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AAbbssttrraacctt  

 
Market risk refers to the potential loss that can be incurred as a result of movements in 

market factors. Capturing and measuring these factors are crucial in understanding and 

evaluating the risk exposure associated with an investment portfolio. This process is 

complicated by the fact that not all factors are directly measurable in the market; also, the 

asset returns exhibit stylised facts which complicate the modelling process. Risk models are 

required to capture this dynamic behaviour of the asset price to enable forecasting, pricing 

and evaluation of the current and future portfolio position. Statistical models applied in this 

domain have limitations in representing and capturing the dynamic behaviours in the 

market. This limitation is caused by the necessary assumptions of the model in the 

underlying process to allow for the mathematical derivation of the model such as the 

normality in the asset return series. Such assumption drastically impacts upon the accuracy 

and the stability of the model. For this reason, neural networks are proposed as an 

alternative solution to statistical models as they are data-driven which does not require any 

assumptions in the underlying data. Although neural networks have been applied 

successfully in many disciplines, they have shown limited success in market risk.  In this 

thesis, we study the application of neural networks in market risk; in particular, we study the 

application of neural networks in volatility forecasting, option pricing and hedging.  

  

Neural networks have been applied heavily to time forecasting with superior performances 

over standard time series models. Typically in risk management models, forecasting 

accuracy is dependent on how well the model is able to capture the volatility process. In the 

literature, volatility forecasting results are indecisive and in some instances misleading. For 

this reason, the majority of volatility forecasting research relies on hybrid methods that 

combine time series models and neural networks to further increase the accuracy of 

forecasting. This limitation is due to the neural networks’ (MLP) inability to cater for key 

stylised facts in the data.  For this reason, we turn our attention to mixture density networks 

(MDNs) as they are most suitable for modelling key stylised facts, such as heteroskedasticity. 

There are several MDN volatility forecasting papers where the forecasting results are aligned 

with other research conducted in this domain. The mixed results reported in the literature 

are analysed and the key variables impacting on the results are studied. Our research 

identified key oversights in the model design and optimisation process that has led to the 
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conflicting results in the research. To demonstrate the impacts of these oversights and the 

capabilities of the MDNs, we conduct an extensive experiment by varying multiple factors in 

the MDN models. The results demonstrate the out-of-sample forecasting capabilities of the 

MDN and show how the time series models are directly affected by these variables. Also, 

MDN models displayed superiority over GARCH models when the correct model is selected. 

 

Neural networks have been utilised for option pricing with the aim of overcoming the 

inefficiencies and assumptions of the BSOPM.  The research results demonstrate the 

superiority of the neural networks’ pricing accuracy over the BSOPM.  However, the majority 

of neural network research in option pricing thus far has focused mainly on improving the 

pricing capabilities of the BSOPM; next to no work has been done with respect to other 

advanced models such as GOPM. In this thesis, we explain how the weak performance of 

neural networks is due to the method and data used in optimising the neural network. We 

devise a new method for pricing option by training the neural network on the implied 

volatility rather than the option price. This method overcomes the data issues and allows the 

neural network to capture key behaviours in the options data. The results show significant 

improvements of neural networks which demonstrate the superiority of the neural network 

over the GOPM and the BSOPM.  To further test the neural network capabilities, a delta 

hedging scenario was devised for all models. The results indicated that the performance of 

the neural networks was similar to that of the BSOPM, whereas the GOPM’s performance 

was inferior to other models.  

 

The results in this thesis demonstrate the power of neural networks in learning complex 

behaviour from the underlying data. These features allow them to be applied to market risk 

problems to overcome classical issues associated with statistical models. As an extension to 

this research, we design a neural network based on the outcomes of this thesis to address 

VaR modelling issues. This experiment will be left for future research.  
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CCHHAAPPTTEERR  11  --    IInnttrroodduuccttiioonn  

 
Technological advances such as the introduction of the internet and increase of mobile 

devices have allowed for instant information sharing and consumption around the world. 

This has led world markets to become integrated, thereby increasing trading activity on the 

stock exchange by local and foreign investors. The purpose of each trading activity is very 

much dependent on the agenda of the participant. For instance, stocks can be bought or 

sold for different reasons such as the readjustment of the hedge position or for simple profit 

realisation. This random behaviour of the investors introduces a source of uncertainty to the 

markets that can have adverse effects on the evaluation of portfolio risk exposure. This 

uncertainty in the market variables is known as market risk. By definition, market risk is the 

potential loss of value of an asset due to movements in market factors. Measuring market 

risk requires quantitative techniques to analyse individual financial instruments and portfolio 

of assets. This quantitative measure or model captures the trends and behaviours in the 

data which are then used to deduce future values. In this thesis, market risk is grouped into 

four main categories: forecasting, option pricing, hedging and portfolio risk management.  

1.1 Volatility Forecasting 

Financial time series modelling is typically studied in terms of the asset returns rather than 

the asset price. The returns series contain vital information for the investor such as the 

portfolio position. This vital information is captured using statistical models which are then 

used to predict the behaviour of certain market variables moving forward. Traditionally, 

forecasting models such as the ARIMA model, which are used for forecasting returns, cater 

for many statistical aspects of the returns time series such as the conditional mean. 

However, financial time series have been shown to exhibit stylised facts such as volatility 

clustering and heteroskedasticity. These key stylised facts are not captured by such models 

which impacts on the reliability and accuracy of the forecasts. This problem was first 

addressed by the ARCH model (Engle 1982), where the variance is formulated as a function 

of past variances. This formulation addressed key factors in the underlying returns such as 

the heteroskedasticity and volatility clustering. Even though the ARCH model was a major 

breakthrough in volatility forecasting, the model did have several shortcomings. For this 

reason, many variations of the ARCH model have since emerged to address and overcome 

some of these shortcomings. The ARCH model family is mainly concerned with modelling the 

variance or volatility of the return series. The development of the ARCH model is a great 
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contribution to market risk management as evidenced by the large body of literature that 

exists on this topic. Nevertheless, these forecasting models also have drawbacks which can 

be attributed to the prior assumptions on which they are based. 

1.2 Option Pricing 

Many new investment instruments have been developed and traded on the stock markets, 

the most common and active being the options. An option is a contract on the underlying 

asset that can be traded depending on the investment strategy of the investor. A mechanism 

for evaluating the option price is required for an effective investment strategy. The Black-

Scholes option pricing model (BSOPM hereafter) is the first model formulated to produce an 

analytical price for options. The simplicity of the model and its ability to produce a price 

instantaneously contributed to its wide adoption. The model was founded on several key 

assumptions which informed its design. These assumptions were soon found to have a 

significant impact on the pricing accuracy of the model. Many variations of the BSOPM have 

emerged to address the model’s shortfalls. One critical assumption that has attracted major 

attention is the constant volatility assumption. This assumption is invalid as the variance in 

the underlying asset is time varying or heteroscedastic. This assumption is further 

invalidated when the volatility is extracted from the BSOPM. The implied volatility of the 

BSOPM is U-shaped when plotted against the moneyness of the option; hence, the term 

‘volatility smile’. The implied volatility has many attractive attributes that have been widely 

debated in literature. The implied volatility is extracted from the market option price; 

therefore, it is a forward looking view of the market. That is, it shows the anticipation which 

can be exploited for further decision making. This highlights the importance of having the 

correct volatility specification in the option pricing model. To overcome the constant 

volatility assumption, sophisticated models had to be developed. For instance, the GARCH 

option pricing model (GOPM here after) was developed to price options by allowing the 

volatility to follow a GARCH process. This feature is the key factor for superior pricing 

accuracy of the GOPM. The major drawback of this model is the absence of a closed form 

solution. Hence, the option pricing is generated numerically using numeric simulation 

methods.   

1.3 Risk Management Methods   

Trading strategies are undertaken to optimise profits while controlling risk exposures. To 

achieve this, one would need to understand the potential impacts on an investment 

portfolio due to changes in the market variables. Hedging strategies are designed to perform 
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these tasks. This is achieved by using the option pricing formula to calculate the option 

sensitivities to any input variable given that the option pricing model is specified correctly. 

The most popular sensitivity analysis is options delta; this measures the sensitivity of the 

option to one unit change in the underlying asset price. The delta value can then be used in 

a hedging scenario to offset the risk of change in the underlying asset price. On a larger 

scale, Value-at-Risk models are used to provide the worst expected loss over a period of 

time for a portfolio. The popularity of this model stems from its ability to summarise the risk 

exposure of a portfolio in to a dollar figure that can be interpreted by senior management. 

The wide adoption of the Value-at-Risk models is attributed to the Basle Committee making 

it a requirement for banks to establish minimum capital requirements based on Value-at-

Risk figures. The difficulties with calculating Value-at-Risk figures is associated with capturing 

and predicting the extreme events. By definition, these events seldom appear in the data 

set; therefore, any statistical model would have difficulties representing them. This problem 

is generally masked by modelling the profit and loss distribution using fat tails distributions 

such as student-t. This type of assumption has a significant impact on the accuracy and 

performance of the model.  

1.4 Neural Networks Approach 

The financial models discussed above are based on statistical proprieties and assumptions in 

the underlying data. Assumptions are necessary for the derivation of these models. In some 

instances, unrealistic assumptions are made to simplify the problem or to allow the 

mathematical derivation of the model. Given the complex behaviour of financial markets, 

these models can potentially misrepresent or fail to represent key features in the underlying 

data. For this reason, neural networks are sought in order to overcome these shortfalls. 

Neural networks have been proven to be universal approximators with the capability of 

representing any continuous function. Neural networks are data-driven and therefore do not 

require prior assumptions about the data in order for the model to be formulated. In 

addition, they are naturally suitable to model nonlinearities in the data. These are very 

attractive features of neural networks which makes them a suitable tool for market risk 

modelling. These features also introduce many complexities to the design of a correct neural 

network model.  The lack of a formal modelling approach to neural networks has resulted in 

many studies reporting conflicting results, especially in the market risk domain. In this thesis, 

the limitation of neural networks is explained with reference to the literature. The common 

oversights and assumptions adopted in research and their impacts on the evaluations of the 

neural network models in market risk are evaluated and explained. A neural network 
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solution is then provided for volatility forecasting, option pricing and hedging. The results 

achieved in this thesis show the superiority of neural networks over statistical models. These 

results highlight the important role that neural networks can play in market risk modelling 

and indicate that any lack of success is mainly due to the misuse and misunderstanding of 

neural networks.  

1.5 Thesis Plan 

The remainder of this thesis is organised as follows: 

A comprehensive literature review is provided in Chapter 2. This chapter is divided into two 

sections: financial modelling and neural networks. For financial time series models, all 

models and concepts studied in this thesis are reviewed and explained. The weakness of 

each of the modelling techniques is highlighted and explained with reference to research. 

The second section of the chapter provides a detailed review of neural networks. Then a 

comprehensive review is provided on the neural networks research in forecasting volatility, 

option pricing, hedging and Value-at-Risk. In this review, the strength(s) and weakness(es) of 

each study are explained. 

 

In Chapter 3, the problem definition is formulated and we provide precise definitions of the 

terms and concepts that will be used throughout the thesis, as well as an explanation of the 

approach and methodology. A solution overview for the issues addressed in this research is 

outlined in Chapter 4. The results of the volatility forecasting experiments are reported in 

Chapter 5. In Chapter 6, option pricing and hedging experiments outlined in Chapter 4 are 

executed and the results are reported and analysed. A discussion of the results and 

contributions obtained in this thesis is outlined in Chapter 7 and the thesis conclusion is 

presented in Chapter 8. 
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CCHHAAPPTTEERR  22  --    LLiitteerraattuurree  SSuurrvveeyy    

In this chapter, we provide a detailed review of the two main subject areas which are the 

focus of this research: market risk and neural networks. A review of market risk covers three 

main areas; firstly, time series modelling techniques that includes a review of linear time 

series and stochastic time series models. Both topics explore different techniques for 

modelling time series where the emphasis is on capturing key properties and attributes of 

financial time series data. Since financial modelling is mainly concerned with modelling of 

returns rather than the asset prices, the key features of the return time series which are the 

returns stylized facts, statistical properties of the returns series and modelling techniques 

are outlined. The second area of market risk that we cover is option pricing. Options are 

instruments used in financial management either to offset a risk component in a portfolio, or 

they can be used as part of an investment strategy. In this section, the properties of options, 

pricing models and delta hedging are discussed. The third area covered in this review is 

Value-at-Risk models (VaR).  VaR models are important tools in risk management which have 

enjoyed wide adoption by most financial institutions. The VaR model key feature is its ability 

to summarise the portfolio risk exposure and produce a number that is easily interpreted by 

senior management. The three common VaR methods which are historical simulation, 

Monte Carlo and variance-covariance will be reviewed in this chapter. The strength and 

weakness of each of the abovementioned topics will be discussed with reference to 

literature.  

 

The second subject area reviewed is that of neural networks. In this section, an overview of 

neural network components such as perceptron, activation functions and training 

algorithms. Three main types of networks are studied in this research: multi-layer 

perceptron, mixture density networks and radial basis function networks.  After reviewing 

the different types of neural networks, a comprehensive review of the application of neural 

networks in the main areas of markets risk is undertaken. We highlight the strength and 

weakness of the adopted methods in the literature which will be used to formulate the 

research question for this thesis.  
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2.1 Time series modelling 

The fundamentals of time series analysis consists of a series of realisations of jointly 

distributed random variables, i.e. 
Ny,,y1 …  The subscripts 1,..,N are equally spaced time 

intervals and the observation are drawn from  a probability distribution  P,  

( )  y,..,yP N1N1,..,  (2.10) 

where P(.) is a probability density function associated with periods 1,..,N with random 

variables Ny,,y1 … . If the joint distribution is known at N also at time N we have 

observations 
Ny,,y1 … we can then construct a conditional distribution function of future 

observations i.e. 1Ny + . 

( )N11NN1,..,|1N y,..,y|yP ++  (2.2) 

So the information that we have about the relationship between y1,…,yN  and yN+1 from their 

joint distribution function allows us to specify the likely outcome of yN+1 using the available 

knowledge at N, i.e. (y1,…,yN ). This model is referred to as a stochastic process, since the 

observation evolves through time based on the laws of probability. Random walk is a type of 

popular stochastic process which is used in modelling stock prices.  The random walk model 

is a simple version of the stochastic process. The time series evolve through time according 

to the following:  

  y y 1N1N ++ += Nε  (2.3) 

ε is a random variable drawn independently from a probability distribution with mean zero 

at every period.  The probability distribution of yN+1 can be described given the historical 

observations. For instance, the mean is given by the expectation of yN+1 given y1,…,yN , 

( ) ( )NN y,,y| yE  y,..,y|yE 11NN11N …+= ++ ε  

( ) ( ) ( )NNN E y,,y|y,,y| yE  y,..,y|yE 111NN11N …+…= ++ ε  

( ) ( )1NN11N Ey  y,..,y|yE ++ += Nε  

( ) NN11N y  y,..,y|yE =+  (2.4) 

Therefore, the expected value of the next evolution is the current value. Also, the variance 

can be calculated as follows: 

( ) ( )NN y,,y| yV  y,..,y|yV 11NN11N …+= ++ ε
 

( ) ( )1N11N V0  y,..,y|yV ++ += Nε  

( ) 2

N11N   y,..,y|yV εσ=+  (2.5) 
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The forecasted value of yN+1 is derived from its probability distribution. For instance, if ε is 

assumed to be normally distributed (i.e. follows a Gaussian distribution), then we can 

deduce that the distribution of yN+1 is normally distributed centred on yN. That is 95% of the 

probability enclosed in interval yN±1.96σε, which means there is a 5% chance that the next 

observation will fall outside this interval. 

 

2.1.1 White Noise 

 

Consider a time series yt which consists of independent and identically distributed (iid) 

random variables with finite mean and variance. If the series is normally distributed with 

zero mean and a variance of σ2
, the series is considered to be a Gaussian white noise. For a 

white noise series, all autocorrelations are zero or close to zero. In most time series 

modelling techniques, it is beneficial to model the serial dependence in the series 

beforehand, which allows the series to be de-meaned, thereby producing a white noise 

series. This technique is useful when modelling certain aspects of the time series such as 

volatility of asset returns.   

2.1.2 Stochastic Processes 

 
A stochastic process is a random process which evolves with respect to time. More precisely, 

the stochastic process is a collection of random variables that are indexed by time.  In 

mathematical terms, a continuous stochastic process is defined on the probability space 

( )PF ,,Ω , where Ω is a non-empty space, F is a σ-field consisting of a subset of Ω and P is a 

probability measure (Billingsley 2008). This process can be described as follows: ( )}{ tx ,η , 

where t denotes continuous time )[ ∞,0 . For a given t, ( )tx ,η  is a real-valued continuous 

random variable which maps from Ω to the real line, and η is an element of Ω(Tsay 2005). 

2.1.3 Stationarity in time series 

 

A stochastic process is considered to be strictly stationary if its properties are not affected by 

a change of time origin. That is, the distribution of r1 is the same as other observations and 

the covariance between rN and rN-k is independent of N. Weak stationarity is mainly 

concerned with the means, variances and co-variances of the series that are independent of 

time rather than the entire distribution. The process rt is defined to be weakly stationary if 

for all t, the following holds: 
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[ ] ∞<=Ε µtr  

[ ] [ ] ∞<=−Ε= 0

2)( γµtt rrV  

[ ] [ ] ,...3,2,1,))((,cov ==−−Ε= −− krrrr kkttktt γµµ  

(2.6) 

 

(2.7) 

 

(2.8) 

Under joint normality assumption, the distribution is completely characterised by the mean 

and variance. So the strictly stationary and weakly stationary are equivalent. Under weak 

stationarity, the k
th

 order auto covariance kγ  is, 

[ ] [ ]kttkttk rrrr +− == ,cov,covγ  (2.9) 

So when k = 0, kγ  gives the variance of yt. Since the auto covariances are not independent 

of the units of the variables, this can be standardized by defining the autocorrelation ρk , 

[ ]
[ ] 0

,cov

γ
γ

ρ k

t

ktt
k

rV

rr
== −  (2.10) 

where ρ0=1 and 11 ≤≤− kρ . This is also referred to as the autocorrelation function (ACF). 

Using the ACF, we can model the time series and the dependencies among the observations. 

The ACF can infer the strength and length of the process memory. It indicates how long and 

how strongly a shock in the process will affect the outcome. The outcome of the process 

could depend on the previous values of an explanatory variable. The ACF allows us to 

understand how to model this relationship within the time series.   

2.1.4 Autoregressive Models  

 

The autoregressive model (AR) is a regression model where the explanatory variables are 

lags of the dependent variable. The ACF is used to determine how many lags should be used 

in the AR model. This is dictated by the strength and magnitude of ρk. Typically, the AR 

model is denoted as AR(k) , where k is the number of lags or past observations that are 

included in the regression model.  

ttt rr εφα ++= −1  (2.11) 

where rt-1 is the previous value of r and εt is the residual value of the process. The value of φ 

is related to the ACF and to the concept of stationarity. For |φ| < 1, rt is considered to be 

stationary, whereas the value of rt will tend to keep coming back to its mean value. The time 

path of rt will have no upward or downward trend, and it fluctuates around the constant 

mean α. When φ =1, rt is considered to be non-stationary as it will have an upward trend. 

The non-stationarity implies having a unit root (i.e. φ = 1). For φ > 1 the process exhibits 

explosive behaviour over time which is uncommon in finance.  
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The existence of non-stationarity in the process introduces many issues when modelling 

time series. For instance, the persistence of shocks will be infinite for non-stationary series, 

which can lead to a high R
2
 when the variables are not correlated. The hypothesis tests for 

the regression parameters cannot validly be undertaken i.e. the t-ratios will not follow a t-

distribution. To overcome these sorts of issues, the time series can be differenced by 

subtracting rt-1 from both sides of equation 2.11, 

ttt rr εϕα ++=∆ −1  (2.12) 

where 1−−=∆ ttt rrr  and 1−= φϕ . r∆ is the first difference which is usually stationary and 

is considered to be integrated of order 1 i.e. I(1). In some cases, it might need to be 

differenced twice to make it stationary (i.e. rt and Δrt are non-stationary, but Δ
2rt is 

stationary). In this case, rt is said to be integrated of order 2 and written as  I(2). 

2.2 Financial time series modelling 

Financial modelling mainly involves the modelling of the asset return series rather than asset 

prices. The statistical properties of the return series are more aligned to measure potential 

loss and profits of a portfolio which makes them more attractive than asset prices. Also, the 

returns series is a complete and scale-free summary of the investor’s investment 

opportunities. Let Pt be the price of an asset at time t, then we have the following definitions 

for calculating the asset returns assuming the asset pays no dividends. 

Single period simple return 

1

1

−

−−
=

t

tt
t

P

PP
R  

Multiple period simple return 

kt

ktt
t

P

PP
kR

−

−−
=
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Annualized simple return 

∑
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Continuously compounded return 
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t
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2.2.1 Distributional properties of the return series  

 
Many types of distributions have been applied in modelling the distribution of the return 

series. The most commonly used distributions such as normal distribution, lognormal and 

scale mixture of normal distribution are discussed below. 
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2.2.1.1 Normal Distribution  

 

It is common to assume the return series is independently and identically distributed as is 

normal with a constant variance and a zero mean. This assumption simplifies the modelling 

of the return distribution. However, the normality assumption is not supported by empirical 

evidence such as the existence of excess kurtosis in the returns series. 

2.2.1.2 Log Normal Distribution 

 

The log return series is generally assumed to be independently and identically distributed 

(iid) as normal with mean µ and variance σ2
. Therefore, the simple return is  given by: 

( ) 1
2

exp
2

−







+=
σ

µtRE , 

( ) ( ) ( )[ ]1exp2exp 22 −+= σσµtRVar  

(2.13) 

 

 

(2.14) 

Also, let a and b be the mean and variance of the simple return that follows a lognormal 

distribution , then the mean and variance of the log return are given by: 

( )
( ) 










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


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+
+

+
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2
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1

1
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( )
( ) 









+
+=

2
1

1ln
a

b
rVar t  

(2.15) 

 

 

 

 

(2.16) 

However, the log normal assumption does not exhibit some of the common features 

observed in the return series such as positive excess kurtosis. 

2.2.1.3 Mixture of Normal Distributions 

 

More recent studies have applied mixture of normal distributions with the attempt to 

capture some of the key properties of the return series distribution. Assume the log return rt 

is normally distributed with mean µ and variance σ2
 or ( )2,σµNrt ≈  

and that σ2
 is a 

random variable that follows a positive distribution such as a Gamma distribution. The 

mixture of normal distribution can then be written as follows: 

 

( ) ( ) ( )222

1 ,,1~ σµσµ XNNXrt +−  (2.17) 
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where X is a Burnoulli random variable, for ( ) α==1XP  and ( ) α−== 10XP  with 0 < α 

< 1, 
2

1σ is small and 
2

2σ  is relatively large.  This caters for heavy tails in the distribution by 

increasing the value of 
2

2σ . The disadvantage of this model is that it is difficult to estimate 

the mixture parameters. 

 

2.2.2 Stylized Properties of Returns 

 
It has been well documented in the literature the statistical properties of return series, 

where different return series from different market exhibits similar behaviour. These 

properties of the return series are generally referred to as stylized facts. Below is a summary 

of the most common stylized facts in financial return series. 

• Absence of auto correlation in return series  

• Returns exhibit thicker tails (i.e. leptokurtotic) than does the normal distribution. 

• Gain/Loss asymmetry where the number of downward movements in the asset price is 

not matched by the same number of upward movements (does not apply FX-rates). 

• As the time scale for the return increases, the return distribution gets closer to normal 

distribution. Also, the shape of the return distribution changes with the number of 

returns or with the time scale used. 

• Intermittency of returns: at any time scale, a high degree of variability exists in the 

return series. 

• Volatility clustering: large changes in returns are followed by large changes and small 

changes tend to be followed by small changes. 

• Slow decay of autocorrelation in absolute returns, which is interpreted in some cases as 

a sign of long-range dependence. 

• Leverage effect: volatilities and asset returns are negatively correlated. 

• Volume/volatility correlation: trading volume is correlated with all measures of volatility. 

• Asymmetry in time scales, coarse-grained measures of volatility predict fine-scale 

volatility better than the other way round. 

• The volatility is not constant over time: presence of heteroskedasticity in the return 

series. 
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2.2.3 Conditional Mean  

 

Financial risk is often measured in terms of price changes to the underlying asset. This 

change in price can be calculated using a variety of methods, such as absolute change, log 

price change, relative price change etc. These price changes are known as the asset returns, 

which contain vital information for the investors, such as changes in portfolio value, risk 

exposure and investments opportunities. For this reason, they have been widely used in 

financial modelling. Financial models aim to capture and explain the evolution of the returns 

series over time. This is normally achieved by using past returns to forecast the future return 

values. Therefore, the model must be able to capture the underlying dynamics of the returns 

series as well as distribution at any given point in time.  

 

The Wold decomposition theorem has allowed for the simplification of the time series-

modelling problem. The theorem asserts that any covariance stationary process can be 

expressed as the sum of a deterministic and non-deterministic component.  

tttt PP εµ +=− −1  (2.18) 

where μt is a deterministic process and εt is a non-deterministic process which are 

independently identically distributed (iid); this is the main concept behind the random walk 

model. The drawback of this formulation is the probability of obtaining a negative price in 

the price movements. To overcome this issue, the prices are transformed into a continuous 

compounded return series, by taking the log of the asset price: 









=

−1

ln
t

t
t

P

P
r  (2.19) 

tttr εµ +=  (2.20) 

where μt is mean of the return series and εt is iid with N(0, σ2). With this formulation, the 

expression for the asset price is derived as follows: 

)(

1
tePP tt

εµ+
−=  (2.21) 

Therefore, Pt follows a log normal distribution. 

 

The above random walk specification of the return series is unrealistic. The return series 

stylised fact exhibits many features that are contradictory to this model’s specification. To 

capture these key features of the return series, the condition mean of the return series is 

typically modelled through an ARMA specification. This specification allows the return rt+1 to 
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be predicted based on the previous weighted return values. The addition of the moving 

average component to the past disturbance also influences the future return values.  

it

q

i

it

p

i

itit rr −
==

− ∑∑ −++= εθεφφ
11

0
 (2.22) 

The success of the ARMA models is well documented in the literature Tong (1990). The 

existence of a complete theory for linear difference equations, Gaussian models and 

statistical inference (with assumption of normality in tε ) contributes to the acceptance and 

popularity of this modelling technique. The estimation of the model parameters can be 

achieved with most statistical software packages. Also, these models have been applied to 

many forecasting problems with different levels of success.  ARMA models have been 

extensively adopted in finance literature; in (Poterba and Summers 1986), the Standard and 

Poor index (S&P) monthly returns volatility was modelled using an AR (1) process. The 

logarithm of the S&P monthly returns  volatility in (French, Schwert et al. 1987) was 

modelled by a non-stationary ARIMA(0,1,3), (Schwert 1990) used an AR(12) to model a 

monthly volatility  process. In general, the ARIMA model work well as a first order 

approximation in time series processes. 

 

Financial time series models must be able to capture the behaviours of the return series in 

order to achieve accurate forecasts and to guarantee the stability of the model. These 

behaviours are well documented in the literature as the return stylised facts. The linear 

Gaussian models have a major limitation when trying to capture or mimic such behaviour. 

The ARIMA model’s shortcomings are due to the inability to capture the stylized facts 

dynamics behaviour in the data series. The main shortcoming is the assumption of a 

constant variance.  This assumption is a key weakness of the ARIMA model, since most 

financial returns series are heteroscedastic. Therefore, the variance modelling of the return 

series is crucial in obtaining an accurate forecast of the return series. The ARMA model 

assumes that the data series under study is stationary; that is, the data fluctuates around a 

constant mean and variance. Therefore, if any two non-stationary variables exist in the 

model, this would produce spurious results. This problem is treated with differencing; in 

some cases, the data would need to be differenced more than once to become stationary.  

Another drawback noted in (Tong 1990) is that if tε is set to be a constant for all t, then the 

ARIMA equation (see equation A.25 in Appendix A) becomes a deterministic linear 

difference equation in rt, where rt will have a stable limit point, and rt always tend to unique 

finite constant independent of the initial value. Due to the assumption of normality, it is 
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more appropriate to use these models where the data have a negligible probability of 

sudden bursts of very large amplitudes at irregular time intervals. The Gaussian assumption 

for the ARIMA model does not fit data that has strong asymmetry. The ARMA models are 

also not suitable when the data series exhibits time irreversibility (Chen and Kuan 2002). Due 

to these restrictions, while the ARIMA models have been successful in capturing the 

deterministic component of the time series, they cannot capture the time changing variance 

and other key stylised facts of the return time series. 

 

2.2.4 Volatility Modelling  

 

The volatility or variance of the time series plays a key role in the majority of finance risk 

models. The volatility of a return series is essential in determining the current and future 

asset prices.  However, in order to successfully model the underlying volatility process, the 

model needs to cater for important stylised facts such as heteroskedasticity in the data. 

There exist many models which address this issue, each with its own benefits and 

drawbacks. To date, no complete model has been designed that caters for all aspects of the 

return series.  Recent advances in volatility models have led to much more reliable risk 

models that contribute to the success of many risk management models. Given the recent 

instability of the world market’s finance institutions, investors are always searching for 

models that meet their needs.   In this section, we provide a review of the most common 

volatility models described in the literature and discuss their strengths and weaknesses. 

2.2.4.1 Historical Volatility  

 

Volatility of the return series is defined as the standard deviation of return series: 

( )∑
=

−
−

=
T

t

tr
T 1

2

1

1
µσ  (2.23) 

This approach is simple to calculate, but it is also dependent on the number of data points 

available in the sample set. Generally, the larger the data set used in calculating the 

volatility, the higher is the accuracy achieved. However, since volatility changes over time, 

how relevant is the historical data to the future forecast? The general rule is to use the most 

recent 90 to 180 days (Hull 2003). This calculation has been used in many financial models, 

such as the random walk models.  
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Another method for calculating historical volatility is the historical average method. This 

method assumes that the volatility distribution has a stationary mean; therefore, all 

variations of volatility estimates are attributed to estimation measurement error. The 

historical average is defined as the unweighted average of volatility observed data set: 

( )11

_

...
1

σσσσ +++= −tt
T

 (2.24) 

This means that the forecast can be used to compare and evaluate alternative forecast 

models (McMillan, Speight et al. 2000). This method still has the same drawback as the 

model specified in equation 2.23.  

 

To rectify the issue of the sample length used to calculate the historical volatility, the simple 

moving average method introduces a lag length of τ that can be chosen or calculated by 

minimising the sample error  (Poon 2005): 

111
ˆ +++ −= ttt σσς  (2.25) 

The simple average method is defined as:  

( )111 ...
1

ˆ −−−+ +++= τσσσ
τ

σ tttt  
(2.26) 

 

This method places more emphasis on the recent observations, as it is highly probable that 

they will influence future observations much more than will the older observations. 

However, it does give all observations the same weight. As can be seen from the return 

series stylised facts, some return periods will have a higher influence on the future returns.  

 

The exponentially weighted moving average (EWMA) approach places weights on the 

observations by having more weights on recent data and allowing the weights to decay 

exponentially with time. The specification of the EWMA is given as follows: 

( ) 22

1 1ˆ
ttt rλλσσ −+=+  (2.27) 

The value of λ is estimated by minimising the in-sample forecast error ς (Poon 2005). The 

RiskMetrics
TM 

(Morgan 1997) approach sets the λ to 0.94 as it has been found to be the 

average value that minimizes the one-step-ahead error variance for financial assets. 

2.2.5 Conditional Heteroskedasticity Models 

 
The majority of the finance models assume a constant standard deviation or 

homoskedasticity in the return series; however, these models are not capable of capturing 

some of the key stylised facts in the return series. To overcome the assumption of constant 
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volatility, (Engle 1982) formulated the Autoregressive Conditional Heteroscedastic (ARCH) 

model. The basic idea behind the ARCH model is that past shocks directly impact on today’s 

volatility. This formulation caters for the heteroskedasticity and volatility clustering which 

has contributed to the popularity of this model. The ARCH model in some instances could 

require a large number of lags which introduces many variables into the equation. This issue 

was overcome by (Bollerslev 1986) who generalised the ARCH model into what is now 

known as the Generalised Autoregressive Conditional Heteroscedastic (GARCH) model. The 

GARCH model implies that the unconditional variance is finite, whereas the conditional 

variance evolves with time; therefore, the variance is a lagged variable. The attractive 

features of the ARCH and GARCH models have produced many variations which have been 

formulated in an attempt to capture some of the key stylised facts of the return series. In 

this research, our main focus is on the GARCH, EGARCH and the GARCH-in-mean models.  

2.2.6 ARCH Model 

 

The ARCH process is defined in terms of the distribution of the residual (errors) of a linear 

regression model. Let us assume that the return process rt  is generated by:  

TtXr ttt ,..,1, =+= εξ  (2.28) 

where  Xt is a k×1 vector of exogenous variables, which  include lagged variables, ξ is a  k×1 

vector of regression parameters. The ARCH model characterises the distribution of the 

stochastic error εt conditional on the set of variables of the realised values: 

,...},,,{ 22111 −−−−− = ttttt XrXrψ . (Engle 1982) original model assumes: 

),0(~| 2

1 ttt N δψε −  

22

110 ... qtqttwhere −− +++= εαεααδ  

(2.29) 

 

(2.30) 

 

with α0 > 0 and αi ≥ 0, i = 1,…,q, to ensure the conditional variance remains positive. 

Since qiXr ititit ,...,1, =−= −−− ξε ,
2

tδ  is a function of ψt-1. The non-negativity restriction is 

to ensure that 
2

tδ  > 0. The upper bound on αi is needed to make the conditional variance 

stationary, ][ 2

1

2

ttt E εδ −=  therefore, 
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(2.31) 
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In a regression model, a large shock is represented by a large deviation of rt from its 

mean ξitX − . In the ARCH regression model, the variance of the current error εt-1, is a 

function of the magnitude of the lagged errors, irrespective of their signs. So small\large 

errors tend to be followed by small\large errors irrespective of their signs. The order of the 

lag q determines the length of time for which the shock persists in conditioning the variance 

of subsequent errors. The larger the values of q, the longer are the episodes of volatility. 

This specification allows the model to capture volatility clustering and heteroscedastic 

properties in the return series. 

2.2.7  GARCH Model 

 

The GARCH model (Bollerslev 1986) extended the conditional variance function in equation 

2.30. The GARCH model suggests that the conditional variance can be specified as follows: 

ptptqtqtt −−−− ++++++= σβσβεαεαασ ...... 11
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(2.32) 

The inequalities are imposed to ensure that the conditional variance is positive. A GARCH 

process with order p and q is denoted by GARCH(p,q).  By expressing (2.57) as  

ttt BB σβεαασ )()( 2

0 ++=  (2.33) 

where 
q

qBBB ααα ++= ..)( 1  and 
p

pBBB βββ ++= ..)( 1 ,
 the variables are polynomials 

in a backshift operator B.  The GARCH model is considered to be a generalisation of an 

ARCH(∞) process, since the conditional variance depends linearly on all previous squared 

residuals. 

2.2.8 GARCH-in-mean 

 

The GARCH models are normally used to predict the risk at a given point in time of a 

portfolio. Therefore, a GARCH type conditional variance model can be used to represent a 

time-varying risk premium in explaining the excess returns which are returns compared to a 

riskless asset. The excess returns is the un-forecastable difference εt between ex-ante and 

ex-post rate of returns in combination with the function of the conditional variance of the 

portfolio. Therefore, if rt is the excess return at time t then, 
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(2.34) 

(2.35) 

(2.36) 

where µt and c are constants; also, c is known as the risk premium parameter. A positive c 

indicates that the return is positively related to its volatility. There are other formulations for 

the GARCH-in-mean model such as tttt acr ++= σµ  and tttt acr ++= )ln( 2σµ  

2.2.9 Exponential GARCH 

 

The GARCH model is able to capture important features in the asset returns such as volatility 

clustering and heteroskedasticity. However, it is not well suited for capturing a leverage 

effect, due to the variance equation only catering for the magnitudes of the lagged residuals 

and not their signs. Exponential GARCH (EARCH) was first proposed by (Nelson 1991). The 

EGARCH model was formulated with the variance equation which depends on the sign and 

size of the lagged residual. 
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The presence of leverage effects is detected by the hypothesis that γ > 0. The impact is 

asymmetric when γ ≠ 0. The discrete time GARCH(1,1) model converges to a continuous time 

diffusion model as the sampling interval gets smaller (Nelson 1991). It is also argued that the 

ARCH models can serve as a consistent estimator for the volatility of the true underlying 

diffusion process even when the model is mis-specified. That is, the difference between true  

volatility and ARCH estimates converges to zero in probability as the sampling interval 

reduced. These finding bridges the gap between the theoretical continuous time models and 

the financial time series which is discrete in nature.  

2.2.10 Time varying volatility models literature review 

 

Prior to the ARCH model, several informal procedures were used to address some of the 

modelling issues associated with the return stylised facts. For instance, variance recursive 

estimates over time or moving variance was used to address the time varying volatility (Bera 

and Higgins 1993). The introduction of the ARCH model was a breakthrough in time series 

modelling. The ARCH model was the first formal model designed to capture volatility 

clustering and heteroskedasticity in the data. This was a major contribution to volatility 

modelling and largely accounts for the model’s wide acceptance. Given the success of 
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Engle’s ARCH model, the focus shifted from modelling the return series to modelling the 

returns volatility since the return series is approximately unpredictable. However, it is 

generally accepted that the volatility is highly predictable (Andersen, Bollerslev et al. 2001). 

 

The ARCH effects are documented thoroughly in the literature. The ARCH effects are shown 

to exist in many financial return series, (Akgiray 1989), (Schwert 1990) and (Engle and 

Mustafa 1992). In (Gallant, Hansen et al. 1990) ARCH effects and conditional non-normality 

are observed in the NYSE value-weighted index. (Hsieh 1988) observed ARCH effects in the 

different US dollar rates where the conditional distribution of the returns changes with time. 

