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Abstract

This thesis is mainly concerned with the estimation of parameters in autore-
gressive models with censored data. For convenience, attention is restricted
to the first-order stationary autoregressive (AR(1)) model in which the re-
sponse random variables are subject to right-censoring. In their present form,
currently available methods of estimation in regression analysis with censored
autocorrelated data, which includes the MLE, are applicable only if the errors
of the AR component of the model are Gaussian. Use of these methods in
AR processes with non-Gaussian errors requires, essentially, rederivations of
the estimators. Hence, in this thesis, we propose new estimators which are
robust in the sense that they can be applied with minor or no modifications
to AR models with non-Gaussian. We propose three estimators, two of which ..
the form of the distribution of the errors needs to be specified. The third
estimator is a distribution-free estimator. As the reference to this estimator
suggests, it is free from distributional assumptions in the sense that the error
distribution is calculated from the observed data. Hence, it can be used in a

wide variety of applications.

In the first part of the thesis, we present a summary of the various currently
available estimators for the linear regression model with censored independent
and identically distributed (i.i.d.) data. In our review of these estimators, we
note that the linear regression model with censored i.i.d. data has been stud-
ied quite extensively. Yet, use of autoregressive models with censored data has
received very little attention. Hence, the remainder of the thesis focuses on the
estimation ‘of parameters for censored autocorrelated data. First, as part of
the study, we review currently available estimators in regression with censored
autocorrelated data. Then we present descriptions of the new estimators for
censored autocorrelated data. With the view that extensions to the AR(p),

model, p > 1, and to left-censored data can be easily achieved, all the esti-
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mators, both currently available and new, are discussed in the context of the
AR(1) model. Next, we establish some asymptotic results for the estimators
in which specification of the form of the error distribution is necessary. This
is followed by a simulation study based on Monte Carlo experiments in which
we evaluate and compare the performances of the new and currently available
estimators among themselves and with the least-squares estimator for the un-
censored case. The performances of the asymptotic variance estimators of the

parameter estimators are also evaluated.

In summary, we establish that for each of the two new estimators for which the
distribution of the errors is assumed known, under suitable conditions on the
moments of the error distribution function, if the estimator is consistent, then-
it is also asymptotically normally distributed. For one of these estimators, if
the errors are Gaussian and alternate observations are censored, then the esti- -
mator is consistent. Hence, for this special case, the estimator is consistent and
asymptotically normal. The simulation results suggest that this estimator is
comparable with the distribution-free estimator and a currently available pseu-
dolikelihood {PL) estimator. All three estimators perform worse than the least
squares estimator for the uncensored case. The MLE and another currently
available PL estimator perform comparably not only with the least squares
estimator for the uncensored case but also with estimators from the above-
mentioned group of three estimators, which includes the distribution-free esti-
mator. The other new estimator for which the form of the error distribution is
assumed known compares favourably with the least-squares estimator for the
uncensored case and better than the rest of the estimators when the true value
of the autoregression parameter is 0.2. When the true value of the parameter
is 0.5, this estimator performs comparably with the rest of the estimators and
worse when the true value of the parameter is 0.8. The simulation results of
the asymptotic variance estimators suggest that for each estimator and for
a fixed value of the true autoregression parameter, if the error distribution

is fixed and the censoring rate is constant, the asymptotic formulas lead to
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values which are asymptotically insensitive to the censoring pattern. Also,
the estimated asymptotic variances decrease as the sample size increases and
their behaviour, with respect to changes in the true value of autoregression
parameter, is consistent with the behaviour of the asymptotic variance of the

least-squares estimator for the uncensored case.

Some suggestions for possible extensions conclude the thesis.
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Chapter 1

Preliminaries

1.1 Introduction

Censoring arises in many applications in the physical, medical and environ-
mental sciences and in business and economics. Reference for examples Of.
applications in engineering and medical studies can be made to Miller (1981).
Following is an example of an application in engineering. Suppose we put to
test at time ¢ = 0 a batch of light bulbs or transistors and record their time
to failure. Some light bulbs may take a long time to burn out, and it may not
be feasible to wait until all of them have failed before we end the experiment.
In such cases, we may stop the experiment at a pre-specified time (say, t.).
The lifetimes of all the units that have not failed by the time t. are censored.
This form of censoring is known as type I censoring. Sometimes we may not
know a good value of t.. Therefore, we may decide on a pre-specified fraction
of the units that must burn out before we end the experiment. This is type II

censoring.

Random censoring often occurs in medical applications invelving animal stud-
ies or clinical trials. In clinical trials, patients may enter the study at different
times and receive one of several available therapies. We may be interested
in their lifetimes, but censoring occurs through loss to follow up, drop out or
termination of study. Loss to follow up occurs if a patient decides to move
elsewhere and we never see him or her again. Drop out can occur if the ther-
apy has bad side effects making it necessary to discontinue the treatment.

Alternatively, the patient may still be in contact, but refuses to continue the



treatment. If it seems sensible to assume independence among the lifetimes of
patients, these lifetimes may be modelled with independent errors, as it is the
case in linear regression with censored independent and identically distributed

(ii.d.) data.

Examples of censoring in environmental studies and business and economics
typically involve recording data sequentially in time. In such cases, often the
sensitivity of the measurement may be limited and an exact value can be
recorded only if it falls within specified range. This gives rise to time series
censored on the right if the range is defined by an upper limit of detection,
left censored if the range is defined by a lower limit and double-censoring if
the range is defined by both upper and lower limits of detection. Examples of
censored time series may be found in Wecker (1974, 1978}, Robinson (1980)
and Zeger and Brookmeyer (1986). Wecker (1974, 1978) considered forecasting
and estimation for sales of a product which are subject to stockouts, and thus .
differ from true demand. The following are examples in Robinson (1980). Mea-
surement of rainfall may be limited by the size of the rain gauge, and subject
to evaporation. Boiling water provides a safety feature in nuclear reactors by
limiting the power of the reactor. Signals may be quantized or limited for ease
of storage or processing. Many econometric models have mixed probability
distributions, with both a discrete and continuous component. These may be
conveniently modelled in terms of a continuous variable that is censored when
it crosses certain thresholds, even if there is no physical meaning attached to
this random variable. The examples in Zeger and Brookmeyer (1986) illustrate
how censored time series may arise in environmental and medical studies: there
may be an upper or lower limit of detection when one is monitoring levels of
an airborne contaminant or recording daily bioassays of hormone levels in a

patient. We may fit autoregressive models to account for the time dependence.

Having referred the reader to some examples of how censoring may arise, we
now turn to the motivation for the current investigation and put our objec-
tives in perspective. This thesis is mainly concerned with the estimation of

parameters in stationary first-order autoregressive (AR(1)) models with pos-



sibly censored response variables, about which little at present is known. In
the context of regression with censored autocorrelated data, we are only able
to refer the reader to Robinson (1982), Dagenais (1982,1986,1989), Bussiere
(1983) and Zeger and Brookmeyer (1986). In their present form, currently
available estimators for these regression models, which includes the maximum
likelihood estimator (MLE), are based on the assumption that the errors of the
autoregressive component are i.i.d. Gaussian random variables (rv’s). How-
ever, the Gaussian assumption may not be satisfied in practical applications.
If, indeed, this is the case, these estimators need to be suitably modified for
the specified (non-Gaussian) error distribution. In some cases, the modifica-
tion is essentially a rederivation of the estimator. This means that extensive
preparatory calculations may have to be carried out before one can apply the
currently available estimators to non-Gaussian error distributions. Further,
the MLE can be computationally intensive if high dimensional integrals must
be evaluated to ‘correct’ for the bias due to the censored values, as noted by
Zeger and Brookmeyer (1986). These authors also noted that problems of
non-convergence have been experienced with the Newton-Raphson procedure
in the case of the MLE for censored i.i.d. data (see, e.g. Sampford and Taylor,
1959 and Lawless, 1982). In computing the MLE in regression with censored
autocorrelated data, Zeger and Brookmeyer (1986) avoided problems of non-
convergence by using an EM algorithm or a quasi-Newton procedure which
chooses between a Newton-Raphson step and a steepest-descent step. This
procedure was developed by Dennis and Mei (1979) and is available with the
‘S’ statistical software. Zeger and Brookmeyer (1986) proposed a pseudolikeli-
hood (PL) estimator to avoid the computational difficulties experienced with
the MLE. Dagenais (1986) proposed another estimator. However, consistent
estimators of the asymptotic variances of these PL estimators are difficult to
obtain. This is because in each case, the contributions of the score function
are not independent and the mean of each contribution is not zero. Hence,
the sum of squares of these contributions is not an unbiased estimator of the

variance of the score function.

In view of the above-mentioned limitations of the currently available estima-



tors, we are prompted to propose new estimators for stationary a.utoregr.essive
models with censored data. We derive these estimators in the context of the
AR(1) model. The reason for this is that the autoregressive component of the
regression model with censored autocorrelated errors is the only distinguishing
feature between this model and the linear regression model with censored i.i.d.
data. Therefore, any results obtained for the autoregressive component can
be easily incorporated into the former model, which has the regression com-
ponent as well. Also, the results can be easily extended to the AR(p) model,
p > 1. Further, the regression model without the autoregressive component
has been studied extensively by many authors, as will be seen in Chapter 2.
Thus, it suffices to restrict attention to the AR(1) model. A major contribu-
tion of this thesis is that with the new estimators, the error distribution may-

be non-Gaussian.

We propose three estimators. In two of these estimators, the form of the dis-
tribution of the errors must be specified. Although iteration is necessary to
compute the two estimators, we have, so far, not experienced problems of non-
convergence. This is attributable to the fact that we use an EM algorithm and
this is known to converge slowly but more surely (see, e.g., Dempster, Laird
and Rubin, 1977 or McLaughlan and Krishanan, 1997). Further, even though
evaluation of high dimensional integrals may be necessary, the new estimators
require fewer computations than the MLE. This is because with the MLE,
in a ‘block’ of 7 consecutive censored observations, the integrals that need to
be evaluated for each of the observations are all r-dimensional. For the new
estimators, however, the integral corresponding to the first observation is one-
dimensional, the one for the second observation is two-dimensional, and so on.
Also, the problems of asymptotic variance estimation experienced in the case
of the PL estimators are not experienced with these new estimators. The third
estimator we propose is a distribution-free estimator and as the reference to it
suggests, the distribution of the errors need not be known. This means that

the estimator can be applied in a wide variety of situations.

The thesis is organized as follows. The present chapter closes with a summary



of notation and conventions which will be used in subsequent chapters with-
out comment. In chapter 2, we first review the currently existing estimators
in linear regression with independent censored data. Then we review available
estimators in regression with censored autocorrelated data. In the latter re-
view, we restrict our discussion to only the autoregressive component of the
regression model and the estimators are described in the context of the AR(1)
model. The reason is the same as the one above, put forward for the new
estimators, that it is sufficient to develop the ideas within the framework of

the AR(1) model, since they can then be extended to suit the full model.

In chapter 3, the new estimators are described along with the motivation and
justification for them. We also state the main differences in the principles of
obtaining these estimators. Chapter 4 investigates the asymptotic normality
of the estimating functions for the two new estimators for which the form of
the distribution of the errors in the AR(1) model must be specified. We also
investigate conditions for the consistency and asymptotic normality of the es-

timators.

Chapter 5 contains a simulation study in which the performance of the esti-
mators (new and currently available), in finite samples, is evaluated and the
estimators compafed-amoflg themselves. This simulation study includes the
MLE. Therefore, in part, it addresses a recommendation by Dagenais (1982),
who suggested an investigation of the large sample as well as small sample
properties of the MLE. There has been no previous attempt to address this
recommendation. We consider three error distributions in our simulations, the
Gaussian, the double exponential (also known as the Laplace distribution) and
the gamma distribution. For the Gaussian error distribution, we consider two
censoring distributions, Laplace and Gaussian. For the Laplace error distri-
bution, we consider the Gaussian distribution as the error distribution. For
the gamma error distribution, we consider another gamma distribution as the
censor distribution. For the Gaussian error distribution, we compare all the
estimators (both new and currently available) among themselves and with the

least-squares estimator corresponding to the uncensored case. For the non-



Gaussian error distributions, however, we compare only the new estimators
among themselves and with the least-squares estimator for the uncensored
case. The reason for not including the currently existing estimators in the
study involving the non-Gaussian error distributions is found in the argument
given earlier that, in their present form, the currently available estimators are

not suitable for non-Gaussian error distributions.

Overall conclusions of the current research study are presented in Chapter 6.
Some general comments on the estimation methods discussed in this thesis and
suggestions for possible extensions and future developments are also outlined

in Chapter 6 to conclude the thesis.

1.2 Notation

The following notation will be used without comment in the sequel.

a.s.  almost surely (i.e., with probability one)
a.e.  almost exactly

1.i.d. independent and identically distributed

r.v. random variable

n sample size

R set of real numbers

RF set of real numbers on a k-dimensional space
zZ set of integers

€ is a member of (belongs to)

3 such that

3 there exists

A4 for all

<= if and only if
~ has the same distribution as

approximately equal to

Q

transpose of the matrix A4

f  first derivative of f



CLT central limit theorem
ML maximum likelihood
MLE maximum likelihood estimator

PL Pseudolikelihood

Almost sure convergence, convergence in probability, convergence in L? and
P

convergence in distribution are denoted by =¥, =, L% and 2,., respectively.
Let X = {...,X_;, Xy, X1, ...} denote a sequence of possibly dependent ran-
dom variables defined on a probability space (®Z,B2,F;), # being an un-
known parameter taking values in © C ®. Denote the sample vector of n
rv's {X_1, Xo, ..., Xn—2} or {Xo, X1,..., Xn_1} or X1, Xs,..., X, etc., by X(n).
Then we will denote by o{X(n)}, the sigma-field generated by X(n).

We will denote the indicator function of an event E by I(E}, where

1 fwek
IE = ’
(B)w) { 0 otherwise.
N(u,o?) is the normal distribution with mean g and variance o®. The dis-
tribution of a double exponential (also known as Laplace) rv X with density

function

fx(z) = g%exp(—%lx LA, —oo<z <o

for some 3 > 0, —oo < A < oo, will be denoted by Laplace {§,A}). Similarly,

if X is a gamma rv with density function

pel(x) a

LJE_A)C'—]f:xp(--(“:—"i)), if A<z < oo,
gx(z) =
0 otherwise,

for some o > 0, 8 > 0, —00 < A < o0, then its distribution will be denoted

by gamma (a,3,A).



Chapter 2

Existing Estimators in
Regression with Censored Data

2.1 Introduction

A variety of methods have been developed for linear regression problems in
which the dependent variable is subject to censoring and the errors are inde-
pendent and identically distributed (i.i.d.) [See, e.g., Miller (1976), Schmee ‘
and Hahn (1979), Buckley and James (1979), Koul, Susarla and Van Ryzin
(1981), Bennet (1983), Sweeting (1987), Leurgans (1987), Wei and Tanner
(1991), Zhou (1992), Fygenson and Zhou (1992, 1994), Breim&n, Tsur and
Zemel (1993}, Fan and Gijbels (1994) and Lai and Ying (1994), among oth-
ers]. The methods proposed by Schmee and Hahn (1979), Bennet (1983),
Sweeting (1987) and Breiman, Tsur and Zemel (1993) assume particular fam-
ilies of survival distributions, whereas the others avoid this requirement. All
of these methods are for the following censored linear model. Let ¥3,..., Y, be

n independent random variables (rv’s) satisfying
YViz=a+ Pz, +e, t=1,..,n, (2.1)

where, z;’s are known explanatory variables and &;’s are i.i.d. rv’s with dis-
tribution F{.), zero mean and finite variance o®. The parameters of interest

are the intercept, o, and the vector of regression coefficients, 8. Some of the



response variables, Y;’s, may be right censored and thus one observes
Z; = min(Y;, T;} and & = I(Y; £ T7), (2.2)

where, given the z;’s, T3, ..., T, are i.i.d. rv’s with distribution G(.;z;) inde-
pendent of €1,...,e,. I{A) is the indicator function of the event A. The rv’s
Ty, ..., Ty are called censoring variables. The ¥;’s could just as well be left
censored with Z; = max(Y;,T:) and §; = I(Y; > T;). If § = 0, then (2.1.1)
corresponds to the location model with location parameter a. James (1986)
has proposed censored data estimating equations for various models including
the location model. These equations require full distributional assumptions,
and James suggests a distribution-free modification based on the product limit
(Kaplan and Meier, 1958) estimator. However, the problem considered here is

the estimation of (a, 8) based on (Z1,61),...,(Zn, 6n).

Miller (1976) proposed an estimator of (e, ) obtained by minimizing the
weighted sum of squares of the residuals with the weights computed from
the Kaplan-Meier estimator of the error distribution based on the residuals.
Buckley and James (1979) suggested another estimator of (@, 8) which utilizes
an expectation identity and substitutes ¥; into the usual least squares normal
equations if Y; is uncensored, or an estimate of it based on the Kaplan-Meier
estimator of the error distribution, if censored. Both these estimators require
the use of iteration methods. In both cases, as pointed out by the authors,
the iterations can settle down to oscillating between two values. Buckley and
James argue that, for their estimator, the values are closer to each other than
for the Miller estimator and suggest taking the average and using it as an
estimate. The first study to investigate the consistency of the Buckley-James
estimator is due to James and Smith (1984). A slight modification of the esti-
mator has led Ritov (1990) and Lai and Ying (1991) to establish the asymptotic
normality of this type of estimators. A family of asymptotically equivalent es-
timators, based on linear rank tests for the slope in the linear model, has been

recently introduced by Tsiatis (1990). Other methods of making inference



about coefficients in the censored linear regression model have been studied

by Wei, Ying and Lin (1990) and Lin and Wei (1992).

Koul, Susarla and Van Ryzin {1981) proposed an estimator of («a, #) which is
easy to compute and requires no iteration. Like the Buckley-James estimator,
this estimator is also based on an expectation identity. It differs from the
Buckley-James estimator in that the ¥;’s in the normal equations are replaced
by pseudo rv’s computed from the Kaplan-Meier estimator of the censoring
distribution based on the censoring rv’s, Ti’s. Koul et al. (1981) conducted
a complete investigation of the consistency and asymptotic normality of their
estimator. Recently, Srinivasan and Zhou (1994) have used another approach
based on counting processes and martingale techniques to prove the asymptotic
normality of the estimator. Leurgans (1987) proposed another non-iterative
estimator based on ’synthetic data’ (pseudo rv’s) in a similar way that the

Koul-Susarla-Van Ryzin estimator is based on pseudo rv’s.

Miller and Halpern (1982) compared the Koul-Susarla-Van Ryzin estimator
with that of Miller (1976) and the Buckley-James estimator using the Stanford
Heart Transplant Data. They recommended the use of the Buckley-James es-
timator. Leurgans (1987) compared her estimator with the Koul-Susarla-Van
Ryzin estimator and concluded that her estimator performs better. Her con-
clusion is based on the performances of the two estimators on the Stanford
Heart Transplant Data and the Leukemia Data that appears in Freireich, et
al (1963). Recently, Heller and Simonoff (1990) compared several estimators
using Monte Carlo experiments and concluded that the Buckley-James esti-
mator is preferred. However, more recently, Fygenson and Zhou (1992) have
suggested a slight modification of the Koul-Susarla-Van Ryzin estimator and
have demonstrated using simulations, the Stanford Heart Transplant Data and
the Leukemia Data from Freireich, et al (1963) that the modified Koul-Susarla-
Van Ryzin estimator compares favourably with the Buckley-James estimator

than the Leurgans estimator. Given the performance of the modified Koul-
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Susarla-Van Ryzin estimator, it is also important to point out that, in the lo-
cation model, the original Koul-Susarla-Van Ryzin estimator has been shown
at a theoretical level by Tsai, Susarla and Van Ryzin (1984) to be identical to

the Buckley-James estimator.

The modified Koul-Susarla-Van Ryzin estimator is almost identical to the orig-
inal estimator. The difference is that in the original estimator, the censoring
rv’s are assumed to be 1.i.d., whereas in the modified estimator, these rv’s are
assumed to be i.i.d. only within strata, as it often happens in practice (e.g.,
the Stanford Heart Transplant Data and the Leukemia Data). Therefore, in
deriving the modified estimator, within each strata the Kaplan-Meier estima-
tor of the censoring distribution is computed and used in the computation of
the pseudo rv’s that are substituted into the usual normal equations. If the
sample consists of only a single stratum, then the two estimators differ only .
in the definition of the largest observation. In the original Koul-Susarla-Van
Ryzin estimator, zero weight is assigned to a censored observation and the
following uncensored observation is inflated by pre-multiplying it with the in-
verse of one minus the corresponding value of the censoring distribution based
on the Kaplan-Meier estimator. In the modified Koul-Susarla-Van Ryzin esti-
mator, the largest observation is redefined in the spirit of the ‘redistribution-
to-the-right’ algorithm of Efron (1967). The largest observation is defined as
uncensored even if it is censored because there is no larger observation on

which to distribute its weight.

The Miller (1976), Buckley-James estimator, original Koul-Susarla-Van Ryzin
and Leurgans (1987) estimators differ with respect to their assumption that
the censoring variables are i.i.d. and the requirement that the errors, &;’s
should be i.i.d. With respect to the assumption about the censoring distri-
bution, the estimators range from highly restrictive (the Miller estimator) to
least restrictive (the Buckley-James estimator). However, the Buckley-James

estimator relies on the assumption about the error distribution, whereas the

11



Koul-Susarla-Van Ryzin and Leurgans estimators do not. From applications
point of view, this means that the Koul-Susarla-Van Ryzin and Leurgans es-
timators can be applied to sur.vival data even if the error distribution varies
from patient to patient. Also, the Miller and Buckley-James estimators need
special programming, iterative computation and have convergence problems
as mentioned earlier. On the other hand, the Koul-Susarla-Van Ryzin and
Leurgans estimators can be easily incorporated into a regression package and
the estimates obtained quickly without iteration. These advantages are shared
by the modified Koul-Susarla-Van Ryzin estimator and become more appre-
ciable when one considers a multiple multivariate model. However, when one
considers a time series model, as it is done in this thesis, the use of the mod-
ified Koul-Susarla-Van Ryzin estimator seems impractical since by dividing:
the observations into strata according to the censoring variables, one loses the
underlying time series structure. Hence, the distribution-free estimator for °
censored autocorrelated data proposed in this thesis is based on a suitably

modified version of the Buckley-James estimator for the linear regression set-

up.

As seen above, linear regression with i.i.d. censored data has been well stud-
ied. However, despite the fact that autocorrelation among errors is known
to be a major problem in regression analysis (see, e.g., Dagenais 1982), es-
timation for regression with censored autocorrelated data has received very
little attention. Wecker (1974) and Robinson (1980) considered prediction
and estimation methods for censored time series data. A formal introduc-
tion of autocorrelation in the censored regression model was considered by
Robinson (1982). Further research has been limited to the works of Dagenais
(1982,1986,1-989), Bussiére {(1983) in a université de Montréal M.Sc. thesis
and Zeger and Brookmeyer (1986). We present a brief account of these studies

below. A detailed account is presented in section 2.3.

Robinson (1982) proved the consistency and asymptotic normality of the pseu-
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dolikelihood (PL) estimator obtained by maximizing the likelihood function
which ignores the autocorrelation among the observations. Dagenais (1982) de-
rived the full likelihood function of the AR(1) model with normal errors. This
function involves multivariate normal integrals, the dimensions of which equal
the number of observations in a sequence of consecutive censored observations.
Bussiére (1983) computed exact maximum likelihood (ML) estimates for sam-
ples with at most five consecutive censored observations. Zeger and Brook-
meyer (1986) derived the score equations corresponding to the full likelihood
function of the AR(p) model with normal errors. Then they considered two
numerical procedures to solve these equations: A modified Newton-Raphson
routine and an EM algorithm. The details of each of these procedures are
given in section 2.3.1 of this thesis. Like the likelihood function of Dagenais
(1982), Zeger and Brookmeyer’s likelihood also involves multivariate normal
integrals. The dimensions of these integrals dimensions equal the number of *
censored observations in a ‘censored string’. A censored string is defined by
these as follows: Begin with the first observation and work forward in time.
The first censored observation encountered begins the first censored string.
Then a censored string begins with a censored observation and ends immedi-
ately after the next set of p censored observations. The use of censored strings
in deriving the maximum likelihood estimator (MLE) will become clear in our

description of the estimator in section 2.3.1

Zeger and Brookmeyer (1986) argued that the MLE can be ‘computationally
intensive’ when high dimensional normal integrals must be evaluated and they
gave an alternative PL approach. They showed that their PL estimator is
consistent, however, Dagenais (1991) has challenged their proof and has given
a counter—eﬁcample t. They also illustrated the use of the MLE with a single

simulated data set of length 50 and air pollution data subject to left censoring.

tDagenais (1991) notes that the problem in Zeger and Brookmeyer’s proof may have
arisen because of the ambiguity in the notation used by the authors in their article where
they used E(Y|X) while, in fact, they meant E(Y|X) evaluated at X = Z, where X, Y
and Z are stochastic variables - without clarifying the implications for the proof, of the
difference between the usual meaning of £(Y|X) and that of E(Y|X)x-z.

13



The simulated sample was generated from a Gaussian AR(1) process with the
first-lag autocorrelation set equal to 0.5 and the white noise variance set equal
to 1. They concluded that the MLE performs better than the estimator based
on ignoring the autocorrelation or one that would be obtained by using the
censoring points as though they were the actual values taken by the underlying
time series rv’s and fitting an AR model to estimate the parameters. The air
pollution data are time series data on the chemical composition of atmospheric
deposition as measured at Lawrence Livermore, California, site (see Toonkel,
1981). The main objective was to study geographical differences and time
trends in precipitation chemistry and concentration of pollutants in deposi-
tion. The results from the analysis using the ML method led to the conclusion
that there is very little evidence of a trend at the site. The PL gave similar-
results. Dagenais (1989) has also suggested an alternative PL estimator and
has compared it with the PL estimators of Zeger and Brookmeyer (1986) and -
Robinson (1982) in small samples by means of Monte Carlo experiments. He
concludes that, although there is no clear-cut comparison between his PL esti-
mator and that of Zeger and Brookmeyer (1986), the two estimators perform
well and markedly better than the PL estimator of Robinson (1982) obtained

by simply ignoring the autocorrelation.

A major contribution of the current thesis is to provide estimators of the au-
toregression parameter in censored AR(1) models which are easy to compute,
perform well numerically in small and large samples and have desirable the-
oretical properties such as consistency and asymptotic normality. Thus the
remainder of the current chapter mainly focuses on regression with censored
autocorrelated data. However, we give a brief description of the Buckley-
James estimator for linear regression in section 2.2. The reason for this is that
the approach utilised in the distribution-free estimator proposed in the next
chapter is to find parameter estimates that maximize a pseudolikelihood based
on the Kaplan-Meier estimator of the error distribution. This is equivalent to

replacing the censored observations by their corresponding Kaplan-Meier con-
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ditional means in the usual least-squares estimator which would be obtained if
the data had not been censored - an idea utilised in the Buckley-James estima-
tor. Thus, the description of the Buckley-James method will shed some light
into the derivation of our distribution-free estimator. In section 2.3 we review
existing estimators in regression with censored autocorrelated data. This is
accomplished by first giving a formulation of the MLE for an AR model with
normal errors, derived for example, in Zeger and Brookmeyer (1986). Then we
present descriptions of the PL estimators of Robinson (1982}, Dagenais (1986)
and Zeger and Brookmeyer (1986). For convenience in subsequent discussions,
all these estimators, including the MLE, are described in the context of this
thesis, i.e., with the regression parameter being assumed to be zero, the time
series to follow a zero-mean AR(1) mode! and the data are subject to random-
right censorship. The Buckley-James estimator is also described in the context

of the random censorship model.

2.2 The Buckley-James estimator

Let Y1, ..., Y, follow the model (2.1.1) and suppose we have observed (Z1, 61), ...,

Z,,6,). Suppose we have a single explanatory variable and consider the model
124
Y=a+fz;+¢, t=1,..,n, (2.1)

where the independent partial residuals r; = Y; — Sz; have the distribution
function Fp(-) and survival function Sp(-) = 1 — Fs(-}). Note that Fg(-) has

mean & and variance o2, If we let

wi(t; 8) = Es(YilYi > t,zi)
f(?-,ax.)SdFﬁ(S)
1 — Fplt — i)’

then the method of Buckley and James (1979) is motivated by the expectation

= fzi+ (2:2)

identity

Egl&Y; + (1 — §:30i(T5; B)|=i) = Ep(Yi|z:) = a + B, (2.3)
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and replaces the censored observations in the usual least-squares normal equa-

tions by their estimated conditional expectations in the following manner. Let
e,-(b) :Z{ —-b.’L‘,', 1= 1,...,7?,, (24)

and let

R =1- T (Jiiﬂ%) (2.5)

segy(bygs V0T 41
denote the Kaplan-Meier product limit estimator calculated from e;(b). In
this formula e(;)(b) is the ith ordered observed residual and é(;) its associated
indicator. As noted by Buckley and James (1979), Fi(s) is discrete, with jumps
only at the values of uncensored residuals. If the largest residual, e(n)(d), is
censored, Fy(s) does not approach 1 as s — oo and the estimates of the.
integrals in (2.2.3) based on Fy(s) are infinite. To overcome this problem, the
convention adopted here is always to redefine the largest residual as uncensored -

(Efron, 1967; Meier, 1975; Miller 1976, 1981).

Let

$(t;b) = Ey(YiY: > 1)

f(iba:-) $ dﬁb(s)
= bz, < ;i t = bz < ey(b),
$+1—Fb(t——bm,~) i z; < egy(h)
= ¢, if t—bx; > e(n)(b), (2.6)

and define for each 2 = 1, ..., n,

Vi) = Vi, if & =1,
= P(Tyb), it &=0. (2.7)
Thus Y;(b) is the observed response Y; if uncensored, or an estimate of it, based

on the e;(b), if censored. One then attempts to find estimator 3 such that

(2.8)



If we denote the right hand side of the above equation by 7.(4), then we
try to solve 7,(8) = B. A natural way of solving this is to use an iterative
scheme which starts with an initial estimate of 5 and successively updates it
by 1a(f3). However, as mentioned in section 2.1 above, in common with the
estimation function of Miller (1976), ,(b) is discontinuous and piecewise linear
in b. Therefore, an exact solution need not exist and if it exists, it need not
be unique. If no solution exists, the iterations can settle down to oscillating
between two values. According to Buckley and James, the two values are closer
to each other for their estimator than for the Miller estimator. They suggest

taking the average of the two values and using it as an estimate of 3 .

2.3 Estimators in regression with censored
autocorrelated data

2.3.1 The maximum likelihood estimator

In the context of regression with censored autocorrelated data, the MLE de-
scribed in Zeger and Brookmeyer (1986) is for the following model. Let Y, ...,
Y, be rv’s satisfying

Y;::r::-ﬁ—]—u,-, t=1,..,n, (2.1)

where z; is the m x 1 vector of known covariates and 8 is an m x 1 vector of
unknown regression coefficients. The errors, u;, are assumed to arise from a

stationary AR(p) process satisfying

u; = Ouig + ..+ Opuip + gy, {2.2)
2

where, ¢; are i.i.d. normal random variables with mean zero and variance o°.

One observes not {¥;} but
Z; =min(Y;,T;) and & = I(Y; < T;), (2.3)

where, given the z;’s, Ty, ..., T, are i.i.d. rv’s with distribution G(.; z;) indepen-
dent of £y, ..., €. Henceforth, we shall refer to {Y¥;} and {Z;} as the underlying

and observed time series, respectively.
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An obvious extension in assuming the above model rather than the linear re-
gression model with i.i.d. errors given by equation (2.1.1) in section 2.1 is that
here the Z;’s form a dependent sequence. It is the autoregression component
in (2.3.2) that causes the dependency. In the absence of this component, the
model here reduces to the one in (2.1.1) which has been studied extensively
as seen section 2.1. Therefore, it is sufficient to study only the autoregression
component of the extended model. Further, any results obtained for the AR(1)
model with p set equal to 1 in (2.3.2) can be easily extended to the AR(p)
model, p > 1. In turn, these results can be easily extended to the general
linear regression model with autocorrelated errors given by (2.3.1). Thus, our
description of the MLE and indeed the rest of the estimators is for the pure
AR(1) model with 8 set equal to zero in (2.3.1) and (2.3.2) replaced by

u; = Bu;q + &5 (2.4)

For the new estimators described in Chapter 3, however, the ¢;’s are assumed
to be 1.i.d. F, not necessarily normal. Before we describe the MLE, we first
look at the effect of censoring on the standard Markov property, utilised in the
construction of the likelihood for uncensored data. Then we state and prove
a Markov result proposed by Zeger and Brookmeyer (1986) which allows the

likelihood for censored data to be constructed.

The Markov property enables us to express the likelihood function for uncen-
sored data from a stationary AR(1) process as a contribution of each obser-
vation given the preceding value. With censored data, part of the problem is
that the preceding observation may be censored and hence conditioning on it is
not equivalent to conditioning on the entire past. Thus, the standard Markov
property doés not apply for censored data. Zeger and Brookmeyer (1986)
noted this and proposed a Markov result suitably modified for the censored
data problem. Although these authors did not give a proof for this result, they
noted that it follows from first principles. In the sequel, the Markov result is

stated, proved and used in the development of the likelihood for randomly
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censored data from a stationary Gaussian AR(1) process.

Lemma 2.3.1 Let Z; be a possibly censored observation from a stationary
AR(1) process with fzyz,_, 7. (21ziz1, Zic2, ...) being the conditional densily

function given the past. Then,
fZ;|Zi—1,Zi_2,---(Z|zi—1: Zi-2, )

= fZ.'Iw.',Zg_],...,Y,‘_k_l(zlk; Zilgreny zi—k—l)a if k 2 0) (25)

where w; is the number of consecutive censored observations preceding Z;.

Proof

P(Z, S Z].Z,‘_l = Z,‘_I,Z{_g = Z{_g,...,Zl = 21,...)
= Z P(Z, S ZIZ,'_]_ = Z;_l,...,Zl = Zy.-,W = k)P(w, = k‘)
k=0

Now,

P(Z1, S Z|Zz‘...1 == 25_1,...121 =z, = 0)
= P(Zl S Z|Zt'—0-l = Zi—0-1, Zi—-U-? = Zi_0=2y -0y Zl = 21y e W = 0)

= P(Z{ S Z|Y;'_1 = Z{_1,...,Zl = 2y e = 0).

Similarly,

P(Z; S Z]Zi_] = zi-—l;---;Zl = 2y, = 1)
= P(Z{ S Z|Z'._1 = Z,'_l,Z.;_g = Z,’_g,...,'Z] = 2y W = 1)

= P(Z, S ZlZ'_l = Zl‘_l,}:'_g = Zi_.1, ...,Zl = 2y ea W= 1)

In general,

P(Z; € z|Ziy = zic1y ooy &1 = 21, ey wi = k)
= P(Z; <z|Zioy = zicyy ooy Zick = Zicgy Yick-1 = Zick—1,

ceny Zl = 2y ey = k),
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since w; = k implies Z;_;_, is uncensored. Therefore,

P(Z; € z|Zioy = zic1, .y B0 = 21, .-)
= Z P(Zg < Z|Z£—1 = Zielg e 2y =z, w = k)P(UJ; = k)
k=0

= S P(Zi <2 Ziy = zic1s oy Zick = Zioky Yick-1 = Zick-1,
k=0
erey Zl = Z gy e = k)P(u, = k)
= P(Z, _<_ Z|Z,‘_1 = Zi—1y ey Z{_k = Zik, }/i—k—l = Z k=1 s Z1 =z, )

= P(Z; < z|Ziiy = zic1,y ooy Dick = Zicky Yiek-1 = Ziek-1),
by the Markov property. O

The lemma states that to condition on the entire past, it suffices to condition:
back to the last uncensored observation. Note that, unlike in the uncensored
case, the conditional expectation of an observation given its past is not linear -
in the preceding value. For this reason, Zeger and Brookmeyer (1986) factorise
the likelihood into two components. One component contains contributions of
uncensored observations that are immediately preceded by an uncensored ob-
servation. The other component contains contributions of censored strings -
that is, contributions of all censored observations and of uncensored observa-
tions for which the preceding value is censored. In order to write an expression
for the likelihood as a product of these components, we slightly modify the

notation of Zeger and Brookmeyer (1986) in the following manner.

Let I/ be the index set of times ¢ for which both Z; and Z;..; are uncensored.
Apply the definition of a censored string for an AR(p) process given earlier in
section 2.1 to define a censored string for an AR(1) process. Here, the defini-
tion translates as follows. Start with the first observation and work forward
in time. The first censored observation encountered begins the first censored
string, and the string ends immediately after the first uncensored observa-
tion. In general, a censored string starts with a censored observation and ends

immediately after the next uncensored observation. Let Z; denote the jth
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censored string. Let Z7 be the v} consecutive censored values in Z; aﬁd iet Y;
be the corresponding rv’s of the underlying time series. Denote by Y} the only
uncensored value in Z;. Let X; be the uncensored observation that appears
immediately before the first (censored) value in Z;. Thus, Xj is either the last
observation in string 7 — 1 or it belongs to the set of observations with indices

in the index set I/,

Now, assuming that the realization (Zi, ..., Z,) is such that Z; is uncensored,
application of proposition 2.2 of Zeger and Brookmeyer (1986), which is based

on the Markov result for censored data in lemma 2.3.1, leads to the likelihood,

K’ - ~
((6,0) = T frwies (ZilZica) [T S, (V1K) Frp(Z5as o0 Z5es X V57D,
i€l J=1 :
(2.6)

where K is the number of censored strings and

Fjon(tay ooyt X5, Y') =

<] =]
./t ¢ ij,p---ax_:.mh-’;nxjryju (311 --'v'sm|m7‘Xj’Y:iu) }cn=1d8k3 (27)
m 1

with fzj’ljmllemw;lxj,yju(Sl, .oy Sm|m, X;,Y}*) being the conditional density of
the underlying time series rv’s, Y%, corresponding to Z3, given that v =m > 0
and given the uncensored value, ¥}* at the end of the censored string and the

uncensored value, X; preceding the string.

Inspection of {2.3.6) reveals that each observation in the index set makes a
contribution to the likelihood in a similar way as in the uncensored case - that
is, conditional on the preceding observation. The uncensored observations
in a censored string, however, contribute conditionally on the most recent
uncensored observation, whereas the contributions of censored observations is
conditional on the surrounding uncensored values - the most recent uncensored

value and the last (uncensored) observation in the string.

Zeger and Brookmeyer (1986) simplify the likelihood by making use of the
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following notation for conditional means and covariances. For ¢ € U, let
pi = E(Yi[Yio1), (2.8)
and note that var(Y;|Yi_;) = 0. For each of the K censored strings, let

0t = E(Y}|X;,v5), o) = var(Y|X;,05),

J

ni = BYSIYY, X5, v5), I = cou(YG{Y], X, Vi), (2.9)

Note that the conditional expectations, u:, 7§ and 77 are all linear functions

of the conditioning rv’s. For example, u; = 0Y;_;, and n} = gt X,

We note that there is an error (most likely typographical) in the expression
of Zeger and Brookmeyer (1986) for 5$,, the conditional expectation of the-
underlying time series random variable corresponding to the kth censored value
in string 7. This error is corrected by simply replacing v$ by v§ + 1 in Zeger ~

and Brookmeyer’s expression and this yields,
0t = [1/(1 — 0PETF[64(1 — 205 FH) X 4 94T (1 — 0¥ (2.10)

As an example, consider the case when v¢ = 1. Then the expression in (2.3.10)
gives

1%y = 16/(1+ O)]IX; + Y (2.11)

We confirmed this expression using the software package, mathematica, 2.2.
Expressions corresponding to varying values of v¢ and k were also confirmed
similarly. Inspection of (2.3.10) reveals that larger weight is placed on the un-
censored value X in calculating 7§, for observations near the beginning of the
string and Y receives more weight in calculating the conditional expectation

for observations near the end of the string.

For higher-order AR models, Zeger and Brookmeyer suggested evaluating o}
and ¢ numerically using expressions for conditional means and variances

given, for example, in Dempster (1969). However, we have obtained direct
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expressions for the AR(1) model. The expression for ¢} is given by

vy
ot =0y 6%, (2.12)
k=0
and the entries of L¢ are given by
ik = cov (Y34, YooX5, Y
o20U=D(Tr 0¥ )(Tich 0%)

— < s k=105 [ <k (213)
ErJ=092T

where, Y%, is the underlying random variable corresponding to kth censored

value in the jth string, Z.. Once again, we confirmed the expression in (2.3.13)

=7

using Mathematica, 2.2.

Using the preceding definitions, the likelihood given in (2.3.6) for the censored

Gaussian AR(1) model can be written as

BZ: 1
Hqﬁ

m _1)%,,(2
\/7

where ¢ is the univariate standard normal density and

ZC

i1

Z;,uj7XJ'JYju)?

(2.14)

(I)j,vf(th"',tijja}/ju)
L [ i) e = )T ds, (2.15)
m 1

with »¢ = m, s being the m x 1 vector of integration variables, (S1yeey $m ),

and ¢;,z, the vi-dimensional standard normal density.

A further simplification is accomplished by defining, for each string, condi-
tional means of the underlying rv’s Y7, given the censoring at Z; and the
uncensored values X; and Y;*. That is, for the kth censored observation in
string 7, define

~

...Y_Jk = @bj,ky (ZE,IV'-’Z_‘;,V;.'!XJ'? Y;iu): (216)
where,

Wi km(ty ey tins X5y Yu)
fon o i 850 [(Z5) 7 (s — m)ITIEE dse
I I e (Z5)7 (s = )R dsie

(2.17)
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Then the likelihood score function for ¢ takes the form
Al 1j9c* =3 {[(-1)/2¢%] + (1/20%)(Z: — 0Z:_1)*}
€U
R 2 a5 — n?)Q c 2
+ > {l(-1)/26°] + (1/2¢ )[T] + [(—v§)/207]
J=1

+(1/20) (TS~ ne) (B (S — )
+(1/202)r (597 V) (2.18)

This can also be written as

Bin 180 = [—(n — 1)/26%] + S_(1/20* N Z; — 0Z; 1)
el

+ ;(1/20%{[ ]+ [ = ng)(E9) MY — n))]

+tr((Z5) 7V} (2.19)'

(Y} —9¥)?
a¥

Here, V{ is the v§ x »f conditional covariance matrix of the underlying time -
series rv’s, Y3, given the censoring at Z? and the uncensored values X; and

Yj“. Let

wj|k1!1m(tl7 9 tm’ XJ? Yju)
ftor: f;io Sk31¢j'u;1(zg)—l(§_ — nj)]H?zldSk

e . L 2.20
T o I 43551(Z) 1 — T o (220
Then, the conditional covariance between Y, and Y3, is given by

"/j?{k,!) = llbj,k,!,u;?(z_?,l) "‘}Zj,u;?ina }/_7“) - (_Y_-J,k)(l/_‘-,,[) (221)

Here Y5, is the underlying time series random variable corresponding to the

kth censored value in the string, k = 1,...,05, [ < k.

