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ABSTRACT

Due to constraints on spectrum availability and transmitter power, both
bandwidth and power efficient communication techniques are desirable for
mobile radio. Continuous phase modulated (CPM) signals have gained
attention because of their attractive power spectra (Steele, 1992). It has
been shown that the trellis coded modulation (TCM) schemes could provide
better bit error rate performances compared to the uncoded schemes
(Ungerboeck, 1982). Therefore, the combination of TCM which improves
error probability and CPM signals which yield low spectral occupancy is
expected to provide good coding and modulation over bandwidth and power
limited channels such as the one encountered in mobile radio

communications.

In this research, a Trellis Coded Modulation (TCM) scheme, which combines
convolutional coding and partial response Continucus Phase Modulation
(CPM) such as Gaussian Minimum Shift Keying (GMSK), is investigated.
Also, this study concentrates on the use of rate-% convolutional codes, and
GMSK (By7=0.3). The latter has been adopted in the Global System for

Mobile Communications (GSM) system.

Appropriate codes are selected assuming Maximum Likelihood Sequence
Detection (MLSD) based on the Viterbi algorithm using an extensive
computer search. The bit-error-rate (BER) performances of the selected
trellis coded GMSK schemes are theoretically evaluated in the presence of
additive white Gaussian noise (AWGN) and frequency-flat fading. In the
case of fading, the analysis is simplified to assume only arhplitude-fading,
and without considering the effect of fading on the phase of the received

signal.

Computer simulations are used to evaluate the BER performances of the
proposed trellis coded GMSK schemes in the presence of AWGN and

practical impairments, such as sample timing offset and carrier phase errors.



Coding gains of up to 2.2dB at a BER of 10 are obtained under ideal
sample timing and carrier recovery conditions. This has been achieved
without increasing the receiver complexity based on the number of states in
the Viterbi decoder, compared to the uncoded GMSK scheme. Furthermore,
these coded schemes are more tolerant to sample timing and carrier phase

impairments.

Also, the BER performances of the proposed trellis coded GMSK schemes
have been extensively investigated by computer simulations for frequency-
flat and frequency-selective fading channels. In the case of frequency-
selective fading, the Viterbi decoding is made adaptive to cater for the
channel impulse response variations with time. With this adaptive receiver,
the irreducible BERs of the coded scheme is found to be lower than that of
the uncoded. Performance improvements are obtained with a trellis coded
GMSK scheme using a constraint length 2 code with a Viterbi decoder of 16
states compared to the 128 states required for the uncoded scheme. Further,
the coded scheme has shown less sensitivity to carrier phase errors,

compared to the uncoded.
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CHAPTER 1

INTRODUCTION

1.1 Land Mobile Radio Communications

Due to the increasing demand for more capacity and better quality mobile
radio services, digital mobile communication technology providing highly
reliable voice and/or high-speed data transmission continues to evolve. For
example, advanced digital modulation and demodulation techniques play a
crucial role in improving the capacity of a mobile communication system. For
this reason, it continues to attract research efforts aiming at achieving digital
modulation schemes with better spectral and power efficiencies. The primary
objective of spectrally efficient moduiation is to maximise the channel
bandwidth utilisation, normally expressed in units of bits/s/Hz. Preferably,
this will be achieved in conjunction with good power efficiency, i.e., a
prescribed average bit error rate {(BER) would be achieved with minimum
expenditure of signal power. Furthermore, the prefered modulation scheme
will have a constant envelope, so that efficient non-linear power amplifiers

may be used without causing undesirable spectral splashing.

Continuous Phase Modulation (CPM) signals have gained attention in mobile
radio applications because of their compact power spectra (Steele, 1992).
Furthermore, the inherent constant envelope property of the CPM signals
permits the use of non-linear power ampilifiers in the transmitter. Therefore,
CPM signals are good candidates for mobile radioc communications, which
often demand the use of a modulation-demodulation scheme having
compact spectrum and good power efficiency. An example of CPM signals is
the Gaussian Minimum Shift Keying (GMSK) (Murota and Hirade, 1981) as
used in the GSM (Global System for Mobile Communications) mobile

telephony system.



In mobile radio communications, the received signal is subject to multipath
fading caused by reflection, diffraction, and scattering of the transmitted
signal by the surrounding obstacles. Multipath fading can give rise to
variations in the received signal level and signal distortions. This will lead to
degradation of the BER performance of the transmission link. In these
multipath propagation environments, error control coding techniques are
often used to achieve the required BER performance (Pieper ef al, 1878, Ali
Adel et al, 1989; Schlegel et al, 1989; Soliman et al, 1992). Morecver, with
error control coding techniques, sufficient redundant bits are added to the
transmitted information bits to allow the receiver to detect and possibly
correct the erroneous bits. However, such additional redundant bits will lead
to a higher transmission rate, thus increasing the transmission bandwidth as
compared to an uncoded scheme. One way of avoiding this bandwidth
expansion would be for the coded scheme to adopt a multi-level signalling
format instead of using simple binary signalling. Since most multi-level
signalling schemes suffer from lower noise margins, a larger transmitted
signal power is therefore needed to maintain the same bit error rate as
binary signalling. Alternatively, a more effective scheme called trellis coded
modulation (TCM), which combines coding and modulation together, as

proposed by Ungerboeck (1982) may be adopted.

Often with TCM, a convolutional code is used in combination with a higher
order modulation scheme. The received signal is then processed by a
receiver that combines both the demodulation and decoding in a single step,
as opposed to first demodulating and then decoding the data in more
conventional coding and modulation schemes. The key to improving the BER
performance of TCM is to map the coded bits to appropriate signal space
states of the modulated signal, such that the free distance (minimum
Euclidean distance) between the different coded signal sequences is
maximised. It has been shown by Ungerboeck (1982) that the BER
performance of a TCM scheme can be improved without sacrificing
bandwidth and power efficiency. As a result, TCM schemes, which have
been originally developed for use in additive white Gaussian noise (AWGN)



channels, have received attention for applications in bandwidth and power
limited mobile radio systems (Ungerboeck, 1982; Divsalar and Simon, 1987).

1.2 Scope of the Thesis

This research aims at studying a spectrally efficient communication scheme,
which is also tolerant to frequency-selective fading often encountered in
mobile radio environments. In this study, a trellis coded modulation scheme,
which combines convolutional coding, and partial response CPM, such as
GMSK, is investigated. Also, this study concentrates on the use of rate-%
convolutional codes, and GMSK (B,7=0.3), the modulation scheme adopted
in the GSM system (Mouly and Pautet, 1995). Extensive computer
simulations have been used to evaluate the performance of the proposed
scheme in the presence of AWGN, as well as frequency non-selective and
frequency-selective fading conditions. Furthermore, theoretical analyses
have been carried out assuming AWGN and frequency non-selective

amplitude-fading channels.

1.3 Organisation of the Thesis

This thesis is organised into eight chapters. Chapter 2 presents a
background introduction to mobile radic communications. This begins by
outlining the various channel parameters, which may influence the
performance of digital mobile transmission. The principles of CPM signals
are then explained. This is followed by a description of trellis coding, which is
often also referred to as convolutional coding. The most widely used trellis
decoding method based on the Viterbi algorithm (Viterbi, 1967) is then
described. Finally, the theory behind the trellis coded modulation (TCM)

scheme, which is the main theme of this research, is explained.

Chapter 3 presents an extensive literature survey showing the results under
AWGN and various fading conditions of published research on TCM

schemes, which use set partitioning or Ungerboeck codes (Ungerboeck,



1982; Divsalar and Simon, 1987). Also, various criteria for selecting the
appropriate convolutional codes for use with CPM signals in the presence of
AWGN are discussed. Finally, published results of research on trellis coded
CPM signals over fading channels are reviewed.

Chapter 4 presents the selection of appropriate trellis coded signals to be
evaluated in this study. The modulation method to be used in these TCM
schemes is the GMSK as adopted in the GSM system (Steele, 1992).
Furthermore, it is assumed that the TCM signal will be decoded by Maximum
Likelihood Sequence Decoding (MLSD) based on the Viterbi algorithm. A
computer search technique is used for determining the free distances
associated with different trellis coded CPM signals. Here, the free distance is
defined as the minimum Euclidean distance between two signal paths
leaving a common state in the combined trellis and merging into another
common state at a later time. Also, the receiver complexity, as indicated by
the number of states in the Viterbi decoder, is considered. It will be shown
that a reduction of the number of states in the Viterbi decoder could be
obtained by introducing differential encoding before the modulation as
suggested by Morales-Moreno et a/ (Morales-Moreno et al, 1994). The final
choice of an appropriate TCM scheme is based on one with the largest free
distance in conjunction with the minimum number of states in the combined
trellis. The free distances of the selected trellis coded schemes together with
their achievable coding gains, as compared to the uncoded scheme, are
tabulated in Table 4.6.

In Chapter 5, the error rate performances for the selected trellis coded CPM
schemes in the presence of AWGN as well as frequency non-selective
fading are evaluated analytically. In the case involving fading, the analysis is
simplified to include only amplitude fading and assuming that the effect of
fading on the phase of the received signal is fully tracked at the receiver. In
these analyses, upper and lower bounds of the BERs are obtained for the
selected trellis coded schemes in the presence of AWGN and amplitude-

fading. However, the BER performances obtained in the case of amplitude-



fading will be better than what could be achieved in practice as the analyses

ignore the influence of fading on the phase of the received signal.

The BER performances of the selected TCM schemes in the presence of
AWGN have been studied by computer simulations and presented in
Chapter 6. The influence of practical system impairments such as sample
timing offset and carrier phase error on the BER performances has also
been considered in the study. In the simulations, the trellis coded signal is
assumed to be coherently detected and decoded using the Viterbi algorithm
to select the most likely transmitted sequence.

Chapter 7 presents the bit error rates evaluated by computer simulations of
the selected TCM schemes under fading conditions, including both
frequency-flat and frequency-selective fading. The effect of frequency-
selective fading on the BER has first been investigated using a two-ray
propagation channel model. This is then followed by adopting the six-ray
empirical propagation models proposed in the GSM standards (ETSI, 1993).
In the simulations, coherent demodulation is assumed. However, in the case
of frequency-selective fading, the Viterbi decoding process is made adaptive
to cater for changes of the channel impulse response with time. Since the
focus of this study is not on the adaptive estimation of impuise response,
which is a research area in itself, it is assumed that the impulse response of
the channel is already available for computing the actual states of the Viterbi
decoder. In this study, the Viterbi decoder is designed to accommodate a
channel delay spread of up to 4 symbol periods as specified for the GSM
system. The resulting BER curves for the coded and the uncoded schemes
are presented and discussed.

Finally, Chapter 8 concludes the thesis by stating the main contributions of

this research. Also, recommendations are made for future studies.



1.4 A Summary of Original Contributions

To the best knowledge of the author, the following contributions have not

been previously published by other researchers:

A spectrally efficient communication scheme, which combines rate-%
convolutional coding and GMSK (B,7=0.3), for applications over
frequency-selective fading has been proposed. The appropriate codes
have been selected using an extensive computer search technique based
on the largest free Euclidean distance achievable with the minimum
number of states required in the Viterbi decoder. Distance gains of up to
5.06 dB have been obtained with the selected coded schemes as

compared to the uncoded scheme in the presence of AWGN.

The influence of timing and phase deviations on the BER performance of
the proposed receiver, which employs MLSD based on the Viterbi
algorithm, in the presence of AWGN has been studied. Extensive
computer simulations on the BER performances of the selected trellis
coded schemes show that the proposed receiver is more tolerant to
phase and timing errors as compared to the uncoded scheme, (refer to
Table 6.2).

An adaptive Viterbi decoder has been proposed for the detection of the
coded scheme in the presence of frequency-selective fading. The
proposed receiver has been designed to accommodate channel delay
spreads of up to four symbol periods. A large reduction in the receiver
complexity, in terms of the number of states in the adaptive Viterbi
decoder, has been achieved for the coded scheme as compared to the
uncoded scheme. Extensive computer simulations of the coded scheme
using the proposed receiver show that BER performance of better than
107 is achievable even for a delay spread of four symbol periods. As
specified by the GSM system, a BER performance of 107 is required for
voice communication. Furthermore, the proposed coded scheme shows

less sensitivity to carrier phase errors.



CHAPTER 2

BACKGROUND

2.1 Introduction

This chapter provides a background introduction to mobile radio
transmission. It begins with a description of multipath fading which influences
the performance of modern mobile communication systems, such as the
cellular and personal communication systems (PCS), operating in the ultra-
high frequency (UHF) band. Digital modulation schemes, which are suitable
for mobile radio transmission, are then discussed. In this description,
emphasis is placed upon CPM signals due to their excellent spectral
characteristics. In view of the variations in received signal level caused by
multipath propagation, error control technique is often used to improve the
BER performance in mobile communication systems. One such forward error
control technique is the use of convolutional codes. A detailed description of
the trellis structure of convolutional codes will also be presented here. This is
followed by a discussion of the Viterbi algorithm, which is widely used for
decoding convolutional codes. Finally, the theory behind trellis coded

modulation (TCM) is discussed.

2.2 Signal Propagation in Land Mobile Radio Channels

In a land mobile radio system, the propagation path between the mobile and
the base station is generaily obscured by buildings, hills and other objects
surrounding the mobile station. This is illustrated in Fig. 2.1. As a result, the
signal arriving at the receiver is considered to be the vector sum of the
various signal components following different propagation paths. This
phenomenon, often referred to as multipath fading, can cause fluctuations in
the amplitude, phase and angle of arrival of the signal received at the

receiver. Furthermore, a multipath channel may exhibit time-varying



characteristics because of movement of the mobile units. Due to the
uncertainty in the propagation environment, the time varying mobile radio

signal is usually characterised in terms of statistical parameters.

Mobile
Station

Figure 2.1 The various propagation paths followed by a transmitted signal
before arriving at a mobile station obstructed by buiidings from
a base station.

For example, the envelope variation of the received signal in the absence of
a direct line-of-sight component has been shown to have a Rayleigh
distribution (Jakes, 1974). The probability density function (pdf), p(r), of the

Rayleigh distributed envelope of ampilitude , having a variance o, is given

by

rio?)ex -r*/20? r=0
0 otherwise .

However, when a line-of-sight path is present, the received signal due to this
direct path normally predominates over the indirect paths. [n this case, the
envelope of the received signal is found to follow the Rician distribution
(Jakes, 1974). When the amplitude of the direct signal component is g, the
pdf, p(r), of the Rician distributed envelope of amplitude r of the received

signal, is expressed as

2 2
(r/af)exp[—r +2a JID[G—ZJ 20

0 ' otherwise .

plry= (2.2a)



Here I,.) is the modified zero™ order Bessel function which can be

mathematically expressed as

1,(z)= i(nz_zJ : (2.2b)

When a becomes zero in Eq. (2.2a), i.e., when no line-of-sight signal
component is present, Eq. (2.2a) reduces to Eq. (2.1) representing the
Rayleigh distribution.

It has been found that the received signal encountered in urban mobile radio
communication tends to follow the Rayleigh distribution. However, in satellite
maobile radio transmission, a line-of-sight component is likely to be present,
so that the received signal envelope can be assumed to be Rician
distributed. In both of these cases, the phases of the received signal

components are normally assumed uniformly distributed from 0 to 2x.

2.3 Propagation Model of the Multipath Channel

A multipath fading channel can be modelled by considering the multipath

effects on a transmitted signal s4(f) represented by
sold) = Re [u,(Wexp(i2z £1)], (2.3)
where uy(r) is the complex envelope of the modulated signal and /. is the

carrier frequency. The received signal r(#) arriving through N different

propagation paths can be expressed as
N
(1) =2 ¢, (O)s,lt =7 ()], (2.4)
n=1

where ¢, () is the attenuation factor for the signal received via the ah path
and 7,(¢) is the associated propagation delay. The channel parameters c,(f)
and 7,(¢f) are specified as time-dependent functions in order to indicate the

time-varying nature of the channel. Substituting Eq. (2.3) in Eq. (2.4) yields

r{#) = Re {[ZC Oexpl- /24,7, (O}, (e -7, (t))}eXP(J 2t )}- (2.5)

Thus, the low-pass equivalent of the received signal »(/) becomes



rielt) = Y e, (expl- j27f.7, (O, (t — 7,(0)) . (2.6)

Now, if the transmitted signal u,(r), is replaced by an impulse function &#),
then the equivalent low-pass impulse response of the channel may he

expressed as
k() = Y ¢, (Dexp|- 24,1, (OB - 1,(£) . (2.73)

Also, the received signal may be assumed to be a continuum of multipath
components (Jakes, 1974). As a result, the continuous impulse response of

the channel at time ¢, due to an impulse applied at time (t-7), becomes

h(t,7) = c(tlexp(-/2nf.0) S (t-1). (2.7b)

2.3.1 Time spreading

Using the time-varying representation of the impulse response of the
channel, A(z,7), a number of useful correlation functions and power spectral
density functions can be developed to characterise a fading multipath
channel. For the derivations of these functions, a wide-sense stationary
uncorrelated scattering (WSSUS) model is assumed (Bello, 1963).
Accordingly, the attenuations and phase shifts of the individual multipath

components are uncorrelated.

The signal propagation through the muitipath medium will cause time
spreading of the transmitted signal due to the individual propagation delay
associated with each path. The time spreading of the multipath channel may
be investigated by considering the autocorrelation function, R (t0, 0, 71), of the
channel impulse response, k(t,7), at t=t,, defined as (Bello, 1963)

Rilto, 1, m1) = V2 E [h*(ty, ) h(to, 11)]. (2.8)
Here, * denotes the complex conjugate. Now, assuming that the individual
received signal components associated with paths having delays 7, and 7
are uncorrelated, Eq. (2.8) can be simplified to (Bello, 1963)

Ri(to, 70,71} = Rylto, 1) 8 (10-17). (2.9)

10



Moreover, since the channel statistics are considered to be wide-sense
stationary, the resulting autocorrelation function becomes independent of ¢,
and 7. As a result, Ry(fo,7) may be re-written as R,(7). In this case, the
autocorrelation function simply becomes the average power of the received
signal at the output of the channel, as a function of the relative time delay .
Accordingly, the autocorrelation function, Ry (7), is called the multipath
intensity profile or the delay power spectrum of the channel. The range of
values of r over which R,(7) is essentially nonzero (typically of a value 10-20
dB below the strongest component) is referred to as the multipath delay
spread or the maximum excess delay of the channel.

2.3.2 Coherence bandwidth

Characterisation of the effect of multipath delay spread can also be carried
out in the frequency domain. This is based on the time-varying Fourier
transform, H(tf), of the impulse response, A{f,7). In this case, the
autocorrelation function, Rx{t, f, f1), of the transfer function, H(tf), at =,

can be defined as (Bello, 1963)
Rilto, fo, 1) = 2 E [H*(to, fo) H(to, /1)]- (2.10)

Due to the assumption of the channel being WSSUS, the autocorrelation
function, Rx(te, /5, /1) is dependent only on the frequency difference A=fi—f
rather than the individual frequencies f, and f,. Furthermore, the
autocorrelation function is independent of 7. Consequently, Ry{t. fo, fi) may
be written as Rx(Af).

Since R {4} is an autocorrelation function expressed in the frequency
domain, it provides a measure of the frequency coherence of the channel.
Thus, when two sinusoids with frequency separation greater than Af are
transmitted through the channel, they may be affected differently by the

channel. The maximum frequency separation for which the fading

11



characteristics of these sinusocids are strongly correlated (typically |[R {4/} >

0.5), is called the coherence bandwidth, (Af,), of the channel (Proakis, 1989).

The effect of the frequency coherence on the frequency spectrum of a
received signal is illustrated in Fig. 2.2. When the bandwidth W of the
transmitted signal, is wider than the coherence bandwidth of the channel,
(Af.), the channel is said to be frequency-selective. In this case, the spectrum
of the received signal is affected in differing degrees across the signal
bandwidth. On the other hand, if the coherence bandwidth of the channe! is
farger than the bandwidth of the transmitted signal, the channel is said to be
frequency non-selective or flat for the transmitted signal. In such a channel,
the spectrum of the received signal is affected more uniformly across its
bandwidth as illustrated in Fig. 2.2.

>, (An,
= M W —]
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q !
2 .
o
)
Frequency
(a)
% < W >
[t
[
®
g \/
o e (AN, -t
(7]
Frequency
(b}

Figure 2.2 The examples showing (a) frequency-selective channel and (b)
flat channel.
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2.3.3 Coherence time

The influence of the time variations of the channel on the transmitted signal
can be determined from the autocorrelation function of H(t/) in terms of the
time variable 7. In this case, the corresponding autocorrelation function,
Ri{to, 1, fo), of the transfer function, H{(z,/}, at an arbitrary frequency /=, is
given by (Bello, 1963)

Rilto, t1, fo) = V2 E [HX(ty, fo) H(t, fo)]- (2.11)

Since the channel is WSSUS, the autocorrelation function, Ra(to.t1./0),
depends only on the time difference Ar=t,—t, rather than the individual times
of to and #. Furthermore, the autocorrelation function is independent of the
choice of frequency fo. Consequently, Ri{ty, t, o) may be expressed as

Ry(At), which is only a function of the time difference.

The time separation (). over which the autocorrelation function Rp(4f), is
greater than 0.5 is referred to as the coherence time of the channel (Proakis,
1989). In this case, when an unmodulated carrier of a given frequency is
transmitted through the channel, the fading characteristics of the received
signal observed at time instants separated by more than the coherence time,
are practically uncorrelated. In other words, if the symbol duration of the
transmitted signal is larger than the coherence time, the channel
characteristics can change significantly during a time interval of one symbol
period. As a result, the received baseband pulse shape will be affected by
the channel. Such a channel is usually referred to as a fast fading channel.
Conversely, if the symbol interval is small in comparison to the coherence
time, the channe! characteristics can be expected to remain largely
unchanged during the symbol interval. As a result, no significant changes in
the received pulse shape are expected, and the channel is said to be a siow
fading channel. Hence, the rate of channel variations increases with a

decrease in the coherence time and vice versa.
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2.3.4 The Doppler effect

When an unmodulated carrier of frequency f is transmitted over a channel,
the resultant power spectral density, Sy{v), of the received signal can be
given by the Fourier transform of the autocorrelation function of the received
signal Ry(Af) as

Sa(v) = wj R Aty ™4 d(Ar). : (2.12)

In Eq. (2.12), v=Ff represents the frequency with respect to the carrier
frequency /. If the channel is time-invariant, i.e., Rx(49)=1, it follows from Eq.
(2.12) that Sx{v) becomes equal to the delta function, &v), at v=0.
Conversely, in the presence of channel time variations, i.e., Ry{Af)=1, Su(v)
will have nonzero values for spectral components of uz0. That is, the
spectrum of the transmitted carrier spreads as a direct consequence of the
changes in the channel. This effect is commonly referred to as the Doppler

effect.

The range of values of v over which Sx(v) is essentially nonzero is called the
Doppler spread of the channel. Often, the Doppler spread, /p is also referred
to as the fading rate of the channel, since it is directly proportional to the rate
of change of the channel. In a mobile environment, where the channel time
variations are determined by the relative speed, v, of the transmitter and

receiver, fp is given by (Jakes, 1974)
fD:X’fG’ (2.13)
C

where, ¢ denotes the speed of light in free-space, and f; is the carrier
frequency. Since Sy(v) is related to Ry{At} by the Fourier transform, the
reciprocal of Doppler spread is a measure of the coherence time of the
channel. That is,

(AN~ 2. (2.14)

D
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Eg. (2.14) indicates that the coherence time of the channel decreases with
an increase of the Doppler spread, which is a measure of the rate of

variations of the channel.

2.4 Digital Modulation Schemes

Due to the limited spectrum available, it is desirable that any digital
modulation technique employed in mobile radio transmission has a high
bandwidth efficiency, i.e., the bit rate per channel bandwidth is high for a
given power expenditure and at a specific bit error rate. Furthermore, due to
the use of nonlinear (class C) power amplifiers to minimise battery drain in
portable and mobile applications, the modulated signal must have a relatively
constant envelope to prevent any regrowth of spectral sidelobes caused by
the use of nonlinear amplifiers. The filtering of such sidelobes may lead to

distortions in the demodulated signal.

A variety of digital modulation techniques are currently being used in mobile
radic communication systems. Two of the most widely used modulation
schemes for current digital mobile cellular and personal communication
systems (PCS), are continuous phase modulation (CPM) and = /4 phase
shifted quadrature phase shift keying (n /4-QPSK). The former is used in the
Pan-European digital mobile cellular radio system known as Global System
for Mobile communications (GSM) and the Digital Enhanced Cordless
Telecommunications (DECT) standard (Gibson, 1996). The latter is used in
the North American 1S-54 digital cellular system, Japanese Personal Digital
Cellular system (PDC), and Japanese Personal Handy Phone System
(PHPS) (Gibson, 1996). As the present research focuses on the application
of CPM with trellis coding, a detailed description of CPM is given in the

following section.
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241 CPMsignals

Continuous Phase Modulation (CPM) can be viewed as both frequency
moedulation and phase modulation technique having a constant envelope
(Anderson et al, 1986). The CPM signal can have a compact spectrum with
good bit-error-rate performance, and this makes it attractive for applications
in mobile radic communications. In CPM, the carrier phase varies in a
continuous manner as a change in the input data symbol occurs. A
comprehensive treatment of CPM is provided in (Anderson et a/, 1986). The
mathematical representation of a CPM signal has the form (Anderson et a/,
1986)

s(t,a) =\2EIT cos Qrfit+ ¢(t,d) + ¢) (2.15)
where £ is the symbol energy of the signal, T is the symbol duration, and £, is
the carrier frequency. The arbitrary constant ¢, represents the initial phase,
and can be set to zero with no loss of generality. The information carrying

phase #,a) is given by

¢(r.a):7rhi a; q( t-il) (2.16)
where q() = ] g(n)dr (2.17)

—

and o= t1, £3, £5,..., +(M-1) for M-ary even data. For binary data, ;= +1. The
frequency pulse g(r) in Eq. (2.17) determines the way the phase of the
modulated signal changes in response to an input data symbol. Normally,
g(f) has a normalised area of unity and a smooth pulse shape with finite
duration, i.e., g(#) # 0 for 0<¢< L7, where L is the pulse length measured in
symbol intervals. The rate of change of the phase or the instantaneous
frequency is proportional to the parameter %, which is normally referred to as
the modulation index, and is defined by

_ peak - to- peak frequency deviation
bitrate '

From Equations (2.16) and {2.17), it may be noted that a large class of CPM

h

schemes can be realised by choosing different frequency pulses g(r) and

varying the parameters / and M. Now, if a frequency pulse g(¢) extends over
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more than one symbol interval, the resulting signal is normally referred to as

partial response CPM. On the other hand, if the duration of the frequency

pulse is less than or equal to one symbol interval, it is referred to as full

response CPM. In general, a narrower spectrum is obtained with partial

response CPM compared to full response signals (Aulin ef a/, 1981).

Some of the more popular frequency pulse shapes, g(r), and their

corresponding phase responses, ¢(t), for CPM schemes such as, Continuous
Phase Frequency Shift Keying (CPFSK), duobinary FSK and 3RC (3 Raised
cosine) are shown in Fig. 2.3. The CPFSK and duobinary FSK signals are

generated using rectangular pulses of durations T and 27, respectively,

whereas 3RC is generated using a raised cosine pulse of length 3T.

2, gD
12T 172
» ¢ »
2T 3T 4T T 2T 3T 4T
{a)
g0 q(t) o
1/4T 1/2
» 1 »
2T 3T 4T T 2 3r AT
(b)
gl g(n)
1/3T 12
> ¢ .
27 3T AT T 2T 3T AT

(c)

Figure 2.3 Pulse shapes g(¢) and the corresponding phase responses g(¢)
for (a) CPFSK (b) duobinary FSK and (c) 3RC, CPM schemes
(after Sundberg, 1986).
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Other partial response CPM schemes of particular interest for mobile radio
communications are GMSK (Murota and Hirade, 1981) and GTFM (Chung,
1984). For example, GMSK with a Gaussian pre-modulation filter having a
normalised bandwidth of B,7=0.3 is the modulation scheme adopted in the
GSM system (Gibson, 1996).

2411 GMSK modulation

GMSK is a modified form of Minimum Shift Keying (MSK), and is a special

case of binary CPFSK in which the modulation index is set at 0.5. In this
case, the IREC (1 rectangular) premodulation pulse used in the conventional

MSK is replaced by a Gaussian pulse with a smoother pulse shape. It has
been shown that GMSK can achieve a narrower spectrum than the MSK
(Murota and Hirade, 1981).

With GMSK, the impulse response of the Gaussian premodulation filter is

2% —27x2B2t?
H=A.— B B A 2.18
g \’lnE oexp{ " } (2.18)

where By is the -3-dB bandwidth and 4 is a constant. By varying the -3-dB

given by

bandwidth of the Gaussian premodulation filter, a set of different GMSK
signals each having different power spectra can be obtained. The power
spectra of the GMSK signals plotted against the normalised frequency
difference from the carrier frequency 7;, with the variation of the normalised
-3-dB bandwidth of the Gaussian premodulation filter are shown in Fig. 2.4
(Murota and Hirade, 1981). It may be seen from Fig. 2.4, that when B,T of
the GMSK signal tends to infinity, the power spectrum of GMSK coincides
with that of MSK.

The spectral occupancy of a signal may be expressed by its bandwidth
which is defined as the frequency band around the carrier frequency
containing 99% of the total signal power (Pasupathy, 1979; Sundberg, 1886).

Table 2.1 presents the approximate bandwidths containing 99% of total

18



power of GMSK schemes with several values of B,T. It may be observed
from Fig. 2.4 and Table 2.1, that the spectral occupancy of the GMSK signal
is mainly controiled by the parameter B,7. Therefore, for a given mobile
application, this parameter must be carefully selected, so that out of band
radiation requirements are met. For example, GMSK modulation with 8,7=0.3
is adopted in the GSM system, whereas GMSK having B,7=0.5 is used in the
DECT system (Gibson, 19986).

When B,7=0.3, the GMSK pulse is extended just over 3 bit periods as shown
in Fig. 2.5. In this case, the phase change of GMSK (B,7=0.3) during the m"
bit period depends mainly on the three consecutive bits at t=(m-1)7, mT and
(m+1)T giving rise to a considerable amount of controlled IS in the
transmitted signal. The effect of ISI on the phase of the GMSK signal may
also be observed from the eye diagrams corresponding to sin[¢(f)] and

cos{¢(#)], as shown in Fig. 2.6.

D P T a4 A £ 48 ¢ R R S 18 4 AR S Pk ek e b e s Amat s ae nenn 2
B,T= 0 (MSK)
Eﬁ 40 7
ol
@
j
]
O .60 -
a
S
@
a ;
“ ;
-120 i
0 0.5 1.0 1.5 2.0 2.5

Normalised frequency (/~/ )7

Figure 2.4 Power spectra of GMSK signals {After Murota and Hirade,
1981).
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Modulation Type Bandwidth containing 99% of power
GMSK (B,T=0.2) 0.79/T
GMSK (ByT=0.25) 0.86/T
GMSK (By7=0.30) 0.90/T
GMSK (B,T=0.50) 1.04/T
GMSK (ByT=x) 1.20/T
(MSK)

Table 2.1 Occupied bandwidth of GMSK schemes having various values of
BT (After Murota and Hirade, 1981).

08 T gft)
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02+
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fal
-2 -1.5 -1 05 . 0 0.5 1 1.5 2
bit periods

Figure 2.5 Frequency pulse shape of the GMSK signal when the
normalised -3-dB bandwidth of the premodulation Gaussian
filter ByT=0.3.

sin (K2)) ' cos (#(1)

Figure 2.6 The eye-diagrams corresponding to sin[¢z)] and cos[#(z})] of the
GMSK (B,T=0.3) signal.
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2.41.2 GTFM modulation

Generalised Tamed Frequency Modulation (GTFM) is another class of
spectrally efficient constant envelope partial response CPM schemes. In
GTFM, the incoming binary data is processed in a specific pre-modulation
filter, which consists of a 3-tap transversal filter followed by a Nyquist-3 low
pass filter, as shown in Fig. 2.7. The Nyquist-3 filter in conjunction with the
frequency modulator serves to ensure that the phase, &), after a smooth
transition, settles at one of the prescribed values at the end of a bit period.
The 3-tap transversal filter introduces correlative encoding, influencing input

data over three bit periods for the phase function #,a) (Chung, 1884).

Input
Data

(B+2a=1)

r

5(2)
NYQUIST 3 FREQUENCY
FILTER ] > MODULATOR |

PRE-MODULATION FILTER

Figure 2.7 Schematic diagram of a GTFM modulator.

With this pre-modulation filter, the ailowable phase shifts of the modulated
carrier during the " bit period can be expressed as

A dmT) = /2 (aby + Bby, + aby ) (2.19)
where, b,.1, b, and b, represent the binary data at time ¢ = (m-1)T, mT and
{(m+1)T, respectively and T represents the bit period. The binary data 5,, are
either +1 or -1. The constants « and B satisfy the condition (2a+B)=1, so that

the maximum change in phase over one bit period is restricted to +n/?2
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radians. Fig. 2.8 shows the eight possible phase transitions over one bit
period for a GTFM signal. By varying the tap coefficients, ¢ and B, of the
transversal filter and the roll-off factor, r, of the Nyquist-3 filter, a whole class

of signals, each with a given set of allowable phase shifts, can be obtained.

When B=0.5 and r=0.00, a special case of GTFM, called Tamed Frequency
Modulation (TFM), is obtained. For TFM,
A dmT) =72 (1/4 by + 12 by + 1/4 by ). (2.20)

Here, the phase changes of n/2 radians are obtained if the three successive
bits have the same polarity, whereas the phase remains constant for three
bits of alternating polarity. Phase changes of +w/4 are reiated with the bit
configurations ++—, + ——, —++, and - - +. Consequently, A¢(m) {0,+n/4, +
n/2}, where, Ag(m) = Ag(mT) modulo - 2n to remove ambiguity.

m/2

Br 72

dar

“4— one bitperied 7 ———————

Figure 2.8 Possible phase transitions of a GTFM signal within a bit period.

Eq. (2.19) may be used to determine the values of A #mT) for GMSK

(Bp7=0.3) which are required for the decoding process.

22



2.5 Error Control Coding in Mobile Radio

Multipath fading, which could give rise to large signal level variations, or
intersymbol interference, or both, often introduces degradation in the BER
performance of a mobile radio link. In practice, this BER degradation may be
compensated through diversity and/or error control techniques (Jakes, 1974,
Ventura-Travest ef al, 1997; Diaz et af, 1998). A detailed explanation of
common diversity methods can be found in (Shwartz et al, 1974; Jakes,
1974; Proakis, 1989).

Error control schemes that are commonly used in digital communication
systems are automatic repeat request (ARQ) and forward error correction
(FEC). With ARQ, if an error is detected at the receiving end, then
retransmission of the same data is requested over the return channel.
However, if a return channel is not available, then FEC is the only error
control scheme that can be used. In general, if a return channel is available
and the bit error rate needed is not particularly low, then a simpler ARQ
scheme may be preferred over a more complicated FEC scheme (Sklar,
1988). With FEC techniques, redundant bits are added to the transmitted
data. At the receiver, these redundant bits are then used for detecting and
correcting the erroneous bits. The addition of redundant bits however
increases the actual transmission rate, leading to a larger bandwidth

requirement.

FEC codes are often divided into two broad categories, namely, block codes
and convolutional codes. In block codes, blocks of k information bits are
encoded into blocks of » bits with » > &. Such a code is usually described as
an (n,k) block code. The code rate R. is defined as the ratio #n, and is a
measure of the amount of redundancy introduced by the encoder. Several
common types of block codes for error correction are Hamming, Golay,
Reed-Muller, Bose Ray-Chaudhuri and Hocquenghem (BCH) and Reed-
Solomon {Clark and Cain, 1981).
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Convolutional codes are also often known as ftrellis codes. They are
particularly suitable in applications where the information symbols to be
transmitted arrive serially in long sequences rather than in blocks. That is, in
convolutional codes, long sequences of information symbols are encoded
continuously in a serial form. Convolutional encoding is usually denoted by
(n,k,v) and implemented using shift registers as shown in Fig. 2.9. Here, %
input bits to the encoder, are sequentially shifted through a 1~ stage shift
register yielding » output bits, with » > k. Consequently, the code rate is
defined as R.= &/n, as in block codes. Note that the same code (#,£, v) may be
generated using encoders of different structures. The length of the shift

register in the encoder is usually referred to as the constraint length of the

code.
« kv— stages >
k
— > > > >
information 11 2., | k 11 2. |k 112 k

hits

EX-OR gates o

K Encoded sequence

v

Figure 2.9 The (n,£,v) convolutional encoder

We now consider an example of a (2,1,3) convolutional encoder, as shown in
Fig. 2.10. Here the length of the shift register is 3. The message digits are
applied serially at the input of the shift register. With this convolutional
encoder, there are two output bits, ¢, and c¢; for every input bit. These two
encoder outputs ¢; and ¢ are formed by modulo-2 additions of the shift
register outputs, such that, ¢,=D,®D®D; and c;=D,®D;, where operator @

denotes the modulo-2 addition.

Often, a convolutional code is described by a row vector called the

connection vector,

Gj=(g}],g,2,....,&v), J=12,...n (2.21)
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This connection vector, G;, specifies the connection between the /™ modulo-2
adder and each stage of the shift register. The component g; is equal to 1 if
the /" modulo-2 adder is connected to stage i of the shift register; otherwise
it is equal to zero. Therefore, the encoder shown in Fig. 2.10, has the
connection vectors G, = {1 1 1] and G, = [1 0 1]. These connection vectors
can also be represented by the generator polynomials [1+D+D7, 1+D%] or in

octal form as [7,5].

Message
bits
_— D} D2 ‘D3

coded output sequence

A 4

Figure 2.10 A (2,1,3) convolutional encoder.

The coding operation of the convolutional encoder, shown in Fig. 2.10, may
be explained with reference to an input digit pattern 17010. Initially, the shift
registers have been initialised to zero, so that their outputs are all in the ¢
state. When the first input data bit 7 is entered into D;, with the other two
later stages D, and D; remaining in the ¢ state, the two modulo-2 adders
show the two output bits as ¢,=1 and ¢,=1. Next, with the second message bit
1 entering the shift register stage D;, the previous data bit 7 in D; is now
shifted to D, while Dj; is still unchanged and in the ¢ state. In this case, the
modulo-2 adder outputs become ¢,=0 and c,=1, so that the decoder output is
01. This process repeats for every input data bit, and as such, the

convolutional encoder operates on a continuous basis.
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The trellis diagram of the (2,1,3) convolutional encoder of Fig. 2.10 is shown
in Fig. 2.11. The states of the trellis diagram are represented by the contents
of the shift registers D; and D,. The trellis starts when all the shift registers
are in state 0. The transitions corresponding to each bit of input data are
denoted by a solid line if the input is #, and by a dotted line for an input 1.
Thus, when the input data is @ the encoder output is ¢¢ (the solid line), and
when the input digit is 7, the encoder output is 11 (the dotted line). The
encoder will then be in one of the two states corresponding to nodes a or 5.
Similarly, after the first two input digits, the encoder will be in one of the four
states corresponding to nodes a, b, ¢ or d as shown in Fig. 2.11. It can be
seen from this trellis diagram that the structure is repetitive after two input

digits.

input data is &
——————————— input data is ¥
stage stage stage stage
Nede D, D, o0 1 o0 2 o0 3 00 4
a oo
b o1

I

Figure 2.11 Trellis diagram of the (2,1,3) convolutional code.

There are a number of schemes for decoding convolutional codes, such as
the sequential decoding algorithm originally proposed by Wozencraft
(Wozencraft, 1957) and subsequently modified by Fano (Fano, 1963), and
the syndrome decoding and threshold decoding (Clark and Cain, 1981).
However, the most widely used algorithm for decoding convolutional codes is
the maximum likelihood sequence decoding (MLSD) based on the Viterbi
algorithm (Viterbi, 1967).
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2.6 Maximum Likelihood Sequence Decoding (MLSD)

Assume that a codeword X™ is transmitted corresponding to a message m
which entered the encoder, and on the basis of the corresponding received
sequence Y, the decoder produces a decoded message m" If all the input
data sequences are equally likely, then the probability of erroneously
decoding the sequence is minimised for (Proakis, 1989)

P(¥)1X") > P(¥)x") for all m = m”. (2.22)
Here, the conditional probabilities P(YIX“), are called the likelihood
functions. Accordingly, the maximum likelihood decoder compares the
likelihood functions corresponding to each possible transmitted data
sequence and chooses the sequence corresponding to the largest value of
these likelihood functions as the most likely transmitted sequence. It can be
shown that the maximisation of the likelihood function in the presence of
AWGN is equivalent to minimising the signal space distance between the
transmitted data sequences (Haykin, 1988). Hence, the MLSD simply selects
a codeword closest in distance in the signal space to the received word. For
an L-bit long binary data sequence, the maximum likelihood decision
requires the storage of the 2° possible transmitted codewords and the
computation of the likelihood functions associated with these 2" sequences.
As a result, the complexity of MLSD increases exponentially with the length L
of the transmitted sequence. However, both the computational and storage
requirements of MLSD can be significantly reduced through the use of the
Viterbi algorithm (Viterbi, 1967).

