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1 Introduction 
 
Solutions of partial differential equations have attracted significant interest in the lit- 

erature. Exact traveling wave solutions, in particular, are useful both in practice and 

for verifying the accuracy and stability of popular numerical schemes such as the finite 

difference and finite element methods. By employing a computer algebra software such 

as Maple or Mathematica, the large amounts of tedious working required to verify 

candidate traveling wave solutions can be avoided. The capability and power of these 

softwares has increased dramatically over the past decade. Hence, a direct search for 

exact solutions is now much more viable. 

Several effective direct search methods have been proposed in the literature. These 

include the tanh method [15,16], Exp-function method [6,20], Jacobian elliptic function 

method [12,18], Weierstrass’s elliptic function method [17], reduction of order methods 

[9,10], and cosh/sinh ansatz I-III method [19]. In this paper, we extend the generalized 

expansion method developed in references [2, 3]. More specifically, we develop some 

new Jacobian elliptic and exponential solution classes for the same auxiliary ordinary 

differential equation (ODE) considered in these papers. The solutions of the ODE are 

then used to construct candidate traveling wave solutions. Our new results ensure that, 

when applied to the classical Boussinesq and modified KdV equations, this generalized 

expansion method not only recovers all of the solutions reported in [6, 12, 18, 19, 22], 

but also discovers many new ones. Furthermore, this approach is flexible as well as 

powerful — it is easily adapted in Section 6 to handle the system of shallow long wave 

approximate equations. 

 
 

2 Preliminary results 
 
The Jacobian elliptic functions are discussed thoroughly in [1, 5]. Since these special 

functions play an important role in the sequel, we will briefly introduce them here. We 

will also discuss some preliminary results that form the basis for our work in Sections 
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3-6. Note that we will follow the usual convention and let i denote the complex number 

satisfying i2 = −1. Moreover, for the remainder of this paper, m ∈ (0, 1) is arbitrary. 

 
To begin, consider the integral 

 
   ρ dη 

ζ = '\ . 

0 1 − m2 sin2(η) 
 

Here, the constant m is referred to as the modulus and the upper limit ρ is called the 

amplitude of ζ, which we denote as 

 

 
ρ = am(ζ). 

On this basis, the first three Jacobian elliptic functions are defined as 

sn(ζ) := sin[am(ζ)] = sin(ρ), 
 

cn(ζ) := cos[am(ζ)] = cos(ρ), 
 

 
and 

 

 
 

dn(ζ) := 
I  

1 − m2 sin2[am(ζ)] = 

I  

1 − m2 sin2(ρ). 
 
 

As m → 1, we have 

 
sn (ζ) → tanh (ζ) , cn (ζ) → sech (ζ) , dn (ζ) → sech (ζ) . 

 

 
Similarly, as m → 0, 

 

 
sn (ζ) → sin (ζ) , cn (ζ) → cos (ζ) , dn (ζ) → 1. 

 

 
Nine additional Jacobian elliptic functions can be defined in terms of these first three 
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j pj,0 (γ) pj,1 (γ) pj,2 (γ) pj,3 (γ) pj,4 (γ) 

1 m2 − 1 4γ(1 − m2 ) 2 − 6γ2 + 6γ2 m2 − m2
 2γ(2γ2 − 2 + m2 − 2γ2 m2 ) γ4 m2 + 2γ2 − γ4 − 1 − γ2 m2

 

2 1 −4γ 6γ2 − 1 − m2
 2γ(1 + m2 − 2γ2 ) γ4 + m2 − γ2 − γ2 m2

 

3 1 − m2
 4γ(m2 − 1) 2m2 − 6γ2 m2 + 6γ2 − 1 2γ(2γ2 m2 − 2γ2 + 1 − 2m2 ) 2γ2 m2 + γ4 − m2 − γ4 m2 − γ2

 

4 
1 

− 4 γ 
2 2 

2 γ(2m2 + γ2 − 1) 
4 2    2 2 

− 
4 

5 
1 

− 4 γ 
2 2 

2 γ(γ2 − 1 − m2 ) 
2 2     4 2    2 4 

4 

6 
m2   

− 4 γm2
 

2 2   2 

2 γ(γ2 m2 − m2 + 2) 
2    2     4   2 2 2 

4 

7 0 m2 − 1 3γ + 2 − 3γm2 − m2
 3γ2 m2 + 2γm2 − 3γ2 − 4γ − 1 γ(γ + 1)(γ +1 − γm2 ) 

8 0 −2
p

1 − m2 6
p

1 − m2 γ − 4m2 + 5  (8m2 − 10)γ − (6γ2 + 4)
p
1 − m2 (4γ + 2γ3 )

p
1 − m2 + 1 + (5 − 4m2 )γ2

 

9 1 
4 

0 
2 1 

−m  + 2 
0 1 

4 

10        m2   

4(1−m2 ) 

q 
4 2 

m2 −1 

2m4 −3m2 +4 

2(1−m2 ) 

q    
4  2 

m2 −1 
       m2   

4(1−m2 ) 

11 1−m2 
4 

0 1+m2 
2 

0 1−m2 
4 

12 
2 2 

4(1−m2 ) 

q 
4 2 

m2 −1 

4 

2(m2 −1) 

q 
4  2 

m2 −1 

2 2 

4(1−m2 ) 

 

 

 

— see references [1, 5] for details. 

In [2, 3], the following auxiliary ODE was introduced: 
 
 

[F 1(ξ)]
2 

= q + q F (ξ) + q [F (ξ)]
2 

+ q [F (ξ)]
3 

+ q [F (ξ)]
4 
, (2.1) 

0 1 2 3 4 
 
 

where qk , k = 0, . . . , 4, are given coefficients. Various solutions of ODE (2.1) were con- 

structed using the Jacobian elliptic functions, and these results were exploited  in  the 

design of a systematic procedure for generating solutions of non-linear partial differen- 

tial equations. We will follow a similar approach in this paper. In our work, ODE (2.1) 

will  be considered  assuming  q4  /= 0.  We will  need  to determine  more  general 

solution 

classes of ODE (2.1) than those reported in [2, 3].  This is the motivation behind the 

preliminary results that follow. 

Recall that m is an arbitrary real number satisfying 0 < m < 1. With this in 

mind, for any (possibly complex) number γ, define the constants pj,k(γ), j = 1, . . . , 12, 

k = 0, . . . , 4, according to the following table. 

 
 
 
 
 
 

 
 −3γ +1−2m   

 
1−3γ +m   

 
m  −3γ  m  −2 

    γ   − 1− 4γ   m   +2γ   

 
2γ  +2m −γ  −1+2γ  m −m    2γ m −γ  m  −m −4γ   

 
 
 

    m −m +1      m   − m   +1 

 

 
m (2−m )     1− m   +m   

 
    m  −4         1− m   +m   m (2−m ) 

 

 
Table 1. Definition of the constants pj,k (γ), j = 1, . .  . , 12, k = 0, . .  . ,  4. 

 

 
 
 
 

Furthermore, let the functions ϕj,k(·, γ), j = 1, . . . , 12, k = 1, . . . , 4, be defined as 

follows: 
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, 

, 

 

 
 
 
 
 

ϕ1,1 (ξ, γ) =  
dn (ξ) 

, 
γdn (ξ) + 1 

 
ϕ1,2 (ξ, γ) =  

√
1 − m2 

γ
√

1 − m2 + dn (ξ) 
√   

ϕ1,3 (ξ, γ) =  
 

 
ϕ1,4 (ξ, γ) =  

m2 − 1sn (ξ) 

γ
√

m2 − 1sn (ξ) + cn (ξ) 

cn (ξ) 
, 

 
 

ϕ2,1 (ξ, γ) =  

 
ϕ2,2 (ξ, γ) =  

 

 
ϕ2,3 (ξ, γ) =  

 

 
ϕ2,4 (ξ, γ) =  

 

 
ϕ3,1 (ξ, γ) =  

 

 
ϕ3,2 (ξ, γ) =  

γcn (ξ) + isn (ξ) 
sn (ξ) 

, 
γsn (ξ) + 1 

1 
, 

γ + msn (ξ) 

dn (ξ) 
, 

γdn (ξ) + mcn (ξ) 
cn (ξ) 

, 
γcn (ξ) + dn (ξ) 

cn (ξ) 
, 

γ cn (ξ) + 1 
√

m2 − 1 
√ , 

γ 

ϕ3,3 (ξ, γ) =  

m2 − 1 + mcn (ξ) 

dn (ξ) 
, 

 
 

ϕ3,4 (ξ, γ) =  

γdn (ξ) + imsn (ξ) 
√

1 − m2 sn (ξ) 
√ , 

γ 

ϕ4,1 (ξ, γ) =  

1 − m2 sn (ξ) + dn(ξ) 
1 

, 
 
 

ϕ4,2 (ξ, γ) =  
 

 
ϕ4,3 (ξ, γ) =  

γ + im sn(ξ) + dn(ξ) 

dn(ξ) 