The presence of information about # in the conditional means, 7} and »; and
the conditional variances, o} and Lj makes the score function for 8, din /08,
more complicated for censored data than it is in the uncensored case. Denote
this function by S.(8). Then S.(#) can be written as a sum of three terms.
The first term,

S (1/o¥)Zi1(Z: — 0Z:y), (2.3.22-a)
eV
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is the contribution of uncensored observations preceded by an uncensored

value. The second term,

K { —1 9} 1 do} ani (Y — n;‘)}

> * —n¥)? 2.3.22-b
223 a0 R a0 M) Y e o (2.3.22-b)
3= 2 J

is the contribution of ¥;* and the third term,

K 1 Blzcl 1 ~ C c 3 oy — A C c
Z{lec - 5(_.}:3 -~ ﬂj)"§§ (Ej) ll(zj - ﬂj)

+((Z‘g )’(E;)“l(i‘; - 7};) — }ut'r (;ﬂ (EC)—I]Vjc) Y, (2.3.22-¢)

is the contribution of each Y. Zeger and Brookmeyer (1986) noted that the
trace term in this expression as well as the one in the score function for 6 can
be thought of as a correction for the estimated i’_j being closer to n¢ than one

would expect for the underlying time series.

We note that there is an error (possibly typographical) in Zeger and Brook-
meyer’s expression for the third term of (2.3.22), the contribution of each K;.
Their expression differs from (2.3.22-c) only in the trace term. Unlike (2.3.22-
c), the trace in their expression is multiplied by +1 rather than —0.5. We have

shown our derivation of {2.3.22-c) in the proof of lemma A.1.1 in the appendix.

Zeger and Brookmeyer (1986) suggested two numerical procedures to solve the
corresponding score equations: a modified Newton-Raphson procedure and an
EM algorithm. At each iteration the modified Newton-Raphson procedure
which is available with the ‘S’ statistical software, chooses between a Newton-
Raphson step and a steepest-descent step depending on current estimates of
the gradient and Hessian matrix. Zeger and Brookmeyer (1986) also note that
for the data sets they have analysed, this approach has avoided problems of
non-convergence sometimes experienced with strict Newton-Raphson proce-
dures in regression with i.i.d. censored data. The EM algorithm (Dempster,
Laird, and Rubin 1977 and McLaughlan and Krishnan, 1997), which has also
been used for i.i.d. censored data, is outlined by Zeger and Brookmeyer (1986)
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as follows.

Let 60 and 4% be initial estimates of # and o2, respectively. Then the EM

algorithm consists of the following steps:

1. E step: Estimate i: and V; for each string of censored values, using

(2.3.16) and (2.3.21), respectively, for y = 1,..., K,

2. M step: Calculate updated estimates, § and &2, by solving the score
equations corresponding to (2.3.22) and (2.3.19), respectively.

3. Iteration: Iterate steps 1 and 2 until succesive parameter estimates do

not change within the required error bound.

The Newton-Raphson procedure requires the computation of the Hessian of
the likelihood function. An advantage of this numerical procedure over the
EM algorithm is that the Hessian is available upon convergence for use in °
calculating the variances of the parameter estimates, whereas, with the EM
algorithm an extra step is required to calculate the Hessian alter convergence
has been reached (see, e.g., Meng and Rubin, 1991). The Hessian for ¢° is
given by

An 1j8(e?)? = [(n — 1)/20*] = Y (1/20%)(Z; - 0Z;i_1)*

uzl/a I (55 (s (& - )
+tr((z:§) VAL (2.3.23)

Let J,(#) denote the Hessian for 8, 8*in {/86%. Then J,(#) is the sum of three
components. The first component,
Y (—1/e*)Z7 |, (2.3.24-a)
el
is the contribution of uncensored observations preceded by uncensored obser-
vations. The second component,

Z{ -1 82 u 1 (Ba';-‘)z_ 2 80';‘31);*
20% 392 2(o ‘-‘) a0 (o’},—‘)2 af 99

(¥ =)



1 820; " uy2 1 do}
+2( )2 90? (Y5 =) = (or)
P (Yr—nt) 1 On;

— —(=2L)? 2.3.24-b
392 ot 0'}‘( 89} b ( )

is the contribution of each Y;* and the third component is the contribution of
each Y. Since the _:}:;’s depend on #, an exact expression for this component

is hard to obtain. An estimate

K 1 8% 1 9Ee,
2{2[2] p5: * s ag )

1,-c a?

—5(81.,-— 5 5gzl(25) 110’,*%) .
+2( 3’7;)'%{@;)—1]@5—?73 ( 2y () 7;

HEY () —n,)—}-tr[;;?[(ﬂ) WD), (2320)

is obtained by freating the Kj’s as if they do not depend on 6.

In Chapter 5, we use simulations to evaluate the performance of the MLE
for 8 currently under discussion and compare it with the performances of the
pscudolikelihood estimators described in section 2.3.2 and the new estimators
described in Chapter 3. One of the main criteria used in this comparative
study is the estimated asymptotic variances of the estimators. Following is
the description of the asymptotic variance estimator of the MLE. Let 9,’;“5

be the estimator and denote the true value of @ by #,. Then under suitable

regularity conditions,
nz (67 — 9,) =+ N(0,V4,), (2.3.25)

where,

v, = 111{‘10% _ le nvarg%b;' ~(0)}
" nmee Eg{Sh{0)}

(see, e.g., Hall and Heyde, 1980 or Godambe, 1985).

(2.3.26)

Theorem 4.1 of Robinson (1980) states that if the autoregressive process

{Y;,i € Z} is stationary, then conditional on the uncensored observations, X;
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and Y}, the Y3’s are mutually independent and hence uncorrelated. Therefore,

we propose the asymptotic variance estimator,

" In gmle
agvar(f™) = (9." ) (2.3.27)
T2g)
Here, I,(#) is the sum in the components,
S (1fe*)ZE (2 — 0Z:4), (2.3.28-a)
el
K . —19a 1 Oo} , O (Y =),
t— .3.28-b
Lz Yaempan W T gy 1 B9 )
and
&, =1 E)[ECI 1,0 a e
—(Y; 59)° Y
37?_, ~c 1 d

HOGEY NS - 09) — Sl ETVAY, (23280)

derived from the score function in (2.3.22-a), (2.3.22-b) and {2.3.22-c). To
overcome the problem encountered as a result of the dependence on @ of the
i"_;’s, we use the EM aided differentiation technique described of Meilijson
(1989) to numerically determine the third component of JR(QTC), 1.e., the
contribution for each ¥¢. For a general 6, denote this component by J(8).
Let 5(6) be the corresponding component of the score function S,(8) given
by (2.3.22-c). Then the EM aided differentiation can be outlined as follows:
Choose ¢ sufficiently small. Expand S (énmle) about ™ + ¢, Then

.. . . o émle
~ 4+ 6) = ————E, 0<d<e. 2.3.29
J GTflnlc S(l) BTT:].IE § S( n + ) 5

£

J(6m) is then added to the sum of the first and second components of J,.(¢)
given by (2.3.24-a) and (2.3.24-b), evaluated at § = g, This technique is
applied only once on convergence of the EM algorithm described above. A
similar EM algorithm has been proposed by Meng and Rubin (1991) for mul-
tiparameter problems where only a subset of the parameters are affected by

missing information.
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We note that the asymptotic variance estimator given by (2.3.27) is analo-
gous to the one given for the PL estimator of Dagenais (1986) in the case of
regression with autocorrelated censored data. In the next section, we give de-
scriptions of this PL estimator and the one proposed by Zeger and Brookmeyer

(1986).

2.3.2 Pseudolikelihood estimators

The PL estimators of Robinson (1982), Zeger and Brookmeyer (1986) and Da-
genais (1986) are all approx;ima.tions to the MLE. In the context of regression
with censored autocorrelated data, they are for the model in section 2.3.1.
However, in the descriptions of the estimators of Robinson {1982) and Dage-
nais (1986), (2.3.2) is replaced by (2.3.4), i.e. they are for the AR(1) model,
although they can be extended to the AR(p) model. In this thesis, however, all
the estimators will be discussed in the context of the stationary AR(1) model. °
Further, the PL estimator of Robinson (1982) does not apply in the context
of this thesis. This is because, as mentioned earlier, this thesis is concerned
with estimation for pure autoregressive processes, i.e., with 8 = 0 in (2.3.1).
On the other hand, the Robinson estimator is for the parameters, # and ¢?,
with the autoregression parameter, 8, being assumed to be zero. Hence, the
description of this estimator is omitted and the PL estimator of Zeger and

Brookmeyer (1986) hereafter denoted by 02> is described next. Let

S(t,u) = EYi|Y:i>t,Yio=u)
& sfyvavie, (s]u)ds
52 Frivic (slu)ds

Assume the first observation, Z,, of the realization (Z, ..., Z,) of the AR(1)

(2.3.30)

process is uncensored and define sequentially,

Y, = Z;, if =1,
= @(T;,Yioy;0), if & =0. (2.3.31)
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Then the estimator of Zeger and Brookmeyer (1986) is obtained by maximizing
the pseudolikelihood,
plzs(0,0° H[fv wis (Zil Ve N (T Vi)', (2.3.32)
i=2
where,

Fltu) = /t " fravio, (slu)ds. (2.3.33)

In the context of Zeger and Brookmeyer’s original derivation of the estimator,

i.e., for Gaussian AR processes, a simplification is achieved by leiting

A(Y) = ; f(;)(t), (2.3.34)

the hazard function for a standard normal variate, where, ¢ and @ are the

standard univariate normal density and distribution functions, respectively.

Then (2.3.30) becomes

Ftu) = E(YIY:>1Yi, = u)

t— 48
= fu+ohf i

) (2.3.35)

and the pseudolikelihood, pl;, takes the form,

T: — 0Y:_

— 0Yiy LYJ[L — @ (XL - iLy|1-5, (2.3.36)

plzd = H[¢1

=2
The corresponding score function for ¢? is given by

Bln ph 90* = 3 {6:{(~1/20%) + (1/26*) (Z: — 0%is)?]

=12

(1= 6)(1/20°N T — ¥R =TT (23.87)

a

and the score function for 8 takes the form,

Aln ply /80 = (1/5?) an{éf[f’,-_l(zi )

+H(1 = &) [t (Y = 0Yi1)]}
= (1/%) Z (¥ — 0Yiy). (2.3.38)



Note that the equation corresponding to the score function for # is identical
to the one obtained for the AR(1) model without censoring, except that, cor-
responding to censored observations, the ‘filled-in’ estimates, Y;, are used in
place of the Y;. Therefore, the score equations can be solved using the following

iterative procedure:

1. Given the estimates, §™ and 52(™), from the mth iteration, use (2.3.31)

to obtain ¥;, the estimates of the censored values.

9. Estimate 6(™+1) using the standard AR(1) fitting techniques on the
pseudo-scores, Y;. Obtain 62™+Y by solving the equation corresponding

to the score function in (2.3.37).
3. Iterate steps 1 and 2 until succesive parameter estimates converge.

Zeger and Brookmeyer (1986) noted that a consistent variance estimator for
this PL estimator is difficult to obtain because the contributions of the like-
lihood are not independent. However, they also noted that if the censor rate
is not too high, the variance estimator obtained by assuming independence of
the contributions can be used. Therefore, in the simulations of Chapter 5, we
have used an estimator of the asymptotic variance which is similar to the one
for the MLE described above. Following the above suggestion of Zeger and
Brookmeyer, an equivalent for 7(f) in the asymptotic variance expression for
the MLE, (2.3.27), is the sum of squares of the individual scores of the score
function for # in (2.3.38). An equivalent for J(6%) is obtained by using the
EM aided differentiation utilized in the case of the MLE.

We conclude this chapter by giving a description of the PL estimator of Dage-
nais (1986) {see Dagenais 1989). We describe the estimator by making use of
the modified notation of Zeger and Brookmeyer (1986) used in the description
of the MLE in section 2.3.1. As with the ‘true’ likelihood, the likelihood of
Dagenais (1986) can also be decomposed into two components: one for the

contributions of uncensored observations for which the preceding observation
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is uncensored, i.e., observations in the index set U, and the other component

for the contributions of observations in each censored string.

Recall that X; and Y* are the uncensored values preceding and at the end of
the jth string, Z;, respectively, and that T°; ; is the censoring point for the kth
censored value in the string. Then the pseudolikelihood of Dagenais (1986)

has the form,

(4

pla(8,0%) = [T frvioi (Zil Ziss HfY"IX; (Y;*|X;) ﬁ ﬂ Fr(T0, X5, 7).
“ e (2.3.39)
Here,
Fia(t / fre ax;vp(s|X;, Y} )ds, (2.3.40)

where, Y7, is the underlying observation corresponding to the % censored
value in the string. For convenience, we use the same notation given in (2.3.1) -
given for the conditional means and covariances for Gaussian AR(1) processes.

Given these definitions, the likelihood becomes

K — K _
S T (=) TT I @u(Ti, X5, Y7), (2:341)

By(t, X;,Y7) =/t°° (kg (2.3.42)

nir and of, being the conditional mean and variance, respectively, of the
underlying observation, Y5, corresponding to the kth censored value, AT

string 7, given the uncensored values, X; and ¥}*.

We found that, as with the MLE, a further simplification of the ply results
by defining the following conditional means and variances for each censored

observation in the jth string, y = 1, ..., K. Let

o si{(of) (s — m5a)lds
ft <?51[( j,k) (S_Wj,k)]ds

elt, X5, Y = (2.3.43)
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and
I s2a[(a55) 7 (s — n5)lds
5 1[(05,)" (s — m5)}ds

Delt, X5, Y}) = (2.3.44)

Then,
Yip=ve(Tin X5, YY) (2.3.45)

is the conditional expectation of the underlying observation, ¥ ,, correspond-
ing to the kth censored value in the string, given the censoring at T'; and the
uncensored observations, X; and Y}*. The corresponding conditional variance
is given by

Vie = 9ulLin X5, V) — (E50)" (2.3.16)

The likelihood score function for ¢? can now be written as

dln ply/30® = 3 {[(=1)/20%] + (1/20*)(Z; — 0Zi_1)*}

el
2 (v n] K & 2
+z:{ 2o+ (172 T 5 3 -y
+(1/202)[(—Xf-";";k"—5-’°)21 n (1/202)(%)}, (2347
8ln ply/do? = [—(n —1)/207]
K 2T mma
¥ 2(1/204)(2,. — 0z + a0 EES
+§_;kz (1/24° {[ Ler k””)] (:ﬁ’z)}' (2.3.48)

As with the MLE, the likelihood score function for # is a sum of three terms.
The first term is the contribution of uncensored observations for which the
preceding value is uncensored. This term is identical to the corresponding term
for the MLE given by equation (2.3.22-a). The second term, which identical to
the term in (2.3.22-b), is the contribution of the uncensored values, Y*. The
third term,

K v -1 aa;k 1 agjk .
Sy, —ns)?
JZ_; ;{2 Ck ag + 2(0';:,':)2 ag (—J, nj.k)
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3??Jc'k(f.;k_77§k) 1 doj,
J . : ) Vi 2.3.49
a0 I + 2(a, )2 00 i ( )

is the contribution of censored observations, Zj, in each string. The last term
involving the conditional variance, VJ;, in this expression and in the score
function for o2 can be interpreted as a correction for the i;’k being closer to
1%, than it would be expected for the underlying data. A similar interpretation
was given by Zeger and Brookmeyer (1986) about an analogous term in the

case of the MLE.

Notice that, unlike with the true likelihood, the contribution of the censored
values is written as a quadratic form that ignores the dependence among the
censored observations. However, only univariate normal integrals need to be
evaluated and hence, the estimator is not as computationally intensive as the

MLE.

The EM algorithm or the modified Newton-Raphson routine used by Zeger
and Brookmeyer for the MLE can be used here to solve the likelihood score

equations. The EM algorithm in this case can be suitably modified as follows:

1. E step: Given the estimates, §(m} and ™), from the mth iteration, use
(2.3.45) to obtain _fijlk, the estimates of the censored values, and use

(2.3.46) to calculate the conditional variances v; ;.

2. M step: Estimate 6(™*1) by solving the the estimating equation defined
by (2.3.22-a), (2.3.22-b) and (2.3.49). Obtain &*™*+V) by solving the

equation corresponding to the score function in (2.3.48).
3. Iteration: Iterate steps 1 and 2 until parameter estimates converge.

As with the MLE, the Hessian is required to implement the Newton-Rapson
procedure and to calculate the asymptotic variances of the parameter esti-

mates. Here, the Hessian for o2 is given by
*n 1/8(c*)? = [(n — 1)/20"]
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+ 3 (~1/26°WZ; — 6Z:_, 2—1—% —1/6"){ w
iel/ i=1
K V}: 4 (;_':, T’Jk) Jk
+20 2 (/e ) (PR (2.3.50)

1=1 k=1 3.k Ok

while the Hessian for # is the sum of the components (2.3.29-a), (2.3.29-b) and
the derivative of the term in (2.3.49). As in the case of the MLE, an exact
value of this derivative is difficult to obtain because of the dependence on # of

the i’_;k’s. One estimate of it,

1 dat,, - 2 Bcrf,k M3y e .
ZZ{Qg 392 2( ¢ ( a0 <32 g0 a0 (—j,k‘"ﬂj,k)
i1 Gk 25k o5 k)? (%)
]_ 82 jk -~ 0 2 1 aa;k 2 rrC
I nkeyt gt o (ZEENYT L _pf)?
+2(J§,k)2 802 (}—/-_’,’,k "73,;:) (o?,k)a( a0 ) (—J,k ng,k)
0%y (Yix — ni) _ _L(aﬂf,k 2
a6? ey v 00
1 &% 1 Ho¢

JVF__ Y 2 Y g 3.5

is obtained by ignoring the dependence on # of the Zjlk’s. However, an es-
timator of the Hessian which does not require ignoring this dependence can
be obtained numerically by applying the EM aided differentiation technique
utilized in the case of the MLE to the third component of the pseudolikeli-
hood score function given by (2.3.49). We have used the latter estimator of
the Hessian to estimate the asymptotic variance in the simulations of Chapter
5. The asymptotic variance estimator of # takes a form similar to the one
for the MLE. Let éfl“g be the solution of the score equation for #. Then the
aéymptotic variance estimator is given by
ron i

(Joe)2 (6277

asvar(§ie9) = (2.3.52)

where, J2%9(8) is the Hessian for & given above and I2%¢(0) is the sum of the

terms, (2.3.29-a), (2.3.29-b) and

Vc 1 aajk 1 305,: .
EY L, —pc, )2
2{2:1{2 of; 00 2(05?,,‘)2 a0 (—J,k k)
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h

This expression is arrived at by assuming that the mean vector of ij is ap-
proximately zero (Dagenais, 1989). In case of the MLE, the mean vector of ij
is zero and hence the theory behind the expression for the asymptotic variance

is exact.

In this chapter, we have reviewed the existing estimators in regression with
censored data. We have noted that linear regression with censored i.i.d. data
has been studied extensively while very little work has been done for regres-
sion with censored autocorrelated data. We have argued that it is sufficient
to look only at the autoregression component of the model assumed in the.
latter problem as the results can Be easily extended to the case where the re-
gression component is incorporated. Thus, we have reviewed the estimators in -
regression with censored autocorrelated data in the context of the pure AR(1)

model.

The existing estimators in regression with censored autocorrelated data re-
viewed in this chapter need to be re-derived for each error distribution consid-
ered. This is a very tedious task. Therefore, we have proposed two estimators
which have the same form (in the least squares sense) regardless of the error
distribution. In this sense these estimators are less restrictive in comparison
with the existing estimators. However, since these estimators involve condi-
tional expectations, knowledge of the form of the error distribution is required.
Thus, we have also proposed a distribution-free estimator based on the Kaplan-
Meier estimator of the error distribution. These new estimators are described
in the next chapter. In Chapter 4, We study some asymptotic properties of
the two new estimators for which the form of the distribution is assumed to
be known. These new estimators are then compared among themselves and

with the existing estimators in Chapter 5.
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Chapter 3

New Estimators for Censored
Autocorrelated Data

3.1 Introduction

In this chapter, we introduce new estimators of parameters in autoregressive-
(AR) models with possibly censored response rv’s. The reason for these new

estimators is that, in their present form, the currently available estimators |
are only suitable for AR models in which the errors are Gaussian. However,
the Gaussian assumption may not be satisfied in practical applications. If,
indeed, this is the case, the currently available estimators need to be suitably
modified for the specified error distribution. In some cases, the modification
is essentially a re-derivation of the estimator. Hence, extensive preparatory
calculations are inevitable if these estimators are to be applied for error dis-
tributions other than the Gaussian distribution. Further, while problems of
non-convergence in the case of the MLE can be avoided by using the EM-
algorithm or the quasi-Newton algorithm suggested by Zeger and Brookmeyer
(1986), the MLE can be computationaly intensive if high dimensional inte-
grals must be evaluated, as seen in the preceding chapter. The PL estimators
of Zeger and Brookmeyer (1986) and Dagenais (1986) were introduced as al-
ternatives to avoid the computational difficulties encountered with the MLE.
However, consistent estimators of the variances of these estimators are difficult

to obtain. This is because the contributions of the respective likelihoods are
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not independent. Hence, the sums of squares of the individual scores of the
score functions lead to biased variance estimators. Thus, we were prompted to
propose two estimators which not only avoid this variance estimation problem
but also can be applied to AR models with any specified error distribution.
Both these estimators are based on the least-squares estimating function that
would be obtained in the absence of censoring. In one of the estimators, each
underlying time series random variable in the estimating function (one cor-
responding to index time 7, 1 < ¢ < n, say) is replaced by its conditional
expectation given the sigma-field generated by the observed {censored) time
series rv’s with index times 7 < ¢. In the second estimator, the ith sum-
mand in the estimating function is replaced by its conditional mean given the
censoring at the index times j < i. We also introduce a distribution-free es-
timator in which the underlying time series random variable with index time’
{ is replaced by its corresponding conditional mean given the censoring. This
conditional expectation is computed conditional on the censoring at the index
time ¢ and given that the underlying time series random variable at index time
i — 1 is equal to its corresponding conditional expectation which has also been
computed similarly. This sequential computational scheme is applied for all
n time series rv’s, where n is the sample size. The conditional expectations
are computed with the error distribution replaced by its Kaplan-Meier esti-
mator based on the residuals. It is our thesis that these new estimators can
be applied in situations where the autoregressive process is non-Gaussian and
hence are more flexible than their competitors. The distribution-free estimator
has an additional advantage because the error distribution is computed from
the observed time series data. Thus, this estimator can be applied in a wide

variety of applications.

Like the currently available estimators described in the preceding chapter, the
new estimators are for the following model. Define the stationary, ergodic

autoregressive process, {Yi,i € Z}, where Z is the set of integers, by
}/1' = 61/;-—-1 + &4y (3'1)
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where the errors, €;'s, are i.i.d. ~ F, assumed to be known, with mean zero
and unknown variance o®. Further, ¢; is assumed to be independent of the
sigma-field generated by Y;, 7 <i — 1. Let 7; be a sequence of i.i.d. random
variables, independent of ¢;’s. We observe {(Z;, ;),7 < n}, where Z; = Y; AT;,
6 =I(Y; <Ty).

Our interest lies, primarily, with the estimation of the autoregression param-
eter, §, from a single realization, {(Z;,§;),7 < n}. However, estimation of the
variance of the errors, ¢?, is implicit in the estimation process. While focus
in this thesis is restricted to right-censored data from an AR(1) model, our
proposed estimators can be easily extended to the AR(p) model and can be

suitably modified for left-censored data.

The chapter is organised as follows. We begin by describing, in section 3.2,
two estimators for which F is assumed to be known. Then in section 3.3, we ~
present a description of the distribution-free estimator. The descriptions are

presented along with the motivation and justification for these estimators.

3.2 Estimators with error distribution assumed
known

3.2.1 Estimator based on conditional means of indi-
vidual time series rv’s

Let F; = 0{(Z;,6;),j < i}. Define new pseudo rv’s, ¥;*(8)’s, corresponding to

the underlying time series rv’s, Yi’s, by

Y (0) = Ea(¥i|F). (3.1)

H

Let
Xi(0) = Y2 (0{Y(9) - 0Y;L,(0)} (3.2)

Define an estimating function M, () by



Then the first estimator of @ we consider, hereafter referred to as 6";, is the

solution of the estimating equation,
M, (6) = 0. (3.4)

The following result establishes a desirable and useful property of the estimat-
ing function M,(#). This property also means that M,(8) is unbiased and

forms part of the motivation behind the estimator 92

Lemma 3.2.1 Let the estimating function M,(8) be as defined in equation
(8.2.3). Let F; = o{(Y;,T3),7 < i}. Suppose the AR(1) model in section 3.1
is such that e; in (3.1.1) are independent of F;_y. Then {M,(0), F.} is a zero

mean martingale under the probability measure Fy.

Proof

Note that,

E(X:(0)|1Fic1) = Eo{YZ,(0)[¥7(8) — 6V, (9)]1Fi-i}

= Y7 Eo(Y7|Fia) — 0V,

]

since Y;*, is measurable with respect to the sigma field F;_;. Here we are

suppressing the dependence of ¥;* on @. But

Eo(Y7|Fisa) = Ee (Eo(Yi|Fi)|Fizn)
= Ep(Yi|Fia1)
= Ey(8Yio1 + el Fin)
= E{Es(0Yi_, + &i|Fi1)|Fiz1}
= Ey(0Yi_1|Fioy) =0Y7,,

since, Fi_1 C F;, Fi—1 € Fi_y and ¢; is independent of F;_;. Therefore, X;(8)
is a martingale difference sequence with respect to F; and hence M,(#) is a
martingale estimating function. O

The preceding result implies that we can use martingale convergence results
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which includes the central limit theorem for martingales (see, e.g., Hall and
Heyde 1980) to study large sample properties of the corresponding estimator,
g2. This is done in chapter 4.

At this point, having defined the estimator, it seems appropriate to give its
justification before showing how it is computed. Note that in the uncensored

case, the least squares estimator of @ is the solution of the estimating equation

g"(0) = an Vi (Y~ 8Yi) = 0. (3.5)

1=1
The estimating function ¢7(#) is also the optimal estimating function in the

class of estimating functions

G = {g g = iam(l’l - 9}’;_1)} (3.6)

with respect to the Godambe (1985) optimality criterion, where Eg(g) = 0 .
and the coefficients a;.; are functions of Yj,...,Y;_; and 8. According to this
criterion, in the class of unbiased estimating functions, G;, the one which

Es(g2(9))

is the optimal estimating function. By Theorem 1 of Godambe (1985},

)‘9(9)

5(6) = 3 o, (¥i = 0%ica) (3.8)

is optimal according to criterion (3.2.7), within the class G, for the choice

By (3(Y: - 0Y,1)/96|Fi1)

Gt = Ey ((K - 9}’5—1)2|-7_'_f—1) (3:9)

7

where, Fi = o{(Y;,T;),J < i}. But Ep((Y; — 0Yio1)?}|Fiq) = var(e) = o7,

constant, this yields

. —Yia
Cf,l-_l _ 0.2 ) (3.10)
and hence,
92(9) = z Yi—l(Yi - 91’;'—1)- (3-11)



Note that, g*(#) is also the maximum likelihood score function if the distribu-
tion of the errors, F, in the underlying time series model defined by equation

(3.1.1) 1s Gaussian.

Our estimating function in (3.2.3) is a modification of g (@) for censored data.
It is easy to see that the censored data estimating function is obtained by
replacing Y;’s in g (#) by their corresponding conditional means, ¥;*(8)’s, cal-
culated from the observed realization, ((Z:,8),7 < n). Next we describe a

method of computing the Y;*(#)’s and thus the estimator.

In order to compute Y*(0) we make use of Lemma 2.3.1 which states that to

condition on the entire past, it is enough to condition back to the last uncen-

sored observation. Suppose the realization, ((Z;,4;),: < n}, is such that Z; is

uncensored. Let _
Pio = 6iy 000 = Y3,

pii =(1—=6)1—&1).(1 = bisjy1)dicj, 7=1,.51—1, (3.12)

and

@i i(tistioty eos timjen, 43 0)
= Ep(Yi|Y; >, Yie1 > tiog, ., Yioj > tisjn, Yie; = y)
ft?o j:f_j_,.] Sif}’,',...,}'}_j+1|}’,‘__,- (Siv ey 5i—j+lly; 9)H£n=1d5f—j+m

B s Y vin; (Sis s Sicjan |y O) o dsijim

b)

(3.13)

where, fy, . vi_;.Iv;_, 1s the joint density of ¥;, ..., Yi_;41 given ¥;_;. Then
Y7(8) = &Yi+ ..+ (1-8&)(1—&1)..(1 = &) ima(Zi, Ziy,y -, 215 0)
i—1
= D Pivi . (3.14)
—
Notice that Y:*(#) is the observed response Y; if uncensored, or an estimate of it
if censored. If the underlying autoregressive process, {Y;,7 € Z}, is Gaussian,
then
@it ticty oo ticjer, 43 8)
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J e 2 585 [(Z5) 7 (s = mij)] H'il.zldst'—ﬁm .
o 02 6 (B (s — 1)) Wy dSicjm

(3.15)

Here, ¢, is the j-dimensional standard normal density function, s = (8i-jt1, .+ 8:)
is the j x 1 vector of variables of integration and 7;; is the j x 1 conditional
mean vector of the censored observations, up to the tth, given the most recent

uncensored observation, Yi_;. The kth entry of n;; is given by
ik = Bo(Yijur|Yiey) = 0°Yiy, k=1,..J. (3.16)

¥; is the corresponding conditional covariance matrix whose entries are given
by
k-1
Tisety = cov(Yiospn, Yimjuil Yiey) = 0 30 63HR 1> k. (3.17)

=0

Notice that, through conditioning, we can write the joint density, ¢;, as a

product of univariate densities, 1.e.,

$; [(2,)7" (2 = n5)
i —Osi imjy2 — Psi; ieje1 — @
¢1(§—0—1)---¢1(S + a ] +1)¢1(S +a y)

(3.18)

3

where, ¢ is the univariate standard normal density function. This way, we do
not need to compute the conditional mean vectors, 1;;’s, and the corresponding
conditional covariance matrices, £;’s. Hence, the computation of ¥*(#)’s is
made much easier and quicker. The estimator of o2 is obtained as the solution
of the equation

s T (%(0) - 0v2,(0)°

= _ 3.19
g po— (3.19)

Once again this is obtained by replacing ¥;’s by the corresponding ¥;*(6)’s in
the least-squares equation obtained in the uncensored case. Note that ¥;*(8)’s
are functions of o? since they are computed using conditional distributions
of the underlying time series rv's, Y;’s which are themselves functions of &2.

Hence, the equation in (3.2.20) is solved iteratively.

Having defined the estimator and demonstrated a way of computing the ¥;*(8)’s,

43



we are now ready to describe an algorithm that can be used to solve the esti-
mating equations (3.2.4) and (3.2.20). In order to do this, we first note that
(3.2.4) can be re-written to give the form

2i=1 Y*( )YZ"
(0

1...1

) (6)

1
)
Then we can use an EM-type algorithm which consists of the following steps:

1. E step: Given the estimates, 6™ and &2m) from the mth iteration, use

(3.2.15) to obtain Y;*(6(™)’s, the estimates of the censored values.

9. M step: Estimate §(™*1) by plugging in Y;*(#™)’s on the right hand side
of (3.2.21). Obtain &¥™+1) by solving the equation (3.2.20)

3. Iteration: Iterate steps 1 and 2 until succesive parameter estimates do

not change.

As with the MLE, the asymptotic variance estimator of 9;‘,_ we consider, makes
use of its asymptotic results. The asymptotic results for this estimator are

discussed in detail in the next chapter. Under suitable conditions {see Chapter

4)!
E, (X7(8o))

B, (X{(6,)))’
where X;(6) is given by (3.2.2) and X\"(0) is the derivative of X;(8) with

%(9“ —8,) — 2. N (0, ( ) , under Fy_,

respect to #. Hence,

5 Ie(8)
asvar(fy) = —2-, (3.20)
(J2(62))
where,
13(0) = ¥ X0
= Xi: Y 0) (Vi (o) - 91’,-’“_1(9))2, (3.21)
and
Ja(0) = _ZX,-(”(H)- (3.22)



We approximate J:(éﬁ) by using the EM aided differentiation technique men-
tioned in Meilijson {1989) and used in sections 2.3.1 and 2.3.2 of this thesis
to compute J,,,(é:“e) and J,‘f(éﬁag), respectively. This technique uses the trun-
cated Taylor expansion in the following manner: Choose € > 0 sufficiently
small. Expand M, (62) in the neighbourhood of 02 +¢. Then

Mo (82 +€)

£

JH05Y =~ MENEE 4 6) = , 0<8<e. (3.23)

In the next section, we describe the second estimator of (#, 0?) in the censored
AR(1) model defined in section 3.1 with the error distribution, F', is assumed

known but not necessarily Gaussian.

3.2.2 Estimator based on a missing information prin--
ciple

As mentioned in section 3.1, the estimator described in this section differs from -
the one described in section 3.2.1 above in that, the summands rather than
the individual underlying time series rv's Y; are replaced by their conditional
means in the least-squares estimating function of the uncensored case. The
principle of obtaining an estimating function in this manner is referred to as
the missing information principle by Lai and Ying (1994). The estimator,

henceforth referred to as éf,_, is the solution of the estimating equation

Q.(0) = 0. (3.24)
Here,
Q.(0) = ;D,-(G), (3.25)
where,
Di(8) = Bo (Yis (¥ - 0%1)|F) (3.26)

and F; = o{(Z;,8),7 < 1} as in section 3.2.1 above. As with the estimat-
ing M,(#), another motivation for @,(#) is the martingale property which is

summarized in the following lemma.
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Lemma 3.2.2 Let the estimating function Q.(0) be as defined in equation
(3.2.28). Let F; = o{(Y;, Tj),7 < i}. Suppose the AR(1} model in section 3.1
is such that ¢; in (8.1.1) are independent of Fic1. Then {Qn(8), Fn} is a zero

mean martingale under the probability measure Py.

Proof

Note that,

By (Di(0))Fic1) = Ey(Eo(Yiea(Y: = 0Yi0)| %) | Ficn)
= By (Yia(Yi ~ 0Yins )| Fica)
= E(Y,

£y

~15i|Fiz1)
= Ey (Bs (Yl Fior) | Fica)
= Ky (Yi—lEﬂ (Ei[j?i—l) |fi-1) =0, (3.27).

The step from the first to the second line in (3.2.30) follows from the fact that
Fi._; € F, as mentioned earlier. The steps from the third to the fourth and ‘
from the fourth to the fifth lines follows from the fact that F; C F..

As with the estimator discussed in section 3.2.1 above, the estimator, éfl cur-
rently under discussion, is motivated by the uncensored least-squares estimat-
ing function, the optimal estimating function (in the sense of Godambe, 1960)
or the likelihood score function when the underlying autoregressive process,
{Y;,i € Z}, is Gaussian, all of which lead to the estimating equation (3.2.5).
The estimator can be viewed as an extension of least squares estimation in
the censored linear regression set-up which uses a ‘missing information princ-
ple’ of Lai and Ying (1994). In section 2 of their paper, Lai and Ying (1994)
modified the least squares normal equations by replacing the summands in the
estimating functions by their conditional means given the censoring at the cor-
responding data points. Extending this modification to censored time series
requires taking into account the dependence among the observations which
requires bonditioning on the past as well. Qur estimating equation in (3.2.27)

can be viewed as a result of the modification of Lai and Ying (1994) suitably |
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adapted for the time series model defined by equation (3.1.1). The correspond-
ing estimator for ¢? is obtained as a solution of the estimating equation

2 E?:l EB ((Y; — GK—1)2|E)

n—1

. (3.28)

Note that, as with Y; (8)’s, the summands in this equation are themselves func-
tions of o2 and hence the equation is solved iteratively. In order to compute the
parameter estimates, we need to calculate the rv's, Eg(Y;Yio1|F:), Eo(Y2,1F)
and Eg(Y??|F;). This is done in a way similar to that of calculating ¥;"(f)
for the estimator, éi, discussed in the previous section. For two consecutive

uncensored observations,
Eo(YiYia|F) = YiYie. (3.20)
If ¥;_; is uncensored and Y; is censored, then
Eo(YiYi| ) = Y7(0)Yin, (3.30)
and if Y;_; is censored and Y; uncensored,

Bo(YiYiui|F) = VY2, (0). (3.31)

1

If both ¥; and Y;_; are censored then E;(¥;Y;_1|F;) is calculated as follows.
Let

ip{..?'(tf: ti—la vy ti—j+lv s 9)
= Eg(YiYiu|Y; > 4, Yioa > ticq, o, Yisj > tisj, Yoy = )
S B siSic Sy gl (Sis s Sicjaa [y O o dsijam

J o B2 e i, (Sis s Sicin [y )Ty dsijym

)

(3.32)

Then
Eo(YiYio1|Fi) = i i(Zi, Zica, ooy Zicjurs Zimii 6). (3.33)

Eo(Y2,|F:) and Ey(Y:*|F;) are calculated similarly by using the functions,
TLi,j(ti: ti—la Teey ti—j+15 Y 9)
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= EG(Y?_HK >t Yio1 > ticy, e Yicje > tiojp, Yieg = y)
J o B S v, Y le (865 oo Simian |05 O) W dSi—jam

S i s ez (i sicin|y; L5, —1dSi—jsm

3

(3.34)
and
ij(tisticy, o ticig, 03 0)
= Ep(Y2Y: > 15, Yioy > ticy, oo, Yiojra > ticjr, Yiej = 4)
_ fi?o j:’ij+1 Sffy‘ ----- 3’?—;‘+1|Y;_J‘(553 ey Si—j+1 |y§ B)H;Tn=1d3i—j+m
ft?o ft‘f-,.m fY-'a---,Yi—j+1|Yi-.j (‘51'7 ey Si—j+1|y; H)Hiz=1d'sf—j+m ,
(3.35)

As seen before, if the underlying autoregressive process, {¥;,7 € £}, is Gaus-

sian, then,

S¥ir¥ie sal¥ie; (Sis s Sicirly; 0)

8 — 6’8,'_ Sy - 981‘_' 8i_4 — 6
= g (S0 g (B iy (BT (3.36)
[ea [e) fe)

where ¢; is the univariate standard normal density function.

The parameter estimates can be computed iteratively using the following EM

type algorithm.

1. E step: Given the estimates, 60m) and 2™ from the mth iteration,
use (3.2.32), (3.2.33), (3.2.34) and (3.2.36) to compute Ep(YV:¥i_{|F).
Use (3.2.37) and (3.2.38) to compute Eo(Y2,|F:) and Ey(Y?|F:), re-

spectively.

2. M step: Estimate glm+1) by solving the the estimating equation defined
by (3.2.27). Obtain &%(™+1) by solving the equation (3.2.31)

3. Iteration: lterate steps 1 and 2 until parameter estimates converge.
The asymptotic variance estimator for éfl is analogous to the one for 3; It is
given by

asvar(f’) = (3.37)



where,

15(0) = 32 (B (Va3 = 0¥ima)| 7)Y (3.38)

and
Tl

JE0) =3 DMV(9). (3.39)

i=1
JE(@) is calculated using the EM aided differentiation technique used to cal-
culate J2(42) in section 3.2.1. We describe the distribution-free estimator in

the next section.

3.3 A distribution-free estimator

We derive our distribution-free estimator, henceforth referred to as éfl, by
modifying the log-likelihood function obtained from pseudolikelihood of Zeger
and Brookmeyer (1986), pl.s. This modification yields an estimating function
that would be optimal in the least-squares sense had there been no censoring.
Therefore, the resulting estimating function applies for AR(1) processes with
any error distribution, F' = Fy,y,_,. To illustrate the modification, note that

the score function for # derived from pl; is given by

°.. 0 . . = .
Bl phi /00 = 3 8istnfrpioa (ZilVics) + (L = 8) g5 InFa(Zi, Vi),
=2

Here, the differentiation is performed first and the evaluation at a point(s)

next and F(t,u) is given by (2.3.33) in section 2.3.2. That is,

At = [ fumes(slu)ds.

Let
Cy018) = B Fpinrecs (AIY ) > 1Y = ).
Then
E%‘fnﬁl(zuﬁ—l) = ((Z;,Yi1;8). (3.1)

A similar observation was made by James (1986) for censored 1.i.d. data. Note

that if the underlying AR process, Y;,z € Z, is Gaussian, then
a
a5 v (HilYier) = 1/0*Yi(Yi — 0Yim), (3.2)
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and as a result,

((Z:, Yie1;8) = 1/0*Yi1(Y; — 0Yica), (3.3)
and hence the score function (2.3.36). This suggests that a least-squares ana-
logue of the score function (3.3.1) which applies for an AR(1) process with
any distribution is given by the same form (3.3.1) but with Infy v, (YilYic1)
replaced by (Y; — 8Yi_;)®. As with the PL estimator of Zeger and Brook-
meyer (1986) where the AR process is assumed to be Gaussian, estimating ¢
using this estimating function is equivalent to using the standard AR(1) fit-
ting techniques (e.g., Box and Jenkins 1970) on the filled-in (pseudo scores),
V:. Hence, in a similar way that the Buckley-James method is motivated by
the expectation identity in (2.2.4), our method is motivated by the following

result.

Lemma 3.3.1 Let {Z;,i € Z} be a possibly censored AR(1). Denote the
underlying AR process, by {Yi,i € Z}. Let the F = Fy;y,_, be the error
distribution of the underlying process. Let G(-) be the censoring distribution.

Define a function @; such that
5 sdFyyi, (slw)

) = TR e ()

Then
Eq (6Y: + (1 — 8:)@:i(T3, Yia|Yiny)) = Es(Yi|Yioy) = 0Yi.
Proof
Ey (6:Y: + (1= 8)3:(T5, Vi [Yi))
= /_O; Eg[6:Yi]Yio1, Yi = s]dFy v, (s[Yiz1)
+ [ Ball = 8)p(T; Yie)[Yier, T = 114G (1)
But

Ey [6:Yi]Yio1, Y = 5]
= sE [I(Y; <T3)|Yio, Yi = s
= 5[l —G(s)]
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and
Ep[(1 — &)@i(Ti, Yisn)|Yica, Ti = £
@it Yim1) By [I(Y: > T)Yier, 5 = 1]
Gi(t, Yiea)[l — FYi|Yioi (¢Yim)]

Therefore,

Ep (6:Y: 4+ (1 — 6)¢u(T1, Vi1 |Yis)))
- /_23[1‘ G(s)|dFy,y,_, (s]Yim1)

i sdFyy,, (s[Via) _
+/*°° [ I — Fyyi, (Yio1) ] (1 — Fyy,, (Yio1)]dG(2)

= [ slt— Gl)ldFrp, sl¥is)
+/ Us ]deym  (s/¥iea)
=j s[1 — G(s)]dFyy.., (s|Yie1)
n / s)dFy,y,_, (s|Yi1)

— /_00 SdFK|},€~1(3lK_1)
= Eg(Yilyw-l) [

Since F(-) is unknown, the method replaces the censored observations in the
standard AR(1) fitting techniques by their estimated conditional expectations
calculated using the Kaplan-Meier product limit estimator of F(-) (Kaplan
and Meier, 1958, Efron, 1967, Miller, 1981) in the manner described next.

