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ABSTRACT

Naturally fractured reservoirs are becoming increasingly important for oil and gas ex-

ploration in many areas of the World. Because fractures may control the permeability

of a reservoir it is important to be able to �nd and characterise fractured zones. In

fractured reservoirs, the wave induced �uid �ow between pores and fractures can cause

signi�cant dispersion and attenuation of seismic waves. For waves propagating normal

to the fractures this e¤ect has been quanti�ed in earlier studies. Here we extend normal

incidence results to oblique incidence using known expressions for the sti¤ness tensors

in the low- and high-frequency limits. This allows us to quantify frequency-dependent

anisotropy due to the wave-induced �ow between pores and fractures and gives a simple

recipe for computing phase velocities and attenuation factors of quasi-P and SV waves

as functions of frequency and angle. These frequency and angle dependencies are con-

cisely expressed through dimensionless velocity anisotropy and attenuation anisotropy

parameters. It is found that while at low frequencies the medium is close to elliptical

(which is to be expected as a dry medium containing a distribution of penny-shaped

cracks is known to be close to elliptical), at high frequencies the coupling between P and

SV waves results in anisotropy due to the non-vanishing excess tangential compliance.

INTRODUCTION

Naturally fractured reservoirs are becoming increasingly important for oil and gas explo-

ration in many areas of the World. Because fractures may control the permeability of a

reservoir it is important to be able to �nd and characterise fractured zones. In order to

Frequency dependent anisotropy

Galvin, R. and Gurevich, B. 2015. Frequency-dependent anisotropy of porous rocks with aligned fractures. Geophysical 
Prospecting. 63 (1): pp. 141-150.



Galvin & Gurevich 2 Frequency dependent anisotropy

characterise a fractured reservoir we need to understand the e¤ect the fractures will have

on its overall elastic properties. Fractures are highly compliant compared to the relatively

sti¤ pores, so �uid will �ow between pores and fractures during passage of the seismic wave.

If the fractures are aligned, the reservoir will exhibit long wavelength e¤ective anisotropy.

Since the �uid �ow and scattering taking place due to the fractures depends upon seismic

frequency, the anisotropy will be frequency-dependent.

In the limit of low frequencies, static models can be used to obtain the e¤ective elas-

tic moduli of the �uid-saturated medium in terms of the properties of the dry skeleton

and the saturating �uid (Gassmann (1951); Brown and Korringa (1975); Thomsen (1995);

Gurevich (2003); Cardona (2002)). For these models to be valid, �uid pressure must have

time to fully equilibrate throughout the connected pore space which will only be the case

at low frequencies. At higher frequencies pressure equlibration will be incomplete causing

frequency dependent and anisotropic attenuation and dispersion. Anisotropic attenuation

and dispersion have attracted considerable interest in recent years (Behura and Tsvankin

(2009); Best, Sothcott and McCann (2007); Carcione, Santos and Picotti (2012); Carcione,

Picotti and Santos (2012); Chichinina, Obolentseva and Ronquillo-Jarillo (2009); Chichin-

ina, Obolentseva, Gik, Bobrov and Ronquillo-Jarillo (2009); Clark, Benson, Carter and

Guerrero-Moreno (2009); Wenzlau, Altmann and Muller (2010); Zhu, Tsvankin, Dewangan

and van Wijk (2007)). Analysis of these e¤ects for a porous and fractured medium requires

a dynamic model of interaction of an elastic wave with an ensemble of fractures in a porous

medium.

A number of schemes tackling this dynamic problem in fractured porous rocks are cur-

rently available. Brajanovski, Gurevich and Schoenberg (2005) model a fractured medium

as very thin, highly porous layers in a porous background. Their model implies that these

fractures are of in�nite extent and therefore is valid when fracture spacing is much smaller

than fracture length (diameter). The case of �nite-size fractures was considered by Hudson,

Liu and Crampin (1996), who model fractures as thin penny-shaped voids, and account for

�uid �ow e¤ects by applying the di¤usion equation to a single crack and ignoring interac-

tion between cracks. This approximation however leads to some unphysical e¤ects, such as
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the result that the anisotropy of the �uid-saturated fractured and porous rock in the low

frequency limit is the same as for the dry rock (Hudson, Pointer and Liu (2001); Chapman

(2003); Brown and Gurevich (2004)). Chapman (2003) and Maultzsch et al. (2003) analyze

frequency-dependent anisotropy caused by the presence of mesoscale fractures in a porous

rock, by considering connectivity of individual fractures, pores and microcracks. A more

general computational model which can take account of pores and fractures of any size

and shape was proposed by Jakobsen, Johansen and McCann (2003) using the T-matrix

approximation, commonly used to study e¤ective properties of heterogeneous media. In the

T-matrix approximation the e¤ect of voids (pores, fractures) is introduced as a perturbation

of the solution for the elastic background medium.