Some researchers show that the ARCH effects diminish as the frequency of the data 

decreases (Diebold 1988), (Baillie and Bollerslev 1989), and (Drost and Nijman 1993). This 

effect is explained by (Diebold 1988), (Gallant, Hsieh et al. 1991) as being caused by the rate 

or quality of the information arriving to the market in clusters, or the time between the 

arrival of the information and the processing of this information by market participants. 

(Engle, Ito et al. 1990) suggest that volatility clustering is caused by information processing 

by the market participants. Most volatility models do not specify or define the rate of arrival 

of the information and how it is calculated. Volatility is usually calculated using historical 

data which is unrelated to future events. Most importantly, the volatility models do not 

cater for the rate of change of the information arrival and its impact on the volatility 

(Nwogugu 2006). The model assumes the rate of arrival of information and trading per unit 

time to be constant over the forecasting horizon. 

  

The ARCH model formulation depicts the asset returns as being serially uncorrelated but 

dependent, where the dependency is a quadratic function. The parameters of the ARCH 

model are constrained to be positive to guarantee a positive variance. The conditional 

variance is formulated to depict the volatility clustering impacts on the dependent variable. 

A large shock will cause a large deviation from the conditional mean. The variance of the 

error term tε conditional on the values of the lagged errors is an increasing function of the 

lagged errors magnitude. The sign of the errors does not have an impact, since the errors’ 

terms are squared. So, large shocks of either sign are followed by large shocks of either sign, 

whereas small shocks tend to be followed by small shocks of either sign. The ARCH model 

does suffer from major shortcomings. In the ARCH model framework, only the magnitude of 

the shocks has an impact on the volatility. This is caused by the square of the past innovation 

(Campbell and Hentschel 1992) and (Christie 1982). In a real situation, the financial asset will 
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react differently to positive or negative shocks. The parameters of the ARCH model are 

restricted, which limits the ability of the ARCH model with Gaussian innovation to capture 

the excess kurtosis of the return distribution. The ARCH model provides a mathematical 

formula for describing the behaviour of the conditional variance; however, it does not give 

any insight into the cause of volatility. The ARCH model is also known to over-predict 

volatility, because of its slow response to large isolated shocks to the return series.  

 

(Bollerslev 1986) proposed the GARCH model which is a generalisation of the ARCH model. 

This model has a similar formulation to the ARCH model where the model is a weighted 

average of the past squared residuals. The GARCH model conditional variance formulation 

includes lags for the squared error term as well as lags of the conditional variance as 

regressors for the conditional variance. The GARCH process is defined in terms of order in p 

and q i.e. GARCH (p,q). The p specifies the number of autoregressive lags or ARCH terms and 

q specifies the number of moving average of lags or GARCH terms (Engle 2001). When q = 0, 

the GARCH process is reduced to a pure ARCH(p) process. If p and q are zero, the GARCH 

process turns into a white noise process with tε . The purpose of the generalisation of ARCH 

to GARCH is that the GARCH can parsimoniously can represent an ARCH process with high 

order in p (Bera and Higgins 1993). In general, a GARCH model with low order in p and q can 

represent an ARCH process with high order in p.  

 

The short-term behaviour of the volatility series is dictated by the GARCH conditional 

variance parameters i.e. β and α. A high value of β indicates that the previous shock will 

continue to have an impact on the volatility and in turn cause the volatility to persist. A large 

value for α specifies that the volatility is sensitive to market movement and reacts 

accordingly. With a low value for β and a high value for α, the volatility seems to be spiky at 

times. The GARCH can also be modified to cater for other stylised facts such as non-trading 

periods and predictable events; however, it will not be able to capture leverage effects in 

the return series (Bollerslev and Engle 1993). The coefficients of the volatility models are 

typically estimated based on a regression algorithm. These coefficients are sensitive to the 

period and the data set used in the model optimisation; therefore, the regression models 

are not well suited for the predicting of volatility because of the many variables involved, all 

of which change over time (Banerjee, Dolado et al. 1986).  
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Generally, the GARCH models assume the normality in the return series innovations. This 

assumption fails to account for key stylised facts in the returns series. (Milhøj 1987), (Baillie 

and Bollerslev 1989) and (McCurdy and Morgan 1988) display evidence of uncaptured 

stylised facts when normality is assumed, such as excess kurtosis and fat tails in the return 

series. This has led to the use of different distributions such as the student-t distribution 

(Bollerslev 1987), normal-Poisson mixture distribution in (Jorion 1988) and  power 

exponential distribution in (Baillie and Bollerslev 1989). The failure to model fat tail 

properties of the return series can lead to spurious results (Baillie and DeGennaro 1990). The 

non-negativity of the constraints of the GARCH parameters can cause difficulties in the 

estimation procedure (Rabemananjara and Zakoïan 1993) and any cyclical or non-linear 

behaviour in volatility will be missed. Also, the conditional variance is unable to respond 

asymmetrically to the movements in εt. In the GARCH specification, the conditional variance 

is a function of past squared innovations, which means the sign of the past innovation does 

not have an impact on the volatility, only on the magnitude. This limits the GARCH model’s 

ability to capture the leverage effects on the returns. To overcome some GARCH 

weaknesses, (Nelson 1991) proposed the exponential GARCH (EGARCH). The EGARCH uses 

log conditional variance to relax the positive constraint of the model coefficient.  The 

EGARCH specification will allow the variance to respond asymmetrically to rises and falls in 

the innovations. The advantage of this specification is the ability of the variance to respond 

more rapidly to negative and positive movements in the return series. This is an important 

stylised fact of many financial time series (Black 1976), (Sentana 1995) and (Schwert 1990).  

 

(Nwogugu 2006) presents a comprehensive critique of the GARCH models, where some 

interesting observations are made with the regards to the error terms of the GARCH models. 

The critique states that the logic behind the GARCH model is that the error terms contains 

the unexplained characteristics of the dependent variable, such as the volatility, which 

makes it the best indicator of volatility. This cannot be an accurate assumption since the 

error is an estimate based on fixed parameters which itself is unsuitable for modelling 

dynamic time series such as asset prices. The errors also contain many different unexplained 

characteristics such as psychological states and effects which are sensitive to the coefficient 

of the regression model. These sensitivities are not reflected in the GARCH model 

specifications. The regression calculations and the error terms are derived based on a 

distribution assumption. Whereas, most time series do not conform to any specific 

distribution or mixed distribution. With the current models, the parameters contain 
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information about the causal elements of volatility. One major issue with models such as 

GARCH is the assumption of a fixed relationship between the dependent and independent 

variables. This assumption does not hold since the relationship between the asset prices and 

variables changes with time and GARCH models simplifies this relation with the models 

limited parameters. 

 

All ARCH type models share the same shortcomings. For instance, they require a significant 

amount of data points in the series for robust and stable parameters estimates. Just like any 

modelling technique, a more complex model with a higher number of parameters tends to 

better fit the data. However, it seems to perform poorly out-of-sample. The ARCH models 

focus on one-step-ahead variance forecast. They are not designed to produce long-term 

variance forecasts. When forecasting a few periods ahead, the conditional variance forecasts 

can no longer incorporate new information and will converge to the long run variance. 

Another issue which has not seen much attention in the literature is the sample size 

required for optimal model performance. Different authors use an ad-hoc in-sample length 

to optimize the GARCH model. (Ng and Lam 2006) argue that for a data set less than 700, 

two or more optimal solutions may be found with the maximum likelihood. Also, most initial 

values for the parameters direct parameters to the wrong optimal solution. They show that 

for a traditional GARCH model, 1000 data points are sufficient to obtain an optimal solution. 

However, for the MEM-GARCH model, 800 points provided the best fit for the model. 

 

(Poon 2005) conducted a survey on volatility forecasting models which revealed that there is 

no consistent approach in evaluating the models’ forecast abilities. It is observed that 

models such as the EGARCH model that cater for asymmetry in the returns perform well. 

This is due to the strong negative relationship between volatility and the shocks. (Lee 1991), 

and  (Cao and Tsay 1992) also argue the usefulness of the EGARCH model in modelling stock 

indices volatility. (Poon 2005), shows that the GARCH model performs better than do 

traditional models such as EWMA in all sub-periods and under all evaluation measures. The 

study also shows a preference of exponential smoothing methods over GARCH for volatility 

forecasting. This is mainly due to the convergence issues with the GARCH models when the 

data periods are short or when there is a change in the volatility level. In addition, there is a 

significant amount of research where the results are not clear. This includes the use of 

different forecasting error statistics with different loss functions. 
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(Andersen and Bollerslev 1998) consider the volatility to be a latent variable which is 

inherently unobservable and stochastically evolving through time. The asset volatility 

consists of intra-day and daily price variations which have to be measured over a certain 

period. This complicates the issue for forecasters, since the volatility is not directly 

observable and measured, but rather, it has to be estimated. This makes the forecasting 

performance and ranking of the model very difficult to ascertain. Since the true volatility 

cannot be determined exactly, volatility modelling and forecasting are transformed into a 

filtering problem, where the volatility is extracted with a degree of accuracy. This raises the 

question of how to evaluate the forecasting models. And, against what are they evaluated? 

(Andersen and Bollerslev 1997; Andersen and Bollerslev 1998) state that the failure of the 

GARCH models to provide a good forecast is not a failure of the GARCH model , but a failure 

to specify correctly the true volatility measure. They argue that the standard approach of 

using squared daily returns as a proxy for the true volatility for the daily forecasts is flawed. 

These measures consist of large and noisy independent zero mean constant variance error 

term which is unrelated to the true volatility. They suggest cumulative returns squared from 

intra-day data as an alternative for the daily squared return measure. This finding advocates 

the use of high frequency data for empirical evaluations. 

 

From this literature review, it is evident that the main focus is on addressing the problem of 

capturing different aspects of the returns series stylised facts. This is achieved by designing 

the right model that captures the required behaviours. What we do not see is close 

attention being given to the optimisation or training of these models. For instance, the 

choice of training sample is done in an ad-hoc manner through validation and verification. 

This can drastically affect the performance of the forecasting models, as different models 

will behave differently as the number of observations in the training data changes. Also, the 

same model can behave differently when applied across different time series. In this thesis, 

we will explore this behaviour of the time series models in more detail. 

 

2.3 Options 

An option is a contract between two parties, the buyer and seller.  The buyer purchases from 

the seller the right but not the obligation to buy or sell an asset at a fixed price in a given 

time frame.  The buyer has to pay the seller a fee (premium) for the purchase of the option.  

The option that gives the buyer the right to purchase an asset is known as a call option; 

whereas, the option that gives the buyer the right to sell an option is known as a put option.  
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The fixed price of the option is known as the strike price or exercise price. The lifetime of the 

option is known as the time to expiration. The option buyer has the right but not the 

obligation to exercise the option. If the option is not exercised, then the seller pockets the 

premium. If the buyer exercises the option, then the seller has to supply the underlying asset 

at the strike price. The two most popular option styles are European and American option. 

The American style options can be exercised at anytime over the life of the option, whereas 

European options can be exercised only at expiry. The majority of the options traded on 

exchanges around the world are American options. European options are generally much 

easier to analyse than are American options. However, some of the American options 

properties are derived from the European options. 

 

Options are attractive instruments for investors since they can offer limited risk if applied 

correctly.  When purchasing an option, there is a chance of gaining profit that outweighs the 

money spent on the premium. Typically, when an option is purchased, one does not have to 

exercise one’s right except for the purpose of realizing a profit. So if the market is trading 

below the strike price then depending on the type of option, an investor would make a 

decision about whether or not to exercise his/her right. Options also allow investors to 

reduce their risk exposure. Therefore, options are an essential tool in financial risk 

management. In this research, only European options are considered.  

2.3.1 Call Options  

 

If a call option is bought, the purchaser has obtained the right to buy the underlying asset at 

the strike price at a given time. The buyer would be bullish or has an expectation that the 

value on the underlying asset will increase during the lifetime of the option. At expiration, if 

the value of the underlying asset has increased by an amount greater than the strike price. 

Then the buyer can exercise the option to realise a profit. This is achieved by purchasing the 

underlying asset from the seller at the strike price, which will be less than the market value. 

The buyer can then sell the underlying asset at the current market value. If the value of the 

underlying asset is less than the strike price at expiry, then the calls option is not exercised 

and is said to have expired worthless. Here, the buyer would have experienced a loss 

equivalent to the premium.  

  

If a call is sold, the seller has a bearish expectation or an expectation that the value of the 

underlying asset will decrease at expiry.  At expiry if the underlying asset value is less than 
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the strike price, the buyer would not exercise. The seller would have profited by pocketing 

the premium. However, if the value of the underlying asset is greater than the strike price at 

expiry, the seller would experience a loss since the underlying asset must be provided to the 

buyer at the strike price which is less than the market value.  

 

Figure 2.1: Profit\Loss from (a) buying and (b) selling a call option 

2.3.2 Put Options 

 

The purchaser of a put option would have acquired the right but not the obligation to sell 

the underlying asset at a set price at a specified date. The purchaser of a put option has an 

expectation that price of the underlying asset will decrease in value by the expiry date. At 

expiry, if the underlying asset value is less than the strike price, the purchaser can profit by 

selling the underlying asset at a higher price than the market value. If the underlying asset 

value at expiry is higher than the strike price the purchaser will not realise any profit by 

exercising the option, so the put option will expire worthless. 

 

If the put is sold, the seller would be expecting the value of the underlying asset price to fall 

in value such that the purchaser will not exercise the option. The seller will then realise a 

profit by pocketing the premium. However, if the market value of the underlying asset at 

expiry is greater than the strike price the option will then be exercised and the seller would 

have to sell the underlying asset at the strike price. The seller will then realise a loss by 

selling the stock at higher price than market value. 



 

 26

 

Figure 2.2: Profit\Loss from (a) buying and (b) selling a put option 

 

 

2.3.3 Options Moneyness 

 

The options moneyness is determined by the value of the instrument relative to the strike 

price of the option. So if the an option is exercised and an immediate positive cash flow is 

realised , that is the stock price is greater than the strike price (for a call) then the option is 

said to be in-the-money. If the strike price of the option is equivalent to the stock price then 

zero cash flow will be realised, this is referred to as at-the-money option. If the strike price is 

greater than the stock price then if the option is exercised a negative cash flow will be 

realised. This option is referred to as out-of-the-money option. 

2.3.4 Intrinsic Value 

 

The intrinsic value of an option is the maximum of zero and the value of the option if it was 

exercised immediately. For a call option the intrinsic value can be specified as follows, 

( )0,max SK −  (2.38) 

where K is the strike price and S is the stock price. The put option intrinsic value is given by, 

),0max( SK −  (2.39) 

The option’s intrinsic value is equivalent to the amount in money; otherwise the intrinsic 

value is zero. 

2.3.5 Time Value 

 

The time value of the option is derived from the time left till maturity of the option. The 

time value captures the possibility that the option may increase in value due to the volatility 

of the underlying asset.  The time value can be calculated as follows, 

 valueintrinsic  -  Premium call of  valueTime =  



 

 27

The time value of an option is related to how much time it has until expiration. The more 

time an option has until expiration, the higher chance it has to end up in-the-money. 

2.4 Option Pricing Models 

 
Since the publication of the Black-Scholes model in 1973 (Black and Scholes 1973), it remains 

the most quoted scientific paper. The Black-Scholes option pricing model (BSOPM) made a 

key contribution to option trading, by allowing investors to calculate a fair value of an 

option. This model had its limitations, which stem from the unrealistic assumptions used in 

deriving the model (Henderson 2004). Researchers then turned to more sophisticated 

methods for option valuation using stochastic volatility models to address some of the 

BSOPM inefficiencies, (Ritchken and Trevor 1999),(Peter and Kris 2004), (Engle and Mustafa 

1992),(Duan 1995) and (Heston, Nandi et al. 1997). The GARCH option pricing model (GOPM) 

introduced by (Duan 1995) is based on a discrete-time model of the economy. The GOPM is 

derived using the locally risk-neutralised probability measure where the option value can be 

calculated as a discounted expected value of the terminal asst price. In addition, the model 

allows the underlying asset return to follow a GARCH process (Bollerslev 1995), 

consequently, eliminating the assumption of a constant volatility. However the main 

drawback of the model is that it does not have a closed form solution. Therefore, Monte 

Carlo simulation is used to optimise the models parameters.  (Duan and Simonato 1998) 

have introduced empirical martingale simulation that speeds up the Monte Carlo simulation 

process.  

2.4.1 The Black-Scholes options pricing model 

 

The BSOPM was derived using key assumptions that allowed for the simplification and 

derivation of the option pricing problem. These assumptions have seen a great deal of 

interest, where countless research papers have been dedicated to analysing the impact of 

these assumptions on the accuracy and the reliability of the BSOPM.  The assumptions of the 

BSOPM are listed below,  

• Constant Volatility : This is the most significant assumption of the BSOPM, such that the 

volatility of the underlying asset remain constant over the life of the option.  

• Efficient Markets: This suggested that market movements are unpredictable. The 

BSOPM monitors the stock movement using a random walk process. That is, the price of 

the stock at time t+1 is independent of the price at time t. 
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• No Dividends :  This assumption states that no dividend on the stock will be paid for the 

life of the option. This is an unrealistic assumption as most company’s pay dividends to 

the shareholders. BSOPM can be adjusted for dividends by subtracting the discounted 

value of a future dividend from the stock price. 

• Interest rates are known and constant over the life of the option:  Just like the 

volatility, the interest rates are assumed to be constant over the life of the option. 

Typically the government treasury bills can be used a proxy for the risk free rate.  This 

assumption is also unrealistic as the interest rates can change over the option life time.  

• Lognormally distributed returns: The asset return is assumed to follow a  lognormal 

distribution. The asset return distribution generally exhibits excess kurtosis and have 

fatter tail then the log normal distribution. 

• European style options are used: The BSOPM is formulated for European style options, 

where the option can be exercised only on the expiry date. The model has been 

enhanced to cater for American-style options. 

• No transaction cost or commission charges: The BSOPM assumes no charges or fees 

attend the buying or selling of options. 

• Liquidity:  The Black-Scholes assumes that stocks or options can be sold or bought at any 

given time. 

 

2.4.2 Black-Schole Equation  

 

Based on the assumptions stated in section 2.4.1, the BSOPM can be illustrated as follows: if 

S(t) is an asset price that follows a Wiener process ( ) ( ) ( ) ( )tdztSdttStdS σµ += , where z(t) 

is Brownian motion, the volatility and interest rate are constants ( σ and r respectively), then 

a call and put option on the asset , expiring at time T with strike price K has a value at time t 

is given by: 
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C(t,T) and P(t,T) are the call and put price respectively. N(x) is the cumulative probability 

distribution for a standard normally distributed variable. The Black-Scholes delta is given by 

N(d1). This measures the sensitivity to the underlying instrument. 

2.4.3 Implied Volatility 

 
The implied volatility is derived from the Black-Scholes model, by equating the real option 

price to the Black-Scholes formula and backing out the volatility parameter. The implied 

volatility, ( )TKBS

t ,σ  is a function of K (Strike) and T ( time to maturity) (Hull 2003).  

( )( ) ( )TKCTKKSC t

BS

ttBS ,,,,, *=στ  (2.44) 

where ( ) 0, >TKBS

tσ   

When the implied volatility is graphed against the strike price is takes on a U shape hence 

the name volatility smile,  

Implied Volatility

Strike price
 

Figure 2.3: Implied volatility  

 
The two most interesting features of the implied volatility are the volatility smile (or skew) 

and the level of implied volatility changes with time. The volatility smile is a key indicator of 

unrealistic assumption of constant volatility in the BSOPM. Whereas the changes in the 

implied volatility level with time is seen by the deformation of the volatility surface with 

time. Therefore, the ability of the model to capture the deformation of the volatility surface 

over time will lead to accurate option pricing. 

2.4.4 Black-Scholes Option Pricing Model (BSOPM) 

 

Option pricing is an important apparatuses for traders in the financial markets. The 

introduction of the Black Scholes model in 1973 has contributed to the growth in the option 

trading. The simplicity of the model allowed for traders to estimate option price 

instantaneously. The BSOPM have five parameters which are all observable except for the 

volatility parameter which needs to be estimated form the asset historical prices. The 

derivation of the BSOPM is made possible by the assumptions listed in section 2.4.1. These 
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assumptions are not in line with the market behaviour which raises concerns about the 

model accuracy. 

 

For an in-the-money call the intrinsic value is the difference between the stock and strike 

price. Since the call must be priced to yield the risk free rate, today’s price will equal 

[ ]( )-Tt0 r1K-SC +=  (2.45) 

where the call is discounted at risk free rate r. Also, the stock has been priced such that it 

yields the risk free rate r. Therefore, the stock price is given by,  

( )T0T r1SS +=  (2.46) 

then today’s call price is given by,  

( )[ ]( ) TT
rKrSC

−+−+= 1100  

or 

( ) T
rKSC

−+−= 100  (2.47 ) 

In the Black-Scholes world, each term is multiplied by the probabilities N(d1) and N(d2) 

respectively, where N(d2) is the probability that the call will end up in the money and N(d1) 

is the sensitivity of the call option to the underlying asset. 

 

The popularity of the BSOPM stems from the explicit definition of an option price and the 

simplicity of implementing the formula to produce a fair option price. The BSOPM presents a 

rational framework for option pricing under general assumptions. These assumptions were 

soon found to be very restrictive and are in violation to the market behaviour. The 

assumption listed in section 2.4.1 , limits the model ability to capture the real market 

phenomena. Such assumptions were necessary at the time to simplify the problem which 

allowed for the derivation of the model. However, as the model popularity increased, 

researchers have been looking for ways to overcome these limitations. For instance  (Merton 

1973) improved on the original BSOPM to incorporate dividend paying stock. Due to vast 

number of the research papers available to date, we will only focus on the handful of 

comprehensive studies that the highlight the model pricing behaviours. 

 

(Macbeth and Merville 1979) conduct a detailed study of the BSOPM,  the study revealed 

that the BSOPM correctly prices at-the-money options with at least 90 days time to expiry, 

however the empirical analysis show biases in the BSOPM pricing. It was observed that 

BSOPM on average prices option less and greater than the market prices for in-the-money 
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and out-of-the-money options respectively. With the exception of out-of-the-money options 

with maturity less than 90 days, the amount of underpricing of in-the-money options and 

overpricing of out-of-the-money options increases with the amount to which the option is 

in-the-money and  out-of-the-money respectively. Also, it the amount of underpricing and 

overpricing decreases as time to maturity gets closer to the expiry date. The BSOPM prices 

option with less than 90 days to maturity on average is greater than market prices. However, 

no consistent relationship was found between the degree of overpricing of the BSOPM and 

the extent of which the options are out-of-the-money or with the degree of time to expiry. 

These findings conflict with (Black 1975) where Black stats that BSOPM generally over / 

under price deep in-the-money/out-of-the-money options. The results also conflict with that 

of  (Merton 1976)  where he states that the BSOPM underprices deep in-the-money options 

as well as deep out-of-the-money options. The authors explain that these discrepancies in 

the empirical research may be due to the non-stationary stochastic variance rate in the 

stochastic process for the generating stock prices. Another interesting point raised in this 

research is the fact that when the volatility is calculated based on historical returns the 

BSOPM underprices when the BSOPM implied volatility is greater than the estimated 

volatility and vice versa. So one might be lead to different results when the volatility is 

calculated with different data over different time horizons. (Hull and White 1987) conducted 

an empirical study of the BSOPM using stochastic volatility rather than assuming constant 

volatility over the life of the option. The results show that when the volatility is uncorrelated 

with the security prices, the BSOPM overvalues at-the-money options and undervalues deep 

in-the-money options. However, when the volatility is positively correlated with underlying 

stock price, out-of-the-money options are underpriced by the BSOPM. The reverse effect is 

observed when the volatility is negatively correlated. (Hammer 1989) provides a good 

summary of the reported BSOPM pricing biases in literature. The systematic differences 

between the BSOPM and market prices are reported as follows, (Black 1975) ,(Gultekin, 

Rogalski et al. 1982)  and (Sterk 1982) report BSOPM prices errors for in-the-money \ out-of-

the-money options where the BSOPM tend to be higher\ lower than market prices. In 

(Whaley 1982) the BSOPM prices generally lower than market prices for near-to money 

options, also it was noticed that higher\lower the variance estimate are for the underlying 

asset the higher\lower the BSOPM prices tend to be relative to the market prices (Black and 

Scholes 1972),(Whaley 1982) and (Gultekin, Rogalski et al. 1982). 
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The volatility is the only parameter of the BSOPM that is not directly observable in market. 

This parameter assumed to be constant over the life of the option. For this assumption to 

hold, all options on the same asset at a given date should produce the same implied 

volatility. In practice, different implied volatility is realised at different strike prices and time 

to expiry.  Prior to the 1987 stock market crash, the implied volatility typical took on a U 

shape (i.e. volatility smile). That is options that are deep in-the-money and deep out-of-the-

money exhibits higher implied volatility levels compared to the at-the-money options. After 

the stock market crash the implied volatility decrease monotonically as the strike price 

increases relative to the underlying asset price. The rate of decrease increases with short 

time to expiry (Dumas, Fleming et al. 1998).  This is mainly due to the skewed distribution of 

the return series to the far left, where it can be thinner than the normal distribution.  

 

There have been several theoretical explanation for the volatility smile such as the 

distribution assumption and stochastic volatility (Poon 2005). There have been other 

explanations proposed based on market microstructure, measurement errors and investor 

risk preference. However, the BSOPM assumes the asset price to have a lognormal 

distribution or the (logarithmic) returns to follow a normal distribution. Given a high strike 

price the call option is deep out-of-the-money and the option has a very low probability that 

it will be exercised. The leptokurtic right tail will give the option a higher probability than the 

normal distribution for the asset price to exceed the strike price, which means the call will 

be in-the-money at expiry. If we consider a low strike price, the same argument applies as 

above but an out-of-the-money put option is used instead. Due to the thicker left tail of the 

leptokurtic distribution, the probability of the out-of-the-money put option to finish in-the-

money will be higher than that of the normal distribution. Therefore, the put option price 

should be greater than the price given by the BSOPM. If the BSOPM is used to back out the 

implied volatility, the BSOPM implied volatility will be higher than the actual volatility. This 

causes the volatility smile where the implied volatility is much higher at very low strike 

prices and low at high strike prices.  The implied volatility for different strikes  and maturities 

do not evolve independently and they are highly correlated multivariate system (Cont and 

Fonseca 2002).  To construct a model in terms of the implied volatility rather than volatility 

of the underlying asset volatility may complicate the modelling procedure.  However, there 

are advantages of modelling the implied volatility directly. For instance, the implied volatility 

is observable and is derived from the market data, whereas, the asset volatility is not directly 

observable. The implied volatility gives an insight to the option markets which can be 
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analysed by the practitioners. The shifts in levels of implied volatility are highly correlated 

across strikes and maturities, which allows for the modelling of the joint dynamics. The 

implied volatility is now widely used by practitioners and especially with the emergence of 

implied volatility indexes and derivative instruments (Cont and Fonseca 2002).   

2.4.5 GARCH Option pricing models  

 

The GARCH Option Pricing Model (GOPM) introduced by  (Duan 1995)  is based on a 

discrete-time model of the economy. The value of the index at time t, can be assumed to 

have the following dynamics, 
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Where λ is interpreted as the risk premium. To ensure the variance is positive and stationary 

the following constraints are applied: 
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The unconditional variance is given by 
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. If β1=0 and β2 =0 , the process is 

reduced to the Black-Scholes homoskedastic lognormal process when. It has been 

demonstrated by (Duan 1995) that under the Local Risk Neutral Valuation Relationship  

(LRNVR) the conditional variance does not change , however under measure Q  the 

conditional expectation of rt is the risk free rate rf. 
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To derive the GOPM, the risk neutral valuation relationship has to be generalized to the 

LRNVR: 
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By having γλγ +=
~

, the risk-neutral pricing measure is determined by four parameters 

, β0,β1,β2 and
~

γ . Using the above formulation the asset terminal price is calculated at time T 

as follows, 
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The terminal asset price is obtained using Monte Carlo Simulation. A set of N random path of 

residuals ),...,( *

,

*

,1 jTjt εε + are generated with J = 1 to N. The residuals are used to calculate 

the asset prices ST,j . Using the terminal asset price series the option price is then obtained by 

risk-neutral conditional expectation E
*
 : 
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The final option price can be approximated as follow: 
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The delta that corresponds to the GOPM is given by (Duan 1995): 
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Where I(St,X) = 1 is St ≥ K and 0 if S < K.  Since there is no analytical solution for 
G

t∆  the deltas 

are computed via Monte Carlo simulations. 

 

(Duan 1995) developed the GOPM that allows pricing of options which allows the 

underplaying asset returns to follow a GARCH specification. This model has key features that 

distinguish it from other option pricing models. In this model the option price is a function of 

the risk premium embedded in the underlying asset, also the underlying asset price is 

assumed to follow a diffusion process, thus the standard approach is of a Markovian nature. 

These key features can help in explaining some of the biases that exists in the BSOPM. The 

GOPM subsumes the BSOPM, since the homoscedastic asset return process is a special case 

of the GRACH specification. 

 

There have been several attempts to use GARCH processes to prices options, i.e. (Engle and 

Mustafa 1992) , (Satchell and Timmermann 1995) and (Amin and Ng 1993).  Duan’s GOPM 

extends the risk-neutralization in (Rubinstein 1976) and (Brennan 1979) where the 

generalised version of the risk neutralisation is introduced which he called the locally risk-

neutral valuation relationship (LRNVR). The LRNVR specifies the next period variance that it 
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is not affected by changes in risk-neutral pricing measure. Therefore, the GARCH variance 

beyond one period is impacted by the change in measure caused by risk neutralisation. In a 

general sense, the difference between GOPM and BSOPM can be viewed as using different 

levels of volatility. Due to the GARCH process being leptokurtic, the out-of-money option is 

more likely to finish in the money. Which means the GOPM will be higher than the BSOPM.  

This also implies that the in-the-money option is more likely to finish out-of-the-money. 

However, this will not imply lower option prices by the GOPM when compared to BSOPM. 

(Duan 1995) provides a numerical evaluation of the GOPM and BSOPM, in this evaluation it 

is noted that the BSOPM underprices and overprices out-of-the-money option depending on 

the level of its initial volatility. Also the BSOPM seems to underprice deep out-of-the-money 

and short to maturity options. For out-of-the–money options the underpricing gets more 

prominent as the time to maturity is shortened. Duan concludes that the GOPM has many 

desirable features that can potentially correct the pricing biases of the BSOPM.  

 

The GOPM does not have a closed form solution and the solution relies on Monte Carlo 

simulation which is the main drawback of this model. This is achieved by simulating different 

possible paths of the underlying assets, the corresponding payoff for each path is calculated 

at expiry then the average payoff is discounted to give the Monte Carlo price for the option. 

The Monte Carlo methods accuracy is inversely proportional to the square root of the 

number of simulation, therefore, the higher the number of simulation the more accurate the 

price becomes. (Duan and Simonato 1998) discusses an important issue with using Monte 

Carlo simulation to price options. That is the occurrence of the simulated price violating 

rational option pricing bounds that produces a non-sensible price estimate. To overcome 

this issue they propose an Empirical Martingale Simulation (EMS) method which is a simple 

correction to the Monte Carlo simulation algorithm to ensure the simulation paths are 

together a martingale in an empirical sense.  The advantage of EMS is that it can be coupled 

with other techniques such as the Antithetic and control-variate simulation to increase the 

simulation efficiency. (Duan, Gauthier et al. 2006) follow the approach of (Duan, Gauthier et 

al. 1999) and derive an analytical approximation for European option pricing that follow GJR-

GARCH and EGARCH specifications. The formulation is a Black-Scholes formula with 

adjustments made to approximate the skewness and kurtosis of asset returns which address 

the simulation issues with the GOPM. 
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Pricing option through the GOPM is achieved through computational simulation. To produce 

an accurate price for an option a large number of simulation paths are required. This process 

computationally intensive and requires adequate hardware which can be impractical for 

large-scale applications. To address these issues (Duan, Gauthier et al. 1999) developed an 

analytical approximation for pricing European options in the GARCH framework. This 

approach is based on an Edgeworth series expansion around the normal density function. 

The GARCH option price is computed as a Black-Scholes price adjusted for skewness and 

kurtosis of the asset returns under a GARCH process. This method was found to be very 

quick to produce an option price and accurate for short maturity. It also produced accurate 

results for long maturity options under parameter restrictions. This method is also flexible to 

cater for other GARCH specifications. Their analysis show the approximation of the GOPM 

produces accurate results for short maturity options. For long maturity options, the 

approximation formula produces satisfactory results except when there are high levels of 

volatility persistence. With the high persistence the skewness and kurtosis of the returns 

become explosive with an increase in maturity which causes the pricing formula to perform 

poorly for longer-maturity options. 

 

Heston and Nandi (Heston and Nandi 2000) developed a closed-form GARCH option pricing 

model for European option. They provided convincing support for their model where they 

demonstrated its superiority over other models such as the ad-hoc Black-Scholes. Their 

findings claim the superiority of their model is attributed to its ability to capture the 

correlation between volatility and returns, also capturing the volatility path dependence. 

The major strength of this model is existence of a closed form solution which overcomes the 

drawback of numerical simulations, thus this model is more practical than the GOPM. This 

attractive feature comes at the cost of a restrictive volatility process which can have adverse 

effects. 

  

In (Lehar, Scheicher et al. 2002), GOPM is compared with the BSOPM and the Hull-White 

option pricing model. The evaluations of the models are based on statistical and economic 

loss. The statistical errors are calculated based on the pricing accuracy of each of the 

models. The economic loss is based on the next-day’s Value-at-Risk measure by using Monte 

Carlo simulation. The models were calibrated using FTSE-100 European options. This 

experiment established the GOPM as superior to the other models by achieving significant 

pricing improvements. The pricing difference between the Hull-White model and the BSOPM 
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were very small.  This finding demonstrates the importance of choosing the right volatility 

model for option pricing. To examine the model’s performance in an economic sense, the 

VaR framework is utilised with Monte Carlo simulation to produce the expected profit\loss 

over a given horizon. The results showed that all models exhibited a weak fit to the realized 

profits and losses. It was also noted that the performance of the model is strongly 

dependent on the loss function applied. Another interesting point was that the GOPM failed 

to forecast the tails in the distribution of the option returns with sufficient accuracy. This is 

attributed to the assumption of normality in data which is problematic when applying VaR 

predications. 

 

(Christoffersen and Jacobs 2004) analyse different GARCH specifications for the purpose of 

option valuation. It is found that a heavily parameterised model has the best fit in-sample, as 

does the likelihood based comparison that uses the returns. The out-of-sample model 

evaluation favours the GARCH models with fewer parameters that contain only the volatility 

clustering and leverage effect. It is also shown that GARCH parameters estimated on the 

asset returns in a statistical sense should not be used to estimate the option price. That is 

because the density distribution of the asset returns is not the same as the risk-neutral 

density. Most volatility models are compared in terms of in-sample statistical measurements 

such as the likelihood value, which may not have an economical interpretation. It is 

suggested that in order to eliminate the shortcomings of the current models, a more radical 

departure from the GARCH model’s assumptions is needed such as the deviation from 

normality in the innovation process. 

 

(Duan, Ritchken et al. 2006)  introduces the GARCH-Jump models where the process of the 

returns and volatility is allowed to follow a jump diffusion process with correlated jump 

sizes. The disadvantages of these models are that they do not have a closed form solution 

and they rely on Monte Carlo simulation for pricing options. These models were then 

thoroughly examined in (Duan, Ritchken et al. 2006) who extended the GOPM to 

incorporate non-normal innovations by introducing a new family of GARCH-jump option 

pricing. The model caters for non-normal innovation in the options’ underlying asset and 

allows for stochastic volatility. The empirical analysis demonstrates the importance of 

incorporating jumps in the returns and volatilities which allow the model to capture the 

skewness and kurtosis in the underlying asset data. The empirical findings suggest that more 

complex models that capture more than the volatility clustering and leverage effect seem to 
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have better performance, which contradicts the findings of (Christoffersen and Jacobs 2004). 

The new model does not seem to require frequent calibration; the model’s parameters were 

able to produce good option pricing up to one year beyond the parameters were estimated. 

The empirical evidence also shows that jumps happen more than once a day. This validates 

the choice of incorporating non-normal innovations and jumps in the returns and volatilities.  

 

(Hsieh and Ritchken 2005) conducted a thorough analysis of the GOPM , HN model of 

(Heston and Nandi 2000) and the BSOPM. The empirical results show that both models are 

able to capture a significant amount of the strike and maturity bias in the BSOPM. The 

GOPM seem to outperform the HN model, especially with deep out-of-the-money options. 

The ability of the model to explain option price for a prolonged time period using old option 

data indicates that the model is capable of capturing key features of the option pricing 

process. This is apparent even when the model parameters are not estimated for years - it 

still performs similar to the Black-Scholes (in-sample) for at-the-money and in-the-money 

options. For the out-of-the-money options, the GOPM perform much better than the 

BSOPM. Therefore, frequent calibration of the model parameters is not required to achieve 

good performance relative to BSOPM. 

 

(Duan 1996) proposed an approach to use the GOPM to capture the implied volatility smile. 

The GOPM parameters were optimised by using the implied volatility rather than option 

prices. This method proved to generate good out-of-sample fit for the implied volatility and 

for the option prices. However, the method was demonstrated using only a couple of days of 

data; it is difficult to ascertain the adequacy of this technique using a limited data set. Also, 

this method is computationally intensive due to its reliance on Monte Carlo simulations.  

(Aboura 2005) conducted an empirical analysis of the GOPM, using FTSE-100 European style 

options for five ranges of maturity to compute out-of-sample one-day-ahead option prices. 

The results displayed severe mis-pricing for deep out-of-the-money options which has a 

negative impact on the overall model performance, whereas, in-the-money options had the 

lowest pricing error. This is common amongst option pricing models including the BSOPM. 

