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Abstract

Stochastic differential equations (SDEs) have been widely used as models for fi-

nancial quantities such as interest rates, asset prices as well as their derivatives.

Unlike deterministic models such as ordinary differential equation model, SDEs

have solutions in the forms of continuous-time stochastic processes instead of a

unique solution for each appropriate initial condition. Methods for the numerical

solutions of stochastic differential equations are based on techniques for ordi-

nary differential equations with generalization to provide support for stochastic

dynamics.

This study consists of three parts. The first part of the research focuses on

constructing an efficient numerical method for solving jump-diffusion stochastic

differential equations under the Poisson random measure and a fixed time delay. A

simplified Taylor method is established to give solutions with a weak convergence

rate arbitrarily close to order β, and a corresponding convergence theorem for

stochastic delay differential equations (SDDEs) with jumps is established and

proved. A numerical example shows that the proposed numerical scheme gives

stable results under certain accuracy requirement.

The second part of the research focuses on stochastic differential equations

with fractional order for application in option pricing. We first formulate the

stock price process by stochastic differential equations with fractional order, and

then establish the European call option pricing formulae using the fractional order

stochastic differential equation. Some comparisons have been made among the

option pricing formula established by our proposed approach and two classical
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models. We find that the new approach leads to a better result than the classic

approach and the fractional Brownian motion approach, through simulating the

stock prices by the Monte Carlo simulation method.

The third part of the research focuses on parameters calibration for stochastic

models. First, we propose an effective algorithm for the estimation of parameters

in SDE models, based on the implementation of the Bayesian inference and the

Markov Chain Monte Carlo (MCMC) method. The importance sampling tech-

nique is used to increase the robustness of estimates. We have also examined

the influence of different samples of the latent variables on the variation of es-

timates. Numerical results suggest that the method used in this work is robust

for such variation. Then, we develop another algorithm for parameter estimation

of the stiff SDE models. This approach is based on the usage of an implicit nu-

merical scheme in the Monte Carlo simulation integrated with the particle swarm

optimization (PSO). Experimental results show that when the SDE model is mod-

erate stiff, estimates produced by the semi-implicit Milstein method have better

accuracy than those obtained by the explicit Milstein method. Furthermore, the

PSO algorithm can produce reliable estimates which are nearly independent of

the implementation details compared with the genetic algorithm.
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CHAPTER 1

Introduction

1.1 Background

During the past 30 years there has been an increasing demand for tools and meth-

ods of stochastic differential equations in various disciplines. In engineering, s-

tochastic differential equations are used in filtering and control theory. In physics,

stochastic differential equations are used to study the effects of random excita-

tions on various physical phenomena. In biology, stochastic differential equations

are employed to model the effects of stochastic variability in reproduction and

environment on populations. One of the greatest demands has come from the

growing area of mathematical finance, where stochastic differential equations are

used for pricing and hedging of financial derivatives, such as options. They are

also very important to much of modern finance theory and have been widely used

to model the behaviour of key variables such as stock price, short term interest

rate, asset returns and their volatility. Particularly, fluctuating global economic

conditions require market uncertainty management to ensure the effectiveness of

investment decision.

In mathematical finance, delays in the dynamics can represent memory or

inertia in the financial system. For instance, successive price changes (or returns)

are independently distributed, which is called inefficient market. Stochastic delay

1



1.1 Background 2

differential equations is an effective instrument to model the memory effects. A lot

of surveys of financial markets show that a large proportion of investors use past

prices as a guide to make investment decisions. Such feedback trading strategies

may lead to speculative asset bubbles and crashes. Because of the absence of this

feedback behaviour in standard non-delay models, it is necessary to assume that

aggregate demand is functional of past prices. In this case, price dynamics could

be modeled by stochastic delay differential equations.

Fractional derivative has a history as long as that of classical calculus, but it is

much less popular than it should be. In financial time series, long term memory

indicates the correlation structure of a series at long lags. If a series shows

long-term memory, there is persistent temporal dependence even between distant

observations. The presence of long range memory in financial asset returns has

important implications for many of the stochastic models in financial economics.

For instance, optimal consumption or savings and portfolio investment decisions

might become extremely sensitive to the investment period if the returns were

long range dependent. To address the long memory effects in financial dynamics,

the fractional stochastic differential equations may be a good alternative choice.

Stochastic modelling and simulation have become areas of intense research in

recent years, as more sophisticated mathematical models of financial phenome-

na become available. Since only a small class of stochastic differential equations

admits explicit solutions, efficient and effective numerical methods need to be con-

structed for the weak solutions of stochastic differential equations with/without

jumps.

Parameter calibration is anther important issue in the field of mathematical

finance. Given the widespread usage of SDEs in a diverse range of fields, any

contribution that improves the performance of models based on SDEs provides

obvious benefits to society. The explanatory and/or predictive power of these

models depends crucially on the particularisation of the model SDE(s) to real
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data through the specification of the SDE(s) and the choice of values for their

parameters.

In econometrics, the estimates of optimal parameters are generally obtained

by maximising the likelihood function of the sample. However, in the context

of the estimation of the parameters in SDEs, a closed-form expression for the

likelihood function is rarely available and hence exact maximum likelihood (EM-

L) estimation used in classical econometric models is usually infeasible. Thus,

further research is needed for the development of accurate and computationally

feasible estimation procedures based on the maximum likelihood principle in the

absence of a closed-form expression for the likelihood function.

1.2 Objectives

The main purpose of the work is to construct efficient discrete-time approximation

methods to address the memory effects arising in financial markets, and devel-

op new numerical algorithms for parameter estimation in nonlinear stochastic

differential equations. More specifically, this thesis aims to

(i) develop a robust Taylor approximation scheme for the solutions of jump-

diffusion stochastic delay differential equations and then examine the con-

vergence of the numerical method in a weak sense.

(ii) construct a fractional order stochastic differential equation model to de-

scribe the effect of trend memory in financial derivative pricing.

(iii) develop a numerical algorithm to estimate unknown parameters in stochas-

tic interest rate models by utilizing the Bayesian inference and Markov chain

Monte Carlo method.

(iv) propose a new method by using an implicit method of nonlinear stochastic

differential equation and particle swarm optimization algorithm to calibrate
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parameters in the term structure models of interest rate.

1.3 Outlines of the Thesis

This thesis consists of six chapters. Chapter 1 presents a brief introduction of

the research and gives the objectives of the study.

Chapter 2 reviews previous work relevant to the scope of this project. Some

necessary background information and knowledge closely related to this research

are also presented in this chapter.

Chapter 3 begins with an overview of the theory of weak solutions of stochas-

tic delay differential equations in Section 3.2 and Section 3.3. In Section 3.4, we

construct a robust Taylor approximation scheme and then examine the conver-

gence of the method in a weak sense. A convergence theorem for the scheme

is established and proved. Then, a scheme of high order is proposed for Monte

Carlo simulation for jump-diffusion stochastic delay differential equations.

Chapter 4 begin with a review of fractional order ordinary differential equa-

tion used as an effective instrument for describing the memory effect in complex

systems. A fractional order stochastic differential equation model is constructed

for describing the effect of trend memory in financial pricing. We, then, derive a

European option pricing formula based on the FSDE model and prove the exis-

tence of the trend memory (i.e., the mean value function) in the option pricing

formula when the Hurst index is between 0.5 and 1. In addition, we carry out a

comparison analysis among our proposed model, the classic Black-Scholes model,

and the stochastic model with fractional Brownian motion. Numerical results

suggest that our model leads to more accurate and lower standard deviation in

the empirical study.

Chapter 5 concentrates on identifying parameters for stochastic models to

generate accurate simulations. Utilizing the Bayesian inference and Monte Car-
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lo Markov Chain method, we develop a numerical algorithm to estimate the

unknown parameters in stochastic interest rate models. Section 5.2 gives the s-

tochastic models for term structure of interest rates and numerical algorithms for

simulating these stochastic models. Section 5.3 discusses the Bayesian inference

and the Monte Carlo Markov Chain method and then propose a new effective

method to estimate parameters in stochastic models. Section 5.4 reports the nu-

merical results for parameters estimation in the stochastic models for the term

structure of interest rates.

In Chapter 6, we develop a novel method by using implicit methods to solve

SDEs, which is aimed at generating stable simulations for stiff SDE models. The

particle swarm optimization method is used as an efficient searching method to

explore the optimal estimate in the complex parameter space. Using the interest

term structure model as the test system, numerical results show that the proposed

new method is an effective approach for generating reliable estimates of unknown

parameters in SDE models.

The last chapter provides summaries and a discussion of possible future re-

search.



CHAPTER 2

Literature Review

2.1 General Overview

A differential equation that contains a random component, which in turn leads to

a solution that is a random process, is known as a stochastic differential equation

(SDE). Stochastic differential equation (SDE) can be defined as a deterministic

differential equation perturbed by random disturbances that are not necessarily

small. Stochastic delay differential equation models play a very important role in

the study of many fields such as economics and finance, chemistry, biology, mi-

croelectronics, and control theories. In particular, SDEs are also central to much

of modern finance theory and have been used profitably to model the behaviour

of key variables such as stock prices, short term interest rate and their volatilities.

Models of this type can more accurately describe many phenomena in the

real world by taking into account the effect of time delay and/or event-driven

uncertainty. By time delay, it means a certain period of time is required for the

effect of an action to be observed after the moment when the action takes place.

This phenomenon, called memory effect, exists in most systems in almost any

area of science; for example, a patient shows symptoms of an illness days or even

weeks after he/she was infected. Similarly, random noises appear in almost all

real world phenomena and systems, for example, the motion of molecules, the

6
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price of assets in financial markets. Hence, study of SDDEs is an important un-

dertaking in order to understand real world phenomena and systems precisely.

By event-driven uncertainty, it means events such as corporate defaults, opera-

tional failures, market crashes or governmental macroeconomic announcements

happens more and more frequently especially in the recent financial markets with

increasing fluctuations, which cannot be properly modelled by purely continuous

processes.

Alternatively, memory effects can be modeled by using fractional stochastic

differential equations. Long-term memory means the correlation structure of a

series at long lags. If long-term memory (or the biased random walk) exists in

a series, there is persistent temporal dependence even between distant observa-

tions (Barkoulas and Balum [81]). During the last couple of decades, fractional

Brownian motion and fractional stochastic differential equations are used and de-

veloped to describe the memory effects in many applications such as fiance and

economics, engineering, biology and so on. Maheswaran underlies that the pres-

ence of long-term memory in stock returns has important implications for many

of the paradigms in financial economics [122]. The existence of long-term memory

volatility in asset returns has also important implications for pricing contingent

claims in emerging markets by LeRoy [132].

Stochastic differential equations play an important role in modelling various

phenomena arising in fields as diverse as finance, physics, chemistry, engineering,

biology, neuroscience and others. These equations usually depend on parameters,

which are often unknown. On the other hand knowledge of these parameters is

critical for the study of the process at hand and hence their estimation based

on the observational data on the process under study is of great importance in

practical applications. The estimation of the parameters of SDEs from discretely-

sampled data has received substantial attention in the financial econometrics

literature, particularly in the last ten years [53, 78].
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2.2 Numerical Methods for Stochastic Differen-

tial Equations

2.2.1 Stochastic Delay Differential Equations with Jumps

The dynamics of financial and economic quantities are often described by stochas-

tic differential equations (SDEs). SDEs of jump-diffusion type, which capture the

dynamics of the impact of event-driven uncertainty, receive much attention in fi-

nancial and economic modelling, see Merton [116] or Cont and Tankov [111]. On

the other hand, another broad class of dynamical systems of interest comprises

memory. Phenomena involving memory effects and/or time delays are indeed

ubiquitous. More specifically, differential equations with time delay play an im-

portant role in many fields such as physics, biology, economy, finance and so

on. They have been the subject of extensive mathematical studies [88, 117, 134].

Under such a circumstance, one must know the whole past of the dynamical sys-

tem as well as its present information, in order to predict its immediate future

accurately. Several mathematical works have established a range of results on

stochastic differential equations with random delay [54, 106, 119, 120, 143], with

regard to the stability and convergence behavior of such stochastic dynamical

systems.

Over the last couple of decades, a lot of work has been carried out to study

differential equations with delay and/or random noises, for example, [68,77,101,

152, 161]. The best known and well studied theory and systems include the de-

lay differential equations(DDEs) presented by Kolmanvskii & Myshkis [147] and

their stochastic generalizations, and the Stochastic delay differential equations

(SDDEs)established by Mohammed [127,128], Mao [154,155] and Mohammed &

Scheutzow [131]. Other SDDEs theories of interest include, for instance, the so-

called SDDEs with Markovian switching and Poisson jumps. These models have
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been investigated in the literature [12, 72, 112].

Analytical solutions of SDDEs can hardly be obtained. It is thus important

to develop and study discrete time approximation methods for solving SDDEs.

Discrete-time approximations may be divided into two categories: weak approx-

imations and strong approximations [107]. Some implicit and explicit numerical

approximation methods for SDDEs in strong approximation sense were derived

by Kuchler & Platen [144]. Weak numerical methods for SDDEs have been s-

tudied by Kuchler & Platen [145]. Monte Carlo simulation method has also been

developed as a powerful simulation method for SDEs, while weak numerical ap-

proximations are required for Monte Carlo simulation [23, 24, 30, 60, 154].

The main motivation for considering weak approximations is the computa-

tion of the expectation of functionals of the solutions to stochastic differential

equations. In mathematical finance, the fair pricing of options resorts to solv-

ing expected function of solutions of SDEs. Weak solutions are also used in the

computation of Lyapunov exponents of systems described by stochastic function-

al differential equations, which has been presented by Milstein and Tretyakov

in [61]. Lyapunov exponents for stochastic functional differential equations were

studied by Mohammed and Scheutzow [129, 130]. Weak approximations for s-

tochastic ordinary differential equations (without memory) are well-developed;

and for more details, the reader is refered to the references due to Bally and

Talay [146], Kloeden and Platen [107], Milstein and Tretyakov [62] and Kohatsu-

Higa [3]. The earliest reference on weak approximation of numerical methods

for stochastic differential equations with delay is Kuchler and Platen [145]. This

paper however provides no rigorous justification of their statements. The first rig-

orous analysis was recently given by E. Buckwar and T. Shardlow in [43], which

establishes weak convergence of order 1 for the Euler scheme. Recent results on

weak convergence of the Euler scheme for a class of SFDEs were obtained inde-

pendently by E. Clement, A. Kohatsu-Higa and D. Lamberton [1]. The results
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in [1] offers the potential for developing higher-order weak convergence schemes

for stochastic systems with memory.

A survey of uniqueness results for stochastic differential equations with jumps

and regularity results for the corresponding harmonic functions are presented by

Bass. Martingale problems are closely related to the notion of weak uniqueness

for SDEs. Various work on the existence of solutions for stochastic differential

equations are reported in [104] and [105]. Another approach that has been ex-

plored is the use of pseudo-differential operators [76, 151].

2.2.2 Fractional Stochastic Differential Equations

Time series incorporating memory structure has been widely used in biological,

chemical, and physical system. Memory effects also exist in financial systems.

For example, the decision will be effected spontaneously by the past experience

of decision makers. Plenty of financial variables with long memory effects have

been found [19, 44, 51, 160], such as the gross domestic product (GDP), interest

rate, foreign exchange rates, stock price, and futures price. Garzareli et al. have

proved the existence of memory effects in the stock price series by the conditional

probability approach and measured the extent of long memory (autocorrelation)

[2]. In [27] authors reported their results with time windows varying between

tens of minutes to several days, and their data analysis results confirm long-range

correlations in the volatility.

Memory effect is often measured by the autocorrelation function, and, recent-

ly, the Hurst index as an effective tool was introduced to measure the memory

effect [66]. The Hurst index is often denoted by H(0 < H < 1). In the case of

0 < H < 0.5, time series has negative correlation and antipersistent behavior,

which is called short-dependence memory. When H = 0.5, the time series has no

dependence. However, in the case of 0.5 < H < 1, time series has positive corre-

lation and persistent behavior, which is long-dependence memory. The persistent
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behavior was also called Joseph Effect by Mandelbrot and Wallis [17]. Cajueiro

and Tabak [39,40] have also found that memory effect exists in financial markets.

A number of researchers used fractional Brownian motion to depict the char-

acteristic of memory. Mandelbrot and Van Ness first found that long memory

effects exist in stock returns and gave the definition of fractional Brownian mo-

tion [18]. Since then, describing the memory by the fractional Brownian motion

in financial market becomes more and more popular. For instance, Bȩben and

Or lowski [91], Huang and Yang [16], Evertsz [26], Lo [13], and Wen et al. [50,162]

have shown that the returns are of long-term (or short term) dependence in the

markets. After Black and Scholes [47] developed the option pricing theory based

on the classical stochastic differential equation, a large number of literatures s-

tudied the option price based on the fractional Brownian motion. For example,

Necula [22], Rostek [125], and Hu and Øksendal [159] obtained the Black-Scholes

option pricing formula under fractional Brownian motion. Ren et al. [156] have

considered the option pricing model for 0.5 < H < 1. In the case of 0 < H < 0.5,

the option pricing formula was studied by Wang et al. [150]. Chen et al. [48]

established the mixed fractional version of Black-Scholes model with 0 < H < 1

and gave the Itos formula correspondingly. Besides, a different approach called

mixed fractional Brownian motion, where the stochastic process of the stock price

is also transformed into a semimartingale, was again suggested by Cheridito [99].

Fractional Brownian motion becomes a suitable tool in different applications

such as mathematical finance because of its self-similarity and long-range depen-

dence properties. As for H 6= 0.5 the fractional Brownian motion is neither a

Markov process nor a semimartingale, the usual stochastic calculus can not be

applied to analyze it. After a pathwise integration theory for fractional Brownian

motion was established ( [133] and [86]), it was found that arbitrage exists in the

market mathematical models driven by BH(t) have been found [89]. Hence, the

fractional Brownian motion was no longer considered fit for mathematical mod-
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eling in finance. After a new kind of integral based on the Wick product ( [157]

and [158]) called fractional Ito integral was developed, it was found that the

corresponding Ito type fractional Black-Schools market has no arbitrage. In the

work of Hu and Oksendal, a formula for the price of a European option at t = 0

is derived [15]. Sethi and Lehoczky [135] found that the Black-Scholes option

pricing formula can be derived by using different types of stochastic integration

calculus. The procedure for derivation of Ito integrals via Brownian motions is

well-known. However, the derivation under the Stratonovich framework is not

that prevalent.