Galvin and Gurevich (2009) modeled the e¤ect of fractures as a perturbation with re-

spect to an isotropic porous background medium. This approach was attractive because

it allowed us to use all the machinery of the theory of wave propagation in �uid-saturated

porous media, known as the theory of poroelasticity (Biot, 1962), without specifying in-

dividual shapes of grains or pores. It is also logical to assume that the perturbation of

the porous medium caused by the introduction of fractures will be much smaller than the

perturbation caused by putting all the pores and fractures into an elastic solid.

Galvin and Gurevich (2009) simulated the e¤ect of fractures by considering them to be

thin circular cracks in a poroelastic background. They assumed that the cracks are meso-

scopic (large compared to the pore size, but small compared to the fast wave wavelength).

Using the solution of the scattering problem for a single crack (Galvin and Gurevich, 2007)

and the multiple-scattering theory of Waterman and Truell (1961) they estimated the at-

tenuation and dispersion of elastic waves taking place in a porous medium containing a

sparse distribution of such cracks (Figure 1).

However the previous work was limited to normal crack incidence, and therefore only

gives the e¤ective properties in the direction normal to the cracks. In order to look at the

anisotropy of the e¤ective medium the scattering problem needs to be generalised to oblique

angles of incidence, a problem currently being investigated. Carcione et al. (2013) study

angular and frequency dependent properties of a fractured porous medium by obtaining
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the �ve complex frequency dependent sti¤nesses of the equivalent transversely isotropic

(TI) medium. In this paper we present a simple approximate method for obtaining the

complete e¤ective sti¤ness tensor of a �uid-saturated porous medium with aligned cracks

and investigate the predicted anisotropy behaviour. The entire analysis is restricted to the

long wavelength limit so that the fracture size and spacing are assumed small compared to

the wavelength (the so-called equivalent medium approximation).

BACKGROUND THEORY

Sti¤ness tensor of a dry fractured medium

The dry rock is assumed to be a homogeneous and isotropic porous background permeated

by a set of parallel planar fractures. The background consists of a single isotropic elastic

grain material with bulk modulus Kg. The background has porosity �p and Lame constants

� and �, with a sti¤ness tensor of the form

cb =

2666666666666664

�+ 2� � � 0 0 0

� �+ 2� � 0 0 0

� � �+ 2� 0 0 0

0 0 0 � 0 0

0 0 0 0 � 0

0 0 0 0 0 �

3777777777777775
: (1)

The set of parallel fractures is described by the linear slip model (Schoenberg and Douma

(1988); Schoenberg and Sayers (1995)). In this model, at low frequencies, an elastic medium

containing a single set of parallel fractures has the compliance tensor

s0 = sb + sc; (2)

where sb is the compliance tensor (inverse of sti¤ness tensor cb) of the background and

sc is the excess compliance tensor associated with the fractures. In this paper we assume

the fracture set is rotationally invariant about the x1 axis, which is normal to the fracture
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plane. The excess compliance tensor can be expressed in the form (Schoenberg and Sayers

(1995))

sc =

2666666666666664

ZN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT

3777777777777775
; (3)

where ZN and ZT are the normal and tangential excess compliances that exist due to the

presence of the fractures.

Sti¤ness tensor of a �uid-saturated fractured medium�low frequency limit

In his landmark paper, Gassmann (1951) presented equations giving the elastic properties

of a �uid saturated anisotropic solid consisting of a single isotropic elastic grain material in

the low frequency limit. The relationship between dry and saturated moduli can be written

as

csatij = c0ij + �i�jM; i; j = 1; 2; :::; 6 (4)

where for transverse isotropy (see Gurevich (2003))

�1 = 1�
c011 + 2c

0
13

3Kg
; (5)

�2 = �3 = 1�
c013 + c

0
23 + c

0
33

3Kg
(6)

and �4 = �5 = �6 = 0: The scalar M is the direct analog of Gassmann�s pore space

modulus:

M =
Kg�

1� K�
Kg

�
� �

�
1� Kg

Kf

� ; (7)

where � is the overall porosity of the fractured rock (sum of background porosity �p and

fracture porosity �c), Kf is the �uid bulk modulus and K
� is the generalized drained bulk
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modulus,

K� =
1

9

3X
i=1

3X
j=1

c0ij : (8)