The pricing bias of the model seems to decrease with maturity, which indicates that the 

GOPM is capable of pricing options with a long time to maturity. This is in line with the 

results demonstrating that the long-term skews are more stable over time and therefore 

they are more predictable. Also, the implied volatility generated by the GOPM is almost 

downwardly linear for long maturities. As the time gets closer to the maturity, deformation 
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in the implied volatility starts showing for the money options. The ability of the model to 

capture deformation in the implied volatility through time demonstrates the model’s 

sensitivity to regime changes in the implied volatility surface. 

 

(Lehnert 2003) argues that Gaussian models cannot adequately account for certain patterns 

observed in options. So by utilising the GOPM framework, GOPM is reformulated to cater for 

conditional leptokurtosis and skewness, allowing the GOPM to be driven by skewed 

generalisation error distributed innovations. The in-sample results support this method 

where the GOPM is observed to have added flexibility. The out-of-sample results for the DAX 

index show improvements over the ad-hoc Black-Scholes model and Heston and Nandi 

model. The shape of the innovation distribution used resulted in major improvements for 

short-term out-of-the-money put options. Therefore, by allowing the return innovation 

distribution to have skewness and leptokurtosis, and the volatility to have correlation with 

returns, the option pricing model can better explain the shape of the implied volatility smile. 

2.5 Hedging 

Hedging is normally undertaken for the purpose of reducing the cash flow volatility or to 

minimize the probability of large losses. Using hedging techniques to minimise the impact of 

these risks can provide direct benefits such as reducing the chances of cash crunch, financial 

distress, bankruptcy and efficient capital allocation which allow the company to provide 

consistent returns to the investors. This is achieved by offsetting the effects of 

uncontrollable variables such as price movements or volatility. There are also arguments 

presented against hedging. For instance, it is often argued that shareholders can take on risk 

management initiatives themselves through diversification or through hedging. Therefore, 

they are not dependent on the company to manage the risk for them.  The issue with this 

argument is that it assumes that the shareholders have the same level of understanding of 

the company’s risk exposure as does the company’s management. Also, it is cheaper for the 

company to hedge its risk in bulk rather than each shareholder having to manage all the 

company’s outstanding risks. Hedging instruments have evolved over the past years, where 

forward contracts, futures and options were the most commonly used hedging tools. In 

recent years, more complex and advanced derivatives of the traditional hedging tools have 

been developed, such as swaps, exotic options and credit options etc. In this research, only 

delta hedging of European call options is undertaken. 
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2.5.1 Delta Hedging  

 

Let S(t) be the price of a non-dividend paying stock at time t, and X is the pay-off on 

derivative at its maturity T. The arbitrage-free price at some earlier time t is give by V(t,s) 

below, 
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tTr == −− |,  (2.58) 

where Q is the risk-neutral pricing measure, r is the risk free rate, and Ft is the history of the 

process up to time t. 

 The derivative pay-off can be replicated perfectly if at all times we hold 
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units of the share, S(t) and the following amount in cash 

( ) ( ) ( )tSttVCt ∆−=  (2.60) 

This hedging process works well if the correct pricing model is used for S(t) with the correct 

values of  volatility and the risk free rate. Also, we assume that there is no transactional cost 

associated with trading activities and the portfolio can be rebalanced continuously. In 

practice, the portfolio is rebalanced in a discrete time manner, since this is more practical to 

avoid infinite transactional cost. 

 

 In this thesis, a hedge portfolio is constructed in a similar fashion to that adopted by 

(Amilon 2003), (Vahamaa 2004) (Schittenkopf and Dorffner 2001). A portfolio is delta 

hedged with one unit short in an option and ∆ units of the underlying asset, the rest is put in 

the bank to earn the risk free rate (or interest). That is, we buy an underpriced option 

(where theoretical option price is higher than market price) and sell the options that are 

overpriced. For underpriced options, we construct the following portfolio: 

We buy option  00 CV C =   and sell index 000 ∆−= IV I
 and put the rest in risk-free asset, 

CB VIV 0000 −∆= .  

The portfolio is then replicated as follows: 
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The value of the portfolio at time T is given by: 
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This gives us the absolute hedging error 

TVrt)exp(=ξ
 (2.65) 

where, I

t

B

t VV ,  and C

tV are the amount invested in the risk free asset, index and call option at 

time t.  

 

The option pricing formula provides a fair value of the option price using some key input 

values such as volatility, time to expiry, risk free rate etc.. .The mathematical representation 

of the option price allows for the analysis of the option price behaviour relative to inputs 

variables, thereby producing important risk measures which are used to understand short 

term sensitivities of option premium to changes in the options’ variables. Mathematically 

speaking, these sensitivities are expressed as partial derivatives of the option price with 

respect to the option variable. The option sensitivities reveal vital risk information to the 

investor. The option sensitivities are used to measure the option behaviour in terms of 

changes in an individual market parameter. These sensitivities can also be used in synthetic 

replication of the asset to create the options economic pay-offs by trading in the underlying 

asset. The option sensitivities also provide the means to define the hedging or other trading 

strategies.  

 

In this research, the main focus is on the most important sensitivity measure which is the 

delta. The delta is the measure of the expected change in the value of the option for a given 

change in the underlying asset price. The delta of a call option is positive which specifies the 

change of the option price for an increase in the underlying asset price. The delta value of a 

call ranges between 0 and 1; however, a deep out-of-the-money options delta value is close 

to zero, since the option is not responsive to changes in the underlying asset price. Deep in-

the-money call options have delta close to 1 due to the sensitivity to the underlying asset 

price.  At-the-money call options have deltas close to 0.5. A higher delta value reveals the 

option price changes are closely related to the changes in the asset price, the profits and 

losses of which can be derived from a position assumed in the underlying asset. The delta 

measure also provides the probability of the option being exercised, and indicates the 

probability of the asset price will be above or below the strike price at expiry. This allows for 

the option to be replicated by dynamically adjusting the portfolio consisting of asset and 

cash. This process is referred to as ‘delta hedging’ which is a key element in the derivation of 

many option pricing formulas including the BSOPM. By holding the delta amount in the 
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underlying asset, any changes in the underlying asset will offset equal and opposite changes 

in the value of the option portfolio.  

 

In a perfect market, the cost of delta hedging should equal the theoretical premium of the 

option. In reality, the hedging process is exposed to risks that are either inherited by the 

pricing model or which are due to the inefficiencies in the market. The hedging process 

assumes that funding is readily available to purchase the delta amount of the asset as well as 

making short selling possible. There is a cost associated with a transaction that occurs when 

the portfolio is re-balanced. Hence, as the frequency of the rebalancing increases the 

accumulated transaction cost increases as well introducing another source of risk that can 

outweigh the benefits of hedging. Since the delta changes are associated with the underlying 

asset the transaction cost cannot be predicted in advance (Leland 1985) and (Boyle and 

Vorst 1992).  Discrete rebalancing of hedged portfolio has been explored by (Asay and 

Edelsburg 1986) and (Mello and Neuhaus 1998). The valuation was based on the hedging 

error; however, this does represent the total risk as it does not account for 

heteroskedasticity in hedging errors. (De Giovanni, Ortobelli et al. 2008)  compare different 

subordinate models for option pricing and delta hedging costs with that of the BSOPM. An 

evaluation of different distributional hypotheses on the hedging costs was conducted using 

ex-post daily prices of the S&P 500 index. Taking different exercise prices into consideration, 

the hedging costs are lower for the subordinated models when compared to the BSOPM. 

This is more evident for higher frequency hedging strategies. 

 

In (Coleman, Kim et al. 2001) the dynamic hedging performance of deterministic local 

volatility function are compared with implied\constant volatility. They show the hedging 

parameters computed from implied volatility can be significant even though its ability to 

calibrate the option prices with different strikes and maturities. In particular, delta hedging 

parameters computed using implied volatility are consistently significantly larger than the 

exact delta when the underlying asset follows an absolute diffusion process. The use of a 

local volatility function to compute the delta hedging parameters for the underlying asset 

that follows an absolute diffusion process produced smaller absolute average hedging errors 

compared with the implied volatility. (Vähämaa 2004) explores the inverse relationship 

between volatility and movements in stock prices and its effects on delta hedging. This is 

achieved by adjusting the Black-Scholes delta by utilising the volatility smile to account for 

the inverse relationship between stock returns and changes in volatility. Empirical results 
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using the FTSE 100 index option display major improvements for the smile-adjusted delta 

hedge where it consistently produces small errors relative to the performance of the Black-

Scholes delta hedging scenario. The smile-adjusted delta substantially outperforms the 

Black-Scholes delta hedging for short term out-of-the-money and at-the-money options and 

becomes more evident as the hedging horizon increases. 

 

(Geyer and Schwaiger 2001) experiment with delta hedging in discrete time when the 

underlying asset returns follow a GARCH process. They conclude that hedging strategies 

based on simple delta approximation yield hedging costs on average that are close to the 

option prices produced by Duan’s GOPM. The hedging cost variances between the strategies 

mainly occur with the possible different time paths. For GOPM, the risk parameter is not 

zero and there are strong dependencies between prices and average hedging costs which is 

most evident for deep out-of-the-money calls. They conclude that the GOPM pricing of out-

of-the-money may be a biased reference for average hedging cost produced by discrete time 

delta strategies. (Hsing 2006) undertakes a similar investigation in his Master’s thesis. The 

empirical results for the BSOPM and GOPM deltas are similar for in-the-money options. 

However, the BSOPM delta is higher (in absolute value) than that of the GOPM for deep out-

of-the-money options and the BSOPM is lower for deep in-the-money options.  

  

The ability to replicate the changes in the option value in the underlying asset is applicable 

only for small changes in asset prices and where the asset price is continuous. If a large 

change occurs in the asset price or discontinuities exist in the movement, the hedging 

process is greatly impacted upon and the option price will immediately adjust to the 

changes. However, the hedging cost will lag since the replication cannot occur in a sufficient 

amount of time, thus creating a divergence in the value of the hedge relative to the option. 

(Boyle and Emanuel 1980; Dotsis and Markellos 2007) demonstrate the effect of using mis-

estimated volatility. It is stressed that the unknown volatility tends to aggravate the skewed 

nature of the hedge returns. In the case of excessive mis-estimation, it overwhelms all other 

variables that impact upon the returns. (Asay and Edelsburg 1986) find that the impact of 

using the wrong volatility estimates in a hedge ratio is minimal.  They argue that expecting 

changes in volatility levels is essential for the success of dynamic hedging. 

 

The hedging model assumption includes constant volatility and risk free rate over the life of 

the option. In reality, the volatility and the risk free rate change over time. This assumption 
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impacts upon the efficiency and accuracy of the hedge scenario. Changes in volatility levels 

will affect the hedging process by changing the value of the option value but not the value of 

the asset position. Also, the volatility levels alter the options delta which in turn will affect 

the hedging cost. Any changes in the risk free rate will impact upon the options delta, 

although the change is minor. However, a change in risk free rate affects the cost of 

borrowings. 

2.6 Neural Networks  

In the 1960s, neural networks were one of the most promising and active areas of research. 

Neural networks were applied to a variety of problems in the hope of achieving major 

breakthroughs by discovering relationships within the data. The neural networks used back 

then were very simplistic and consisted of a single layer network such as ADALINE (Adaptive 

Linear Neuron). The excitement and momentum that this field enjoyed was halted by the 

publication of (Minsky.ML and Papert 1969). They demonstrated that single layer neural 

networks are not capable of approximating a target function that is not linearly separable, 

such as the XOR function. In the 1980s, neural networks were revived by the back-

propagating learning algorithm in addition to the multi-layer neural networks with such 

publications as (Minsky and Papert 1988).  

 

The study of artificial neural networks (ANN) was loosely motivated by the biological neural 

systems. However, many complexities exist in the biological neural systems that are not 

modelled by ANNs, and there are many features of ANNs that are inconsistent with 

biological systems  (Mitchell 1997) The ANN-related research can be broken down into the 

following streams: 

• Exploration of the biological system properties by utilising neural networks 

(computational neuroscience);  

• Exploration and development of systems that are capable of learning and efficiently 

approximating complex functions independent of whether or not they “mirror” 

biological ones. 

 

In this research, “neural network” is used within the scope of the latter type. 

2.6.1  Preceptron 
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In its simplest form, the preceptron sums all the inputs and compares them to a threshold 

value θ. If the sum of the inputs is greater than the threshold, the preceptron will fire 

(produce an output) such as binary value of 1.     

 

Figure 2.4: Illustration of a Preceptron 

 
This operation can be represented mathematically as follows: 

Let y be a preceptron that has a function of transforming a n-dimensional input into a binary 

output, { }1,0: →ℜny . The input ( ) n

nxxx ℜ∈= Τ
,...,1  are weighted by 

( ) n

nwww ℜ∈= Τ
,...,1  then summed. 
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If the total value is greater than the threshold, the preceptron produces an output. This can 

be represented as a step function as shown below: 

( ) ( )
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≥
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xf

xf
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,0

,1
 (2.67) 

The step function can be rewritten using an indicator function: 

( )axfg ),[1))(( ∞= θ  (2.68) 

Therefore, the preceptron function can be represented as follows: 

( ) ( )( )xfgxy =  

where ( )xwxy Τ
∞= ),[1)( θ  

(2.69) 

The activation function of the preceptron can be represented with different activation 

functions, the most common of which are listed below: 

 

• Linear function  ( ) baxxg +=  (2.70) 

• Identity function ( ) xxg =  (2.71) 

• Binary function ( )




<

≥
=

0,0

0,1

xif

xif
xg  (2.72) 
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• Bipolar function ( )



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0,1
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xg  (2.73) 

• Sigmoid function ( )
cxe

xg −+
=
1

1
 (2.74) 

• Hyperbolic tangent  ( ) 






=
2

tanh
cx

xg  (2.75) 

2.6.2 Multi-Layer Preceptron (MLP) 

 

The common structure of a MLP is shown in Figure 2.6. The MLP consists of three layers, 

input, (one or more) hidden layer and an output layer. The input layer consists of the inputs 

to be processed by the MLP. The hidden and output layer consists of processing units or 

neurons. In each layer, the units are connected to the next layer by a set of weights. The 

inputs are presented to the network through the input layer which is then presented for 

processing by each processing unit in the hidden layer. The output of each unit in the hidden 

layer is forwarded to the output layer to produce the final output. There is also a bias unit in 

each layer that is connected to each processing unit. The bias units always produce a 

constant output of 1 which assists in stabilising the MLP.    

 

 

Figure 2.5: Illustration of a typical two layer MLP 

Since the parameters of the MLP i.e. input, weights and output are real values, we can 

mathematically describe the mapping function of the MLP as follows: 

( ) ( )( )hoihhoo wwxffwxy .., ==ψ  (2.76) 
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where y and x are the output and input of the network respectively, w is the MLP weights,ψ 

is the MLP function and fo ,fh are the activation functions of the output and hidden units 

respectively.  

 

The MLP maps the input space into an output space through some transformation functions 

or activation functions using the associated weights, where the weights are adjustable 

parameters in the MLP. By changing the weights, the output of the MLP changes; thus, the 

mapping itself changes. For the network to correctly perform the mapping between the 

input and outputs, the optimal weights values must be obtained to ensure minimum error 

between the predicted and actual values. MLP training will be discussed in more detail in 

section 2.7.3. 

 

MLP has been shown to have universal approximates properties, as they able to 

approximate any continuous function with a degree of accuracy (Haykin 2008). That is, for a 

single hidden layer, there exists a set of weight values that can map the input values to the 

output values with a given degree of accuracy. Despite this attractive feature of the MLP, 

unfortunately there is no formal method to determine the number of hidden units, and the 

correct weight values to achieve the required approximation. Even with the universal 

approximate property of the MLP, in some instances more than one hidden unit is required 

to perform complex mappings (Gibson and Cowan 1990).  

2.6.3 Training MLP 

 

The neural network training algorithm objective is to find the optimal weight values that 

best fit the training data. This is achieved by selecting the best set of weights that produces 

minimum value for an error function. Just like any optimization problem, the error function 

describes how well the neural network parameters are optimized or how well the neural 

network is able to fit the data. The error function can be minimised by changing the weights 

of the neural network using such algorithms as gradient descent.  

The training data set consists of a set of inputs and the corresponding output: 

( ) ( ){ }kk txtxT ,,...,, 11=  (2.77) 

where x is the input and t is the target output. For a given input xk, the MLP will give an 

output ( )wTy kkk ,ψ= . Using this notation, we can derive a common error function such as 

the Mean Error Squared (MSE), 
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(2.79) 

The Sum-of-Squared error (SSE) is commonly used for training the MLPs which is a non-

normalised version of the MSE 
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 (2.80) 

After establishing the error function, we can now formulate the MLP training as an 

optimization problem. Let W be the set of all feasible weights of the MLP and E is the error 

function that assigns a number to each feasible point W∈ℜN
, which can be expressed as:  

ℜ→WE :  (2.81) 

E measures the network performance and is calculated using the training data set. So to 

optimize the MLP to produce the desired output involves finding a set of weights w
*
 that 

produces the smallest error, 

( )wEw
w

minarg* =  (2.82) 

There are many optimization algorithms (i.e. gradient descent) that can be used to solve this 

minimisation problem. There are side effects when training the MLP using SSE as the error 

or loss function. Thus,  (Bishop 1996) rewrites the SSE as follows: 
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 (2.83) 

The loss function is dependent on the MLP weights only in the first term, where the 

minimum occurs when the following minimization criterion is met: 

( ) xtwxf kk |, * =  (2.84) 

where w
*
 is the set of optimised weights that achieve the lowest SSE. Also, the conditional 

average of a quantity Q(t) is given by: 

( ) ( )∫≡ dtxtptQxQ ||  (2.85) 

Therefore, the MLP will produce the conditional average of the target data, condition on the 

inputs. The second term in equation 2.84 is the residual value of the loss function at its 

global minimum, and it corresponds to the average variance of the target data around its 

conditional mean value. By using the SSE as a loss function for training the MLP, this allows 

the MLP to capture two very important statistics: the global condition mean and global 
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variance. (Bishop 1996) also derives the variance under the assumption of normality in the 

data to be as follows: 

( )[ ]∑∑
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−=
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kqk twxf
nc 1

2

1

*2 ,
1

σ  (2.86) 

This formulation provides the optimal value of the variance, which is given by the residual 

value of the SSE at its minimum with respect to the weights’ optimal values w*
. The 

formulation also shows that the variance remains constant with respect to the inputs used. 

MLPs are usually trained by minimising the SSE function. This method is ideal for prediction 

of the mean ( )*,wxfk , which is an approximation of the conditional average of the target 

data conditioned on the inputs. However, when predicting continuous variables, the 

conditional average represents only a small statistic which is not able to explain phenomena 

such as heteroskedasticity in the time series. 

2.6.4 Back propagation  

 

The back propagation method is used to adjust the weights in the MLP to achieve the lowest 

error possible. The back propagation method is implemented as follows: 

 

• Apply input xk to the MLP and calculate the output of the each unit , 

( )
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(2.87) 

 

(2.88) 

where wij is the weight from unit i to j , zi is ith input of the unit , aj is the weight sum of 

inputs and zj is the output activation of the unit activation function f(.). 

 

• Calculate the partial derivative of the error function E with respect to the weights 
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The deltas for the output units are calculated as follows: 
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j
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= 'δ  (2.90) 

The deltas for the hidden units can also be calculated as follows: 
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This then simplifies to 
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The gradient of the error function is given by summing all the training set: 
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The weights are then adjusted according to the following: 
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(2.94) 

 

(2.95) 

where η is the learning rate. 

The weights can be updated in two ways: firstly, they can be updated after the calculation of 

the gradient for the entire training set. This is referred to as batch back propagation.  The 

second method is by on-line back propagation, which involves changing the weights for 

every pattern in the training set. 

2.6.5 Mixture Density Networks 

 

Mixture density networks were proposed by (Bishop 1996) as an extension of the MLP to 

model the conditional probabilities. The MDN is constructed as an MLP; however, the output 

units are the parameters of a combination of Gaussian models. The proposed structure of 

the MDN consists of a single hidden layer with hyperbolic tan activation functions and three 

output units (priors, centres and widths) per Gaussian. Figure (2.7) illustrates a MDN with 

two Gaussians. 
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Figure 2.6 : An illustration of a mixture density network  

 

The MDN receives the input vector x of dimensionality d and produces the conditional 

probability density of the target vector t of dimensionality c. A mixture of Gaussian model 

with M components is given by: 

( ) ( ) ( )∑
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jj xtxxtP
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|| ϕα  (2.96) 

where M is the number of Gaussian components, ( )xjα  is the mixture coefficient for the jth 

kernel,  ( )xtj |ϕ  is the conditional probability of the density of the jth component. This 

could be any probability density function; here we only consider the Gaussian probability 

density function, 
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where c is the dimension of the output vector, µ(x) is the centre of the jth component. The 

formulation above can approximate any probability density function with an arbitrary 

accuracy, with the assumption that M is sufficiently large and the model parameters ( )xjα , 

µ(x), and σ(x) are chosen correctly. Therefore, it is sufficient to assume that the components 
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of the target are statistically independent within each component of the distribution. So it is 

unnecessary to complicate this formulation by specifying diagonal or full covariance matrices 

for the variance.  

 

The parameters of the mixture model have to satisfy some constraints, so let us denote θ(x) 

the number of outputs as (c+2)M. The mixing coefficient ( )xjα must satisfy the following 

constraints: 

( ) 10 ≤≤ xjα  

∑ =
j
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(2.98) 

 

 

(2.99) 

where ( )xjα  is given by the following softmax function: 
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where 
αθ j represents the corresponding networks output. The softmax function ensures the 

priors are positive and sum up to one. The variance is defined as  

σθσ jej =  (2.101) 

σθ j is the output of the MLP corresponding to the jth mixture model. The exponential 

function in the variance equation ensures that the variance is always positive. The centre is 

given by 

µθµ jkjk =
 (2.102) 

µθ jk is the output of the MLP corresponding the kth dimension of the mean vector for the jth 

mixture component. Typically, when training an MLP on a non-linear regression model, the 

SSE (sum squared error) is minimised.  

 

After the MDN is optimised, it can predict the conditional density function of the target data 

for any given input. This conditional density function can describe the process generator of 

the data to predict the target value. For instance, the variance produced by the MDN can be 

calculated as follows: 
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This specification for the variance is a more general specification than MLP, since the 

variance is a function of the input. Therefore, the variance is not constant over the life of the 

dataset and can vary according to the input.  

2.6.5.1 Training Mixture Density networks 

 

The MDN is trained by maximizing the likelihood function. By assuming that the data points 

are drawn independently from the same distribution, then the likelihood function can be 

derived as follows: 
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L is the likelihood function of the network parameters. So the aim of training the MDN is to 

maximize the likelihood function. This can also be achieved by minimizing the negative log 

likelihood function: 
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(2.106) 

The minimization of function E with respect to the MDN parameters will allow the MDN to 

model the conditional density of the target.  To minimize the error function E, the 

derivatives of the error function are calculated with respect to the weights of the neural 

network. If the derivative of the error function can be calculated with respect to the output 

values of the neural network, the back propagation method can be applied to optimise the 

weights. Since the error function is the sum of all errors over the training set, i.e. 

∑=
n

nEE then the derivative can be calculated for each pattern then summed up for all 

patterns. 
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∑
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jπ .  The derivatives of the error can be back propagated to calculate wE ∂∂ . Also, 

in the implementation, care must be taken to ensure that 0
1

≠∑
=

M

l

llφα . For a detailed 

explanation and derivation of MDN formulae, please refer to (Bishop 1996). 

2.6.6 Radial Basis Function Network 
 

Radial Basis Function networks (RBFN) are feed-forward networks with a single hidden layer. 

The activation functions of the hidden units are radial basis functions. This specification is 

less sensitive to the non-stationary inputs and they are much faster to train compared to the 

MLP. The major difference between RBFN and other feedforward networks such as the MLP 

is the behaviour of the hidden layer. The hidden unit computes a score for the match 

between the input and the connecting weights. Also, the output of the RBFN is calculated by 

taking a linear combination of the product of the weights connecting the hidden units to the 

output unit.  

2.6.6.1 Components of the RBFN 

 

The RBFN mainly consists of three layers: input, hidden and output layer. The input layer 

consists of all inputs to the RBFN.  In the hidden layer, all units are connected to all nodes in 

the input layer. The hidden unit has two parameters, centre and width. The number of 

centres ci is the same as the number of units in the input layer. If the activation function 

used is a Gaussian, then the width is considered to be the variance.  
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Figure 2.7: An illustration of the RBF network 

Firstly, the radial distance di , which is the Euclidean distance between the input vector u and 

the centre of the basis function ci  is required:  

ii cud −=  (2.110) 

The output of the hidden unit is given by: 

( )iii dh σφ ,=  (2.111) 

The output layer then performs a linear transformation to the output space. So the output is 

computed as follows: 
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In RBF networks, the hidden and output layers play different roles when compared to the 

MLP network. Also, the weights are used in a complete different concept. That is why 

different learning algorithms are used in each layer. The weights form the input to the 

hidden units or the basis function parameters { }iid σ,  can be set using unsupervised 

learning methods. Then the weights are kept fixed during the training of the second phase or 

while the hidden to output weights are learned. The second phase involves only the hidden 

to output weights and the output activation functions. This can be solved analytically with a 

set of linear equations. 

2.7 Neural Networks - literature review   

In this section, a detailed literature review of neural networks research in risk management 

is conducted. The review highlights the strengths and weaknesses of research conducted 

thus far in this domain. 
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2.7.1 Neural Networks for time series forecasting  

 

The interest in artificial neural networks (ANNs) stems from their non-linear modelling 

capability. This unique learning capability, unlike conventional computing, does not require 

the sequence of events to be dictated in order for it to produce meaningful results. The 

flexibility of the neural networks allows the data to drive the model rather than forcing the 

model’s variables to confirm to a theoretical relation that might or might not exist. This 

allows for the ANN to be trained without restriction of a model to discover relationships 

which is driven solely by the data Wallace (2008). The ANN is data-driven, self-adaptive and 

has few prior assumptions about the data. The ANNs learn by examples, which allows them 

to capture and infer key aspects and subtle relationships that may exist in the data. These 

key features account for the vast interest in ANNs specifically in the forecasting domain, 

(Sharda 1994). 

 

The generalisation ability of the ANN to infer values which are outside the population is a 

key feature of the ANN’s modelling capability. Since forecasting involves prediction of future 

values from historical values, ANNs present themselves as ideal forecasting models. The 

ANNs are known to be universal function approximates, which is the ability to approximate 

any continues function with a degree of accuracy (Hornik, Stinchcombe et al. 1989), (Hornik, 

Stinchcombe et al. 1990; Hornik 1991),(Irie and Miyake 1998). ANNs are more flexible and 

adaptable form than the traditional statistical models which have limitations in estimating 

the relationship between historical and future values of a time series, due to the 

complexities in real systems. Therefore, the ANN is a good alternative to overcome this 

weakness.   

 

Forecasting has been traditionally applied in the domain of linear statistics. Traditional time 

series methods such as the ARIMA method assume the generating process to be linear. This 

allows for the time series to be analysed and explained easily. However,  it is inappropriate 

to have a prior assumption of a linear generating process, since real-world systems are 

usually nonlinear, (Granger and Teräsvirta 1993). There has been a great deal of emphasis 

placed on non-linear time series models, such as threshold autoregressive (TAR) mode (Tong 

and Lim 1980), ARCH model (Engle 1982). These models still have major limitations, where 

the data series needs to be hypothesized with little knowledge of the generating process. 

ANNs are non-linear models which are data-driven and are able to model non-linear 
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relationships without creating a specific hypothesis of the underlying data, therefore ANNs 

are more flexible models and suitable tools for forecasting (Zhang and Eddy Patuwo 1998). 

 

According to the vast amount of literature on neural networks in finance (Medsker, Turban 

et al. 1993) , (Zhang, Patuwo et al. 1998) and Wong (Wong, Lai et al. 2000), the methodology 

used in implementing the ANN solution differs greatly.  Finding the correct model for a real 

problem is a cumbersome task and is equally important for ANNs as over-fitting is more 

likely to occur. The correct model should be able to both recognise learned patterns and 

generalise if an unseen pattern is presented. In (Baum and Haussler 1989), a relationship 

was found between the generalisation capability of the ANN and size of the training set. 

Also, (Amirikian and Nishimura 1994) conclude that the size of the ANN depends on the 

specific tasks to be learned. Different techniques have been applied in research to construct 

an optimal ANN structure (Weigend, Huberman et al. 1990; Weigend and Nix 1994)  use a 

weight pruning method (weight elimination) with the addition of a term to the back-

propagation cost function which penalises for the complexity of the network, (De Groot and 

Würtz 1991) applied a normalised Akaike  information criteria (AIC) to work out the optimal 

ANN configuration.  

 

Selecting the correct ANN architecture is essential in order to obtain optimal performance. 

The correct architecture includes selecting the correct number of hidden layers, the correct 

number of nodes in each of the input, hidden and output layers. To date, no formal 

approaches have been proposed for the selection of an optimal ANN architecture; the 

common approach in the literature is to apply a method of trial and error. Researchers have 

tried to formalise methods or test for the optimal ANN structure which are typically either 

heuristic or simulation-based. Examples include the polynomial time algorithm (Roy, Govil et 

al. 1995) , the network information criteria (Murata 1994) and pruning algorithms (Sietsma 

and Dow 1991), the canonical decomposition technique (Wang, Di Massimo et al. 1994). 

These methods are complicated to implement and do not guarantee an optimal ANN 

architecture for all forecasting problems. Currently, there is no universal method for 

determining the optimal ANN architecture.  

 

The hidden layer plays a crucial role in the ANN modelling capabilities, where the hidden 

units give the ANN its generalisation capabilities and ability to perform complicated non-

linear mappings. It is the hidden layer that has extended the capabilities of the ANN to 
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model  non-linear separable problems (Grossberg 1973). The number of hidden layers used 

in the ANN architecture is purely dependent on the problem under study. In most research, 

only one hidden layer is found to be sufficient for forecasting purposes. In some cases, an 

ANN with one hidden layer might require a large number of hidden nodes, which has a 

negative impact on the training time and the network generalisation ability. This issue can 

be addressed by adding more hidden layers which increases the complexity of the ANN 

architecture. In (Srinivasan, Bhatia et al. 1994)and (Zhang, Doi et al. 1994), a two hidden 

layer network is found to have an advantage over a single hidden layer ANN. Other 

researchers use two hidden layers without comparing the results with a single hidden layer, 

(Vishwakarma 1994), (Grudnitski and Osburn 1993) and (Jhee and Lee 1993). Some 

researches also indicate that two hidden layers are sufficient to solve most problems 

including forecasting problems (Lippmann 1987) and (Cybenko 1989). The optimal number 

of hidden nodes is also crucial to the ANN modelling capabilities. The least number of nodes 

is desirable which gives the ANN better generalisation capabilities and reduces the likelihood 

of over-fitting. There are some methods that outline different approaches to selecting the 

optimal number of hidden units, such as pruning unnecessary hidden units to improve ANN 

performance (Gorr, Nagin et al. 1994). However, there is still no method that explicitly 

calculates the required number of hidden units. For a single hidden layer, there are several 

methods proposed for a number of hidden units, for example “2n+1”  (Lippmann 1987), “2n” 

(Wong 1991), “n/2” (Kang 1992), where n is the number of input nodes. These methods can 

be adopted in certain situations, but there is no method that works for all problems. (Tang 

and Fishwick 1993) conclude that the number of hidden units have an impact on the 

forecasting performance of the ANN. In (De Groot and Würtz 1991); (Chakraborty, Mehrotra 

et al. 1992) and (Tang and Fishwick 1993), the ANNs with an equal number of hidden units 

and input nodes are shown to have better forecasting performance than other 

configurations. 

 

Selecting the right activation function should be done according to the problem at hand. It 

has been shown in (Klimasauskas 1991) that the logistic activation functions are best suited 

to classification problems and hyperbolic tangent functions are better suited to forecasting  

problems. In most cases, the ANN can have the same or different activation functions for 

different nodes in the same or different layers. (Schöneburg 1990). However, the most 

common practice is to use the same activation function in the same layer. The logistic 

function is the most common activation function used in the hidden layer. In forecasting 
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problems where the target values are continuous in nature, a linear activation function is 

suitable (Chauvin and Rumelhart 1995) and (Gorr, Nagin et al. 1994). In  (Cottrell, Girard et 

al. 1995), the linear activation functions in the output node cannot model times series with 

trend; therefore, the time series needs to be treated using methods such as differencing etc. 

 

Another key aspect when determining the correct ANN structure for a forecasting problem is 

selecting the correct input. The input variables must have enough information to allow the 

ANN to learn the underlying process. Ideally, the least number of inputs is desirable, so that 

the essential features of the data can be captured in the ANN model. In the absence of a 

formal method for selecting the correct inputs for the ANN, some researchers try to use a 

standard time series approach for selecting the right input values. In (Tang and Fishwick 

1993), the Box-Jenkins method was used to work out the number of lagged variables into 

the ANN model. This method is not ideal since the Box-Jenkins methods are for linear 

models and ANNs are nonlinear. The AR terms specify only the lagged terms which is not 

suitable for non-linear models (Zhang, Patuwo et al. 1998). In the literature, there are 

conflicting methods for determining the inputs for ANN models. (Tang and Fishwick 1993) 

discuss the benefit of using more inputs, whereas (Lachtermacher and Fuller 1995) argue the 

negative impact of having more inputs on one-step-ahead forecasts, but positive results for 

multi-step-ahead forecasts. There have been several non-linear statistical tests to quantify 

the number of inputs for time series such as the Lagrange multiplier (Luukkonen, Saikkonen 

et al. 1988), Likelihood ratio test (Chan and Tong 1986) and bispectrum test (Hinich 1982).  

These methods are model-dependent, so there is no approach that has any real advantage 

over another.  

 

The ANN training process is an unconstrained non-linear problem, where the weights are 

modified to minimise an objective function such as the mean or total square error. Many 

different optimisation methods exist for ANNs; however, there is no algorithm that ensures 

a global solution for all problems. The most popular method used for ANN optimisation is 

the back-propagation method which can be applied using the gradient descent algorithm. 

Given these limitations of the back-propagation algorithms, many variations of these 

algorithms have been adopted  (Jacobs 1988), (Cottrell, Girard et al. 1995). Also, second-

order methods have been shown to have faster convergence and ability to find a good local 

minima, made them appealing and robust training algorithms for the ANN. The limitation of 

the back-propagation includes slow convergence, inefficiency and sensitivity to the choice of 
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learning rate. Some modifications to the back-propagation algorithm are required, such as 

the addition of a momentum parameter to overcome issues such as the oscillation problem. 

Since the learning rate and momentum parameters can take on any value between 0 and 1, 

the values are determined by experimentation. In (Sharda and Patil 1992),  nine 

combinations of three learning rates and three momentum values are examined. (Tang and 

Fishwick 1993) report that these training parameters greatly affect the performance of the 

ANN. (Zaiyong Tang 1991) concluded that a high learning rate should be used for less 

complex data and low learning rate is more suitable for more complex data. (De Groot and 

Würtz 1991) achieved better major improvements in accuracy and training time for 

forecasting problems when using second order method. (Hung and Denton 1993) used a 

general purpose non-linear optimizer in the training network. The advantages of this 

method are that the learning rate and momentum are not used. Instead, stopping criteria, 

search direction procedure and bounds on variables are configured (Lenard, Alam et al. 

1995).  

 

The ANN training method is affected by the choice of objective or loss function. The 

standard approach is to use the sum of squared error or the mean squared error functions. 

In financial forecasting, other objective functions can be used such as maximizing profit or 

return, or some other utility function. (Refenes 1995) show that the ANN predictive 

performance is affected by the choice of objective function when using the back-

propagation algorithm while keeping the learning parameters constant. The use of mean 

square error is commonly used as the loss function when training ANNs. This assumption is 

appropriate given the independence of the error term; however, this assumption can be of 

concern when modelling time series data due to the autocorrelation in the errors.  Just like 

many other forecasting models, the ANN requires training and test data sets. In some cases, 

a validation set is required to evaluate whether the ANN has reached an optimal solution. 

The evaluation set can also be used by the training algorithm to avoid over-fitting (Weigend, 

Huberman et al. 1990). There is no formal method that dictates how to split the training 

data set into the training, validation and test sets. The training set must have enough 

observations to represent the population or underlying process, so by having a smaller set in 

the training and validation set, this can lead to issues such as selecting the wrong ANN 

structure, premature termination of the ANN training and inadequate forecast performance. 

To date, there is no method that dictates how to partition the data set. In the literature, the 

data set is portioned based on the problem at hand, the most popular methods being 80% 
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vs. 20% or 70 vs. 30 %.  Other methods have been used such as (Gorr, Nagin et al. 1994), 

where a bootstrap re-sampling method was used to partition the data into ten independent 

sub-samples. In  (Lachtermacher and Fuller 1995), all available data is used to train the 

model then synthetic data series is used to test the ANN. Another interesting issue that 

arises with time series modelling is the length of the training set, and how to determine the 

optimal number of observations in the training set such that the optimal model performance 

is achieved. It is generally assumed that a longer time series is required for training the ANN 

model to provide adequate performance. In (Nam and Schaefer 1995), the ANN forecast 

performance is tested with different numbers of observations in the training data set. Their 

study showed improved performance with an increased number of observations in the 

training set. However, this is solely dependent on the forecasting problem and the 

complexity and noise in the data.  This result contradicts that of (Kang 1992) where ANNs 

have been reported to perform well when using small data sets compared to linear models. 

2.7.2 Neural Networks in conditional volatility forecasting  

 

Neural networks have been extensively applied to time series forecasting problems. 

