile arising from viscous effects are modelled,

will provide a good approximation of compliant-wall interactions if the channel

height is small. Simple asymptotic forms of the full analytical solution have

been shown to provide excellent approximations of critical speed over appropri-

ate ranges of channel height and these can serve as useful design formulae in

engineering applications.

The overall contribution of these results is a comprehensive set of stability

bounds for inviscid channel flow interacting with a flexible insert. These results

effectively represent the FSI of flexible inserts in an otherwise rigid-walled channel

at the limit of infinite Reynolds number and therefore provide useful engineering

approximations for applications wherein the Reynolds number of the flow is very

high. They can also serve as a benchmark - as the infinite Reynolds-number limit

- for the validation of future theoretical and computational models wherein tur-

bulent flow at finite Reynolds number interacts with and destabilises a compliant

insert.

3.4.2 Double Sided Channel

A state-space method has been developed for a finite elastic wall that separates

two inviscid channel flows. The wall and fluid motions are coupled at the fluid-

solid boundary by the pressure and the flow velocity at which instabilities in the

wall occur are predicted for a given set of system parameters. Overall, the results

show how the properties of the system can be varied in order to delay or advance

the onset of instability in a flexible wall bounded by two distinct channels.

It is found that making one or both of the channels narrower causes instability

to occur at lower flow velocities, as does increasing the fluid density in one channel

from zero to a value equal to that in the other channel.

When the two channels have flows at different velocities, decreasing the flow

velocity in one channel is stabilising as would be expected. When the fluids
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are flowing in opposite directions the eigenvalue morphology changes; there is

no longer a divergence-recovery regime, but second mode divergence occurs in-

stead, followed by the usual modal-coalescence flutter. When the flows are at

exactly opposite velocities, modal-coalescence no longer occurs. This effect can

be explained by considering the four pressure terms in Equation (3.11). The

hydrodynamic stiffness does not depend on the flow direction but only its mag-

nitude and the hydrodynamic inertia does not depend on the flow velocity but

only the fluid density, whereas the hydrodynamic damping depends on both the

magnitude and direction of the flow velocity. It is this damping term that couples

the modes at high enough flow velocities resulting in modal-coalescence. When

the two channels have exactly opposite velocities this coupling effect is cancelled

out and modal-coalescence of the first two modes can no longer occur.



Chapter 4

Non-Modal Analysis

In Chapter 3 linear (small amplitude) deflections of a finite flexible insert in open

and channel flows are considered to investigate the stability bounds of divergence

and modal-coalescence flutter. In Chapter 5 nonlinear (large amplitude) deflec-

tions of a finite flexible plate are considered, where the large deformations grow

from an initial small amplitude disturbance. This Chapter serves as a bridge

between the linear and nonlinear investigations to establish whether large ampli-

fications are possible from transient growth by considering the maximum energy

bound of the system and whether nonlinear disturbance growth may occur be-

fore linear instability onset, as predicted from the linear eigen-analysis. Open

and channel flow systems are considered as depicted in Figures 1.1 (a) and 1.2

(a) respectively. This chapter outlines the method used, followed by results with

comparisons from similar previous investigations.

Where results show high finite amplitude deformations of the plate, it is noted

that further nonlinear structural forces such as induced tension have a significant

impact, and that nonlinear fluid mechanics may also influence the results, however

they have not been considered in this chapter as the method uses a superposition

of the linear eignmodes. The nonlinear modelling is considered in Chapter 5.

75



76 Chapter 4 : Non-Modal Analysis

4.1 Method

4.1.1 Transient Growth

The governing equations of a potential open flow over a finite flexible plate are the

same as those presented in Section 3.1.1 and they are solved by the same method

outlined in Section 3.1.2. In this way the eigenvalues and eigenvectors of the

system are calculated. Transient energy amplifications are then considered using

a method based on that of Schmid and de Langre (2003), Coppola and de Luca

(2010) and Tsigklifis and Lucey (2013). Transient effects and non-normal effects

were first investigated by Schmid and Henningson (2001) and methods and a

range of applications have been detailed and explored by Trefethen and Embree

(2005). The energy norm for the present system is defined by Tsigklifis and Lucey

(2013) as,

E (t) =
1

2

∫ H

0

∫ L

0

(
|ux|2 + |uy|2

)
dx dy+

1

2

∫ L

0

(
ρmh

(
∂η

∂t

)2

+B

(
∂2η

∂x2

)2

+Kη2

)
dx,

(4.1)

where ux and uy are the fluid perturbations in the x and y directions respectively.

In the case of the channel flow, H is the height of the upper channel wall whereas

for the open flow, H is the distance above the flexible plate such that,

uy (x,H, t)→ 0. (4.2)

The kinetic energy of the flow is evaluated by the first integral of Equation (4.1)

whereas the plate kinetic energy is evaluated by the first term of the second

integral and the potential energy (comprising the strain and spring potential) is

evaluated by the second two terms of the second integral.

To consider the changes in the energy of the system, irrespective of the initial

conditions, an energy growth function is defined as,

G (t) = max
E(0)6=0

E (t)

E (0)
. (4.3)

Following Tsigklifis and Lucey (2013), Ehrenstein and Gallaire (2005) and

Åkervik et al. (2008), the disturbances are then constructed as a linear superpo-
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sition of the two-dimensional temporal modes,

{X (x, y, t)} =
N∑
j=1

εj (t) {X̂j (x, y)}, (4.4)

where εj (t) = exp (−ist) εj (0) for complex eigenvalues S and {X̂j (x, y)} are

the N normalised eigenvectors from the state-space method. The energy growth

function, expressed in the basis of the eigenmodes, is then,

G (t) = || [L] exp([Λ] t) [L]−1 ||22, (4.5)

where [Λ] is a matrix with each diagonal entry having a unique eigenvalue, Λii =

Si, and [M ] = [L]T [L] is the Cholesky decomposition of the Grammian matrix

[M ] given by,

Mij =
1

2

∫ L

0

∫ H

0

ux,iu
∗
x,j + uy,iu

∗
y,jdydx

+
1

2

∫ L

0

ρmh

(
∂η

∂t

)
i

(
∂η∗

∂t

)
j

+B

(
∂2η

∂x2

)
i

(
∂2η∗

∂x2

)
j

+K
(
ηiη
∗
j

)
dx,

(4.6)

where ∗ denotes the complex conjugate.

The function G creates an envelope of the maximum growth of energy at a

given time, t, and the initial condition that causes this energy growth is:

{X0} = [L]−1 {z}, (4.7)

where {z} is the right singular vector of the Grammian matrix, [M ].

It is then possible to break down the energy into the flow kinetic energy, struc-

tural kinetic energy and structural potential energy to consider their contribution

to the evolution (in time) of the total energy of the system.

4.1.2 Velocity Perturbation

To calculate the velocity perturbations ux and uy, a value of H must first be

identified (only for the open flow) and an appropriate grid chosen. From Equation

(3.8), it can be seen that the perturbation potential decays with 1/y. Here it is

sufficient to set H = L as any velocity perturbation in the y-direction above this

height is negligible, so H = L satisfies Equation (4.2). An N by M grid is formed

where N is the discretisation of the lower wall and M is the number of points in

the y-direction, spaced evenly between y = 0 and y = H.
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The velocity perturbations at each point on the grid are then given by,

ux =
∂φ

∂x
and uy =

∂φ

∂y
, (4.8a, b)

where φ is calculated from Equation (3.8) and where η and ∂η/∂t are given by

the eigenvectors calculated from the state-space method.
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4.2 Results

The non-dimensional eigenvalues, S ′, and non-dimensional time, t′, are defined

by,

S ′ =
S

S0

and t′ = tS0, (4.9a, b)

where S0 is the theoretical angular oscillation frequency of the fundamental mode

for a plate in vacuo, calculated using Equation (3.50). The system behaviour is

also governed by the mass ratio, µ, and the non-dimensional stiffness ratio (non-

dimensional flow velocity), ΛF, given by Equations (3.51) and (3.52) respectively.

Although 2N eigenvalues are calculated, the only eigenvalues (and correspond-

ing eigenvectors) of interest are the ones that have converged for the discretisation

level being used. For this reason, only the 100 eigenvalues with the lowest abso-

lute imaginary part are included in the transient analysis calculations. Although

no formal validation is presented for this work, sub-components were validated in

Chapter 3 and further validation will be performed throughout the results section

by way of comparison with a range of similar investigations.

4.2.1 Open Flow

Simple Elastic Plate

The results presented here use the same system parameters as in Section 3.3.1

with a grid size of N ×M = 200×200. The mass ratio of this system is µ = 92.3.

To help understand the non-modal analysis performed here, first the spectrum

of eigenvalues calculated from the state-space method is considered. Figures 4.1

(a), (b) and (c) show the four eigenvalues with the smallest absolute imaginary

part (although a total of 2N eigenvalues are calculated) at non-dimensional flow

speeds ΛF = 32, 36 and 38 respectively. These flow speeds correspond to 0.8ΛF
DO,

0.9ΛF
DO and 0.95ΛF

DO respectively, where ΛF
DO is the divergence-onset flow speed

for the open flow ΛF
DO = 40. These flow speeds were chosen as it is the small

amplitude plate deflections that are being considered, found in the pre-divergence

range of flow speeds. The eigenvalues are shown to lie on SR = 0 and this

holds true for all the 2N eigenvalues calculated. It can be seen that as the

flow speed increases, the difference between the oscillation frequency (imaginary
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Figure 4.1: The eigen spectrum for a flexible plate without structural damping

at: (a) ΛF = 32, (b) ΛF = 36 and (c) ΛF = 38 respectively. (d) Energy growth

function G(t) at each corresponding flow speed with non-dimensional time, t′.
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eigenvalue) of the lowest two modes and their complex conjugates increases as the

lowest mode frequency reduces faster than the second lowest. When the lowest

frequency eigenvalue has a zero imaginary value, the real part becomes positive

and divergence occurs.

The energy growth function, G (t), given by Equation (4.5), can be seen in

Figure 4.1 (d) at the flow speeds corresponding to Figures 4.1 (a), (b) and (c).

The energy displays an oscillatory behaviour where the plate alternately extracts

and releases energy from the fluid. Similar oscillatory behaviour was also found

by Coppola and de Luca (2010) for a pinned-pinned plate in supersonic flow and

Schmid and de Langre (2003) for a system with two degrees of freedom. The

maximum value of G (t) increases as the flow speed increases and this agrees with

the results of Coppola and de Luca (2010). Figure 4.1 (d) is replotted in Figure

4.2 with a logarithmic scale to provide a more convenient comparison with the

results of other studies.

