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Abstract. This contribution is the last of four parts and
deals with the link between baseline precision and
ambiguity reliability. It is shown analytically how and to
what extent the baseline-ambiguity correlation is related
to the gain in baseline precision, to the volume of the
ambiguity search space, and to the impact of potential
integer ambiguity biases. Also, an ambiguity DOP
measure is introduced together with its closed-form
formulae for the three di�erent single-baseline models.

1 Introduction

The present contribution is a continuation of Teunissen
(1996 a, b, c), which will henceforth be referred to as,
respectively, Parts I, II, and III. As in the previous three
parts, the present contribution considers three di�erent
versions of the single-baseline model. They are the
geometry-based model, the time-averaged model, and
the geometry-free model. For the geometry-based model,
the linearized set of double-di�erenced (DD) observa-
tion equations reads as

DT /j�i� � DT Aib� kjaj ;

DT pj�i� � DT Aib ; �1�
with j � 1; 2 and where i � 1; . . . ; k denotes the epoch
number and k equals the total number of epochs; /1, /2,
p1 and p2 are the m-vectors containing the (observed
minus computed) metric single-di�erenced (SD) phase
and code observables on L1 and L2; DT is the
�mÿ 1� � m DD matrix operator; Ai is the m� 3 SD
design matrix that captures the relative receiver-satellite
geometry at epoch i; b is the 3-vector that contains the
unknown increments of the three-dimensional baseline;
k1 and k2 are the wavelengths of L1 and L2; and a1 and a2
are the two �mÿ 1�-vectors that contain the unknown
integer DD ambiguities. Time correlation is assumed to
be absent and the time-invariant weight matrix (inverse

variance matrix) at epoch i, is assumed to be given as the
block diagonal matrix

Qÿ1 � diag�a1; a2; b1; b2� 
 �DT D�ÿ1 ; �2�

where `
' denotes the Kronecker product. The scalars
a1, a2, b1, and b2 are the weights of the L1 and L2 phase
and code observables.

The time-averaged model follows from taking the
time-average of the vectorial observation equations of
Eq.(1). The geometry-free model follows from the geo-
metry-based model if we disregard the presence of the
receiver-satellite geometry. Hence it follows if we replace
Aib in Eq.(1) by the SD range vector ri.

In Part I we studied the gain in baseline precision due
to ambiguity ®xing and in Part II we studied the preci-
sion and correlation of the ambiguities. The three sta-
tionary values ci, i � 1; 2; 3, of the variance ratio of the
baseline precision before and after ambiguity ®xing,
based on phase data only, were referred to as the gain
numbers. With the gain number concept, we were able
to describe the baseline precision in canonical form. The
gain numbers are in®nite when only a single observation
epoch is used, they are large for short observation time-
spans and get smaller, following an inverse-square law in
the observation time-span, as time progresses. The gain
numbers were also used to express the ambiguity pre-
cision and correlation. One of the results obtained was
that the DD ambiguities are generally of a poor preci-
sion, while at the same time highly correlated. This holds
true for each of the three single-baseline models.

In Part III we studied the geometry of the ambiguity
search space. Again the gain-number concept allowed us
to formulate canonical forms of the di�erent search
spaces. It was shown for each of the three single-baseline
models how the size, shape and orientation of the search
space change when the observation weights, the number
of satellites tracked, the number of observation epochs
used, or the relative receiver-satellite geometry changes.
We also explained the phenomenon of search halting
and showed how decorrelating ambiguity transforma-
tions allow one appropriately to mold the shape of the

Journal of Geodesy (1997) 71: 513±525



search space such that the problem of search halting is
largely eliminated.

In the present contribution, the last of the four parts,
we, so to say, close the loop between ambiguities and the
baseline. This will be done by establishing a link between
baseline precision and ambiguity reliability. In Sect. 2 we
®rst discuss the sensitivity of the baseline to changes in
the ambiguities. This sensitivity is expressed in the
baseline-ambiguity correlation, which in turn is shown
to depend on the gain numbers. We also show, in ana-
logy with the theory of minimal detectable biases, how
to compute integer ambiguity biases which have the least
chance of being detected in the validation stage. In
Sect. 3, we introduce a DOP measure for the ambiguities
and present closed-form formulae for it. This is done for
each of the three di�erent single-baseline models. Fi-
nally in Sect. 4, we consider the volume of the ambiguity
search space and show that it plays an important part in
both the estimation and validation of the integer ambi-
guities. It can be used to downsize the search space in
order to avoid its containing an abundance of un-
necessary grid points. This allows one to ease the burden
of the search. For search spaces not too elongated, it
also provides a measure for the peakedness of the dis-
crete distribution of the integer least-squares ambiguities
and thus for their reliability. Through the volume it is
shown how the relation between baseline precision and
ambiguity reliability can be seen to act as a pair of
scales.

2 Baseline sensitivity

In this section we will study the sensitivity of the
baseline for changes in the ambiguities. First we will
consider the dependence of the ¯oated baseline on the
least-squares ambiguities. Then we will consider the
dependence of the ®xed baseline on the ®xed ambi-
guities. Here we also establish a link between the
baseline sensitivity and the ambiguity search space.
Finally, we consider ambiguity validation and present
an approximate way to infer a priori the likelihood of
successful validation.

Floated baseline

It will be intuitively clear that the correlation between
the ¯oated baseline and the least-squares ambiguities, b̂
and â, must be related to the gain in baseline precision.
If the baseline and the ambiguities were not correlated, a
®xing of the ambiguities would have no impact on the
baseline and the baseline would remain unchanged.
Hence, in that case there would not be any gain in
baseline precision. On the other hand, if the baseline and
ambiguities were fully correlated and thus functionally
related, then knowing the ambiguities would imply a full
knowledge of the baseline. So, in this case the baseline
would become deterministic and the gain in baseline
precision would become in®nitely large. From this
reasoning it follows that one can expect the correlation

to be the driving force of the gain in baseline precision:
zero correlation corresponding with minimum gain and
maximum correlation corresponding with in®nite gain.
The following theorem makes this clear.

Theorem 1 (Ambiguity-baseline correlation)

Let the ambiguity-baseline correlation coe�cient be
de®ned as

q�a; b� � aT Qâb̂b�������������
aT Qâa

p �������������
bT Qb̂b

p :

Then the solution to

qi �j q�ai; bi� j� max
a

max
b
j q�a; b� j

subject to aT Qâaj � 0, bT Qb̂bj � 0 for j � 1; . . . ; �iÿ 1�,
is given as

qi �
1������
��1p

����������
c4ÿiÿ1
c4ÿi

q
i � 1; 2; 3 ,

0 i � 4; . . . ; 2�mÿ 1� ,

8<: �3�

with the phase-code variance ratio � � �b1 � b2�=
�a1 � a2� and, in ascending order, the three gain
numbers c1; c2; c3.
Proof: see Appendix. (

This theorem shows that only three correlation
coe�cients are possibly nonzero, while �2mÿ 5� are
identically zero. These zero correlation coe�cients can
be explained if we recall, from Theorem 1 of Part II, the
least-squares solution for the ambiguities. It reads

â1 � 1

k1
DT ��/1 ÿ �Ab̂� ;

â2 � 1

k2
DT ��/2 ÿ �Ab̂� :