However, there has been less work done on modelling volatility with ANNs. This could be 

attributed to many factors such as the success of the GARCH models in modelling 

conditional volatility and the complexity of designing the correct neural network for 

conditional volatility modelling. Conditional volatility forecasting involves modelling the 

distribution properties of the time series; therefore, the type of neural network model will 

impact on the forecasting accuracy as it will need to model the distributional properties of 

the underlying data.  The limitation of the neural networks in this regard can be seen in the 

forecasting literature where the majority of ANN forecasting papers combine ANN with time 

series models to improve the forecasting performance (Thomaidis and Dounias 2006).  To 

understand this limitation, let us consider that a standard time series can be specified as 

follows: 

 

( )
ttt exfy +=  (2.113) 

 

where yt is the dependent variable, xt is the independent variable and et the residual term 

which is a Gaussian random error with mean of zero and a constant variance. The ANN 

would have to perform a non-linear map between the input xt and the output yt, which is in 

fact learning the unknown function f(xt). This is achieved by increasing the number of the 
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hidden units, so the ANN can approximate any non-linear function to a degree of accuracy as 

the number of hidden units tends to infinity (Hornik, Stinchcombe et al. 1989). The training 

of the ANN is normally achieved by minimizing the mean error squared (MES). This approach 

assumes that the variance of the target conditioned on the input has constant variance 

(Bishop 1996). That is, the conditional probability distribution function of the target is a 

single Gaussian of constant variance (Schittenkopf, Dorffner et al. 2000).  (Bishop 1996) 

shows that optimizing the ANN weights by minimizing the sum of error square is achieved by 

obtaining conditional average of the target data, and a global minimum of the variance of 

the target data around its conditional average. This form of training has its benefits when 

modelling the conditional mean of a time series, but this will be problematic when modelling 

continuous variables such as time varying volatility. Also, the implication of using a loss 

function such as the Root Mean Square assumes the  independence of the error terms, 

which is not suitable for time series models due to the autoregression in the residuals, 

(Curry, Morgan et al. 1997). Therefore, this method is not suitable for modelling volatility in 

financial time series. 

 

Given the limitation of the standard ANN in modelling continuous random variables, 

researchers have been able to utilise the benefits of the ANN by combining it with other 

time series models.  In this way, both models can leverage off each other and provide 

improved forecasting performance. In (Donaldson and Kamstra 1996), the output of the 

ANN is used as an input parameter to another time series model to produce a combined 

volatility forecast. This method allows for any information that has been missed by the ANN 

to be captured by the other model. The ANN was chosen to have up to 3 hidden units, 

where 10 values for each weights of the hidden layer is chosen at random between -1 and 1 

and the weights of the output layer is calculated during the optimisation procedure.  The set 

of hidden weights that produces the best ANN performance is used for the forecast exercise. 

There are several drawbacks of this approach. For instance, the weights in the hidden layer 

are set in an ad-hoc manner; however, the output layer weights are optimised during the 

training procedure. This method has been proposed by (Stinchcombe and White 1992), 

where guidelines on transforming the data and initialisation of the weights seem to produce 

good results. However, setting the hidden weights in a random manner without optimisation 

using the feedback from the output layer can lead to unstable results, especially when 

applied to financial time series. The output layer weights are the only variables that are 

optimised in the neural network; therefore, they would need to compensate for the hidden 
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layer weights. Potentially, this method is reduced to a simple regression problem where the 

output of the ANN is a linear combination of the transformed values of the input layer. This 

is evident in the results where the forecasting performance of the ANN and OLS are very 

similar across the different times series.  This leads us to conclude that the ANN cannot 

adequately capture all the characteristics of the time series data, and most of the 

forecasting ability was driven by the parameters in the GJR model. 

 

(Donaldson and Kamstra 1996) made another attempt to combine forecast models using an 

ANN. In their approach, the output of the ANN is used as an input to the GJR model. This 

method seems to have produced more stable results than did the previous study. This is not 

surprising as the ANN output is included in the GRJ variance specification. This means that 

the forecast of the ANN model as referred to in the paper is actually the output of the 

modified GRJ model. This method still has the same weakness of the previous study, where 

the weights of the hidden layer are set randomly and the weights of the output layer are 

optimised with the combined model. The weakness of this approach can be seen in the 

results. For instance, three of the four time series studied use only one hidden unit, whereas 

three hidden units were used for the NIKKEI time series. Having one hidden unit in the ANN 

is not sufficient to model the complexities of the financial time series. Hence, from these 

results we conclude that the fixing of the hidden layer weights has an adverse effect on the 

ANN’s forecasting ability. In the case of the NIKKIE, sufficient information has been missed 

by the GJR model, which has allowed for the output layer of the ANN to capture this 

information. This can also been seen from the results, where the ANN is said to behave like 

EGARCH in the FTSE time series and more like GJR in the S&P 500 time series. By adding 

extra variables to the conditional variance specification, the model becomes more flexible 

and adaptable to changes in the underlying data. The key weakness in this research is the 

way the ANN has been applied to volatility forecasting. This also includes the training 

method of the neural network where only the linear combination of the output layer was 

optimised with a conditional variance procedure. 

 

(Hu and Tsoukalas 1999) adopt a different combination approach to those of the previous 

studies. The ANN is utilised to combine the forecast of four other models. The forecast 

performance of the ANN is compared to the GARCH, EGARCH, IGRACH, simple moving 

average and another two combine techniques, the OLS and a simple average method. The 

models are trained on 11 currencies covering the first 15 years of the European Monetary 
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System. The ANN hidden layer is selected to have four hidden units, and four skip 

connections connecting each input node to the single output node.  The results of these 

experiments show the superiority of the EGARCH model over all models including the ANN. 

The ANN displayed poor performance compared to all other models which is attributed to 

the structure of the ANN used to combine the forecasts, where four hidden units were used 

without verifying whether this was the optimal structure.  The choice of a skip connection in 

the ANN was not supported by appropriate validation. The input to the ANN consisted of 

volatility forecasts of different models. This ANN would not be able to predict volatility solely 

by using the volatility forecast. This issue could have been overcome by adding information 

about the return time series to the ANN.  

 

(Dunis and Huang 2002) applied a neural network recurrent (NNR) and regression neural 

network (RNN) to forecast foreign currency volatility. They benchmarked both models 

against the GARCH(1,1), implied volatility model, two types of combination models, a simple 

average of the four forecasting models, and the GR model proposed by (Granger and 

Ramanathan 1984). The data used in the study is the USD/JPY and GBP/USD exchange rates. 

It seems that both return series have zero unconditional mean, and the USD/JPY return 

series seems to be homoskedastic, whereas the GBP/USD seem to be heteroscedastic. The 

inputs to the neural networks are the lagged actual 21 realised volatility, lagged 21-day 

implied volatility, lagged absolute logarithmic return of the past 21 returns and lagged 

logarithmic returns of the past 21 returns of the gold or oil prices. The target of the neural 

networks is the realised 21
st

 day volatility.  The results show that the RNN dominates the 

NNR, highlighting the importance of the feedback effect of the lagged variables as inputs. 

The NNR also dominated the GARCH in terms of forecasting performance. However, a 

comparison of the n-step-ahead forecast of the GARCH and the neural networks would be 

misleading. If the volatility persistence is weak in the data series, then the GARCH model 

could revert to the unconditional volatility in the long run. It would have been a better 

exercise to compare the ANN with a more sophisticated version of the GARCH model such as 

the EGARCH or GJR models. This becomes evident when applying ANN in trading strategies 

where the GARCH model produces higher cumulative profit compared to the RNN and NNR 

models. However, for the USD/JPY, the NNR and RNN models produced better results than 

the GARCH. This is expected as their return series is not heteroscedastic. In this case, it 

would have been ideal to compare models with an ARIMA model. 
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In (Hamid and Iqbal 2004), a primer on neural networks in volatility forecasting was provided 

where issues involved with volatility forecasting are explained with references to the 

literature. They also test the forecasting capability of the ANN to forecast the volatility of the 

S&P 500 Index future prices, and benchmark it against American option implied volatility 

model. The ANN was trained using thirteen input variables to learn the realised volatility. 

The number of hidden units was set to twenty-six;  no test was done to validate this choice. 

The other ANN parameters such as learning rate and momentum were set at the default 

value.  The ANN was trained on 500 days of data, which is a common oversight for the length 

of the in-sample or the training data set length to be chosen in an ad-hoc manner. The 

results show the ANN to have better forecasting performance than the implied volatility 

model. This test is not sufficient to conclude the superiority of the ANN, since the implied 

volatility is forward looking which implies how the market is anticipating the volatility to 

behave. The ANN was trained on the historical data or realised volatility that is backward 

looking where the volatility is forecast based on the past behaviours. So in essence, it would 

have been more informative to compare the forecasting ability of the ANN to time series 

volatility models such as the GARCH models. 

 

(Thomaidis and Dounias 2006) introduce a non-linear method in a mean neural network 

with a GARCH specification for the variance (i.e. NN-GARCH). Based on the maximum 

likelihood theory, they devise statistical inference procedures for the NN-GARCH model, 

which allows for the testing of the structure of the mean and variance data generating 

conditional probability density. The idea is to have a flexible mean specification and a 

GARCH specification for the variance to cater for a good fit for the return time series. The 

inputs used for the ANN are the last 10 lags of the DAX returns. Two or three hidden units 

were selected as part of the ANN modelling building procedure. The forecasting results are 

inconclusive. This method might give a good specification from the conditional mean; 

however, it is still dependent on the variance to follow a GARCH specification. Nevertheless, 

the proposed method seems to have some advantages and can be adopted for time series 

modelling building.  

 

(Xiao, Fei et al. 2008) conducted a similar experiment to that of (Hu and Tsoukalas 1999),  

whereby the ANN was used to combine the forecast of GARCH, EGARCH,TGARCH and 

moving average volatility models. The ANN model was compared to these models including 

others such as EWMA, exponential smoothing and moving average models. The ANN was 
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also compared with two other combining models, the standard average and OLS models. 

The ANN was constructed with four inputs which are the outputs of GARCH, EGARCH, 

GARCH and moving average models, one hidden layer with four hidden units, and output 

unit that is the combined forecast. The models were trained on the Shanghai Stock Exchange 

composite closing index. The training data set consisted of 382 observations of weekly 

volatility; the testing was done on 100 weekly observations. The results show superior 

performance of the ANN combining technique compared to the other volatility models. Also, 

it is interesting to see the OLS method achieve very similar results to those of the ANN. This 

shows that the power of neural networks has not been explored to its full potential, where 

the ANN is acting as a regression function which is caused by the ANN architecture and 

choice of inputs.  

 

(Ormoneit and Neuneier 1996) applied conditional density estimation (CDE) where the 

parameters of the probability density function where generated by ANN. In this study, the 

neural network is trained using DAX index intra-day returns. The aim was to predict DAX 

volatility 60 minutes ahead, based on the present value and 4 lagged values the 20,50,90 

and 150 minutes. The data set consisted of 2000 observation for training and another 1585 

observations for testing. The results of the CDE were compared to a standard MLP and a 

constant predictor. The CDE was shown to have superior volatility forecasting performance 

over the ANN, however, it would have been deal if the performance of the CDN is 

benchmarked against other time series models such as the GARCH or EGARCH models. This 

would have allowed for a complete evaluation of the results and would have highlighted the 

strengths and weaknesses of the proposed model. 

 

The majority of neural network research in financial forecasting applies a hybrid approach. 

This involves combining the neural networks with other time series to improve on the 

forecast. This is surprising as neural networks have the ability to map the inputs to a target 

value more accurately than financial time series models understudy. Also, the neural 

networks do not apply the same assumptions as the statistical models on the data set. The 

reasoning for this approach is the inability of the feedforward (MLP) neural networks to 

capture key features in the underlying data such as heteroskedasticity in the data. We 

demonstrate in this thesis the capability of neural networks to achieve accurate forecasting 

when the correct model is chosen.   
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2.7.3 Volatility forecasting with MDN 

 

In (Bishop 1996), the  MDN were shown to be capable of modelling the complete conditional 

density function of the target variable, which is an essential property for modelling time 

series data. In addition the MDN variance specification caters for changes in the variance 

relative to the input variables.  This is a major advantage over ANN where the global 

variance specification is a constant over the entire population. Designing the correct model 

for forecasting volatility is complicated by the stylized facts that exist in the return series. 

The MDN can potentially address this issue due to its flexibility and its ability to capture key 

behaviours in the underlying data. MDNs have not received the required attention in 

research especially in the forecasting domain. To date there is a handful of papers which 

utilise MDN in volatility forecasting problems. Below is summary of these papers.  

 

In (Nabney and Cheng 1997) the volatility forecasting performance of ARIMA model was 

compared with different types of ANN namely MLP, MDN and RBF. The data set included 

five currencies with 3505 daily prices. The five previous prices were chosen as the inputs for 

the neural networks and for the price of the next time step, the target for the neural 

networks was the conditional variance. The ANNs are trained on the first 2505 observations; 

the next 500 are used for the validation and last 500 for out-of-sample testing. Their results 

demonstrate the superiority of the MD relative to the other models. However, this research 

does not compare the performance of the neural networks to other time series models.  

 

(Schittenkopf, Dorffner et al. 2000) extend the MDN so that it has a recurrent structure 

(rMDN). This is achieved by feeding the past variance as an input to the MDN model. Now 

the past volatility observations can influence the future volatility forecast. The rMDN was 

selected to have three hidden units and two Gaussians. The rMDN performance is compared 

to the GARCH and GARCH-t models. The models were trained on the daily closing prices for 

the DAX index. The training data set consisted of 1700 observations. The data set was split 

into eight overlapping segments that contained 1000 observations. The models were 

optimized on 900 observations and the next 100 days was used to evaluate the forecasts. 

The forecast evaluation criteria are based on the loss function (log likelihood), normalised 

mean average error (NMAE) and the hit rate (HR). The in-sample results show the rMDN to 

have superior performance over the GARCH models. This is a great improvement on the 
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results of their earlier study, and highlights the importance of selecting the right neural 

network model to address the problem at hand. In terms of the out-of-sample forecast 

performance, the GARCH-t on average is superior to all the other models. The rMDN was 

able to beat the competing models on several occasions. However, the performance seems 

to deteriorate with large error in the data set. They concluded that the performance of the 

model depends on the error measure and the section of the time series studied. This 

highlights the importance of selecting the correct training set for optimizing the model 

which influences the model forecasting performance. The poor performance of the rMDN 

could be attributed to the model design; for instance, the three hidden units and two 

Gaussians might not be sufficient to model a time series with large volatility periods. 

Nevertheless, the rMDN was shown to have a high correlation with the implied volatility 

when compared with the GARCH-t using the Pearson’s r test. This result warrants further 

research into MDN . 

 

(Miazhynskaia, Dorffner et al. 2003) extend the study of (Schittenkopf, Dorffner et al. 2000) 

to include three time series, Dow Jones Industrial Average (DJIA), FTSE 100 and the NIKKEI 

225.  The data consisted of 13 years of daily closing prices. The data set was split into 

overlapping sequences of 700 observations. The first 500 returns were used for training the 

model, the next 100 was used for validation and the other 100 for out-of–sample testing. 

The models studied in this paper are GARCH(1,1), RMDN(1), RMDN(2)-t, GARCH(1,1)-t,  

LRMDN(2), and RMDN(2). The RMDN(2)-t is a MDN with a Student-t instead of a Gaussian 

distribution. The LRMDN (2) is also an MDN where the hidden units are linear activation 

functions. Three hidden units were chosen for all the neural networks. The models were 

ranked according to the log likelihood, NAME, NMSE, HR and weighted hit rate (WHR). The 

error measures of the models vary with the data segment and the difference between the 

error measures is actually small. So a Wilcoxon test is applied to detect the correlations 

between the errors. The out-of-sample results for the DJIA showed the GARCH(1,1)-t to be 

superior to other models according to the loss function measure. The RMDN(1)-t seem to do 

better according to the volatility measures. For the FTSE 100, the GARCH(1,1)-t and 

LRMDN(2) outperform the other models  with respect to the loss function. The other error 

measures favour the t-distribution and the mixture of Gaussians over the other Gaussian 

models. For the NIKKEI 255 series, results obtained are similar to those for the FTSE 100, 

where the t-distribution models are favoured over the other models. These results 

demonstrate the superiority of the non-Gaussian models in terms of the forecasting 
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performance. However, the non-Gaussian models perform differently across different time 

series. For instance, for the DJIA, the t-distribution gave superior performance while the 

mixture models were among the best for FTSE 100. Even though the mixture and t-

distribution models are able to capture fat tails in the return series, only the MDN are able 

to cater for time varying skewness and kurtosis. These results highlight the importance of 

selecting the right forecasting model for the time series understudy. It would have been 

interesting to see if any performance gain would have been achieved by varying the number 

of the hidden units for the MDN models. 

 

MDNs are suitable for volatility forecasting as they are able to capture the key stylised facts 

in the returns series such as heteroskedasticity. However, there have been a handful of 

papers that study the forecasting capabilities of the MDNs. The results reported in these 

papers are inconsistent and they show different behaviours of the models for the same and 

different time series. This behaviour is caused by the many important factors that should be 

considered as part of the model building exercise. For instance, the neural network training 

data is chosen in an ad-hoc matter which is the common approach in time series models. 

The other interesting factor is that the number of hidden units in the neural networks is not 

verified or optimised accordingly.  No attempts have been made to explore the behaviour of 

the same model across different time series. In this thesis, we will elaborate on these key 

factors and how they impact on the accuracy of the models. This will help us to explain this 

inconsistency in the reported results.  

 

2.7.4 Application of neural networks option pricing  

 
Many option pricing models have been derived to capture the relation between the option 

price and the variables determining it.  To model the dynamic relationship between these 

variables and the option price, a model is required that is agile and flexible enough to cater 

for the finer details in the underlying data. Neural networks are well suited for this task due 

to their ability to approximate any measurable function with an arbitrary degree of accuracy.  

Another advantage is that neural networks do not have any prior assumption about the 

data. Therefore, the model is data-driven so it is not forced to conform to a specific 

configuration.  

 

One of the first attempts to apply neural networks to price option was made by (Hutchinson, 

Lo et al. 1994). In this paper, they propose a nonparametric method for estimating the 
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derivative pricing formula by using neural networks. The neural network is explored since it 

could yield more accurate results and might be computationally more efficient especially 

when the pricing dynamics are unknown or when there are no closed form solutions for the 

pricing formula. Four pricing methods are used in this study: ordinary least squares, radial 

basis functions networks, multi-layer preceptron networks and a projection pursuit method. 

The inputs for the neural network are the stock price, strike price and time to maturity. The 

volatility and risk free rate are assumed to be constant for the life of the option; therefore, 

they are not included in the training data set. The inputs are simplified further by using the 

homogeneity hint (Merton 1973), where it is assumed that the distribution of the asset 

returns is independent of the level of the stock price. So the option pricing formula is 

homogenous of degree one in the stock price and strike. This potentially can reduce the 

inputs to stock price \ strike and time to maturity, but this assumption is relaxed and the 

stock price is included as an input, and the ration option price\ strike was selected as the 

target. All neural networks had four hidden units which were selected using simulation 

results, and the number of hidden units was based on the smallest out-of-sample error. The 

evaluations of all models were based on the hedging performance according to the Black-

Scholes formula using the tracking error. The evolution was first conducted using Monte 

Carlo simulation to simulate the asset paths, then calculating the tracking error accordingly. 

The tracking error varied with respect to the maturity and strike. On average, the RBF 

network had superior performance according to the Black-Scholes for at-the-money options 

across all maturities.  As the maturity increases, on average the performance of the RBF 

network improves for deep out-of-the-money options. The average performance of the MLP 

and PPR networks is on par with that of the RBF network with respect to all maturities at-the 

money and longer maturities for deep out-of-the-money options. The linear models in rare 

cases outperformed the Black-Scholes in daily hedging scenarios. It is also noted that the 

neural networks’ pricing performance should be monitored for extrapolation, since they are 

trained on a specific region of the input space. Therefore, it should not be surprising that the 

neural network does not perform as well for points outside the input space. This 

compromise in neural network performance is due to the inadequacy of the neural network 

structure such as insufficient number of hidden units or the inadequate size of the in-sample 

training data set. The neural networks showed promising results for the simulated data, so 

the experiment is extended to S&P 500 futures options. The data set of S&P 500 futures 

option comprised the daily closing prices for the January 1987 to December 1991 period. 

The data set was split into 10 non-overlapping subsets, and each neural network was trained 
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on each data set and tested on the subsequent set. The optimal neural network structure is 

chosen to match the optimal structure used in the simulation experiment. In general, the 

neural networks exhibit smaller hedging error than does the Black-Scholes, but it is difficult 

to infer which neural network is superior. For short maturity options, the Black-Scholes had 

lower hedging errors across all moneyness; however, the neural networks were superior for 

medium- and long-term maturities. 

 

The pricing accuracy of the neural network is studied in  (Lajbcygier, Boek et al. 1995) and 

compared with the Black-Scholes and Barone-Adesi/Whaley models. The study was 

conducted on the SPI futures and SPI options on futures data obtained from the Sydney 

Futures exchange. The data ranges from January 1993 to December 1994.  Eighty percent of 

the data was used as in-sample; the rest was used for out-of-sample testing which was 

selected randomly. Several neural networks were tested on the training data sets using 

different configurations to compare with the results of (Hutchinson, Lo et al. 1994); mainly, 

the assumption of constant volatility and interest rate is tested. Therefore, two sets of 

inputs were used which consisted of moneyness (stock\strike) and time to maturity. The 

second set included interest rate and volatility. For the first input set, two neural networks 

were used with 4 and 10 hidden units. For the second input set, three neural networks were 

applied using 4,10 and 20 hidden units respectively.  A logistic activation function is used in 

the hidden and output layer. The performance of the models is evaluated based on three 

criteria: R
2
, NRMSE and MAPE. The results show superior performance when interest rate 

and volatility are included. The neural network results overall are comparable to those of the 

other models, although it is marginally out-performed over the entire set. It is interesting to 

note that the Black-Scholes is superior in the R
2
 measure, whereas the NRMS favours the 

Whaley model. These results show the danger of relying on one measure which could lead to 

a wrong conclusion when benchmarking different models. The experiment is repeated for a 

reduced input space that includes near-the-money options that have a short time to expiry. 

The neural network displays superior performance to the other models. The main weakness 

of the study is the random selection of observations for the out-of-sample data set. This 

potentially has a negative impact on the forecast performance due to discontinuities in the 

training data set. This effect is further analysed and discussed in  (Yao, Li et al. 2000). 

 

In (Garcia and Gençay 2000), performance enhancement in derivative pricing is investigated 

using the homogeneity hint. Instead of using a neural network to map the strike to stock 
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ratio and time to expiry to a derivative price, the pricing function is split into two parts 

whereby one is controlled by time to maturity and the other by the strike to stock price 

ratio. This separation is consistent with the BSOPM which retains the homogeneity property 

of the option pricing formula. The experiment consists of training two feedforward neural 

networks, one with the homogeneity hint and the other without the hint. The number of 

hidden units by experimentation and the optimal number were selected based on the lowset 

pricing error. It was interesting to note that the number of hidden units for the neural 

network without the hint is higher compared to the neural network with the hint. The initial 

simulation results were encouraging, the neural network with the homogeneity hint 

displayed superior pricing performance; however, the neural network without the hint 

produced a slightly lower hedging error. The experiment was repeated for a real data set 

using the daily S&P 500 index European options (obtained from CBOE). The data sample was 

from January-1987 to October-1994. Each year was split into three sets: the first set 

consisted of the first half of the year for training purposes, the second set was a validation 

set which consisted of the following quarter and the third set was the final quarter of the 

year which was used for out-of-sample testing. Based on the pricing error criteria used in the 

mean squared prediction error (MSPE), the neural network with hint consistently produced 

fewer errors than did the neural network without the hint and Black-Scholes. Based on the 

simulation experiment, the model that produces the least number of pricing errors does not 

necessarily produce fewer hedging errors. Therefore, for the hedging scenario, the neural 

network hidden units are selected based on the lowest hedging criteria rather than the 

MSPE. The results indicate similar hedging performance for both neural networks. However, 

the neural network with hint seems to be less sensitive to the initial condition and on 

average produces more stable hedging results. Also, the hedging performance of both neural 

networks is superior to that of the Black-Scholes.  

 

(Lajbcygier and Connor 1997) introduced a hybrid neural network which predicts the 

difference between the modified Black-Scholes and the observed option prices. The residual 

predictions are applied to supplement the optimal conventional option pricing model out-of-

sample. The neural network input consisted of future price to strike ratio, time to expiry and 

volatility. The target data set consisted of the residual between the modified Black-Scholes 

model price the option price. The data used in this research is the intra-day option from 

Sydney Future Exchange for the period of January 1993 to December 1993. The first half of 

the data is used for training and the rest was used for out-of-sample testing. The neural 
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network selected had fifteen hidden units and it was optimised using back-propagation with 

20% validation set used for network selection. Confidence intervals were derived using 

bootstrap methods which are used in trading strategies that allow only those trades outside 

the estimated range of spurious model fits to be executed. The hybrid model seems to 

improve option pricing; however, there is still pricing bias which was addressed by using 

bootstrap methods. 

 

(Hanke 1999) conducted an empirical study on neural networks methods for pricing options. 

The neural networks were designed to have moneyness, volatility and time to expiry as 

inputs; option price to strike ratio is used as the target. Another neural network was 

constructed which utilises the hybrid approach used in (Lajbcygier, Flitman et al. 1997). This 

method replaces the target value of option price divided by strike with difference of the 

option market value with the BSOPM value divided by the strike. The data used in this study 

are DAX call options for the period April 1994 to Feb 1995. The data was divided into 120 

days for training, 20 days for validation and 50 days for testing. To select the optimal 

structure, first the neural network is selected to have two hidden units then the number of 

hidden units is increased by two until the number of hidden units reached ten hidden units. 

Results show the standard method is inferior to the BSOPM, whereas the hybrid approach 

shows superior performance to that of the BSOPM. The results are listed as total averages 

which are not broken down by the option moneyness. So it is not clear how the hybrid 

approach fares across moneyness and maturities in terms of the BSOPM. 

 

In (Schittenkopf and Dorffner 2001), MDN is used to extract the risk-neutral density from 

option prices. The concept behind this approach is to utilise the MDN capabilities to model 

the shape of the risk-neutral density as a function of the maturity of the option. The FTSE 

100 European options data for the period of 4
th

/January/1993 to 22end/October/1997 was 

used. The data was first checked for boundary conditions and recording errors. Also, 

contracts with maturity less than two weeks, with price below 5 points, moneyness outside 

the rage of [-0.1,0.1], and annualized volatility above 50% or below 5% are removed. The 

final data set contained 65549 option contracts. The input consisted of the time to expiry of 

the option and the output was the actual option price. The MDN was trained using a sliding 

window of 10 days, and minimising the mean squared pricing error using the conjugate 

gradient descent method. The MDN was benchmarked against the BSOPM and the Black-

Scholes adjusted for skewness and kurtosis. The pricing performance was evaluated using 
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the pricing error, and the absolute pricing error. The results show the overall pricing 

performance of the Black-Scholes is comparable to the MDN, for at-the-money and maturity 

in the range of short to medium horizons. However, the MDN shows superior performance 

for long maturities across all moneyness categories. This is also valid for out-of-the-money 

and in-the-money options, which is due to the distributional generalisation of the MDN. In 

terms of hedging performance, the MDN was worse-off compared to the other models. This 

could be due to having the option maturity as the only input, which potentially can prevent 

the MDN from modelling key dependencies between the maturity and moneyness with the 

option price. Also, the use of puts and calls in the same training set without an indicator in 

the input set could skew the results. 

 

An interesting method adopted by (Hanke 1997) utilises the neural networks to approximate 

option prices and the option Greeks. This is particularly important in the case where no 

analytical solution exists. The idea behind this approach is to train the neural network on a 

carefully selected artificial data set that covers a wider range compared to the real market 

data. The data is generated by using a range for each variable; for instance, the volatilities 

for certain markets fluctuate between 0.1 and 0.4. This will limit the training data set to an 

acceptable and valid range. The output or target pattern is calculated analytically using 

GOPM. The neural network architecture consisted of seven input variables, 50 hidden units 

and one output unit. The layers were fully interconnected, and the logistic functions were 

used as the activation functions for hidden and output units. The optimization of the neural 

network was achieved by minimizing the sum of squared difference between network 

output and target. The out-of-sample performance of the neural network seems to have 

higher deviation for in-the-money options, since the majority of traded options fall into this 

category which is an undesirable bias. To overcome this issue, a hybrid approach is used 

similar to the approach of (Lajbcygier, Flitman et al. 1997), where new patterns are used 

which consist of the difference between the simulated prices and the analytically 

computable price close to them as the new output pattern. For example, the difference 

between simulated price and the standard BSOPM price is used to train the neural network. 

The aim is to allow the neural network to learn the relationship between the input space and 

the difference between GOPM and the Black-Scholes model. The out-of-sample results show 

a higher accuracy and reduce the undesirable bias. However, the difference between the 

delta formulas and the Black-Scholes deltas lead to a higher RMES. This could be due to the 

lack of representation for the delta in some particular ranges which causes the neural 
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network to misrepresent those categories. This issue was not resolved and is left for further 

research. This method is an attempt to overcome the simulation and computation issues of 

models that do not have a closed form solution such as the GOPM. However, it is not clear if 

this method holds under extreme market conditions, and whether it can produce consistent 

results across different time series for different periods. 

  

 In (Yao, Li et al. 2000),  experiments are carried out using neural networks with the aim of 

overcoming the drawbacks of the BSOPM. The input data set included the stock price, strike 

price and time to maturity. The volatility and interest rate are omitted from the data set 

since they are assumed to remain constant over the life of the option. The neural network is 

trained using the option price as the target. The data set used is the Nikkei 255 stock index 

options traded on the Singapore International monetary exchange. The data sample ranges 

from 4 January 1995 to 29 December 1995. The data set is split using 70%, 20% and 10% as 

the training, validation and testing data sets accordingly. The back-propagation neural 

network consisted of one hidden layer with sigmoid hyperbolic tangent for the activation 

functions. The neural network was optimised using the normalised mean error squared as 

the loss function. The number of hidden units was selected based on the number of weights 

that produces the lowest NMES. The experiments included the use of different neural 

networks with different in-sample data sets. The training set was applied in many forms 

including: sorting the data according to trading date, sorting the set according to the time to 

maturity, randomly selecting data and partitioning the data according to the moneyness.  

The initial results favour the data to be sorted according to the trading date as this allows 

the neural network to capture the volatility dynamics even when it is not included as an 

input. Also, the results show pricing improvements when the data is partitioned by 

moneyness and a different neural network is used for each data set. The neural network 

pricing performance is superior to that of the Black-Scholes for in-the-money and out-of-the-

money; however, it does worse for at-the-money options.  

  

(Amilon 2003) applies neural networks to derive the bid and ask prices rather than assuming 

the midpoint or the last traded price. The neural networks’ pricing and hedging 

performances are compared to that of the BSOPM using historical volatility and implied 

volatility estimates. The data used in this study are the daily closing quotes of the Swedish 

OMX index and daily closing bid and ask prices of European OMX index call options ranging 

from June 1997 to March 1998 and June 1998 to March 1999. The reason for this split is to 
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avoid adjustments for the index dividends. The MLP networks with a different number of 

hidden units are trained on the first four months, and then validated on the following two 

months. The neural network with the lowest errors is selected and evaluated on the 

following month. The process is then repeated by using the first five months for the training 

data set. Twenty different neural networks were trained using 10,12,14 hidden units for 

each for the eight training sets. The results show the neural network pricing that is derived 

from the option data has superior performance compared to the other models. In terms of 

hedging, the neural network trained on the asset price time series is superior to the other 

models. The results do not report the best performing neural network for each training set. 

In this research, the neural network that best fits a particular data set is used. Hence, the 

performance of the neural network is very much dependent on the neural network applied 

for that section of the time series. However, the ideal model should be able to categorise 

data across different time periods. One cannot conclude from this research that the neural 

network is superior to the BSOPM since different neural network models are used for 

different time periods.  

 

(Bennell and Sutcliffe 2004) compare the pricing performance of the BSOPM relative to 

neural networks for the FTSE 100 European call options traded on LIFE for the period ranging 

from January 1998 to March 1999. The data set is split into two sets according to the options 

moneyness (in-the-money and out-of-the-money); for each set, one third was used for 

validation. Different neural networks were trained on each data set which involved 

searching for the right combination of inputs, hidden units and outputs. Each of the neural 

networks was trained 100 times and the best performing network was selected. This is to 

reduce the dependence on the initial network weights values. The models were 

benchmarked using correlation (R
2
), mean deviation, mean absolute deviation, mean 

proportionate deviation and mean squared deviation. The results show that the 

homogeneity hint greatly improves the pricing performance of the neural networks 

compared to using the stock price and strike separately in the input space. Also, training 

different neural networks on each moneyness category greatly improves the performance of 

the neural network. For out-of-the-money options, the neural network is superior to the 

BSOPM. For in-the-money options, the BSOPM model outperforms the neural network 

where the neural network severely misprices long time to maturity in-the-money options.  
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(Meissner and Kawano 2001) constructs different neural networks to price options by using 

a consisted volatility input. The volatility is derived through the GARCH model which is used 

an input to the neural network. Four types of neural networks are compared to the BSOPM 

based on the pricing performance. The models were tested on ten technology stocks. The 

data set was partitioned into training, validation and testing portioned at 2:1:1 respectively. 

The four neural network models used are MLP, RBF, Generalised regression networks 

(GRNN) and linear network. The inputs consisted of moneyness, time to maturity, risk free 

rate and the volatility derived from the GARCH model. The number of hidden units and 

layers were optimised for each data set. The results show that the MLP is superior to all 

models on all stocks; also, all neural network models outperform the Black-Scholes on all 

measurement criteria for each stock. However, the GRNN was superior when all stocks data 

were combined. The analysis displayed only the average performance of the models; no 

further analysis was done on option pricing according to maturity and moneyness. 

 

(Samur and Temur 2009) apply neural networks for option pricing on European and 

American options. The training data consisted of 134 of S&P 100 European and American 

Index put and call options. The time period seems fragmented where different days were 

used to accumulate the data set. Three MLP neural networks were used, the first neural 

networks inputs consisted of option type (American\European), strike price, spot price, 

maturity and interest rate. The second neural network included the variance in the input 

were the variance was calculated as the monthly volatility, and the third neural network 

variance was the annual volatility. The volatility inputs did not to improve the pricing 

accuracy. This is surprising since a lot of other research has established the importance of 

the volatility parameter. The only issue arising from this is that the in-sample data set is not 

continuous in time, which seems problematic especially when using put and call for 

European and American options in the same data set. The other issue is that the use of 134 

data points to train the neural network is insufficient given the large number of variables in 

the neural network. 

 

It is interesting to see that the majority of the research evaluates the neural network option 

pricing accuracy in relation to the BSOPM. However, the BSOPM’s weaknesses and 

drawbacks are well documented in the literature. Few if any papers have attempted to 

evaluate the pricing capabilities of more advanced option pricing models. The reason for this 

is the pricing capabilities of the neural networks are inferior to the other advanced models. 
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In this thesis, we elaborate on this behaviour and provide a new method that overcomes this 

drawback.  
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CCHHAAPPTTEERR  33  --    PPrroobblleemm  DDeeffiinniittiioonn  

In this chapter, the problem addressed in this thesis is defined in a clear and concise 

manner.  We start by defining the terms and concepts used and how they are used 

throughout the thesis. Then we discuss the methodology applied to solving the problem as 

stated in the problem definition. 

3.1 Terms and concept used  

This research covers four main areas of market risk which are: time series forecasting, 

Option pricing, hedging and Value-at-Risk. The focus of this thesis is on the application of 

neural networks in market risk. That is how neural networks can be applied to market risk to 

overcome the limitation of existing financial models. There are many terms and definitions 

that have different interpretations, so we provide a definition and clarify the usage of these 

terms in the context of this thesis.  

 

3.1.1 Financial time series 

 
In this research, time series forecasting is referred to as ‘financial time series’. The financial 

time series applied in this research include stock prices, returns, option prices etc.  

Forecasting financial time series is an integral part of market risk, where investors need to 

understand the future movements in order to make informed decisions. Forecasting 

financial time series is complicated by the element of uncertainty in the financial theory and 

empirical time series. Therefore, statistical theory is essential in developing financial models 

and plays an integral role in financial time series forecasting.  

3.1.1.1 Underlying asset 

 

Underlying asset specifically refers to the stock or index traded on a stock exchange. 

3.1.1.2 Returns  

 
The statistical properties of the return series are more aligned to measure potential loss and 

profits of a portfolio which makes them more attractive than asset prices in financial risk 

management. Also, the returns series is a complete and scale-free summary of the investor’s 

investment opportunities.   

 

‘Returns’ in this thesis are defined as follows: 
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Let Pt be the price of the underlying asset at time t, assuming asset pays no dividends the 

return is can be calculated as the continuous compounded return rt , 
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Modelling the return series is simplified using Wold’s decomposition. This return series 

consists of deterministic and non-deterministic components and is represented as follows: 
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where μt  is the deterministic part of the return series and is normally modelled using ARIMA 

models. The non-deterministic component εt is the uncorrelated sequence residuals which is 

known as the innovation of the process rt, b is the infinite vector of moving average weights 

or coefficients, which is absolutely summable accordingly, i.e. ∞<∑
∞

=1j
jb . 

3.1.1.3 Return Stylized Facts  

 
The return series of an individual stock display patterns over time. These patterns and 

behaviours are also common across different financial time series. These common patterns 

and behaviours are referred to as ‘return stylized facts’. 

3.1.1.4 Conditional and Unconditional mean  

 
The unconditional mean of the return series rt is the weighted average for the entire return 

series.  

[ ] CrE t =  
(3.3) 

 

where C is a constant. 

 

The unconditional mean can is defined as  
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where 1−tφ is the information set such that { },..., 211 −−− = ttt εεφ . 