Assume the first observation, Z,, is uncensored and define sequentially,

V0 = Y, if &=1, (3.4)

@(Tuﬁt-l(g):g)? if & =0,

where (¢, u; 8) is an estimate of the conditional expectation Ep(Y;|Y; > ,Yi; =
u), calculated using the Kaplan-Meier product limit estimator of Fy(-) in the

following fashion.
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Let
e{v; ) = Z; — Bu, 1=2,...,n, (3.5)

and let

Fu,@('s) =1- ] (ﬂ_)s(i) ; (3.6)

fegy(wt)gs VT 1+ 1
denote the Kaplan-Meier product limit estimator calculated from the e;{u; 8).
Here, ¢(;)(#; u) is the ith ordered observed residual and §; its associated in-
dicator. F,4(s) is defined in such a way that if e()(u;#) is censored, it is

changed to be uncensored.

The function $(,u;8) is given by

G(t,u;8) = Eo(Yi]Y:>t,Yie =u) (3.7)
> sdF,
= gug Jemsasthuels) o o em(u: 6),
1~ Fy,o(t — Ou)

= ¢, if t—0u>eny;b).

Note that ¥;*(#) is the observed response Y; if uncensored, or an estimate of
it, based on the Kaplan-Meier product limit estimator of Fy(-) calculated from
the residuals e(;)(u; @) if censored. The estimator é; is obtained by attempting

to solve the estimating equation

SV (0) (7 (6) — 0¥,(8)) =o. (3.8)

=1
If we define
wa(0) = 3 Vi (0) (V7 (6) — 0Y:2,(9)) (3.9)
1=1
then (3.3.10) is equivalent to
we{6) = 0. (3.10}

The corresponding estimator of o? we consider here is the solution of the

estimating equation

2 ?—1(?{* _ tg};:‘11‘—1)2

o — (3.11)

This equation is obtained by replacing the ¥’s in the least-squares estimating

equation for o2 by their corresponding conditional means, V:*’s, based on the

52



Kaplan-Meier estimator of the error distribution F(-). Note that, Y*'s are

functions of o? as it is the variance of F(-).

The parameter estimates of # and ¢* can be obtained by using the followin
P g &

EM type algorithm.

1. E step: Given the estimates, 6(m) and &™), from the mth iteration, use

(3.3.7) to obtain ¥*(8(™))’s, the estimates of the censored values.

9. M step: Estimate §(m+1) by substituting ¥;"(8(™)’s into (3.3.12). Obtain
&20m+1) by solving the equation (3.3.13)

3. Iteration: Iterate steps 1 and 2 until succesive parameter estimates do

not change within a specified error bound.

Note that to start the iterative procedure, ‘_;’;* is set equal to Z;, initially. As |
with the Buckley-James estimator, convergence is not guaranteed. Since wn(#)
is discontinuous in 8, an exact solution need not exist, and even if it exists,
it need not be unique. It was observed in a preliminary Monte Carlo simula-
tion study conducted with this estimator that, sometimes the iteration settles
down to oscillation between two values. However, these values stay very close
to each other, with the maximum difference being in the order of 1073, When

this happens, we take the average of these values.

The asymptotic variance estimator of é; used in the simulation study in Chap-
ter 5 is analogous to the one for the modified Buckley-James estimator pro-
posed by Lai and Ying (1991). It is given by

5 Ie(é:)

asvar(0;) = —3, (3.12)
(Je(d2))

where,
1) =3 (¥2.(8) (F7(0) - 0%:2,(8) (3.13)
and

JE0) = wP(8). (3.14)



JE(82) is calculated using the EM aided differentiation technique used to cal-

culate Jg(ég) in section 3.2.1.

L

To conclude the chapter, we compare the three new estimators, én, éi and éfl
on the basis of the principles used in their derivation. The main difference
between 62 and §2 was given in the introduction of this chapter (section 3.1).
The estimator é; is obtained by replacing each of the time series rv’s ¥i’s in
the least-squares estimating function obtained in the uncensored case by its
conditional expectation given the sigma-ficld generated by the censored time
series (Z;,6;),7 < 1. On the other hand, Gf; is obtained by replacing each of
the summands (sth, say) in the estimating function for the uncensored case by
its conditional expectation given the sigma-field generated by (Z;,6;),7 < 4.
The distribution-free estimator, 62, is similar to 6% in that each Y; in the
least-squares estimating function obtained in the uncensored case is replaced -
by its conditional expectation given the censored data. The difference is that
in obtaining §¢, the pseudo random variable which replaces ¥;’s is calculated
conditional on the censoring at the index time ¢ and given that the time series
random variable at index time ¢z — 1 is equal to the corresponding pseudo ran-
dom variable. Another difference is that to obtain é:, the pseudo scores are
calculated with the error distribution function replaced by its Kaplan-Meier
estimator. This means that 9; can be applied in a wide variety of practical

applications.
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Chapter 4

Some Asymptotic Results

4.1 Introduction

In this chapter we establish the large sample properties of the two new esti-
mators, described in Chapter 3, for which the form of the error distribution of-
the AR(1) process is assumed to be known. These estimators are f® and °
and their descriptions are given in sections 3.2.1 and 3.2.2, respectively.. As -

in section 3.2.1, éf{ is defined as the solution of the estimating equation

M,(6) = 30 X:(6) = 0, (4.1)
where
Xi(0) =Y2,(0) (Y7(8) — 6¥;2,(9)) , (4.2)

Y (8) = Fs(Yi|F), Fi = o{(Z;,6;), 7 £ ¢} and the Y;’s are the underlying
time series rv's of the AR(1) model (see equation 3.1.1). We show that if
J4 > 03 Ep|V:[*0+) < oo, then n=5M,(6,) is asymptotically normally
distributed. A corollary to this, making use of a kind of Taylor expansion,
is that if the corresponding estimator, éz, is consistent then n;'(ég —48,) is
asymptotically normally distributed, where 4, is the true value of 8. We also

establish and discuss conditions under which #2 is consistent. As in section

3.2.2, the estimator éf,_, is defined as the solution of the estimation equation

Qu(6) = - Di(8) =0, (13)
where,
Di(8) = By (Yia(Y; — 0Yi1)|F). (4.4)
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We show that if the same condition, Ey,|Y;]%+) < oo, for some v > 0 stated
above holds, then n"i Q.(8,) has a normal distribution, asymptotically. By
a similar Taylor expansion as in the case of éﬁ, a corollary to this result is
that if é,’; is consistent, then n%(é’f1 — 8,) asymptotically normally distributed.
Note that the condition Ey, |¥;]*1*" < cc for some v > 0 is equivalent to the
condition that 3 v > 3 Ey,|e;|4!*". To see this, one uses the infinite moving

average representation of the AR(1) process to obtain ¥; as
Yi=> #ey, (4.5)
=0

and the stationarity of the process, |#] < 1 to reach the conclusion Ejle;|?
< o0 <= E|Yi|P < oo. All of the asymptotic results for §2 are presented in

section 4.2 while section 4.3 discusses the corresponding results for 82,

4.2 Estimator based on conditional means of
time series rv’s

4.2.1 Asymptotic normality

The proof of the asymptotic normality of n"i M, (8,) is divided into several
lemmas. In the sequel, we state and prove a lemma that establishes the sta-

tionarity and ergodicity of the process {Y;*(8),€ Z}.

Lemma 4.2.1 Let {Y;,: € Z} end {T;,i € Z} be two stationary, ergodic

processes, each on (RZ,BZ). Define a new bivariate process,

Qi = ((Z;,&;),(Z;_*_l,(6{4.1)),..-), 1€ Z)

Z,' = mm(Y:, T{), (5,‘ = I(K S T1)
Let U, be the measurable function on (R?)™° — R defined by
\Ill((j:t': yi)1 (Ii—17 yi—l): )
= I; if h = 1,

= /_m UIYi(Z0 5 Zimrsbsor)onn (W (E0 W), (Tim1, ima), o)Ay i 4 = 0,

= 0, otherwise.
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Then

(a) {C;} is stationary and ergodic.

(b) the process, {Y*(0),i € Z}}, defined by
Y = U1((Z:,6),(Zio1, bica), o),

1

is stationary and ergodic.

Proof of Lemma 4.2.1 (a)
The proof makes use of the ideas of Propositions 6.6 and 6.11 of Breiman
(1968) (see Propositions A.2.1 and A.2.2 for details). Let ¢, and @, be two

functions such that each is (R?)*® — R measurable and
e1((zi, v1), (Tig, Yiga), o) = min(zi, i),
wal(zi, yi)s (Tig1, i), ) = 01 o Sy,
= 1if z; > wy.
Then,
o1((Y:, ), (Yigr, Tia), -..) = min(Y;, T3) = Z;,

6 = 0 (Y3, T3), (Yigr, i), ) = 0 i T3,
= 1ifY,>T;, 1€ 2,

(‘F’I((-’Ei, yf)ﬂ ($i+1ayi+1)1 )7 992((1:1'! yi)’ ('I"f+11 yi+1)’ ))

is (R?}** — R? measurable. Let

o = ((pr({z1, 1), (22, 92), - ) w2l (z1, 1), (22, 92), ),

(w1((z2, y2), (23, ¥3), - ), pal (22, y2), {23, 43), -.)), -o0)-
Then ¢ is (R?)*° — (R*)*™ measurable. Let
Qi = ((K:Ti): (K‘+1,Ti+1)a )a
and note from the statement of the lemma that
C; = ((Z:,8:), (Ziv1,6i41), -.)
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Then ¢(U;) = C;. Let A be an invariant set of
((Zi,6:), (Zigr, 6i41), )

Then 3 B € (B)™ 3
A=CYB), Vk>1i.

Let
D = o7(B).

Then D is (B?)* measurable by the measurability of ¢. But Cj = @(Uy)

implies
A= Ci\(B) = U (o™ (B)) = Ui (D), Vk =i,

This implies that every invariant set of C; is an invariant set of I/;, « € Z.
Now, since U;, i € Z is stationary and ergodic, this implies that C;, 1 € Z is -«

also stationary and ergodic. O

Proof of Lemma 4.2.1 (b)
Let

‘I' = (‘1’1((31:91),(-'»"2:92): )) \Dl((xhy?): (:1’,‘3, y3)1 ): )
Then ¥ is (®%)® — R* measurable. Let
Qi = ((Ziaéi)j (Zi—la(si—l)) )

and

Let A be an invariant set of Y7, Then 3 B € B* >
A=Y:(B), Yk >i.

Let
D =3"YB).
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Then D is (B%)* measurable by the measurability of ¥. To proceed,.
Y5 =w(C)
implies
A=Yy (B)=Ci(¥N(B) =Ci\ (D), VR <.
This implies that every invariant set of ¥ is an invariant set of C;. Since

by lemma 4.2.1 (a), C; is stationary and ergodic, this implies that Y7 is also

stationary and ergodic. O

In the next lemma, we establish that if M, (@) is the estimating function in

equation (4.1.1) then n™*M,(6,) converges to zero a.s. under Py, .

Lemma 4.2.2 Let {Y:,i € Z} be a stationary and ergodic AR(1) process. Let
M,(0) =" Xi(6)
i=1

where

Y (0) = Eo(Yi|F:), Fi = o{(Z;,55), § < i}. Suppose Eo,|ei® < k < oo, for
l1<p<2 Then

n"I M, (8.) X35 Ey {X1(0,)} = 0, under P,

Proof
For convenience, let E and X; denote F, and X;(8,), respectively. Since
{M,(6,}, Fn,n > 1} is a martingale by lemma 3.2.1, we have by Theorem 2.18
of Hall and Heyde (1980) (see Theorem A.2.1 in the appendix for details), that

for 1 < p<2,

lim n ' M, (0,) = 0, as., under Pp,,

n=—0o0

on the set {52, : PE(|Xi|P|Fi—1) < oo}. Therefore, we only need to show
that the condition, {2, : P E{|Xi|?|Fi_1) < oo}, holds a.e. We show this

next.
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It suffices to show that

E (Z 1T PE (|X;|p|f',-_1)) = Zi_pElX,-lp < o0,
=1

i=1

Now,

EIXP = BIY:, (Y, —0.Y7,)F
= F

VY, — BOGYLFo)|
P

by Minkowski’s inequality. But

2p
3

By, < Bb iy

*
YL

by the Cauchy-Schwartz inequality. Furthermore,
E|Y;1” = E|E(YIF)" < E (E(YiI*I1F)) = B < &,

by Jensen’s inequality and the condition of the lemma. Therefore,

p

E <k

VY

i

Similarly,

4

E|E (YR < B (B (v, Yy, <k

V7)) =

by Jensen’s inequality and the result above. This gives
BIX:P < (kF +k#) = 2k < co.
Hence,

Zi_pE|Xi|p < Zi_PQPk=2pk2i'p<oo, for p>1. O
i=1 .

1=1 =1

Alternative proof of Lemma 4.2.2

Note that by Jensen’s inequality,

E|Y;[* = E|E(Y.|F)* < E{E(IY[*|F.)} = EIYLP,
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and by Minkowski’s inequality,

EX|(Yy = 0,7 < EX Y7 + EF |[E(YV A
< EHYP+ BH{E(YPIR)}

= EHYP+ BT <2BRY) = 2\/——0—‘*—5-
1— Q

Therefore, by the Cauchy-Schwartz inequality,

E|X| = EIY (Y] = 0,Y])|

0.2

1- 62

< EXYSPER|(Y) - 6.2 <2 < 0.

Using the preceding result, E|X;| < oo, the lemma follows by the ergodic
theorem (see Theorem A.2.3 and Corollary A.2.3 in the appendix for details)
since {¥*(6,),7 € Z}} is stationary and ergodic by Lernma 4.2.1 (a). O

Since {M,(#), F,} is a martingale, Theorem 3.2 of Hall and Heyde (1980) (a -
CLT for martingales, see Theorem A.2.2 in the appendix for details), provides
general conditions under which the asymptotic normality of n"1M,(8,) holds.
A corollary to the theorem (Corollary 3.1 of Hall and Heyde 1980, see Corollary
A.2.1 in the appendix for details), replaces the conditions by a conditional
Lindeberg condition and a condition on the conditional variance. Hence, by
the Corollary, if the conditional Lindeberg condition,

Ve >0, nt anE [X?I(|X,-| > s\/ﬁ)|}1_1] £, 0, (4.1)

i=1

and a condition on the conditional variance,
nt Y E(X?|Fin) = B(XD), (4.2)
t=1

are both satisfied, then the asymptotic normality of n'%Mn(HO) follows. In
the following proposition, an equivalent condition to the condition (4.2.1) is

given. This equivalent condition will be proved rather than (4.2.1).

Proposition 4.2.1 Let {Y;,1 € Z} be a stationary AR(1) process. Let

Xi(0) = Y7, (0) (Y7 (0) ~ 0Y2,(9))
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where Y(8) = Ep(Yi|F), F = o{(Z;,68;), 7 < i}. Then the conditional

1

Lindeberg condition
Ve >0, n'SE[XPI(Xi| > evn)|Fi] Do 0,
=1
is equivalent to the condition

VYe>0, nt Zn: E [X,-ZI(|X,-| > e\/ﬁ)] — 0. (4.3)

Proof
Note that if
E (n_l ZE [X?I(|X,-| > s\/ﬁ)lf)_w])
i=1

= WU B [XPI(IX] > V)] — 0,

=1

Then

nt SO E (XA X) > ev/n)|Fia] 2500,
=1
which implies

n~? zn:E [(X21(1X:| > e/m)|Fica) S5 0. D

=1

Before we give an equivalent condition to (4.2.2), which we shall prove instead
of (4.2.2), we first state and prove a lemma that will be used in the proof of

the equivalence of the two conditions.

Lemma 4.2.3 Let {Y.,7 € Z} be a stationary and ergodic AR(1) process. Let
Xi(6) = Y71(0) (Y7 (0) = 0¥, (9))
where Y7(8) = Eo(Yi|F)), Fi = o{(Z;,6;), 7 < i}. Suppose Ele;|*(+7) <

)

k < oo, for some v > 0, k constant. Then E |Xf|(1+ﬂ < 220tk < 0.

Proof
For convenience, denote ¥;*(8,) by ¥;*. Then

E |X3|{1+7) = F

2(14)
Yo, (Y - Bl Fe))|

—E 2(147)

VoY, — E(YrY2 | Fin))

1+ 1 2(1+7)
< {E2 o Y Yr, [20+) 4 pres E(Y’_*};:1|f}_1)|2(1+‘r}} ’
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by Minkowski’s inequality. But

wrre |2(1HT) 20147) ¢ 2(147)
By, = E|y;"vET

4(14+7)

< BRI B

Y
by the Cauchy-Schwartz inequality. Further,
V2[4 = |EV|F) O < B (v E)
by Jensen’s inequality. This implies
EY: ") < Bl <k,

by the condition of the lemma. This in turn implies that

2{14+)

By <
Similarly,
B (vr¥e 7o) < E ( yveye, [t |f.-_1) ,

by Jensen’s inequality. This gives

BB (YrveFia)[ 7 < Blvrve, [T < k.
Therefore,
2(147)
EIX},I(IH) < {ngr_ﬂ_i_km}

22+ O

Next, we give the equivalent condition to (4.2.2).

Proposition 4.2.2 Let {Y;,1 € Z} be a stationary and ergodic AR(1) process.
Let

Xi(8) = ¥, (0) (¥7(6) - 0%2,(9)) ,
where Y;7(8) = Eo(Yi|F), Fi = 0{(Z;,6;), 7 < i}. Suppose E|ef**") < k,

for some v > 0, k constant. Then the condition on the conditional variance,

n'Y E(XP|Fio) 5 E(XD),
=1

is equivalent to the condition

nt ixﬁ - E(X}). (4.4)
=1 . .
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Proof
We need only to prove that

1an( E(X}Fi)) 0.

i=1

Note that
{Z (X2 — E(X2Fin)) s Fuyn = 1}
i=1
is a martingale. Therefore by Theorem 2.18 of Hall and Heyde (1980) (see
section A 2 of the appendix),
Y (X2 — B(X|Fi)) 250, under B,

=1
on the set

it (|X3 - B(X2Fe)| |f,-_1) < oo.

i=1

Now,
B|X? — E(X}|Fin)

<{p

by Minkowski’s inequality. But

|+‘v

T4y
ExFA[ T

+ _1
X,?| ET+

E lX?i(l-PY) S 22(1+.y)k,
by lemma 4.2.3. Similarly,

|(1+"r}

E]E(X,?Lr,._l)‘”"’ <E (E(!X'?[”" |}',-_1)) - E|x? < g

by Jensen’s inequality and lemma 4.2.3. Therefore,
E|X} - E(X}|Finy)
< {(22(1+'y)k) T+ + (22(1+w)k) Ji_‘f}

Aoy Iy
= {2 (22(1+’r)k) 1+v} = 2t+v92(1+e)p — 93(1+)

IH—T

147

Hence,
Zi-{1+‘r)E (|){2 E(X}F.- )| e ].7'-;_1)

< 23+ Zr“*’” <oco. O

1=1
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The following proposition establishes that the conditions (4.2.3) and (4.2.4)
hold for the martingale difference sequence {X,,n > 1} given by equation

(4.1.2).

Proposition 4.2.8 Let {Y,,7 € Z} be a stationary and ergodic AR(1) process.
Let

Xi(0) = Y, (0) (¥ (6) - 0¥, (0))

where Y;(0) = Eo(YilFi), Fi = 0{(%;,6;), j < 1}, Suppose Elef*™* <

k < oo, for some v > 0, k constant. Then
() Ve >0, n= T, E[XP(Xi] > /)] — 0.
(b) n_l ?:1 X12 -"P_) E (XE)

Proof of Proposition 4.2.3 (a)

E (X (1X:] < ev/n))
< B X100 575 (11X > ev/n))
< 4kTH (m?xP (|X;| > s\/ﬁ)) 5

by Holder’s inequality and lemma 4.2.3. But
m?xP (|X,-| > E\/'r“_l) — 0 as n — oo,
since
max P (|X,-| > s\/ﬁ) =0 (n_2(1+"’))

by the corollary in section 1.14 of Serfling (1980), p.47 (see Corollary A.2.2 in
the appendix for details), since E|X?| < oo by lemma 4.2.3. Therefore,

VS E (X (X > evm)) Do, O

=1
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Proof of Proposition 4.2.3 (b)

Note that the process, {¥Y7,7 € Z} and hence {X;,¢ € Z} is stationary and
ergodic by lemma 4.2.1. Also by lemma 4.2.3, E(X}?) = E(X}) < oo. There-
fore the condition holds by application of the ergodic theorem (see Theorem

A.2.3 and Corollary 4.2.3 in the appendix). O

Theorem 4.2.1 Let {Y;,1 € Z} be a stationary and ergodic AR(1) process.
Let

ML(8) = 3 X:(0),
where,
Xi(0) = Y7, (8) (Y;*(6) - 0Y72,(0)) ,

Y 0) = Eo(Yi|F), Fi = 6{(Z;,6;), 7 < i}. Suppose Ep,|e;|** ") < k, k < oo,
for some v > 0, k constant . Let é;‘; be a consistent solution of the estimating

equation M,(8) =0. Then

(a) n"%Mn((?o) is asymptotically normal, i.e.,

s My(0,) =5 N(0, Eg,(X}(6.))), under P,

(b) The asymptotic distribution of é;‘t is the normal distribution, i.e.,

E(X?)
"B xiY)

(ST

nz (02— 0,) = N(0 ), a.s. under Py,

where X; is an abbreviation for X;(0,), X,-[l) for X,-(l)(ﬁo) and E for E,,.

Proof of Theorem 4.2.1 (a)

Since {M,(#), Fn, n > 1} is a martingale by Lemma 3.2.1, the result follows
by application of Corollary 3.1 of Hall and Heyde (1980) (Corollary A.2.1 in
the appendix for details). As noted earlier, this requires the verification of

the conditional Lindeberg condition (4.2.1) and the condition (4.2.2) on the
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conditional variance, which are equivalent to (4.2.3) and (4.2.4), respectively.
The latter conditions are verified in Proposition 4.2.3 under the condition of
the Theorem, Ey,|z;[*!*" < k, for some v > 0 and k& constant. Hence, the

result. O

Proof of Theorem 4.2.1 (b)

We obtain the Taylor expansion of M, (éﬁ) about 8, as follows.

—n"2 M, (8,)
= n(% - 8,) {n—l ) [xO0) ~ E(xP0.))] + E (X{”(ao))}
~n"7 M,(8,)
o nl T, [X106;) - B (X{V(0.))] m
e L I e
Letting
Tl [y(g (1)
P> [xe;) - E (xt (ea))],
E(x{(0,))
we have
—n~7 M,(6,)

nz(f2 - 8,) =

(R.+1) E (X{V(6.))

If 2 is consistent, then for large n, n~t ©°, X!")(62) behaves liken=! T2, xM(6,)

=1

since 8, < &% < é; and éz tends to 8, in probability or a.s. under Fy,. But
n! EX,-(U(BO) — E (Xl(l)(ﬁa)) , a.s. under Py,
=1
by the ergodic theorem. Therefore,

R, £, 0, under P,.
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Hence, by the asymptotic normality of n~% M, (6,) (Theorem 4.2.1 (a)) and the
convergence of n~! 3 " X,-(l)(ﬁo) to a constant as indicated above, the result

=1

is established. O

4.2.2 Consistency

In this section, we investigate conditions under which the estimator é;, which
is the solution of the estimating equation M, (#) = 0, is consistent. Here M,(8)
is given by equation (4.1.1). Hutton, Ogunyemi and Nelson {1991) have used
a condition (see section A 2 of the Appendix) for the a.s. existence of a
consistent solution of an estimating equation similar to the one discussed in.
this section. This condition is based on the Brouwer fixed-point theorem and
was proved by Aitchson and Silvey (1958). In the context of the estimating -
function M,,(8) with @ being one-dimensional, the condition can be written as

follows. If M,(9) is continuous a.s. in # and if for all sufficiently small 6 > 0,

limsup M,(#) < 0, for 8 >6,, 8, —6<80<d,+54,

n—oo

liﬁgf M,(8) > 0, for 80<8, 8,—-86<0<b,+4, (4.5)
P, , a.s., then M (8) = 0 has a consistent root, é;, in {6:]0—6,] <6}

Since the process, {Y;*(8),7 € 2} is a stationary and ergodic process, we have,

by the ergodic theorem,

lim n™'M,(0) = Es,(X1(8)), (4.6)

=+ 00

P;,, a.s. Therefore, the condition (4.2.5) translates to

Eo,(X1(0)) < 0 for 6 > 8,
Eg,(X1(8)) > 0 for 0 <4, (4.7)

Let 9(#) = FEy,(X1(0)). Then by Taylor’s expansion of $(f,) about 6,, we

have

B(8) = B(00) + (6 — 6.)9V(0"), (4.8)
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where 0 € {0 : |0 — 8,] < &}. Since Xi(#,) is a P, martingale difference,
#(8,) = 0. Hence, by (4.2.8) the condition in (4.2.7) translates to

»(6") < 0, (4.9)

and since we are interested in the behaviour of ¥(#) in a small neighbourhood

of 8,,

p(9,) <0, (4.10)

[+3

is a sufficient condition for the consistency of én.

Note that
pI0) = B {X{(9)}
= B {-Y; (0) + Y7 (o)1 (6) — 0¥5"" ()]
+Y;V(0)[¥r (0) - 05 (0)]). (1)

If we let E = Eq,, Y* = Y*(6) and ¥ = ¥(4,), then

0,) = E{-Y7}+EOGY - 6y, + B - 6.5])
= E{-Y"}+ E{y; 7} - LBV Rol)
+E{Y; P [E(Yy|Fo) ~ 0.¥51}
- E{—Y;‘g + YD*YI,.{I) _ Yoz(l)yl.}- (4.12)

Using the preceding simplification, we consider two approaches in verifying

the sufficient condition in (4.2.10). The first approach is outlined below.

We examine the distributions of the random variables, YO”‘YI*(I) and Y;,*(”Yf. If
these random variables have identical distributions, then the condition is sat-

isfied since E[Y7Y"" = ¥7Y] = 0 and $(1(4,) = —E(Yy") < 0, as desired.

A property that holds for some stationary process that could be utilised in

this approach is time reversibility and this is defined next.

Definition 4.2.1 (Weiss, 1975) A stationary process, {X;,1 € Z}, is time
reversible if {(Xi,,.... Xi,) ~ (X_i, ..., X_4,), for every n.
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All stationary Gaussian processes are time reversible (see, e.g., Weiss, 1975;
Rao, Johnson and Becker, 1992 or Cambanis and Fakhre-Zakeri, 1996). There-
fore, if the AR process, {Y;,7 € £}, is Gaussian, then it is also time reversible.
If the process, {Y;,7 € Z}, is time reversible, then

E(YfIK—l,YE-z, ) = E(Y,—|K—+1,K+2, ) (4-13)
A stationary process for which (4.2.13) holds may not be time reversible. First-
order time reversibility, (Y;_1, ;) ~ (¥;, ¥;—1), implies

B(V:I%) = E(Ya). (4.14)
For our process, {¥",i € Z},

E(YyYy) = E{E}?[YS]Fo}

= E{E[Y]|F]IY5}

= E{f.Y7[¥J}

— 0.y, (1.15)
since, o{Yy} € Fo. It is not obvious whether first-order time reversibility
holds for the process, {¥;*,7 € Z}. If it holds, then

E{Y7 Yy} = 8,17, (4.16)
and

w2 1) g rx e
$(8) = —E{¥ )+ B{ENGY V) + E{ELY YY)

* «1) £ * «(1} - *

= —B{Y;"} + E{y U ENGIY) + B{YS E[YT1Y])
—B{Y5"} + E{OY Y} + E{0.Y5 Y )

= —E{¥Y;} <0, (4.17)

by stationarity, verifying the sufficient condition for consistency of é;. How-
ever, as noted earlier, the sufficient condition in (4.2.16) could still hold even

if the process is not first-order time reversible.

The second approach in verifying the sufficient condition in (4.2.10} is outlined
in the sequel. To condition on the entire past, we need only to condition back

to the last uncensored observation, by the Markov property. Hence,

oo

Yo(8) = Y pox worx(To, Ty, oy T-kct1, Yor30), (4.18)

K=0
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where, K is the number of steps to go back to find an uncensored observation,

Poo = éa, wop = Yp, and VK > 0,
poge = (1 — &) (1 —é-1)..(l — 6_ps1)bk, (4.19)
and
wokc(to, -y t-K41, 8-k )
= Ey(YolYo > to, Y1 > b1, Yo > tokp1, Yor = 52K)- (4.20)
Consider the special case where the ;'s are normal with unit variance and let
No g (toy .y tor 41,5 K'H)

= [T SOHqssm—es eston) T doorca (4.21)
] K41 .

= =1

and

Do k(to, -y - K+115 K;9)

/ _/ H¢(5 K+l — 05 - 1)Hds K415 (4.22)

—K+1 =1

where, ¢ is the univariate standard normal density. Then,

Nox(to, oy t—r41,5-K38)

to, ot ki1, 8-k 0) = . 23
o (fo, K1s $-r36) Do x(to, s t-K41,3-K30) (423)
Further, let
w=-Y" + vy - vy (4.24)
then,
$(g,) = EW) =5 E(W|K = )P(K =1
=0
= Y (=hoa + posrt] = bl o) PUC = ). (4.25)
=D
Here,
) DoxN§) = DY)Nos
) = 20K TR D8 vk > 0, (4.26)
Dg
where,
N(l}(to, st_kg1,5- k; 0 / / {305 k+i— 1(3 k+!““903 k+i- 1)
Eekt1 |21
k
T #(s—s+t = Bos—ksi-1) H ds_kii}, (4.27)
=1 ) =1
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and

D(l)(to, ytokt1, 553 0 _/ /t Z{S k=1 (S kgt — 08 _ggi-1)

k41 J~q
k

H P8kt — OoS_pti-1) H ds_k41}, (4.28)

=1 1=1
are obtained by differentiating inside the integral. Using the preceding nota-

tion, we have

E(W|K = 1)
¢(tl - goyb) _ 451 (tl - GOYEJ)
®,(t; — 6.Yo) D, (t, — 6,Y0)

= Y5 {(t: — 0.Yo) )} (4.29)

where, ® = 1 — ®, ® being the standard univariate normal distribution func-

tion. Note that

LHlz) _ 9lz)
() B

)2 <0, Va. (4.30)

To see this, note that since ®(z) > 0 ¥z, then showing the above is equivalent
to showing that

b(@) A
T Ey T T

<0,

or that

Then
gz} = —z4(z) + B(z) + zd(z) = B(x) > 0
But

lim g(z) = 0.

r—oo

T2



Therefore,

g(z) €0, V.

Hence, we have shown that for K = 1, the condition the sufficient condition

for consistency, (4.2.10}, holds.

Remark: As noted by Robinson (1980), the sampling scheme may be ‘periodic’,
so that the same missing-observed regime is repeated. Suppose that the time
series is censored rather‘ than missed and there is at most one observation
in each censored component -of the censored-observed regime. Then for such
a scheme, the argument presented above, based on the second approach in
verifying the sufficient condition for the consistency of Ej,‘i in the normal case,
1s adequate. Thus, for this special case, 9; is consistent by the above argument -

and asymptotically normal by Theorem 4.2.1.

4.3 Estimator based on a missing informa-
tion principle

4.3.1 Asymptotic normality

In this section, we prove the asymptotic normality of ns @n(f,), where
Q.(8) = 0 (sec equations (4.1.3) and (4.1.4)) is the estimating equation for
which 8% is the induced estimator. As a consequence of this result, we show
that if éﬁ, then n%(ﬁﬁ — 6,) is also asymptotically normally distributed. As
with the proof of Theorem 4.2.1, the proof of the asymptotic normality of n-3
Q.(0,) is also divided into propositions and lemmas. We have already estab-
lished in Chapter 3 (see Lemma 3.2.2 ) that {@.(8), Fn, » > 1} is a martingale
under the measure P;. Therefore, our proof makes use of martingale conver-
gence results (see Theorem A.2.2 of the Appendix for a CLT result of Hall
and Heyde, 1980). More specifically, we apply Corollary 3.1 of Hall and Heyde
(1980) which requires the verification of the conditional Lindeberg condition
and a condition on the conditional variance. A simplification in verifying the
condition on the conditional variance is accomplished by showing that {D;(8),

1 € Z} is stationary and ergodic. Then using this result and the ergodic theo-
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rem to show that the condition holds. The stationarity, ergodicity result and
the ergodic theorem also enable us to prove the convergence to zero a.s. and
hence in probability of the normed martingale {n™'Q,(6,), Fn, n > 1}, under
Ps,. This would otherwise be proved by applying Theorem 2.18 of Hall and
Heyde (1980) as we have done for {n7'M,(6,), F., n > 1}, in the previous

section. First, we state and prove the stationarity, ergodicity result.

Lemma 4.3.1 Let {Y;,1 € Z} and {T;,1 € Z} be two stationary, ergodic

processes, each on (RZ,B%). Define a new bivariate process,
C; = ((2:,6),(Zix1,6i41), ), 1€ Z,

where
Z; = min(Y;, T3), & =1(Y; <T;).

Let (; be an (R?)*® — R measurable function defined by

(1((:1:1,%) Ti— lsyt—) )

f / {v(u ~ 0v)

F¥e Vel 7804 Zier i) (8 (@05 1), (Zim1, Bimn), - ) Fud,
Then the process, {D;(0),1 € Z}, defined by
D; = G((Z:,6:),(Zi1, 6ia), ),
is stationary and ergodic.
Proof
The proof is similar to the proof of lemma 4.2.1 (b) in the previous section. O

The next lemma is analogous to Lemma 4.2.2 in the previous section and it

establishes that n=1Q,(f,) converges to zero with probability 1 under P,.

Lemma 4.3.2 Let {Y;,i € Z} be a stationary and ergodic AR(1) process. Let

where
Di(9) = Eg (Yia(Y: — 0Yi1)|F),
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Fi=0{(Z;,6;), j <i}. Suppose Ep,|ei[* <k < oo, for1 <p < 2. Then
n"1Qn(0,) — Eg,{D1(8,)} =0, a.s5. under Ps,.
Proof

Let E and D; denote E,, and D;(0,), respectively. Since {@Q.(8,), Fn,n > 1}

is a martingale and {D;,? € 2} is stationary and ergodic, we have
E(D;) = E(D1) = E{E(Yo(Y1 - 6,Y;)|F1)} = 0.
Further,

E|Di| = £|Dy E|E (Y,(Y1 — 6.Y0)| F1)|

E{E(|Yo(Y1 — 6.Y0)[ | F1)}

A

I

ElY,(Y1 - 6,Y,)]
E|WY, - EMY,|F,)

b
by Jensen’s inequality. F; = o{(¥;,73),7 <1i}. But

E|VY, - EMY,|F.)

< BEMY,| + E|E(MY.|F,)

]

by Minkowski’s inequality. Also,

0_2

1—6%’

a

EVY,| < E3MPERY ) =

by the Cauchy-Schwartz inequality and similarly,

2

B _ o
E|EWY.|F)| < E (E (VY| F.)) = ENYe| € = 7h
So that,
0.2
= < .
EID = EIDi| € 22

o

Therefore the lemma follows by lemma 4.3.1 (stationarity and ergodicity of
{D;,1 € Z}} and application of the ergodic theorem. Alternatively, the
lemma can be proved by verifying the conditions of Theorem 2.18 of Hall
and Heyde (1980) (see section A 2 of the appendix for details) as we have

done for n™*M,(8,), F.}, n > 1 in the previous section. O
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By Corollary 3.1 of Hall and Heyde (1980) (see section A 2 of the appendix

for details), if the conditional Lindeberg condition,

Ve >0, n7' 30 E[DH(|Di] > ev/n)|Fia] 0, (4.1)

=1

and a condition on the conditional variance,

730 B(DHF) Lo B(DY), (4.2

=1
are satisfied, then the asymptotic normality of n™7Q,(8,) follows. To verify
the conditional Lindeberg condition {4.3.1), we give an equivalent condition
in the following proposition. For convenience, it is this equivalent condition,

instead of (4.3.1) that is proved later.

Proposition 4.3.1 Let {Yi,i € Z} be a stationary AR(1) process. Let
D;(0) = Eg (Y (Y: — 0Yia)| i),

where F; = ¢{(Z;,6;), j £1}. Then the conditional Lindeberg condition
Ve> 0, a7 S E [DH(DI > ev/m)|Fit] Lo 0,

i=1

is equivalent to the condition

Ve>0, n”' Y E [DH(Di] > ev/n)] — 0. (4.3)
=1

Proof
The proof is similar to the proof Proposition 4.2.1. O

The following lemma is utilized in the verification of not only the sufficient

condition (4.3.3) but also the condition on the conditional variance (4.3.2).

Lemma 4.3.3 Let {Y;,i € Z} be an AR(1) process. Let
Di(8) = Ep (Yiea (Y — 0Yi1)| 7).

where F; = o{(Z;,6;), § <i}. Suppose Ele;|{(+") < k < o0, for some v > 0,
k constant. Then

E|D;[* < 2240 « oo,
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Proof

E|D;[*Y*) = ELE(Yi_1(Yi — 6,Y;_1)| 7)Y
< FE (E (|Y,-_1(Y,. — QOK_1)|2(1+7)|ﬁ))
= FElYi_(Y;, - goyl._l)l?(lﬂf) :

by Jensen’s inequality. But

|2(1+*r)

E|Yia(Yi — 6,0 = E|ViYie — E(YiYia|Fin)

)|2(1+7)}2(1+“!’)

S {E’?(—llTﬁ IKK—1]2(1+T) + Em E(Y;'YE—IIJ:_{“I

by Minkowski’s inequality. Further,

20147} L

El)/l_}q_llﬂl-l"r) < E% IY;2| Ez

2{1+~)
V2|

— E%|K[4(1+W)E%|Yi_l|4(l+'ﬂ
— % |

k]

by the Cauchy-Schwartz inequality and the condition, E|Y;[*t") < k < oo.

Similarly,

— |2(1+'v)

E|E(YYia|Fi) < E (B (VYO F)

ElYYi, ") < k.
Therefore,

1 }2(1+-r} _ 9214} < oo, O

E|D;P0+M < {karr%ﬂ + LTI

In the following proposition, we give an equivalent to the condition on the

conditional variance, (4.3.2)

Proposition 4.3.2 Let {Y,,1 € Z} be a stationary and ergodic AR(1) process.
Let

D;(8) = Es (Y;1(Y; — 8Y;_1)|F),

where F; = a{(Z;,6;), j < i}. Suppose E|e;|*M* < k, for some v > 0, k

constant. Then the condition on the conditional variance,

n~' Y E(DYFi) D E(XD),
=1 .
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ts equivalent to the condition
n
n~ 30?7 2 E(D}). (4.4)
i=1

Proof
We need to prove that

“IZ(DZ B(D}Fim)) 5 0.
Note that

{Zﬂ;(p,? E(D}|Fim1)), n,n>1}

i=1
is a martingale. Therefore by Theorem 2.18 of Hall and Heyde (1980) (sece

section A 2 of the appendix),
n! Z (D? - E(D|Fily)) — 0, as. under Py,
i=1
on the set
Zr(”'ﬂE (|D2 B(D}F)| m_l) < .

Since, E|D;|?0+7 < 22049k < oo by lemma 4.3.3, following the steps of the

proof of Proposition 4.2.2, one obtains
E|D? - B(D}|Fi1)
< {(22(1+"’)k) T+ (22(1+7)k) 117} T

1+
= {2 (22{“%) B2 } = 21+792(i+n L — 93004k

|+‘1

Therefore,

Zr(”ﬂﬂ(\pﬂ E(D}|Fiey)

|1+'v

i)

< 931ty Zz‘““") < oo, O
i=1

In the following proposition, we establish that the conditions (4.3.3) and (4.3.4)
hold a.e. for the martingale difference {D,,,n > n} defined by equation (4.1.4).
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Proposition 4.3.3 Let {Y;,i € Z} be a stationary and ergodic AR(1) process.
Let

Di{(0) = Ep (Yir(Y: = 0Y:0)| F),

where Fi = oc{(Z;,8;), j < i}. Suppose Ele;|"0+" < k < o0, for some v > 0,

k constant. Then
(a) Ve >0, n 'Y, E[D}([X;| > ey/n)] — 0.

() nt o, X2 -2 E(DY).

Proof of Proposition 4.3.3 (a)
The proof is similar to the proof of Propesition 4.2.3 (a), which is for the
martingale {M,(6,), F., n > 1} in the previous section and the details are

presented below.
E (D (|Di] < ev/n))
< Em D BT (1(1Di] > ev/n))
< 147 (max P (D] > evR))
by Holder’s inequality and lemma 4.3.3. But
max P (IDi] > ev/n) — 0 as n — oo,
since
max P (1X:| > £v/n) = o (n72047)

by the corollary of Serfling (1980) (see Corollary A.2.2 in the appendix) used in
the proof of Proposition 4.2.3 (a) since E|D?| < oo by lemma 4.3.3. Therefore,

n! ZE (D (I > ev/n)) 5 0.0
=1

Proof of Proposition 4.3.3 (b)
We have already established through lemma 4.3.1 that the process {D;,i € 2}
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is stationary and ergodic. Also by lemma 4.3.3, E(D?) = E(D}) < oo. There-
fore the condition holds by application of the ergodic theorem. [

We are now ready to prove the asymptotic normality of n_!iQ,,_(ﬁo). We also
show that this result, in turn, implies that if 6"51 is a consistent solution of the

estimating equation Q,,(0) = 0, then nz(fb —6,) is asymptotically normal.

Theorem 4.3.1 Let {Y;,i € Z} be a stationary and ergodic AR(1) process.
Let

where,
Di(0) = Eg (Yier (Vi — Y1) |F)

Fi = o{(Z;,6;), 7 <i}. Suppose Ep |varepsilon]*+7) < k, k < oo, for some
v > 0, k constant. Let @ﬁ be a consistent solution of the estimaling equation

QR.(0) =0. Then

a n‘%Qn 8.) is asymptotically normal, i.e.
t

1

n"5Qu(0,) = N(0, Es,(D}(6.))), under P,

(b) The asymptotic distribution of 8% is the normal distribution, i.e.,

E(D)

1.4 D
n3 (6% - 6,) 2> N(0, ——Li_
K ( E2(DM)

), a.s. under Py,

where D; is an abbreviation for D;(4,), D,(-l) for DEI)(E)O) and E for Fg,.