Figure 4.3 (a) shows the relationship between the maximum of the energy

growth function, Gmax, as it varies with flow speed. It can be seen that there is

0 50 100 150 200 250

t′

100

101

102

103

G
(t

)

ΛF = 32

ΛF = 36

ΛF = 38

Figure 4.2: Energy growth function G(t) at three different flow speeds with non-

dimensional time, t′.
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(b) Kinetic and potential energy with non-dimensional time for ΛF = 5 and (c)
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an asymptote at the divergence-onset flow speed, with Gmax becoming infinitely

large as it approaches ΛF
DO, beyond which exponential growth in time occurs.

The results exhibit the same characteristics as Figure 11 in Coppola and de Luca

(2010) for a subsonic flow with clamped boundary conditions at the plate ends.

The transient growth of the kinetic and potential energy with time is shown

in Figure 4.3 (b) for non-dimensional flow speed ΛF = 5. As there is no spring-

backing considered here the potential energy is comprised only of the plate’s strain

energy. It can be seen that the strain energy dominates the energy response. As

the plate oscillates, the strain energy grows with the plate deflection, becoming

zero when the plate returns to the y = 0 position. The kinetic energy is out of

phase with the strain energy, having a maximum value when the plate is at a y = 0

position and reducing as the plate grows and slows down. The kinetic energy has

a zero value when the plate stops to change direction within each oscillation,

which is when the strain energy, and plate deflection is greatest. From Chapter

3 (Figure 3.3) it is known that as the flow speed is increased, the oscillation

frequency of the plate reduces, becoming zero at divergence onset, so for this

reason the kinetic energy of the system is smaller at faster flow speeds, becoming

negligible just before divergence onset. This reduction in oscillation frequency

also causes the beat frequency of the energy growth rate to reduce and therefore

the beating time period for the energy growth function increases with ΛF which

can be seen in Figure 4.1 (d). The strain energy, however, increases with flow

speed.

While Figure 4.3 (b) may appear to be like the divergence instability demon-

strated in Chapter 3, it is the nonlinear induced tension which acts as a restoring

force for the divergence instability which is not modelled in this linear analysis.

The plate is stable, but with transient growth, and can be considered to be a type

A behaviour using the classifications of Schwartz et al. (2009) where type A is

stable with transient growth in a linear system, type B is a stable with transient

growth in a nonlinear system and type C is a by-pass transition where transient

growth triggers the flutter instability below the critical flow speed.

By considering the maximum growth in potential energy at any given flow

speed, it is possible to consider the corresponding growth of plate deflection,
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ηmax/η0, shown in Figure 4.3 (c), where ηmax is the peak amplitude of the plate

at its maximum deflection and η0 is the amplitude of the plate at its initial

position. From Figure 4.3 (a), it is expected that the flexible plate deflections

would become infinitely large as the flow speed approaches divergence onset, so

clearly large (nonlinear) deflections are possible in the pre-divergence range of

flow speeds. However even for lower flow speeds, the maximum plate deflection

has the potential to grow large enough to necessitate full nonlinear calculations,

dependent on the initial deflection given.

The non-dimensional beating period of the energy growth function, T ′, is

plotted in Figure 4.4 (a) as it varies with the non-dimensional flow speed, further

demonstrating the increase in beating period with ΛF that was seen in Figure 4.1
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Figure 4.4: Beating period of the energy growth function with non-dimensional

flow speed for: (a) pre-divergence and (b) divergence recovery.
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(d). This shows a similar trend to that shown in Figure 4.1 (a) for Gmax. That

the beating period increases with ΛF and approaches infinity at instability onset,

agrees with the results of Coppola and de Luca (2010). They state that when

modelling a clamped-clamped plate in subsonic flow using a modelling technique

similar to that of Kornecki et al. (1976), the beating period scales with the spacing

between the lowest imaginary eigenvalue and its complex conjugate, 2 Im (S ′1).

Figures 4.1 (a), (b) and (c) show that this spacing decreases with increasing flow

speed. Also plotted on Figure 4.4 (a) is 2π/2 Im (S ′1), which agrees almost exactly

with the beating period found from the transient growth analysis.

Coppola and de Luca (2006) and Coppola and de Luca (2010) found that for

a pinned-pinned beam in a supersonic flow, the beating period and the difference

between the imaginary part of the lowest two eigenvalues, (Im (S ′2)− Im (S ′1)),

are related by T ′ = 2π/ (Im (S ′2)− Im (S ′1)). In the case of supersonic flow, the

first instability encountered is modal-coalescence flutter and the difference be-

tween the lowest two eigenvalues decreases as flow speed increases. In the present

work (Im (S ′2)− Im (S ′1)) increases with flow speed. However, when the transient

growth in the divergence-recovery range of flow speeds (predicted in Section 3.3.1,

Figure 3.4) is considered, a better comparison can be given as in this case the

difference between the imaginary part of the two lowest eigenvalues is decreasing

as the frequencies of mode 1 and mode 2 approach each other, and the system

will lose its stability to modal-coalescence flutter.

The beating period for the divergence-recovery range of flow speeds is shown in

Figure 4.4 (b) and when compared with the Coppola and de Luca (2006) predic-

tion of T ′ = 2π/ (Im (S ′2)− Im (S ′1)), the two agree well. The lowest two eigen-

values calculated from the state-space method, for three flow velocities within

the divergence-recovery range are shown in Figure 4.5 (a), (b) and (c). It can be

seen that as the flow speed increases, approaching modal-coalescence onset, the

difference between the imaginary part of the eigenvalues decreases.

The energy growth function for two flow velocities just before modal-coalescence

flutter onset is plotted in Figure 4.5 (d) with non-dimensional time. The morphol-

ogy of the energy growth function at divergence-recovery flow speeds is different to

that demonstrated in the pre-divergence range of flow speeds shown in Figure 4.2.
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Figure 4.5: The eigen spectrum for a flexible plate without structural damping

at: (a) ΛF = 290, (b) ΛF = 303 and (c) ΛF = 304 respectively. (d) Energy growth

function G(t) at ΛF = 303 and ΛF = 304 with non-dimensional time, t′.
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Although the energy growth function still has the large oscillations, the beating

period of which was plotted in Figure 4.5 (b), another smaller energy oscillation

can be seen which becomes more apparent as the flow speed approaches modal-

coalescence onset. This smaller oscillation is due to the increasing influence of

the mode with the second lowest frequency. The beating period of this mode two

oscillation, T ′2, approximately scales with the spacing between the imaginary part

of second mode and its complex conjugate, 2 Im(S ′2), so that T ′2 ≈ 2π/2 Im(S ′2).

The beating period of mode 2 has also been plotted on Figure 4.4 (b) along with

2π/2 Im(S ′2). Although T ′2 and 2π/2 Im(S ′2) are not always in exact agreement,

this is due to the number of small oscillations that are present in each large

oscillation of the growth function. Up to ΛF = 292 there are two small oscil-

lations present in each large oscillation and there is a greater disparity between

T ′2 and 2π/2 Im(S ′2) with increasing flow speed. At ΛF = 293, the mode of the

small oscillations has increased to 3, improving the agreement of the two results.

This pattern is repeated as the number of small oscillations per large oscillation

increases as the flow speed approaches modal-coalescence onset.

Damped Plate

The system parameters used here are the same as for the plate without structural

damping but with a dashpot-type structural damping of d = 750 Ns/m3. The

mass ratio for this system is µ = 92.3.

When considering the spectrum of eigenvalues, Figures 4.6 (a), (b) and (c)

show the four eigenvalues with the smallest absolute imaginary part at non-

dimensional flow speeds ΛF = 32, 36 and 38 respectively to be compared with

Figures 4.1 (a), (b) and (c). In this case the eigenvalues have a non-zero real

part, the lowest of which approaches zero as the flow speed increases, becoming

positive in the divergence range of flow speeds. The difference between the lowest

two eigenmodes again increases as the lowest mode decreases at a faster rate than

the second mode. This behaviour can also be seen in Figure 3.6.

Figure 4.6 (d) shows the energy growth rate, G, at flow speeds corresponding

to those in Figures 4.6 (a), (b) and (c). When compared with Figure 4.2, the

oscillatory behaviour is still present but inclusion of structural damping reduces
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Figure 4.6: Eigen spectrum for a flexible plate with d = 750 Ns/m3 at: (a)

ΛF = 32, (b) ΛF = 36 and (c) ΛF = 38 respectively. (d) Energy growth function

G(t) at each corresponding flow speed with non-dimensional time, t′.
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Figure 4.7: (a) Maximum energy growth and (b) Beating period of the energy

growth function as they vary with non-dimensional flow velocity for three levels

of structural damping.

the growth rate with each oscillation until it is damped down to G (t) = 0.

The maximum value of G, Gmax, as it varies with flow speed is shown in Figure

4.7 (a) as the dotted line. Also plotted on Figure 4.7 (a) are the cases where d = 0

Ns/m3 and d = 2000 Ns/m3. For all three levels of damping, the energy growth

function increases with ΛF. The presence of damping reduces the value of Gmax

for any given flow speed and it is demonstrated that higher levels of damping

effect a further reduction of Gmax, as would be expected. When no damping is

present and when d = 750 Ns/m3, Gmax appears to asymptote to infinity at the

critical divergence-onset speed, however when d = 2000 Ns/m3, Gmax reaches a

finite value at instability onset.
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Figure 4.7 (b) shows the beating period of the energy growth oscillations with

flow speed at the same levels of damping as in Figure 4.7 (a). The beating period

appears to grow at a slightly faster rate with increasing flow speed when damping

is included. The effect that damping has on T ′ is less significant than the effect

on Gmax. At a zero flow speed the beating periods all converge to the d = 0

Ns/m3 case whereas damping causes a noticeable decrease in Gmax for all values

of flow speed including ΛF = 0.
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Effect of Mass Ratio

For the simple elastic and damped plates the mass ratio is fixed at µ = 92.3. In

this section, the effect of varying the mass ratio of a simple elastic plate without

structural damping is considered. The system parameters are the same as those

used in Section 4.2.1 but with varying fluid density, ρf . Mass ratios of µ = 2, 5,

and 10 are chosen to allow a convenient comparison with the results of Coppola

and de Luca (2010) and the corresponding fluid densities used are ρf = 21.7

kg/m3, 54.2 kg/m3 and 108.3 kg/m3 respectively.

The maximum of the energy growth function as it varies with non-dimensional

flow speed is shown in Figure 4.8 (a) for three different mass ratios. As the mass

ratio is reduced, the maximum of the energy growth function also decreases. From
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Figure 4.8: (a) Maximum energy growth function and (b) Beating period with

non-dimensional flow speed at three different mass ratios.
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this it can be inferred that the maximum amplitude of the plate disturbance also

reduces. The same effect is seen in Figure 11 (a) from Coppola and de Luca

(2010) when considering a subsonic flow, which is opposite to their findings for

a supersonic flow. This occurs because reducing the mass ratio is equivalent to

reducing the fluid density, and so the system is approaching the in vacuo case.