3.1.1.5 De-meaned return series 

 
A de-meaned return series is referred to as a ‘return series of mean zero’ where the 

condition mean has been subtracted from the series.    
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3.1.1.6 Conditional and Unconditional Variance  

The conditional variance of a return series rt is calculated as follows: 

[ ] ∑
∞

=

=
0

22

j

it brVar εσ  
(3.5) 

 

The conditional variance of return series rt is given by:  

[ ]( ) 2

ε1t

2

1ttt σ]||rEr[ =− −− φφE  
(3.6) 

 

3.1.1.7 Volatility  

 
The volatility of the return series is not directly observable in the market; therefore, the 

volatility measures have to be approximated. To understand how the returns series will 

behave in future, it is essential to devise a model that can filter the volatility measure using 

the current market information. The common practice is to convert the asset price series to 

return values which are more suitable for this task. Then statistical models can be 

formulated to forecast the returns series which involve modelling the conditional mean and 

variance based on the historical return series. The models will be able to forecast future 

volatility measures, where the forecast is determined by the information available at the 

time and is very much dependent on the historical data. In a general sense, volatility is 

calculated as the variance of the return series which measures the dispersion of the density 

function around the mean. The variance measure on its own is a distribution-free 

parameter; only when it is associated with a standard distribution can the probability density 

and cumulative density be analytically derived (Poon 2005).  Calculating the volatility of 

return series using the variance equation 3.5 would result in a constant volatility measure 

which is known as the ‘unconditional volatility’. This measure is commonly used in finance 

models due to its simplicity. However, it not suitable for volatility forecasting as it is not a 

true representation of the observed volatility in the return series. The volatility 

approximation process is further complicated by the return stylised facts. This means that 

even if we attempt to use the conditional variance as a proxy for the observed volatility, this 

will still not cater for the some of the key stylised facts observed in the return. Therefore, we 

need to define volatility to maintain consistency in our approach. 

 

Definition  

 

Volatility is the conditional variance of the de-meaned return series such that the evolution of 

the volatility through time is governed by a defined stochastic process and is associated with 

a well defined probability distribution. 
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3.1.1.8 Conditional Mean Forecasting 

 

Conditional mean forecasting is the process of determining the future expectation of a 

return series. The forecasted return values are dependent on the information present at 

time t. See Appendix A, section A.4. 

 

3.1.1.9 Conditional Volatility Forecasting  

 

In this thesis, conditional volatility forecasting is referred to as ‘volatility forecasting’ unless 

otherwise specified. Due to the wide variations of variance specification for volatility 

forecasting, the volatility forecasting must be defined in terms of the volatility model used 

throughout this thesis, such as GARCH.  

 

3.1.2 Options 

 
An option is a contract between two parties, the buyer and seller.  The buyer purchases from 

the seller the right but not the obligation to buy or sell the underlying asset at a fixed price 

in a given time frame.  The buyer has to pay the seller a fee (a premium) for the purchase of 

the option.   

3.1.2.1 Strike price  

 
Strike price of an option is the fixed price that the underlying asset would be delivered when 

the option is exercised. 

3.1.2.2 Call Option 

 
A call option gives the buyer the right but not the obligation to buy the underlying asset at 

the strike price in a set time frame. The pay-off function of the call is given by  

( )0,max SKPayoffCall −=  

Where K is the strike price and S is the price of the underlying asset. 

3.1.2.3 Put Option 

 

A put option gives the buyer the right but not the obligation to sell the underlying asset at 

the strike price in a set time frame. 

( )SKPayoffPut −= ,0max  

Where K is the strike price and S is the price of the underlying asset. 
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3.1.2.4 European Options 

European style option can be exercised only at the expiry date of the option. 

3.1.2.5 Moneyness 

The options’ moneyness is determined by the value of the asset relative to the strike price of 

the option. So, if the an option is exercised and an immediate positive cash flow is realised, 

that is the stock price is greater than the strike price (for a call), then the option is said to be 

in-the-money. If the strike price of the option is equivalent to the stock price then zero cash 

flow will be realised; this is referred to as at-the-money option. If the strike price is greater 

than the stock price then if the option is exercised, a negative cash flow will be realised. This 

option is referred to as out-of-the-money option. 

3.1.2.6 Risk free rate 

The risk free rate is the rate of return when having zero risk. Typically, the government 

treasury bills are used as a proxy for the risk free rate.   

3.1.2.7 Option pricing model 

The option pricing model produces an analytical option price which is referred to as the ‘fair 

option price’. This analytical option value is then compared with the market price of the 

option to determine if the option is overpriced or underpriced. The option pricing model 

accepts different inputs and in most instances makes some assumptions to allow for the 

derivation of the model. These assumptions typically include the following: 

• Instruments can bought and sold freely in the market. 

• Information is readily available to all participants; i.e. the market is efficient. 

• There exists a risk-free bond in the market. 

• There is no arbitrage.  

• The market is complete – agents can exchange goods directly or indirectly with each 

other. 

3.1.2.8 Implied volatility 

The implied volatility of an option is the volatility value of the underlying asset that is 

implied by the option price based on an option pricing model. That is, the volatility value 

when plugged into an option pricing model would yield an analytical value identical to the 

market option price. In this research, the implied volatility parameter is defined in terms of 
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the BSOPM, where the implied volatility, ( )TKBS

t ,σ  is a function of K (Strike) and T (time to 

maturity).  

( )( ) ( )TKCTKKSC t

BS

ttBS ,,,,, *=στ  3.7 

where ( ) 0, >TKBS

tσ   

3.1.2.9 Hedging 

Hedging refers to the use of options to offset or mitigate risk that is attributed to 

fluctuations of prices. Typically, this is achieved by calculating the sensitivities of an option 

according to a certain parameter using an option pricing model and purchasing the 

equivalent amount in the underlying asset or placing the equivalent amount in the bank.  

3.1.2.10 Delta hedging 

Delta hedging specifically refers to hedging the risk of the movements in the underlying 

asset. This is accomplished by calculating the partial derivative of the option price relative to 

the underlying asset:  

Stock

Option
Delta

∂
∂

=  

3.1.2.11 Value-at-Risk (VaR) 

In simple terms, the VaR measure makes the following statement: for the N days we are X% 

certain that we would not lose more than $M dollars. This summarises the total portfolio 

risk exposure to a single number that can be easily understood by risk managers. The 

calculation of the VaR measure is based on the profit and loss distribution assumption. This 

is typically assumed to be a normal distribution for ease of calculation.  

 

Definition 

Assuming normality in the return series with confidence interval α, return volatility  σ , initial 

portfolio value W0  and time horizon N days,   

NWVaR 0ασα =  3.8 

 

 

3.2 Problem definition 

The problem that will be addressed in this thesis is the current lack of a neural networks 

forecasting model that is suitable for:  

• Volatility forecasting 



 

 85

• Option pricing 

• Delta hedging 

In this thesis, we propose to develop methods that effectively provide forecasting of these 

three market elements. 

3.2.1 Volatility forecasting 

We will carry out forecasting of conditional volatility of different return series. Since the 

focus is on the conditional volatility, the return series used will be de-meaned which will 

simplify the forecasting problem. The condition volatility forecasting problem is achieved 

through time series modelling techniques.  
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(3.9) 

1−Θt
 is the information available at t-1. In this thesis, the conditional volatility forecast can 

be specified by an exact function or stochastic equation that dictates and governs the 

evolution of the volatility process
2

tσ .  

3.2.2 Option pricing  

In this thesis, we will price options using different option pricing models. The accuracy of the 

models is very much dependent on the model assumptions and the quality of the data used. 

The option pricing formula produces a fair option pricing according to the following, 

( )2,,,, tt TrKSO σΡ=  (3.10) 

where Ot is the analytical price of the option pricing function P. The pricing function P 

typically requires input parameters such as underlying asset price (S), strike price of the 

option (K), risk free rate (r), time to maturity (T), and volatility of the underlying asset (
2

tσ ). 

The classical option pricing models such as BSOPM simplify the input parameters by 

assuming no change in the input variables over the life of the option; whereas, more 

advanced stochastic models such as the GOPM allow the volatility to change according to a 

GARCH specification.  The accuracy of the pricing model is tested using option historical data 

to back-test all models and benchmark them accordingly. 

3.2.3 Delta Hedging 

If the correct option pricing model is specified, it should be able to correctly predict the 

change in the underlying asset. The delta hedge ratio of the option pricing model is 

calculated as the partial derivative of the analytical option price as follows: 
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By using the delta of the option pricing model, a portfolio can be replicated periodically to 

offset any risk associated with the movements in the underlying asset. Therefore, delta 

hedging can be further used to measure the completeness of the option pricing model. The 

models are compared and evaluated based on the absolute hedging error. 

3.3 Choice of Methodology 

Typically, financial models can be grouped into three main categories (Michel Crouhy 2001). 

The first type is the structural models, which adopt assumptions and simplifications to the 

underlying processes and market equilibrium which allows equilibrium prices to be derived 

based on the relationships between underlying asset and their options. For instance, the 

BSOPM uses the risk-neutral pricing that allows the correct option price to be derived based 

on the stock value. The second model type is statistic-based models. This type of model 

makes fewer assumptions about the structure of the market and it depends on the 

relationship present in the empirical data. Statistical models are used to describe the 

financial data to give insight into their dynamic behaviour and to observe patterns that can 

be used for out-of-sample forecasting such as the GARCH model. The third type is a 

combination of structure and statistical models, which uses the best of both worlds, thereby 

overcoming some of the other models’ limitations and assumptions. The GOPM is of this 

type since it uses the LRNVR in combination with the GARCH model. 

 

The universal approximation properties (Hornik, Stinchcombe et al. 1989) of neural networks 

have contributed to its wide application in different areas.  This property allows the neural 

network to approximate any function of the data allowing the data to drive the model, and 

eliminating any assumptions about the underlying data. Neural networks are non-linear in 

nature (Rumelhart, McClelland et al. 1986),  which means that they are capable of capturing  

the non-linear properties in the data. By using more than one hidden layer, the neural 

network can partition the sample space and apply different functional forms in each space 

(Wasserman 1989). This allows the neural network to act as a piece-wise, non-linear model. 

Neural networks learn by examples, which allow them to capture and infer key aspects and 

subtle relationships within the data. This generalisation capability allows values to be 

inferred outside the training set which is particularly useful in the market risk domain. 

Neural networks are more flexible and adaptable than are the traditional statistical models 
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which have limitations in terms of estimating the relationship between historical and future 

values of a time series, due to the complexities that exist in real data sets. Also, neural 

networks can easily adopt new changes in the data (Widrow and Stearns 1985), whereas 

statistical models would require the complete model to be re-estimated. Neural networks 

are also adaptable and can be designed to suit any problem; furthermore, extra inputs can 

be added as required. In this thesis, we utilise these attributes of the neural networks to 

address and improve on the limitations found in the literature as highlighted and discussed 

in Chapter 2.  

3.4 Research Method 

There are two common research methodologies which are social science research and 

science and engineering-based research which can be adopted in this thesis. Social science 

research can be either quantitative or qualitative research. It is often carried out through 

survey or interview processes. Quantitative research involves extensive data gathering 

usually using methods such as survey, and statistical analysis of the gathered data in order to 

prove or disprove various hypotheses that have been formulated. Qualitative research 

frequently involves in-depth structured or semi-structured interviews that allow one to 

pursue particular issues of interest that may arise during the interview. It does not normally 

involve a large sample of data and the information gathered may not be in a form that 

readily allows statistical analysis. This kind of research can indicate the extent to which the 

methodology is or is not accepted and sometimes may be able to give the reason for this 

(Loether 1999),(Burstein and Gregor 1999),(Nunamaker Jr, Chen et al. 1991). However, 

unlike engineering-based research, this type of research does not explain what a 

methodology should be and how to produce a new methodology for problem solving. This 

research only tests or evaluates a method that has already been produced from science and 

engineering research.  

 

On the other hand, science and engineering-based research is concerned with verifying 

theoretical predictions or forecast. (Galliers 1992) states that in the engineering field, the 

spirit of ‘making something work’ is vital and has three levels: conceptual level, perceptual 

level and the practical level, which are explained below: 

 

• Conceptual level (level one): the creation of new ideas and concepts through analysis. 

• Perceptual level (level two): formulating a new method and approach by designing and 

building the tools or system or environment via implementation. 
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• Practical level (level three): implementing testing and validation via experimentation using 

real-world examples. 

 

Science and engineering research can lead to new or improved techniques, architectures, 

methodologies, or a set of new concepts which all together form a new theoretical 

framework. Most often, it not only addresses the issues at hand, but also proposes 

solutions. The objective of this research is to develop a novel framework that applies neural 

networks technologies to enhance or overcome the limitations of econometric models. To 

achieve the objective, a framework will be developed which utilises neural networks and 

proposes solution to the defined objectives. Hence, this research clearly falls into the 

domain of science and engineering research. 
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CCHHAAPPTTEERR  44  --    SSoolluuttiioonn  OOvveerrvviieeww    

In this chapter, we provide an overview of the solution to the problems addressed in this 

thesis. 

4.1 Volatility Forecasting  

 

The introduction of the ARCH models was a major breakthrough in volatility forecasting, 

where for the first time, key stylized facts of the return series can be captured in a time 

series model. This has contributed to vast interest in the ARCH models evidenced by the 

large body of literature available today. The ARCH model formulation was adequate for 

capturing key stylised facts like volatility clustering and persistence. However, other stylised 

facts such as leverage effects were not catered for. For this reason, many variations of the 

ARCH model have been developed with the aim of capturing different attributes of the 

returns series. The main drawback of all volatility models is the assumption of normality in 

the return series. While this assumption is made to simplify the formulation of the model, at 

the same time it significantly undermines the forecasting performance since the distribution 

of the return time series is known to have fat tails. This assumption has been relaxed by 

allowing the GARCH process to follow a different distribution such as t-student distribution. 

The t-student has fatter tails and is much suitable for the return series; however, this is still 

forcing the returns to conform to a specific distribution. 

 

The drawbacks and limitations of the volatility models have motivated researchers to create 

alternative methods to overcome these weaknesses. Such new methods include the 

adoption of neural networks in volatility forecasting. Just like the ARCH models, the neural 

networks have endured varying success in the literature on volatility forecasting. The 

majority of neural network research applies a hybrid approach to volatility forecasting where 

the neural network is combined with time series models to produce a volatility forecast. This 

approach seems to have more success than the method of using neural networks to forecast 

conditional volatility. The limited success of neural networks in forecasting conditional 

volatility can be explained by the inability of the neural network to capture the 

heteroscedastic property of the return series as discussed in section 2.7.3. This explains why 

the majority of the research has adopted a hybrid approach by combining neural networks 

and other time series models since a stand-alone neural network would be ineffective. The 

MDN formulation overcomes the limitation of the neural networks by allowing the variance 
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to be functions of the input value (see section 2.7.5). By changing the variance over the 

entire training population, this allows the MDN to model time varying variances which is 

ideal for volatility forecasting.  

 

Even though the MDN is suitable for modelling heteroscedastic data, results presented in 

the literature are still inconsistent. Also, the MDN forecasting performance seems to be on 

par with that of the GARCH model. This is somewhat surprising given the features of the 

MDN and its modelling capabilities. The MDN has a high number of variables that 

complicates the model building exercise. In the literature, the number of hidden units is 

chosen at random. The choice of the number of hidden units can greatly impact on the 

outcome of the model. Increasing the number of hidden units also increases the chance of 

over-fitting of the data; at the same time, the use of fewer hidden units would lead to 

under-fitting and potentially cause wrong forecasts. Since the MDN can approximate any 

distribution as the number of Gaussians approaches infinity, it is desirable to have a large 

number of Gaussians. However, as the number of Gaussians increases, the number of 

weights in the output layer also increases by a factor of three. This increases the number of 

weights in the network which can also result in over-fitting of the data.  In the literature, the 

common approach is to choose the number of hidden units at random without any 

verification, which will certainly have an impact on the model’s stability and performance. 

 

Model optimising involves searching for the best fit for the model variables that produces 

the lowest error for a given training data set. To produce stable and consistent results, the 

training data set must be chosen appropriately. In Chapter 2, the literature review reveals 

the length of the training set chosen in an ad-hoc manner. This is a common oversight where 

in most cases the in-sample is chosen to be 1000 observations without any validation. The 

impact of this oversight can be explained as follows:  

If a model is optimised using observations from t1 to t2 (see figure 4.2), the model 

parameters will reflect the information and behaviours available between periods t1 and t2. 

Forecasting values in the period between t2 and t3 can be achieved with a certain degree of 

accuracy. Since there is no break or fundamental shifts in the data generating process. 

However, if the model is optimised using data from t1 to t3, accurately forecasting values 

between period t3 and t4 would be very difficult to achieve. The in-sample data set used to 

optimise the model did not include such structure breaks or turning points; therefore, the 

model would be unable to predict values in that region. This illustrates the importance of 
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having a meaningful training data set that is a true representation of the time series. 

Another issue in choosing the training data set is the number of observations to be used in 

optimising the model. That is, by optimising the model using a large in-sample data set, this 

can lead to over-fitting, and using a small data set can lead to under fitting. In both cases, 

the model forecasting performance is affected. These critical issues have not been dealt with 

in the ARCH literature which can potentially explain the discrepancies of the reported model 

results. 

 

 

Figure 4.1: Stock price time series 

 

 

The abovementioned oversights in the literature have contributed to the mixed results that 

have been reported. To demonstrate the effect of these oversights, we conduct a thorough 

experiment to address the following questions: 

 

• How does the number of observations in the training data set impact on the GARCH and 

MDN models’ forecasting performance? 

• How do the number of hidden units and number of Gaussians impacts the forecasting 

performance of the MDN? 

• How does the number of Gaussians in the MDN impact on the forecasting performance 

of the MDN? 

• How do the forecasting models performance vary across different time series 

• Can MDN outperform the GARCH model? 
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To address these concerns, we select the GARCH and EGARCH models to be studied in this 

thesis. Selecting both models allows us to benchmark the GARCH model against the EGARCH 

to demonstrate the effect of choosing one volatility model against the other. We also choose 

MDN as it has been demonstrated in the literature to be the most suitable neural network 

model for forecasting volatility. The experiment includes testing all models on four different 

time series. Each model will be optimised using 750 and 1000 observations. For the MDN 

models, we use different combinations for the hidden units and number of Gaussians.  The 

hidden units range from 1 to 5 and Gaussian from 2 to 3 Gaussians. The inputs to the MDN 

are designed to mimic the GARCH model which included the previous volatility value and 

return.  The model’s evaluation is based on 1, 10 and 30 day forecasts. The model’s 

performances are benchmarked according to three main criteria: loss function, normalised 

mean absolute error, and hit rate. This approach will demonstrate the impact of the 

common oversights in literature on the forecasting performance of the model. This 

approach will also demonstrate and explain the mixed results reported by many authors. 

Given the capabilities and features of MDN as discussed in Chapter 2, section 2.7.5, the MDN 

should have superior forecasting performance to other time series models given the optimal 

model is selected in line with the concerns highlighted in this section. By addressing these 

concerns, we make several contributions by demonstrating:  

 

• the effect of using the wrong number of observations in the training data set on the out-

of-sample forecasting capabilities of the GARCH and MDN models; 

• the forecast performance when using the same model across different time series; 

• how the number of hidden units impacts on the forecast performance of the MDN 

model; 

• how the number of Gaussians impacts on the performance of the MDN; 

• the superiority of the MDN over GARCH models subject to selecting the correct model 

specification. 

4.2 Option Pricing 

 

The BSOPM was the first model to analytically calculate a fair option price. This model 

enjoyed wide popularity and was adopted by practitioners due to its simplicity and its ability 

to produce an option value instantaneously. The model derivation was based on many 
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unrealistic assumptions. It was soon realized that these assumptions had adverse effects on 

the model’s pricing capabilities which is apparent in the model’s pricing biases. Many 

variations of this model emerged as improvements on the BSOPM by addressing some of the 

model’s assumptions. The GOPM has gained popularity as it allows the volatility process to 

follow a GARCH process, thereby overcoming the constant volatility assumption. The 

drawback to the GOPM is the absence of a closed form solution, which means the GOPM 

parameters are optimised using option data using the Monte Carlo simulation. This is a 

computationally intensive process which also limits it application in real-life trades. 

 

The constant volatility assumption of the BSOPM has captured the attention of researchers 

and practitioners alike. This is due to the nature of volatility not being directly observable in 

the market and is known to change over time. Also, when the implied volatility is plotted 

against strike prices, it takes on a U-shape. This gives a forward looking view derived from 

the option prices, which indicates how the market is anticipating the volatility movements. 

This behaviour shows valuable information that can be derived from the implied volatility. 

Modelling option behaviour over time will be dependent on the model’s ability to capture 

the implied volatility process.  

 

Neural networks have been applied to the option pricing problem with the aim of 

overcoming some of the pricing biases of the BSOPM. The common approach adopted in 

research is to feed the neural network with similar inputs to the BSOPM, and use the market 

option price as the target value for training the neural network. Different variations of this 

method have been adopted to improve the pricing accuracy of the neural networks. 

However, all research thus far displays pricing improvements on the BSOPM. It is very 

interesting to see that no major work has been done to compare the pricing performance of 

the neural network to more advanced models such as the GOPM.  The reason for this is the 

pricing improvements of the neural networks over the BSOPM are less significant for the 

GOPM. This means that the neural networks’ performance does not stack up against the 

GOPM. For this reason, to date no work has been done to benchmark the neural network 

option pricing capabilities against more sophisticated option pricing models such as the 

GOPM. Neural networks are capable of superior option pricing performance if the correct 

neural network model is applied. This serves as our motivation to investigate the 

shortcomings of models presented in the literature and provide a neural network model to 

overcome these weaknesses.  
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The option pricing methods adopted for neural networks thus far has been to map some 

predefined inputs to the option price. The idea behind this method is to allow the neural 

network to mimic the BSOPM. Many variations of this method have been developed to 

improve the pricing accuracy. For instance, substantial pricing performance gains are 

achieved when the training data set is partitioned by moneyness and different neural 

networks are used for each of the training sets. However, the increase in pricing accuracy is 

still not sufficient to match that of the GOPM. This method suffers from major drawbacks 

that can impact on the performance of the neural network. Training the neural network on 

the option price is a cumbersome task. The option itself can suffer from many issues such as 

stale prices due to infrequent trading (Rubinstein 1985). Therefore, using the option price to 

guide the training of the neural network can be misleading as the neural network will 

attempt to map the inputs to an output that has poor correlation with the input. The BSOPM 

generates an option price using the inputs and there is no dependence on the option price. 

The neural network pricing accuracy in this case is very much dependent on the option price. 

In addition, the option price does not seem to be able to explain the underlying dynamics of 

the generating process. To overcome these issues, we deviate from the literature and search 

for a more effective approach to training the neural networks.  

 

Neural networks are known for their generalisation and approximation properties. So rather 

than learning the option price, we allow the neural network to learn the behaviour of the 

option price through time. The main variable that can explain this key behaviour is the 

implied volatility, since the implied volatility is a forward looking tool for market 

anticipation. By allowing the neural network to capture the implied volatility surface through 

time, the neural network will be able to forecast future movements of the implied volatility 

across different strikes which can then be converted to an option price. To demonstrate the 

effectiveness of this method, we evaluate four models: BSOPM, GOPM and two neural 

network models. The first neural network model is in line with the methods used in the 

literature. The data set is partitioned by moneyness and different neural networks are 

trained on each set. The second neural network model consists of our proposed approach. 

Each model will be trained on the FTSE 100 European options and the performance of each 

model will be evaluated according to the out of sample pricing performance. With this 

experiment, we make the following contribution: 
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• We introduce a new neural network option pricing method via learning implied 

volatility.  

• We demonstrate the effectiveness of our approach to that used in literature. 

• We demonstrate the option pricing improvements of our method relative to other 

neural network and other option pricing models.  

• This is the first study to compare neural network option pricing with GOPM. 

• We explain the weak neural network option pricing results presented in the literature. 

4.2.1 Delta Hedging  

 
If the option pricing model is correctly specified, it is capable of predicting changes in the 

underlying asset.  This is achieved by taking the partial derivative of the option price relative 

to the underlying asset. Delta hedging can be applied to verify the effectiveness and 

completeness of the model. In this research, we will further evaluate the option pricing 

models by carrying out delta hedging exercises for each of the models. The delta hedging 

process applied here involves replication of a portfolio of one call option and holding the 

delta amount in cash to earn the risk free rate. If the option pricing model is providing the 

correct delta value, which means it is able to correctly predict the changes in the underlying 

asset, then the hedging error should be minimal. Ideally, hedging should be done as 

frequently as possible. However, in reality this is not feasible due to the transaction costs 

associated with the execution of a trade. A generally high period of volatility will require the 

portfolio to be replicated more frequently which can offset any profits gained.  

 

In this research, we assume that there are no costs associated with the hedging and the 

portfolio is replicated as needed. The hedging exercise is conducted by pricing the option 

using the option pricing model. If the theoretical option price is greater than the market 

price, the option is bought and a delta amount in shares is sold.  The money gained from the 

sale of the shares is placed in the bank to earn the risk free rate. If the theoretical price is 

less than the market price of the option then it is sold, and the delta value of the underlying 

asset is bought, and the remaining cash is put in the bank to earn the risk free rate. The 

portfolio is evaluated on a daily basis and readjusted accordingly until the expiry of the 

option. At expiry, we calculate the delta hedging error over the life of the option, which will 

be used to evaluate each of the option pricing models. By carrying out this exercise, we 

make the following contributions: 
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• This is the first study to evaluate the hedging performance of neural networks against 

the performance of the GOPM. 

• We evaluate the hedging performance of our method compared with the GOPM and 

BSOPM. 

 

4.3 Validation 

Validation is necessary when developing financial models to ensure that the behaviour of 

the models in terms of the outcomes is accurate and concise when applied to real-life 

scenarios. In this thesis, validation is carried out for models and the models results. This is 

achieved by using historical market data to validate the models output against it. The 

validation measures applied are statistical measures which allow the models to be evaluated 

on their accuracy when performing the required task. For instance, the volatility forecast 

models are validated against the volatility measures calculated from the market data. The 

accuracy measure of the model is determined by statistical measures that determine how 

much they deviate from the real (or true) value. The models are also tested against each 

other by evaluating the accuracy of each model on the same data sample. This allows us to 

evaluate and compare how each of the models behaves under certain market conditions. 

This validation is important as it further verifies the completeness of each model and also 

allows us to rank each of the models based on performance and accuracy. 
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CCHHAAPPTTEERR  55  --    VVoollaattiilliittyy  FFoorreeccaassttiinngg    

 
In sections 2.2.10 and 2.8.1, the common volatility modelling oversights that exist in 

literature were highlighted. In section 4.1, we discussed the potential impact of these 

oversights on volatility forecasting and provided a methodology for testing the impact of 

these oversights on the forecasting accuracy of volatility models. In this chapter, we will 

carry out the experiments discussed in section 4.1 and we provide an analysis and discussion 

of the results. The results obtained in this chapter can be used as a guide for developing 

volatility forecasting solutions. The remainder of this chapter consists of the following. In 

section 5.1, the volatility models studied in this chapter are reviewed.  The forecast 

performance evaluation criteria are outlined in section 5.2. The data used in the 

experiments is analysed in section 5.3. In section 5.4, the experiment approach and 

methodology are explained. The experiment results are provided in section 5.5. The findings 

are discussed in section 5.6 and we conclude this chapter is section 5.7. 

5.1 Volatility models  

 

To address the concerns and issues that have been highlighted in sections 2.2.10 and 2.8.1, 

in this thesis, we choose the GARCH, EGARCH and MDN volatility models for investigation. 

The choice of these models has been discussed in section 4.1. The success of the GARCH 

model is apparent in the vast body of literature dedicated to this model. The GARCH and 

EGARCH models will allow us to illustrate the impact of the oversights discussed in section 

4.1 on the forecasting ability of each of these models, and it will allow us to relate and 

compare this study to the other work done in this field. Also, this will allow us to 

demonstrate the importance of selecting the correct volatility model that is most suitable 

for the return series under study. This is achieved by comparing the performance of the 

GARCH and EGARCH models across different return series. By doing so, we will demonstrate 

how the wrong model can lead to undesirable results. The performances of the GARCH and 

EGARCH models are compared and evaluated against the forecasting performance of the 

neural network. Our choice of neural network is MDN for its ability to model the 

heteroskedasticity as discussed in section 2.8.3. MDNs have the same properties as any 

other neural network; they are flexible and can be designed to suit the task at hand. In this 

research, we design the MDN model and extend it to become recurrent by feeding back the 

past period variance or volatility as an input to the model. This will allow the MDN to mimic 
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the GARCH model specification, thereby capturing the key stylized facts of the return series 

such as volatility clustering. 

 

Below we review the volatility models again to improve the readability of this chapter. 

5.1.1 GARCH model 

 

(Bollerslev 1986) extended the conditional variance function of the ARCH model (see section 

2.2.7) which he called Generalised ARCH or GARCH. The GARCH model suggests that the 

conditional variance can be specified as  
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The inequalities are imposed to ensure that the conditional variance is positive. A GARCH 

process with order p and q is denoted by GARCH (p,q).  By expressing equation 5.1 as  
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q
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p

pBBB βββ ++= ..)( 1  the variables are polynomials 

in a backshift operator B.  The GARCH model is considered as a generalisation of an ARCH(∞) 

process, since the conditional variance depends linearly on all previous squared residuals. 

5.1.2 EGARCH model 

The GARCH model is well suited for capturing key stylised facts in the return series such as 

volatility clustering. However, it is not able to capture the leverage effect in return series. 

This is due to the variance equation being a function of the magnitudes of the lagged 

residuals and not their signs. (Nelson 1991) rectified this issue by proposing the Exponential 

GARCH (EGARCH). The EGARCH model was formulated with the variance equation that 

depends on the sign and size of the lagged residual, allowing for the leverage asymmetric 

effects in the return series. 
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The presence of leverage effects can be tested by the hypothesis that γ > 0 and the impact is 

asymmetric if γ ≠ 0. 
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5.1.3  Mixture Density Networks (MDN) 

 

Mixture density networks were first proposed by (Bishop 1996), which have been proven to 

be a very useful instrument in estimating conditional densities with a non-constant variance. 

The MDN formulation caters for changing variance over the training data set which is a 

significant advantage over traditional neural networks. The proposed structure of the MDN 

consists of a single hidden layer with hyperbolic tan activation functions and three output 

units (priors, centres and widths) per Gaussian. Figure (5.1) illustrates an MDN with two 

Gaussians. 

 

The conditional density of the returns is given by: 
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where Gaussian parameters  µ,α and σ are estimated by  
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The softmax function )( ,

~

tis α  ensures that the priors are positive and add up to one. The 

exponential function in the variance equation ensures that the variance is always positive. 

The MDN receives a single input and produces three outputs per Gaussian. Typically, when 

training an MLP on a non-linear regression model, the mean squared error is minimised.  
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This method assumes a constant variance and mean, which is the case when modelling 

homoscedastic data. In the case of heteroscedastic models, a more general error function is 

needed to cater for the dynamic nature of the underlying data. 
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The MDN was trained by minimising the negative log likelihood function. By denoting the 

input data set ),..,( 1 Tx xxD = , and the target dataset ),..,( 1 Ty yyD = , the full likelihood 

function can be obtained by multiplying the likelihood of each sample. 
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Since the first product pj(xt) in equation (5.13) does not depend on the parameters of the 

MDN, the weights of the network must be optimised with respect to the second product 

only. Maximising the log likelihood function is the same as minimising the average negative 

log likelihood function l in (5.14), where l  is the error function used for training the MDN.  
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Let us consider an MDN with one Gaussian;  the likelihood function would be:  
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It can be seen that the likelihood function is a special case of the MSE in equation (5.10), 

given a single Gaussian and a constant variance. Hence, the log likelihood function can be 

used on the out-of-sample dataset for model evaluation. The MDN was trained by 

minimising the function l  with the scale conjugate descent algorithm. The log likelihood 

function l  will be referred to as the ‘loss function’, which in turn would be used to evaluate 

the model for in-sample and out-of-sample performance.   

5.1.3.1 Recurrent Mixture Density Network 

 

Given the recurrent nature of the GARCH model, the MDN is extended to include the lagged 

variance as an input parameter. As noted by (Schittenkopf, Dorner et al. 1998), if the input 

to the MDN is extended to include lagged values of the variance 
2

1−tδ , the networks become 

a generalisation of the GARCH model. With the generalisation capability of the MDN to 
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approximate the distribution of the underlying data, the MDN should yield better forecasts 

as observed by (Ormoneit and Neuneier 1996) and (Schittenkopf, Dorner et al. 1998). The 

recurrent mixture density network (rMDN) can approximate the distribution of the 

underlying data, thereby overcoming the assumption of normality in the GARCH Model. In 

(Cooperation, Schittenkopf et al. 1999), the rMDN was constructed so that the output of the 

Gaussians is designed with its own hidden units. In our approach, the rMDN is fully 

interconnected.  

 

To demonstrate the importance of selecting the right model for a given time series, different 

rMDN structures are investigated. The rMDN structures were varied by changing the hidden 

units and the number of Gaussians.  As shown in Figure 5.2, the conditional variance of the 

previous period (
2

1−tσ ) is fed back as an input at time t which is in line with the GARCH 

model. The calculation of the conditional mean and conditional variance are as follows: 
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Another attractive feature of the rMDN model is its ability to model time-dependent higher 

order moments, such as skewness and kurtosis, in contrast to a constant skewness and 

kurtosis by the GARCH models as demonstrated by (Schittenkopf, Dorffner et al. 2000). The 

skewness and conditional kurtosis can be calculated as follows:  
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Below  is an illustration of the RMDN with two hidden units and two Gaussians. 
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Figure 5.1  Recurrent MDN 

 

 

5.2 Issues investigated in this thesis  

 
In Chapter 2 (section 2.2.10 and 2.8.1), we provide a detailed review of the literature 

pertaining to volatility modelling using neural networks and MDNs in particular. The majority 

of the literature on neural networks for volatility forecasting, consists of hybrid techniques 

which involve combining neural networks with other time series models. This approach has 

been adopted due to the inability of the MLP to model heteroskedasticity in the return 

series. This weakness has been overcome by the MDN formulation which allows the variance 

to change in the training set. Hence, we focus our attention on MDNs since they are most 

suitable for forecasting volatility. There are a handful of papers that attempt to forecast 

volatility using MDNs. An analysis of these papers reveals an inconsistency of approach 

which is common across neural network forecasting literature. This is especially so when 

selecting the correct MDN structure and selecting the optimal training data set for 

optimizing the model. Table 5.1 contains the summary of all research conducted thus far. 

Table 5.1 also shows the inconsistencies in the approach when building and modelling the 

MDN. As discussed in section 4.1, selecting the number of hidden units without verification 

can lead to issues such as over-fitting of the training data set. Therefore, by having a large 

number of parameters in the model such as too many hidden units, this would cause the 

model to memorize the training data set. This will cause the model to have poor out-of-

sample forecasting performance due to the loss of generalisation capabilities of the model. 
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Paper Number of observation 

used in training 

Model structure 

(Nabney and Cheng 1997) 2505 • 1 to 5 Gaussians 

• Up to 30 hidden units 

• Non- recurrent MDN 

(Schittenkopf, Dorffner et 

al. 2000) 

900 • 2 Gaussians 

• 3 hidden units 

• recurrent 

(Miazhynskaia, Dorffner et 

al. 2003) 

500 • 1 to 2 Gaussian 

• recurrent 

Table 5.1 : Research papers, MDN in volatility forecasting 

 
This issue is more problematic in neural network models as there is no formal method for 

selecting the correct model based on the underlying data. In section 4.1, we also explain the 

issues of selecting the training data set in an ad-hoc manner and the adverse effect it has on 

the models forecasting performance. For instance, if a large data set is used to optimise the 

model, we run a risk of having old behaviours in the past that are no longer relevant.  So the 

model forecast could be inaccurate and misleading. Also, using less data would cause 

instability in the model’s performance caused by the model parameters not having the 

optimal values.  The impact of these common oversights and inconsistencies in modelling 

volatility is apparent in the results obtained in the research. This can be seen specifically  in 

(Miazhynskaia, Dorffner et al. 2003) as the results varied between models and across 

different time series.  In this thesis, we illustrate and study the impact of these oversights by 

showing the forecasting performance impact that they have on all models and demonstrate 

superior forecasting accuracy of the MDN subject to selecting the correct model structure. 

We will demonstrate the impact of the following issue on the model’s forecasting 

performance: 

• Selecting the wrong training data set  

• Selecting the wrong number of hidden units 

• Selecting the wrong number of Gaussian  

• Using the wrong time series model 
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The results of this experiment will be useful for model specification and design in accord 

with the return series. 

5.3 Forecast Evaluation 

 

Evaluating volatility forecasts is problematic because the volatility is a latent variable which 

is not directly observable. If the return innovation is given by tttr εσ= , where εt random 

variable drawn from  N(0,1) , and σ is the variance, then 

 222

1

2

1 ].[][ tttttt ErE σεσ == −−    (5.21) 

This seems to justify the use of the return squared innovation as a proxy for the true 

volatility. The use of return squared innovation as a proxy for the true volatility results in a 

very noisy measurement due to the idiosyncratic error term (ε2
t). (Andersen and Bollerslev 

1997) stated “Consequently, the poor predictive power of volatility models, when judged by 

standard forecast criteria using r
2

t as a measure for ex-post volatility, is an inevitable 

consequence of the inherent noise in the return generating process”. (Lopez 2001)  has also 

shown that this method tends to be 50% greater or smaller than the true volatility 75% of 

the time. (Andersen and Bollerslev 1997) have demonstrated that the high frequency return 

series provides a more accurate volatility measurement. Since our data consists of daily 

stock prices, rt
2
 is used as a proxy for the true volatility. 

 

The performance of the volatility models are measured by the loss function l ,normalised 

mean absolute error (NMAE) and hit rate(HR). 
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The NMAE measures the mean absolute error of the volatility model, compared to the true 

volatility 
2

tr , which should be smaller than the naive model 22

tt r=δ . This measure is the 
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least reliable of the three measuring criteria used. Since it compares the forecasted volatility 

with the returns squared, this has some major drawbacks as stated previously. The hit rate 

(HR) is the measure of frequency of the correctly predicted increase (or decrease) in 

volatility. An HR value of 0.5 indicates a forecast that is no better than a random predictor of 

increase (or decrease) in volatility. This measure is a better indicator than the NMAE since it 

does not rely on the magnitude of the squared return; only that the predicted direction is 

taken into account.  Since the loss function can be calculated for in-sample and out-of-

sample data sets, it can be used as an error measurement for in-sample and out-of-sample 

tests. The minimisation of the loss function for an MDN with one Gaussian is simply reduced 

to the MSE of the model. The calculation of this measure is independent of the return 

squared; therefore, it is considered to be the most accurate performance measure of the 

model. The model performance would be ranked according to the smallest value for the loss 

function with the heights HR and smallest NMAE respectively. 