However, the memory effects contain not only the noise memory effect but also

the trend memory effect. Stochastic differential equation with fractional Browni-

an motion only describes the noise memory but cannot be used to study the trend

memory effect of stock price. So we will describe the trend memory process by

using the fractional derivative, which is another effective instrument to describe

the memory effect. In particular, fractional calculus has been successfully applied

in biology, physics, chemistry, and hydrology. Recently, the concept of fractal has

been extended in financial mathematics [149]. This is due to the fact that frac-

tional integral and derivatives can depict the memory and inherent process [70].

It has been realized that fractional derivative provides an excellent mathematical

instrument for the description of complex process, irregular increment, memory

properties, and intermediate process [36, 70, 85, 121].

2.3 Parameter Calibration

2.3.1 Parameter Estimation in Complex Systems

In natural systems, we can observe many fluctuating phenomena due to various

resources of uncertainty and changes inside and outside of the systems. Stochastic

differential equations have the ability to describe these fluctuations by adding a
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noise term into deterministic models. Thus, Stochastic differential equations have

been widely used in recent years to describe uncertainty property in complex sys-

tems arising from biological sciences, physical sciences, engineering, finance and

economics. In the modern finance and economics theory, stochastic differential

equations have been used as a fundamental tool to represent volatility such as

the behaviour of short-term interest rate and asset prices.

In real applications, the parameters of the equations are unknown and need

to be estimated. A major step in the development of financial models is the

estimation of unknown parameters in the model. Parameter estimation in linear

stochastic and nonlinear deterministic differential equations, even for data cov-

ered by additive observational noise, is well known, [73,82] for a review. However,

the estimation of parameters in nonlinear stochastic differential equations is still

under development. In most cases, we only have discretely sampled data on the

equation, and thus it is a common practice to use the discretization of the orig-

inal continuous time model for the parameter estimation. For financial models,

it is very difficult to calculate the model parameters directly from financial data.

Therefore the estimation of parameters in financial models has become an impor-

tant research topic and received much attention in the last decade [53, 78, 95].

Parameter estimation in nonlinear SDEs driven by Wiener processes, when

only discrete observation is available, is an inherently difficult problem and re-

mains a challenge [74]. The main reason is that theoretically an unlimited number

of solutions exist for a SDE, and obtaining the numerical solutions of SDEs aris-

ing from real world application is computationally demanding, particularly, when

closed-form solutions for some SDEs do not exist. Various numerical methods

such as the Euler methods and the high order Taylor schemes have been com-

bined with a Monte Carlo approach to generate discrete-time trajectories of the

state variables of SDEs [108]. By using these numerical methods, a large num-

ber of Wiener processes corresponding to different simulation trajectories need to
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te generated, and hence achieving accurate results is computationally expensive,

especially when the search space of parameters is complex. In addition to the

previously remarkable results duo to Young [103], Soderstrom and Stoica [137],

Sagara and Zhao [126], Soderstrom et al. [93, 102], and Haverkamp et al. [29],

more efficient estimation methods are required.

2.3.2 Parameter Estimation Methods

The methods that were developed for parameter estimation of SDEs can be classi-

fied into three different categories: maximum likelihood estimation (MLE)/ sim-

ulated maximum likelihood (SML) [34,59,78], the methods of moments [7,8,42],

and filtering (e.g. extended Kalman filter) [79]. Most of the methods are de-

veloped for modelling financial quantitatives, where the financial systems are

characterised by long time horizons and often can be sampled at regular but

relatively infrequent intervals (for example, on a daily basis).

The methods of moment are relatively simple and have been well illustrated

in textbook and widely used in application, because they do not rely upon dis-

tributional assumptions. However, the accuracy of this method strongly depends

on the frequency of financial observations. A generalized Method of Moments

(GMM) due to Hansen [90], Ogaki [92], was originally developed for discrete-

time stochastic models, and can be used to compute moment conditions from a

discrete-time SDE model [52]. The main advantage of the GMM method is that

it only requires some moment conditions rather than the full density. However,

as the GMM does not make efficient use of all the information in the sample,

this method may lead to a loss of efficiency. The Efficient Method of Moments

(EMM), initially proposed by Gallant and Tauchen [10] and further developed

by [9, 35, 141], introduces a natural progression for GMM that successfully ad-

dresses some of the problems mentioned above. Gallant and Tauchen [9] carries

out an efficiency analysis of the EMM method compared to other methods of
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moments using the Marron and Wand test [80] and concludes that the relative

efficiency of EMM is uniformly higher than the other moment methods. The

small-sample properties of EMM are studied by Chumacero, Michaelides and Ng,

Andersen et al. [4, 67, 110] using Monte Carlo simulation. They conclude that

EMM is more efficient than other methods of moments. A Simulated Method

of Moments (SMM) was developed by Duffle and Singleton [32]. Based on the

statistical technique of the random sampling instants, Duffle and Glynn [33] pro-

poses a infinitesimal generator-based method. However, both methods cannot

handle unobserved states.

Alternatively, Ljung and Soderstrom proposed the prediction error identifica-

tion method in [87], and Shoji and Ozaki established the extended Kalman filter

(EKF) and some other linearization methods for parameter estimation by approx-

imating the conditional density in terms of conditional Gauss distributions [71].

The extended Kalmanfilter (EKF) is a well-known extension of the linear Kalman

filter to nonlinear systems (see Jazwinski [6]). By adding the second-order terms

to the moment equations, the second-order nonlinear filter (SNF) is defined in

the work of [6]. In both cases the likelihood function is computed recursively

using the prediction error decomposition [49]. For SDEs with a state dependent

diffusion function, higher order filters are needed [109]. The Kalman-Bucy filter

(Kalman and Bucy [118]) provides an exact solution to the filtering problem.

A Gaussian likelihood function obtained from a Prediction Error Decomposition

(PED) approach also can provide recursive residuals [49]. A maximum likelihood

method for direct parameter estimation for SDEs is proposed based on the EKF

and the PED method by Madsen and Melgaard [63], Melgaard and Madsen [64]

and Bohlin and Graebe [136]. The EKF provides state estimates and the recursive

residuals, while the PED is used to calculate QML estimates of the parameter-

s using the Gaussian likelihood function. This approach may also be used for

nonlinear stochastic systems.
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The maximum likelihood estimator can be computed by maximising the likeli-

hood function associated with a series of observations, provided both the invariant

density and the transition density are known explicitly. Unfortunately, for many

realistic and practically useful models, transition densities are not available in ex-

plicit form, which makes exact computation of the maximum likelihood estimator

impossible. If the likelihood is a nonlinear function of the parameter of interest,

computation of the maximum likelihood estimator is often far from straightfor-

ward (see e.g. Barnett [148]). In the paper of Bibby and Sorensen [14] a quasi

maximum likelihood estimator has been proposed. Compared with the infeasible

maximum likelihood estimator, the computationally feasible estimator becomes

unbiased by paying the price that the resulting confidence region are no longer

optimal. Experience shows that the loss in optimality is often rather small [25].

In the general multivariate case, we can not hope to obtain analytical solutions

of the Fokker-Planck Equation and must resort to approximations and numeri-

cal procedures, for instance, matrix continued-fractions, finite differences, Monte

Carlo methods, and so on, and for details, see Risken [65]; Press et al. [153];

Kloeden and Platen [107]. There is no restriction on the available data set to

the MLE method, which is based on the availability of the closed-form expression

for the transitional probability density function. When a closed-form expression

is not available, the SML method is the approach to estimate the transitional

probability density function by numerical simulations. As mentioned above, the

computing time is the major obstacle in the application of the SML method. In

addition, this method is technically complex and thus it is not widely used in

financial and economic sectors. The likelihood-based methods are more reliable

but has long been found that they are difficult to apply to SDEs due to its compu-

tational cost. For the complex SDEs, thousands of simulation trajectories or even

more must be generated to ensure a low variance of the variable values. Conse-

quently, a large number of competing estimation procedures have been proposed
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in recent years.

In recent years, the Bayesian inference methods have been used to estimate un-

known parameters in mathematical models [31,37,38,97,114]. Together with the

Markov-chain Monte-Carlo (MCMC) and other methods, the Bayesian inference

methods have also been used to infer stochastic models in financial mathemat-

ics [5, 20, 100]. The main advantage of these methods is the ability to infer the

whole probability distribution of the parameters, rather than just a single esti-

mate. In addition, the Bayesian methods can deal with noisy data and uncertain

data. Another advantage of these methods is the capability to infer parameters

in either deterministic models or stochastic models. However, the potential ob-

stacle of these methods in application is that the samples are correlated and their

performances heavily depend on prior hypothesises. A number of methods have

been used to estimate the parameters in the single-factor continuous time mod-

els, including the generalized moment method [52] and the Gaussian estimation

method [84]. However, our recent research work suggested that the accuracy of

the estimates generated from these two methods is low, in particular, when the

step size of observation time points is not small [140]. Thus in this work we will

not test these methods again but concentrate on the proposed method that will

generate accurate simulations of the stochastic model, which will lead to more

accurate estimates of the model parameters.

There are two types of errors that should be considered for an efficient SML

method. The first type of errors derived from the slow convergence rate of the

Monte-Carlo approaches. To reduce the number of stochastic simulations, the

variance-reduction methods have been designed to reduce the bias in the esti-

mated moments of the solution. Two major types of variance-reduction methods

include the importance sampler and the random number generation methods.

The second error is the discretization difference between a numerical scheme and

the original SDE. Currently the Euler-Maruyara method has been dominantly
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used in the inference of stochastic models because of its simplicity and special

property of this method, namely the numerical solution is a Gaussian random

variable. However, this method do not have good stability property and the con-

vergence rate is low. Thus in recent years, we have advocated to use high order

methods and/or implicit methods to improve the stability property and to en-

hance the simulation accuracy. Another key issue in the implementation of the

SML method is the optimization scheme for searching the optimal parameters.

The machine-learning methods, such as the genetic algorithm (GA) and particle

swarm optimization (PSO) algorithm, have been widely used in the SML methods

for parameter inference [78, 98, 115]. The previous studies have shown that the

GA has a better convergence rate than the Markov Chain Monte Carlo (MCMC)

method [96], but our numerical results suggested that the GA could generate a

wide range of estimates that all realize the observation data [142].

2.4 Concluding Remarks

As only a small class of jump diffusion SDDEs have explicit solutions, it is im-

portant to construct discrete-time approximations for stochastic differential e-

quations of this type. The focus of this thesis is the numerical solution of SDDEs

with jumps. We consider the Monte Carlo simulation, for which weak schemes

are employed. Weak numerical schemes provide approximations of the expected

functionals generated by the solution of a given SDE. These weak approximation

schemes are appropriate for problems such as pricing of financial derivatives, the

computation of risk and investors expected utilities. In addition, memory effects

in financial and economic variables can also be depicted by fractional stochas-

tic differential equations. Based on the previously notable research, constructing

the fractional stochastic differential equations and its corresponding arbitrage

strategy for derivatives pricing in mathematical finance becomes possible.
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Whilst the analysis of stochastic processes and stochastic differential equation-

s has received extensive treatment over a long period, the parameter estimation

for such processes has received much less attention. It has recently been argued

that because of the difficulty of obtaining consistent estimates of the parameters

of nonlinear SDEs, parameter identification becomes one of the most pressing d-

ifficulties in the study of stochastic differential equations with discretely sampled

data. In this work, we will develop some efficient and effective parameter identi-

fication algorithms for estimation of unknown parameters in nonlinear stochastic

differential equations.



CHAPTER 3

A Robust Weak Taylor Approximation

Scheme for Solutions of Jump-diffusion

Stochastic Delay Differential Equations

3.1 General Overview

Stochastic delay differential equations with jumps have a wide range of appli-

cations, particularly, in mathematical finance. Solution of the underlying initial

value problems is important to the understanding and control of many phenomena

and systems in the real world. In this chapter, we develop a robust Taylor ap-

proximation scheme for solving stochastic delay differential equations with jumps

and then examine the convergence of the method in a weak sense.

This chapter is organised as follows. In sections 3.2 and 3.3, we present a gen-

eral stochastic delay differential equation with jumps and establish the conditions

for the existence and uniqueness of solutions to the Jump-diffusion SDDEs, and

present various lemmas to be used later for the proof of the convergence theorem.

We then introduce, in Section 3.4, a general weak approximation scheme, where

the simplified stochastic Taylor approximation scheme with order β is construct-

ed, followed by a convergence theorem and its proof. In Section 3.5, we give a

20
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numerical example to demonstrate the application and the convergence of the

numerical scheme.

3.2 Stochastic Delay Differential Equations with

Jumps

In this chapter, we extend a fully weak approximation method for SDDEs to a

class of jump-diffusion SDDEs

dX(t) =a(t,X(t),X(t− γ))dt + b(t,X(t),X(t− γ))dWt

+

∫

ε

c(t,X(t−), υ)pϕ(dυ, dt)
(3.1)

subject to the initial condition

X(θ) = χ(θ) for θ ∈ [−γ, 0] (3.2)

where t ∈ [0, T ], γ is the time delay which is assumed to be constant at all

time, Wt = {(W 1
t , . . . ,W

m
t ), t ∈ [0, T ]} is an A-adapted m-dimensional standard

Wiener process defined on the probability apace (Ω,A, P ), and pϕ denotes the

Poisson random measure. Also here we denote by X(t−) the almost sure left-

hand limit of X(t). The coefficient a(t, x, xr) : [0, T ] × Rd × Rd → Rd and

c(t, x, υ) : [0, T ] × Rd × ε → Rd are d-dimensional vectors of Borel measurable

functions. Further, b(t, x, xr) defined on [0, T ] × Rd × Rd is a d × m-matrix of

Borel measurable functions.

Discrete-time approximations can be classified two major catalogs: strong ap-

proximations and weak approximations, as detailed in Kloeden & Platen (1999).

A discrete-time approximation Y ∆ on a time discretization (t)∆ with a maximum

step size ∆ > 0, converges to the solution X of a given SDE with strong order

α at time T , if there exists a positive constant C, independent of ∆, and a finite
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number ∆0 ∈ (0, 1), such that

E(|XT − Y ∆
T |) ≤ C∆α

for all ∆ ∈ (0,∆0). From the definition of the strong error on the left hand

side of the equation above, we notice that the strong numerical schemes provide

pathwise approximations for the solution X of the given SDE. These methods

therefore can be used for problems such as filtering, asset price simulation, hedge

strategy simulation and other quantitative testing methods. Particularly, strong

approximations are well suited for applications in the area of dynamic financial

analysis.

On the other hand, a discrete-time approximation Y ∆ converges weakly with

order β to X at time T , if for each g ∈ C2(β+1)
P (Rd,R) there exists a positive

constant C, independent of ∆, and a finite number ∆0 ∈ (0, 1), such that

|E(g(XT )) − E(g(Y ∆
T ))| ≤ C∆β

for each ∆ ∈ (0,∆0). Here by C2(β+1)
P (Rd,R), we denote the set of 2(β + 1)

continuously differentiable functions with polynomial growth. This means that

for any given g ∈ C2(β+1)
P (Rd,R) there exist constants K > 0 and r ∈ N , possibly

depending on g, such that

|∂j
yg(y)| ≤ K(1 + |y|2r)

for all y ∈ Rd and any partial derivative ∂j
yg(y) with the order of j ≤ 2(β + 1).

Weak schemes provide approximations of the probability functionals generated

by the solution X of a given SDE. These schemes are suitable for problems such

as financial derivative pricing, the evaluation of moments and risks and expected

utilities of investors.
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3.3 Existense and Uniqueness of Solutions of S-

DDEs with Jumps

In this section, we give some basic concepts and definitions to be used in lat-

er sections, then establish the conditions for the existence and uniqueness of

solutions to the Jump diffusion SDDEs (3.1), and then give some lemmas to

be used later for the proof of the convergence theorem. In this work, we as-

sume that the d-dimensional vector valued function for the initial condition,

χ = {χ(s), s ∈ [−γ, 0]}, is right-continuous and has left-hand limits.

From equation (3.1), we have the following integral form of the jump diffusion

equation SDDE,

X(t) =X(0) +

∫ t

0

a(τ,X(τ),X(τ − γ))dτ +

∫ t

0

b(τ,X(τ),X(τ − γ))dWτ

+

pϕ(t)∑

i=1

c(τi,X(τ−i ), ξi),

(3.3)

where (τi, ξi), for i ∈ {1, 2, 3, . . . , pϕ(t)}, denote a sequence of pairs of jump times

and corresponding values generated by the Poisson random measure pϕ.

Definition 3.1. Given a filtered probability space (Ω,A,A, P ), a stochastic pro-

cess given by X = {X(t), t ∈ [−γ, T ]} is known as a solution of the equation

(3.1) subject to the initial condition (3.2) if X is A-adapted, the integrals in the

equation are well-defined and the equalities (3.3) and (3.2) hold almost surely.

Moreover, if any two solution processes X(i) = {X(i)(t), i ∈ 1, 2} are indistin-

guishable on [−γ, T ] with the same initial segment χ and the same path on [0, T ],

and

P

(
sup

t∈[0,T ]

‖ X(1)(t) −X(2)(t) ‖> 0

)
= 0 (3.4)

where ‖ . ‖ is the Euclidean norm, then if (3.1) has a solution, it is a unique
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solution for this initial value problem.

To guarantee the existence of a unique solution of the jump diffusion SDDE

(3.1), we assume that the coefficients of (3.1) satisfy the following Lipschitz con-

ditions

|a(t,y1, z1) − a(t,y2, z2)| ≤ C1(|y1 − y2| + |z1 − z2|)

|b(t,y1, z1) − b(t,y2, z2)| ≤ C2(|y1 − y2| + |z1 − z2|)
∫

ε

|c(t,y1, υ) − c(t,y2, υ)|2ϕ(dυ) ≤ C3(y1 − y2)
2

for t ∈ [0, T ] and x1,x2,y1,y2 ∈ Rd, as well as the growth conditions

|a(t,y, z)| ≤ D1(1 + |y| + |z|)

|b(t,y, z)| ≤ D2(1 + |y| + |z|)
∫

ε

|c(t,y, υ)|2ϕ(dυ) ≤ D3(1 + y2)

for y, z ∈ Rd, t ∈ [0, T ].