Proof of Theorem 4.3.1 (a)

Since {@,(8), F., n = 1} is a P; martingale, the theorem is proved by verifying
the conditional Lindeberg condition (4.3.1) and the condition (4.3.2) on the
conditional variance by Corollary 3.1 of Hall and Heyde (1980) (see Corollary
A.2.1 in the appendix for details). These conditions are equivalent to (4.3.3)
and (4.3.4), respectively by Propositions 4.3.1 and 4.3.2. Therefore, the proof
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of the present result follows by Proposition 4.3.3, which was proved under the

condition that Ej |Y;|4*") < k, for some v > 0 and k constant. O

Proof of Theorem 4.3.1 (b)
The proof is similar to the proof of Theorem 4.2.1 (b). O

We have not investigated the consistency of 9:1 or the large sample properties
of éfl or the currently available estimators. However, simulations in Chapter 5
of this thesis suggest that éﬁ is comparable with é; and the currently available
estimators, which perform comparably among themselves. Hence, intuitively,
under possibly different conditions to those established for é;, the currently
available estimators have similar asymptotic behaviour to the behaviour of ég.
However, a theoretical investigation is needed to establish the large sample
properties of not only the currently available estimators of 02 as well. Also,
the consistency of 8% could be investigated and that of é; could be extended

to general error distributions and censoring patterns.
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Chapter 5 -

Comparative Simulation
Studies About the Estimators

5.1 Introduction

In this chapter, we present simulation studies in which the performances of the-
new estimators for censored autocorrelated data are evaluated and compared
with the performances of the currently available estimators. The currently
available estimators were described in Chapter 2 and they are the maximum
likelihood estimator (MLE), #m™' (see section 2.3.1), the Pseudolikelihood (PL)
estimator of Zeger and Brookmeyer (1986), 6";” and the PL estimator of Dage-
nais (1986) (see section 2.3.2). The new estimators are described in Chapter
3. One of these is 62 (see section 3.2.2). This is the estimator based on replac-
ing each of the underlying time series rv’s ¥7’s in the least-squares estimating
function for the uncensored case by its conditional mean, given the sigma-field
generated by the obeserved censored time series for the index times j, j < .
The second estimator among the new estimators is §° (sce section 3.2.3). This
is based on a missing information principle and it is obtained by replacing the
differences between successive sums in the least-squares estimating function for
the uncensored case by their conditional means, given the corresponding sigma
fields used in the case of #2. The third estimator among the new estimators
is the distribution-free estimator, 9; (see section 3.2.4). All the estimators,
both new and currently available, are also compared with the least-squares

estimator for the uncensored case, 6.
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We consider three error distributions of the underlying time series rv’s, the
Gaussian (N) distribution, the double exponential (DE) distribution (also
known as the Laplace distribution) and the Gamma distribution. Note that
for Gaussian errors we compare all the estimators among themselves, both new
and currently existing. For errors drawn from the Laplace and the Gamma
distributions, we only compare the least-squares estimator with the new esti-
mators, which are also compared among themselves. The reason is that, as
noted in the introduction of Chapter 3, the currently available estimators were
derived under the assumption that the errors are Gaussian. Hence, in their
present form these estimators cannot be applied if the model deviates from the
Gaussian assumption. Nevertheless, provided suitable modifications are im-
plemented for each distribution considered, the currently available estimators-
can be applied for error distributions other than the Gaussian distribution.
However, these modifications are essentially re-derivations of the estimators °
and these can be quite tedious as demonstrated in section 2.3.1 for the MLE

in the Gaussian case.

Three censoring distributions are considered in this simulation study, the Gaus-
sian, the Laplace and the Gamma distributions. The Gaussian censoring dis-
tribution is used when the errors are themselves Gaussian or Laplace. The
Laplace censoring distribution is used when the errors are Gaussian and the
Gamma distribution is used when the errors are themselves Gamma. Details
of the values of the mean and shape parameters used in these censoring dis-

tributions and the error distributions will follow in the next section.

The chapter is organised as follows. In section 5.2, we describe the design of
our Monte Carlo experiments. In section 5.3, we present the results of the

simulation study. Section 5.4 concludes the chapter.
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5.2 Design of Monte Carlo experimenté

We carried out designed experiments to compare the new estimators, é;‘“ éi
and the distribution-free estimator, ¢ with the least squares estimator, éif,
which corresponds to the uncensored case, the mle, é;"’e, the PL estimator of
Dagenais (1986), 6229 and the PL estimator of Zeger and Brookmeyer (1986),
7. The matrix langauge programming software GAUSS (1988) was used
throughout the Monte Carlo study. The results are summarized in Tables 1-
72. In each table the results arose from samples generated according to the
following model. Define the stationary, ergodic AR process, {Yi,7 € Z}, where

Z the integer set, by
Y, =0Y,_1 +¢ (5.2.1)

where the errors, €;’s, are 1.i.d. F' with mean zero and variance a®. Further,
assume that the ;s are independent of 6{Y;,j < i—1}. Let T; be a sequence -
of i.i.d. censoring rv’s, independent of ¢;’s. We observe {(Z;,6;), i < n}, where

Z; = min{Y;, T}), 6; = I(Y; £ T}). I(A) is the indicator function of the set A.

As mentioned earlier, three error distributions were considered in the simula-
tion experiments, the Gaussian distribution (N}, the Laplace distribution and
the gamma distribution shifted to have mean zero. For the Gaussian distribu-
tion, the variance, o2, was fixed at two vahfes, 1 and 2. For the Laplace and
gamma distributions, however, o was set equal to 1 in each case. For each
combination of the error distribution F and the value of o2, three sample sizes
were considered, small samples (n = 23), moderate samples (n = 50) and large
samples (n = 100). For each sample size the true value of 4, 8,, was fixed at
six values, £0.2, +0.5 and 30.8. This was to ensure that the estimators are
assessed and compared for values of #, which are representative of the interval
|6.| < 1 which means stationarity of the AR process. For a fixed value of 4,,
three censoring patterns were considered. This ensured that the estimators
are compared under varying censoring patterns. The results in Tables 1-18

were obtained by using Gaussian (normal) errors with o2 set equal to 1 and
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for each value of @,, the censoring rv’s, T;’s, were drawn from the Laplace
distribution with mean 2 and the shape parameter fixed at three values, 1, 2
and 3. The results in Tables 19-36 were also obtained with the errors drawn

? was set equal to 2 and the

from the Gaussian distribution but this time o
censoring rv’s were again drawn from the Gaussian distribution with mean 2.5
and variance fixed at three values, 4, 6 and 8. The results in Tables 37-54 were
obtained with the errors drawn from the Laplace distribution with mean zero
and o? set equal to 1 and the T}’s were drawn from the Gaussian distribution
with mean 2 and variance variance fixed at 1, 2 and 4. The results in Tables
55-72 were obtained with the errors drawn from gamma (3,-—\}—3:,—\/?7) so that
they had mean zero and o? = 1. The censoring rv’s were drawn from gamma
(3,1,-0.5), gamma (3,1,-0.75) and gamma (3,1,-1) for a fixed value of #,. This-
information about the error and censoring distributions is summarized in Ta-

ble 5.0 below
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Table 5.0

Parameters of error and censoring distributions

Table Figure Error Censoring  Sample
distribution distribution  size
1-6 1-6 Gaussian (0,1) Laplace 25
712 7-12 Gaussian (0,1) Laplace 50
13-18  13-18 Gaussian (0,1) Laplace 100
19-24  19-24 Gaussian (0,2) Gaussian 25
25-30  25-30 Gaussian (0,2) Gaussian 50
31-36  31-36 Gaussian (0,2) Gaussian 100
37-42  37-42 Laplace (%,O) Gausslan 25
43-48  43-48 Laplace {z,0) Gaussian 50
49-54  49-54 Laplace (,0) Gaussian 100

5560 55-60 Gamma (3,24-,-v/3) Gamma 25
V3

61-66 61-66 Gamma (3, ) Gamma 50

67-72 67-72 Gamma (3,2=,-v/3) Gamma 100

Note: Each of the siz tables in each group corresponds to one of the following
values of 0,: £0.2, £0.5, +0.8. For each table, the parameter values of the

censoring distribution are varied to yield three censoring patterns.

In Tables (1-18), corresponding to each estimator and for each combination
of 62, n, 8, and the censoring pattern, the first tabulated value is the mean
estimate of # calculated from 50 replicates with the corresponding sampling
variance { x 102) given in parentheses immediately below the mean. The second
value is the mean square error (MSE} (x10?) of the estimates, also calculated
from the 50 replicates. The third value is the mean estimate of the asymptotic
variance of 8 (x10?) calculated from the 50 repetitions. Once again, the asso-
ciated sampling variance { x 10?) is given in parentheses immediately below the

mean. The fourth value is the mean estimate of o? with its sampling variance
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(x10%) given in parentheses immediately below. The fifth value is the average
CPU time (in seconds) it takes to compute an estimate of the parameters and
the estimated asymptotic variance for the given estimator on the pentium, 64
Mb Ram, 200 Mhz personal computer using the matrix language programming
software GAUSS (1988). In each case the average was calculated from the
50 repetitions. Notice that no computational time is given for é:f since it is
obtained in closed form and hence does not require any iterations. The in-
formation given by Tables 19-72 for each combination of %, n, 0, and the
censoring pattern is similar to the information provided by Tables 1-18 except
that in Tables 19-72 the MSE’s are not given. The reason for not including the
MSE’s in Tables 1-72 is that we found that comparisons among the estimators
based on the MSE’s is not as interesting as comparisons made according to-
the asymptotic variance estimates. More will be said on this subject later.
To compute parameter estimates for the rest of the estimators, the maximum -
number of iterations was set equal to 20 and estimates were considered to have
converged if successive estimates differed by a value no more than 107%. To
ensure a fair comparison among the estimators, for each estimator, for each
combination of ¢?, n, #, and the censoring pattern and for each of the 50
repetitions the estimates were computed using a fixed sample. Hence, for each
combination the average percentage of censored observations appearing under
the caption ‘% cens.’ in Tables 1-72 is the same for all estimators. The corre-
sponding censoring pattern is given alongside these values under the caption

‘T{,.

As mentioned above, the main criterion utilized to assess and compare the
performance of the estimators is the asymptotic variance. The bias and the
MSE criteria are also considered, but the comparisons they provide are not
as interesting as those obtained from the asymptotic variance criterion. In
each case, the smaller the value of the criterion, the better the estimator. To
compare the performance of the estimators using the asymptotic variance and

MSE criteria, for each n, 8, combination we carried out seperate randomized
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block analyses of variance on the estimated asymptotic variance of the b.’s
using the values of the variance of T; as ‘blocks’ and the seven estimators as
treatments. Using the asymptotic variance estimates, there were 72 analyses
of variance, one for each of Tables 1-72 and hence 6 for each o?, n combination.
For each of the analyses of variance which showed a significant estimator effect
at the 0.05 level we carried out a Fisher’s Least Significant Difference (LSD)
analysis (see, e.g., Ott, 1988, page 441). As usual, for the analyses of variance
with a statistically insignificant estimator effect the estimators were considered
not different among themselves and no LSD analyses were required. Other-
wise, a Fisher’s LSD was computed at the 0.05 level and estimators for which
the corresponding mean (over the 3 censoring patterns) asymptotic variance
estimates differed by more than the value of the LSD were declared signifi-
cantly different from each other. The results of applying this standard LSD
procedure are summarized in Figures 1-72. Figure 1 summarizes the means of
the estimated asymptotic variances in Table 1, Figure 2 summarizes the corre-
sponding results in Table 2, and so on. In each of these figures, the estimators
are arranged in order of increasing mean (over the 3 censoring patterns) esti-
mated asymptotic variance. Estimators underlined by a common line are not
significantly different among themselves, while estimators not underlined by a
common line are declared significantly different from each other. A summary
of the description of the figures (Figures 1-72) is given in Table 5.0. The same
comparison procedure was applied with the MSE’s as the criterion and there
were 18 analyses of variance, one for each of Tables 1-18. The results of the
corresponding LSD anayses are summarized in Figures A1-Al8 in section A.3

of the appendix
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5.3 Simulation results

5.3.1 Errors from the Gaussian distribution with unit
variance

The results considered in this section are for Tables 1-18 obtained by setting
o equal to 1 and drawing the censoring samples from the Laplace distribu-
tion with mean 2 and the shape parameter fixed at 1, 2 and 3. We begin by
studying the bahaviour of the estimators in accordance with the bias crite-
rion. For all sample sizes, all the estimators behave similarly to each other
when 1 — #2 is close to 1. On the other hand, for small values of 1 — #2, o
tends to have larger bias than the other estimators, particularly as the per-
centange of censored observations increases. In this case the other estimators.
perform comparably among themselves. Next, we examine the behaviour of
the estimators according to the MSE criterion. The results suggest that the -
performance of the estimators improves as sample size increases. They per-
form better for small values of 1 — 6% than they do for values closer to unity.
Their performance deteriorates as the the proportion of censored observations
(censoring rate) increases. This conclusion is reached by using the LSD anal-
yses described earlier but with the seven estimators regarded as "blocks’ and
the three censoring patterns as treatments. Let us now compare the estima-
tors among themselves according to this criterion (MSE). As noted earlier, the
results of the LSD analyses are summarized in Figures A1-Al8 in section A.3
of the appendix. The results suggest that when #, = +0.2, 9£f and 6';‘1 behave
similarly and perform better than the rest of the estimators, which are not
significantly different among themselves. When 8, = 10.5, all the estimators
tend to perform comparably among themselves. When 8, = +0.8, éfl tends
to perform worse than the rest of the estimators, which are not significantly

different among themselves.

We now turn to the behaviour of the estimators on the basis of the asymptotic

variance criterion. As one would expect, the performance of the estimators
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improves as the sample size increases. In particular, the estimators perform
best for large values of n and small values of 1 — 82 and worst if n is small and
1—62 is large. To monitor the behaviour of the estimators as the censoring rate
increases, we make use of the randomized block analyses of variance described
in the previous section. As noted therein, these analyses were carried out on
the estimated asymptotic variances of the estimators using the censoring rates
as blocks and the 7 estimators as treatments. In comparing the censoring
rates, however, we use the same analyses with the 7 estimators taken as blocks

and the 3 censoring patterns as treatments.

Eighteen of the 36 analyses of variance (for Tables 1-18) are for o2 set equal
to 1. Twelve of these 18 analyses show a statistically significant effect due to.
censoring pattern at the 0.05 level. In 7 of these 12 cases, the estimators ex-
hibit a significantly better performance for the censoring pattern Laplace (1,2) -
than they do for Laplace (2,2) and Laplace (3,2) at the 0.05 level using LSD
analyses. In 3 of the remaining 5 cases, the estimators perform significantly
worse for Laplace (3,2) than they do for Laplace (1,2) and Laplace (2,2). In
one of the remaining 2 cases, the estimators perform worse for Laplace (3,2)
than when the 7’s are distributed as Laplace (1,2). However, there is no sig-
nificant difference in the performance of the estimators due to changing the
censoring pattern from Laplace {1,2) to Laplace (2,2) or from Laplace (2,2)
to Laplace (3,2). In the second case, the behaviour of the estimators is sig-
nificantly different from one censoring pattern to another with Laplace (2,2)
showing the best behaviour, Laplace (1,2) the second best and Laplace (3,2)
the worst behaviour. Overall, the performance of the estimators tends to de-

teriorate with increasing proportion of censored observations

Now, to compare the estimators we revert to the original set-up where the 3
censoring rates are used as blocks and the 7 estimators as treatments in the
analyses of variance. Twelve of 18 analyses show a statistically significant es-

timator effect at the 0.05 level. Two of these 12 cases are for small samples,
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5 are for moderate samples and the remaining 5 correspond to large samples.
For small samples, in one of the 2 analyses which show a significant estimator
effect (Figure 5.2), gis, 6 and ™= perform significantly better than fe, gzt
and éﬁ but with no significant difference among the estimators in each group
at the 0.05 level according to Fisher’s LSD analysis. The estimators gs and
éfl perform better than §da9 whilst égag perform better than 91‘; In the second
analysis (Figure 5.3}, ég and 8 perform significantly better than the rest of

the estimators.

For moderate samples, in 2 of the 5 analyses of variance which exhibit a sta-
tistically significant estimator effect (Figures 5.8 and 5.9), § and 8¢ perform
significantly better thdn fjff’, ég, éi“g and 9; at the 0.05 level according to
Fisher’s LSD analysis. The MLE, é;{"e, performs comparably with estima-
tors in both groups in the first of these two analyses (Figure 5.8), while in .
the second, it performs worse than éi:' and 9?1 and comparably with the other
estimators. In another 2 of the 5 analyses showing a significant estimator ef-
fect (Figures 5.11 and 5.12), 6::, 6"?1, é;‘;@ and é;’”e perform comparably among
themselves. In the first of the two cases (Figure 5.11), estimators in this group
perform significantly better than 6zb, 82 and 0°. In the second case, how-
ever, 9; performs comparably with estimators in both groups. In the fifth of
the 5 analyses of variance with a significant estimator effect (Figure 5.10), de

performs worse than the other estimators which are not significantly different

among themselves at the 0.05 level.

For large samples, in 2 of the analyses of variance with a significant estimator
effect (Figures 5.13 and 5.14), #® and §% exhibit a better performance than ge,
g2, §429 and 67 at the 0.05 level. In one of these two cases (Figure 5.13), grmie
performs cornparably with 6> and éff and better than the other estimators. In
the second case, 6™ performs worse than éif and 8 and comparably with the
other estimators. In 2 of the remaining 3 analyses (Figures 5.16 and 5.17), gis

and 6 perform significantly better than g2, 2% and f¢. In one of these 2 cases

91



(Figure 5.16), é;‘:'e and éﬁ“g perform comparably with 0;‘:, éff’ and better than
é; In the second case, 8™/ and é;{“g perform comparably with 9:!: and éz and
better than 6. In the remaining analysis (Figure 5.18), 6= performs better
than éff’, éﬂ‘le, Qg and Hf‘ The estimators éz and é;‘ff‘g perform comparably

with estimators from both groups but better than éfl

Overall, about one-third of the time, the estimators still perform comparably
among themselves with respect to the asymptotic variance criterion. In the
remaining two-thirds of the time, SAL’ and Ejf’l behave similarly to each other
and better than 63;, éff’ and 9; which are not significantly different among
themselves, while §™¢ and §9°¢ perform comparably with estimators in both

groups of estimators.
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Table 5.1

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 8, = 0.8 and n = 25. DE refers to the double
exponential distribution

T: % cens. 0 gmie gzt gdes g ¢t g

n

DE(1,2) 15.68 0.7608 0.7623 0.7636 0.7673 0.7613 0.7399 0.7621"
(1.2053) (1.2524) (1.2937) (1.3679) (1.3368) (1.3516) (1.2876)1

13108 1.3444 1.3745 1.4201 1.4331 1.6587 1.3797H

1.5480 1.4048 1.5502 1.5586 1.5632 1.4611 1.5889!
(0.0068) (0.0128) (0.0074) (0.0204) (0.0076) (0.0070) (0.0097)

0.9659 0.9293 0.8214 09764 0.9186 1.0170  0.9246%
(8.4000) (9.3157) (8.1372) (12.351) (9.7028) (12.531) (8.3788)

42,715 0.0372 0.2494 1.4840 4.2312 0.08565_

DE(2,2) 20.00 0.7158 0.7225 0.7222 0.7242 0.7214 0.6824 0.7132
(2.4247) (2.4956) (2.5361) (2.6016) (2.5517) (2.6149) (2.7309)

3.0367 2.9964 3.0399 2.6257 3.0674 3.8933 3.3751

1.7159 1.6548 1.6760 1.7806 1.6713 1.4755 1.5736
(0.0116) (0.0122) (0.0062) (0.0135) (0.0061) (0.0035) (0.0098)

0.9572  0.9272 0.7775 0.9478 0.8734 1.0576  1.0061
(7.8643) (9.2756) (9.4667) (8.7218) (8.8986) (10.205) (13.394)

46.962 0.0538 0.2846 1.4972 6.1474 0.1296

DE(3,2) 28.08 0.7255 0.7302 0.7328 0.7201 0.7293 0.6548 0.7385
(2.7052) (2.9353) (3.2384) (4.0611) (3.1307) (2.8826) (2.8800)

3.1520 3.3051 3.6425 4.5371 3.5053 4.8756 3.1430

1.6261 1.6296 2.3679 1.9863 1.9278 1.6049 1.9420
(0.0074) (0.0116) (0.1836) (0.0188) (0.0205) (0.0087) (0.0296)

0.9321 0.8651 0.6714 0.9171 0.7862_ 1.1251 0.8364
(7.2005) (9.5184) (7.5007) (8.4209) (6.8692) (12.560) (15.074)

85.680 0.0822 0.3912 4.4666 17.422 0.1986

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 6.

tThe second value is the average estimated asymptotic variance (x10%) of the estimator.

IThe third value is the MSE.

tThe fourth value is mean estimate of o2.

$The fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x102.
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Table 5.2

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 8, = 0.5 and n = 25. DE refers to the double
exponential distribution

T; % cens. OF grie g:b gdes g2 6° gc

DE(1,2) 11.20 0.4549 0.4419 0.4520 04338 0.4518 04355 0.4562
©(2.9024) (3.7102) (3.9370) (3.9164) (3.8972) (3.5246) (3.8468)1

29897 3.8994 4.010 . 4.1980 3.9736 3.7996 3.8848ll

9.8524  2.6989 3.1175 3.0046  3.1404 2.8580 3.1948!
(0.0127) (0.0223) (0.0152) (0.0319) (0.0160) (0.0127) (0.0195)

0.9193 0.9324 0.8439 0.9586 0.8852 0.9477 0.8737
(5.0075) (6.4109) (5.8581) (8.0387) (5.2200) (6.5415) (5.4211)

32.462 0.0342 0.2350 0.4310 1.0072 0.0552%

DE(2,2) 21.92 0.4796 0.4802 0.4824 0.4741 0.4836 0.4383  0.4904
(4.2041) (4.8035) (4.6824) (5.2557) (4.7156) (4.0925) (4.5394)

4.0776 4.6506 4.5261 5.1126 4.5539 4.3095 4.3670

2.5494 27471 3.1731 2.8304 3.2099 2.5929  3.0929
(0.0112) (0.0243) (0.0231) (0.0221) (0.0228) (0.0114) (0.0463)

0.9158 0.9301 0.7415 0.9347 0.8259 1.0081 0.8476
(5.5150) (10.615) (7.4708) (11.170) (9.0421) (12.333) (8.6558)

50.147 0.0606 0.3502 1.2852 3.5930 0.1392

DE(3,2) 24.80 0.5036 0.5035 0.4945 0.4976 0.4919 0.4207  0.5044
(2.8812) (3.3150) (3.5835) (3.3698) (3.4515) (3.0037) (3.2353)

27660 3.1836 3.4432 3.3256 3.2200 3.5124 3.1078

24430 3.0889 3.3527 3.1311 3.4847 2.5383  3.1449
(0.0093) (0.0425) (0.0652) (0.0362) (0.0532) (0.0153) (0.0497)

0.9770 0.9720 0.6888 0.9744 0.8289 1.1019  0.8835
(12.044) (13.149) (8.6854) (13.050) (9.4336) (18.293) (18.949)

59.855 0.0758 0.4118 1.3180 4.4324 0.1726

*Throughout the table and for each combination of estimator and 73, the first tabulated
value is the mean estimate of 8.

The second value is the average estimated asymptotic variance (x10?) of the estimator.

IThe third value is the MSE.

}The fourth value is mean estimate of ¢2.

iThe fifth value is the average CPU time in seconds needed to compute the estimates.

"The values in parentheses are the corresponding sampling variances x 102,
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Table 5.3

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 8, = 0.2 and n = 25. DE refers to the double
exponential distribution

T; % cens. 6= grmie g2 gleg e 75 g

n i

DE(1,2) 10.64 0.1773 0.1658 0.1690 0.1612 0.1695 0.1653 0.1818"
(4.6601) (5.2696) (5.4902) (5.2237) (5.4639) (5.1176) (5.2756)1

4.5252 5.1758 5.3667 5.1653 5.3384 5.0333 5.0977ll

3.6524 3.5205 3.7838 3.6031 3.7980  3.5365 3.9924%
(0.0300) (0.0256) (0.0239) (0.0272) (0.0242) (0.0197) (0.0492)

0.9462 0.9544 0.8661 0.9550 0.9066 0.9600 0.8872%
(8.5002) (10.008) (9.0216) (10.027) (9.1188) (10.141) (8.3431)

31.873 0.0374 0.2364 0.0648 0.1530 0.0622%

DE(2,2) 18.88 0.2285 0.2493 0.2500 0.2285 0.2495 0.2248  0.2554
(2.9247) (3.8304) (3.9783) (4.3475) (3.9811) (3.2803) (4.2531)

2.88900 3.9202 4.0692 4.2548 4.0669 3.2106 4.3899

3.4189 4.2517 4.3325 4.2546 4.3863 3.4860 4.2533
(0.0152) (0.0586) (0.0496) (0.0762) (0.0465) (0.0250) (0.0878)

0.9158 0.9121 0.7529 0.9140 0.7929 0.9287  0.7911
(9.2836) (10.825) (8.7897) (10.825) (7.7143) (10.794) (7.5787)

48.928 0.0548 0.3536 0.5370 1.3732 0.1252

DE(3,2) 26.56 0.1735 0.1196 0.1254 0.1099 0.1250 0.1086 0.1598
(4.8944) (5.5571) (6.5685) (5.4990) (6.4243) (4.2111) (5.5098)

4.7688 5.9812 6.8623 6.0908 6.7298 4.8781 5.4510

3.3539 4.7316 4.4285 4.4907 4.6003  3.2396  4.3766
(0.0112) (0.3287) (0.1326) (0.2942) (0.0638) (0.0264) (0.2135)

0.9179 0.9126 0.6609 0.9149 0.7272 0.9356_ 0.7476
(8.0288) (11.722) (13.568) (12.042) (8.5385) (11.593) (8.5087)

60.472 0.0836 0.4626 0.8658 3.6868 0.2000

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of §.

tThe second value is the average estimated asymptotic variance (x 10?) of the estimator.

IThe third value is the MSE.

!The fourth value is mean estimate of a2.

§The fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102.
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Table 5.4

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1}, 6, = -0.2 and n = 25. DE refers to the double
exponential distribution

T; % cens. 6% fmie 6zt gdas g 8 o

n

DE(1,2) 1048 -0.1985 -0.1989 -0.1988 -0.2101 -0.1988 -0.1920 -0.1865*
(3.1876) (3.3731) (3.4132) (3.3049) (3.4274) (3.2105) (3.5284)F

3.0603 3.2383 3.2768 3.1829 3.2904 3.0884 3.4055!

3.4701 3.7144 3.8934 3.6004 3.9373  3.6492  3.9260!
(0.0124) (0.0228) (0.0186) (0.0266) (0.0190) (0.0160) (0.0443)

1.0025 1.0069 0.8990 1.0029 0.9561 1.0087 0.9283%
(12.150) (13.122) (10.927) (12.930) (11.291) (12.906) (9.1515)

31.199 0.0340 0.2348 0.0568 0.1296 0.06405

DE(2,2) 17.76 -0.1927 -0.2070 -0.2143 -0.2142 -0.2145 -0.1948 -0.2078
(3.9372) (4.5062) (4.5405) (4.3570) (4.5465) (3.8964) (4.7467)

3.7850 4.3309 4.3793 4.2029 4.3857 3.7432 4.5629

3.3456  3.7003 4.0502 3.6244 4.0511 3.3661 4.4435
(0.0260) (0.0326) (0.0290) (0.0322) (0.0300) (0.0167) (0.0709)

0.9773 0.9640 0.8302 0.9636 0.8475 0.9760  0.8466
(7.6122) (12.407) (8.5713) (12.239) (9.4158) (12.441) (9.3545)

41.755 0.0560 0.3230 0.2560 0.7044 0.1308

DE(3,2) 26.80 -0.1645 -0.1966 -0.1955 -0.1931 -0.2008 -0.1626 -0.1561
(3.9335) (5.0088) (5.1972) (4.6750) (5.1832) (3.4078) (5.1181)

3.9022 4.8096 4.9913 4.4998 4.9760 3.4114 5.1061

3.4495 4.5504 4.4284 4.7423 4.7183 3.2979  4.2021
(0.0163) (0.0618) (0.0614) (0.0623) (0.0462) (0.0133) (0.1024)

0.9399 0.9330 0.6857 0.9411 0.7320 0.9688  0.7596
(6.1506) (9.5595) (9.8705) (9.6162) (5.4397) (9.7128) (5.7686)

73.972 0.0858 0.4530 1.9388 7.2282 0.2342

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

1The second value is the average estimated asymptotic variance (x10%) of the estimator.

IThe third value is the MSE.

{The fourth value is mean estimate of o2.

$The fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x10%.
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Table 5.5

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 8, = -0.5 and n = 25. DE refers to the double
exponential distribution

~

T % cens. &' gmie g3 gdas o2 b 6c

DE(1,2) 10.80 -0.3920 -0.3941 -0.3944 -0.3979 -0.3932 -0.3794 -0.3910"
(3.1551) (3.2991) (3.2611) (3.2505) (3.2803) (3.0481) (3.3042)"

1.1953 4.2886 4.2458 4.1629 4.2897 4.3806 4.3601

2.8025 2.5621 2.8686 2.5495 2.8785 2.6944  3.1347!
(0.0144) (0.0096) (0.0101) (0.0098) (0.0101) (0.0090) (0.0181)

0.9132 0.8992 0.7981 0.8988 0.8631 0.9200 0.8522
(5.9434) (6.4037) (4.8391) (6.4227) (5.3743) (6.8824) (4.9233)

30.254 0.0354 0.2242 0.0560 0.1310 0.0560%

DE(2,2) 19.92 -0.4843 -0.4827 -0.4718 -0.4859 -0.4731 -0.4395 -0.4603
(3.0430) (4.1849) (4.3535) (4.1659) (4.3429) (3.8516) (4.7178)

2.9459 4.0474 4.2589 4.0191 4.2415 4.0636 4.6867

2.8623 2.8692 3.1735 2.7641 3.1810 2.6877 5.0738
(0.0203) (0.0340) (0.0328) (0.0293) (0.0315) (0.0159) (1.5880)

0.9151 0.9076 0.7023 0.9055 0.8245 0.9769  0.8337
(7.7287) (10.385) (10.007) (10.074) (9.5783) (11.532) (10.934)

40.769 0.0540 0.3328 0.2370 0.6648 0.1462

DE(3,2) 25.36 -0.4815 -0.4604 -0.4567 -0.4566 -0.4598 -0.3987 -0.4252
(2.7126) (3.9150) (4.2246) (3.8240) (3.9996) (3.2358) (4.8407)

2.6383 3.9152 4.2431 3.8594 4.0012 4.1325 5.2066

2.5972  3.0392 3.1619 2.7766 3.2887 2.6115  3.2376
(0.0115) (0.0433) (0.0360) (0.0275) (0.0309) (0.0016) (0.1336)

1.0189 1.0157 0.7391 1.0265 0.8497 1.1172  0.8878
(12.595) (19.073) (15.015) (19.910) (13.230) (21.004) (13.824)

65.062 0.0770 0.3900 2.2972 6.3990 0.2240

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

'The second value is the average estimated asymptotic variance (x10?) of the estimator.

The third value is the MSE.

!The fourth value is mean estimate of o2.

8The fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 10
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Table 5.6

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), #, = -0.8 and n = 25. DE refers to the double
exponential distribution

T: % cens. 8% e gzt o oz 6 o

DE(1,2) 17.52 -0.7445 -0.7403 -0.7468 -0.7407 -0.7464 -0.7232 -0.7451"
(1.5238) (1.7898) (1.7969) (1.7910) (1.7711) (1.6089) (1.7905)T

1.7709 2.0746 2.0080 <2.0710 1.9876 2.1344 1.7429l

1.4925 1.3736  1.5892 1.3689 1.5848 1.4936 1.2462!
(0.0067) (0.0091) (0.0089) (0.0091) (0.0086) (0.0069) (0.0096)

0.9893 0.9969 0.8330 0.9972 0.9533 1.1162 0.9847°
(8.7699) (13.000) (13.288) (13.068) (9.3555) (14.854) (1.5658)

30.573 0.0382 0.2472 0.0648 0.1626 0.12965_

DE(2,2) 22.32 -0.7073 -0.7064 -0.7042 -0.7070 -0.7020 -0.6538 -0.6911
(2.4043) (2.7090) (2.8407) (2.7176) (2.8105) (2.8986) (2.9522)

3.1675 3.4768 3.6448 3.4738 3.6585 4.9201 4.0200

1.7896 1.7592 2.1021 1.7514 2.1005 1.8113 2.1101
(0.0116) (0.0109) (0.0190) (0.0109) (0.0178) (0.0106) (0.0308)

0.9452 0.9203 0.7111 0.9213  0.8427 1.0791  0.8847
(7.8210) (7.4958) (6.8811) (7.6831) (5.4758) (11.144) (6.1301)

35.897 0.0538 0.3054 0.1770 0.5656 0.1614

DE(3,2) 26.56 -0.7442 -0.7525 -0.7544 -0.7547 -0.7507 -0.6838 -0.7364
(1.8070) (2.0394) (1.9621) (2.0392) (1.9690) (2.0987) (2.2535)

2.0461 2.1835 2.0916 2.1628 2.1333 3.3650 2.5679

1.5495 1.7752 1.9277 1.8163 19070 1.6490 1.9789
(0.0070) (0.0186) (0.0345) (0.0209) (0.0289) (0.0143) (0.0367)

1.0184 1.0156 0.7515 1.0181 0.9279 1.3028  1.0141
(6.1727) (9.2428) (7.1636) (9.2571) (9.0865) (19.336) (12.303)

41.169 0.0670 0.3374 0.6088 2.5782 0.2044

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance {x 10?) of the estimator.

WThe third value is the MSE.

{The fourth value is mean estimate of o2.

$The fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.7

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 8, = 0.8 and n = 50. DE refers to the double
exponential distribution

T; % cens. 6 gmie gz gdag g 6t ¢

n

DE(1,2) 13.68 0.7807 0.7776 0.7784 0.7829 0.7776 0.7572 0.7795"
(0.4640) (0.4910) (0.4671) (0.5600) (0.4617) (0.4626) (0.4611)T

0.4920 0.5314 0.5044 0.5780 0.5026 0.6365 0.4939

0.6634 0.5975 0.6990 0.6435 0.7029 0.6618 0.6788!
(0.0005) (0.0006) (0.0006) (0.0012) (0.0008) (0.0003) (0.0009)

1.0185 1.0175 0.9445 1.0470 1.0045 1.1056_ 0.9967%
(4.6559) (5.1529) (5.2258) (5.2723) (4.6870) (5.8693) (4.9096)

46.219 0.0590 0.2908 2.0386 7.2962 0.2520%

DE(2,2) 23.52 0.7440 0.7456 0.7381 0.7457 0.7380 0.6899  0.7421
(1.2572) (1.6001) (1.7224) (2.004) (1.6998) (1.6791) (1.6104)

1.5457 1.8640 2.0711 2.2588 2.0502 2.8577 1.9134

0.8589 0.8432 0.9844 0.9858 0.9786 0.8395  0.9507
(0.0014) (0.0028) (0.0029) (0.0044) (0.0029) (0.0019) (0.0043)

0.9538 0.9370 0.7677 0.9742 0.8757 1.0422 0.8884
(2.8527) (3.6980) (3.0550) (3.7649) (2.8125) (5.4290) (3.3142)

81.080 0.0978 0.4364 5.0150 17.981 0.5384

DE(3,2) 27.84 0.7466 0.7450 0.7440 0.7408 0.7445 0.6751 0.7390
(0.9868) (0.9509) (1.0882) (1.1265) (1.0300) (1.2537) (1.2446)

1.2522 1.2344 1.3800 1.4544 1.3174 2.7836 1.5918

0.8272 0.8473 1.0151 1.5292 1.0107 0.8579  1.0802
(0.0013) (0.0022) (0.0047) (0.1453) (0.0042) (0.0020) (0.0055)

0.9794 0.9814 0.7308 1.0096 0.8751 1.2137  0.9733
(4.0523) (6.5343) (6.3381) (6.5581) (4.9133) (9.1648) (17.702)

75.977 0.1222 0.5176 4.4880 17.472 0.6372

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of §.

'The second value is the average estimated asymptotic variance (x10%) of the estimator.

I'The third value is the MSE.

!The fourth value is mean estimate of o*.

5The fifth value is the average CPU time in seconds needed to compute the estimates.

The values in parentheses are the corresponding sampling variances x102.
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Table 5.8

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 8, = 0.5 and n = 50. DE refers to the double
exponential distribution

T % cens. 6% gmle 6> s g 8t ge

T

DE(1,2) 12.44 05008 0.5077 05114 0.5020 0.5112 0.4930 0.5146°
(1.4526) (1.4751) (1.4548) (1.5389) (1.4490) (1.3117) (1.4251)"

1.4236 1.4515 1.4387 1.5085 1.5207 1.2904 1.4179

1.4028 1.3434 1.5218 1.6114 15318 14131 1.5962'
(0.0016) (0.0023) (0.0021) (0.0119) (0.0021) (0.0017) (0.0052)

0.9520 0.9433 0.8369 0.9599 0.9037 0.9710 0.9042}
(2.7421) (4.2261) (3.3170) (4.3876) (4.1926) (4.4488) (4.1367)

35.169 0.0672 0.3186 0.6832 1.9442 0.23085_

DE(2,2) 19.60 0.4825 04674 0.4613 0.4543 0.4621 0.4218 0.4695
(1.1908) (1.5242) (1.7799) (1.8181) (1.7115) (1.6037) (1.6257)

1.1976 1.6000 1.8941 1.9906 1.8209 2.1832 1.6862

1.4945 1.8813 1.9075 2.2596 1.9146 1.5702 2.0747
(0.0022) (0.0147 (0.0060) (0.0997) (0.0061) (0.0034) (0.0145)

0.9293 0.9597 0.7792 0.9675 0.8540  1.0113  0.8612
(3.1702) (4.4141) (3.9351) (4.4790) (3.4250) (4.8444) (3.6668)

51.756 0.1008 0.4522 1.7804 5.3642 0.4720

DE(3,2) 28.08 0.4782 0.4892 04904 0.4647 0.4900 0.4161 0.4961
(1.3968) (1.8254) (1.7561) (2.1997) (1.7404) (1.5593) (1.8259)

1.4164 1.8010 1.7302 2.2803 1.7156 2.2320 1.7909

1.4820 1.7687 2.0311 1.8487 20151 1.5163 2.0042
(0.0022) (0.0063) (0.0074) (0.0059) (0.0065) (0.0027) (0.0193)

1.0062  0.9637 0.7410 0.9876 0.7976 1.0591  0.8255
(4.6043) (5.8059) (5.0801) (6.5221) (4.1458) (6.8175) (4.0788)

92.926 0.1492 0.6360 4.5444 14.926 0.7612

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance {x 10%) of the estimator.

IThe third value is the MSE.

{The fourth value is mean estimate of #2.

¥The fifth value is the average CPU time in seconds needed to compute the estimates,

YThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.9

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 0, = 0.2 and n = 50. DE refers to the double
exponential distribution

T; % cens. 67 ol b gdos g° @t fe

DE(1,2) 10.96 0.1483 0.1545 0.1561 0.1402 0.1558 0.1497 0.1582"
(2.5230) (2.7670) (2.8391) (2.8386) (2.8334) (2.6259) (2.9075)%

27398 2.9187 2.9750 3.1394 2.9721 2.8264 3.0241ll

1.8487 1.9892 2.0966 2.0413 2.0981 1.9357 2.3030%
(0.0022) (0.0063) (0.0036) (0.0066) (0.0036) (0.0032) (0.0089)

0.9636 0.9451 0.8682 0.9475 0.8988 0.9498 0.8823
(4.8592) (5.1560) (4.3121) (5.1854) (4.7177) (5.2225) (4.2389)

30.936 0.0616 0.3008 0.1200 0.2726 0.2032%

DE(2,2) 20.20 0.1834 0.1728 0.1732 0.1599 0.1728 0.1579  0.1842
(2.5074) (3.9961) (4.0506) (3.9656) (4.0122) (3.1965) (3.8981)

2.4848 3.9902 4.0414 4.0471 4.0059 3.3098 3.8451

1.8136  2.5642 2.2069 2.3025 2.2031 1.7795  2.2263
(0.0022) (0.0611) (0.0078) (0.0142) (0.0076) (0.0035) (0.0201)

0.9622 0.9593 0.7771 0.9614 0.8294 0.9725  0.8403
(5.8490) (6.8220) (5.2203) (6.8302) (4.9317) (7.0005) (4.9428)

58.822 0.1098 0.4870 1.749 5.0334 0.5182

DE(3,2) 25.80 0.1946 0.1777 0.1818 0.1634 0.1817 0.1536 0.1943
(2.1747) (4.0230) (3.7548) (3.7725) (3.7681) (2.7214) (3.7247)

2.1341 3.9923 3.7128 3.8310 3.7262 2.8823 3.6535

1.8281 2.7984 2.7478 2.6471 2.8245 1.8880  2.9008
(0.0013) (0.0176) (0.0094) (0.0113) (0.0127) (0.0029) (0.0184)

0.9733  0.9700 0.7436 0.9737 0.7818  0.9906  0.7969
(4.6709) (6.1392) (6.8721) (6.1059) (5.0845) (6.0242) (5.1410)

93.481 0.1528 0.6768 3.8092 11.147 0.7460

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of .

tThe second value is the average estimated asymptotic variance (x 10?) of the estimator.

NThe third value is the MSE.

$The fourth value is mean estimate of o*.

§The fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102.
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Table 5.10

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), #, = -0.2 and n = 50. DE refers to the double

exponential distribution

T: % cens. 6 grie 67 fdas g 4 o

DE(1,2) 11.28 -0.1965 -0.2056 -0.2066 -0.2178 -0.2063 -0.1979 -0.2067"
(1.7490) (1.9229) (1.8882) (2.0702) (1.8905) (1.7460) (1.8879)"

17152 1.8876 1.8548 2.0605 1.8567 1.7115 1.8546l!

