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ABSTRACT 

The term upscaling and determination of pseudo curves, or effective parameters, 

used on a coarse-scale simulation grid are related to the complex and extensive 

problems associated with reservoir studies.  The primary strategy mainly focuses on 

having a good physical and practical understanding of the particular processes in 

question, and an appreciation of reservoir model sensitivities.  Thus the building of 

the reservoir simulation models can be optimally determined.  

 

By concentrating on the modelling and upscaling gas injection for Enhanced Oil 

Recovery (EOR) process, which includes Interfacial Tension (IFT) and the 

amicability effect, a new effective and efficient algorithm of upscaling will be 

investigated and determined by using several upscaled parameters.  The sensitivities 

of these determined coarse scale parameters (i.e. porosity, absolute and relative 

permeability and capillary pressure), will also be studied through a history matching 

of the existing field. 
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NOMENCLATURE 

d/2  the mean horizontal extension of stream tube (average shale continuity) 

(m) 

fd  the number of shales per unit length (m-1) 

Fs  shale fraction (dimensionless) 

k absolute permeability in fine cell 

K effective absolute permeability in coarse cell 

kv  vertical perm 

kh  horizontal perm 

Q  the flow rate 

A  cross sectional area 

P  pressure 

Pc  capillary pressure 

X  length in x direction 

µ  viscosity 

V  electrical voltage 

I  electrical current  

R  electrical resistance 

Kr relative permeability obtained by normalizing the effective permeability 

curves by dividing by the absolute permeability 

K’r end point relative permeability  

Krg relative permeability of gas 

Krog relative permeability of gas in the presence of oil 

Krow relative permeability of water in the presence of oil 

Krw relative permeability of water 

Krg* Krg at the end point 

Krog* Krog at the end point 

Krow* Krow at the end point 

Krw* Krw at the end point 

h reservoir thickness 
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L reservoir length 

φ potential of phase i by counting into consideration the gravitational 

effects [φ = Pi - γi(∆z)] 

γi  pressure gradient 

∆z depth from the datum 

l  reservoir length 

∆P/∆L pressure change across reservoir length 

∆ρg  density difference 

α dip angle 

g  gravitational acceleration 

z  elevation potential 

PV pore volume 

Vbulk bulk volume (grid block volume) 

 

Subscript 

n, m, p number of blocks in x, y, z direction 

i, j, k block index 

x, y, z directional indication (x, y, z direction) 

A arithmetic average 

AH arithmetic-harmonic average 

G geometric average 

H harmonic average 

HA harmonic-arithmetic average 

g gas 

gc connate gas 

w water 

wc connate water 

orw residual oil  

org residual gas 

i fluid phase i 
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xy, xz, yz direction of the fluid flow i.e. xy is from x to y direction, xz is from x to z 

direction and yz is from y to z respectively 

fine properties at fine scale 

coarse properties at coarse scale 
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Chapter 1. 

INTRODUCTION 

Prediction of reservoir performance is normally carried out by reservoir simulation.  

A numerical reservoir simulator approximately solves the equations of fluid flow in 

the reservoir, based on partitioning of the reservoir into a set of numerical grid 

blocks.  Each grid block is assumed to be homogeneous.  In the full field reservoir 

geological models, grid blocks are typically in the regions of 50m by 50m by 1ft, 

which is then upscaled to the appropriate size to be used for the reservoir simulation.  

Consequently, there is a need to ‘average’ the laboratory data (10cm x 10cm x 10cm) 

/ geological model before using it in the simulators.  Herein lies the upscaling 

problem, as some rock properties, like permeability and relative permeability, cannot 

simply be averaged arithmetically.  The rock properties that need to be upscaled are 

porosity, absolute and relative permeability and capillary pressure. 

 

Except in the case of truly homogeneous reservoirs, upscaling must always be carried 

out, although present day practice does not always recognise this as such.  For 

instance, plotting measured relative permeability as a function of normalised 

saturation, and choosing an average curve as representative, are forms of upscaling 

which are often used.  Such procedures do not take into account the spatial 

arrangement of the different rock types, and will therefore be unreliable.  In media 

where the ratio between horizontal and vertical correlation lengths is large, for 

example, the proper upscaled relative permeability may be significantly different 

from their rock counterparts, even if all participating rock types have identical 

relative permeability curves. 

 

In history matching reservoir performance, relative permeability is perhaps the first 

parameter to be adjusted.  Somewhat simplistically, this process should be 

interpreted as ‘posteriors upscaling’.  The willingness to sacrifice relative 

permeability signals a perceived unreliability of the priori upscaling originally 

carried out. 
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Upscaling is a broad term, also encompassing techniques to increase numerical 

accuracy at the passage of sharp saturation fronts.  The main interest here is more 

specific: if heterogeneities are small relative to the distance between wells, one can 

define effective properties of the heterogeneous medium, (effective absolute & 

relative permeability and capillary pressure).  Effective properties are physical 

parameters valid on the larger scale, and capture the average effect of small-scale 

heterogeneity. 

 

The software called IRAP RMS provides the necessary upscaling tools to easily 

coarsen very large reservoir models to sizes acceptable to commercial fluid reservoir 

simulators.  These large models can be manipulated quite easily.  The flexibility to 

create models gives the user the ability to carry out upscaling optimally for the given 

situations.  However, there are several varieties of algorithms for determining the 

upscaled grid and calculating the upscaled reservoir properties, which are less 

understood in each algorithm’s application.  

 

Furthermore, through personal experiences dealing with geologists and engineers 

from several different oil & gas companies, an understanding of upscaling methods 

seems to be very limited.  Simple analytical methods (e.g. the harmonic method used 

for upscaling the permeability and the arithmetic method for porosity) are normally 

used without knowing the availability of different algorithms and pros and cons of 

each individual algorithm.  In this way, a new effective and efficient algorithm, 

which will be better understood by our petroleum or oil and gas industries, will be 

developed through an understanding of the existing upscaling algorithms. 

 

1.1. PROBLEM STATEMENT  

In this research, the new effective and efficient upscaling algorithm and procedure 

will be investigated and proposed throughout the upscaling investigation.  The 

prediction of the reservoir performance at the fine scale with the reservoir simulation 

model will then be compared against its coarser scale’s reservoir performance at 
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various different reservoir models.  These comparisons will then be used to judge 

how well the new upscaling algorithm, in comparison to the existing upscaling 

algorithms, is in representing the effective and efficient method of upscaling.  

 

1.2. OBJECTIVES  

The objectives of the research are: 

 

To investigate and to review the available existing algorithms for upscaling by 

using the existing field throughout the modelling (this includes building an 

efficient and economical simulation grid) and upscaling gas injection for EOR 

processes. 

• 

• 

• 

To history match each individual upscaled model and to conclude the efficient 

and effective upscaled algorithms from the available upscaling algorithm in 

any given situation. 

To develop and to determine a new efficient and effective algorithm of 

upscaling by using several upscaled parameters from the reservoir model and 

test it by history matching the existing field. 

 

1.3. RESEARCH METHODOLOGY  

The research will focus in particular on modelling and upscaling gas injection 

processes.  In the course of the research program, a new algorithm for upscaling of 

the reservoir properties (e.g. porosity, absolute permeability, fluid saturation, relative 

permeability and capillary pressure) based on a fine grid compositional, or black oil 

simulation, will be developed.  The algorithm will then be implemented as 

programming script based on Internal Programming Language (IPL) script within 

IRAP RMS, which will then be tied to the black oil/compositional simulator 

MORE/Roxar.  
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In any reservoir study, the upscaling algorithm used is often based on the dimension 

of the coarse reservoir simulation grid and its dimension of the fine geological grid.  

The initial step prior to investigating the upscaling algorithm is to create the coarse 

grid simulation for the full field reservoir study.  This step has often become a 

critical step in determining the effective and efficient upscaling procedure, since the 

upscaling properties are often related to the dimensional flow within the coarse grid 

cell.  Ideally, for optimum coarse grid buildings, single well models around each 

individual well are required to be performed so that the understanding of a single 

well performance (a history match of each individual well in the reasonable coverage 

drainage reservoir area) can be studied more thoroughly.  By examining these single 

well models, similar characteristics of the geological model may then be grounded 

into sector models within the full field simulation model.  However, this procedure 

can become time consuming.  Therefore, the streamline simulation method will be 

used to give an indication for fluid flow movement within the particular reservoir 

units for a further building of the representative of the coarse scale full field model.  

Each cell within the coarse gridded model will then be filled with its petrophysical 

properties by using the appropriate upscaling algorithms. 