In the in vacuo system all modes are orthogonal and so no transient growth

occurs. The mass ratio can also be altered by changing the length of the flexible

plate, L. Reducing the length of the plate increases the oscillation frequency of

the plate, S ′I. This is demonstrated in the eigen-analysis of Chapter 3 (Figure

3.7). At a higher frequency there is less interaction between the modes. Figure

4.8 (a) also demonstrates that regardless of the mass ratio, Gmax will always

asymptote to infinity at ΛF
DO. This is because divergence is a static instability

and at divergence onset the oscillation frequency is zero, so the divergence-onset

speed is independent of mass ratio. This is also demonstrated in Figure 3.7.

The beating period of the energy growth oscillations is shown in Figure 4.8

(b) as it varies with non-dimensional flow speed for the same three mass ratios

shown in Figure 4.8 (a). As the mass ratio is increased, the beating period also

increases for a fixed flow speed which is another effect of the added mass in the

system. This also agrees with the results of Coppola and de Luca (2010).
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4.2.2 Channel Flow

The energy growth function when a flexible insert comprises one wall of a channel

flow is now considered using the same illustrative parameters for the simple plate

in Section 4.2.1 with a mass ratio, µ = 92.3 and rigid wall lengths Lr = 2L.

The energy growth function as it varies with non-dimensional time is shown in

Figure 4.9 at H/L = 0.1, 0.5 and ∞ (the open flow case) when ΛF = 5. It can

be seen that the morphology of the energy growth function does not alter with

non-dimensional channel height, but that decreasing H/L causes an increase in

the maximum growth that occurs, and an increase in the beating period. This is

a further effect of an increase in hydrodynamic stiffness caused by the increased

gradient of streamline curvature that occurs as the channel is made narrower, as

discussed in Section 3.3.1.

This increase in the energy growth maximum is also demonstrated in Figure

4.10 (a), where for the same three channel heights shown in Figure 4.9, Gmax is

plotted against ΛF. In each case the energy growth maximum becomes infinitely
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Figure 4.9: Energy growth function at ΛF = 5 for the open flow and at two

different channel heights.
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large at divergence onset, and the asymptotic values for instability onset for each

channel height agree with those predicted by the linear theory of Channel 3.

The beating period as it varies with non-dimensional flow speed is plotted in

Figure 4.10 (b) for the H/L = 0.1, 0.5 and ∞ cases. This shows the increase of

T ′ as the channel is made narrower that was seen in Figure 4.9. The asymptotic

values of ΛF also agree with the onset of divergence predicted by the linear theory,

which are marked on Figure 4.9 by the dashed lines.

The streamlines from Equation (4.8) are shown in Figure 4.11 (a) for an open

flow and Figure 4.11 (b) for a channel flow with H/L = 0.25. This demonstrates

how the upper channel wall effects the flow through the channel. In the open
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Figure 4.10: (a) Maximum energy growth rate and (b) Beating period with non-

dimensional flow velocity for three different non-dimensional channel heights.

Dashed lines: divergence onset predicted by the linear theory of Chapter 3.
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flow case, the streamlines have an infinite space over which the curvature of

the streamline will tend towards zero and it can be seen that at a distance of

y/L = 0.25 there is still a noticeable curvature. For the channel case however,

the streamlines are forced to have a zero curvature at the upper channel wall,

therefore increasing the gradient of the curvature. This causes the increase in

pressure, via the hydrodynamic stiffness (first term on the right-hand side of

Equation (3.11)), for narrow channels when compared with wide channels or the

open flow, which causes not only an increase in the transient growth that is

possible but also the reduction in instability onset speed discussed in Chapter 3.

The transient growth that can occur in the system is therefore dependent not

only on flow velocity and mass ratio but also on channel height.
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Figure 4.11: Streamlines for; (a) an open flow and (b) a channel with channel

height H/L = 0.25.
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4.3 Summary

A theoretical investigation of the transient growth of global energy of a potential

flow over a finite compliant wall has been conducted using eigen-analysis within

the non-normality of the system. Only flow velocities in the neutrally stable range

are considered as the aim here is to establish whether nonlinear amplitudes may

be attained by a means other than divergence or modal-coalescence flutter.

An energy growth function is defined and calculated for a variety of flow

speeds. This shows oscillatory behaviour as the plate extracts/releases energy

from/into the fluid. The energy growth function has a maximum amplitude and

beating period that tends to infinity as the flow velocity approaches divergence

onset. The plate has the potential to reach nonlinear amplitudes for the whole

range of flow speeds.

It is found that the total energy is mostly comprised of the plate strain energy,

and that as the flow speed approaches divergence onset, the system kinetic energy

reduces because divergence is a static instability. The effect of damping has been

characterised. The inclusion of a dashpot-type structural damping reduces the

maximum of the energy growth function significantly and reduces the beating

period marginally.

In the divergence-recovery range of flow speeds, the beating frequency is found

to be related to the difference between the oscillation frequency of the two lowest

eigenmodes which agrees with results of previous investigations. This does not

hold true for the pre-divergence range of flow speeds wherein the same trend is

seen for the beating period, but the difference in the oscillation frequencies in-

creases with flow speed. In this case the beating period is related to the difference

between the lowest frequency and its complex conjugate.

The effect of mass ratio is considered and it is found that reducing the mass

ratio reduces the maximum energy growth. This occurs because a lower mass

ratio may be achieved by reducing the fluid density, so the system is approaching

the in vacuo system, where all the modes are orthogonal. Systems with lower

mass ratio are relevant to air flow over metal/glass panels or higher density fluids

such as water interacting with short metal/glass panels.

Finally, the transient growth of a finite flexible plate comprising one wall of
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a channel flow is investigated with attention to the effect of the proximity of the

upper channel wall. It is found that as the non-dimensional channel height is

reduced, the maximum energy growth rate, and the beating period of the energy

growth both increase. This is a further effect of the increased hydrodynamic

stiffness caused by the increased gradient of the streamline curvature of a narrow

channel compared with a wide channel.

This investigation demonstrates that large amplitude disturbances can occur

in a neutrally stable system. The maximum growth of energy in the flexible insert

is dependent on the flow speed, mass ratio and channel height of the system and

that, in the absence of nonlinear effects, energy growth will become infinitely

large at flow speeds close to instability onset.
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Chapter 5

Nonlinear Fluid-Structure

Interactions of a Fluid-Loaded

Flexible Insert

Chapter 3 investigated the linear fluid-structure interactions of a wide range of

different flexible insert types in an open and channel flow, with particular atten-

tion paid to predicting the stability bounds and the effect of the proximity of

an upper channel wall on these stability bounds. Whereas Chapter 4 considered

transient growth as a means to attain large amplitude deflections of a flexible

insert at flow speeds before instability occurs as predicted by Chapter 3. This

Chapter seeks to investigate the behaviour of an unstable flexible insert within

the divergence range of flow speeds where the large amplitude deflections induced

by the flow, grow from an initial small disturbance.

The linear approximations and methods used in Chapter 3 are no longer ap-

propriate for divergence-induced large amplitude deflections. In this chapter full

nonlinear numerical simulations are developed and run following the method of

Lucey et al. (1997) whereby a finite-difference method is coupled with a bound-

ary element method. In addition, the mean-state amplitude of the insert, which

is the settled buckled state when structural damping is included, is found us-

ing a time-independent iterative method which is compared with a theoretically

derived equation for the open flow case.

The methods used are detailed, followed by a validation of the nonlinear

99
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numerical simulations in the open flow and small amplitude numerical simulations

in a channel flow. A range of results are presented for both the open and channel

geometries with emphasis on the maximum amplitude that occurs from nonlinear

oscillations. Although inclusion of flow separation effects such as vortex shedding

would be valuable to improve the understanding of the system, inclusion of these

features is considered to be out of the scope of this research and the consideration

of the mean and maximum deformation is valuable without their inclusion as this

gives a measure of the channel blockage when the insert is unstable. The effect

of a uniform external pressure applied to the insert is also considered along with

the frequency of the nonlinear oscillations.

5.1 Method

5.1.1 Governing Equations

Structural Mechanics

When large deflections are considered, Equation (3.1) is extended to;

ρmh
∂2η

∂t2
+ d

∂η

∂t
+B

∂4η

∂x4
+Kη − TI

∂2η

∂x2
= −∆p(x, y, t), (5.1)

where the tension term, TI, is a nonlinear induced tension given by,

TI =
Eh

L(1− ν2)

∫ L

0

(1 +

(
∂η

∂x

)2
) 1

2

− 1

 dx. (5.2)

For linear deflections (small η), the induced tension is negligible and hence

it can be neglected in the linear structural mechanics of Chapter 3. However,

induced tension increases with η, so for large (nonlinear) deflections, this term

must be included. Induced tension serves as a restoring force, the effects of which

can be seen in the unstable (diverging) systems shown in the results of Section

5.3.

Flow Solution and Pressure

In the linear model, the source/sink singularities were assumed to lie on the

undisturbed plane and this is exact in the limit of η → 0 as the linear deformation
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assumed all perturbations are vanishingly small. For large deflections however,

this approximation is no longer valid. To ensure correct results, the source/sink

singularities must lie on the deformed flexible insert. The linear approximation

allows for the influence coefficients to only be calculated once and the pressure

calculations are simplified. However for the fully nonlinear fluid mechanics, the

normal, tangential and perturbation influence coefficients must be calculated with

every time step to ensure that the singularities move with the insert deflections.

Calculations of the influence coefficients are detailed in Section 3.1.3.

The disturbance normal velocity, tangential velocity and velocity potential are

respectively given by Equations 3.9 (a), (b) and (c). The source/sink singularity

strengths are calculated by applying the no-flux boundary conditions of Equations

(3.6) and (3.7) at the fluid-surface interface for the flexible and rigid portions of

the insert, which is,

INσ = U sinα + uN , (5.3)

where α is the angle of each panel with the horizontal given by,

αi = tan−1

(
ηi − ηi−1

δx

)
≈
(
ηi − ηi−1

δx

)
, (5.4)

to second-order accuracy in η for each panel i, where δx = L/Nf .

The Bernoulli Equation (3.5) is now written,

∆p = 0.5ρf

(
U2 − (U cos (α) + uT )2 − u2

N

)
− ρf

∂φ

∂t
, (5.5)

where,

∂φ

∂t
= IΦ∂σ

∂t
+ σ

∂IΦ

∂t
. (5.6)

This allows the fluid pressure from Equation (5.5) to be matched with the

surface pressure from Equation (5.1) at the fluid-solid interface.