5.4 Data Analysis 

 

The data used in this research consists of daily close prices for four companies listed on the 

Australian Stock Exchange (ASX). The companies used are BHP BLT(BHP), QANTAS 

(QAN),National Australia Bank (NAB) and ANZ Bank (ANZ). The in-sample data consists of 

two sets, 1000 and 750 returns series. The consecutive 100 returns are used for out-of-

sample testing. The daily close prices were transformed to daily returns through equation 

5.24. 
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Below is a sample of the ANZ return series. The existence of volatility clustering in return  
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Figure 5.2: Sample of daily returns series for ANZ 

We use two different lengths for the in-sample data. The sample length is chosen to be 1000 

and 750 returns.  Below are some statistics of the data sets. 
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 BHP QAN NAB ANZ 

Mean -0.0001 0.0008 0.0006 0.0008 

Standard Deviation  0.0124 0.0169 0.0116 0.0151 

Skew -1.3415 0.0726 -0.4693 -0.0054 

Kurtosis 14.6319 1.8136 2.1956 2.6929 

Table 5.2: Basic statistics for 1000 returns 

 BHP QAN NAB ANZ 

Mean 0.0000 0.0002 0.0001 0.0006 

Standard Deviation 0.0124 0.0161 0.0108 0.0142 

Skew -1.6521 -0.2625 -0.6760 -0.0118 

Kurtosis 18.9723 1.8277 2.1545 1.1603 

Table 5.3: Basic statistics for 750 returns 

The BHP return series has a kurtosis greater than three, which means the distribution is 

leptokurtic, whereas all other series are platykurtic. All return series have a long left tail, due 

to the skewness being less than zero, whereas QAN (for 1000 returns) have a long right tail. 

5.5 Experiment  

 

In this thesis, we benchmark the volatility forecast performance of the MDN, GARCH and 

EGARCH models.  The experiment is carried out in line with the methodology outlined in 

Chapter 4.  All models are optimised using 750 and 1000 returns. However, for the MDN we 

vary the hidden units from 1 to 5 and the number of Gaussians from 2 to 3. More Gaussians 

are desirable however, as discussed in Chapter 4, since by increasing the number of 

Gaussians, this would increase the number of hidden weights by a factor of three. This can 

lead to over-fitting of the data. The GARCH and EGARCH models were optimized by 

maximising the log likelihood with the BHHH (Berndt-Hall-Hall-Hausman) algorithm. 

However, the MDN is optimized by minimising the negative log likelihood with the scale 

conjugate descent algorithm (using the Netlab package with Matlab). 

 

Once the models have been optimized, we first conduct in-sample testing.  That is after 

training the model, 100 points from the in-sample data set is presented back to the model, 

this will allow us to check whether the model is able to reproduce the trained data. Failure 

to successfully reproduce data from the training set is an indication that the model has not 

been properly optimised. Once we have verified the models via in-sample testing, we 

perform out-of sample testing. This is carried out for 1, 10 and 30 day forecasts.  This will 
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allow us to verify how the models measure up in terms of short-, medium- and long-term 

forecasting.  

5.6 Results 

 
In this section, we provide the in-sample and out-of-sample results for all experiments. 

5.6.1 In-Sample Testing 

 

All GARCH models are stationary with high persistence (ω+β <1) for both 1000 and 750 in-

sample series except for BHP. The parameters for the EGARCH model show asymmetric and 

leverage effect (γ ≠ 0 and γ< 0) for all companies except for BHP, which exhibits only 

asymmetric effects (γ ≠ 0). Tables 5.3 to 5.6 show the parameter estimates for the GARCH 

and EGARCH models for 1000 and 750 returns. 

 

 ANZ NAB BHP QAN 

µµµµ    0.00113 0.00012 3.25000 0.00011 

αααα    0.00001 0.00001 0.00009 0.00001 

ββββ    0.079 -0.017 0.326 0.081 

ωωωω    0.875 0.972 0.153 0.897 

Table 5.4: GARCH parameters - 750 returns 

 

 ANZ NAB BHP QAN 

µµµµ    0.00129 0.00050 -0.00007 0.00055 

αααα    0.00004 0.00002 0.00010 0.00001 

ββββ    0.197 0.053 0.261 0.082 

ωωωω    0.648 0.825 0.085 0.896 

Table 5.5 : GARCH parameters - 1000 returns 

 

 ANZ NAB BHP QAN 

µµµµ    0.00036 0.00006 0.00002 -0.00007 

ωωωω    -0.60559 -3.65301 -2.59297 −0.33302 

αααα    0.138 -0.119 0.092 0.155 

γγγγ    -0.054 -0.034 0.017 -0.016 

ββββ    0.952 0.654 0.764 0.979 

Table 5.6: EGARCH parameters - 750 returns 

 

 ANZ NAB BHP QAN 

µµµµ    0.00092 0.00054 -0.00019 0.00003 

ωωωω    -1.86498 -1.56775 -2.59297 −0.98046 

αααα    0.303 0.117 0.092 0.229 

γγγγ    -0.116 -0.010 0.017 -0.026 

ββββ    0.840 0.860 0.764 0.919 

Table 5.7: EGARCH parameters - 1000 

returns 

 

 BHP Qan NAB ANZ 

 NMAE HR NMAE HR NMAE HR NMAE HR 

GARCH 0.922 72 0.843 74 0.921 70 0.919 74 

EGARCH 0.930 73 0.820 80 0.920 70 0.903 72 

LF GARCH 2.999 2.712 3.051 2.836 

LF EGARCH 3.002 2.712 3.048 2.845 

Table 5.8: GARCH and EGARCH in-sample results for 1000 data points. 
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 BHP Qan NAB ANZ 

 NMAE HR NMAE HR NMAE HR NMAE HR 

GARCH 0.925 71 0.839 74 0.930 72 0.899 78 

EGARCH 0.954 72 0.839 75 0.914 72 0.875 77 

LF GARCH 2.256 2.082 2.336 2.154 

LF EGARCH 2.260 2.082 2.341 2.158 

Table 5.9: GARCH and EGARCH in-sample results for 750 data points. 

 

 BHP ANZ NAB QAN 

 NMAE HR LLF NMAE HR LLF NMAE HR LLF NMAE HR LLF 

2G2H1k 0.952 0.71 2.998 0.906 0.74 2.817 0.941 0.710 3.079 0.796 0.75 2.689 

2G3H1k 0.883 0.73 3.000 0.902 0.74 2.817 0.950 0.71 3.075 0.796 0.73 2.690 

2G4H1k 0.966 0.71 3.003 0.908 0.74 2.816 0.953 0.71 3.072 0.786 0.76 2.689 

2G5H1k 0.912 0.73 2.997 0.957 0.72 2.809 0.946 0.71 3.075 0.795 0.75 2.690 

2G1H1k 0.885 0.73 2.953 0.907 0.74 2.817 0.949 0.71 3.078 0.796 0.73 2.689 

3G2H1k 1.248 0.7 2.953 0.887 0.74 2.844 0.936 0.71 3.086 0.797 0.76 2.694 

3G3H1k 1.282 0.69 2.947 0.907 0.74 2.836 0.881 0.71 3.091 0.796 0.76 2.693 

3G4H1k 0.998 0.72 2.993 0.917 0.71 2.840 0.909 0.71 3.091 0.797 0.76 2.694 

3G5H1k 1.268 0.7 2.949 0.884 0.74 2.841 0.912 0.71 3.091 0.796 0.73 2.694 

3G1H1k 0.990 0.72 2.994 0.888 0.74 2.843 0.940 0.71 3.086 0.797 0.74 2.692 

Table 5.10: In-sample statistics for 1000 returns. 

As discussed in section 5.4, the loss function is a better measurement of how well the model 

fits the data. In all cases, the GARCH and EGARCH models give similar results for all error 

measurements. For optimal performance of the MDN, the structure is chosen to have 1 to 5 

hidden units, with 2 and 3 Gaussians. Tables 5.10 and 5.11 contain the MDN in-sample 

results for 1000 and 750 in-sample series. It will be unfair to compare the in-sample statistics 

of the GARCH and EGARCH with those of the MDN. The  reason for this is that the GARCH 

and EGARCH models were fitted with different BHHH (Berndt-Hall-Hall-Hausman) algorithms 

by maximising the log likelihood function, (using the eviews package) whereas, the MDN was 

trained by minimising the log likelihood with the scale conjugate descent algorithm (using 

the Netlab package with Matlab). Our main interest is in the out-of-sample performance of 

the models. 
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 BHP ANZ NAB QAN 

 NMAE HR LLF NMAE HR LLF NMAE HR LLF NMAE HR LLF 

2G2H750 1.052 0.71 2.240 0.870 0.75 2.148 0.897 0.720 2.354 0.795 0.77 2.047 

2G3H750 0.902 0.73 2.255 0.908 0.77 2.11 0.898 0.71 2.363 0.795 0.77 2.048 

2G4H750 0.999 0.72 2.247 0.917 0.76 2.139 0.891 0.72 2.355 0.794 0.77 2.047 

2G5H750 0.949 0.71 2.253 0.867 0.75 2.148 0.893 0.72 2.352 0.794 0.77 2.048 

2G1H750 0.872 0.73 2.255 0.927 0.75 2.140 0.906 0.71 2.354 0.793 0.77 2.047 

3G2H750 1.204 0.7 2.219 0.860 0.77 2.158 0.885 0.72 2.368 0.794 0.74 2.053 

3G3H750 0.905 0.73 2.255 0.861 0.75 2.156 0.891 0.72 2.360 0.796 0.78 2.052 

3G4H750 1.209 0.7 2.218 0.859 0.77 2.159 0.882 0.72 2.367 0.754 0.76 2.074 

3G5H750 1.223 0.7 2.217 0.867 0.76 2.155 0.884 0.72 2.367 0.753 0.76 2.074 

3G1H750 1.205 0.7 2.219 0.861 0.76 2.156 0.892 0.72 2.366 0.795 0.77 2.053 

Table 5.11: In-sample statistics for 750 returns. 

5.6.2 Out-of-Sample forecast performance 

 
The objective of this research is to compare the forecast performance of the MDN network 

with that of the GARCH and EGARCH models with the emphasis on the right model selection 

for the given time series. The models are compared based on 1, 10 and 30 steps ahead 

forecast. The model forecast is conditional on the information set given at time t. In the case 

of the long-term forecast, the information set becomes less significant as the forecast 

horizon increases.  Below we summarise the results of the best performing models. The full 

results are reported in Appendix C. 

5.6.2.1 One day volatility forecast 

 

For the one-day-ahead forecast, we perform 100 one-day forecasts. This is achieved by 

training the model using returns from period 1 to T, then forecasting volatility at time T+1. 

The model is retrained using returns from period 2 to T+1 and then forecasting the volatility 

at period T+2.  

 

 

 

 Model NMAE HR l  

BHP EGARCH 0.667 0.74 2.19 

ANZ GARCH 0.796 0.73 2.578 

NAB EGARCH 0.745 0.74 2.754 

QAN GARCH 0.914 0.68 2.379 

Table 5.12 : 1 day forecast for 1000 returns 

 

 Model NMAE HR l  

BHP EGARCH 0.847 0.65 3.007 

ANZ GARCH 0.705 0.74 2.836 

NAB EGARCH 0.705 0.74 2.48 

QAN GARCH 0.746 0.72 2.52 

Table 5.13 : 1 day forecast for 750 returns 



 

 110

In Table 5.12, QAN and NAB provide a much better performance using 750 compared to 

1000 returns. BHP and ANZ, on the other hand, gave poorer results for 750 returns and 

much better results for 1000 returns (see Table 5.13). The EGARCH model tends to be a 

better choice for QAN, NAB and ANZ, whereas the GARCH model seems to be a better choice 

for BHP. These findings are consistent with the results reported in the data analysis in 

section 5.4. 

 
 rMDN NMAE HR l  

BHP 3G2H1k 0.662 0.74 2.261 

ANZ 3G4H1k 0.753 0.75 1.282 

NAB 3G2H1k 0.72 0.75 1.34 

QAN 3G4H1k 0.991 0.64 1.342 

Table 5.14 : MDN 1 day forecast for 1000 

returns 

 
 rMDN NMAE HR l  

BHP 3G5H750 0.742 0.72 3.906 

ANZ 3G5H750 0.857 0.65 1.369 

NAB 3G2H750 0.722 0.73 1.34 

QAN 3G5H750 0.738 0.76 1.25 

Table 5.15 : MDN 1 day forecast 750 returns. 

It is important to note the optimal MDN structure is different across time series. For 

example, in Table 5.15, the optimal structure for BHP is 3 Gaussians and 2 hidden units, 

whereas for ANZ, it is 3 Gaussians and 4 hidden units. So it is very important to optimise the 

structure of the MDN with respect to the time series understudy. For all time series (except 

QAN), the MDNs seem to perform much better for 1000 returns, whereas, QAN performed 

better with 750 returns. Nevertheless, the MDN models demonstrated superior 

performance to that of GARCH and EGARCH models. 

5.6.2.2 10- and 30-day forecast 

 
The forecast performance of the GARCH and EGARCH models for 10- and 30-days-ahead 

forecasts are shown in Tables 5.16 to 5.18.  All models seem to perform better for the 10-

day forecast with 1000 returns, except for the QAN, which shows slightly better 

performance with 750 returns.  Whereas, for the 30-day forecast, BHP and ANZ do much 

better with 1000 returns and QAN and NAB perform much better with 750 returns. EGARCH 

outperformed the GARCH model on all tests. 

  NMAE LLF HR 

BHP GARCH 0.960 0.727 0.600 

 EGARCH 0.969 0.707 0.600 

NAB GARCH 0.606 2.529 0.800 

 EGARCH 0.593 2.437 0.800 

QAN GARCH 0.702 2.726 0.600 

 EGARCH 0.710 2.723 0.600 

ANZ GARCH 0.498 2.277 0.800 

 EGARCH 0.524 2.103 0.900 

Table 5.16 : 10-day forecast for GARCH and 

  NMAE LLF HR 

BHP GARCH 0.729 2.746 0.500 

 EGARCH 0.755 2.889 0.600 

NAB GARCH 0.793 3.222 0.800 

 EGARCH 0.777 3.218 0.800 

QAN GARCH 2.943 2.544 0.600 

 EGARCH 2.506 2.549 0.700 

ANZ GARCH 0.724 3.027 0.600 

 EGARCH 0.752 3.022 0.600 

Table 5.17: 10-day forecast for GARCH and 
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EGARCH models using 1000 days EGARCH models using 750 days 

  NMAE LLF HR 

BHP GARCH 0.753 0.822 0.767 

 EGARCH 0.758 0.598 0.767 

NAB GARCH 0.693 2.564 0.833 

 EGARCH 0.687 2.528 0.833 

QAN GARCH 0.798 2.811 0.700 

 EGARCH 0.812 2.802 0.700 

ANZ GARCH 0.730 2.359 0.767 

 EGARCH 0.741 2.264 0.800 

Table 5.18: 30-day forecast for GARCH and 

EGARCH models using 1000 days 

  NMAE LLF HR 

BHP GARCH 0.772 2.814 0.633 

 EGARCH 0.743 2.721 0.667 

NAB GARCH 0.705 2.273 0.767 

 EGARCH 0.705 2.206 0.767 

QAN GARCH 1.018 2.436 0.667 

 EGARCH 0.950 2.426 0.700 

ANZ GARCH 0.772 2.814 0.600 

 EGARCH 0.743 2.721 0.600 

Table 5.19: 30-day forecast for GARCH and 

EGARCH models using 750 days 

 

Long-term forecasts with the MDN are not as easily obtained. The returns rt+1, are not 

directly observed. Hence, we need to simulate the future returns using the Monte Carlo 

simulation as described below. 

• Draw 15000 normal distributed random numbers according to N(0,1) 

• For each of the numbers generated, multiply it by the standard deviation of the returns 

at time t+1 to obtain the disturbance for  t+1 according to )1,0(11 Ν≈ ++ tt σε   

• Calculate 
111 +++ += tttr εµ by adding the disturbance 1+tε , to the conditional mean 

1+tµ  (as calculated at time t+1),  

• Feed the simulated returns and 
2

tσ  as inputs to the MDN to obtain the mean 1+

∧

tµ  and 

variance

2

1+

∧

tσ  (using equations 5.17 and 5.18). 

• The expected variance and mean for t+1 is the average value of each. 

• Repeat the above steps by using

2

1+

∧

tσ , for the next forecast. 

 

 For all volatility models, the accumulated conditional variance for the day after tomorrow is 

calculated as the average conditional variance, as shown below: 
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QAN and BHP gave acceptable forecasts for 10 days with 750 returns. ANZ and NAB 

companies perform better with 1000 returns. For the 30 days forecast, only QAN gave good 

performance using 750 returns. Interestingly, the same MDN structure that preformed well 

for the 10 day forecast gave a completely different result for the 30 day forecast. Also, the 
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EGARCH model for the QAN (with 750 returns), outperforms the MDN on the l  measure. 

But the MDN out performs the EGARCH on the other two measures, HR and NMAE. The 

NMAE for the EGARCH gives a value which is greater than 1. EGARCH for NAB with 750 

returns performs slightly better than MDN on LLF measure, but performs exactly the same 

on the HR and NMAE measures 

 
 rMDN NMAE HR l  

BHP 2G2H1k 0.735 0.83 1.366 

ANZ 2G4H1k 0.750 0.80 2.260 

NAB 3G2H1k 0.676 0.83 2.384 

QAN 3G3H1k 0.845 0.60 2.855 

Table 5.20: rMDN 30-day results using 1000 

returns 

 
 rMDN NMAE HR l  
BHP 3G1H750 0.740 0.67 3.575 

ANZ 3G3H750 0.752 0.63 3.369 

NAB 2G8H750 0.704 0.77 3.633 

QAN 2G2H750 0.597 0.80 2.365 

Table 5.21: rMDN 30-day results using750 

returns 

 

 
 rMDN NMAE HR l  

BHP 2G5H750 0.719 0.6 3.341 

ANZ 3G3H750 0.797 0.6 3.371 

NAB 2G8H750 0.774 0.8 3.633 

QAN 2G5H750 0.585 0.8 3.605 

Table 5.22: rMDN 10-day results using 750 

returns 

 
 rMDN NMAE HR l  
BHP 2G2H1k 0.919 0.7 1.297 

ANZ 2G8H1k 0.535 0.9 2.095 

NAB 3G2H1k 0.571 0.8 2.051 

QAN 3G3H1k 0.681 0.8 3.018 

Table 5.23: rMDN 10-day results using 1000 

returns 

 

 

5.7 Conclusion 

 

This study has demonstrated the ability of the MDN to model complex time series data. The 

superior performance of the MDN relative to traditional GARCH models is attributed to the 

flexibility and the dynamic nature of the MDN.  Given the success of the MDN, there is still 

room for improvements, such as pruning the neural network and including other exogenous 

variables that have some explanatory power. The emphasis is mainly on the right model 

selection. The selection of the correct model and the use of an optimal training data set go 

hand-in-hand to provide reliable and stable results. This was demonstrated by varying the 

number of Gaussians, hidden units, and varying the number of observations in the in-sample 

lengths. In addition, we tested the models using four different time series. The performance 

of the models varied dramatically with these factors, which explains why other researchers 

show poor results when comparing MDNs to other traditional models without optimising 

their model.  In this chapter, we have made the following contributions: 
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• We have demonstrated the effect of using different numbers of observations in the in-

sample set on the model out-of-sample forecasting accuracy. 

• We have shown how volatility models’ performances vary across time series; therefore, 

special attention must be given when selecting the correct model based on the 

statistical properties of the return series. 

• Choosing the wrong number of hidden units was demonstrated by varying the number 

of hidden units.  

• MDN models with the same hidden unit units and Gaussians performed differently 

across different time series.   

• The results demonstrate the superiority of the MDN over GARCH models if the correct 

MDN model is specified. 
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CCHHAAPPTTEERR  66  --    OOppttiioonn  PPrriicciinngg  

 

In section 2.8.4, we review neural network methods for option pricing in research. The 

strength and weakness of each of the applied methods is discussed. This review revealed a 

trend in the methodology applied in this domain which consists of training the neural 

networks on the option price. This requires the neural network to provide a mapping from 

input space to the option price. Also, the majority of research benchmarked the neural 

network pricing capabilities against the BSOPM and its variants. The results demonstrate the 

superior pricing capabilities over the BSOPM. However, there is no evidence to show how 

the neural network models would fare against more sophisticated option pricing models 

such as the GOPM. Our analysis reveals that the reason behind this trend is the inferior 

capabilities of neural networks to price options out-of-sample with high accuracy relative to 

advanced option pricing models. In section 4.2, we explain the complexities behind option 

pricing and we gave justification for the weakness and drawbacks in the neural network 

approach adopted in literature. We also propose a solution to this problem which 

overcomes the limitation and inefficiencies of the previous methods. To further evaluate our 

proposed method, a delta hedging scenario is examined which will allow us to evaluate the 

completeness of the model.  The remainder of this chapter consists of the following: in 

section 6.1 the issues investigated in this study are highlighted; in 6.2, the option pricing 

models undertaken in this study is reviewed. The data used in this study is analysed in 

section 6.3. The experiment design is discussed in section 6.4 and the performance 

measures explained in section 6.5. The delta hedging exercise is explained in 6.6. The results 

are presented in section 6.7. In section 6.8, the empirical dynamics of the volatility smile is 

analysed. The summary and conclusion is provided in section 6.9.  

6.1 Issues investigated in this thesis 

In section 2.8.4, we highlighted the strengths and weaknesses of the neural networks 

methods used in pricing options. In section 4.2, we elaborate on the current issues that are 

experienced with pricing option with neural networks. In theory, neural networks should be 

able to outperform the any time series model as it is able to cater for non-linear behaviours 

in the underlying data. Also, it can approximate any continuous function up to a certain 

degree of accuracy. However, results in the literature show very weak performance of the 

neural networks in pricing options. For this reason, no study has been conducted so far to 
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evaluate the option pricing performance relative to such models as the GOPM.  Searching 

for a solution to this problem, we opted to model the key variable that can potentially 

explain the options’ future behaviour. This is achieved by allowing the neural network to 

learn the implied volatility surface. The neural network will then be able to predict the 

future implied volatility levels.  The implied volatility value produced by the neural network 

can then be converted to an option price using the BSOPM. We compare our proposed 

method to the pricing performance of other neural network methods that are based on the 

popular approaches documented in the literature. To provide a better understanding of the 

neural networks’ capabilities, we benchmark these methods with BSOPM and GOPM.  This 

will be the first study to evaluate the pricing capabilities of the GOPM to neural networks. 

This is necessary to evaluate the neural networks’ accuracy compared to sophisticated 

pricing models.  This study is then extended to evaluate the models in delta hedging 

scenarios. This will verify the completeness of the model and whether it is able to predict 

changes in the underlying asset.  In this study, we: 

 

• Address the weak option pricing capabilities of the neural networks as observed 

in the literature; 

• Derive a new method for pricing option pricing via neural networks; 

• Demonstrate superior option pricing capabilities of neural networks relative 

GOPM and BSOPM; 

• Evaluate the hedging performance of the neural networks to BSOPM and neural 

networks. 

6.2 Option pricing models 

Since the publication of the BSOPM in 1973 (Black and Scholes 1973), it remains the most 

quoted scientific paper in the world. The model made a key contribution to option trading, 

allowing investors to calculate a fair value for an option contract. This model had its 

limitations, which stem from the unrealistic assumptions used in the derivation of the 

BSOPM. The BSOPM’s behaviour and limitations have been well documented in the 

literature (Henderson 2004). The most interesting assumption in the BSOPM that has 

captured the attention of researches and practitioners alike is the constant volatility 

assumption. However, if the volatility is backed out from the BSOPM and plotted against 

different strike values, it displays a U-shape. Hence, the name ‘volatility smile’ (or skew). The 
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graph deviated from a flat line, which contradicts the constant volatility assumption of the 

BSOPM.  

 

Researchers then turned to more sophisticated methods for option valuation using 

stochastic volatility models (Ritchken and Trevor 1999),(Peter and Kris 2004), (Engle and 

Mustafa 1992),(Duan 1995) and (Heston, Nandi et al. 1997). The GARCH option pricing 

model (GOPM) introduced by (Duan 1995) is based on a discrete-time model of the 

economy. The GOPM is derived based on the locally risk-neutralised probability measure 

where the option value can be calculated as a discounted expected value. In addition, the 

model allows the underlying asset return to follow a GARCH process (Bollerslev 1995), 

consequently eliminating the assumption of a constant volatility. This is indeed an attractive 

feature of the GOPM; however, the main drawback of the model is that it does not have a 

closed form solution. Therefore, Monte Carlo simulation is used to optimise the models 

parameters.  (Duan and Simonato 1998) have introduced an empirical martingale simulation 

that speeds up the Monte Carlo simulation process.  

 

Researchers have also adopted different methods for pricing options, such as neural 

networks (Karaali, Edelberg et al. 1997). The vast majority of neural networks research has 

been focused on forecasting financial time series (Schittenkopf, Dorffner et al. 

2000),(Kaastra and Boyd 1996). Until the late 1990s, research on option pricing with neural 

networks was limited. To date, most research compares the performance of neural networks 

with the BSOPM option-pricing model  (Meissner and Kawano 2001), (Amilon 2003), (Yao, Li 

et al. 2000), (Tino, Schittenkopf et al. 2001) and (Bennell and Sutcliffe 2004). Most research 

demonstrates comparable or slightly better performance of neural networks compared with 

the traditional option pricing models such as BSOPM. However, there has been no real 

attempt to compare the neural networks to more advanced models such as the GOPM. In  

(Hanke 1997), a neural network was constructed to give an approximate price to GOPM. This 

was achieved by training the network on different input combinations for the GOPM 

allowing the neural networks to approximate the GOPM, thereby overcoming the numerical 

simulation issues of the GOPM.  

 
In this chapter, we study the out-of-sample pricing and delta hedging capabilities of the 

GOPM, the BSOPM and two types of option pricing neural network designs. The first design 

is similar to the common approach where a neural network is trained on the option price. 

The second method is our proposed method which involves training the neural network 
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directly on the BSOPM implied volatility and then using the BSOPM formula to derive the 

theoretical price. 

 

We briefly review the option pricing models to increase the readability of this chapter.  

6.2.1 GARCH Option Pricing Model (GOPM) 

 
The GARCH Option Pricing Model (GOPM) introduced by Duan (Duan 1995) is based on a 

discrete-time model of the economy. The value of the index at time t, can be assumed to 

have the following dynamics: 
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Where λ is interpreted as the risk premium. To ensure that the variance is positive and 
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BSOPM homoskedastic lognormal process when β1=0 and β2 =0. 

It has been demonstrated by (Duan 1995) that under the Local Risk Neutral Valuation 

Relationship  (LRNVR) the conditional variance does not change. However, under measure 

Q
,
 the conditional expectation of rt is the risk free rate rf. 
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To derive the GOPM, the risk neutral valuation relationship has to be generalized to the 

LRNVR: 
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By having γλγ +=
~

, the risk-neutral pricing measure is determined by four parameters: 

β0,β1,β2 and
~

γ . Using the above formulation, the asset terminal is then calculated at time T 
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The terminal asset price is then calculated using Monte Carlo simulation. A set of N random 

path of residuals ),...,( *

,

*

,1 jTjt εε + is generated with J = 1 to N. The residuals are used to 

calculate the asset prices ST,j . Using the terminal asset price series, the option price is then 

obtained by risk-neutral conditional expectation E
*
 : 
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The final option price is then approximated as follows: 
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Rather than using standard Monte Carlo simulation, Empirical Martingale Simulation (EMS) 

is adopted. The EMS method has been shown to accelerate the convergence of the Monte 

Carlo prices estimates as demonstrated by (Duan and Simonato 1998). 

The Monte Carlo simulation is give by : 
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The delta that corresponds to the GOPM is given by (Duan 1995): 
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Where I(St,X) = 1 is St ≥ K and 0 if S < K.  Since there is no analytical solution for 
G

t∆  the deltas 

are computed via Monte Carlo simulations. 

6.2.2 The BSOPM Option Pricing Model 

 

The BSOPM theorem was first published in 1971 (Black and Scholes 1973). It is the most 

widely used pricing model. The model states that if S(t) is the asset price that follows a 

generalised Wiener Process  
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)()()()( tdztSdttStdS σµ +=  
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)(tz is a Brownian motion, where the interest rate and volatility are constant. Then a call 

option on the asset, expiring at time T and with strike price K will have value at time t: 
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N(x) is the cumulative probability distribution for a standard normally distributed variable. 

The BSOPM delta is given by N(d1), which also measures the sensitivity to the underlying 

asset. 

6.2.3 Implied Volatility 

 
The implied volatility is a volatility parameter, which equates the market price with the price 

given by the BSOPM formula. The implied volatility, ( )TKBS

t ,σ  is a function of K (Strike) and T 

( time to maturity) (Hull 2003). The two most interesting features of the volatility surface, 

which have been studied and analysed by researchers, are the volatility smile (skew) and the 

term structure and the level of implied volatility changes with time. The volatility smile is a 

key indicator of an unrealistic assumption of constant volatility. Whereas, the changes in the 

implied volatility level with time is seen by the deformation of the volatility surface with 

time. Therefore, the ability to capture the deformation of the volatility surface will lead to 

accurate option pricing. 

(Cont and da Fonseca 2001) have expressed mathematically the implied volatility surface as 

follows: 

( )( ) ( )TKCTKKSC t

BS

ttBS ,,,,, *=στ  (6.15) 

where ( ) 0, >TKBS

tσ   

The value of the call option as a function of the volatility is a monotonic mapping from 

[0,+∞[ to ]0,St-Ke
-rt

[. The implied volatility ( )TKBS

t ,σ  of a call option with strike K and price 

maturity of T is dependent on K and T . If K and T are fixed, ( )TKBS

t ,σ  can be generalised to 

follow a stochastic process. For a fixed t, the value will depend on the options characteristics 

such as maturity and strike level K. Equation 6.17 represents the volatility surface at time t. 
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Where m is the moneyness, ),( τmI t is the implied volatility function.  

The two most important features of this surface are volatility term structure (or volatility 

smile) and the changes in the volatility levels with time. Thus, the evolution in time of this 

surface will reflect the evolution of market option prices.  Many previous studies have 

attempted to explain the information contained in the implied volatility (Day and Lewis 

1992; Canina and Figlewski 1993; Christensen and Prabhala 1998; Blair, Poon et al. 2001; 

Jiang and Tian 2005) where the majority of studies have shown that the implied volatilities 

contain relevant measurement errors with quantifiable magnitude. Earlier research shows 

the implied volatility to be an inefficient forecast of volatility (Canina and Figlewski 1993). 

However, more recent studies such as (Jiang and Tian 2005) show that the implied volatility 

subsumes all information contained in the historical volatility and is capable of providing an 

accurate forecast of future volatility.  This information can be utilised in many aspects since 

the option prices reflect the participant’s expectations of the market’s future movements. 

So, if the option market is efficient such that all information is observed and the correct 

option pricing model is specified, the implied volatility should subsume the information 

contained in other variables in explaining future volatility. That is, the implied volatility 

should be an efficient forecast of future trends over the life of the option.  

6.2.4 Artificial Neural Network (ANN) 

 
The ANN consists mainly of an input layer, one more hidden layer and an output layer. The 

layers are connected via a set of weights. The hidden layer and the output layer consist of 

individual neurons. The inputs are multiplied by the weights and a bias term is added which 

then constitutes the input to the activation function. This then serves as the input to the 

following layer. The activation of the output layer is given by: 
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The activation functions of the neurons could be chosen to be linear or non-linear functions. 

A sum of error-squared function is normally used as the objective function for the training of 

the MLP. So the MLP is trained to minimize this function with respect to the in-sample data. 
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The MLP performance is dependent on the initial values of the weights.  To overcome this 

issue, the neural network is trained 50 times using different initial values for the weights. 

The weight set that introduces the least error is then adopted. 

 

Figure 6.1: Single layer artificial neural network 

6.2.5 Neural networks for option pricing  

 
This approach has been widely studied in the literature. This approach was also followed by 

(Bennell and Sutcliffe 2004) .  The input data was partitioned according to the moneyness of 

the options in-the money (ITM), at-the-money (ATM) and out-of-the-money (OTM). For each 

set, a different network was used. This method has been proven to improve the pricing 

capabilities of the ANN(Yao, Li et al. 2000). The in-sample and validation set for ATM and 

ITM were 168 days and 84 respectively. For OTM 64 and 20 days for the in-sample and 

validation set were used. 

The homogeneity hint (Merton 1973) is used to simplify the input parameters (Garcia and 

Cirano 1998). The strike and index can be combined into a single input index/strike that is 

also interpreted as the measure of the option’s moneyness. The other inputs used are the 

option maturity and historical volatility. The target set is the close price/strike.  From this 

point onwards, this model will be referred to as NNp. 

6.2.6 My option pricing model 

 
Given the limited success in applying neural networks to option pricing, we adopt a new 

method for training the neural network with the intention of capturing the underlying asset 

dynamics of the instrument which then can be translated to an option price using known 

market variables. This new methodology allows the neural network to capture the dynamics 

of the underlying asset and the changes in the volatility levels through time.  Using the 

option price to train the neural network has been proven to be ineffective; therefore, 
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instead of training the neural network to price the option directly, we allow the neural 

network to learn the implied volatility. So the neural network will be optimized on the 

implied volatility, thereby allowing the neural network to forecast the implied volatility for 

different maturities and moneyness.  Many studies have demonstrated that vital 

information is contained in the implied volatility especially since the implied volatility 

contains the market expectation of the underlying asset future movements.  To allow the 

neural network to capture the entire volatility surface, the data set was not partitioned by 

moneyness, thereby allowing the neural network full visibility of the volatility surface.  This 

approach is a mapping exercise described in equation 6.17. 

 

After experimentation with the different inputs, the following combination was selected for 

optimal performance. The in sample and validation set were 20 and 5 days respectively, and 

the output sample was 1 day. The inputs used were moneyness (index/strike), time to expiry 

and historical volatility. The target data set was the BSOPM implied volatility.  Once the 

training of the ANN is completed, the implied volatility produced by the ANN would be 

plugged into the Black-Schole formula to obtain an analytical price of the option. This model 

would be referred to as NNiv. To further verify the adequacy and completeness of the 

proposed model, a delta hedging scenario is constructed. This will allow the model to be 

tested to ascertain whether it is able to predict the changes in the underlying asset, which 

will also verify the choice of using implied volatility for training the neural network. The delta 

values are generated by using the implied volatility forecast of the neural network and 

plugging it into the BSOPM delta formula.  

6.3 Data 

 
The data used in this research consists of European call options on the FTSE 100 index 

traded at the London International Financial and Options Exchange (LIFFE). The data for this 

research was obtained from SIRCA (http://www.sirca.org.au/), which covered a two-year 

period starting from 2/1/2000 and ending on 31/12/2001. The sample was made up of 

63,094 call options and the daily Index value (adjusted for dividends). 

The following constraints were applied to filter the data series: moneyness (index/strike) 

outside [-1.01,0.9], maturity greater 175 days and less than 7 days and close price less than 

five where removed. The data series was then reduced to 26533 options. GB Libor rates 

were used for the risk-free rate inputs to the models. 
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The parameters for the GOPM and BSOPM were estimated on a daily basis. However, when 

optimising the ANN, the data was split into 3 sets: in-sample, validation and out-of-sample. 

The in-sample set is used as inputs to the ANN, thus impacting on the weights. The 

validation set is used to evaluate the error at each epoch. The training of the network is 

terminated when the error of the validation increases. The out-of-sample is data set is used 

for evaluating the ANN model. The hedging analysis was done over a 1 month horizon for 

the month of February-2000. 

6.4 Experimental Design 

The aim of this research is to investigate the capability of neural networks to capture the 

market volatility dynamics, and hence accurately price call options. The competing models 

are the GOPM, two Neural Networks trained on the option price (NNp), and implied 

volatility (NNiv) respectively. The models are then compared based on the out-of-sample 

pricing accuracy and the hedging performance.  

6.4.1 GOPM parameters  

 
The GOPM parameters were estimated for each day of the data sample. This was achieved 

by minimizing the average sum squared error eqn. (21)  (Aboura 2005) (Lehnert) over all 

options on day t, with parameters from day t-1 as the initial values (Lehar, Scheicher et al. 

2002). 

 ∑∑
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where { }λβββ ,,, 210=Θ  ,
^

C andC are the model theoretical price and the actual call price 

respectively. The number of Monte Carlo simulation was initially set to 15,000. This was 

sufficient to generate stable estimates. In some cases, the number of simulations had to be 

increased to 30,000.  

6.4.2 Neural Network Training methods 

 
In this research, two neural networks option pricing methodologies are examined; the first 

method is commonly used in research where the neural network is trained on the option 

price. This will allow the neural network to directly forecast an option price based on the 

inputs provided to the neural networks. In the second method, the neural network is trained 

using the BSOPM implied volatility as the target output. This method allows the neural 
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network to predict the future implied volatility, which also means that the neural network 

can produce the implied volatility surface over any trading horizon. The implied volatility can 

be converted to an option price by plugging it into the BSOPM. In both methods, the neural 

networks were optimized by varying the number of inputs, length of in-sample and 

validation sets, and the number of hidden units. The combination that gives the lowest error 

is considered to be the optimal model and is chosen accordingly. The initial weight values 

were initialized randomly, and to eliminate the dependency on the initial weight values, this 

process was repeated 50 times.  

6.5 Performance Measure 

The first measure of the model performance is its ability to price options out-of-sample. 

However, this measure does not give a clear indication of the model’s ability to generate 

profits. Therefore, the hedging performance of the model is a much better indicator of the 

model’s ability to capture the underlying asset dynamics in the market. 