 

The appropriate upscaling algorithm is normally based on mass conservation, the 

determination of the coarse scale absolute and relative permeability, porosity, fluid 

saturation and capillary pressures that minimise the error in the mass (mole number) 

of each component in all grid blocks at the end of a coarse scale time step.  The 

algorithm differs from other approaches in three main aspects: 

 

Time steps may be different (longer) in the coarse scale simulation compared 

to the fine scale simulation.  This reflects the true situation, and tends to 

smooth out noise in the generated pseudo. 

• 

• 

• 

The optimisation is performed on the whole coarse scale model, that is, in all 

grid blocks simultaneously and not in individual grid blocks. 

Compositional information is utilised.  This opens the possibility for 

simultaneously upscaling phase behaviour and relative permeability.  This 
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possibility has not yet been fully implemented in the code.  The necessary 

additions may, however, be easily implemented. 

 

The selection for effective and efficient algorithms will be mainly based on the 

conservation of the reservoir heterogeneities (reducing the uncertainties of reservoirs 

throughout the reservoir geological model and laboratory data) and also the 

capability of the upscaled parameter data used to match the history of the 

productions.  Furthermore, the accuracy of such effective properties as applied to 

flow through porous media will be judged by how well the fluid flow prediction 

made at the coarser (macro-scale) level mimic predictions made at the finer (micro-

scale) level.  Thus, the research will be based on a data analysis of data from the 

geologists (reservoir model with its petrophysical parameters), rock laboratory data 

(PVT, capillary pressure and also the relative permeability curves), and also the 

study of the flow characteristics of the reservoir. 
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Chapter 2. 

LITERATURE REVIEW 

2.1. BACKGROUND OF UPSCALING 

In the gas and oil industry, the prediction for hydrocarbon recovery in any oil and gas 

field generally involves the following modelling cycle:  

 

Understanding the rock properties through core samples.  • 

• 

• 

• 

• 

Deriving the well representative of rock properties in log curves based on the 

understanding of the core. 

Generating the most representative of its log/core understanding in the 

reservoir geology. 

Quantification of the geological and other relevant static data, into a system of 

numerical grids. 

Performing and understanding the fluid flow behaviour through static and 

dynamic reservoir properties with the reservoir computer simulation. 

 

In each of the modelling steps, integrating different scales of data and implementing 

them accurately can lead to an improvement in reservoir performance prediction. 

 

The first hierarchy for integrating data is to have an understanding of the rock 

properties through core samples from the well logging.  The core sample is typically 

in the micro scale measurement of 10cm by 10cm by 10cm.  From this core sample, 

an understanding of rock geological characteristics and analysis, such as relative 

permeability & capillary pressure, are performed.  Well logging is then performed to 

gain an understanding of the reservoir properties (e.g. resistivity, neutron density, 

etc) along the well trajectory of the log samples.  These reservoir properties are then 

interpreted to relevant reservoir properties for static and dynamic reservoir models. 
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Through an understanding of the core sample(s), well logs and a geological 

understanding of the depositional environment, the geologist then builds the 

geological model.  This geological model is typically in the fine scale of 50m by 50m 

by 1ft, in order to capture the heterogeneity of the reservoir in such detail as 

represented by numerical grids.  Fine scale reservoir models often have between one 

to 100 million grid cells.  However, with the current computing power and further 

development of current reservoir characterisation technology, the reservoir 

modeller(s) who is/are normally a group of integrated teams consisting of a 

petrophysicist, geophysicist, geologists and reservoir engineer, tends to build in 

much finer scale than before to capture every detail of the heterogeneity in order to 

reduce the uncertainties. 

 

The next modelling sequence is to perform and understand the dynamic aspect of a 

reservoir model.  This is basically done by integrating an understanding of the static 

geological model and dynamic fluid flow properties (Fluid Pressure-Volume-

Temperature (PVT) relationship, fluid-to-fluid interaction, well inflow performance, 

etc) in order to predict the reservoir behaviour dynamically.  These data are normally 

integrated by using the reservoir computer dynamic simulation. 

 

However, due to implicit and iterative procedures in this dynamic simulation, the 

finer details of the geological model cannot be captured due to computer power 

limitations and required turn around time for any Asset reservoir management 

decision.  Current computing power allows a reservoir simulation to handle only 10 

to half million cells depending on the number of components (up to three 

components of gas, oil, and water in black oil simulation and multi components for 

Compositional (Equation of State – EOS) simulation) used in the simulation.  Thus, 

the fine scale geological model has to be upscaled to a coarser model that can be 

handled efficiently by reservoir simulators. 

 

A typical workflow for the reservoir modelling is shown in Figure 2-1.  
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Geological Fine Scale 

50m * 50m * 1m  

(2.5x103 m3) Core/Log Scale 

10*10*10cm 

(10-3 m3) 

Geological Input 

[Depositional (Fluvial, 

Carbonate, etc), Facies 

(Sand/Shale), 

Properties (φ, k) on 

each facies] 

Reservoir Simulation 

Scale (Coarser) 

300m * 300m *10m 

(~9 x 105 m3) 

 

Figure 2-1 Integrating reservoir modelling at different scales for reservoir simulation 
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Table 2-1 An example of upscaling from core to reservoir simulation model 
(Reservoir size of 9km x 5km x 0.3km) 

Reservoir Size: 9-km x 5-km x 0.3-km 

Scale Size No of cells Ratio to 
Core 
Scale 

Ratio to 
Log Scale 

Ratio to 
Geo.  
Scale 

Core 10*10*10cm   

(10-3 m3) 

13.5x1012 1:       1 1: 2x10-1 1: 4x10-7 

Log data 10cm*10cm*0.5m 

(5x10-3 m3) 

2.7 x1012 1:       5 1:       1 1: 2x10-6 

Geological 

model 

50m * 50m * 1m 

(2.5x103m3) 

5.4 x 106 1: 2.5x106 1: 5x105 1:         1 

Simulation 

model 

300m * 300m 

*10m (9x105m3) 

15 x 103 1:    9x108 1: 1.8x108 1:    360 

 

In the integration of different scales for the reservoir simulation, upscaling from a 

core scale to the required scale of reservoir simulation is involved.  As shown in 

Table 2-1, a single cell in the geological model represents in the order of a quarter of 

a million core samples as a single value.  This core/log data will be upscaled at the 

well locations of the reservoir model to represent the single cell of the geological 

model.  Properties along the well locations and an understanding of the geological 

depositional in the reservoir will then be used to represent the entire area of the 

reservoir.  Thus, most of the heterogeneity properties along the well location will be 

smoothed and homogenised to represent the size of the reservoir.  Also, around a few 

hundred of the geological scale cells will then be upscaled and smoothed further to 

represent a single cell in the reservoir simulation model.  In this way, properties with 

correlation lengths less than the size of the reservoir simulation scale disappear, 

while the long-range correlation lengths remain in the model. 
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In any reservoir predictions, either in geological or reservoir simulation scales, a 

realistic description of reservoir behaviour under any depletion scheme is probably 

the most important factor.  Permeability, which describes the ability of fluid to flow 



 

through the connectivity of the pores of the rock in the porous media, is the major 

parameter that affects reservoir behaviour.  In upscaling, permeability is really a 

complicated matter, as it is not an additive variable (i.e. the equivalent permeability 

in the reservoir scale cannot be represented by arithmetic means).  The expected 

permeability values have in general decreased and permeability variance has also 

decreased in reservoir simulation scales compared to much finer scales such as 

geological or core scales.  Consequently, reducing the number of cells in any scale 

results in reducing the accuracy of the parameter model and also smoothing the 

ability to describe the heterogeneity flow behaviour in the reservoir model.  

Therefore, a balance is required between the loss of accuracy due to the smoothing 

(averaging) process and the gain in computer speed due to fewer numbers of grids. 

 

Another important concept in upscaling is finding the most representative of the 

effective grid cell values at larger reservoir simulation modelling scales.  The degree 

of its accuracy is normally judged by how well the fluid flow predictions made at its 

coarser (macro scale) level mimic the predictions made at its finer (micro scale) 

level.  If at all possible, the upscaling methodology should not be applied directly to 

the solution at the fine scale, as the purpose of upscaling is to avoid conducting such 

time-consuming flow simulations. 

 

With recent developments on the geo-statistical stochastic simulation, the geological 

model can then be generated in high resolution for capturing any details of the 

reservoir heterogeneity by integrating data from core measurements, well logs, 

seismic and geological features, covering a broad range in the scale of 

measurements.  In this way, no matter how fast the computer and technology used 

will be, upscaling from the fine geological model to the reservoir simulation model 

will be intensive and will remain a challenge in providing answers to the most 

representative effective permeability at the macro level. 
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2.2. CLASSIFICATION OF UPSCALING METHOD 

Research has been on going to find and develop a new algorithm that gives the best 

representation for calculating the effective properties of fluid flow.  Several of these 

algorithms are publicly and commercially available for upscaling by using either 

analytical or numerical approaches and even generating pseudo functions (pseudo 

relative permeability and capillary pressure) based on the reservoir simulation of the 

fine grid model.  Simple methods, such as arithmetic, geometric and harmonic 

averages to the more complicated tensor methods, such as diagonal and full tensor 

methods, have been developed and exist commercially.  Pseudo generation methods 

such as those Hearn, Kyte & Berry and Stiles methods are also available in 

determining the pseudo fluid properties to be represented at the coarser scale based 

on the fine scale of the reservoir simulation properties. 