We can apply these relationships to our dry fractured medium by inverting compliance

tensor s0 to obtain dry sti¤nesses c0ij , which can be substituted into equations 5-8. This

yields

K� = K

�
1� K

�+ 2�

�
�N ; (9)

�1 = 1�
K

Kg
(1��N ) ; (10)

�2 = �3 = ��
K�

Kg (�+ 2�)
�N ; (11)

where K = � + 2�=3 is the bulk modulus of the dry host rock, � = 1 � K=Kg is the

Biot-Willis coe¢ cient (Biot and Willis (1957)) and

�N =
(�+ 2�)ZN

1 + (�+ 2�)ZN
; (12)

�T =
�ZT

1 + �ZT
(13)

denote dimensionless fracture weaknesses.

Sti¤ness tensor of a �uid-saturated fractured medium �high frequency

limit

The results of the previous section assume hydraulic equilibrium between the pore space and

fractures, hence are only valid in the low frequency limit. This regime is called "relaxed" by

Mavko and Jizba (1991), and corresponds to the situation where the �uid di¤usion length

(Hudson et al. (2001))

J =
q
�pKf�=2�! (14)

is larger than the fracture size (a) and fracture thickness (c),

c� a� J (15)
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where ! is frequency, � the background permeability and � the dynamic �uid viscosity. At

higher frequencies �uid will not have su¢ cient time to �ow between pore space and fractures.

This occurs when the fracture opening becomes larger than the �uid di¤usion length (Norris

(1993); Gurevich and Lopatnikov (1995); Hudson et al. (2001)), although fractures are

still assumed to be smaller than the wavelength. This regime is called "unrelaxed" by

Mavko and Jizba (1991). In this regime �ow between pores and fractures may be ignored,

and the fractures can be treated as isolated fractures in an isotropic background whose

sti¤ness tensor csatb is given by the isotropic Gassmann equation with saturated moduli

Lsat = �+ 2�+ �
2M and �sat = �+ �2M: The compliance matrix at high frequencies will

then have the form

s0 = ssatb + shfc ; (16)

where ssatb is the inverse of sti¤ness tensor csatb and shfc is the excess compliance due to

fracturing at high frequencies, which we now determine from the results for an isolated

crack of radius a and thickness 2c � a. The excess compliances for a crack �lled with a

weak solid with bulk modulus K
0
and shear modulus �

0
are (see Schoenberg and Douma

(1988); Bakulin, Grechka and Tsvankin (2000))

ZN =
4�

3�(1� g)
h
1 + 1

�g(1�g)

�
K0+4=3�0

�

� �
a
c

�i ; (17)

ZT =
16�

3�(3� 2g)
h
1 + 4

�(3�2g)

�
�
0

�

� �
a
c

�i ; (18)

where � = n0a
3 = (3=4�)(a=c)�c is the crack density (Hudson, 1980), �c = (4=3)�a2cn0

is the additional porosity present due to the cracks, g = �=L and n0 is the number of

cracks per unit volume. For �uid-�lled cracks, �
0 ! 0, however K

0
for a �uid such as water

or oil may be comparable in magnitude to �: So for thin cracks with small aspect ratio

c=a;
h�
K

0
+ 4=3�

0
�
=�
i
(a=c) � 1 causing ZN to go to zero. ZT ; however, remains the

same as for dry cracks. Thus the high-frequency excess compliance tensor can be computed

by putting ZN to zero while keeping ZT the same as for the dry medium in the excess
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compliance matrix:

shfc =

2666666666666664

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT

3777777777777775
: (19)

Frequency dependent wave propagation normal to fractures

Fractures whose size is much smaller than their spacing can be modeled as penny-shaped

cracks. This leads to the problem of the interaction of a plane longitudinal elastic wave with

an open oblate spheroidal crack of radius a and thickness 2c� a placed perpendicular to the

direction of wave propagation. This problem was considered by Galvin and Gurevich (2007)

who investigated the case of so-called mesoscopic cracks whose radius is small compared to

the wavelength of the normal compressional wave, but large compared to the individual pore

size. Furthermore crack thickness (but not crack radius!) was assumed smaller than the