Also recall that the time-averaged phase vectors, �/1

and �/2, are not correlated with the baseline vector b̂. Let
f T â1, f 2 Rmÿ1, be a function of the L1 ambiguities. This
function is then invariant for changes in the baseline if f
lies in the null space of �A T D: f 2 N� �A T D�. Since the
dimension of this null space equals �mÿ 4�, there are
�mÿ 4� linear independent functions of the L1 ambi-
guities that are insensitive to changes in the baseline and
thus also uncorrelated to the baseline. Now consider the
�mÿ 1� functions k1â1 ÿ k2â2. Also they are invariant to
changes in the baseline and uncorrelated with it. Hence
we have now identi®ed the set of �2mÿ 5� linear in-
dependent functions of the ambiguities not correlated
with the baseline. Of course, also the �mÿ 4� functions
f T â2, with f 2 N� �A T D�, are uncorrelated with the
baseline. These functions, however, are linearly depen-
dent on the stated set and thus already taken care of.
Note that the set of �2mÿ 5� functions consists of those
ambiguity functions that can be estimated with the
highest possible precision. These are hence the ambi-
guity functions that correspond with the subspaces in
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which the shortest principal axes of the ambiguity search
space lie.

The remaining three correlation coe�cients are gen-
erally nonzero. The theorem shows, through the gain
numbers how they depend on the relative receiver-
satellite geometry, and through the variance ratio � how
they depend on the precision of the GPS observables.
These correlation coe�cients get larger the larger the
gain numbers become. For an in®nite gain, the correla-
tion coe�cients can only be pulled away from 1 by im-
proving the precision of the code observables relative to
the precision of the phase observables. But the precision
of code must then really improve signi®cantly for it to
have a signi®cant e�ect on the correlation coe�cient. In
practice, � is so small and the gain numbers large when
short observation time-spans are used, that the correla-
tion coe�cients will be very close to 1. Hence the am-
biguities and baseline will then be highly correlated.

The whole purpose of ambiguity ®xing is of course to
bene®t from this high correlation. Due to the high cor-
relation, the baseline is very sensitive to changes in the
ambiguities. As a consequence, a ®xing of the ambi-
guities results in a greatly improved baseline, precision-
wise. But what happens when we ®x to the wrong
ambiguities? How sensitive is the baseline to biases in
the ®xed ambiguities? This type of sensitivity is as
important as the other, since clearly, it does not make
much sense to have a highly precise baseline, but one
which otherwise is completely o� target.

Fixed baseline

In order to study this second type of sensitivity, we need
to know the impact of ambiguity biases on the ®xed
baseline. The ®xed baseline and ambiguities are related
as

�b � b̂ÿ Qb̂âQÿ1â �âÿ �a� :
Let �a � Efâg � r�a and Ef�bg � Efb̂g � r�b, where Ef:g
is the expectation operator, r�a is the ambiguity bias,
and r�b is the corresponding bias in the ®xed baseline.
Then

r�b � Qb̂âQÿ1â r�a : �4�
In order to measure the signi®cance of this baseline bias,
we use the squared Bias-to-noise ratio (BNR):

k r�b k2� r�b
T

Qÿ1�b r�b : �5�
Since Qÿ1

âjb̂ � Qÿ1â � Qÿ1â Qâb̂Qÿ1�b
Qb̂âQÿ1â , where Qâjb̂ is the

conditional ambiguity variance matrix, conditioned on
knowing the baseline, it follows that

r�aT Qÿ1
âjb̂r�a � r�aT Qÿ1â r�a�r�b

T
Qÿ1�b r�b : �6�

In this Pythagorean decomposition, we recognize,
besides the baseline BNR, also

k r�a k2� r�aT Qÿ1â r�a ; �7�

the noncentrality parameter of the distribution of the
quadratic form

T � �âÿ �a�T Qÿ1â �âÿ �a� ;
assuming that the least-squares ambiguities are normally
distributed and �a nonstochastic. That is, it is the shift the
mean of T undergoes when Efâg 6� �a.

Equation (6) shows that the ambiguity BNR k r�a k2
gets distributed over r�aT Qÿ1

âjb̂r�a and the baseline BNR.

In the ideal case of course, we would like all of the bias
to be contributed to r�aT Qÿ1

âjb̂r�a and nothing to k r�b k2.
But for an arbitrary ambiguity bias, this can clearly only
happen when Qâjb̂ � Qâ, that is, when the ¯oated base-
line and the ambiguities would not correlate. This
however is not the case, as we have already seen. Thus in
general one can expect the baseline BNR to be nonzero
and the ambiguity-baseline correlation a factor that in-
¯uences it. The following corollary shows how this
correlation puts a bound to the baseline BNR relative to
the ambiguity BNR.

Corollary 1 (Baseline to ambiguity bias)

Let the baseline BNR and the ambiguity BNR be
de®ned as in Eqs.(5) and (7), and let qmax be the largest
ambiguity-baseline correlation coe�cient in absolute
value. Then

max
r�a

k r�b k2
k r�a k2 �

q2max
1ÿ q2max

: �8�

Proof: see Appendix. (
It follows from this corollary that the baseline BNR

is bounded from above as

r�b
T

Qÿ1�b r�b � q2max
1ÿ q2max

r�aT Qÿ1â r�a :

This shows, since the correlation coe�cient is very close
to 1 for large gains, that the baseline BNR can be a
multiple of the ambiguity BNR. The conclusion reached
so far reads therefore, that although the high correlation
between the baseline and ambiguities allows for a drastic
improvement in baseline precision, it at the same time
allows the possibility of a very large baseline BNR. The
®rst property is what we strive for, the second property,
however, is what we need to avoid.

So far, no speci®c assumptions were made about the
bias in the ambiguities. We will now consider for which
ambiguity biases the baseline BNR is a�ected and for
which it is not. In order to study this, we will make use
of the following canonical decomposition of the baseline
BNR.

Theorem 2 (The Baseline BNR)

The baseline BNR can be decomposed as

k r�b k2� �a1 � a2�k
�� 1

�rT D�U�I3 ÿ Cÿ1�UT D�T �r ; �9�
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where �r is the weighted average of the L1 and L2
ambiguity biases, expressed in units of range rather than
cycles,

�r � k1
a1

a1 � a2
r�a1 � k2

a2
a1 � a2

r�a2 ;

and where D� is the pseudo-inverse of D, U the matrix
of orthonormal columns as de®ned in Theorem 1 of Part
III, and C the diagonal matrix of gain numbers.
Proof: see the Appendix. (

Let us ®rst consider the cases for which the baseline
BNR equals zero. It equals zero when all gain numbers
are equal to 1. This is not likely to happen in practice
however. In fact, for short observation time-spans, the
gain numbers will be large. Hence, no signi®cant re-
duction of the impact of the ambiguity biases on the
baseline can be expected from �I3 ÿ Cÿ1�.