2.6.1 Viterbi decoding algorithm

The Viterbi algorithm is an efficient and practical technique for decoding
convolutional codes. This algorithm makes use of the trellis structure of the
code. A brief description of it will be presented here. For a more detailed
treatment of the Viterbi algorithm, consult (Wozencraft and Jacobs, 1965,
Viterbi and Omura, 1979).
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The Viterbi algorithm operates by computing and comparing the distances in
the signal space between the received word and all the possible transmitted
codewords. For example, the signal space distance between two transmitted
codewords v; and v; represented by the signals s,(f) and s,(f) respectively,
over an interval 0<t<'nT can be computed based on the squared Euclidean

distance defined as (Anderson ef af, 1986)

nr

EnG = [ 6@-s0) d (2.23)

Alternatively, for some signal sets, the signal space distance between two
codewords can also be obtained based on the Hamming distance, which is
defined as the number of locations in which the bits in the two codewords
differ. For example, if codeword 1 is a vector denoted by v,=(1 1 0 1 0 1) and
codeword 2 is a vector denoted by w,=(1 1 1 § 0 0), then the Hamming
distance between the two codewords v; and v; is found by the operation ||

v;@v;|| to be equal to 3.

The operation of the Viterbi algorithm can be explained using the trellis of the
(2,1,3) convolutional code shown in Fig. 2.11. Note that starting from node a
at the initial stage, there are two branches, 00 and 11, leading to node « and
node b, respectively. The signal space distances between the received
signal up to stage 1 and the possible transmitted signals represented by
these two branches, are first obtained. These metrics, defined as the branch
metrics, may be based on either the Euclidean distance or for some signal
sets the Hamming distance. The above two branches are then extended to
four branches leading to nodes a, b, ¢ and d, respectively at stage 2. Next,
the branch metrics, corresponding to the signal space distances between the
received signal from stage 1 to stage 2, and each of these 4 branches
originating from a and &, are obtained. The path metric at each node at stage
2 is then obtained by adding up the corresponding branch metrics. It may be
observed from Fig. 2.11, that after stage 2 of the binary trellis, two paths will
lead to a given node at every stage. For example, the two paths
corresponding to the branches labelled by 00-00-11 and 11-10-00 initiated

from node a, merge at node b after three transitions. Note that any particular
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path through the trellis that stems from node b will add identical terms to the
path metrics &% and &V of these two paths. Consequently, if d%>d" at the
merged node b after the three transitions, the metric of the path having ¢
will continue to be larger than the metric of the path having 4" for any path
that stems from node 5 at stage 3. This means that the path corresponding
to 4” can be discarded from further consideration. With the Viterbi decoding
algorithm, the path metrics corresponding to the two paths leading to each
node are obtained. Then the path at each node having the smallest path
metric (known as the survivor) is retained as the most likely path. This
procedure is repeated for all the nodes at each trellis stage. As a result,
there wili be four surviving paths at each stage, one terminating at each
node, and a corresponding metric for each survivor. These surviving paths at
each stage are always the surviving paths at their preceding stages.
Therefore, as the decoding progresses through the trellis, a unique surviving
path may exist at the initial stages of the trellis. This unique surviving path at
the initial stages may be accepted as the decoded path. The corresponding
decoded bits may be delivered to the user without waiting for the last trellis
level to be reached. With this, the decoding delay associated with the Viterbi

decoding of a long sequence may be reduced.

As explained in the above example, it may be observed that with a binary
convolutional code having a constraint length of v, there are 2" surviving
paths at each stage of the trellis diagram and there are 2" corresponding
metrics, one for each surviving path. Consequently, the complexity of a
Viterbi decoder grows exponentially with the constraint length of the code.
As a result, the use of the Viterbi algorithm is limited to codes with relatively
small values of v(Bhargava ef al, 1981). However, with the Viterbi algorithm,
the total number of operations required to decode an L-bit long binary
sequence becomes L2*' compared to 2” with MLSD as discussed in Section
2.6. Therefore, for sequences with L>v, the total number of operations
required by the Viterbi algorithm to decode a sequence becomes far smaller

than the total number of operations that would otherwise be required for
other MLSD algorithms.
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2.7 Trellis Coded Modulation

The desired BER performance of a communication scheme, which is
constrained by its transmit power level, may be obtained by incorporating
error control techniques. This is achieved at the expense of a larger
transmission bandwidth to accommodate redundancy of the error control
coding. On the other hand, in a bandwidth limited environment, a spectrally
more efficient scheme such as a higher order modulation scheme may be
used to reduce the bandwidth requirement. However, such modulation
schemes have smaller noise margins. These seemingly contradictory
requirements of spectral and power efficiencies, may be accommodated in
an approach called Trellis Coded Modulation (TCM), which combines coding
and modulation together. TCM was originally developed for AWGN channels
(Ungerboeck, 1982). It was shown by Ungerboeck (Ungerboeck, 1982) that
the BER performance of a digital transmission scheme could be improved

without an increase in power and bandwidth through the use of TCM.

In a TCM receiver, the demodulation and deccding are performed as a
single process. Usually, the performance measures of these schemes are
based on the Euclidean distance between the coded signal sequences in
signal space, rather than the Hamming distance of the convolutional code.
That is, the selection of the code and of the signal constellation are not
separately performed. One way to enhance the error performance of these
schemes is to design the trellis encoder so as to achieve the largest free
distance. The free distance is the minimum non-zero Euclidean distance

between the coded signals (Biglieri ef al, 1991).

There are two broad classes of TCM schemes for band-limited channels.
The first type combines convolutional coding with multi-level signalling. As
this type of TCM was first proposed by Ungerboeck (1982), they are often
referred to as Ungerboeck codes. The second type involves the use of

convolutional coding with CPM signals.
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2.7.1 Ungerboeck codes

With the Ungerboeck codes, the TCM encoder consists of a convolutional
encoder and a signal mapper. The signal constellation of an Ungerboeck
code contains more signal phase states than are required for an uncoded
scheme with the same data rate. The key to improving the BER performance
of these TCM schemes is to map the coded bits to corresponding phase
states in the signal space, such that the free Euclidean distance between the
different coded signal sequences is maximised. Ungerboeck invented a
heuristic mapping rule cailed “mapping by set partitioning” for maximising the
free distance of these TCM schemes. This approach involves partitioning of
a signal set successively into subsets, with increasing free distances
between the signal phase states of these subsets. Moreover, each of these
subsets usually contains equally spaced signal points. In the following
sections, the distances will be referred to as the Euclidean distances in the
signal space. The concept of set-partitioning is illustrated in Fig. 2.12 for a
circular constellation corresponding to the 8-PSK signal set. Such a mapping
approach is also applicable to QPSK and QAM. In Fig. 2.12, the free
distance, 4, of the signal phase states of the subset A becomes
2sin(n/8)=0.7654. Similarly, the corresponding free distances 4, and 4, of the
subsets B and C become 1.4142 and 2, respectively. Each of the eight phase
states of the 8-PSK signal set in Fig. 2.12 is numbered for convenience in

assigning them to the trellis diagram at a later stage.

A general structure of an encoder/modulator for TCM, demonstrating the
idea of set partitioning, is shown in Fig. 2.13 (Ungerboeck ,1982). Here, out
of the » input bits, »’ bits are coded by a rate {(»7(»“+1)) binary convolutional
encoder, producing {»'+1) coded bits. These bits are then used to select one
of the 2¢*" subsets. The remaining (#-»"} uncoded bits determine which one
of the 2" signal phase states in the particular subset is to be transmitted.
The distance properties of a TCM scheme can be studied using its treilis

diagram as explained in the following example.
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Figure 2.12 Set-partitioning of the 8-PSK constellation. Here the free
distance of each subsequent subset has a larger free
distance. i.e., dy < dy < &»

signal
phase
remaining uncoded input bits  (»- t
9 P () - select the state
phase state »
from
. the subset
input bits
H
—_—
uncoded input J
tE (r+1)
Convolutional encoder coded bits select the
- —»
> rate=n"i(n"+1) e
subset
signal
mapping

Figure 2.13 A general structure of the encoder/modulator of TCM
(After Ungerboeck ,1982).

Consider the Ungerboeck code as shown in Fig. 2.14. Here one of the two
input bits is encoded using a rate-}2 convolutional encoder having constraint
length 3. i.e., in this example, »=2 and rn*=1. The corresponding trellis
diagram of the convolutional encoder is represented in Fig. 2.15. In the trellis
diagram, each transition A/YZ represents the two coded bits YZ
corresponding to the input bit 4. The number of states in the Ungerboeck

code is determined by the constraint length v, of the convolutional code.
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Therefore, the Ungerboeck code shown in Fig. 2.14 can be represented by
2"'=4 states. The two coded bits in this example select one out of the
2#"=4 subsets and the uncoded bit selects which one of the 2™ *’=2 signal
phase states of the selected subset is to be transmitted. Since the most
significant bit of the incoming binary data to the modulator is left uncoded,
each branch of the trellis of the convolutional code shown in Fig. 2.15
corresponds to two different signal phase states in the 8-PSK modulator.
This leads to parallel transitions, which take place when two or more
branches are connected to the same nodes of the trellis. The corresponding
trellis diagram of the 4-state Ungerboeck code for 8-PSK is shown in Fig.
2.16.

uncoded input bit

8-PSK signal mapping

—t—p
D D2 D3 most

[
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, > 00001111 [« it
i EX-OR L n
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—————————————————— 01234567

signal phae state
number

Figure 2.14 Four-state Ungerboeck code for §-PSK.

input bit is 0
______ input bit is 7

00

10

Figure 2.15 Trellis diagram of the rate-'2 convolutional code used in the
Ungerboeck code in Fig. 2.14.
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The numbering of the 8-PSK signal phase states used in this example is the
same as that shown in Fig. 2.12. Similarly, the free distances d4;, 4, and &
between these signal phase states are shown in Fig. 2.12. For this example,
the phase states of the 8-PSK signal set are assigned to the 4-state trellis

shown in Fig. 2.16 according to the following rules (Ungerboeck, 1987):

o parallel transitions are associated with signal phase states having
maximum distance, which is 4, in this example, between them. Therefore,
signal phase states corresponding to the subsets (0.4), (2,6), (1,5) or (3,7)
are associated with parallel transitions.

¢ transitions originating from, or joining in, the same phase state are
associated with the signal phase states having at least distance o (the
next largest distance) between them. This includes the phase states in
the subsets (0,4,2,6) or (1,3,5,7).

¢ all the phase states of the 8-PSK signal are used in the trellis diagram

with equal frequency and symmetry.

encoder state

a0

a1z

10

11

Figure 2.16 Trellis of the Ungerhoeck code for 4-state 8-PSK signal. Note
that the signal phase state numbers are the same as given in
Fig. 2.12.
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The free distance of a TCM code may be obtained using the minimum
Euclidean distance associated with parallel transitions and the pair of paths
that diverge at one state and re-merge at another after more than one
transition. As shown in Fig. 2.16, the Euclidean distance between the 8-PSK
signal phase states assigned to parallel transitions becomes the distance
between the signal phase states corresponding to the subsets (0,4), (2,6),
(1,5) or (3,7). As a result, this distance equals to 4, = 2. It may be observed
from Fig. 2.16 that the paths corresponding to the signal phase states 0-0-0
and 2-1-2 diverge at one state and re-merge at another after more than one

transition. The squared Euclidean distance between these two paths

becomes the sum of the squared distances &, 42 and d], which equals

4.586. Thus, the Euclidean distance between these two paths becomes
2.1415. As a result, the free distance, d;.., which is given by the minimum

value between the above two distances of this TCM signal, becomes 2.

As the number of information bits in each signalling interval in the above
TCM scheme is 2, the uncoded 4-PSK signal set may be considered as the
modulation scheme of intérest for performance comparison. The signal
constellation of 4-PSK is shown in Fig. 2.17. Thus, the free distance
associated with uncoded 4-PSK signal set becomes +/2=1.4142. When
coded and uncoded sighals have the same average power, the asymptotic
coding gain that can be achieved from these Ungerboeck codes is given by
(Haykin, 1988)
PE
Asymptotic coding gain = 1010810[?21} (2.24)

where dj.. is the free distance of the TCM code and d,., is the free distance

of an uncoded signal operating with the same energy per bit. The 4., of this

example is +/2 . Therefore, from Eq. {2.24), the coding gain achieved for this
8-PSK TCM code over uncoded 4-PSK s 10log;, (2) =3 dB.
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Figure 2.17 Signal constellation of 4-PSK signal.

However, this improvement in performance of TCM schemes is only
achieved through additional signal processing, leading to a higher receiver
complexity. With the advancement of microelectronics, the additional
complexity may be overcome by employing high speed integrated signal
processors. As a resuit, the application of trellis coded signals has now been
made practical (Viterbi 1991).

2.7.2 TCM with CPM signals

The second type of trellis coded modulation scheme involves the use of

trellis codes combined with spectral efficient CPM signals.

input
bits
—» serial to paraliel

rate &'n >

convolutiona/
encoder

k "

input bits autput bits

b A 4

A-evel @, CPM
mapper modulator

M

Y

trellis coded
CPM signal

a = {1, £3,. HM-1)}

Figure 2.18 A Block diagram of generating a trellis coded CPM signal.

A trellis coded CPM signal can be realised as shown in Fig. 2.18. Here, the
rate &/n convolutional encoder produces »n output bits to every & input bits.
These » output bits are then mapped to the M-ary real number input a=11,
3, 45,..., #(M-1), before sending through the CPM modulator. The most
popular mapper used in coded CPM is the natural mapper. For example, it
maps the »=2 convolutional outputs 0, 01, 10 and 11 to the CPM inputs «;
uniformly as -3, -1, +1 and +3. However, a non-uniform mapping between the

coded bits and the phase increments of the CPM signal may also be used
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(Luise and Reggiannini, 1993). In trellis coded CPM, the input bits to the
CPM signal are correlated due to the convolutional coding. This correlation
between the input bits to the CPM signal cuts out some transitions in the
CPM trellis. As a result, this decreases the connectivity of the CPM trellis,
resulting in an increase in the minimum merge length (Rimoldi, 1989).
Generally, larger merge lengths involve larger free distances, and the coded
CPM schemes having larger free distances will have better bit error rate
performances (Anderson et al, 1986). Consequently, in designing a good
trellis coded CPM signal, it is essential that the convelutional encoder, the
mapper and the CPM scheme be jointly optimised to provide a power and
spectrally efficient code. The “set-partitioning” method involved in optimising
multi-level signalling is not explicitly applied to CPM signals. Instead, the
optimisation is carried out by considering the largest free distance of the
convolutional code combined with the CPM signal. In this case, it is assumed
that the observation interval over which the minimum distance is calculated
is large enough so that the maximum obtainable free distance is reached
(Anderson el al, 1986). This assumption has been made in the present study

in obtaining the largest free distances of the coded CPM signals.

The distance properties for the optimum combinations of different
convolutional codes having different code rates and constraint lengths, and
various CPM schemes such as M-ary CPFSK with different modulation
indices, are given in (Anderson ef al, 1986). A detailed explanation of the
optimisation of convolutional codes combined with CPM signals, such as
GMSK, based on the largest free distance is given in Chapter 4 of this
thesis.
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CHAPTER 3

LITERATURE REVIEW

3.1 Introduction

A considerable number of research papers have been published on ways of
improving BER performance and spectral efficiency in mobile radio
communications. Amongst these, Forward Error Control (FEC) coding
techniques are often proposed for improving the BER performance.
However, with these traditional FEC techniques, BER improvement is
achieved at the expense of increased transmission bandwidth. This is due to
the inclusion of redundant bits necessary for detection and subsequent
correction of the bits in error. This bandwidth expansion associated with FEC
may be avoided by adopting the trellis coded medulation (TCM) techniques,
which involve high-level modulation schemes, such as, multi-level phase and
multi-level amplitude schemes. Moreover, these conventional TCM schemes
have been found to yield good coding gains in the presence of AWGN
(Ungerboeck, 1982; 1987). In view of the narrow spectral characteristics of
CPM signals, an additional gain in spectral efficiency may be achieved with
the use of CPM signals in TCM schemes (Abrishamkar and Biglieri, 1991).

3.2 TCM Schemes for AWGN Channels

3.2.1 Improved BER without sacrificing bandwidth

As discussed in Section 2.7, TCM signals were originally developed by
Ungerboeck (1982) for AWGN channels. in his study, the selection of TCM
schemes involving multi-level PSK and multi-level AM is discussed. The
selection criterion aims at maximising the free distances of the TCM

schemes. This is achieved by mapping the coded bits into multi-level signals
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based on a heuristic mapping rule called “mapping by set partitioning”. A

detailed explanation of this heuristic rule has been given in Section 2.7.1.

Computer simulations have been used to show the BER performances of
the selected TCM schemes. The BER performances in Ungerboeck’s study
were based on the error-event probability, which will be discussed in detail in
Chapter 5. The signal detection is achieved by coherent demodulation
assuming ideal carrier recovery, followed by MLSD based on the Viterbi
algorithm. The simulation results obtained show that up to 4 dB coding gain
could be obtained with the selected TCM schemes, designed using codes
having 4 and 8 states, compared to the uncoded schemes having the same
number of information bits per symboi. It was also observed that
improvements in the order of 6 dB or more could be obtained with more
complex codes having a greater number of states. Moreover, these gains
were obtained without expanding the transmission bandwidth or reducing the

effective information rate as would be required by traditional FEC schemes.
3.2.2 Sensitivity to carrier phase offset

Ungerboeck and several other authors (Fugino et al, 1985; Leib ef al, 1986,
1987) have shown that the TCM schemes are more sensitive to carrier
phase offset as compared to uncoded schemes in the presence of AWGN.
The effect of carrier phase offset on the performance of TCM schemes in
the presence of AWGN is discussed in (Ungerboeck, 1987). In his study,
TCM schemes, which combine codes having 4 or 8 states with 8-PSK, are
considered. The investigations in his study were also based on the error
event probabil.ity as in his previous study (Ungerboeck, 1982). The required
SNRs for achieving an error event probability of 107 for the uncoded and the
trellis coded schemes as a function of carrier phase offset have been

reported.

The reported results indicate that the TCM schemes are more sensitive to

carrier phase errors compared to the uncoded QPSK scheme. However, the
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unceded scheme requires a higher SNR to achieve the required error event
probability compared to the coded schemes for smaller values of phase

offset.

It has also been shown in (Fugino, ef a/, 1985), that a constant carrier phase
offset of 5° may degrade the performance of coded 8-PSK scheme by up to
1 dB. A similar study of the BER performance of trellis coded MPSK
schemes in the presence of carrier phase errors has been carried out by
(Leib et al, 1987). The carrier phase noise in their study is modelled as an
integrated white noise process. The numerical results obtained using
uncoded QPSK and rate-2/3 coded 8-PSK schemes show that the coded
schemes are more sensitive to carrier phase error compared to the uncoded
scheme. From the above published results, it may also be observed that
TCM schemes involving coherent detection may require good catrier

tracking systems to obtain good BER performances.

3.3 Ungerboeck codes over Fading Channels

As the frequency spectrum is at premium in mobile telephony, TCM
schemes with superior bandwidth utilisation appear to be attractive
candidates for mobile applications compared to the traditional FEC
schemes. Application of TCM in fading environments has been studied by
several authors (Divsalar and Simon ,1887; Huang and Campbell, 1991;
Cavers and Ho, 1992). Most of the studies reported on the performance
analysis of Ungerboeck codes over fading channels (Cavers and Ho, 1992;
Huang and Campbell, 1991). The performance analysis of the proposed
trellis coded CPM scheme in the present study closely follow the work by
Divsalar and Simon (1887). Therefore, the research carried out by Divsalar

and Simon (1987) is reviewed in detail.
Divsalar and Simon (1987) have studied the performance of trellis coded

multi-level PSK schemes over a frequency non-selective fading channel

using a combination of theoretical analysis and computer simulation. They
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assume that the received signal is detected using coherent detection with
perfect carrier recovery. In addition, only the effect of fading on the
amplitude is considered in the analysis. The effect of fading on the phase of
the received signal is assumed to be fully compensated by either tracking
the phase in a phase locked loop, or utilising a pilot tone calibration
technique (McGeehan and Bateman, 1984; Cavers and Liao, 1992).
However, the addition of a pilot tone, or pilot tones to the transmitted signal
for the purpose of recovering the faded carrier at the receiver may need a

larger bandwidth.

The analysis is further simplified by assuming block interleaving with an
infinite interleaving depth, so that the fading channel can be considered
memoryless giving rise to independent errors. The subsequent performance
analysis of the TCM schemes is then carried out based on the techniques
designed for memoryless channels in obtaining the upper and lower bounds
of the BERs. The assumption of infinite interleaving depth however, leads to
an infinite transmission delay. In practice, the depth of interleaving is chosen
in relation to the maximum fade duration anticipated and the maximum delay
allowed. For example, for the case of speech transmission, the total delay

must be kept under 60 ms (Biglieri et a/, 1891).

As discussed in section 2.7.1, the signal points in the MPSK constellation in
conventional trellis coded MPSK are uniformly (symmetrically) spaced.
However, Divsalar et al studied a trellis coded QPSK with an asymmetric
constellation in an attempt to further improve the BER performance. The
asymmetric QPSK signal constellation is designed by introducing non
uniformity into the spacing between the signal points in the constellation as
shown in Fig 3.1. This non uniformity ¢ introduced is referred to as
‘asymmetry” (Divsalar et al, 1987). The asymmetry in the signal
constellation, which provides the best BER performance in the presence of

AWGN and signal fading, has also been obtained.
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In addition, the theoretical upperbounds on BER have been obtained for
both the symmetric and the optimum asymmetric rate-'% trellis coded QPSK
signals. This has been carried out based on the transfer function of the error
state diagram of the coded scheme (Proakis, 1989; Clarke and Cain, 1981)
assuming Rayleigh and Rician statistical fading models. A detailed
explanation of this technique is given in Chapter 5. The analytical results for
uncoded BPSK having the same number of information bits per symbol as

rate- trellis coded QPSK have also been obtained for comparison.

The above analytical results have then been verified by computer
simuiations assuming ideal carrier recovery. In this computer simulation
study, an interleaving depth of 512 bits for a data rate of 4800 bits/s and a
fixed Doppler frequency of 100 Hz have been assumed. In this case, the
fading statistics could be considered to be independent from one symbol to
the next. Therefore, the channel may be approximated to be memoryless, as
assumed in the analytical study.

The analytical and the simulated results obtained in the presence of
Rayleigh fading are shown in Fig. 3.2. The results show that a significant
improvement in the BER performance may be obtained with the use of trellis
coded schemes compared to the uncoded QPSK, in the presence of
Rayleigh fading. Moreover, the signal with the optimum asymmetric
constellation shows improved bit error rate performance over the
conventional symmetric signal sets. In this case, the asymmetric TCM
scheme achieves a gain of approximately 1.5 dB at a BER of 107 over a

Rayleigh fading channel compared to the symmetric scheme.

Similar BER improvements for the symmetric and optimum asymmetric TCM

schemes over Rician channels have also been reported.
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Figure 3.1 (a) Symmetric and (b) asymmetric QPSK signal constellations.
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Figure 3.2 BER performance of rate-'2 trellis coded symmetric and
asymmetric QPSK in the presence of Rayleigh fading (after
Divsalar and Simon, 1987).

When pilot tones are used for aiding coherent demodulation, as suggested in
the above study (Divsalar and Simon, 1987), narrowband bandpass filter(s)
are used in the pilot tone extractor to isolate the pilot tone(s) from the
modulation. In this case, these bandpass filters must have bandwidths

sufficiently wide to account for the Doppler shift (Biglieri ef al, 1991). As such,
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wider filter bandwidths are required for larger Doppler shifts. This results in
more noise in the extracted carrier reference. The effect of such noisy carrier
references on the BER performance of TCM schemes has also been
examined (Divsalar and Simon, 1987). This has been done by modifying their
earlier simulations, which assume ideal carrier recovery, to include a
technique referred to as dual pilot tone calibration (Simon, 1986). With this
technique, two tones of equal power are inserted symmetrically at the edges
of the data spectrum for the purpose of coherent demodulation. it has been
observed from their study, that the performance of the reference-based
coherent detection scheme in Rician fading is degraded by 2-3 dB compared

to ideal coherent detection schemes assuming perfect carrier recovery.

To avoid the complicated carrier recovery circuits needed at the receiver in
coherent detection schemes, Simon and Divsalar (1988) have extended
their previous study (Divsalar and Simon, 1987) to obtain the performance of
a simpler receiver based on differential detection. In their later study (Simon
and Divsalar, 1988), the performance of trellis coded multi-level differential
shift keying (M-DPSK} has been considered for flat fading channels. Again,
an asymmetric signal set has been chosen and the upperbound on the bit
error probability has been obtained for rate-'2 trellis coded QPSK using
differential detection. The resulting BER upperbounds have been compared
with those reported for coherent detection assuming perfect carrier recovery
(Divsalar and Simon, 1987). A performance degradation of around 1.5 dB
over the range of BERs considered (107 to 10”) has been reported with
differential detection, compared to ideal coherent detection, over both Rician
and Rayleigh channels. Moreover, it had been shown in their earlier study
(Divsalar and Simon, 1987) that the performance gain of the ideal coherent
detection scheme, compared to the reference based coherent detection
scheme, is around 2-3 dB. Thus, Simon and Divsalar (1988) have concluded
that 0.5 to 1.5 dB performance gain may be achieved by using a simpler
receiver based on differential detection, compared to the reference-based

coherent detection.
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A similar study has been carried out by Cavers and Ho (1992) on BER
performance analysis of TCM in flat Rayleigh fading channels, assuming
again that the fading affects only the amplitude. However, their study is not
restricted to MPSK signals as in the previous studies (Divsalar and Simon,
1987; Simon and Divsalar, 1988), but includes multi-level QAM (Quadrature
amplitude modulation) schemes using coherent and differential detection
schemes. In this case, unlike the upperbounds in the previous studies, an
exact expression for the pairwise error event probability has been obtained.
The reported results show that the theoretical results fall within 2 dB of the
simulated results for BER of less than or equal to 107 and normalised fading

rates of 0.01 and 0.03.

There are a number of other publications in the literature that deal with the
performance of trellis coded multilevel PSK and muiltilevel DPSK over
different fading conditions. Schlegel et al (1989) have performed work
similar to the above studies by examining the performance of TCM over flat
fading channels using Chernoff bounding techniques. Also in their work,
design criteria for constructing trellis codes suitable for transmission over
fading channels are considered. MclLane ef al (1988) have examined the
performance of rate 2/3 trellis coded, 8-PSK and differential 8-PSK (8-DPSK]
over a shadowed Rician fading channel using computer simulations. Lee
and McLane {1990) have shown that the BER of the proposed scheme by
McLane et al (1988) can be improved by using a convolutional interleaver.
The design of a new 4-state rate 2/3 trellis coded 8-PSK has been introduced
by Jamali and Le-Ngoc (1991). The simulations performed assuming light
shadowed Rician fading channels show that this proposed TCM scheme
achieves an additional coding gain of around 0.4 dB at a BER of 107,

compared to the Ungerboeck's 4-state 8PSK scheme.
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3.4 Trellis Coded CPM Schemes over AWGN

Trellis coded CPM signals operating in the presence of AWGN have been
studied by many researchers (Lindell ef al, 1984, Pizzi and Wilson, 1985;
Anderson et al, 1986; Ho and McLane, 1988). As discussed in Section 2.7.2,
the “set-partitioning” method involved in maximising the free distance of
trellis coded multi-level signals is not explicitly applied to trellis coded CPM
signals. Instead, the code selection in these studies is carried out by simply

considering the largest free distance of the coded CPM scheme.

Lindell et al (1984), have studied the selection of rate-% convolutional
(trellis) codes of various constraint lengths, combined with binary and 4-level
CPFSK modulation having various modulation indices. Lindell ef al assume
that the received signal corrupted by AWGN is detected using coherent
detection based on MLSD. The selection of the coded CPFSK scheme is
carried out by considering the minimum normalised squared Euclidean
distance of the combined code defined by,
min NT

- 1 2
iy = upty 2E [s(+, @)-s(t, B)]" dt (3.1)

where £ and T are the transmitted energy per bit and the transmitted bit
duration, respectively. The coded CPM signals, corresponding to the input
data sequences, u, and uy, to the convolutional encoder, are s(t, @) and s(t,5),
respectively. Here, the integral in Eq. (3.1) extends over the time, N7, that
the two signals s(t,a) and s(t,f) differ. Thus, d’mny is the minimum
normalised squared Euclidean distance between coded signals, defined up
to N symbol intervals. It is assumed in their study (Lindell et a/, 1984) that
the observation interval (NT), over which the minimum distance is caiculated,
is large enough to ensure that the maximum obtainable minimum distance
{maximum free distance) is reached. As the selection of appropriate coded
CPM signals in the present study is also based on the largest free distance,
a detailed explanation for obtaining the free distance of coded CPM signals

will be given in Chapter 4.
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The results obtained in their study (Lindell et al, 1984) showed that rate-'2
trellis coded, binary and 4-CPFSK signals are optimal, i.e., providing the
largest minimum normalised squared Euclidean distance, when the
modulation index is approximately around 0.5. Further, it has been observed
that the minimum normalised squared Euclidean distance for a given
modulation index 4, dmin(h), increases with the constraint length of the
convolutional code. For example, with rate-2 convolutionally encoded binary
CPFSK, when A=0.5, d"ni(0.5) is increased from 4 to 6 when the constraint
length is increased from 2 to 3. The corresponding value of &,(0.5) for
uncoded MSK, which equals 2, is used for performance comparisons.
Hence, by comparing the free distances of the coded and uncoded
schemes, they have concluded in their study that the coded CPFSK
schemes achieve a considerable distance gain compared to the uncoded
MSK.

Lindell et al (1984) have also observed that the minimum value of N for
which ninv(h)=d"min(h), increases with the constraint length. For example,
with rate-¥2 convolutionally encoded 4-level CPFSK, when A=0.5, the
corresponding values of N were 3, 7, 9 and 13 for constraint lengths of 2, 3, 4
and 5, respectively. The value of N at which the free distance is achieved is
an important parameter as it directly relates to the path memory of the MLSE
detector at large Ey/N, (Aulin et af, 1981). Therefore, it may also be
concluded that the computational complexity of the receiver grows rapidly

with the constraint length due to the increase in the value of V.

The bandwidth of a trellis coded CPM scheme is expanded by a factor
corresponding to the reciprocal of the coding rate. Since the code rate is
less than 1, any coding gain of the trellis coded CPM schemes is achieved at
the expense of an increase in the transmission bandwidth. For this reason, it
is preferable to adopt a convolutional code with a high rate so as to keep the
bandwidth expansion small. Convolutional codes of rates 1/2, 2/3, 3/4,... are

normally considered (Anderson ef al, 1991).
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The power-bandwidth trade-off of trellis coded CPFSK using rate-'%
convolutional codes has been studied in (Lindell et a/, 1984; Anderson et al,
1986). Here, the power is considered as the distance gain in dB relative to
the uncoded MSK which has a squared free distance of 2. i.e., the distance
gain in dB=10log(@mix(4)/2). The bandwidth is defined as the frequency band
containing 99% of the total signal power, as given in Section 2.4.1.1. Here,
the spectral measurements of the coded CPFSK schemes are only
estimated by using the uncoded CPFSK spectra at a given 7 and expanding
them by the code rate, 2. Comparison of the obtained results shows that
coded 4-CPFSK schemes having the same spectral efficiency as uncoded
MSK may achieve a power efficiency corresponding to a distance gain of
approximately 2 dB. An additional gain in power efficiency may be achieved
using a larger constraint length. However, this may only be achieved with an
increase in the computational complexity of the receiver requiring a larger

observation interval N.

The spectral efficiency of a coded CPM may be increased by using partial
response signals which have a more attractive power spectrum than the full
response signals (Aulin ef a/, 1981). Also, the partial response signals
provide a more attractive power-bandwidth trade-off than the full response
signals (Aulin et al, 1981). The distance properties of convolutionally coded
partial response CPM signals such as 2RC and 3RC using coherent MLSD
over AWGN channels have been studied in Pizzi and Wilson (1985). The
optimisation of rate-¥2 convolutional codes combined with partial response
CPM signals is obtained based on the maximum free distance, as in the
previous study (Lindell ef a/, 1984). The optimum codes having the largest
free distances have been obtained using the trellis based algorithm
described by Mulligan and Wilson (1984).

Coded partial response 4-level 2RC and 4-level 3RC CPM signals with
modulation indices of less than or equal to 0.5, and convolutional codes with
constraint lengths 2, 3 or 4 have been considered in their study (Pizzi and

Wilson, 1985). An improvement in the free distance has been obtained with
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coded partial response CPM schemes having modulation index 0.5
compared to that of coded 4-CPFSK schemes. For example, the free
distance of the coded 4-CPFSK with constraint length 2 codes obtained
under these conditions was found to be equal to 3.0, whereas the
corresponding free distances of the coded partial response schemes
employing 4-level 2RC and 4-level 3RC were 3.04 and 3.83, respectively.
However, this improvement in distance with partial respense schemes may
only be obtained with an increase in the complexity of the MLSD, requiring a
larger value of N to reach the free distance. For example, the coded 4-
CPFSK reaches the free distance after 3 symbol intervals, whereas the
coded partial response CPM schemes 4-2RC and 4-3RC reach it after 4 and
8 symbol intervals, respectively. Also, Pizzi and Wilson (1985) have
observed that the free distance of coded partial response schemes may be
improved using codes having higher constraint length. However, this is

achieved at the expense of the complexity of the MLSD.

A comparison of the power-bandwidth performance of coded 4-CPFSK and
coded 4-level partial response signals has also been carried out in their
study (Pizzi and Wilson, 1985) using a method similar to those used in
(Lindell et al, 1984; Anderson et alf, 1986). It is observed that the coded
partial response 4-RC scheme having a modulation index of 0.5 combined
with a convolutional code with constraint length 2, achieves a distance gain
as well as a bandwidth gain compared to the corresponding coded 4-CPFSK
schemes. Therefore, it may be poncluded from their results, that trellis coded
partial response CPM signals will vyield better energy-bandwidth
performances compared to coded full response schemes. Nevertheless, this
improvement may only be achieved at the expense of more complex MLSD
receivers, as the effective constraint length of the encoder is dictated by the
memory of the partial response signal, as well as the memory of the
convolutional code. This observation suggests that further research is
needed to derive power and bandwidth efficient trellis coded partial

response CPM schemes with less complex receivers.
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The complexity of a MLSD receiver involving Viterbi decoding depends on
the number of states in the Viterbi decoder. It has been shown in (Morales-
Moreno et al, 1994), that the number of states in the combined Viterbi
receiver of trellis coded partial response signal, such as TFM, may be
reduced by adopting differential encoding prior to modulation. In their study,
rate 1/2 and 2/3 convolutional codes combined with differentially encoded
TFM schemes were studied assuming coherent detection over AWGN
channels. The selection of these coded schemes has been carried out
based on the maximum free distance as discussed in (Lindell et a/, 1984:
Pizzi and Wilson, 1985) for a given code rate and a fixed number of states in

the combined Viterbi receiver.

The coding gains of the selected codes and their receiver complexities
based on the number of states in the combined Viterbi decoder, were
compared with the uncoded schemes. It is observed from their study, that
with rate-2 convolutional codes combined with differentially encoded TFM,
coding gains of more than 3 dB may be achieved with simpler receivers
having a lesser number of states compared to the uncoded one.
Furthermore, coding gains of more than 7 dB could be achieved with rate-1%
codes, having more complex receivers with 128 or 256 states. From these
observations, it may be concluded that receiver complexity, based on the
number of states in the Viterbi decoder of trellis coded schemes using partial
response CPM such as TFM, may be reduced through the use of differential

encoeding prior to modulation.

Ho and McLane (1988), have also analysed various trellis coded CPM
schemes using MLSD over AWGN channels based on the energy-bandwidth
performances and the receiver complexity in terms of the number of states
in the Viterbi decoder. Their results alsc confirmed that the coded partial
response schemes perform better than the coded full response schemes.
However, the partial response schemes need more complex receivers than

the full response schemes.
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3.5 Trellis Coded CPM over Fading Channels

3.5.1 Trellis coded CPM in flat fading channels

The use of Trellis coded CPM, such as CPFSK, on shadowed mobile
satellite channels with coherent detection has been proposed in (Kerr and
McLane, 1992). The BER performance of the proposed system has been
obtained using simulations and analysis. Perfect carrier recovery has been
assumed in the analysis. However, as in (Divsalar and Simon, 1987}, only
the effect of fading on the received signal amplitude has been considered.
The effect of bit interleaving on the BER performance has been studied by
intfreducing convolutional interleaving to compensate for burst errors due to
slow fading (Lee and MclLane, 1988). The branch metric computations
required for the optimal Viterbi decoder have been obtained before de-
interleaving. The decoding metrics were calculated using the phase trellis of
the modulator observed over more than one symbol interval. These metrics
were then sent through the de-interleaver to the Viterbi decoder, which
works with the code trellis. In this manner, even though both the modulator
and the code trellises were considered in the decoding process, the
combined property of the trellis coded CPM signal is not used. Therefore,

the detection scheme in this case can be considered to be sub-optimal.

In the simulations, the non-interleaved system comprising of a rate-'%, 4-
state convolutional code combined with a A=1/4 CPFSK modulator is used
for performance comparison cver various shadowing fading conditions. The
simuiation results show that sub-optimal coherent detection with interleaving,
achieves a significant bit error performance advantage over the non-
interleaved coded CPFSK systems having the same number of states in the
decoder trellis. For example, the 16-state coded scheme with interleaving
(with an interleaving degree of 18) achieves a 4.2 dB gain at a BER of 107 in
a light shadowed fading environment when the normalised fading bandwidth
is set at 0.01. However, such interleaving depths may produce time delays
that are more than the limit that couid be used in digital speech transmission

(Kerr and McLane, 1992). Therefore, such a system may not be suitable for
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digitai speech applications, as the required interleaving depths lead to an
unacceptable real-time delay. However, the proposed scheme may be
suitable for data transmission which requires low BERs but is less sensitive

to delay than speech transmission.

The above study of Kerr and McLane {(Kerr and McLane, 1892), based on
sub-optimal coherent detection, has been extended to treliis coded partial
response CPM schemes in Rician fading channels (Yiin and Stuber, May
1996). The upperbound on the bit error probability has been derived for
interleaved partial response CPM in flat fading channels using the transfer
function bound technique (Proakis, 1989, Clarke and Cain, 1981), which is
similar to the technique used in Divsalar and Simon {1987). The analytical
upperbounds are compared with the simulated results using rate-%
convolutionally coded 2RC (#=1/4), over Rician and Rayleigh fading
conditions. A comparison of the simulated results with the analytical
upperbound shows that the analytical upperbound is tight to within 1.5-2 dB.
Furthermore, the effect of the observation interval over which the decoding
metrics are calculated on the BER performance has also been studied. They
have observed around 1 dB performance gain when the observation interval
is increased from two-symbols to three-symbols. However, a longer

observation interval may require more complex receivers.

The essential phase tracking required in coherent detection may be difficult
to achieve in a narrowband system, which suffers from rapid amplitude and
phase variations (Hirono ef al, 1984). In this case, it may be beneficial to
consider a non-coherent detection scheme. Yiin and Stuber (August, 1996)
have extended their previous study (Yiin and Stuber, May 1996) to obtain
the BER performances of trellis coded partial response CPM on interleaved
flat Rician fading channels using non-coherent detection. The resuits
obtained show that the proposed non-coherent receiver is less than 0.5 dB
inferior to that of the coherent receiver, which requires complex carrier

recovery circuits, but having the same observation interval.

52



Abrishamkar and Biglieri (1991) have studied two detection schemes based
on coherent and non-coherent detection of trellis coded CPM over a channel
affected by Gaussian noise and frequency non-selective fading. In these two
detection schemes, simpler sub-optimal receivers are proposed. The
performances of these two schemes have been evaluated by computing the
computational cut-off rate (Ry) of the discrete channel generated by CPM

over AWGN, Rician and Rayleigh fading channels.

Also, in their study (Abrishamkar and Biglieri, 1991), the Rayleigh fading
channel has been modelled as in (Divsalar and Simon, 1987), i.e., assuming
fading affects only the amplitude of the received signal. The results obtained
for coded CPFSK using coherent and non-coherent sub-optimal detection
are compared with the optimum coherent detection of trellis coded PSK.
They observe a substantial degradation in the performance (6-7 dB to
achieve an R, of 2) over the Rayleigh fading channel for the sub-optimal
non-coherent symbol-by-symbol detection scheme using a considerably

simpler receiver, compared to the optimum coherent receiver.