γ dn(ξ) + im cn(ξ) + 

sn(ξ) 
, 

γ sn(ξ) +i +i cn(ξ) 
cn(ξ) 

 
√ , 

1 − m2 

ϕ4,4 (ξ, γ) =  
 

 
ϕ5,1 (ξ, γ) =  

γ cn(ξ) + i dn(ξ) + 

1 

√  , m2 

− 1 sn(ξ) 

, 
 
 

ϕ5,2 (ξ, γ) =  

γ + m cn(ξ) + dn(ξ) 

dn(ξ) 
√   

 
√ , 

γ dn(ξ) + m 1 − m2 sn(ξ) +  1 − m2 

ϕ5,3 (ξ, γ) =  
sn(ξ) 

, 
γ sn(ξ) + i dn(ξ) + i cn(ξ) 

cn(ξ) 
ϕ5,4 (ξ, γ) =  √  √  , 

 
 

ϕ6,1 (ξ, γ) =  

γ cn(ξ) +  
1 

m2 − 1 +  

, 

m2 − 1 sn(ξ) 

 
 

ϕ6,2 (ξ, γ) =  

γ + i sn(ξ) + cn(ξ) 
dn(ξ) 

√  , 
 
 

ϕ6,3 (ξ, γ) =  

γ dn(ξ) + i cn(ξ) +  

m sn(ξ) 

1 − m2 sn(ξ) 

, 
 
 

ϕ6,4 (ξ, γ) =  

γm sn(ξ) + i + i dn(ξ) 

im cn(ξ) 
√ , 

iγm cn(ξ) + dn(ξ) +  1 − m2 
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1 m2 

√
1 m2 

1 

√ 

√ 

) +  

√ 

√ 

) +  

, 

γm  
, 

− 

, 

, 

, 

− 

− 

, 

 

    √ 
− [1 + sn(ξ)] 

ϕ7,1 (ξ, γ) =  
γ
√

1 − m2 + 
√

1 − m2 (γ + 1) sn(ξ) + dn(ξ) 

ϕ7,2 (ξ, γ) =  
dn(ξ) + cn(ξ) 

, 
γ dn(ξ) + (γ + 1) cn(ξ) + 1 

   
− [1 + m sn(ξ)] 

ϕ7,3 (ξ, γ) =  √
1 − m2 sn(ξ) +  

√
1 − m2 (γ + 1) + mi cn(ξ) 

ϕ7,4 (ξ, γ) =  
dn(ξ) + m cn(ξ) 

, 
mγ cn(ξ) + (γ + 1) dn(ξ) + im sn(ξ) 

 
ϕ8,1 (ξ, γ) =  

dn(ξ) + 
√

 
√ 

m2  sn(ξ) 
, 

(1 + 1 − m2 γ) sn(ξ) + γ dn(ξ) 
√   

    1 − m2 [cn(ξ) + 1] 
ϕ8,2 (ξ, γ) = √ 

1 − m2 γ + 
√   

√
1 − m2 γ cn(ξ) + cn(ξ) 

ϕ8,3 (ξ, γ) =  
1 − m2 + im cn(ξ) 

1+ 
√

1 − m2 γ + iγm cn(ξ) 
√

1 − m2 dn(ξ) + m
√

m2 − 1 sn(ξ) 
ϕ8,4 (ξ, γ) =  

dn(ξ) + γ 
√

1 − m2 dn(ξ) + m 
√   

√
m2 − 1γ sn(ξ) 

      sn(ξ) +  1 − m2 dn(ξ) 
ϕ9,1 (ξ, γ) =  

m
√

2 − m2 + 
, 

−m4 + m2 + 1 cn(ξ) 

cn(ξ) − 1+ m2
 

ϕ9,2 (ξ, γ) =  √   
m  2 − m2 dn(ξ) +  

   , p
(−m4 + m2 + 1)(1 − m2 ) sn(ξ) 

dn(ξ) + im(1 − m2 ) sn(ξ) 
ϕ9,3 (ξ, γ) =  √   

m2   2 − m2 cn(ξ) +  

  , p
(−m4 + m2 + 1)(m2 − 1) 

  1 +m
√
m2 − 1 cn(ξ) 

ϕ9,4 (ξ, γ) = √ √ , 
m2   2 − m2 sn(ξ) +  m4 − m2 − 1 dn(ξ) 

 
ϕ10,1 (ξ, γ) =  

cn(ξ) + 
√

1 − m2 dn(ξ) 
√ , 

m2 − 1 +  m4 − m2 +1  cn(ξ) 
√   

     sn(ξ) +   1 − m2   
ϕ10,2 (ξ, γ) = √ 

1 − m2 dn(ξ) +  
, 

m4 − m2 + 1 sn(ξ) 

      1 +m
√

1 − m2 sn(ξ) 
ϕ10,3 (ξ, γ) =  

m
√

m2 − 1 cn(ξ 
√

 
, 

m4 − m2 + 1  
 

ϕ10,4 (ξ, γ) =  
dn(ξ) + m

√
1 − m2 cn(ξ) 
√ , 

i(m3 − m) sn(ξ) +  
√   

m4 − m2 +1 dn(ξ) 

ϕ11,1 (ξ, γ) =  
cn(ξ) +  

√ 
1 m2 dn(ξ) 

, 
m +  m4 − m2 + 1 sn(ξ) 

 
ϕ11,2 (ξ, γ) =  

√
1 − m2 sn(ξ) − 1 +m2

 
√ , 

m dn(ξ) +  m4 − m2 + 1 cn(ξ) 
 

ϕ11,3 (ξ, γ) =  
i[ dn(ξ) + m

√
1 − m2  cn(ξ)] 

√ , 
m2 sn(ξ) +  
√   

m4 − m2 + 1  
√   

ϕ11,4 (ξ, γ) =  
m2 − 1[1 + m 

√ 
1 m2 sn(ξ)] 

, 
m2 cn(ξ) +  m4 − m2 + 1 dn(ξ) 

   cn(ξ) + 1 − m2
 

ϕ12,1 (ξ, γ) = √ 
1 − m2 dn(ξ) +  

, 
1 − m4 + m2 cn(ξ) 

  sn(ξ) + 
√

1 − m2 dn(ξ) 
ϕ12,2 (ξ, γ) = √ 

1 − m2 + 
√

1 − m4 + m2 sn(ξ) 

     1 +m
√

m2 − 1 cn(ξ) 
ϕ12,3 (ξ, γ) =  

m
√

1 − m2 sn(ξ) +  
, 

1 − m4 + m2 

  dn(ξ) + i(m3 − m) sn(ξ)   
ϕ12,4 (ξ, γ) =  

m
√

1 − m2 cn(ξ 
√

 
. 

1 − m4 + m2 dn(ξ) 
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0 0 

3 . 2 

 
 
 
 
 
 

Through lengthy calculation, we  can  readily verify the  following  result. Note  that 

Maple can be used to help us for the calculation. 

 

 
Theorem 1. Let γ be arbitrary. Then, for each j = 1, . . . , 12, ODE (2.1) with 

coefficients qk = pj,k(γ), k = 0, . . . , 4, has solutions ϕj,k(·, γ), k = 1, . . . , 4. 

 
Remark  1.  Theorem 1 can be generalized further.   In fact, it remains valid even 

if cn(ξ), sn(ξ) and dn(ξ) are replaced, respectively, by ±cn(ξ), ±sn(ξ) and ±dn(ξ) in 

the expressions for ϕj,k  given above. 

 
 

In some cases, the solutions of ODE (2.1) can be used to generate additional solu- 

tions. This observation is furnished precisely in Theorems 2 and 3 below. Again, 

Maple can be used to conveniently verify these results. 

 
 

Theorem  2.  Suppose that ϕ is a solution of ODE (2.1) with coefficients qk  = q̂k , 

k = 0, . . . , 4, where q̂1 = q̂3 = 0, and q̂0, q̂2 and q̂4 are given constants such that q̂0 /= 

0. Then, I 
q̂4  1 ϕ + 

± 
q̂0 ϕ 

is a solution of ODE (2.1) with coefficients 

  
q̂4 

  
q̂4 

q0 = 8q̂4 ∓ 4q̂2 

q̂ 
, q1 = 0, q2 = q̂2 ∓ 6q̂0 

q̂ 
, q3 = 0, q4 = q̂0. 

Theorem  3.  Suppose that ϕ is a solution of ODE (2.1) with coefficients qk  = q̂k , 

k = 0, . . . , 4, where q̂k , k = 0, . . . , 4, are given constants such that q̂1 /= 0 and q̂4  

= 

q̂0q̂2 

q̂1 
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1 

0 

0 

− a 

(a    b a  ) 

0 

0 

−1  0 0 

0 

, 

2 

 

 

Then, 

q̂3 
ϕ + 

1 
q̂1 ϕ 

is a solution of ODE (2.1) with coefficients 
 
 

q0 = 
4q̂3(2q̂0q̂3 − q̂1q̂2) 

q̂2 
, q1 = −4q̂3, q2 = q̂2 − 

6q̂0q̂3 

q̂1 

 
, q3 = q̂1, q4 = q̂0. 