�uid di¤usion length. The aspect ratio is assumed to be small, the precise condition being

c=a � Kf=�: As shown by Gurevich and Lopatnikov (1995) and Müller and Gurevich

(2005), the interaction of propagating waves in heterogeneous poroelastic media and the

resulting attenuation can be treated as a scattering problem from fast into slow P-waves,

which can be mathematically posed as a mixed boundary value problem for Biot�s equations

of poroelasticity with boundary conditions. It was also assumed that the crack is in hydraulic

communication with the host rock. Together with the small thickness assumption this allows

one to neglect the volume change of the crack-�lling �uid. As a consequence, the sum of

total and relative displacement normal to the crack surface equals zero, in addition to

standard conditions of the continuity of total stress and pore pressure, while outside of the

crack bulk and relative �uid displacements are assumed continuous. Using these boundary

conditions and making use of the cylindrical crack symmetry, the scattering problem can

be transformed into a single integral equation (Fredholm equation of the second kind) in
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an unknown wave-amplitude function (Galvin and Gurevich, 2007). This single scattering

solution can be used to estimate attenuation and dispersion of an elastic wave propagating

in a medium with a random distribution of aligned cracks using multiple scattering theory.

A Foldy-type approximation of multiple scattering (Waterman and Truell, 1961) can be used

to express the e¤ective wavenumber for the medium with cracks in terms of the number

of scatterers per unit volume and the far-�eld forward scattering amplitude for a single

scatterer, (Galvin and Gurevich, 2006).

The theory presented by Galvin and Gurevich (2006) gives simple expressions for the

low- and high-frequency asymptotic behaviour of velocity and attenuation, but at interme-

diate frequencies requires numerical solution of an integral equation. In the low-frequency

limit, the e¤ective saturated P-wave modulus reads

1

C0
=
1

C

"
1 +

2� (C � �M)2

3�C(1� g)

#
(20)

where C is the saturated P-wave modulus in the background. Low and high-frequency

asymptotes are (Galvin and Gurevich, 2006):

1

csat11 (!)
=
1

C0

"
1 +

i!

D

2M (C � �M)2 (2� 4�g + 3�2g2)a2�
15�g(1� g)2C2

#
(21)

for ! � !c and
1

csat11 (!)
=
1

C

"
1 +

2
p
D�� (C � �M)2

LM
p
�i!a

#
(22)

for ! � !c, respectively, where ! is angular frequency, D = ML�=�C is the hydraulic

di¤usivity of the background medium, � is �uid viscosity, � is intrinsic permeability and

!c = 4�D=a2 is the crossover frequency of this attenuation mechanism, where the �uid

di¤usion length is of the order of the crack radius a.

Results for the attenuation and velocity as a function of frequency from this theory

can only be obtained numerically (by solving an integral equation) which presents a cer-

tain inconvenience of analysis. We can obtain an analytical approximation to the exact

numerical solution using the branching function approximation of Johnson (2001). This
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branching function accurately approximates the governing frequency dependent complex

modulus of the porous medium given the known low- and high-frequency asymptotes of the

exact solution, and obeys conditions of causality and non-negative dissipation:

1

csat11 (!)
=
1

C

"
1 +

�
C � C0
C0

�
=

 
1� & + &

r
1� i!�

&2

!#
(23)

where the P-wave moduli of the fractured and host (unfractured) rock C0 � csat11 (0) and

C = Ksat+4�=3 are low and high frequency limits of the P-wave modulus, respectively. The

behaviour of the attenuation and dispersion in equation (23) is controlled by two parameters:

& � 0 and � > 0. Parameter & controls the shape of the attenuation and dispersion curves

while � de�nes the time scaling. The time scaling and shape parameters are related to the

low- and high-frequency scaling coe¢ cients by

� =

�
C � C0
CG

�2
; & =

(C � C0)3

2C0C2TG2
; (24)

where the parameters T and G are obtained from asymptotic expressions (21) and (22),

respectively:

T =
2 (C � �M)2 (2� 4�g + 3�2g2)�a2�

15�g(1� g)2C2 (25)

and

G = 2�� (C � �M)2
r

�

�CML
: (26)

FULL STIFFNESS TENSOR

The sti¤ness tensor for the entire frequency range is calculated from the low- and high-

frequency limits using the branching function of Johnson (2001). Speci�cally, we calculate

each component of the frequency dependent sti¤ness tensor using an equation analogous to

equation (23):

1

csatij (!)
=

1

csatij;hf

"
1 +

 
csatij;hf � csatij;lf

csatij;lf

!
=

 
1� & + &

r
1� i!�

&2

!#
; (27)
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where csatij;hf and c
sat
ij;lf are the sti¤ness tensors in the high and low frequency limits and