We denote by C = C([−γ, 0],Rd) the Banach space of all d-dimensional

continuous functions η on [−γ, 0] equipped with the supremums norm ||η||C =

sups∈[−γ,0] |η(s)|. Furthermore, we suppose that the set L2(Ω,C,A0) of the Rd-

valued continuous process η = {η(s), s ∈ [−γ, 0]} is A0-measurable with

E(‖η‖2
C
) = E

(
sup

s∈[−γ,0]

|η(s)|2
)

< ∞ (3.5)

Following the work of [127,155], the following theorem can be established for

the existence and uniqueness of a solution to the problem defined by (3.1) and

(3.2).

Theorem 3.1. Suppose that the Lipschitz conditions and the growth conditions

are satisfied, and the initial condition χ is in L2(Ω,C,A0). Then equation (3.1)
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subject to the initial condition (3.2) admits a unique solution.

Now we present some lemmas to be used later for the proof of the convergence

theorem. Consider a right continuous process Y ∆l = {Y ∆l(t), t ∈ [−γ, T ]}. Y ∆l

is called a discrete time numerical approximation with maximum step size ∆l, if

it is obtained by using a time discretization t∆l
, and the random variable Y ∆l

tn is

Ftn-measurable for n ∈ {1, ...N}. Further, Y ∆l
tn+1

can be expressed as a function

of Y ∆l
t−l

,Y ∆l
t−l+1

,. . .,Y ∆l
tn and the discrete time tn.

Because of dealing with the approximation of solutions of jump diffusion S-

DDEs, we introduce a concept of weak order convergence due to Kloeden &

Platen [107].

Definition 3.2. A discrete time approximation Y ∆l converges weakly towards X

at time T with order β > 0 if for each g ∈ Cp there is a constant C, independent

of ∆l, such that

|E(g(X(T ))) − E(g(Y ∆l(T )))| ≤ C(∆l)
β (3.6)

where Cp denotes the set of all polynomials g : Rd → R.

We now give some auxiliary results to prepare for the proof of the Weak

Convergence Theorem to be presented.

Lemma 3.1. For n ∈ {−l + 1, . . . , 0, 1, . . . , N} and z ∈ Rd, we have

E

(
u(n,Xn−1,z

n−
)−u(n−1, z)+

∫ n

n−1

∫

ε

L−1
υ u(τ,Xn−1,z

τ )ϕ(dυ)dτ |An−1

)
= 0 (3.7)

for (τ, z) ∈ [−γ, t] × Rd and u(τ, z) = E(g(Xτ,z
T )|Aτ)

The proof of the lemma for the case with no delay was established by Platen

& Bruti-Liberati [45], and a similar procedure can be used for the proof of this

lemma.
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Lemma 3.2. Given p ∈ {1, 2, 3, . . .} there is a bounded constant M satisfying

E

(
|Xn−1,z

n−
− z|2q

∣∣∣∣Ãn−1

)
≤ M(1 + |z|2q)(∆l)

q (3.8)

for q ∈ {1, . . . , p} and n ∈ {−l + 1, . . . , 0, 1, . . . , N}.

The proof of (3.8) can be obtained by following that of a lemma for SDEs

with jumps but with no delay in [107]. The following results are similar to what

was given in Mikulevicius & Platen [113].

Lemma 3.3. Given p ∈ {1, 2, 3, . . .}, there is a finite constant M satisfying

E

(
sup

−γ≤t≤T
|ζ(t)|2q

)
≤ M(1 + |Y0|2q). (3.9)

for every q ∈ {1, . . . , p}

Lemma 3.4. Given p ∈ {1, 2, . . .}, there is r ∈ {1, 2, 3, . . .} and a bounded

constant M satisfying

∣∣∣E
(∣∣∣Fp(ζ(z) − Y ∆l

z )
∣∣∣
2q

+
∣∣∣Fp(Xz,Y

∆l
z

z − Y ∆l
z )
∣∣∣
2q∣∣∣Ãz

)∣∣∣

≤ M(1 + |Y ∆l
z |2r)(∆l)

qk

(3.10)

for each q ∈ {1, . . . , p}, k ∈ {1, . . . , 2(β + 1)}, p ∈ Pk = {1, 2, ..., d}k and

z ∈ [−r, T ], where Fp(y) =
∏k

h=1 y
ph for all y = (y1, ..., yd)T ∈ ℜd and p =

(p1, ..., pk) ∈ Pk.

The proof of the estimate (3.10) can be established by following Itô’s formula

for SDEs with jumps but with no delay as in [107].

Lemma 3.5. For p ∈ Pk, there exist r ∈ {1, 2, . . .} and a finite constant M

satisfying

∣∣∣E
(
FP (ζ(t) − Y

∆l

n−1) − FP (X
n−1,Y

∆l
n−1

t − Y ∆
tn−1

)
∣∣∣Ãt

)∣∣∣

≤ M(1 + |Y ∆l

n−1|r)(∆l)
β

(3.11)
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for each k ∈ {1, . . . , 2β + 1}, n ∈ {−l + 1, . . . , 0, 1, . . . , N} and t ∈ [tn−1, tn).

3.4 The Jump-adapted Weak Taylor Approxi-

mation Scheme

3.4.1 Multi-dimensional Ito Formula

For multi-factor financial models, the following generalization of the Ito formula is

required. We consider a d-dimensional vector process e = {et = (e1t , . . . , e
d
t )

T , t ≥

0} wherein all the components ek, k ∈ 1, 2, . . . , d are predictable. Assume that

∫ T

0

|ekz |dz < ∞

almost surely for all k ∈ 1, 2, . . . , d. The d × m-matrix process F = {Ft =

[F i,j
t ]d,mi,j=1, t0} is supposed to have predictable elements F i,j with

∫ T

0

(F i,j
z )2dz < ∞

almost surely for i ∈ 1, 2, . . . , d, j ∈ 1, 2, . . . , m and all T ∈ (0,∞), see Protter

(2005). Now we introduce a d-dimensional continuous-time stochastic vector

process X = {Xt = (X1
t , X

2
t , . . . , X

d
t )T , t ≥ 0}, where the kth component Xk is

given by the following Ito differential

dXk
t = ekt dt +

m∑

j=1

F k,j
t dW j

t

for t ≥ 0 and a given initial value X0 = (X1
0 , . . . , X

d
0 )T ∈ Rd.

Now we consider a function u : [0,∞)×Rd → R with continuous partial deriva-

tives ∂u
∂t
, ∂u
∂xk and ∂2u

∂xk∂xi for all k, i ∈ 1, 2, . . . , d, t ≥ 0 and x = (x1, x2, . . . , xd)T .

The Ito formula for the scalar stochastic process u = u(t, X1
t , X

2
t , . . . , X

d
t ), t ≥ 0
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is given by the following Ito derivative

du(t, X1
t , X

2
t , . . . , X

d
t )

=
(∂u
∂t

+

d∑

k=1

ekt
∂u

∂xk
+

1

2

m∑

j=1

d∑

k=1

F i,j
t F k,j

t

∂2u

∂xi∂xk

)
dt

+

m∑

j=1

d∑

i=1

F i,j
t

∂u

∂xi
dW j

t

(3.12)

for t ≥ 0 with initial value u(0, X1
0 , X

2
0 , . . . , X

d
0 ), and its partial derivatives of

the function u are evaluated at (t, X1
t , X

2
t , . . . , X

d
t ), which we suppressed in our

notation.

Now, let us consider the Ito formula when the Wiener processes and Poisson

jump measures drive the stochastic dynamical systems. Assume that W = {Wt =

(W 1
t , . . . ,W

m
t )T , t ≥ 0} is an m-dimensional standard Wiener process and by

prφr
(dv, dt), we denote the rth Poisson measure on ε × [0,∞) with the intensity

measure

µr
φr

(dv, dt) = φr(dµ)dt

r ∈ {m + 1, m + 2, . . . , l}, l ∈ {m + 1, m + 2, . . . }. Suppose that the underlying

d-dimensional process X with the ith component X i
t at time t has the following

Ito differential

dX i
t = ait +

m∑

k=1

bi,kt dW k
t +

l∑

r=m+1

∫

ε

ci,r(v, t−)prφr
(dv, dt)

for t ≥ 0 and i ∈ 1, 2, . . . , d, where ai, bi,k and ci,r are predictable processes and

ε = R{0} is the Poisson mark pace. Therefore, for a function u : [0,∞)×R
d → R

same as defined in the Ito formula without jumps, the Ito formula under the
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Poisson measure has the form as following

du(t, X1
t , X

2
t , . . . , X

d
t )

=
(∂u
∂t

+

d∑

d=1

ait
∂u

∂xi
+

1

2

d∑

i,j=1

m∑

k=1

bi,kt bj,kt
∂2u

∂xi∂xj

)
dt

+

m∑

k=1

d∑

i=1

bi,kt
∂u

∂xi
dW k

t

+
l∑

r=m+1

∫

ǫ

(u(t, X1
t , X

2
t , . . . , X

d
t ) − u(t−, X1

t−, X
2
t−, . . . , X

d
t−))prφr

(dv, dt)

(3.13)

for t ≥ 0. This general versin of the Ito formula can be employed in the problems

which may include Levy processes with infinite jump intensity as underlying

factors.

3.4.2 Jump-adapted Numerical Approximation Scheme

In Monte Carlo simulations for functionals of jump diffusion SDDEs, one uses

numerical approximations evaluated only at discretization time. Here, we first

give a jump adapted weak approximation Taylor Scheme of order β, then study

the basic properties of the discrete Taylor approximation in a weak order sense.

First we define the jump-adapted time discretization. Let T > r > 0. The

jump adapted time discretization used throughout this paper is

(t)∆ = {ti : i = {−l,−l + 1, ..., 0, 1, 2, ..., N}}

where {ti, i < 0} represent the delay time, and the maximum step size ∆l satisfies

∆l ∈ (0, 1). We choose the time discretization in such a way that all jump times

are at the nodes of the time discretization. If the discretization node ti is not a

jump time, then ti is Ati−1
-measurable. Otherwise, ti is At

i−
-measurable. Also,

throughout the paper, we denote the set of all multi-indices α by

Mm = {(j1, . . . , jl) : ji ∈ {0, 1, 2, . . . , m}, i ∈ {1, 2, . . . , l}forl ∈ N} ∪ {v},
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where the element α = (j1, j2, . . . , jl) is called a multi-index of length l = l(α) ∈

N and v has zero length. In the following, by a component j ∈ {0, 1, 2, . . . , m} of

a multi-index we refer to the integration with respect to the jth Wiener process in

a multiple stochastic integral. A component with j = 0 corresponds to integration

with respect to time t.

Now define the following operators for the coefficient functions

L0 =
∂

∂t
+

d∑

i=1

ai(t, x, xl)
∂

∂xi
+

d∑

i=1

ai(t− l, xl, x2l)
∂

∂xi
l

+
1

2

d∑

i,γ=1

m∑

j=1

bij(t, x, xl)b
γj(t, x, xl)

∂2

∂xi∂xγ

+
1

2

d∑

i,γ=1

m∑

j=1

bij(t− l, xl, x2l)b
γj(t− l, xl, x2l)

∂2

∂xi
l∂x

γ
l

,

(3.14)

Lk =
d∑

i=1

bik(t, x, xl)
∂

∂xi
+

d∑

i=1

bik(t− l, xl, x2l)
∂

∂xi
l

. (3.15)

A subset A ∈ M is the hierarchical, and its corresponding remainder set

Ā(M) is defined by Ā(M) = {α ∈ Mm\A : −α ∈ A}. For each β ∈ 1, 2, 3, . . .,

we can then define the hierarchical set Γβ = {α ∈ Mm : l(α) ≤ β}. The weak

Taylor method of order β is then constructed as follows

Y(n+1)− = Yn +
∑

α∈Γβ

fα(n,Yn,Yn−l)Iα (3.16)

and

Yn+1 = Y(n+1)− +

∫

ε

c(n,Y(n+1)− , υ)pϕ(dυ, (n + 1)) (3.17)

where

fα(t, x, u) =





f(t, x) if l(α) = 0

Lj1f−α(t, x, u) if l(α) ≥ 1, j1 ∈ 0, 1, . . . , m

(3.18)
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The multiple stochastic integral is then defined recursively as follows

Iα,t =





t if l = 0

∫ t

0
Iα−,zdz if l ≥ 1 , jl = 0

∫ t

0
Iα−,zdW

jl
z if l ≥ 1 , jl ∈ 1, . . . , m

(3.19)

where α− is obtained from α by deleting its last component, while −α is obtained

from α by deleting its first component.

Now, we give the weak convergence theorem of the Taylor approximation with

order β.

Theorem 3.2. Given β ∈ {1, 2, . . .}, let Y ∆l = {Y ∆l
n , n ∈ [−l, . . . , 0, 1, . . . , N ]}

be the results obtained from the Taylor Scheme 3.16-3.17 corresponding to (t)∆

with maximum step size ∆l ∈ (0, 1). Suppose that E(|Xξ|i) < ∞ for ξ ∈

(−γ, 0),i ∈ {1, 2, . . .}, and Y ∆
ξ converges to Xξ weakly with order β ∈ {1, 2, . . .}.

Assume that the coefficients, ak, bkj, ck, are in the space C2(β+1)
P (Rd,R), for j ∈

{1, 2, . . . , m} and k ∈ {1, 2, . . . , d} , and the coefficient functions fα, with f(t,y) =

y, satisfy the growth condition |fα(t,y)| ≤ M(1 + |y|), with M < ∞, for all

t < T,y ∈ Rd and α ∈ Γβ. Then for any g ∈ C2(β+1)
P (Rd,R) there is a positive

constant C, which does not depend on ∆, such that

|E(g(X(T ))) −E(g(Y ∆l(T )))| ≤ C(∆l)
β. (3.20)

3.4.3 Proof of Weak Convergence Theorem

In this subsection, we prove the convergence theorem 3.2 proposed in last sub-

section.

Proof. For β ∈ {1, 2, 3, . . .} and g ∈ C2(β+1)
p (Rd,R), consider the Ito process below

X
z,y
t = y+

∫ t

z

a(Xz,y
u )du+

∫ t

z

b(Xz,y
u )dWu +

∫ t

z

∫

ε

c(Xz,y
u− , υ)pϕ(dυ, du) (3.21)
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Then we can get u(0, X0) = E(g(X0,X0

T )) = E(g(XT )).

Define also the process ζ = ζ(t), t ∈ (−γ, T ) by

ζ(t) = ζ(tn)+
∑

α∈Γβ

Iα(fα(n, ζn, ζn−l))+

∫ t

n

∫

ε

c(n, ζ(n+1)−, υ)pϕ(dυ, (n+1)) (3.22)

for n ∈ {−l,−l + 1, . . . , 0, 1, . . . , N − 1}, t ∈ (tn, tn+1], ζ(0) = Y0 and ζ(tn) = Ytn

for n ∈ {−l, . . . , 0, 1, 2, . . . , N}.

By the definition of the functional u and the terminal condition of the stochas-

tic process X , we have

H = |E(g(Y ∆l

T )) −E(g(XT ))| = |E(u(T,Y ∆l

T ) − u(0,X0))|. (3.23)

Since Y0 converges towards X0 weakly with order β, one has

H ≤
∣∣∣∣E
( N∑

n=−l+1

(u(n,Yn)− u(n,Yn−) + u(n,Yn−)− u(n− 1,Yn−1))

)∣∣∣∣+K(∆l)
β.

(3.24)

By Lemma 3.1, we can write

H ≤
∣∣∣∣E
( N∑

n=−l+1

{
[u(n,Yn) − u(n,Yn−) + u(n,Yn−) − u(n− 1,Yn−1)]

− [u(n,X
n−1,Yn−1

n−
) − u(n− 1,Yn−1)]

+

∫ n

n−1

∫

ε

L−1
υ u(z,Xn−1,Yn−1

z )ϕ(dυ)dz]
})∣∣∣∣+ K(∆l)

β .

(3.25)

From the properties of stochastic integrals, we obtain

E

( N∑

n=−l

[u(n,Yn) − u(n,Yn−)]

)
= E

(∫ T

−r

∫

ε

L−1
υ u(z, ζ(z))ϕ(dυ)dz

)
. (3.26)

Therefore, we have

H ≤ H1 + H2 + K(∆l)
β, (3.27)
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where

H1 =

∣∣∣∣E
( N∑

n=−l+1

{
[u(n,Yn−) − u(n,Yn−1)] − [u(n,X

n−1,Yn−1

n−
) − u(n,Yn−1)]

})∣∣∣∣

(3.28)

and

H2 =

∣∣∣∣E
(∫ T

−r

∫

ε

{
[L−1

υ u(z, ζ(z)) − L−1
υ u(z,Yz)]

− [L−1
υ u(z,Xz,Yz

z ) − L−1
υ u(z,Yz)]

}
ϕ(dυ)dz

)∣∣∣∣.
(3.29)

In the following, we proceed to estimate H1 and H2 in step I and Step II

repectively, and then complete the proof in Step III.

Step I: Let us assume that u is so smooth that the deterministic Taylor ex-

pansion may be applied. Hence, by expanding du in H1, we get

H1 =

∣∣∣∣E
( N∑

n=−l+1

{[ 2β+1∑

k=1

1

k!

∑

P∈Pk

(∂P
y u(n,Yn−1))FP (Yn− − Yn−1) + Rn(Yn−)

]

−
[ 2β+1∑

k=1

1

k!

∑

P∈Pk

(∂P
y u(n,Yn−1))FP (X

n−1,Yn−1

n− − Yn−1)

+ Rn(X
n−1,Yn−1

n−
)

]})∣∣∣∣,

(3.30)

where the remainder term is

Rn(Z) =
1

2(β + 1)!

∑

p∈P2(β+1)

∂p
y u(n,Yn−1 + θp,n(Z − Yn−1))Fp(Z − Yn−1) (3.31)

where θp,n(Z) is a d×d diagonal matrix with θk,kp,n(Z) ∈ (0, 1) for k ∈ {1, 2, 3, . . . , d},

and Z = Yn− and X
n−1,Yn−1

n−
, respectively.

Therefore, according to the properties of expectation and absolute value, we
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get

H1 ≤E

( N∑

n=−l+1

{ 2β+1∑

k=1

1

k!