 
 

 
Remark 2. From Table 1 and Theorem 1, the reader will notice that, for any γ, 

Theorem 3 can be invoked with ϕj,k(·, γ), j ∈ {10, 12}, k = 1, . . . , 4. 

 
We would also like to consider non-Jacobian elliptic solutions of ODE (2.1). As such, 

to conclude this section, we present the following two results. Both can be proved 

easily via direct substitution. 

 

 

Theorem  4.    Let  a−1,  a0,  a1   and  b0   be  given  constants  such  that  a−1   /=  0  and 

a0 /= a−1b0. Then, 
a−1e

−
 
ξ + a0 + a1e

ξ
 

e−ξ + b  +  a1  eξ 
a−1 

 

is a solution of ODE (2.1) with coefficients 
 

`
4a−1 a1 − a2 ́

 
a2

 
0 −1 

q0 = − 
(a−1 b0 − a )2 ,

 
 

q1 = 2a−1 
`
 a0 a−1 b0 + 8a−1 a1 − 2 ́  

2 , 
−1  0 −  0 

a2  b2 + 4a−1 a0 b0 − 24a−1 a1 + a2
 

q2 = −1 0 
2 , 

(a−1 b0 − a0 ) 
 

q3 = 
2(8a1 − a−1 b2 − a0 b0 ) 

(a   b  − a )2
 

a−1 b2 − 4a1 

q4 = 0 . 
a−1 (a−1 b0 − a0 ) 

 
 
 
 

Theorem  5.   Let  a−1,  a1,  b0   and  b1   be  given  constants  such  that a1   /=  b1a−1   and 
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0 

(b a a  )2 , 

, 

, 

1 , 

ξ 

2 

. 2 

 

 
a0 = 

b0 (a−1 b1 +a1 )±(a−1 b1−a1 )
√

b2 −4b1 

2b1 

 
. Then, 

 

a−1e
−

 + a0 + a1e
ξ
 

e−ξ + b0 + b1eξ 

 

is a solution of ODE (2.1) with 
 

a2   a2 

q0 =
 −1  1   

1  −1 −  1 
2a−1 a2 − 2b1 a2   a1 

q1 = 
− 1 −1 

(b1a−1 − a1 ) 
a2 + 4a−1 b1 a1 + a2  b2

 

q2 =  
1

 
(b1 a−1 − a1 ) 

−1 1 
2 

q3 = 
−

 
2a1 b1 − 2a−1 b2

 
2 

(b1 a−1 − a1 ) 

b2 

q4  =
  1 

(b1a−1 − a1 ) 

 
 

 
Note that additional solutions of ODE (2.1) can be constructed using Weierstrass’ 

elliptic function. The reader is directed to [17] for more details. 

 
 

3 A generalized expansion method 
 

We will briefly outline a generalized expansion method for constructing traveling wave 

solutions. Similar procedures have been developed in references [2, 3]. However, the 

new results given in the previous section ensure that our method yields many new 

solutions when applied to some classical partial differential equations. This will be 

clearly demonstrated in Sections 4-6. 

We consider the following non-linear wave equation: 
 
 

H (u, ut, ux, utt, uxx, uxt, . . .) = 0, (3.1) 
 
 

where u := u(x, t) is a real or complex-valued function, H is a given function involving 

powers of its arguments and the subscripts denote differentiation.  We will consider 
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q1 F 

2 
2 2 

2 

 

 

candidate traveling wave solutions that take the form 
 

N 

u(x, t) = ũ (ξ) =       cj [F (ξ)]
j 
, (3.2) 

j=0 

 

where ξ = µ (x − νt), µ > 0 is the wave number, ν is the traveling wave velocity, N is 

an integer, F is a non-trival solution of ODE (2.1) with coefficients qk , k = 0, . . . , 4, 

and cj , j = 0, . . . , N , are constants with cN /= 0. Depending on the form of H, µ 

and ν will be determined or remain as free parameters. 

Note that ũ given by (3.2) is a polynomial function of F . Hence, it is readily seen 

that, for each integer κ ≥ 1, ũκ  is also a polynomial in F .  In this case, we use the 

degree notation O(·) to denote the index of the highest power of F . Thus, 

 
O(ũκ) = N κ, κ ≥ 1. (3.3) 

 
The derivatives of F can be obtained by repeatedly differentiating both sides of (2.1). 

For example, 

 
 F 11 = 
 

 
2  + q2F + 

 
3q3 2 
2 

 
+ 2q4F 3, 

 

F
 

111 =  (q2 + 3q3F + 6q4F 2) F 1,  
(3.4) 

 F 1111 =   
(
3q0q3 + 1 q1q2

) 
+ 

(
q2 + 9 q1q3 + 12q0q4

) 
F 

2 2 2 
 
 

+15 
( 

1 q2q3 + q1q4

) 
F 2 + 

(
20q2q4 + 15 q3 

) 
F 3 + 30q3q4F 4 + 24q4 F 5. 

 
It is not difficult to show that only the even derivatives are polynomials in F . The odd 

derivatives also contain terms of the form F j (F 1) , where j is a non-negative integer. 

In this case, we define O(F 1) = 2 and so 

 
O(F j (F 1)) = j + 2, j ≥ 0. 
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− 

 

 

 

By differentiating (3.2), we can also deduce the derivatives of ũ. For example, 
 

 
 ũ1 =    (c1 + . . . + N cN F N −1)F 1, 
 
 
ũ11 =   (c1 + . . . + N cN F N −1)F 11 + [2c2 + . . . + N (N − 1)cN F N −2](F 1)2, 

 
 
ũ111 =   (c1 + . . . + N cN F N −1)F 111 + 3[2c2 + . . . + N (N − 1)cN F N −2]F 1F 11

 
 
 

+[6c3 + . . . + N (N − 1)(N − 2)cN F N −3](F 1)3, 
 

ũ1111 =   (c1 + . . . + N cN F N −1)F 1111
 

 

 
 
 
 
 
 
 
 

(3.5) 

 +4[2c2 + . . . + N (N 1)cN F  
  

N −2 

 
N −2 

]F 1F 
11 

111 

 
2 

 +3[2c2 + . . . + N (N − 1)cN F 
 

](F  ) 

 +6[6c3 + . . . + N (N − 1)(N − 2)cN F N −3](F 1)2F 11
 

 
+[24c4 + . . . + N (N − 1)(N − 2)(N − 3)cN F N −4](F 1)4, 

 

 

where the derivatives of F are given in (2.1) and (3.4). Higher order derivatives can 

be obtained similarly. Again, only the even derivatives of ũ are polynomials in F . It 

is readily seen that 

O 
(
ũ(κ)

) 
= N + κ, κ ≥ 1. (3.6) 

When ũ is substituted into (3.1), the original partial differential equation in x and t 

is reduced to a non-linear ODE in ξ. We will normally choose N so that the degrees 

of the highest order derivative term and highest order non-linear term in this reduced 

ODE are balanced.  However, this does not always result in an integral value for N . 

In this case, it is sometimes possible to proceed by letting ũ 
1 

= v τ , where τ is the 
 

denominator of the fractional value of N (assuming the denominator and numerator 

have no common factors), and solving the resulting equation for v. This is illustrated 

in the following example. 

 
 

Example 1. Consider the following Boussinesq-type equation: 
 
 

utt − uxx + uxxxx + (u5 − u3)xx = 0. 
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2 

1,j 

2 

 

 

By letting u(x, t) = ũ(µ(x − νt)), the above partial differential equation is reduced to 

the following ODE: 

ν2ũ11 − ũ11 + µ2ũ1111 + (ũ5 − ũ3)11 = 0. 
 

Integrating twice yields 
 
 

ν2ũ − ũ + µ2ũ11 + ũ5 − ũ3 = 0. (3.7) 

 
Here, the highest order non-linear term is ũ5, and the highest order derivative term 

is ũ11 .  Balancing these two terms using (3.3) and (3.6) gives 5N = N + 2, or N = 1 . 
1 

Setting ũ = v 2 , (3.7) becomes 
 

(ν2 − 1)v2 + 
µ

 [2vv11 − (v1)2] + v4 − v3 = 0. (3.8) 
4 

 

Now, we can balance (v1)2 and v4 to yield N = 1. Hence, we can search for traveling 

wave solutions of (3.8) which take the form v (µ(x − νt)) = c0  + c1F (µ(x − νt)), for 

constants c0  and c1. If such a v can be determined, then it is easy to derive ũ. • 

 
 

It is  noted  in  Example  1  that substituting ũ into (3.1) yields a non-linear ODE in 
 

ξ. When the derivatives of ũ are substituted into this reduced ODE, we will obtain 

a linear combination of F j (F 1)k, where j ≥ 0 is an integer and k ∈ {0, 1}. If ν, µ, 

and cj , j = 0, . . . , N , and qk , k = 0, . . . , 4, can be chosen to make each coefficient in 

this linear combination zero, then the resulting ũ will satisfy the original partial differ- 

ential equation (3.1).  However, in this procedure, we sometimes end up with cj  = 0, 

j = 0, . . . , N (we encounter this in Section 6). In this case, we can use the following 

alternative solution form proposed in [2]: 

 
N   

c [F (ξ)]j + c [F (ξ)]j−1F 1(ξ) 

ũ(ξ) = c0,0 + 
   

 
j=1 

2,j 

[θF (ξ) + 1]j 
, (3.9) 
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xx 

 

 

where c0,0, ck,j , k = 1, 2, j = 1, . . . , N , and θ are constants. 