6.5.1  Pricing Accuracy 

 
To analyze the model’s performance, Relative Pricing Error (PE) and Absolute Relative Pricing 

Error (APE) were calculated for each model.  
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where 
^

C  and  C  is the model theoretical call price and the actual call price. The errors are 

reported against maturity and moneyness.  

6.6 Delta Hedging 

Most papers consider a hedge portfolio with one unit short in an option, ∆ units of the 

underlying asset and the rest in a risk free asset (Schittenkopf and Dorffner 2001). In this 

research, a hedge portfolio is constructed in a similar fashion to that adopted by (Amilon 

2003)and (Vahamaa 2004). That is, we buy options that are under priced (where theoretical 

option price is higher than market price) and sell the options that are overpriced. For under 

priced options, we construct the following portfolio: 

We buy option 00 CV C = and sell index 000 ∆−= IV I
 and put the rest in risk-free asset, 

CB VIV 0000 −∆= . The portfolio is then replicated as follows: 
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which gives us the absolute hedging error 

TVrt)exp(=ξ  (6.24) 

where, I

t

B

t VV ,  and 
C

tV are the amount invested in the risk free asset, index and call option at 

time t.  

The delta hedging exercises are carried out for a period of one month (6/2/2000 to 

6/3/2000). 

6.7 Results 

Below are the estimated mean values of the GOPM parameters. 

0β  
1β  2β  γ σ  

3.109E-05 1.848E-01 3.184E-01 6.745E-01 22.37% 
 

Table 6.1: GOPM average parameters 

The risk premium is extracted from the option prices rather than from the index time series. 

It was found to be a little weak which in turn will have a minor impact on the option price. 

The annual volatility was found to be approx 22.37% which is a close approximation to the 

historical volatility when estimated on the index prices 20.7%. 

The performance measures used for all models are relative pricing error (RPE) and the 

absolute relative pricing error (ARPE). A positive or negative value of PE indicates overpricing 

or under pricing of the model respectively. Table (2) shows the RPE for all models. On 

average, the GOPM and the NNiv overprice call options, whereas the BSOPM and NNp under 

price the options. The NNp tends to overprice ST options and under price options in the LT 

and MT range. The GOPM and NNiv have similar behavior since both models overprice 

options over all maturities. The BSOPM seems to under price options over all maturities. In 

addition, it has the worst mis-pricing performance across all maturity and moneynees. 

 

The GOPM and NNiv models overprice the LT options across all moneyness.  The worst mis-

pricing performance of the GOPM model has a RPE of 0.069 for LT-DITM contracts. This 
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behavior is also seen for NNiv, where the model has the worst mis-pricing for LT-DITM 

contracts with a RPE of 0.075. For BSOPM the worst performance for ST-OTM options with a 

RPE of  –0.901 and the NNp has a PE of 0.837 for ST-DOTM contracts. 

Moneyness Model 

Time to Maturity 

LT MT ST TOTAL 

DOTM GOPM 0.021 -0.010 -0.020 -0.009

  NNp -0.062 -0.047 0.837 0.128

  BSOPM -0.098 -0.011 0.038 -0.005

  NNiv 0.034 0.114 -0.024 0.073

OTM GOPM 0.027 -0.007 0.059 0.024

  NNp -0.145 -0.365 0.269 -0.085

  BSOPM -0.497 -0.691 -0.901 -0.762

  NNiv 0.005 0.014 0.024 0.017

ATM GOPM 0.039 0.008 0.030 0.021

  NNp -0.133 -0.083 0.238 0.044

  BSOPM -0.272 -0.240 -0.215 -0.232

  NNiv 0.025 0.004 0.007 0.007

ITM GOPM 0.059 0.013 -0.008 0.007

  NNp 0.063 -0.013 0.142 0.066

  BSOPM -0.165 -0.084 0.002 -0.049

  NNiv 0.040 0.008 -0.019 -0.002

DITM GOPM 0.069 0.059 0.044 0.057

  NNp -0.088 -0.104 0.010 -0.051

  BSOPM -0.098 -0.011 0.038 -0.005

  NNiv 0.075 -0.002 -0.020 0.004

All GOPM 0.045 0.018 0.042 0.030

  NNp -0.109 -0.199 0.350 0.004

  BSOPM -0.584 -0.900 -0.641 -0.767

  NNiv 0.022 0.043 0.009 0.027

Table 6.2: Relative pricing errors for all models. 

The APE figures are displayed in Table 6.3. On average, the performances of GOPM and NNiv 

models increase with maturity. Again, the BSOPM performs the worst on all accounts. On 

average, the NNiv has a slightly better performance than does the GOPM. The GOPM model 

performs slightly better for MT contracts and the NNiv has a better performance for ST and 

LT contracts. All models have performed the worst for ST-DOTM contracts. In addition, the 

GOPM performs the best for LT-DITM, whereas the NNiv and BSOPM are at their best for ST-

DITM contracts. The NNiv seems to perform best for the MT-ITM contracts. NNp will be 

excluded from the hedging analysis due to the unsatisfactory performance with the option 
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pricing. The rest of the models are compared over a 1-month horizon, where delta hedging 

was performed until the option expiry. Then absolute hedging error equation 6.24 was used 

as the benchmark statistic for all models. As shown in Table 6.4, the BSOPM and NNiv on 

average are very close with a difference of 0.03. But the NNiv on average performed better 

for the ITM options. The GOPM has the worst performance on all accounts.  For ATM-ST and 

ITM-ST options, the NNiv performed better to the reset of the models.  In addition, NNiv 

seemed to get very close to the BSOPM. For instance, the OTM-MT option, the BSOPM and 

NNiv were in fact very close with a difference of 0.01. However, the GOPM displayed far 

worse performance with big differences when compared to the BSOPM. The NNiv was 

clearly outperformed by the GOPM on all accounts expected for OTM-ST but with a 

difference of 0.18.  

Moneyness Model 
Time to Maturity 

LT MT ST TOTAL 

DOTM 

 

 

 

GOPM 0.179 0.246 0.384 0.267 

NNp 0.590 0.513 1.014 0.625 

BSOPM 0.993 1.815 1.289 1.584 

NNiv 0.167 0.269 0.358 0.273 

OTM 

 

 

 

GOPM 0.105 0.157 0.272 0.202 

NNp 0.519 0.483 0.711 0.580 

BSOPM 0.502 0.713 0.984 0.809 

NNiv 0.102 0.154 0.262 0.195 

ATM 

 

 

 

GOPM 0.078 0.100 0.139 0.116 

NNp 0.263 0.212 0.400 0.295 

BSOPM 0.274 0.262 0.277 0.270 

NNiv 0.086 0.094 0.135 0.112 

ITM 

 

 

 

GOPM 0.082 0.074 0.079 0.077 

NNp 0.154 0.131 0.232 0.181 

BSOPM 0.169 0.120 0.077 0.104 

NNiv 0.081 0.071 0.075 0.074 

DITM 

 

 

 

GOPM 0.039 0.061 0.050 0.053 

NNp 0.160 0.143 0.151 0.149 

BSOPM 0.099 0.074 0.051 0.069 

NNiv 0.098 0.066 0.058 0.068 

All 

 

 

 

GOPM 0.121 0.167 0.233 0.188 

NNp 0.491 0.440 0.674 0.528 

BSOPM 0.589 0.924 0.742 0.818 

NNiv 0.119 0.172 0.222 0.185 

Table 6.3: Absolute relative pricing errors for all models 
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The models were also tested with respect to their hedging performance. The GOPM 

performed the worst. However, the BSOPM on average outperformed the others except for 

the ITM options where NNiv did better. The NNiv did outperform the BSOPM in some 

categories and in most cases was trailing very closely. However, it did outperform the 

GOPM. There are a couple of factors that may have affected the outcome of the results.  

Firstly, the exclusion of options based on moneyness and maturity could have resulted in the 

loss of significant information. Also, the hedging strategy of keeping the option till maturity 

could skew the results. The method described in (Amilon 2003) would have been a better 

option. In addition, the use of the discounted absolute hedging error alone does not provide 

enough statistics to evaluate the model performance.  

 Model LT MT ST Total 

ATM 

NNiv 0.38 19.56 15.66 15.20 

BSOPM 0.29 19.09 15.74 15.06 

GOPM 0.41 22.38 16.33 16.56 

ITM 

NNiv 0.41 23.37 27.47 22.83 

BSOPM 0.31 21.99 29.65 23.22 

GOPM 0.42 25.93 30.62 25.39 

OTM 

NNiv 0.23 9.91 6.70 7.57 

BSOPM 0.20 9.90 5.89 7.28 

GOPM 0.30 12.20 6.52 8.72 

Total Nniv 0.33 16.67 17.03 14.90 

Total BSOPM 0.26 16.11 17.55 14.87 

Total GOPM 0.37 19.18 18.27 16.56 

Table 6.4: Discounted absolute hedging error 

To further analyze the models pricing errors, the following regression is performed. 

ε+++= cbMonaTTEARPE  (6.25) 

),0(~ 2σε N  

The ARPE is regressed on TTE (Time to Expiry) and Mon (Moneyness). The estimated 

coefficients are displayed in Table 6.5. The coefficients R
2
 and F-test for NNiv and the GOPM 

are similar. This indicates that the models price the options in a similar manner.  For all 

models, the ARPE is smaller for longer maturities and increased moneyness. Therefore, ITM 

options are priced more accurately than the OTM options and the models price LT contracts 

with better accuracy than ST contracts.  
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  NNiv GOPM NNp BSOPM 

C 2.097 2.052 4.324 13.931 

 (-46.116) (-45.072) (-16.508) (69.214) 

A -0.327 -0.330 -0.645 -0.769 

 (-26.065) (-26.306) (-9.960) (-13.869) 

B -1.900 -1.851 -3.797 -13.372 

 (-40.983) (-39.865) (-14.103) (-65.148) 

R
2
 14.66% 13.71% 2.65% 25.05% 

F-test 1047.439 1014.297 130.631 2133.957 

Table 6.5: Regression results 

 

6.8 The Empirical Dynamics of the Volatility Smile 

 
In this section, we study the behavior of the implied volatility of the GOPM and the NNiv 

over time. The implied volatility of NNiv is given directly as the output of the model, whereas 

the GOPM produces a theoretical option price. To extract the implied volatility from the 

GOPM, the option prices are equated to the BSOPM formula and the implied volatility is 

backed out. 
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Figure 6.2: GOPM out-of-sample skews for 4/9/2000 

To study the volatility smile, a theoretical series is generated by an out- of-sample fit of the 

GOPM parameters calculated on the previous day. The implied volatility is then backed out 
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for each option price using the BSOPM formula. Figure 6.2 shows the first day out- of-sample 

forecast. It can be seen that the volatilities are higher for the shorter maturities. As the 

option moves from ITM to ATM, they converge and the slopes are reversed. This has been 

highlighted by (Aboura 2005), where this point is of importance because the model is able to 

classify the volatilities according to it moneyness. 
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Figure 6.3: GOPM out-of-sample skews for 28/9/2000 

 

Figure 6.3 displays the implied volatility for the end of the month using the same parameters 

as those for the first day of the month. The deformation of the smiles is obvious. The short 

maturity has a higher implied volatility; however, the skew of the longer maturities becomes 

more linear. 

 

The theoretical volatilities calculated for NNiv at the first day of the month are displayed in 

Figure 6.4. The volatility smile is apparent in the graph. The graph also shows a similar 

behavior to the skews generated by the GOPM. For all maturities, the slope of the skews 

changes as it moves from ITM to OTM.  So, as the option approaches ATM, the volatilities 

across all maturities become similar. For the ITM - LT option, the skew tends to be linear; 

then as it moves past the ATM point, the NN gives higher volatilities. For ITM-ST options, the 

NN generates much larger volatilities than the ITM-LT options. As ST option passes the ATM 

range, the slope changes direction forming the smile. However, the volatilities are smaller 

than the LT for OTM options.  
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Figure 6.4: NNiv out-of-sample skews for 4/9/2000 

 

In Figure 6.5, there does not seem to be any deformation of the skews. The skews also 

follow the same behavior as those in Figure 6.4. The advantage of the GOPM model is its 

ability to capture the deformation of the skew through time. This shows that the model is 

sensitive to changes in the underlying asset. The GOP model parameters are calibrated 

under LRNVR conditions by simulating the underlying asset process and pricing the options 

at expiry accordingly. However, the NN is designed and trained differently. The ability of the 

NN to price options out-of-sample is a key indicator of the ability of the NN to capture the 

dynamics of the FTSE options. The NN trained on mapping the input space (TTE, Moneyness, 

Historical Volatility) to Black-Scholes implied volatility.  Due to the high number of variables 

in the NN, 1 day of historical data was not sufficient to produce a stable result. Hence, the 

NN was trained on 20 days of data, which contains substantial information. Therefore, when 

the smiles are generated out-of-sample towards the expiry of the options, the neural 

network is able to display the actual skew at that point in time. This is a good indication that 

the NN is a suitable tool for long-term forecasting. Also, its ability to generate the skews out-

of-sample could be an advantage when performing delta hedging.  
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Figure 6.5: NNiv out of sample skews for 28/9/2000 

6.9  Summary and Conclusion 

 

In this research, a new method for pricing options via neural networks is introduced. The 

neural network was trained using the implied volatility as the target output of the neural 

network rather than the options price. This method has shown to substantially improve the 

out-of-sample pricing performance of the neural network. The neural network’s 

performance was also compared to those of the GOPM and the BSOPM. The overall 

performance of the NNiv was superior to GOPM and to BSOPM, which is apparent in the 

out-of-sample pricing measures. The improvement in the neural network pricing 

performance is a result of the neural network’s ability to capture the underlying asset 

volatility structure and volatility levels through time. 

 

Nevertheless, the results shown in this chapter are very encouraging, since for the first time, 

the ANN have shown superior option pricing performance compared with advanced option 

pricing models such as GOPM. In this chapter, we have made the following contributions: 

 

• We introduced a new neural network option pricing method by learning the implied 

volatility.  

• We demonstrated substantial option pricing improvements using our method compared 

with methods presented in the literature.  
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• This is the first study to compare neural network option pricing to GOPM. 

• This is the first study to evaluate hedging performance neural networks to GOPM. 

• We evaluated the hedging performance of our method against the GOPM and BSOPM. 

• This is the first study to demonstrate the superior accuracy of neural networks to GOPM. 

 

By demonstrating the neural network’s superiority over the GOPM, and its ability to produce 

an option price instantaneously, we show that it can be deployed as a real-time trading tool. 

An ongoing direction of this research is to extend the current findings to train the neural 

network on the BSOPM delta rather than using the neural network’s implied volatility, and 

to examine different types of neural networks such as RBF which may produce improved 

results. 
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CCHHAAPPTTEERR  77  --    DDiissccuussssiioonn  

 
Market risk is defined as the potential loss of an asset value due to movements in market 

factors. These markets factors could be anything that impact on the current or future value 

of an asset. The most important factor that has attracted significant attention in the 

literature is the asset volatility. Measuring the asset volatility is cumbersome since it is not 

directly measurable in the market, which then reduces it to a filtering and approximation 

task. To further complicate this problem, the volatility exhibits complex behaviours that 

must be understood and measured accordingly to ensure accurate forecasting and 

evaluation of the future asset value. Therefore, volatility modelling is at the heart of market 

risk. The success of the volatility models is very much reliant on their ability to capture the 

stylized facts of the underlying asset time series. In today’s markets, many instruments are 

traded on the world market for many different reasons. These instruments can be used as 

investment or risk mitigation tools. However, if the instruments are not applied properly, 

substantial loss may be incurred. To avoid this potential risk, pricing models such as BSOPM 

have been developed to provide a fair value based on the current market conditions. In 

addition to evaluating the instrument, the option pricing models are also used for sensitivity 

analysis. For instance, ascertaining the sensitivity of the instrument to changes in the 

underlying stock value is useful in a delta hedging scenario. In this thesis, we study option 

pricing since options are the most common instruments traded on the world markets. The 

process of evaluating such instruments involves many variables such as interest rate, stock 

price, volatility etc. The pricing model needs to cater for the dynamic behaviour of the 

underlying asset and its evolution through time, in addition to the other factors that 

influence the option price. Therefore, the volatility plays a major role in the accuracy of the 

model to price the options. Some models use the historical volatility in the option formula, 

which affects the model’s accuracy as the volatility is known not to be constant over time. 

This is one of the criticisms of the BSOPM which can be demonstrated by plotting the 

implied volatility against the strike price. For this reason, researchers had to formulate 

complex models such as the GOPM to address such issues. On a larger scale, it is 

cumbersome to analyse the potential market risk of a portfolio which can contain many 

different instruments and assets. The overall profit and loss of the portfolio is a result of the 

interaction of all the portfolio components. To further complicate this analysis, the risk 

component in the portfolio can have linear and non-linear pay-offs, which means that the 
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overall risk is not simply the sum of all risk components.  The VaR model simplifies this issue 

by allowing the total risk value of the portfolio to be presented as a single number. This is 

calculated using the predictive distribution of future returns and taking a quantile value of 

the distribution. So, modelling the distribution of the portfolio returns is essential, although 

the distribution is generally assumed to be normal for simplicity. 

  

Market risk modelling has become a hot topic in recent years due to the volatile market 

conditions. Investors are very much dependent on the risk models to understand and 

analyse their risk exposure. Market risk models generally work well in normal market 

conditions. However, they fail in extreme market conditions when they are most needed. 

This is a drawback of most statistical models where a prior assumption has to be made to 

allow for the derivation of the model. The model also contains a fixed number of variables 

which means it is limited accordingly. The modelling of financial time series would require a 

comprehensive model that is adaptable and flexible to avoid the strict assumption about the 

underlying data. Neural networks are well known for their flexibility and approximation 

capabilities. Also, neural networks are data-driven, so no prior assumption about the data is 

needed.  Specifically for market risk modelling, neural networks are most suitable as they 

can capture complex nonlinearities and subtle relationships in the data. For this reason, 

neural networks have been applied to many market risk problems with the aim of 

overcoming the limitations of the statistical models.  

 

In Chapter 2, we provided a detailed review of the models applied in market risk mainly in 

volatility forecasting, option pricing and VaR modelling. Also, we review the neural network 

literature in this domain and discuss the limitations of each approach. This was then used as 

the foundation for the rest of the thesis. In Chapter 4, we provide an overview of the 

solutions for the problems addressed in this thesis. We discuss below the findings of 

Chapters 5 and 6 and a recommendation for VaR modelling is presented based on the 

outcomes and findings of this thesis.    

7.1 Volatility forecasting  

 

Financial time series are studied in terms of asset returns rather than asset prices as the 

return series can explain the investor’s position, and can also identify potential risks or 

investment opportunities. To capture this vital information, statistical models are used to 

evaluate and forecast the asset price using the historical return series. Traditionally, return 
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series were modelled using ARIMA models, which can explain some of the behaviours in the 

return series. The main drawback of such models is the assumption of a constant variance; 

hance, the models are not able to cater for key stylised facts which include 

heteroskedasticity, volatility clustering and persistence of the volatility episodes. If we 

adopted Wold’s decomposition theorem, the return series can be split into deterministic and 

non-deterministic components. The deterministic component is the conditional mean 

(expectation) which can be captured in the ARIMA model. The non-deterministic component 

is the residual value that is considered to be a random variable that contains vital 

information such as the volatility of the return series.  

 

The volatility is not directly observable, so this transforms the problem to a filtering and 

approximation problem. There have been many methods proposed for calculating the 

underlying asset volatility which range from calculating the variance using historical data to 

more complicated methods such as exponential weighting moving average. These 

approaches have been adopted for their simplicity. However, they assume the variance is 

homoscedastic which is contradictory to the stylized facts observed in the majority of return 

series. The volatility of the underlying asset series exhibits complex behaviours such as 

volatility clustering and heteroskedasticity. This issue was addressed by the ARCH model, 

where the initial formulation catered for some key volatility attributes such as volatility 

clustering and persistence. Many versions of the ARCH model have emerged to address its 

limitations. For instance, the GARCH model reduces the number of lagged variables required 

in the variance equation. The EGARCH model caters for the leverage effects in the returns 

series.  To date, no single model caters for every aspect of the underlying asset series. For 

this reason, we see many variations of the ARCH model that are designed to address 

different aspects of the underlying return series. 

  

Neural networks have been applied in the forecasting domain in the hope of overcoming the 

limitations of the statistical models. The neural networks are non-linear models that are 

capable of approximating any continuous function with a certain degree of accuracy (Hornik, 

Stinchcombe et al. 1989; Hornik 1993). These generalisation capabilities, with the flexibility 

of the neural network model, position it as the ideal forecasting tool. In the literature, the 

majority of the volatility forecasting papers use a hybrid approach where the neural network 

is combined with the statistical models leveraging of each other to provide accurate 

forecasts. The reasoning behind this approach is that the standard feedforward neural 
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network is limited in modelling the conditional volatility. That is, the loss function used in 

the optimisation process such as the sum of error square (SSE) has a constant variance with 

respect to the input variables. This means the standard feedforward neural network is not 

capable of modelling heteroskedasticity in the data which will impact on the accuracy of 

volatility forecasting. This limitation was overcome by MDN where the variance is a function 

of the input variables; therefore, the variance can change over the training population 

preserving the heteroskedasticity in the data. The flexibility of the MDN allows it to be 

designed to mimic the GARCH model. This is achieved by allowing the feeding back of the 

variance as an input. In analysing the literature (see section 2.8.3), we find discrepancies in 

the results reported for volatility models and neural networks alike. These discrepancies are 

discussed in section 4.1 and further analysed in Chapter 5.  

 

In our analysis of the volatility forecasting literature, we observed common oversights and 

practices that are widely adopted for time series and neural network models alike. One such 

oversight is that the number of observations in the training set is often chosen in an ad-hoc 

manner. This practice can cause misleading results as over-fitting and under-fitting of the 

model parameters are directly related to the number of observations used in the training 

set.  Using too few observations in the training data set can lead to under-fitting which can 

cause instability of the model and poor forecasting performance. Also, using too many 

observations can cause over-fitting and lead to memorisation or loss of generalisation. This 

can be seen in the results shown in section 5.7, where the MDN forecasts of the NAB and 

QAN provide much better forecasts using 750 observations; whereas, ANZ and BHP provide 

better forecasts with 1000 observation. It is interesting to see that the GARCH models also 

displayed similar behaviour where the GARCH model displayed superior performance for the 

QAN daily forecast using 1000 returns, whereas the EGARCH model was superior to the 

GARCH using the 750 returns. A training set that spans a long period of time can potentially 

contain past behaviours that are no longer valid in today’s market. Also, a small training set 

would not contain enough information for the model to make an accurate prediction of the 

future.  

 

Over-fitting and under-fitting are also made possible by the number of parameters in the 

model. Neural networks are more prone to this issue due to the high number of weights 

connections. In the literature, the number of hidden units is generally chosen based on the 

individual past experience. In section 5.7, the impact of using the wrong number of hidden 
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units is highlighted in the results. It is interesting to see the performance of the MDN varying 

substantially for the same dataset as the number of hidden units and Gaussians vary.  The 

optimal number of hidden units and Gaussians differ across different time series according 

to the number of observations in the training dataset. Therefore, mis-specifying the number 

of hidden units and Gaussians in the MDN has a direct impact on the forecasting 

performance of the MDN in the short and long term.  

 

Several alternative models are often proposed to explain the same data, where objective 

criteria are needed to choose the most suitable model. While adding extra parameters to a 

model is often desirable, the increased complexity comes at a cost. The criteria for selecting 

the most suitable model must weigh the trade-off between increased information captured 

in the model by increased parameters and decreased reliability caused by over-fitting. This 

has been formulated in the famous Akaike Information Criterion (AIC).  The decrease in the 

likelihood function should be sufficient to offset the use of the extra parameters in the 

model. There have been many theories developed to determine the optimal neural network 

size, such as the NIC ( network information criteria) (Amirikian and Nishimura 1994) which is 

a generalisation of the AIC. In this paper, the optimal model was selected based on the error 

measures explained in section 5.4. It was interesting to see the optimal model differs across 

different time series and differed for different forecast horizons. This suggests that the MDN 

is still not completely optimised. The MDN could be finetuned by using pruning algorithms 

such as those in (Reed 1993). Pruning a neural network reduces the effect of spurious data, 

which will improve the accuracy of the forecast. The generalisation power of the MDN and 

its ability to capture the underlying asset dynamics of the returns series such as high 

volatility persistence makes it a better time series model than the traditional GARCH models. 

As demonstrated by (Diebold and Pauly 1987) and (Lamoureux and Lastrapes 1990), high 

volatility persistence in the GARCH model could be due to structural changes in the variance 

process. The MDN has the capability of capturing such dynamic behaviour, which is evident 

in its superior performance compared to that of the GARCH models. 

 

Computational issues were observed in the initial stages of this research. When the 

parameters for the GARCH model were estimated using Matlab and Eviews, the results were 

not consistent and in some cases they were strikingly different. This behaviour could be 

explained by the difference in the way the variance is calculated (Bruno and De Bonis 2000). 

Also, when optimising a model using different algorithms within the same package, the 
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estimated parameter values were completely different. This can be expected due to 

different initial conditions terminating criteria used by the algorithms. In some cases, when 

using the BHHH algorithm (especially when using 750 returns), the training process was 

terminated prematurely. A different algorithm had to be used, such as the Marquardt 

algorithm to overcome this convergence issue. These computational issues are also present 

when training neural networks. (Lawrence and Giles 2000) showed that using the conjugate 

gradient algorithm to train an MLP can lead to worse generalisation because they can be 

more prone to creating varying degrees of over-fitting in different regions of the input space.  

 

In the light of the arguments presented above, all models could be further finetuned. Also, 

the results explain the mixed results seen in the literature. The purpose of this study is to 

evaluate different volatility model performances with respect to different time series. Based 

on the statistical criteria used, it can be seen that MDN is superior to the traditional GARCH 

models. The statistical evaluation criteria used have no economic meaning. Also, they do not 

incorporate uncertainty, due to parameter estimations. It is recommended that the model 

forecast should be evaluated according to economic loss rather than statistical loss as 

suggested in (Lopez 2001).  

7.2 Option Pricing and Hedging  

 

Options are the most common instruments traded on the world markets. What makes 

options so popular amongst investors is that they can be used as an investment or a risk 

management tool.  However, they can be a source of risk if not applied appropriately as the 

investor can be exposed to extreme losses. Investors are heavily dependent on option 

pricing models to provide a fair evaluation of the option. The wide success of this model was 

due to its ability to produce an option price instantaneously. The formulation of BSOPM was 

based on major assumptions which allowed for the derivation of this model (see section 

2.4.1). These assumptions significantly impacted the model pricing capabilities which are 

visible in the models pricing biases. The constant volatility assumption has captured the 

attention of researchers, as it contradicts the volatility behaviour observed in the underlying 

asset. Also, it was realised when the volatility was backed out from the BSOPM for different 

strike prices, the implied volatility displays a U-shape pattern (volatility smile) when plotted 

against moneyness of the option. Nevertheless, implied volatility is derived directly from the 

options data, which contains vital information as it provides a foreword looking view on how 

the market is anticipating movements in the underlying asset. This is a different view to the 



 

 140

conditional volatility calculated from the stock returns which is a backward view. The other 

interesting feature of the implied volatility is the deformation of the volatility surface 

through time caused by the changes in the implied volatility levels. Many models have 

emerged to overcome the limitations of the BSOPM. In this research, we select the GOPM as 

it allows for the volatility to follow a GARCH specification. This specification overcomes the 

constant volatility assumptions and at the same time caters for key stylised facts in the 

underlying returns series. This model has displayed superior improvements over other 

pricing models. The major shortcoming for this model is the absence of a closed form 

solution. This means the model parameters have to be optimised using the Monte Carlo 

simulation, which is a computationally intensive process that limits its alibility to be applied 

to real-life problems.  

 

Neural networks have been applied heavily to option pricing problems. The majority of 

research papers rely on mapping inputs similar to the BSOPM to the option price. This 

approach displays some improvements in pricing accuracy over the BSOPM. This is not 

surprising since neural networks are capable of learning the relationships between the input 

variables. Yet there has been no attempt to evaluate the neural networks’ performance 

against more advanced models. The reason for this is that the pricing capabilities of the 

neural networks are inferior to those of more advanced pricing model such as the GOPM. In 

section 4.2, we explain that this behaviour is caused by the approach adopted in training the 

neural networks. Given the neural networks’ approximation capabilities, they should be able 

to learn key behaviours in the option data to provide accurate option pricing that is 

comparable to any statistical model such as the GOPM. To overcome this limitation, we 

propose a new method that utilises the implied volatility rather than the option price. This 

will allow the neural network to learn the implied volatility surface across all maturities and 

strike prices. Once the neural network is optimised, it will be able to produce an implied 

volatility for any maturity and strike. The implied volatility value can then be converted to an 

option price by using the BSOPM. To compare the performance of our proposed method, we 

benchmark it against another neural network model that is trained on the option price. We 

also do the same analysis for the BSOPM and the GOPM. This will allow us to demonstrate 

the effectiveness of our new method with respect to the other models. This is the first study 

to analyse the option pricing performance of a neural network in comparison to the GOPM. 

In Chapter 6, we conduct the experiments outlined in section 4.2 using FTSE 100 call options.  

Our new method (NNiv) on average displays superior pricing compared to that of all other 
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models. The exception is for the DITM and DOTM options. This is due to the number of 

options that fall into this category which could be caused by the data cleansing exercise. 

These are very impressive results since, for the first time, the neural networks are capable of 

pricing options with higher accuracy than do advanced stochastic option pricing models. The 

results in Chapter 6 are very encouraging, and to further analyse the capabilities of our new 

method, we conduct a delta hedging exercise. The aim of the delta hedging exercise is to 

demonstrate the completeness of the model. That is, a correctly specified option pricing 

model should be able to predict future movement in the underlying asset. The hedging 

results are somewhat surprising as the GOPM performed the worst and the NNiv was on par 

with BSOPM. The NNiv method performed very well on the short maturities and in-the-

money options. In terms of the GOPM hedging performance, the model parameters were 

estimated only on a single day; therefore, the model’s parameters would not contain the 

required information to make a prediction on the underlying asset movements. This also is 

evident in Figure 6.2 and Figure 6.3, where the implied volatility produced by the GOPM 

deforms with time. It would be interesting to see if this still holds when the GOPM is 

optimised on a larger data set. The neural network model was trained on a larger data set 

and by having a higher number of variables (i.e. weights), the neural network would be able 

to capture more of the underlying asset dynamics. In Figure 6.4 and Figure 6.5, the implied 

volatility does not display any deformation through time which shows the NNiv model is able 

to predict the implied volatility well into the future. The delta hedging exercise is not 

practical, since the option moneyness with change as the underlying asset price changes. So 

the investor would not necessarily hold on to the option until expiry.   
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CCHHAAPPTTEERR  88  --    CCoonncclluussiioonn  

 

In this thesis, we investigate the application of neural networks to ascertain market risk. This 

area of research has seen increased interest in recent years due to the increased volatilities 

and uncertainty in the global financial markets. Investment firms are continuously seeking 

new models which will enable them to understand and control their risk exposure. In this 

research, we address the poor results produced by neural networks as reported in the 

literature and provide explanations for these results. We make a direct contribution to the 

field of artificial intelligence by providing explanations for the variation of the results shown 

in literature for different artificial intelligence models. Also, we demonstrate the capabilities 

of such techniques in overcoming computational and assumptions issues inherited from 

statistical models. Specifically we demonstrate the importance of neural networks 

techniques in addressing the limitation of financial risk models.  

 

Firstly, we provided a detailed literature review in Chapter 2. The review consists of two 

main areas which included financial modelling techniques where financial time series 

modelling, option pricing, hedging and VaR models are reviewed.  In each of these areas, we 

elaborate on the strengths and weaknesses of the models under study relative to the 

reported results of the relevant study. The second main area covered in this chapter is 

neural networks.  We review the neural network models that have been adopted for 

financial modelling, which are mainly back-propagating MLP, MDN and RBF networks. We 

then present a comprehensive review of neural network research conducted in conditional 

volatility forecasting, option pricing, hedging and VaR. In this review, we highlight the 

strengths and weaknesses by analysing the methods applied and results for each study. This 

review is an accomplishment as it can serve as a main reference for future research. 

Moreover, this detailed analysis allowed us to formulate the objectives of this thesis by 

highlighting the inconsistencies in the literature which have been the main motivation for 

this thesis. 

 

In Chapter 3, a clear and precise problem definition is formulated. This is achieved by 

defining the terms and concepts to be used throughout the thesis. This includes the problem 

definition and the choice of methodology to be followed throughout this thesis. In Chapter 

4, we provide a solution overview for each of the main problems that are addressed in this 
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research which include volatility forecasting, option pricing and hedging. The conditional 

volatility modelling solution addresses the modelling issues for statistical and neural 

networks models which are typically overlooked, and the impact that this oversight can 

potentially have on the stability and forecasting performance of the models. To further 

elaborate on this, we propose testing the models against different time series to evaluate 

the behaviour of the models. For option pricing, we note that neural networks results are 

very poor in this domain. The potential cause of this weak pricing performance is explained 

and an alternative method for pricing option is suggested. To evaluate the effectiveness of 

this new method, it is proposed that it be evaluated against the common approach used in 

neural network literature and the GOPM. This will be the first study of its kind to compare 

option pricing of neural networks with advanced stochastic pricing models. To further 

analyse this new method, we adopt delta hedging scenario to evaluate the competence of 

our proposed model with that of the competing models. 

   

In Chapter 5, we described extensive experiments as discussed in section 4.1.  The results 

obtained from these experiment highlights and explain the results reported in the literature. 

Most significantly, the results demonstrate the importance of selecting the correct model 

structure for time series understudy, and the impact of common oversights such as the 

number of observations in the training set length which are often neglected and can impact 

on the performance of the time series and neural network models alike. The results also 

highlight the flexibility of the neural networks and ability to capture complex behaviour in 

the underlying data. The neural networks on overage outperformed the GARCH and EGARCH 

models subject the correct model specification. The results in this chapter can be used for 

future research as a guide for designing a neural network that meet the objective target. 

 

In Chapter 6, the option pricing experiment was conducted as outlined in section 4.2. Our 

proposed model deviates from the approach adopted in the literature, since our model is 

trained on the implied volatility rather than option price. The results obtained from 

experiments show the superior option pricing performance of our model relative to other 

neural network models as well as the BSOPM and GOPM. These results are very impressive 

as this is the first time that neural networks have been able to outperform advanced option 

pricing models such as GOPM. To further verify and test our model, we performed a delta 

hedging exercise. The hedging results were somewhat surprising, as our proposed model 

was on par with the BSOPM, and GOPM had the worst performance. The results presented 
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in this chapter demonstrate the effectiveness and power of neural networks to learn and 

capture complex patterns in the data. In Chapter 7, the results for the experiment are 

further explained and the contributions of each chapter highlighted.  

 

Neural network are known to be universal approximators that can approximate any 

continuous function with certain accuracy. This theory seems to fail when applied to 

financial problems such as volatility forecasting and option pricing. In this thesis, we show 

that the lack of success of neural networks in modelling market risk aspects is due to the 

neural network design and training. We have demonstrated in this thesis the superiority of 

neural network over statistical models as long as the neural network model is designed and 

trained appropriately. The results obtained in this thesis serve to motivate the further 

pursuit of neural networks as a risk management tool that can address the many limitations 

of the current statistical models. 

8.1 Contributions of this Thesis 

In this thesis we make the following contributions: 

 

• This thesis directly contributes to the field of artificial intelligence by providing 

explanations for the variation of the results shown in literature for different artificial 

intelligence financial time series forecasting and option pricing models. We use life 

financial data to demonstrate the capabilities of such techniques in overcoming 

computational and assumptions issues inherited from statistical models.  

• Specifically we demonstrate the importance of neural networks techniques in 

addressing the limitation of financial risk models. We contribute to the field of 

neural networks not only by demonstrating the superiority of the neural networks 

over the state of the art statistical models, but we also emphasis the selection and 

the design of the right model for the task. This can be seen with the mixture density 

networks volatility forecasting accuracy varying dramatically with different model 

configurations. This is also apparent when using the backpropagating neural 

networks to price options using the option price and implied volatility as the target 

output.   

• In this thesis we demonstrate the superiority of the mixture density networks in 

forecasting volatility over GARCH and EGARCH models. We demonstrate  the impact 

of using the correct model specification and the length of the training data set on 

the performance of the mixture density networks and time series models alike. The 
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results obtained here can be utilised as a guide in designing neural networks 

forecasting models to overcome the common assumptions adopted in volatility 

forecasting literature. 

• To our knowledge (at the time of writing this thesis ),this is the first in-depth study 

to evaluate the option pricing and hedging capabilities of neural networks against 

the GARCH option pricing model. The neural network model proposed in this thesis 

was able to outperform the Black-Scholes and GARCH option pricing mode. We 

provide explanations to the downfalls of the option pricing models used in literature 

and propose a new method which allows the neural network to learn the implied 

volatility surface rather than the option price. This is a significant contribution as for 

the first time demonstrate the capabilities of the neural networks to outperform 

advanced option pricing models.  

• The results obtained in this research contribute to the market risk literature by 

demonstrating the superiority of the neural networks over state of the art 

forecasting and option pricing models. The techniques and models used in this 

research can therefore be applied directly to real life trading and can also be 

extended to include other risk models such as Value at Risk models. 

 

8.2 Value at Risk (VaR) – Future Work  

 

The increase in volatilities in world markets has made risk management tools a necessity for 

understanding and controlling risk exposure. VaR models have been designed and adopted 

by finance institutions as the standard tool for reporting risk exposure. The popularity of a 

VaR model stems from its ability to summarise and present the worst expected loss of a 

portfolio over a time period as a single number. This measure can be easily understood by 

senior management without necessarily understanding the mathematical reasoning behind 

it. The wide adoption of VaR models by financial institutions is also attributed to J.P. 