 

In this section, different existing upscaling algorithms, which mainly focus on the 

available algorithms in Roxar’s IRAP RMS, will be discussed further.  Each 

individual algorithm’s function, advantages and disadvantages and also usefulness to 

a specific case will be captured in the discussion. 

 

2.2.1. Analytical method 

2.2.1.1. Arithmetic, geometric and harmonic averages 

The analytical methods such as arithmetic, geometric and harmonic averages, have 

been regarded as the fastest and intuitively simple methods for upscaling.  Earlier 

research by Warren and Price in 1961 and Bower in 1969 indicated that the effective 

permeability behaved geometrically based on a Monte Carlo simulation and analog 

simulation in 2D flow field respectively.  Further analysis by Freeze in 1975 

indicated that the harmonic mean is representative of the homogeneous conductivity 
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based on the steady state and 1D transient ground water flow in non-uniform media 

(Mansoori, 1992, p.67). 

 

The arithmetic, harmonic and geometric averages can be expressed as shown in 

Equation 2-1, Equation 2-2 and Equation 2-3 respectively. 
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Equation 2-1 Arithmetic Average 
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Equation 2-2 Harmonic Average 
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Equation 2-3 Geometric Average 

 

Some of these methods (e.g. harmonic and geometric methods), however, would be 

disadvantageous if there was a nil value present in the fine scale system, which is 

sometimes defined as a non-flow or barrier in the system (shale or undefined/non-

active cells in the system).  With any nil value present in the system, the effective 

permeability would create an undefined heterogeneity of the reservoir.  Thus, it is 

resulting in a limited range for validity.  Furthermore, any undefined heterogeneity of 

the reservoir needs to be reported, such that a treatment in barrier preventing any 

vertical communication through it and a vertical permeability (Kv) determination for 

blocking the wells can be treated appropriately. 

 

In addition to these nil value limitations, these methods can only solve a single 

direction of the effective permeability for determining the effective permeability (i.e. 
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a simple 1D or 2D reservoir model).  This is not the case in real life, as permeability 

is a directional property of fluid flow in porous media.  It therefore requires more 

complex calculations than that of the three-dimensional approach.  Furthermore, it 

suffers from some limitations in applicability. (Beggs et al., 1993, p. 143-148, 

Durlofsky et al., 1995, p. 53-66) 

 

Most reservoirs are generally more laterally homogeneous compared to their vertical 

direction.  Therefore, due to the reservoir’s heterogeneity nature, arithmetic average, 

as it is derived based on parallel sequences of layered reservoir beds, is believed to 

represent the upper bound of the effective permeability value.  On the other hand, on 

the vertical direction of the reservoir bedding, it is more heterogeneous compared to 

its lateral directions.  Therefore, harmonic average, as it is derived based on serial 

sequences of beds or perpendicular to the bedding, is believed to represent the lower 

bound of the effective permeability values by taking into consideration the lowest 

permeabilities as the dominant ones.  Derivations of these algorithms are summarised 

in Appendix A. 

 

According to Dagan in 1979, this theory holds true, as the effective permeability is 

between the arithmetic and harmonic mean of the heterogeneous reservoir.  

Furthermore, Dagan (1982) also states that under unsteady states, the effective 

hydraulic conductivity is time dependent and shows a deviation from arithmetic 

means at an early time.  Thus, the reservoir will first flow laterally compared to its 

vertical direction as they are behaving more homogeneously and more connected 

compared to the vertical flow. (Mansoori, 1992, p. 69) 

 

The geometric average algorithm is also believed to take into consideration both 

harmonic and arithmetic effects of the effective permeability (i.e. the mid point 

between the upper and lower bound of the effective permeability values).  It is a 

good estimator for lognormal isotropic fine scale permeability when the range is 

smaller than the size of the coarse scale block.  Also, when the permeability is 

distributed randomly to flow direction, that is, in a heterogeneous, unstructured 
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reservoir, this geometric average will be a good estimator.  Thus, it is often used 

conventionally as the effective permeability value for numerical simulations. 

 

The above statement concurs with Smith and Freeze’s (1979) findings.  They stated 

that the geometric mean would accurately predict the average behaviour of hydraulic 

conductivity, which statistically would behave homogeneously with isotropic 

covariance function.  However, in 2D and 3D, this simple algorithm can become less 

accurate as the effective conductivity is a function of spatial distribution and system 

dimensionality.  Furthermore, this tends to influence the lower permeabilities in 

many reservoirs and disregard the potentially significant high permeability streaks, 

which will be the main preferential path in the reservoir. (Mansoori, 1992, p. 67) 

 

The selection for these mentioned algorithms is normally based on the rock fabric 

and fluid flow direction.  However, this is only realistic if certain conditions are met, 

such as single-phase fluid in homogeneous, or simple heterogeneous, reservoirs with 

continuous layers.  For complex reservoirs, these algorithms are no longer valid and 

upscaling with numerical simulations will be required which involves running the 

fine grid simulation to calculate the effective permeability at a coarser scale. 

 

2.2.1.2. Power average 

Another analytical algorithm that can be used is the power average.  It is a fast and 

simple intuitive method similar to any other analytical algorithm.  Journel et al. 

(1986) based his experiment on the indicator approach to generate realisation of sand 

shale proportion in the system.  He generated the permeability field, which was 

highly variable, highly anisotropy and whose spatial distribution and correlation 

covered multiple scales of variability.  It was found that the effective permeability, 

based on a Monte Carlo simulation for various shale/sand proportions, could be fitted 

using the power average model. (Mansoori, 1992, p.67) 

 

The equation of power average is shown below in Equation 2-4. 
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Equation 2-4 Power average 

 

The power average model requires the power factor, which should be in the range of 

between –1 and 1.  The power factor of –1 (ω=-1) basically represents the harmonic 

average, while the power factor of 1 (ω=1) represents the arithmetic mean.  The 

power factor of 0 (ω=0) represents the geometric mean of the heterogeneous system.  

From Journel et al.’s (1986) experiments, it was also found that a power factor of 

0.57 (ω=0.57) is the best-characterised horizontal flow in shale-sand environments, 

and a power factor of 0.12 is the best characterised for vertical flow (Mansoori, 1992, 

p. 67). 

 

The drawback of the power average is similar to the rest of the analytical methods, 

which are limited to solving only in 1D or 2D directions and also misleading with the 

presence of nil values for power factors less than 0.  Choice of the power parameter 

is normally very tedious as we are never sure what the appropriate value of this 

parameter will be.  This factor, however, is quite sensitive to such factors as the shale 

geometry, dimensions of blocks relative to correlation range and its nature to multi 

model distribution. 

 

Gomez-Hernandez and Gorelick in 1989 found that the effective hydraulic 

conductivity could be determined based on power average models using exponents 

between harmonic and geometric mean distribution.  They based their research on 

the investigation of spatial variability of aquifer hydraulic conductivity influences on 

hydraulic head, under steady state flow for a stochastic approach with conditional 

and unconditional simulation.  They also stated that the effective hydraulic 

conductivity is a function of distribution type, anisotropy, correlation length and 

boundary conditions. (Mansoori, 1992, p. 67-68) 
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Deutsh in 1989 compared the power average and percolation model to correlate the 

relationship between effective permeability and volume fraction of ‘shale and shale’ 

anisotropy.  The graphical procedure was developed for determining the power 

exponent from shale aspect ratio, shale volume fraction and shale/sand permeability.  

Both methods are equally suitable for fitting the observed correlation.  This power 

average could be very superior due to its simplicity and only requires a single 

exponent parameter to be determined to fit into the power average model for 

calculating the effective parameter, as opposed to three parameters required for the 

percolation model (Mansoori, 1992, p. 67). 

 

Furthermore, the power exponent is often calculated to replicate the performance of 

the more computing extensive fluid flow based methods and to determine a proper 

chosen exponent.  In this way, it becomes particularly useful and less time 

consuming for upscaling a large number of realisations of a reservoir. 

 

2.2.2. Directional dependent averages (arithmetic-harmonic and 

harmonic-arithmetic averages) 

Directional dependent averages (arithmetic-harmonic and harmonic-arithmetic 

methods), have been developed in order to simplify the determination of effective 

properties in three-dimensional models. 