∑

p∈Pk

|(∂p
y u(n,Yn−1))|

× (Fp(Yn− − Yn−1) − Fp(X
n−1,Yn−1

n− − Yn−1))

|Rn(Yn−)| + |Rn(X
n−1,Yn−1

n−
)|
})

.

≤E

( N∑

n=−l+1

{ 2β+1∑

k=1

1

k!

∑

p∈Pk

|(∂p
y u(n,Yn−1))|

× |E(Fp(Yn− − Yn−1) − Fp(X
n−1,Yn−1

n−
− Yn−1)|Ãn−1)|

+ E(|Rn(Yn−)||Ãn−1) + E(|Rn(X
n−1,Yn−1

n− )||Ãn−1)

})
.

(3.32)

By equation (3.31), the hölder inequality and Lemma 3.4, we get

E(|Rn(Yn−)||Ãn−1)

≤ M
∑

p∈P2(β+1)

[
E
(
|∂p

y u(n,Yn−1 + θp,n(Yn−)(Yn− − Yn−1))|2
∣∣∣Ãn−1

)] 1
2

×
[
E
(
|Fp(Yn− − Yn−1)|2

∣∣∣Ãn−1

)] 1
2

≤ M
[
E
(

1 + |Yn−1|2r + |Yn− − Yn−1|2r
∣∣∣Ãn−1

)] 1
2

×
[
E
(
|Yn− − Yn−1|4(β+1)

∣∣∣Ãn−1

)] 1
2

≤ M(1 + |Yn−1|2r)(∆l)
β+1.

(3.33)
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Similarly, by Lemma 3.2 and the Cauchy-Schwarz inequality, we have

E(|Rn(X
n−1,Yn−1

n−
)||Ãn−1)

≤ M
∑

p∈P2(β+1)

[
E
(
|∂p

y u(n,Yn−

+ θp,n(X
n−1,Yn−1

n− )(X
n−1,Yn−1

n− − Yn−1))|2
∣∣∣Ãn−1

)] 1
2

×
[
E
(
|Fp(X

n−1,Yn−1

n−
− Yn−1)|2

∣∣∣Ãn−1

)] 1
2

≤ M
[
E
(

1 + |Yn−1|2r + |Xn−1,Yn−1

n− − Yn−1|2γ
∣∣∣Ãn−1

)] 1
2

×
[
E
(
|Xn−1,Yn−1

n−
− Yn−1|4(β+1)

∣∣∣Ãn−1

)] 1
2

≤ M(1 + |Yn−1|2r)(∆l)
β+1.

(3.34)

Now, from the Cauchy Schwarz inequality, Lemma 3.5, Lemma 3.3, and the

inequalities (3.33) and (3.34), we obtain

H1 ≤ E
(
K

N∑

n=−l+1

(1 + |Yn−1|2γ)(∆l)
β
)

≤ M(∆l)
β
(

1 + E( max
−l≤n≤N

|Yn|2γ)
)

≤ M(∆l)
β(1 + |Y0|2γ) ≤ K(∆l)

β

(3.35)

Step II: Now we estimate the term H2 in inequality (3.27). By the jump
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coefficient c and the smooth function u , applying the Taylor expansion yields

H2 =

∣∣∣∣E
(∫ T

−r

∫

ε

{[ 2β+1∑

k=1

1

k!

∑

p∈Pk

(∂p
yL

−1
υ u(z,Yz))Fp(ζ(z) − Ytz) + Rn(ζ(z))

]

−
[ 2β+1∑

k=1

1

k!

∑

p∈Pk

(∂p
yL

−1
υ u(z,Yz))Fp(Xz,Yz

z − Ytz) + Rn(Xz,Yz

z )

]}
ϕ(dυ)dz

)∣∣∣∣

≤
∫ T

−r

∫

ε

E

( 2β+1∑

k=1

1

k!

∑

p∈Pk

|(∂p
yL

−1
υ u(z,Yz))|

× |E(Fp(ζ(z) − Yz) − Fp(Xz,Yz

z − Yz)|Ãz)|

+ E(|Rn(ζ(z))||Ãz) + E(|Rn(Xz,Yz

z )||Ãz)

)
ϕ(dυ)dz

(3.36)

Similarly, we can estimate the reminders as follows

E(|Rn(ζ(z))||Ãz) ≤ M(1 + |Ytz |2r)(z − tz)
β+1, (3.37)

E(|Rn(Xz,Yz

z )||Ãz) ≤ M(1 + |Ytz |2r)(z − tz)
β+1. (3.38)

Then, by applying the hölder inequality, Lemma 3.5 and Lemma 3.3, inequal-

ities (3.37) and (3.38) to estimate the inequality above, we get

H2 ≤ M

∫ T

−r

∫

ε

E(1 + |Ytz |2r)(∆l)
βϕ(dυ)dz

≤ M(∆l)
β

∫ T

0

E(1 + max
0≤n≤nT

|Ytn |2r)(z − tz)dz

≤ M(∆l)
β

(3.39)

Step III: Finally, by the inequalities (3.27) and (3.35) as well as (3.39), we

have

|E(g(X(T ))) − E(g(Y ∆l(T )))| ≤ M(∆l)
β (3.40)
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3.5 A Numerical Example

Here we give an illustrative example to demonstrate the application and the

convergence of the proposed numerical scheme . We consider the following linear

SDDE with Poisson jumps,





dXt = [(µ− νλ)Xt + αXt−1]dt + [σXt + βXt−1]dWt + νXtdN

X(t) = t + 1, t ∈ [−1, 0]
(3.41)

where µ, σ and ν are respectively the drift coefficient, the diffusion coefficient

and the jump coefficient, λ is the jump intensity, and α and β are the delay

coefficients.

By the method for solving linear stochastic differential equations in [46], the

analytical solution for t ∈ [0, 1] is obtained

X(t) = Φ(t)

(
1 +

∫ t

0

Φ(s)−1(α− σβ)sds +

∫ t

0

Φ(s)−1βsdWs

)
(3.42)

where

Φ(t) = (ν + 1)N(t)exp{(µ− νλ− σ2

2
)t + σWt} (3.43)

According to the weak Taylor approximation scheme (3.16)-(3.19) proposed

in section 3, we now expand it with weak order 1 (well known as Euler scheme),





Y(n+1)− = Yn + ((µ− νλ)Yn + αhn)h + (σYn + βhn)∆Wn

Yn+1 = Y(n+1)− + νYn∆Nn

(3.44)

Here we have used the jump adapted time discretization, and h is the maximum

step size.

For higher accuracy and efficiency, one needs to construct higher order nu-



3.5 A Numerical Example 38

merical schemes. We now give a Taylor scheme of weak order two below,






Y(n+1)− = Yn + ((µ− νλ)Yn + αhn)h + (σYn + βhn)∆Wn

+ ((µ− νλ)(σYn + βhn) + σ((µ− νλ)Yn + αhn))
h

2
∆Wn

+ (µ− νλ)((µ− νλ)Yn + αhn)
h2

2

+ σ(σYn + βhn)
(∆Wn)2 − h

2

Yn+1 = Y(n+1)− + νYn∆Nn

(3.45)

Next, we study the convergence of the two numerical schemes presented above

by using the weak errors measured by

ε(h) = |E(X(T )) − E(Y (T ))|, (3.46)

and compare the results obtained from these two schemes to the explicit eaxact

solution. We estimate the weak errors ε(h) by running a very large number of

simulations. The exact number depends on the implemented scheme. We use the

following parameters: α = 0.01, β = 0.01, µ = 0.001, σ = 0.6, ν = 0.002 and

λ = 0.001.

In figure 3.1, we give the sample paths under the two approximation schemes

and the numerical explicit solution of the equation 3.41. We can see from the

figure that the weak Taylor scheme path is closer to the analytical solution line

than the Euler scheme.

Now we present the numerical errors generated by the two numerical schemes

presented above. From table 3.1, we notice that, for all the step sizes used in

the numerical experiments, the weak Taylor method is more accurate. Moreover,

the errors of the weak order two Taylor method decrease faster than the Euler

scheme.
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Figure 3.1: Sample paths of linear SDDE with jumps

Table 3.1: Convergence results for the linear SDDE with jumps

Stepsize 1/h 28 210 212 214 216 218 220

WeakError1 0.00352 0.00201 0.00156 0.00114 0.00082 0.00060 0.00031

WeakError2 0.00229 0.00142 0.00061 0.00020 0.00009 0.00004 0.00002

3.6 Concluding Remarks

In this work, we have extended previous research on weak convergence to a more

general class of stochastic differential equations involving both jumps and time

delay. We proved that under the Poisson random measure and a fixed time delay,

a simplified Taylor method gives weak convergence rate arbitrarily close to order

β. The results of convergence analysis on a linear stochastic delay differential

equation with jumps are reported.



CHAPTER 4

Fractional Stochastic Differential

Equation with Application in European

Option Pricing

4.1 General Overview

Memory effect is an important phenomenon in financial systems. A great deal

of research work has been carried out to study the long memory in the financial

markets. In recent years, fractional order ordinary differential equations are used

as an effective instrument for describing the memory effect in complex systems.

In this chapter, we establish a fractional order stochastic differential equation

(FSDE) model to describe the effect of trend memory on financial pricing, and

then, apply the model for European option pricing.

The rest of this chapter is organized as follows. In section 4.2, we construct a

fractional stochastic differential equation model for application in financial mar-

ket. Section 4.3 gives some basic concepts and theories on the fractional order

ordinary differential equations and Hurst index and then establishes the fraction-

al order stochastic differential equation for application in financial market. In

Section 4.4, based on the proposed stochastic differential equation with fraction-

40



4.2 Fractional Stochastic Differential Equation Model 41

al order derivative, we give the corresponding Ito formula under the FSDE and

then derive the fractional European option pricing formula. In Section 4.5, we

conduct the empirical analysis of fractional order formula for the stock price pro-

cess by using the Monte Carlo simulation method, and we also make a comparison

analysis of the option pricing formula under the FSDE with the classic option

pricing formula and the option pricing formula based on the fractional Brownian

motion. The conclusions drawn from this study are presented in Section 4.5.

4.2 Fractional Stochastic Differential Equation

Model

The fractional derivative is given as below:

dαX = a(X, t)dtα (4.1)

where α is a fraction. This fractional differential equation is an appropriate math-

ematical approach to depict memory process of the increment. However, the

fractional order derivative above only denotes the memory effect of a fixed pro-

cess. Since the process in financial market has stochastic effect, we add stochastic

process into fractional order ordinary differential equation. In this chapter, we

propose a new model constructed by stochastic differential equation with frac-

tional order. We denote the stochastic process of the asset price by fractional

order stochastic differential equation as follows:

dαX = a(X, t)dtα + b(X, t)dW (t), α = 2H (4.2)

In equation (4.2), a(X, t), b(X, t) and W (t) are respectively the drift coefficient,

the diffusion coefficient and the standard Brownian motion, and H is the Hurst
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index, which is an exponent describing the memory of the time series, and can

be calculated by the R/SD analysis approach [66]. In the special case of α =

1 (i.e., H = 0.5), the equation is reduced to the classic stochastic differential

equation. Jumarie gave the Taylors series of fractional order, expressed dX in

terms of fractional differential dαX by using Taylors series of fractional order,

and, hence, obtained the expression of X(t), which involves the so-called Mittag-

Leffler function [57, 58]. Momani and Odibat presented a numerical approach

of differential equation of fractional order in [123]. Odibat proposed various

algorithms to compute the functions of fractional derivative [163].

4.3 Fractional Differential Equations

In this section, we first give some preliminaries about the fractional order ordi-

nary differential equation and then expand them to the field of the stochastic

differential equations. Thus, based on these previous research results, we can

construct the generalized fractional order stochastic differential equation.

4.3.1 Fractional Order Integration and Derivative

Now we introduce the definitions of fractional order integration and fractional

order derivative. There exist several definitions of fractional derivatives, which are

related to different applications. In our paper, we consider these two definitions,

which are Riemann-Liouville integral and Caputo derivative [58].

Definition 4.1. Suppose that f(x) is a continuous function. Its Riemann-Liouville

fractional integral of order α of function f(x) is defined as follows:

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α, x > 0, (4.3)
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where α is a fraction and Γ(α) is the Gamma function with

Γ(α) =

∫ ∞

0

xα−1exp(−x)dx

Definition 4.2. Consider the function of Definition 4.1. The Caputo fractional

derivative of order α of function f(x) is defined as

dαf

dxα
= Dαf(x) = Im−αDmf(x) =

1

Γ(m− α)

∫ x

0

(x− t)m−α−1f (m)(t)dt (4.4)

where α is a fraction, m is an integer and m = [α] is the value of α rounded up

to the nearest integer, and f (m) is the ordinary derivative of f .

Based on the definitions above, the following equality holds [55, 56]:

fα(x) = lim
h→0

∆αf(x)

hα
(4.5)

In order to get the relations between the fractional derivative and ordinary

derivative, we introduce the Taylor expansion of fractional order.

Proposition 4.1. Assume that the continuous function f(x) has fractional deriva-

tive of fractional order kα, for any positive integer k at any α, 0 < α < 1; then

the following equality holds:

f(x + h) =

∞∑

k=0

hkαf (kα)(x)

Γ(1 + kα)
, 0 < α ≤ 1 (4.6)

where f (kα) is the derivative of order kα of f(x), which can be denoted by Dkαf .

Lemma 4.1. Assume that m < α < m + 1, m ∈ N ; then,

f (m)(x + h) =

∞∑

k=0

hk(α−m)Dk(α−m)f (m)(x)

Γ(1 + k(α−m))
, m < α ≤ m + 1 (4.7)

Let m be equal to 1 in equation (4.7), and take integration with respect to h;
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we then have the following result:

f(x + h) = f(x) + hf ′(x) +
∞∑

k=1

h1+k(α−1)

Γ(2 + k(α− 1))
f (1+k(α−1))(x) (4.8)

The proof of the lemma above can be found in [57].

By employing the fractional order Taylor formula and equation (4.5), we get

the applications below. Given that m is an integer with m ≥ 1, the following

results hold:

fα(x) = lim
h→0

∆αf(x)

hα
= Γ(1 + α)lim

h→0

∆f(x)

hα
, 0 < α ≤ 1 (4.9)

fα(x) = Γ(1 + (α−m))lim
h→0

∆f (m)(x)

hα−m
, m < α ≤ m + 1(1 ≥ m) (4.10)

We then compare the two equations (4.8) and (4.9), when 1 < α < 2; thus,

the relationship between fractional difference and finite difference is obtained as

follows:

(1) Discrete form:

∆αf = Γ(1 + α)∆f, 0 < α ≤ 1 (4.11)

Continuous form:

dαf = Γ(1 + α)df, 0 < α ≤ 1 (4.12)

(2) Discrete form:

∆αf = Γ(1 + α)[∆f − f ′(x)∆x], 1 < α < 2 (4.13)
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Continuous form:

dαf = Γ(1 + α)[df − f ′(x)dx], 1 < α < 2 (4.14)

For the purpose of constructing the fractional order stochastic differential

equations in this section, now we give some results of the integral with respect to

dtα in Lemma 4.2 presented below. Its detailed proof can be obtained in [57,58].

Lemma 4.2. Let f(t) denote a continuous function; then its integral with respect

to dtα is defined by the following equalities:

∫ t

0

f(τ)(dτ)α = α

∫ t

0

(t− τ)α−1f(τ)dτ, 0 < α ≤ 1, (4.15)

∫ t

0

f(τ)(dτ)α = α(α− 1)

∫ t

0

(t− τ)α−2F (τ)dτ, 1 < α ≤ 2 (4.16)

where F (t) =
∫ t

0
f(τ)dτ ; on making f(t) = 1, we can have the result:

∫ t

0
f(τ)(dτ)α = tα.

4.3.2 Memory Effect and the Hurst Index

Time series Xt = X1, X2, . . . , XN is a stochastic process with Xt recorded at the

discrete times t = 0, 1, 2, . . . , N . A time series has the memory structure, if the lag

period information affects the future changes. Time series displays long memory

when the correlation between current and lag observations does not decay to zero

quickly over time.

Let Xt be a stationary stochastic process with autocorrelation function ρ(τ),

τ = 0, 1, 2, . . . , m, where τ denotes the time lag. If
∑m

τ=1 ρ(τ) = ∞, Xt is called a

long memory process; if
∑m

τ=1 ρ(τ) < ∞, it is called a short memory process, and,

otherwise, if ρ(τ) = 0, for τ 6= 0, Xt has no memory effect. The classical approach
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to measure the stochastic memory process is the autocorrelation function. Now,

the Hurst index is widely used as an effective substitute of the autocorrelation

function to determine long-range or short-range dependence.

The memory effect can be described by the memory parameter, namely, the

Hurst index. The Hurst index measures the smoothness of time series based on

the asymptotic behavior of the rescale of the stochastic process. A key property

of memory processes is self-similarity, which is denoted by the Hurst index.

Definition 4.3. If a stochastic process X = Xt, t = 1, 2, . . . , N is self-similar with

Hurst index H for any a > 0 and at any time t; then we denote it by Xat
d
= aHXt,

where the Hurst index describes the self-similarity of the stochastic process, and

d
= represents equality of the distribution.

In the following lemma, some basic properties are given and the corresponding

proofs can be obtained in [39, 66].

Lemma 4.3. Suppose a time series Xt = X1, X2, . . . , XN is self similar with

strictly stationary increment; then this time series has the following properties.

(1) The expectation of Xt is E[Xt] = 0 and, thus, E[X2
t ] = σ2 for all t =

1, 2, . . . , N .

(2) The covariance function γ(s, t) = E([Xs−E(Xs)][Xt−E(Xt)]) = E[XsXt],

which has the following result:

γ(s, t) =
σ2

2
(|s|2H − |s− t|2H + |t|2H) (4.17)

(3) The autocovariance function of Xt is given by γ(τ), τ = 1, 2, . . . , n where

τ is the lag period:

γ(τ) = E[XtXt+τ ] =
σ2

2
(|τ + 1|2H − 2|τ |2H + |τ − 1|2H) (4.18)

(4) If τ 6= 0, then we get the relationship between the autocovariance function
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and the Hurst index:

γ(τ) = 0, H = 0.5

γ(τ) < 0, 0 < H < 0.5 (4.19)

γ(τ) > 0, 0.5 < H < 1

which means γ(τ) > 0 in the case of 0.5 < H < 1; similarly, in the case 0 < H <

0.5, γ(τ) < 0, and in the case H = 0.5, γ(τ) = 0. According to the autocovariance

function, we have that, in the case of 0 < H < 0.5, the times series exhibit short

range dependence; in the case of H = 0.5, the times series has no dependence,

which is a perfect random walk; and in the case of 0.5 < H < 1, time series has

long-range dependence.