1.7252 1.7401 1.8652 1.6466 1.8700 1.7160 2.1273
(0.0021) (0.0027) (0.0021) (0.0022) (0.0021) (0.0017) (0.0050)

0.9417 0.9373 0.8416 0.9339 0.8901 0.9433 0.8840%
(4.4357) (4.5047) (3.7284) (4.4073) (4.0481) (4.5539) (3.8845)

29.959 0.0616 0.2912 0.0968 0.2314 0.2132%

DE(2,2) 20.72 -0.2017 -0.2124 -0.2137 -0.2203 -0.2138 -0.1910 -0.2068
(2.1202) (2.5670) (2.7259) (2.4902) (2.7056) (2.1678) (2.6994)

2.0781 2.3310 2.6902 2.4816 2.6705 2.1325 2.6500

1.8210 2.3309 2.3595 2.2536 2.3617 1.8884 2.8267
(0.0023) (0.0076) (0.0047) (0.0070) (0.0047) (0.0027) (0.0305)

0.9585 0.9639 0.7843 0.9637 0.8316 0.9788  0.8400
(4.0285) (5.6832) (4.6418) (5.7027) (4.2933) (5.5457) (4.3410)

53.902 0.1068 0.4792 1.3350 4.1896 0.5724

DE(3,2) 26.8%8 -0.2255 -0.2324 -0.2353 -0.2389 -0.2364 -0.1940 -0.2227
(2.0448) (2.3013) (2.2068) (2.0757) (2.2145) (1.5520) (2.3301)

2.0689 2.3603 3.2873 2.1855 2.3027 1.5246 2.3350

1.8146 2.7892 2.5795 2.3262 2.5917 1.8151 4.5847
(0.0028) (0.1110) (0.0114) (0.0130) (0.0116) (0.0041) (0.7020)

0.9878 1.0064 0.7568 1.0077 0.8017 1.0298 0.8185
(4.6049) (5.8091) (4.9753) (5.8172) (3.9976) (5.6292) (4.1900)

79.554 0.1450 0.6380 3.0010 8.1468 0.8076

*Throughout the table and for each combination of estimator and 7;, the first tabulated
value is the mean estimate of ¢

tThe second value is the average estimated asymptotic variance (x102) of the estimator.

IThe third value is the MSE.

!The fourth value is mean estimate of o2

$The fifth value is the average CPU time in seconds needed to compute the estimates.

¥The values in parentheses are the corresponding sampling variances x 102
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Table 5.11

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), f, = -0.5 and n = 50. DE refers to the double
exponential distribution

T; % cens. 6% gmie 6" gdag g 0 &

DE(1,2) 11.92 -0.4810 -0.4761 -0.4799 -0.4786 -0.4798 -0.4620 -0.4783"
(1.6666) (1.8782) (1.9227) (1.8829) (1.9194) (1.7423) (2.0091)7

16694 1.8978 1.9246 1.8910 1.9218 1.8519 2.0160ll

1.5276  1.4949 17002 1.4691 1.6977 1.5719 1.7633%
(0.0031) (0.0042) (0.0040) (0.0041) (0.0040) (0.0034) (0.0097)

0.9331 0.9392 0.8380 0.9383 0.8968 0.9670 0.9010%
(3.2068) (4.1297) (3.9026) (4.1038) (3.6992) (4.5303) (4.1589)

30.469 0.0638 0.2958 0.1330 0.3574 0.2394§_

DE(2,2) 20.68 -0.4860 -0.4962 -0.4984 -0.4925 -0.4971 -0.4528 -0.4897
(1.0529) (1.2362) (1.3951) (1.3182) (1.3823) (1.2632) (1.4268)

1.0514 1.2129 1.3675 1.2975 1.3555 1.4607 1.4089

1.3380 1.4703 1.6860 1.4251 1.6801 1.4161 1.8163
(0.0016) (0.0039) (0.0066) (0.0036) (0.0071) (0.0033) (0.0132)

0.9380 0.9443 0.7774 0.9520 0.8432 1.0103  0.8613
(5.0311) (5.3358) (4.3455) (5.6312) (4.5580) (6.4792) (4.5610)

59.020 0.1040 0.4482 2.0060 7.1430 0.5152

DE(3,2) 26.36 -0.5004 -0.4955 -0.4907 -0.4948 -0.4905 -0.4199 -0.4821
(1.4688) (1.9639) (2.2511) (2.0083) (2.2386) (1.8322) (2.2370)

1.4394 1.9266 2.2049 1.9708 2.2029 2.4372 2.2243

1.3365 1.6600 1.7662 1.6180 1.7881 1.3754  1.8881
(0.0020) (0.0055) (0.0065) (0.0039) (0.0057) (0.0019) (0.0129)

0.9963 0.9945 0.7293 0.9991 0.8303 1.0129  0.8530
(5.1609) (7.9177) (4.7549) (8.3224) (5.2633) (8.8670) (5.2635)

64.429 0.1416 0.5832 1.9182 6.1278 0.7732

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x10%) of the estimator.

I The third value is the MSE.

!The fourth value is mean estimate of ¢2.

$The fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.12

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), §, = -0.8 and n = 50. DE refers to the double

exponential distribution

T: % cens. 6% grie gz gdng 02 8t o

DE(1,2) 15.60 -0.7408 -0.7416 -0.7433 -0.7430 -0.7424 -0.7235 -0.7418"
(1.0078) (0.9957) (0.9684) (0.9754) (0.9493) (0.9614) (0.9618)¥

1.3381 1.3168 1.2705 1.2808 1.9621 1.5274 1.2813ll

0.7920 0.7414 0.8431 0.7346 0.8428 0.7873  0.7470°
(0.0008) (0.0008) (0.0009) (0.0008) (0.0009) (0.0008) (0.0024)

0.9676 0.9649 0.8181 0.9629 0.9380 1.0524 0.9611*
(4.1241) (3.9495) (3.2987) (3.9003) (3.9076) (5.7203) (4.4191)

29.738 0.0692 0.31060 1.0720 0.2766 0.3648"

DE(2,2) 24.64 -0.7663 -0.7670 -0.7702 -0.7690 -0.7681 -0.7166 -0.7628
(0.9719) (1.2179) (1.3185) (1.1643) (1.2851) (1.3355) (1.4190)

1.0660 1.3024 1.3809 1.2371 1.3612 2.0043 1.5280 °

0.7394 0.7529 0.8139 0.7513 0.8107 0.7406  0.8324
(0.0014) (0.0017) (0.0028) (0.0014) (0.0026) (0.0014) (0.0030)

0.9978 1.0024 0.7611 1.0075 0.9238 1.2239  0.9566
(2.5821) (3.9115) (4.0364) (4.0247) (3.3077) (6.2739) (3.9795)

41.416 0.1022 0.4106 1.0328 4.1786 0.6120

DE(3,2) 26.64 -0.7740 -0.7687 -0.7751 -0.7702 -0.7733 -0.7077 -0.7666
(0.9419) (1.0376) (1.0964) (1.1091) (1.0830) (1.3341) (1.2051)

0.9907 1.1148 1.1365 1.1757 1.1326 2.1583 1.2926

0.7082 0.7500 0.8273 0.7828 0.8241 0.7697  0.8006
(0.0008) (0.0012) (0.0018) (0.0015) (0.0017) (0.0012) (0.0037)

1.0125 1.0313 0.7518 1.0363 0.9246 1.2850  0.9517
(4.6431) (6.2846) (5.3299) (6.5664) (5.9098) (9.4930) (6.1695)

51.276 0.1090 0.4548 1.9824 8.7212 0.7734

*Throughout the table and for each combination of estimator and T}, the first tabulated
value is the mean estimate of 8.
1The second value is the average estimated asymptotic variance (% 10?) of the estimator.

IThe third value is the MSE.

$The fourth value is mean estimate of o°.

§The fifth value is the average CPU time in seconds needed to compute the estimates.
The values in parentheses are the corresponding sampling variances %102,
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Table 5.13

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1}, 8, = 0.8 and n = 100. DE refers to the double
exponential distribution

T:. % cens. & ol 6 gdas ge g fe

‘I'I. n s

DE(1,2) 14.40 0.7728 0.7734 0.7753 0.7799 0.7751 0.7543 0.7753"
(0.3467) (0.3646) (3.6530) (0.3934) (0.3624) (0.3712) (0.3664)%

0.4172 0.4317 0.4227 0.4299 0.4208 0.5763 0.4237ll

0.3936  0.3627 0.4159 0.4104 0.4162  0.3840 0.4223!
(0.0001) (0.0001) (6.0002) (0.0005) (0.0002) (0.0001) (0.0003)

0.9939 0.9819 09140 1.0161 0.9565 1.0514 0.9579F
(2.2260) (2.0641) (1.8623) (2.2900) (1.8383) (2.5512) (1.9030)

66.427 0.1200 0.4394 4.2436 13.942 0.96348

DE(2,2) 20.16 0.7765 0.7782 0.7786  0.7802 0.7767 0.7348  0.7767
(0.5633) (0.5534) (0.5919) (0.5602) (0.5849) (0.6584) (0.5858)

0.6129 0.5954 0.6318 0.5938 0.6333 1.0769 0.6342

0.3799 0.3555 0.4020 0.3840 0.4013  0.3677_  0.3646
(0.0002) (0.0002) (0.0003) (0.0003) (0.0003) (0.0002) (0.0004)

0.978¢ 0.9577 0.8088 0.9711 0.9164 1.1281 0.9276
(2.1703) (1.7424) (1.6990) (1.9812) (1.9891) (2.8882) (2.0985)

63.643 0.1560 0.5808 3.8898 14.218 1.7610

DE(3,2) 26.80 0.7797 0.7686 0.7732 0.7697 0.7704 0.7000  0.7684
(0.3148) (0.5246) (0.5394) (0.5764) (0.5231) (0.6111) (0.5733)

0.3529 0.6180 0.6058 0.6624 0.6055 1.6050 0.6674

0.3972 0.4085 0.4504 0.4713 0.4446 0.4080 0.4711
(0.0001) (0.0002) (0.0003) (0.0005) (0.0002) (0.0001) (0.0005)

0.9900 0.9800 0.7619 1.0023 0.8961 1.2507  0.9239
(2.0664) (2.6087) (3.1845) (2.4814) (2.4996) (5.2425) (3.8535)

224.05 0.2192 0.8194 12.505 55.8760 2.5322

*Throughout the table and for each combination of estimator and T}, the first tabulated
value is the mean estimate of #.

tThe second value is the average estimated asymptotic variance (x16?) of the estimator.

IThe third value is the MSE.

}The fourth value is mean estimate of a2.

iThe fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102
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Table 5.14

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 8, = 0.5 and n = 100. DE refers to the double
exponential distribution

T; % cens. 0% gmie 62t gdes g g o:

DE(1,2) 12.52 0.4897 04874 0.4893 0.4829 0.4892 0.4706 0.4897"
(0.6716) (0.7981) (0.8003) (0.8214) (0.8035) (0.7485) (0.8005)T

0.6755 0.8060 0.8037 0.8424 0.8071 0.8275 0.8031l!

0.6924 0.6881 0.7391 0.7507 0.7412 0.6827 0.7982"
(0.0002) (0.0003) (0.0002) (0.0006) (0.0002) (0.0002) (0.0006)

1.0256  1.0415 0.9472 1.0510 0.9949 1.0686 0.9982
(1.1496) (1.2665) (1.2034) (1.2223) (1.1090) (1.3207) (1.0078)

33.602 0.1244 0.4516 0.6680 1.7026 0.8570°

DE(2,2) 21.92 0.4793 0.4791 0.4802 0.4682 0.4798 0.4317 0.4831
(1.1735) (1.2685) (1.2536) (1.4390) (1.2555) (1.1229) (1.2438)

1.2046 1.2995 1.2803 1.5257 1.2837 1.5782 1.2599

0.7518 0.9019 0.9568 0.9670 0.9595 0.7797  0.9876
(0.0003) (0.0011) (0.0007) (0.0018) (0.0007) (0.0003) (0.0030)

1.0074 1.0187 0.8252 1.0268 0.8937 1.0783  0.9050
(1.6575) (2.5409) (2.1341) (2.6074) (2.0305) (2.5722) (2.1043)

65.929 0.2076 0.7468 3.1128 9.4844 2.2290

DE(3,2) 26.72 0.4830 0.4837 0.4832 0.4707 0.4816 0.4088 0.4835
(0.7466) (1.1200) (1.0979) (1.1680) (1.0687) (0.7973) (1.0437)

0.7680 1.1354 1.1151 1.2422 1.0919 1.6212 1.0605

0.7456 0.9704 1.0283 0.9991 1.0249 0.7886  0.9781
(0.0002) (0.0013) (0.0009) (0.0009) (0.0009) (0.0004) (0.0029)

0.9752 0.9621 0.7142 0.9726 0.8004 1.0580 0.8245
(2.1583) (3.6098) (3.0769) (3.9916) (2.3418) (4.5491) (2.4417)

118.85 0.2632 0.9744 7.8940 24.0442 3.1354

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

' The second value is the average estimated asymptotic variance (x 10%) of the estimator.

IThe third value is the MSE.

{The fourth value is mean estimate of 2.

§The fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 107,
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Table 5.15

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), f, = 0.2 and n = 100. DE refers to the double
exponential distribution

T, % cens. 6+  gme  fB flw g gt fe

T

DE(1,2) 11.08 0.1865 0.1854 0.1865 0.1788 0.1864 0.1791 0.1877"
(0.8134) (0.9012) (0.9161) (0.9215) (0.9128) (0.8579) (0.8745)%

0.8235 0.9135 0.9252 0.9572 0.9223 0.8930 0.8809

0.9222 0.9726 0.9916 0.9967 0.9931 0.9100 1.0453!
(0.0004) (0.0005) (0.0003) (0.0006) (0.0003) (0.0002) (0.0016)

0.9877 0.9780 0.8908 0.9788 0.9277 0.9809  0.9260
(1.6456) (1.8292) (1.6550) (1.8321) (1.6642) (1.8297) (1.7226)

30.445 0.1252 0.4278 0.2084 0.4570 0.8484°

DE(2,2) 20.54 0.2099 0.1884 0.1881 0.1693 0.1877 0.1669 0.1913
(0.8972) (1.2202) (1.2239) (1.2995) (1.2230) (0.9939) (1.1982)

0.8978 1.2215 1.2258 1.3808 1.2259 1.0936 1.1938

0.9488 1.1937 1.2302 1.2077 1.2306  0.9624 1.3481
(0.0003) (0.0011) (0.0008) (0.0011) (0.0008) (0.0004) (0.0028)

0.9920 1.0046 0.8148 1.0071 0.8660 1.0153 0.8722
(2.1931) (3.6481) (2.6038) (3.7199) (2.9377) (3.7250) (2.9596)

68.351 0.2020 0.7888 2.6158 7.6148 2.0004

DE(3,2) 27.02 0.1965 0.1961 0.1977 0.1809 0.1974 0.1619 0.2064
(0.8600) (1.1644) (1.1616) (1.1186) (1.1593) (0.7472) (1.1432)

0.8526 1.1543 1.1505 1.1440 1.1484 0.8849 1.1359

0.9406 0.6461 1.4122 1.3277 1.4134  0.9570  1.4777
(0.0003) (0.0016) (0.0012) (0.0018) (0.0013) (0.0004) (0.0043)

0.9739 1.3282 0.7503 0.9733 0.7704 0.9879 0.7832
(1.7150) (2.1268) (2.2694) (2.1313) (1.6719) 2.0775 (1.5633)

114.92 0.2836 1.0754 6.1252 16.951 3.1032

*Throughout the table and for each combination of estimator and T}, the first tabulated
value is the mean estimate of 4.

1The second value is the average estimated asymptotic variance (x 10?) of the estimator.

IThe third value is the MSE.

tThe fourth value is mean estimate of o2.

5The fifth value is the average CPU time in seconds needed to compute the estimates.

1The values in parentheses are the corresponding sampling variances x10%.
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Table 5.16

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 8, = -0.2 and n = 100. DE refers to the double

exponential distribution

T; % cens. 6% grite gz gdos 2 @ 34

DE(1,2) 10.90 -0.2004 -0.2011 -0.2006 -0.2086 -0.2008 -0.1927 -0.1996"
(0.9804) (0.9788) (0.9791) (0.9826) (0.9788) (0.8979) (1.0011)*

0.9706 0.9691 0.9693 0.9802 0.9691 0.8943 0.9911ll

0.9485 0.9683 1.0398 0.9524 1.0406 0.9586 1.0468!
(0.0004) (0.0007) (0.0005) (0.0007) (0.0005) (0.0004) (0.0018)

0.9819 0.9880 0.8802 0.9867 0.9415 0.9930 0.9402}
(2.6710) (3.2458) (2.2432) (3.2291) (2.9319) (3.2713) (2.9579)

31.590 0.1254 0.4252 0.2108 0.4658 0.86525

DE(2,2) 19.92 -0.1915 -0.2021 -0.1994 -0.2131 -0.1995 -0.1796 -0.1948
(0.7442) (0.7923) (0.7717) (0.8197) (0.7668) (0.6330) (0.7945)

0.7440 0.7848 0.7640 0.8287 0.7592 0.6683 0.7893

0.9542 1.2921 1.2793 1.2206 1.2756 1.0405 1.4640
(0.0002) (0.0023) (0.0011) (0.0018) (0.0011) (0.0008) (0.0065)

0.9942 0.9885 0.8206 0.9874 0.8598  0.9999  0.8708
(1.8835) (1.8620) (1.8048) (1.8460) (1.3704) (1.8538) (1.4729)

61.702 0.2076 0.7678 1.7796 4.9996 2.0782

DE(3,2) 27.72 -0.2224 -0.2154 -0.2195 -0.2194 -0.2194 -0.1818 -0.2151
(0.7955) (1.3785) (1.3303) (1.2057) (1.3281) (0.9287) (1.4417)

0.8377 1.3884 1.35500 1.2313 1.3525 0.9525 1.4501

0.9267 1.2313 1.4191 1.1868 1.3955 0.9545 1.4492
(0.0002) (0.0016) (0.0013) (0.0014) (0.0012) (0.0004) (0.0047)

1.0201 1.0317 0.7477 1.0339 0.8164 1.0523  0.8351
(1.3760) (2.0430) (2.2401) (2.0293) (1.5475) (2.0902) (1.6719)

206.99 0.3010 1.0676 10.381 31.1574 3.3414

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 4.

tThe second value is the average estimated asymptotic variance (x 10%) of the estimator.

#The third value is the MSE.

tThe fourth value is mean estimate of o2

$The fifth value is the average CPU time in seconds needed to compute the estimates.

YThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.17

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), 8, = -0.5 and r = 100. DE refers to the double
exponential distribution

T: % cens. O prte 0° @dog i 6 e

n

DE(1,2) 12.00 -0.5050 -0.5050 -0.5066 -0.5082 -0.5063 -0.4888 -0.50557
(0.7230) (0.7694) (0.8038) (0.7493) (0.8025) (0.7547) (0.8136)"

0.7183 0.7642 0.8001 0.7485 0.7984 0.7597 0.8085

0.7392 0.7004 0.7797 0.6897 0.7782 0.7180  0.71281
(0.0003) (0.0004) (0.0004) (0.0004) (0.0004) (0.0003) (0.0015)

1.0109 1.0120 0.8924 1.0104 0.9693 1.0396 0.9754}
(2.4124) (2.3046) (1.5926) (2.2812) (2.0593) (2.4841) (2.1339)

31.319 0.1220 0.4196 0.3754 1.0502 1.0006%

DE(2,2) 21.46 -0.5042 -0.4993 -0.4983 -0.5018 -0.4976 -0.4496 -0.4967
(0.6498) (0.7717) (0.7708) (0.7561) (0.7728) (0.6756) (0.7945)

0.6451 0.7640 0.7634 0.7489 0.7656 0.9229 0.7876

0.6935 0.7726 0.8730 0.7606 0.8662 0.7198  0.8923
(0.0002) (0.0006) (0.0005) (0.0006) (0.0005) (0.0002) (0.0018)

0.9797 0.9748 0.7824 0.9774 0.8638 1.0427 0.8717
(1.8222) (2.5515) (2.0109) (2.6068) (1.9519) (2.9917) (2.0950)

48.806 0.1976 0.6910 1.4664 4.2548 2.2244

DE(3,2) 27.04 -0.4951 -0.4956 -0.5003 -0.4965 -0.4995 -0.4245 -0.4923
(0.6128) (0.6981) (0.8091) (0.6118) (0.8137) (0.6826) (0.8816)

0.6091 0.6931 0.8010 0.6069 0.8056 1.2458 0.8787

0.7415 0.9299 1.0658 0.9267 1.0495 0.8020 1.1589
(0.0003) (0.0010) (0.0012) (0.0010) (0.0012) (0.0004) (0.0034)

0.9892 0.9822 0.4750 0.9875 0.8144 1.0763  0.8401
(1.9871) (3.7876) (2.8591) (3.9496) (2.7188) (4.8549) (3.1027)

66.703 0.2658 0.9528 2.6882 9.1188 3.0736

*Throughout the table and for each combination of estimator and T, the first tabulated
value is the mean estimate of 8.

1The second value is the average estimated asymptotic variance (x 10?) of the estimator.

IThe third value is the MSE.

tThe fourth value is mean estimate of o2,

§The fifth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102
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Table 5.18

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,1), §, = -0.8 and n = 100. DE refers to the double
exponential distribution

T, % cens. OF  fmie g fls e ¢t g

DE(1,2 17.56 -0.7878 -0.7862 -0.7893 -0.7866 -0.7878 -0.7631 -0.7880"
(0.2970) (0.3126) (0.3347) (0.3085) (0.3298) (0.3147) (0.3405)1

0.3089 0.3285 0.3428 0.3234 0.3414 0.4477 0.3515l

0.3639  0.3577 0.3912 0.3557 0.3882 0.3598 0.4426'
(0.0001) (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) (0.0019)

1.0419 1.0402 0.8480 1.0402 0.9974 1.1547 1.0153}
(1.8744) (1.9877) (1.4738) (1.9486) (1.9970) (3.0006) (2.2634)

28.354 0.1418 0.4680 0.2186 0.5706 1.7288"

DE(2,2) 22.56 -0.7702 -0.7721 -0.7707 -0.7706 -0.7678 -0.7216 -0.7628
(0.4329) (0.4679) (0.4722) (0.4414) (0.4639) (0.5448) (0.5051)

0.5174 0.5411 0.5533 0.5234 0.5629 1.1540 0.6384

0.3792 0.4257 0.4383 0.4067 0.4349 0.3952  0.4289
(0.0001) (0.0004) (0.0002) (0.0003) (0.0002) (0.0002) (0.0004)

1.0199 1.0185 0.7955 1.0278 0.9601 1.2192  1.0123
(2.1698) (2.6926) (2.2595) (2.5805) (2.2712) (3.5742) (2.6397)

44.017 0.1722 0.6022 1.4754 5.7394 2.1112

DE(3,2) 27.14 -0.7818 -0.7887 -0.7866 -0.7883 -0.7839 -0.7168 -0.7821
(0.2978) (0.3538) (0.3775) (0.3233) (0.3645) (0.4533) (0.3824)

-0.3279 0.3630 0.3917 0.3338 0.3868 1.1410 0.4106

0.3752 0.4661 0.4176 0.4328 0.4361 0.4009  0.4473
(0.0007) (0.0011) {0.0003) (0.0003) (0.0003) (0002) {(0.0005)

0.9767 0.9437 0.6640 0.9521 0.8695 1.2245 0.8873
(2.4405) (2.8604) (3.4588) (2.6627) (2.3480) (4.0092) (2.7070)

164.24 0.2276 0.7426 6.0738 28.4808 2.7230

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 6.

tThe second value is the average estimated asymptotic variance ( x 10?) of the estimator.

IThe third value is the MSE.

tThe fourth value is mean estimate of &2,

§The fifth value is the average CPU time in seconds needed to compute the estimates.

1The values in parentheses are the corresponding sampling variances x 10°.
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Figure 5.1

Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), #, = 0.8 and n = 25.
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Figure 5.2

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1}, §, = 0.5 and n = 25.
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Figure 5.3

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = 0.2 and n = 25.
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Figure 5.4

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1}, #, = -0.2 and n = 25.
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Figure 5.5

Fisher’s LSDD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = -0.5 and n = 25.
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Figure 5.6

Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = -0.8 and n = 25.
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Figure 5.7
Fisher’s LSD comparison of the estimators. Estimators underlined by a

common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), f, = 0.8 and n = 50.
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Figure 5.8

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = 0.5 and n = 50.
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Figure 5.9

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian {0,1), 8, = 0.2 and n = 50.
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Figure 5.10

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = -0.2 and n = 50.
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Figure 5.11

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = -0.5 and n = 50.
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Figure 5.12

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1}, 8, = -0.8 and n = 50.
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Figure 5.13 _
Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are

from Gaussian (0,1}, 8, = 0.8 and n = 100.
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Figure 5.14
Fisher’s LSD comparison of the estimators. Estimators underlined by a

common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), #, = 0.5 and n = 100.
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Figure 5.15

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = 0.2 and n = 100.
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Figure 5.16

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = -0.2 and n = 100.
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Figure 5.17

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), §, = -0.5 and n = 100.
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Figure 5.18

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = -0.8 and n = 100.
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5.3.2 Errors from the Gaussian distribution with vari-
ance two

Next, we consider the results in Tables 19-36 obtained by drawing the time se-
ries samples from the normal distribution with mean zero and variance ot =2
As mentioned earlier, the censoring rv's in this case are also from the normal
distribution but with mean 2.5 and variance fixed at three values, 4, 6 and 8.
First, we compare the behaviour of the estimators on the basis of the bias cri-
terion. The behaviour exhibited By the estimators is similar to their behaviour
when 2. For all the three sample sizes considered in this study, the estimators
behave similarly to each other when 1 —#2. For large values of 1 — 62, however,

9> performs worse than the other estimators which have a similar behaviour.

Let us now consider the behaviour of the estimators using the asymptotic vari-
ance criterion. Before we compare the estimators, we shall first study their -
behaviour as sample size, f,, and the censoring rate vary. As in the previous
case where o2 = 1, the performance of the estimators improves as sample size
increases. It is better for small values of 1 — 82 than it is for values of this
quantity close to 1. Of the 72 analyses of variance, 18 (for Tables 19-36) are
for normal errors with ¢? equal to 2. Fourteen of these exhibit a significant
effect due to censoring rate. In three of these 14 cases, the performance of the
estimators for the censoring rate N(2.5,4) is equivalent to their performance
for N(2.5,6) and this is significantly better than their performance for N(2.58)
at the 0.05 level according to Fisher’s LSD analysis. In another one of the 14
cases, the censoring rate N(2.5,4) shows a better performance for the estima-
tors than the rates N(2.5,6) and N{2.5,8) which are not significantly different
from each other. In another 4 of the 14 cases, the estimators perform differ-
ently for thé different censoring rates. Three of these 4 cases show that the
performance of the estimators is best for N(2.5,4), second best for N(2.5,6)
and worst for N(2.5,8). The fourth case shows that the estimators perform
best for N(2.5,8), second best for N{2.5,4) and worst for N(2.5,6). In 3 of the
14 cases, the estimators perform better for N(2.5,8) than they do for N(2.5,4)
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and N(2.5,6) which are not significantly different from each other. In another
2 of the 14 cases, the perfdrmance of the estimators if better for N(2.5,6) than
it is for N(2.5,4) and N(2.5,8). In the fourteenth case, the estimators be-
have similarly for N(2.5,6) and N(2.5,8) and better than they do for N(2.5,4).
Overall, there is sufficient evidence to conclude that the performance of the

estimators deteriorates as the censoring rate increases.

Once again, 18 analyses of variance are available for comparisons between the
estimators. Fifteen of these show a significant estimator effect at the 0.05 level.
Four of these 15 cases correspond to small sample sizes, 5 are for moderate
samples- and the remaining 6 are for large samples. For small samples, in 3 of
the 4 analyses of variance which show a significant estimator effect (Figures
5.20, 5.21 and 5.22), g!s and g perform better than ée, 42> and #¢ at the 0.05
level using Fisher’s LSD analysis. In the first of these 3 cases (Figure 5.20),
the behaviour of d™¢ is similar to the behaviour of the estimators from the
first group and better than 9:’5 behaviour. The PL estimator of Dagenais,
éi“g performs comparably with estimators from the first group. In the second
of the 3 analyses (Figure 5.21), éi“g and é;“'e perform comparably with ég,
g2 and 62 and better than 5. In the third case (Figure 5.22), f2=9 behaves
similarly to 9:’1 while é?’e performs better than ég and similarly to é,‘i“g, 63;":’ and
§2. In the fourth analysis of variance (Figure 5.23), fis, oo, 6> and O™ are
comparable among themselves and perform better than gz, 67 and 8 which

are not significantly different from each other.

For moderate samples, in 2 of the 5 analyses of variance with a significant es-
timator effect (Figures 5.25 and 5.26), §'s and 6% perform significantly better
than @29, g2, 6z and g. In one of these 2 cases (Figure 5.25), g™ behaves
similarly to 6¢ and ' and better than the other estimators. In the other case
(Figure 5.26), gmle performs comparably with estimators from both groups. In
another 2 of the 5 analyses (Figures 5.27 and 5.28), s and 6& peform better

than é,’f“’, éff’, é,j‘, and é;. In both these cases, én’?“ behaves similarly to éflb, 9;
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and 989 which are superior to fc. In the the fifth analysis (Figure 5.29), gis
and 2 feature better than éfL, §2> and 65 while f4%9 and é;“fe perform compa-
rably with estimators from the first group and better than 9; from the second
group. The MLE behaves similarly to 9;‘1 and éff’ while éi“g performs better

than these two estimators.

For large samples, in 3 of the 6 analyses of variance which show a significant es-
timator effect at the 0.05 level (Figures 5.31, 5.32 and 5.33), ¢* and 8% exhibit
a better performance than oz, éf;", §da9 and dc. In 2 of these 3 cases (Figures
5.32 and 5.33), the behaviour of g7 is similar that of gz, 4= and f29. In
the third case (Figure 5.31), mle behaves similarly to g2, In all the cases, oz
and é;’f’ behave similarly. Their performance is superior to that of 9; in two of
these cases (Figures 5.32 and 5.33) and similar in the third case (Figure 5.31).
In one of the remaining 3 analyses (Figure 5.35), gdes fe §° and 7' behave |
similarly and better than éfﬂ éfl and é;"f’ which are not significantly different
from each other at the 0.05 level. In another one of the 3 cases (Figure 5.36),
apart from é;, éif and éf,’l’s superiornty aver éf’e, the estimators compare sim-
ilarly among themselves. In the third case (Figure 5.34), 6 and 6° perform
comparably among themselves and better than 6z, é;b and 63; which behave
similarly to each other. The MLE behaves similarly to §2 and 8% from the
latter group while é;{“g behaves similarly to 9,{}’ former group of estimators.

The behaviour of §4%9 and #7¢ is similar.

In general, like in the previous case where o is equal to 1, fo and Gi perform
equivalently to each other and better than éﬁ, 8% and §¢ which are not signif-
icantly different among themselves. The MLE and é‘i“g perform comparably
with estimators in either group with 9,’?"‘3 ’s performance closer to the perfor-
mance éif and éfl and égf‘g performing more like G; and éff’ The difference
between this case and the previous one where o2 is equal to 1 is that here the

superiority of éi:’ and éfl over éfﬂ éff’ and 9; is enhanced, particularly for large

samples. In the previous case, in a significant number cases, all the estimators
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perform equivalently. Further, in the present case, 9;’”8 and éff”g behave more

like 62 and G;b than in the previous case.
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Table 5.19

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), §, = 0.8 and n = 25

T: % cens. & gmie gz fas e 6 g

N(2.5,4) 1560 0.7310 0.7307 0.7296 0.7361 0.7290 0.7065 0.7370
(1.6236) (1.7439) (1.7716) (2.0783) (1.7475) (1.8535) (1.6362)1

1.7959 1.6442 1.8620 2.2893 1.8409 1.6649 1.8940'
(0.0103) (0.0116) (0.0122) (0.0987) (0.0122) (0.0097) (0.0189)

1.9579 1.9382 1.7811 1.9936  1.8656 2.0518 1.9713
(52.018) (57.153) (61.943) (59.342) (52.270) (56.629) (72.220)

92.0212 50.617 0.0398 0.2328 2.0212 6.7382 0.0892°

N(2.5,6) 19.76 0.7187 0.7136 0.7190 0.7158 0.7151 0.6901  0.7204
(2.3620) (2.7991) (2.6918) (2.9307) (2.7212) (2.7528) (2.6460)

1.6359 1.6445 1.8527 1.9784 18172 1.6382 1.6988
(0.0078) (0.0093) (0.0110) (0.0274) (0.0107) (0.0069) (0.0176)

1.9589 1.9282 1.7981 2.0135 1.8480 2.1028 2.0444 -
(25.214) (34.765) (30.792) (31.014) (27.777) (32.770) (66.971)

2.0596 59.234 0.0492 0.2640 2.0596 7.0678 0.1260

N(2.58) 23.36 0.7287 0.7182 0.72290 0.7176  0.7190 0.6796  0.7246
(2.0602) (2.4486) (2.5622) (2.8782) (2.5535) (2.7690) (2.7322)

1.6781 1.8777 1.8354 1.6989 1.8558 1.6456  1.6911
(0.0081) (0.0402) (0.0093) (0.0093) (0.0109) (0.0083) (0.0221)

1.7749 1.6760 1.3763 1.7280 1.5588 1.8862 1.6311
(21.815) (19.591) (19.196) (23.717) (22.187) (33.083) (26.278)

3.1010 58.144 0.0582 0.3190 3.1010 9.2746 0.1628

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of &.

tThe second value is the average estimated asymptotic variance (X 102) of the estimator.

!The third value is mean estimate of 2.

$The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x102.
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Table 5.20

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), §, = 0.5 and n = 25

- - a

T: % cens. 8% gmie gzt fdas e 8 o5

n n n

N(2.54) 12.96 0.4429 0.4325 04349 04294 04332 04178 0.4393
(2.5474) (2.8137) (2.7749) (3.0200) (2.7908) (2.6467) (2.7946)"

2.6861 3.0666 3.1029 3.2556  3.1105 2.8114 3.3729'
(0.0074) (0.0245) (0.0151) (0.0263) (0.0152) (0.0098) (0.0348)

1.9076 1.8987 1.6973 1.9089 1.7987 1.9283 1.8062}
(32.360) (29.493) (21.088) (28.636) (26.222) (30.265) (24.444)

0.5042 34.248 0.0408 0.2462 0.5042 1.3358 0.0676°

N(2.5,6) 19.52 0.4779 04728 04797 0.4637 04781 0.4492 0.4821
(4.0503) (5.4925) (5.4189) (5.9326) (5.3558) (4.5092) (5.3960)

2.5933 2.4326 2.8833 25872 2.8954 2.4979  3.1599
(0.0119) (0.0135) (0.0235) (0.0152) (0.0217) (0.0129) (0.0523)

1.9164 1.8631 1.5537 1.8797 1.6973 1.9632 1.7722 -
(33.867) (42.672) (35.325) (44.419) (34.693) (46.445) (42.240)

0.8414 42.333 0.0516 0.3028 0.8414 2.2520 0.1264

N(2.5,8) 20.00 04592 04311 0.4350 0.4292 0.4352 0.4030 0.4451
(3.0699) (4.3510) (4.4592) (4.5573) (4.3600) (3.8720) (4.0165)

27253 3.3639 3.1996 3.4939 3.1970_ 2.7119  3.3948
(0.0091) (0.0440) (0.0176) (0.0415) (0.0180) (0.0122) (0.0392)

1.9213 1.8736 1.5088 1.8877 1.6800 1.9506  1.7022
(28.947) (30.840) (30.703) (31.385) (25.116) (34.618) (24.411)

0.7788 47.084 0.0506 0.3374 0.7788 2.5672 0.1206

*Throughout the table and for each combination of estimator and T;, the first tabulated
value 1s the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x 102) of the estimator.

!The third value is mean estimate of o2,

§The fourth value is the average CPU time in seconds needed to compute the estimates.

' The values in parentheses are the corresponding sampling variances x 102,
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Table 5.21

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), §, = 0.2 and n =25

T: % cens. 67 omie gz fdas. 92 0 e

N(2.54) 1544 01372 0.1349 0.1373 0.1133 0.1364 0.1310 0.1434"
(3.1976) (3.3400) (3.4629) (3.3410) (3.4229) (3.0604) (3.4157)"

3.3609 3.5056 3.7906 3.7876 3.7745 3.3782 4.31391
(0.0145) (0.0446) (0.0307) (0.0595) (0.0294) (0.0213) (0.0921)

2.1305 2.0916 1.8311 2.0986 1.9497 2.1027 1.9282!
(34.661) (42.368) (46.275) (43.274) (38.778) (41.206) (35.694)

0.1352 35.780 0.0438 0.2844 0.1352 0.3660 0.0878%

N(2.5,6) 18.80 0.1239 0.1118 0.1116 0.0928 0.1099 0.1042  0.1166
(4.1924) (4.6948) (4.6212) (4.7469) (4.6044) (3.9512) (4.5636)

37311 3.9096 4.4425 4.1404 4.4061 3.7517 4.8214
(0.0247) (0.0626) (0.0487) (0.0812) (0.0455) (0.0309) (0.0766)

2.0531 2.0549 17275 2.0584 1.8640 2.0758 1.9017 ©
(21.069) (33.492) (29.033) (33.864) (29.353) (32.680) (54.813)

0.2020 41.233 0.0508 0.3342 0.2020 0.5460 0.1164

N(2.5,8) 21.04 0.1542 0.1649 0.1824 0.1522 0.1777 0.1623  0.1916
(4.4439) (5.4595) (4.6195) (5.0553) (4.5798) (3.8702) (4.4465)

3.3774 4.4088 4.2105 3.8388 4.2433 3.6723  4.1737
(0.0183) (0.1571) (0.0505) (0.0470) (0.0530) (0.0756) (0.1474)

1.8605 1.7983 1.4344 1.8126 1.5928 1.8358 1.5978
(21.120) (26.737) (24.435) (25.717) (24.526) (26.864) (25.108)

1.3624 57.808 0.0572 0.3566 1.3624 4.2436 0.1470

*Throughout the table and for each combination of estimator and Tj, the first tabulated
value is the mean estimate of 4.

tThe second value is the average estimated asymptotic variance (x10%) of the estimator.

tThe third value is mean estimate of 2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x102,
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Table 5.22

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, = -0.2 and n = 25

T: % cens. 6 gmle i fag g2 4 6

N(2.54) 14.64 -0.1745 -0.1804 -0.1768 -0.1938 -0.1784 -0.1723 -0.1726*
(2.7580) (3.5991) (3.4994) (3.3388) (3.5233) (3.2377) (3.4247)"

3.5581 4.1226 3.9970 3.8227 4.0165 3.6209 4.39121
(0.0232) (0.1244) (0.0508) (0.0926) (0.0549) (0.0349) (0.1604)

1.9420 1.9082 1.6214 19056 1.7844 1.9173 1.7680¢
(29.293) (28.475) (25.418) (28.716) (26.176) (28.303) (26.313)

0.1098 35.117 0.0462 0.2668 0.1098 0.2594 0.0890°

N(2.5,6) 17.60 -0.1126 -0.0947 -0.0966 -0.1182 -0.0978 -0.0911 -0.0865
(3.8775) (4.6446) (4.7214) (4.0675) (4.6788) (3.9811) (5.0163)

3.5955 3.7324 4.3769 3.7600 4.3849 3.6974  4.5809
(0.0163) (0.0315) (0.0315) (0.0294) (0.0325) (0.0178) (0.1670)

1.8494 1.8661 1.5619 1.8663 1.6907 18754 1.6959
(27.858) (32.784) (22.701) (32.773) (28.200) (33.035) (27.328)

0.5996 43.156 0.0506 0.3010 0.5996 1.5214 0.1278

N(2.5,8) 20.96 -0.1793 -0.1793 -0.1844 -0.1862 -0.1843 -0.1713 -0.1744
(5.0069) (7.4379) (7.6157) (7.1183) (7.4897) (6.1426) (8.1648)

3.1345 3.7181 3.8012 3.6914 3.7956  3.0905  3.9197
(0.0102) (0.0519) (0.0443) (0.0685) (0.0410) (0.0167) (0.1103)

1.9784 1.8264 14635 1.8369 1.6204 1.8695 1.6194
(30.446) (35.839) (32.365) (37.773) (31.880) (36.930) (30.814)

0.4678 48.263 0.0606 0.3650 0.4678 1.4212 0.1480

“Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x10?) of the estimator.

{The third value is mean estimate of o'2.

¥The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x10%.
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Table 5.23

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, =-0.5 and n =25

T: % cens. 8 gmie 6z T gz 0t g

N(2.54) 1648 -0.4749 -0.4758 -0.4778 -0.4811 -0.4766 -0.4570 -0.4734"
(2.7853) (2.9749) (3.2349) (2.7580) (3.1857) (3.0203) (3.2430)1

9.8440 2.8071 3.1956 27761 3.1571 2.8654 3.4635!
(0.0155) (0.0318) (0.0304) (0.0312) (0.0291) (0.0217) (0.0782)

1.9588 19385 1.6432 1.9373 18266 2.0025 1.8575F
(26.095) (30.680) (22.447) (30.345) (26.358) (31.716) (36.432)

0.0886 33.209 0.0458 0.2680 0.0886 0.2384 0.1108%

N(2.5,6) 19.12 -0.4667 -0.4682 -0.4741 -0.4688 -0.4740 -0.4439 -0.4623
(2.7900) (3.3170) (3.5017) (3.2437) (3.5060) (3.2182) (3.7162)

2.8534 2.9178 3.3809 2.7796  3.3278 2.9003  3.3955
(0.0151) (0.0260) (0.0267) (0.0194) (0.0253) (0.0162) (0.0901)

1.9640 1.9539 16660 1.9599 1.7741 2.0180 18159 ~
(29.895) (35.334) (27.880) (34.596) (28.154) (35.410) (32.622)

0.7132 40.481 0.0528 0.2838 0.7132 2.2940 0.1386

N(2.58) 21.68 -0.4598 -0.4552 -0.4577 -0.4615 -0.4546 -0.4143 -0.4449
(3.1906) (2.8515) (3.1423) (2.6170) (3.1271) (2.6702) (3.4198)

2.6968 3.1486 3.6884 3.0072 3.6626_ 3.0143  3.7754
(0.0115) (0.0265) (0.0299) (0.0191) (0.0311) (0.0149) (0.0846)

1.9355 1.9265 1.5576 19267 17122 2.0429  1.7564
(22.758) (34.586) (34.516) (33.702) (29.957) (39.351) (38.336)

0.2018 39.875 0.0606 0.3306 0.2018 0.5496 0.1714

*Throughout the table and for each combination of estimator and T, the first tabulated

value is the mean estimate of 4.
tThe second value is the average estimated asymptotic variance (x 10%) of the estimator.

YThe third value is mean estimate of o?.
§The fourth value is the average CPU time in seconds needed to compute the estimates.
TThe values in parentheses are the corresponding sampling variances x 107,
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Table 5.24

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, = -0.8 and n =25

T; % cens.