� and & are given by equation (24). This interpolation assumes that both the shape and

characteristic frequency (but not the magnitude!) of the dispersion remain the same for

all directions of propagation. This assumption is justi�ed by the fact that for aligned

fractures, the wave-induced �ow of the �uid, i.e the slow wave, between fractures and pores

is always normal to the fractures due to its low velocity. This assumption is also supported

by numerical simulations (Lambert, Gurevich and Brajanovski (2005); Krzikalla and Müller

(2011)). Once the complex and frequency-dependent sti¤ness tensor is known, it can be

used to compute complex velocities of quasi-P, SV and SH waves as functions of angle and

frequency using the same formulas as used for elastic media (Mavko, Mukerji and Dvorkin

(1998), section 2.2)

VP = (c11 sin
2 � + c33 cos

2 � + c44 +
p
N)1=2(2�)�1=2; (28)

VSV = (c11 sin
2 � + c33 cos

2 � + c44 �
p
N)1=2(2�)�1=2; (29)

VSH =

�
c66 sin

2 � + c44 cos
2 �

�

�1=2
: (30)

Symbols SV and SH refer to S-waves polarised in the plane normal to fractures and parallel

to the fractures, respectively. Then the phase velocities can be computed as (see Carcione

et al. (2013))

vp =

�
Re

�
1

v

���1
; (31)

where v is the velocity of either a qP, qSV or SV wave. The ratio of real to imaginary part

of the sti¤ness gives the anisotropic attenuation matrix Qij = Re(csatij )= Im(c
sat
ij ) (Carcione

(2007); Zhu and Tsvankin (2006)). The phase attenuation along a given direction can

be computed as the ratio of imaginary to real part of the corresponding complex phase

slowness (inverse of the complex velocity). We can then compute Thomsen (1986) anisotropy

parameters from the real part of the sti¤nesses, and attenuation anisotropy parameters using
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the notation introduced by Zhu and Tsvankin (2006):

�Q =
Q33 �Q11
Q11

; (32)

�Q =

�
1
Q13

+ 1
Q55

�2
�
�

1
Q33

� 1
Q55

�2
2
Q33

�
1
Q33

� 1
Q55

� : (33)

RESULTS

Numerical illustrations are calculated for a �uid-saturated fractured porous rock with the

following properties: Poisson�s ratio of � = 0:15; Kf = 2:25 � 109 Pa; Kg = 37 � 109 Pa,

�g = 44 � 109 Pa; � = 0:3, � = 0:1; � = 10�3 Pa.s, � = 1 D, and densities of �f = 1000

kg�m�3 and �g = 2650 kg�m�3. Figure 2 shows dispersion of P waves for di¤erent angles

to the fracture symmetry axis. Figure 3 shows dispersion of the SV wave at an angle of

45�:The SH wave is not shown as it is not dispersive, and has a constant velocity of around

1407 m�s�1. As expected the greatest dispersion occurs normal to the fractures, when the

coupling between the incident wave and slow wave is at it�s maximum. Figure 4 shows the

corresponding attenuation curves for di¤erent angles of incidence, attenuation also being

largest for propagation normal to fractures. Another way to express these results is by

plotting as a function of incident angle, for three representative frequencies: low (10�2 Hz);

intermediate (103 Hz); and high (108 Hz): Figure 5 shows variation of P wave velocity

with angle of incidence for low, intermediate and high frequencies. Velocities decrease as

propagation becomes normal to fractures. Figure 6 shows variation of SV wave velocity with

angle of incidence for low, intermediate and high frequencies. The greatest variation is at

45� to the fractures. Figure 7 shows variation of P wave attenuation with angle of incidence

for low, intermediate and high frequencies. Attenuation is greatest for propagation normal

to fractures, and peaks between the low and high frequency limits. Figure 8 shows variation

of SV wave attenuation with angle of incidence for low, intermediate and high frequencies.

Attenuation is greatest for propagation at 45� to the fractures, and peaks between the low

and high frequency limits.
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A more concise and apparent representation of the frequency dependent anisotropy can

be given by computing the frequency dependence of Thomsen�s anisotropy parameters. This

is shown in Figure 9. We see that at low frequencies, anisotropy parameters � and � are

of the same order of magnitude and thus the medium is close to elliptical. However, as

frequency increases, � changes from positive to negative, while � approaches zero, giving a

strongly unelliptical pattern. Figure 10 shows Thomsen-style anisotropy parameters with

respect to the vertical axis �(V ) and �(V ), which are useful for modeling the surface seismic

response (assuming that fractures are vertical). The behaviour of the anisotropy parameters

can be explained as follows. At low frequencies the behaviour is consistent with anisotropic

Gassmann theory, and the sti¤ness components have values that are equal to the sti¤nesses

of the dry fractured medium plus a second-order term related to the �uid (as in our example

the �uid modulus is small compared to the dry sti¤nesses). However at high frequencies,

as discussed earlier in the paper, the normal sti¤nesses vanishes, and therefore velocities

perpendicular and parallel to fractures become equal, and hence � approaches zero. At the

same time, at intermediate angles, the velocity is smaller than in the symmetry directions

because of the coupling with the SV wave (note that the shear sti¤ness does not vanish,

and thus the medium is still anisotropic). Thus � does not vanish and serves as the only

indicator of P�SV anisotropy. This behaviour of velocities as functions of angle is illustrated

in Figures 5-6.