 

These directional dependent averages were derived based on an understanding of 

how the arithmetic and harmonic averages were derived.  As mentioned earlier in 

Section 2.2.1.1, the arithmetic average should apply to parallel sequences of the 

reservoir beds in a particular direction, while the harmonic average should apply to 

the vertical direction perpendicular to the reservoir bedding. 

 

In determining the effective permeability in the x-direction using the arithmetic-

harmonic average, the arithmetic is firstly applied within the plane and then followed 

by the harmonic mean of the plane’s values of the series of arithmetic averages.  This 
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determination of effective permeability is then applied to the y and z directions to 

obtain the cell’s effective permeability in x, y and z directions.  According to most 

published papers and research, the arithmetic-harmonic average is believed to 

represent the upper bound of the effective properties. 

 

The harmonic-arithmetic average is derived similarly to the arithmetic-harmonic 

average.  However, the harmonic average along the 1D stack in the particular 

direction will be applied first, before applying the arithmetic average of all the 

stacks.  Also, similarly to arithmetic-harmonic averages, y and z directions are then 

applied accordingly to the principal direction with the same derivation of algorithms.  

This algorithm is believed to represent the lower bound of the effective permeability. 

 

These directional dependent averages are illustrated in Equation 2-5 and Equation 2-

6 for arithmetic-harmonic and harmonic-arithmetic averages respectively. 
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Equation 2-5 Arithmetic-harmonic average 
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Equation 2-6 Harmonic-arithmetic average 

 

However, similar to harmonic averages, these directional methods would still suffer 

with the nil values.  Also, the effective properties may not always lead to accurate 

results, but they are generally honour detailed reservoir descriptions. 
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With the knowledge of how these directional dependent averages were derived, the 

effective permeability was found to be bounded between arithmetic-harmonic and 

harmonic-arithmetic averages as the upper and lower bound of the effective 



 

permeability values respectively.  These bounds are known as the Cardwell and 

Parsons (1945) bounds. (Renard et al., 1997, p. 256) 

 

2.2.2.1. Renormalisation 

In addition to these analytical averages, a renormalisation method has been 

developed and used in many reservoir studies.  It is based on the analog electrical 

network principal and successful star-triangle transformation. The effective 

permeability was estimated by averaging over small regions (2x2x2 of the fine scale 

block) to form a new ‘average permeability’ distribution with lower variance 

(reducing the variance) than the original scale.  Further reduction in variance at the 

intermediate scale is then carried out before ending up with the coarse block size.  

Each step is upscaled using the appropriate method, such as single-phase flow 

simulation, with the effective medium conductivity calculation. (King et al., 1988, 

p.217-234) 

 

 

Keff
 

KC
 KD

 

KB
 KAKa

  
ka4 ka3

ka2 ka1

Figure 2-2 Renormalisation method 

 

This renormalisation algorithm is based on a successive upscaling to obtain the 

properties at the required scale.  It is faster than upscaling in one step iteration, but 

can become less accurate.  In general, this method has been regarded as the fastest 

way to estimate effective properties by carrying out successive upscaling to obtain 

properties at the required scale.  It is more accurate compared to simple averaging 

methods, but it is slower in terms of its CPU performance.  It is a good estimator as it 

takes into account heterogeneity on several length scales, but this algorithm cannot 

be used with a ‘skin’ region to account for flow outside each coarse grid. 
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This renormalisation algorithm is also good for taking large problems and breaking 

them down into a hierarchy of manageable problems, as has been proven 

successfully in theoretical physics areas.  It imposes a diagonal pressure gradient, 

which results in significant fluxes across all block interfaces, allowing flow accuracy 

to be tested on a block-by-block basis (Lozano et al., 1996, p. 328-338).  However, 

this upscaling method is only a local upscaling procedure.  It is poor for highly 

anisotropy media and probably unreliable due to unrealistic boundary condition 

effects.  (Beggs et al., 1993, p. 143-148, Christie, 1997, p. 105-113, Christie et al., 

1995, p. 353-361, Durlofsky et al., 1995, p. 53-66, Lemouzy et al., 1993, p. 1-8) 

 

Further developments of this renormalisation method have also been carried out by 

Le Loch (two meshes with simplified renormalisation), Kruel-Romeu (direct 

formulation with permeability assigned to each link between two nodes rather than 

block surrounding nodes), Gautier and Noetinger (complete tensor by periodic 

boundary conditions) and Hinrichsen et al. (directional permeability).  (Renard et al., 

1997, p. 260-261) 

 

2.2.3. Numerical method 

Several numerical methods, such as the diagonal and full tensor methods, are also 

available based on Darcy’s law of flow equation and the law of mass conservation on 

each volume represented by a coarse grid block.  Thus, this method represents the 

solution of flow equation and yields the diagonal tensor of the permeability in nature.  

By applying the relevant boundary conditions for the calculations, the directional 

effective permeability, the x, y and z directions, can be determined.  Nil values can 

also be delimited by using these methods. 

 

For these numerical methods, can these boundary conditions approximate the true 

reservoir conditions? (Aasum et al., 1993, p. 679-692, Durlofsky et al., 1995, p. 53-

66, Mansoori, 1992, p. 66-68, Renard et al., 1997, p. 272-275) 
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2.2.3.1. Diagonal tensor based on periodic boundary conditions  

The diagonal tensor algorithm is basically based on Darcy’s law fluid flow equation 

and the law of mass conservation.  The following diagram in Figure 2-4 is the basic 

principle of the diagonal tensor algorithm. 

 

The geometry of the fine scale cells is firstly calculated and determined in the 

calculation.  The appropriate pressure drop and the boundary conditions in the 

specific directions are then applied and calculated to determine the effective 

properties.  This basically applies some pressure on the inlet to force the fluid flow 

from left to right in the x direction, while assuming that there is no flow across to the 

other directions, as shown below as a solid line.  The boundary condition is specified 

to be at a constant pressure of one at the inlet stream and a constant pressure of 0 at 

the outlet stream. 
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Figure 2-3 Pressure & boundary condition assumptions for diagonal tensor 

 

The pressures in each fine scale grid inside the coarse grid block and the mass flux 

across the system are solved by applying appropriate Darcy’s law fluid flow equation 

and the mass conservation equation as shown below: 

 
PAkq ∇=

µ
.

Pk ∇= .υOr 

Equation 2-7 Darcy’s law of fluid flow equation 
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In Darcy’s law 

u=K.∆P/∆L 
Effective permeability tensor 

Figure 2-4 Process flowchart on how diagonal tensor is derived 

 

In reality there should not be a change in flux between the fine grid system and the 

single coarse grid system.  Hence, the flux across the system is then summed up to 

obtain the single value flux at the coarse grid.  

 

By using Darcy’s equation again, the effective permeability can then be obtained.  

 

Axqk finescaleeff /∆=  

Equation 2-8 Effective permeability by rearranging the Darcy’s law equation 
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The above procedures are then repeated to obtain the diagonal tensors permeability 

(kxx, kyy, kzz) by applying a periodic boundary to the appropriate directions. 

 

2.2.3.2. Full tensor based on periodic boundary conditions  

Diagonal tensor can only determine in the principal directions of the effective 

permeability (x-x, y-y and z-z directions).  In reality, the bedding of the reservoir 

rock is not parallel or in series.  The alignment of the bedding could be cross flow 

and parallel in an angle to the directional of pressure gradient.  Thus, diagonal 

directions (x-y, y-z, and x-z) of permeability are required.  These diagonal principal 

directions of effective permeability can be determined by using the full tensor 

method, where the various terms reflect the spatial variations of permeability in both 

magnitudes and directions. 

 

A full tensor algorithm is basically derived on a similar principal to the diagonal 

tensor.  The full permeability tensor is redefined with Darcy’s law as follows: 

 

PkP
kkk
kkk
kkk

Pk D

zzyzxz

yzyyxy

xzxyxx

F ∇=∇
















=∇= ...υ

 
Equation 2-9 Full tensor effective permeability based on Darcy’s law equation 

 

The input permeability tensor must be symmetrical and positive definite.  Since KF is 

positive definite, the equation υ = KF.∇P can be solved, in principle exactly with 

respect to ∇P.  Since the dimensions of this equation are only three, and the program 

finds the solutions from a direct method.  Certain ill-conditioned full tensor 

permeabilities can however give significant errors in this procedure.  Given the 

gradient pressure ∇P, the diagonal permeability tensor is then calculated. 
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The above Equation 2-9 can then be simplified to a diagonal tensor algorithm as it 

only considers the principal directional flow of permeability. 
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Equation 2-10 Diagonal tensor effective permeability as a result of simplifying full 
tensor (If ∂p/∂x = ∂xp ≠ 0,∂yp ≠ 0, ∂zp ≠ 0) 

 

The effective permeabilities on the principle diagonal directions, i.e. x-y, x-z, y-x, y-

z, z-x and z-y have been neglected.  However, these principal directions of effective 

permeability will be neglected by the reservoir simulators, as there is no available 

simulator to handle these principal direction permeabilities. (Aasum et al., 1993, p. 