His Amle [zh Adag fa Ab Ac
gis  dr go e g § o

n

N(2.5,4) 20.08

L0.7559 -0.7491 -0.7579 -0.7494 -0.7480 -0.7227 -0.7530"
(2.2695) (2.3963) (2.5590) (2.3638) (2.3534) (2.4267) (2.8431)"

1.6152 1.6157 1.7439 1.5984 1.7952 1.6461 1.6385
(0.0079) (0.0108) (0.0144) (0.0102) (0.0131) (0.0099) (0.0306)

1.8442 1.8132 1.4827 1.8150 17328 1.9922 1.7439
(26.344) (29.221) (22.779) (29.212) (28.762) (37.383) (29.393)

0.0646 20.939 0.0468 0.2514 0.0646 0.1536 0.1382}

N(2.5,6) 22.16

-0.7637 -0.7552 -0.7654 -0.7560 -0.7526 -0.7201 -0.7616
(2.1644) (2.2871) (2.3594) (2.2811) (2.1714) (2.2008) (2.1612)

14776  1.7283 1.6717 1.6983 1.6756 1.5293  1.6417
(0.0077) (0.0181) (0.0132) (0.0158) (0.0097) (0.0072) (0.0301)

2.0652 2.0381 1.5436 2.0398 1.9342 2.3124  2.0009 °
(33.552) (39.799) (31.776) (40.001) (32.793) (48.834) (47.976)

0.1276 31.195 0.0516 0.2646 0.1276 0.3404 0.1626

N(2.5,8) 21.04

L0.7175 -0.7099 -0.7135 -0.7114 -0.7089 -0.6710 -0.7013
(2.2407) (2.5317) (2.6370) (2.4768) (2.5416) (2.5268) (2.6189)

1.6697 1.7075 1.9030 1.7079 1.9265 1.6961  2.0800
(0.0069) (0.0110) (0.0147) (0.0111) (0.0132) (0.0082) (0.0303)

1.8871 1.8099 1.4420 1.8092 16952 2.0669  1.7344
(30.055) (29.037) (31.004) (28.893) (28.397) (43.005) (30.815)

0.1220 32.351 0.0476 0.2746 0.1220 0.3208 0.1526

*Throughout the table and for each combination of estimator and T}, the first tabulated
value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance {x10%) of the estimator.

}The third value is mean estimate of .

$The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 10°.
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Table 5.25

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), §, = 0.8 and n = 50

T; % cens. 6% gmie 7 i e 6° o

N(2.54) 17.24 0.7475 0.7455 0.7503 0.7464 0.7478 0.7253 0.7523"
(1.4148) (1.5064) (1.4854) (1.7234) (1.4677) (1.5537) (1.4745)"

0.7981 0.7394 0.8640 0.7975 0.8400 0.7790  0.8760F
(0.0014) (0.0014) (0.0024) (0.0023) (0.0024) (0.0017) (0.0036)

1.9511 1.8977 1.7461 1.9392 18192 2.0241 1.8594
(15.276) (17.024) (18.373) (18.114) (16.549) (20.522) (20.318)

50.170 0.0768 0.3306 2.3992 7.2854 0.3396°

N(2.5,6) 2040 0.7462 0.7428 0.7490 0.7469 0.7451 0.7116  0.7523
(0.7860) (0.8189) (0.8268) (0.8987) (0.8285) (0.9358) (0.7954)

0.8798 0.8730 0.9574 0.9120 0.9411 0.8531  0.9210
(0.0014) (0.0018) {0.0021) (0.0020) (0.0020) (0.0014) (0.0039)

2.0115 1.9550 1.6787 1.9661 1.8423 2.1440  1.9140 -
(23.017) (25.147) (20.107) (25.598) (24.390) (27.151) (24.040)

50.207 0.0876 0.3574 2.3882 T7.4700 0.4360

N(2.5,8) 21.56 0.7353 0.7326 0.7320 0.7366 0.7297 0.6918  0.7340
(1.4229) (1.5386) (1.7205) (1.6827) (1.6312) (1.6575) (1.6322)

0.8854 0.9276 0.9901 1.0021 0.9797 0.8758 1.0291
(0.0015) (0.0034) (0.0029) (0.0043) (0.0029) (0.0018) (0.0085)

17819 1.7364 14149 1.7657 16423 1.9665 1.6907
(16.803) (18.819) (16.436) (21.579) (17.300) (22.354) (19.565)

64.619 0.0956 0.3854 3.1936 11.291 0.5416

“Throughont the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of #.

tThe second value is the average estimated asymptotic variance (x10?) of the estimator.

!The third value is mean estimate of o2

§The fourth value is the average CPU time in seconds needed to compute the estimates.

9The values in parentheses are the corresponding sampling variances x 102,
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Table 5.26

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, = 0.5 and n = 50

T; % cens. 9 orle i gdas 62 6t ¢

n n n

N(2.5,4) 15.68 0.5089 0.5082 0.5123 0.4989 0.5116 0.4893 0.5140"
(1.1575) (1.4785) (1.4823) (1.5718) (1.4842) (1.4154) (1.4551)1

1.4164 1.3889 1.5130 1.5215 1.5026 1.3527 1.4075!
(0.0017) (0.6022) (0.0020) (0.0044) (0.0019) (0.0014) (0.0054)

1.8382 1.8285 1.6284 1.8594 1.7218 1.8782 1.7590%
(16.576) (19.601) (17.590) (21.189) (17.840) (19.635) (17.922)

41.362 0.0758 0.3450 1.2524 3.4262 0.3326°

N(2.5,6) 19.56 0.4787 0.4827 0.4834 0.4703 0.4819 0.4500 0.4863
(1.1950) (1.4199) (1.5450) (1.6055) (1.5360) (1.4475) (1.5411)

1.4246 1.4973 1:6434 16891 1.6301 1.3949 1.7669
(0.0014) (0.0026) (0.0024) (0.0046) (0.0023) (0.0013) (0.0070)

2.0500 2.0302 1.6901 2.0597 1.8649 2.1133  1.8950 -
(16.159) (20.073) (16.797) (21.867) (19.745) (22.502) (21.180)

49.709 0.0906 0.4350 1.7730 4.8214 0.4404

N(2.58) 20.96 04776 04706 0.4757 0.4631 0.4723 0.4320 04779
(1.2228) (1.4947) (1.4949) (1.6019) (1.5283) (1.4527) (1.5877)

1.4410 17762 1.7952 1.8929 1.7860 1.4970  1.8930
(0.0014) (0.0060) (0.0040) (0.0063) (0.0039) (0.0019) (0.0083)

1.9477 1.9885 1.6390 1.9983 1.7893 2.0917  1.8003
(11.932) (13.621) (11.807) (13.990) (13.037) (16.054) (13.470)

44.236 0.0988 0.4526 0.9998 2.8478 0.4722

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

1The second value is the average estimated asymptotic variance {x10%) of the estimator.

{The third value is mean estimate of o2,

$The fourth value is the average CPU time in seconds needed to compute the estimates.

T The values in parentheses are the corresponding sampling variances x 102
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Table 5.27

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, = 0.2 and n = 50

~

T; % cens. 4 fmie gz (dos g 6? 0z

n

N(2.54) 14.60 0.1396 0.1428 0.1459 0.1234 0.1460 0.1389 0.1500*
(2.3961) (2.2806) (2.4356) (2.5882) (2.4074) (2.1237) (2.4205)T

1.8115 2.0148 20308 2.0602 2.0297 1.8459 2.3458'
(0.0020) (0.0040) (0.0029) (0.0050) (0.0028) (0.0024) (0.0094)

1.9826 1.9492 1.7444 1.9559 1.8279 1.9584 1.8178
(17.058) (19.451) (21.619) (20.961) (19.126) (19.805) (17.789)

38321 0.0758 0.3552 0.4682 1.1686 0.3000°

N(2.56) 19.80 0.2121 0.2094 0.2150 0.1847 0.2140 0.1967 0.2174
(2.0248) (2.3419) (2.5640) (2.5132) (2.5475) (2.1510) (2.5605)

1.6851 1.9986 1.9983 2.1892 1.9961 1.6916 2.3782
(0.0014) (0.0065) (0.0039) (0.0133) (0.0038) (0.0022) (0.0180)

1.9349 1.8774 15628 1.8846 1.6772 1.8978  1.7080 -
(11.918) (13.610) (12.439) (14.383) (10.846) (13.288) (11.479)

47.550 0.0966 0.4624 1.1942 3.4820 0.4812

N(2.5,8) 22.00 0.2090 0.2135 0.2171 0.1965 0.2156 0.1928 0.2184
(2.0309) (2.3142) (2.4477) (2.4971) (2.4281) (1.8721) (2.4575)

17619 1.9943 2.1325 2.0173 21452 1.7341 23172
(0.0027) {0.0039) (0.0038) (0.0038) (0.0036) (0.0023) (0.0125)

1.9683 1.9312 1.5823 1.9370 1.6861 1.9632 1.7032
(16.963) (22.879) (19.134) (23.873) (19.226) (23.106) (19.014)

55.890 0.1042 0.4800 1.5904 4.6674 0.5462

*Throughout the table and for each combination of estimator and T3, the first tabulated
value is the mean estimate of 4. )

t The second value is the average estimated asymptotic variance (x 10} of the estimator.

!The third value is mean estimate of 2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.28

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8§, = -0.2 and n = 50

~ a A

T: % cens. &2 gt 6> fdag 62 6t g

N(2.54) 14.88 -0.1545 -0.1594 -0.1600 -0.1746 -0.1596 -0.1517 -0.1552°
(1.5827) (1.7875) (1.7408) (1.7323) (1.7291) (1.5615) (1.7742)"

1.7624 2.0074 2.0506 1.9468 2.0431 1.8542  2.5396!
(0.0021) (0.0058) (0.0038) (0.0052) (0.0037) (0.0031) (0.0126)

1.9819 1.9861 17185 1.9839 1.8632 1.9966 1.8543
(18.216) (16.842) (18.765) (16.825) (15.213) (16.915) (14.321)

35.410 0.0770 0.3550 0.1608 0.3610 0.3100°

N(2.5,6) 17.56 -0.1702 -0.1852 -0.1852 -0.1977 -0.1854 -0.1738 -0.1838
(1.9926) (2.3837) (2.4683) (2.4041) (2.4198) (2.1166) (2.5377)

1.8683 1.9782 22109 1.9467 2.2014 19117  2.5524
(0.0024) (0.0063) (0.0052) (0.0069) (0.0052) (0.0036) (0.0151)

2.0085 2.0107 1.6981 2.0078 1.8355 2.0297 1.8437 ~
(20.669) (22.163) (17.502) (21.875) (17.986) (22.442) (20.588)

41.386 0.0888 0.3918 0.5712 1.5268 0.3910

N(2.5,8) 22.00 -0.1566 -0.1482 -0.1472 -0.1668 -0.1481 -0.1334 -0.1357
(1.4315) (2.2034) (1.9994) (2.0128) (2.0632) (1.7007) (2.0393)

17368 2.1340 2.2843 1.9914 2.2688 1.8040 2.2685
(0.0020) (0.0085) (0.0075) (0.0074) (0.0071) (0.0025) (0.0222)

2.0489 2.0291 1.5949 20259 1.7688 2.0468 1.7961
(24.534) (32.381) (24.303) (32.048) (27.973) (33.203) (28.330)

54.4052 0.1066 0.4768 1.2892 3.6624 0.5932

*Throughout the table and for each combination of estimator and Tj, the first tabulated
value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x 10?) of the estimator.

}The third value is mean estimate of .

$The fourth value is the average CPU time in seconds needed to compute the estimates.

The values in parentheses are the corresponding sampling variances x 102,
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Table 5.29

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), #, = -0.5 and n = 50

T; % cens. 6% grte gz gda9 o 6 s

N(2.54) 17.32 -0.4735 -0.4820 -0.4794 -0.4852 -0.4789 -0.4556 -0.4768"
(1.8189) (1.5682) (1.6888) (1.5656) (1.6606) (1.5705) (1.7442)"

1.4249 1.3643 1.5581 1.3078 1.5465 1.3830 1.6174
(0.0022) (0.0018) (0.0019) (0.0016) (0.0019) (0.0014) (0.0025)

1.9240 1.9387 16186 19403 1.8123  2.006  1.8381}
(8.9974) (11.211) (13.858) (11.432) (10.388) (11.438) (11.305)

36.714 0.0814 0.3386 0.7656 2.1938 0.4150°

N(2.5,6) 19.04 -0.4754 -0.4825 -0.4788 -0.4859 -0.4774 -0.4461 -0.4723
(1.7064) (1.6388) (1.7410) (1.5878) (1.6861) (1.6000) (1.8702)

1.4362 1.7374 1.8095 1.6938 1.7714 1.5269 2.1064
(0.0012) (0.0057) (0.0036) (0.0053) (0.0030) (0.0018) (0.0128)

1.9053 1.9176 15507 1.9194 1.7742 2.0100 1.8148
(14.912) (17.221) (17.252) (17.136) (16.254) (19.249) (22.449)

36.802 0.0882 0.3952 0.3162 0.8622 0.4970

N(2.5,8) 20.16 -0.5065 -0.5130 -0.5121 -0.5132 -0.5129 -0.4727 -0.5124
(1.3947) (1.5010) (1.7303) (1.4881) (1.6542) (1.4512) (1.6981)

1.3970 1.5043 1.6803 1.4631 1.6527 1.4063 1.8769
(0.0023) (0.0051) (0.0040) (0.0042) (0.0037) (0.0024) (0.0186)

1.9358 1.8930 1.4891 1.8970 1.7045 1.9967 1.7135
(17.768) (18.241) (13.897) (18.475) (14.354) (18.732) (14.336)

38.988 0.0980 0.3984 0.4896 1.1546 0.5128

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of §.

t"The second value is the average estimated asymptotic variance (x 10?) of the estimator.

}The third value is mean estimate of a2.

$The fourth value is the average CPU time in seconds needed to compute the estimates.

"The values in parentheses are the corresponding sampling variances x10%.
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Table 5.30

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, = -0.8 and n = 50

~

T: % cens. 6 grmie . 0zb fd=s o 6t 6

N(2.54) 19.68 -0.7665 -0.7605 -0.7646 -0.7614 -0.7545 -0.7301 -0.7610"
(1.0429) (0.9618) (1.1201) (0.9428) (1.0656) (1.0865) (1.0585)1

0.7371 0.8345 0.8382 0.8146  0.8468 0.7889 0.87341
(0.0009) (0.0024) (0.0018) (0.0018) (0.0012) (0.0009) (0.0076)

1.9614 1.9433 15389 19411 1.8815 2.1532 1.9059%
(22.226) (20.480) (15.914) (20.213) (21.100) (25.974) (21.279)

30.267 0.0890 0.3374 0.1460 0.3538 0.5052%

N(2.5,6) 22.04 -0.7688 -0.7696 -0.7746 -0.7696 -0.7655 -0.7337 -0.7713
(0.7677) (0.8009) (0.8811) (0.7769) (0.8160) (0.8475) (0.8572)

0.7710 0.8033 0.8013 0.7929 0.8256 0.7715  0.7552
(0.0011) (0.0016) (0.0014) (0.0016) (0.0016) (0.0013) (0.0026)

1.9508 1.9008 1.4879 1.9085 1.8246 2.1712 19045 °
(18.963) (22.954) (17.539) (21.856) (20.589) (27.064) (23.825)

36.727 0.0898 0.3648 0.7470 2.0300 0.5172

N(2.5,8) 24.64 -0.8009 -0.7937 -0.7966 -0.7931 -0.7841 -0.7430 -0.7875
(0.4842) (0.4769) (0.5389) (0.4765) (0.4946) (0.5879) (0.5805)

0.6783 0.7673 0.7706 0.7705 0.7898 0.7294  0.6593
(0.0007) (0.0012) (0.0013) (0.0012) (0.0010) (0.0007) (0.0029)

1.9182 1.9114 1.4101 1.9188 1.8648 2.3205 1.9539
(8.4195) (11.731) (9.0219) (11.718) (15.673) (21.255) (19.152)

36.167 0.0978 0.3986 0.5578 1.8916 0.6976

*Throughout the table and for each combination of estimator and T, the first tabulated

value 1s the mean estimate of 4.
1The second value is the average estimated asymptotic variance {x10%) of the estimator.

}The third value is mean estimate of 2.
§The fourth value is the average CPU time in seconds needed to compute the estimates.
TThe values in parentheses are the corresponding sampling variances x 10,
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Table 5.31

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, = 0.8 and n = 100

T; % cens. 6% grie gzt ik 62 8 g

n

N(2.5,4) 16.88 0.7688 0.7687 0.7690 0.7741 0.7678 0.7444 0.7698"
(0.5024) (0.5226) (0.5324) (0.5674) (0.5229) (0.5936) (0.5187)"

0.3971 0.3709 0.4273 0.4302 0.4211 0.3943  0.4070!
(0.0001) (0.0001) (0.0002) (0.0005) (0.0002) (0.0001) (0.0004)

1.9140 1.8254 1.6523 1.8878 1.7814 1.9824 1.8146%
(5.9185) (6.1794) (5.6811) (6.0988) (5.4618) (6.2046) (5.3457)

92.921 0.1416 0.4788 6.9244 21.488 1.27645

N(2.5,6) 20.00 0.7624 0.7629 0.7643 0.7633 0.7606 0.7295  0.7636
(0.5973) (0.6639) (0.6053) (0.7839) (0.6088) (0.6861) (0.6179)

0.4231 0.3860 0.4411 0.4382 0.4277 0.3999  0.4334
(0.0002) (0.0002) (0.0003) (0.0005) (0.0002) (0.0002) (0.0006)

1.9631 1.8948 16743 1.9530 1.8290 2.1065 1.8572
(8.7660) (11.470) (12.571) (11.515) (11.011) (11.966) (10.610)

189.65 0.1582 0.5854 11.589 35.525 1.7596

N(2.58) 22.12 0.7770 0.7793 0.7813 0.7814 0.7783 0.7410  0.7809
(0.3900) (0.3965) (0.4300) (0.5093) (0.4300) (0.5469) (0.4250)

0.3731 0.3725 0.4147 0.4230 0.4023_ 0.3720 0.4134
(0.0001) (0.0001) (0.0002) (0.0003) (0.0001) (0.0001) (0.0002)

1.9233 1.8291 1.5826 1.8868 1.7457 20881 1.7850
(8.6542) (10.283) (11.899) (9.8628) (9.8218) (11.743) (10.965)

104.65 0.1602 0.5940 8.07T18 27.149 1.7754

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

1The second value is the average estimated asymptotic variance (x102) of the estimator.

!The third value is mean estimate of o2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

YThe values in parentheses are the corresponding sampling variances x 107,
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Table 5.32

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), §, = 0.5 and n = 100

T, % cens. 62 grmte 63 fag o° M oc

N(2.54) 1640 0.4708 0.4690 0.4692 0.4505 0.4689 04476 0.4714*
(0.7362) (0.8663) (0.9064) (1.1854) (0.9081) (0.8998) (0.9307)"

0.7521 0.8119 0.8324 0.8971 0.8286 0.7438 0.9404
(0.0003) (0.0013) (0.0005) (0.0013) (0.0005) (0.0003) (0.0012)

1.9809 1.9513 1.7047 1.9820 1.8364 2.0021 1.8522}
(6.8743) (8.5006) (8.0802) (9.0001) (7.4736) (8.7366) (8.5006)

59.281 0.1404 0.5416 3.1584 8.2882 1.2106%

N(2.56) 1852 0.4727 0.4700 0.4709 0.4486 0.4697 0.4404  0.4739
(0.6936) (0.7658) (0.7919) (0.9886) (0.7870) (0.7312) (0.7935)

0.7551 0.8326 0.8705 0.8978 0.8647 0.7577  0.9387
(0.0002) (0.0007) (0.0003) (0.0007) (0.0003) (0.0002) (0.0012)

2.0513 2.0455 1.7284 2.0815 1.8896 2.1184 1.8898 °
(7.5773) (8.1580) (7.9610) (8.3928) (7.9723) (9.2974) (8.0258)

66.389 0.1650 0.6096 3.8764 10.866 1.5920

N(2.58) 21.40 0.5051 0.5000 0.5028 0.4876 0.5011 0.4608 0.5049
(0.5678) (0.6232) (0.6722) (0.7618) (0.6607) (0.6049) (0.6621)

0.6987 0.7997 0.8417 0.8445 0.8379 0.7122  0.8375
(0.0002) (0.0007) (0.0004) (0.0008) (0.0004) (0.0002) (0.0013)

1.9858 1.9862 1.6218 2.0032 1.7913 2.0934 1.8115
(7.6480) (9.9193) (8.0091) (10.334) (7.9034) (10.917) (8.3849)

71.483 0.1828 0.6850 4.0942 11.726 1.9002

*Throughout the table and for each combination of estimator and T;, the first tabulated
value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x 102) of the estimator.

tThe third value is mean estimate of 2.

$The fourth value is the average CPU time in seconds needed to compute the estimates.

¥The values in parentheses are the corresponding sampling variances x 107,
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Table 5.33

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, = 0.2 and n = 100

~ ~ A

T: % cens. O grte gzt fa e 6 g

n n n

N(254) 1526 0.1891 0.1840 0.1852 0.1642 0.1843 0.1744 0.1880"
(0.9960) (1.2818) (1.2893) (1.4212) (1.2904) (1.1436) (1.2656)"

0.9224 1.0611 1.0642 1.0951 1.0635 0.9528 1.22391
(0.0004) (0.0009) (0.0006) (0.0009) (0.0006) (0.0004) (0.0024)

2.0164 2.0093 1.725¢ 2.0136 1.8732 2.0201 ]1.8756
(10.971) (13.868) (11.012) (14.019) (12.505) (13.796) (12.791)

46.155 0.1558 0.5570 1.4514 3.7194 1.31528

N(2.5,6) 18.46 0.2066 0.2108 0.2111 0.1903 0.2111 0.1956  0.2137
(0.5536) (0.6276) (0.6296) (0.7370) (0.6272) (0.5390) (0.6131)

0.0028 1.0231 1.0539 1.0999 1.0541 0.9052 1.1338
(0.0003) (0.0007) {0.0004) (0.0009) (0.0004) (0.0003) (0.0022)

1.9729 1.9890 1.6543 1.9937 1.7992 2.0042  1.8081 °
(5.1001) (6.6653) (5.8715) (6.7517) (6.0896) (6.7685) (6.2724)

42.343 0.1628 0.6326 0.9840 2.5642 1.6330

N(2.5,8) 20.66 0.2293 0.2416 0.2430 0.2181 0.2423 0.2209 0.2477
(1.1104) (1.2780) (1.2782) (1.3095) (1.2757) (1.0587) (1.2751)

0.8673 1.0041 1.0484 1.0559 1.0487 0.8708 1.1846
(0.0004) (0.0011) (0.0008) (0.0011) (0.0008) (0.0005) (0.0015)

1.9138 1.8849 1.5218 1.8934 1.6672 1.9121 1.6833
(8.4118) (9.0349) (7.7481) (9.1879) (7.7968) (8.9107) (7.9096)

64.071 0.1824 0.6986 2.7772 7.6414 1.7432

*Throughout the table and for each combination of estimator and T}, the first tabulated
value is the mean estimate of 4.

1The second value is the average estimated asymptotic variance (x10%) of the estimator.

tThe third value is mean estimate of 2.

¥The fourth value is the average CPU time in seconds needed to compute the estimates.

YThe values in parentheses are the corresponding sampling variances x102.
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Table 5.34

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), #, = -0.2 and n = 100

T; % cens. 0OF grte gz gdas e i o

N(2.54) 15.54 -0.2122 -0.1994 -0.1970 -0.2136 -0.1971 -0.1871 -0.1944"

(0.6680) (0.7677) (0.7276) (0.7116) (0.7385) (0.6667) (0.7267)"

10,9472 1.0633 1.0821 1.0167 1.0770 0.9678 107811
(0.0006) (0.0011) (0.0006) (0.0010) (0.0006) (0.0004}) (0.0037)

1.9731 1.9938 1.6926 1.9907 1.8592 2.0052 1.8731}
(4.9387) (6.3991) (6.2057) (6.2188) (5.8695) (6.4477) (7.0018)

35.988 0.1518 0.5150 0.4740 1.1986 1.48748

N(2.5,6) 1944 -0.1972 -0.1959 -0.1947 -0.2119 -0.1952 -0.1797 -0.1960
(1.2217) (1.3297) (1.3439) (1.2533) (1.3323) (1.1420) (1.3207)

0.9180 1.0811 1.1382 1.0089 1.1327 0.9551  1.2020
(0.0002) (0.0009) (0.0005) (0.0008) (0.0005) (0.0003) (0.0036)

1.9445 1.9137 1.5470 1.9116 1.7224 1.9303  1.7413
(7.1266) (8.2407) (7.1733) (8.2369) (7.1440) (8.8161) (7.6947)

54.7073 0.1846 0.6424 1.7300 4.8394 1.9554

N(2.5,8) 21.26 -0.1610 -0.1634 -0.1643 -0.1819 -0.1637 -0.1459 -0.1597
(0.8915) (0.9782) (0.9994) (0.9525) (0.9821) (0.7568) (0.9465)

0.9500 1.2025 1.2608 1.1482 1.2481 1.0059  1.4597
(0.0004) (0.0008) (0.0016) (0.0007) {0.0009) (0.0005) (0.0051)

2.0556  2.0468 1.6203 2.0439 1.7990 2.0640 1.8248
(7.8685) (9.3305) (7.8885) (9.3032) (8.0988) (9.2116) (8.2277)

55.804 0.2120 0.7506 1.4742 4.0428 2.2900

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of &.
tThe second value is the average estimated asymptotic variance (x 10%) of the estimator.

YThe third value is mean estimate of o2.
§The fourth value is the average CPU time in seconds needed to compute the estimates.
9The values in parentheses are the corresponding sampling variances x 102,
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Table 5.35

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, = -0.5 and n = 100

T: % cens. 8% g« gzb gdes 62 6° gz

N(2.5,4) 17.12 -0.4884 -0.4880 -0.4836 -0.4925 -0.4870 -0.4633 -0.4885
(1.0080) (0.9644) (1.0086) (0.9215) (0.9772) (0.9231) (0.9863)"

0.7495 0.7825 0.8642 0.7588 0.8425 0.7550  0.8996!
(0.0004) (0.0008) (0.0005) (0.0008) (0.0005) {0.0003) (0.0025)

1.9766 1.9858 1.6510 1.9836 1.8648 2.0546 1.8722}
(8.0880) (8.9127) (6.3328) (8.7644) (7.8734) (10.166) (8.0465)

35.948 0.1646 0.5196 0.5958 1.5674 1.5776%

N(2.5,6) 19.52 -0.4908 -0.4926 -0.4937 -0.4932 -0.4924 -0.4607 -0.4923
(0.5709) (0.6510) (0.6443) (0.6513) (0.6236) (0.5520) (0.6378)

0.7132 0.7171 0.8223 0.6983 0.8109 0.7141  0.7268
(0.0002) (0.0004) (0.0004) (0.0004) (0.0003) (0.0002) (0.0022)

1.9226 1.8845 1.5056 1.8921 1.7325 1.9700  1.7498 -
(9.7855) (11.442) (8.7955) (11.342) (9.3187) (12.092) (9.7650)

48.998 0.1780 0.5776 1.7860 5.2784 2.0378

N(2.5,8) 21.48 -0.4682 -0.4752 -0.4806 -0.4776 -0.4793 -0.4401 -0.4796
(1.0016) (1.0256) (1.0785) (0.9927) (1.0484) (0.8756) (1.0575)

0.7257 0.7532 0.8664 0.7304 0.8507 0.7311  0.8792
(0.0002) (0.0005) (0.0004) (0.0004) (0.0004) (0.0003) (0.0023)

1.9446 1.8012 1.5043 1.8956 16973 1.9878 1.7201
(5.9307) (7.3148) (6.3167) (7.2547) (6.1841) (8.0622) (5.7553)

48518 0.1932 0.6416 1.6234 5.0840 2.2234

*Throughout the table and for each combination of estimator and T, the first tabulated
value is the mean estimate of f.

tThe second value is the average estimated asymptotic variance {x 10?) of the estimator.

!The third value is mean estimate of 2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

T The values in parentheses are the corresponding sampling variances x 102
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Table 5.36

Performance of the new estimators in 50 simulations. Errors are from
Gaussian (0,2), 8, = -0.8 and n = 100

T; Y% cens. 6% ome gzt fdas o2 6 :

N(2.5,4) 20.68 -0.7866 -0.7836 -0.7889 -0.7837 -0.7799 -0.7535 -0.7864"
(0.3544) (0.3825) (0.4187) (0.3808) (0.3644) (0.3820) (0.4244)"

0.3825 0.4069 0.4117 0.4055 0.4151 0.3878 0.3722!
(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0007)

1.9592 1.8999 1.4712 1.9006 1.8509 2.1404 1.9016*
(8.4279) (8.2270) (5.2622) (8.1725) (8.3815) (11.056) (9.8747)

29.785 0.1644 0.5224 0.2630 0.6590 2.05343

N(2.5,6) 23.00 -0.7808 -0.7764 -0.7828 -0.7748 -0.7711 -0.7397 -0.7785
(0.4231) (0.3808) (0.4331) (0.3943) (0.3878) (0.4124) (0.4311)

0.3932 0.4359 0.4258 0.4282 0.4356  0.4053  0.3625
(0.0002) (0.0002) (0.0003) (0.0002) (0.0002) (0.0002) (0.0006)

2.0100 1.9654 1.5303 1.9754 1.8986 2.2530 1.9711 °
(6.8640) (7.3846) (7.4488) (7.1114) (6.7792) (9.4825) (10.779)

37.485 0.1690 0.5928 0.9304 2.7662 2.3362

N(2.5,8) 23.88 -0.7970 -0.7959 -0.7969 -0.7935 -0.7878 -0.7527 -0.7949
(0.2683) (0.2491) (0.3206) (0.2645) (0.2965) (0.3365) (0.3252)

0.3739 0.5510 0.4116 0.4260 0.4148 0.3851  0.3696
(0.0001) (0.0087) (0.0002) (0.0002) (0.0002) (0.0001) (0.0008)

1.9475 1.9061 14706 1.9232 1.8411 2.2399 1.8889
(7.6617) (8.4109) (7.4004) (8.1529) (7.4004) (9.8652) (8.5692)

47.340 0.1758 0.5978 1.9614 7.0996 2.4618

*Throughout the table and for each combination of estimator and 7, the first tabulated
value is the mean estimate of 8.

1The second value is the average estimated asymptotic variance (x10?) of the estimator.

tThe third value is mean estimate of o2,

§The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102,
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Figure 5.19

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), §, = 0.8 and n = 25.
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Figure 5.20

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 8, = 0.5 and n = 25.
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Figure 5.21

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 8, = 0.2 and n = 25.
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Figure 5.22

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), §, = -0.2 and n = 25.
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Figure 5.23

Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 8, = -0.5 and n = 25.
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Figure 5.24

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), §, = -0.8 and n = 25.
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Figure 5.25
Fisher’s LSD comparison of the estimators. Estimators underlined by a

common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 8, = 0.8 and n = 50.
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Figure 5.26 :
Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are

from Gaussian (0,2), §, = 0.5 and n = 50.
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Figure 5.27

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2}, 8, = 0.2 and n'= 50.
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Figure 5.28

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 8, = -0.2 and n = 50.
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Figure 5.29

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 8, = -0.5 and n = 30.
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Figure 5.30

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2}, 8, = -0.8 and n = 50.
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Figure 5.31

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 8, = 0.8 and n = 100.
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Figure 5.32

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 6, = 0.5 and n = 100.
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Figure 5.33

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 8, = 0.2 and n = 100.
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Figure 5.34

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian {0,2), 8, = -0.2 and n = 100.

: Als b Hdag gmle i zh c
Estimator o, g, g; ar gz f g

Figure 5.35

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), 8, = -0.5 and n = 100.
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Figure 5.36

Fisher’s L.SD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,2), §, = -0.8 and n = 100.
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5.3.3 Errors from the Laplace distribution with unit
variance

In this section, we discuss the results for which the errors come from the
Laplace distribution. The results are summarized in Tables 37-54 and in Fig-
ures 37-54. First, we shall consider the behaviour of the estimators with respect
to the bias criterion. The results show that for all sample sizes, the estimators
behave as in the case discussed earlier, where the errors are i.i.d. normal.
They perform comparably among themselves when 1 — B2 is close to unity. For
small values of this quantity, the estimator éi performs poorly in comparison

with the rest of the estimators which behave similarly among themselves.

Before we compare the estimators on the basis of their estimated asymptotic.
variances, we first look at their overall behaviour as sample size, §, and cen-
soring pattern change. With respect to changes in sample size and 4,, the -
behaviour of the estimators is similar to their behaviour in the normal case.
They show the best performance for large saxﬂples and small values of 1 — 62
and the worst behaviour for small samples and large values of 1 — 8?2, To study
the behaviour of the estimators as the censor pattern varies, we make use of
the analyses of variance which correspond to Tables 37-54 with the estimators

regarded as blocks and the censor patterns as treatments.

Of the available 18 analyses of variance, 15 show a significant effect due to
censoring pattern at the 0.05 level. In 3 of these 15 cases, the performance of
the estimators for N(2,1) is equivalent to their performance for N(2,2) and this
is significantly better than their behaviour for N(2,4) at the 0.05 level using
Fisher’s LSD analyses. Three of the remaining 12 cases show that the estima-
tors perform better for N(2,1) than they do for N{2,2) and N(2,4) which are
not significantly different from each other. In one of the remaining 9 cases, the
estimators show a deterioration in performance only when the censor pattern
is changed from N(2,1) to N(2,4). In 3 of the remaining 8 cases, the estimators

show a performance for N(2,1) which is equivalent to their performance for
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N(2,4) and better than their performance for ¥(2,2). One of the remaining 5
cases suggests that the behaviour of the estimators for N(2,1) is similar to their
behaviour for N(2,4). They also behave similarly for N(2,1) as they do for
N(2,2) but have different bahaviours for N(2,4) and N(2,2), showing a better
behaviour for N(2,4). In 2 of the remaining 4 cases, N(2,1) and N(2,4) show
a similar behaviour for the estimators but N(2,1) and N(2,2) are significantly
different. In one of these 2 cases, the estimators behave better for N(2,1) and
in the other, they behave better for N(2,2). In one of the remaining 2 cases,
the estimators perform better for N(2,2) than they do for N(2,1) and N(2,4)
which are not sigﬁiﬁcantly different from one another. In the last case, the
estimators behave differently from one censor pattern to another, showing the
best performance for N{2,4), the next best for N(2,1) and the worst behaviour,
for N(2,2). Overall, there is sufficient evidence to conclude that censor pattern
has a significant effect on the performance of the estimators. The results sug- -
gest that about one-half of the time, the performance of the estimators become
progressively worse as the variance of the censoring distribution increases. In
the other one-half of the time, the performance either first improves and then

deteriorates or vice versa.

To compare the estimators, we use the same analyses of variance but with the
censor patterns taken as blocks and the 4 estimators as treatments. Of the 18
analyses of variance, 10 show a statistically significant estimator effect at the
0.05 level. Three of these 10 cases correspond to small samples, 2 correspond
to moderate samples and the remaining 5 are for large samples. For small
samples, in all the 3 analyses of variance which show a significant estimator
effect, 6 and #° behave similarly to the other estimators and perform better
than 4. Iﬁ'one of these 3 cases (Figure 5.38), l;',“a performs comparably with
6"; and worse than 9,': and éi In one of the remaining 2 cases (Figure 5.39),
g2 performs comparably with ﬁ;’, better than 85 and worse than g2, In the

third case (Figure 5.40), éﬁ behaves similarly to the rest of the esitmators.
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For moderate samples, in both the analyses of variance with a significant es-
timator effect, 6% and 8" exhibit a similar behaviour. Their performance is
superior to 65’s. In one of these two cases (Figure 5.45), 6* behaves similarly
to éf,f and éfl but peforms worse than éfl In the second case (Figure 5.47), éz

behaves like 8% and 8" and performs better than 9;

For large samples, in 4 of the 5 analyses of variance with a significant estima-
tor effect, éff and éfl have a comparable performance which is superior to é;’s
behaviour. In 2 of these 4 cases (Figures 5.50 and 5.53), éfl is comparable with
g2 but worse than both g% and 6. In one of the remaining 2 cases (Figure
5.51), 82 compares favourably with §'* and 65 but it is worse than b, In the
second case (Figure 5.52), 62 is comparable with the rest of the estimators. In
the fifth analysis of variance for which estimator effect is significant (Figure
5.54), gls, 65’1 and é; are all comparable among themselves and perform better

than 4°.

Overall, the behavioﬁr of the estimators is similar to their behaviour in the
normal case. They have a comparable behaviour among themselves for values
of 1 — 82 close to zero. For values of this quantity close to unity, however, éf,;"
and éf‘ behave similarly and better than é; while é: is comparable to estima-
tors in either group. For 1 — 67 in between zero and unity, éff and @® have a
comparable behaviour. They are superior to fjj’; and é; which behave similarly
to one another. This pattern of behaviour of the estimators is enhanced as the

sample size increases.
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Table 5.37

Performance of the new estimators in 50 simulations. Errors
are from Laplace (%,0), o?=1,0,=08 and n =25

- ~

T; % cens. gis g2 6° gs

n n

N(2,1) 1032 0.7358  0.7361  0.7207  0.7459"
. (1.3375) (1.4682) (1.5027) (1.3262)"

1.5522  1.6643  1.6116  1.53361
(0.0058)  (0.0079) (0.0076)  (0.0108)

1.0738 1.0335 11004 0.9996}
(28.374) (23.380) (25.556)  (22.137)

1.0370 3.3638 0.0530%

N(2,2) 1472 07138 07106  0.6888  0.7146
(3.1845) (3.2450) (3.0758)  (3.3808)

1.6868  1.8802  1.7397  1.8726
(0.0266) (0.0352) (0.0287)  (0.0453)

0.9329  0.8836  0.9824  0.8937
(23.605) (21.851) (24.778)  (26.000)

0.7910 2.6640 0.0824

N(2,4) 1800 07308  0.7304  0.7000  0.7375
(2.1815) (2.2936) (2.3984)  (2.1033)

1.4008 14730  1.3545  1.5240
(0.0080)  (0.0080) (0.0058)  (0.0129)

0.9301  0.9084  1.0524  0.9068
(21.368) (26.394) (33.423)  (28.404)

0.5908 2.0584 0.1110

*Throughout the table and for each combination of estimator and T}, the first tabulated
value is the mean estimate of 8.

1The second value is the average estimated asymptotic variance {x10%) of the estimator.

!The third value is mean estimate of ¢2. _

$The fourth value is the average CPU time in seconds needed to compute the estimates.

YThe values in parentheses are the corresponding sampling variances x102.
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Table 5.38

Performance of the new estimators in 50 simulations. Errors

are from Laplace (713-,0), 6t=1,8,=05,and n = 25

~

T: % cens. gt oz gt 6

Tt

N(2,1) 896 04567 04528 04384  0.4610°
(2.2727)  (2.0998)  (1.9641) (2.1312)7

26036  2.7237  2.5565  2.9211f
(0.0252)  (0.02325) (0.0209)  (0.0335)

0.8455 0.8538 0.9041 0.8258%
(10.320)  (11.836)  (13.792)  (11.041)

0.0796 0.1862 0.0410%

N(2,2) 12.08 05119 0.5270  0.5047  0.5302
(2.0976)  (1.9913)  (1.9185)  (2.0564)

9.3407 25665  2.3208  2.6057
(0.0126)  (0.0151)}  (0.0106)  (0.0228)

0.8869  0.8354  0.9091  0.8308
(13.459) (18.414) (20.792) (17.152)

0.1164  0.3370 0.0626

N(2,4) 1584 05061 04996 04678  0.5104
(2.0710)  (2.5588)  (2.3291)  (2.6069)

23098  2.8411 24023 2.6251
(0.0120)  (0.0559)  (0.0207)  (0.0512)

0.8718  0.8007  0.9087  0.7989
(14.900)  (16.759)  (20.105)  (16.261)

0.5868 1.4356 0.1106

*Throughout the table and for each combination of estimator and T3, the first tabulated
value is the mean estimate of 0.

tThe second value is the average estimated asymptotic variance (x 10%) of the estimator.

tThe third value is mean estimate of 2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 107.
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Table 5.39

Performance of the new estimators in 50 simulations. Errors

are from Laplace (%,D), o?=1,0,=02 and n =25

- ~ -

T; % cens. gis B2 0 7

n n

N(2,1) 696 01869 01866  0.1816  0.1936"
(1.8840) (2.0273) (1.9027) (2.0064)%

29795 3.1135 29230  3.5719
(0.0275)  (0.0281) (0.0237)  (0.0896)

1.0623  1.0192 10564  0.9644
(22.911) (23.365) (25.369)  (21.274)

0.0650 0.1526 0.0330%

N(2,2) 1200 01811 01762  0.1688  0.1823
(3.4432) (4.1700) (3.7834)  (4.0794)

2.6999  2.8711  2.5569  3.1127
(0.0295) (0.0214) (0.0159)  (0.0539)

1.0169 09645  1.0344  0.9294
(14.758) (15.461) (16.927)  (13.044)

0.3550 0.91438 0.0682

N(2,4) 1696  0.1598  0.1808  0.1643  0.1938
(3.9497) (5.0753) (4.3759)  (5.3246)

2.7497  3.325  2.7866_  3.8400
(0.0241) (0.0307) (0.0164)  (0.1344)

0.9932  0.8084  0.9112 0.7900
(26.594) (15.290) (17.707)  (15.534)

4.5292 12.421 0.1054

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of @.

t'The second value is the average estimated asymptotic variance (x 10?) of the estimator.

tThe third value is mean estimate of 2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.40

Performance of the new estimators in 50 simulations. Errors
are from Laplace (%,0), o?=1,0,=-0.2 and n =25

~

T; % cens. gis g2 b 74
N(2,1) 7.52 -0.2251  -0.2222  -0.2159  -0.2254*
(2.5746) (2.6243) (2.5191)  (2.9314)%

2.7093 2.7636 2.6028 289951

(0.0259) (0.0250)  (0.0228)  (0.0371)

0.9368 0.8642 0.9005 0.8130%

(26.192) (11.796) (12.931)  (10.068)

0.0272 0.0450 0.03308

N(2,2) 1152 -0.1962  -0.2018  -0.1887 -0.1997
(3.0707) (3.3782) (2.9769)  (3.3438)

3.0476  3.1528 2.8358 3.4556

(0.0253) (0.0209)  (0.0173)  (0.0364)

0.8668  0.7911 0.8544 0.7635

(9.0343) (9.8039) (11.7570)  (8.5161)

0.0318 0.0640 0.0652

N(2,4) 18.4 -0.1730  -0.1843  -0.1703 -0.1806
(4.3453) (4.3453)  (3.7073)  (4.6649)

3.2785  3.8978 3.2437 4.3879

(0.0218) (0.0243)  (0.0160)  (0.1606)

1.0100 0.8443 0.9617 0.8211

(23.598) (11.350)  (13.547)  (10.291)

0.4690 1.5308 0.1174

*Throughout the table and for each combination of estimator and T, the first tabulated

value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x10%) of the estimator.