The baseline BNR is also equal to zero when
D�T �r 2 R�U�?. Recall from Theorem 1 of Part III that
R�U�? � R�V ;w�, where the orthonormal columns of
�V ;w� correspond with the principal axes of the ambi-
guity search space that have the smallest length. This
shows that the ambiguity biases for which the baseline
BNR is insensitive are precisely those for which the
quadratic form that de®nes the ambiguity search space
is most sensitive. The converse of this statement also
holds true; that is, the ambiguity biases for which the
baseline BNR is most sensitive, are precisely those for
which the quadratic form de®ning the ambiguity search
space is less sensitive. It will be clear that this situation is
potentially a disastrous one. It implies, namely, that the
ambiguity biases which have the poorest chance of being
detected by means of statistical tests are at the same time
those which have the largest impact on the baseline.
Fortunately, the situation is somewhat less dramatic as
it may seem at ®rst sight. This is due to the fact that the
ambiguity biases r�a1 and r�a2 cannot take on arbitrary
positions in Rmÿ1. Instead, they are con®ned to the grid
points of Zmÿ1. This therefore reduces the chance of
having D�T �r 2 R�U�.

It follows from Eq.(9) and R�U� � R�P �A�, that it is
the average receiver-satellite geometry which is instru-
mental in the propagation of the ambiguity biases.
When the gains are su�ciently large, we may set
Cÿ1 � 0, and recognizing that UU T is the orthogonal
projector that projects onto the range space R�P �A�, we
get to a good approximation

kr�b k2' �a1 � a2�k
�� 1

�rT D� �A� �A T P �A�ÿ1 �A T D�T �r : �10�
Using the cosine rule and the projector property of
UU T , this may also be written as

k r�b k2' �a1 � a2�k
�� 1

�rT �DT D�ÿ1 �r cos2 x ; �11�
where x is the angle between D�T �r and R�P �A�. Thus
x � 0 when �r 2 R�DT �A�.

Now let us assume that the ambiguity bias is such
that a bias of a single cycle occurred in the ith entry of
the L1 integer least-squares solution. Then r�a2 � 0 and
r�a1 � ci, where ci is the unit vector having 1 as its ith

entry. We also assume that the precision of the L1 phase
data equals that of the L2 phase data: a1 � a2. Then,
since �DT D�ÿ1 � Imÿ1 ÿ 1

memÿ1eT
mÿ1 and thus cT

i �DT D�ÿ1ci

� 1ÿ 1
m, the baseline BNR follows as

k r�b k2' 1

2
k21a1

k
�� 1

�1ÿ 1

m
� cos2 xi :

This shows, since k1
�����
a1
p

is already so large (k1
�����
a1
p ' 46

for a standard deviation of 3 mm of an undi�erenced
phase), that cos2 xi has to be very small indeed in order
for the baseline BNR not to become unacceptably large.

On the ambiguity bias

The preceding shows that the utmost care has to be
exercized in making sure that the biases in the
ambiguities stay su�ciently bounded. Only then is one
in a position to pro®t from the large gain in baseline
precision. Validation of the integer least-squares ambi-
guities is therefore an important aspect of the whole
process of computing and ®xing the ambiguities. In the
literature, di�erent approaches are in use for validating
the ambiguities. Examples can be found in the textbooks
Leick (1995), Hofmann-Wellenhof et al. (1996), Kleus-
berg and Teunissen (1996).

The actual validation depends on â and therefore on
the data. It is however also of importance, in particular
from the design perspective, to be able to infer a priori,
thus without the need for actual data, whether one can
expect to have a successful validation or not; this is in
analogy with the theory of reliability (Baarda 1968). It
will be clear that the precision of the ambiguities plays a
decisive role in this respect. In the one-dimensional case,
one could proceed as follows. Take the standard de-
viation of the ambiguity and compare it with the dis-
tance between two grid points: 1 cycle. Then, if the
standard deviation is su�ciently small with respect to 1,
one can decide that the distribution of â is su�ciently
peaked. If one assumes in addition that the least-squares
ambiguities are normally distributed and unbiased, the
expectation Efâg and thus the distribution of â will be
centered at a grid point. From this and the peakedness
of the distribution follows then that the probability of
choosing the wrong grid point will be su�ciently small.
The distance of the grid points to Efâg will then be
su�ciently large in relation to the peakedness of the
distribution. Or in other words, the discrete distribution
of the integer least-squares solution will have su�cient
probability mass located at one single grid point.

In two dimensions and higher, the situation becomes
much more complicated. One could think of simply
copying the one-dimensional approach and apply it to
each of the individual ambiguities. This works however
only when the ambiguities are uncorrelated or when the
standard deviations of the ambiguities are already small
enough with respect to the unit distance of the grid. But
as we know from Part II, the DD ambiguities are highly
correlated and their individual standard deviations are
usually very large. In principle, one is therefore forced to
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follow a di�erent route for the higher-dimensional case.
One possible approach is the following.

Again we assume that the least-squares ambiguities
are normally distributed and unbiased. This implies that
the multivariate normal distribution is centered at a grid
point. The idea is now again to check whether this dis-
tribution is su�ciently peaked with respect to the se-
paration of the grid points. But instead of using the
precision measures of the ambiguities directly, as was
done in the one-dimensional case, we use them indirectly
by computing the distance between two grid points.
Here, distance is measured in the metric of the ambiguity
variance matrix. An additional complication when
compared to the one-dimensional case, is that this dis-
tance di�ers for di�erent directions. We therefore choose
to consider the smallest distance between two grid
points, since it provides the direction in which one will
have the greatest di�culty in discriminating between two
grid points. Thus we solve the minimization problem

min
ra
raT Qÿ1â ra 6� 0 with ra 2 Z2�mÿ1� : �12�

This is again an integer least-squares problem. But it
di�ers in two ways from the one we have met until now.
First, the trivial solution ra � 0 needs to be excluded.
Secondly, Eq. (12) has at least two solutions, since it can
not discriminate between re¯ections about the origin.
This however is no point of concern, since it is the
distance that counts.

Once a solution of Eq. (12) has been computed, say
�ra, two steps can be taken. First, by interpreting �ra as
an integer ambiguity bias, one could use Eqs. (4) and (5)
to compute its impact on the baseline. This will give us
the baseline bias, should an ambiguity bias as �ra occur.
But as our earlier analysis showed, the conclusion will
probably be that the impact is unacceptably large. For
the second step, we use r�a to compute the minimum of
Eq. (12) and interpret this minimum as a noncentrality
parameter. The decision as to whether the distribution is
su�ciently peaked or not can then be based on the value
this noncentrality parameter takes. If its value turns out
to be insigni®cant, then the smallest distance between
two grid points is too small for one to expect a successful
validation. The integer least-squares ambiguities are
then simply not reliable enough. If, on the other hand,
the noncentrality parameter turns out to be su�ciently
signi®cant, then the smallest distance between two grid
points is still large enough for one to be con®dent that
the integer least-squares ambiguities are reliable. In that
case, one may expect that the actual validation will turn
out to be successful.

3 Ambiguity DOP

Although the stochastic nature of the least-squares
ambiguities is described in all its detail by the complete
variance-covariance matrix of the ambiguities, it would
be helpful if we could also make use of a somewhat
simpler measure and one that still captures the main
characteristics of the ambiguities. In many applications
of GPS it is already common practice to use dilution of

precision (DOP) measures to describe the impact of the
receiver-satellite geometry on the precision of the
parameters under study. Various DOP measures are in
use, such as the position (PDOP), the vertical (VDOP),
or the horizontal dilution of precision (HDOP). The
DOP measures in use are very simple functions of the
appropriate variance-covariance matrices. PDOP for
instance is de®ned as the square-root of the trace of the
position variance-covariance matrix. Although various
DOP measures exist, no DOP measure yet exists for the
ambiguities. In this section we will propose a DOP
measure for the ambiguities. It is the geometric mean of
the ambiguity conditional standard deviations. Its
properties will be discussed, and a closed-form formula
derived for it which applies to our three di�erent single
GPS baseline models.