679-692, Christie, 1997, p. 105-113) 

 

2.2.3.3. Rate equivalent upscaling and rate equivalent upscaling to tensor  

Other known upscaling methods are ‘rate equivalent upscaling’ and ‘rate equivalent 

upscaling to tensor’.  Both methods use a similar method to diagonal/full tensor 

methods by utilising Darcy’s law and finite element solver for three diagonal 

elements of tensor.  However, they use the iterative linear finite element solver to 

solve three linear elements simultaneously based on finite difference and a 

preconditioned conjugate gradient method.  Irregularity of flow within a simulation 

block is approximated and full (symmetric) permeability tensor is used. 

 

The difference between these two rate equivalent upscaling methods is that rate 

equivalent upscaling uses the mass conservation for pressure within a large scale 

block, while the rate equivalent upscaling to tensor uses the similarity of energy 

dissipation through large-scale as through fine-scale blocks. 
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Furthermore, these methods are often more time consuming than other upscaling 

methods. 

 

2.2.4. Inequalities theoretical bounds and its averaging mean for 

equivalent permeability 

Several inequalities for determining the equivalent effective permeability have been 

known and published.  In this section, several algorithms based on the averaging 

means of the theoretical bound will be discussed here. 

 

2.2.4.1.  Theoretical bound of effective permeability 

The fundamental inequality is known as Wiener bounds as this inequality is always 

valid.  The effective permeability is bounded by the harmonic mean and the 

arithmetic mean of the fine grid permeabilities. 

 

AeffH kkk <<  

Equation 2-11 Wiener bounds 

 

The above inequality is then developed further with the directional dependent 

averages (arithmetic-harmonic mean and the harmonic-arithmetic mean).  It is stated 

that the harmonic-arithmetic mean is the lower bound of the effective permeability, 

while the arithmetic-harmonic mean is the upper bound of the effective permeability.  

Therefore, the upscaled effective permeability can be found within the following 

theoretical bounds in Equation 2-12. 

 

AAHeffHAH kkkkk <<<<  
Equation 2-12 Inequality for the effective permeability 
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2.2.4.2. Averaging mean of the theoretical bounds for determining the effective 

permeability 

In determining the effective permeability, some algorithms have been developed 

based on the averaging mean of the theoretical bounds Equation 2-12.  These 

algorithms are normally easy to implement for upscaling the effective permeability at 

the coarser scales.  They also tend to be very fast in term of computational speed in 

comparison with numerical upscaling methods. 

 

Matheron (1967) published the effective permeability as being determined from the 

power average of the two theoretical bounds (harmonic and arithmetic means) as 

shown in Equation 2-13. (Renard et al., 1992, p. 257) 

 

]1,0[   ;    )1( ∈= − ααα
HAeff kkk  

Equation 2-13 Matheron bounds 

 

If the permeability field in the fine scale is homogeneous and isotropic, then the 

power parameter, α, can simply be defined in the following equation: 

 

   )1(
D

D −
=α

 
Equation 2-14 Matheron’s α parameter for isotropic and homogenous medium, 

where D is the space dimension i.e. in 3D, α = 1/2 

 

If the permeability is in three-dimensional fields, then α parameter is equal to 1/2.  

The above Equation 2-14, has then become the geometric mean of the two theoretical 

bounds, which is also well known as Cardwell Parson’s equation.  A similar equation 

has also been known as Kruel–Rumeu (1994) or Guerillot (1990)’s equation. 

 

22 or      AHHAeffAHeff kkkkkk ==  
Equation 2-15 Cardwell Parson equation 
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Ababou (1995) has also developed an alternative equation for determining the α 

parameter in isotropic and homogeneous media (Renard et al., 1992, p. 257).  It is 

shown in the following equation: 

 

  )/(
D

LLD rh−
=α  

Equation 2-16 Ababou equation, where Lh is the harmonic mean of the correlation 
length in principal direction and Lr is the harmonic mean of the correlation length in 

the relevant direction 

 

Another method that is the averaging mean of the theoretical bound is Lemouzy’s 

equation.  The equation is shown below: 
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Equation 2-17 Lemouzy equation 

 

A similar equation to Lemouzy (1991)’s equation has been developed by Kruel and 

Rumeu (1994) by using variable exponents that influence the anisotropy of the 

media. 

 

These averaging methods of the theoretical bounds are only used for estimating the 

effective permeabilities. Furthermore, if there are any undefined values due to the 

presence of nil values, the invalid results obtained will be based on the averaging 

means of the theoretical bounds.  
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2.2.5. Pseudo method 

There are also several multiphase upscaling algorithms, which have been used 

widely for the reservoir upscaling.  It is relatively complicated compared to the 

single-phase upscaling as it involves a complex solution for non-linear with coupling 

between rock properties and fluid flow effects.  There are two categories for pseudo 

methods, which are static and dynamic pseudo methods.  Each method will be 

discussed in detail. 

 

2.2.5.1. Static pseudo method 

The static pseudo method is possibly the simplest form of the pseudo methods.  

Pseudo properties are normally generated for inputs to the reservoir simulation and 

dynamic impacts such as the variability of pressure with respect to time and other 

properties are ignored in this method.  The most widely used static pseudo methods 

are probably the Coats, Hearn, Stiles and Dykstra/Parson methods. 

 

Prior to use of any of the above mentioned static pseudo methods, the following 

constant ratios are normally determined in order to choose the appropriate fluid 

movement criteria (capillary, viscous or gravity domination). 
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Equation 2-18 Capillary to viscous number 
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Equation 2-19 Gravity to viscous number 
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Another parameter to be determined is the vertical equilibrium (VE) number, which 

indicates the dominated redistribution of the fluid in dip normal direction compared 

to the fluid movement in the areal directions.  

 

µµρ Pc// N += NNVE  
Equation 2-20 Vertical equilibrium number 

 

The fluid in the reservoir will be vertically segregated when the VE number is 

considerably larger than one and the capillary to viscous number is significantly 

smaller than one. In that case, the Coats’ method can be applied with zero capillary 

pressure.  It is applied for reservoirs with two to three phases.  It assumes that the 

intermediate phase (second phase for a two phase reservoir) is a reference phase of 

capillary pressure (usually oil phase). 

 

The following table summarises the criteria of selection for the appropriate static 

pseudo method.  

 

Table 2-2 Criteria for selecting the appropriate static pseudo method 

Method Criteria 

Coats Vertical equilibrium, segregated flow (NVE > 1, Npc/µ < 1) 

Hearn Vertical communication, piston like displacement, viscous 

dominated (Nρg/µ < 1) 

Stiles Non communicating layer, piston like displacement, mobility 

ratio = 1 (NVE < 1) 

Dykstra/Parson As Stiles, mobility ratio not equal to 1 (NVE < 1) 

 

Coats started the static pseudo method with the assumptions of vertical equilibrium 

and segregated flow (i.e. Vertical equilibrium number > 1 and capillary to viscous 

number < 1). 
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For a reservoir with good vertical communication within layers and dominated by 

viscous forces (small gravity to viscous number), there should be a ‘piston like’ 

displacement in each layer.  In this case, the Hearn method is suitable for use.   

 

In the case where a reservoir has low permeability and/or a barrier to vertical flow 

(non-communication within reservoir layers), it may have a vertical fluid distribution 

that is independent of gravity and capillary effects.  The displacement process in 

these types of reservoirs will be characterised by a small value of vertical equilibrium 

number.  When displacement is piston like and the mobility ratio is equal to one, the 

Stiles’ method can be used to generate pseudo relative permeability.  For mobility 

not equal to one (no restriction with mobility ratio), the Dykstra/Parson method, 

which is an extension of Stiles’ method, can then be used.  

 

2.2.5.2. Dynamic Pseudo Method 

The multi phase upscaling procedure normally involves the following steps: 

 

Generating the fine grid simulation of a (small) representative area of the 

reservoir.  

• 

• 

• 

Performing an averaging step(s) to obtain the averaged rock properties 

(porosity, absolute permeability, reservoir pressure) at each time step. 

Creating a pseudo relative permeability table and pseudo capillary pressure 

table at each time step. 