5.1.2 Coupling Methods and Numerical Simulation

Time stepping numerical simulations are performed which follow the same method

as used by Lucey and Carpenter (1992) for small (linear) deflections and by Lucey

et al. (1997) for large (nonlinear) deflections.
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As for the linear state-space method in Chapter 3, the pressure is matched at

the fluid-solid boundary giving a single equation,

{η̈} = [B]−1 {F (η̇, η)}, (5.7)

where [B] is a matrix given by,

[B] = ρmh [I]− ρf

[
IΦ
] [
IN
]−1

cos{α}, (5.8)

and {F} is a vector given by,

{F} = −{∆p (η̇, η)} − d{η̇} −B [D4] {η} −K{η}+ TI [D2] {η}. (5.9)

The flexible insert is given an initial displacement of the form,

η = η0 sin (πx) , (5.10)

for a specified initial amplitude η0, and a three-point implicit time stepping rou-

tine, with a time step size of δt is performed, using the time-differencing equations,

ηt+δt =
1

3

(
2δtη̇t+δt + 4ηt − ηt−δt

)
, (5.11a)

η̇t+δt =
1

3

(
2δtη̈t+δt + 4η̇t − η̇t−δt

)
. (5.11b)

Equations (5.7) and (5.11) are iterated to calculate η, η̇ and η̈ at each mass

point, until numerical convergence is achieved. The Von-Neumann condition must

be satisfied which ensures that the time step is sufficiently small for a given panel

length, to maintain a neutrally stable numerical scheme without numerical error,

(Smith, 1986). The size of time step used in each simulation is therefore dependent

upon the discretisation level used. In this work a nonlinear approximation is used

whereby the influence coefficients are calculated every a time steps depending on

the size of the time step. It will be demonstrated in Section 5.2 that this provides

sufficient accuracy as there are only very small changes in the displacement and

velocity of the insert with each time increment.

In the case of the channel flow, an extra iterative loop is added to the simula-

tion program at each time step to ensure that conservation of mass is maintained

when the channel is constricted, by assessing the flow velocity through the channel
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cross-section. For the range of channel heights and maximum deflections consid-

ered in this work, the extra iterative loop is found to have a negligible effect, but

when the maximum deflection relative to channel height is very large its inclusion

is necessary, although it is noted that in this case it would no longer be suitable

to ignore the viscous effects and that alternative modelling techniques should be

considered.

5.1.3 Theoretical Investigation

To complement the numerical simulations, a theoretical investigation is devel-

oped. Numerical simulations from this work, and from Lucey et al. (1997), show

that in the divergence range of flow speeds, a flexible insert displays nonlinear

oscillations which are demonstrated and analysed fully in Section 5.3. Knight

et al. (2010) derived an equation for a tensioned membrane to predict the peak

amplitude of the maximum deflection caused by nonlinear oscillations which is,

ηmax ≈
(

2ρfL
3

EhI (η′′)

)1/2

U, (5.12)

where U , is the dimensional flow speed and I (η′′) is an integral which is de-

fined below. This equation was developed theoretically, however it does not take

into account flexural rigidity or divergence-onset speed (i.e pre-divergence flow

speeds).

Lucey et al. (1997) also give an equation to predict the peak amplitude of the

maximum deflection from nonlinear oscillations in an open flow which is,

ηmax

h
= 0.128

(
ΛF − ΛF

DO

)0.503
, (5.13)

where ΛF
DO is the well known divergence-onset flow speed for the open flow, ΛF

DO =

40. This was developed by finding an equation to fit the curve of discrete data

found from their numerical simulations.

The aim here is to theoretically develop an equation to predict the maximum

amplitude of oscillations, using a similar method to Knight et al. (2010), but

which includes the effect of flexural rigidity and takes into account the onset of

divergence.

Starting with the nonlinear beam equation given by Equation (5.1), neglecting

damping and spring-backing so that a simple elastic plate is being considered and
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removing any time dependence gives,

B
∂4η

∂x4
− TI

∂2η

∂x2
= −∆p. (5.14)

This equation can be non-dimensionalised using x′ = x/L, η′ = η/L and ∆p′ =

∆p/ (ρfU
2) to give,

B

ρfU2L3

∂4η′

∂x′4
− Eh

ρfU2L(1− ν2)

∫ 1

0

(1 +

(
∂η′

∂x′

)2
) 1

2

− 1

 dx′
 ∂2η′

∂x′2
= −∆p′.

(5.15)

Due to the removal of any time dependence, Equations (5.14) and (5.15) are

static equations valid for the mean state of the plate oscillations. The deflection,

η′, can be re-normalised using η′′ = η′(L/ηmean), where ηmean is the peak amplitude

of the plate deflection in its mean state. Assuming ηmean/L is small, the integral

can be simplified by binomial expansion giving,

B

ρfU2L3

∂4η′

∂x′4
− Eh

2ρfU2L(1− ν2)

(ηmean

h

)2
[∫ 1

0

(
∂η′′

∂x′

)2

dx′
]
∂2η′

∂x′2
= −∆p′. (5.16)

Assuming that the plate has a single mode deflection (which was shown to be

true for plates with no spring backing at divergence onset in Section 3.3, although

at higher flow speeds there is a second mode influence, as discussed in Pitman

and Lucey (2010)), the integral inside the brackets (which will now be denoted

I (η′′)) is a constant; I (η′′) = 4.925. Rewriting Equation (5.16) in terms of the

non-dimensional flow velocity ΛF = ρfU
2L3/B (given by Equation (3.52)a) gives,

1

ΛF

∂4η′

∂x′4
− 6I (η′′) η2

mean

h2ΛF

∂2η′

∂x′2
= −∆p′. (5.17)

For this time independent system, only the curvature-dependent hydrody-

namic stiffness term in the pressure evaluation needs to be considered, and so it

is possible to write ∆p′ ≈ A∂2η′

∂x′2
, where A is a constant of proportionality. Using

the assumption of a single mode deflection gives,

η′ ≈ ηc (t) sin (πx′) , (5.18)

∂2η′

∂x′2
≈ −ηc (t) π2 sin (πx′) (5.19)

and
∂4η′

∂x′4
≈ ηc (t)π4 sin (πx′) , (5.20)
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where ηc (t) is the deflection at the centre panel at any given time.

Divergence is a static instability and at divergence onset the forces on the

plate are perfectly balanced. Below divergence onset the plate displays a neutrally

stable oscillatory motion and it is only at flow speeds above this critical value

that nonlinear oscillations will occur. Given that the plate deflections are still

small (linear) when divergence occurs, the induced tension from the plate will be

negligible and therefore,

1

ΛDO

∂4η′

∂x′4
= −∆p′ = −A∂

2η′

∂x′2
. (5.21)

Using Equations (5.18) and (5.19), it can be shown that A = π2/ΛF
DO. Equation

(5.16) then becomes,

π2

ΛF
+

6I (η′′) η2
mean

h2ΛF
=

π2

ΛF
DO

, (5.22)

which gives,

ηmean

h
=

[(
π2

6I (η′′)

)(
ΛF

ΛDO

− 1

)] 1
2

. (5.23)

This equation can be used to predict the the mean-state amplitude of nonlinear

oscillations and will be compared with Equations (5.12) and (5.13) from Knight

et al. (2010) and Lucey et al. (1997) respectively.

5.1.4 Steady-State Solver

An alternative method to finding the maximum amplitude of the mean state

is to perform numerical simulations with dissipation by including high levels of

structural damping which will be demonstrated in Section 5.3.1, Figures 5.3 (a)

and (c). With the inclusion of damping the flexible insert will eventually settle

into a buckled mean state (Lucey et al., 1997). The solution, as plotted on a phase

portrait (Figure 5.3 (c)), will spiral towards the attractor that is the mean-state

amplitude. However in order to save computation time, it is possible to solve the

time-independent system given by Equation (5.14), taking only the hydrodynamic

stiffness part of the fluid pressure as the only pressure term which is not dependent

on time. Using Equation (5.5) this gives the steady-state problem,

B
∂4η

∂x4
− TI

∂2η

∂x2
= −1

2
ρf

(
U2 − (U cos(α) + uT)2) . (5.24)
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Instead of performing a full time stepping simulation, Equation (5.24) can be

solved iteratively to find the mean-state deflection shape. The basis equation for

this is,

ηn+1 = [B [D4]− TI [D2]]−1 {∆p (ηn)} (5.25)

for some initial displacement, η0 sin (πx). Equation (5.25) is repeated until ηn

and ηn+1 converge.
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5.2 Validation

Presented here is validation of the numerical simulations. Validation of the the-

oretical investigation and steady-state solver will be demonstrated throughout

the results by means of comparison with the numerical simulations and other

investigations.

5.2.1 Structural Mechanics

To validate the structural mechanics of the finite-difference method as applied

by numerical simulations, simulations are run with the fluid density set to zero,

thereby neglecting the fluid mechanics of the system so that it behaves as a plate

in vacuo. The same system parameters as in Section 3.2.1 are used in order to

provide a convenient comparison

Figure 5.1 (a) shows the amplitude of the plate midpoint after being given

an initial displacement with an amplitude of η0 = 0.0002 m. A discretistion of

Nf = 10 panels is used with a time step size δt = 1×10−4 s. At this discretisation

and time step, two iterations are required for convergence at each time. The

plate displays the same neutrally stable oscillatory motion that is observed at

pre-divergence flow speeds (when a fluid is present). It can be seen that the

time period of the oscillations is T = 0.067 s, giving an angular frequency of

SI = 93.78 rad/s. This value has a percentage error of 0.37% when compared

with the fundamental frequency of S0 = 94.13 rad/s calculated in Section 3.2.1 by

Equation (3.50). To improve accuracy, the discretisation level can be increased,

but in doing so the time step must reduced to ensure numerical convergence. For

a plate in vacuo however, Nf = 10 is sufficient.

It is remarked here that the inclusion of the nonlinear structural term TI in the

plate mechanics has no effect on these results, as the insert deflections are small

enough for TI to be negligible. Similarly, the numerical simulations for small

disturbances with a fluid present are the same when comparing the linearised

and nonlinear fluid mechanics and differences between the linear and nonlinear

numerical simulations only occur at sufficiently large insert deflections.
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Figure 5.1: Amplitude of the midpoint of an oscillating plate: (a) In vacuo (pre-

divergence linear oscillations) with Nf = 10. (b) In a fluid (divergence induced

nonlinear oscillations) with ΛF = 61, Nf = 30, using different nonlinear approxi-

mations.
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5.2.2 Fluid Mechanics

In order to validate this nonlinear numerical simulation model, the deflection

history of a simple elastic plate within the divergence range of flows speeds is

plotted in Figure 5.1 (b). The plate is given a small initial fundamental mode

disturbance with amplitude η0/h = 0.02 and as the plate diverges, the amplitude

grows, causing the induced-tension restoring force of the plate mechanics to in-

crease. The plate reaches the peak of its velocity when the forces acting upon it

are matched, at which point the plate deflection slows, being zero at its maximum

deflection, and the plate deflections start to reduce. This behaviour is known as

nonlinear oscillations and without the induced tension term, TI, included in the

beam equation (5.1), this theoretical model would allow the plate growth caused

by divergence to continue indefinitely.