3.1 A proposal

First we will formulate criteria which an ambiguity DOP
(ADOP) measure should preferably satisfy. Then we
show that these criteria are met by the geometric mean
of the ambiguity conditional standard deviations.
Finally we present some di�erent ways of computing
the ADOP and show how it bounds the ambiguity bias.

Criteria As with the existing DOP measures, the DOP
measure for the ambiguities should preferably be a scalar
measure, which is simple to compute and which captures
the main intrinsic characteristics of the ambiguity
variance matrix. The existing DOP measures are all
based on the trace of an appropriate variance-covariance
matrix. For the ambiguities however, the trace cannot be
considered adequate. There are two main reasons for
this. First, the trace lacks some important properties of
invariance, and second, it is only based on the diagonal
entries of the variance matrix.

Let us ®rst consider the property of invariance. Let Q
be a variance matrix and let tr�Q� be its trace. Fur-
thermore, let ZT be a transformation matrix that trans-
forms the parameters under study. The variance matrix
of the transformed parameters is then given as ZT QZ
and its trace as tr�ZT QZ�. Since tr�ZT QZ� � tr�QZT Z�, it
follows that the trace remains invariant under the
transformation when the transformation matrix is or-
thogonal. For the position DOP this may seem to be a
useful property, since it shows its invariance for a ro-
tation of the coordinate frame of reference. For the
ambiguities however, it is not a useful property; here the
simplest change in the frame of reference occurs when
one changes the choice of reference satellite. But already
this simple transformation fails to keep the trace un-
changed. It is precisely due to this lack of invariance that
we had to introduce the notion of `double averaging'
when studying the average precision of the DD ranges in
Part II. But even when we can correct the trace for this
lack of invariance, we are still left with the most general
changes the frame of reference of the ambiguities may
undergo. As we know, these are the transformations
which are volume preserving and have integers as their
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entries. And although these transformations have the
volume preserving property in common with the or-
thogonal transformations, they do not leave the trace
unchanged.

A second reason why the trace should be rejected as a
measure on which to base the ambiguity DOP is due to
the fact that it fails to take the existing correlation be-
tween the ambiguities into account. This would not be
too harmful if the correlations were small to moderate
and if they only played a secondary role in the process of
ambiguity estimation and validation. In Part II we
showed however, that the ambiguities are extremely
correlated, and in Part III that the correlations are the
driving force in giving the ambiguity search space its
very elongated shape.

Based on these considerations, it will be clear that we
cannot accept the trace of the ambiguity variance matrix
Qâ as an appropriate measure. Instead of the trace, we
therefore propose to base the ADOP on the determinant
and introduce it as

ADOP �
�����������
j Qâ j

p 1
n (cycle) ; �13�

where n is the order of the ambiguity variance matrix.
This measure has none of the drawbacks mentioned.
Since all ambiguity transformations are volume preser-
ving, and so also those that merely change the choice of
reference satellite, we have j ZT QâZ j�j Qâ j. Further-
more, since the determinant makes use of all entries of
the variance matrix, it includes the correlations as well.
In fact, we have the decomposition

j Qâ j�j Râ j Pn
i�1r

2
ai
; �14�

where Râ is the ambiguity correlation matrix and r2ai
are

the ambiguity variances. It shows once more why a
measure based on the ambiguity variances alone would
be inappropriate. The ambiguity variances are quite
large, but their correlations are quite large too; hence,
the determinant of the correlation matrix will be very
small. Both these e�ects are incorporated in the
determinant of the ambiguity variance matrix. Note
that in the two-dimensional case, the determinant of the
correlation matrix reduces to �1ÿ q2�, with q being the
correlation coe�cient.

Its computation At ®rst sight it may seem that the
computation of the determinant of the ambiguity
variance matrix involves quite some more work than
needed when simply summing its diagonal entries. But
as it will be shown, one can economize signi®cantly on
the required computations.

For the computation of the determinant of Qâ one
can either use its eigenvalues or its conditional var-
iances. We have

j Qâ j�
Pn

i�1ka;i ;

Pn
i�1r

2
aij1;...;�iÿ1� ;

Pn
i�1r

2
aiji�1;...;n :

8>><>>: �15�

The ®rst product consists of the product of all
eigenvalues. The last two are products of conditional
variances. In the ®rst product of conditional variances,
the conditioning is done on the previous ambiguities,
whereas in the second product, the conditioning is done
on the ambiguities following. The conditional variances
can be obtained from a triangular decomposition of
either Qâ or its inverse. Let the LDLT decomposition of
Qâ be given as Qâ � LDLT . The conditional variances
r2aij1; ...; �iÿ1� are then given as the entries of the diagonal

matrix D (not to be confused with the DD matrix
operator). The conditional variances r2aiji�1; ...; n follow if

instead of a lower triangulation, an upper triangulation
of Qâ is used. Thus if Qâ � U ~DU T , where U is upper
unit triangular and ~D is diagonal, then the entries of this
diagonal matrix equal r2aiji�1;...;n . An upper triangular

decomposition of Qâ is equivalent to using a lower
triangular decomposition for its inverse Qÿ1â . Thus
Qÿ1â � UÿT ~Dÿ1Uÿ1, with UÿT lower unit triangular.
The lower triangulation can easily be obtained from a
Cholesky decomposition. For instance, the Cholesky
factor of Qÿ1â is given as G � UÿT

��������
~Dÿ1
p

.
In Eq.(15) the variance matrix of the DD ambiguities

is used. But, since the determinant is invariant for am-
biguity transformations, one can also use the variance
matrix of the decorrelated ambiguities, as it is produced
by the LAMBDA method. Thus

j Qâ j�j Qẑ j�
Pn

i�1kz;i ;

Pn
i�1r

2
zij1;...;�iÿ1� ;

Pn
i�1r

2
ziji�1;...;n ;

8>><>>: �16�

where ẑ denotes the vector of transformed ambiguities.
Note that although the product of eigenvalues is
invariant for ambiguity transformations, the individual
eigenvalues are not. The same holds true for the
conditional variances.

In general, the computation of the determinant based
on the conditional variances is preferable over the
computation based on the eigenvalues. Not only is the
computation of the n eigenvalues in general more in-
volved, but the triangular decompositions or the Cho-
lesky decompositions are usually already available, in
particular when solving least-squares problems. The
computation of the determinant becomes particularly
cheap when the search for the integer least-squares
ambiguities is based on the bounds that follow from a
sequential conditional least-squares adjustment. In that
case the conditional variances of the transformed am-
biguities are readily available. Yet another alternative
will be given in Sect. 3.2.