The Hurst index is usually estimated by the R/S statistic approach. Given

a stochastic process Xt, t = 1, 2, . . . , N of length N , we divide the time interval

N into M contiguous subintervals of length n such that M × n = N . For each

subinterval, the average value is Xn = E[Xt] = (1/n)
∑n

t=1 Xt.

The running sum of the accumulated deviations from the mean is given as

Xt,n =
k∑

t=1

(Xt −E[Xt]), k = 1, 2, . . . , n. (4.20)

The range over the time period n is

R(n) = max{Xk,n} −min{Xk,n}, k = 1, 2, . . . , n. (4.21)

The standard deviation of Xt, t = 1, 2, . . . , N is

SD(n) =

√√√√ 1

n− 1

n∑

t=1

(Xt − E[Xt])2 (4.22)

The rescaled range is (R/SD)(n) = R(n)/SD(n), and the relationship be-
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tween the R/SD statistic and n is

(
R

SD
)(n) =

R(n)

SD(n)
=

1

n

n∑

i=1

R(i)

SD(i)
(4.23)

Thus, we can get the result:

E
[ R(n)

SD(n)

]
= αnH , n → ∞ (4.24)

where α is a constant and H is the Hurst index.

As a consequence, we can get the Hurst index for the observed time period

by linear regression:

logE(
R

SD
)(n) = Hlogn + logα, (4.25)

4.3.3 Solving Fractional Stochastic Differential Equations

Here, we generalize the classic stochastic differential equation to establish the

fractional order stochastic differential equation based on the results presented

before and then apply it to the option pricing in the next section.

Definition 4.4. Assuming that a financial asset price is X, according to the

fractional ordinary differential equation, and considering the stochastic process,

we can get the FSDE as follows:

dαX = a(X, t)dtα + b(X, t)dW (t), α = 2H (4.26)

where a(X, t) is the drift parameter, b(X, t) is the diffusion parameter, dW (t) is

the Wiener process, dW (t) = ǫ
√
dt, ǫ ∼ N(0, 1) (normal distribution), and dt and

dW (t) are uncorrelated, dtdt = 0, dtdW (t) = 0, dW (t)dW (t) = dt.

In a special case, suppose a(X, t) = µX, b(X, t) = σX , and then we have
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the linear stochastic differential equation:

dαX = µXdtα + σXdW (t), α = 2H (4.27)

By using the results of (4.12), we can rewrite (4.26) in the following form of

dX with respect to dtα:

dX =
a(X, t)

Γ(1 + α)
(dt)α +

b(X, t)

Γ(1 + α)
dW (t), 0 < α ≤ 1, 0 < H ≤ 0.5 (4.28)

dX =
a(X, t)

Γ(1 + α)
(dt)α +

b(X, t)

Γ(1 + α)
dW (t) + X ′(t)dt, 1 < α ≤ 2, 0.5 < H ≤ 1

(4.29)

where X ′(t) is the first order derivative of X about time t.

4.4 European Call Option Pricing Based on FS-

DE

In this section, the corresponding Ito formula and European call option pricing

formula are derived based on the fractional order stochastic differential equation.

4.4.1 Ito Lemma Based on FSDE

Lemma 4.4. Assume that the stock price X follows the fractional order stochastic

differential equation as below:

dαX = µdtα + σdW (t), α = 2H (4.30)

then, the function f = f(Xt, t) is still an Ito stochastic process, and the following

expressions hold.
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When 0.25 < H ≤ 0.5,

df = [
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
]dt+

µX

Γ(1 + α)

∂f

∂X
(dt)2H+

σX

Γ(1 + α)

∂f

∂X
dW (t) (4.31)

When 0.5 < H ≤ 1,

df =[
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
+ X ′(t)

∂f

∂X
]dt +

µX

Γ(1 + α)

∂f

∂X
(dt)2H

+
σX

Γ(1 + α)

∂f

∂X
dW (t)

(4.32)

Proof. According to the Ito formula, we notice that

∆f =
∂f

∂t
∆t +

∂f

∂X
∆X +

1

2

∂2f

∂X2
(∆X)2 +

∂2f

∂X∂t
(∆X∆t) +

1

2

∂2f

∂t2
(∆t)2 (4.33)

and the discrete form of dαX = µX(dt)α + σXdW (t) is ∆αX = µX(∆t)α +

σX∆W (t).

In this chapter, we only consider the case that 0.25 < H < 1. There are two

reasons for this consideration: first, the Hurst index H is much larger than 0

generally; second, when 0.25 < H < 1, α = 2H > 0.5, (∆t)2α and (∆t)α+0.5 are

infinitesimal. Hence, we do not need to consider the case of 0 < H ≤ 0.25.

(1) In the case of 0.25 < H ≤ 0.5, since E(ǫ) = 0, E(ǫ2) = 1, we have

∆X = µX
Γ(1+α)

(∆t)α + σX
Γ(1+α)

ǫ(∆t)0.5

∆X∆t = µX
Γ(1+α)

(∆t)α+1 + σX
Γ(1+α)

ǫ(∆t)1.5 → 0, 0 < H ≤ 0.5 (4.34)

(∆X)2 = µ2X2

Γ2(1+α)
(∆t)2α + σ2X2

Γ2(1+α)
ǫ2(∆t) + 2µσX2

Γ2(1+α)
ǫ(∆t)α+0.5 → σ2X2

Γ2(1+α)
(∆t)
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According to the Ito formula presented above, we can get

∆f =
∂f

∂t
∆t +

∂f

∂X
∆X +

1

2

∂2f

∂X2
(∆X)2 +

∂2f

∂X∂t
(∆X∆t) +

1

2

∂2f

∂t2
(∆t)2

=
∂f

∂t
∆t +

∂f

∂X
∆X +

1

2

∂2f

∂X2
(∆X)2

=
∂f

∂t
∆t +

∂f

∂X
[

µX

Γ(1 + α)
(∆t)α +

σX

Γ(1 + α)
ǫ(∆t)0.5] +

σ2X2

2Γ2(1 + α)

∂2f

∂X2
(∆t)

= [
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
]∆t +

µX

Γ(1 + α)

∂f

∂X
(∆t)2H +

σX

Γ(1 + α)

∂f

∂X
ǫ(∆t)0.5

(4.35)

Thus, the differential form is given below:

df = [
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
]dt +

µX

Γ(1 + α)

∂f

∂X
(dt)2H +

σX

Γ(1 + α)
dW (t) (4.36)

(2) In the case of 0.5 < H < 1,

∆X = µX
Γ(1+α)

(∆t)α + σX
Γ(1+α)

ǫ(∆t)0.5 + X ′(t)∆t,

∆X∆t = µX
Γ(1+α)

(∆t)α+1 + σX
Γ(1+α)

ǫ(∆t)1.5 + X ′(t)(∆t)2 → 0,

(∆X)2 = µ2X2

Γ2(1+α)
(∆t)2α + σ2X2

Γ2(1+α)
ǫ2(∆t) + (X ′(t))2(∆t)2 + 2µσX2

Γ2(1+α)
ǫ(∆)α+0.5

+2µXX′(t)
Γ2(1+α)

(∆t)α+1 + 2σXX′(t)
Γ2(1+α)

ǫ(∆t)1.5 → σ2X2

Γ2(1+α)
(∆t) (4.37)

∆f =
∂f

∂t
∆t +

∂f

∂X
∆X +

1

2

∂2f

∂X2
(∆X)2

=
∂f

∂t
∆t +

∂f

∂X
[

µX

Γ(1 + α)
(∆t)α +

σX

Γ(1 + α)
ǫ(∆)0.5 + X ′(t)∆t]

+
σ2X2

2Γ2(1 + α)

∂2f

∂X2
(∆t)

= [
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
+ X ′(t)

∂f

∂X
]∆t +

µX

Γ(1 + α)

∂f

∂X
(∆t)2H

+
σX

Γ(1 + α)

∂f

∂X
ǫ(∆t)0.5

(4.38)
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Similarly, we obtain the differential form as follows:

df = [
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
+X ′(t)

∂f

∂X
]dt+

µX

Γ(1 + α)

∂f

∂X
(dt)2H+

σX

Γ(1 + α)

∂f

∂X
dW (t)

(4.39)

To price a European option, we first introduce Lemma 4.5, which connects

the fractional order stochastic differential equations to the partial differential

equations.

Lemma 4.5. f(X(t), t) is the solution of the partial differential equations:

∂f
∂t

+ rX ∂f
∂X

+ σ2X2

2Γ2(1+α)
∂2f
∂X2 − rf = 0, 0.25 < H ≤ 0.5, (4.40)

∂f
∂t

+ [X ′(t) + rX ] ∂f
∂X

+ σ2X2

2Γ2(1+α)
∂2f
∂X2 − rf = 0, 0.5 < H < 1, (4.41)

f(X(T ), T ) = f(X(T )). (4.42)

Proof. First, make portfolios Π = ∆X − f and dΠ = ∆dX − df .

(1) In the case of 0.25 < H ≤ 0.5,

dΠ = ∆dX − df

= ∆[
µX

Γ(1 + α)
(dt)α +

σX

Γ(1 + α)
dW (t)] − [(

∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂f

∂X
)dt

+ (
µX

Γ(1 + α)

∂f

∂X
)(dt)2H +

σX

Γ(1 + α)

∂f

∂X
dW (t)]

= −[
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂f

∂X
]dt +

µX

Γ(1 + α)
(∆ − ∂f

∂X
)(dt)2H

+
σX

Γ(1 + α)
(∆ − ∂f

∂X
)dW (t)

(4.43)

When ∆ = ∂f
∂X

, we can get the riskless asset portfolio

dΠ = ∆dX − df = −[
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
]dt (4.44)
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And because the portfolio Π is riskless, according to the Bellman Equation,we

have dΠ = rΠdt, where r is the riskless rate. Thus, we get the equation dΠ =

rΠdt = −[(∂f/∂t) + (σ2X2/2Γ2(1 + α))(∂2f/∂X2)]dt. Consequently, we obtain

the first partial differential equation

∂f

∂t
+ rX

∂f

∂X
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
− rf = 0 (4.45)

(2) In the case of 0.5 < H < 1,

dΠ = ∆dX − df

= ∆[
µX

Γ(1 + α)
(dt)α +

σX

Γ(1 + α)
dW (t) + X ′(t)dt]

− [(
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
+ X ′(t)

∂f

∂X
)dt

+ (
µX

Γ(1 + α)

∂f

∂X
)(dt)2H +

σX

Γ(1 + α)

∂f

∂X
dW (t)]

= −[
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
+ X ′(t)

∂f

∂X
]dt +

µX

Γ(1 + α)
(∆ − ∂f

∂X
)(dt)2H

+
σX

Γ(1 + α)
(∆ − ∂f

∂X
)dW (t)

(4.46)

When ∆ = ∂f/∂X , we can also get the riskless asset portfolio

dΠ = ∆dX − df = −[
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
+ X ′(t)

∂f

∂X
]dt (4.47)

And again because Π is riskless, we can get the equation

dΠ = rΠdt = −[
∂f

∂t
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
+ X ′(t)

∂f

∂X
]dt (4.48)

Similarly, the second partial differential equation can be obtained as below:

∂f

∂t
+ [X ′(t) + rX ]

∂f

∂X
+

σ2X2

2Γ2(1 + α)

∂2f

∂X2
− rf = 0 (4.49)
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4.4.2 European Call Option Based on FSDE

Before we proceed to price the European call option, we make the assumptions

as below:

(1) r is the riskless rate and is a constant;

(2) the exchange of the stock is continuous and the stock can be divided;

(3) the tax of the stock exchange is free;

(4) the bonus of the stock cannot be paid within the duration of derivatives;

(5) no arbitrage exists in the market;

(6) the price of stock follows a fractional order stochastic differential equation

dαX

X
= r(dt)α + σdW (t), α = 2H ;

(7) the strike price is K;

(8) the maturity is T ,

where X is the price of the stock and r is the riskless interest rate; σ is the

volatility of the price of stock; H is the Hurst parameter of the stock.

In the following work, we will derive the fractional option pricing formula

based on the risk-neutral assumption. If the price of underlying asset is subject

to the geometric Brownian motion and the return µ is equal to the riskless interest

rate r (i.e., µ = r), we have

dαX

X
= r(dt)α + σdW (t), α = 2H (4.50)

(1) In the case 0.25 < H ≤ 0.5, according to Ito Lemma 4.4, we can get the
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price of the stock as

d(lnX) =
r

Γ(1 + α)
(dt)2H − σ2

2Γ2(1 + α)
dt +

σ

Γ(1 + α)
dW (t), 0.25 < H ≤ 0.5

(4.51)

Integrate (4.54) and use Lemma 4.2; then,we can get the solution of X ,

XT = Xexp

(
r

Γ(1 + α)
(T 2H−t2H)− σ2

2Γ2(1 + α)
(T−t)+

σ

Γ(1 + α)
(W (T )−W (t))

)

Therefore, the European call option pricing formula follows:

X0 = Xe(r/Γ(1+α))(T 2H−t2H )−r(T−t)N(d1) −Ke−r(T−t)N(d2)

where

d1 =
(
Γ(1 + α)ln(X/K) + r(T 2H − t2H) + σ2/2

2Γ(1+α)
(T − t)

)
(σ
√
TH − tH)−1

d2 =
(
Γ(1 + α)ln(X/K) + r(T 2H − t2H) − σ2/2

2Γ(1+α)
(T − t)

)
(σ
√
TH − tH)−1

Proof. The price of the European call option is given by X0 = e−r(T−t)E[max(XT−

K), 0], where E(·) is the expectation of the option price based on risk-neutral,

and the price of the asset XT obeys the log normal distribution:

lnXT − lnX ∼ N

(
r

Γ(1 + α)
(T 2H − t2H)− σ2

2Γ2(1 + α)
(T − t),

σ2

Γ2(1 + α)
(T − t)

)

Let Q = (lnXT − m)/s; obviously, Q ∼ N(0, 1) and the probability den-

sity function h(Q) = (1/
√

2π)e−Q2/2, where m = E(lnXT ) = lnX + (r/Γ(1 +

α))(T 2H − t2H) − (σ2/2Γ2(1 + α))(T − t), and s = σ
√
T − t/Γ(1 + α). Hence,
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E[max(XT −K, 0)] =

∫ +∞

−∞
max(XT −K, 0)h(XT )dX(T )

=

∫ +∞

K

(XT −K)h(XT )dXT +

∫ K

−∞
0h(XT )dX(T )

=

∫ +∞

lnK

(eXT −K)h(lnXT )d(lnXT )

=

∫ +∞

lnK−m

(eXT −K)h(
lnXT −m

s
)d(

lnXT −m

s
)

=

∫ +∞

lnK−m

(eXT −K)h(lnXT )d(lnXT )

=

∫ +∞

lnK−m

(esQ+m −K)h(Q)dQ

=

∫ +∞

lnK−m

es
2/2+m 1√

2π
e−(Q−s)2/2dQ−KN(

m− lnK

s
)

= Xe(r/Γ(1+α))(T 2H−t2H )N(d1) −KN(d2)

(4.52)

where

d1 =
(
Γ(1 + α)ln(X/K) + r(T 2H − t2H) + σ2/2

2Γ(1+α)
(T − t)

)
(σ
√
TH − tH)−1

d2 =
(
Γ(1 + α)ln(X/K) + r(T 2H − t2H) − σ2/2

2Γ(1+α)
(T − t)

)
(σ
√
TH − tH)−1

So we get the European option pricing formula as follows:

X0 = e−r(T−t)E[max(XT −K, 0)]

= e−r(T−t)[e(r/Γ(1+α))(T 2H−t2H )N(d1) −KN(d2)]

= Xe(r/Γ(1+α))(T 2H−t2H )−r(T−t)N(d1) −Ke−r(T−t)N(d2)

(4.53)

(2) In the case of 0.5 < H < 1, in a similar way, according to the Ito Lemma
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4.4, the price of the stock is

d(lnX) =
r

Γ(1 + α)
(dt)2H + (

X ′

X
− σ2

2Γ2(1 + α)
)dt +

σ

Γ(1 + α)
dW (t) (4.54)

Notice that X ′/Xdt = d(lnX) = lnXt+1 − lnXt = m(t), m(t) represents the

daily logarithm returns of stock X , and m(t) = µ(t)dt, µ(t) is the returns of one

year; thus, X ′/X = µ(t) and (52) can be written as follows:

d(lnX) =
r

Γ(1 + α)
(dt)2H + (µ(t) − σ2

2Γ2(1 + α)
)dt +

σ

Γ(1 + α)
dW (t) (4.55)

By integrating (4.55) and employing Lemma 4.2, we get the solution of X :

XT =Xexp

(
r

Γ(1 + α)
(T 2H − t2H) +

∫ T

t

µ(s)ds− σ2

2Γ2(1 + α)
(T − t)

+
σ

Γ(1 + α)
(W (T ) −W (t))

)

Consequently, the European call option pricing formula is obtained:

X0 = Xe(r/Γ(1+α))(T 2H−t2H )+
∫ T
t

µ(s)ds−r(T−t)N(d1) −Ke−r(T−t)N(d2)

where

d1 =
(
Γ(1 + α)ln(X/K) +

∫ T

t

µ(s)ds + r(T 2H − t2H)

+
σ2/2

2Γ(1 + α)
(T − t)

)
(σ
√

TH − tH)−1

d2 =
(
Γ(1 + α)ln(X/K) +

∫ T

t

µ(s)ds + r(T 2H − t2H)

− σ2/2

2Γ(1 + α)
(T − t)

)
(σ
√

TH − tH)−1

Proof. Let Q = (lnXT − m)/s, and it is obvious that Q ∼ N(0, 1), and so the
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probability density function h(Q) = (1/
√

2π)e−Q2/2, where

m = Ê(lnXT ) = lnX+

∫ T

t

µ(s)ds+(r/Γ(1+α))(T 2H−t2H)−(σ2/2Γ2(1+α))(T−t),

and s = σ
√
T − t/Γ(1 + α).