3.5.2 Trellis coded CPM in frequency-selective fading channels

The BER performances of the trellis coded schemes discussed in the
previous section, have been obtained assuming frequency non-selective
fading conditions. The effect of ISl in a frequency-selective fading channel
on the performances of trellis coded CPM schemes has been studied in (Yiin
and Stuber, 1997). In their study, two equaliser structures, MLSE and soft-
output, have been proposed. Since the focus of the present study is not on
the equalisation methods, only the results obtained are summarised. Both
analytical and simulation results show that large coding gains can be
achieved with the trellis coded CPM schemes compared to the uncoded,
when MLSE decoding is combined with equalisation. For example, the
simulation results of the trellis coded 1RC and 2RC schemes obtained using
the MLSE equaliser, assuming the six-ray typical urban channel model as
recommended by the GSM standard, have shown coding gains of about 6
dB at a BER of 10™.
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CHAPTER 4

SELECTION OF TRELLIS CODED
GMSK SCHEMES

4.1 Introduction

As discussed in Section 2.7.2, it is essential to have a proper frellis code in
combination with an appropriate modulation scheme, so that the resultant
TCM signal is able to achieve the desired power and spectral efficiencies.
The code selection in trellis coded CPM schemes is often carried out based
on the criterion of achieving the largest free Euclidean distance in the
combined coded signal {Anderson ef al, 1986). This chapter presents the
selection of appropriate trellis codes to be used in combination with GMSK
{Murota and Hirade, 1981). In the present study, the criteria for the selection
of the trellis codes have been based on two considerations; namely the
achievable Euclidean distance, and the complexity of the receiver in terms of
the number of phase states involved in the Viterbi decoder. A reduction in the
receiver complexity has been obtained through the use of differential

encoding prior to modulation {Morales-Moreno, et af, 1988; 1994).

To aid in the selection of appropriate trellis codes, a computer search
program has been developed for determining the free Euclidean distance
associated with a specific trellis coded GMSK scheme. The selection process
involves two steps. First, the rate-%2 convolutional codes of different
constraint lengths, which yield the largest free distances when combined with
differentially encoded GMSK (B,7=0.3), are identified. Then, the complexity of
the associated Viterbi decoder is determined for each of these candidate
schemes. Eventually, the trellis coded and differentially encoded GMSK
schemes, which possess the largest free distances, as well as the minimum
number of phase states associated with Viterbi decoding, are selected for

further in-depth study.
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4.2 Trellis Representation of GMSK Signal

As described in Section 2.4.1, the information carrying phase ¢ (1) of a GMSK
signal, can be expressed as

¢(:)=nhj > aig(r-iDdr (4.1)
where «; = 1 for binary data. Here, the frequency pulse shape g(¢) is
Gaussian as presented in Section 2.4.1.1. In this study, g(¢) corresponds to
the impulse response of a Gaussian lowpass filter with a normalised —-3dB
bandwidth B,7=0.3. This GMSK signal has been adopted in the GSM

standard.

As observed in Fig. 2.5, the GMSK pulse with B,7=0.3 extends just over three
bit pericds. In this case, the phase change, AgmT) of GMSK (B,7=0.3) signal1
at the end of the »™ bit period will be governed by three consecutive input
data bits, as in the case with GTFM. Consequently, the phase changes
A@mT) at the end of the m™ bit period for the GMSK signal may be derived

from Eq. (2.19), which is repeated here for convenience,

AmDy=n2 (@ by, + Bb,+ab,.)
where (2a+B)=1. Here, b,., b, and b,, represent the binary data at r=(m-1)7,

mT and (m+1)T, respectively.

Using Eq. (4.1), the value of B for the GMSK signal, is found to be
approximately equal to 0.644. Accordingly, the possible phase transitions of
the GMSK signal over one bit period are shown in the Table {4.1). Here, a

binary ¢ is represented by -1, and a binary 1 is represented by +1.

' From here onwards, the GMSK signal referred to will be that with B,7=0.3.
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Input data Allowable phase transitions

Bl B bmw AmT)

-1 -1 -1 -90°

-1 -1 +1 -58°

-1 +1 -1 26°

-1 +1 +1 58°

+1 -1 -1 -58°

+1 -1 +1 -26°

+1 +1 -1 58°

+1 +1 +1 90°

Table 4.1 The allowable phase transitions over one bit period of GMSK
signal with respect to three consecutive input data bits.

Based on the above phase changes, the trellis diagram and the finite state
diagram representing the phase states for this GMSK sighal can be obtained
as described below. Assume the phase value of the state at the beginning of
the m!" bit period to be 0°, with the two previous data bits, b,.1=b,= -1. In this
case, if the next data bit 5,,.1= -1, the phase value for the new state at the end
of the m" bit period, becomes (0°)+(-90°)=-90°. On the other hand, if 5,-,=
+1, this phase value becomes (0°)+(-58°)=-58°. Now, if the phase of the
current state is —90°, and a +1 arrives, the phase for the new state becomes
(-90°)+(-58°)=—148°. On the other hand, the state moves to a new phase
value of (-90°)+(—90°)=-180°, if the new data bit is —1. Similarly, if the phase
of the current state is -58°, a +1causes the transition to the state
(-58°)+(+58°)=0°, and a -1 produces a new state (-58°)+(26°)=-32°. Following
the same procedure for all the possible data bit combinations, the
corresponding phase changes over one bit period can be represented by the
16-state trellis representing the GMSK modulator, as shown in Fig. 4.1. Here,
each of the allowable phase states at the end of the »™ bit period is governed
by the two previous input data bits 5., and b, For clarity, the trellis
corresponding to an incoming data bit 5,,..;= -1 is represented by a solid line,

while the trellis for b,.:= +1 is represented by a dashed line. It can be
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observed from the trellis in Fig. 4.1, that different phase states associated
with different combinations of 5,., and b,,, may have identical phase values.
For example, the same phase value of -90 is associated with the phase state
having b,.1= -1 and b,= -1, as well as the phase state having 5,.,= +1 and b,=
+1. In order to distinguish these phase states, they are represented in the
trellis by having a prime or not. e.g., $90°or +90°",

bt O

| 0°
-1-1 -90°
-1 +1  -38°
-1 -1 180°
-1 +1  -148°

+1 -1 -32°

+1 +1 0’
-1 -1 90°
-1 +1 122°
+1 -1  -122°
+1 +1 -90°’
+1 -1 58°
+1 +1 a0°"
-1 +1 32¢
+1 -1 148°

+1 +1 180°°

«—— over the »" bit period ——m»

input bits =1
———— inputbits _,=+1

Figure 4.1 The 16-state trellis diagram of the GMSK signal.
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It has been shown in (Morales-Moreno et al, 1988; 1994) that the 16-state
representation of the GTFM signal (8=0.5, »=0.00) may be simplified by
adding an extra +90° phase change to A¢mT7). As a result, the new phase
change over one bit period, A&m7T), is given by,

AKmT) = AgmT) + 90. (4.2)
It is obviously of interest to try applying the same technique to GMSK to see
if a similar simplification is possible. Applying this maodification to AgmT) of
GMSK signal, the new values of phase change A&mT) associated with the
different combinations of three consecutive input data bits are shown in Table
42.

Modified phase transitions
Input data A&mT)

Bt B B

-1 -1 -1 0°
-1 -1 +1 32°
-1 +1 -1 116°
-1 +1 +1 148°
+1 -1 -1 32¢°
+1 -1 +1 64°
+1 +1 -1 148°
+1 +1 +1 180°

Table 4.2 The modified phase transitions of GMSK with respect to three
consecutive input data bits.

Replacing AgmT) with the new phase transitions A&mT7) in constructing the
trellis, a simpler 8-state trellis, as shown in Fig. 4.2, can be derived for the
GMSK signal. The corresponding 8-state finite state representation of the
GMSK signal is shown in Fig. 4.3. As before, when two different phase states
associated with two different combinations of data bits 4,,.; and 5,,, share the
same phase value, these phase states are denoted by a phase value with
and without a prime. This simplification technique for the GMSK ftrellis, by

adding an extra +90° phase change to A¢m7), leads to a simpler decoder.
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+1

+1

+1

+1

+1

-1

+1

-1

+1

0° 0°
32° TTg 320
p

148° 148°
180° T 41800
180° 180°
-148° -148°
-32° -32°

0°" | S gor

«—— over the m'" bit period ———»

input bitd _ =-1
input bit 2 _ =+1

!

Figure 4.2 The 8-state trellis diagram of the GMSK signal.

59



ja2° 148°

ST 2T
\.

1
a © bl or
OC 0 1 180 0 7 180 O o
I
\ / /

-32° -148°
)

Figure 4.3 The finite state diagram describing the phase changes over one
bit period of GMSK signat.

4.3 Trellis Coded GMSK Signal

In this study, various trellis coded GMSK schemes, which are formed by
combining rate-% convolutional codes having different constraint lengths with
GMSK signal, have been considered. These trellis coded GMSK signals have
been evaluated based on an AWGN model as shown in Fig. 4.4. A binary
convolutional encoder G, expressed in (14 v), accepts & serial input bits to
yield » output bits using a wstage shift register. The resulting code has a rate
of ¥/n and a constraint length of v. Note that for a rate-%2 code, the actual
transmission rate of 1/7 is twice the input bit rate of 1/7,. As a result, the
transmitted bit energy, E, associated with a coded bit becomes E;/2, where E,
is the energy of an input data bit.

The output of the convolutional encoder G is serially fed to the GMSK
modulator M, which generates the trellis coded GMSK signal s(t,«), where
oa==+1 for binary data. The received signal r(¢) is assumed to be the sum of the
transmitted signal s{r, @) and zero mean additive white Gaussian noise, n(t),
having double sided power spectral density Ny2. A coherent gquadrature
demodulator in conjunction with soft decision Viterbi decoding, as shown in
Fig. 4.5, is then used to recover the input data from r(¢). Here the recovered

phase values, ¢{f), obtained using the in-phase and the quadrature
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components, L{f) and O.(#), of the received signal, are used in the Viterbi

decoder to estimate the most likely transmitted data sequence.

transmitted
input signal received
data coded s(f, ) signal
o data ] M >+ > (1)
(. v) "
T, E, 17, E
convolutional GMSK AWGN
encoder modulator it

Figure 4.4 A model of the trellis coded GMSK signal transmitted over an
AWGN channel.

t=nT

F20)

! (: ) ) Lomlr-pass
Filter

output

Viterbi data >
Decoder

Hy=s(t, a)+nin) cos et 20
—_— Arctan{Or{/ (1)) >

sin erf
o)
Lo»\f-pass .
' Filter f—nT

Figure 4.5 Detection of trellis coded GMSK signal using quadrature
demodulation followed by Viterbi decoding.

With Viterbi decoding, the complexity of the receiver is largely governed by
the number of phase states in the trellis representing the coded signal, i.e.,
the complexity is upperbounded by the product of the number of states for
the convolutional code, and the number of states associated with the
modulated signal. It has been observed that the complexity of the Viterbi
decoder for the trellis coded schemes invoiving GTFM (B=0.5, #=0.00) may be
reduced through the use of differential encoding (Morales-Moreno et al,
1988; 1984). Based on this observation, differential encoding has been
applied prior to the GMSK modulation as shown in Fig. 4.6, anticipating a

similar reduction in the complexity of the receiver. The relationship between
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the output a,, and the input 4,, of a differential encoder is given by a,=5,®5,.,
where @ denotes modulo-2 addition (or EX-OR logical operation). Taking this
differential encoding process into account, the finite state diagram for the
differentially encoded GMSK signal is shown in Fig. 4.7. The corresponding
trellis diagram of this differentially encoded GMSK signal is shown in Fig. 4.8.
In Fig. 4.7 and Fig. 4.8, each transition is associated with coded bits, 4,, at

the input of the differentiai encoder.

input
data pr T T T T T |
— > © ! a s(a)
(n k) I @ M
&, I
i |
1-bit dela
| umndent |
convolutional differential GMSK
encoder encoder modulator

Figure 4.6 A model of the trellis coded GMSK signal employing differential
encoding.

32°
I

o o —b at ar

OC 0 1 180 0 0 180 G 7
/)

x g

2329 e -148°

Figure 4.7 The finite state diagram describing the phase changes over one
bit period of differentially encoded GMSK signai.
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b
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+1 011 Y e >

«———— over the »"" bit period ———»

——  inputbit &, =-1
-———- input bit 5 =+1

Figure 4.8 The trellis diagram of the differentially encoded GMSK signal.
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4.4 Trellis Diagrams for Trellis Coded GMSK Signals

The construction of the trellis diagram for a trellis coded GMSK signal is
ilustrated using the following example, which combines the trellis of a rate-%%

convolutional code with that of GMSK.

Consider a (2,1,2) rate-¥2 convolutional code having constraint length 2.
Suppose the encoder of this code, as shown in Fig. 4.9a, has the connection
vectors G;=[1 1] and G»=[0 1]. As explained in Section 2.5, these connection
vectors can also be represented as generator polynomials [1+D, 1] or in octal
form as [3,1]. In the rest of this thesis, the octal form representation will be
adopted for specifying a convolutional code. The operation of the encoder, as
shown in Fig. 4.9a, is described by the trellis representation of Fig. 4.9b. A
detailed description of the coding operation and the construction of the trellis

diagram of a convolutional encoder has been given in Section 2.5,

Input
data
—=F—| D, D,
@1
VT, E,
EX-OR
D, state at D, state at

G1:[1 1] =(a-1)T, =nT,
62:{0 1] Goded

data

T, E

(a) (b)
Figure 4.9 (a) Encoder (b) Trellis diagram, of the code [3,1].

The states of the trellis diagram representing the trellis coded GMSK signal
are dictated by both the binary state of the encoder and the phase state of
the GMSK signal. For example, if the shift registers of the encoder shown in
Fig. 4.9a are initialised to zero, and the initial phase state of the GMSK
modulator is at 0°, then the initial state of the combined state machine will be
at the state, (6,0°). When an input data bit 7 enters intoc D, it will give rise to
two coded bits 11, as shown in Fig. 4.9a. When the next data bit enters the
shift register D,, the previous data bit I is now shifted to D,, resulting in the
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encoder state D., at the end of the first data bit period, becoming 1, as shown
in Fig. 4.9b. Consequently, the binary state of the trellis coded GMSK signal
after the first data bit period will be 1. The coded bits 11 are then serially sent
to the GMSK modulator as shown in Fig. 4.4. The resulting phase state of the
combined state machine will be the phase state of the modulator at the end
of the two coded bit periods 71. From Fig. 4.2, the phase state of the
modulator will reach 180° at the end of the input bit period 7;, after going
through an intermediate phase state of 32°. The intermediate phase state
corresponds to the phase value after the first coded bit period 7. Thus, when
an input data bit 7 enters D,, the combined state machine will reach the state
(1,180°) through the intermediate phase value of 32°, as shown in Fig. 4.10a.
Here, the intermediate phase values after one coded bit period 7, when going
from one state to the other, are shown at the middie of each line. Similarly,
when the initial state of the combined state machine is at (0,0°), a data bit ¢
input to D;, will transfer the combined state machine to the state (0,0°)

through the intermediate phase value of 0° as shown in Fig. 4.10a.

Now, starting from these two new states, the next possible states of the
combined state machine corresponding to the data bits # and 1 input to the
encoder stage D,, can be obtained in a similar manner. For example, when
the current state of the combined state machine is (1,180°), the encoder state
D3, is also 1. When an input data bit # enters into D;, the two corresponding
coded bits will now be 18, as shown in Fig. 4.9a. When the next data bit
enters the shift register D;, the previous data bit ¢ is now shifted to D,
moving the next binary state of the trellis coded GMSK signal to 0. As shown
in Fig. 4.2, the two coded bits 1¢ will move the initial phase state of the trellis
coded signal, 180°, to 148° through the intermediate phase state of 0°'. Thus,
the next state of the trellis coded signal when an input data bit ¢ enters the
encoder stage D;, will be (0,148°). This is illustrated in Fig. 4.10b. Similarly,
when the input data bit to the encoder stage D; is I and the current state of
the combined state machine is (1,180°), the corresponding coded bits 91 will
move the trellis coded signal to the state (1,32°) through the intermediate

phase state of -32°.
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Repeating this procedure for all the new states in the combined state
machine, the combined trellis diagram as shown in Fig. 4.10c is obtained. It
can be observed from Fig. 4.10c, that the initial state (9,0°) of the combined
state machine may only reach one of the 8 states. Consequently, the 8-state
trellis representing the rate-'2 convolutional code [3,1], when combined with
the GMSK signal used by the Viterbi decoder, can be presented as shown in
Fig. 4.11.

The above technique will be used in this study to construct the combined
trellis diagrams required for cbtaining the free Euclidean distances of the

proposed trellis coded GMSK schemes.

[ /]
(0.0% } {8,07 (1,180 } (0,t48")
~ ~

(7,329

(0, -32°)

A
(/. -148°)

(c)
Figure 4.10 Construction of the combined treliis diagram of the code [3,1]
with GMSK signal.
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(6,0°) (6.0%

(1,180°) Ty (2,1807)
’

(0,148°) (0,148°%)

(1,32%)

(0,180%%)

(0,-32% (0,-32°)

& Y
(1,-148°) Sy (1489

“— over one input bit period T, —_—

input bit _ ,=-1
inputbit s =+1

Figure 4.11 Combined trellis diagram of the code [3,1] with GMSK signal.

Next, the effect of differential encoding prior to modulation, on the receiver
complexity, based on the number of states in the combined trellis, is studied.
In this case, the same rate- convolutional code, {3,1], used in the previous
example, is combined with the differentially encoded GMSK signal. In this
case, the coded bits are differentially encoded before sending them to the
GMSK modulator, as shown in Fig. 4.6. The combined trellis diagram of the
code [3,1] with the differentially encoded GMSK signal, as shown in Fig. 4.12,
has been obtained by combining the trellis of the code [3,1], given in Fig.
4.9a, with the trellis of the differentially encoded GMSK signal given in Fig.
4.8. From the trellis diagrams shown in figures 4.11 and 4.12, it is observed
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that differential encoding prior to modulation leads to a reduction in the
number of states in the combined trellis, reducing the receiver complexity. It
has also been observed from Fig. 4.2, that the number of states in the trellis
representing the uncoded GMSK is 8. Therefore, it can be seen that the
coded scheme using the code [3,1] in combination with differentially encoded
GMSK modulation has a less complex receiver, compared to that of the

uncoded.

00

(0,0% (0,0°)

—

(1,148°) 2T (1,148
(0,-148°) (0,-148°)
(I.0%) T 3 (1,0°)
180°
< over one input >
bit period 7,

Figure 4.12 Combined trellis diagram of the code [3,1] with differentially
encoded GMSK signal.

Now, the effect of the connection vectors of a particular code on the number
of states in the combined receiver is demonstrated using a code having the
same constraint length, 2 as before. Here, the generator matrix of the
previous code [3,1] is exchanged to give the code [1,3] and produce the
connection vectors G;=[0 1} and G,=[1 1]. The encoder, and the trellis
diagram of the code [1,3] are shown in Figures 4.13a and 4.13b, respectively.
As shown in Fig. 4.13b, the number of states in the trellis of this code is 2, as
in the code [3,1]. However, when the code [1,3] is combined with differentially
encoded GMSK, the total number of states in the combined trellis becomes 8

as shown in Fig. 4.13c. Thus, it may be observed from Figures 4.12 and
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4.13c, that the receiver complexity of the trellis coded and differentially
encoded GMSK, with code having the generator polynomial [1,3], is doubled
compared to that of the code with [3,1]. Moreover, the number of states in the
resultant trellis with the code [1,3] is the same as that of the uncoded GMSK.
From this example, it may be concluded that the receiver complexity of a
combined coded scheme using a code with the same constraint length may

also depend on the connection vectors of the code.

000

Input
data
~—data o D‘, DZ
1)
VT, E,

@ EX-OR
D, state at D, state at
G,=f0 1] t=(n-1)T, t=nT,
G,={11] Coded
data

(a) (b)
Figure 4.13 (a) Encoder (b) Trellis diagram, of the code [1,3].
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Figure 4.13c Combined trellis diagram of the code [1,3] with differentially
encoded GMSK signal.
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4.5 Free Distances of Trellis Coded GMSK Signals

As discussed in Section 4.3, in this study the detection of various trellis
coded GMSK signals, corrupted by AWGN, is carried out assuming coherent
quadrature demodulation, followed by soft decision Viterbi decoding. A
detailed description of the Viterbi decoding has been given in Section 2.6.1.
The distance measure nommally used in Viterbi decoding for selecting the
conventional convolutional codes, is the free Hamming distance (Viterbi and
Omura, 1979; Clark and Cain, 1981). However, in this study the selection of
the appropriate trellis coded GMSK signals is based on the largest free
distance of the coded scheme (Lindell ef af, 1984, Anderson et al, 1986), so
that the code and the GMSK signal are considered as a single entity. Also,
note that the distances discussed in the rest of the study are referred to as

the signal-space distances.

The squared free distance of a coded scheme is defined as the minimum
Squared Euclidean Distance (SED) in signal space between any two signal
paths which originate from a common node and merge into a single node at a
later time in the combined trellis (Anderson et al, 1991). Therefore, to
determine the value of the free squared distance or the minimum SED of a
combined coded scheme, the SEDs of all possible pairs of paths, which split
and remerge at a later time in the trellis, have to be considered. If D} (N) is
the minimum SED between all the pairs of paths which split at +=0 and
remerge at =NT7, then the squared free distance becomes the global
minimum of such minimum SEDs for all the values of N. That is (Anderson et
al, 1986),

D},.= min [D},(N)], (4.3)
where ¥ ideally extends to infinity. The SED in signal-space between any two
given signals s{#) and s,(r}, over an interval £7< t < (k+1)T can be expressed

as (Anderson and Sundberg, 1991)

(k+D)T

piG.p= | l@-s,0f a (4.4)

kT

70



This results in

Ny fe+1)T
D)= gin {Z Jls.0-s, (t)]zdr}. (4.5)

k=0 T

The integral in Eq. (4.5) can be expanded as

(e+1)T (k+DT (ke+D)T (k+1)T
s-s,0fd= [ S@a+ [ Sa-2 | sstyar. (46)
kT kT kT kT

The signals s,(f) and s{(f) considered in this study are constant envelope
GMSK signals, represented by

s{6) =~2E/T cos Qrf.t+ ¢:() + o) {4.7a)
and s5{() =2E/T cos Qafet + ¢ () + do). (4.7b)

Here ¢y is an arbitrary constant, which represents the initial phase of the
signal. This can be set to zero with no loss of generality. The phases ¢(r)
and ¢ (r) are the phase angles in modulo-2x at time ¢, of the two signals s,(¢)
and s4(t), respectively, and £ is the transmitted signal energy per bit over one
bit interval 7. As presented in Section 4.3, note that with the coded schemes
using rate-%: codes, each input bit having a period 7, and energy E;, provides
two coded bits, each with a period 7=T,/2 and energy E=E;/2. Using the
expressions in Eq. (4.7a) and Eq. (4.7b} for s,{#) and s,{t), Eq. (4.6) can be re-

written as
(k1T (&+1)T
[ s®-s,0Fd=28-2 [ s(istr)ar
kT kT

(k)T

=2E-2 j = cos [27ft + ¢ ()] cos [27fit + ¢ ()] dk,

kT

=2F- (HTT? cos [¢; (7) - ¢{8)] dt

kT

tk+3T

- [ 2 costamte+ 0+ g0 e

As /. >>%, the second integral averages out to zero over one bit period T.

Hence,
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(k+D)T (k+DDT

5.0)-5,0F it = 2= [ 2E cos [0 - ¢ Ol

KT kT

IE (k)T
~ J {l-cos[A@(N)]} di, (4.8)
where, AD)=[¢ (1)-¢ (t)]. Assuming that the signal shape consisted of
instantaneous phase changes, i,e., AXt)= A (k+1)T] for kT< ¢ < (k+1)T, Eq.

{(4.8) can be approximated as

(k+1)T
[ lso-s, OF dt ~ 2E {I-cos[a@[(k +1T]]} . (4.9)

kT
Here, A®[(k+1)T] is the phase difference at the sampling instant (k+1)T
between the two signals s{#) and s,(z). With this, Eq. (4.5) can be written as

D2, (N) = S(tljlqltln(){ZZE {i- cos[AcD[(k+I)T]]}i| (4.10)

Here, s(f)#s(f) is equivalent to A@(f)=0.

Eqg. {(4.10) is often normalised with respect to the bit energy in order to obtain
a measure of distance that depends only on the code structure and not the

coded bit energy (Anderson et al, 1991). This may be achieved by forming
the normalised minimum SED, 42 (N), defined by (Lindell et a/, 1984)

mn

5 k0T
) = i [25 Z [ -, (:)]ch} (4.11)

From Eq. {(4.10) and (4.11), the normalised minimum SED between all the
pairs of paths which spiit at /=0 and remerge at /=N7 can be obtained as

d: (N) = (& 20 [Z 1-cos[a@ | (k+1)T]]}} (4.12)

k=0

Based on Eq. (4.12), the normalised minimum SEDs of any level N, at /=NT,
can be obtained. Then, by considering a very long observation interval NT
(i.e., ideally N> =), the normalised squared free distance of a coded scheme

can be obtained.
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46 A Computer Search Method for Selecting the
Appropriate Convolutional Codes

The appropriate convolutional codes, which when combined with differentially
encoded GMSK to produce the largest free distance, are first selected using
a computer search method. Those coded schemes having the largest free
distances are then examined for their complexity in terms of the number of

phase states involved in Viterbi decoding.

The computer search procedure used in this study can be explained using
the flow charts shown in Fig. 4.14a and Fig. 4.14b. With this procedure, the
search for the minimum distances associated with convolutional codes of
different constraint lengths can be independently carried out. The search for
the code is initiated with a given constraint length. The phase angles
representing the states of the combined trellis of a coded scheme having that
defined constraint length are then input. The normalised squared free
Euclidean distance, Max[FED], is set to zero at the start of the search. Then,
the search proceeds with the normalised minimum SED of the specified

coded scheme obtained according to the steps in Fig. 4.14b.

Initially, the normalised minimum SED is set to a large value. Starting from a
state at time =0, the paths that remerge at level N, i.e., after N input bit
periods, N7, are found. The normalised SED of these paths are then
computed as explained in the following example for the trellis shown in Fig.
4.15. Here, the rate-2 code having the generator polynomial [3,1] is
combined with differentially encoded GMSK. In this case of coded
transmission, if the sampling is carried out at the actual transmission rate 1/7,
which equals to 2/T}, there will be twice as many samples involved in
calculating the distance compared to the uncoded scheme. From Fig. 4.15, it
can be seen that the first remerge of the paths initiated from the state at /=0
occurs after 3 input bit periods 37;, corresponding to 6 coded bit periods 6T.
The SED of the pair of paths which split and remerge in Fig. 4.15, starting at
=0 from the state (0,0") and remerging at state (9,0 after 67 can be obtained
according to Eq. (4.9) as
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&(6) = i 2E {1 —cos[a® [(k+1)T]]}. (4.13)

k=0
Here, A®@[(k+1)T] is the phase difference at the sampling instants (k+1)7
between the signals representing the two merged paths. Using the phase
values of these paths at the sampling instants as shown in Fig. 4.15, Eq.
(4.13) can be expanded as
d(6) = 2E { [1-cos(0°-32)] + [1-cos(0™-1487)] + [1-cos(0™-180")]
+ [1-cos(0™-(-148"))] + [1-cos(0™-(-327))] + [1-cos(0'-07)] }

= 12E. (4.14)
According to Eq. (4.11), this SED is equivalent to a normalised SED of 6. At
this stage, if the corresponding value of normalised SED obtained for these
two paths is smaller than the current normalised minimum SED, the new one
is updated as the minimum at that particular level, i.e., N=3. Similarly, the
normalised SED values of all the paths which split from each state at =0, and
remerge at a common state at =NT, (N=3,4, ..N’) are calculated, and the
corresponding normalised minimum SED at each level N, is updated. By
comparing the values of minimum normalised SEDs obtained at each level,
the global minimum of the normalised SED or the normalised FED of the
particular coded scheme is obtained. Theoretically, the observation interval
NT, should be extended to infinity in order to obtain the free distance of a
coded scheme (Anderson et al, 1986). However, in practice, the values of
minimum SEDs tend to converge to the FED over a sufficiently large value of
N. In this study, it has been observed that the global minimum of the
normalised SED of all the coded schemes considered was reached within
16T5.

Once the value of normalised squared FED of each individual coded scheme
is calculated, it is compared against the current value of the largest
normalised squared FED, as shown in the blocks between M and P of Fig.
4.14a. If the value of the newly determined normalised squared FED is
greater than that of the previous value, it will then be updated as the new
maximum FED. This search procedure is repeated for all the available codes

of the same specified constraint length in combination with differentially
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encoded GMSK, until a code having the largest normalised FED is found.
The same search procedures are then repeated, for selecting the appropriate

codes of different constraint lengths when combined with differentially

encoded GMSK.

Input the
Constraint length
Max[FED]=0

input the
phases of trellis
code

®

Refer to Fig. 4.14b

FED>max
{FED]

max[FED]=FED
update best code

Last trellis
code at this
const. length?

No

+ Yes

Print the best code
and the
max[FED]

Note : FED — normalised squared free Euclidean distance
: Refer to Fig. 4.14b for the operations of the blocks between K and M

Figure 4.14a The basic flow chart of the computer search.
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min[SED]=1000
Ni=1

—0

Initialise a state in
the
trellis , N=N{

Last merge path
at level N
starting from the
current state ?

N=N+/

merge paths at

Select next
merge path

Calculate
SED

No

Yes

AN

min[SED]=SED

'

Yes

Initialise
the
next state

ast initia
state in
the

sON0

trellis?

Yes

Output min[SED]
or FED

Note : SED - normalised squared Euclidean distance

Figure 4.14b The flow chart for the search for normalised squared FED.
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=0 =T +=T, =3T =27, =57 =3T, =77 +=4T, =87 =57,
=27 =4T =6T =37 =107
(8.0°) -

o
(1,148%)

P
(0,-148°) # N

Figure 4.15 Combined trellis diagram of the code [3,1] with differentially
encoded GMSK showing split and merge paths.

The computational complexity of the search increases exponentially with the

number of states in the combined trellis. Furthermore, a larger number of

states gives rise to an increased receiver complexity based on the Viterbi

decoding. Consequently, only the codes with a maximum of 16 states in their

combined trellises have been considered in this research.

It has been observed from this study that codes having different
combinations of generator polynomials with constraint length 4, when
combined with differentially encoded GMSK, may provide either 16 or 32
states in their combined trellises. In view of the increased computational
efforts and decoder complexity, only codes which yield 16 states in the
combined trellis, have been considered. As a result, the total number of such
codes with constraint lengths 2, 3, and 4 considered in this study are 8, 40,
and 56, respectively.
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4.7 Selection of Appropriate Convolutional Codes

The values of normalised squared FEDs of rate-)2 convolutional codes
having constraint length 2 when combined with differentially encoded GMSK
signals obtained by computer search are presented in Table 4.3. The
corresponding numbers of states involved in Viterbi decoding are also given
in Table 4.3. Results obtained for codes having constraint lengths 3 and 4 are
tabulated in Tables 4.4 and 4.5, respectively. In these tables, those codes
having the largest values of normalised squared FEDs with different
complexities are signified in bold face. From Tables 4.3 to 4.5, codes of
constraint lengths 2, 3, and 4 associated with the largest FED as well as
requiring the minimum number of states in the combined trellis are selected
for further detailed study. A summary of these selected codes is tabulated in
Table 4.6.

For a particular selected coded GMSK scheme, the asymptotic coding gain,
based on its free distance, with respect to the uncoded GMSK signal can be
defined as (Haykin, 1988)

normalised squared FED of the coded signal
normalised squared FED of the uncoded signal

(4.15)

asymptotic coding gain=10 logm[

The normalised squared FED of the uncoded GMSK signal has been
obtained using the phase states of the trellis of the GMSK signal as given in
Fig. 4.2. Accordingly, the squared FED of the uncoded GMSK signal
normalised with respect to the input bit energy £, over an input bit interval 7,
is found to be 1.74227. Thus, the asymptotic coding gains of the selected
codes are obtained using Eq. (4.15). These coding gains are presented in
Table 4.6. It should be noted that the calculation of coding gains is carried
out based on the input bit energy £, over input bit interval 7. The computed
squared FEDs of the coded schemes are also normalised to the input bit
energy E;. In the case of rate-}2 codes, the transmitted coded bit energy
E=E,/2 as discussed in Section 4.3.
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From the results presented in Table 4.6, it may be observed that combining
the selected constraint length 2 code [3,1], with differentially encoded GMSK,
a coding gain of 2.36 dB can be obtained. Moreover, it can be seen that this
coding gain is achieved with a decoder having half the number of states
compared to the uncoded GMSK signal. Thus, when the code [3.1] is
combined with differentially encoded GMSK, this leads to a decrease in
receiver complexity compared to the uncoded GMSK, while yielding a coding
gain of 2.36 dB.

For codes with constraint length 3, two codes [6,3] and [7,3] have been
selected as the appropriate codes. It may also be observed from Table 4.6,
that these two selected codes when combined with differenttally encoded
GMSK produce a coding gain of 3.61 dB. Moreover, these two codes require
the same number of states in the Viterbi decoder as the uncoded GMSK.
These results show that for codes of constraint length 2 and 3, which have
been appropriately chosen, when combined with differentially encoded
GMSK could achieve coding gains compared to the uncoded scheme without
increasing the decoder complexity. On the other hand, for the selected codes
having constraint length 4, {13,7] and [15,7], the decoder complexity based on
the number of states in the receiver is doubled compared to the uncoded
scheme. However, a larger coding gain of 5.06 dB is achieved when
compared to codes of constraint length 2 and 3. This means that codes with
constraint length 4 may be suitable for applications in which a larger coding

gain is required for a slight increase in receiver complexity.
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Generator Normalised Number of
polynomial of squared FED states in the
the code in octal of the coded Viterbi decoder

form signal

[1,2] 3.48455 8
[1,3] 5.43837 8
[2,1] 4.00000 4
[2,2] 4.00000 8
[2,3] 6.00000 8
[3,1] 6.00000 4
[3,2] 5.43837 8
[3,3] 8.00000 8

Note : The above codes have been tested based on only the normalised
FED and the complexity of the Viterbi decoder. They have not been
tested for catastrophy.

Table 4.3 The values of hormalised squared FED of rate-2 convolutional
codes having constraint length 2 when combined with
differentially encoded GMSK. The corresponding numbers of
states for Viterbi decoding are also shown.
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Generator | Normalised | Number of | Generator | Normalised | Number of

polynomial squared states in | polynomial squared states in

of the code | FED of the | the Viterbi of the FED of the | the Viterbi

in octal coded decoder code in coded decoder

form signal octal form signal
[1,4] 3.48455 16 [6,4] 5.43837 16
[1,5] 5.74227 16 [6,5] 7.69610 16
[1,6] 492292 16 [6,6] 8.00000 16
[1,7] 6.87674 16 (6,7] 8.00000 16
[2.4] 3.48455 16 [7,4] 6.87674 16
[2,5] 5.74227 16 [7.5] 9.69610 16
[2,6] 5.43837 16 [7,6] 7.48455 16
[2,7] 7.18065 16 [7,7] 8.00000 16
[3,4] 4.92292 16 [4,1] 3.48455 8
[3,5] 7.74227 16 [4,2] 4.00000 8
[3,6] 6.87674 16 [4.3] 5.43837 8
[3.7] 7.48455 16 [5.1] 5.74227 8
[4,4] 4.00000 16 [5,2] 5.74227 8
[4,5] 5.74227 16 [5,3] 7.69610 8
[4.,6] 6.00000 16 [6,1] 5.43837 8
[4.7] 7.18065 16 [6,2] 6.00000 h
[5.4] 5.74227 16 [6,3] 8.00000 8
[5,5] 8.00000 16 [7,1] 7.18065 8
[5,6] 7.74227 16 [7.2] 7.18065 8
[5,7] 9.69610 16 [7,3] 8.00000 8

Note : The above codes have been tested based on only the normalised FED
and the complexity of the Viterbi decoder. They have not been tested
for catastrophy.

Table 4.4 The values of normalised squared FED of rate-%4 convolutional
length 3 when combined with
differentially encoded GMSK. The numbers of states required for
Viterbi decoding are also shown.

codes having constraint
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Generator | Normalised | Generator | Normalised

polynomial squared polynomial squared

of the code | FED of the | of the code | FED of the

in octal coded in octal coded

form signal form signal
[10,1] 3.48455 [14,1] 4.92292
[10,2] 3.48455 [14,2] 5.43837
[10,3] 492292 [14,3] 6.87674
[10,4] 4.00000 [14,4] 6.00000
[10,5] 5.74227 {14,5] 7.74227
[10,6] 5.43837 [14.6] 8.00000
[10,7] 6.87674 [14,7] 7.48455
[11,1] 5.74227 f15,1] 7.18065
[11,2] 5.78845 [15,2] 7.18065
f11,3] 5.48455 [15,3] 9.13447
[11,4] 5.74227 [15,4] 7.74227
[11,5] 8.00000 [15,5] 10.0000
[11,6] 7.18065 [15,6] 9.43837
{11,7] 9.69610 [15,7] 11.18065
[12,1] 5.74227 [16,1] 6.87674
[12,2] 5.74227 [16,2] 7.18065
[12,3] 7.74227 [16,3] 7.48455
[12,4] 5.74227 [16,4] 7.18065
[12,5] 8.00000 [16,5] 9.69610
[12,6] 7.69610 [16,6] 8.00000
[12,7] 4.60781 [16,7] 8.00000
[13,1] 7.74227 [17,1] 7.18065
[13,2] 7.18065 [17,2] 6.66520
[13,3] 9.43837 [17,3] 7.78455
[13,4] 7.18065 [17,4] 7.18065
[13,5] 10.0000 [17,5] 11.13447
[13,6] 9.13447 [17,6] 7.48455
[13,7] 11.18065 [17,7] 8.00000

Note : The above codes have been tested based on only the normalised FED
and the complexity of the Viterbi decoder. They have not been tested
for catastrophy.

Table 4.5 The values of normalised squared FED of rate-% convolutional
codes having constraint length 4 when combined with differentially
encoded GMSK (only codes with 16 states in the Viterbi decoder
are shown).
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Constraint Generator Normalised Number of Asymptotic
length polynomial of | squared free states in the coding gain
the selected | distance of the Viterbi compared to
code in octal coded signal decoder uncoded
form GMSK* (dB)
2 [3,1] 6.00000 4 2.360
3 [6,3]** 8.00000 8 3.609
[7,3] 8.00000 8 3.609
4 [13,7] 11.18065 16 5.063
[15,7] 11.18065 16 5.063

Note : *The normalised squared FED of uncoded GMSK is 1.74227
** As explained in page 84, code [6,3] is catastrophic

Table 4.6 The asymptotic coding gains associated with the selected coded
schemes.

4.8 Trellis Diagrams of the Selected Coded GMSK Schemes

In this section, the trellis diagrams used in Viterbi decoding corresponding to
the selected codes with constraint lengths 2, 3 and 4 combined with
differentially encoded GMSK are presented.

The code [3,1] has been selected as the appropriate code with constraint
length 2. The combined trellis of the selected code [3,1] with differentially
encoded GMSK is shown in Figure 4.12. The selected codes, [7,3] and [6,3]
having constraint length 3, can be expressed by their connection vectors
G=[1 1 1], G~[0 1 1], and G;=[1 1 0], G>=[0 1 1], respectively. The
corresponding encoder and the trellis diagram associated with the code [7,3]
are shown in Figures 4.16a and 4.16b, respectively. The combinéd trellis
diagram used in calculating the FED of the code {7,3] when combined with

differentially encoded GMSK is shown in Figure 4.16¢c. The corresponding
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diagrams of the encoder, the trellis and the combined trellis diagram of the

code [6,3] are presented in Figures 4.17a, 4.17b, and 4.17¢, respectively.

D.D
Input 12 090 D3 D2
data 00 — (24
» D P D, D,
VT, E,
01 101~ » 01
EX-OR EX-OR 10 19
G111 Coded
Gelo11] data 71 \__’ IT
1/T.E state at state at
=(n-1)T, (b) t=nT,

(a)
Figure 4.16 {a) Encoder (b) Trellis diagram, of the code [7,3].
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Figure 4.16¢ Combined trellis diagram of the code [7,3] with differentially
encoded GMSK signal.