}The third value is mean estimate of 2.

i The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.41

Performance of the new estimators in 50 simulations. Errors
are from Laplace (715,0), o?=1,0,=-05,and n =25

~

T; % cens. gis ge g e
N(2,1) 9.20 -0.4753  -0.4832  -0.4702 -0.4852*
(2.6113) (2.6617) (2.5279)  (2.6819)"

2.5212 2.6279 2.4611 2.57011

(0.0169) (0.0172)  (0.0154)  (0.0358)

0.9963 0.9358 0.9932 0.9162¢

(26.700) (21.459) (23.3945)  (22.883)

0.0306 0.0568 0.0560%

N(2,2) 14.24 -0.4322  -0.4319  -0.4091 -0.4335
(3.9651) (4.5445) (4.2738)  (4.6195)

2.8312 3.2510 2.8349 3.5902

(0.0424) (0.0481) (0.0291)}  (0.1480)

0.9552 0.8893 0.9858 0.8722

(17.209) (13.228) (16.464)  (13.115)

0.1000 0.2504 0.1000

N(2,4) 1784 -0.4725  -0.4627  -0.4260 -0.4492
(3.0567) (4.0428) (3.6140)  (4.5242)

2.7066 3.3258 2.7671 2.7071

(0.0168) (0.0448)  (0.0213)  (0.0574)

0.81048  0.7472 0.8689 0.7593

(10.373) (10.824) (14.0415)  (12.409)

0.0764 0.1834 0.1404

*Throughout the table and for each combination of estimator and T}, the first tabulated

value is the mean estimate of 6.

1The second value is the average estimated asymptotic variance (x10%) of the estimator.

$The third value is mean estimate of 2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

The values in parentheses are the corresponding sampling variances x 10%.
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Table 5.42

Performance of the new estimators in 50 simulations. Errors
are from Laplace (ﬁ,()), o?=1,8,=—-08,and n =25

- ~

T; % cens. gls gz 6 fe

N(2,1) 12.88  -0.7565 -0.7559  -0.7387  -0.7551
(1.6833) (L.7851) (1.7344) (1.7835)7

1.4825 1.5168 1.4526 1.43121
(0.0093)  (0.0099) (0.0082)  (0.0095)

0.9289  0.8824  0.9807  0.8784
(11.067) (10.708) (11.797)  (11.099)

0.0283 0.0516 0.0770%

N(2,2) 17.36  -0.7574  -0.7551  -0.7286  -0.7555
(1.3484) (1.3401) (1.3734)  (1.3409)

1.5982  1.7905  1.6602  1.5756
(0.0101) (0.0144) (0.0107)  (0.0227)

0.9537  0.9102  1.0602  0.9331
(15.097) (14.836) (19.243) (17.093)

0.0680 0.1324 0.1154

N(2,4) 2232 -0.7684  -0.7608 -0.7264  -0.7634
(1.6283) (2.0543) (2.1249)  (2.2500)

1.3485  1.5154  1.4063  1.4450
(0.0110) (0.0104) (0.0094)  (0.0307)

0.9865 09314 11442 09272
(24.457) (21.124) (28.114)  (20.846)

0.6262 2.1928 0.1758

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 8.
tThe sccond value is the average estimated asymptotic variance (x 10?) of the estimator.
$The third value is mean estimate of .
¥The fourth value is the average CPU time in seconds needed to compute the estimates.
YThe values in parentheses are the corresponding sampling variances x102.
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Table 5.43

Performance of the new estimators in 50 simulations. Errors

are from Laplace (ﬁ,ﬂ), g?=1,08,=08 and n = 50

T; % cens. gis g2 gp dc
N(2,1)  10.20 0.7517 0.7506 0.7344 0.7523*
(0.7952)  (0.8266) (0.7998) (0.8484)T

0.8278 0.8284 0.7922 0.8015¢

(0.0022) (0.0022) (0.0021)  (0.0025)

0.9043 0.8711 0.9313 0.86541

(8.8941) (9.5672) (10.473)  (9.6670)

0.9008 2.8056 0.1678%

N{(2,2) 13.80 0.7516 0.7542 0.7311 0.7613
(0.7578) (0.8380) (0.9268)  (0.7386)

0.7312 0.8208 0.7704 0.7808

(0.0011) (0.0018) (0.0014)  (0.0017)

0.9991 0.9632 1.0671 0.9511

(10.094) (11.097) (14.093)  (11.255)

1.6452 4.7432 0.2436

N(2,4) 20.84 0.7665 0.7686 0.7299 0.7723
(0.7592) (0.8590) (0.9529)  (0.8226)

0.7634 0.8654 0.7672 0.8164

(0.0018)  (0.0027) (0.0016)  (0.0033)

0.9565 0.8798 1.0476 0.8967

(5.8860) (7.4930) (9.2743) (7.7175)

3.4420 11.259 0.4536

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 8.

1The second value is the average estimated asymptotic variance (x10?) of the estimator.
!The third value is mean estimate of o2.
§The fourth value is the average CPU time in seconds needed to compute the estimates.

SThe values in parentheses are the corresponding sampling variances x 102.
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Table 5.44

Performance of the new estimators in 50 simulations. Errors
are from Laplace (73,0), 0> =1, 6, = 0.5 and n = 50

~ » A

T, % cens. ols 6o g g2

n

N(2,1)  8.84& 04850 04842 04714  0.4906"
(1.8822) (2.0314) (1.9266) (2.0990)"

1.4540 1.4985 1.4130 1.62521
(0.0043) {0.0039) (0.0035)  (0.0050)

1.0485 1.0085 1.0569 0.98451
(11.181) (9.6704) (10.737)  (10.410)

0.5416 1.5784 0.13948

N(2,2) 1248 04874 04868  0.4642  0.4883
(1.5846) (1.4042) (1.3162)  (1.3885)

1.2549  1.3928  1.2436 1.3337
(0.0028) (0.0034) (0.0026)  (0.0062)

0.8687  0.8122  0.8853  0.8220
(7.5446) (7.1743) (8.4002)  (7.9357)

0.6466 1.6578 0.2538

N(2,4) 19.56  0.4918  0.4859  0.4485  0.4916
(1.5115) (2.0487) (1.9371)  (2.0477)

1.2047  1.4739  1.2464  1.7123
(0.0022) (0.0045) (0.0023)  (0.0089)

0.9889  0.9010 10434  0.8830
(12.331) (13.254) (16.994) (12.176)

1.9846 5.8562 0.4294

*Throughout the table and for each combination of estimator and 73, the first tabulated
value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance {x10%) of the estimator.

!The third value is mean estimate of o®.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

¥The values in parentheses are the corresponding sampling variances x 102,
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Table 5.45

Performance of the new estimators in 50 simulations. Errors

are from Laplace (—\},——2-,0)7 g?=1,8,=0.2and n =250

~

~

T; % cens. gis 02 gt e
N(2,1) 6.96 0.1798  0.1834  0.1791  0.1864"
(2.4292) (2.3574) (2.2239) (2.4366)7

1.6801  1.6982  1.6235  1.84521

(0.0059) (0.0041) (0.0037)  (0.0072)

1.0072  0.9746  1.0100  0.9363!

(10.310)  (9.925) (10.554) (8.1630)

, 0.1090  0.2580  0.1020%

N(2,2) 1344 02027 02049  0.1949 0.2112
(1.6185) (1.8468) (1.6578) (1.8867)

1.7411  1.8329  1.6418 1.9922

(0.0049) (0.0052) (0.0044) (0.0138)

0.9234  0.8677  0.9410 0.8539

(6.7838) (5.8861) (6.9687)  (6.5717)

0.4724  1.2796 0.2578

N(2,4) 1948  0.1685 01744  0.1590 0.1816
(2.3384) (2.3746) (1.9961)  (2.4287)

1.9405  2.3478  1.8604 2.1679

(0.0164) (0.0151) (0.0067)  (0.0242)

1.0791  0.9669  1.0996 0.9853

(14.833) (17.277) (21.088)  (20.253)

0.7812  2.0268 0.4858

*Throughout the table and for each combination of estimator and T, the first tabulated

value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x10%) of the estimator.
!The third value is mean estimate of o2.
§The fourth value is the average CPU time in seconds needed to compute the estimates.

The values in parentheses are the corresponding sampling variances x10%.
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Table 5.46

Performance of the new estimators in 50 simulations. Errors
are from Laplace (%2-,0), ct=1,0,=—02and n =350

A

T: % cens. éff 01‘; éfl ge
N{2,1) 7.36 -0.2135  -0.2194 -0.2132  -0.2170"
(1.4894) (1.5501) (1.4721) (1.6842)7

1.7134 1.7682 1.6734 1.64591

(0.0056)  (0.0059) (0.0053)  (0.0155)

"0.9857 0.9645 1.0026 0.9452¢

(7.3934) (8.5595) (9.1685)  (9.2136)

0.0526 0.0958 0.1408%

N(2,2) 12.36 -0.1923  -0.1943  -0.1852 -0.1906
(2.0363) (2.1270) (1.9191) (2.1919)

1.7209 1.8286 1.6380 2.1221

(0.0065) (0.0044) (0.0036)  (0.0097)

0.9784 0.9145 0.9839 0.9048

(8.4141) (7.5550) (B8.5756)  (7.7724)

0.3542 0.8932 0.2426

N(2,4) 1836 -0.2081  -0.2019  -0.1848 -0.1975
(1.3241) (1.7466) (1.4855) (1.8952)

1.7998 2.2502 1.8771 2.2207

(0.0042) (0.0095) (0.0073)  (0.0188)

1.0271 0.8793 0.9970 0.8653

(10.885) (8.7589) (10.784)  (8.8080)

0.3196 0.8544 0.4856

*Throughout the table and for each combination of estimator and T}, the first tabulated

value is the mean estimate of #.

1The second value is the average estimated asymptotic variance (x10?) of the estimator.

!The third value is mean estimate of o2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

9The values in parentheses are the corresponding sampling variances x102,
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Table 5.47

Performance of the new estimators in 50 simulations. Errors

are from Laplace (

1
VP

),02=1,8,=—0.5and n =50

T; % cens. gls gz 8 be
N(2,1) 9.08 -0.4995  -0.5037  -0.4892  -0.5107*
(1.2280) (1.4541) (1.3904) (1.4199)%

1.2660 1.3505 1.2573 1.5032t

(0.0046)  (0.0030) (0.0025)  (0.0076)

1.0397  0.9649  1.0219  0.9302}

(10.237) (7.2445) (8.2888)  (6.7801)

0.0650 0.1284 0.17045

N(2,2) 1252 -0.4758  -0.4743  -0.4533 -0.4779
(1.5749)  (1.9447) (1.7984)  (1.9598)

1.4682 1.5465 1.3994 1.7021

(0.0074) (0.0110) (0.0080)  (0.0284)

0.9678 0.9174 0.9973 0.8989

(8.9509) (8.9103) (10.062) (7.8294)

0.0680 0.1322 0.2876

N(2,4) ~19.24 -0.4800  -0.4823  -0.4442 -0.4797
(1.7476)  (2.0078) (1.8060) (2.0371)

1.3403 1.6127 1.3694 1.8931

(0.0050) (0.0069) (0.0040)  (0.0240)

1.0273 0.9055 1.0532 0.9147

(12.218) (9.5180) (11.876)  (10.324)

0.2536 0.6856 0.5140

*Throughout the table and for each combination of estimator and T}, the first tabulated

value is the mean estimate of f.

tThe second value is the average estimated asymptotic variance (x 102j of the estimator.

1The third value is mean estimate of o2.

$The fourth value is the average CPU time in seconds needed to compute the estimates.

YThe values in parentheses are the corresponding sampling variances x 107
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Table 5.48

Performance of the new estimators in 50 simulations. Errors
are from Laplace (-&5,0), o?=1,8,=—0.8and n =50

T; % cens. gie gz 0 ge
N(2,1) 1408  -0.7622 -0.7661 -0.7461  -0.7684
(1.0190) (1.0238) (1.0156) (1.1379)%

0.7498 0.7544 0.7232 0.68061

(0.0015) (0.0011) (0.0011)  (0.0022)

0.9468 0.8954 1.0046 0.80661

(6.5949) (4.5591) (6.2611)  (5.2087)

0.0594  0.1142  0.2932}

N(2,2) 1540 -0.7375  -0.7304  -0.7049 -0.7344
(1.0861) (1.2532) (1.2349) (1.2934)

0.8559 0.9851 0.9058 0.9296

(0.0030)  (0.0062) (0.0041)  (0.0103)

1.0178 (.9836 1.1165 0.9680

(12.222) (11.856) (14.255)  (10.760)

0.0966 0.2594 0.3768

N(2,4) 2096 -0.7812  -0.7865  -0.7503 -0.7861
(0.7239) (0.5516) (0.6212)  (0.6090)

0.7933 0.7988 0.7561 0.8435

(0.0046)  (0.0029) (0.0024)  (0.0067)

0.9559 0.9126 1.1142 0.9251

(7.1175) (8.1060) (11.706)  (8.5832)

0.2342 0.7368 0.5120

*Throughout the table and for each combination of estimator and T}, the first tabulated

value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance {x 10?) of the estimator.

!The third value is mean estimate of ¢2.

$The fourth value is the average CPU time in seconds needed to compute the estimates.

YThe values in parentheses are the corresponding sampling variances %102,
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Table 5.49

Performance of the new estimators in 50 simulations. Errors
are from Laplace (%,0), o?=1,0,=0.8and n =100

-

T; % cens. fls 02 0 ge
N(2,1) 11.62 0.7721 0.7698 0.7509 (0.7748"
(0.3639) (0.4292) (0.4688) (0.3988)7

0.3871 0.4177 0.3910 0.38681

(0.0004) (0.0005) (0.0003)  (0.0005)

0.9516 0.9195 0.9858 0.89671

(4.0550)  (4.1017) (4.0627)  (3.9043)

1.8626 5.4002 0.7480%

N(2,2) 15.32 0.7691 0.7712 0.7463 0.7739
(0.5494) (0.5241) (0.5676)  (0.5116)

0.4165 0.4246 0.3939 0.4235

(0.0005) (0.0004) (0.0003)  (0.0004)

1.0048 0.9587 1.0712 0.9516

(6.3391) (5.5451) (6.3967)  (5.2957)

3.1990 10.685 1.0896

N(2,4) 19.86 0.7767 0.7835 0.7458 0.7858
(0.3311) (0.3470) (0.4167)  (0.3424)

0.3651 0.3861 0.3570 0.3876

(0.0002) (0.0002) (0.0002)  (0.0003)

0.9464 0.8834 1.0522 0.8789

(3.4227) (3.6314) (4.4469)  (3.6957)

4.9938 17.094 1.5900

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 4.
tThe second value is the average estimated asymptotic variance (x10%) of the estimator.
!The third value is mean estimate of o2.
$The fourth value is the average CPU time in seconds needed to compute the estimates.
TThe values in parentheses are the corresponding sampling variances x102,
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Table 5.50

Performance of the new estimators in 50 simulations. Errors
are from Laplace (ﬁ,[}), o?=1,0,=0.5and n = 100

~

T; % cens. 0% g2 0 g2
N(2,1) 8.32 0.4949 0.4933 0.4800 0.4988*
(0.7346)  (0.7514) (0.7038) (0.7591)"

0.6688 0.6878 0.6463 0.68801

(0.0006)  (0.0006) (0.0005)  (0.0011)

1.0069 0.9696 1.0142 0.9433}

(5.7453) (6.0922) (6.6133)  (5.5609)

0.2438 0.5842 0.5328%

N(2,2) 14.30 0.5070 0.5075 0.4832 0.5130
(0.8063) (0.8827) (0.8346)  (0.8793)

0.7359 0.8178 0.7235 0.8453

(0.0007) (0.0009) (0.0007)  (0.0023)

1.0338 0.9343 1.0206 0.9209

(4.5101) (3.5284) (4.0166)  (3.3439)

2.5846 6.8338 1.2050

N(2,4) 17.88 0.4861 0.4877 0.4522 0.4915
(0.8834) (0.8859) (0.8626)  (0.9089)

0.7680 0.8782 0.7574 0.8710

(0.0010)  (0.0012) (0.0009)  (0.0034)

1.0129 0.8909 1.0174 0.8842

(5.4960) (4.7863) (5.6140)  (4.6143)

2.5224 8.0396 1.7202

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 8.

'The second value is the average estlmated asymptotic variance (x 10%} of the estimator.
!The third value is mean estimate of o2
§The fourth value is the average CPU tlme in seconds needed to compute the estimates.

T The values in parentheses are the corresponding sampling variances x 102.
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Table 5.51

Performance of the new estimators in 50 simulations. Errors
are from Laplace (;17,0), c*=1,8,=02and n =100

2

-

~

T; % cens. gis g2 gt g
N(2,1) 7.80 0.2082 0.2025 0.1966 0.2068*
(0.8943) (0.9033) (0.8613) (0.8945)"

0.8201 0.8547 0.8039 0.89031

(0.0007)  (0.0008) (0.0007)  (0.0012)

1.0054 0.9528 0.9919 0.9244%

(5.5518) (4.3390) (4.7890)  (4.2826)

0.4766 - 1.2232 0.4576%

N(2,2) 11.82 0.1872 0.1820 0.1741 0.1858
(0.8131) (0.8514) (0.7921)  (0.8550)

0.8593 0.9500 0.8572 1.1234

(0.0007) (0.0008) (0.0006)  (0.0029)

1.0304 0.9541 1.0212 0.9382

(6.4220) (5.3850) (6.2204) (5.1711)

0.5184 1.2346 0.8932

N(2,4) 19.08 0.2070 0.2089 0.1906 0.2159
(0.8592) (1.1937) (0.9981)  (1.1690)

0.8762 1.0411 0.8488 1.0586

(0.0011) (0.0018) (0.0010)  (0.0036)

0.9714 0.8608 0.9797 0.8651

(5.3350) (5.0386) (6.1284)  (5.7850)

1.9256 4.6888 1.8270

*Throughout the table and for each combination of estimator and Tj, the first tabulated

value is the mean estimate of .
tThe second value is the average estimated asymptotic variance (x 10?) of the estimator.
!The third value is mean estimate of 2.
$The fourth value is the average CPU time in seconds needed to compnte the estimates.
YThe values in parentheses are the corresponding sampling variances x 10°.
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Table 5.52

Performance of the new estimators in 50 simnulations. Errors
are from Laplace (%,0), g?=1,0,=—0.2and n =100

~

T; % cens. g's oe 6 e
N(2,1) 7.64 -0.2071  -0.2121  -0.2058  -0.2141%
(1.2109)  (1.2290) (1.1515) (1.3076)%

0.8531 0.8964 0.8395 0.9717t

(0.0010)  (0.0010) (0.0008)  (0.0018)

0.9640 0.9249 0.9630 0.8906%

(4.9065) (3.8735) (4.2819)  (3.8959)

0.0936 0.1690 0.47808

N(2,2) 12,90 -0.1974 -0.2104  -0.1991 -0.2131
(1.0582) (1.0536) (0.9477)  (1.0860)

0.9491 1.0087 0.9067 1.1405

(0.0023) (0.0020) (0.0016)  (0.0045)

1.0004 0.8938 0.9638 0.8802

(5.1916)  (4.2358) (4.6254)  (4.5956)

0.4548 1.1086 1.0818

N(2,4) 18.04 -0.2004  -0.2075  -0.1886 -0.2060
(0.9043) (1.1001) (0.8859)  (1.0791)

0.8387 1.0505 0.8658 1.2357

(0.0009) (0.0018) (0.0011)  (0.0034)

1.0182 0.9066 1.0260 0.9037

(3.4645) (2.5849) (3.3942)  (2.7785)

1.3806 3.7566 1.6202

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of #.

tThe second value is the average estimated asymptotic variance (x 10%) of the estimator.

!The third value is mean estimate of o2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102.
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Table 5.53

Performance of the new estimators in 50 simulations. Errors
are from Laplace (%,0), g?=1,8,=-0.5and n =100

~

T; % cens. gis 6z 6 g2
N(2,1)  8.48 -0.4950  -0.4993  -0.4856  -0.5045
(0.6132) (0.6607) (0.6391) (0.6661)7

0.6742  0.7460  0.7039  0.7864!

(0.0008) (0.0012) (0.0011)  (0.0041)

1.0513  1.0164  1.0692  0.9918

(5.9158) (5.6612) (6.3648)  (5.6215)

0.0936  0.1668  0.6998°

N(2,2) 12.92  -0.4949  -0.4939  -0.4703  -0.4995
(1.0360) (0.8552) (0.7839)  (0.8427)

0.7626  0.8304  0.7610 0.8007

(0.0010) (0.0013) (0.0011)  (0.0029)

1.0076  0.9690  1.0572 0.9542

(5.5104) (6.4449) (7.5987)  (6.2394)

0.1496  0.3150 1.2224

N(2,4) 19.80  -0.4965 -0.5029  -0.4645  -0.5036
(0.6144) (0.9108) (0.8105)  (0.9763)

0.6714  0.7808  0.6743 0.7782

(0.0005)  (0.0008) (0.0005)  (0.0016)

0.9968  0.9014  1.0504 0.8998

(4.4654) (3.9653) (5.3619)  (3.8536)

1.7172  5.1224 1.9024

*Throughout the table and for each combination of estimator and T3, the first tabulated

value is the mean estimate of 8.
tThe second value is the average estimated asymptotic variance (x10?) of the estimator.
$The third value is mean estimate of .
$The fourth value is the average CPU time in seconds needed to compute the estimates.
TThe values in parentheses are the corresponding sampling variances x 102
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Table 5.54

Performance of the new estimators in 50 simulations. Errors
are from Laplace (%,0), o?=1,0,=-0.8 and n = 100

T: % cens. gis ée 6" 7
N(2,1) 15.72 -0.7851  -0.7850  -0.7637  -0.7897"
(0.4516) (0.4366) (0.4391) {0.4280)Y

0.3624 0.4038 0.3788 0.3349%

(0.0003) (0.0004) (0.0003)  (0.0005)

1.0351 0.9900 . 1.1181 0.9897%

(4.9756) (5.4533) (6.8469)  (6.0898)

0.1242 0.2346 1.5158%

N(2,2) 17.82 -0.7995  -0.7945  -0.7678 -0.8002
(0.3044) (0.2994) (0.3106)  (0.3295)

0.3594 0.4170 0.3929 0.3167

(0.0003) (0.0004) (0.0004)  (0.0004)

1.0595 1.0213 1.1851 1.0220

(6.8139) (98.202) (10.675)  (8.7499)

0.1560 0.3406 1.8126

N(2,4) 2212 -0.7753  -0.7759  -0.7351 -0.7787
(0.3030) (0.3303) (0.3601)  (0.3259)

0.41581  0.4815 0.4433 0.4207

(0.0004) (0.0012) (0.0008)  (0.0176)

0.9677 0.8989 1.1077 0.9044

(3.2251) (3.1994) (4.0798)  (3.3648)

0.7810 2.6846 2.2868

*Throughout the table and for each combination of estimator and 17}, the first tabulated

value is the mean estimate of .
tThe second value is the average estimated asymptotic variance (x 10%) of the estimator.
YThe third value is mean estimate of o2,
iThe fourth value is the average CPU time in seconds needed to compute the estimates.
TThe values in parentheses are the corresponding sampling variances x 102,

165



Figure 5.37
Fisher’s LSD comparison of the estimators. Estimators underlined by a -
common line are not significantly different at the 0.05 level. Errors are
from Laplace (:}3,0), o?=1,0,=0.8 and n = 25.
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Figure 5.38

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (%,0), gt=1,6,=0.5and n = 25.
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Figure 5.39

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (:/1'5’0)’ o?=1,0,=0.2and n = 25.
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Figure 5.40

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (-—V%,O), o?=1,0,=-0.2and n = 25.
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Figure 5.41 :

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (%,0), o?=1,8,=-0.5and n =25.
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Figure 5.42

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (%,0), c?=1,0,=—0.8and n =25,
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Figure 5.43

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (53-,0), ct=1,0,=0.8 and n = 50.
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Figure 5.44

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (715,0), o?=1,0,=0.5and n = 50.
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Figure 5.45

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (—\}—E;,O), o?=1,0,=02and n = 50.
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Figure 5.46

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (%,0), gt=1,8,=—0.2and n = 50.
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Figure 5.47

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (%,0), o?=1,60,=-—0.5and n = 50.
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Figure 5.48

Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (;151,0), 0?=1,0,=—0.8 and n = 50.
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Figure 5.49

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (-\}—5,0), o?=1, 6, =038 and n = 100.
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Figure 5.50

Fisher’s I.SD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (3};,0), c?*=1,0,=0.5and n=100.
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Figure 5.51

Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (71;,0), o*=1,8,=02and n = 100.
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Figure 5.52

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (%,0), o?=1,68,=—0.2 and n = 100.
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Figure 5.53 :

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (-\}—3,0), g?=1,8,=-0.5 and n = 100,
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Figure 5.54

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Laplace (%,0), o? =+/0.5, f, = —0.8 and n = 100.
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5.3.4 Errors from the Gamma distribution with unit
variance

Next we shall discuss the results for which the errors are drawn from Gamma
(3,—13—,,—\/5). As noted earlier, these results are summarized in Tables 5.55 -
5.72. First, we shall examine the behaviour of the estimators with respect to
the bias criterion. Like in the previous cases where the errors are Gaussian
or Laplace, the estimators have a similar behaviour for values of 1 — 6? near
unity. For smaller values of 1 — 62, #> tends to have larger bias than the rest
of the estimators which perform comparably among themselves. Once again,

the performance of the estimators improves as the sample size increases.

We shall now study the behaviour of the estimators with respect to the asymp-
totic variance criterion. As in the Gaussian case and indeed the case where the
errors come from the Laplace distribution, for all the sample sizes considered °
in this study, the estimated asymptotic variances of the estimators decrease
as 1 — 2 decreases. The estimated asymptotic variances of the estimators de-
crease with increasing sample size. To study the behaviour of the estimators
as the censor pattern changes, we make use of the randomized block analyses
of variance for Tables 5.55 - 5.72. As noted earlier, these analyses were car-
ried out on the estimated asymptotic variances of the estimators with censor
patterns regarded as ‘blocks’ and the estimators as treatments. For the pur-
pose of monitoring the effect of changes in censor pattern, the same analyses
of variance are used, except that the estimators are taken as ‘blocks’ and the

censor patierns as treatments.

As in the previous cases, there are 18 analyses of variance. Six of these 18
cases show a statistically significant effect due to censor pattern at the 0.03
level. In 2 of these 6 cases, the estimators perform better for the censor pattern
Gamma (3,1,-1) than they do for Gamma (3,1,-0.5) and Gamma (3,1,-0.75),
which are not significantly different from each other using Fisher’s LSD analy-

ses. In 2 of the remaining 4 cases, the behaviour of the estimators for gamma
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(3,1,-0.5) is similar to their behaviour for Gamma (3,1,-1), which is different
from their behaviour for Gamma (3,1,-0.75). In one of these 2 cases, the esti-
mators behave better for Gamma (3,1,-0.75), whereas in the other case they
behave worse for this censor pattern. In one of the remaining 2 cases, Gamma
(3,1,-0.5) and Gamma (3,1,-1) are not significantly different from each other.
Similarly, Gamma (3,1,-1) and Gamma (3,1,-0.75) are not significantly differ-
ent, but Gamma (3,1,-0.5) is significantly better than Gamma (3,1,-0.75). In
the last case, all the censoring patterns are significantly different from one an-
other, with Gamma (3,1,-1) being the best, Gamma (3,1,-0.5) the second best
and Gamma (3,1,-0.75) the worst. These results can be further summarized
as follows. In the majority of cases (two-thirds), there is no sufficient evidence
the performance of the estimators is sensitive to changes in censor pattern. In’
the remaining one-third of the cases, the performance of the estimators either
first remains unaltered or deteriorates and then improves as the censor pattern
is successively changed from Gamma (3,1,-0.5) to Gamma (3,1,-0.75) and from

the latter censor pattern to Gamma (3,1,-1).

To compare the estimators among themselves, we revert back to the original
use of the analyses of variance taking censor patterns as ‘blocks’ and the 4
estimators as treatments. of the 18 analyses of variance, 10 show a significant
estimator effect at the 0.05 level. Three of these 10 cases correspond to small
samples, 3 correspond to moderate samples and 4 correspond to large samples.
For small samples, in 2 of the 3 analyses of variance wich show a significant
estimator effect (Figures 5.57 and 5.59), 6‘5’1, éif and 9; are not significantly
different among themselves at the 0.05 level using Fisher’s LSD analyses. In
one of these 2 cases (Figure 5.57), é; is worse than the rest of the estimators,
whereas in -the second case (Figure 5.59), fc compares favourably with é: In
the third analysis of variance (Figure 5.58), 0, 82 and < have a similar be-
haviour. The estimator éf’l is superior to é: and éﬁ and behaves similarly to

-

ls
e,

For moderate samples, in one of the 3 analyses of variance with a significant
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estimator effect (Figure 5.64), éif . Hﬂ and Ejfl are comparable among themselves
and perform better than §. In the second case (Figure 5.66), fis, 6° and éi
behave similarly to each other and # performs as good as 95’1 but worse than
the other two estimators. In the third case (Figure 5.62}, 6;’ and 02 are com-
parable and their performance is better than the one for Ejfl. The estimator éi

is superior over all the other estimators.

For large samples, in 3 of the 4 analyses of variance which exhibit a significant
estimator effect (Figures 5.67, 5.68 and 5.69), @ﬁ performs as good éif In one
of these 3 cases (Figure 5.67), 0¢ is comparable to 02 while 6° is superior to
the rest of the estimators. In the second case (Figure 5.68), g's and g2 perform
better than 65 while éﬁ performs better than the rest of the estimators. In.
the third case (Figure 5.69}, 0'» and §° are comparable with both fb and 6¢
and éi is better than éfl In the fourth analysis of variance with a significant -
estimator effect (Figure 5.70), §® and 6" are comparable to one another and

perform better than the rest of the estimators.

Overall, for small and moderate samples, in one-half of the cases, the estima-
tors are comparable among themselves. In the rest of the cases, g, 8" and
é{; tend to have a similar behaviour. Also, for these cases, sometimes é,ﬁ is
comparable to 9;‘: and other times it is performs worse than the rest of the
estimators. For large samples, in one-third of the cases, the estimators behave
similarly to one other. In the remaining two-thirds of the cases, éi compares
favourably with éif In some of these cases, 9; is comparable with éﬁ or with
both é;‘l and 6% In the rest of the cases, é; is worse than all the other estima-
tors. In some the cases {one-half), the estimator 0> performs comparably with
éff or with both éif and éﬁ. In the rest of cases, éﬁ is superior to the rest of
the estimators. This superiority of 8% over the other estimators compansates

for its inferior performance with respect to the bias criterion.
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Table 5.55

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,:%,—\/?:), o?=1,0,=0.8 and n = 25. Ga refers to the
Gamma distribution (as the censoring distribution)

-

T; % cens. gl o b be
Ga (3,1,-0.5)  10.08  0.7383  0.7339  0.7196 0.7513*
(1.3592) (1.3805) (1.4467) (1.3623)1

1.6271  1.8026  1.6357 1.68237

(0.0097) (0.0138) (0.0103)  (0.0126)

0.9101  0.7912  0.8508 0.7666

(7.5204) (4.5019) (5.5108)  (4.4585)

3.3142  7.8268 0.04828

Ga (3,1,-0.75) 1240  0.7617  0.7587  0.7351 0.7802
(1.6941) (1.7319) (1.8420)  (1.6979)

1.3845  1.3015  1.5808 1.3031

(0.0088)  (0.0070) (0.0081)  (0.0063)

0.8882  0.7837  0.8864 0.7374

(10.671) (6.9701) (B8.0528)  (6.1442)

1.8938  4.9522 0.0682

Ga (3,1,-1) 14.24  0.7269  0.7096  0.6796 0.7309
(1.3426) (1.6977) (1.6372)  (1.6394)

1.7673  1.8120  1.7845 2.0510

(0.0078)  (0.0088) (0.0095)  (0.0160)

0.8887  0.8355  0.9609 0.8279

(5.9142) (6.8024) (7.7436)  (8.6586)

10.326  35.983 0.0858

“Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x 102) of the estimator.

$The third value is mean estimate of o?.

$The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x10?.
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Table 5.56

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,-\/5), o?=1,80,=05and n = 25. Ga refers to the
 Gamma distribution (as the censoring distribution)

~

T; % cens. gt g2 o 6
Ga (3,1,-0.5) 9.36 0.4355 0.4528 0.4394 0.4651*
(3.7604) (3.6966) (3.5478)  (3.8878)"

2.5737 2.7618 2.5708 2.56291

(0.0109) (0.0104) (0.0090}  (0.0215)

1.0072 0.9081 0.9644 0.8914%

(18.140) (12.625) (14.021)  (19.223)

0.0798 0.2042 0.05043

Ga (3,1,-0.75) 9.44 0.4701 0.4755 0.4576 0.4861
(3.9732) (4.2145) (3.9492)  (4.5694)

2.5205 2.6271 2.4259 2.7943

(0.0149)  (0.0131) (0.0127) - (0.0211)

0.9670 0.8614 0.9201 0.8524

(14.045) (8.2534) (9.1759)  (10.232)

0.4152 1.0688 0.0424

Ga (3,1,-1) 15.20 0.4738 0.4840 0.4563 0.5024
(1.7811)  (1.9136) (1.7096)  (2.1981)

2.4677 2.4836 2.1977 2.5472

(0.0108) (0.0103) (0.0078)  (0.0175)

0.9326 0.8102 0.9099 0.8295

(16.435) (7.8638) (11.417)  (18.206)

0.6546 1.6596 0.0866

*Throughout the table and for each combination of estimator and 7;, the first tabulated

value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x107) of the estimator.

tThe third value is mean estimate of ¢2.

¥The fourth value is the average CPU time in seconds needed to compute the estimates.
YThe values in parentheses are the corresponding sampling variances x 102
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Table 5.57

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,—\/5), o?=1,0,=02and n = 25. Ga refers to the
Gamma distribution (as the censoring distribution)

-

-

T; % cens. gis 6 gk e
Ga (3,1,-0.5) 8.08 0.2314 0.2295 0.2226 0.2346*
(3.7579)  (4.0043) (3.7751)  (3.9594)7

3.1298 3.3351 3.1372 3.95681

(0.0158) (0.0126) (0.0116)  (0.0716)

0.9259 0.8627 0.9035 0.8185%

(15.384) (9.4917) (10.636)  (8.4945)

0.0828 0.1964 0.03728

Ga (3,1,-0.75)  10.40 0.2047 0.2062 0.1967 0.2132
(4.0428)  (4.2615) (3.8215)  (4.4915)

3.3177 3.6693 3.3134 4.1696

(0.0160) (0.0249) (0.0202)  {0.0570)

0.9185 0.8564 0.9113 0.8247

(10.636) (11.167) (11.743)  (14.449)

0.4196 1.0384 0.0496

Ga (3,1,-1) 12.56 0.1884 0.2019 0.1918 0.2100
(3.6912) (3.6327) (3.2817)  (3.6807)

3.0000 3.2217 2.8746 3.2793

(0.0165) (0.0117) (0.0091)  (0.0681)

0.9572 0.8054 0.8830 0.8008

(13.424) (7.3391) (9.3250)  (10.401)

0.0780)  0.1806 0.0814

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 6.

1The second value is the average estimated asymptotic variance (x10%) of the estimator.
IThe third value is mean estimate of o
§The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102
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Table 5.58

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,—\/5), o2=1,8,=-02 and n = 25. Ga refers to the
Gamma distribution (as the censoring distribution)

~

T; % cens. ols G: 0 oc
Ga (3,1,-0.5) 6.96 -0.1500  -0.1548 -0.1509 -0.1463*
(3.3204) (3.3824)  (3.2004)  (3.5984)"

3.4160 3.5311 3.3407 3.33031

(0.0210) (0.0158)  (0.0141)  (0.0231)

0.9891 0.9106 0.9463 0.88021

(20.717)  (11.397) (12.2930) (12.189)

0.0242 0.0442 0.03285

Ga (3,1,-0.75)  10.72 -0.2080  -0.2145 -0.2055 -0.2157
(2.9592) (3.0627) (2.8145)  (3.2270)

3.2850 3.2949 3.0458 3.3782

(0.0192) (0.0176)  (0.0170)  (0.0443)

0.9947 0.9298 0.9908 0.9207

(20.665) (15.527)  (17.081)  (17.804)

0.0362 0.0714 0.0604

Ga (3,1,-1) 12.08 -0.2040  -0.1871 -0.1796 -0.1883
(4.0397) (4.5406)  (4.1032)  (4.9208)

3.3973 3.5513 3.2054 3.5603

(0.0207) (0.0206)  (0.0172)  (0.0538)

0.9345 0.8431 0.9160 0.8183

(8.3546) (5.7112)  (6.4189)  (7.3136)

0.0848 0.1976 0.0680

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 4.

' The second value is the average estimated asymptotic variance (x107) of the estimator.

}The third value is mean estimate of 2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.
T The values in parentheses are the corresponding sampling variances x 102,

178



Table 5.59

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,—\/5), g =1,0, = -0.5 and n = 25. Ga refers to the

Gamma distribution (as the censoring distribution)

~

T; % cens. é:f 92 éfl o
Ga (3,1,-0.5) 9.76 -0.4548  -0.4583  -0.4455 -0.4671*
(3.3563) (3.5682) (3.3665) (3.7427)7

" 2.4084 2.4126 2.2913 2.5010f

(0.0106) (0.0112) (0.0097)  (0.0221)

0.9487 0.8779 0.9361 0.8443%

(15.319) (10.626) (12.461)  (10.937)

0.0330 0.0580 0.0508%

Ga (3,1,-0.75)  12.48 -0.4556  -0.4669  -0.4461 -0.4670
(4.2580) (4.1840) (3.9042)  (4.2332)

2.7943 2.9176 2.6376 3.3238

(0.0126) (0.0141) (0.0117)  (0.0597)

0.9522 0.8283 0.9115 0.8171

(14.093)  (7.1597) (8.4194)  (10.978)

0.0450 0.0868 0.0670

Ga (3,1,-1) 14.08 -0.4743  -0.4842  -0.4609 -0.4870
(4.2495)  (4.2593) (3.8846)  (4.4246)

2.3746 2.6571 2.3751 2.8728

(0.0191) (0.0194) (0.0151)  (0.0855)

0.9382 0.8073 0.9023 0.8066

(21.967) (13.115) (15.300)  (16.742)

0.0958 0.2286 0.0802

*Throughout the table and for each combination of estimator and Tj, the first tabulated

value is the mean estimate of §.

tThe second value is the average estimated asymptotic variance (x10?) of the estimator.
!The third value is mean estimate of 2.
¥The fourth value is the average CPU time in seconds needed to compute the estimates.

SThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.60

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,—\/5), o =1, 8, =-0.8 and n = 25. Ga refers to the
Gamma distribution (as the censoring distribution)

T; % cens.’ gis e gt g2

Ga (3,1,-0.5) 14.80 -0.7582 -0.7560  -0.7377  -0.7711"
(1.8192) (1.7338) (1.7223) (1.8178)7

1.4853 1.3546 1.2846 1.4192f

(0.0096)  (0.0083) (0.0063)  (0.0144)

0.9221 0.9325 1.0197 0.8530%

(10.025) (12.999) (11.437)  (7.5932)

0.0496 0.0836 0.10325

Ga (3,1,-0.75)  16.64 -0.7480  -0.7355 -0.71363  -0.7489
(1.7175) (1.4812) (1.4918)  (1.6517)

1.5653 1.8331 1.7203 1.7621

(0.0082) (0.0102) (0.0081)  (0.0152)

1.0728 1.0805 1.2142 1.0818

(19.984) (30.192) (37.247)  (31.072)

0.0506 0.0900 0.1070

Ga (3,1,-1) 18.24 07776 -0.7731 -0.7476 -0.7882
(1.0609) (0.8448) (0.8963)  (1.0251)

1.4161 1.2736 1.2965 1.4267

(0.0077) (0.0091) (0.0055)  (0.0127)

0.9727 0.9327 1.0706 0.8616

(19.802) (17.326) (20.285)  (15.693)

0.0678 0.1132 0.1320

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 0.

tThe second value is the average estimated asymptotic variance (x 10%) of the estimator.
1The third value is mean estimate of o2.
#The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102
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Table 5.61

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,-\},—5,—\/5), g?=1, 8, =08 and n = 50. Ga refers to the
Gamma distribution (as the censoring distribution)

a

1; % cens. gis g2 o 7
Ga (3,1,-0.5).  12.72 0.7545 0.7573 0.7348 0.7663*
. (0.9308) (0.9207) (0.9632) (0.9283)"

0,7923 0.7898 0.7315 0.73611

(0.0011) (0.0013) (0.0013)  (0.0018)

0.9569 0.8622 0.9496 0.86841

(7.2163) (4.1754) (5.7136)  (5.4446)

2.9638  8.7530 0.24908

Ga (3,1,-0.75)  15.12 0.7603 0.7529 0.7260 0.7662
(0.8407)  (0.8880) (0.9600)  (0.9093)

0.8162 0.8077 0.7120 0.8576

(0.0016) (0.0017) (0.0013)  (0.0027)

0.9728 0.8918 0.9939 0.9287

(7.6690) (4.9140) (6.3195)  (10.147)

8.0070 22 967 0.2712

Ga (3,1,-1) 14.48 0.7765 0.7661 0.7308 0.7832
(0.5527)  (0.7609) (0.8323)  (0.8313)

0.7797 0.8670 0.8618 0.8652

(0.0009) (0.0073) (0.0165)  (0.0283)

0.9141 0.8161 0.9428 0.8049

(4.8617) (2.7194) (3.7431)  (5.0835)

13.037 37.871 0.3240

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of &.

t'The second value is the average estimated asymptotic variance (x10%) of the estimator.