Following Lucey et al. (1997) the same non-dimensional flow speed (given by

Equation (3.52) (a)) is used here as in Section 3.3.1. For linear disturbances, the

structural forces are dominated by the plate flexure, whereas for large deflections

this is not the case. However, ΛF can be rewritten,

ΛF =
ρfU

2

E∗

(
L

h

)3

, (5.26)

where E∗ is the effective elastic modulus of the plate material,

E∗ =
E

12 (1− ν2)
. (5.27)

In this form the non-dimensional flow speed is seen to comprise the product of a

Cauchy number and a non-dimensional parameter for the plate dimensions.

The non-dimensional time used is,

t′ =

√
B

ρmh3

(
t

L

)
=

√
E∗

ρm

(
t

L

)
. (5.28)

The second form of Equation (5.28) shows that the non-dimensionalisation is

related to the free shear-wave speed of the plate material and plate length, which

is,

cs =

√
Bα2

ρmh
=
πh

L

√
E∗

ρm

, (5.29)

for a plate with a fundamental mode deflection.



110 Chapter 5 : Nonlinear Fluid-Structure Interactions of a Flexible Insert

The illustrative parameters used for these simulations are the same as in

Lucey et al. (1997), that is: ρf = 1000 kg/m3, Lf = 1.0 m, h = 0.01 m, B = 6500

Nm, K = 0 N/m3, ρm = 2600 kg/m3 and d = 0 Ns/m3 with an applied non-

dimensional flow velocity of ΛF = 61. This applied flow velocity corresponds to

20 m/s where the critical flow velocity of ΛF=40 corresponds to 16 m/s. The

results were found to converge with a discretisation of Nf = 30 and time step size

δt = 1 × 10−5 s (δt′ = 0.0158). Fully nonlinear numerical simulations have been

run and the amplitude of the plate midpoint with non-dimensional time is shown

in Figure 5.1 (b). These results agree well with those of Kapor (2012), Lucey

et al. (1997) and Pitman (2007).

Figure 5.1 (b) also shows the effect of using a nonlinear approximation whereby

the influence coefficients are calculated every a time steps rather than with every

time step. This approximation is valid because for the very small time steps used

here, the plate displacement and velocity only varies slightly with each time step.

The reason for using a nonlinear approximation is to significantly cut down on

computation time by reducing the total number of calculations required. It can

be seen that for this discretisation (N = 30) and time step (δt = 1 × 10−5 s), a

nonlinear approximation of a = 1 × 102 or smaller is sufficient to give accurate

results.

5.2.3 Numerical Simulations within a Channel

In Section 3.3.1 the divergence-onset flow speed as it varies with non-dimensional

channel height H/L is characterised and can be seen in Figure 3.5 (a). A line of

best fit of this data is found and given by,

ΛD = ΛF
DO(1− exp(−3.3H/L)). (5.30)

By running numerical simulations and observing the plate behaviour at a given

flow speed, it is possible to establish the speed at which divergence occurs at any

given channel height. This data, along with Equation (5.30), is shown in Figure

5.2. The illustrative properties used to generate these results are the same as those

used in Section 3.3.1 with a mass ratio µ = 92.3. A discretisation of Nf = 50,

Lr = 2L is used so that N = 500 with δt = 1× 10−5 s (δt′ = 0.023). The plate is
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Figure 5.2: Divergence-onset flow speed as given by numerical simulations and

as predicted by Equation (5.30).

given an initial fundamental mode disturbance with amplitude η0/h = 0.08.

The data from numerical simulations agrees closely with Equation (5.30)

thereby validating the implementation of the rigid upper surface, along with the

rigid surfaces up- and downstream of the flexible plate by agreement with the

results of the state-space solution of Section 3.3.1. It is noted here that this pro-

vides validation that the channel geometry is accurately modelled by numerical

simulations at small deflections, as divergence occurs when the plate disturbances

are still within the linear range of amplitudes. Thus, the results of Figure 5.2

are the same when full nonlinear numerical simulations are performed and when

linear numerical simulations are performed. This does not provide validation of

the full range of nonlinear effects within a channel. Other nonlinear effects such

as flow separation and boundary layer effects will be discussed with the results

of Section 5.3.
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5.3 Results

5.3.1 Open Flow

Simple Elastic Plate

Nonlinear oscillations in an open flow (H =∞) using the same illustrative system

parameters as in Section 5.2.2 are shown in Figure 5.3, where the mass ratio is µ =

38.5 and a non-dimensional flow velocity of ΛF = 61 is used. The displacement of

the plate midpoint as it varies with non-dimensional time (as in Figure 5.1 (b))

is shown in Figure 5.3 (a) for a plate without structural damping as the dotted

line, and for a plate with a high level of structural damping (d = 10000 Ns/m3)

shown by the solid line. The inclusion of damping causes the amplitude and time

period of each oscillation to decrease until the plate settles in its mean state.

In this case, the non-dimensional maximum amplitude of the mean state of the

plate is ηmean/h = 0.401. This compares well with the value of ηmean/h = 0.417

calculated from Equation (5.23), giving a percentage error of 3.8%.

The mechanics of the nonlinear oscillations are described in Section 5.2.2,

where it is remarked that the induced tension term acts as a restoring force for

the nonlinear instability. In fact, all nonlinear structural terms are stabilising. It

is not as simple, however, to characterise the nonlinear fluid mechanics. Figure

5.1 (b), and Figure 2 from Lucey et al. (1997) both show that with nonlinear

structural mechanics, the amplitude of nonlinear oscillations is the same with

linear fluid mechanics and nonlinear fluid mechanics, but that the oscillation

period is greater when nonlinear fluid mechanics are included. This suggests that

the nonlinear fluid mechanics are more destabilising than linear fluid mechanics as

it takes longer for the restoring forces to reduce the amplitude of the oscillation.

The plate deformations for a succession of time steps covering the first half

of the nonlinear oscillation cycle shown in Figure 5.3 (a) for a plate without

structural damping is shown in Figure 5.3 (b) where the bold line represents the

plate when it has the amplitude of the mean state. The plate deformations are

not symmetrical about x/L = 0.5 as the applied flow velocity causes the plate to

be skewed in the direction of flow. This figure can be compared with Figure 3 (a)

from Lucey et al. (1997). The plate deformations of a structurally damped plate
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Figure 5.3: Results from numerical simulations of the open-flow (H = ∞) when

ΛF = 61: (a) Displacement of the plate midpoint with non-dimensional time for

a plate with (d = 10000 Ns/m3, solid line) and without (dotted line) structural

damping, (b) Plate deformations for a succession of time steps covering the first

half of a nonlinear oscillation without structural damping; the bold line represents

the plate when it has the amplitude of the mean state and (c) Phase portrait for

a damped (solid line) and undamped (dotted line) plate.
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eventually come to rest on the bold line (mean state) shown.

The phase portrait of the midpoint of both a damped (solid line) and un-

damped (dotted line) plate are shown in Figure 5.3 (c) and can be compared

to Figure 4 of Lucey et al. (1997). For a plate without structural damping the

plate motion will continue on the orbit shown, whereas the damped plate can be

seen to spiral towards the attractor that is ηmean/h = 0.401. The plate has been

given an initial positive amplitude, however when the plate is given a negative

initial amplitude, the results are the reflection of those shown about η/h = 0, as

demonstrated in Lucey et al. (1997). For a full investigation when the plate is

given larger initial amplitudes, see Lucey et al. (1997).

By performing numerical simulations without damping, the amplitude of the

plate at its greatest deflection, ηmax, of a nonlinear oscillation for any given flow

speed can be found, and similarly the mean-state amplitude, ηmean, can be found

by including structural damping. A more efficient means to finding ηmean is by the
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1.0
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η
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Equation (5.12)
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Figure 5.4: Equations (5.12) and (5.23) to predict ηmean (continuous data), com-

pared with data from the steady-state solver (discrete data) and Equations (5.13)

and (5.31) (continuous data) to predict ηmax, compared with data from numeri-

cal simulations (discrete data). Note: Equations (5.13) and (5.31) are difficult to

distinguish as they are almost exact.
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use of the steady-state solver outlined in Section 5.1.4. At ΛF = 61 with Pf = 30,

the steady-state solver yields a value of ηmean/h = 0.401 which agrees with the

value shown in Figure 5.3. This value tends towards the theoretical result as the

discretisation is increased.

Figure 5.4 shows Equations (5.12) and (5.13) from Knight et al. (2010) and

Lucey et al. (1997) respectively, which predict the maximum amplitude of non-

linear oscillations, ηmax. It can be seen that Equation (5.12) is notably different

from Equation (5.13) in that the maximum deflection tends to zero as their aim

was to show that the maximum amplitude is proportional to the flow velocity and

so the flow speed at which divergence onset occurs is not considered. In contrast

Equation (5.13) clearly shows that nonlinear oscillations only start to occur at a

flow speed greater than that of divergence onset, ΛF
DO = 40. Also plotted on Fig-

ure 5.4 is Equation (5.23) which predicts the mean-state amplitude of nonlinear

oscillations.

Equation (5.13) can be compared with the discrete data found from numerical

simulations and Equation (5.23) can be compared to the discrete data for ηmean

found using the steady-state solver. Clearly the numerical simulations and steady-

state solver agree well.

From Figure 5.4 it can be seen that ηmax = Cηmean for some C, and by

comparing the discrete data for ηmean and ηmax it is established that C = 1.425.

Although this does vary slightly with flow velocity; for all ΛF in the divergence

range of flow speeds (40 ≤ ΛF ≤ 270) that are demonstrated in Figure 3.3, C is

within less than 1% of 1.425.

An equation for ηmax, based on Equation (5.23), can now be given as,

ηmax

h
= C

[(
π2

6I (η′′)

)(
ΛF

ΛDO

− 1

)] 1
2

. (5.31)

Equation (5.31) has also been plotted on Figure 5.4 and it can be seen that

this gives an excellent approximation to predicting ηmax when compared with the

Lucey et al. (1997) result of Equation (5.13).

By considering Equation (5.24), it is apparent that ηmean is not dependent on

the mass ratio, µ = ρfL/ρmh = (ρf/ρm) / (h/L). However when considering ηmax,

the first term of Equation (5.1) must be included, and therefore ηmax could have

a dependence on the mass ratio, in which case C would be a function of µ. By
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using the steady-state solver to find ηmean and running numerical simulations to

determine ηmax at a range of different mass ratios, achieved by changing the fluid

density, it is possible to show that neither result changes at any non-dimensional

flow speed and hence C is a constant which is independent of mass ratio. This

agrees with Lucey et al. (1997) who found that their ηmax predictions did not

vary with h/L. Equations (5.23) and (5.31) are therefore valid for any given

mass ratio.

Tensioned Membrane

For completeness it is now demonstrated that a pre-tensioned membrane shows

the same trend as Figure 5.4. The motion of the membrane is described by the

nonlinear membrane equation,

ρmh
∂2η

∂t2
− TP

∂2η

∂x2
− TI

∂2η

∂x2
= −∆p, (5.32)

where TP is a uniform pretension given by,

TP = σA = Ehε, (5.33)

where σ is the tensile stress of the membrane, A is the cross sectional area (A =

1×h, i.e. per unit length), E is Young’s modulus and ε is the extensional strain of

the membrane; ε = e/L where e is the extension of the membrane. The strain, ε,

may be considered to be the ‘stretch parameter’ that determines the pretension,

TP, for a given initial extension, e.