Figure 11 shows the frequency dependence of the attenuation anisotropy parameters

of Zhu and Tsvankin (2006), �Q and �Q: This again shows that attenuation anisotropy

varies with frequency but this variation expressed through �Q and �Q is not dramatic,

and the parameters remain �nite (and quite large) even in the limits of low and high

frequencies, where attenuation tends to zero. However, the values of the parameters �Q and

�Q do have physical meaning: they are related to the relationships between attenuation

in di¤erent directions as shown in Figure 7. Note that attenuation anisotropy parameters

are not small and thus a weak attenuation anisotropy approximation is not applicable. An

alternative way to quantify the magnitude of attenuation is to use a dimensionless parameter

�Qa = 1=Q33 � 1=Q11. This parameter is plotted in Figure 12. This parameter goes to zero
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in the low and high frequency limits and has a maximum corresponding to a frequency such

that the �uid di¤usion length is the same order of magnitude as the crack radius.

DISCUSSION AND CONCLUSIONS

We have proposed a simple model for calculating the complex and frequency dependent

sti¤ness tensor and anisotropic attenuation of a porous rock with a single set of aligned

fractures. By construction, the model is consistent with known results for the sti¤ness

tensor of a fractured porous medium in the low and high frequency limits and allows one to

compute phase velocities and attenuation factors for quasi P, SV and SH waves as functions

of frequency and angle. The behaviour of P and SV waves as a function of frequency

and angle is consistent in the low and high frequency limits with the fact that attenuation

and dispersion in this medium is due to conversion from P and SV waves into the Biot slow

wave, di¤usion of crack-�lling �uid between the crack and surrounding background porosity.

Velocity and attenuation anisotropy parameters have also been calculated and exhibit the

important results in a concise fashion. It is interesting to note that while at low frequencies

the medium is close to elliptical (which is to be expected as a dry medium containing a

distribution of penny-shaped cracks is known to be close to elliptical), at high frequencies

the coupling between P and SV waves results in anisotropy due to the non-vanishing excess

tangential compliance ZT .

The approach introduced in this paper is very similar to the one proposed by Carcione

et al. (2013). The main di¤erences are related to the underlying fracture models: the work

of Carcione et al. (2013) is based on the model of in�nite planar fractures (Brajanovski et al.

(2005)), while our work is based on the model of penny-shaped fractures in a poroelastic

background (Galvin and Gurevich (2009)). Comparison of these models for wave propa-

gation normal to fractures shows that they have similar results at high frequencies, but

di¤er in attenuation asymptotics at low frequencies (Gurevich et al. (2009)). Since in both

approaches all the sti¤ness components are derived from the frequency dependence at nor-

mal incidence, these di¤erences in the frequency dependency of attenuation are also present

for other directions of wave propagation. Furthermore, both the model of Carcione et al.
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(2013) and the present work are consistent with the anisotropic Gassmann equations in

the low frequency limit, and with the isolated crack model in the high frequency limit, the

behaviour of velocities and elastic anisotropy parameters in these limits is the same in both

models.

We conclude that the simple methodology presented here for approximating the fre-

quency dependent sti¤ness tensor of a fractured �uid-saturated porous medium should be

useful in describing the variation of wave velocities in di¤erent directions and at varying

frequencies.

Frequency dependent anisotropy



Galvin & Gurevich 16 Frequency dependent anisotropy

REFERENCES

Bakulin, A., V. Grechka, and I. Tsvankin, 2000, Estimation of fracture parameters from

re�ection seismic data �Part I: HTI model due to a single fracture set: Geophysics, 65,

1788�1802.

Behura, J., and I. Tsvankin, 2009, Estimation of interval anisotropic attenuation from

re�ection data: Geophysics, 74, A69�A74.

Best, A. I., J. Sothcott, and C. McCann, 2007, A laboratory study of seismic velocity and

attenuation anisotropy in near-surface sedimentary rocks: Geophysical Prospecting, 55,

609�625.