The code [6,3] is a catastrophic code and can be eliminated in the study. With
catastrophic codes, a finite number of channel errors can cause an infinite
number of information errors. Moreover, it can be observed from the

combined trellis diagram for the code [6,3], as shown in Fig. 4.17c, that there
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is symmetry between the states having the same phase values with different
encoder states. For example, consider the two states (01, 32°) and (10,32°)
having the same phase value 32°. Here, when the input bit to the encoder is
0, the state (01,32°) will reach the state (10,180°°) through the intermediate
phase state 148°. On the otherhand, the other state (10,32°) reaches a state
having the same phase value 180°° through the same intermediate phase
state 148° when the input bit fo the encoder is 1. The Viterbi decoding in this
study is based on the Euclidean distances between the received signa! and
all the possible transmitted signals. Such Euclidean distances are calculated
using the phase differences at the sampling instants as expressed in Eq.
(4.9). Therefore, when the combined state is initially at (01, 32°), the distance
between a received signal and the transmitted signal corresponding to input
bit 0 becomes the same as that of the distance initiating from the state (10,
32°) corresponding to input bit 7. This produces an ambiguity in the decoder,
giving the same distances corresponding to bits having opposite polarity.
Because of this ambiguity, the code [6,3] has not been considered for
detailed study. Therefore, only the code [7,3] having constraint length 3 when

combined with differentially encoded GMSK has been considered in this

study.
DD D.D
Input 37z 0/00 3
data o0 o0
— D, | D, | Dy T~y 010
VT, E, = —
01 oo
EX-OR @ EX-OR 1e 10
G,=[110} Cc;):t:\d
G=lo11] . 1 e 20 > 11
slate at state at
VT E =(n-1)T, r=nT,

(a) (b)
Figure 4.17 (a) Encoder (b) Trellis diagram, of the code [6,3].
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Figure 4.17¢ Combined trellis diagram of the code [6,3] with differentially
encoded GMSK signal.

The selected codes having constraint length 4, [13,7] and [15,7], can be
expressed by their connection vectors G,=[101 1], Go=[0 1 1 1], and G;=[11 0
1], G=[0 1 1 1], respectively. The encoder, the trellis diagram, and the
combined trellis diagram of the code [13,7] are shown in Figures 4.18a, 4.18b
and 4.18c, respectively. The corresponding diagrams for the code [15,7] are
presented in Figures 4.19a, 4.18b, and 4.19¢, respectively.
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Figure 4.18 (a) Encoder (b) Trellis diagram, of the code [13,7].
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Figure 4.18c Combined trellis diagram of the code [13,7] with differentially
encoded GMSK signal.
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Figure 4.19 (a) Encoder (b) Trellis diagram, of the code [15,7].
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Figure 4.19¢c Combined trellis diagram of the code [15,7] with differentially
encoded GMSK signal.
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CHAPTER 5

PERFORMANCE ANALYSIS OF THE SELECTED

TRELLIS CODED GMSK SCHEMES

5.1 Introduction

The bit error rate performances of the selected trellis coded GMSK schemes
as described in Chapter 4 are analytically evaluated in this chapter. The
upper and lower bounds on the probability of bit errors for these selected
trellis coded GMSK schemes have been derived for an AWGN channel, as
well as for a channel encountering amplitude fading. These bounds have
been obtained based on the union bound techniques, assuming that the
channel is memoryless, and maximum likelihood decoding is used (Clarke
and Cain, 1981; Viterbi and Omura, 1879; Wozencraft and Jacobs, 1965).

In the case of a fading channel, the signal samples are correlated. For the
union bound techniques to be applicable for a fading channel, bit interleaving
of sufficient depth is assumed. Bit interleaving is often applied in practice to
disperse error bursts associated with transmission over a fading channel, so
that the channel approximates a memoryless channel. Furthermore, the
effect of fading on the phase of the received signal is assumed to be fully
compensated by tracking the phase variations with some form of phase-
locked-loop or by means of pilot tone calibration techniques (McGeehan et
al, 1984; Davarian, 1987). Consequently, in this study, only the amplitude of
the received signal is considered to be affected by fading. This assumption
has also been made in previous studies (Divsalar ef al, 1987; Schlegel and
Costello, 1989; Yiin and Stuber, 1996). With these assumptions, the upper
and the lower bounds on the bit error probabilities over AWGN and

amplitude-fading channels have been obtained for the selected TCM signals
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described in Chapter 4. The analysis adopted here follows closely the work
by Divsalar and Simon (1987) and Biglieri, et al (1991).

5.2 Decoding Metric for Viterbi Decoding

In this analysis, the received signal is assumed to be detected using
coherent demodulation followed by MLSD based on the Viterbi algorithm. As
discussed in Section 2.6, the MLSD compares the values of the signal space
distance of the received data sequence with those for all the possible
transmitted sequences. The transmitted sequence having the signal space
distance closest to the received sequence is selected as the most likely

transmitted sequence.

Assume that when a coded sequence X;=(x|, x,.., xi,... x;) of length L is
transmitted, the corresponding received sequence is ¥Y;.=(, 2,.., V&,... J1L)
where x; and y; are the ¥ elements of the transmitted and the received
signals at time £, respectively. The decoder may wrongly select X=(x1, x%,..,
x%... x7) instead of Xp whenever the log-likelihocod decoding metrics
m(¥y, X7) and m(¥Yr, X;) used by the decoder corresponding to these two
sequences satisfy the condition {Proakis, 1989)

m(¥r, X1) 2 m(¥r, X1). (5.1)
In this case, the selected sequence X corresponds to a path in the trellis,
which split from the correct path X, at a given time and remerges after L

discrete time intervals, creating an error event of length L.

As the log-likelihood function is used as the decoding metric, and if the
channel is memoryless, then the corresponding metric of a sequence can be
expressed by the sum of the metrics for each transmitted and received pair
in the sequence over the length of the error event (Biglieri ef al, 1991). Thus,
the decoding metrics corresponding to the incorrectly decoded sequence, X%

and the transmitted sequence, Xz, may be expressed as

m(¥, X1) = Y. mlyp, x%) (5.2a)

L
k=1
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and m(YL, XL) = i m(yk, xk). (52b)

k=1
As a result, Eq. (5.1), which corresponds to the condition for making an

erroneous decision, can be expressed as

Y e x2S mly x). (5.3)

L
k=1 P

Consequently, the probability P(X7| Xi), which represents the probability of

selecting the coded sequence X1=(x1, x5..., x%,... x7) when X =(x1, x2,.., X,...

xz) has been transmitted is given by (Biglieri ef al, 1991)
L L
P(X::|XL)=P{[Zm(yksx;¢)sz(yksxk)]XL}- (5.4)
k=1 k=1

Assuming that X7 and X, are random variables, the probability of occurrence

of an error event X' of length L, when the sequence X; has been transmitted
may be expressed as

Pe(L, X', X1) = P[X;] P(X'%| Xp) (5.5)
where, P[X}] is the probability of transmitting X;.

Then, the upperbound of the error probability of an error event of any length
may be obtained as shown in Eq. (A.7) of Appendix A as

siz > PIXi] P(X7] Xp). (5.6)

L=l X; X =X
} : (5.7)

It has been shown that a tighter upperbound for P; of Eq. (5.7), is often

Substituting Eq. (5.4) in Eq. (5.6), we obtain

, <3533 Pl k{[zmm,xm $nts 0

L=l X, X,#X,

obtained by applying the Chernoff bound (Divsalar and Simon, 1987; Yiin
and Stuber, 1996). According to Chernoff bound, if » is a continuous random
variable, then (Wozencraft and Jacobs 1965),

P(r20) < Elexp(3r)] forany 1> 0. (5.8)
Here, E[.] denotes the statistical expectation operation. The tightest

upperbound in this case may be obtained by selecting the value of A which
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minimises the value of Efexp(ir)]. When r is the sum of L independent

continuous random variables ry, rs,..., r4,..., 7, then Eq. (5.8) becomes

P{grk 20} < 1‘[ Elexp(ar, )]. (5.9)

It follows that the probability P(Xi|X1) given in Eq. (5.4) may be
upperbounded by applying the Chernoff bound, so that

P(X'L|XL)=P{(Zm(yk,x;)-Zm(yk,xk)] > 0|X,_}

k=1

< H E{exp[?i.(m(yk, x)—m(y,,x, ))]|X,_}. (5.10)

Thus, the upperbound of Pz given in Eq. (5.7) may be expressed as

Pe<Y Y ¥ AT EleollnCr ) -mOrx )X}
<SS P[] expl-( x) 5.11)
where,
expl-41 (v )] = Elexp[Mim(y,, x}) ~ m(y,, x))l|X,. }. (5.12)

It is observed from Eq. (5.11)}, that the upperbound of the probability of event
error Pz, depends on the decoding metrics used by the decoder. The
derivations of the decoding metrics for both the AWGN and fading channels

will now be presented.

5.2.1 Distance metric for AWGN channels

Consider a signal transmitted in the presence of AWGN. The received signal,
Vi, at a given time £ corresponding to a transmitted signal, x;, is given by
Ve=xp + (5.13)
Here, n; is the & sample of zero mean Gaussian noise with variance o2 In
general, x, yx and », are complex variables (Biglieri ef af, 1991). The complex
noise n; can be represented in terms of its real and imaginary parts, which
are uncorrelated zero mean Gaussian random variables, each with variance

ol = o?2.
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In the presence of AWGN, the maximum likelihood decoding metric m(yy, xi)
becomes (Proakis 1989, Divsalar and Simon 1987)

m{yx, xx) = In[p(n,)]. (5.14a)
Here, p(»,) is the probability density function (pdf) of Gaussian noise », given
by

plny) = exp[- n_,f) {5.14b)

plo

2no’

Applying Eq. (5.13) and Eq. (5.14b) in Eq. (5.14a), we obtain

(v, %) = { l{ |Yk _xk| ]}
21t0'

ln[ J- i xk| .
N2me? 26°

Similarly, the decoding metric m{y:, x%), corresponding to the incorrectly

(5.15a)

decoded sequence can be expressed as

2
1 _ '3
My, %) = In (WJ - |y"202x"| . (5.15b)

Using the decoding metfrics given in Eq. (5.15a) and Eq. (5.15b), the

exponent function, exp[-4;(xx x%)], given in Eq. (5.12) can be expressed as
A 2 2
E{GXP[ZGZ (‘ Wi 5] + |y - )]|XL}

e S s ) P SR CR TS

exp[-Ax (xi, x )}

where ' = Lz
2c

The statistical expectation operation of Eq. (5.16) can be further simplified for
AWGN channels as shown in Eq. (B.12) of Appendix B as
exp[- A, (x,.x])]= exp(— Allx, = x, |2)exp (2013(/1’2 x, — x|

' 2). (5.17)

The complex random variables x; and x% can be represented in the
gquadrature forms as shown in Eq. (B.3a) and Eqg. (B.3b) as

xi = exp(jg) = (cosgh T j singy) (5.18a)

and  x% = exp(j@h) = {cosg} + j sing) (5.18b)
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where ¢, and ¢/} are the information carrying phase angles corresponding to
the transmitted signal x, and the incorrectly detected signal x%, at time £,
respectively. From Eq. (5.18a) and Eqg. (5.18b),
|xi-x4l? = [cos(d) - cos(@)I*+ [sin(g) - sin(g )]
= 2[1- cos (g - ¢%)I. (5.19)

Substituting Eq. (5.17) and Eq. (5.19) into Eq. (5.11), the upperbound of the
probability of event error P; becomes

Py S P[Xngexp{— A2(1- cos(g, — ¢, )] explao2 A2 [2(1-cos(g, -4}

L=l Xy X #X

(5.20)
As presented in Section 5.2, the tightest upperbound of Pz can be obtained

by selecting the Chernoff bound parameter A', which minimises the
exponent function, exp[-Ax(xi, x%)] (Wozencraft and Jacobs, 1965).
Consequently, the optimum value of the Chernoff bound parameter, ', will

be the one, which yields

0 A
Y {expl=A, (x,,x))]}=0 (5.21a)
and aiz,z fexp[-A, (x,,x)]}y0  for 17> 0. (5.21b)

By applying the condition given in Eq. (5.21a) to Eq. (5.17), we obtain,
|x, —x,'c|2[46ik ’—1]: 0.
This results in either,

2
r
|xk —xk| =0

or A= 12 ;
4o

Using the relationship of Eq. (5.21b), we obtain that

o* . '
— 7 lexpl-4, (3, )]}=0 when [x, —x[ =0,
o? 1 ,
and fexpl-A, (x,.,x,)]}) 0 when &’ = and {x, —x'| #0.
akﬂ fIR NS A } 46?( | 1 k|

There will always be some values of k in which |x, —x;|" =0. Thus, the only

realistic value of the Chernoff bound parameter A', which yields the

96



minimum exp[-4; (x, x%)], satisfying the conditions given in Eq. (5.21a) and
Eq. (5.21b) can be obtained as
I

;L,opt - _2
do

(5.22)
Applying this value of X'y, in Eq. (6.20), the tightest upperbound of P can
be expressed as
] L -
Pi< Z Z P[XL]H exp{(4 J[l—cos(gbk ~d; )]} (5.23)
L=] k=1

1
7
X, X=X Ok

Assuming that the signal power of the transmitted sequence is normalised to
unity, the ratio of the transmitted signal energy E to noise spectral density Ny,
can be expressed as

_1

3 -

(5.24)

Z| =

c

As discussed in Section 4.3, the energy of the transmitted coded bits E for
rate-Y2 codes is half the energy of the individual input bits E;, i.e., F=Ey?2.

Moreover, as discussed in Section 5.2.1, o2 = ¢ /2, so that, Eq. (5.24)

becomes
E_.E _1_1
N, 2N, ¢’ 20}

Consequently, £ - Lz . (5.25)
N, oy

Substituting Eq. (5.25) in Eq. (5.23), the upperbound of Pz in the presence of
AWGN becomes

Pe<y Y 3 Ax]] exp{[;m[l—cos(@—¢;)]}- (5.26)

L2 XL k=1
Jets)
with the incremental decoding metric

& (xx, x%) = [1—cos(g, - ¢/)] . (5.27)

Eq. (5.26) may also be expressed as

PEsiz > P[XL]ﬁ epo;ﬁa

Xp X1#X, k=1
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5.2.2 Distance metric for amplitude-fading channels

The upperbound of probability of error Pz, as given by Eq. (5.26) for an
AWGN channel has been obtained assuming that the received sighal
samples are independent random variables. However, in a fading channel,
this assumption may not be valid as the signal samples are usually
correlated. Moreover, bit interleaving may be applied to make the signal
samples uncorrelated, so that the same bit error probability bounding
techniques for an AWGN channel may be adopted for the fading channel. In
practice, the depth of interleaving is finite, but for the purpose of analysis in
this study, bit interleaving of infinite depth is assumed. As the ideal
interleaving is assumed for this analysis, the actual bounds obtained may be
somewhat worse than the bounds obtained in this study.

In a mobile environment, where there is no line-of-sight propagation, the
amplitude of the received signal follows the Rayleigh distribution given by
Pp)=2p exp(- ) P20
=0 p<0 (5.28)
where p(p) is the pdf of the normalised amplitude fading p, of the received

signal.

If xi=exp(jd) is the signal transmitted over a fading channel at a given time %,
then the received signal y; can be expressed as
V&= prexp [j(g + AGy)] + g (5.29a)
Here, p; is the time varying random amplitude and A4, is the time varying
phase introduced by fading at time % In view of the assumption of a
memoryless channel, the os are independent random variables. It is
assumed in this analysis, that the phase variations caused by fading of the
received signal is zero, i.e., AG= 0. Consequently, only the effect of fading on
the amplitude of the received signal is considered. As a result, the received
signal y; at a given time £ may be expressed as
Vi= preexp(de) + n.
= o X + P (5.29b)
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As the Gaussian noise #;, can now be expressed as

Ay = Yi=Pk Xi-

The pdf of n;, becomes

o) = szlccz exP[_ g::l J

|.Vk —kak|2]-

1
exp| -
V2o’ p[ 26°

As discussed in Section 5.2.1, the maximum likelihcod decoding metric

(5.30)

corresponding to the correct sequence, m(yxxy), for the amplitude-fading

channel can be written as
m(e, x) = In [p(n, )].
From Eq. (5.30),

= 1 _ |yk "kak|2
m{yi, x) = In Jono? CXP[ Ty
_ln 1 Iy](_pxxk|2 531
= — S0 . (5.31a)

Similarly, the decoding metric corresponding to the incorrectly decoded

sequence, m{y.x %), can be expressed as

(5.31b)

.2
m(Vk.x'k)=1n[ ! ]- e = .5 .

Vimet) 2o

Now, using Eq. (5.6), the upperbound of the conditional probability of event
error, (Pg |p), over an amplitude-fading channel can be expressed as

(Pl <33 PIX.] PIXH] Xo) (5.32)

L=l X X;=zX
As given in Eq. (5.10) and Eq. (5.11), the conditional probability P(X7| X.),

over amplitude-fading channel can be expressed as
L L
P(x;|x, )= P{(Zm(yksxi) - Zm(yk.x,,)] > 0|XL}
k=1 k=1

L
< H expl-Az (¥e, X %) fuding (5.33)
k=1

where
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expl-41 (s, % 8] g = Elexp[M(m(y,, %) ~ m(y,, s )| X, }
The resulting upperbound of the conditional probability of event error, (P |p),

for an amplitude-fading channel can then be expressed as

L

(Pelo) ST Y PIXAT] expl-di (om0 g (5.34)

X, X=X, k=1

Using the corresponding decoding metrics given in Eq. (5.31a) and Eqg.
(5.31b), the exponent function, exp[-4; (x& x%)]fuaing, for an amplitude-fading

channel can be obtained as

A
expl-As (x¢, x D] juding = E {exp{ 5

2
g

= pesif + b= o )}}XL}
= Eloxp [ [y - o+ - pnf) X, | 6:39)

where \'=—;.
2o

Evaluating the statistical expectation operation, Eq. (5.35) can be simplified
as shown in Eq. (C.8) of Appendix C as

exbl- A, e x My =ex0l 22020, - 5if Joxolot 2o, ). (5.38)
From Eg. (5.19), |xe-x%]% = 2[1-cos (¢ - ¢% )], so that Eq. (5.36) becomes

expl- 415t Wiang=expl- 107 [2(1 - cos(p, - ) expleoin o} [2(1 - cos(p, - 91))]}

(5.37)
As discussed in Section 5.2, the tightest upperbound of the conditional
probability of event error, (P |p), over an amplitude-fading channel can be
obtained by selecting the Chernoff bound parameter, 1/, which minimises the
exponent function, expl[-A; (xx, x %)]wang- Using the first and the second partial
derivatives of exp[-A; (xi, x 1)]adng. the optimum value of 1/ which produces
the minimum value of exp[-4; (xz, x Y)]aing can be obtained as shown in Eq.
(5.21a) and Eq. (5.21b) as

1
402

()‘-" opt )fading = (5 38)
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Applying this value of (X' opt )ramg in Eq. (5.37), the resulting upperbound of
the conditional probability of event error, (Pz |p) for an amplitude-fading
channel given in Eq. (5.34) can be expressed as

Pslp) <33 > P[XL]H exp{[ ]p,, [1-cos(g, -4 )]} (5.39)

L=l X, Xp=X;

Recall from Eq. (5.25), 2= L so that
N

o Ok

e <33 ¥ ] p{[

L=l X; Xp=X

Jpﬁ [t - cos(g, —4; )]}. (5.40)

Now, the probability of event error, P, can be expressed as

+o0

P, = [(lp)ptordo.

—a

This results in

szxz Y Pixg 1‘[ j eXP{(

Xp#Xy

5]"* [1-cos(e, ¢k)]}P(m)dpk.

(5.41)
Using the pdf of the amplitude fading, p(p) given in Eq. {5.28), Eq. (5.41) can
be expressed as

PesYY Y P[XL]H I (;ﬁ

L=l Xp X=X,

jps [, )]} 2w exple pEon

(5.42)
The integral in Eq. {(5.42) can be simplified, so that

J exp{[ n ﬁ” ]pf [t cos(y, -4 )]} 20xp(- p; el =

i E
2p.expi—|1+—2
I Pr p{ |: AN

0

B —cos(d, ~4; )]}pz}dp,,

(5.43)
The integral on the right hand side of Eq. (5.43) can be represented in the

-¢;)1]

0

form, I2 pexp(-p u)dp, where u = |:1
¢
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Since the above integral can be expressed in the form of the pdf of Rayleigh

distribution, it can be shown that (Lathi, 1995), jzup exp(-p’u)dp = 1, which
0

leads to [2pexp(-p’u)dp = 1/u. With this simplification, Eq. (5.43) can be
h]

expressed as

T . D{[ 4N, ka [1 - cos(g, - M]} 2pexp(- o} ok = [

[

iﬁo [l -cos(g, -¢; )]T :

(5.44)
Substituting Eq. (5.44) in Eq. (5.42), the probability of event error, P, for an
amplitude fading channel can be expressed as

Pe<3y > mal] 1

L=l Xp Xp=X,

[1 cos(¢, — ¢, )]T- (5.45)

5.2.3 A summary on the upperbound of the probability of event
error

From Eq. (5.26) and Eq. (5.45), the upperbounds of the probabilities of event
error Pz, for an AWGN channel and an amplitude-fading channel are

expressed as follows:

For an AWGN channel,

Pis ZZ > P[XL]H epo ] (x,,x, )} (5.46a)
L=l X, X =X,
and for an amplitude-fading channel,

Ps3y > ] {i

L=1 XL XL*XL

X, )} (5.46b)

where, d°(x,,x;)=[1-cos (¢ - ¢%)].
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5.3 Bounds of the Bit Error Probability

Now, if E; is an L-sequence of error vectors (e, ez,..., €21, ), the incorrectly
detected sequence X7=(x1, x5,..., x .1, x7) may be expressed as

X1 =XDE;.
where X, is the transmitted sequence and the symbol @ represents
exclusive-OR logic operation. As such, E; will be zero whenever X:=X}.
Then, the upperbound of the probability of event error P, for an AWGN

channel as given in Eq. (5.46a) may be expressed as

P <Z >y P[XL]H exp|:[ . Jd (xk,xk)}

Fyy P[XL]epo sz (xk,xk}

L=l E 20X, k=l

)i > W(EpD (5.47a)

120

where

W(Ep) = Z PlXi] exp|:(

Xy

JZ d*(x,,x, )} (5.47b)

okl

From Eq. (5.47a), it can be seen that the probability of event error Pg, is
upperbounded by a sum, over the possible error events, of functions of the
vectors E; causing the error events (Biglieri et al, 1991). As shown in Biglieri
et al (1991), these functions W(E;) may be obtained using the error state

diagram representing the particular trellis coded scheme.

For linear codes, the error state diagram of a coded scheme may be
obtained assuming that an all-zero coded sequence has been transmitted
(Proakis, 1988). Then, a decoding error is said to occur whenever the all
zero path is not the survivor. Consequently, in an error state diagram, each

path connecting the initial state to the final state represents a non-zero
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codeword. A detailed description of the error state diagrams can be found in

(Bhargava et al, 1981; Viterbi and Omura, 1979).

As shown in Biglieri, et al (1991), each path representing a non-zero code
word in the error state diagram may be represented by an N x N error weight
matrix G(e) with N being the number of bits in the codeword. For example for
rate-% trellis coded schemes, N becomes 2 and the general form of the error
weight matrix G(e) corresponding to an error vector e=(e;e;) may be defined

as (Biglieri et al, 1991)

piren-reee)l plruo-siee)f

Glerex)p = = . o (5.48)
2 | plren-ree) plun-r@i]

b

where D = exp[— 2
4N,

J and e denotes the complement of e. The sub script ¢
[/

in the matrix in Eq. (5.48) represents the initial phase state of the path in the
error state diagram corresponding to the error vector e=(eje;). If the error
vector e is (11), then ||£(00) - £ (eiez)“2 becomes the distance metric between
the two coded signals (60) and (11) having a phase ¢ corresponding to the
initial state of that path. These distance metrics may be evaluated using the

decoding metrics given in Eq. (5.27).

As discussed in Biglieri et af (1991), the total error weight matrix representing
all the error events becomes the product of the path error weight matrices
along the path connecting the initial state to the final state of an error state
diagram. As a result, W(E;) in Eq. (5.47b) is shown by Biglieri et a/ (1991) to
be

W(E;) = %ﬂf{ Gley) 1 (5.49)

k=1

where 1 is a column N-vector with all the elements equal to 1.
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Substituting Eq. (5.49) in Eg. (5.47a), the upperbound of event error

probability Pz, may be expressed as

P si > %f H Gley) 1. (5.50)

L=1 E, 0

The set of error weight matrices corresponding to all the non-zero codewords
of the error state diagram may be represented by the matrix transfer function

of the error state diagram G (Bhargava et al, 1981) as

G= iz f[ Ge). (5.51)

L=] Eg#0 k=1
For any N x N matrix A, 1’A1 becomes the sum of all the entries in A.
Therefore, the scalar transfer function of the error state diagram 7(D) may be

expressed as (Bhargava et al, 1981)

T(D) = —;\713’"(; 1. (5.52)
Consequently, from Eq. (5.51) and Eq. (5.52), the upperbound of event error
probability Pz, given in Eq. (5.50) may be expressed as

Pz< T(D) whereD= exp[— £, ] (5.53)
4N,

So far in this chapter, we have discussed the upperbound of the event error
probability, P;. However, from the user point of view, the number of
information bits decoded in error, that is, the bit error probability is a more
important and practical performance measure compared to the event error
probability. Hence the upperbound on the bit error probability is next derived
using the transfer function approach used in finding the bounds of event error
probability. According to Biglieri ef al (1991), this may be obtained by
incorporating the number of information bits in error in the corresponding
error weight matrices G(e,) resulting from the incorrect path decision.
Assuming that the all-zero code word has been transmitted, each error
weight matrix is multiplied by a factor J*, where ¢ is the number of non-zero
information bits associated with the corresponding error vector (Bhargava et
al, 1881). Accordingly, each error weight matrix corresponding to a non-zero
information bit is multiplied by a factor J'=J and else is multiplied by J’=1. For
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example, consider the trellis diagram of a code shown in Fig. 5.1a. The split
and merge paths in the trellis diagram, creating an error event are shown in
bold face in Fig. 5.1b. The error state diagram corresponding to the trellis
diagrams shown in Fig. 5.1a and Fig. 5.1b is presented in Fig. 5.1c. In the
error state diagram of Fig. 5.1¢, each path connecting the initial state A to
the final state C represents a non-zero codeword.

000 000 000

1

71
state at state at
t=(n-1)T, t=nT,
b
@ ®)
G
G ( > G0l
A B C
binary state binary state binary state
[/ 1 ]

{c)

Figure 5.1 (a) Trellis diagram (b) Trellis diagram showing the error event (c)
Error state diagram for a two-state trellis coded scheme.

It is observed from Fig. 5.1b and 5.1¢ that the transition from the initial binary
state 0 (state A) to binary state 7 (state B) corresponds to the error vector 10
in the error state diagram. Furthermore, it can be seen that the number of
non-zero information bits associated with this incorrect path decision is one.
Consequently, this may be incorporated by multiplying the elements of the
corresponding error weight matrix G(18) by a factor J, as discussed in the
previous paragraph. Using this method, the transfer function of the error
state diagram 7(D,J) incorporating the number of information bits in error
corresponding to transition from one state to the other in the error state
diagram, may be obtained by multiplying each error weight matrix by ./
where ¢is the corresponding number of non-zero information bits associated
with those error vectors. Thus the exponent of J in each term of 7(D,J) gives
the number of information bits in error for the paths corresponding to that

term. Therefore, the number of bits in error for each path can be computed
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by differentiating 7{D,J) with respect to .J and then letting /=1 (Bhargava et a/,
1981). As a result, Biglieri et al (1991), expressed the upper bound on the bit
error probability as

0
Py < ET(D'J)| J=1,D=exp{-E,/ 4Ny ) * (5-54)

Furthermore, Biglieri et al (1991) have shown that an upperbound on the bit
error probability, P;, tighter than the one given in Eq. (5.54), may be obtained
by expressing the conditional probability P(X%| X;) as (Viterbi and Omura,
1979)

k=t

PX'| Xp = %erfc H

sz (x,,x, )} . (5.55)

G

Using the inequality (Bhargava et al, 1981, Viterbi and Omura, 1879),

erfc[Jx;st erfc (\/%J exp [%] x=20and y20 (5.56)

and the free distance, ds.. of the coded scheme, the error function in Eq.

(5.55) may be expressed as

E, E E
erfc d*(x,,x")——2-d% |<erfc b2
{\f 4N, e 4Nﬂ ,tz, (s ) 4N, f’""“J ( 4N, T

€X
p(4N Jree 4N0 ;d (xk k)J

(5.57)
Substituting the inequality given by Eq. (6.57) in Eq. (5.55), the upperbound
of Pz as given in Eqg. (5.6) may be expressed as

Pi< é»erfc( 4}; d;m] ( fmJ Z Z Z PiX;] exp|:(

L=l E 20 X,

)|

k=1

(5.58)
As shown in Eq. (5.47a) and Eq. (5.47b),

Yy P[xgexp[[ jd(} $ W,

L=1 E;#0 X, 1=1 E; 20

From Eq. (56.49) and Eq. (5.51), we obtain

Z > WEL= —ITG 1 (5.59a)

L=] E; =0
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By applying Eq. (5.52) in Eq. (5.59a)
> > W(E) = T(D) (5.59b)
L=1 E; =0
Substituting Eq. (5.59b) in Eq. (5.58), an upperbound on the event error
probability, Ps, for an AWGN channel may be expressed as (Biglieri et al,
1991)

1 E E
Pp< —erf b2 b4 | T(D). 5.60
E 26 C( 4N0 free]exp[4N‘? fnee} ( ) ( )

Similarly, using Eq. (5.54), Biglieri et a/ (1991) have obtained a tighter upper
bound on the bit error probability, Py, as

1 E E, 0
Py< 5 erfc( Zﬁ—o- dfree ] exp [ﬁ dfnee] "é'}"T(D: J)| J=1,D=exp(-E,/4N,) * (5.61)

L 2
Moreover, as the minimum value for [[4% JZdZ(x,(.x,:)} in Eq. (5.55)

0 F k=

corresponds to the free distance, it has also been shown in Biglieri ef af
(1991), that the lower bound on the bit error probability for an AWGN channel

IS given by
Ed’
Py= lf:rfc B e | (5.62)
2 4N, ,

From Equations (5.61) and (5.62), it may be seen that the upper and lower
bounds on the bit error probability of a trellis coded scheme over an AWGN
channel may be obtained based on the free distance of a particular trellis
coded scheme together with the transfer function 7T(D,J) of the error state
diagram representing the scheme. The free distances of the selected trellis
coded schemes have been obtained in Chapter 4. The derivations of the
transfer functions of the corresponding error state diagrams of these selected

trellis coded schemes will be discussed in the following sections.
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5.3.1 The transfer function of the error state diagram of the trellis
coded scheme having constraint length 2 over AWGN
channels

In this section, the error state diagram of the selected treilis coded scheme
having constraint length 2 is first obtained using the combined trellis diagram.
As shown in Table 4.6, code [3,1] has been selected as the appropriate code
having constraint length 2. The ftrellis of the code [3,1] having constraint
length 2 combined with differentially encoded GMSK, and the trellis diagram
of the code [3,1] alone have been reproduced from Section 4.4 and shown in
Fig. 6.2a and Fig. 5.2b, respectively. Assuming that an all-zero coded
sequence has been transmitted, the error state diagram of this trellis coded
scheme can be represented as shown in Fig. 5.3. it is observed from Fig.
5.3, each path connecting the initial state (0,0°) at node (0), and the final
state (0,0°) at node (4) represents an error event. Let the matrix transfer
function at any node (i) be denoted by &, and the branch matrix labels are
denoted as ¢, 5, #3, ..., 7. Thus, the matrix transfer function, G of the error
state diagram shown in Fig. 5.3 may be expressed by &. It may be seen
from Fig. 5.3, that node (4) can only be reached from node (3) through the
branch having the matrix label #;. Thus, the matrix transfer function G of the
error state diagram may be expressed as (Biglieri ef af, 1991)

G=&H (5.63a)

Furthermore, it may be observed that node (3) can be reached either from
node (2) through the branch labelled as #, or from node (1) through the

branch labelled as #. Thus, & can be written as

G=htriiy (5.63b)
Similarly, LE=&Kt& b (5.63c)
and &=t t &ts (5.63d)

According to Biglieri et af (1991), the branch matrix labels 1, 1, t3, ...., t; of the
error state diagram may be obtained using the error weight matrix G(e)y as

given in Eq. (5.48). From Fig. 5.2a and Fig. 5.3, the branch matrix label #
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representing the transition from the state (0,0°) to (1,148°) corresponds to the
error vector e=(11). Similarly, it may be observed that the other branch matrix
labels in the error state diagram r,, #, ...., t; correspond to the following error
vectors:

tr—e = (01) initiating from the phase state of 148°,

t;—e = (10) initiating from the phase state of 0°,

t—e = (10) initiating from the phase state of 148°,

ts—e = (11) initiating from the phase state of -148°,

ts—e = (01) initiating from the phase state of 0°' and

t—e = (00) initiating from the phase state of -148°.

(0,0 0/00 - y (5.0
(1,148 TII (11480)
(0,-148% (0,-148%

10"y e e _____ 4 - >3 (1,0%)

180°
e overoneinput ___
bit period T,
(a)
000

0

I

state at state at
=(n-DT, t=nT,

(b)

Figure 5.2 (a) Trellis diagram of the code [3,1] combined with differentially
encoded GMSK (b) trellis diagram of the code [3,1}.
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{0) 5y s /(1) &3 £ (4)

@0 (41,1439

(0,-148% (0.0

Figure 5.3 Error state diagram of the code [3,1] in combination with
differentially encoded GMSK.
Now, from Eq. (5.48), the error weight matrix G(e), representing ¢, may be

expressed as

1 | prem-seent’ plfao-iee 'l

Gleg = — o - (5.64)
2| plren-res) plrun-r@en|

where e=(11) and ¢= 0°. Then, |f(00)~ f(ee,)] in the matrix Ge)y

becomes the distance metric between the two coded sequences (00) and
(11) having the initial phase state of 0°. The phases corresponding to these
transmitted coded bits required in obtaining the distance metrics for AWGN
channels, as given in Eq. (5.27) may be obtained using the finite state
diagram of the differentially encoded GMSK signal as shown in Fig. 4.7. For
the purpose of easy reference, this finite state diagram has been reproduced
in Fig. 5.4.

32° 148°

/ , / I
’ —

a o 7 s | o " 1807 1
o

\ ¢

-32° -148°
@

Figure 5.4 The finite state diagram of the differentially encoded GMSK
signal.
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As observed in Fig. 5.4, the phase state at the end of the two coded bits (06)
initiating from phase state of 0° becomes 0° going through the intermediate
phase state of 0°. Similarly, the phase state at the end of coded bits (11)
initiating from the phase state of 0° becomes 148° going through the
intermediate phase state of 32°. Then, the distance metric in the presence of
AWGN, between the two coded signals (00) and (11) having the initial phase
state of 0° may be obtained using Eq. (5.27), such that

|700) - faD] = [1-cos(0>-32°)#[1-cos(0°-148%)]
=2, (5.65a)

Similarly, |/(10)~ f(ae,) in the matrix G(e)y, as given in Eq. (5.64)

represents the distance metric between the two coded signals (10) and (01)
having the initial phase state of 0°. From Fig. 5.4, it may be observed that the
intermediate phase states corresponding to these two coded signals become
32¢ and 0°, respectively. The corresponding phase states at the end of the
two coded bits become 180° and 32°, respectively. Consequently, the

corresponding distance metric over AWGN between the two coded signals
(10) and (01) may be obtained as

|720)- 1w, )“2 = [1-cos(32°-0°)]+[1-cos(180°-32°)]
=2 (5.65b)

’ of the error

The remaining elements || FOD - f(ee,) * and ” FUD - flee,)

weight matrix G(e), as given in Eq. (5.64), represent the distance metrics
corresponding to the coded signals [(81), (16)], and [(11), (00)], respectively.
These elements may also be cbtained using the phase values of the states
corresponding to the respective coded signals. From Fig. 5.4, the phase
states corresponding to the two coded signals (01) and (1) become (0°,32°%)
and (32°,180°), respectively. Moreover, the phase states corresponding to the
two coded signals (11) and {(#0) become (32°,148°) and (0°,0°), respectively.
Then the corresponding distance metrics over AWGN between these coded

signals may be expressed as
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lron- 1 E)H2 = [1-c08(0°-32°)] +[1cos(32°-180°)] = 2 (5.65¢)
and
lrun-f (X%)Hz = [1-cos(32°-0°)]+[ 1-cos(148°-0°)] = 2. (5.65d)

Now, the error weight matrix G(e);s, as given in Eq. (5.64), representing the
branch matrix label 1, from node (0) to (1) of the error state diagram, may be
obtained from the Equations (5.65a) to (5.65d) as
1{D* D

t =GN y= = . 5.66

1= G 2{1)2 D2:| (5.66)
As shown in Fig. 5.2a and Fig. 5.2b, the input bit corresponding to the error
vector e=(11) representing the transition from the state (9,0°) to state (7,148°),
is 1. The number of non-zero input bits in error in this transition may be
incorporated in the error weight matrix by multiplying the elements of the
corresponding error weight matrix G(11) by a factor J as discussed in Section

5.3. Accordingly, the branch matrix label #; may be expressed as

1 | D* D?
fH = —-J
2 |\p*D?
1 1
= lDZJ[ } (5.67a)
2 1 1

Similarly, the rest of the branch matrices labeled 1, #,...., #; as indicated in
the error state diagram of Fig. 5.3 may be obtained using the same
procedure, such that

o o= GODug (5.67b)
5 = G0)ew (5.67¢)
o= G0 (5.67d)
ts = GUDiusJ (5.67¢)
s = GODgJ (5.67)

and = G(00)1ase (5.67g)

With the corresponding error weight matrices given in Equations (5.67b) to
{6.67g) obtained using Eq. (5.48), the branch matrices 5, #;, ...., t; may be

expressed as
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1 1
t = %D‘“SZJ{ ] (5.68a)

1 1
1D ps
3 = 5 pris ppis (5.68b)
1 D].Sg Dl 59
I = E pAist pris (5.68c)
1 1 1
t = —D%J 5.68d
: ! [1 J (5.684)
1 o241 1
t, = —D"eT 5.68e
: ! L J (5.68¢)
and o= 4P (5.68f)
’ 201 1 '

Substituting the branch matrices given in Eq. (5.67a) and Equations (5.68a)
to (5.68f) in Equations (5.63a) to (5.63d), the matrix transfer function G of the
error state diagram in the presence of AWGN can be derived as shown in
Eq. (D.7a) of Appendix D, such that

DZJ(DI.SQ +D2.152) 1
2[2 - 2D0.152J_ DEJ(D].SQ + DZ.[SZ)] 1

G l] (5.69)

1
According to Eq. (5.52), the transfer function of the error state diagram
7(D.J}, is then given by

T(D.J) = %17"(; 1 (5.70)
As discussed in Section 5.3.1, for rate-2 coded schemes, N=2 and 1 is a

column N-vector with all of its elements equal to 1. As a result,

1 D2J(Dl.59 + D2.152) 1 1 1
TD,J)=— 11
( ) 2 2[2 _ 2D0.152J _ D2J(Dl.59 + D2.152)] [ ] 1 1 1

DEJ(D].Sg + D2.152)
T 2=2D" ) D'J(D + D)

(5.71)
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5.3.2 The transfer function of the error state diagram of the trellis
coded scheme having constraint length 2 over amplitude-
fading channel

As shown in Eq. (5.46a) and (5.46b), the upperbound of the probability of
event error P, for an amplitude-fading channel can be obtained by replacing

the function exp —E
4N

0

Jd”'(xk,x,'()}in the upperbound for an AWGN channel

-1
by the function {1+ E, dz(xk,x,'c)} . As a result, the elements of the matrix
4N

o

Gle)s given in Eq. (5.48) over an ampiitude-fading channel may be obtained

-1
by merely replacing D° by {1+ 4% 5} , where § is the distance metric over
[

an AWGN channel.

The transfer function of the error state diagram 7(Z./) over an amplitude-

fading channel is derived, as shown in £q. (D.7b) of Appendix D, and is

given by
TZ.) = (1+2Z2)"J[(1+1.592)" + (1 +2.1522) ]
‘ 2-2(1+0.1522)'J - (1+22) " J[(1+1.592)" + (1 +2.152ZY']}
(5.72)
where Z = E, denotes the average bit energy to noise spectral density ratio.