By following the same method as in Section 5.1.3, but this time re-normalising

the insert deflection with η′′ = η′ (L/ηmean) as a more appropriate scaling, the

tensioned membrane equivalent of Equation (5.16) is,

TP

ρfU2L

∂2η′

∂x′2
+

Eh

2ρfU2L (1− ν2)

(ηmean

L

)2
[∫ 1

0

(
∂η′′

∂x′

)2

dx′
]
∂2η′

∂x′2
= ∆p′. (5.34)

Assuming a single mode deflection (applying Equations (5.18), (5.19) and

(5.20)) and writing in terms of the non-dimensional flow velocity for a membrane

(ΛM = ρfU
2L/TP given by Equation (3.52) (b)) gives,

1

ΛM
+

I (η′′)

2εΛM (1− ν2)

(ηmean

L

)2

=
1

ΛM
DO

, (5.35)
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where ΛM
DO is the non-dimensional divergence-onset speed for a tensioned mem-

brane in an open flow, ΛM
DO = 4.03, as demonstrated in Figure 3.8. Rearranging

Equation (5.35) gives,

ηmean

L
=

[(
2ε (1− ν2)

I (η′′)

)(
ΛM

ΛM
DO

− 1

)] 1
2

. (5.36)

Although both sides of this equation are non-dimensional, ε is the stretch

parameter that determines TP, so the mean-state amplitude is dependent on

initial strain as well as flow velocity.

Equation (5.36) is plotted in Figure 5.5 (a) and when compared with the

open flow results for a simple elastic plate shown in Figure 5.4 the two clearly

show the same trend. However, the tensioned membrane has the added strain

parameter. This has been demonstrated by showing the results for three different

levels of strain and it can be seen that increasing the pretension in the plate affects

an increase in the mean, and therefore maximum deflections of the nonlinear

oscillations. Also shown on Figure 5.5 are the discrete data from the iterative

steady-state solver using the same illustrative parameters as developed for the

simple elastic plate in Section 5.3.1.

Although the results show that an increase in pretension affects an increase in

the magnitude of the nonlinear oscillations, the non-dimensional flow velocity is

given in terms of the pretension, and so the dimensional divergence-onset speed

is dependent on the pretension. If Figure 5.5 (a) was replotted in terms of the

dimensional flow velocity, U , the magnitude of the oscillations for a fixed value

of U would in fact decrease as the pretension is increased which is to be expected

from a physical aspect.

To provide a result which is valid for all strain values; Equation (5.36) can be

rewritten as,

ηmean

Lε
1
2

=

[(
2 (1− ν2)

I (η′′)

)(
ΛM

ΛF
DO

− 1

)] 1
2

, (5.37)

which is plotted in Figure 5.5 (b) alongside the discrete data from the steady-

state solver. The results from Figure 5.5 (a) are shown here as having collapsed

into a single result.
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Figure 5.5: (a) Equation (5.36) with data from steady-state solver at three dif-

ferent strains and (b) Equation (5.37) with data from the steady-state solver.
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External Pressure

The effect of an external pressure applied to the flexible surface is now considered.

The beam equation is altered so that it reads,

ρmh
∂2η

∂t2
+ d

∂η

∂t
+B

∂4η

∂x4
+Kη − TI

∂2η

∂x2
= −∆p+ pX, (5.38)

where pX is a constant external pressure applied at the underside of each of

the mass points of the discretised plate. By removing the time dependence, the

steady-state solver can be used to find the mean state of this modified system for

different external pressures.

Applying an external pressure to a collapsible channel was studied by Pihler-

Puzović and Pedley (2013). They used an inviscid-core boundary layer model to

consider the steady state and found that self-excited oscillations do not occur.

Figure 5.38 (a) shows the mean-state amplitudes as they vary with ΛF for a

range of different external pressures. It can be seen that when an external pressure

is present, the mean state of the system is increased. In addition, rather than a

distinct point at which divergence occurs, there is now a gradual transition from

a neutrally stable oscillatory motion to nonlinear oscillations. This transition is

more gradual as pX is increased. At zero flow speed, pX is the only effect, which

causes the ηmean amplitude to be displaced from y = 0. As the flow velocity

increases, the pressure perturbation increases, creating a gradual increase in ηmean

but with pX still causing the dominant effect. Further increases to flow speed cause

the pressure perturbation to become more significant than the constant external

pressure, which results in the mean-state amplitude increasing at a faster rate.

This in turn causes the induced tension term to take over as the dominant effect

which is why at very high flow speeds, the results for all external pressures are

seen to converge to the pX = 0 case.

The effect that external pressure has on the ηmean and ηmax values is further

demonstrated in Figure 5.6 (b) which shows the phase portrait of nonlinear os-

cillations for four different external pressures when ΛF = 61. When pX = 0, the

phase portrait can be compared to Figure 5.3 (c). The value of the attractor of

the oscillations at the mean amplitude for each pressure is shown in the figure

by a larger marker and increases with pX. A similar increase is seen for the ηmax
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Figure 5.6: (a) The amplitude of the mean state with non-dimensional speed for

different applied external pressures. (b) Phase portrait of the plate midpoint for

different applied external pressures when ΛF = 61. The larger data points denote

the ηmean value for each external pressure value.
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external pressure p′X when ΛF = 0.

values.

Non-dimensionalising pressure with ∆p′ = ∆p/(ρfU
2) is not appropriate at

zero flow speeds so an alternative non-dimensional pressure is given as,

p′X =
pXL

3

Eh3
. (5.39)

Figure 5.7 shows the amplitude of the mean state as it varies with exter-

nal pressure for a flow velocity ΛF = 0. It can be seen that there is a linear

relationship between the two found to be,

ηmean

L
= 0.117p′X. (5.40)

Displaced double mode initial disturbances

Thus far, the results have all been generated by giving the plate an initial

single mode disturbance of the form,

η

L
=
η0

L
sin (πx) , (5.41)

where η0/L = 1×10−4. These are now compared to a plate given an initial mode

two disturbance that is displaced from y = 0. This disturbance takes the form,

η

L
=
η1

L
sin (πx) +

η2

L
sin (2π) . (5.42)
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Numerical simulations are run for initial disturbances given by both Equation

(5.41) and Equation (5.42) when p′X = 0.00171 (pX = 100 N/m2) at three different

flow speeds.

Figure 5.8 (a) shows the displacement of the plate centre when the plate is

given an initial single mode displacement (Equation (5.41)) with η0/L = 1×10−4

and the non-dimensional flow velocity is ΛF = 0. The plate displays stable

oscillations as in the case when there is no external pressure but where the mean

position has been displaced to η/L = 2 × 104 as predicted by Equation (5.40).

The mean position of η/L = 2× 104 is shown in Figure 5.8 (a) as the dotted line.

The corresponding insert deflections for the initial amplifying phase is shown in

Figure 5.8 (b).

In Figures 5.8 (c) and (d) the plate has a displaced second mode initial deflec-

tion given by Equation (5.42) with η1/L the same as in Figures 5.8 (a) and (b)

at 1 × 10−4 and with η2/L = 5 × 10−5. The displacement of the plate midpoint

(centre panel) with time is plotted in Figure 5.8 (c) as the solid line and the plate

deflections for the first growing phase is shown in Figure 5.8 (d). The deflections

of the plate midpoint closely resemble that of the single mode deflection shown in

Figure 5.8 (a) with a peak to peak amplitude of A1/L = 2× 10−4. Also plotted

on Figure 5.8 (c) is the displacement of the panel such that x/L = 0.25 (given

by the dashed line) and x/L = 0.75 (given by the dotted line). This demon-

strates that the plate has the same large amplitude, single mode oscillations as

for the case shown in Figure 5.8 (a) and (b), but that there is also a second

mode flutter occurring simultaneously. This second mode vibration oscillation

has a peak to peak amplitude of A2/L = 0.0001 and this does not appear to vary

with increasing time. The fraction of the double and single mode amplitudes is

A2/A1 = 0.5.

Figure 5.9 shows the same initial single and double displacement results as

in Figure 5.8 but for the case when ΛF = 30. The amplitude of the single

mode oscillation has increased (to A1/L = 1.17× 10−3) and the frequency of the

oscillations has decreased which is also found for the case without any external

pressure as shown in Section 3.3.1. Comparing Figure 5.8 (c) with Figure 5.9 (c);

the plate still displays the simultaneous single and double mode oscillations with
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A2/L = 1 × 104 being the same as when ΛF = 0. The fraction A2/A1 has now

decreased to 8.58× 10−2.

In Figure 5.10 the same results as in Figures 5.8 and 5.9 are shown but where

the flow speed has been increased to ΛF = 70. The plate is now no longer stable

but displaying full nonlinear oscillations where A1/L = 7.03× 10−3. Figure 5.10

(c) shows that for the second mode initial displacement the second mode flutter

appears to have disappeared completely, however on close inspection a slight

second mode flutter can still be seen when η/L is at its lowest point with the

same peak to peak amplitude of A2/L = 1 × 10−4. The fraction of first and

second mode amplitudes is now A2/A1 = 1.42 × 10−2 which is why the second

mode flutter is less noticeable as the plate behaviour is now dominated by the

fundamental mode.

In Figures 5.8, 5.9, 5.10 (c) and (d) the second mode flutter amplitude has

been constant at A2/L = 0.05 regardless of the flow velocity. An investigation

into varying η2/L reveals that the second mode amplitude stays fixed at the

initial amplitude given (A2/L = η2/L), for all ΛF. In contrast, the amplitude

of the single mode oscillations is only dependent on the applied flow speed and

varying η2/L does not change A1.
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Figure 5.8: Plate deflections with an applied external pressure pX = 100 N/m2

when ΛF = 0 for an initial single mode ((a) and (b)) and displaced double mode

((c) and (d)) disturbance. (a) and (c) Displacement of the plate at x/L = 0.25

(dashed line), 0.5 (solid line) and 0.75 (dotted line) with time, (b) and (d) Plate

deflections for the first growing phase.
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Figure 5.9: Plate deflections with an applied external pressure pX = 100 N/m2

when ΛF = 30 for an initial single mode ((a) and (b)) and displaced double mode

((c) and (d)) disturbance. (a) and (c) Displacement of the plate at x/L = 0.25

(dashed line), 0.5 (solid line) and 0.75 (dotted line) with time, (b) and (d) Plate

deflections for the first growing phase.
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Figure 5.10: Plate deflections with an applied external pressure pX = 100 N/m2

when ΛF = 70 for an initial single mode ((a) and (b)) and displaced double mode

((c) and (d)) disturbance. (a) and (c) Displacement of the plate at x/L = 0.25

(dashed line), 0.5 (solid line) and 0.75 (dotted line) with time, (b) and (d) Plate

deflections for the first growing phase.
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5.3.2 Channel Flow

This section considers the large plate deflections where the flexible surface now

comprises part of an otherwise rigid channel. From Section 3.3.1 it is known that

the plate undergoes the same stability transitions with increasing flow velocity

as for the open flow but with reduced stability bounds dependent on the chan-

nel height, H/L. Numerical simulations reveal that the nonlinear oscillations

demonstrated in the open flow are still present in the channel flow within the

divergence range of flow speeds but that the channel height affects the amplitude

and frequency of the nonlinear oscillations.