Biot, M. A., 1962, Mechanics of deformation and acoustic propagation in porous media: J.

Appl. Phys., 33, 1482�1498.

Biot, M. A., and D. G. Willis, 1957, The elastic coe¢ cients of the theory of consolidation:

J. App. Mech., 24, 594�601.

Brajanovski, M., B. Gurevich, and M. Schoenberg, 2005, A model for P-wave attenuation

and dispersion in a porous medium permeated by aligned fractures: Geophys. J. Internat.,

163, 372�384.

Brown, L., and B. Gurevich, 2004, Frequency-dependent seismic anisotropy of porous rocks

with penny-shaped cracks: Exploration Geophysics, 35(2), 111�115.

Brown, R. J. S., and J. Korringa, 1975, On the dependence of the elastic properties of a

porous rock on the compressibility of the pore �uid: Geophysics, 40, 608�616.

Carcione, J. M., 2007, Theory and numerical simulation of wave propagation in anisotropic,

anelastic, porous and electromagnetic media: Elsevier.

Carcione, J. M., B. Gurevich, J. E. Santos, and S. Picotti, 2013, Angular and frequency-

dependent wave velocity and attenuation in fractured porous media: Pure Appl. Geo-

phys., 170, 1673�1683.

Carcione, J. M., S. Picotti, and J. E. Santos, 2012a, Numerical experiments of fracture-

induced velocity and attenuation anisotropy: Geophys. J. Internat., 191, 1179�1191.

Carcione, J. M., J. E. Santos, and S. Picotti, 2012b, Fracture-induced anisotropic attenua-

tion: Rock Mechanics and Rock Engineering, 45, 929�942.

Frequency dependent anisotropy



Galvin & Gurevich 17 Frequency dependent anisotropy

Cardona, R., 2002, Two theories for �uid substitution in porous rocks with aligned cracks:

72st Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 173�176.

Chapman, M., 2003, Frequency dependent anisotropy due to meso-scale fractures in the

presence of equant porosity: Geophys. Prosp., 51, 369�379.

Chichinina, T. I., I. R. Obolentseva, L. Gik, B. Bobrov, and G. Ronquillo-Jarillo, 2009a,

Attenuation anisotropy in the linear-slip model: Interpretation of physical modeling data:

Geophysics, 74, WB165�WB176.

Chichinina, T. I., I. R. Obolentseva, and G. Ronquillo-Jarillo, 2009b, Anisotropy of seismic

attenuation in fractured media: theory and ultrasonic experiment: Transport in Porous

Media, 79, 1�14.

Clark, R. A., P. M. Benson, A. J. Carter, and C. A. Guerrero-Moreno, 2009, Anisotropic

p-wave attenuation measured from a multi-azimuth surface seismic re�ection survey: Geo-

physical Prospecting, 57, 835�845.

Galvin, R. J., and B. Gurevich, 2006, Interaction of an elastic wave with a circular crack in

a �uid-saturated porous medium: Appl. Phys. Lett., 88, 061918.

� � �, 2007, Scattering of a longitudinal wave by a circular crack in a �uid-saturated porous

medium: International Journal of Solids and Structures, 44, 7389�7398.

� � �, 2009, E¤ective properties of a poroelastic medium containing a distribution of aligned

cracks: J. Geophys. Res., 114, B07305.

Gassmann, F., 1951, Über die elastizität poröser medien: Viertel. Naturforsch. Ges. Zürich,

96, 1�23.

Gurevich, B., 2003, Elastic properties of saturated porous rocks with aligned fractures:

Journal of Applied Geophysics, 54, 203�218.

Gurevich, B., M. Brajanovski, R. Galvin, T. Muller, and J. Toms-Stewart, 2009, P-wave

dispersion and attenuation in fractured and porous reservoirs - poroelasticity approach:

Geophysical Prospecting, 57, 225�237.

Gurevich, B., and S. L. Lopatnikov, 1995, Velocity and attenuation of elastic waves in �nely

layered porous rocks: Geophys. J. Internat., 121, 933�947.

Hudson, J., T. Pointer, and E. Liu, 2001, E¤ective-medium theories for �uid-saturated

materials with aligned cracks: Geophys. Prosp., 49, 509�522.

Frequency dependent anisotropy



Galvin & Gurevich 18 Frequency dependent anisotropy

Hudson, J. A., 1980, Overall properties of a cracked solid.: Math. Proc. Camb. Phil. Soc.,

88, 371�384.