[

5.3.3 The bounds on the bit error probability of trellis coded
GMSK scheme having constraint length 2

According to Eq. (5.61), the upperbound on the bit error probability P,
depends on the derivative of 7({D,J) with respect to J. Now, by taking the
partial derivative with respect to J of T(D,J) as given in Eq. (5.71), it is shown
that
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_ (.152 _ 2 1.59 2.152 2 1.59 2152
Doty = 22D DDA D MDD+ D)
57 D-expl=E /4N, [2-2D2J_D'J(D'® + D*'%)]

) DZJ(DI.Sg +D2‘]52)[—2D0'152 ""“Dz(Dl'Sg + D2.152)]
[2 _ 2D0.152J - DZJ(DI.SQ + D2.152}]2

2D2(D1.59 + DZ.]SZ)
= [2_2D0.152 _DZ(D1.59 +D2.152)]2 "

(5.73)

As given in Table 4.6, the free distance dzﬁee, of the selected code [3,1] when
combined with differentially encoded GMSK is equal to 6. Using this value of
d2ﬁ—ee and the derivative of 7(D,J) as given in Eq. (5.73), the upper bound on
the bit error probability, [Ps].s., of the trellis coded scheme having constraint
length 2 over an AWGN channel may be obtained from Eq. (5.61), such that

1 6E 6F 2D2(D1.59 +D2.152)
Pylus < —erfc ¢ e b . 574
[Pslus. 5 { 4N9J xp(‘lNoJ [2—2D"% _ pi(D'® + D) ( )

where D =exp| — E,
4N

[

J. However, note that this bound is only valid over the

range of E,/N, values for which the denominator in Eq. (5.74) is not equal to
zero. Similarly, the lower bound on the bit error probability, [P;);;, of the
trellis coded scheme having constraint length 2 over an AWGN channel may
be obtained using Eq. (5.62) as

(Psliv. = %erfc[ }jﬁi J . (5.79)

Furthermore, the upperbound on the bit error probability of the trellis coded

scheme over an amplitude-fading channel may be obtained using the
transfer function of the error state diagram expressed in Eq. (5.72). By
analogy with the upperbound on the bit error probability over an AWGN
channel, as given in Eq. (5.54), the upper bound over an amplitude-fading

channel may now be expressed as (Biglieri ef af, 1991)

?
Py < 5T(Z,J)| ze e (5.76)
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Now, by taking the partial derivative with respect to J of the transfer function
of the error state diagram 7(Z,J) over an amplitude-fading channel as given in
Eq. (5.72), it is shown that

0
ET(Z: INra.z=5,a8, =
f2-201 +0.1522)_1J - +2Z)"'J[(1 + 1.592)"1 +( +2.1szz)"1]}(1+ 22)’1[(1 + 1.592)‘l +(1 +z.1szz)‘1]

2-20+0122) Yy —a+ 22y T apa 159y £ (1 +2.1522) 712

Ca+2zy e usezy T e 2asezy e v 015221 a2z e 1592y e (e 2152277y,
2-20+0.1522) V —a+22) L+ 1592y e 21522y 712

_ 20+2Z) ' [(1+1.59Z)y 1+ (1+2.152Z) ]
{2-2(14+0.1522) ' —(1+2Z) '[(1+1.59Z)" + (1 + 2.1522Z)™"}?

(5.77)

From Eq. (56.76), the upper bound on the bit error probability, [P3])..s., of the
selected trellis coded scheme having constraint length 2 over an amplitude-

fading channel may be expressed as

20+2Z2)7[(A+1.592) '+ (1+2.1522)™]
2-2(1+0.1522)" = (1+2Z2) [+ 1.592) + 1 +2.1522)"]¥°

[Pb]mb.s

(5.78)

where Z = i’; denotes the average bit energy to noise spectral density ratio.
0

Again, the bound is only valid over the range of E,/N, values for which the

denominator in Eq. (5.78) is not equal to zero.

Using the expressions given in Equations (5.74), (5.75) and (5.78), the
bounds of the bit error probability for the trellis coded GMSK schemes
combined with code [3,1] over AWGN and amplitude-fading channels, are
plotted as shown in Fig. 5.5. It can be observed from Fig 5.5, the bounds
obtained for the AWGN channel are tight to within 2.5dB.
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Figure 5.5 The bounds of the bit error probabilities for the trellis coded
GMSK scheme in conjunction with the code [3,1] having
constraint iength 2 for AWGN and amplitude-fading channels.

5.3.4 The transfer function of the error state diagram of the trellis
coded scheme having constraint length 3 over AWGN
channels

As shown in Table 4.6, code [7,3] has been selected as the appropriate code
having constraint length 3. The trellis of the code [7,3] alone, and the trellis of
the code [7,3] combined with differentially encoded GMSK have been
reproduced from Section 4.8 and shown in Fig. 5.6a and 5.6b, respectively.
Assuming that an all zero coded sequence has been transmitted, the error
state diagram of this trellis coded scheme can be represented as shown in
Fig. 5.7.
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o/00

o0

101 . — » oI

10
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state at state at
t=(n-1)T, t=nT,

(00,0°) (90.0%)
(01,148°) (01,148°)
(16,180°") (10,180°")
(11,-32°) (11,-32°)

(00,-148°) (00,-148°)
(01,0°) (01,0°")
(10,32°) (10,32°)

(11,180°) (11,180°)

< over one input >
bit period 7,

(b)

Figure 5.6 (a) The trellis diagram of the code [7,3] (b) Treliis diagram of the
code [7,3] combined with differentially encoded GMSK.

119



(11-32)
3)

y S
(”‘(’;0) (07,148) (70,1807 (00,-148) (00,09
o m @) ™ ®

%

Note : Here the phase states are in degrees

Figure 5.7 Error state diagram of the code [7,3] in combination with
differentially encoded GMSK.
Let & denotes the matrix transfer function of node (i), and the branch matrix
labels as #, t3, f3, ...., 115 as presented in Section 5.3.1. Accordingly, the matrix
transfer function G of the error state diagram shown in Fig. 5.7 may be
expressed as &. It may be seen from Fig. 5.7, that node (8) can only be
reached from node (7) through the branch having the matrix label #. Thus,
the matrix transfer function G of the error state diagram may be expressed
as (Biglieri ef al, 1991)
G=&1y (5.79a)
Furthermore, it may be observed that node (7) can be reached either from
node (2) through the branch labelled as ¢, or from node (6) through the

branch labelled as 3. Thus, & can be written as,

&G=&hatoh (5.79b)
Similarly,

&= &l t&ahs (5.79¢)

E=tint b its (5.79d)

L= &b+ &by (5.79%)
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&G=bih+sm (5.79 f)
L=hh+&stp (5.79g)
and 51 =hH + 57 tg (579h)

As discussed in Section 5.3.1, the corresponding branch matrices labelled #,

ty, 83, ...., his, over an AWGN channel may be obtained as

11

H = G(]'l')(()o).)l = %D2J|:1 l:| (5.80a)
111

) = G(ﬂm)(mgc')j = :?— J[l 1:| (5.80b)

1 1

H = GUDuw = %DZL J (5.800)
1 Dl‘59 Dl 59

4 = G0y = : [DM o (5.80d)

1 1
fs = G0y S = %DO'ISZJL J (5.80e)
1 1

= GODwe = —pU® (5.80 )
2 11
1 D2.l52 D2.152

f—,r = G(I 0)(_320)}1 = 5 Jl:D1.59 D1.59 (5.809)
1 1 1

fs = G D1agy = ED%*L J (5.80h)

5 = GO0 -y (5.80i)

9 (-148%) 2 |1 1 .

1,,[1 1 .

no = Gl = 5”2[1 1] (5.80j)
1 |1 1

fh = GO0 = EJL J (5.80k)

1 1
e = GODgm) = %D‘“ﬂj[l J (5.801)
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o= GUOew = 4 [D D} (5.80m)
3| e pprs

he = GUOun) = 1J[D2"52 D} (5.80n)
2|0 D

and fs = GODagy = %D(“”E IJ (5.800)

Substituting these matrices 1, ©, £, ...., #15, in Equations (5.79a) to (5.78h),
the matrix transfer function G of the error state diagram representing the
trellis coded scheme having constraint length 3 code over an AWGN channel
can be obtained as discussed in Section 5.3.1. However, the solution of
these set of equations may not be as simple as the one discussed in Section
5.3.1, due to the increase in the number of equations and the number of
matrices involved. Therefore, the set of Equations (5.79a) to (5.79h), to be
solved in this case has been first formatted into the form of a set of linear
equations by considering the matrices by their elements. Solving these set of
linear equations as discussed in Appendix E, the matrix transfer function G of
the error state diagram has been obtained. Using Eq. (5.70), the transfer
function of the error state diagram 7(D.J) has been obtained as shown in Eq.
(E.21) of Appendix E, such that

on- s)
o I Hama))

(5.81)

where, pir= {B+hy p2=ps) and py =Em—ﬁ6).

B =D? B =D, B = D*'2 g = D% and D=exp{— 4?7\3; J

[
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5.3.5 The transfer function of the error state diagram of the trellis
coded scheme having constraint length 3 over amplitude-
fading channel

As discussed in Section 5.3.2, the transfer function of the error state diagram
T(Z.J) over an amplitude-fading channel may be obtained as shown in Eq.
(E.21) of Appendix E as

ZJ) = ] {[;f; ][pﬂJH; }} (5.82)

s e )

where, pi= {B+p} p2=p0 and py =Em—ﬁ‘i).

Bi={1+22), B={1+1.59Z)", fi={142.152Z}", f={1+0.152Z}" and Z= 4‘?\*; .

0

5.3.6 The bounds on the bit error probability of trellis coded
GMSK scheme having constraint length 3

As shown in Eq. (E.26) of Appendix E, the partial derivative of 7(D,J) with

respect to J over an AWGN channel may be expressed as

 LCR) PPN (5.83)
where,
=28, + ) B2 (8, + B+ 8212~ (8 + .)F + 48,5, (5.84a)
and
B, = {2- (8 + B2 - B8, + 8- 452 - 45.5] (5.84b)

Moreover, = D%, By = D'%, gy = D*'%, fi= D"'* and D =exp[— 4?1 J |
4

As shown in Table 4.6, the free distance dzﬁee. of the selected code [7,3]
when combined with differentially encoded GMSK is equal fo 8. Using this
value of &4.. and the derivative of 7(D,J) as given in Eq. (5.83), the upper
bound on the bit error probability, [Ps].»., of the trellis coded scheme having
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constraint length 3 over an AWGN channel may be obtained from Eq. (5.61),
such that

[Pblu.b.élerfc 8E, exp SE, | A (5.85)
2 4N, 4N, | B,

where 4, and B, are as given in Eq. (5.84a) and (5.84b) and D =exp[— 4% ] .
f

However, note that this bound is valid over the range of Ey/N, values for
which the denominator B; in Eq. (5.85) is not equal to zero. Similarly, the
lower bound con the bit error probability, [P];,., of the trellis coded scheme
having constraint length 3 over an AWGN channel may be obtained using
Eq. (5.62) as

1 8E
[Pb][.b,Z Eerfc[ 4—}\;;} . (586)

Furthermore, the upperbound on the bit error probability, [P].s., of the trellis
coded scheme over an amplitude-fading channel may be obtained using the
transfer function of the error state diagram expressed in Eq. (5.82). As a
result, the upperbound on the bit error probability, [P;).s., over an amplitude-
fading channel as given in Eq. (5.76) may be expressed as

Py < % (5.87)
2

Again 4, and B, are as given in Eq. (5.84a) and (5.84b). However, in this
case, G={1+2Z}!, B={1+1.592}", A={1+2.152Z}", B={1+0.152Z}" and

E,

Z= .
4N,

Now, using the expressions given in Equations (5.85), (5.86) and (5.87), the
bounds of the bit error probability of the trellis coded GMSK schemes
combined with code [7,3] over AWGN and amplitude-fading channels,

respectively may be obtained as shown in Fig. 5.8.

124



1.00E+00

T
—&—upper bound - amplitude fading
el —B—lower bound - AWGN
00202 | \ —S—upper bound - AWGN
1.

3
1.00E-03 - ——er \\ \\\L\
1.005-04 B
1.00E-05 -~ - \ \ . \n
1.00E-08 : \ B

100EQ7 —m
1.00E-08 Eamas
1.00E-09 . }\ \\

1.00E-10 \

1.00E-11 : \\
1.00E-12 |

1.00E-13 - S
Y] 5 10 15 20 25

Average £ ,/N, (dB)

1.00E-01

BER
P
//'

Figure 5.8 The bounds of the bit error probabilities for the trellis coded
GMSK scheme in conjunction with the code [7,3] having
constraint length 3 for AWGN and amplitude-fading channels.

5.4 Comments on the Analyses

From Sections 5.3.1 and 5.3.4, it has been observed that when the number
of states in the trellis diagram increases, the error state diagram becomes
complex and determination of the associated transfer function becomes a
tedious task. Therefore, the trellis coded schemes selected, which have up to
8 states in the combined trellis have only been considered in the analysis.
Moreover, these analyses of the bit error probabilites over an AWGN
channel are obtained assuming ideal carrier recovery and timing recovery
conditions. Therefore, the effect of possible practical impairments such as
phase and timing errors has not been evaluated. The effect of fading has
also been simplified by assuming that it only affects the amplitude of the
received signal. In practical situations, it may not be possible for the phase
variations of the received signal over a fading channel to be fully tracked. In
such situations, simulations may be more effective to study the exact system
performance, including practical impairments, rather than the bounds on the

bit error probabilities assuming ideal practical conditions. Therefore, in the
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following chapters the BER performances of the selected ftrellis coded
schemes over AWGN, and fading channels based on both frequency-

nonselective and selective conditions, are carried out using simulations.

126



CHAPTER 6

PERFORMANCE OF SELECTED TRELLIS CODED
GMSK SIGNALS IN THE PRESENCE OF AWGN

6.1 Introduction

The BER performances of the selected trellis coded GMSK schemes having
constraint lengths 2 and 3, in the presence of AWGN have been analytically
evaluated in Chapter 5. In the case of the frequency non-selective fading
environment, the theoretical analysis has been simplified to include only
amplitude fading.

In this chapter, computer simulation techniques have been used to evaluate
the BER performance in the presence of AWGN, when practical system

impairments such as sample timing error and carrier phase error are present.
6.2 Computer Simulation Model
The system model which has been adopted in this study, consisting of the

transmitter, the channel, and the receiver, is shown in Fig. 6.1.

Transmitter
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Figure 6.1 Simulation system model.
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In this model, the statistically independent random input binary data, {a,}, is
first derived from a pseudorandom sequence generator. The generated
random data {a,}, is then encoded using rate-%2 convolutional encoders.
Here, the encoding is carried out using the codes [3,1], [7,3], and [13,7] and
[15,7], having constraint lengths 2, 3, and 4, respectively as selected in
Section 4.8. The resulting encoded binary data {¢.}, is then mapped to
another sequence {b,}, such that 0— -1 and 1— +1. The data sequence {5,}
is then differentially encoded before applying to the GMSK modulator. As
discussed in Section 4.3, differential encoding is applied in order to reduce
the number of states required for Viterbi decoding. The output, 4, of the
differential encoder is obtained from the modulo-2 addition of b, and 4,.;. i.e.,
d,=b,Db,1 with @ denoting modulo-2 addition (or EX-OR logical operation).

After modulation, the equivalent complex baseband GMSK signal is given by

s(t) = Arcos @(t) + jAsin K1), (6.1}
where A,is a constant and ), the information bearing phase of the GMSK
signal is given by

p(=nh [ Y dg(z-ihdz (6.2)
Here, g(#) is the Gaussian pulse shape assuming By7=0.3. The resulting
complex baseband GMSK signal is then transmitted over an AWGN channel.
The complex AWGN is simulated according to the Box-Muller's
transformation (Dahlquis et al, 1574).

The received signal r(r) consisting of the transmitted signal s(z) added to the
AWGN n(s), is first filtered using an equivalent complex low-pass filter with
Gaussian impulse response. The inphase and quadrature components of the
filtered signal are subsequently sampled once every bit period, at the
instants where the eye opening is maximum. The phase value ¢{r), of the
received signal is then calculated according to

= tan! | 2T 1 10)
HnTio) = tan (Ir(nT+ta)j’ (6:2)
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where, 1, is the sampling time offset corresponding to the maximum eye
opening. L{nT+t;) and Q,(nT+t,) are the inphase and quadrature components

of the received signal at these sampling instants. They can be expressed as

L(nT+ty) = KnT+tg) + n{nT+tp) (6.4)

and Oi(nT+tp) = HnT+p) + np(nT+y), (86.5)

where, I(nT+1p) and n{nT+1t) are the inphase components of the transmitted

signal and the AWGN component at the sampling instants, respectively.

Similarly, O(nT+ty) and ny(nT+1) are the corresponding gquadrature
components. '

The computer simulations in this study are carried out using 8 samples per
bit period of the signal. With this choice, the sampling rate becomes
significantly larger than the signal bandwidth causing no appreciable aliasing.
Moreover, the number of samples per bit period in this case is large enough

to give a good approximation of the continuous signal that is simulated.
Therefore in the simulation, 7, has been replaced by k,7/8 where, & is the

number of samples giving an offset corresponding to the maximum eye

opening of the simulated signal. Then Eq. (6.3) becomes

(6.6)

HnTHTR) = tan” (Qr(nT + koT/S))‘

I(nT +&,T/8)

These phase values of the received signal are used in the trellis decoder,
employing the Viterbi algorithm, for determining the most likely transmitted
sequence as discussed in Section 2.6.1. The trellis diagrams used for Viterbi
decoding corresponding to the selected codes with constraint length 2, 3 and
4, combined with differentially encoded GMSK are given in Section 4.8.
Finally, by comparing the transmitted and the received data, the BERs are

then obtained.
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6.3 Simulated BERs under Ideal Timing and Carrier Phase

As the detection of the received signal is affected by the signal-to-noise-ratio
(SNR) at the output of the receive filter, the influence of the filter bandwidth
on the BER performance of the system has first been studied assuming
exact recovery of the reference carrier and the timing clock. That is, the
exact frequency and phase of the carrier at the receiver are assumed to be
known. Also, the sampling time instant is assumed to be exactly at the place
where the eye opening is maximum. Under these conditions, the filter
bandwidth, which provides the best BER performance is selected. This filter

bandwidth is then adopted for the rest of the simulations.

The effect of filter bandwidth on the BER performance has been obtained for
input SNR values of 3, 4 and 5 dB. Comparison of the results showed that
the optimum bandwidth does not depend on the value of input SNR,
providing it is kept constant. Therefore only the BER curves obtained
assuming the input SNR equivalent to 4 dB are shown in Fig. 6.2. From the
BER curves shown in Fig. 8.2, the best bandwidth, normalised to bit period,
of the equivalent low pass filter is found to be 0.3. Moreover, it may aiso be
observed that, the BER performances are not very sensitive to the bandwidth
of the receive filter over the range of + 33% of the best bandwidth selected.
Consequently, for the simulations carried out in this study, the normalised
bandwidth of the equivalent low pass filter is set at 0.3. Also, it may be
observed from Fig. 6.2, that the coded schemes using the selected codes
[13,71 and [15,7] with constraint length 4 show very similar BER
performances. Therefore, only one of these two codes, represented by [15,7],

will be considered in this study.

As shown in Fig. 6.3, the simulated BER results of the uncoded and the
coded GMSK signals have been obtained by setting the normalised
bandwidth of the equivalent low-pass filter to the selected value of 0.3. The
simulations have been carried out assuming ideal carrier recovery and timing
synchronisation. In the simulations, the data rate of the coded schemes

using rate-% codes is reduced by % compared to the uncoded scheme in
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order to maintain the same transmission bandwidth. In this case, the Ey/N, of
the coded scheme corresponding to a given SNR becomes twice as much as
the uncoded scheme. Note that in Fig. 6.3, the E,/N, of the uncoded scheme
is taken as the reference. The Ey/N; of the coded schemes are adjusted by 3
dB (equivalent to half power) with respect to the uncoded scheme to account
for the reduced data rate. Therefore it may be observed from Fig. 6.3, that at
a BER of 107, using codes of constraint lengths 2, 3 and 4, coding gains of
approximately 1.7 dB, 2.2 dB and 3.1 dB can be achieved compared with the
uncoded scheme. Moreover, it has been shown in Section 4.7, that the
complexity of the receiver, based on the number of states required for Viterbi
decoding, is half that of the uncoded scheme compared to the coded scheme
using constraint length 2. It has also been shown in Section 4.7 that the
receiver complexity of the coded scheme with constraint length 3 is the same
as that of the uncoded scheme. Therefore, it may be concluded from the
above results that in the presence of AWGN, assuming exact carrier
recovery and timing synchronisation, a coding gain of up to 2.2 dB can be
achieved with coded schemes without increasing the receiver complexity. It
may also be noted that a larger coding gain can be achieved using a code
with a larger constraint length but at the expense of an increase in the

receiver complexity.

The theoretical lower bounds obtained in Sections 5.3.3 and 5.3.6 are also
included in Fig. 6.3. A comparison of the simulated BERs with the analytical
results for the coded schemes having constraint lengths 2 and 3, shows that
the simulated BERs fail within 1 dB of the theoretical lower bounds.
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6.4 The Effect of Timing Clock and Carrier Phase Errors

In practical applications, a clock signal at the receiver in synchronism with
the clock signal at the transmitter is used to sample the received signal at
precise instants (Proakis, 1989). In such situations, small randdm deviations
of the sampling instant Ar, known as timing error, may occur for such reasons
as noise, interference, and clock errors. This results in an increase in the
BER.

Furthermore, with coherent detection, the precise recovery of the carrier
frequency and phase at the receiver is essential. However, frequency and
phase emrors may arise in practical systems due to the carrier recovery loop
not being able to follow the phase changes of the received signal caused by

noise and multipath propagation.

In this section, the sensitivity of the proposed coherent detection scheme to
such timing and carrier phase errors is investigated. In the presence of timing
and carrier phase errors, the probability of error of the received signal Pz,

can be approximated as

72 w2

Prmr [ [ Po(AG, AL )P(AG p(Ar)(Ag Yl A) (6.7)

=12 w2

assuming Ag and Ar are independent. Here, Ag and Ar are the carrier

phase error and the timing error, respectively. Then, the error probability
corresponding to the joint effect of phase and timing errors is represented by
P.(Ag,Ar). The probability distributions corresponding to the effects of carrier
phase error and timing error are represented by p(Ag) and p(Ar),
respectively. The probability of error given in Eq. (6.7) may be theoretically
evaluated if the distributions of carrier phase error and timing error are
known. However, these distributions which depend on the noise and
distortions in the system, as well as the loop dynamics of the timing and

carrier recovery loops, are generally not available. Therefore, the -effect of
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such errors on the BER performances of the uncoded and coded schemes is
best estimated using computer simulations.

In the computer simulations carried out in this study, the individual effects of
timing and carrier phase errors on the BER performances are first obtained.
In this case, the effect of timing errors on the BER performances has been
studied assuming no carrier phase error is present. After that, the effect of

carrier phase errors is studied assuming that no timing error is present.

In the presence of timing error alone, i.e., with A¢ = 0, Eq. (6.7) reduces to

Prror = j P(0, At )p( At )d( At). (6.8a)

=72

Similarly, in the presence of phase error alone with Ar= 0, the probability of
error of the received signal can be expressed as

Piror= | PdAB,0)p(Ag)d(Ag). (6.8b)

-2

Although the timing and phase errors are more realistically random
variations, deterministic values are first used in the simulations to examine
the effect of these errors on the BER performances. In this case, the effect of
a fixed sampling time error is studied by introducing a fixed sampling time
offset Az to the nominal sampling instant corresponding to the maximum eye
opening. Accordingly, the phase values of the received signal at the

sampling instants are obtained as

(6.9)

HnT+T/8) = tan” [Qr(nT +k,T/8+ At)J _

L(nT + k,T/8+ At)

As the number of samples per transmitted bit period used in the simulations
is 8, the minimum variation of the timing error Ar becomes +12.5% of the

transmitted bit period 7.
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For a more realistic effect of timing error on the BER performance, random
variations of Arhave been considered. These variations are obtained in the
simulations by filtering a set of Gaussian distributed random numbers. As the
timing error in practice tends to be correlated, this correlation between the
Gaussian distributed random errors is achieved through the use of averaging
filters. In addition, the variations of the timing error depend on the bandwidth
of the timing recovery circuit. The effect of the bandwidth of the averaging

filters used on the BER performance is also studied.

Next, the effect of fixed carrier phase errors on the BER performance has
been studied, by adding a fixed phase error A¢ to the phase value of the
received signal sampled at the instants of maximum eye opening.
Accordingly, the phase values of the received signal at the sampling instants

are obtained, such that

A (omT+kT8)
G{nT+kyT/8) = tan [ T TR ] + Ag. (6.10)

Gaussian distributed random phase errors have also been used to model

variations in carrier phase offsets.

Finally, the joint effect of symbol timing errors and carrier phase errors has
been studied using fixed error values. In these simulations, the phase values

of the received signal at the sampling instants are obtained according to

+ Ad. (6.11)

HnTHEoTIS) = tan” (Qr(nT kT I8+ m))

L(nT + k,T/8+ Af)

6.4.1 Simulation resuits in the presence of timing errors

In this section, the simulated BER results in the presence of timing errors
alone for the uncoded and the trellis coded GMSK signals are presented. As

the number of samples per transmitted bit period used in the simulations is 8,
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the fixed timing error Ar can only be varied in steps of +12.5% of the
transmitted bit period T. i.e., in steps of +7/8. Therefore, the simulations have
been carried out for timing errors of +12.5%, +25% and 437.5% of the
transmitted bit period 7. First, the required Ey/N; in dB to achieve a BER of
10 has been obtained when the timing error is £12.5% of T i.e., =+7/8. This
is shown in Table 6.1. With this timing error, the uncoded scheme has shown
a performance degradation of 0.26dB and the coded schemes with constraint
lengths 2, 3, and 4 have shown degradations of 0.15 dB, 0.1 dB and 0.15 dB,
respectively. The BER performances for an increased timing error of £25% of
T are shown in Fig. 6.4. The BER curves shown in Fig. 6.5 have been
obtained by introducing a fixed timing offset of +37.5% of the transmitted bit
period 7.

The effect of random timing error on the BER performance has been studied
by introducing a random error of Ar generated as discussed in Section 6.4.
In practice, random timing variations with an approximate rms value of +25%
of T present very severe timing errors. In this case, depending on the
bandwidth of the timing recovery circuit, the maximum timing errors may
extend up to +75% of 7. Therefore, the worst-case effect of random timing
error on the BER performance is studied using random variations with an
rms value approximately +25% of 7. In the simulations, the effect of the
bandwidth of the averaging filter, which in practice represents the timing
recovery circuit, has also been studied. This bandwidth is set at 0.1% or 0.5%
of the input bit rate. In this study, the random timing errors are simulated by
passing the Gaussian distributed random numbers through a low-pass
averaging filter with a bandwidth of 0.1% or 0.5% of the input bit rate. In the
simulations, the above bandwidths of the averaging filters are set by
selecting the number of samples required in the running average. The
required rms value of the timing error is obtained by setting the variance for
the random number generator. For the above two bandwidths, it is observed
that the timing variations of the random errors generated are extended over
175% of T. However, it has also been observed that, when the bandwidth of

the filter is smaller, the random timing variations are slowly varying and the
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correlation between the adjacent variations is high. The converse is also true

for the higher bandwidth, in that the variations are fast and the correlation is

smaller. The simulated BER results in the presence of random timing error

with a rms value of approximately +25% of 7, and the filter bandwidth set to
0.1% and 0.5% of the input bit rate are shown in Fig. 6.6 and Fig. 6.7,

respectively.

Ey/N, in dB required to achieve a BER of 10 ™
Ideal carrier recovery Ideal timing recovery Timing
error of
Signal ldeal |Timing | Timing | Random Random | Carrier | Carrier | Carrier | +7/4 and
GMSK |timing | error | error |errorof +7/4 | error of phase phase phase carrier
of 73 | of £T4 rms. +7/4 rms. | error of | error of | error of phase
Bandwidth |bandwidth | +10° £15° +18’ error of
= 0.1%f, =0.5%, +18°
Uncoded | 690 | 7.16 7.80 8.50 10.20 8.50 10.16 12.00 13.41
Constraint
length 2 520 5,35 5.50 573 6.24 5.38 5.64 5.80 6.42
code
Constraint
length 3 4.70 4.80 5.00 5.36 5.68 4.80 5.34 5.50 6.60
code
Constraint
length 4 3.80 3.95 4.10 4.60 4.81 3.90 4.20 4.75 495
code

Note : Tis the transmitted bit period and #; is the input bit rate

Table 6.1 The required E,/N, in dB to achieve a BER of 10°°
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BER curves with ideal carrier recovery and fixed timing error of +25% of T
of
5 - uncoded GMSK
6 - coded GMSK with code of constraint length 2
7 - coded GMSK with code of constraint length 3
8 - coded GMSK with code of constraint length 4
Figure 6.4 BER curves of uncoded and coded GMSK schemes, (1-4) with

ideal carrier and timing recoveries, and (5-8) with ideal carrier
recovery and fixed sampling time error of +25% of T.
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8 - coded GMSK with code of constraint length 4

Figure 6.5 BER curves of uncoded and coded GMSK schemes, (1-4) with
ideal carrier and timing recoveries, and (5-8) with ideal carrier
recovery and fixed sampling time error of +37.5% of T.

139



1.00E-01 —

1.00E-02

1.00E-03

BER

1.00E-04 -

1.00E-05

1.00E-08

Note : BER curves with ideal carrier recovery and ideal timing recovery of
1 - uncoded GMSK
2 - coded GMSK with code of constraint length 2
3 - coded GMSK with code of constraint length 3
4 - coded GMSK with code of constraint length 4
BER curves with ideal carrier recovery and random timing error of £25% of T rms
{bandwidth is 0.1% of the input bit rate) of
5 - uncoded GMSK
6 - coded GMSK with code of constraint length 2
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Figure 6.6 BER curves of uncoded and coded GMSK schemes, (1-4) with
ideal carrier and timing recoveries, and (5-8) with ideal carrier
recovery and random timing error of +25% of T rms (bandwidth is
0.1% of the input bit rate).
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7 - coded GMSK with code of constraint length 3
8 - coded GMSK with code of constraint length 4

Figure 6.7 BER curves of uncoded and coded GMSK schemes, (1-4) with
ideal carrier and timing recoveries, and (5-8) with ideal carrier
recovery and random timing error of +25% of 7 rms (bandwidth is
0.5% of the input bit rate).

6.4.2 Simulation results in the presence of carrier phase errors

In this section, the effect of carrier phase errors alone on the BER
performance of the proposed schemes has been studied assuming no

symbol timing errors. In the simulations, the phase errors A¢ are introduced

as given in Eq. (6.12). First, the effect of fixed phase errors on the BER
performance has been obtained. The study started with the introduction of a
fixed offset of £10°. The required values of E;/N, in dB to achieve a BER of
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107, for the various schemes have been obtained in the presence of this
fixed phase error, as tabulated in Table 6.1. It may be observed from Table
6.1 that the performance degradation of the uncoded scheme in the
presence of the fixed phase error of +10° is about 1.6 dB, whereas the
maximum degradation associated with a trellis coded scheme is only 0.18 dB.
BER performances of the coded schemes, for larger phase errors of +15°

and £18°, are shown in Fig. 6.8 and 6.9, respectively.

The effect of random phase errors on the BER performances is also studied.
The random phase offset Ag is generated as discussed in Section 6.4. In
practice, the bandwidth of the carrier recovery circuits is set to about 1% of
the input bit rate. Therefore, the random phase errors in this study are
simulated by passing a set of Gaussian distributed random numbers through
a low-pass averaging filter with a bandwidth equivalent to 1% of the input bit
rate, as discussed in Section 6.4.1. To observe severe effect of random
phase errors on the BER performances, the approximate rms value of the
phase errors generated is set at +18". It has been observed that the
variations of these phase errors generated in the simulation are extended
over £60°. Fig. 6.10 presents the simulated BER curves of the uncoded and

coded schemes in the presence of random phase errors.
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Figure 6.8 BER curves of uncoded and coded GMSK schemes, (1-4) with
ideal timing and carrier recoveries, and (5-8) with ideal timing
recovery and fixed carrier phase error of +15".
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Figure 6.9 BER curves of uncoded and coded GMSK schemes, (1-4) with
ideal timing and carrier recoveries, and (5-8) with ideal timing
recovery and fixed carrier phase error of +18".
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Figure 6.10 BER curves of uncoded and coded GMSK schemes, (1-4) with
ideal timing and carrier recoveries, and (5-8) with ideal timing
recovery and random carrier phase error of +18 tTms (bandwidth
is 1% of the input bit rate).
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6.4.3 Simulated BER performance in the presence of both timing
and carrier phase errors

The joint effect of timing and carrier phase errors on the BER performance
has been studied in this section by introducing a fixed sampling error and a
fixed phase error. In the simulations, the phase values of the received signal
at the sampling instants are obtained using Eq. (6.13). Here, the timing
errors and the phase errors are set at +25% of 7 and +18’, as has been used
in the previous investigations in this study. The BER curves under these

conditions are presented in Fig. 6.11.
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Note : BER curves with ideal carrier recovery and ideal timing recovery of
1 - uncoded GMSK
2 - coded GMSK with code of constraint length 2
3 - coded GMSK with code of constraint length 3
4 - coded GMSK with code of constraint length 4
BER curves with fixed timing error of +25% of 7 and fixed carrier phase error
of 18" of
5 - uncoded GMSK
6 - coded GMSK with code of constraint length 2
7 - coded GMSK with code of constraint length 3
8 - coded GMSK with code of constraint length 4

Figure 6.11 BER curves of uncoded and coded GMSK schemes, (1-4) with
ideal timing and carrier recoveries, and (5-8) with fixed timing
error of +25% of T and fixed carrier phase error of +18".
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6.5 Summary

The values of E/N, in dB, required to achieve a bit error rate of 107 for
uncoded and trellis coded GMSK, in the presence of various carrier and
timing impairments, are tabulated in Table 6.1. Using the uncoded GMSK
scheme with ideal carrier and timing recovery as the reference, the
performance gains at a BER of 10 for coded and uncoded schemes, in the

presence of these timing and carrier phase errors, are tabulated in Table 6.2.

Performance gain/loss in dB ata BER of 10~

Ideal carrier recovery Ideal timing recovery Timing error
of
Signal Ideal | Timing | Timing | Random | Random | Carrier | Carrier | Carrier £77¢ and
GMSK |timing | error | error error of error of phase | phase | phase carrier
of +7T8 |of +74 | +T/4 rms. | +774 rms. | error of | error of | error of | phase error
bandwidth | bandwidth | +10° +15° +18° of +18°
=0.1%f | =0.5%f,
Uncoded | 0.00* | -0.26 -0.90 -1.60 -3.30 -1.60 -3.26 -5.10 -6.51
Constraint
length2 | +1.70 | +1.55 | +1.40 +1.17 +0.66 +1.52 +1.26 +1.10 +0.48
code
Constraint
length 3 | +2.20 | +2.10 | +1.90 +1.54 +1.22 +2.10 +1.56 +1.40 +0.30
code
Constraint
length4 | +3.10 | +2.95 | +2.8¢ +2.30 +2.09 +3.00 +2.70 +2.15 +1.95
code

Note : * uncoded GMSK with ideal carrier recovery and timing recovery used
as the reference

Table 6.2 The performance gain/loss in dB at a BER of 107

From Table 6.2, it is observed that in the presence of sampling timing error of
+25% of T i.e., +7/4 alone, the BER performance of uncoded GMSK is
degraded by 0.90dB, whereas trellis coded GMSK signals with codes of
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constraint lengths 2, 3, and 4, achieved respective coding gains of 1.4 dB,
1.90 dB, and 2.80 dB. When the sampling time instants suffer from random
timing error with an rms offset of £25% of T, the BER performance
degradation of both uncoded and trellis coded schemes considered is
increased, compared to that having a fixed error. However, the results with
‘both fixed and random timing errors show that the uncoded GMSK signal is
much more sensitive to sampling timing errors than the coded GMSK signals

considered, when no carrier phase error is present.

Even when the fixed carrier phase offset considered is as high as +18’, the
coded schemes with codes of constraint lengths 2, 3, and 4, have shown
respective coding gains of 1.10 dB, 1.40 dB, and 2.15 dB while the uncoded
scheme has shown a degradation of more than 5 dB. Furthermore, it may be
observed in Fig. 6.10 that the effect of random carrier phase error is more
severe than the fixed phase error on the performance of both the coded and
uncoded schemes considered. This may be due to the extension of the
phase errors over a larger range of up to +60°, when the random errors
having a rms of 18 is introduced. From these resuits, it may be conciuded
that the coded signals are more tolerant to carrier phase errors than the

uncoded signal.

In addition, the results in Tables 6.1 and 6.2 show that the coded schemes
may be more tolerant to the joint effect of phase errors and timing errors
compared to the uncoded scheme. Finally, it may be concluded that the BER
performances of the selected trellis coded schemes in the presence of
AWGN are better than the uncoded scheme in both ideal situations and in

the presence of practical impairments.
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CHAPTER 7

PERFORMANCE OF SELECTED TRELLIS CODED
GMSK SIGNALS OVER FADING CHANNELS

7.1 Introduction

In this chapter, the BER performances of the selected trellis coded GMSK
schemes over flat fading and frequency-selective fading channels are
evaluated using computer simulations. The received signal is detected using
quadrature demodulation followed by Viterbi decoding. A differential phase
detection scheme based on the signal phase difference over one bit period
is studied first. An improved receiver using adaptive Viterbi detection, which
takes into account the intersymbol interference (ISI) introduced by

frequency-selective fading is then introduced.

7.2 Simulation Model

The model used for computer simulations in determining the BERs of the
proposed trellis coded schemes is based on three main functional blocks,
namely the transmitter, the channel, and the receiver.

7.2.1 Transmitter

The transmitter, consisting of a pseudorandom sequence generator, an
encoder, a mapper, a differential encoder and the GMSK modulator, is
shown in Fig. 6.1. The equivalent complex baseband GMSK signal is
generated using the same method as discussed in Section 6.1,
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7.2.2 Fading channel

Two types of fading channels have been considered in the simulations,
namely (i} frequency non-selective (flat), and

(ii) frequency-selective fading.

7.2.21 Frequency non-selective (flat) fading

As explained in Section 2.2, multipath fading in land mobile radic causes
Rayleigh distributed envelope fluctuations and uniformly distributed random
phase changes. These effects have been modelled in the simulations using
two independent Gaussian low-pass noise sources, x.(f} and x,(r}, added in
guadrature as illustrated in Fig. 7.1 (Jakes, 1974). The independent
Gaussian noise sources x.(f) and x,(t) have been generated using the Jakes
algorithm (Jakes, 1974), such that

No
x{f) = 22 cos f}, cos@,t + V2 cosa cos @, 1, (7.1a)
n=1
Ny
and xs(t) = 22 sin f, cos@,t + V2 sin cos a,t, (7.1b)

n=l1
where, @, is the maximum Doppler frequency, and
Wy = y, cos (2nn/N),
with N=2(2Ny+1) and Ny > 8.

It has been shown in Jakes (1974), when aand S, are selected such that,
o= 7/4 and g,=nn{N,, the envelope of the resulting signal output, sz.(#), for an
unmodulated carrier signal, s{t), follows the Rayleigh distribution, and the

phase is uniformly distributed between 0 and 2x.
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Figure 7.1 Block diagram of a frequency non-selective Rayleigh fading
simulator.

7222 Frequency-selective fading

The effect of frequency-selective fading has been examined using a two-ray
fading model, as shown in Fig. 7.2. This two-ray fading model consists of two
independent Rayleigh fading signal paths with a relative delay of r. Here,
xa1(8), xa{f), x2(f), and x(f) represent independent uncorrelated Gaussian
noise sources. Such a model has been extensively used in analytical and
simulation studies on the effects of frequency-selective fading (Svensson,
1987; Korn, 1992; Tellambura and Bhargava, 1995). Furthermore, this
model is more flexible compared to the empirical models, since the average
power and the relative delay between the two paths can be readily
controlled. Even though the relative path delay, 7, between the two rays in
this model is a random variable, it is common practice to consider it as a
constant in computer simulations (Varshney and Kumar, 1991; Korn, 1992).
Therefore, in this study, = will be treated as a constant. Furthermore, in this
study, the average signal powers for the main and the delayed paths are
considered to be equal. This condition corresponds to the worst case

frequency-selective fading scenario for a given delay =

151



&

gain control

54

L Ssetect (r)
O

gain control

Delay < —

Figure 7.2 Block diagram of a frequency-selective two-ray model.

Besides simulating the frequency-selective fading channel as a two-ray
model, other channel models have also been considered. For example, the
empirical models adopted in the GSM standard define propagation models in
the form of six- and twelve- ray typical impulse responses (ETSI, 1993).
These models are specified based on extensive field measurements carried
out in typical propagation environments, such as rural area (RA), hilly terrain
(HT) and typical urban area (TU). In this study, computer simulations have
also been carried out assuming frequency-selective fading represented by
the six-ray propagation models as defined by the GSM standard (ETSI,
1993). The typical six-ray GSM channel models used in this study are given
in Appendix F.