Given that nonlinear oscillations only occur at flow speeds higher than the

critical flow speed for divergence, when considering a channel the non-dimensional

flow speed is normalised by the onset flow speed of divergence for any given chan-

nel height, ΛD, from Equation (5.30). Figure 5.11 shows the mean state and
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Equation (5.23)
Equation (5.31)
ηmean, H/L = 0.1

ηmean, H/L = 0.2

ηmax, H/L = 0.1

ηmax, H/L = 0.2

Figure 5.11: Mean state and maximum amplitudes for an open flow given by

Equations (5.23) and (5.31) compared with values for two different channel

heights generated respectively by the iterative solver and numerical simulations.
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maximum amplitudes found from the steady-state solver and numerical simula-

tions respectively for two different non-dimensional channel heights, H/L = 0.1

and H/L = 0.2, along with the open flow results of Equations (5.23) and (5.31).

These results, along with other simulations, reveal that the ratio, C, of max-

imum to mean-state amplitudes of the oscillatory motion is not dependent on

channel height but is in fact the same as for the open flow for all values of H/L.

However, Figure 5.11 shows that the values of ηmean and ηmax are dependent

upon channel height and that as the channel height is decreased the maximum

and mean-state amplitudes increase for a given normalised non-dimensional flow

velocity. This could be expected on physical grounds because mass conservation

creates higher flow speeds, hence higher flow stiffness (ρfU
2) in the region where

the deformed plate effectively causes a narrowing of the channel.

To develop a formula for plate-deformations in a channel flow, Equations
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Figure 5.12: (a) Values of f(H/L) found at different channel heights using the

steady-state solver and (b) The natural logarithm of data shown in (a).
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(5.23) and (5.31) are rewritten,

ηmean

h
=f (H/L)

[(
π2

6I (η′′)

)(
ΛF

ΛD

− 1

)] 1
2

, (5.43a)

ηmax

h
= Cf (H/L)

[(
π2

6I (η′′)

)(
ΛF

ΛD

− 1

)] 1
2

, (5.43b)

where ΛD is given by Equation (5.30) and f (H/L) is a function such that

f (H/L) → 1 as H → ∞. It is noted that for a nonlinear system, f is more

likely to be a function of (H − ηmax) /L rather than H/L, as (H−ηmax) is a more

accurate representation of the constriction in the channel, however for all the

simulations considered here this effect is negligible and it is sufficient to assume

f is a function of H/L; this gives an accurate approximation.

A value of f is found for a range of different channel heights by using the ηmean

values found from the steady-state solver and this has been plotted in Figure 5.12

(a). In order to find an expression for f , Figure 5.12 (b) shows that by taking

the natural logarithm of f , a linear relationship is found so that,

ln(f(H/L)− 1) = −15H/L− 0.65, (5.44)

giving,

f(H/L) = 1 + 0.52 exp (−15H/L) . (5.45)

Equations (5.44) and (5.45) are also plotted in Figure 5.12 (a) and (b) respec-

tively and can be shown to give a good approximation.

Equations (5.43) (a) and (b) can now be used to predict the maximum and

mean-state amplitude for all channel heights within the range of nonlinear di-

vergence flow speeds and for H/L ≥ 0.05. The first constraint arises from the

fact that at higher flow speeds significant levels of Mode-2 content appears in the

deformation (Lucey et al., 1997) while the second approximately demarcates the

threshold at which viscous effects in the flow can no longer be neglected.

Oscillation Frequency

The frequency of nonlinear oscillations and how they are affected by the proximity

of an upper channel wall are considered here. Lucey et al. (1997) give an equation

to predict this frequency for the open flow (Equation (21) of their paper) which
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is,

ω′ = 0.93 (h/L)1.5 (ΛF − ΛDO

)0.380
. (5.46)

This equation was found by curve fitting data found from numerical simulations.

In Figure 5.3 (a) the non-dimensional time period of a flexible plate in an open

flow is shown to be T ′ = 2.2 × 103 at ΛF = 61, (ΛF/ΛDO = 1.52), which gives

a corresponding frequency of ω′ = 2π/T ′ = 2.86 × 10−3. This value agrees

with the findings of Lucey et al. (1997) and can be compared with the value of

ω′ = 2.95× 10−3 which is found from Equation (5.46).

Figure 5.13 shows the frequency data from the numerical simulations per-

formed at four different channel heights (including the open flow, H/L = ∞) as

it varies with normalised non-dimensional flow speed. Also plotted (as the top

dashed line) is Equation (5.46) and a line of best fit for each channel height (as
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H/L =∞
H/L = 0.4

H/L = 0.2
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Figure 5.13: Variation of the nonlinear oscillation frequency with normalised non-

dimensional flow speed for the open flow and three different channel heights. The

dashed line respresents the line of best fit for each channel height in the form

given by Equation (5.47).
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the remaining dashed lines) given in the form,

ω′ (H/L) = A (H/L) (h/L)1.5 (ΛF − ΛD

)B
, (5.47)

where A is a function of non-dimensional channel height and B = 0.380 as in

Equation (5.46).

The function A is found to be approximately,

A (H/L) = −0.42 exp (−1.9H/L) + 0.93. (5.48)

For low flow velocities the results from numerical simulations agree closely

with Equation (5.47), however at higher applied flow speeds the numerical simu-

lation data starts to vary, which agrees with the findings of Lucey et al. (1997).

This is caused by a greater influence from the higher order modes which are found

only at higher applied flow velocities. These results were all presented using a

fixed mass ratio, h/L = 0.01, µ = 38.46. For a comprehensive investigation into

the effect of changing mass ratio for the open flow see Lucey et al. (1997).
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5.4 Summary

Using a finite-difference method to model the plate mechanics coupled with a

boundary-element method to model the fluid mechanics, time stepping numerical

simulations are performed to establish the behaviour of a finite flexible plate

comprising an open flow and one wall of a channel flow. A potential flow model

is used. This method is based on that of Lucey et al. (1997). The divergence-

onset flow speeds, as they vary with non-dimensional channel height, were found

and agree with the results from the linear methods used in Chapter 3.

The nonlinear oscillations of Lucey et al. (1997) for the open flow were also

found here in both the open and channel flows within the divergence range of

flows speeds. Particular attention is paid to the mean state and maximum ampli-

tudes of these oscillations and how they vary with onset flow speed as this gives

an indication of channel blockage. By removing the time-dependence from the

system equations, the mean-state amplitude is found from an efficient iterative

steady-state solver and this is compared with a theoretically developed equation

to predict the mean-state amplitudes. The maximum amplitudes are then found

by performing full numerical simulations and it is found that the ratio between

the amplitudes does not vary with flow speed or with mass ratio. From this an

equation is given to predict the maximum amplitudes for a given flow speed using

the theoretical equation derived for the mean-state amplitudes.

The nonlinear oscillations of a tensioned membrane are then considered and

it is shown that the mean state and maximum amplitudes depend upon the

initial strain which determines the pretension. Some results are demonstrated

and a non-dimensional equation is given to predict the amplitudes in terms of

the initial strain.

The effect of a uniform external pressure applied to the flexible insert is con-

sidered. It is shown that an external pressure increases the mean-state amplitude

and that when an external pressure is present there is no longer a distinct flow

velocity at which divergence occurs but that the plate undergoes a gradual (more

gradual for increasing external pressure) transition from neutrally stable oscil-

lations to unstable divergence-induced oscillations. The plate is then given a

displaced mode two initial disturbance and it is demonstrated that the amplitude



Chapter 5 : Nonlinear Fluid-Structure Interactions of a Flexible Insert 133

of the second mode flutter does not vary with flow speed as with the single mode

oscillation amplitude but stays constant at the initial amplitude given. This re-

sults in the plate behaviour becoming more dominated by the fundamental mode

with increasing flow velocity.

Finally, the case of a finite flexible insert comprising one wall of a channel

is considered with attention paid to the proximity of the upper channel wall.

Flow velocity is normalised with the divergence-onset speed (given by the linear

predictions in Chapter 3) for a given channel height and it is found that the

higher flow stiffness caused by channel constriction, increases the amplitude of the

oscillations for a given normalised non-dimensional flow speed, but that the ratio

between the mean state and maximum amplitudes does not vary with channel

height and is the same as for the open flow. An equation for the amplitudes is

given which is valid for all channel heights (with the exception of very narrow

channels where the potential flow assumption may no longer be valid). It is

also shown that reducing the channel height not only increases the amplitudes

of nonlinear oscillations for a given normalised non-dimensional flow velocity but

also reduces the oscillation frequency.

In the methods presented, potential flow gives an approximate model for flows

at very high Reynolds numbers noting that this approximation precludes the

effect of boundary-layer separation for high levels of boundary curvature that

might occur due to the deformation of the insert. In a potential flow, separation

only occurs at a stagnation point. Flow separation has not been accounted for

as all the insert deformations that have been considered have very low curvature,

1/R, that scales with 2ηmax/L
2 for the deformations herein; for example, when

ηmax/h = 2.0, then 1/R ≈ 0.04. These methods and results serve as a basis

for more complete models that would incorporate viscous effects and boundary-

layer separation. To give an indication of when flow separation would occur,

the experimental investigation of Sturm et al. (2012), where the flow separation

point of an air-foil for various flow speeds and angle of attacks is given. They

show that as flow speed increases, a greater angle of attack is required for flow

separation to occur. They use flow speeds of 5, 10 and 20 m/s. In addition

the direct numerical simulation investigation of Lamballais et al. (2010) for high
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Reynolds numbers shows that decreasing the curvature causes flow separation to

occur further downstream. The range of curvature levels they consider however,

are all considerably higher then those considered here.



Chapter 6

Concluding Remarks

By using a finite-difference method to model the structural mechanics and a

boundary-element method to model the fluid mechanics, an investigation into

the fluid-structure interactions of a flexible insert in an ideal open and channel

flow has been presented.

This chapter includes; a brief overview of the main contributions of this thesis

to the field, a more in depth analysis of the methods and results of each of the

key chapters, a description of the limitations of the research presented and a list

of future research directions that would improve and build upon the method and

results described in this thesis.

6.1 Main Contributions

The main contributions of this work are:

• A set of stability bounds for a finite flexible insert within a channel, depen-

dent on the channel width for a variety of different insert types.