1The third value is mean estimate of #2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.
TThe values in parentheses are the corresponding sampling variances x 102
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Table 5.62

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,\%,5,-\/5), g =1,0, = 0.5 and n = 50. Ga refers to the
Gamma distribution (as the censoring distribution)

~

-

T; % cens. gis 8¢ 6 o
Ga (3,1,-0.5) 9.60 0.4675 0.4682 0.4529 0.4711*
(1.8592) (1.8466) (1.7212) (2.0632)7

1.4368 1.4963 1.3864 1.64811

(0.0025)  (0.0020) {0.0020)  (0.0023)

0.9616 0.9093 0.9646 0.93041

(7.5732) (6.2306) (7.4137)  (11.424)

0.5656 1.4762 0.1592%

Ga {3,1,-0.75)  11.44 0.4771 0.4756 0.4558 0.4846
(1.7677) (1.7488) (1.6774)  (1.8099)

1.3569 1.4206 1.2655 1.4783

(0.0014)  (0.0016) (0.0013)  (0.0094)

0.9638 0.8865 0.9566 0.8789

(10.576) (6.8362) (8.1495)  (8.3714)

1.1148 3.0980 0.2306

Ga (3,1,-1) 14.76 0.4862 0.4828 0.4563 0.4965
(1.5845) (1.5683) (1.4182)  (1.6599)

1.4942 1.4643 1.2664 1.7002

(0.0039)  (0.0025) (0.0022)  (0.0129)

0.9192 0.8490 0.9440 0.8509

(6.5422) (4.1766) (4.9525)  (7.4259)

2.6596 7.0696 10.3492

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 8.

'The second value is the average estimated asymptotic variance (x 10%) of the estimator.

tThe third value is mean estimate of 2.

$The fourth value is the average CPU time in seconds needed to compute the estimates.
YThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.63

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,—\/37), g*=1,8,=02and n = 50. Ga refers to the

Gamma distribution (as the censoring distribution)

~

T: % cens. é:f 6 95’3 Hﬁ
Ga (3,1,-0.5) 8.16 0.2114 0.2157 0.2099 0.2181*
(2.3513) (2.3192) (2.2131) (2.4227)F

1.7319 1.7614 1.6600 1.71877

(0.0026)  (0.0015) (0.0014)  (0.0063)

1.0055 0.9360 0.9769 0.9512¢

(8.4535) (7.3054) (8.0994)  (12.131)

0.4398 0.9734 0.1504%

Ga (3,1,-0.75)  12.04 0.2024 0.1980 0.1897 0.2042
(2.3486) (2.3239) (2.1682)  (2.3820)

1.7808 1.8674 1.6861 2.1056

(0.0046)  (0.0018) (0.0017)  (0.0087)

1.0552 0.9112 0.9794 0.9168

(6.4668) (3.8088) (4.3408)  (8.1430)

0.1778 0.4170 0.2244

Ga (3,1,-1) 13.52 0.1633 0.1709 0.1617 0.1759
(2.2036) (2.2716) (2.0547)  (2.2996)

1.6397 1.8387 1.6274 2.0484

(0.0034)  (0.0026) (0.0019)  (0.0080)

0.9678 0.8413 0.9227 0.8412

(7.9568) (3.8716) (4.9380)  (6.1827)

0.2900 0.6976 0.2604

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of §.

1The second value is the average estimated asymptotic variance (x10?) of the estimator.

tThe third value is mean estimate of a2,

$The fourth value is the average CPU time in seconds needed to compute the estimates.
YThe values in parentheses are the corresponding sampling variances x102.
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Table 5.64

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,-\/5), o2=1,4,=-0.2 and n = 50. Ga refers to the
Gamma distribution (as the censoring distribution)

-

T; % cens. gis gs o2 g

Ga (3,1,-0.5) 7.68 -0.2209  -0.2180  -0.2122  -0.2209*
' (1.7452)  (1.8311) (1.7491) (1.7654)7
1.7044 1.8000 1.6936 1.84361

(0.0038) (0.0038) (0.0034)  (0.0071)

1.0060 0.9376 0.9757 0.9390%

(7.5436) (5.7072) (6.2178)  (10.821)

0.0494 0.0986 0.11485

Ga (3,1,-0.75) 9.60 -0.1685 -0.1676  -0.1615 -0.1676
(1.3965) (1.4911) (1.3804)  (1.5333)

1.7136 1.8048 1.6670 2.0307

(0.0020) (0.0027) (0.0023)  (0.0107)

0.9563 0.8722 0.9228 0.8696

(7.9840) (3.9326) (4.7734)  (5.9658)

0.0726 0.1394 0.1638

Ga (3,1,-1) 12.64 -0.1704  -0.1817  -0.1727 -0.1785
(1.5830)  (1.4120) (1.2707)  (1.4308)

1.8398 1.8635 1.6544 2.1719

(0.0053) (0.0023) (0.0019)  {0.0127)

0.9489 0.8488 0.9206 0.8374

(4.6635) (3.6099) (3.8485)  (5.1439)

0.0942 0.1976 0.2328

*Throughout the table and for each combination of estimator and 7%, the first tabulated

value is the mean estimate of 4.

tThe second value is the average estimated asymptotic variance (x10%) of the estimator.
$The third value is mean estimate of 2.
$The fourth value is the average CPU time in seconds needed to compute the estimates.

¥The values in parentheses are the corresponding sampling variances x 102,
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Table 5.65

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,-\/3_;), o? =1, 0, =-0.5 and n = 50. Ga refers to the

Gamma distribution (as the censoring distribution)

~ -

T; % cens. gis o2 ot éc

Ga (3,1,-0.5)  10.00  -0.4642  -0.4632  -0.4481  -0.4678"
(1.8207) (1.9430) (1.8801)  (1.9214)F

1.5279 1.6220 1.4949 1.75791
(0.0033) (0.0036) (0.0029)  (0.0061)

0.9802  0.9173  0.9768  0.9144}
(6.0416) (4.5937) (4.9916)  (5.4171)

0.0606 0.1194 0.16008

Ga (3,1,-0.75) 1080  -0.4312  -0.4379  -0.4207  -0.4412
(1.2599) (1.3642) (1.2625)  (1.4515)

1.5995  1.6582  1.5213  1.6309
(0.0040)  (0.0034) (0.0030)  (0.0057)

0.9351  0.8604  0.9276  0.8884
(10.935) (6.2839) (7.4801)  (20.4250)

0.0866 0.1844 0.2124

Ga(31-1) 1420  -0.4836 -0.4837  -0.4594  -0.4360
(1.4499) (1.7848) (1.6330)  (1.9538)

1.3581  1.4292  1.2827 1.3365
(0.0015) (0.0014) (0.0012)  (0.0059)

0.9580  0.8832  0.9828  0.9039
(9.1207) (5.8883) (6.8858)  (10.723)

0.1308 0.2858 0.3122

*Throughout the table and for each combination of estimator and 7;, the first tabulated
value is the mean estimate of 8.

1 The second value is the average estimated asymptotic variance (x10?) of the estimator.

tThe third value is mean estimate of 2.

$The fourth value is the average CPU time in seconds needed to compute the estimates.

$The values in parentheses are the corresponding sampling variances x 102.
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Table 5.66

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,:%3,-\/37), g?=1,8,=-0.8 and n = 50. Ga refers to the
Gamma distribution (as the censoring distribution)

~

T; % cens. Bif g2 gt ¢
Ga (3,1,-0.5) 13.52 -0.7635  -0.7532  -0.7357  -0.7611*
(1.1471) (1.2387) (L.2551) (1.2424)F

0.6632 0.8162 0.7656 0.6843"

(0.0008)  (0.0024) (0.0020)  (0.0020)

0.9676 0.9382 1.0390 0.9436%

(7.4745) (6.6996) (8.2249)  (7.3663)

0.0704 0.1168 0.2878%

Ga (3,1,-0.75)  15.08  -0.7617  -0.7602  -0.7390 -0.7745
(0.8574) (0.7187) (0.7207)  (0.8522)

0.6799 0.7607 0.6786 0.6170

(0.0007) (0.0011) (0.0010)  (0.0016)

0.9800 0.9147 1.0336 0.8758

(5.9753) (6.3477) (8.1797)  (4.5747)

0.1088 0.2132 0.3538

Ga (3,1,-1) 20.56 -0.7871  -0.7601  -0.7361 -0.7847
(0.6552) (0.6288) (0.6353)  (0.8271)

0.7393 0.7969 0.7202 0.7537

(0.0023) (0.0042) (0.0030)  (0.0065)

0.9704 0.9835 1.1367 0.9320

(6.7942) (8.9125) (9.5515)  (9.4235)

0.1658 0.3030 0.5658

*Throughout the table and for each combination of estimator and T}, the first tabulated

value is the mean estimate of 4.

tThe second value is the average estimated asymptotic variance (x 10?) of the estimator.
!The third value is mean estimate of oZ.
§The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x107.
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Table 5.67

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,—\}—5,-\/5), 6?=1,8, =038 and n = 100. Ga refers to the
Gamma distribution (as the censoring distribution)

~

-

T; % cens. s g2 4 3
Ga (3,1,-0.5) 11.78 0.7786 0.7721 0.7506 0.7802*
(0.2520) (0.2398) (0.2595)  (0.2801)7

0.3735 0.3873 0.3418 0.41541

(0.0001) (0.0001) (0.0001)  (0.0002)

0.9374 0.8883 0.9642 0.90241

(2.5631) (1.3856) (1.6479)  (2.2767)

7.5852 29.247 0.7800%

Ga (3,1,-0.75)  14.42 0.7760 0.7652 0.7364 0.7806
(0.3056) (0.3446) (0.3816)  (0.3323)

0.4016 0.4156 0.3492 0.4256

(0.0002) (0.0002) (0.0002)  (0.0004)

0.9625 0.8741 0.9791 0.8657

(3.8770) (1.9138) (2.4870)  (2.5365)

5.6948 13.323 1.0532

Ga (3,1,-1) 15.36 0.7800 0.7686 0.7343 0.7856
(0.2976)  (0.3105) (0.3795)  (0.2829)

0.3640 0.3628 0.2968 0.3746

(0.0001) (0.0001) (0.0001)  (0.0003)

0.9219 0.8771 1.0014 0.8663

(2.0523) (1.9983) (2.7553)  (2.5330)

12.175 37.444 1.1922

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 6.

1 The second value is the average estimated asymptotic variance (x10?) of the estimator.

{The third value is mean estimate of o2,

§The fourth value is the average CPU time in seconds needed to compute the estimates.

" The values in parentheses are the corresponding sampling variances x 102.
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Table 5.68

Performance of the new estimators in 50 simulations. Errors are from

Gamma (3,—\%,-

Gamma distribution (as the censoring distribution)

V3), 0% =1, 6, = 0.5 and n = 100. Ga refers to the

~

T; % cens. gis gz ¢ g
Ga (3,1,-0.5) 8.84 0.4751 0.4755 0.4616 0.4785*
(0.7899) (0.8253) (0.7990) (0.8543)%

0.7459 0.7432 0.6944 0.83971

(0.0004) (0.0004) (0.0004)  (0.0013)

0.9496 0.8907 0.9374 0.9146%

(3.3380) (2.6434) (3.0411)  (4.8294)

1.5202 3.8362 0.64045%

Ga (3,1,-0.75)  11.84 0.4890 0.4866 0.4658 0.4916
(0.7186) (0.7111) (0.6779)  (0.6963)

0.7054 0.7374 0.6643 0.8438

(0.0003)  (0.0003) (0.0002)  (0.0018)

0.9870 0.8990 0.9697 0.9210

(6.2709)  (4.0609) (4.9296)  (6.0787)

1.9246 4.6752 0.8578

Ga (3,1,-1) 13.72 0.4736 0.4739 0.4476 0.4794
(0.7034) (0.8360) (0.7557)  (0.8753)

0.7309 0.7692 0.6738 0.9018

(0.0003)  (0.0003) (0.0002)  (0.0019)

0.9289 0.8229 0.9085 0.8323

(2.6534) (1.6578) (2.1122)  (2.3669)

2.9184 7.4440 1.0996

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x10%) of the estimator.

$The third value is mean estimate of 2.

$The fourth value is the average CPU time in seconds needed to compute the estimates.
YThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.69

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,—\/’3—), o?=1,0,=0.2and n = 100. Ga refers to the

Gamma distribution (as the censoring distribution)

~

T; % cens. gis g2 o 6
Ga (3,1,-0.5) 7.80 0.2104 0.2158 0.2096 0.2186*
(1.4367) (1.3964) (1.3226) (1.3789)f

0.8831 0.9036 0.8546 1.02081

(0.0008)  (0.0006) (0.0006)  (0.0016)

0.9990 0.9244 0.9613 0.9295%

(3.8919) (2.9102) (3.1447)  (4.2788)

0.2064 0.4586 0.45245

Ga (3,1,-0.75)  10.72 0.1645 0.1693 0.1611 0.1725
(0.8477)  (0.9533) (0.8575)  (0.9663)

0.9242 0.9413 0.8566 0.9163

(0.0006)  (0.0003) (0.0003)  (0.0026)

1.0015 0.8999 0.9590 0.9264

(3.8375) (2.0372) (2.4822)  (5.9803)

0.2966 0.6578 0.8830

Ga (3,1,-1) 13.52 0.2003 0.1932 0.1817 0.1951
(1.1988) (1.2342) (1.1052)  (1.2451)

0.9190 0.9277 0.8162 1.0549

(0.0007)  (0.0002) (0.0002)  (0.0021)

1.0018 0.8700 0.9516 0.8904

(4.3713) (1.9867) (2.6352)  (4.1322)

1.1434 3.0706 1.1340

*Throughout the table and for each combination of estimator and 7}, the first tabulated

value is the mean estimate of 8.

tThe second value is the average estimated asymptotic variance (x10%} of the estimator.

!The third value is mean estimate of o2.

§The fourth value is the average CPU time in seconds needed to compute the estimates.
TThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.70

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,5= \/5), o?=1, 8, =-0.2and n = 100. Ga refers to the

:ﬁ?'

Gamma distribution (as the censoring distribution)

T: % cens. gl ée gt be
Ga (3,1,-0.5) 7.68 -0.1859  -0.1833 -0.1774 -0.1824*
(1.0580) (1.1582)  (1.0901)  (1.2001)"

0.8773 0.9403 0.8812 1.02067

(0.0004) (0.0004)  (0.0004)  (0.0013)

0.9474 0.8832 0.9206 0.8895%

(5.7774) (3.1420)  (3.4424)  (4.3564)

0.1168 0.2350 0.44608%

Ga (3,1,-0.75)  10.58 -0.2209  -0.2252 -0.2159 -0.2274
(1.0528) (1.0061)  (0.9227)  (1.0711)

0.8510 0.9146 0.8362 0.9768

(0.0005)  (0.0004)  (0.0003)  (0.0012)

1.0122 0.8928 0.9498 0.8978

(2.8214) (1.4489) (1.6667)  (2.5586)

0.2028 0.4792 0.7008

Ga (3,1,-1) 13.24 -0.1947  -0.1998 -0.1889 -0.1998
(1.1720) (1.1511) {1.02344)  (1.1449)

0.8886 0.9203 0.8188 0.9529

(0.0005) (0.0003)  (0.0002)  (0.0019)

0.9536 0.8621 0.9401 0.8724

. (4.1486) (2.2164) (2.6749)  (3.0681)
0.3056 0.7234 1.0172

*Throughout the table and for each combination of estimator and T;, the first tabulated

value is the mean estimate of 6.

tThe second value is the average estimated asymptotic variance (x107) of the estimator.
}The third value is mean estimate of 0.
$The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x 102,
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Table 5.71

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,-\/5), o?=1,0, = -0.5 and n = 100. Ga refers to the
Gamma distribution (as the censoring distribution)

-

A

T; % cens. gis 6 g &
Ga (3,1,-0.5) 9.10 -0.4815  -0.4845  -0.4701  -0.4868*
(0.5410) (0.5908) (0.5598)  (0.5872)7

0.7184 0.7200 0.6673 0.64211

(0.0006) (0.0003) (0.0003)  (0.0012)

0.9529 0.9009 0.9527 0.9025%

(2.6043) (2.4372) (2.7067)  (3.2434)

0.1030 0.1826 0.7056%

Ga (3,1,-0.75)  11.54 -0.4812  -0.4805  -0.4613 -0.4838
(0.8607)  (0.9090) (0.8334)  (0.9007)

0.7580 0.8032 0.7148 0.8318

(0.0006)  (0.0005) (0.0005)  (0.0013)

0.9901 0.8978 0.9701 0.9037

(2.5389) (2.1366) (2.2997)  (2.9340)

0.1366 0.2590 0.8250

Ga (3,1,-1) 14.50 -0.4805  -0.4879  -0.4636 -0.4887
(0.7907) (0.7077) (0.6633)  (0.7290)

0.7350 0.7807 0.6900 0.7327

(0.0005)  (0.0004) (0.0003)  (0.0020)

0.9918 0.8631 0.9600 0.8972

(3.2384) (2.2764) (2.7927)  (5.4705)

0.2438 0.5434 1.2986

*Throughout the table and for each combination of estimator and T3, the first tabulated

value is the mean estimate of 8.

1The second value is the average estimated asymptotic variance (x10?) of the estimator.
$The third value is mean estimate of a2.
$The fourth value is the average CPU time in seconds needed to compute the estimates.

TThe values in parentheses are the corresponding sampling variances x10°.
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Table 5.72

Performance of the new estimators in 50 simulations. Errors are from
Gamma (3,%,-\/?7), =1, 0, =-0.8 and n = 100. Ga refers to the

distribution (Gamma as the censoring distribution)

»~

T; % cens. fls ée g 6
Ga (3,1,-0.5) 13.62 _0.7842  -0.7723  -0.7557  -0.7892"
(0.5901)  (0.5244) (0.5539) (0.6168)1

0.3543 0.3758 0.3486 0.28281

(0.0003)  (0.0003) (0.0002)  (0.0004)

0.9432 0.9281 1.0236 0.8882%

(3.4311) . (3.0294) (3.6279)  (2.6353)

0.1546 0.2682 1.206928

Ga (3,1,-0.75)  16.60 -0.7928  -0.7802  -0.7592 -0.8013
(0.2242) (0.1973) (0.2040)  (0.2375)

0.3455 0.3445 0.3152 0.3311

(0.0002) (0.0002) (0.0001)  (0.0002)

1.0239 0.9798 1.1081 0.9471

(4.5110) (4.9612) (5.5122)  (4.9349)

0.5622 0.8624 1.3492

Ga (3,1,-1) 19.34 -0.7858  -0.7559  -0.7301 -0.7871
(0.4500) . (0.3629) (0.3969)  (0.4673)

0.3747 0.4055 0.3621 0.3685

(0.0002)  (0.0005) (0.0003)  (0.0005)

0.9800 0.9730 1.1284 0.9219

(4.3226)  (4.2600) (5.3473)  (4.6662)

0.3120 0.5326 1.7796

*Throughout the table and for each combination of estimator and T}, the first tabulated

value is the mean estimate of 8.

1The second value is the average estimated asymptotic variance (x 10%) of the estimator.
! The third value is mean estimate of a2.
§The fourth value is the average CPU time in seconds needed to compute the estimates.

T The values in parentheses are the corresponding sampling variances %102,
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Figure 5.55

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,71§,-\/§), o?=1,8,=0.8and n =25
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Figure 5.56

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,%,—\/5), g?2=1,6,=05and n = 25.
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Figure 5.57

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,V-17§,-\/§), c¢=1,6,=0.2and n = 25.
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Figure 5.58

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,%,—\/3_), o?=1,0,=-0.2 and n = 25,

Estimator o? 6% o /i

Figure 5.59

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,\%—,—\/5), o?=1, 8, =-0.5 and n = 25.
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Figure 5.60

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,\—}—;,—\/‘5), o?=1,0, =-08 and n = 25.
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Figure 5.61
Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are

from Gamma (3,%,—\/37), c*=1,6, =028 and n = 50.
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Figure 5.62

Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,%,-\/’5‘—:), o?=1,8,=0.5and n = 50.
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Figure 5.63

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,%,-\/5), g*=1, 8, =0.2and n = 50.
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Figure 5.64

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,:}5,-\/?:), o?=1,0, =-0.2 and n = 50.
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Figure 5.65

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,%,-\/37), 62=1,0,=-0.5 and n = 50.
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Figure 5.66

Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,-15,—\/37), c?=1,8, =-08 and n = 50.
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Figure 5.67
Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are

from Gamma (3,\*}5,—\/5), #, = 0.8 and n = 100.
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Figure 5.68
Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are

from Gamma (3,%,-\/5), o?=1,0,=05and n = 100.
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Figure 5.69

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,—1—3,—\/5), g?=1,8,=02and n =100
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Figure 5.70

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,%,-\/5), o =16, =-0.2 and n = 100.
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Figure 5.71
Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are

from Gamma (3, 13,—\/?_»), o?=1,8, =-05and n = 100.

Estimator 9f; é

Figure 5.72

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gamma (3,%,-\/37), o*=1,0, =-0.8 and n = 100.
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5.4 Conclusions

For all the error distributions considered in this study, the results show that all
the estimators, both currently available and new, perform comparably among
themselves with respect to the bias criterion if 1 —8? is close to unity. For other
values of 1 — 62, éfl tends to be more biased than the rest of the estimators,
which still behave similarly to one another. According to the same criterion,
the performance of the estimators improves with increasing size of the time
series sample. Turning to the behaviour of the estimators with respect to the
asymptotic variance criterion, the results suggest that the estimated asymp-
totic variances are small for small values of 1 — 7 and show an increase as
1 — #?% tends to 1. We note that the asymptotic variance of the least squares-
estimator for the uncensored case, é,f:, is given by 1 — 62 (see, e.g., Basa,wa-
and Rao, 1980, page 42). Hence, the similarity between the behaviour of the
estimators and the behaviour of 1 — 87 is consistent with this theoretical result.
As in the case of the bias criterion, the results also show that the performance
of the estimators improves with increasing sample size. All of these justify the
use of the estimators in practical applications. For Gaussian errors, based on
our simulations, about two-thirds of the time, the performance of the estima-
tors deteriorates as the proportion of censored observations increases. If the
errors are from the Laplace distribution, it is estimated that about one-half
of the time, the performance deteriorates with increasing proportion of cen-
sored observations. In the other one-half of the time, the performance either
first deteriorates and then improves or vice versa. For Gamma errors, about
two-thirds of the time, the peformance of the estimators is not sensitive to
changes in the censoring rate. In the remaining one-third of the time, the
performanc’e' either first remains unchanged or deteriorates and then improves

as the proportion of censored observations increases.

It is also important to assess the performance of the asymptotic variance esti-

mators. The results suggest that for each estimator and for a fixed value of 4,
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when the error distribution is fixed and the censoring rate is held const-an.t (Ta-
bles 1-18 vs corresponding tables from Tables 19-36), the asymptotic formula
leads to a value which is asymptotically insensitive to the censoring pattern.
Wu and Zubovic (1995) reached a similar conclusion from simulations of the
asymptotic variance estimator of the Buckley-James estimator proposed by
Ritov (1990) in the linear regression set-up. This is a favourable property of
the proposed asymptotic variance estimators which justifies their use as vari-

ance estimators in practical applications.

We now turn to the comparison of the estimators among themselves on the
basis of their estimated asymptotic variance. For Gaussian errors with unit
variance and variance equal to 2, all the estimators behave similarly to each
other for small values of 1 — 2. For values of 1 — 82 near unity, f's and 63?1
behave similarly to each other and better than éz, éff’ and éfl which are not
significantly different among themselves. The MLE and éi“g , on the other
hand, behave similarly to estimators in both groups. When the variance of

the errors is equal to 2, the superiority of 9;’ and éf; over 9;, 5;1’ and éfl 18

slightly enhanced.

Recall that for Laplace and gamma errors we compare only the least-squares
estimator for the uncensored case with the new estimators, which are also
compared among themselves. As mentioned in section 5.1, the reason is that
in their present form, the currently available estimators are only applicable
for Gaussian errors. For errors drawn from the Laplace distribution, the be-
haviour of the new estimators is similar to their behaviour in the Gaussian case.
Once again, the estimators perform comparably for small values of 1 — 2. For
values of 1~ 62 close to 1, 0® and §% have a similar behaviour and perform
better than £ and #¢, which are also comparable to one another. For gamma
errors, the estimators behave somewhat different to their behaviour for Gaus-
sian and Laplace errors. About one-half of the time, they behave similarly

among themselves. In the other one-half of the time, éf,f, éi and é; tend to
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behave comparably. During this time, in some cases 6}; compares favourably
with 62 and 0 and in other cases it performs worse than the rest of the esti-

mators.

The similarity in the behaviour of éj‘l, é;” and 0; can be attributed to the way
in which they are obtained. They are all obtained by replacing the time series
rv’s Yi's in the least-squares estimating function for the uncensored case by
their conditional expectations given the censoring. For 0z and 6 the new rv’s
are computed sequentially, conditional on the censoring at the index time 7 and
given the ¥;_, equals the value of the conditional expectation computed for the
index time ¢ — 1. For §2 these expectations are conditional on the sigma-field
generated by the censored observations corresponding to j for ;7 < ¢. Note that
the estimator Bif is unrealistic for the censored time series data problem since
it corresponds to the uncensored case and hence there is no loss of information
due to censoring. Thus, it is expected to perform better than the other esti-
mators. The simulation results are consistent with this intuition. They also
show that 9:’1 compares favourably with éff In a way, this compansates for the
poor performance of the former estimator with respect to the estimated bias
criterion. Since the estimating function obtained in the case of the MLE is
optimal in the sense of Godambe (1960}, the similarity in the behaviour of the
new estimators with the MLE justifies the use of these estimators in practical

applications.
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Chapter 6

Summary, Conclusions and
Future Prospects

The need for methods of analyzing censored time series data is largely self-
evident. Firstly, for many studies in the physical and medical sciences and
in business and economics in which data are collected sequentially in time,‘
an exact value can be recorded only if it falls within a specified range due

to upper or lower limits of detection. For example, in the physical sciences
measurement of rainfall is limited by the size of the raingauge, and subject
to evaporation. In medical studies, one may be recording daily bicassays of
hormone levels in a patient. This gives rise to censored time series. Other ex-
amples of censored time series can also be given. One can fit an autoregressive
model to account for the time dependence. Secondly, Likelihood procedures
for autoregressive models have been well studied. Further, regression models
for censored independent data have been investigated extensively. Yet, very

little is known about the use of autoregressive models with censored data.

In this thesis, we are principally concerned with the estimation of parameters
in autoregressive models with censored data. For convenience, atiention is
restricted to the first-order stationary autoregressive (AR(1)) model in which
the sensitivity of the measurement has an upper limit of detection (right-
censored). We propose that, extension to the AR(p) model, where p > 1,

and to left-censored data can be easily accomplished by using ideas developed
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for the AR(1) model with right-censored data. However, this is a subject for
possible future investigations. In their present form, the methods of estima-
tion for censored autocorrelated data which were already available prior to
the present investigation can only be applied to AR processes with Gaussian
errors. Use of these methods in AR processes with non-Gaussian errors re-
quires, essentially, rederivations of the estimators. Hence, we were prompted
to develop new estimators which are robust in the sense that they can be ap-
plied with minor or no modifications to AR models with non-Gaussian errors.
We proposed three estimators, the first two of which require knowledge of the
form of the error distribution. Of these two, one, termed g2, is obtained by
replacing each of the response rv’'s (the 7th, say) in the least-squares estimat-
ing equation for the uncensored case by its conditional expectation given o
{(Z;,6;),5 < i} where (Z,6,),...,(Zn,6,) are the censored observed data de--
fined by Z; = min(¥;,T;) and & = I(Y; < T;), the Y;’s being the underlying
time series rv’s and 7T}'s, are the censoring rv’s with distribution independent *
of the distribution of the ¥;’s. The second estimator, éz is also obtained by
modifying the least squares estimating function for. the uncensored case. In
obtaining this estimator, differences between the successive sums of the esti-
mating function are replaced by their corresponding conditional expectations
given o {(Z;,6;),7 <1}. The third estimator, termed g2 is a distribution-free

estimator based on the Kaplan-Meier estimator of the distribution function

Given in Chapter 2 of this thesis, was a summary of the various estimators
in linear regression with censored i.i.d. data. Also given in Chapter 2, were
detailed descriptions of the estimators for regression with censored autocorre-
lated data, which were already existing before the current investigation. These
are the MLE, the PL estimator of Zeger and Brookmeyer (1986) and the PL
estimator of Dagenais (1986). These were termed gmie, 4= and fdes | respec-
tively. Chapter 3 described the new estimators. We also proposed asymptotic
variance estimators for each of these estimators. In Chapter 4, we established

some asymptotic results for 93 and éi We established that for each of these
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estimators, under suitable conditions on the moments of the distribution of
the errors, if the estimator is consistent, then it is also asymptotically nor-
mally distributed. We also investigated the consistency of éﬁ We found that
if the errors are Gaussian and alternate observations are censored, then 9:1 is
consistent. Hence, for this special case, 6"; is consistent and asymptotically

normally distributed.

We have not investigated the consistency of 95’1 or the large sample properties
of éﬁ and the currently available estimators. However, simulations in Chapter
5 of this thesis revealed that 9; is comparable with the currently available
methods, which perform comparably among themselves. Thus, under possibly
different conditions, it is perceivable that 6.';‘1 and the currently available estima-
tors have the same large sample properties. A further investigation is needed
to establish the large sample properties of the currently available estimators.
Also, extension of the above-mentioned consistency result of é;‘; to incorporate .
general censoring patterns involving more than one observation in a ‘block’
of consecutive censored observations. For the same estimator, 1.e., 91‘;, consis-
tency could also be investigated for general error distributions. A theoretical
study to investigate the consistency of 82 could also be conducted. As in the
case of é:, the study could proceed by investigating conditions under which the
estimating function for Hi crosses the #-axis in a sufficiently small neighbour-
hood of the true value of the autoregression parameter 8. Also, the asymptotic
behaviour of the distribution-free estimator proposed in the current research
could be investigated. This could make use of the available asymptotic theory

of Kaplan-Meier estimator of the error distribution function.

In Chapter 5, we used simulations to assess and compare the performances of
the new estimators and the estimators which were available before the present
research. This simulation study also includes the least-squares estimator for
the uncensored case, é:f To conduct the simulation study, we used three error

distributions and three censoring distributions. The three error distributions
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were Gaussian, Lapalace and Gamma and the corresponding censoring dis-
tributions were Laplace, Gaussian and Gamma. For Gaussian errors, three
criteria were considered in comparing the estimators, estimated bias, MSE,
estimated asymptotic variance. According to the bias criterion, when 1 - ?
is close to unity, all the estimators behave similarly among themselves. For
other values of 1 — §2, éfz performs worse than the other estimators, which are
comparable among themselves. However, bias alone precludes the variance of
the estimator. The MSE is a better criterion since it is given by the variance of
the estimator plus squared bias. According to this criterion, when #, = £0.2,
éfj and éﬂ behave similarly and perform better than the rest of the estimators,
which are comparable among themselves. When f, = 0.5, all the estimators
tend to perform comparably among themselves. When 8, = £0.8, éfl performs
worse than the rest of the estimators, which are comparable among themselves.
Clearly, according to the bias and the MSE, Hfl tends to perform differently
from the other estimators, which behave similarly among themselves. Further,
the MSE is a better criterion than bias alone. Therefore, we base our conclu-
sions about the behaviour of #¢ in relation with the estimators on the MSE.
For the same reason that the rest of the estimators perform equivalently with
respect to bias and MSE, we base our conclusions about their behaviour on
the asymptotic variance criterion. With respect to this criterion, éff and ég
behave similarly and perform better than E}f;, éff’ and é;—;, which are comparable
among themselves. The MLE and §429 tend to behave similarly to estimators

in both groups.

For Laplace and Gamma errors, only the new estimators were compared among
themselves and with éif This 1s because, as mentioned earlier in their present
form, the currently available estimators are not applicable to non-Gaussian
error distributions. Also, only the bias and the asymptotic variance criteria
are used to compare the estimators. We found that, we respect to the bias
and asymptotic variance criteria, the estimators exhibit a similar behaviour

for Laplace errors to their behaviour in the Gaussian case. For Gamma errors,
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the estimators are comparable among themselves with respect to the bias cri-
terion, apart from #2 which tends perform poorly. Their behaviour is slightly
different to their behaviour for Gaussian and Gamma errors. In about one-half
of the time, they behave similarly among themselves. In the remainder of the
time, 6 and £ and f2 behave similarly among themselves. In the other half
of the time, é;’, é",’; and éz are comparable while é; has a similar behaviour

to #2 6" in some cases and performs worse than the rest of the estimators in

other cases.

The simulation results of the asymptotic variance estimators suggest that for
each estimator and for a fixed value of 8,, when the error distribution is fixed
and the censoring rate is constant, the asymptotic variance formula leads to a
value which is asymptotically insensitive to the censoring pattern. Also, the.
estimated asymptotic variances decrease with increasing sample size and their
behaviour with respect to changes in 8, is consistent with the behaviour of the -
asymptotic variance of the least-squares estimator for the uncensored case,
which is given by 1 — 62 (see e.g., Basawa and Rao, 1980, p.43). These are
favourable properties of the proposed asymptotic variance estimators which

also justifies their use in practical applications.

The results suggest that, for Gaussian errors, choice of the preferred estimator
can be made from any of the estimators 63;”‘5, éff’, é;‘f"g and the new estimators,
g2, ° and 9;’;. With respect to the computational time it takes to obtain the
estimates, the estimators can, in general, be listed in order of increasing CPU
time as: é;b, Hft, 9:‘1, ég“g, éfl, é,’f’!“ for light censoring and as: é;b, é;, éi’"g, 92,
g2, ™' as the proportion of censored observations increases. The CPU time
for #™ is much higher than for the rest of the estimators. Hence, g™ would
be consideréd only if computer time is inexpensive. As noted earlier, with this
estimator, numerical procedures that avoid nonconvergence problems need to
be considered (see Zeger and Brookmeyer, 1986). On the other hand, not

only the new estimators are computationally feasible but also they compare
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favourably with §7/¢. The estimators §2* and f429 also have this advantage.
However, unlike the new estimators, in their present form, these estimators
and é:“c cannot be applied for distributions other than the Gaussian. Tor
errors from the Laplace and gamma distributions, choice of the preferred es-
timator can be made from éi, éi and éfl. The estimator é; can be applied
in practical applications where the form of the error distribution is unknown
since the it replaces this distribution by its Kaplan-Meier estimator based on

the observed data. Hence, it can be applied in a wide variety of situations.
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Appendix

A.1 Contribution of censored observations

As mentioned in chapter 2, the expression for the contribution of censored ob-
servations to the MLE score function in Zeger and Brookmeyer (1986) has an

error (possibly typographical). We correct this through the following lemma.

Proposition A.1.1 Let {Y;,i € £} be a zero-mean, possibly censored first-
order stalionary autoregressive process. Suppose the process is Gaussian. Then
the contribution of the censored observations, Y5, to the likelihood score func-

tion is given by (2.3.22-¢) in section 2.3.1.

Proof

Let

Sy

Yiyo¥ o,

v, X;,¥] (tlu Im,Xj,Y;“; ) [ln ‘I)J' (tl, man,ilju)],

and

T—Kj,l""‘zjlmly X.Yu(tl,... tmlm XJ,Y“())
f2 o f 5B s Giuel(Z5)7 (8 — )] dse
(I) "(tla m,ijy'u)
ftm- w8 H(B) 7 s 450 [(B9) 7 (s — nf) IR, sk
Jom o by ‘?SJ.VJ»[( 5)” Ys — n5)]IIEL, dsy .

and note that the total contribution for all Z; is

Y, mlof X Y (Ljas s Limlm, X5, Y5, 8).

_J1r ELY

u'[\/]:;
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A simplification for '§K ]yc,xj|)rju(t1, ey tmlm, X5, Y, 8) is given by

PREEL # R

SY, 1oty Xs Y (1, s tmlm, X, Y5 6)
%ﬂé,-‘,;(tl,...,tm,xj,yg“)
Dje(trs s tms X5, Y5)
fo2 o I F 45 l(B9) 7 (s~ m) L dsy
TR ST s — I dse

But

o 3asl(55) 7 (s~ 1)
1oz 1 0
={- o] 90 — s —75) 55l

Ty (2 (s~ m)Hbiusl(59) ™ (s = w1}

£5) 7 (s —nj)

+(

B 1 oz 1,9

_{_2|z:§-| a0 2250

—l{~2(n‘f)’—é}* ()7 s + (n5) 8[($°) Ui H s [(Z5) 7 e — m)]}
2 aet T 1750 RN b

on¢
H(S2) (Z9)7" (e = 1) H s [(E) (s = n9))-

[(Z5)sH e [(Z5)7 (s — m)]}

Hence,
Sy, 1y e X Yo (Ljas ooy Ly, X5, Y%, 6)
1 9|Z¢ 1 .
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— =205 5T + (Y 5585 g+ () (297 — )

1 5|E‘°| 1 u
2|EC| §T_}:’_jll,...,Lj'mlu;.Xj,YJ“(Ij,ls B Jm'm Xj:},j !0)
B 1o oo 0
L NS - ) - () l(35) 1)

8 . e
HGRY (5™ ~ )

1 9Zi 1

== — L -y S (m NS - S
R EHEEL 5 (X5 — ) g5 l(EN TS — )

c

Ly ()L )

209



1 - T S
——{Ty. ..v u‘X,',Yj“(zj,la'--’I_j,m|m:Xj1Y_’ju;H)—(Lj)%[(g_f) Y}

2 Lty 7 ,ml 2!

1 o153 1

.o d
2|5e] 99 27

(Y - ni)’%[(zj)'l](,ﬁ; )

ans e
+(%)’(Ej)_l(r_j —75) — %tr[%[(g;)—i]vﬂ, 0

A.2 Results in martingale limit theorems, sta-
tionarity, ergodicity and other results

In this section, we present results that were used in the proofs of the results

in Chapter 4 of this thesis.

Theorem A.2.1 (Theorem 2.18 of Hall and Heyde, 1980). Let{S, = 7, Xi,
Fnynt > 1} be @ martingale and {U,,n > 1} a nondecreasing sequence of posi-

tive rv’s such that U, is Fn_,-measurable for suchn. If 1 < p < 2 then
iUi_lX,- converges .s.
i=1
on the set {12, UTPE(| Xi|?|Fi-1) < oo}, and
lim Un'lSn =0 a.s.

N—00

on the set {lim, o U, = 00, T2, UTPE(|Xi|P|Fic1) < o0}, If2 < p < o0,
then (A.2.1) and {(A.2.2) both hold on the set

{Z U7 < oo, S UTTEE(IXPIFiny) < oo} -

i==1 =1

Theorem A.2.2 (Theorem 3.2 of Hall and Heyde, 1980). Let {S,;, Fpi,1 <
i < ky,n > 1} be a zero-mean, square-integrable martingale array with differ-

ences X,;, and let n° be an a.s. finite rv. Suppose that
max |Xni| '_}'J_’ 0!
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ZXQ' £, 7?2
E (maxX;‘:,-) 1s bounded tn n,
and
the o-fields are nested: Fn; C Fpy1; for 1 <i <k, n>1.

Then Spx, = 3; Xni 2,z (stably), where the rv Z has characteristic function
Eexp(—in*t?).

Corollary A.2.1 (Corollary 3.1 of Hall and Heyde, 1980). If (A.2.3) and
(A.2.5) in Theorem A.2.2 are replaced by the conditional Lindeberg condition-

Ve>0, SEXLI(|Xu| > &) Fuict — 0,
If (A.2.4) is replaced by an analogous condition of the conditional variance
Vi, = E(XZ|Fuic) = 0,

and if (A.2.6) holds, then the conclusion of Theorem A.2.2 remains true.

Corollary A.2.2 (Serfling, 1980). For any random variable X and real num-
berr > 0,

(a) E\X|" =r [7t1P(|X| > t)dt
and

(b) if EIX|" < oo, then P(|X] > t)=o(t™), t — oc.

Proposition A.2.1 (Proposition 6.6 of Breiman, 1268). Let Xy, X, ... be
stationary, @(z) measurable B>, then the process Y1, Y, ... define by

Y = o( Xk, Xit1y )
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15 stationary.

Proposition A.2.2 (Proposition 6.31 of Breiman, 1968). Let Xy, Xy, ... be a
stationary and ergodic process, ¢{(z) measurable B, then the process Y1,Ys, ...

define by
Y, = LF’(XI:,Xk-i-h---)

s ergodic.

Theorem A.2.3 (The ergodic theorem, e.g., Theorem 6.21 of Breiman, 1968).
Let T be measure preserving on (Q,F,P). Then for X any rv such that
ElX| < o0,
n~! nz-:l X(T*w) 25 E(X|T),
k=0

where, J is a class of invariant sets (a o-field). -

Corollary A.2.3 (corollary to the ergodic theorem, e.g., corollary 6.23 of
Breiman, 1968). Let T be measure preserving and ergodic on (2, F,P). Then
for X any rv such that E|X| < oo,

n—1
n71Y X(Thw) 22 B(X),
k=0

A.3 Simulation results

In Chapter 5, analyses of variance and Fisher’s LSD analyses were carried out
on the asymptotic variance estimates for each of the tables (Tables 1-72) to

compare the estimators. As mentioned therein, for Tables 1-18, the analyses
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were carried out on the MSE’s as well. The results of the LSD analyses are
summarized in Figures A1-A18 below. Figure Al summarizes the results of
the LSD analysis for Table 5.1, Figure A2 summarizes the results of the LSD
analysis for Table 5.2, etc. In each figure, the estimators are arranged in order

of increasing MSE.
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Figure Al
Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are

from Gaussian (0,1), §, = 0.8 and n = 25.
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Figure A2
Fisher’s LSD comparison of the estimators. Estimators underlined by a

common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 6, = 0.5 and » = 25.

-
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Figure A3

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), §, = 0.2 and n = 25.

~ A A ~ A a

Estimator ~ §% @b g fmle  fdo gz g

n 3 ki3

214



Figure A4
Fisher’s LSD comparison of the estimators. Estimators underlined by a

common line are not significantly different at the 0.05 level. Errors are
from Gaussian {0,1), 8, = -0.2 and n = 25.
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Figure A5

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = —0.5 and n = 25.
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Figure A6

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), #, = -0.8 and n = 25.
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Figure A7

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian {0,1), 6, = 0.8 and n = 50.
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Figure A8

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 6, = 0.5 and n = 50.
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Figure A9

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = 0.2 and n = 50.
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Figure A10

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1}, 8, = -0.2 and n = 50.
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Figure A1l

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = -0.5 and n = 50.
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Figure A12

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 6, = -0.8 and n = 50.
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Figure A13

Fisher's LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = 0.8 and n = 100.
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Figure Al4
Fisher’s LSD comparison of the estimators. Estimators underlined by a

commeon line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = 0.5 and n = 100.

Estimator 95{’ o< da g7 ézﬂe égag 92,

Figure A15
Fisher’s LSD comparison of the estimators. Estimators underlined by a

common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), 8, = 0.2 and n = 100,
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Figure A16

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Frrors are
from Gaussian (0,1), #, = -0.2 and n = 100.
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Figure A17

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1), §, = -0.5 and n = 100.
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Figure A18

Fisher’s LSD comparison of the estimators. Estimators underlined by a
common line are not significantly different at the 0.05 level. Errors are
from Gaussian (0,1}, 8, = -0.8 and n = 100.
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