7.2.3 Receiver

The received signal is first filtered using an equivalent complex low-pass
filter with Gaussian impulse response, as discussed in Section 6.2. The filter
bandwidth of the equivalent low-pass filter, normalised to the bit period, is
set at 0.3, as explained in Section 6.3. The phase values of the received
signal have been estimated from the sampled values of the inphase and
quadrature components of the filtered signal, as explained in Section 6.2.
Exact timing synchronisation has been assumed. However in practical
situations, phase errors are present due to the Doppler effect and the local
oscillator frequency offset. Usually, the rate of change of the phase error
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introduced by the local oscillator is slow compared to the bit rate. If the
Doppler rate is also small relative to the bit rate, then the phase error may be
assumed to remain constant during one bit period. In this case, the error in
the phase difference AgnT)=HnT)-K(n-1)T} over one bit period, may be
negligible.

In view of this, a distance measure in Viterbi decoding, based on the signal
phase difference Ag(nT), over one bit period may be a more attractive

alternative to the one which requires the absolute phase, #{nT}, as given in
Eqg. (4.12). Such a differential phase detection method will be explained in

the following section.

7.3 Differential Phase Detection over Fading Channels

With the differential phase detection scheme, the signal space distances
between the received signal and all the possible transmitted signals required
in Viterbi decoding, are obtained using the squared Euclidean distance
based on the phase difference over one bit period. In this case, the squared
Euclidean distance between any two signals s,{#) and s;{¢) having one sample
per bit period over an interval n7< t<{(n+1)T as given in Eq. (4.9) can be re-

written as

(n+D)T
| Isde)y-sf)F dt ~2E {1- cos [AD((n+1)T) - 4 (n+ )T)]} (7.2)

nT
where

A@{(nt1)T) = ¢l(n+1)T) - ¢i(nT)
and AD((n+1)T) = g((n+1T) - g{nT).
#{nT) and ¢(nT) are the phase values of the signals s5,(f) and s(s),
respectively, at the sampling instant /=n7. The computer simulations of the
BER performances for the proposed Viterbi decoder are then carried out
based on the distance measure given in Eq. (7.2). The corresponding trellis
diagrams of the selected codes combined with differentially encoded GMSK,

have been presented in Section 4.8.
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7.3.1 Simulation results over flat fading channels

First, computer simulations have been carried out to determine the BER
performance, under flat fading conditions, using this differential phase
detection scheme. In the simulations, the Doppler frequency is calculated
assuming a carrier frequency of 900 MHz and a transmission bit rate of 270.8
kb/s. These values have been chosen for their practical applications such as
in the GSM systems (Gibson, 1996). The simulated BER results obtained for
different vehicular speeds of the uncoded and the trellis coded GMSK
schemes are presented in Fig. 7.3. In the simulations, only the trellis coded
scheme with the constraint length 2 code is considered, due to the reduced
number of states required for Viterbi decoding (refer to Section 4.8). As
differential encoding is often introduced before GMSK modulation in practical
systems, such as in the GSM, the differentially encoded GMSK signal is
considered here to be the uncoded scheme. For the BER curves shown in
Fig. 7.3, the values of E,/N,for the trellis coded scheme take into account the
reduced data rate, as discussed in Section 6.3. From these results, it may be
observed that at a vehicular speed of 50 km/h i.e., /,,T=1.5x10™, the trellis
coded scheme achieves a coding gain of approximately 6.5 dB at a BER of
10? compared to the uncoded scheme. It is to be noted that this BER
improvement of the trellis coded scheme is achieved with a less complex

decoder, based on the differential phase detection and Viterbi decoding.
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Figure 7.3 The BERs of the uncoded and trellis coded GMSK, using
differential phase detection over flat fading channel.

7.3.2 Simulated BER results over two-ray fading channels

In this section, the effect of frequency-selective fading on the differential
phase detection scheme is studied using the two-ray fading model, as shown
in Fig. 7.2. In frequency-selective fading, the received signal not only
experiences fading, but also suffers from waveform distortion due to the
intersymbol interference (ISI) introduced by multipath components. The
amount of IS| introduced in such situations by the relatively long delay
between the multipath signal components, may be so significant as to cause
serious degradation of the BER performances (Proakis, 1989). As a result,
an irreducible BER exists even when Ey/N; is increased arbitrarily large.
Therefore, the irreducible BER performance, which reflects the limit of the

receiver performance, may become an important measure.
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Thus the irreducible BERs of the uncoded and the trellis coded (constraint
length 2) GMSK signals are obtained over two-ray fading conditions. The
vehicular speed is assumed to be 50 km/h. An average BER of 102, which is
often considered as a reference for voice communication (D'Avella et al,
1989), is used as the target BER value throughout this study. The irreducible
BER curves obtained for uncoded and ftrellis coded schemes for various
relative delays between the two paths are shown in Fig. 7.4. It may be
observed from the obtained results that the trellis coded scheme performs
better than the uncoded scheme. Nevertheless, the coded scheme also fails
to reach the threshold BER of 107, for relative delays larger than 0.757. The
performance of the receiver in this situation may be improved through the
use of adaptive equalisation or an adaptive MLSE scheme which takes into
account the 1Sl caused by frequency-selective fading (Proakis, 1989).
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| | = 0 = Coded GMSK {50 knvh)
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] 05 1 1.5 2 25 3
Relative delay (bit pericds}

Figure 7.4 The irreducible BERs of the uncoded and trellis coded GMSK
using differential phase detection over a two-ray fading channel.
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7.4 An Improved Receiver with Adaptive Viterbi Detection
Scheme

The 1S introduced by frequency-selective fading may be estimated from the
channel impuise response and included in the Viterbi detection scheme. In
an adaptive MLSE scheme, the estimated impulse response of the channel
is used to update the MLLSE states. Although in practice an adaptive channel
impulse response estimator is necessary for MLSE state calculations, in this
study it is assumed that the channel impulse response is known for this
purpose. In this case, assuming that the channel impulse variations are slow,
the reference phases at the Viterbi decoder are implicitly acquired during
channel estimations. That is, the simulations are initially carried out
assuming no phase errors are present. The distance between the
transmitted and the received signals required for Viterbi decoding is obtained
based on the absolute phase, as discussed in Section 4.5. Since the major
concern of this study is not the adaptive equalisation schemes, the details of
the channel impulse response estimation are not discussed. However, it is
assumed that the impulse response of the channei can be estimated within
the duration of a short training sequence, which is comparable in length with
what is used in the GSM system (ETSI, 1993).

The adaptive Viterbi decoder proposed in the simulations has been designed
to accommodate a channel delay spread, 7, of up to 4 bit periods. This range
of delay spread corresponds to the maximum delay spread considered in the
GSM systems (ETSI, 1993). in this case, the overall length of the impulse
response, associated with the channel and the GMSK modulator, extends
over 7 bit periods. Thus, the number of states in the Viterbi decoder
representing the uncoded GMSK trellis consists of 27 or 128 states. The
phase values representing these 128 states can be obtained based on the
estimated channel impulse response. In the present study, this has been
achieved by transmitting a known sequence of bits containing all the 7-bit
long bit patterns. Moreover, as shown in Section 4.3, the introduction of
differential encoding before GMSK has the potential to reduce the

complexity of the combined trellis diagrams of the coded schemes. Instead
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of the 128 states for the uncoded GMSK scheme, it has been observed that
the resulting trellis diagrams for the coded schemes with constraint iengths
2, 3, and 4 can be represented by 16, 32 and 64 states, respectively. To keep
the complexity of the Viterbi decoding low, only the trellis coded scheme with

constraint length 2 code is considered for the study over fading channels.

In the simulation, a training sequence of m bits is added to each block of »
data bits, in order to facilitate channel impulse response estimation at the
receiver. In this case, the throughput efﬁcienCy of an uncoded scheme is
reduced to »/(m+n). An update of the channel impulse response in this case
may be obtained after every (m+n) transmitted bit periods. Due to the time
varying nature of the channel, a more accurate estimation of the channel
impulse response may be achieved by updating the channel estimate more
often using smaller signal block sizes. i.e., small values of n. However, a
smaller » will lead to a reduced throughput efficiency. Therefore, a
compromise is called for between the throughput efficiency and the accuracy
of the channel impulse response estimation. The tradeoff between the
throughput efficiency and the BER performance of the receiver has also
been investigated by considering different training sequence lengths and

signal block sizes.

7.4.1 Simulation results over two-ray fading channels

In this section, the effect of frequency-selective fading on the BER
performance of the proposed adaptive receiver is studied based on the two-
ray fading channel. The irreducible BER curves for the unceded and the
trellis coded GMSK signals with constraint length 2 code have been
obtained. In accordance with the GSM standard, a training sequence of 26
bits is used for adaptive estimation of the channel impulse response (Luise
and Reggiannini, 1992; ETSI, 1993). The data may be transmitted using
signal block sizes of 256 or 128 bits, in addition to the training sequence. In
this case, with a block size of 256 signal bits, the throughput efficiency of the

uncoded scheme is 90.7%. On the other hand, the number of information bits
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in a block of 256 coded bits using a rate-%% code is 128. Thus, the overall
throughput efficiency of the trellis coded scheme in this case becomes
45.4%. Consequently, the throughput efficiencies of the uncoded and the
trellis coded schemes with different signal block sizes are as shown in Table
7.1.

No. of bits in the | No. of bits in the Throughput
training signal block efficiency
sequence

Uncoded | Coded
26 256 90.7% 45.4%
26 128 83.1% 41.6%

Table 7.1 Throughput efficiencies of the uncoded and trellis coded schemes
for signal block sizes of 128 bits and 256 bits.

7411 Irreducible BERs over two-ray fading channel

The irreducible BERs obtained for a range of different values of relative
delay between the two propagation paths of equal average power, are
presented in Fig. 7.5. The vehicle speed is again assumed to be 50 km/h.
From the irreducible BER curves of Fig. 7.5, it is observed that the target
BER of 107 for voice traffic may be obtained with both the trellis coded and
the uncoded schemes for relative delays of up to 47. It may also be
observed that the largest improvement in BER performance of the trellis
coded scheme is obtained when the relative delay is 47. This may be due to
the fact that the proposed Viterbi decoder has been designed to
accommodate a maximum refative delay of 4 bit periods. However, it may be
observed that the BER performances of both the uncoded and trellis coded
schemes degrade, when the relative delay exceeds 47. Furthermore, better
BER performances have been obtained with both the uncoded and ftrellis
coded schemes using the shorter block size of 128 bits, as this provides a
more frequent estimation of the channel impulse response, compared to the

one with the block size of 256 bits.
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Figure 7.5 The irreducible BERs of the uncoded and trellis coded GMSK, for
different relative delays. Signal blocks of 128 bits and 256 bits
are assumed.

Also, from Fig. 7.5, it is observed that the target BER of 107 for voice traffic
could be achieved with the trellis coded scheme, even when the relative

delay is 5T.

Based on this observation, an investigation has been made to see whether a
less complex receiver designed to accommodate relative delay of up to 3 bit
periods is able to achieve the required BER of 107 for channel delays up to
4T, under two-ray conditions. The resultant simulated irreducible BER curves
of the uncoded and the trellis coded GMSK schemes for different relative
delays are presented in Fig. 7.6. In these simulations, the number of bits in a
signal block and the number of bits in the training sequence, have been
selected as 128 and 26, respectively. It can be observed from the results in
Fig. 7.6, that the trellis coded scheme may just achieve the target BER of
107 for voice quality, when the relative delay is 47, whereas the uncoded

scheme fails to reach this target value after 3.57. Because of its better
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performance, the receiver designed to accommodate delay spreads of up to

4 bit periods has been retained for further study.
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Figure 7.6 The irreducible BERs of the uncoded and trellis coded GMSK
achieved using the deceder which is designed to accommodate
relative delay of 37.

The influence of the length of the training sequence on the BER
performance has also been investigated by increasing the original training
sequence of 26 bits to 40 bits. The irreducible BERs of the trellis coded and
the uncoded schemes, obtained assuming that the data is transmitted using
a signal biock size of 128 bits, are shown in Fig. 7.7. The results indicate that
the effect of the length of the training sequence on the receiver performance
is negligible1. However, the throughput efficiency of the uncoded scheme
using a longer training sequence is reduced from 83.1% to 76.2%. Hence, the
length of the training sequence for channel impulse response estimation for

the remaining study is assumed to be 26 bits.

! The performance obtained with 40 training bits is slightly worse as the channel response
may be changed somewhat during the longer period (14 bit perigds more than for the case
invalving 26 training bits) taken for updating the channel impulse response.
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Figure 7.7 The irreducible BERs of the uncoded and trellis coded GMSK for
two different lengths of training sequence.

7.4.1.2 BER performances for different relative delays

The BER performances of the uncoded and trellis coded GMSK schemes
over frequency-selective fading conditions have been obtained for different
values of relative delay, as shown in Figures 7.8 to 7.11. Again, the values of
Ey/Ny are obtained by changing the AWGN levels, while keeping the

transmitted signal level constant.

It is noted from Figures 7.8 to 7.11, that for a signal block size of 256 bits,
coding gains of about 4.0 dB, 6.0 dB, 6.5 dB and 8.0 dB at a BER of 10°, may
be achieved with the trellis coded GMSK for the relative delays of 1T, 2T, 3T
and 47, respectively. Furthermore, it is observed that only negligible
improvement in coding gains could be achieved using a smaller block size of
128 bits. Moreover, as shown in Table 7.1, the throughput efficiency of the
coded scheme using the block size of 128 bits is 41.6% compared to 45.4%
for the block size of 256 bits. Therefore, it may be concluded that an update
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of the channel impulse response after every (256+26) bits is a reasonable

compromise between the BER performance and the throughput efficiency.
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Figure 7.8 The BERs of the uncoded and trellis coded GMSK when the
relative delay is 17.
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Figure 7.9 The BERs of the uncoded and trellis coded GMSK when the
relative delay is 2T.
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Figure 7.10 The BERs of the uncoded and trellis coded GMSK when the
relative delay is 37.
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Figure 7.11 The BERs of the uncoded and trellis coded GMSK when the
relative delay is 47T.
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7.41.3 influence of Doppler frequency on BER performance

The effect of Doppler frequency on the BERs has been studied for the case
invoiving the maximum delay of 47 between the two propagation paths. The
corresponding BER curves of the uncoded and the trellis coded GMSK
schemes obtained for a range of vehicular speeds are presented in Fig.
7.12. It includes the case involving a typical walking pace of 5 km/h. The
faster vehicular speeds of 25 km/h, 50 km/h and 100 km/h have also been
considered. From the simulated results, it is observed that with the trellis
coded GMSK scheme, coding gains of around 3 dB, 4 dB and 8 dB can be
obtained at a BER of 107 for speeds of 5 km/h, 25 km/h and 50 km/h,
respectively. Moreover, the uncoded GMSK scheme fails to meet the
required BER of 102, at the speed of 100 km/h, whereas the coded scheme
achieves this BER value at an E,/Ny, of approximately 17 dB. Thus, the
results show that the trellis coded scheme is more tolerant to the Doppler
spread caused by higher vehicular speeds. Also, it may be observed that the
irreducible BER of the coded scheme at a speed of 25 km/h, is almost one
order of magnitude lower than that of the uncoded scheme, reducing from
a BER of 2x107 to 2x10™.
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Figure 7.12 The BERs of the uncoded and trellis coded GMSK at different
vehicular speeds. A relative delay of 47 is assumed.

7.4.2 Simulated BERs over six-ray fading channels

In this section, the BER performances of the proposed trellis coded GMSK
scheme operating in frequency-selective fading conditions as specified for
the GSM system are studied. Again, ideal estimation of the channel impulse
response is assumed and the estimations are assumed to update after every
(256+26) transmitted bits. The vehicular speeds are selected to cover a
range of values relevant to the particular environments, such as 50 km/h to
150 km/h for the RA; 25 km/h to 100 km/h for the HT; and 5 km/h to 75 km/h
for TU.

Fig. 7.13 shows the BER curves of the uncoded and the trellis coded
schemes obtained for the rural area (RA) model described in Table F.1 of
Appendix F, over a range of vehicular speeds varying from 50 km/h to 150

km/h. From these curves, it is observed that the trellis coded scheme is able
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to achieve the required BER of 10* for voice communication over the RA

channel for vehicular speeds of less than 100 km/h.
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Figure 7.13 The BERs of the uncoded and trellis coded GMSK for different
vehicular speeds based on the rural area (RA) model.

The BER curves shown in Fig. 7.14, are obtained assuming the hilly terrain
(HT) model described in Table F.2 of Appendix F. From these curves, it is
observed that the trellis coded scheme achieves the target BER of 107 for

vehicular speeds of up to 100km/h.
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Figure 7.14 The BERs of the uncoded and trellis coded GMSK for different
vehicular speeds based on the hilly terrain (HT) model.

Finally, a set of BER curves based on the typical urban area (TU) model
described in Table F.3 of Appendix F, has been obtained for speeds of 5
km/h, 50 km/h and 75 km/h. From Fig. 7.15, it is observed that both the trellis
coded and the uncoded schemes are able to achieve the required BER of

102, for all the three speeds considered. Moreover, lower irreducible BERs
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have been obtained for these speeds using the trellis coded scheme.
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Figure 7.15 The BERs of the uncoded and trellis coded GMSK for different
vehicular speeds based on the typical urban area (TU} model.

7.5 Effect of Phase Errors at the Receiver

As discussed in the previous sections, the proposed adaptive receiver
performs well under frequency-selective conditions assuming that the
reference phases for the Viterbi decoder are correctly acquired during
channel estimations. i.e., the phase errors introduced are assumed to be
zero. However, in practice, phase errors are present. Therefore in this
section, the effect of such phase errors on the receiver performance is
investigated. For this study, the two-ray channel model is used. The study
assumes the worst case scenario that the two paths have equal power and a
maximum relative delay of 47. In the simulations, phase error is introduced
to the phase of the received signal as discussed in Section 6.4.2. First, the
effect of fixed phase errors is studied using a fixed offset of £10°. Then, the
influence on the BER performance of Gaussian distributed phase errors
generated in the way as described in Section 6.4.2, is studied. The

bandwidth of the carrier recovery circuit is set at 1% of the input bit rate, as
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in the case of AWGN, discussed in Section 6.4.2. The approximate rms
values of the random phases generated are set at +£10° and +20°. The BER
performances of the uncoded and the trellis coded schemes, obtained
assuming a vehicular speed of 50 km/h, are presented in Fig. 7.16. From Fig.
7.16, it is observed that when the phase error is +20° rms, the uncoded
scheme fails to achieve the reference BER of 107, and the performance
degradation of the trellis coded scheme is about 8 dB. Therefore, this
suggests that the adaptive receiver designed for the trellis coded scheme is
more tolerant to phase errors cbmpared with the uncoded scheme. This
observation has also been verified by using a two-ray frequency-selective
fading model with 17 delay between the two paths. In this case, the random
phase errors with approximate rms values of +10° and +20° have been
introduced. From the results presented in Fig. 7.17, it can be confirmed that
the proposed trellis coded receiver is less sensitive to carrier phase errors

than its uncoded counterparts.
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Figure 7.16 The BERs of the uncoded and frellis coded GMSK in the
presence of phase errors, when the relative delay between the
two paths of the two-ray frequency-selective fading moede! is 47
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Figure 7.17 The BERs of the uncoded and ftrellis coded GMSK in the
presence of phase errors, when the relative delay between the
two paths of the two-ray frequency-selective fading model is 17.

7.6 Summary

The BER performances of the uncoded and trellis coded GMSK schemes
have been studied using a differential phase detection scheme over
frequency non-selective (flat) and frequency-selective fading channels. It is
found that using the differential detection scheme, it is not possible to
achieve the required threshold BER of 107 (for voice communication), with
the trellis coded GMSK scheme when the relative delay of a two-ray
frequency-selective fading channel is larger than 0.757. Therefore, an
adaptive receiver, which is designed based on the estimation of the channel
impulse response to accommodate a channel delay spread of up to 4 bit
periods, has been introduced. For this receiver, the Viterbi decoder designed

for the uncoded GMSK is represented by 128 phase states. It has been
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shown that a large reduction in the number of phase states for the Viterbi
decoder could be achieved for the trellis coded GMSK schemes. The BER
performances achievable using the adaptive Viterbi decoder have been
studied based on the simple two-ray propagation model and the more

complicated six-ray GSM empirical modeis.

It has been observed from the simulated results that the trellis coded GMSK
scheme using the adaptive receiver performed well compared to the
uncoded scheme over frequency-selective fading conditions. Also, the trellis
coded scheme achieved the reference BER of 107 required for voice
communication with an Ey/N, of around 15 dB. Also, a significant
improvement in the irreducible BERs has been obtained for the trellis coded
GMSK scheme as compared to the uncoded scheme for the various fading
channel conditions considered. Further, it has been observed that the trellis
coded scheme is more tolerant to carrier phase errors than the uncoded
signal. Finally it is noted that performance enhancement has been achieved
by the trellis coded GMSK scheme with a Viterbi decoder of 16 states as

compared with the 128 states required for the uncoded GMSK signal.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Summary of Results and Conclusions

The growing demand for mobile radio services coupled with the limited
spectrum available has driven mobile communications toward spectraily
efficient digital modulation schemes. CPM signals are good candidates in
such applications due to their compact power spectra (Steele, 1992). In a
mobile radio environment, signal propagation is not only affected by AWGN
but also by envelope fading and random phase variations, giving rise to
degradations in the BER performance. In such situations, error control
coding techniques are often used in improving the BERs. As discussed in
Chapter 2, TCM schemes originally developed for AWGN channels, have
received attention for mobile radio. This is because they show improved
BER performances without affecting the required bandwidth (Ungerboeck,
1982; Divsalar and Simon, 1987).

A survey of conventional TCM schemes involving high-level modulation,
such as multi-level phase and multi-level amplitude schemes, over AWGN
and frequency flat fading channels has been given in Chapter 3. This survey
has shown that in the presence of AWGN and frequency flat amplitude-
fading conditions, the conventional TCM schemes yield good coding gains
compared to the uncoded (Ungerboeck, 1982; 1987; Divsalar and Simon,
1987). Moreover these coding gains were achieved without reducing the
effective information rate, as would be required by traditional error control
coding techniques. A review of the selection of trellis coded CPM schemes,
in the presence of AWGN has also been carried out in Chapter 3. A

comparison of ftrellis coded partial response and full response CPM
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schemes has shown that the trellis coded partial response CPM schemes
provide better energy-bandwidth performances (Pizzi and Wilson, 1985).
However, this gain in performance has been achieved at the expense of the
MLSD receiver complexity. Also, the review has shown that a reduction in
the receiver complexity, based on the number of states in the Viterbi
decoder in situations involving partial response CPM, such as TFM, can be
obtained by introducing differential encoding prior to modulation (Morales-
Moreno et al, 1984). Finally, a review of trellis coded CPM schemes in

frequency flat and selective fading channels has been given.

In this thesis, a spectrally efficient communication scheme for mobile
applications involving partial response CPM, such as GMSK, in combination
with rate-2 trellis coding has been proposed. The selection of the proposed
rate-¥2 trellis codes having constraint lengths 2, 3, and 4 in combination with
GMSK, has been carried out in Chapter 4, assuming MLSD based on the
Viterbi algorithm, using an extensive computer search method. The code
selection has been carried out based on the achievable free Euclidean
distance of the coded GMSK scheme, and the complexity of the receiver in
terms of the number of phase states involved in the Viterbi decoder. A
reduction in the number of phase states in the Viterbi decoder has been
achieved using differential encoding before modulation. The codes of
generator polynomials [3,1] for constraint length 2, [7,3] and [6,3] for
constraint length 3, and [13,7] and [15,7] for constraint length 4, have been
identified as the appropriate codes for study in this thesis. However, it has
been observed in Section 4.8 that the code [6,3] when combined with
differentially encoded GMSK produces an ambiguity in the decoder,
producing the same distances corresponding to bits having opposite polarity.
Moreover, code [6,3] is a bad code since it is catastrophic. Therefore, the

code [6,3] has not been considered for detailed study.

it has been found that an asymptotic coding gain of 2.36 dB could be
achieved with code [3,1] in combination with differentially encoded GMSK.
Moreover, this gain has been obtained with a decoder having half the
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number of states compared to the uncoded GMSK signal. The trellis coded
and differentially encoded GMSK scheme involving the code [7,3] has
produced a coding gain of 3.61 dB. The number of states in the Viterbi
decoder involving the code [7,3] is found to be the same as the uncoded
GMSK scheme. As a result, it can be concluded that coding gains of up to
3.61dB could be achieved with the selected trellis coded GMSK schemes
involving codes of constraint lengths 2 and 3, with no increase in the receiver
complexity. However, a larger coding gain of 5.06 dB could be achieved with
the selected codes [13,7] and [15,7] at the expense of doubling the number

of states compared to the uncoded scheme.

The upper and lower bounds on the BERs of the selected treilis coded
schemes, in the presence of AWGN and frequency flat fading, have been
theoretically evaluated in Chapter 5. It has been assumed in the analysis,
that the received signal is detected using coherent detection with perfect
carrier recovery. Moreover, the only effect of fading considered is on the
amplitude of the received signal. In addition, bit interleaving of sufficient
depth has been assumed. Consequently, the upper and lower bound values
of the BERs have been analytically derived based on a technique designed
for memoryless channels, which involves the transfer function of the error
state diagram (Proakis, 1989; Biglieri ef al, 1991). Based on the analysis
presented in Chapter 5, it has been observed that when the number of
states in the trellis diagram increases, the complexity of the error state
diagram increases and hence the theoretical analysis of the BERs becomes
extremely complicated. Therefore, the analysis has been restricted to the
trellis coded schemes having up to 8 states in the combined trellis. Note that
the analyses presented in Chapter 5 of the BER performances over AWGN
have been obtained assuming ideal carrier recovery and timing recovery
conditions. However, in practical situations, it may not be possible to recover
the carrier and sample timing without any errors. Also, it may not be
practically possible to track the phase variations of the received signal over
a fading channel, as assumed in the analyses. Therefore computer

simulations have been used to study the BER performances of the selected
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trellis coded schemes in the presence of practical impairments, such as
carrier phase errors and sample timing deviations. Moreover, computer
simulated BERs assuming ideal carrier recovery and sample timing recovery

have been obtained to verify the analytical bounds.

Chapter € presents the computer simulations carried out for evaluating the
BER performances of the uncoded, and the selected trellis coded GMSK
schemes in the presence of AWGN. The received signal has been detected
using quadrature demodulation followed by Viterbi decoding. The simulated
BER results, assuming ideal carrier recovery and sample timing recovery,
have shown that at a BER of 107, coding gains of approximately 1.7 dB and
22dB can be achieved using codes of constraint lengths 2 and 3,
respectively. Moreover, these coding gains of up to 2.2 dB have been
obtained using the selected trellis coded schemes without an increase in the
receiver complexity, as discussed in Chapter 4. The simulated results also
show that a larger coding gain of 3.1 dB can be achieved with the coded
scheme using codes of constraint length 4, at the expense of a slight
increase in the receiver complexity. A comparison of the simulated BERs
with the analytical bounds obtained in Chapter 5 shows that the simulated
results typically fall within 1 dB of the lower bound.

The effects of practical impairments, such as timing and phase errors on the
BER performances have also been studied in Chapter 6. The individual and
the combined effects of timing and phase errors on the BER performances
have been simulated. Both fixed and random deviations in the sampling time
and carrier phase have been considered. A comparison of performance gain
at a BER of 107 with respect to the uncoded GMSK scheme, under ideal
timing and carrier recovery conditions, shows that the BER performances of
the uncoded scheme degraded by up to 3.3 dB in the presence of severe
random timing error with an rms offset of £25% of the transmitted bit period
T. The peak timing deviations in this case may extend up to +75% of 7. The
trellis coded schemes on the other hand, achieved performance gains of up

to 2.09dB. In the presence of fixed carrier phase errors of +18°, the trellis
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coded schemes have shown performance gains of up to 2.15 dB, whereas
the uncoded scheme has shown a degradation of more than 5 dB. Based on
the simulated results of the BER performances in Chapter 8, it can be
concluded that the selected trellis coded schemes are more tolerant to
practical impairments, such as timing and phase errors, compared to the
uncoded scheme. This observation is found to be different from the earlier
published results on trellis coded schemes involving high-level modulation

schemes discussed in Chapter 3.

In Chapter 7, the BER performances of the uncoded and the selected trellis
coded schemes in the presence of frequency-flat and frequency-selective
fading conditions have been obtained using computer simuiations. A
differential phase detection scheme based on the phase difference over one
bit period has been proposed. The simulated BER performances of the
uncoded and the selected trellis coded schemes over flat fading conditions,
using this differential phase detection scheme, have shown a coding gain of
approximately 6.5 dB at a BER of 10 compared to the uncoded scheme.
However, over a two-ray frequency-selective fading channel with equal path
power, both the uncoded and coded schemes failed to achieve an
irreducible BER of 102, which is generally assumed to be needed for digital
voice communications. Therefore an adaptive Viterbi decoder has been
proposed, which takes into account ISi introduced by frequency-selective
fading. The proposed receiver has been designed to accommodate a
channel delay spread of up to 4 bit periods. This range of delay spread has
been considered as it corresponds to the maximum delay spread specified
for the GSM systems (ETSI, 1993). The Viterbi decoder designed for the
uncoded GMSK signal involves 128 states. On the other hand, the number
of states of the Viterbi decoder designed for the trellis coded scheme with a
constraint length of 2 is only 16. Consequently, a large reduction in receiver

complexity has been obtained.

The BER performances of the uncoded and the trellis coded GMSK
schemes employing the proposed adaptive Viterbi decoder have been
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obtained assuming the channel impulse response can be accurately
estimated using a short training sequence. The proposed trellis coded
GMSK scheme has been shown to perform better than the uncoded scheme
under the frequency-flat, and severe frequency-selective fading conditions
represented by the two-ray channel model as well as the recommended
GSM six-ray propagation models, (the TU, the HT and the RA models).
Moreover, it has been found that a large improvement in the irreducible
BERs could also be obtained using the ftrellis coded GMSK scheme
compared to the uncoded scheme. Furthermore, the simulated BERs,
presented in Chapter 7, have shown that the coded scheme is less sensitive
to carrier phase errors than the uncoded scheme under frequency-selective

fading conditions.

With the above observations, it may be concluded that the selected trellis
coded GMSK schemes are good candidates for applications subject to
AWGN as well as fading environments, including frequency-flat and
frequency-selective conditions. In addition, the proposed trellis coded GMSK
schemes are found to be more tolerant to practical impairments, such as
carrier phase and sample timing errors. Similar results would be expected
with other partial response CPM schemes such as GTFM (Chung, 1984)
and 3-RC (Sundberg, 1986), which have similar spectral densities as the
GMSK signal.

8.2 Recommendations

The simulated BER performances obtained have shown that the proposed
trellis coded GMSK schemes using quadrature demodulation followed by
Viterbi decoding are tolerant to the frequency-selective fading conditions
often encountered in mobile environments. For this reason, it is
recommended that the following topics be considered in an attempt to
further improve the performance of the proposed trellis coded GMSK
schemes. Practical implementation of the proposed scheme is also

suggested.
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8.2.1 Adaptive sampling

In the present study, the receiver adopted a fixed sampling instant for the
whole transmission. However as suggested in (Molisch et al, 1997; 1998), a
large reduction in the irreducible BERs can be obtained using an adaptive
sampling technique. With this technique, the sampling time for each
transmitted frame is differently selected based on a training sequence. The
received training sequence, sampled using different sampling instants, is
detected and compared with the original training sequence. Assuming that
the channel does not change appreciably during one transmitted frame, the
sampling instant associated with the sequence with the smallest number of
errors is then selected. The influence of such adaptive sampling technique
on the BER performances of the proposed ftrellis coded schemes over
frequency-selective fading conditions may be beneficial to study.

8.2.2 Adaptive channel estimation

It has been assumed in the present study that ideal channel impulse
response is available for obtaining the phase states of the proposed
adaptive Viterbi decoder. In practice adaptive channel estimation techniques
based on the cross-correlation of the received signal with a known training
sequence, is used to estimate the channel impulse response during the
period of that training sequence. Therefore, the effect of imperfect phase

estimation of a practical adaptive channel estimator should be investigated.

8.2.3 Practical implementation

Practical implementation of the proposed scheme is suggested, so that the
performance in real environments can be studied through field tests.
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APPENDIX A

THE UPPERBOUND OF P; IN TERMS OF

X; AND X7}

Let X; be the transmitted sequence of length L. Then, the probability of
occurrence of an error event X7 of length L, can be expressed as given in
Eq. (56.5) as

Pe(L, X', X1) = P[X1] P(X1] X1) (A1)
where P[X;] is the probability of transmitting X;.

Now, when the transmitted sequence is X;, the probability of occurrence of

an any error event of length L, i.e., PgL, X;), becomes the sum of
Pi(L, X7, X;) over all the possible X s of length L. That is,
PiL, X0)= Y PHL, X7, X1) (A.2)

X, =X,
Similarly, when any sequence of length L is transmitted, the probability of
occurrence of an any error event of length L, Pg(L), can be expressed as

PL)= Y PE(L,X;,[Xf)uxf)uxg” ...... uX}_’L)]) (A.3)

X=X,
where X!, X{ ...are the possible transmitted sequences of length Z. From
the relationship, as given in (Lathi, 1995)

P(AUB)=P(A)+ P(B)-P(ANB)X P(A)+ P(B).
Consequently, Eq. (A.3) can be simplified to
PiD) < Y [PE(L,X;,Xg*”)+PE(L,X;,Xg2’)+...+PE(L,X;_,X§2L))]

X=X,

< > > Pl X1, X)) (A.5)

X=X, X
Therefore, the upperbound of the probability of occurrence of an error event

of any length can be expressed as

Px siz > PHL, X7, Xi). (A.6)

X, Xy #X,
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Substituting Eq. (A.1) in Eq. (A.6), the upperbound of the error probability of
an error event of any length can be expressed as

Pe<YY Y PXd PXH X)) (A7)

=1 X]_ XIL#XL

A2



APPENDIX B

SIMPLIFICATION OF exp[ -4, (x;, x%)] FOR

AN AWGN CHANNEL

The quantity expl[-Ai(xi, x%)] is defined in Eq. (5.12) as
expl-41 (ve, x 9] = EfexplAln(y, .x,) - m(y.x))]| X, } . (B.1)

As x;e X, using the decoding metrics corresponding to the correct and the
incorrect sequences, exp[-4:(x;, x%)] for a given transmitted sequence X; can

be expressed as given in Eq. (5.16), i.e.,
expl- (e 28] = Efpxplt |y, —f + s +5.f)] |, ®2)

The complex random variables x;, x%, and »; can be represented in the

quadrature forms as

xp = exp(jge) = (cosgh + ) singy) = xpptj xix (B.3a)
x% = exp(j@i) = (cosg’ +j sing?) = x it x % (B.3b)
and  # = exp(jdu) = {(COSdhu + ] sing) = nutj ny (B.3c)

where ¢, ¢% and ¢, are the phase angles corresponding to the transmitted
signal, the incorrectly detected signal, and the Gaussian noise, at time %,
respectively. The real and imaginary parts of the transmitted signal at time %

are the x,; and x, respectively.

By applying Eq. (B.3a) and Eq. (B.3c), the received signal y; as given in Eq.
(5.13), can be expressed as
Vi = (cosdy + j singy) + (cosh + j singy). (B.4)
As a result,
Aye-xel® == |cosgu+] singul® = [(n0) ()] (B.5a)
From Eq. (B.4) and Eq. (B.3b), we obtain
- |yk “x%|?=- [ (cosh - cosg)+ cosgul” — [ (singk - singi)+ singu]’

= [ (ke X it 1)+ x e+ ma)°]. (B.5b)
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Substituting Eq. (B.5a) and Eq. (B.5b), in Eq. (B.2), we obtain

exp[-df{xrx B)] = E{exP[_ /?"[(xrk X, +n, )2 + (xzk — Xy 1y )2 - (n )2 - (nz'n’c )2] ] }

= E{exp[- ’?"[(xrk — X, )2 + Z(Hrkxxﬂ( - x;k) + (x ) + 2(11 ] ] }

(B.6a)

From Eq. (B.3a) and Eq. (B.3b), we have
G =i F o+ G =23 ) = [ ', (B.6b)

As aresult, Eq. (B.6a) can be expressed as

exp[-da(xr.x )] = eXp(' ‘;L’|xk - X, |2 )E{exp[— 2 ’1'[(”& )(xrk - Xy ) + (nik )(xifc =Xy )] ] }
(B.7)

As the real and imaginary parts, n,4 and n;, of the complex noise n, are
independent Gaussian random variables, the expectation of Eq. (B.7) may

then be expanded as

E{exp[— 2 ’lr[(nrk )(xrk — Xy, ) + (na‘k )(xz'k — X ] ] } =

400 +on

[ [ fexol-2 2410, ) = %30 )+ (Mo — XN 1 pCrip(r)dradnge (B.8)

where,
2

plry) = ! exp[_n""] and p(n,y) = ! exp{-nij
ks = rk) = .

2nGh 20 \2n6% 2
Consequently, Eq. (B.8) becomes

E {exp[— 2 '2"[(":-.'( )(xrk - x:k) + (ﬂ,-k )(x,.k — Xy, )] ] }
{Z‘EJ IGXP{ {nf +y20% A’ (xm — X )} }€XP[26§1'2 (x, —x,)° ]d"‘rk

2
1 T it 2 qr ‘ 292 182
'—zna; -;!‘eXp{~!@+ 2054 (xik - X )jl ]exp[ZaKﬂ. (x3 —x),) }j”m

(B.9)
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have the form of Gaussian pdf, the following integrals can be expressed as

m Je"l’{ [FﬂL@i(xrk X, Hd W= 1,

and

2
m Jexp[ L/_+ 202 A'(x, xt'k] }dntk=1
Thus, Eq. (B.9) reduces to
Efexp[~2 [0 N = 2 J+ Uy Yo = x5 )11} =
exp{Za;A‘z[(x,k —x ) +(x, +x% )2] }
(B.10)
By applying the relationship of Eq. (B.6b}, Eq. (B.10) can be expressed as

Efexpl-2 40, X, — 1)+ (1, Mo — )11} = expleo2 A%y, |2) (B.11)

Finally, with Eq. (B.11), Eq. (B.7) becomes

exp[-A; (xz, x )] = exp(— ?u'[xk - X, |2)exp(20'§ﬂue|xk - X, 2) . (B.12)
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APPENDIX C

SIMPLIFICATION OF exp[ -A4; (xi, x :))saaing FOR

AN AMPLITUDE FADING CHANNEL
The quantity exp[-Ax(xz, x ¥)]wding IS defined in Eq. (5.35) as

expl-Aa(x, * Wluding = E {exp[l‘(*lyk —poxl +y = pxf )]|X;.} : (C.1)
Since xye Xy, exp[-Ax(xi, x W)]maine for a given transmitied sequence X, can be

expressed as

e - o)) - (C.2)

exp[-Ax(x, x?c)]fading = E%bxp[l'(— ka - pkx;

As xz, x%, and n; are complex random variables, they can be represented in
the quadrature forms as given in Eq. (B.3a) to (B.3c). Consequently, the
received signal y;, over an amplitude fading channel as given in Eq. (5.29b),
can be expressed as
Vi = pr(cosdy + j singy) + (cosdy + j singy). (C.3)
As a result,
-lye- peml® =~ lcosu +j singul’ = -{(nY ()] (C.4a)
and
- | Vi P X% | = - [oi(cosgh - cos@i)t cosdul’ — [odsingy - sing?)+ singul®
= Lol X 1)+ malHow (eam x 500+ mal’}. (C.4b)

From Eg. (C.4a) and Eq. (C.4b), Eq. (C.2) may be expressed as

exXp ['Al(xk, X ’k)]fading

E{"Xp[_ i'[(pk(xnk _x:-k)"' nrk)2 +(pk(xr‘k _x;k)+n1‘k)2 _(nrk)2 _(nik)z“}

E{eXP[_ ’1’[19;3 (xrk — Xy )2 + 2(nrk )Pk (xrk - x;k)+ Pf (xik - X )2 + 2(":'5: )p]c (xik — Xy )]] }

(C.5)
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As shown in Eq. (B.6b),
(x,,k -Xx, )2 +(.x[.k + x5, )2 = !xk —x',‘|2
As a result, Eq. (C.5) can be expressed as
expl-Au(xk, X Wfading
=expl- 207, — xi[ JElexpl-2 490,00 X~ x30)+ 000y ~ 53 )11}
(C.6)

As shown in Eq. (B.8), the statistical expectation operation in Eq. (C.6) can

be obtained using the pdf of Gaussian noise as

E{exp[— 22p, [(nrk )(xrk - x:&)"“ (nik Xxik — X )] ] }= exp(20 et mpflxk - X 2) (C.7)

Thus, by applying the relationship of Eq. (C.7) in Eq. (C.5), we obtain

expl-Aitrio 5 Daans = expl M oylx, —xexpl2o a2 o2l - xif).  (C®)
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APPENDIX D

MATRIX TRANSFER FUNCTION OF THE ERROR
STATE DIAGRAM OF THE TRELLIS CODED
SCHEME HAVING CONSTRAINT LENGTH 2

The branch matrix labels ¢, #, ..., & of the error state diagram of the
combined coded scheme having constraint length 2, may be expressed as
shown in Section 5.2.3 and Section 5.3.1 as

t L t (D.1)
= - a = .
1 7 1 1 1 5
where a = D*  for an AWGN channel,
and o = {1+2z37 for an amplitude-fading channel,
with D =exp — &4 ,and Z = £, :
4N, 4N,
1 1 1
t = — anJ, = t, D.2
: 2 ? [1 1} ° (b2)
where o = D*32 for an AWGN channel,
and a = {1+0.152Z}" for an amplitude-fading channel.
o, «
n o= X { 3 ’} = 4 (D.3)
2o, a,
where o = D"¥®  for an AWGN channel,
o3 = {1+1.59Z}"  for an amplitude-fading channel,
a = D> for an AWGN channel,
and a = {142.152Z}" for an amplitude-fading channel.
and ¢ = L. (D.4)
! 2|1 1 '
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As a result, the matrix transfer functions & from node (0) to node (i), where

(i=1,4), may be expressed as given in Eqg. (5.63a) to (5.63d) as

S h+&ts (D.5a)
& = Eits+ &by (D.5b)
& = Sty + Sily (D.5c)
and & = G = &t (D.5d)

Using Eq. (D.1), Eqg. (D.5a) may be expressed as

- Llomeg|t ! D.6
& = 50«’1-1[ 9”3]1 % (D.6a)

Substituting Eq. (D.2) and Eq. (D.8a) in Eq. (D.5b),we obtain

s=lam+a|l las] lvala (0.6)
2T o2 1| T2 ) '

Eq. (D.6b) may be re-written as

N bl 1 2 11
52[[0 1}_50@1{1 1H=Ea,a2.f [1+£3]{1 1]. (D.6¢)

i 5oty o

I 0
As [P][P]'= [0 J, & may be obtained by multiplying both sides of Eq.