Notice that each of the Jacobian elliptic solutions of ODE (2.1) reported in [2,13,14] 

can be written as a scalar multiple of some ϕj,k(·, 0), j ∈ {1, . . . , 6}, k ∈ {1, . . . , 4}. 

Hence, by applying our expansion method with (3.2) and Theorem 1 to a non-linear 

partial differential equation, we can replicate every Jacobian elliptic  solution  obtained 

using the methods presented in  [13, 14].  Applying  our  expansion  method  with  (3.9) 

and Theorem 1 to a non-linear partial differential equation, we can obtain all Jacobian 

elliptic solutions obtained using the method presented  in [2].  Similarly, each Jacobian 

elliptic solution of ODE (2.1) reported in [3, 4] with ω = 1 can be written as a scalar 

multiple of some ϕj,k(·, 0), j ∈ {1, . . . , 6}, k ∈ {1, . . . , 4}. It is also evident that, for the 

special case θ = 0, using our expansion method with (3.9) and Theorems 1 and 2, we 

can recover every Jacobian elliptic solution obtained using the method of [3,21]. Hence, 

by virtue of the new results in Section 2, our method is a significant generalization of 

the work reported in [2, 3, 13, 14]. 

 
 
 

4 Traveling wave solutions for the Boussinesq equa- 

tion 

Consider the well-known Boussinesq equation 
 
 

utt = uxx + uxxxx + 3 
(
u2

)
 , (4.1) 

 
 

where u := u (x, t) is a real-valued function. Various methods have been used to solve 

Boussinesq type equations [7, 8, 11]. Here, the general expansion method will be used 

to derive new traveling wave solutions for (4.1). Letting u(x, t) = ũ(ξ), where ξ is as 

defined in Section 3, (4.1) becomes the following ODE 

ν2ũ11 = ũ11 + µ2ũ1111 + 3 
(
ũ2

)11 
. (4.2) 
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 3 

4 

3 

4 

2 

 

Balancing  (ũ2)
11   

and  ũ1111   gives  2N  + 2  = N  + 4,  or  N  = 2.   Hence,  we  will  search  for 

traveling  wave  solutions  of  the  form 

 

ũ(ξ) = c0 + c1F (ξ) + c2 [F (ξ)]
2 
, (4.3) 

 

 
where c2  /= 0 and F satisfies ODE (2.1) with coefficients qk , k = 0, . . . , 4.  Substitut- 

ing (4.3) into (4.2) and using (2.1) and (3.4)-(3.5), we obtain the following sufficient 

conditions for ũ to satisfy (4.1): 

 
3µ2q2  − 16µ2q  q — 4q + 4q ν2

 

 c0 =
 3  4  2 4 4 , 

  
c1 = −µ q3, 

24q4 
 

(4.4) 
 c2 = −2µ2q4,  

 q1 = 
q3 (4q2q4 − q2) 

8q2 .
 

 
 

That is, if a solution F of ODE (2.1) with coefficients satisfying q1  = 

q4 /= 0 can be found, then 

 
3µ2q2 − 16µ2q4q2 − 4q4 + 4q4ν

2
 

 
q3(4q2 q4−q2) 

8q2
 

 
 
and 

ũ(ξ)  = 3
 

24q4 
− µ2q3F (ξ) − 2µ2q4 [F (ξ)]

2 (4.5) 

is  a  solution  of  the  Boussinesq  equation  (4.1).   Now,  we  generalize  this  solution  form 

further.  Note that, if q1  = q3  = 0, then (4.5) reduces to 

ũ(ξ)   = 
ν2 − 1 − 4µ2q2 

6 
− 2µ2q4 [F (ξ)]

2 
. (4.6) 

If q0 /= 0, then using Theorem 2 with (4.6) gives the following solution form for 

equation (4.1): 

ũ(ξ) =  ν
2 − 1 − 4µ2q2 

6 
− 2µ2q4 [F (ξ)]

2 
− 

2µ2q0 

[F (ξ)]
2
 
. (4.7) 
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3 ν 
− 2µ2q4 

2 

3 ν 
2 

4 

3 

2 

 

 

Furthermore, note that (4.5) can be rewritten as 
 
 

ũ(ξ) =  
µ2q2 2 

+ 
4q4 

− 4µ q2 − 1 
6 

( 
q3      

2 
F (ξ) +  

4q4 

 
. (4.8) 

 
The solution forms (4.7) and (4.8) provide motivation for the following, more general, 

candidate traveling wave solution: 

 
ũ(ξ) =  

µ2q2 2 
+ 

4q4 

− 4µ q2 − 1 

6 
− 

2µ2q4 

( 
q3      

2 

F (ξ) +  
4q4 

( 

+ d F 
q3 

(ξ) +  
4q4 

 −2  
, (4.9) 

 
where d is a constant.  By substituting (4.9) into (4.2), the value of d can be deter- 

mined. We summarize our results in the form of the following theorem. 

 

 

Theorem 6.  For each j = 1, 2, let εj  ∈ {0, 1}.  Suppose that F is a solution of 
q3(4q2q4−q2) 

ODE (2.1) with coefficients qj , j = 0, . . . , 4, satisfying q4  /= 0 and q1   

= 

Then, for any µ and ν, 

8q2 . 

 
µ2q2 2 2 

( 2 

u(x, t) =  3 + 
ν 

4q4 

− 4µ q2 − 1 

6 
− 

2ε1 µ
2q4 F (µ(x − νt)) +  

q3
 

4q4 

µ2(16q2 q2q4 − 5q4 − 256q3q0) 

+ ε2 
3 3  4 

128q3 
(
F (µ(x − νt)) + q3  

\
 

4 4q4 

 
is a solution of the Boussinesq equation (4.1). 

 

 
Remark 3. Note that the solution form given in Theorem 6 includes both (4.5) 

and (4.7) as special cases. 

 
 

Notice that the coefficients of ODE (2.1) in Theorem 5 satisfy the requirements of 

Theorem 6. Thus, we can apply Theorem 6 with the solutions reported in Theorem 

5 to obtain the following class of traveling wave solutions for the Boussinesq equa- 
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2 

6 2 

   2 2 

o µ 

2 

2 

2 

, 

 

 

tion (4.1):  
2 2 2 

( 
−e−µ(x−νt) ± 

√
λ2 − 4ϑ + ϑeµ(x−νt) 

  

u1 (x, t) = ν  −1+2µ
 − ε1 

µ
 

−ε2 
µ
 

e−µ(x−νt) + λ + ϑeµ(x−νt) 

2  

( 
e−µ(x−νt) + λ + ϑeµ(x−νt) 

√  , 
2 −e−µ(x−νt) ± λ2 − 4ϑ + ϑeµ(x−νt) 

 

where, for each j = 1, 2, εj ∈ {0, 1}, and λ, ϑ, µ and ν are arbitrary real constants 

such that ϑ � λ2/4. 

 

 
It should be addressed here that the above class of solutions includes all of those 

obtained by combining Theorems 4 and 6. Note that, for some cases, the denominators 

in the expression of u1 can be equal to zero at certain points, and thus, such a solution 

is unbounded.  For example, u1  with ε1 = ε2 = 1 and ϑ /= 0 is unbounded.  It is also 

noted that, for some cases, the solution u1 is bounded. For instance, u1  with ε1  = 1, 

ε2 =  0,  0 � ϑ � λ2/4 and λ ): 0 is bounded. For the bounded case, clearly, the 

solution u1  gives a single wave that moves in the x-direction with velocity ν and as 

µ(x − νt) → ±∞, u1(x, t) → (ν2 − 1 + 2µ2)/6 − µ2(ε1 + ε2)/2. 
 