• An analytically derived equation to predict divergence onset in an infinity

long flexible channel in terms of the channel width.

• Stability bounds for a finite flexible insert separating two channels depen-

dant on channel width.

• Characterisation of transient growth for both open and channel flows in-

cluding consideration of mass ratio and channel height.

135
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• Theoretical equations to predict the mean-state amplitude, maximum am-

plitude and oscillation frequency of nonlinear oscillations in an open and

channel flow.

• Characterisation of nonlinear oscillations in open and channel flows includ-

ing the effect of an external pressure gradient and changing the initial con-

ditions.

• A basis for which future experimental research can be compared. The choice

of physical parameters chosen throughout the thesis should enable compar-

ison with experimental results.

6.2 Linear Stability of a Fluid-Loaded Flexible

Insert

Using a potential flow, the finite-difference and boundary-element methods were

coupled using a state-space method, which allowed direct extraction of the eigen-

values and eigenvectors of the system. In this way the onset flow speeds for the

divergence and modal-coalescence flutter instabilities for a finite flexible insert

in an open flow were identified and compared with previous studies. The new

aspect of this work was to then extend this method to account for rigid walls

above and up- and down-stream of the flexible insert so that it then comprises

one section of an otherwise rigid channel. It has been discovered that narrower

channels will become unstable at lower flow speeds. A full set of stability bounds

has been presented for a variety of different plate types. The effect of varying the

mass ratio was investigated and found not to change the effect of the proximity

of the upper channel wall on the stability bounds.

In parallel, an analytically derived equation for the onset of divergence of an

infinitely long channel with one rigid and one flexible wall is presented. This is

compared to the finite insert analysis of a plate with a high order mode shape

(spring-backed flexible plate) and the two are found to be in good agreement.

There is a small discrepancy between the two methods which increases as the

non-dimensional channel height increases and an investigation reveals that this is
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due to an amplitude modulation present for a finite flexible insert, which becomes

less significant for narrow channels.

Eigen-analysis was then performed for a finite flexible plate separating two

otherwise rigid channels. A set of stability bounds is presented considering the

proximity of the channel walls, and the fluid density and flow speed in each

channel. It is found that when the flows in each channel are travelling in opposing

directions, the morphology of the eigen solution changes and a second mode

divergence occurs before modal-coalescence onset.

This linear investigation has provided accurate predictions for the stability

bounds of a variety of systems.

6.3 Non-Modal Analysis

Using the eigen-analysis developed in the linear work, an energy growth function

is defined to assess the transient growth that is possible in the range of flow speeds

before instability onset as predicted by linear theory. It is shown that for both

the open and channel flows, significant growth is possible for the whole range of

neutrally stable flow speeds, and that as the flow speed approaches instability

onset, the energy growth becomes infinitely large.

The energy growth function is oscillatory. Its beating period is related to

the lowest frequency eigenvalue and its complex conjugate in the pre-divergence

range of flow speeds, and the difference between the frequency of the lowest two

eigenvalues in the divergence-recovery range of flow speeds. Reducing the mass

ratio reduces the energy growth function because as the system approaches the

in vacuo case, the non-normality reduces as the eigenmodes of the in vacuo case

are orthogonal.

As the non-dimensional channel height is reduced, the magnitude of the energy

growth function increases for a given non-dimensional flow speed. It is shown that

this, along with the decrease in stability bounds predicted by the linear theory,

is due to the increase in the gradient of the curvature of the streamlines which

must have zero curvature at the upper channel wall.

The non-modal analysis demonstrates that even at low flow velocities, tran-
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sient growth might occur. As such, nonlinear modelling is necessary at flow speeds

before that of instability onset in order to accurately model the complete flexible

insert behaviour, however, linear theory is still sufficient to predict the onset of

divergence and modal-coalescence flutter.

6.4 Nonlinear Fluid-Structure Interactions of a

Fluid-Loaded Flexible Insert

The finite-difference and boundary-element methods have been coupled to per-

form fully nonlinear time-stepping numerical simulations. In the divergence range

of flow speeds, a limit-cycle flutter type behaviours occurs. Both the open and

channel flows are considered and from the numerical simulations, the maximum

amplitude and time period of the nonlinear oscillations can be found for a given

non-dimensional flow speed, channel height and mass ratio. By including struc-

tural damping, the flexible plate will settle in time at a mean-state position, and

so the mean-state deformation can also be found from numerical simulations. A

more efficient method to find the mean-state deformation is to use an iterative

steady-state solver by removing the time-dependence from the system equations.

It is found that the ratio between the mean and maximum amplitudes is constant

and does not depend upon mass ratio, flow speed or channel height.

A theoretical equation is derived to predict the mean-state maximum ampli-

tude for the open flow, and from this an equation for the maximum amplitude

can also be given. These theoretical equations compare well with the numeri-

cal simulation and steady-state solver data. The effect of applying an external

pressure and changing the initial conditions of the flexible insert is considered.

Finally, an equation for the mean-state amplitude, maximum amplitude and

oscillation frequency is determined which is valid for all channel heights. This

allows the nonlinear behaviour of a flexible insert in an open and channel flow

to be characterised and gives a simple way to assess the channel blockage that

would occur for a given set of system parameters.
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6.5 Limitations

Although the results presented are valid for a wide range of applications, the

following limitations on the methods used are recognised:

• Potential flow modelling yields results that are valid for flows which are in

the limit of infinite Reynolds number.

• The linear approximations used in Chapters 3 and 4 give accurate results

for small insert deflections.

• The potential-flow assumption is no longer valid for very narrow channels,

so as channel height tends to zero, alternative modelling techniques should

be considered.

• The two-dimensional models do not take into account any three dimensional

effects. However, Lucey and Carpenter (1993a) have shown that the phe-

nomenology is largely unchanged (from the two-dimensional system) after

a full three-dimensional investigation is undertaken for the open-flow case.

• Viscous effects such as boundary layers and fluid instabilities are not con-

sidered.

• Flow separation that might occur for very large insert deflections is not

accounted for so the results presented in Chapter 5 are valid for insert

deformations of low curvature where flow separation would not occur.

Taking into account these limitations, this thesis provides a range of results

that might find application in engineered systems such as hydro-power plants and

nuclear engineering, hull-panels of high-speed ships, underwater drilling, fluid-

conveying pipelines and biomechanical applications such as airways and large

blood vessels.

6.6 Future Research Directions

As considered in Section 6.5, although the modelling techniques used here give

results that are valid for a wide range of system parameters, there are several
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limitations which could be addressed in future work to develop a more complete

model of the fluid-structure interactions of a flexible plate comprising an open

and channel flow:

• It would be possible to include a relatively simple approximation for flow

separation by considering the pressure gradient following the method of

Cyr and Newman (1996). This approximation would still enable the use of

potential flow. Alternatively a shear layer could be added as demonstrated

by Knight et al. (2010) which would also allow continued use of the potential

flow modelling.

• Following the methods of Pihler-Puzović and Pedley (2013), a viscous bound-

ary layer could be included close to the open or channel flow walls while

maintaining an inviscid core. This would capture some of the non-linear

effects and still allow an eigen-analysis to predict the onset of instabilities

but would only be valid for small-amplitude deflections. Alternatively a

velocity-vorticity disturbance formulation, as used by Tsigklifis and Lucey

(2013, 2014) could be extended to the geometry of a channel flow, which

would allow the eigenmodes of Tollmien-Schlichting waves and travelling-

wave flutter to be identified.

• It is possible to solve the full Navier-Stokes equations as demonstrated in a

channel flow by Pitman and Lucey (2010). They perform an eigen-analysis

making the results relevant for small insert deflections to predict instability

onset. However, nonlinear numerical simulations could be performed to

consider large amplitude insert deflections.

• The global stability of a three-dimensional compliant panel in a Blasius

boundary-flow has been considered by Tsigklifis and Lucey (2014). Simi-

larly, the methods used here could be extended to three dimensions for the

potential flow case, to consider the stability bounds, the transient growth

and the nonlinear behaviour of diverging plates in both the open and chan-

nel flow.

• An experimental study to observe the phenomena of a finite flexible insert
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would be greatly beneficial to allow comparison with some of the results

and conclusions presented here.
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Nomenclature

α Angle of panels with horizontal

η̈ Insert vertical acceleration

∆p Unsteady pressure perturbation

δt Size of time step

η̇ Insert vertical velocity

η (x, t) Insert vertical displacement

η0 Amplitude of initial perturbation

ηmax Peak amplitude of maximum displacement of insert

ηmean Peak amplitude of mean displacement of insert

κ Coupling variable

ΛF Non-dimensional stiffness ratio (flow speed)

ΛF
DO Divergence onset for the open flow

ΛI Non-dimensional flow velocity for a spring-backed wall

ΛM Non-dimensional stiffness ratio (flow speed) for tensioned membranes

λs Critical wavelength

λ′s Non-dimensional critical wavelength

[B] Nonlinear acceleration matrix

[D+] Spatially averaging matrix

155



156 Nomenclature

[Dn] nth order differentiation matrix[
IΦ
]

Perturbation influence coefficient matrix[
IN
]

Normal influence coefficient matrix[
IT
]

Tangential influence coefficient matrix

[Λ] Diagonal matrix of eigenvalues

[A] State space formulation acceleration matrix

[E] State-space formulation velocity matrix

[F ] State-space formulation displacement matrix

[H] State-space formulation matrix

[I] Identity matrix

[M ] Grammian matrix

µ Non-dimensional mass ratio

ν Poisson’s ratio

φ Velocity perturbation

ρf Fluid density

ρm Insert density

σ Source strengths

ζ Theoretical function to account for channel height, H

{F} Nonlinear displacement and velocity vector

{X (x, y, t, )} Transient growth disturbance

n Denoting the upper and lower channel for n = 1, 2 respectively

a Nonlinear approximation

B Flexural rigidity
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c Complex wave speed

d Insert structural damping

E Elastic modulus

E (t) Energy Norm

G (t) Energy growth function

H Channel height

h Insert thickness

H ′ Non-dimensional channel height

K Spring stiffness

k Wavenumber

K ′ Non-dimensional spring stiffness

kd Critical wavenumber for divergence-onset

km Critical wavenumber for modal-coalescence onset

L Length of flexible insert

L′ Non-dimensional insert length

Lr Length of rigid wall up- and down-stream of insert

N Total number of panels

n Mode number

Nf Number of panels comprising insert

pH Hydrodynamic stiffness

S ′ Non-dimensional frequency (flow speed)

S0 Theoretical angular frequency

SI Oscillation frequency
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SR Growth/decay rate

T Uniform tension

TI Induced tension

U Applied flow velocity

U ′ Non-dimensional flow velocity

Ud Critical flow speed for divergence-onset

Um Critical flow speed for modal-coalescence onset

uN Disturbance normal velocity

uT Disturbance tangential velocity

ux Velocity Perturbation, x direction

uy Velocity Perturbation, y direction
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