Let,

(D.6¢) by [PT", then

1 111 o] 1 1 1]
=1 2 = . D.6d
& 2alo:2J [1+4’3]{1 1:|H:0 J 2a2J|:1 lﬂ (D.6d)

Now, [P]"' may be expressed as

RN
2 2

D-2



Substituting Eq. (D.6e) in Eq. (D.6d), & may be expressed as

_1

2

=, |(-3e) (e) | (D 6e)
(-a.J) [%azJ] (1—%a2J]

1-—(1—%%.]) [%%JJ

L (lazJ) (1—-1—a2J]

2 2

-

(| (D.6f)

(11_ 2 )[ 63]-
aa,J’ [
( J—)[]‘ ‘53]_

Using the expressions obtained for & and &, Eq. (D.5¢) may now be

expressed as

l o,/

&= 2(-a,

el 3

1 1 1]1 a,
+ —ad[l+&] = :
2 1 1)2]a, a,

Eq. (D.6g) can be re-written as

_ 1 qa,t?

10
6, |

2(1— J)

- (alazj +aJ -aat )

2(1-a,J)

aJ

) 2(1— J)2

Now, solving for &

ém’ ﬂ 2(1?-%«’)2( : a4)[1 1ﬂ
Let
==t

O L S e

@+%m+gr 1

(D.6g)

11

(%+%ﬁ+éﬂ }

11

aJ

e O N

(D.6h)

(@ +%ﬂij}[m
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1 0
As [QIQI'= [0 J, & may be obtained by multiplying both sides of Eq.

(D.8h) by [Q]'", then
=% s

Now, [Q]"! may be expressed as

1 O a,J 1 "
[Q]l = |:|: } 1 s |: :|:| = #_ —(I—Y) (_Y)
0 1| 20- azJ)E( ) 11 (l_y)z_(_yﬁ[ 1) —(I—Y)}

J
where, ¥ = {ﬁz@ +a4)}

Eq. (D.6i) now simplifies to

= Y 11 t-v) v ]= y 11 (D.8j)
(=201 1f| ¥ @-v)] @-2r))1 1
Substituting for ¥, Eq (D.§j) simplifies to provide & as
£ = 1 aJe, +a,) 11 D.64)
2[2-2a,0 -, +a, |1 1|

Substituting the expression obtained for & in Eq. (D.5d), the matrix transfer
function G of the combined coded scheme having constraint length 2 may be

expressed as

G

I

1 o, J(a, +a,) 1 1—1 1 1
22-2a,0 -~ J(e, +a,)][1 1]2 1

_1 a,J(a, +a,) 11
2220, - e, +a,)|[1 1]

Substituting for a;, a», a3, and a4 as given in Eq. (D.1) to (D.3), the matrix
transfer function G of the combined coded scheme having constraint length 2

over an AWGN channel can be expressed as

D-4



G:= (D.7a)

1 DZJ(D]'SQ +D2.|52) 11
EIZ—ZDO'ISZJ—DzJ(DI'SQ+D2‘152)J 1 1!l

Similarly, the matrix transfer function G of the combined coded scheme
having constraint length 2 for an amplitude-fading channel can be expressed

as

c=l [1+2Z]" J([1+1.592]" +[1+2.152Z]") [1 1}
2 o1l

[2-2[1+0.152Z7"J -[1+2Z]" J({1+1.59Z]" +[1+2.152Z] ™))
(D.7b)
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APPENDIX E

MATRIX TRANSFER FUNCTION OF THE ERROR
STATE DIAGRAM OF THE TRELLIS CODED
SCHEME HAVING CONSTRAINT LENGTH 3

The branch matrix labels #, #, ...., 15 of the error state diagram of the
combined coded scheme having constraint length 3, may be expressed as

shown in Section 5.2.3 and Section 5.3.4 as

1 1 1
t = — BJ] = g, E.1
: 2P [1 1} ’ ED
where i) = D*  for an AWGN channel,
and A= {1+223"! for an amplitude-fading channel,
. -E E
with D=exp|—2|,andZ=|—2|.
4N, 4N,
1 1 1
t = —J = . E.2
? 2 [1 J ! (E-2)
1 1 1
t = - = fo, E.3
3 2 ﬂ2|:1 1:| 10 ( )
where 5 = D*  for an AWGN channel,
and i = {1+223! for a channel with amplitude-fading.
w o= 1 [ﬁ3 ’33} fs (E-4)
218, A
where B = D"¥  for an AWGN channel,
B = {1+1.59Z}"' for an amplitude-fading channel,
B = D*13? for an AWGN channel,
and Jil = {1+2.152Z}! for an amplitude-fading channel.
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Now, the matrices &, where (i=1,8), may be represented using their elements

as
(a,, a,, (a,, a,,
& - 11 12 : & - 2 A :
RUTE 7S R TR Y
(a., a., (a,, a,, |
53 = 31 32 ; 54 = 41 42 ;
| D33 Q34 ] Q3 Qg
(a., a., | (a.. a.,
§5 - 51 52 , 66 = (.74 62 '
| d53 gy | | G55 gy
and & = Fa” a”:l.
| dr; Oy
Substituting for & and &, Eq. (E.9a) can be expressed as
1 1 1 1
Gy Gy _1_ B d;, dy - _1_ B ' (E.10)
a; a,| 2 a;, a,||1 1 2 1 1
Expansion of Eq. (E.10) results in
1 |
an - 5 BiJ{az; + az;} = = BJ,
1 _ 1
iz - — pBiJ{arn + az} = — &/,
2 2
1 1
a;z; - — BiM{az + azs} = — B,
2 2
1 _ 1
iy - 5 bl{ars +azy = > B (E.10a)

From the set of equations in Eq. (E.10a), it can be seen that, a;;= a;;, and

a;z= apy.

Similarly, Eq. (E.9b) can be expressed using the elements of the matrices &,

&, and & as

Now, Eqg. (E.11) may be expanded as



1 1
az - 5 Plan +apz} - 5 Plasi +aszp = 0,
1 1
an - o Blamn +ap} - 5 Plas; +as} = 0,
1 1
an - Bolaizs +argd - 5 Pplass tasgy = 0,
1 1
az - 2 Blais+an - 5 Polass + assp = 0. (E.11a)

From the set of equations in Eq. (E.11a), it can be seen that, a2;= a;; and a;;

= ds4.

Similarly, using the elements of the matrices &, &, and &, Eq. (E.9c) may be

expressed as
a5 dy | lJ ay a1 1] lJ a; ag ||l 1) _ 0. (E.12)
dy; Ay 2 |a; a ]|t 1 2 |a; as,] 1 1

The Eq. {(E.12) can be expanded as

1 |
az - EJ{au +ap} - EJ{aj'I + asz} = 0,
1 1
as - EJ{au +ap) - EJ{aﬂ + asz} = 0,
1 1
ass - EJ{azs +ap) - "2--7{6153 tasy = 0,
1 1
as - EJ{GB +ay) - *2‘-]{053 tasyy = 0. (E.12a)

From the set of expressions in Eq. (E.12a), it may be seen that a;,= as; and

a33= dz4.

Simitarly, using the elements of the matrices &, where (i=1,8), the following
simplifications to the equations (E.9d) to (E.Sh), can be obtained. The
expansion of Eq. (E.9d) results in

1 1
aqu - —Z—J{auﬁi tanf} - EJ{GSU& +asnfst = 0,

i 1
g - 5-]{(141/37'*'042[38} - —2—J{a31ﬁ7+032ﬁ8} =0,
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i 1
as3 - EJ{a43ﬂ7+a44ﬁ8} ) EJ{a33ﬁ’7+a34ﬁg} =0,

ag - %J{aﬁwaﬂﬂs} i %J{assﬁv"'asexﬁs} = 0. (E.13)

It may be seen from the above set of expressions in Eq. (E.13), that a,;= a4

and aqy3= dyg.

Similarly, the expansion of Eq. (E.9e) results in

dst - %ﬁs»f{azz +any - %ﬁs-]{aﬁf +ag} = 0,
as; - %ﬂsJ{aﬂ +ant - %ﬁSJ{aﬁl +ag} = 0,
ds3 - %ﬁsJ{azs +az} - %ﬁs-]{aas +ag4} = 0,
ass - %ﬂg{a23+az4} - % BsJlass *ast = 0. (E.14)

From the above set of equations in Eq. (E.14), it may be seen that a5;= as;

and ds53— As4.

Similarly, Eq. (E.9f) may be expanded as

1 1
as; - Eﬂe{ay +asn} - Eﬂs{au"'wz} = 0,
1 1
as; - 5/36{031 + az} - Eﬁﬁ{au tap = 0,
1 1
a3 - Eﬁe{azs"'as‘z} - 556{043"'044} = 0,
1 1
asy - Eﬂs{aﬂ"'a%} - Eﬁﬁ{aﬁ"‘aw} = 0. (E.15)

This results in as; = as; and ag; = a4,

Similarly, expanding Eq. (E.9g) as

1
<

as - % {anfs+ anfs} - % {asi1fh + as2fa} =

]
e

an - % {aafs + anb} - % {asifs + as2fu} =
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1 1
as - 3 {azfhs + axfh} - 3 {assfs + asyfs} = 0,

az - % {a23fhs + a2} - % {assfh + asafa} = 0. (E.16)

From the set of expressions in Eq. {(E.16), it may be seen that ;= a,; and

a73= dzq.

Using the above simplifications, the set of Equations given in Eq. (E.10a),
Eq. (E11a), Eq. (E.12a), and Equations (E.13) to (E.16) can be expressed as

1
ay; - Pflant = Eﬁpf,

ai3 - BHasy = — B,

1
2
an - Blan} - Blast = 0
az - fhlais} - Blasst = 0,
as; - Ja} - Jas;y = 0
0

az; - Haizy - Hassp =

ay - %J{au}{}%"'ﬂs} - %J{a3l}{ﬂ7+ﬂ8} =0,

an - S Han) (B ) - S Hastp+ By = 0,

as; - PsJ{ax} - BsJ{asi} = 0,

asz - PsJ{az} - BJ{agt = 0,

as; ~ Pelas} - Pelau} = 0,

ass - Pelassy - Pelas) = 0,

an - Slan (Bt fi} - S lamd B+ B} = 0,
s - oty s+ B - ~{as} B+ fi} = O (E17)

The above set of 14 linear equations in Eq. (E.17) may now be written in the
form as [A] X = B where [A] is a 14x14 square matrix of known coefficients.

B and X are column vectors having known and unknown coefficients,
respectively.



The matrix [A] and the vectors B and X have the form,

[A] =
10 0 6 © 0 © 0 0 0 0 0 -pJ 0 ]
0 1 0 o o6 0 0 0 0 0 0 0 0 -BJ
-8, 0 1 6 0 0 0 0 -f 0 0 0 0 0
0 -5, 0 1 o 0 0 0 0 -# O 0 0 0
-J 0 0 0 1 0 0 0o -J 0 0 0 0 0
0 -J 0 6 0 1 0 0 0 -J 0 0 0 0
0o 0 o0 o wm 0 wm, 0 0 0 0 0 0 0
0 0 o0 ¢ 0 m 0 m 0 0 0 0 0 0
0 0 -gJ 0 o 0 0 1 0 -pJ 0 0 0
0o 06 0 -BJ 0 0 o0 0 0 1 0 -pgJ 0 0
0 o o 0 -8 0 -5 0 0 0 1 0 0 0
0o 0 0 0 0 -8 0 -8 0 0 0 1 0 0
o 0 m, 0 0O 0 0 0 0 0 9m 0 1 0
Lo o o wm, 0 0 0O 0 0 0 0 9m 0 1

where m;=-—;—.}{ﬁ7 + f); Mz=1-%J{ﬂ7 + B} and ms= % B+ fiu}.

[a, [0.58,J ]
a, 0.58,J

a,; 0

and X=|" and B =

]
:::
o O O O O o O o O O O

r
L
r
L

From the matrix [A], and the vectors X and B, it may be seen that, the set of
14 linear equations in Eq. (E.17) may be written in the form as,

[A1]1 X1 =Bl (E.18a)

and [A1] X2 =Bl (E.18b)
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1 0 0 0 0 0 -BJ
-5, 1 0 0 -5 0 0
-J 0 1 0 -J ¢ 0
where [Al] = 0 0 m, m, 0 0 0
0 -4J 0 0 1 -pBJ ¢
0 0 -f, -p O 1 0
|0 m; 0 0 0 m; I
a,, | ay; | [0.58,J
Ay a3 0
as; Q33 0
and X1 = |a, X2=|a, and Bl= ]
as, as; 0
g, Qg3 0
L 971 L 473 LU

From Eq. (E.18a) and Eq. (E.18b), it may also be seen that X1= X2. As a
result, a;;= ajs, az= az, ay= as, ag= ag, as;= ass, as= ds3 and az;= ass.
Accordingly, the number of linear equations in Eq. (E.17) reduces to 7 from
14,

Substituting Eq. (E.8) in Eq. (E.9h), the matrix transfer function G of the error
state diagram of the combined coded scheme having constraint length 3,

may be expressed as
G _ a, d, l 1 1
a;, a,|2|1 1
As shown above, a7;= a7,= a73= az, resulting in
1 111 1 _ 1 1 (E.19)
Dol N F ‘

Accordingly, the matrix transfer function G of the error state diagram of the

G

combined coded scheme having constraint length 3, can be obtained by
solving for a7;. The solution for a;; has been reached using the elementary

row operations to Eq. (E.18a), as shown below.



Eq. (E.18a) can be expressed as

[ 1 0 0 0 0 0 -8J]|]a,] [0.58,J ]
-8, 1 0 0 -8 0 0 a, 0
-J 0 1 0 -J o 0 a,, 0

0 0 m om0 0 0 a, | = 0

0 -8J 0 0 1 -BJ 0 as; 0

0 0 -8 -5 0 1 0 ag 0
0 m; 0 0 0 m; 1 | |a; ] | 0

1 0 0 0 0 0 —-pBJ 0.58.J
-8 1 0 0 -8 0 0 0
-J 0 1 0 —-J 0 0 0

0 0 m m 0 0 0 0

0 -pgJ 0 0 1 -—BJ 0 0

0 0 -8 -8 0 1 0 0

0 m 0 0 0 9m 1 0

Now, applying the elementary row operations to row 5 as

rows— row 2 +row 5
2

[ 1 0 0 0 0 0 - BJ O.Sﬂl.]'
-5 1 0 0 -4 0 0 0
—-J 0 1 0 -J 0 0 0
0 0 m, m, 0 0 0 0
-1 [ ! - ﬁsJ) 0 0 0 -5J 0 0

2

0 0 -85 — DB 0 1 0 0
0 m, 0 0 0 m, 1 0




row s

Now, row 5 = (
5

)ms —-row 7 results in

1 0 0 0 0 0 -BJ|058J]
-5 1 0 0 -8 0 0 0
-J 0 1 0 -J 0 0 0
0 0 mom, 0 0 0
| zml L g J m] o 0 0 0 -1 o
[ﬂs'}J [ﬂsJ (ﬂ ’ ’
0 0 -8 =B 0 1 0 0
0 m, o 0 0 m 1 0

Let, [— ﬁ(L— ,BSJJ -m3] =5,. Applying row2 = [row 2

]J +row 3 gives
B\ B, 2

1 0 0 0 0 0 -BJ]058J]
0 (iJ 1 0 0 0 0 0
5,
-J 0 1 0 -J 0 0 0
0 0 m, m, 0 0 0 0
(ﬂJ 5, o 0 0 0 -1 0
bt
0 0 -p8 -5 0 1 0 0
0 m, 0 0 0 m 1 0

E-10



row 4

Using the operation, row 4 :{ )ﬁﬁ +row 6 results in

m,

1 0 0 0 0 0 -BJ|058J]
0 [i] 1 0 0 0 0 0
B,
-J 0 1 0 -J 0 © 0
0 0 (ﬂﬁﬁ-ﬁﬁj o 0 1 o 0
m,
[’”BJ s, 0 0o o0 0 -1 0
BsJ
0 0 - B, -8 0 1 0 0
0 m, 0 0 0 m 0

1 0 0 0 0 0 -BJ058J]
0 (Z—{J 1 0 0 0 0 0
B,
~J 0 1 0 -J 0 0 0
0 0 [ﬁ B - ﬂGJ 0 0 1 0 0
2
ELR ) 0 0 0 0 -11| o
BsJ
0 0 a3 -B 0 1 0 0
0 m, —m{ﬂﬁﬁ_p’ﬁ] 0 0 0 1 0
2
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row 7
sy

Applying the operation row 7 =row 5 ( ]53 results in

[ 1 0 0 0 0 0 -B8J |058J]
0 [iJ 1 0 0 0 0 0
B
—J 0 1 0 -J 0 0 0
0 0 [l'i B, - ,5'6} 0 0 1 0 0
m,
ht,
| 0 0 0 0 -1 0
) -
0 0 3 -B 0 1 0 0
m m 5,
=0 Ty 0 0 0 |-1-2 0
) o s(Za-g) -1-2]
and row 2 = row 5+(row2)ﬂ253 results in
[ 1 0 0 0 0 0 -BJ |058J]
o [-'3233] o o0 0 -1 0
Pst J
-J 0 1 0 -J 0 0 0
0 0 (ﬂ B, - ﬁﬁj 0 0 1 0 0
m,
( e ] 55 0 0 0 0 -1 0
BT
0 0 - B, -B 0 1 0 0
e m, o)
=0 s - 0 0 0 |-1-= 0
(/85‘] ] S{mz e ﬂﬁ] ( ma]
i 1
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Now, applying, row 2 = (row 2}] [ﬁ B — ﬁGJ —row 7 provides

b, m,
[ 1 0 0 0 0 0 -BJ |058J]
s, 0 0 0 0 0 5 0
-J 0 1 0 -J 0 0 0
0 0 (ﬁ B, - ﬁﬁj 0 0 1 0 0
m,
T 0 0o 0 0 -1 0
BsJ
0o 0 — B, B 0 1 0 0
{
", my 53
i B Ll I 0 0 0 [-1-=]]| o
\ﬁsJJ 53 m, Bs ﬁé] ( mj

where

e e (2 )
A AR

Using the operation, row 1 = (row 1} x s, ~row 2 results in

and

0 0 0 0 0 0 (-BJs,—s)|(0.58Js,)
5, 0 0 0 0 0 85 0
-J 0 1 0 -J 0 0 0
0o 0 (ﬁ B, - ﬁﬁ] 0 0 1 0 0
m,

|, 0 0 0 0 -1 0
BT
0 0 a3 -8 0 1 0 0
m3 m] S3

il T Y Rkl Ry S 0 0 0 |-1-= 0

[ﬁs']] Sa(’”z < ﬁGJ ( mJ
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Now, we have

0 0 0 0 0 0 (-BJs,—s,)
54 0 0 0 0 0 s [a,, ] [(0.58Js,)]
-J 0 1 0 -J 0 0 a, 0
0 0 [ﬂﬁﬁ —ﬁf,] 0o 0 1 0 a,, 0
m
: a, |= 0
m
[ﬂ:}} 5, 0 0 0 0 ~1 a,, 0
0 0 3 -8 0 1 0 ) 0
0
m, m S, 971 ] L 4
0 s 15— 0 0 0 |-1-=
_[ﬂr]] 3(’”2 & ﬂﬁj ( mJ i

This results in
(_ ﬁl']'gd - S5}171 = O-SﬁIJS4 .

Now, substituting for s, and ss, a;; can be expressed as

il {(Sﬁﬁ 52 ]}
el e HE ) )

where, pi= {B+p}) p2=ps) and p;= Emﬂé)'
2

It may also be seen from Eq. (E.1) to Eq. (E.7), that, Bi=5 ., /=5 A=
and S = f. Substituting Eq. (E.19) in Eq. (5.70), the transfer function of the

error state diagram 7(D,J), can be obtained as
TD.J) = %ﬁc 1= 24z, (E.20)

Thus, the transfer function 7(D,J) of the error state diagram of the combined

coded scheme having constraint length 3 becomes
{[—p; ][RJ}{ 2, ]}
2p; A B 2p,
w5 BN
2p, \ B 2p, b BBsJ

(E.21)

I(D.J) =pJ {
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Now, substituting for p,, p, and p, in terms of B (i=1,8) Eq. (E.21) can be

expressed as

T(D.J) = %
where
(ﬂs + ﬁ4)[2ﬁ6‘] +20 - ﬁl‘](ﬁS + /34)] E 22
YA/ YN) R (=22
and
B = {, B+ BRI +25 - fIBi+ B 28] ! 1}
2/96[2 _J(ﬂs + ﬁ4)] )81[2 J(ﬂs + /84)] ﬁlﬂﬁ
(E.22b)

Substituting for the corresponding values of g (i=1,8) in Eq. (E.22a) and
(E.22b), the transfer functions of the error state diagram representing the
trellis coded scheme having constraint length 3 for an AWGN channel and

an amplitude fading channel have been obtained.

Now, the partial derivative of T(D,J) with respect to J can be expressed as

o 3]
By —(4;)— 4, —(8;)
T LDy ooy = —2 o
aJ JD=exp(—E), o) (33)2

Differentiating Eq. (E.22a) with respect to J, we obtain

6 _ 2()33 + 54 )
(A [2 J(ﬂs + B4 )]2 (:23)

From Eq. (E.22a) and Eq. (E.22b), it can be seen that

— 28, 1
By= <-4, - E.24
’ { 4 yil [2 J(ﬁs + 54)] BiBe’ 1} ( )

By differentiating Eq. (E.22c¢) with respect to ./, we obtain

2 0 2BsJ 1
(B A -1
6.1( 3) = ( )+ |: ﬂ1[2 J(ﬂ3 +ﬁ4)] BB/ ]




28,48) _ __ 4BB 1 (E.25)
[2_J(ﬂ3+ﬂ4)lz ﬂf[Z—J(ﬁ3+ﬂ4)F BBI’

Now, substituting for 43, B;, and the partial derivatives of 4; and B; with
respect to J, obtained as shown in Eq. (E.22a), Eq.(E.22b), Eq.(E.23) and
Eq. (E.25), the partial derivative of 7(D,J/) with respect to J can be obtained

as
&—iT(D,J) =L, Dmexp(~Ey 14Ny) ;42 (E.26)
where, |
42=2(8,+ p X258~ (8, + B.)+ B2~ (8, + B,)F + 45,5, (E.27a)
and
B, = {2-(8,+ B2 - 528, + B)- 482 - 45.8,} (E.27b)



APPENDIX F

THE GSM PROPAGATION MODELS

(All the information presented here is based on the ETSI Rec. 0.5. 0.5)

The different GSM propagation models for hardware and software
simulations are presented in terms of a discrete number of taps having pre-
specified individual time delays and average powers. The amplitude of each
individua! tap is Rayleigh distributed and varies according to a Doppier
spectrum S(v). Two types of Doppler spectra, namely classical (CLASS) and
Rician (Rice), are used in the definition of the GSM models. The CLASS

spectrum is given by,

S(0) p
—-—m or | v|<fD

where v is the frequency and f;, represents the maximum Doppler shift.

S(v)= (F.1)
On the other hand, the RICE spectrum is given by,

041
22fp 1= (v/ £, )

S(v)= + 091 6(v-0.7fp) for Ivl<fp (F.2)

In addition, there are two equivalent alternative tap settings for each model.
These are indicated by (1) and (2), respectively, in the appropriate columns
in the tables.

The six-ray propagation channel models, showing the relative path power

and the relative time delay corresponding to the tap setting (1), are shown in
Fig. F.1.
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Tap Relative Time Average Relative Doppler
Number Dela Power (dB)
O —
1 0.0
2 0.1
3 0.2
4 0.3
5 0.4
6 0.5
Table F.1  Tap settings for the 6-tap rural area (RA) model.
Tap Relative Time Average Relative Doppler
Number Delay (us) Power (dB) Spectrum
® |
1 0.0
2 0.1
3 0.3
4 0.5
5 15.0
6 17.2
Table F.2  Tap settings for the 6-tap hilly terrain (HT) model.
Tap Relative Time Average Relative Doppler
Number Dela Power (dB) Spectrum
1) (1)
1 0.0 -3.0 CLASS
2 0.2 0.0 CLASS
3 0.5 -2.0 CLASS
4 1.6 -6.0 CLASS
5 2.3 -8.0 CLASS
6 5.0 -10.0 CLASS

Table F.3  Tap settings for the 6-tap typical urban area (TU) model.



Figure F.1

RA Model

Realtlve Path Power (dB}

2 4 6 8 10 12 14 16 18 20
Ralative Time-Dealy (:s)

(@)

HT Maodel

'
N
=]

8

Reaitive Path Power {(dB)
)
[=]

0 2 4 & & 10 12 14 16 18 20
Ralatlve Time-Dealy (»g)

(b)

TU Model

0
-
(=]

Realtive Path Power {dB)
)
a

&
Q

4pll. : . -
o 2 4 ] B 10 12 14 18 18 20

Relative Time-Daaly {8)

(c)

The six-ray propagation channel models defined by the GSM
for (a) the rural area, (b) the hilly terrain, and (c) the typical
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TRELLIS CODED GMSK IN FREQUENCY
SELECTIVE FADING

M. K. Caldera and K. S. Chung
Curtin University of Technology
P O Box U1987 Perth, Western Australia.

ABSTRACT

The bit error rate (BER) performance of trellis coded Gaussian minimum shift keying (GMSK) over two-ray
frequency-selective fading channel is investigated. The received signal is detected by coherent demodulation
based on adaptive Viterbi decoding. Coding gains of approximately 4.0 dB, 6.0 dB, 6.5 dB and 8.0 dB, at a BER
of 1x107?, are achieved with trellis coded GMSK for relative delays of 1, 2, 3, and 4 bit periods, respectively,
assuming a bit rate of 270.8x10° bits/s and a vehicle speed of 50 km/h. Moreover, these coding gains have been
obtained with a significant decrease in receiver complexity for the coded scheme.

1. Introduction

The partial response Continuous Phase Modulation (CPM) signals such as GMSK [1], having smooth phase
transitions between the successive signalling intervals, produce a narrower spectrum than the full response CPM
signals [2]. Moreover, the inherent constant envelope property of CPM signals permits the use of efficient non-
linear power amplifiers. In view of the constraints on spectrum availability and transmitter power, CPM signals
are good candidates for mobile radio communications.

In general, Trellis Coded Modulation (TCM) schemes are power efficient as a result of improvement in the
detection reliability for a given signal-to-noise ratio [3]. The partial response CPM signals, on the other hand,
have low spectral occupancy and constant envelope. Thus, the combination of TCM, and partial response CPM,
is expected to provide good coding and modulation over channels, which are limited in both bandwidth and
transmitter power, such as those encountered in mobile radio communications.

This paper examines the bit-error-rate (BER) performance of GMSK signal, when it is combined with
convolutional codes of rate 1/2 and constraint length 2, operating in a two-ray frequency-selective fading channel.
The received signal has been detected by coherent demodulation based on adaptive Viterbi decoding. The BER
results obtained by extensive computer simulations are presented in Section 4.

2. Trellis Coded GMSK

Fig. 1 shows the block diagram of the trellis coded GMSK model considered in this paper. Here, the input data is
encoded using a rate 1/2 convolutional code having a constraint length 2. It has been shown in {4], that the
combination of such code with GMSK will produce the largest free Euclidean distance. The connection vectors
G and G of this encoder have the form {1 /] and {0 /]. The octal representation of the generator polynomial of
this code is (3,1). The coded sequences of the input data are serially fed to the GMSK modulator, which
generates the transmitted signal, s(%, @). The resulting GMSK signal corresponds to a normalised bandwidth (B,7)
of 0.3. The trellis coded GMSK signal is then transmitted through a two-ray frequency-selective fading channel.
The received signal, r(), with Additive White Gaussian Noise (AWGN) is then detected by coherent
demodulation based on adaptive Viterbi decoding.



input
data DI D,
AWGN
Gl=f1i] nfe)
G2=[0 ]
coded - output
data M 5(t.a) [ Two-ray () v data !
|, Channel
convolutional GMSK adaptive Viterbi
encoder modulator receiver

Figure 1 A model of the trellis coded GMSK (8,7=0.3) scheme

The receiver complexity of the combined coded GMSK signals can be expressed by the number of decoder states
in the Viterbi decoder. The number of states representing the combined signal, which corresponds to the number
of states in the optimum Viterbi decoder, is the product of the number of states in the convolutional code and the
number of states in the GMSK signal. However, the complexity of the receiver can be minimised by precoding
the input to the GMSK modulator as shown in Fig. 2 [5]. The transfer function of the binary precoder can be
represented by T(D)=1+D, i.e. a, =5, 5 _, where & denotes modulo-2 addition (or EX-OR operation), b, is

the input to the precoder and a, is the output of the precoder. D represents a one bit delay.

AWGN
n(t)

Transmitter

output

{
|
i data || l |
code 1sfl, Two-ra r(y) data
M Y 1+ AT
‘ ‘(3,1) { L{Detay 714 | i Channel
!
|
]

adaptive Viterbi

|

|

I convolutional Differential GMSK '
i recelver
|

encoder encoder modulator |

Figure 2 A model of the trellis coded and differentially encoded GMSK (B,7=0.3) scheme

3. Computer Simulation Model

The model used for computer simulation in this study is based on three functional blocks, namely, the transmirter,
the channel and the receiver. The transmitter consists of the convolutional encoder, the differential encoder, and
the GMSK modulator as shown in Fig. 2. The transmitted binary data is derived from a pseudorandom sequence
generator of length 256 bits, having equiprobable “1”s and “0"'s. This binary source digit stream is then encoded
by the rate 1/2 convolutiona! encoder having a constraint length 2, and represented by its generator polynomial as
(3.1). This coded data is differentially encoded before applying it to the GMSK (B,T=0.3) modulator. The
resulting trellis coded, and differentially encoded GMSK signal, is transmitted through a two-ray frequency-
selective fading channel, having equal path power. The received signal, expressed in the equivalent low-pass in-
phase and quadrature components, is first filtered using a low-pass equivalent of a Gaussian band-pass filter
having a band-pass bandwidth of BT=0.6. It has been shown in [4], that this bandwidth provides the optimum
BER in AWGN. The phase values obtained from the [ and Q components of the demodulated signal are used to
determine the most likely transmitted sequence using the adaptive Viterbi decoder.
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[n this paper, the impulse response of the channel, (), is assumed to be available, so that the decoder states at
the receiver can be modified to account for the Inter-symbol Interference (ISI) introduced by frequency-selective
fading. Furthermore, it is assumed that the impulse response of the channel can be estimated within a short
training sequence. A training sequence of 26 bits is used in GSM for estimating the adaptive channel impuise
response.

The Viterbi decoder has been designed to accommeodate a channel delay spread ¢ of up to 4 bit periods. This
range of delay spread is encountered in the GSM systems. In this case, the overall length of the impulse response,
associated with the channel and the GMSK modulator, extends over 7 bit periods. Thus, the number of states in
the Viterbi decoder representing the uncoded GMSK trellis, consists of 27 or 128 stares. The phase values
representing these 128 states in the Viterbi decoder, corresponding to each of the 7-bit long bit sequences, can be
obtained based on the estimated channel impulse response. Furthermore, it has been observed that when the trellis
of the rate 172 convolutional code (3,1) is combined with the trellis of the differentially encoded GMSK having
128 states, the resultant trellis of the coded scheme can be represented by only 16 states. Consequently, this leads
to a large reduction in the receiver complexity of the coded scheme, as compared with the uncoded GMSK.

In the simulation, a training sequence of m bits have been inserted into blocks of n data bits, to account for the
need of channel impulse response estimation. This results in a throughput efficiency of (n/(m+n))%. Hence, an
update of the channel impulse response is obtained after every (m+n) bit periods. Due to the time varying nature
of the channel, a more accurate estimation of the channel impulse response can be provided to the receiver by
updating the estimate more often, using a smaller block size. i.e. small values of s However, a smaller n, wiil
lead to a reduced throughput efficiency. Therefore, a compromise s called for between the throughput efficiency
and the accuracy of the channel impulse response estimation. Thus, the effect of throughput efficiency on the
- BER performance has also been investigated by changing the block size of the data. The average BER of 107 has
been used as a reference for performance comparison in this study. This value is often considered to be adequate
for yielding acceptable voice quality in mobile telephony [6].

4. Simulation Results

The simulated irreducible BER curves for the uncoded and the trellis-coded GMSK signals are shown in Fig. 3,
for a range of different values of relative delay between the two propagation paths of equal power, It is assurned
that the data has been transmitted using two different block sizes, i.e. 256 and 128 data bits, respectively, and a
training sequence of 26 bits for channel impulse response estimation. The vehicle speed is assumed to be 50
kmvh, The Doppler frequency has been calculated assuming a carrier frequency of 900 MHz and a bit rate of
270.8x10° bit/s. In this case, with a block size of 256 bits, the throughput efficiency of the uncoded scheme
becomes 90.7%. The number of information bits in a block of 256 coded bits using a rate 1/2 code is 128. Thus,
the throughput efficiency of the coded scheme becomes 128/(256+26)%. i.e. 45.4%. Also, when the block size is
reduced to 128, the throughput efficiency of the uncoded and coded schemes become 83.1%, and 41.6%,
respectively. From the BER curves of Fig. 3, it is observed that the target BER of 10 for voice traffic can be
obtained with both the coded and the uncoded schemes for relative delays up to 47. Moreover, the BER curves
follow the same pattern for both the block sizes considered. Also, it has been observed, that the improvement in
BER performance of the coded scheme is greater when the relative delay between the two rays is increased.
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Figure 3 The irreducible BER of uncoded and trellis coded GMSK (B8,7=0.3) for two different lengths of
data blocks

The BER curves of the uncoded and the coded schemes obtained are shown in Figures 4 to 7 for different relative
delays. For the coded scheme, two different block sizes have been considered. It is observed from these results
that the gain achieved at a BER of 107 is negligible for the shorter of the two block sizes. Moreover, the
throughput efficiency is reduced from 45.4% to 41.6% for the shorter block size. From these figures, it has also
been observed that, coding gains of approximately 4.0 dB, 6.0 dB, 6.5 dB and 8.0 dB at a BER of 107%, can be
achieved with trellis coded GMSK for relative delays of 1, 2, 3 and 4 bit periods, respectively, Furthermore, these
coding gains are obtained, while reducing the receiver complexity from 128 states to 16 states. The maximum
coding gain has been obtained when the relative delay between the two rays is 4 bit periods. Also, it has been

observed in Fig. 7, that the irreducible BER of the coded scheme in this case is almost 2 orders lower than that of
the uncoded scheme,
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5. Conclusions

The BER performance of constant envelope partial response CPM, such as GMSK, combined with trellis coding
over two-ray frequency-selective fading channel, has been investigated using computer simulations. The received
signal is detected using coherent demodulation based on adaptive Viterbi decoding. A training sequence is used
to account for the need of channel impulse response estimation, which is required for the operation of the Viterbi
algorithm. The Viterbi decoder is designed to accommodate channel delay spreads of up to 4 bit periods. It has
been observed that coding gains of approximately 4.0dB, 6.0dB, 6.5dB and 8.0dB, are achieved with trellis
coded GMSK at a BER of 1x107, for relative delays of 1, 2, 3, and 4 bit periods, respectively. The Doppler shift
has been obtained assuming a bit rate of 270.8x10° bits/s and a vehicle speed of 50 km/h. Furthermore, the coded
scheme has shown lower irreducible BERs compared to the uncoded scheme. Moreover, a significant decrease in
receiver complexity can be obtained using the coded scheme.
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SENSITIVITY TO TIMING AND PHASE ERRORS ON TRELLIS CODED CPM
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ABSTRACT The bit error rate (BER) performance of
constant envelope partial response continuous phase
modulation {CPM) such as Gaussian minimum shift
keying {GMSK) combined with trellis coded modulation
(TCM} over additive white Gaussian noise is
investigated. Trellis coded GMSK signal is detected by
coherent demodulation based on Viterbi decoding.
Coherent detection requires the knowledge of the exact
phase of the transmitted carrier at the receiver.
However, in practice exact carrier recovery and clock
recovery cannot be achieved due to the presence of
timing and phase jitters in the system. The proposed
study examines the sensitivity of the coherent receiver
to timing and phase impairments. The required EyN,
in dB to achieve a BER of 1x107 of the trellis coded
GMSK signal and the uncoded GMSK signai have
been obtained under various timing jitters and carrier
phase offsets. The results obtained are compared with
the uncoded GMSK assuming ideal carrier and clock
recoveries at the receiver.

1. INTRODUCTION

Due to constraints on spectrum availability and
transmitter power, both bandwidth and power efficient
digital moduiation techniques are desirable in mobile
radic communications. CPM signals have gained
attention because of their aitractive power spectra.
Moreover, the partial response CPM signals such as
Gaussian minimum shift keying (GMSK) having
smooth phase transitions between the successive
signalling intervals produce a narrower spectrum than
the full response CPM signals [1,2]. Also, the inherent
constant envelope property of CPM signals permits the
utilisation of efficient non-linear power amplifiers
without causing undesired spectrai splashing. On the
other hand, TCM schemes could provide beiter bit
error rate performances compared to the uncoded
schemes [3]. Therefore, the combination of TCM which
improves error probability and partiai response CPM
signals which yield constant envelope and low spectral
occupancy is expected to provide good coding and
modulation over bandwidth and power limited channels
such as the one encountered in mobile radio
communications.

This paper examines the improvement in BER
performance of GMSK signal when combined with rate
1/2 trellis coding in an additive Gaussian noise
environment. Coherent detection based on Viterbi
decoding has been adopted. However, with coherent
detection, the carrier recovery becomes essential,
Previous studies on coherent detection of GMSK over
Gaussian noise channel often assumed exact recovery
of the reference carrier and the timing clock [2]. This
study examines the effect of timing jitters and the
carrier phase offsets on the BER performances.
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". 2. CONTINUOUS PHASE MODULATION {CPM)

In continuous phase modulation, the information
cairrying phase of the carrier is a continuous function of
time. This signal phase continuity is given rise by the
correlation between symbols in adjacent signalling
intervals. The mathematical representation of a CPM
signal has the form [4],

s(t,a)=Vv2E /T cos2f t +§(t,a) +¢,) (1}

where E is the symbol energy of the signal, T is the
symbol duration, f, is the carrier frequency, 4, is an
arbitrary constant which represents the initial phase,
and it can be set to zero with no loss of generality.
#(t,z) is the information carrying phase given by,

f=w

Hr.a)=2xh) aq(t—iT)

and g(1)=fe(r)d 7 @

where o= £, +3, $5,..., + (M-1) for M-ary data. This
paper considers only binary modulation, so that o =
tl. The pulse waveform g determines the phase
changes in the signal modulation in response to each
data symbol. Normally, the frequency pulse, git) is a
smooth puise shape over a finite duration LT, where [,
is an integer. The shape of g determines the
smoothness of the transmitted information carrying
phase. The rate of change of the phase or the
instantaneous frequency is proportional to the
parameter h, which is normally referred to as the
modulation index.