 

This method is normally referred to as the ‘dynamic pseudo’ method.  The result at a 

coarse grid with the average properties should give comparable results to the fine 

grid simulation.  However, this multiphase upscaling can become very time 

consuming, as it requires the generation of the fine grid cell simulation prior to 

obtaining information required at the coarse cell.  Due to the involvement with much 

finer scales and huge numbers of grid block cells, it would also require extensive 

computer power to solve the simulation at the fine scale.  Furthermore, the set of 
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pseudo functions generated for the coarse scale is problem specific.  Thus, for new 

requirements at the coarse scale, the whole procedure must be repeated to obtain the 

necessary information.  Also, this method makes it hard to generate any other flow 

geometries. 

 

Another well known problem associated with generating pseudo relative 

permeabilities, is that the values can become greater than one, or negative or infinite.  

The values greater than one can be attributed to discrepancies in the averaging of 

relative permeability or transmissibility and can become the correction for this 

discrepancy.  Negative pseudo relative permeability is inherent in results of the 

dynamic pseudo algorithm and the coarsening of the chosen grid.  This could be due 

to flow alignment to the predominant flow parallel to other grid directions, or the net 

flow of a phase to be in the reverse direction to the average potential difference.  The 

infinite values of pseudo relative permeability are due to non-zero net flow with the 

zero value of the average potential difference.  Should any of the above-mentioned 

problems occur, the pseudos generated by this method could become impractical and 

a different coarsening pattern with the repeated procedures would be required. 

 

The Kyte and Berry (1975) method is very well known and widely used for 

generating pseudo properties, but it is also widely believed to be unreliable, although 

there is little published evidence for this.  A similar method is the ‘pore volume 

weighted’ method, which differs from Kyte and Berry’s only in the use of a different 

formula to determine average pressure. (Kyte & Berry, 1975, p. 269, Barker et al., 

1997, p. 138-143) 

 

All the relevant fine grid variables such as reservoir properties, fluid properties, flow 

variables and transmissibility are required to be averaged for the coarse grid cell.  

The transmissibility is normally averaged with either arithmetic and/or harmonic 

algorithm(s) depending on the considered component of the absolute permeability.  

For most other variables, such as density and viscosity, the pore volume weighted 

average is normally applied. 
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With the Kyte and Berry method, pseudo relative permeabilities are normally 

averaged by substituting the fine grid simulation with Darcy’s law of equation for 

reproducing the fine grid flows at the coarse grid level.  The pseudo relative 

permeabilities at a coarse grid block boundary face are averaged with the 

transmissibility weighted average to obtain the pseudo relative permeability table(s) 

as shown in the following equation. 
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Equation 2-21 Kyte and Berry method for pseudo relative permeabilities 

 

For the pseudo capillary pressure of a face, it is found by subtracting the average 

reference pressure from average pressure of the considered phase.  Averaging 

methods for potential difference are: 

 

Original Kyte and Berry method. • 

∑= iiii
r
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Pore volume weighted average method.  • 

∑= iiVP
V

P 1
 

Pore volume phase saturation weighted average. • 

∑= iii VSP
SV

P 1
 

This method favours grid blocks where a high rate is expected. 
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In practice, several problems may occur. The net flow in opposite direction to the 

average calculated pressure may result in a negative pseudo relative permeability.  

When the net flow is non-zero and the average pressure gradient is zero, this could 

result in the infinite value of the pseudo relative permeability.  Multiple values of the 

pseudo relative permeability may also result due to multiple occurrences of the same 

average saturation. (Azoug et al., 2003, p.1-19, Barker et al., 1997, p. 138-143) 

 

Another method that avoids average pressure problems is Stone’s method. It uses the 

average total mobility in a way that determines the net fractional flow.  The relative 

permeability can then be calculated by neglecting the gravity and capillary pressure. 

A problem with this method is inadequate average mobility is experienced when 

significant variations in total mobility occur. This is due to significant gravity and 

capillary pressure effects, which result in poor determined pseudo functions. (Azoug 

et al., 2003, p.1-19, Barker et al., 1997, p. 138-43) 

 

2.2.5.3. Capillary equilibrium limit and viscous limit pseudo methods 

The other two common pseudo methods are the ‘capillary equilibrium limit’ and 

‘viscous limit’ methods.  The capillary equilibrium limit method is based on the 

assumption that the capillary pressure is in equilibrium within the coarse scale block 

that is to be upscaled, while the viscous limit method is based on the assumption that 

the flow rate is large and viscous in terms that the flow equations dominate the flow.  

The fraction between the oil and water flow rate is assumed to be constant for all fine 

scale blocks within a coarse scale block and this determines implicitly that the water 

saturation for all fine scale grid blocks are in the coarse scale block.  Upscaling is 

done by calculating the fine scale water saturation for different constant values of 

capillary pressure, and water to oil flow fractions for the capillary equilibrium and 

viscous limit methods, respectively. 
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2.2.5.3.1 Capillary equilibrium limit method 

The capillary equilibrium limit method is based on the assumption that the capillary 

pressure is in equilibrium within the coarse scale block that is to be upscaled.  This is 

true for sufficiently slow flow velocity, where the capillary pressure changes so 

slowly within space and can be assumed to be constant over a volume corresponding 

to the size of a grid block used in the reservoir fluid flow simulation.  

 

The capillary pressure is then treated to be constant for all fine scale grid blocks 

within the coarse scale block.  For any given capillary pressure value with the 

corresponding water saturation, the water saturation can then be used to determine 

the fine scale water and oil phase permeability, where phase permeability is the 

product of the relative permeability and absolute permeability.  The fine scale water 

and oil phase permeability for a given saturation distribution at the fine scale can 

then be scaled up using the same techniques as if they were absolute permeability.  

Diagonal tensor is often used to solve the incompressibility stationary one phase flow 

equation locally within the coarse grid block.  The water saturation for the coarse 

block is scaled up by using the porosity weighted arithmetic average of the fine scale 

saturation.  Different points on the upscaled relative permeability curves are then 

found by choosing different values of capillary pressure. 

 

In summary, the upscaled relative permeability is a function of capillary pressure, 

which corresponds to the upscaled critical saturations with the corresponding relative 

permeability values.  The end point of the upscaled relative permeability is then 

based on the binary search of upscaled endpoints for the capillary pressures.  The 

relative permeability of water at the water saturation should be between zero and the 

specified tolerance. 

 

The problem encountered with this method, is that an infinite number of permeability 

classes for the relative permeability curves may result.  If the capillary pressure is not 

a Leverett J function, the relative permeability curves will not be equal to the fine 

scale curves regardless of the heterogeneity of the absolute permeability.  
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Furthermore, the capillary pressure is a function of absolute permeability, porosity 

and J function, which will then correspond to the infinite number of permeability 

classes for relative permeability curves. 

 

2.2.5.3.2 Viscous limit method 

The viscous limit method is based on the assumptions that the flow rate is large and 

viscous in terms that the flow equations dominate the flow.  In this case, the fraction 

between the oil and water flow rate is assumed to be constant for all fine scale blocks 

within a coarse scale block, which is then used to determine implicitly the water 

saturation for all fine scale grid blocks in the coarse scale block. 

 

For two phase incompressible stationary flow of fluids with the same density, the 

viscous limit equations are: 
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For a small distribution where krw (Sw) is proportional to kro (Sw), the same 

pressure solution can be obtained for both equations.  In this way, the ratio between 

water flow rates to the total flow rate is constant.  Thus, possible fine scale saturation 

can be determined by: 
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In this method, a constant value between zero and one is selected to represent the 

fraction between the water and total flow rate of all fine scale grid blocks within a 

coarse scale grid block.  The water saturation can then be determined by solving flow 

rates with respect to the saturation and its phase of relative permeabilities.  The fine 

scale water and oil phase permeability for a given constant fraction of water to its 
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total flow rate can then be scaled up by using the same techniques as the absolute 

permeability upscaling.  Different points on the upscaled relative permeability curves 

can be determined by selecting different constant value between zero and one.  The 

constant end point of zero and one is then determined by the critical water saturation 

and critical oil saturation respectively. 

 

The difference between this method and the capillary equilibrium method is that the 

fine scale saturation is defined and there is no requirement to search for endpoints.  

The upscaled phase permeability is positive and does not depend on the distribution 

at its fine scale, which may happen to have the saturation greater than the critical 

saturation as defined by the capillary equilibrium method.  For the capillary 

equilibrium method, the upscaled mobile interval is in general less than the interval 

defined by taking the porosity weighted arithmetic average of fine scale critical 

saturation; while for the viscous limit method; the upscaled critical saturation is 

identical with the porosity weighted arithmetic average of the fine scale critical 

saturation. 

 

This method is not useful in the case of having only one facies defined within a 

coarse scale and only a single permeability class for facies, since the upscaled 

relative permeability will be equal to the fine scale curves regardless of the 

heterogeneity of the absolute permeability.  This is also applied to the homogeneous 

block, which will of course have upscaled relative permeability curves equal to fine 

scale curves.  Therefore, more than one permeability class must be defined and fine 

scale absolute permeability must have large enough variability such that not all fine 

scale blocks must belong to the same permeability class. 