 
Choosing ϑ = 1 and replacing λ by 2λ, u1 becomes 

 

 
u (x, t)   = ν   −1+2µ

 
   2  

( 
sinh[µ (x − νt)] ± 

√
λ2 − 1 

 
 

− 1 
6 2 cosh[µ (x − νt)] + λ (4.10) 

   2  

(
 cosh[µ (x − νt)] + λ 

2
 

−ε2 
µ
 

sinh[µ (x − νt)] ± 
√

λ2 − 1 
 

where, for each j = 1, 2, εj ∈ {0, 1}, and λ, µ and ν are arbitrary real constants such 

that λ ≥ 1 or λ ≤ −1. 
 

 
Since u is a real-valued function, the arbitrary constants in u1 are generally real. 

However, this is actually an unnecessary restriction — these constants can be complex 

provided that u1  remains real. If µ is replaced by iµ in (4.10), then we obtain another 
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2 

6 2 

2 , 

− 

 

 

class of solutions: 
 

 
 
 
 
 
 

   2 2 

 
   2 

( 
sin[µ (x − νt)] ± 

√
1 − λ2 

 
 

u2 (x, t) = ν  −1−2µ
 − ε1 

µ
 cos[µ (x − νt)] + λ 

   2  

(
 cos[µ (x − νt)] + λ  

2
 

−ε2 
µ

 

sin[µ (x − νt)] ± 
√

1 − λ2 

 

where, for each j = 1, 2, εj ∈ {0, 1}, and µ, ν and λ are arbitrary real constants such 

that −1 ≤ λ ≤ 1. Obviously, the solution u2 is unbounded. 

 

 
Remark 4. In [19], the  solutions  of  (4.1)  were  obtained  using  the  sinh/cosh  ansatz I-

II method, the sinh-cosh ansatz III method, the tanh method and the sine-cosine 

method.  Each of these solutions is a special case of u1  or u2. 

 

 
To apply Theorem 1 in conjunction with Theorem 6, we must choose γ so that the 

hypotheses of Theorem 6 are satisfied. That is, γ should be chosen so that the following 

equation  holds: 

pj,1(γ) =  
pj,3(γ) 

(
4pj,2(γ)pj,4(γ) [pj,3(γ)]

2)
 
. 

8 [pj,4(γ)]
2
 

 

Then,  the  corresponding  solutions  reported  in  Theorem  1  can  be  used  with  Theorem 

6. Applying this procedure, we can obtain periodic solutions of Boussinesq equation 

(4.1) in terms of Jacobi elliptic functions. For each j = 1, . . . , 12, choosing qk = pj,k, 

k = 0, . . . , 4, and employing Theorem 6 give solutions uj , j = 3, . . . , 26. Some of the 

solutions are listed below. 
 

 
 
 

ν2 − 1 + 4µ2 (m2 + 1) 2 
I 

2 2  2 

u3 (x, t) =  
6 

− 2µ ε1m sn (ξ) + ε2sn−  (ξ)
l 
, 

ν2 − 1 + 4µ2 (m2 − 2) 2 

r 
2 1 − m2 

l
 

u4 (x, t) =  + 2µ 
6 

ε1dn (ξ) + , 
dn2(ξ) 

ν2 − 1 + 4µ2 (m2 − 2) 2 

r 
cn2(ξ) (1 − m2)sn2(ξ) 

l
 

u5 (x, t) =  
6 

− 2µ 
ε1 

sn2(ξ) 
+

 cn2(ξ) 
,
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2 

0 

− 

 

ν2 − 1 + 4µ2 (m2 + 1) 2 

r 
2 cn2(ξ) dn2(ξ) 

l
 

u6 (x, t) =  
6 

− 2µ 
m 

dn2(ξ) 
+ 

cn2(ξ) 
,
 

ν2 − 1 − 4µ2 (2m2 − 1) r 
2 2 2 1 − m2 

l
 

u7 (x, t) =  
6 

− 2µ −m cn (ξ) +  
cn2(ξ) 

, 
ν2 − 1 − 4µ2 (2m2 − 1) 

r 
dn (ξ) m (m  − 1)sn (ξ) 

l
 

u8 (x, t) =  
6 

− 2µ 
2 2 

sn2(ξ) 
+

 

2 2 

dn2(ξ) 
,
 

ν2 − 1 + 2µ2 (2m2 − 1) µ2[1 − cn(ξ)] 
u9 (x, t) =  , 

6 2[1 + cn(ξ)] 
 

where, for each j = 1, 2, εj ∈ {0, 1}, and µ and ν are arbitrary real constants. The 

other Jacobi elliptic function solutions are listed in the Appendix. 

 
 
Remark 5. It follows from Remark 1 that uj , j = 3, . . . , 26, still satisfy the Boussi- 

nesq equation (4.1) even if cn(ξ), sn(ξ) and dn(ξ) are replaced, respectively, by ±cn(ξ), 

±sn(ξ) and ±dn(ξ). 
 

 
Remark 6. It is interesting to note that, for each j ∈ {3, . . . , 26}, the solution uj 

becomes a special case of u1 as m → 1. Similarly, as m → 0, uj becomes a special case 

of u2. 

 
 

Remark 7.The solution u3 is identical to the solutions reported in [12, 22], and the 

solution u9  is the same as the solution reported in [23] (for c2  = 1, α = 1 and β = 3). 

However, all of the other Jacobian elliptic function solutions are new solutions. Fur- 

thermore, if the candidate traveling wave solutions of the form (3.9) are considered 

and our new results in Section 2 are applied, then many additional solutions can be 

obtained. 

 
 

To show the physical insight of these solutions,  here  we  take  u4   and  u7  as  exam- 

ples. Figure 1 shows the wave profile of the solution u4  with m = 0.99, µ = 1 and 

ν = −1.  Clearly, the solution is a periodic function describing the traveling of waves 
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Figure 1: The plot of the solution u4  to the Boussinesq equaiton (4.1) with m = 0.99, 

µ = 1 and ν = −1 and the initial status of u4. 
 
 
 

in the negative x-direction.  Figure 2 shows the graph of the solution u7  for m = 0.9, 

µ = 1 and ν = −2. Note that u7 becomes infinity when cn(µ(x − νt), m) = 0, that 

is, µ(x − νt) = (2n + 1)K, where K = 
f π/2(

1 − m2 sin2(s)
)−1/2

ds and n = 0, ±1, . . . 

For instance, in Figure 2, u7 becomes negative infinity when the point (x, t) is close 

to the lines x + 2t = 2.280549138(2n + 1), where n = 0, ±1, . . . It is also noted from 

the expression  of the solutions u3  with ε2   =  1,  u5,  . . .,  u9  that these solutions are 

unbounded, since the denominator in the expression can be zero at certain points. 
 

 
 
 
 
 

5 Traveling  wave  solutions  for  the  modified  KdV 

equation 

 
We consider the following modified KdV equation: 

 
 

ut + u2ux + uxxx = 0, (5.1) 
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Figure 2:  The plot of the solution u7  to the Boussinesq equaiton (4.1) with m = 0.9, 

µ = 1 and ν = −2 and the initial status of u7. 

 
 
 
 
 

 
where u := u (x, t) is a complex-valued function. Letting u(x, t) = ũ(ξ), where ξ is as 

defined in Section 3, (5.1) is reduced to the ODE 

 
−νũ1 + ũ2ũ1 + µ2ũ111 = 0. (5.2) 

 
Balancing ũ2ũ1 and ũ111  yields N = 1. Thus, we now consider candidate traveling wave 

solutions of the form 

ũ(ξ) = c0 + c1F (ξ), 

 
where c1 /= 0, and F satisfies ODE (2.1) with coefficients qk, k = 0, . . . , 4. Substituting 

ũ into (5.2), we obtain the following sufficient conditions for ũ to satisfy (5.2): 
 

 
 c2  2 

1 + 6µ q4 = 0, 
 

2c0c1 + 3µ2q3 = 0, 
 

 

 
(5.3) 

 −ν + c2 + µ2q2 = 0. 



21  

2 

8q4 

q0 

2 

q 

2
√ 

'\ 

q1 

2 

8q 

8λ2 e 

 

 

According to (5.3),  
( 

3q3 '\ 

u(x, t) = ±µ 
2
√

−6q4  
−

 
−6q4F (µ (x − ν1t)) , (5.4) 

 

where ν1 = µ2 
(
q2 − 

3q3 

\ 
and µ is an arbitrary constant, is a solution of (5.1). Now, if 

q1 = q3 = 0 and q0  /= 0, then Theorem 2 can be applied with (5.4) to give the 

following solution form of (5.1): 
   (         

q4  1 
u(x, t) = j1µ

'\
 6q0 j2 F (µ (x − ν2t)) + , (5.5) 

— 
q0

 F (µ (x − ν2t)) 

where jj = ±1, j = 1, 2, ν2  = µ2 
(
q2 − j26q0

I 
q4 

\ 
and µ is an arbitrary constant.  In 

addition, if q4 = 
q0q3

 and q q /= 0, then Theorem 3 can be applied with (5.4) to yield 
2 0 1 
1 

another solution form of (5.1): 

u(x, t) = ±µ 

r 
3q1 

−6q0 
− −6q0 

( 
q3

 

q1 
F (µ (x − ν3t)) + 

1 
l 

F (µ (x − ν3t)) 
, (5.6) 

where ν3 = µ2 
(
q2 − 6q0 q3  − 

3q1 

\ 
and µ is an arbitrary constant. 