Hence,

E[max(XT −K, 0)] =

∫ +∞

−∞
max(XT −K, 0)h(XT )dX(T )

=

∫ +∞

K

(XT −K)h(XT )dXT

=

∫ +∞

(lnK−m)/s

(esQ+m −K)h(Q)dQ

=

∫ +∞

(lnK−m)/s

es
2/2+m 1√

2π
e−(Q−s)2/2dQ−KN(

m− lnK

s
)

= Xe
∫ T

t
µ(s)ds+(r/Γ(1+α))(T 2H−t2H )N(d1) −KN(d2)

(4.56)

where

d1 =
(
Γ(1 + α)ln(X/K) +

∫ T

t

µ(s)ds + r(T 2H − t2H)

+
σ2/2

2Γ(1 + α)
(T − t)

)
(σ
√

TH − tH)−1

d2 =
(
Γ(1 + α)ln(X/K) +

∫ T

t

µ(s)ds + r(T 2H − t2H)

− σ2/2

2Γ(1 + α)
(T − t)

)
(σ
√

TH − tH)−1

Finally, the European option pricing formula is given as follows:

X0 = e−r(T−t)E[max(XT −K, 0)]

= e−r(T−t)[e
∫ T
t

µ(s)ds+(r/Γ(1+α))(T 2H−t2H )N(d1) −KN(d2)]

= Xe(r/Γ(1+α))(T 2H−t2H )+
∫ T

t
µ(s)ds−r(T−t)N(d1) −Ke−r(T−t)N(d2)

(4.57)
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From the result we derived, the option price formula contains the mean value

function
∫ T

t
µ(s)ds of the logarithmic returns of stock price, which is the effect

of trend memory. Therefore, we proved that trend memory exists in the financial

systems.

Now, we give the European call option pricing formula under the risk-neutral

measure. Let the mean returns of stock be equal to the riskless rate r; by taking

the expectation of the returns in the case 0.5 < H < 1, we have E[µ(t)] = µ =

r, where r is the riskless returns. Then, we simplify the mean value function
∫ T

t
µ(s)ds =

∫ T

t
µds = µ(T − t) = r(T − t) and have µ− r = 0; thus, we get the

option pricing formula

X0 = Xe(r/Γ(1+α))(T 2H−t2H )−r(T−t)N(d1) −Ke−r(T−t)N(d2)

where

d1 =
(
Γ(1 + α)ln(X/K) + r(T 2H − t2H) + (r + σ2/2

2Γ(1+α)
)(T − t)

)
(σ
√
TH − tH)−1

d2 =
(
Γ(1 + α)ln(X/K) + r(T 2H − t2H) − (r − σ2/2

2Γ(1+α)
)(T − t)

)
(σ
√
TH − tH)−1

(4.58)

4.5 Numerical Analysis

To explain the memory effects in financial market, we make some comparisons in

this section among our proposed European option pricing model and its under-

lying stock price equation and the well-known classic models, such as the Black-

Scholes model (Black and Scholes (1973) [47]) and the Black-Scholes model under

fractional Brownian motion (Necula (2002) [22], Hu and Øksendal (2003) [159]).
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(1) The classical Black-Scholes model [47]:

dS = rSdt + σSdW (t)

The European option pricing formula is

c = SN(d11) −Ke−r(T−t)N(d12)

where

d11 = ln(S/K)+(r+σ2/2)(T−t)

σ
√
T−t

d12 = ln(S/K)+(r−σ2/2)(T−t)

σ
√
T−t

(4.59)

The classical Black-Scholes model was established under the assumption that

the price process is a Markov process and that the price process is independent

and has no memory effect; however, the memory effects exist in price process.

(2) The SDE with fractional Brownian motion [22, 159]:

dS = rSdt + σSdWH(t)

The European option pricing formula is

c = SN(d21) −Ke−r(T−t)N(d22)

where

d21 = ln(S/K)+r(T−t)+(σ2/2)(T 2H−t2H )
σ(TH−tH )

d22 = ln(S/K)+r(T−t)−(σ2/2)(T 2H−t2H )
σ(TH−tH )

(4.60)

The fractional Brownian motion model has improved the Black-Scholes mod-
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el by considering the memory effect of the asset price but only considered the

memory effect of the noise.

(3) The fractional order SDE (FSDE model):

dαS = rS(dt)α + σSdW (t), α = 2H

In the case of 0.25 < H < 0.5, the European call option pricing formula is

c = Se(r/Γ(1+α))(T−t)2H−r(T−t)N(d31) −Ke−r(T−t)N(d32)

where

d31 =
(
Γ(1 + α)ln(S/K) + r(T 2H − t2H) + σ2/2

2Γ(1+α)
(T − t)

)
(σ
√
TH − tH)−1

d32 =
(
Γ(1 + α)ln(S/K) + r(T 2H − t2H) − σ2/2

2Γ(1+α)
(T − t)

)
(σ
√
TH − tH)−1

When H = 0.5, the option formula is reduced to the classic option formula.

In the case of 0.5 < H < 1, the European call option pricing formula is

c = Se(r/Γ(1+α))(T 2H−t2H )N(d41) −Ke−r(T−t)N(d42)

where

d41 =
(
Γ(1 + α)ln S

K
+ r(T 2H − t2H) + (r + σ2/2

2Γ(1+α)
)(T − t)

)
(σ
√
TH − tH)−1

d42 =
(
Γ(1 + α)ln S

K
+ r(T 2H − t2H) − (r − σ2/2

2Γ(1+α)
)(T − t)

)
(σ
√
TH − tH)−1

In this work, our model takes a new memory effect into consideration, which

is called the trend memory effect of the asset price.

The underlying asset price equations to be used to make comparison are given

as follows:
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(1) the SDE model: dS = rSdt + σSdW (t),

The stock price equation is ST = Sexp[(r − σ2/2)(T − t) + σ∆W (t)];

(2) the SDE model with fractional Brownian motion: dS = rSdt+σSdWH(t),

The stock price equation is ST = Sexp[r(T − t) − σ2(T − t)2H + σ∆WH(t)];

(3) the fractional order SDE model: dαS = rS(dt)α + σSdW (t), α = 2H ,

when 0.25 < H ≤ 0.5, the stock price equation is

St = St−1exp
[ r

Γ(1 + α)
∆t2H − σ2

2Γ2(1 + α)
∆t +

σ

Γ(1 + α)
ǫ∆Wt

]
(4.61)

However, when 0.5 < H < 1, the stock price equation is

St = St−1exp
[ r

Γ(1 + α)
∆t2H +

(
r − σ2

2Γ2(1 + α)

)
∆t +

σ

Γ(1 + α)
ǫ∆Wt

]
(4.62)

To illustrate the validity of the proposed FSDE model, we simulate the three

types of stochastic differential equations presented above by using the Monte Car-

lo simulation method and then make comparison of these three different models.

The data used in the empirical analysis is the daily closing price index series of

CSI300 index of China. The time range is from January 4, 2012, to October 27,

2012, with the initial value S0 = 2299 (the price index on January 4, 2012) and

the final value ST = 2445. We choose the one-year bonds interest rate r = 2.65%

in China as the riskless rate and the mean yield µ = 0.0266. The Hurst parameter

is H = 0.6614, which is estimated by R/S analysis approach. Given a 95 percent

confidence interval, the simulation results are shown in Tables 4.1, 4.2, and 4.3.

Table 4.1: Simulation results of SDE model

Simulation times Real value Mean value Standard deviation Error rate Confidence interval
102 2445 2351.9 198.6958 3.81% [2313.0, 2390.8]
103 2445 2358.9 195.7074 3.53% [2346.5, 2370.8]
104 2445 2357.0 200.5667 3.60% [2353.1, 2360.9]
105 2445 2360.0 202.2802 3.48% [2358.7, 2361.2]

From the results in Tables 4.1 − 4.3, by using Monte Carlo simulation, we
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Table 4.2: Simulation results of SDE with FBM

Simulation times Real value Mean value Standard deviation Error rate Confidence interval
102 2445 2358.2 77.4242 3.55% [2343.0, 2373.3]
103 2445 2360.8 76.3254 3.44% [2356.1, 2365.6]
104 2445 2360.0 78.0423 3.48% [2358.6, 2361.6]
105 2445 2361.2 78.5882 3.43% [2360.8, 2361.7]

Table 4.3: Simulation results of FSDE

Simulation times Real value Mean value Standard deviation Error rate Confidence interval
102 2445 2362.7 19.0566 3.37% [2359.1, 2366.5]
103 2445 2368.4 21.1279 3.13% [2367.2, 2369.8]
104 2445 2367.0 19.7396 3.19% [2366.7, 2367.5]
105 2445 2369.5 20.4312 3.09% [2369.5, 2369.7]

conclude that the error of our proposed FSDE model is smaller than that in

the conventional SDE model and the SDE with FBM model. If we conduct the

simulating process 100000 times, which is large enough for the error analysis, we

obtain that the error rate of the SDE model is 3.48%, while the rate is 3.43%

and 3.09% respectively for the SDE driven by fractional Brownian motion and

the FSDE model.

In addition, the standard derivation of simulation in the FSDE model is also

much lower than the SDE model and the SDE with FBM model, and the con-

fidence interval is smaller than the two classic models. In the same way, when

we simulate 100000 times, the standard deviation of SDE model is 202.2802, the

SDE driven by fractional Brownian motion model is 78.5882, and FSDE model

is 20.4312. Thus, we get the conclusion that the FSDE has about 10 times lower

standard derivation than the SDE model and about 2.5 times lower standard

derivation than the SDE driven by fractional Brownian motion.

4.6 Concluding Remarks

Because the fractional order ordinary differential equations can capture the mem-

ory effect in the financial system,we established the fractional order stochastic
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differential equation by adding the stochastic process into the fractional ordinary

differential equation. Based on this stochastic differential equation with fractional

order, we apply the fractional order stochastic differential equation to the finan-

cial market. We constructed the stock price dαS = µ(S, t)dtα + σ(S, t)dW (t),

where α = 2H and H is Hurst index, and derived the stock price process in the

cases of 0.25 < H ≤ 0.5 and 0.5 < H < 1, respectively, and the European call

option pricing formula under the fractional order stochastic differential equation.

From the European option pricing formula, we find that the trend memory in

stock price process when Hurst index is between 0.5 and 1.

In addition, we made some comparisons in terms of the pricing option formula

and its underlying stock price process among our proposed approach and the

other two classical models. We find that the new approach leads to a better

result than the classic approach and the fractional Brownian motion approach

when we simulate the stock prices by Monte Carlo simulation.



CHAPTER 5

Estimation of Parameters in

Mean-reverting Stochastic Systems

5.1 General Overview

Stochastic differential equation (SDE) is a very important mathematical tool to

describe complex systems in which noise plays an important role. SDE models

have been widely used to study the dynamic properties of various nonlinear sys-

tems in biology, engineering, finance and economics, as well as physical sciences.

Since a SDE can generate unlimited numbers of trajectories, it is difficult to esti-

mate model parameters based on experimental observations which may represent

only one trajectory of the stochastic model. Although substantial research ef-

forts have been made to develop effective methods, it is still a challenge to infer

unknown parameters in SDE models from observations that may have large vari-

ations. Using an interest rate model as a test problem, in this work, we use the

Bayesian inference and Markov Chain Monte Carlo method to estimate unknown

parameters in SDE models.

A number of methods have been used to estimate the parameters in the single-

factor continuous time models, including the generalized moment method [52] and

Gaussian estimation methods [84]. However, our recent research work suggests

65
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that the accuracy of the estimates generated from these two methods is low, in

particular, when the stepsize of observation time points is not small [140]. Thus

in this chapter we will concentrate on proposing a method that will give more

accurate estimates of the model parameters, leading to more accurate simulation

of the stochastic process. By utilizing the Bayesian inference and the MCMC

method, we develop a numerical algorithm to estimate the unknown parameters in

stochastic interest rate models. The remaining part of this chapter is organized as

follows. Section 5.2 gives a class of stochastic models for term structure of interest

rates and numerical algorithms for simulating these stochastic models. Section

5.3 discusses the Bayesian inference and the MCMC method, and proposes a new

numerical algorithm for estimating parameters in the mean-reverting stochastic

systems. Section 5.4 presents the numerical results for estimating the parameters

in the stochastic models for the term structure of interest rates.

5.2 Stochastic Model and Direct SimulationMeth-

ods

We first introduce the general form of SDEs for interest rates, namely

dX = a(t, X)dt + b(t, X)dW (t), (5.1)

where a(t, X) is the drift term, b(t, X) the diffusion term and W (t) the Wiener

process. The increment of Wiener process ∆Wn = W (tn+1) −W (tn) follows the

Gaussian distribution N(0, tn+1 − tn).

Now we proceed to consider numerical methods for simulating the SDE. The

widely used method in computational finance is the Euler-Maruyama method
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whose strong convergence order is just 0.5, given by

Xn+1 = Xn + ha(tn, Xn) + b(tn, Xn)∆Wn, (5.2)

where Xn is the numerical solution at time point tn, and h = tn+1− tn. Although

this method is easy to implement, its stability property is not good enough to

simulate SDEs with a relatively large diffusion term. In order to obtain stable

simulations, a very small stepsize is required, which may lead to large computing

time. To improve the stability property, the semi-implicit and fully implicit Euler

method can be used to reduce the computing time [107, 139]. For example, the

semi-implicit Euler method is given by

Xn+1 = Xn + ha(tn+1, Xn+1) + b(tn, Xn)∆Wn. (5.3)

In computational finance the Euler-Maruyama method with strong conver-

gence order 0.5 is widely used because of its easy computer-based implemen-

tation. However, the drawback of this method is that its stability property is

not satisfactory when simulating SDEs with relatively large diffusion term. One

possible improvement is to use very small stepsize to get the stable simulations,

but the computing time increases incredibly. Here we consider the implicit Mil-

stein method to get reliable numerical results with good accuracy and stability

property.

The Milstein scheme uses a higher order stochastic Taylor expansion and thus

has a strong convergence order one, given by

Xn+1 = Xn + a(tn, Xn)h + b(tn, Xn)∆Wn

+
1

2
b(tn, yn)b′(tn, yn)((∆Wn)2 − h). (5.4)

In order to improve the stability of the Milstein method, the semi-implicit
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and fully implicit Milstein methods were proposed. The method, in which only

the drift term is implicit, known as semi-implicit Milstein method as given below

Xn+1 = Xn + a(tn+1, Xn+1)h + b(tn, Xn)∆Wn

+
1

2
b(tn, yn)b′(tn, yn)((∆Wn)2 − h); (5.5)

while the method where both the drift term and the diffusion term are implicit

is called fully implicit Milstein method [139], given by

Xn+1 = Xn + a(tn+1, Xn+1)h + b(tn+1, Xn+1)∆Wn

+
1

2
b(tn+1, yn+1)b

′(tn+1, yn+1)((∆Wn)2 + h).

In this chapter we use the CIR (Cox, Ingersoll and Ross) model of the term

structure of interest rate as the test system to examine the accuracy of the in-

ference methods [11]. The CIR model was introduced to model the short term

interest rate [28,52], which is a linear mean-reversing stochastic differential equa-

tion [75]. The CIR model states that the short interest rate follows a square root

diffusion process, which has the following continuous-time representation:

dX = α(β −X)dt + σ
√
XdW (t), (5.6)

where α, β, σ > 0, α is the speed of adjustment (or mean reversion), β represents

the long term value of the randomly moving interest rate, and σ is a constant

volatility. This model implicates that both the drift and volatility change with

the level of the short rate.

In this work we will use the Euler-Maruyama method (5.2) to generate samples

of the interest rates. In fact, due to the linear feature of the drift term in the

interest rate model, the semi-implicit method can be written in explicit form, and

can also be used in the Bayesian inference method. For the benchmark model,
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the Euler-Maruyama Scheme is

Xn+1 = Xn + α(β −Xn)h + σ
√
Xn∆Wn; (5.7)

and the semi-implicit Euler scheme is given by

Xn+1 =
1

1 + αh

(
Xn + αβh + σ

√
Xn∆Wn

)
. (5.8)

5.3 Parameter Estimation for the Term Struc-

ture Models

5.3.1 Bayesian Inference Approach

In this section, we establish a numerical algorithm for estimating parameters

in stochastic models based on the Bayesian inference and MCMC method. In

contrast with the classical approach in which the unknown parameters in a model

have fixed quantity, the unknown parameters of the underlying model in the

Bayesian paradigm are treated as a random variable with some prior beliefs. The

heart of the Bayesian approach is the Bayes theorem which allows us to compute

the conditional probability density function of the model parameters θ, assuming

that the model parameters are continuous random variables, given the entire data

set y

p(θ|y) =
p(y|θ)p(θ)

p(y)
. (5.9)

Since the probability p(y) is independent of the model parameters, to maximize

the joint probability density function, only the product p(y|θ)p(θ) should be con-

sidered. Thus the posterior distribution f(θ|y) can be interpreted as our pri-

or beliefs of the parameters f(θ) updated by the current information from the

data. Because we have little prior knowledge of θ, we may simply use a ”non-
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informative” or ”flat” prior.

In this work we use the Bayesian inference method derived by Joshi and Wil-

son [20] to infer the parameters in SDE models. It is assumed that the diffusion

process {Xt} is observed at time points t0, t1, . . . , tn and the observation vector

is Y = {y0, y1, . . . , yn}. Since the closed form of the transition densities of the

diffusion processes is usually not available, the transition densities can be ap-

proximated by the densities of a numerical scheme such as the widely used Euler-

Maruyama method (5.2). However, the observation time stepsize ∆t = ti+1 − ti

normally is quite large. To obtain more accurate approximation of the transi-

tion densities, a number of latent variables are introduced between every pair of

consecutive observations,

ti = τ0,i < τ1,i < . . . < τM,i = ti+1.