 

2.2.6. Other methods 

The other upscaling method, proposed by Beggs et al. in 1985 for calculating the 

vertical permeability, is for reservoirs in which layers are not laterally extensive and 

dispersed shale bodies are present.  This method is based on the single-phase flow of 
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incompressible fluids through tortuous paths within a simulation grid block 

determined by shale dimensions.  The number of shales per unit length, vertical and 

horizontal sand permeabilities, mean of shale continuity and shale fraction should be 

supplied.  Effective vertical perm is then calculated as: 
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This method is consistent with the findings of Prats in 1972, who believes that the 

effective permeability is a function of width, vertical spacing and degree of 

overlapping shale string for large numbers of very thin and impermeable horizontal 

shale strings with uniform distribution.  Weber in 1982 also states that for the same 

potential difference in sand body, the ratio of the total flux in the presence of shale 

and the total flux in sand only is a strong function of the horizontal to vertical 

permeability ratio (Kv/Kh). (Mansoori, 1992, p.68, Renard et al., 1997, p. 253-278) 

 

Haldorsen and Lake in 1984 further state that the effective permeability is 

determined by calculating the effective cross sectional area from stochastic 

distribution of shale strings within the coarse grid block, based on the combined 

analytical method with statistical information on shale lateral continuity and spatial 

deposition to estimate the effective permeability of the sand shale depositional 

environment.  Only for two-dimensional models where the ratio of lateral to vertical 

permeability is less than or equal to 10, this implies that the impermeable shale and 

homogeneous sand body rely heavily on a deterministic knowledge of spatial 

distribution of shales within a homogeneous sand body.  The restriction to 2D and 

the grid ratio were then removed by Begg and King in 1985, based on the statistical 

technique by directly calculating effective permeability of mediums using a 

histogram of shale length and volume fraction.  In this finding, zero permeability 

cannot be relaxed; however, it indicates that there is a strong dependency of effective 

permeability to system dimensions, and density and thickness of shale barriers 

(Mansoori, 1992, p. 68-69, Renard et al., 1997, p. 253-278). 
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Beggs et al. in 1985 generalised further from Beggs and King (1985), for layered 

mediums in which shale frequency and dimension, and sand permeability anisotropy, 

vary from layer to layer.  The effective permeability in three-dimensional models 

always has a greater uncertainty than in two-dimensional models.  The effective 

permeability becomes negligible as Kv decreases. 

 

Desbarats in 1987 stated that the effective permeability in finite flow fields was 

correlated with shale volume fraction, spatial structure and flow field dimensions 

based on the Monte Carlo stochastic distribution of sand shale sequence and 

numerical techniques to estimate sand/shale formation under saturated and steady 

state flow condition.  

 

King in 1987 also stated that if the permeability fluctuations were small (rare case), 

then the perturbation theory or effective medium theory (EMT) would give reliable 

estimates of the effective permeability.  However, for systems with a more severe 

permeability variation, or for those with a finite fraction of non-reservoir rock, all the 

simple estimates would be invalid as well as the EMT and perturbation theory.  Also, 

many reservoirs contain significant amounts of impermeable material (or material of 

very low permeability).  This situation is not as simple as is treatment by simple 

methods and estimates like the geometric mean become invalid. 

 

A significant amount of zero (or very low) permeability regions may also be present, 

which may reduce the flow path.  This makes it difficult to assign a single effective 

value to this property, to give the same flow path.  Many attempts have been carried 

out to address the above-mentioned problem such as in numerical methods by 

Warren and Price 1963, Freeze 1975, Smith and Freeze 1979, Smith and Brown 

1982, and other analytical methods such as the effective medium theory (EMT) or 

perturbation expansion by Baker et al. (1978), Gutjahr and Gelhar (1981), Gelhar 

(1974), Mizell et al. (1982), Dagan (1981 and 1982), King (1987).  (Mansoori, 1992, 

p. 68-69, Renard et al., 1997, p. 253-278) 
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2.3. REMARKS ON AVAILABLE UPSCALING METHODS 

As stated above, there have been several investigations, based on the simplest form 

of mathematical algorithms to highly complex algorithms, for determining the 

effective properties within the heterogeneous reservoirs.  Overall, the main limitation 

of upscaling is the lack of validation of assumptions made.  There have been limited 

attempts in analysing the upscaling process, but there is no logical theory that exists 

to state whether the upscaled values are good or bad approximations (Beggs et al., 

1993, p. 143-148). 

 

In some situations, such as in composite materials with effective properties which 

can be measured directly, the simplest analytical upscaling methods will be 

sufficient.  However, we are not so fortunate in our business, since measurements 

can only be practically made on a centimetre scale in the laboratory and some 

reservoirs can only be represented with heterogeneous models.  Thus, the 

determination of effective properties is, in practice, a mathematical problem. 
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Chapter 3. 

EXPERIMENTAL RESEARCH WITH EXISTING 

ALGORITHMS 

In order to gain an understanding of the upscaling process, the following three 

different reservoir models will be used throughout this research.  

 

Model A: A quite homogeneous sector model with 100,000 grid cells.  (Refer 

to Section 3.1 for more detail.) 

• 

• 

• 

• 

• 

 

Model B: 2D heterogeneous reservoir model (i.e. Vertical cross sectional flow 

model with 2000 cells (100x1x20 cells)) of an oil reservoir.  (Refer to Section 

3.2 for more detail.) 

 

Model C: 3D water-flood heterogeneous reservoir model with 1.1 million cells 

(60x220x85 cells). (Refer to Section 3.3 for more detail.) 

 

Prior to upscaling, the coarse grid cells for each model will be generated based on the 

engineering judgment to capture the desired resolution.  Details on the treatment of 

each model will be described in later sections. 

 

Several single phase upscaling algorithms will be used and tested against the current 

theories of upscaling.   

 

For porosity, the volumetric weighted arithmetic average was selected in order 

to preserve the pore volume locally and globally throughout the reservoir. 

 

For permeability, however, several algorithms were selected and studied.  They 

are:  

o Arithmetic average 
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o Harmonic average 

o Geometric average 

o Arithmetic-harmonic average 

o Harmonic-arithmetic average 

o Renormalisation 

o Diagonal tensor methods with sealed and open boundary conditions. 

 

The dynamic reservoir simulation will then be used to predict the fluid flow 

performance at the fine grid and coarse grid levels.  Apart from the grid cells with 

porosity and permeability parameters, any data required for the simulation (i.e. 

relative permeability, capillary pressure, initial fluid distribution, fluid PVT 

properties and well inflow/outflow parameters) will be treated the same at the fine 

and coarse scales.  This treatement is valid, if any data assigned to the model has no 

dependency to other parameter, i.e. a single relative permeability, used for most 

models is assigned to the entire model.  If the dependency i.e relative permeability 

based on various permeability classes / rock type is assigned to the model, careful 

consideration is required, since this assigned data will be influenced by its 

dependency parameter for both fine and coarse scales. For relative permeability, the 

breakthrough time and cumulative production could be influenced the results for both 

fine and coarse scaled models.  The results of the fluid flow performance at the 

coarse grid model will then be compared against its fine grid fluid flow. The 

selection of the appropriate upscaling algorithm for each model will be judged 

according to how well the fluid flow prediction made at the coarser (macro-scale) 

level mimics the prediction of field performance at the finer (micro-scale) level.   

 

In this research, the upscaling from the geological model (finer scale) to the reservoir 

simulation model (coarser scale) will be the main focus.  Any uncertainties with 

regards to the geological model (reservoir model built by the geologist) and accuracy 

of the laboratory data (the analysis of the PVT, capillary pressure and also the 

relative permeability curves) will not be discussed in this research. 
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3.1. MODEL A  

Model A, which represents quite a homogeneous reservoir, has characteristics as 

shown in Figure 3-1 and Figure 3-2 for the porosity and permeability 3D parameters 

respectively.  The fine scale Model A has 100,000 grid cells (28 x 36 x 90 cells). 

 

Model A is a typical reservoir model which illustrates the interpolation between well 

logs with known anisotropy throughout the reservoir.  From the available well logs 

data, the reservoir properties are distributed homogeneously in lateral directions with 

wide correlation lengths, while the vertical heterogeneity found on the well logs data 

is captured and distributed with the fine scale resolution. 

 

In this reservoir, the depletion drive, via a single producer which is located in the 

middle of the area of drainage, is used for the ultimate recovery of the reservoir 

volume. 

 

Throughout the research, this model will be referred to as Model A. 