Hudson, J. A., E. Liu, and S. Crampin, 1996, The mechanical properties of materials with

interconnected cracks and pores.: Geophys. J. Internat., 124, 105�112.

Jakobsen, M., T. A. Johansen, and C. McCann, 2003, The acoustic signature of �uid �ow

in complex porous media: Journal of Applied Geophysics, 54, 219�246.

Johnson, D. L., 2001, Theory of frequency dependent acoustics in patchy-saturated porous

media: J. Acoust. Soc. Amer., 110, 682�694.

Krzikalla, F., and T. Müller, 2011, Anisotropic p-sv-wave dispersion and attenuation due

to inter-layer �ow in thinly layered porous rocks: Geophysics, 76, WA135�WA145.

Lambert, G., B. Gurevich, and M. Brajanovski, 2005, Frequency dependent anisotropy of

porous fractured rocks: Presented at the 67th EAGE Conference and Exhibition,Madrid,

Expanded Abstracts.

Maultzsch, S., M. Chapman, E. Liu, and X. Li, 2003, Modelling frequency-dependent seismic

anisotropy in �uid-saturated rock with aligned fractures: implication of fracture size

estimation from anisotropic measurements: Geophysical Prospecting, 51, 381�392.

Mavko, G., and D. Jizba, 1991, Estimating grain-scale �uid e¤ects on velocity dispersion in

rocks: Geophysics, 56, 1940�1949.

Mavko, G., T. Mukerji, and J. Dvorkin, 1998, The rock physics handbook: Tools for seismic

analysis in porous media: Cambridge University Press.

Müller, T., and B. Gurevich, 2005, Wave-induced �uid �ow in random porous media: At-

tenuation and dispersion of elastic waves: J. Acoust. Soc. Amer., 117, 2732�2741.

Norris, A. N., 1993, Low-frequency dispersion and attenuation in partially saturated rocks:

J. Acoust. Soc. Amer., 94, 359�370.

Schoenberg, M., and J. Douma, 1988, Elastic-wave propagation in media with parallel

fractures and aligned cracks: Geophys. Prosp., 36, 571�590.

Schoenberg, M., and C. M. Sayers, 1995, Seismic anisotropy of fractured rock: Geophysics,

60, 204�211.

Thomsen, L., 1986, Weak elastic anisotropy: Geophysics, 51, 1954�1966.

� � �, 1995, Elastic anisotropy due to aligned cracks in porous rock: Geophysical Prospect-

Frequency dependent anisotropy



Galvin & Gurevich 19 Frequency dependent anisotropy

ing, 43, 805�829.

Waterman, P. C., and R. Truell, 1961, Multiple scattering of waves: J. Math. Phys., 2,

512�537.

Wenzlau, F., J. B. Altmann, and T. Müller, 2010, Anisotropic dispersion and attenuation

due to wave-induced �uid �ow: Quasi-static �nite element modeling in poroelastic solids:

J. Geophys. Res., 115, B07204.

Zhu, Y., and I. Tsvankin, 2006, Plane-wave propagation in attenuative transversely isotropic

media: Geophysics, 71, T17�T30.

Zhu, Y., I. Tsvankin, and K. van Wijk, 2007, Physical modelling and analysis of p-wave

attenuation anisotropy in transversely isotropic media: Geophysics, 72, D1�D7.

Frequency dependent anisotropy



Galvin & Gurevich 20 Frequency dependent anisotropy

Figure 1: A porous medium containing a sparse distribution of circular cracks.
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Figure 2: Frequency dependency of P wave phase velocity for di¤erent angles to the fracture
symmetry axis.
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Figure 3: Frequency dependency of SV wave phase velocity at 45 degrees to the fracture
symmetry axis.
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Figure 4: Attenuation of P and SV waves for di¤erent angles to the fracture symmetry axis.
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Figure 5: Variation of P wave velocity with angle of incidence for low, intermediate and
high frequencies.
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Figure 6: Variation of SV wave velocity with angle of incidence for low, intermediate and
high frequencies.
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Figure 7: Variation of P wave attenuation with angle of incidence for low, intermediate and
high frequencies.
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Figure 8: Variation of SV wave attenuation with angle of incidence for low, intermediate
and high frequencies.
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Figure 9: Frequency dependence of Thomsen�s anisotropy parameters for horizontal sym-
metry axis.
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Figure 10: Frequency dependence of Thomsen�s anisotropy parameters for vertical symme-
try axis.
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Figure 11: Frequency dependence of attenuation anisotropy parameters.
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Figure 12: Frequency dependence of alternative attenuation anisotropy parameter epsilonQ.
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