The stepsize of the latent variables δτ = τj+1,i − τj,i is small enough to ensure

the accuracy and stability property of the Euler-Maruyama method. Then the

transition density of the Euler scheme is

PEuler{Xj+1,i|Xj,i,Θ} = N(µEuler, σ
2
Euler), (5.10)

where j = 0, 1, . . . ,M − 1 and

µEuler = Xj,i + f(tj,i, Xj,i,Θ)δτ (5.11)

σEuler = g(tj,i, Xj,i,Θ)
√
δτ . (5.12)

Thus we have an inference problem with unknown parameter Θ using the latent

variables X = {Xj,i} for i = 0, 1, . . . , n, j = 1, . . . ,M − 1, and the observation

data Y .
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5.3.2 Markov Chain Monte Carlo Method

To generate the samples of the unknown parameters Θj , a grid-sampling method

was used by dividing the potential area by a regular grid [20]. Although this is an

effective approach to infer mathematical models with a small number of unknown

parameters, it is difficult to use it for dealing with models with a larger number

of unknown parameters. In this work we use the MCMC method to search the

optimal model parameters. Since the closed-form posterior distribution for a

complex model often cannot be obtained analytically, the MCMC method has

been widely used to achieve the posterior distribution by simulation. There are

a number of efficient MCMC algorithms, including the Metropolis algorithm, the

Metropolis-Hastings (MH) algorithm and the Gibbs sampler method. In this

work we use the MH algorithm to maximize the posterior distribution. The

MH algorithm allows us to avoid the direct simulation from π(θ|y) by making

use of a proposal distribution and computing the acceptance probability for a

candidate sample. There are a number of important issues that are related to

the implementation of the MCMC. For example, the selected initial estimate has

influence on the generated sequence, and in particular, has strong influence on

the initial sequence of simulations. Thus an important technique is the burn-in,

which is designed to reduce the influence of initial iteration on the generated

Markov Chain by discarding the first iteration sequences. Generally we discard

the first half of simulated sequences and keep the remaining half of sequence to

obtain the target distribution. Certainly this technique is convenient but is not

the most efficient one because about a half of computing efforts are discarded.

Although more specific methods have been designed to analyze the simulation

output according to the dependence of simulation on the starting values [21], we

typically go with the simple burn-in approach and accept the increased Monte

Carlo error involved in discarding half of the simulations. To design a strategy



5.3 Parameter Estimation for the Term Structure Models 72

to complete the computation, we normally monitor the convergence of all the

parameters and other quantities of interest separately. Our usual approach is, for

each parameter, to calculate the variance of simulations from each chain (after

the first half of the chain was discarded using the burn-in technique). Assuming

we have J chains from different initial estimates and the length of each chain is

G, let θij be the j-th estimate in the sequence for parameter θ, the variance inside

the chain is

W =
1

J(G− 1)

J∑

j=1

G∑

g=1

(θij − θj)
2

And the variance between different chains is

B =
1

(J − 1)G

J∑

j=1

(
G∑

g=1

θgj −
1

J

J∑

j=1

G∑

g=1

θgj

)2

Based on these values we can calculate the value of R as

R =

√
1

G

(
G− 1 +

B

W

)

The value of R is always greater or equal to 1. When the variance inside the chain

approaches the variance between the chains, the value of R approaches 1. We

can accept that the chain is convergence when R < 1.2 [69]. Another important

technique is thinning by rejecting certain part of the chain. If Θt is the current

candidate of the model parameter and Θ∗ is the newly generated one, let

α = 1 ∧ P (Θ∗|y)

P (Θt|y)
. (5.13)

Generate a sample r ∼ U(0, 1), and set Θt+1 = Θ∗ if r < α. Otherwise set

Θt+1 = Θt.
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5.3.3 A New Parameter Estimation Algorithm

In the proposed Gaussian Modified Bridge Approximation with Importance sam-

pling (GaMBA-I), the computing process is given below

Algorithm 5.1.

Step 1. Generate a sample of the unknown parameters Θ using the MCMC

method or other methods.

Step 2. Sample the solution at the latent points X .

Step 3. Evaluate probability P (Y,X|Θ).

Step 4. Evaluate probability P (X|Y,Θ).

Step 5. Calculate probability

P (Θ|Y ) ∝ P (Y,X|Θ)P (Θ)

P (X|Y,Θ)
.

When the importance sampling technique is used, the above probability is deter-

mined by a number of samples rather than a single sample as indicated above.

Step 6. Accept or reject the parameter sample Θ using the MCMC method

or other methods.

The major step in this Bayesian inference method is the evaluation of the

probabilities of the generated samples for the latent variables. The probability

P (Y,X|Θ) is

P (Y,X|Θ) ∝
n∏

i=1

P (yi|XM−1,i−1,Θ)

n∏

i=1

P (X1,i−1|yi−1,Θ)

n∏

i=1

M−1∏

j=1

P (Xj,i−1|Xj−1,i−1,Θ)

Here we assume that the probability for the initial observation y0 is a constant.

Each probability in the above expression can be approximated by the transition
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density of the Euler method, given by

P (Y,X|Θ) ≈
n∏

i=1

PEuler(yi|XM−1,i−1,Θ)
n∏

i=1

PEuler(X1,i−1|yi−1,Θ)

n∏

i=1

M−1∏

j=1

PEuler(Xj,i−1|Xj−1,i−1,Θ)

where PEuler is the Euler density in Equation (5.10).

For the probability P (X|Y,Θ), we need to factorise it into

P (X|Y,Θ) =
n−1∏

i=0

P (X(i)|yi, yi+1,Θ)

=
n−1∏

i=0

P (X1,i, X2,i, . . . , XM−1,i|yi, yi+1,Θ)

=

n−1∏

i=0

M−1∏

j=1

P (Xj,i|Xj−1,i, XM,i,Θ)

where X0,i = yi and XM,i = yi+1. Using the Modified Brownian Bridge (MBB),

the density of P (Xj|Xj−1, XM ,Θ) can be approximated by

PMBB(Xj,i|Xj−1,i, XM,i,Θ) ≈ NX(µMBB, σ
2
MBB), (5.14)

where

µMBB = Xj−1,i +

(
XM,i −Xj−1,i

τM,i − τj−1,i

)
δτ ,

σMBB = g(Xj−1,i,Θ)

√
M − j

M − j + 1
δτ .

Thus, the solution at the latent points is sampled by using

Xj,i = µMBB + σMBBNj

where Nj is a sample of the standard Gaussian random variable N(0, 1).
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Figure 5.1: Five simulations of the CIR model with α = 0.2, β = 0.08 and
σ = 0.1.

When the importance sampling method is used, a number of samples of the

latent variables are generated for Xk ∼ PMBB(Xk|Y,Θ) as described in Algorithm

1. Then we evaluate

PGaMBA(Θ|Y ) ∝ 1

K

K∑

k=1

PEuler(Y,Xk|Θ) · P (Θ)

PMBB(Xk|Θ, Y )
(5.15)

5.4 Numerical Results

In this section, we use the numerical algorithm based on the Bayesian inference

and MCMC method to estimate the parameters in the CIR model (5.6). Figure

5.1 gives 5 simulations of the CIR model with parameters α = 0.2, β = 0.08 and

σ = 0.1. When the volatility is not large, it shows that the values of short interest

rate maintain positive. We use stepsize h = 0.05 in the numerical simulation to

ensure the accuracy and stability property of simulations.
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The estimated values of the parameters in the equation (5.6) for the mean-

reverting test system and their standard deviations are given in Table 5.1, and

more detailed simulation results of the Bayesian inference method are presented

in Figure 5.2. In this test the size of the importance sampling is K = 50. For

each parameter, we present the time series of the parameter values, the cumu-

lative means and the histogram distribution. Compared with the exact values

(α, β, σ) = (0.2, 0.08, 0.05), the Bayesian inference method gives estimates with

good accuracy. For parameters β and σ, the histogram distributions are con-

sistent with the cumulative means of the estimates. However, the histogram of

parameter α is not symmetrical to the cumulative means.

Table 5.1: Estimated parameters and their standard errors

Parameters α(0.2) β(0.08) σ(0.05)

Estimated Values 0.1803 0.0792 0.0442

Standard Deviations 0.0109 0.0024 0.0013

In this study we tested the influence of the sample size in the importance

sampling on the accuracy of the estimates. The sampling size was chosen as

K = 1, 10, 25, 50, 100, 200, 500. Numerical results in Figure 5.3 show that the

sampling size is important to improve the accuracy of the estimates but a larger

sampling size does not necessary lead to much better accuracy, though numer-

ical results in Figure 5.3 suggest that increasing sampling size can improve the

accuracy slightly. Thus a reasonable size of the importance sampling is sufficient

to generate estimates with adequate accuracy. This may be the reason that the

sampling size is not very large in the previous studies [20].

We have also tested the influence of different samples of latent variables on

the variation of estimates. In this test the simulated observations Y are kept

unchanged. Figure 5.4 shows that the difference of sampling has certain influence

on the variations of the estimates. The estimated model parameters vary in



5.4 Numerical Results 77

0 5 10

x 10
4

0.1

0.2

0.3

0.4

v
a

lu
e

 o
f 
α

0 5 10

x 10
4

0.2

0.25

0.3

0.35

c
u

m
 m

e
a

n

0.1 0.2 0.3 0.4
0

500

1000

value of α

D
is

tr
ib

u
ti
o

n

0 5 10

x 10
6

0

0.05

0.1

0.15

0.2

v
a

lu
e

 o
f 
β

0 5 10

x 10
6

0.05

0.1

0.15

0.2

0.25

c
u

m
 m

e
a

n

0 0.1 0.2
0

1000

2000

3000

4000

value of β

D
is

tr
ib

u
ti
o

n

0 5 10

x 10
6

0.02

0.04

0.06

0.08

0.1

Steps

v
a

lu
e

 o
f 
σ

0 5 10

x 10
6

0.04

0.06

0.08

0.1

Steps

c
u

m
 m

e
a

n

0 0.05 0.1
0

1000

2000

3000

value of σ

D
is

tr
ib

u
ti
o

n

Figure 5.2: Simulation outputs for parameters α (the first row), β (the second
row), and σ (the bottom row). Left column: the time series of the parameter
values; middle column: the cumulative means of each parameter; right column:
histogram distribution.

different tests. However, the variations in both the averaged parameter values and

standard deviation are not large, which is consistent with the numerical results

using the particle swarm optimization method to estimate model parameters.

However, the variations of estimates are smaller than those obtained by using the

genetic algorithm [138, 142].
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Figure 5.3: Estimated model parameters using different values of the importance
sampling sizes. Left column: the estimated model parameters; right column:
the standard deviation (std) of the estimates. The importance sampling size is
K = 1, 10, 25, 50, 100, 200, 500 when index = 1 ∼ 7.

5.5 Concluding Remarks

This work presents an effective algorithm for the estimation of parameters in s-

tochastic differential equation models. The proposed approach is based on the

Bayesian inference method and the Markov Chain Monte Carlo method. Com-

pared with the grid method, the Markov Chain Monte Carlo based method can

be used to infer stochastic models with a large number of unknown parameter-

s. This method has been applied to an important stochastic model of the term

structure of interest rate, which is a fundamental issue in the research area of

financial mathematics. In addition, the importance sampling technique is used
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Figure 5.4: Variations of the estimated parameters when the sampling of the
latent variables is different. Left column: the estimated model parameters; right
column: the standard deviation (std) of the estimates.

to increase the robustness of estimates. We have also examined the influence of

different samples of the latent variables on the variation of estimates. Numerical

results suggest that the method used in this work is robust to such variation.



CHAPTER 6

Parameter Calibration of Term Structure

Models: an Implicit Numerical Method

with Particle Swarm Optimization

6.1 General Overview

Recently stochastic differential equations (SDEs) have been employed as a pow-

erful tool to model the complex dynamics of a wide range of systems in biology,

engineering, economics, finance and physical sciences. Compared with determin-

istic models, the key feature of a SDE model is its ability to generate a large num-

ber of different trajectories. However, this feature raises substantial challenges

to the inference of unknown parameters in the SDE model, because experimental

data actually represent only one simulation of the SDE models. To tackle the

challenge, a number of methods have been proposed to infer reliable estimates.

But these methods dominantly use explicit methods for solving SDEs, and thus

are not appropriate to deal with experimental data with large variations. In this

work, we develop a new method by using implicit methods to solve SDEs, which

is aimed at generating stable simulations for stiff SDE models.

This chapter aims to address two issues: namely, establishing high order

80
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implicit simulation methods and optimization methods. We will use the semi-

implicit Milstein method to improve the accuracy and stability property of nu-

merical simulations. In addition, we will test the efficiency of the particle swarm

optimization algorithm. The remaining part of this chapter is organized as fol-

lows. Section 6.2 reviews the method of moment by using the stochastic models

presented in chapter 5 for the parameter estimation. Section 6.3 presents the

algorithms for generating parameter estimates, and the particle swarm optimiza-

tion algorithm for searching the unknown parameters, and then proposes a new

simulation method based on the particle swarm optimization. Section 6.4 reports

the accuracy of the numerical results for the parameter estimates, and then car-

ry out a validity test for the proposed algorithm. In section 6.5, we apply our

proposed algorithm to the study of the financial case of US treasury bill data.

6.2 Method of Moment

A number of researchers concluded that the explicit Milstein method (5.4) can

increase the estimation accuracy over the Euler method. In the following work we

compare the accuracy of the Milstein method (5.4) and the semi-implicit Milstein

method (5.5) for inferring the parameters of the CIR model. The application of

the Milstein method to this model is straightforward, given by

Xn+1 = Xn + α(β −Xn)h + σ
√

Xn∆Wn +
σ2

4
(∆W 2

n − h) (6.1)

Due to the linear feature of the drift term in the interest rate models, an

explicit formula of the semi-implicit method can be obtained as follows,

Xn+1 =
1

1 + αh
(Xn + αβh + σ

√
Xn∆Wn +

σ2

4
(∆W 2

n − h)) (6.2)

In Figure 6.1 we present 5 simulations of the CIR model with parameters α = 0.2,
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Figure 6.1: Five simulations of the CIR model.

β = 0.08 and σ = 0.2 . When the volatility is not large, Figure 6.1 shows that

the values of short rate maintain positive.

In the following, we shall estimate the parameter θ in the one-dimensional

SDE

dX = a(X, θ)dt + b(X, θ)dW (t). (6.3)

Now we sample X and get (N + 1) observations X0, X1, . . . , Xn at the discrete

time points t0, t1, . . . , tN , and thus the maximum-likelihood (ML) estimate of θ

is generated by maximizing the likelihood function

L(θ) = f0(X0|θ)

N−1∏

k=0

f(Xk+1|Xk; θ). (6.4)

Equivalently, we can minimize the negative log-likelihood function to get the



6.2 Method of Moment 83

estimate of θ

− logL(θ) = − log[f0(X0|θ)] −
N−1∑

k=0

log[f(Xk+1|Xk; θ)]. (6.5)

where f0(X0|θ) is the density of the initial state X0 and f(Xk+1|Xk; θ) is the

value of the transitional probability density function (PDF) at (tk+1, Xk+1) for the

process starting at (tk, Xk) and evolving to (tk+1, Xk+1). Note that the Markovian

property of Equation (6.3) ensures that the transitional PDF satisfies the Fokker-

Planck equation. Unfortunately, in most cases the closed-form solution of the

Fokker-Planck equation is not available and thus the exact maximum likelihood

estimation is rare.

However, we can obtain the approximated transitional PDF by using the

numerical solution of the original SDE (6.3). For instance, we use the Euler-

Maruyama method to discretize (6.3) to yield

Xk+1 = Xk + a(Xk, θ)h + b(Xk, θ)∆Wn, (6.6)

where h is the stepsize of time discretization. Therefore the transitional PDF of

X can be approximated by the normal distributed PDF with mean Xk+a(Xk, θ)h

and variance b2(Xk, θ)h such as

1

b(Xk, θ)
√

2πh
exp

[
−(Xk+1 −Xk − a(Xk, θ)h)2

2b2(Xk, θ)h

]
. (6.7)

This is the simplest version of discrete maximum likelihood, namely the method

of moment, when replacing the exact transitional PDF f(Xk+1|Xk; θ) in (6.5)

with the approximated PDF above.

In this work, we focus on the CIR process (5.6). It has been established

that the optimal values α and β of the parameters α and β satisfy the equations



6.3 Simulated Maximum Likelihood Method 84

below [78]

α

(
β

N−1∑

k=0

h−
N−1∑

k=0

Xkh

)
= XN −X0, (6.8)

α

(
β

N−1∑

k=0

h

Xk
−

N−1∑

k=0

h

)
=

N−1∑

k=0

Xk+1 −Xk

Xk
, (6.9)

and the optimal value σ of σ is

σ2 =
1

N

N−1∑

k=0

(Xk+1 −Xk − α(β −Xk)h)2

Xkh
. (6.10)

Although the Milstein variant has been proposed to increase the accuracy

of the discrete maximum likelihood method [83, 96], it is difficult to derive an

analytical expression of the parameter estimate from the transitional PDF. In

that case the simulated maximum likelihood method is needed to estimate the

transitional PDF from stochastic simulations.

6.3 Simulated Maximum Likelihood Method

6.3.1 Simulated Maximum Likelihood Function

We combine the simulated Milstein solution method and the particle swarm opti-

mization method to construct an efficient algorithm for the parameter estimation.

Parameter estimation in deterministic models can be achieved by the best fit of

numerical simulations to experimental observations. However, this method is not

feasible for SDE models because we can generate unlimited number of trajecto-

ries from a single SDE model. Here we use the simulated maximum likelihood

(SML) method [11, 78] based on stochastic models. Given a sequence of N + 1

observations {X0,X1, . . . ,XN} at time points {t0, t1, . . . , tN}, we define the joint
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transitional density or likelihood function of these observations as

f0[(t0,X0)|θ]

N∏

i=1

f [(ti,Xi)|(ti−1,Xi−1), . . . , (t0,X0); θ], (6.11)

where θ = (θ1, . . . , θs) are the parameters in model (6.3) to be determined,

f0[(t0,X0)|θ] is the density of the initial state, and

f [(ti,Xi)|(ti−1,Xi−1), . . . , (t0,X0); θ]

is the transitional density starting from (ti−1,Xi−1) and evolving to (ti,Xi). When

the financial system is described by the stochastic model (6.3), the stochastic

process X is Markov [41], and the transitional density can be simplified as

f [(ti,Xi)|(ti−1,Xi−1), . . . , (t0, x0); θ] = f [(ti,Xi)|(ti−1,Xi−1); θ]. (6.12)

An equivalent form of the maximum of the joint transitional density (6.11) is the

minimum of the negative log-likelihood function (6.5) when time t is not explicitly

presented in the formula.