Morgan’s development of VaR methodologies. In addition, the Basle Committee on banking 

supervision at the Bank for International Settlements has made it a requirement for banks to 

establish minimum capital requirements based on the VaR measures subject to certain 

criteria. There are different methods for calculating the VaR (see appendix B), no matter 

which approach is considered , accurate measurement of the exposure to market risk is vital 

to the effective application of the VaR models in risk management.  
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Many variations of the VaR models have been developed to increase the reliability and 

accuracy of the VaR measures. Neural networks have been proposed as an alternative to 

many econometric and statistical methods. Neural networks are a suitable choice for VaR 

models since they cater for nonlinear multivariate functions which are ideal for modelling 

VaR, since the portfolio can contain a wide range of assets that can have linear or non-linear 

payoffs. This is not a straightforward task, as neural networks have to be designed 

appropriately by selecting the right inputs, network architecture and training data. In 

Appendix B, a review of neural network application in VaR shows limited success in this 

domain. The weak performance of neural networks in modelling VaR can be attributed to a 

variety of factors. However, the key weakness is the ability of neural networks to forecast 

extreme values. This issue exists with statistical models which are compensated by using fat 

tail distributions. This is also dependent on the ability to capture the stylised facts of the 

underlying asset such as heteroskedasticity. This is a cumbersome task due to the lack of 

observation in the tails. Most models compensate for this by using fatter tail distribution 

rather than a normal distribution. This approach can have side effects as the model is forced 

to comply with the underlying asset, which can lead to over-estimation of VaR and 

therefore, cause more capital to be consumed for risk management purposes.   

 

Neural networks can be utilised for modelling VaR as they have been successful in 

forecasting volatility and pricing options. Given the nature of this problem, we propose the 

MDN to address this issue rather than feedforward networks. The MDN will be able to 

capture the dynamics of the underlying asset while providing good approximation of the 

profit and loss distribution. Also, the MDN is able to cater for different stylised facts 

including heavy tails. Our proposed approach differs from other studies as our model 

captures the profit and loss distribution with the emphasis on learning the quantile value. 

This method will allow the MDN to infer VaR measures for any quantile value. 

 

Input selection:   

The inputs to the MDN are the quantile of the return, time index, volatility, and the target is 

the return value.  To obtain the quantile we sort the returns from largest to smallest. Then 

we assign each return a number value between 0 and 1. So if the total number of returns is 

100, we give the top return 1 and the next will be 1-0.001 etc… Due to the absence of the 

return in the input, the time index is necessary to preserve the time dependency and 

sequencing in the underlying asset. The volatility parameter allows the MDN to feedback the 
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volatility which allows it to model key stylised facts such as volatility clustering. The return 

value is used as the target since the MDN will require a mapping between the inputs to the 

return. 

 

MDN Structure:   

The number of output units and input units would depend on the time series and the 

training samples used. The MDN would need to be designed according to the guidelines 

highlighted in Chapter 4. 

1
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Figure 8.1: MDN design for forecasting VaR 

 

If we define VaR to be as follows: 

( ) TTVaR ttt

2

1

1

11 +
−

++ −= σαφµα  (8.1) 

Where 1+tµ  is the expected return which can be calculated using ARIMA model, T is the time 

horizon measured in days, ( )αφ 1−
 is the α -quantile derived from the profit and loss 

distribution. 

 

The MDN can be utilised to provide accurate estimation for ( )αφ 1−
, overcoming the 

assumption of normality. The advantages of this model over the models studied literature, is 

that it is directly modelling return quantile at the same time preserving the time dependency 

and dynamics of the underlying asset.  One method will be considered is data boosting, 

which is achieved by generating more observation synthetically at the extreme values by 
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preserving the statistical attributes of the data since we have the quantile as an input to the 

MDN. So by increasing the number of the observations at the tails, this can potentially 

increase the forecasting accuracy of the model.  
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AAPPPPEENNDDIIXX  AA  --  TTiimmee  SSeerriieess  PPrrooppeerrttiieess  

 
Below is a summary of time series properties and concepts used in this thesis. 

A.1 The Wiener Process 

 

A Wiener process is also known as a standard Brownian motion that is a continuous-time 

stochastic process with three important properties:  

• It is a Markov process, where the probability distribution for all future values of the 

process is dependent only on the current value. 

• The Wiener process has independent increments. 

• Changes in the distribution are normally distributed with a variance that increases 

linearly with the time interval. 

If z(t) is a Wiener process and the change in the process is given by ∆z(t) corresponds at time 

interval  ∆t, then z(t)  satisfies the following: 

• tz t ∆=∆ ε , where εt is a normally distributed random variable with zero mean and 

standard deviation of 1. 

• E[εtεs ] = 0 for t ≠ s, that is εt is serially uncorrelated. Therefore, the values of ∆z for any 

two different intervals of time are independent. 

For a long time horizon T , the changes in the wiener process can be regarded as the sum of 

all the small changes up to time T.  Let N = T/∆t, then z over the interval T is given by, 

( ) ( ) ∑
=

∆=−
N

i

i tzTz
1

0 ε  (A.1) 

εi ( for i = 1,…,N ) are random draws from a normal distribution. By letting ∆t become very 

small, the increments can be represented as a Wiener process, dz, in continuous time,    

dtdz tε=
 

(A.2) 

Since εt has zero mean and standard deviation of 1, the expectation and variance of the 

process can be defined as follows: 

( ) 0dzE =  

( ) tdzV =  

(A.3) 

(A.4) 

 The Wiener process has no time derivative in the real sense; t
t

z
t ∆=

∆
∆

ε  which becomes 

infinite as ∆t approaches zero. 
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A.2 Geometric Brownian Motion with Drift 

 

The simplest generalisation of the Wiener process can be developed with a drift rate of zero 

and a variance of 1. 

 dzdt dx ba +=  (A.5) 

where a and b are constants and dz is the Wiener process. To gain a better understanding of 

this relationship, let us consider each component in the right hand side of the equation adt 

and bdz. First let us consider the equation with the term bdz,  

dt dx a=  

or a=
dt

dx
 

(A.6) 

When integrating with respect to t we have, 

atxx += 0  (A.7) 

where x0 is the initial value at time 0.  At time T, the value of x would have increased by aT. 

The bdz term can be seen as adding variability or noise to the value of x by the amount of b 

times to the Wiener process dz. Since the Wiener process has a standard deviation of 1, the 

bdz has a standard deviation of b.  The change in x or δx given a small change in time δt can 

be defined as follows: 

tbtax δεδδ +=  (A.8) 

where ε is normally distributed random variable therefore x is normally distributed with the 

mean aδt and variance of  b2δt. 

A.3 Itô Process 

 

An Itô’s process is a generalised Wiener process, in which parameters a and b are functions 

of the underlying asset variable x and time t. This can be expressed as follows: 

 

( ) ( )dztxbdttxadx ,, +=  (A.9) 

 

The expected drift rate and the variance are able to change with time. So for a small change 

in time δt, the variable x changes by δx such that  

( ) ( ) ttxbttxax δεδδ ,, +=  (A.10) 
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This relationship assumes that the drift and variance rate of x remain constant, ( )txa ,  and 

( )2,txb  respectively, during the time interval between t and δt. 

A.4 Linear Time Series models  

The Wold decomposition theorem is typically used when modelling return series. Wold’s 

theorem states that any de-meaned covariance stationary rt can be represented as a sum of 

linearly deterministic and linearly stochastic terms: 

1, 0

0

=

+= −

∞

=
∑
bwhere

br jt

j

jtt εµ
 (A.11) 

 

rt is the return series, µt is a deterministic component or the mean, which is zero in the 

absence of trends in rt. εt is the uncorrelated sequence which is the innovation of the 

process rt. bj is the infinite vector of moving average weights or coefficients, which is 

absolutely summable  ∞<∑
∞

=1j
jb . 

Let rt be an i.i.d innovations as opposed to white noise. The unconditional mean and 

variance is defined as follows: 
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(A.12) 

 

(A.13) 

Both are invariant of time; however, the conditional mean is time varying: 

[ ] ∑
∞

=
−− =

1

1|
i

ititt brE εφ  
 

(A.14) 

where 1−tφ is the information set such that { },..., 211 −−− = ttt εεφ . Also, the conditional 

variance is given by  

[ ]( ) 2

ε1t

2

1ttt σ]||rEr[ =− −− φφE  (A.15) 

 

The conditional variance is a constant; therefore, it is not able to capture the dynamics of 

the conditional variance. The k-step-head forecast for the conditional prediction error 

variance is given as follows: 
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(A.16) 

 

 

(A.17) 
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(A.18) 

As ∞→k the conditional predication error variance converges to the unconditional 

variance ∑
−

=

1

0

22
k

i

ibεσ . The conditional predication error variance depends on k but not on 
tφ . 

Therefore, the i.i.d innovation model does not capture the relevant information available in 

at time t. 

 

 

 

A.5 Moving Average Model 

 

The Moving Average (MA) model is widely used in financial time series modelling. The MA 

model can be expressed as an AR series.  

tttt rrr εφφφ ++++= −− ...22110  (A.19) 

The above model is unrealistic due to the infinite number of parameters. To make the model 

more practical, a constraint is placed on the coefficients φi so it is determined by a finite 

number of parameters. Let 
i

i 1θφ −= , for i ≥ 1; then we have the following: 

 

tttt rrr εθθφ +−−−= −− ...2

2

1110  (A.20) 

 

where |θ1|< 1 for the series is stationary. The impact of rt-i decays exponentially with the 

increase in I ( 01 →iθ as ∞→i ). This model can be rewritten using the back-shift operator 

B as follows: 

 

t

q

qt BBcr εθθ )...1( 10 −−−+=  (A.21) 

where c0 is a constant and εt is a white noise series. 

A.6 Auto Regressive Moving Average model (ARMA) 

 

A natural extension of both AR and MA models would be to combine both models into an 

autoregressive moving average model (ARMA). This technique is popular when using 
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volatility modelling such as the GARCH model. The ARMA(1,1)  model has the following 

form: 

1101 −− −+=− tttt rr εθεφφ  (A.22) 

where εt is a white noise series. The left hand side is the AR component and right had side is 

the MA part, φ0 is a constant term of the equation. In the case of φ1 = θ1 then the process is 

reduced to a white noise. 

Since E[εt] = 0 for all t, then given that the series is weakly stationary, the expectation of the 

ARMA model is given by: 
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with variance of  
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12

1 <φ  to guarantee a positive variance, which is the stationary condition for the AR(1) 

model. The generalised ARMA has the following form: 
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AAppppeennddiixx  BB  --  VVaalluuee--aatt--RRiisskk  

 

B.1 Value-at-Risk review  

 
Value-at-Risk (VaR) concepts can be traced back to the late 1980s where financial firms 

began to adopt VaR to measure the risk exposure of their trading portfolios. J.P. Morgan 

released the RiskMetricsTM
 in October 1994 in an attempt to standardise the application of 

VaR in industry. This significantly contributed to the growth in the popularity of VaR as a risk 

assessment tool. VaR has also attracted major attention in academia, where its application 

has been extended into many other risk areas. The ability to summarise the risk exposure as 

a single number has allowed VaR to become applicable across different levels, where 

managers do not need an in-depth statistical understanding of the risk models to 

understand the VaR measure, since it provides a single number that expresses the risk 

exposure in dollar terms for a given time horizon and confidence level, that can be easily 

interpreted and understood.  

 

Given the recent volatility in local and world markets, empirical modelling has been widely 

adapted in many areas of risk management. Despite the increase in their application and 

popularity, there is little evidence that these models actually work. If the risk models 

perform their job effectively, no systematic failures will be observed. The risk models suffer 

from limitations inherent in their design. These limitations become more apparent during a 

period of crisis when the basic statistical properties of the market differ substantially 

compared to stable periods.  VaR models have become a popular risk measurement tool in 

finance as they attempt to capture the potential market risk of an assets portfolio. This is 

achieved by measuring the maximum loss of a portfolio value over a given time period over 

a time horizon. Despite the wide adoption of the VaR models by financial institutions, VaR 

has been criticised for its simplification of the risk measure and the unrealistic assumptions. 

The main concept of the VaR model is to produce a quantitative figure of a portfolio’s 

downward risk. This provides a consistent measure of risk for different positions and 

instruments (Dowd 1999) .  It also accounts for correlations between different risk factors 

which is important when computing risk measures of a portfolio with more than one 

instrument. 
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The main criticism of the VaR model is that it reduces all information down to a single 

measure where potential vital market information could be lost in the process. Also, the VaR 

model does not give any further information on the extent of potential losses that can occur 

beyond the VaR estimate. Another drawback of the VaR model is that different portfolios’ 

risk exposure cannot be compared using the VaR estimates; that is, two portfolios with the 

same VaR estimates do not carry the same risk (Tsay 2005). VaR models are typically based 

on assumptions which are not necessarily valid. For this reason, the VaR models are not 

complete models and can break down in extreme circumstances, especially when they are 

expected to work. Hence, VaR models should be used together with other risk management 

techniques to obtain a better understanding of the risk exposure (Tsay 2005). 

 

There are three main methods of calculating the VaR: Variance-covariance, Historical and 

Monte Carlo simulation methods. Below is a summary of the main advantages and 

disadvantages of each method. 

B.2 Value-at-Risk Definition 

 

VaR was developed essentially to measure the market risk of a portfolio. Market risk is 

mainly caused by the volatility or the price movements of the asset price. So the VaR models 

in simple terms states the following: 

 “ We are X percent certain that we will not lose more than V dollar in the next N days”, (Hull 

2003). 

The concept of VaR gives a quantitative measure of the portfolio’s downward risk. The 

important features of VaR include a common consistent risk measure for different 

instrument types in the portfolio. Also, it accommodates the correlation between different 

risk factors which is vital when computing risk measures for portfolios with more than one 

instrument. The calculation of VaR can be simplified if the distribution of the asset returns is 

assumed to be normal: 

NWVaR 0ασα =  (B.1) 

α is the confidence interval, σ is the standard deviation of the returns and W0 is the initial 

portfolio value and N is the time horizon measured in days as shown in Figure 10.1. 
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Figure B0.1: Illustration of VaR confidence intervals 

 
It is essential to keep in mind the time horizon and the confidence level when analysing the 

VaR measures. It is also essential to take into account the method used for calculating the 

VaR such as the normal approximation of the asset returns. It is recommended to use the 

normal approximation for short time horizons such as daily VaR calculations. The confidence 

level must also be chosen to suit the problem at hand. For instance, the confidence level will 

depend on the risk aversion of the financial institution. If the institution is risk averse, then a 

high confidence level should be used. 

 

There are two types of VaR calculations: parametric and non-parametric. The parametric 

models are based on statistical parameters of the return distribution.  The non-parametric 

are based on simulations or the use of historical data  (Ammann and Reich 2001). The three 

most popular methods for VaR calculations are discussed below. 

 

B.2.1 Historical Simulation Method 

 

The historical method is the simplest method for calculating VaR since it requires few 

assumptions about the distribution of the portfolio returns. This method makes use of 

historical data to construct the future profit and loss distribution of a portfolio which can be 

utilised to calculate the VaR measures. The distribution is constructed by subjecting the 

portfolio to daily changes of the past N days.  This applies the past 100 days of market 

changes to the portfolio for the construction of N hypothetical mark to market profits and 

losses. Using these hypothetical profit and losses, VaR can then be determined. 

 

The historical simulation method can explained in the following steps: 

• Identify the market factors relevant to the portfolio in question.  
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• Obtain the historical values for the market factors for the past N days. 

• Subject the portfolio to the changes of past N days; by calculating the profit and loss of 

the portfolio using the changes in the market for the past N days. 

• Order the portfolio profit and losses in descending order. 

• Based on the desired confidence interval select the appropriate value. For instance, 

when N is 100 days, then the 95% VaR would be the 5
th

 largest loss. 

 

The use of actual historical prices eliminates the need to make assumptions about the 

underlying asset distribution. This also caters for fat tails which eliminate the normal 

assumption.  The historical simulation method has many attractive features; for instance, it 

caters for non-linear pay-offs such as options. This method eliminates the need for complex 

covariance calculations.   

 

 The choice of the length of data set to be used in this method has to be considered 

carefully. The historical period should be long enough to produce a reliable estimate, but 

short enough to avoid “paradigm shift”.  However, if high confidence intervals are required, 

then a large data set is necessary. In this case, the data set might contain excess or extreme 

market movements that do not reflect the current market conditions (Manfredo and 

Leuthold 2001). Historical simulation ignores the time variance and assigns equal weights to 

events (Linsmeier and Pearson 2000). This means that this method does not react fast 

enough to the current market conditions. Also, it does not cater for high and low periods of 

volatility. 

 

Historical simulation is the simplest of the VaR methods to implement. This method does not 

make any assumptions about the statistical distribution, volatility or correlations. The VaR 

value is derived directly from the returns series and can be applied to any instrument (Jorion 

2001). However, this method has many shortcomings. For instance, it will not be useful for 

new instruments where there are insufficient data. Since the VaR value is calculated based 

solely on historical returns, the VaR estimate will be unreliable. The fundamental 

assumption underlying asset the historical simulation method is that the historical asset 

return movements remain unchanged in the future. So a VaR forecast can be calculated 

based on the historical return. In some cases, this can lead to distorted VaR estimates (Dowd 

1999) due to the possibility that some occurrences are not captured in the historical data set 
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such as high volatility periods which can lead to major losses. There is a trade-off associated 

with this method that is associated with the length of the historical data series. It is 

important to have a large time series to ensure stable VaR estimates; however, this method 

does not give any weighting or priority to recent observations (Jorion 2001). All observations 

have equal weighting where the VaR estimates will not react quickly to recent market data 

especially in cases of large market jumps. This method does not represent the return 

dynamics which can cause major potential losses when applied in a risk management 

scenario.   

B.2.2 Variance-covariance method 

 

The variance-covariance method is based on the assumption that the asset prices are 

normally distributed. The assumption of normality simplifies the implementation of this 

method significantly.  After estimating the parameters of the return distribution for the 

entire portfolio, the VaR measure can be found by determining the loss value that matches 

or exceeds the specified percentage for a given time frame. Using the variance-covariance 

method, the VaR model can be expressed in terms of the variance-covariance matrix for the 

asset returns, where the sensitivity of the portfolio to price shifts can be calculated.  The 

variance-covariance approach can be constructed using the following steps: 

• The variance-covariance matrix is calculated using the historical returns.  Let us consider 

a portfolio with two assets A and B. The variance-covariance is given by: 


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• Calculate the sensitivities of the portfolio. This is the amount that a portfolio value will 

change for a predefined change (i.e. 1% change) in the underlying asset prices. This is 

achieved by examining the movements in each of the market prices separately.   

•  Calculate the volatility of the total change in the portfolio value. 
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Where, δ a vector of market prices sensitivities, M is the variance-covariance matrix of the 

market prices. 

• To calculate the VaR measure, the volatility v must be multiplied by the scaling factor 

(based on the desired confidence level). For instance, if we desire a 95% confidence 

level, then the VaR can be calculated as follows: 

TvVaR 645.1%95 =  (B.5) 

T is the holding period in days. 

 

The assumption of normality is one of the main drawbacks of this method. This method has 

a tendency to produce fat tails in the distribution of the returns. This is a concern since fat 

tails underestimate the true risk associated with the portfolio. Also, a portfolio with option-

like assets can produce inaccurate results due to the non-linear pay-offs. A portfolio with 

moderate option-like content can make use of the variance-covariance method as long as 

the holding period is very short (Manfredo and Leuthold 2001). This method is easily 

implemented and it is not computationally intensive.  Also, the correlations and standard 

deviations can be derived to determine the impact on the risk variables. 

 

This approach is based on the assumption of changes in the market and portfolio values are 

normally distributed. This simplification allows for the standard mathematical properties of 

the normal distribution to be applied in calculating the VaR estimate. This assumption 

contributes to the simplicity of this approach and should be used only for portfolios 

consisting of linear instruments (Dowd 1999). The major drawback of this method is the 

assumption of normality. Financial time series do not follow a normal distribution, and 

therefore, the assumption of normality can underestimate the potential risk especially when 

the tails of normal distribution are thinner than the return series distribution.  This becomes 

a bigger issue when a portfolio includes non-linear instruments such as options. To 

overcome this limitation, a delta-normal approach is adopted, where the first order 

approximation of the returns series by liner approximation is used to calculate the VaR 

estimates. This improvement provided by the delta-normal approach comes at the expense 

of the simplicity of the variance-covariance approach. 

B.2.3 Monte Carlo simulation method 

 

The Monte Carlo simulation method is very similar to the historical simulation method. The 

main difference is that rather than using historical data for the simulation process, in the 
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Monte Carlo simulation method, random numbers are generated from a statistical 

distribution that fits the return distribution. These random numbers are then used to 

calculate the hypothetical profit and loss of a portfolio. This can be used to determine the 

distribution of the portfolio profit and loss allowing for the calculation of the VaR measure. 

  

The Monte Carlo simulation method comprises the following steps: 

• Identify the market factors relevant to the portfolio in question.  

• Determine a distribution that fits the returns series. 

• Generate N random hypothetical values from the distribution.  

• Subject the portfolio to the N random movements, by calculating the profit and loss of 

the portfolio using the changes in the market for each of the N random values. 

• Order the portfolio profit and losses in descending order. 

• Based on the desired confidence interval, select the appropriate value.  

 

The Monte Carlo simulation is the most popular method for VaR calculation, but it is the 

most challenging to implement (Dowd 1999). The advantage of using this method is that it 

does not rely on the normality assumption of the return series and it can cater for non-linear 

instruments such as options. This method is also capable of generating the entire 

distribution of the underlying asset; therefore, it can be used to calculate losses in excess of 

VaR interval. The biggest challenge in implementing the Monte Carlo simulation method is 

the computational time required to generate reliable results. Implementing this method for 

portfolios with a large number of assets can become very expensive. Given the technological 

advances in computing processing power and the continuous drop computer hardware, this 

limitation will become less of an issue in the near future (Jorion 2001). A potential drawback 

of this method arises from model risk which is caused by making the wrong assumption 

about the pricing model and/or the underlying asset generating stochastic process. This 

wrong assumption can lead to undesirable outcomes, so the modeller requires subject 

matter expertise to derive the correct modelling technique. Also, explaining the results 

generated by this method to senior management would be very challenging.  
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B.3 Modelling Value at Risk with Neural Networks  

 

VaR at risk models are used to obtain insight into a portfolio’s risk exposure. Ascertaining 

this risk exposure requires a model that is capable of capturing key behaviours of all the 

instruments in the portfolio. Neural networks have been used with the aim of improving on 

the VaR models by utilising the neural networks’ flexibility and modelling capabilities. Below 

is an overview of the research conducted in this domain.   

 

(Locarek-Junge and Prinzler 1998) apply MDNs to approximate the distribution of the 

underlying returns series. The MDN’s ability to approximate the underlying asset distribution 

can prove a powerful tool in estimating and predicting the VaR of a portfolio. The MDN was 

trained by minimizing the negative log likelihood loss function using a back-propagation 

algorithm. The MDN is trained using 5-day and 30-day moving averages and moving 

standard deviations of the returns. The data series used for this study is the Deutsche 

Mark/US-Dollar exchange rates from September 1985 to August 1994. The first 2000 

observations are categorised for the training set; the following 250 observations are used for 

testing. The number of hidden units and number of Gaussians were varied and the model 

with the best fit was selected. The VaR estimates were generated using Monte Carlo 

simulation with 10000 simulation paths to approximate the distributions of the returns then 

calculating the 95% and 99% VaR estimates. The results show the MDN with one Gaussian 

has a similar performance to that of the Risk Metrics model, since both are autoregressive 

models and both assume normality in the underlying returns. However, once the number of 

Gaussians increases, a drop in the number of VaR exceedances is observed. The results show 

the MDN to have superior performance to that of the Risk Metric model based on the very 

basic testing criteria. Ideally, the MDN models would be back-tested using advanced 

methods. The other drawback of this study is that the design of the MDN is not consistent 

with the time series attributes, which potentially may lead the MDN to miss key behaviours 

such as the volatility feedback effect in the underlying data.  

 

In (Miazhynskaia, Dorffner et al. 2003), linear and non-linear MDNs  are applied to estimate 

and forecast the conditional distributions. These forecasts are then used to calculate the VaR 

measures for three different time series: Dow Jones Industrial average (DJIA), FTSE 100 

traded on the London Stock Exchange and the Japan Index NIKKEI 225.  The MDN is 

benchmarked against the GARCH model using Gaussian and Student-t distributions for each 

model. Each data series consisted of 13 years of observations from 1985 to 1997. The data 
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series was divided into 500 days for training, followed by 100 days for validation and 

remaining 100 days for testing. All models were optimised by minimising the negative log-

likelihood loss function. The MDN hidden units were set to three hidden units. The models 

were evaluated using five criteria which are: correctly estimating the VaR levels, Basle traffic 

light test, proportion failures test, conditional coverage test and lost interest yield. The 

results produced a different ranking for each model across different series. There was no 

significant advantage in using non-linear over linear models for the data series except for 

DJIA where linear models performed better than did the other models. The overall 

performance across all measures in the results support the non-Gaussian, which is 

understandable since the non-Gaussian models assign more mass in the tails therefore are 

able to cater for extreme movements in the underlying data series. The MDN performance 

varied across the time series which is a consequence of using one neural network structure 

to model different time series. Ideally, the MDN should be customised for each series by 

choosing the appropriate number of hidden units, number of Gaussians and the length of 

the training set. 

 

In (Wu, Sun et al. 2005) quantile regression neural networks and support vector regression 

(SVR) are applied to VaR forecast. This technique aims at mapping the quantile to the return 

directly. Therefore, once the network is optimised, the return can be deduced from the 

neural network for any quantile. Both models were compared to the Monte Carlo Simulation 

VaR method. The composite index in the Shanghai Stock exchange data for the period 

December 1991 to February 2002 is used for optimisation of the models. The results 

demonstrate the superiority of the neural network and support vector machine compared to 

the Monte Carlo method; this can be explained by the normality assumption in the Monte 

Carlo simulation. The neural network is able to calculate the VaR with high confidence levels 

whereas the SVR is able to calculate VaR measures with higher accuracy; however, the SVR 

underestimates VaR with less probability. The drawback of this method is its ability to 

capture the volatility clustering in the underlying returns. Also, using extra key inputs such as 

volatility can contribute to the accuracy of the model. 

 

(Dunis, Laws et al.)  study Higher Order Neural  Networks (HONNs) by benchmarking them 

against other models such as different neural network designs, Extreme Value Theory, 

ARMA-GARCH(1,1), Riskmetrics volatility models and hybrid neural networks. The models 

are evaluated based on the out-of-sample forecasting performance for computing the VaR 
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measures. The data series used in this study is the Brent oil and Gold bullion for the period 

of April 2002 to March 2008. The data set was split into a training set of 1045 observation 

for training, 260 for validation and 261 for out-of-sample testing. The 10 past lag returns 

were chosen as inputs for the neural networks. For the MLP-Riskmetrics and HONN-

Riskmetrics model, the historical volatilities of the past 10 lag returns were included as 

inputs. The results show the hybrid HONNs-Riskmetrics model has superior performance, 

with all neural network models demonstrating acceptable performance compared to the 

other statistical models. The drawback of this research is that the neural network design and 

training method was not explained: it was not clear if the neural network was trained to 

forecast returns or volatility. Also, the process of converting the neural networks forecasts 

to VaR measures was not covered.  

 

In (Chen, Lai et al. 2009), a back propagation neural network is used to predict the one-step-

ahead conditional volatility. The conditional volatility is derived by estimating the conditional 

second moment and subtracting the squared neural network estimate of the expected 

return. Once the one-day-ahead conditional volatility is calculated, the VaR measure is then 

calculated by simulating the return distribution using Monte Carlo simulation. The data 

series used is 913 log returns of the Hang Seng Index from May 2003 to December 2006. The 

neural network inputs are chosen to be the last six lags which are based on autocorrelation 

analysis. The neural network performance is compared to the ARMA-GARCH model. The 

results show that the ARMA-GARCH model is accepted at the 97.5% and 95% confidence 

levels. However, the neural network is accepted on all levels. The limitation in this study is 

that the neural network training and model selection are not discussed. The network was 

trained on only 500 data points; this could cause issues for GARCH and neural network 

models.  
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AAppppeennddiixx  CC  --  DDeettaaiilleedd  RReessuullttss  uusseedd  iinn  

CChhaapptteerr  55  

The results below have been summarised and presented in Chapter 5. The full set of results 

is displayed below. 

C.1 One Day forecast results  

 
 BHP   Qan  NAB  ANZ  

 NMAE HR NMAE HR NMAE HR NMAE HR 

GARCH 0.694 74 0.914 68 0.790 70 0.796 73 

EGARCH 0.667 74 0.968 65 0.745 74 0.796 70 

LF EGARCH 2.190  2.466  2.754  2.545  

LF GARCH 2.014  2.379  2.788  2.578  

Table C.1: 1-day forecast for 1000 returns 

 
 BHP   Qan  NAB  ANZ  

 NMAE HR NMAE HR NMAE HR NMAE HR 

GARCH 0.893 63 0.746 72 0.678 74 0.872 68 

EGARCH 0.847 65 0.737 72 0.705 74 0.842 69 

LF EGARCH 3.007  2.524  2.480  2.911  

LF GARCH 3.002  2.520  2.666  2.909  

Table 0.2:  1-day forecast for 750 returns 
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 BHP ANZ NAB QAN 

 NMAE HR LLF NMAE HR LLF NMAE HR LLF NMAE HR LLF 

2G2H1k 0.685 72 1.874 0.752 75 1.263 0.740 74 1.291 1.007 65 1.216 

2G3H1k 0.688 72 1.777 0.753 75 1.263 0.740 74 1.291 1.007 64 1.229 

2G4H1k 0.685 72 1.926 0.754 75 1.265 0.739 75 1.240 0.995 64 1.279 

2G5H1k 0.686 72 1.868 0.741 76 1.161 0.740 75 1.294 1.007 64 1.238 

2G8H1k 0.689 72 1.652 0.753 75 1.263 0.740 74 1.291 1.008 63 1.242 

3G2H1k 0.662 74 2.261 0.762 75 1.264 0.720 75 1.340 0.992 63 1.237 

3G3H1k 0.679 72 2.049 0.761 75 1.264 0.719 75 1.330 0.995 64 1.189 

3G4H1k 0.684 72 1.926 0.753 75 1.282 0.722 74 1.298 0.991 64 1.342 

3G5H1k 0.687 74 2.187 0.761 75 1.264 0.720 75 1.340 0.991 64 1.250 

3G8H1k 0.683 72 1.924 0.761 75 1.263 0.720 75 1.330 0.990 64 1.212 

Table 0.3: MDN 1-day-ahead forecast for 1000 returns. 

 

 BHP ANZ NAB QAN 

 NMAE HR LLF NMAE HR LLF NMAE HR LLF NMAE HR LLF 

2G2H750 0.741 73 3.880 0.854 65 1.346 0.720 72 1.291 0.723 76 1.216 

2G3H750 0.753 68 3.907 0.905 65 1.297 0.722 73 1.291 0.726 76 1.229 

2G4H750 0.936 63 3.060 0.918 65 1.298 0.722 73 1.291 0.722 76 1.221 

2G5H750 0.735 71 3.884 0.854 65 1.347 0.722 74 1.294 0.732 76 1.238 

2G8H750 0.745 72 3.886 0.904 65 1.302 0.722 73 1.291 0.733 76 1.242 

3G2H750 0.749 69 3.896 0.856 65 1.367 0.722 73 1.340 0.730 76 1.237 

3G3H750 0.738 73 3.878 0.858 65 1.368 0.725 72 1.330 0.710 76 1.189 

3G4H750 1.088 60 3.009 0.857 65 1.368 0.723 73 1.338 0.739 76 1.250 

3G5H750 0.742 72 3.906 0.857 65 1.369 0.723 73 1.340 0.738 76 1.250 

3G1H750 0.727 70 3.846 0.857 65 1.370 0.725 72 1.330 0.722 76 1.212 

Table 0.4 :  MDN 1-day forecast for 750 returns 

 

 

 

 

 

 

 

 

 

 



 

 166

C.2 10 Day forecast results 

 

 BHP   ANZ   NAB   QAN   

 NMAE HR LLF NMAE HR LLF NMAE HR LLF NMAE HR LLF 

2G2H1k 0.919 0.70 1.297 0.584 0.80 2.384 0.569 0.80 2.024 0.748 0.80 3.007 

2G3H1k 0.978 0.60 0.371 0.600 0.80 2.381 0.569 0.80 2.021 0.732 0.80 3.009 

2G4H1k 0.971 0.60 0.593 0.537 0.90 2.028 0.569 0.80 2.026 0.746 0.80 3.008 

2G5H1k 0.959 0.60 0.789 0.569 0.80 2.396 0.568 0.80 2.005 0.751 0.80 3.008 

2G8H1k 0.963 0.60 0.747 0.535 0.90 2.095 0.566 0.80 1.986 0.765 0.80 3.006 

3G2H1k 0.970 0.60 0.577 0.538 0.90 1.968 0.571 0.80 2.051 0.740 0.80 3.008 

3G3H1k 0.974 0.60 0.513 0.636 0.80 2.353 0.569 0.80 2.032 0.681 0.80 3.018 

3G4H1k 0.961 0.60 0.752 0.597 0.80 2.374 0.571 0.80 2.047 0.796 0.80 3.002 

3G5H1k 0.950 0.60 0.979 0.557 0.80 2.391 0.566 0.80 1.987 0.749 0.80 3.008 

3G8H1k 0.973 0.60 0.509 0.608 0.80 2.362 0.565 0.80 1.968 0.745 0.80 3.008 

Table 0.5 : 10-day forecast for 1000 returns 

 

 

 

 

 BHP   ANZ   NAB   QAN   

 NMAE HR LLF NMAE HR LLF NMAE HR LLF NMAE HR LLF 

2G2H750 0.756 0.60 2.495 0.853 0.60 2.998 0.790 0.80 3.224 0.601 0.80 2.844 

2G3H750 0.757 0.60 3.571 0.828 0.60 3.346 0.776 0.80 3.631 0.597 0.80 3.553 

2G4H750 0.752 0.60 3.541 0.839 0.60 3.337 0.794 0.80 3.617 0.602 0.80 3.532 

2G5H750 0.719 0.60 3.341 0.821 0.60 3.351 0.797 0.80 3.615 0.585 0.80 3.605 

2G8H750 0.741 0.50 3.485 0.831 0.60 3.344 0.774 0.80 3.633 0.600 0.80 3.539 

3G2H750 0.746 0.60 3.509 0.834 0.60 3.342 0.783 0.80 3.626 0.599 0.80 3.548 

3G3H750 0.749 0.60 3.527 0.797 0.60 3.371 0.792 0.80 3.618 0.602 0.80 3.531 

3G4H750 0.732 0.50 3.440 0.822 0.60 3.350 0.795 0.80 3.616 0.602 0.80 3.535 

3G5H750 0.757 0.60 3.572 0.804 0.60 3.365 0.785 0.80 3.624 0.603 0.80 3.529 

3G1H750 0.758 0.60 3.575 0.812 0.60 3.358 0.786 0.80 3.623 0.603 0.80 3.527 

Table 0.6 : 10-day forecast for 750 returns 
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C.3 30 Days forecast results 

 

 BHP   ANZ   NAB   QAN   

 NMAE HR LLF NMAE HR LLF NMAE HR LLF NMAE HR LLF 

2G2H1k 0.735 0.83 1.366 0.945 0.70 2.432 0.675 0.83 2.365 0.924 0.63 2.839 

2G3H1k 0.764 0.77 0.488 0.980 0.67 2.424 0.675 0.83 2.364 0.904 0.63 2.843 

2G4H1k 0.760 0.77 0.658 0.750 0.80 2.260 0.675 0.83 2.367 0.921 0.63 2.840 

2G5H1k 0.754 0.77 0.875 0.913 0.70 2.442 0.674 0.83 2.354 0.928 0.63 2.839 

2G8H1k 0.756 0.77 0.822 0.750 0.80 2.289 0.673 0.83 2.340 0.944 0.63 2.836 

3G2H1k 0.760 0.77 0.675 0.750 0.80 2.235 0.676 0.83 2.384 0.914 0.63 2.841 

3G3H1k 0.762 0.77 0.599 1.065 0.67 2.398 0.675 0.83 2.371 0.845 0.60 2.855 

3G4H1k 0.755 0.77 0.842 0.975 0.67 2.423 0.676 0.83 2.381 0.981 0.63 2.828 

3G5H1k 0.750 0.77 1.018 0.887 0.70 2.445 0.673 0.83 2.341 0.926 0.63 2.839 

3G1H1k 0.762 0.77 0.604 1.001 0.67 2.414 0.673 0.83 2.327 0.920 0.63 2.840 

Table 0.7 : 30-day forecast for 1000 returns 

 

 

 

 
 BHP   ANZ   NAB   QAN   

 NMAE HR LLF NMAE HR LLF NMAE HR LLF NMAE HR LLF 

2G2H750 0.741 0.67 2.776 0.766 0.63 2.569 0.705 0.77 2.282 0.597 0.80 2.365 

2G3H750 0.741 0.67 3.571 0.760 0.63 3.345 0.704 0.77 3.630 0.595 0.80 3.229 

2G4H750 0.747 0.67 3.542 0.762 0.63 3.337 0.705 0.77 3.617 0.597 0.80 3.211 

2G5H750 0.814 0.63 3.341 0.758 0.63 3.350 0.705 0.77 3.615 0.590 0.80 3.274 

2G8H750 0.761 0.63 3.485 0.760 0.63 3.344 0.704 0.77 3.633 0.596 0.80 3.216 

3G2H750 0.755 0.67 3.509 0.761 0.63 3.342 0.704 0.77 3.626 0.595 0.80 3.225 

3G3H750 0.750 0.67 3.527 0.752 0.63 3.369 0.705 0.77 3.618 0.597 0.80 3.210 

3G4H750 0.773 0.63 3.440 0.758 0.63 3.349 0.705 0.77 3.616 0.597 0.80 3.213 

3G5H750 0.740 0.67 3.572 0.754 0.63 3.363 0.704 0.77 3.624 0.597 0.80 3.209 

3G1H750 0.740 0.67 3.575 0.756 0.63 3.357 0.704 0.77 3.623 0.598 0.77 3.206 

Table 0.8: 30-day forecast for 750 returns 
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