0 

We can apply Theorem 4 with (5.4) to obtain the following class of traveling wave 

solutions of (5.1): 

u1 (x, t) = λ + 

 
3ϑµ2

 

λ 

e−µ(x−(µ2 +λ2)t) + ϑ + ϑ
2(2λ2 +3µ2 ) 

 

 
, 

µ(x−(µ2 +λ2)t) 

 

where λ, ϑ and µ are arbitrary parameters such that λ /= 0. It is noted that, if λ, ϑ and 

µ are all real constants satisfying λϑµ /= 0, then u1 describes a single wave  

travelling in the x-direction and u1(x, t) → λ, as µ(x − (µ2 + λ2)t) → ±∞. 

 
 

We can also apply Theorem 5 with (5.6) to obtain another class of solutions of 
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√ 

2(σ−1)2 

 

 

(5.1): 
 

 
u2 (x, t) =j1 

 
√

−6µ 
( 
σ + 1  

σ − 1 2 
−

 

 
σe−µ(x−ν4t) + 1 λ(σ + 1) + 1 j2

√
λ2 − 4ϑ(σ − 1) + ϑeµ(x−ν4t) 

\
 

2 2 

e−µ(x−ν4t) + λ + ϑeµ(x−ν4t) 

√  
6µσ 

( 
e−µ(x−ν4t) + λ + ϑeµ(x−ν4t) 

\
 

— j1 − 
o − 1  

      
σe−µ(x−ν4t)  + 1 1  2 

, µ(x−ν4t) 

2 λ(σ + 1) + 2 j2 λ − 4ϑ(σ − 1) + ϑe 

2    2 

where jj = ±1, j = 1, 2, ν4  = 
µ (σ +10σ+1) 

, and λ, ϑ and σ are arbitrary constants 

such that σ /= 1.  Note that u1  is the same as solution (18) in [6], obtained using  

the Exp-function method. However, u2  is a new solution. 

We also can obtain Jacobian elliptic solutions to the modified KdV equation (5.1) 

by combining Theorem 1 with (5.4)-(5.6). 

 

 
 

1.  For k ∈ {1, . . . , 4}, j ∈ {1, . . . , 12} and γ arbitrary, (5.4) with F = ϕj,k(·, γ) and 

ql = pj,l(γ), l = 0, . . . , 4, is a solution of (5.1). 
 
 
 

2. For k ∈ {1, . . . , 4} and j ∈ {1, 2, 3, 4, 5, 6, 9, 11}, (5.5) with F = ϕj,k(·, 0) and 

ql = pj,l(0), l = 0, . . . , 4, is a solution of (5.1). 
 
 
 

3. For k ∈ {1, . . . , 4} and j ∈ {10, 12}, (5.6) with F = ϕj,k(·, 0) and ql  = pj,l(0), 

l = 0, . . . , 4, is a solution of (5.1). 

 
 
 

Thus,  we  can  obtain  many  Jacobian  elliptic  solutions  of  (5.1).  To  keep  the  details 

to minimum, we will not list them all here. Instead, we just select some of  them  to 

compare our results with those reported in [18, 22]. Note that our method can also be 

applied to the modified KdV equation considered in [18, 22]. 

Let γ be such that γ /= ±1 and γ /= ±m. Choosing qk = p2,k(γ), k = 0, . . . , 4, from 
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'\ 

'\ 

'\ 

'\ 

1−m2 

'\ 

'\  

'\ 

+ 

, 

, 

 

 

(5.4), it follows that 
( 

3γ(1 + m2 − 2γ2) 

 
'\ 

6(m2 − γ2)(1 − γ2) sn [µ(x − ν5t)] 
�

 

u3(x, t) = µ 
− 

−6(m2  − γ2)(1 − γ2) 
−

 
, 

γ sn [µ(x − ν5t)] + 1 ( 
3γ(1 + m2 − 2γ2) 

'\ 
6(m2 − γ2)(1 − γ2) 

�
 

u4(x, t) = µ 
−6(m2  − γ2)(1 − γ2) 

−
 

− 
,
 

γ + m sn [µ(x − ν5t)] ( 
3γ(1 + m2 − 2γ2) 

'\ 
6(m2 − γ2)(1 − γ2) dn [µ(x − ν5t)] 

�
 

u5(x, t) = µ 
−6(m2  − γ2)(1 − γ2) 

−
 

− 
,
 

γ dn [µ(x − ν5t)] + m cn [µ(x − ν5t)] ( 
3γ(1 + m2 − 2γ2) 

'\ 
6(m2 − γ2)(1 − γ2) cn [µ(x − ν5t)] 

�
 

u6(x, t) = µ 
−6(m2  − γ2)(1 − γ2) 

−
 

− 
,
 

γ cn [µ(x − ν5t)] +  dn [µ(x − ν5t)] 
 
where ν5  = µ2 

I
 
γ2 − 1 − m2 − 3γ (1+m −2γ ) 

l 
and µ is an arbitrary constant, are 

2 2 2  2 

6 
2(m2 −γ2)(1−γ2 ) 

solutions of (5.1). If γ is any real number such that m < |γ| < 1, then uk, k = 3, . . . , 6, 

are real and bounded.  Moreover, if γ = 0, then according to (5.5), we can obtain the 

following two unbounded solutions: 

  ( 
1

 

u7(x, t) = 
√

−6µ ±m sn [µ(x − ν6t)] + , 
sn [µ(x − ν6t)]   ( 

dn     [µ(x − ν6 t)] m cn [µ(x − ν6t)] 
 

 

u8(x, t) = 
√

−6µ ±  
cn [µ(x − ν6t)] 

, 
dn [µ(x − ν6t)] 

 

where ν6 = −µ2(1 ± 6m + m2) and µ is an arbitrary constant. 

Similarly, if qk = p3,k (γ), k = 0, . . . , 4, where γ is an arbitrary constant such that 

γ /= ±1 and γ /= ±i √  

m
 

, then we get solutions of (5.1) as follows: 

 

u9(x, t) =µ
J
 3γ(1 − 2m2 − 2γ2 + 2γ2m2) 

−6(γ2m2 − m2 − γ2)(1 − γ2) 

−6(γ2m2 − m2 − γ2)(1 − γ2) cn [µ(x − ν7t)] l 
− 

γ cn [µ(x − ν7t)] + 1  

u10(x, t) =µ
J

 3γ(1 − 2m2 − 2γ2 + 2γ2m2) 

−6(γ2m2 − m2 − γ2)(1 − γ2) 
'\
6(γ2m2 − m2 − γ2)(1 − γ2)(1 − m2) l 

− 
γ
√

m2 − 1 + m cn [µ(x − ν7t)] 
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'\ 

'\  

'\ 

'\  

, 

, 

, 

, 

 

u11(x, t) =µ
J

 3γ(1 − 2m2 − 2γ2 + 2γ2m2) 

−6(γ2m2 − m2 − γ2)(1 − γ2) 

−6(γ2m2 − m2 − γ2)(1 − γ2) dn [µ(x − ν7t)] l 
− 

γ dn [µ(x − ν7t)] + im sn [µ(x − ν7t)] 

u12(x, t) =µ
J

 3γ(1 − 2m2 − 2γ2 + 2γ2m2) 

−6(γ2m2 − m2 − γ2)(1 − γ2) 

−6(γ2m2 − m2 − γ2)(1 − γ2)(1 − m2) sn [µ(x − ν7t)] l 
− 

γ
√

1 − m2  sn [µ(x − ν7t)] +  dn [µ(x − ν7t)] 
 
where ν7 = µ2 

I
 
m2 − 6γ2m2 + 6γ2 − 1 − 3γ (1−2m −2γ +2γ m ) 

l 
and µ is an arbitrary 

2 2 2 2    2 2 

2 
2(m2 γ2 −m2 −γ2 )(1−γ2 ) 

constant. Moreover, if γ = 0, then we have the unbounded solutions 
   ( 

m  1 

u13(x, t) = µ
'\
6(m2 − 1) ± √   

m2 − 1 
cn [µ(x − ν8t)] + , 

cn [µ(x − ν8t)]   ( 
 1 dn [µ(x − ν8 t)]   sn [µ(x − ν8 t)] 

 
 

u14(x, t) = µ
'\
6(1 − m2) ∓ √

m2 − 1 
+ m 

sn [µ(x − ν8t)] 
, 

dn [µ(x − ν8t)] 

where ν8  = µ2(2m2 − 1 ± 6m
√

m2 − 1) and µ is an arbitrary constant. 