Bounding the ambiguity bias The geometric mean of the
ambiguity conditional variances can be used to put a
bound on the ambiguity bias. We will formulate it for
the decorrelated ambiguities. Let us assume that an
integer ambiguity bias rz 2 Zn is acceptable if and only
if it is bounded as k rz k2� v2. It follows then that the
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geometric mean of its sequential conditional least-
squares components, rzij1;...;�iÿ1�, is bounded as

�Pn
i�1 j rzij1;...;�iÿ1� j�

1
n � v ADOP: �17�

This shows that the set k rz k2� v2, rz 2 Zn, will only
have the trivial solution rz � 0, when v ADOP < 1 and
all conditional variances r2zij1;...;�iÿ1� are equal. We know

from Part III that the conditional variances of the DD
ambiguities are far from equal. For the geometry-based
model for instance, the ®rst three conditional variances
will be large, while the remaining conditional variances
will be very small. But this discontinuity disappears
when the decorrelated ambiguities are used, in which
case one obtains an almost ¯at spectrum of conditional
variances.

3.2 A closed-form formula

In this subsection we present a closed-form formula for
the determinant of the ambiguity variance matrix and
show how it is a�ected when di�erent types of data
redundancy are used. The following theorem presents
the formula for the geometry-based single GPS baseline
model.

Theorem 3 (Determinant of ambiguity variance matrix)

Let Qâ be the 2�mÿ 1� � 2�mÿ 1� variance matrix of
the dual-frequency least-squares ambiguities which
follows when using the geometry-based model. Its
determinant is then given as

j Qâ j� m2 1

a1kk21

 !mÿ1
1

a2kk22

 !mÿ1
P3

i�1 1� ci ÿ 1

�ci � 1

� �
;

�18�
with � � �b1 � b2�=�a1 � a2�.
Proof: see Appendix. (

Note that the determinant is indeed, as it should be,
independent of the arbitrary choice of reference satellite.
But the formula also holds true for all ambiguity var-
iance matrices obtained from Qâ by means of an ad-
missible ambiguity transformation. Thus instead of
j Qâ j, one may also read the determinant of the variance
matrix of the decorrelated ambiguities.

The theorem has been formulated for the geometry-
based model, assuming that dual-frequency phase and
code data are used. For the time-averaged and geometry-
free model however, the determinants can be obtained
directly from the theorem as well. For the time-averaged
model, one simply has to take the limits ci !1; and to
obtain the corresponding result for the geometry-free
model, one in addition to these limits also has to raise
�1� 1=�� to the power of �mÿ 1� instead of 3.

The theorem is also easily adapted to hold for those
cases where less observation data are used. For dual-
frequency phase data without code data or with code
data on only L1 or L2, one simply has to set b1 � b2 � 0,
or b2 � 0 or b1 � 0. When phase data are used on only

L1 (or L2), one has to replace m2 by m, set 1=�a2kk22�mÿ1
(or 1=�a1kk21�mÿ1) equal to 1 and set a2 (or a1) equal to
zero.

The theorem clearly shows the contribution of the
various types of data redundancy:

1. satellite redundancy (m),
2. observation epochs redundancy (k),
3. redundancy in frequency (Li),
4. observation type redundancy (/i; pi),
5. change in receiver-satellite geometry (ci).

In order to have an easy reference and to be able to
compare and discuss the results for the three types of
single baseline model, the determinants of the three
models are summarized in Table 1, whose results we
discuss in the following order: ®rst the geometry-free
model, then the time-averaged model, and ®nally the
geometry-based model.

Geometry-free model The determinant of the geometry-
free model exists already for m � 2. This shows, when
one opts to dispense with the receiver-satellite geometry,
that individual ambiguity estimation is possible in
principle from data of two satellites only. The
determinant fails to exist however, when � � 0. This
shows that code data are needed per se.

For the single-frequency case, the determinant equals
a product of a very small term and a very large term.
The small term is dominated by the phase variance,
whereas the large term is dominated by the ratio of the
code variance with the phase variance. As a result, the
product will be dominated by the variance of code. This
shows that the determinant will be very large indeed,
unless a su�cient number of epochs is taken into ac-
count. Hence, a successful validation of the integer

Table 1. The determinants of the single- and dual-frequency ambiguity variance matrices, for the geometry-free model, the time-averaged
model and the geometry-based model

j Qâ j geometry-free �m � 2� time-averaged �m � 4� geometry-based �m � 4�

L1 m 1=a1
kk21

� �mÿ 1
1� 1

�

� �mÿ 1
m 1=a1

kk21

� �mÿ 1
1� 1

�

� �3
m 1=a1

kk21

� �mÿ 1
1� 1

�

� �3
P3

i � 1
�ci

�ci � 1

L1=L2 m 1
���������
a1a2
p
kk1k2

� �mÿ 1
" #2

1� 1
�

� �mÿ 1
m 1

���������
a1a2
p
kk1k2

� �mÿ 1
" #2

1� 1
�

� �3
m 1

���������
a1a2
p
kk1k2

� �mÿ 1
" #2

1� 1

�

� �3
P3

i � 1
�ci

�ci � 1
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ambiguities can be expected only when enough samples
of data are used.

In the dual-frequency case, we clearly see the bene-
®cial role of including the second frequency. The very
large term of the single-frequency case is not squared,
but instead simply copied. However, apart from the
change in wavelength, the very small term is squared.
Hence, when taken to the appropriate power, one can
expect the dual-frequency determinant to be much
smaller than the single-frequency determinant.

Time-averaged model The determinant of the time-
averaged model exists only when m � 4. This is of
course due to the fact that the parameters in the model
include, apart from the ambiguities, also the three-
dimensional baseline. Again, the determinant fails to
exist when � � 0. This can be explained by the fact that
the ¯oated baseline solution of the time-averaged model
is a code-only solution. Hence, the phase data do not
contribute to the ¯oated baseline and consequently code
data are needed per se.

The determinant of the time-averaged model also
equals the product of a very small term and very large
term. Note however, that when compared to the result
of the geometry-free model the large term is only taken
to the power of 3 and not to the power of �mÿ 1�.
Hence, the determinant of the time-averaged model will
be smaller than that of the geometry-free model when
m > 4, and the two will be equal when m � 4. The fact
that the power of the very large term stays restricted to 3
is due to the time invariance of the baseline in the time-
averaged model.

As with the geometry-free model, the bene®cial im-
pact of the second frequency is clearly visible. The large
term is copied, while the very small term is approxi-
mately squared.

Finally we note that the determinant for the time-
averaged model is completely independent of the re-
ceiver-satellite geometry. This is quite remarkable, since
the design matrix of the time-averaged model and also
the ambiguity variance matrix itself are strongly de-
pendent on it. In fact, they are constructed from the
average over time of the receiver-satellite geometries.
The receiver-satellite geometry independence of the de-
terminant can be explained if we consider the results of
the geometry-based model.

Geometry-based model The results of the geometry-
based model reduce to that of the time-averaged model
when the gain numbers tend to in®nity. The gain
numbers become in®nite when the model is based on
only one single observation epoch, that is, when their is
no change in the receiver-satellite geometry. This
happens for the single-epoch geometry-based model.
But it also happens for the time-averaged model, since it
also depends on the receiver-satellite geometry of only
one single epoch, namely the one that corresponds with
the time average of the observation time-span.

Note that in contrast to the determinants of the
geometry-free model and the time-averaged model, no
code data are needed per se with the geometry-based

model, provided of course that the gain numbers are
®nite. Also note that the inclusion of the change in re-
ceiver-satellite geometry has resulted in determinants
that are smaller than their counterparts of the geometry-
free model and the time-averaged model. The two de-
terminants reach their minimum when all three gain-
numbers equal 1. This will not happen in practice,
however, when short observation time-spans are used.