Because the closed-form expression of the transitional density (6.12) is usually

unavailable, we use a nonparametric kernel density function below

fM [(t,X)|(ti−1,Xi−1); θ] =
1

MB

M∑

j=1

K

(
X−Yj

B

)
(6.13)

in substitution for the transitional density. Here Y1, . . . ,YM are the M real-

izations of Xi at ti given the initial condition (ti−1,Xi−1), and B is the kernel

bandwidth and K(·) is a non-negative kernel function enclosing unit probability

mass. In the case of SDE models with a single variable, the normal kernel is
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widely used and the bandwidth can be chosen as

B = 0.9σM−1/5,

wherein σ is the sample standard deviation of the M realizations [78]. For those

multivariate stochastic models, we can either assume the independence of random

variables or use the theory of multivariate density estimation [42].

6.3.2 Particle Swarm Optimization Algorithm

Another issue after setting up the object function is to choose a fast method

to search for the optimal parameters. In the past decade, the particle swarm

optimization (PSO) algorithm has been successfully applied in many research

and application areas. It has been concluded, in many research papers, that PSO

and the GA are able to arrive at solutions with the same quality. However, PSO

offers a less expensive approach and there are fewer parameters to adjust than the

GA [98, 124]. Numerical tests suggest that the PSO offers more computational

saving for unconstrained nonlinear problems with continuous design variables

whereas the computational saving is lower for constrained and mixed integer

nonlinear problems [98].

The PSO algorithm is a population-based stochastic optimization technique

developed by Dr.Eberhart and Dr.Kennedy in 1995 [115]. Unlike the genetic al-

gorithm, the PSO algorithm, which is inspired by the social behaviour of bird

flocking or fish schooling, has no evolution operators such as crossover and mu-

tation. In PSO, the potential solutions, called particles, fly through the problem

space by following the current optimum particles. In this work, we use a PSO

MATLAB toolbox downloaded from the MATLAB File Exchange Central [94]

to estimate parameters in SDE models. This carefully-designed software system

can be implemented in a wide range of optimization problems. Now we develop a
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SML method to estimate the optimal value of unknown parameter θ in the SDEs

model (6.3) by minimizing the log-likelihood function (6.5) over θ as follows.

6.3.3 A New Simulation Algorithm Based on Particle Swar-

m Optimization

Algorithm 6.1.

Step 1. Input the system states {X0,X1, . . . ,XN} and time points {t0, t1, . . . , tN}.

Step 2. Take Xi−1 at time ti−1 (i = 1, . . . , N) as the starting value and use the

implicit Milstein method to generate M realizations Y1, . . . ,YM of X at ti. A

random seed is specified for generating samples of the Gaussian random variables.

Step 3. Use the nonparametric density (6.13) with the normal kernel or mul-

tivariate density functions to evaluate the transitional density (6.12).

Step 4. Steps 2 and 3 are repeated for each time point t0, . . . , tN−1, and results

are used to construct the log-likelihood function (6.5).

Step 5. Search the optimal kinetic rate by the particle swarm optimisation

algorithm based on the minimum of L(θ) in (6.5).

Note that the same increments of the Wiener process should be used in nu-

merical simulations with different values of parameter θ. In order to reduce the

variation of the estimated parameters, the same random seeds (namely the same

random samples) in Step 2 should be used in different candidate estimates of

parameters.
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6.4 Estimation of Parameters in the Interest Rate

Models

6.4.1 Estimation Results

Using the methods discussed in the previous sections, now we estimate param-

eters in the CIR model. Given a set of parameters (namely exact parameters),

we use the semi-implicit Milstein method with a very small stepsize (h = 0.001)

to generate 20 trajectories. For each generated trajectory, we used the method

of moment, the SML method with the explicit Milstein method, and the SML

method with the semi-implicit Milstein method to estimate the model parame-

ters. For each of these three types of methods, we used the PSO algorithm (the

population size of 40 and 200 generations) to obtain 20 estimated sets of model

parameters. Then we evaluated the mean and standard deviation (STD) of the

errors of the estimates to the exact parameters.

Table 6.1: Estimation results of the parameters in the CIR model

Moment method Milstein Semi-implicit

Mean Bias STD Mean Bias STD Mean Bias STD

Exact parameter (α = 0.2, β = 0.08, σ = 0.1, ∆ = 5)

α 0.0501 0.1499 0.0103 0.2052 0.0052 6.3E-4 0.2091 0.0091 1.0E-3

β -0.0118 0.0918 0.0193 0.0814 0.0011 1.1E-4 0.0787 0.0013 1.6E-6

σ 0.1067 0.0933 0.0148 0.0955 0.0045 3.3E-5 0.0933 0.0067 3.6E-5

Exact parameter (α = 0.2, β = 0.08, σ = 0.2, ∆ = 5)

α 0.1013 0.0987 0.0253 0.2184 0.0184 0.0037 0.2116 0.0116 0.0028

β 0.0722 0.0078 0.0271 0.0812 0.0012 0.0005 0.0808 0.0008 0.0005

σ 0.3650 0.1650 0.2647 0.1835 0.0165 0.0006 0.1850 0.0150 0.0006

Exact parameter (α = 0.2, β = 0.08, σ = 0.3, ∆ = 5)

α 0.0907 0.1093 0.0490 0.3269 0.1269 0.0158 0.3023 0.1023 0.0096

β 0.0746 0.0054 0.0230 0.0496 0.0304 0.0005 0.0534 0.0266 0.0006

σ 0.3319 0.1319 0.2128 0.2434 0.0566 0.0015 0.2375 0.0625 0.0007

Numerical results presented in Table 6.1 show that the method of moment

cannot generate reliable estimates of the model parameters. There is significant
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difference between the estimates of the same parameter in different implementa-

tions. In some cases the relative error is over 100%. Moreover, we even obtained

negative coefficients, which is meaningless in finance, even though the strength

of noise is small. However, our further tests suggested that the accuracy of the

moment method relys upon the length of observation points ∆ and the number of

observation time points. When the moderate length and a relatively large num-

ber of observation points are chosen, the moment method could provide estimates

with acceptable accuracy.

In order to examine how the noise affects the estimation accuracy, three values

of the volatility control parameter σ were tested in each SDE model. As we can see

from Table 6.1, the SML method with either the explicit Milstein method or the

semi-implicit Milstein method provides reliable estimates of the parameters with

small estimation errors and standard deviations when the fluctuations are small

in the SDE model (σ = 0.1). Actually the SML method with the explicit Milstein

method gave more accurate estimates. One possible explanation is that when it

comes to the non-stiff SDEs, the explicit Milstein method can give better accuracy

of simulations than the semi-implicit Milstein method. When the fluctuations in

the SDE models are mild (σ = 0.2), the figures show that the semi-implicit

Milstein method provides better parameter estimates in comparison with the

explicit Milstein method. In this case, the better stability property of the semi-

implicit method is more important than the slightly better accuracy property of

the explicit method. When the noise in the interest rate models is large (σ = 0.3),

the estimated parameters with acceptable accuracy still can be obtained by using

the semi-implicit Milstein method. But, if the noise components in the SDE

models are very large, then even the semi-implicit Milstein method could not

produce reliable estimated model parameters. In this case, we may try a smaller

stepsize in simulating the SDE models or use the fully implicit Milstein method

[139] to guarantee the stability property of the numerical simulations.
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Figure 6.2: Ten sets of parameter estimates based on different random seeds for
generating simulations of the CIR SDE model (left column) and different random
seeds for generating the initial parameter values in the PSO algorithm (right
column).

6.4.2 Test of the Estimation Algorithm

An important issue in the stochastic search methods is the robustness of esti-

mation results. There are two possible resources of estimation variations in the

proposed algorithm in this work: the variation of estimates due to different ran-

dom seeds in Step 2 for simulating the SDE model; and the variation due to the

different implementations of the PSO algorithm using different random samples.

The first variation is partially related to the convergence property of the

Monte-Carlo simulation. The solution to this problem is to increase the num-

ber of stochastic simulations. We fixed one trajectory of the interest rate and
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used 10 sets of random seeds in the Milstein methods to generate simulations

of the stochastic model. Figure 6.2 (left column) shows that the estimates are

relatively stable when the number of simulation is more than 5000. Further tests

suggest that when the simulation number is N = 10000, we obtain very stable

estimates. This result is consistent with our previous computing experience for

estimating rate constants in discrete chemical reaction systems [142], which was

implemented in a genetic algorithm (GA).

Our previous experiments suggested that the values of the initial parameters

have significant influence on the final estimate when the genetic algorithm was

applied as the stochastic searching method [138, 142]. The second variation is

mainly from the influence of different initial model parameters in the PSO algo-

rithm on the final estimated results. In this chapter, we use different random seeds

in the PSO algorithm to generate initial model parameters for the CIR stochastic

model. The estimated parameters are presented in the right column of Figure

6.2. Numerical results suggest that the PSO can produce reliable estimates near-

ly independent of the initial model parameters, which is a significant advantage

of the PSO algorithm over the genetic algorithm in the parameter calibration of

complex mathematical models. On the other hand, we may lose the opportunity

to select the optimal estimate from a number of candidate estimates based on

other criteria such as the robustness property of the mathematical model.

6.5 Application to US Treasury Bill Data

The classic one factor model of the term structure of the instantaneous interest

rate r is given by

dr = α(θ − r)dt + σrγdw (6.14)

where dw is the standard Wiener process, α the speed of adjustment parame-

ter, θ the mean interest rate, σ volatility control and γ the levels effect. These
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parameters need to be estimated in the following work. Previously we discussed

the CIR model, which is a special case of model (6.14) (γ = 0.5). Lots of recent

empirical evidence suggests that γ should be estimated rather than imposed.

Estimating the parameters of the stochastic differential equation (SDE) (6.14)

is a worthwhile and challenging task. Here we use the US 3-month Treasury Bill

rate to give a reasonable approximation to the unobservable instantaneous short

interest rate. The moment method is applied to this instance as a benchmark.

The discrete equations of the one factor model for the Milstein method and semi-

Milstein method of SML estimation are as follows:

rn+1 = rn + α(θ − rn)h + σrγn∆Wn +
1

2
σ2γr2γ−1

n ((∆Wn)2 − h) (6.15)

and

rn+1 =
1

1 + αh
(rn + αθh + σrγn∆Wn +

1

2
σ2γr2γ−1

n ((∆Wn)2 − h)). (6.16)

Table 6.2: Estimated parameter and standard error (in bracket) of the classic
one-factor model (6.18)

Method Moment method Milstein Semi-implicit
Parameters ∆ = 0.01 M = 1000,∆ = 0.01 M = 1000,∆ = 0.01

α 0.0112(0.0094) 0.0107(0.0092) 0.0105(0.0056)

θ 0.0401(0.0115) 0.0399(0.0106) 0.0405(0.0058)

σ 0.0155(0.0060) 0.0143(0.0011) 0.0161(0.0027)

γ 0.6646(0.0923) 0.6680(0.0347) 0.6683(0.0508)

We use monthly US Treasury bill data from January 1985 to December 2007

with 276 observations in total to estimate the model parameters in the one-factor

model (6.18). Figure 6.3 gives the evolution of monthly interest rate of US 3

month Treasury Bills. The estimated parameter values derived from the moment

method, the explicit Milstein method and the semi-implicit Milstein method are

shown in Table 6.2. In addition, the standard errors of estimates from the three



6.5 Application to US Treasury Bill Data 93

methods are also listed in Table 6.2 in brackets. Most of the estimates are broadly

in agreement. Due to the large amount of available data, the Moment method

still obtained estimates with good accuracy. However, the standard errors of the

two Milstein methods are smaller than that of the moment method. We also

tested the two Milstein methods using smaller stepsize in numerical simulation

and more simulating numbers M in the inference methods. The improvement in

reducing standard errors is not substantial.
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Figure 6.3: Interest rate series of the US 3-month Treasury Bills

Figure 6.3 gives the evolution of monthly interest rate of US 3 month Treasury

Bills. As we can see from this picture, the estimates of the mean interest rate θ in

Table 6.2 match the interest rate data very well. In particular, the estimate of the

semi-implicit Milstein method is larger and also better than those of the other two

methods. An interesting observation is that the level effect parameter γ obtained

from these three methods are quite consistent to each other, compared with the

other parameters. Moreover, the estimated standard error of γ is smaller than
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the difference between the estimated values of γ and 0.5, which suggests that

its value may be different from 0.5 in the CIR model. Therefore, the classic

one-factor model (6.18) provides a better description than the CIR model and

the value of parameter γ should be estimated from financial data rather than

imposed in the interest term structure models.
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Figure 6.4: Residual of simulated and real data for 2000 simulations

To obtain some indications of the goodness of fit of the interest rate term

structure model with levels effect, fitted observations were generated in the fol-

lowing manner. Taking the parameter estimates for the SML with semi-explicit

Milstein method based on ∆ = 0.01, we simulated 5000 times between observa-

tions and calculated the mean of these trials. The deviations from the actual

data were showed in Figure 6.4, where we can tell that most of the deviations are

in a statistically acceptable range.
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6.6 Concluding Remarks

In this work, we proposed an effective algorithm for parameter estimation of the

stochastic differential equation models. This approach is based on the implic-

it numerical scheme in the Monte Carlo simulation integrated with the particle

swarm optimization method. We conclude that the simulated maximum likeli-

hood with the semi-implicit Milstein method can provide parameter estimates

with both higher convergence order and better stability property than the widely

used Euler-Maruyama method. Experimental results show that when the SDE

model is moderate stiff, estimates produced by the semi-implicit Milstein method

have better accuracy than those obtained by the explicit Milstein method. Fur-

thermore, the PSO algorithm can produce reliable estimates which are nearly

independent of the implementation details compared with the genetic algorithm.

In the application to the stochastic model for the term structure of interest rate,

we use the actual economic data to estimate the parameters. The model with the

estimated parameters fits the real data very well with small errors.



CHAPTER 7

Summary and Suggestions for Future

Research Directions

7.1 Summary of the Main Contributions

In this thesis, we consider the solution of various stochastic differential equation

models for applications in finance. Various new algorithms and computation-

al methods have been developed to solve these models and identify the model

parameters. This involves establishment of a variety of novel techniques. The

results obtained can be summarized in three aspects as follows.

(1) Development of a Taylor numerical method for jump-diffusion stochastic

delay differential equations

We developed a robust Taylor approximation scheme for weak solutions of

general stochastic delay differential equations with jumps. A convergence theorem

for the scheme was constructed and proved.

Our numerical analysis shows that the high order weak approximation is ef-

ficient for jump-diffusion stochastic delay differential equation models by using

Monte Carlo simulation.

(2) Development of a fractional stochastic differential equation model for ap-

plication in option pricing

96
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A fractional stochastic differential equation model was established for ad-

dressing the trend memory effect in financial pricing. Based on the model, its

stochastic Ito formula and the European option pricing formula have been de-

rived. The existence of the trend memory (i.e., the mean value function) in the

option pricing formula when the Hurst index is between 0.5 and 1, has been

established and proved.

We have conducted a comparison analysis among our proposed model, the

classic Black-Scholes model, and the stochastic model with fractional Browni-

an motion. Numerical results suggest that our model leads to more accurate

estimates and lower standard deviation in the empirical study.

(3) Development of computational algorithms for identifying parameters in

stochastic differential equation models

We have developed a new method for estimating parameters in the mean-

reverting stochastic systems, more specifically, We have established an effective

algorithm for the estimation of parameters in SDE models based on the use of the

Bayesian inference approach and the MCMC method. The importance sampling

technique was used to increase the robustness of estimates. Numerical results

suggested that the proposed method is robust to the variation of samples of the

latent variables.

A novel parameter identification method has been proposed by using implicit

simulation method and particle swarm optimization searching approach as de-

tailed below

(a) A new method is established by using implicit methods to solve SDEs,

which is aimed at generating stable simulations for stiff stochastic differential

equation models. The particle swarm optimization method is used as an efficient

searching method to explore the optimal estimate in the complex parameter space.

(b) Using the interest rate term structure model as the test system, numer-

ical results showed that the proposed new method is an effective approach for
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generating reliable estimates of unknown parameters in SDE models.

(c) By applying the proposed algorithm to the stochastic model of term struc-

ture of interest rate, we obtained the estimated parameters by using the actual

economic data. The case study indicates that the model with the estimated

parameters fits the real data very well with small errors.

7.2 Future Research Directions

In this thesis, our main work is in the development of computational algorithms

for solving stochastic differential equations and fractional stochastic differential

equations, and also in the development of numerical methods for estimating pa-

rameters in the stochastic models. It is observed that these algorithms are com-

putationally very effective for solving all the problems under consideration. To

make significant advancement, new and more efficient computational algorithms

could be derived for solving existing stochastic problems and new unconventional

problems arising in the study of real world practical problems. Further possible

improvements and advancements may be made in the following directions:

(1) There is much scope for further work in the context of weak solution of

jump-diffusion SDDEs. For example, it is clearly of great importance to extend

the weak convergence theory to the case where coefficients in the equations are

not globally Lipschitz, and to develop and analyse new methods that maintain

good properties of convergence and stability.

(2) In this work, we develop fractional stochastic differential equation for

addressing memory effects in the financial market. An interesting future work is

to improve our model by connecting fractional ordinary differential equation with

fractional Brownian motion, which can describe both the trend memory and the

noise memory.

(3) We introduced the Gaussian Modified Bridge Approximation into the
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Markov Chain Monte Carlo simulation and examine the accuracy and robust-

ness of this approach. It is worth to note that the performance of the MCMC is

related to a number of important factors, such as convergence criteria, burn-in,

and thinning to reduce autocorrelation, and thus further efforts are needed to

discuss these issues. In addition, it is still a challenging problem for estimating

parameters in stiff stochastic models. Alternatively we may consider the implicit

methods or high order methods rather than the explicit Euler method. Thus

more effective calibration methods should be designed for estimating parameters

in stiff SDEs.

(4) It is possible that the current approaches for estimating model parameters

may fail to generate reliable estimates when the experimental observations have

large variations and the length between the consecutive observations is large.

Thus more effective calibration methods should be designed for estimating pa-

rameters in stiff SDEs.

(5) Efficiency is another major issue of the calibration methods for stochastic

models. Since a large number of trajectories are needed to calculate the tran-

sitional probability distribution function, any improvement over the numerical

efficiency will significantly reduce the total computational time. The variable-

stepsize simulation methods can be used in stochastic simulations. In addition,

the optimization methods for searching the optimal estimates from the space with

complex error landscape are particularly important in the calibration of stochastic

models.
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