 
 

If qk  = p6,k (γ), k = 0, . . . , 4, where γ is an arbitrary constant such that m2γ4 + 

m2 + 4γ2 − 2m2γ2  /= 0, then we can obtain another four solutions of (5.1) 

3γ(γ2m2 − m2 + 2) 

u15(x, t) =µ
J

 

 
 

u16(x, t) =µ
J

 

'\
6(γ4m2 + m2 + 4γ2 − 2γ2m2) 

'\
6(γ4m2 + m2 + 4γ2 − 2γ2m2) l 

− 
2γ + i2 sn [µ(x − ν9t)] + 2 cn [µ(x − ν9t)] 

3γ(γ2m2 − m2 + 2) 
'\
6(γ4m2 + m2 + 4γ2 − 2γ2m2) '\

6(γ4m2 + m2 + 4γ2 − 2γ2m2) dn [µ(x − ν9t)] l √ , 

u17(x, t) =µ
J

 

− 
2γ dn [µ(x − ν9t)] + i2 cn [µ(x − ν9t)] + 2 

3γ(γ2m2 − m2 + 2) 
'\
6(γ4m2 + m2 + 4γ2 − 2γ2m2) 

1 − m2  sn [µ(x − ν9t)] 

'\
6(γ4m2 + m2 + 4γ2 − 2γ2m2)m sn [µ(x − ν9t)] l 

− 
2γm sn [µ(x − ν9t)] + i2 + i2 dn [µ(x − ν9t)] 
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, 

, 

 

u18(x, t) =µ
J

 
3γ(γ2m2 − m2 + 2) 

'\
6(γ4m2 + m2 + 4γ2 − 2γ2m2) 

'\
6(γ4m2 + m2 + 4γ2 − 2γ2m2)im cn [µ(x − ν9t)] l √ , 

− 
i2γm cn [µ(x − ν9t)] + 2 dn [µ(x − ν9t)] + 2  1 − m2 

 

where ν9   =  µ2 
I 

m −3γ m −2 + 3γ  (γ  m  −m  +2) 

l 
and µ is an arbitrary constant. 

2 2    2 2    2    2 2 2 

2 2(m2 γ4 +m2 +4γ2 −2m2 γ2 ) 

Furthermore, choosing γ = 0 yields that, for any µ, 
 

√   

u19(x, t) =  −6µm sn[µx + µ3(m2 + 1)t], 
√  1   

u20(x, t) =  −6µ sn[µx + µ3(m2 + 1)t] 
,
 

√  cn[µx + µ3(m2 + 1)t] 
u21(x, t) =  −6µm dn[µx + µ3(m2 + 1)t] 

,
 

√  dn[µx + µ3(m2 + 1)t] 
u22(x, t) =  −6µ cn[µx + µ3(m2 + 1)t] 

,
 

√   
u23(x, t) =  6µm cn[µx − µ3(2m2 − 1)t], 

1 

u24(x, t) = µ
'\
6(m2 − 1) , 

cn[µx − µ3(2m2  − 1)t] 

u25(x, t) = µ
√

−6 
dn[µx − µ3(2m2  − 1)t] 

sn[µx − µ3(2m2  − 1)t] 

u26(x, t) = µm
'\
6(1 − m2) 

sn[µx − µ3(2m2  − 1)t] 

dn[µx − µ3(2m2  − 1)t] 
 

are solutions of (5.1). 
 

 
Remark 8. It follows from Remark 1 that uj , j = 3, . . . , 26, still satisfy (5.1) even if 

cn(·), sn(·) and dn(·) are replaced, respectively, by ±cn(·), ±sn(·) and ±dn(·). 

 
Remark 9.  If γ = 0, then u3, u9  and u15  are the same as the solutions reported 

in [18] (with a = 1 and b = 1), and u3, u4 and u7 are the same as those reported in [22] 

(for α = 1 and β = 1). However, all of the other Jacobian elliptic solutions are new. 

More new solutions can be obtained if solution form (3.9) is used. 
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Figure 3: The plot of the solution u6 to the modified KdV equation (5.1) with m = 0.95, 
µ = 1 and γ = 0.96 and the initial status of u6. 

 

 
 

To demonstrate the physical insight of the new solutions, we take u6 as an exam- 

ple. By choosing m = 0.95 and µ = 1, the wave profiles of the solution u6 for two 

different values of γ, γ = 0.96 and γ = −0.96, are displayed in Figures 3 and 4, re- 

spectively.  Clearly, in both cases, the solutions describe the travelling of waves in the 

x-direction. Different values of γ yield different wave shapes. 
 
 
 

6 Traveling wave solutions for the shallow long wave 

approximate equations 

In this section, we will apply the method discussed in Section 3 to a system of partial 

differential equations. Consider the shallow long wave approximate equations 

 
 ut − uux − vx + 1 uxx = 0, 

 vt − vux − uvx − 1 vxx = 0, 

 
 

(6.1) 

 

 

where u := u(x, t) is the horizontal velocity of water and v := v(x, t) is the height that 

deviates from the equilibrium position of the water.  Substituting u(x, t)  = ũ(ξ) and 
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 ũ(ξ) = ĉ0,0 + 
ĉ1,1 F 2,1 , 

 ṽ(ξ) = c̃0,0 + 
c̃1,1 F 2,1 + , 
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Figure 4: The plot of the solution u6 to the modified KdV equation (5.1) with m = 0.95, 

µ = 1 and γ = −0.96 and the initial status of u6. 

 
 

 
v(x, t)  = ṽ(ξ), where ξ is as defined previously, into (6.1) and balancing the highest 

order derivative and non-linear terms, we obtain Nu = 1 and Nv = 2. If candidate 

traveling wave solutions are chosen according to (3.2), then all of the coefficients are 

required to be zero. Accordingly, we will use the more general form (3.9) and consider 

candidate solutions 

 I 

 (ξ)+ĉ   F (ξ) 
θF (ξ)+1 

I 2 I 

 
(6.2) 

 (ξ)+c̃   F (ξ) 
θF (ξ)+1 

c̃1,2F (ξ)+c̃2,2 F (ξ)F (ξ) 
(θF (ξ)+1)2 

 
where F  satisfies ODE (2.1) with coefficients qk , k = 0, . . . , 4. By substituting (6.2) 

into (6.1), we can ascertain the following sufficient conditions for ũ and ṽ to satisfy the 

shallow long wave approximate equations (6.1): 

 

µ = ± 
ĉ1,1 

α 

 
 

4q0ĉ1,1θ
3 + 3q1ĉ1,1θ

2 − 2q2ĉ1,1θ + q3ĉ1,1 

ĉ0,0 = − ν + 
−

 

ĉ2,1  =0, 

4α2 
,
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2 2 

3 

ĉ 

ĉ 

ϑβ 

ϕ 

2 

η β 1 

2 

 
ĉ2

 

c̃ =   1,1 

0,0 
16α4 

I
12q0q1θ

5
 − 8q0 θ

6
 − (12q0q2 + 3q1 )θ

4
 + (16q0q3 + 4q1q2)θ

3
 

− (24q0q4 + 6q1q3)θ2 + 12q1q4θ + q2 − 4q2q4

l
, 

 
c̃1,1 = 

2 
1,1 

(4θ3q0 − 3θ2q1 + 2θq2 − q3) 

4α2 
,
 

c̃1,2 = − 

c̃2,1 = ± 

ĉ2
 

1,1 , 2 
ĉ2

 

1,1 , 2α 
1,1θ 

c̃2,2 = ∓ 
2α 

, 
 

where α = 
'\
q0θ4 − q1θ3 + q2θ2 − q3θ + q4 and θ, ν, ĉ1,1 are arbitrary constants. Note 

that these requirements are the same as those reported in [2].  Note also that there 

are no conditions restricting the choice of coefficients qk , k = 0, . . . , 4, of ODE (2.1). 

Using ϕj,k(·, 0), j = 1, . . . , 6, k = 1, . . . , 4, from Theorem 1, we  can reproduce  the 

same Jacobian elliptic solutions of (6.1) reported in [2]. We also can deduce many new 

solutions by applying Theorems 1-3. These solutions cannot be obtained using the 

results in [2]. For example, choosing θ = 0 and qj = p7,j (γ), j = 0, . . . , 4, we can obtain 

the following solutions for the shallow long wave approximate equations (6.1): 

uj (x, t) = − ν + 
4α2 

+ ϑϕ7,j 

(
µ(x − νt)

)
, j = 1 . . . , 4, 

vj (x, t) = − ϑ2
J  

 + ϕ7,j 

(
µ(x − νt)

) 
− ϕ1

 

(
µ(x − νt)

)
 

16α4 1 4α2 2α  7,j 

+ 
2  7,j 

(
µ(x − νt)

)l
, j = 1 . . . , 4, 

 

where ϕ7,j , j = 1, . . . , 4, are as defined in Section 2, α = 
'\
γ3(1 − m2) + γ2(2 − m2) + γ, 

β = γ2(3m2 − 3) + γ(2m2 − 4) − 1, η = γ4(3m4 − 6m2 + 3) + γ3(4m4 − 12m2 + 8) +  

γ2(6 − 6m2) − 1, µ = ϑ/α, and ν, γ, ϑ and m (m ∈ (0, 1)) are arbitrary.  For the other 

solutions, we leave it to the reader. 