The amount in which the two determinants di�er
from their counterparts of the time-averaged model is
governed by 1=��ci � 1�. This shows that the two pairs
of determinants will not di�er too much when �ci?0.

4 Volume of search space

In the previous section we considered the determinant of
the ambiguity variance matrix. In this section we will
give it a geometric interpretation by connecting it to the
volume of the ambiguity search space. The purpose of
this section is twofold. First we will show in Sect. 4:1
that the volume (and thereby also the determinant) is a
very useful tool for appropriately downsizing the
ambiguity search space. In this way one can avoid
having an abundance of unnecessary grid points in the
search space when performing the search for the integer
least-squares ambiguities. Second, we will establish links
between the volume of the search space on the one hand,
and the ambiguity-baseline correlation and the volumes
of the con®dence ellipsoids of the baseline on the other.
This will be done in Sect. 4:2. It will allow us to
understand the factors that contribute to the size of the
search space and it in particular shows how in the
process of GPS ambiguity resolution, the gain in
baseline precision competes with the reliability of the
integer ambiguity solution.

4.1 Downsizing the search space

The volume of the ambiguity search space

�âÿ a�T Qÿ1â �âÿ a� � v2 �19�
is given as

Vn � vnUn

�����������
j Qâ j

p
; �20�

where n is the order of the ambiguity variance matrix
and Un is the volume of the unit sphere in Rn. Thus the
volume depends on v2, a scale factor with which one can
tune the size of the search space, on Un, which is known
once the dimension n is known, and on the determinant
of the ambiguity variance matrix.

The computation of the determinant has been dis-
cussed in the previous section. The volume of the unit
sphere in Rn can be computed as

Un � pn=2=C�n=2� 1� ; �21�
with the gamma function C�x� � R10 eÿttxÿ1dt; x > 0.
For our purposes it is not needed to evaluate the
integral explicitly. One can make use of the recurrence
relation C�x� 1� � xC�x�, for x > 0, with the initial
values C�1=2� � ���

p
p

and C�1� � 1.
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It has been shown in Teunissen et al. (1995) and
Jonge and Tiberius (1996) that the volume provides, on
average, a very good approximation of the number of
grid points contained in the search space. This implies
that the volume can be used appropriately to downsize
the ambiguity search space. We present two approaches,
one that can be used prior to the actual measurement
stage and one that makes use of the measurements. The
®rst approach is the simpler, but also the cruder; it goes
as follows. Depending on the approximate number of
grid points required, the volume is set. Then the volume
of the unit sphere and the determinant of the variance
matrix are computed. From Vn, Un, and j Qâ j�j Qẑ j, the
appropriate value of v2 for scaling the search space then
follows from invoking Eq. (20). Of course, since the
volume is only an indicator for the number of grid
points, it is not so much the precise value that counts,
but more its order of magnitude.

The second approach makes use of the least-squares
ambiguities and guarantees that the search space will
contain at least one, or if needed, at least two grid
points, and most likely not many more. This approach
takes the full advantage of the high precision and low
correlation of the transformed ambiguities as they are
provided by the LAMBDA method. We discuss two
versions of it. We ®rst discuss the case which guarantees
that at least one single grid point is contained in the
search space. The idea is the following. Starting from the
(real-valued) least-squares estimate of the transformed
ambiguities, ẑ, we round each of its n entries to the
nearest integer. This will give an integer vector, which is
then substituted for z into the quadratic form that de-
®nes the transformed search space. The value of v2 is
then taken to be equal to the value of the quadratic
form. This approach guarantees that the search space
will at least contain one grid point. Also, the number of
grid points contained in it will not be too large. This is
due to the high precision and low correlation of the
transformed ambiguities. In fact, it often happens that
the search space so obtained only contains one grid
point, since in many cases the rounded integer vector
already equals the integer least-squares estimate �z. But
note that this is not guaranteed, since the variance ma-
trix of ẑ is not completely diagonal.

For validation purposes, often not only the most
likely integer vector is needed, but also the second most
likely integer vector. Hence in this case we would need to
choose v2 such that the search space contains at least
two grid points and preferably not many more than two.
Again the idea of integer-rounding the entries of ẑ can be
used. But now we proceed as follows. As before, we ®rst
round all the entries of ẑ to their nearest integer. This
gives one integer vector. Then another n integer vectors
are constructed by rounding all entries of ẑ but one to
their nearest integer, and one entry to its next-nearest
integer. Thus we have now obtained �n� 1� integer
vectors, all of which have their own corresponding v2-
value. By setting v2 equal to the smallest-but-one of
these values, it is guaranteed that the corresponding
search space at least contains two grid points, and most
likely not many more than two.

The second approach performs very well when applied
to the decorrelated ambiguities. After the downsizing has
been applied, the actual number of grid points found in
the search space is small and close to the volume of the
search space. The approach works very poorly though,
when it is applied to the original DD ambiguities. But this
is understandable when one considers the poor precision
and high correlation of the DD ambiguities.

4.2 Volume, correlation, and gain

As noted earlier, validation can be expected to be
successful when the discrete distribution of the integer
least-squares ambiguities is su�ciently peaked. That is,
when su�cient probability mass is centered at one single
grid point and the residual probability masses, which are
distributed over the remaining grid points, are su�-
ciently small so that they may safely be neglected. In
fact, this is what one tries to verify at the actual
validation stage, by computing and comparing the most
likely and second most likely integer ambiguities. But as
also observed earlier, if the assumptions underlying the
GPS model are correct, one should already at the
designing stage be able to infer whether the `strength' of
the model is such as to produce a su�ciently peaked
distribution for the integer least-squares ambiguities.
For nonelongated or moderately elongated search
spaces, such as those which may be obtained for our
three single-baseline models through the use of the
decorrelated ambiguities, the peakedness of the distribu-
tion is mirrored in the volume of the search space.
Hence, the volume can then also play the role of a
reliability measure. The smaller the volume, the more
peaked the distribution, and thus the more reliable the
integer least-squares solution becomes.

In Sect. 1 we studied the sensitivity of the baseline to
changes in the ambiguities and showed how it was re-
lated to the ambiguity-baseline correlation. One of the
conclusions was that the ®xed baseline is very sensistive
to ambiguity biases when the ambiguity-baseline corre-
lation is large. Theorem 4 shows that a large ambiguity-
baseline correlation is also likely to result in a large
volume of the search space and thus in a poor reliability
of the integer ambiguities. Thus not only is the ®xed
baseline sensitive to ambiguity biases when the ambi-
guity-baseline correlation is large, the ambiguity biases
are then also most likely to occur.

In Sect. 1, Theorem 1, we also established the relation
between the ambiguity-baseline correlation and the gain
numbers. Hence, it is also possible to link the volume of
the search space to the precision of the baseline before
and after ambiguity ®xing. This is shown in Theorem 4,
by relating the volume of the search space to the vo-
lumes of the two con®dence ellipsoids of the baseline.