By choosing different frequency pulses g and varying
the parameters » and M, a variety of CPM schemes
can be realised. CPM schemes derived using a
frequency pulse g(t) occupying a duration of L symbol
intervais greater than one have overtapping pulse
shaping. If L >7, then the resulting schemes are
referred to as partial response CPM [5,6].

in GMSK, which belongs to the class of partial
response CPM scheme, the binary data are filtered by
a Gaussian low-pass filter before applying to an FM
modulator. The pre-modulation Gaussian fiiter shapes
the data signal to provide a smooth phase variation.
This smoothness in phase variation produces a
compact spectrum compared to its full response
counterparts like Minimum shift keying (MSK) signal.
The modulation index of GMSK equals to 0.5. The
impulse response of the Gaussian tow-pass filter is
given by,

2 ~2x’Bt}
) = A4 2B, exp{—"mf_} (3)
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where B, is the 3 dB bandwidth and A is a constant. By
varying the 3-dB bandwidth of the impulse response of
the Gaussian filter, a set of different GMSK signals
having different power spectra can be obtained. The
frequency pulse gt of the GMSK signal has the form,

T T
1 1—5 t+-5
== 028,210l 28 2
T L R o I b e | I
for 0<BT<w»

| 2
where ()= | —e" " dr
o) J =

For GMSK, the duration of the Gaussian phase
shaping pulse g is infinite. However, for practical
reasons, it can be truncated over several bit periods.
When B,T is equal to 0.25, the GMSK pulse can be
truncated symmetrically over 4 bit periods.

3. TRELLIS CODED GMSK

Fig. 1 shows the block diagram of the trellis coded
GMSK model considered in this paper. G is a binary
convolutional encoder. A convolutional encoder is
usually denoted by (a,k,v). Here the encoder
accepting & serial input bits at a given time interval
yields n output bits using a v-stage shift register. For
the same code (n,k,v), there are a large number of
equivalent encoders having different structures. A
convolutional code can be described by a row vector
called the connection vector,

G) ={gjl)gjz:""gjv)= JF=12,,...n (5)
specifying the connection between the j - th output and
each stage of the shift register. The component g, is
equal to 1 if the j th output is connected to stage i:
otherwise it is equal to zero. The length of the shift
register in the encoder is called the constraint length of
the code. Code rate is R =k/n. In this paper, rate

1/2 convolutianal encoders having constraint lengths 2,
3, and 4 have been studied in conjunction with GMSK
modulation. The connection vectors G; and G; of the
rate 1/2 convolutional encoders considered in this
study having constraint lengths 2, 3, and 4 and their
generator polynomials are given in Figs. (2.a), (2.b)
and (2.c} respectively.

For the code with constraint length 2, the connection
vectors Gy and G; have the form /1 1] and {68 1}. The
octal representation of the generator polynomiai of this
code is (3,1). Similarly, for the code having constraint
length 3, G, = fI 1 1] and G; = {0 I I]; the octal
representation of the corresponding generator
polynomial is (7,3} The code having a constraint
length of 4 considered in the study, has the connection
vectors G; =1 1@ 1] and G;= {0 I I 1]. This can be
represented as (15,7) in octal form.

The coded sequences of the input data are then
serially fed to the GMSK modulator M, which generates
the transmitted signal s(r,a). The signal at the input to
the coherent receiver is ~(f)=s(t,a)+n(t}, where n(t) is
additive white Gaussian noise with zero mean and
double sided power spectral density Ny2. The coherent
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receiver consists of quadrature demodulation followed
by soft decision Viterbi decoding. The phase values of
the received signal obtained from quadrature
demodulation are used in the trellis decoder to
estimate the most likely transmitted sequence using
the Viterbi algorithm.

The receiver complexity of the combined coded CPM
signals can be expressed by the number of decoder
states in the Viterbi decoder. The number of states

-representing the combined signal, which is the number

of states in the optimum Viterhi decoder, is the
product of the number of states in the convolutional
code and the number of states in the CPM signal.
However, the complexity of the receiver can be
minimised by precoding the input to the GMSK
modulator as shown in Fig. 3 [7]. The transfer function
of the binary precoder can be represented by

ID)=1+D, ie. a,=b @b _,, where @ denotes

modulo-2 addition {or EX-OR operation), b, is the input
to the precoder and a, is the output of the precoder. D
represents the delay by one bit period.

For example, the GMSK trellis is represented by 8
states. Now, consider the code of constraint length 2
represented in octal form as (3,1}, its trellis has 2
states. Thus, when this code is combined with GMSK,
the resultant treliis will have 16 states. However, when
this constraint length 2 code combines with the
differentially encoded GMSK, there is symmetry in the
resuitant trellis, and the combined trellis can be
represented by 4 states. This leads to a reduction in
receiver complexity as compared with the case of
uncoded GMSK. Similarly, for codes of constraint
lengths 3 and 4, their trellises have 4 and 8 states
respectively. When these codes are combined with
differentially encoded GMSK, the resultant trellises
have 8 and 16 states respectively instead of 32 and 64
states in the case of combining with GMSK without
differential encoding.

4. SIMULATION MODEL

Computer simulations based on the functional block
diagram of Fig. 4 have been used in determining the
bit error rate {BER) in the presence of additive white
Gaussian noise. The transmitted data, {a,}, is derived
from a pseudorandom sequence generator of length
256 bits and with equiprobable bits of logical I and 4.
This data is encoded by a rate 1/2 convolutional
encoder. Here, the rate 1/2 convoiutional codes having
constraint tength 2, 3, and 4 represented by their
generator polynomials in octal form as (3,1), (7,3), and
(15,7) respectively are used. The coded binary data
{c.} is then mapped to the real number inputs /b,} to
the differential encoder as #— -1 and 1> +1. This data
{bs} is then differentiaily encoded before applying to the
GMSK modulator. The 3-dB bandwidth of the
premodulation Gaussian filter normalised to the bit
period is set at 0.25. The GMSK frequency pulse is
truncated symmetrically over 4 bit periods and
considered zero outside. The additive white Gaussian
noise has been simulated according to the Box Muller's
transformation. The received signal is filtered using a
low pass equivalent of a Caussian band pass filter.
The band pass bandwidth cf this filter normalised o
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the bit period is set at 0.6. The filtered signal is then
demodulated into its inphase (I) and quadrature (Q)
components cos{¢(t)) and sin{g(t)) using a
quadrature demoduiator with the reference carrier in
quadrature. The sampling instants of the I and Q
components of the received signal are set at the
instants where the eye opening is maximum. The
sampies of the I and g components obtained at these
sampling instants are then used to compute the phase
values. The trellis decoder uses these phase values to
determine the most likely transmitted sequence
employing the Viterbi algorithm. The BER curves are
obtained by comparing the transmitted and the
received signals. To ensure the reliability of the
simulation results, at least 100 errors have been used
to compute the BER for each Ey/Np value.

5. SIMULATION RESULTS

Fig. 5 presents the simulated BER results for the
uncoded and the trellis coded GMSK signals in the
presence of additive white Gaussian noise assuming
ideal carier recovery and timing synchronisation.
When compared with the uncoded GMSK schemes at
a BER of 10°, coding gains of 1.7, 2.2, and 3.1 dB
have been achieved using codes of constraint lengths
2, 3, and 4 respectively in conjunction with differentially
encoded GMSK, Moreover, the number of states in the
trellis of the uncoded GMSK scheme is 2, 1, and 1/2
times that of coded scheme for constraint lengths 2, 3,
and 4 respectively. Thus, a decrease in receiver
complexity has been obtained with the constraint
length 2 code while obtaining a coding gain of 1.7 dB.

The sensitivity of the proposed coherent detection
scheme to timing and carrier phase offsets has also
been investigated. First, the sampling instant has been
offset assuming the carrier phase recovery is ideal.
Then, the carrier phase errors have been combined
assuming no symbol timing error. Finally, the effect of
both symbol timing offset and carrier phase errors has
been studied. Tabie 1 tabulates the values of Eu/N,
required to achieve an error rate of 107 for uncoded
and trellis coded GMSK in the presence of various
carrier and timing impairments, including fixed and
random variations.

The random timing jitter and the random carrier phase
error have been simulated by low pass filtering a set of
Gaussian distributed random numbers. Averaging
filters have been used to simulate the filtering effect of
the carrier and clock recovery loops. The filter
bandwidth is varied by changing the number of
samples used in the running average. For the
bandwidths considered, the peak-to-peak variation of
the sampling instant offset of the random jitter is set at
26T/8. However, when the bandwidth of the filter is
small, the random timing and carrier phase variations
are slowly varying and the correlation between the
adjacent variations is high.

Using the uncoded GMSK scheme with ideal carrier
recovery and timing recovery as the reference, the
performance gain at a BER of 10* for coded and
uncoded schemes in the presence of various timing
and carrier phase offsets are tabulated in Table 2.
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When the sampling instant offset is #7/4, the BER
performance of uncoded GMSK is degraded by 0.90
dB, whereas trellis coded GMSK signals with codes of
constraint lengths 2, 3, and 4 achieved respective
gains of 1.4 dB, 1.90 dB and 2.80 dB in performance
under the same conditions. When the sampling instant
suffers from random jitter with an rms offset of #T/4,
the performance degradation of all the signais
considered is increased. The results under timing
offsets show that the uncoded GMSK signal is much
more sensitive to sampling instant offsets than the
coded GMSK signals considered, provided that the
carrier recovery is ideal having no phase errors. Also,
both uncoded and trellis coded GMSK signals studied
are more sensitive to random errors than the fixed
errors due to the large peak-to-peak variations that
could be encountered in the case of random errors.

Even at the worst fixed carrier phase offset considered
(1180). the coded schemes with codes of constraint
lengths 2, 3, and 4 have shown respective gains of
1.10 dB, 1.40 dB and 2.15 dB in performance while the
uncoded scheme has shown a degradation of more
than 5 dB. The effect of random phase error has
shown a severe reduction of the perfermance {more
than 10 dB) of the uncoded GMSK signal. Alsa, the
coded schemes have shown a degradation in
performance under these conditions. It has been
observed from these results that the coded signals are
more tolerant to carrier phase offset than the uncoded
signal. Moreover, the effect of random carrier phase
error is more severe on the performance of both coded
and uncoded schemes considered than the fixed
phase error. This is due to the much higher peak-to-
peak variation of the random phase error (#60°) having
a rms of +18° introduced compared to a fixed error of

+18°,

Also, the results in Tables 1 and 2 show that the
coded schemes are more tolerant to both phase errars
and timing errors together compared to the uncoded
scheme.

6. CONCLUSIONS

The bit error rate (BER) performance of constant
envelope partial response continuous  phase
modulation (CPM) such as Gaussian minimum shift
keying (GMSK) combined with trellis coded modulation
(TCM) over additve white Gaussian noise is
investigated using computer simulations. The
sensitivity to timing and phase errors of the proposed
scheme has been studied. It has been cbserved that a
gain of 1.7 dB, 2.2 dB and 3.1 dB can be obtained by
introducing coding and differential encoding before
GMSK modulation using constraint length 2, 3, and 4
codes respectively under ideal timing and carrier
recovery conditions.  Also, the performance
degradation of the proposed coded schemes is much
less than that of the uncoded scheme under the
various timing and phase errors considered. The
receiver complexity of the coded GMSK schemes
considered having constraint length 2 and 3 codes
have smaller or the same complexity as the uncoded
GMSK scheme.
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-3
E 4 /N indB required to achieve a BER of 1x10
Ideal carrier racovery Ideal timing recovery Tirming
) 9 offsat of
Signal ideal | Timing " [ Timing [ Twming | Random Randem | Carrier | Camier | Carrier Random | +T/4 and
GMSK timing | offset offset | offset of | offset of offset of phase | phase | phase phase cairier
of +1/8 of 5T/8 | Y4 rms. | +T/drms. | offset | offset ]| offset offset of phase
+T14 BW = BW of of of +18°rms. | offset of
0.1%fb =0.5%1t +10° #1582 | +18° | Bw=1%m 180
Uncoded 6.80 7.18 7.80 1280 8.50 10.20 8.50 10.16 12.00 - 13.41
Constraint
length 2 5.20 535 550 823 573 ‘6.24 ‘538 5.64 5.80 8.10 6.42
code
Constraint
fength 3 4.70 4.80 5.00 7.70 5.36 568 4.80 5.34 5.50 8.30 6.60
code
Constraint
length 4 3.80 395 410 6.80 460 481 3.90 420 475 7.15 495
code ]
Note :  Tis the bit periad
fy is the bit rate
Table 1 The required En/Ng in dB to achieve a BER of 1x1073
. -3
Performance gain in dB ata BER of 1x10
kdeal carrier recovery Ideal timing recovery 'ﬁmi:}gf
Signal ldeal | Timing | Timing [ Timing | Random Random Carrier § Cammier | Carmier Random +T/4 and
GMSK timing | offset offset | offset of | offset of offset of phase | phase | phase phase carrier
of £T/8 of H57/8 | £Tidms. | +T/4ms. { offset | offset | offset offset of phase
T4 BW = BW of of of +18" ms. | offsat of
0.1%# =05%m | 10" | +15° | 18" | BwW=1%fb | +18°
Uncoded 0.00* 0.26 0.90 -5.70 -1.60 -3.30 -1.60 -3.26 -5.10 - £.51
Constramt
length 2 +1.70 +1.55 +1.40 -133 +1.17 +) 66 +1.52 +1.26 +1.10 -1.20 +).48
code
Constraint
length 3 +2.20 +2.10 +1.90 -0.8a +1.54 +1.22 +2.10 +1.56 +1.40 -1.40 +0.30
code
Constraint
length4 | +310 | +295 | +280 | «010 +230 +2.09 +3.00 | +270 | +215 025 +1.85
code

Note : * The uncoded GMSK with ideal carrier recovery and timing recovery as the reference

Table 2 The performance gain in dB at a BER of 1x10?
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TRELLIS CODED CPM USING COHERENT DETECTION
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ABSTRACT The bit error rate (BER) performance of
constant envelope partial response continuous phase
modulation (CPM) such as Gaussian minimum shift
keying {GMSK) combined with trellis coded modulation
(TCM) over additive white Gaussian noise is
investigated. The received signal is demodulated by
coherent detection based on \Viterbi decoding.
Coherent detection requires the knowledge of the exact
phase of the transmitted carrier at the recsiver,
However, in practice the exact carrier recovery and
clock recovery cannot be achieved due to the presence
of timing and phase jitters in the system. The proposed
study examines the sensitivity of the coherent receiver
to timing and phase impairments. The BER curves of
the coded GMSK signal and the uncoded GMSK signal
are obtained using computer simulations under various
timing jitters and camier phase offsets. The results
obtained are compared with those having exact carrier
recovery and clock recovery at the receiver. The effect
of the bandwidth of the clock recovery system on the
BER is also observed. '

The treflis coded GMSK schemes show better bit error
rate performances than the uncoded GMSK schemes
under ideal conditions as well as under timing and
phase errors. Coding gains of 1.7 dB, 2.2 dB and 3.1
dB at a BER of 1x10™ are respectively achieved with
coded GMSK with constraint lengths of 2, 3, and 4
under ideat timing and carrier recovery condiions.
Furthermore, the coded schemes are shown te be
more tolerant to timing jittérs and carrier phase offsets.
For example, for a timing offset of +T/4, the
degradation suffered by the coded and uncoded cases
at a BER of 1x10™ are 0.3 dB and 0.9 dB respectively.
As for the carrier phase offsets of +18° the uncoded
scheme suffers more than 5 dB degradation while that
of the coded system is less than 1 dB.

1. INTROBDUCTION

Due to constraints on spectrum availability and
transmitier power, both bandwidth and power efficient
digital modulation techniques are desirable in mobile
radioc communications. CPM signals have gained
attention because of their attractive power spectra.
Moreover, the partial response CPM signals such as
Gaussian minimum shift keying (GMSK) having smooth
phase transitions between the successive signalling
intervals produce a narrower spectrum than the full
response CPM signals [1,2]. Also, the inherent
constant envelope property of CPM signals -permits the
utilisation of efficient non-linear power amplifiers
without causing undesired spectral splashing. On the
other hand, TCM schemes could provide better bit error
rate performances compared to the uncoded schemes
[3). Therefore, the combination of TCM which improves
error probability and partial response CPM signals
which yield constant envelope and low spectral
occupancy is expected to provide good coding and
modulation over

bandwidth and power limited channels such as the one
encountered in mebtle radio communications.

This paper examines the improvement in BER
performance of GMSK signa! when combined with rate
12 trellis coding in an additive Gaussian noise
environment. Coherent detection based on Viterbi
decoding has been adopted. However, with coherent
detection, the carer recovery becomes essential.
Previous studies on coherent detection of GMSK aver
Gaussian noise channel often assumed exact recovery
of the reference camier and the timing clock [3]. This
study examines the effect of timing jitters and the
carrer phase offsets on the BER performances.

2. CONTINUOUS PHASE MODULATION (CPM)

In continuous phase modulation, the information
carrying phase of the carrier is a continuous function of
time. This signal phase continuity is given rise by the
correlation between symbols in adjacent signalling
intervals. The mathematical representation of a CPM
signal has the form [4],

s(t,a) = 2E/ T cos(2f .t + $t, @)+ ¢,) (§))]
where E is the symbol energy of the signal, T is the
symbol duration, f, is the camier frequency, ¢, is an
arbitrary constant which represents the initial phase,
and it can be set to zero with no loss of generality.
¢#(2,0) is the information carrying phase given by,

#r.e)= Zyrhga,q(r—if)

and g(r)= jg(r) d7T 2

where g = +1, 13, +5, ., + (M-1) for M-ary data, This
paper considers only binary modulation, so that o; = z1.
The pulse waveform gft) determines the phase
changes in the signal modulation in response to each
data symbol. Normatly, the frequency pulse, gt is a
simooth pulse shape over a finite duration LT, where L
is an integer. The shape of g() determines the
smoothness of the transmitied information carrying
phase, The rate of change of the phase or the
instantanecus frequency is proportional to the
parameter h, which is normally referred to as the
modulation index.

By choosing different frequency pulses gf) and varying
the parameters » and M, a variety of CPM schemes
can be realised. CPM schemes derived using a
frequency pulse gft) occupying a duration of L symbol
intervals greater than one have overlapping pulse
shaping. If L >, ther the resulting schemes are
referred to as partial response CPM [5, 6].

In GMSK, which beiongs to the class of partial
response CPM scheme, the binary data are filtered by
a Gaussian low-pass filter before applying to an FM
modulator. The pre-modulation Gaussian filter shapes



the data signal to provide a smooth phase variation,
This smoothness in phase variation produces a
compact spectrum compared to its full response
counterparts like Minimum shift keying (MSK) signal.
The modulation index of GMSK equals to 0.5. The
impulse response of the Gaussian low-pass filter is
given by,

2r -27'Bl?
= AJZE B expl 2 Bet
b= A\ °“p{ In2 } @

where B, is the 3 dB bandwidth and 4 is a constant, By
varying the 3-dB bandwidth of the impulse response of
the Gaussian filter, a set of different GMSK signals
having different power spectra can be obtained. The
frequency pulse gf1) of the GMSK signal has the form,

T
[ t+<

278, e | — ) 278, — 2
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for 0<BT<w

1
gl =37

where  O()= IJT%_M dr

For GMSK, the duration of the Gaussian phase
shaping pulse gft) is infinite. However, for practical
reasons,. il can be fruncated over several bit periods.
When B, T is equal to 0.25, the GMSK pulse can be
truncated symmetrically over 4 bit periods.

3. TRELLIS CODED GMSK

Fig. 1 shows the block diagram of the treliis coded
GMSK model considered in this paper. G js a binary
convolutiona! encoder. A convolutional encoder is
usuglly denoted by (nk,v). Here the encoder
accepting £ serial input bits at a given time interval
yields » output bits using a v-stage shift register. For
the same code (n,k,v), there are a large number of
equivalent encoders having different structures. A
convolutional code can be described by a row vector
called the connection vector,

GJ = (g_ﬂ:g_nr‘-:gjv)’ j= 1:2:;-":'" (5)
specifying the connection between the j - th output and
each stage of the shift register. The component g is
equal to 1 if the j th output is connected to stage i:
otherwise it is aqual to zero. The length of the shift
register in the encoder is called the constraint length of
the code. Code rate is R.=k/n. In this paper, rate

1/2 convolutional encoders having constraint lengths 2,
3, and 4 have been studied in conjunction with GMSK
modulation.

The coded sequences of the input data are then
serially fed 1o the GMSK modulator M, which generates
the transmitted signal s(1,z). The signal at the input to
the coherent receiver is r(t)=s(r,a)+n{r), where nft)
is additive white Gaussian noise with zeré mean and
double sided power speciral density N2, The coherent
receiver consists of quadrature demodulation followed
by soft decision Viterbi decoding. The phase values of
the received signal obtained from quadrature
demodulation are used in the trellis decoder to
eslimate the most likely transmited sequence using
the Viterbi algorithm.

In ganeral, a binary convolutional code having &=/ and
consiraint length v has 2"/ statas in the trellis diagram.
When such code is decoded by means of the Viterbi
algorithm, there are 2 surviving paths at each stage
and 2*! metrics, one for each surviving path. Thus, the
receiver complexity of the Viterbi decoder is
proportional to the number of states in the treliis. The
receiver complexity of the combined coded CPM
signals’ can be expressed by the number of decoder
states in the Viterbi decoder. The number of states
representing the combined signal, which is the number
of states in the optimum Viterbi decoder, is the product
of the number of states in the convolutional code and
the number of states in the CPM signal. However, the
complexity of the receiver can be minimised by
precoding the input to the GMSK modulator as shown
in Fig. 2 [7]. The fransfer function of the binary
precoder can be represented by T(DJ=i+D ie.
a,=b, @b, , where @ denotes modulo-2 addition {or

-l
EX-OR operation), 4, is the input to the precoder and «,
is the output of the precoder. D represents the delay by
one bit period.

In designing a ftrellis coded CPM signal, the
convolutional encoder, the mapper and the CPM
scheme must all be optimised jointly to create a good
power and spectrally efficient code. The optimisation
criterion used in this study is based on the largest
minimum Euclidean distance (the largest free distance)
between signals leaving a common state in the
combined trellis of the convolutional code of a given
constraint length with the trellis of the CPM signal, and
merging into another common state after a certain time
interval. An exhaustive search on selecting the
optimum combination of rate 1/2 convoultional codes
having consiraint lengths 2, 3, and 4 with differentially
encoded GMSK has been carried out in this study. The
codes having all the possible combinations of
generator polynomials have been considered in the
search.

The connection vectors G; and G; of the selected
optimum rate 1/2 convolutional encoder having
constraint lengths 2 producing the largest free distance
have the form /1 1/ and {8 1]. The octal representation
of the generator polynomial of this code is {3,1). The
selected optimum codes having constraint lengths 3
and 4 producing the largest free distances have the
connection vectors G, = {11 1] and G, = 0 ] I}, and G,
={1101]and G;= [0 11 1] respectively. The octal
representations of the comresponding generator
polynomials of these selected optimum codes having
constraint lengths 3 and 4 are (7,3), and {15,7)
respectively. When these selected codes having
constraint lengths 2, 3, and 4 are combined with
differentially encoded GMSK, the resultant treflises
have 4, 8 and 16 states respaclively whereas the
GMBSK treliis has 8 states.

4. SIMULATION MODEL

Computer simulations based on the functional block
diagram of Fig. 3 have been used in determining the bit
error rate (BER) in the presence of additive white
Gaussian noise. The transmitted data, {a.}. is derived
from a pseudorandom sequence generator of length
256 bits and with equiprobable bits of logical 1 and 0.



This data is encoded by a rate 1/2 convolutional
encoder. Here, the rate 1/2 convolutional codes having
constraint length 2, 3, and 4 represented by their
generator polynomials in octal form as (3,1), (7,3), and
(15,7) respectively are used. The coded binary data
{ca} i3 then mapped to the real number inputs f4,} to
the differential encoder as ¢ -f and /- +1. This data
{24} is then differentially encoded before appiying to the
GMSK modulator. The 3-dB bandwidth of the
premodulation Gaussian fiter normalised to the bit
period is set at 0.25. The GMSK frequency pulse is
truncated symmatrically over 4 bit periods and
considered zero outside. The additive white Gaussian
noise has been simulated according to the Box Muller's
transformation. The received signal is filtered using a
low pass equivalent of a Gaussian band pass filter. The
performance of the system changes with the bandwidth
of this low pass flter. Therefore, the optimum
bandwidth of this low pass filter, which produces the
best performance at a given SNR has also been
considered and obtained in the simulation. The filtered
signal is then demodulated into its inphase {I) and
quadrature ({) components cos(#(r)) and sin(g{r)
using 2 quadrature demodulator with the reference
camier in quadrature. The sampling instants of the 7
and ¢ components of the received signal are set at the
instants where the eye opening is maximum. The
samples of the I and @ components obtained at these
sampling instants are then used to compute the phase
values. The trellis decoder uses these phase values to
determine the most likely transmitted sequence
employing the Viterbi algorithm. The BER curves are
obtained by comparing the transmitted and the
received signals. To ensure the relfiability of the
simulation results, at least 100 errors have been used
to compute the BER for each E,%, value.

5. SIMULATION RESULTS

In selecting the optimum BW of the low pass filter, the
BER behaviour of uncoded and trellis coded GMSK
with the selected convolutional codes having constraint
lengths 2, 3, and 4 had been first obtained with
different bandwidths in the simulation at an arbitrarily
selected E/No (= 4dB) value. From Fig 4, the optimum
band pass bandwidth of the low pass equivalent of the
band pass filter nomalised to the bit period can be
approximated to 0.8 for both uncoded and trellis coded
GMSK signals. This optimum bandwidth has then been
selected as the fiter bandwidth of the low pass
equivalent of the Gaussian band pass filter, in the rest
of the simuiations carried out in this study. Fig. 5
presents the simulated BER resulis for the uncoded
and the trellis coded GMSK signals in the presence of
additive white Gaussian noise assuming ideal carrier
recovery and timing synchronisation. When compared
with the uncoded GMSK schemes at a BER of 107,
coding gains of 1.7, 2.2, and 3.1 dB have been
achieved using codes of constraint lengths 2, 3, and 4
respectively in conjunction with differentially encoded
GMSK. Moreover, the number of states in the trefiis of
the uncoded GMSK scheme is 2, 1, and 1/2 times that
of coded scheme for constraint lengths 2, 3, and 4
respectively. Thus, a decrease in receiver complexity
has been obtained with the constraint length 2 code
while obtaining a coding gain of 1.7 df3,

The sensitivity of the proposed coherent detection
scheme to timing and carrier phase offseis has also
been investigated in the presence of various carrier
and timing impairments, including fixed and random
variations. First, the sampling instant has been offset
assuming the carmmer phase recovery is ideal. Then, the
carrier phase errors have been combined assuming no
symbaol timing error. Finally, the effect of both symbol
timing offset and carrier phase errors has besn studied.
Fig. 6 presents the BER performance of the coded and
uncoded GMSK signals when the sampling instant
offset is £/4. Similar BER performances are
presented in Fig. 7 when the camer phase offset is
+18°% Table 1 tabulates the values of Ex/N, required to
achieve an error rate of 10” for uncoded and trellis
coded GMSK in the presence of various carrier and
timing impairments, including fixed and random
variations.

The random timing jitter and the random carrier phase
error have been simulated by low pass filtering a set of
Gaussian distributed random numbers. Averaging
filters have been used to simulate the filtering effect of
the carrier and clock recovery loops. The filter
bandwidth is vared by changing the number of
samples used in the running average. For the
bandwidths considered, the peak-to-peak variation of
the sampling instant offset of the random jitter is set at
267/8. However, when the bandwidth of the filter is
small, the random timing and camier phase variations
are slowly varying and the correlation between the
adjacent variations is high.

When the sampling instant offset is #I7#, the BER
performance of uncoded GMSK is degraded by 0.90 dB
compared to the ideal carier recovery and timing
recovery, whereas trellis coded GMSK signals
achieved 0.3 dB degradation in performance under the
same conditions. When the sampling instant suffers
from random jitter with rms offset of 774, the
performance degradation of all the signals considered
is increased. The results under timing offsets show that
the unceded GMSK signal is much more sensitive to
sampling instant offsets than the coded GMSK signals
considered, provided that the carrier recovery is ideal
having no phase errors. Also, both uncoded and trellis
coded GMSK signals studied are more sensitive to
random errors than the fixed errors due to the large
peak-to-peak variations that could be encountered in
the case of random errors.

Even at the worst fixed carmier phase offset considered
(1180), the coded schemes have shown a performance
degradation of less than 1 dB while the uncoded
scheme has shown a degradation of more than 5 dB,
The effect of random phase error has shown a severe
reduction of the performance {more than 10 dB) of the
uncoded GMSK signal. Also, the coded schemes have
shown arcund 3 dB degradation in performance under
these conditions, It has been observed from these
results that the coded signals are more tolerant to
carrier phase offset than the uncoded signal. Moreover,
the effect of random carrier phase error is more severe
on the performance of both coded and uncoded
schemes considered than the fixed phase error. This
is due to the much higher peak-to-peak variation of the
random phase error (£60% having a rms of +18°
introduced compared to a fixed error of +18°.



Also, the results in Table 1 show that the codad
schemes arg more tolerant to both phase errors and

7. REFERENCES

timing errors together compared to the uncoded 1. Sundberg, Canl-Erik, “Continuous  Phase
scheme, Modulaticn,” [EEE Communications Magazine,
24(4), April, 1986, pp. 25-38.
6. CONCLUSIONS 2. Murota, K. and Hirade, K., “GMSK Modulation for
Digital Mabile Telephony," /IEEE Transactions on
Tha optimum combinations of rate 1/2 convolutional Communications, COM-29, July, 1981, pp. 1044-
codes having constraint lengths 2, 3, and 4 combined 1080.
with differentially encoded GMSK has been obtained 3. Ungerboeck, G., *Channel Coding with
based on the largest free distances. The BER Multilevel/Phase Signals,” /EEE Transactions on
perforrnance of differantially encoded GMSK combined information Theory, 1T-28 (1), January, 1982, pp.
with trellis coded modulation (TCM) over additive white 55-67.
Gaussian noise is  investigated using computer 4. Anderson, J, Aulin, T and Sundberg, C.E., Digital
simulations. The sensitivity to timing and phase errors Phase Modulation, Pienum Press, New York, NY,
of the proposed scheme has been studied. It has been USA, 1986.
observed that a gain of 1.7 dB, 2.2 dB and 3.1 dB can 5. Aulin, T. and Sundberg, C.-E. W., “Continuous
be obtained by introducing coding and differential Phase Modulation - Part | Full Response
encoding before GMSK modulation using constraint Signalling,” IEEE Transaction on Communications,
length 2, 3, and 4 codes respectively under ideal timing COM-29(3), March, 1981, pp. 196-209,
and ‘carrier recovery conditions. Also, the performance 6. Aulin, T., Rydbeck, Nils and Sundberg, C.-E.W.,
degradation of the proposed coded schemes is much “Continuous Phase Modulation - Part Il : Partial
less than that of the uncoded scheme under the Response Signalling,” IFEE Transaction on
various timing and phase errors considered, Also, the Communications, COM-29(3), March, 1981 op.
receiver complexity of the coded GMSK schemes 210-225. ) ’ ' !
considered having constraint length 2 and 3 codes 7. Morales-Moreno, F., Holubowicz, W. and
have smaller or the same compiexity as the uncoded Pasupathy, S., “'Optin'ﬂzation of Trellis Coded Via
GMSK scheme. ' Matched Codes,” [EEE Transaction on
Communications, 42(2/3/4), Feb./March/April,
1994, pp. 1586-1594.
Input eodad l sutput laput "
data s dan " SiLey & LiH v _d:-_ datn . “ s(tay e v o:tmn
et |
o S Y S s
Fig. 1 Amodel of the trellis coded GMSK scheme. Fig. 2 A trellis coded and differentially
) : encoded GMSK scheme.
mr Nate 172 ::,:]) =
il Al
= 0
1
Cuadraey ‘3":::' b
T
Coch
recwrary

Fig. 3 Simulation model.



10"
107 i -
\\
£y ~
tN
102 NN 7\\
;' W
| : .\ .1 \\
10 A ‘\
10-3 \. ". \l \‘
o me Y ‘\‘ x
P e e ran « e —
w d 4 W !
m . - @ s AN
----- fo - X \\
A .
10 : E 5
- X T -
10° —%— Uncoded GMSK |- —— ="
——Unooced GVEK | s, v ’
EP — +— Coded GMSK with \
— -~ Qe VEKwih code of constraint v
e oot 105 length 2 \
..*.mmm - - i - - Coded GMSK with ) &
e of areirint code of constraint
largh3 length 3
= - Qi CWEKvih ~ & Coded GMSK with
ceceof covimint e, code of constraint f-—rr g e
104! ",UM ; 10 length 4 .
03 04 05 Q6 a7 08 09 0 2 ; 5 é
bend pass BN df the lowpass filker
{nonmelisad to the hit period) : E./N, (dB)

Fig. 4 influence of the bandwidth of the low pass Fig. 5 BER of uncoded and trellis
filter on the BER of coded and uncoded GMSK coded GMSK schemes
schemes.

105
102}
-
' |
107 e R
v L &
[ TE] X N o
m 2
10+ \_ul\‘ 5
"' ‘\ X
b % Y -~
N
R :
103 1
&
10:%
2 4 6 8
Eb/No(dB}
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E‘,’ fNo in dB required to achieve a BER of 1x10

, . Timing
Ideal carrier recovery Ideal iming racovery offset of
Signal Ideal | Timing | Twming | Timing Random Random Carrier | Camier | Carrier Randomn +T/4 and
GMSK tming | offset | offset |offsetof | offsstof offset of phase | phase { phase phase carrier
of 1+T/8 of 5T/ | +T/4 rms. 1T/4 rms. offset offsat offset offset af phase
+T44 BW = BW of of of #18% rms. | offsat of
0.1%fb =0.5%f | +10® | #15° | #18° | Bw=1%b | 16
Uncoded 6.90 7.16 7.80 12.60 B.50 10.20 8,50 10.16 12.00 - 13.4
Constraint
length 2 520 535 5,50 8.23 573 524 5.38 5.84 5,80 8.10 6,42
code
Constraint
length 3 470 4.80 5,00 7.70 535 5.68 480 534 550 8.30 6.60
code
Constraint
length 4 3.80 3485 410 5.80 4.60 4.81 380 4.20 4.75 715 495
code

Note : T is the bit period
fy is the bit rate

Table 1 The required En/Ng in dB to achieve a BER of 1x10™



APPENDIX H

COMPUTER PROGRAMS

The computer search program for the selection of appropriate trellis codes
has been carried out using the VAX-VMS system based on a software
developed with Pascal. The program Mindist.pas calculates the free distance
of trellis coded GMSK schemes. The phase values required for the
calculation are provided in the Mindist.com file. The values provided in the
Mindist.com file correspond to the phase states and the intermediate phase
states of the code [13,7] in combination with differentially encoded GMSK.
These phase values corresponding to a particular trellis coded scheme are
obtained by combining the trellis of the code with that of the differentially
encoded GMSK signal, as discussed in Section 4.4.

The computer simulations in Chapters 6 and 7 have been carried out on IBM
PC using custom software developed with Fortran. A list of the major
programs, which provide the BERs of uncoded and coded GMSK schemes

under various conditions are given below.

Uncod.bat
Uncoded GMSK in the presence of AWGN, assuming ideal timing and carrier phase.

Uncodj.bat
Uncoded GMSK in the presence of AWGN, with random timing error.

Uncodp.bat
Uncoded GMSK in the presence of AWGN, with random phase error.

Cod31.bat
Coded GMSK using code [3,1], in the presence of AWGN, assuming ideal timing
and carrier phase.

Cod73.bat

Coded GMSK using code [7,3], in the presence of AWGN, assuming ideal timing
and carrier phase.
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Cod137.bat
Coded GMSK using code [15,7], in the presence of AWGN, assuming ideal timing
and carrier phase.

Codj31.bat
Coded GMSK using code [3,1], in the presence of AWGN, with random timing
error.

Codj73.bat
Coded GMSK using code [7,3], in the presence of AWGN, with random timing
error.

Codj137.bat
Coded GMSK using code [15,7], in the presence of AWGN, with random timing
error.

Codp31.bat
Coded GMSK using code [3,1], in the presence of AWGN, with random phase error.

Codp73.bat
Coded GMSK using code [7,3], in the presence of AWGN, with random phase error.

Codpl137.bat
Coded GMSK using code [15,7], in the presence of AWGN, with random phase

€Iror,

The simulated BERs using differential phase detection of uncoded GMSK
over flat fading channeis are obtained using the files unffl.bat and unff2.bat.
Initiating with the file unffl.bat, unff2.bat is then repeated (128 times) until the
required BERs are reached. Similarly the BERs on the coded GMSK
involving the code [3,1] are obtained using the files coffl.bat and coff2.bat.

The irreducible BERs of the uncoded and coded schemes over two-ray
frequency-selective fading channels using differential phase detection are
obtained using the files unsf2.bat (again initiated with the file unsfl.bat) and
cosf2.bat (initiating with cosfl.bat), respectively.

The irreducible BERs of the uncoded and the coded schemes using the
adaptive Viterbi decoder over two-ray frequency-selective fading channels
using different lengths of training sequences, signal blocks and with different
complexities of Viterbi receivers are obtained using the following files. Here,
the first .bat file is run once and the second .bat file is repeated until the
required BERs are obtained (until the number of transmitted bits considered
approximates to Yz million).

unl28 21.bat and then un128 22.bat
uncoded GMSK using training sequence of 26 bits, signal block of 128 bits and
decoder designed to accommodate up to 4 bit periods.
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unl28_31.bat and then un128_32.bat
uncoded GMSK using training sequence of 26 bits, signal block of 128 bits and
decoder designed to accommodate up to 3 bit periods.

unl28_41.bat and then un128 42.bat
uncoded GMSK using training sequence of 40 bits, signal block of 128 bits and
decoder designed to accommodate up to 4 bit periods.

un2356_21.bat and then un256_22.bat
uncoded GMSK using training sequence of 26 bits, signal block of 256 bits and
decoder designed to accommodate up to 4 bit periods.

Co0128_21.bat and c0128_2.bat (Here co0128_2.bat consists of col128 22.bat,
co128_23.bat, col28_24.bat, and c0128_25.bat)

coded GMSK with code [3,1] using training sequence of 26 bits, signal block of 128
bits and decoder designed to accommodate up to 4 bit periods.

Co128_31.bat and co0128_3.bat (Here col28 3.bat consists of col28 32.bat,
c0128_33.bat, co128_34.bat, and co128 35.bat)

coded GMSK with code [3,1] using training sequence of 26 bits, signal block of 128
bits and decoder designed to accommodate up to 3 bit periods.

Col28_41.bat and col128 4.bat (Here col128_4.bat consists of col28 42.bat,
col28_43.bat, col28_44.bat, and co128_45.bat)

coded GMSK with code [3,1] using training sequence of 40 bits, signal block of 128
bits and decoder designed to accommodate up to 3 bit periods.

Co256_21.bat and ¢0256_2.bat (Here c0256_2.bat consists of 0256 22.bat and
c0256_23.bat) :
coded GMSK using training sequence of 26 bits, signal block of 256 bits and
decoder designed to accommodate up to 4 bit periods.

The irreducible BERs of the uncoded and the coded schemes using the
adaptive Viterbi decoder, designed to accommodate up to 4 bit periods, over
six-ray GSM fading channel models are obtained using the following files.
The length of the training sequence is 26 bits and the signal block size is 256
bits.

un_gsmhi.bat and then un_gsmh2.bat
uncoded GMSK over six-ray hilly terrain model

un_gsmrl.bat and then un_gsmr2.bat
uncoded GMSK over six-ray rural area model

un_gsmul.bat and then un_gsmu2.bat
uncoded GMSK over six-ray urban area model
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Co_gsmh1l.bat and co_gsmh.bat (Here co_gsmh.bat consists of co_gsmh2.bat, and
co_gsmh3.bat) '
coded GMSK over six-ray hilly terrain model

Co_gsmrl.bat and co_gsmr.bat (Here co_gsmr.bat consists of co_gsmr2.bat, and

co_gsmr3.bat)
coded GMSK over six-ray rural area model

Co_gsmul.bat and co_gsmu.bat (Here co_gsmu.bat consists of co_gsmu2.bat, and
co_gsmul.bat)
coded GMSK over six-ray urban area model

A software copy of these subroutines is provided on the fioppy disk attached
to this thesis. In order to run the subroutines provided on the disk, Pascal
and Fortran compilers are required. The variable/s of interest must be

specified in each program. The final output is redirected to a text file.
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