To show the physical insight of these solutions, we take the solution (u1, v1) as an 

example. Figures 5 and 6 display the graphs of u1  and v1  with m = 0.99, ν = −2 and 
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Figure 5: The plot of the solution u1 of the shallow long wave approximate equations 

(6.1) with m = 0.99, ν = −2 and ϑ = γ = 1 and the initial status of u1. 
 

 
 
ϑ = γ = 1. Clearly, the solution describes the propagation of waves with horizontal 

velocity u1 along the negative x-direction. 

 

 
 
 

7    Conclusion 
 

 
In this paper, we have presented a generalized expansion method for generating trav- 

eling wave solutions of non-linear partial differential equations. This method has been 

successfully applied to the Boussinesq equation, the modified KdV equation and the 

shallow long wave approximate equations, and many new results have been obtained. 

For each equation investigated, we are able to replicate solutions previously derived in 

the literature, and discover many new ones. Extensions to two and three dimensional 

partial differential equations are possible. Other non-linear partial differential equa- 

tions can be tackled if an appropriate transformation can be found. For example, in [6], 

the transformation u = ln v was applied to the Dodd-Bullough-Mikhailov equation to 

yield a non-linear partial differential equation involving powers of v and its derivatives. 
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Figure 6: The plot of the solution v1  to the shallow long wave approximate equations 

(6.1) with m = 0.99, ν = −2 and ϑ = γ = 1 and the initial status of v1. 
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Appendix 

Some solutions of the Boussinesq equation (4.1), derived from this work, have been 
given in Section 4, and the rest are listed below. 

 

ν2 1+ 2µ2 
`
2m2 1

´
 

u10 (x, t) = − 
µ2 [dn(ξ) − 

√
 

√ 
m2 sn(ξ)] 

, 
6 2[dn(ξ) +  1 − m2 sn(ξ)] 

ν2 1 2µ2 
`
m2 + 1

´
 

u11 (x, t) =  
6 

ν2 − 1 − 2µ2 
`
m2 + 1

´
 

u12 (x, t) =  
6 

µ2 (1 − m2 )[1 − msn(ξ)] 

2[1 + msn(ξ)] 

µ2 (1 − m2 )[1 − sn(ξ)] 
− 

2[1 + sn(ξ)] 

ν2 1 2µ2 
`
m2 + 1

´
 

u13 (x, t) =  
6 

µ2 (1 − m2 )[dn(ξ) − cn(ξ)] 
− 

2[dn(ξ) + cn(ξ)] 
,
 

ν2 1 2µ2 
`
m2 + 1

´
 

u14 (x, t) =  
6 

ν2 − 1 − 2µ2 
`
m2 − 2

´
 

µ2 (m2 − 1)[mcn(ξ) − dn(ξ)] 

2[mcn(ξ) + dn(ξ)] 

µ2 m2 [dn(ξ) − 
√

1 − m2 ] 
u15 (x, t) =  

6 
− 

2[dn(ξ) +  
√

1 − m2 ] 

ν2 1 2µ2 
`
m2 2

´
 

u16 (x, t) =  
6 

µ2 m2 [1 − dn(ξ)] 
− 

2[1 + dn(ξ)]  
,
 

ν2 1 µ2 
`
2m2 + 12m + 2

´
 

u17 (x, t) =  
6 

µ2 (m − 1)2 
(» 

1 − 
√

msn(ξ) 
–2

 
+ √ 

 
 
+ ε1 

» 
1+ 

√
msn(ξ) 

–2 
)

 
√ , 

2 1 +  msn(ξ) 1 −  msn(ξ) 

ν2 1 µ2 
`
2m2 + 12m + 2

´
 

u18 (x, t) =  
6 

µ2 (m − 1)2 
(» 

dn(ξ) − 
√

mcn(ξ) 
–2

 
+ √ 

 
 
+ ε1 

» 
dn(ξ) + 

√
mcn(ξ) 

–2
)
 

√ , 
2 

ν2 − 1 − µ2 
“
2m2 − 4+ 12 

dn(ξ) +  
1 − m2 

”
 
mcn(ξ) dn(ξ) − mcn(ξ) 

√ 

u19 (x, t) =  
6 

      8"   #2 "   #2
9 

µ2 (1 + 
√

1 − m2 )2 < cn(ξ) − 
√
4 

1 − m2 sn(ξ) + ε1 cn(ξ) + 
√
4 

1 − m2 sn(ξ) = √ , 

2 : cn(ξ) + 
√
4 

1 − m2 sn(ξ) cn(ξ) −  1 − m2 sn(ξ) ; 
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√ 

4 

− − 

1 

−    − 

−    − 1 

m4 

6 

− 

− 

#2 

2 

 

ν2 − 1 − µ2 
“
2m2 − 4 − 12 1 − m2 

”
 

u20 (x, t) =  
      8"   #2 "  #2

9 

µ2 (1 − 
√

1 − m2 )2 < dn(ξ) − 
√
4 

1 − m2 + ε1 
dn(ξ) + 

√
4 

1 − m2 = 
√ , 

2 : dn(ξ) + 
√
4 

1 − m2 dn(ξ) −  1 − m2 ; 

2 

ν2 − 1+ 2µ2 
`
2m2 − 1

´
 µ2 

" 
sn(ξ) +              

√
1 − m2 dn(ξ) 

#
 

u21 (x, t) =  
6 

—  
2 m 

√
2 − m2 + 

√
−m4 + m2 + 1cn(ξ) 

2 

µ2 
" 
m

√
2 − m2 + 

√
−m4 + m2 + 1cn(ξ) 

#
 

√ , 

ε1 
2 sn(ξ) +  

1 − m2 dn(ξ) 

ν2 1+ 2µ2 
`
2m2 1

´
 

u22 (x, t) =  
6 

   

µ2 
" 

cn(ξ) + (m2 − 1) 
−  

2 m
√

2 − m2 dn(ξ) + 
p

(−m4 + m2 + 1)(1 − m2 )sn(ξ) 

µ2 
" 
m

√
2 − m2 dn(ξ) + 

p
(−m4 + m2 + 1)(1 − m2 )sn(ξ) 

#
 

− ε1  
2
 cn(ξ) + (m2 

, 
− 1) 

2 

ν2 − 1 − µ2 
`
m2 + 1

´
 µ2 (m2 − 1) 

" 
cn(ξ) + 

√
 — m2 dn(ξ)  

#
 

u23 (x, t) =  
6 

+ 
2 m + 

√
m4 − m2 + 1sn(ξ) 

2 

+ ε1 
µ2 (m2 − 1) 

" 
m + 

√
m4 − m2 + 1sn(ξ) 

#
 

√ , 
2 cn(ξ) +  1 − m2 dn(ξ) 

2 

ν2 1 µ2 
`
m2 + 1

´
 

u24 (x, t) =  
µ2 (1 − m2 )2 

" 
sn(ξ) + 

√
1 − m2 

#
 

− √ 
6 2 mdn(ξ) +  

µ2 
" 
mdn(ξ) + 

√
m4 − m2 + 1cn(ξ) 

#
 

√ 

m4 − m2 + 1cn(ξ) 

2 
, 

− ε1  
2
 sn(ξ) +  1 − m2 

2 

ν2 1 µ2 
`
m2 + 1

´
 

u25 (x, t) =  
µ2 (m2 − 1) 

"  
dn(ξ) + 

√
 

− √ 
— m2 cn(ξ)   

#
 

6 2 m2 sn(ξ) +  m4 − m2 + 1  
√    2 

µ2 (m2 − 1) 
" 
m2 sn(ξ) +  m4 − m2 + 1 

#
 

− ε1
 2

 dn(ξ) + 
√

1 
, 

— m2 cn(ξ) 
2 

ν2 − 1 − µ2 
`
m2 + 1

´
 

u26 (x, t) =  
µ2 (1 − m2 )2 

" 
1+ m

√
1 − m2 sn(ξ) 

#
 

+ √ 
6 2 m2 cn(ξ) +  m4 − m2 + 1dn(ξ) 

2 

+ ε1 
µ2 

" 
m2 cn(ξ) + 

√   
− m2 

√ 
+ 1dn(ξ) 

#
 

, 
2 1 + m 1 − m2 sn(ξ) 

 

 

where, for each j = 1, 2, εj ∈ {0, 1}, and µ and ν are arbitrary real constants. Note 

that the solutions uj , j ∈ {11, 14, 15, 16, 17, 18, 25, 26}, are bounded, while the solutions 

uj , j ∈ {12, 13, 19, 20, 21, 22, 23, 24}, are unbounded. 