Theorem 4 (Volume, correlation, and gain)

Let V2�mÿ1� be the volume of the geometry-based dual-
frequency ambiguity search space based on m satellites,
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let qab;i be the ambiguity-baseline correlation coe�cients
and let Qb̂�/; p� and Q�b�/; p� be the variance matrices of
the ¯oated and ®xed baselines. Then

�i� V2�mÿ1�

� m
�mÿ 1�!

pv2���������
a1a2
p

k1k2k

� �mÿ1
P3

i�1
1�����������������

1ÿ q2ab;i

q ;

�ii� V2�mÿ1� � m
�mÿ 1�!

pv2���������
a1a2
p

k1k2k

� �mÿ1 �����������������������
j Qb̂�/; p� j
j Q�b�/; p� j

s
:

Proof: See Appendix. (
Both expressions hold for the dual-frequency case,

but similar expressions can be given for the single-fre-
quency case as well. Similar expressions can also be gi-
ven for the time-averaged and the geometry-free model.

The ®rst expression relates the volume of the search
space to the ambiguity-baseline correlation and the
second relates the same volume to the volumes of the
two con®dence ellipsoids of the baseline. The square
root of the determinantal ratio is namely also the ratio
of volumes of the con®dence ellipsoid of the baseline
before and after ®xing.

Both expressions show two distinct components, one
component that depends on the receiver-satellite geo-
metry and one that does not. The ®rst expression clearly
shows that the volume blows up when the correlation
coe�cients approach 1. The only possible way that this
e�ect can be counteracted is by having the triple product
multiplied by a very small number. And as the theorem
shows, it is here where we see the very bene®cial role of
having dual-frequency data, with very precise carrier-
phases, tracking as many satellites as possible.

The second expression, apart from showing a similar
structure to the ®rst, is of importance in its own right. It
features the relation between ambiguity reliability and
baseline precision. Hence it captures in one simple for-
mula two of the most essential aspects of GPS ambiguity
resolution. For the purpose of having a successful vali-
dation, we need the volume to be as small as possible. At
the same time however, we also would like the gain in
baseline precision and thus the volume ratio of the

baseline con®dence ellipsoids to be as large as possible.
According to the preceding formula, these are clearly two
con¯icting demands which cannot be met separately.
Since validation takes priority over the gain, we have to
be satis®ed with a smaller gain in baseline precision. After
all, it does not make sense to have a baseline, which is
very precise but which otherwise is completely o� target.

These two aspects, ambiguity reliability and gain in
baseline precision, are shown in the sketch of Fig. 1. The
®gure shows, as the observation time progresses, that
both the ¯oated baseline and the ®xed baseline improve
in precision, but that the di�erence between the two, and
thus the gain, gets smaller. The ®gure also shows that
the ambiguity reliability improves with time. Depending
on the model used and the application at hand, it may
happen that the required ambiguity reliability occurs at
a point in time for which the gain is so small that the
precision of the ¯oated baseline is practically as good as
the precision of the ®xed baseline. In that case, ambi-
guity resolution, although successful in itself, will not
help much in improving the baseline precision. The
whole art of ambiguity resolution is therefore to devise
models and measurement techniques that simulta-
neously allow for �a� a su�ciently large ambiguity re-
liability; �b� a su�ciently large precision gain, and �c� a
su�ciently large time-span for the ¯oat solution to
overcome the gain. It is the strength of the GPS system,
that this is indeed feasible for many important applica-
tions and that, for the models considered in this con-
tribution, it can be established within a time-frame that
also allows very economical surveying. And as the vo-
lume formula shows, the typical GPS characteristics of
having very precise phase data and the possibility of
tracking quite a number of satellites, are main con-
tributors in this respect.

5 Summary

In this contribution we considered the baseline in
relation to the ambiguities. It was shown how the
baseline-ambiguity correlation depends on the phase-
code variance ratio and on the change over time in the
receiver-satellite geometry. The conclusion was reached
that the baseline and the ambiguities will generally be
highly correlated. As a consequence, undetected biases
in the integer ambiguities will propagate almost
un®ltered into the solution of the ®xed baseline, thus
emphasizing the importance of ambiguity validation. It
was shown how the integer ambiguity bias which has the
least chance of being detected, could be found from
solving an integer least-squares problem. This allows
one to infer a priori whether one is likely to have a
successful ambiguity validation or not.

We introduced an ambiguity transformation in-
variant DOP measure for the ambiguities and showed
that it captures both the precision and correlation
characteristics of the ambiguities. Closed-form formulae
for it were given for the geometry-free model, the time-
averaged model, and the geometry-based model. A
mutual comparison of these formulae clearly showed for

Baseline
precision
& reliability

Reliability
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Float

Time
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Fig. 1. Baseline precision and ambiguity reliability versus time
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each of the three single-baseline models the impact of
di�erent types of data redundancy.

We also linked the ambiguity DOP measure to the
volume of the search space and showed how it could be
used to downsize the search space, such that an abun-
dance of unnecessary grid points in the search space is
avoided. In order to have a search space with as few
unnecessary grid points as possible, while still being able
to guarantee that at least one, or if needed, two grid
points are contained in it, one needs to use the dec-
orrelated ambiguities instead of the original DD ambi-
guities. This is due to the high precision and low
correlation of the transformed ambiguities.

Finally we showed how the volume is related to the
ambiguity-baseline correlation and to the gain in base-
line precision. It is revealed by one simple formula, that
baseline precision and ambiguity reliability act as a pair
of scales. The gain in baseline precision gets larger the
more the baseline and the ambiguities become corre-
lated. Thus ambiguity ®xing is most bene®cial, preci-
sion-wise, when the baseline-ambiguity correlation is
large. However, also the volume gets larger when the
baseline and the ambiguities become more correlated.
Thus a larger baseline-ambiguity correlation also im-
plies less reliable integer ambiguities. In order for am-
biguity resolution to be successful as well as bene®cial,
one thus needs to reach a balance between these two
e�ects. That this is feasible for the three di�erent single-
baseline models considered is in a large part due to the
high precision of the phase data and to the number of
satellites that can be tracked.
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7 Appendix

Proof of Theorem 1 (Ambiguity-baseline correlation)
The proof of this theorem consists of two steps. We will
®rst bring q�a; b� into a simpler form. For that purpose
we introduce the 2�mÿ 1� � 3 matrix

R � Qÿ1=2â Qâb̂Qÿ1=2
b̂

: �22�
Let its singular value decomposition be given as

R � U
R
0

� �
V T : �23�

Introducing the reparametrizations

a � Qÿ1=2â Uu ; b � Qÿ1=2
b̂

Vv ;

it follows that

aT Qâb̂b � uT R
0

� �
v ; aT Qâa � uT u ; bT Qb̂b � vT v :

This shows that the correlation coe�cients qi follow
from solving

qi � max
u

max
v

uT R
0

� �
v��������������

uT uvT v
p

��������
�������� �

uT
i

R
0

� �
vi�����������������

uT
i uivT

i vi

p
��������

�������� ; �24�

subject to

uT uj � 0 j � 1; . . . ; �iÿ 1� ;
vT vj � 0 j � 1; . . . ; �iÿ 1� :
In order to solve Eq. (24), we still need to derive the
entries of the diagonal matrix R. It follows from Eqs.
(22) and (23) that

Qÿ1=2
b̂

Qb̂âQÿ1â Qâb̂Qÿ1=2
b̂
� V R2V T : �25�

Since we know that the variance matrix of the ®xed
baseline is related to the variance matrix of the ¯oated
baseline as

Q�b � Qb̂ ÿ Qb̂âQÿ1â Qâb̂ ;

it follows that

Qÿ1=2
b̂

Qb̂âQÿ1â Qâb̂Qÿ1=2
b̂
� I3 ÿ Qÿ1=2

b̂
Q�bQÿ1=2

b̂
:

With Eq.(25), this gives

V R2V T � Qÿ1=2
b̂
�I3 ÿ Q�bQÿ1

b̂
�Q1=2

b̂
: �26�

We know from Theorem 7 of Part I that

Qb̂ � �F ��I3 � Cÿ1�F T �ÿ1 ; Q�b � �F ��� 1�F T �ÿ1 :
Substitution into Eq.(26) gives

V R2V T � Qÿ1=2
b̂

F ÿT
� 1
�� 1

�I3 ÿ Cÿ1��F T Q1=2

b̂
:

Hence, it follows from solving the characteristic
equation

j V R2V T ÿ kI3 j� 0

that the diagonal entries of R2 correspond with the
diagonal entries of �I3 ÿ Cÿ1�=��� 1�. This result,
together with Eq.(24) proves the theorem.
End of proof. (

Proof of Corollary 1 (Baseline to ambiguity bias)
The maximum of the ratio k r�b k2 = k r�a k2 equals the
maximum eigenvalue of the generalized eigenvalue
problem

j Qÿ1â Qâb̂Qÿ1�b Qb̂âQÿ1â ÿ lQÿ1â j� 0 : �27�
Since Qÿ1

âjb̂ � Qÿ1â � Qÿ1â Qâb̂Qÿ1�b
Qb̂âQÿ1â , Eq.(27) is

equivalent to

j I2�mÿ1� ÿ �l� 1�Qÿ1=2â Qâjb̂Qÿ1=2â j� 0 : �28�
But since the nonzero eigenvalues of Qÿ1â Qâb̂Qÿ1

b̂
Qb̂âQÿ1â

= I2�mÿ1� ÿ Qÿ1=2â Qâjb̂Qÿ1=2â are given, according to

Theorem 1, as q2i , it follows with Eq. (28) that
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lmax �
q2max

1ÿ q2max
:

End of proof. (

Proof of Theorem 2 (The baseline BNR)
The ®xed baseline is computed as

�b � Q�b

Xk

i�1
AT

i D�T d�i� ;

with

d�i� �
X2
j�1
�aj�DT /j�i� ÿ kj�aj� � bjD

T pj�i�� :

Hence, the baseline bias due to biases in the ®xed
ambiguities reads

r�b � ÿQ�bk �A T D�T �r ;

where �r is the weighted average of the L1 and L2
ambiguity biases, expressed in units of range rather than
cycles. The baseline BNR reads therefore

r�b
T

Qÿ1�b r�b � �a1 � a2�2k2 �rT D� �AQÿ1�b
�A T D�T �r : �29�

According to Theorem 7 of Part I and Theorem 1 of
Part III, we have

�i� Q�b � �F ��� 1�F T �ÿ1 ;
�ii� ��b1 � b2�k �A T P �A�ÿ1 � �F ��I3 ÿ Cÿ1�F T �ÿ1 ;
�iii� U � P �AF ÿT �F ÿ1 �A T P �AF ÿT �ÿ1=2 :
From the last two equations, it follows that

D� �A � D�U � 1
�a1�a2�k�I3 ÿ Cÿ1��1=2F T : :

This combined with the ®rst equation, shows that

D� �AQÿ1�b
�A T D�T � 1

�a1 � a2�k
1

�� 1
D�U�I3 ÿ Cÿ1�UT D�T :

Substitution into Eq.(29) proves the theorem.
End of proof. (

Proof of Theorem 3 (Determinant of ambiguity variance
matrix)
To solve for the determinant of the variance matrix, we
start from Theorem 1 of Part I. Using this theorem, we
may write

j Qâ j�j M1 
 DT D�M2 
 DT �AQb̂�/; p� �A T D j ; �30�
with

M1 � diag�1=�a1kk21�; 1=�a2kk22�� ;

M2 �
1
k21

1
k1k2

1
k1k2

1
k22

264
375 ;

and where `
' denotes the Kronecker product. Using the
determinant factorization

j E ÿ DBÿ1C jj B j�j E jj Bÿ CEÿ1D j ;
with

B : � I2 
 I3 ; C :� I2 
 Qb̂�/; p� �A T D ;

D : � ÿM2 
 DT �A ; E :� M1 
 DT D ;

we may write Eq.(30) also as

j Qâ j�j M1 
 DT D jj I2 
 I3 �M1M2 
 Qb̂�/; p� �A T P �A j :
�31�

Since

j M1 
 DT D j � j M1 jmÿ1j DT D j2 ;
j M1 j � 1=�a1a2k21k22k2� ;
j DT D j � m ;

it follows that

j M1 
 DT D j� m2 1

a1kk21

 !mÿ1
1

a2kk22

 !mÿ1
: �32�

In order to solve for the second determinant on the
right-hand side of Eq.(31), we make use of the canonical
decomposition of Theorem 7 of Part I. According to this
theorem, we have

Qb̂�/; p� �A T P �A � 1

�b1 � b2�k
Qb̂�/; p�Qb̂��p�ÿ1

� F ÿT K3F T ; �33�
with

K3 � diag�k3;1; k3;2; k3;3� ;
k3;i � 1

�a1 � a2�k
ci ÿ 1

�ci � 1
; i � 1; 2; 3 :

We therefore may write

j I2 
 I3 �M1M2 
 Qb̂�/; p� �A T P �A j

�
�I3 � a1kK3� a1k k1

k2
K3

a2k k2
k1

K3 �I3 � a2kK3�

" #�����
����� :

Since the matrix in this last determinant consists of
diagonal matrices only, its determinant is not di�cult to
compute. As a result, we get

j I2 
 I3 �M1M2 
 Qb̂�/; p� �A T P �A j
� P3

i�1�1� �a1 � a2�kk3;i�

� P3
i�1 1� ci ÿ 1

�ci � 1

� �
: �34�

Substitution of Eqs.(32) and (34) into Eq.(31), proves
the theorem.
End of proof. (
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Proof of Theorem 4 (Volume, correlation and gain)
The volume of the dual-frequency ambiguity search
space reads

V2�mÿ1� � �pv2�mÿ1
�mÿ 1�!

���������������
j Qâ j ;

p
�35�

with, according to Theorem 3,

j Qâ j� m2 1

a1kk21

 !mÿ1
1

a2kk22

 !mÿ1
P3

i�1
�1� ��ci

1� �ci
:

�36�
Case (i): From Theorem 1, it follows that

c4ÿi � 1=�1ÿ �1� ��q2ab;i� :
Substitution into Eq.(35) proves the ®rst case.
Case (ii): According to Theorem 7 of Part I, we have

Qb̂�/; p� � �F ��I3 � Cÿ1�F T �ÿ1 ;
Q�b�/; p� � ��1� ��F F T �ÿ1 ;
from which it follows that

j Qb̂�/; p� j
j Q�b�/; p� j

� P3
i�1
�1� ��ci

1� �ci
:

Substitution into Eq.(36) proves the second case.
End of proof. (
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