 

W 2W 2

 
Figure 3-1 Porosity model of a fine scale for model A 
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Figure 3-2 Permeability model of a fine scale for model A 

 

The following relative permeability based on various permeability classes as shown 

in Table 3-1 are used to assigned in the Model A. 

 

Table 3-1 Relative Permeability with Various Permeability Classes Assigned for 

Model A 
Rock Type 1 2 3 4 5 6 
Kair Range (Darcy) > 7.5 5 – 7.5 2.5 – 5 1– 2.5 0.5 – 1 <0.5 
Initial Water Saturation 0.079 0.158 0.241 0.332 0.440 0.760 
Oil Relative Permeability (oil-water) Parameters 
Corey Coefficient for oil, Now 1.1 1.1 1.1 1.1 1.1 1.1 
Krow end-point 0.8 0.8 0.8 0.8 0.8 0.8 
Residual oil saturation for water 
displacement, Sorw 0.116 0.150 0.230 0.230 0.230 0.200 
Water Relative Permeability (oil-water) 
Corey Coefficient for water, Nw 3.7 3.7 3.7 3.7 3.7 3.7 
Krw end-point 0.3 0.3 0.3 0.3 0.3 0.3 
Gas Relative Permeability (gas-oil) 
Corey Coefficient for gas, Ng 2.741 2.741 2.741 2.741 2.741 2.741 
Krg end-point 0.8 0.8 0.8 0.8 0.8 0.8 
Corey Coefficient for oil, Nog 1.1 1.1 1.1 1.1 1.1 1.1 
Krog end-point 0.8 0.8 0.8 0.8 0.8 0.8 
Residual oil saturation for gas 
displacement, Sorg 0.116 0.150 0.230 0.230 0.230 0.200 
Critical gas saturation, Sgc 0.02 0.02 0.02 0.02 0.02 0.02 
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3.1.1. Coarse grid model 

In this research, Model A will be coarsened from 28 x 36 x 90 cells (90,720 cells) to 

14 x 18 x 9 cells (2,268 cells).  

 

Model A (fine): 28 x 36 x 90 (90,720 cells) 

Model A (coarse):  14 x 18 x 9   (2,268 cells) 

 

Upscaling Ratio: 2: 2: 10 (1 coarse cell = 400 fine cells) 

 

In this model, the lateral resolution is not as important as the vertical resolution, as it 

is quite homogeneous laterally and heterogeneous vertically.  However, a sufficient 

amount of grid blocks are required to capture the spacing distance between wells 

laterally.  In this upscaling comparison, the extreme vertical coarsening is used to test 

the limit of the upscaling method in representing the effective properties on the 

coarsened scale.  

 

The relative permeability as shown in Table 3-1, is assigned the same way for this 

coarse scale Model A.  The upscaled permeability parameter can become critical to 

the breakthrough timing and cumulative production, if the saturation tables assigned 

on the coarsened scale does not represent the average properties.  Therefore, these 

assigning relative permeability tables could also influence the outcome of accuracy 

of upscaling.  

 

3.1.2. Comparison results 

The results of Model A are summarised in the following figures. 
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Figure 3-3 Comparison plot of oil production rate for Model A 
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Figure 3-4 Comparison plot of gas production rate for Model A 



 

 
Figure 3-5 Comparison plot of cumulative oil production for Model A 
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 Figure 3-6 Comparison plot of cumulative gas production for Model A 



 

Figure 3-3 to Figure 3-6, indicate clearly that the possible algorithms that could be 

used to represent the fine scale fluid flow behaviour are arithmetic-harmonic, 

harmonic-arithmetic and diagonal tensor.  However, it seems that the predictions at 

the coarse scale level underestimated the recovery of the oil produced in the 

reservoir.  As mentioned above, the assigning of relative permeability to the specific 

permeability class could be the influencing factor to the cumulative production of the 

oil and hence the recovery of the oil produced in the reservoirs.  Further investigation 

on factors affecting oil production recovery will be discussed in detail in Chapter 4 

and Chapter 5.  

 

3.2. MODEL B 

Model B is the 2D reservoir model (vertical cross sectional flow model with 2000 

cells (100 x 1 x 20 cells)) of an oil reservoir, which is taken from the first case of the 

Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques 

(SPE 72469) (Christie et al., 2001, p. 308-316).  The model is a heterogeneous 

reservoir, as shown in Figure 3-7.  The permeability is correlated and distributed geo-

statistically over a small correlation length with the extensive size of shale strips 

acting as barriers in the model.  The gas injection is used in this model to enhance the 

ultimate recovery of the oil produced.  

 
Figure 3-7 Permeability model at a fine scale for Model B 
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A single relative permeability as shown in the following figure is assigned for the 

entire model. 

 

Relative Permeability for Model B
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Figure 3-8 Relative Permeability for Model B 

 

Throughout the research, this model will be referred to as Model B. 

3.2.1. Coarse Grid Model B 

In this research, Model B will be coarsened from 100 x 1 x 20 cells (2,000 cells) to 5 

x 1 x 5 cells (25 cells).  

 

Model B (fine): 100 x 1 x 20 (2,000 cells) 

Model B (coarse):      5 x 1 x   5 (25 cells) 

Upscaling Ratio:    20:  1:    4 (1 coarse cell = 80 fine cells) 

 

In this model, both lateral and vertical variability of the permeability are quite 

heterogeneous.  For the upscaling comparison, the effective properties at any coarser 

scale will be required.  Thus, in this research, model B is scaled to represent 80 fine 

cells with 1 coarse cell. 
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3.2.2. Comparison results 

The results of Model B using different upscaling algorithms are summarised below. 

 

The results from Figure 3-9 to Figure 3-13, indicate clearly that the possible 

algorithms that could be used to represent the fine scale fluid flow behaviour could 

be arithmetic-harmonic and diagonal tensor.  However, the predictions at the coarse 

scale level had a higher recovery of the oil produced in the reservoir.  Further 

investigation on factors affecting the oil production recovery will be discussed in 

detail in Chapter 4 and Chapter 5. 

 

The harmonic-arithmetic algorithm seemed to underestimate the gas breakthrough 

and fluid flow performance at the coarse scale level.  

 

 
Figure 3-9 Comparison plot of cumulative oil production for Model B 
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Figure 3-10 Comparison plot of cumulative gas production for Model B 

 
Figure 3-11 Comparison plot of gas production rate for Model B 
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Figure 3-12 Comparison plot of the breakthrough timing with respect to gas 
production rate for Model B 

 
Figure 3-13 Comparison plot of oil production rate for Model B 
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3.3. MODEL C 

Model C is the 3D water-flood reservoir model with 1.1 million cells geo-statistical 

model (60 x 220 x 85 cells), taken from the second case of the Tenth SPE 

Comparative Solution Project: A Comparison of Upscaling Techniques (SPE 72469) 

(Christie et al., 2001, p. 308-316).  The model is a heterogeneous reservoir, as shown 

in Figure 3-14 for its porosity model.  Throughout the research, this model will be 

referred to as Model C. 

 
Figure 3-14 Porosity model at a fine scale for Model C (Christie et al., 2001, p. 309) 
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Figure 3-15 Relative Permeability for Model C  
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A single relative permeability as shown in Figure 3-15 is assigned for the entire 

model. 

 

3.3.1. Coarse Grid Model C 

In this research, Model C will be coarsened from 220 x 60 x 85 (1,122,000 cells) to 

15 x 55 x 17 (14,025 cells). 

 

Model C (fine): 60 x 220 x 85 (1,122,000 cells) 

Model C (coarse):  15 x   55 x 17 (14,025 cells) 

Upscaling Ratio:    4:      4:     5 (1 coarse cell = 80 fine cells) 

 

Similar to Model B, this model has a large variability in permeability, both vertically 

and horizontally.  Both vertical and horizontal permeability are important for this 

model to represent the connected volume within the reservoir.  Thus, a proportional 

upscaling factor is used for coarsening both the vertical and horizontal directions.  A 

scaling factor of 80 fine cells representing one coarse cell is used for the upscaling 

comparison of this model. 

 

3.3.2. Comparison results 

For comparison purposes, the sector model of Model C has been used in running the 

reservoir simulation due to limited computer resources for running such a large 

number of fine gridded cells on the full field scale of the geological model.  The 

entire Model C fluid performance will then be compared against the published results 

at the fine scale level (Christie et al., 2001, p. 308-316). 
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3.3.2.1. Sub Model C 

The results of testing Sub-Model C using different upscaling algorithms are 

summarised below. 

 

 
Figure 3-16 Comparison plot of cumulative oil produced for Sub-Model C 
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Figure 3-17 Comparison plot of cumulative water produced for Sub-Model C 

 
Figure 3-18 Comparison plot of water production rate for Sub-Model C 
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Figure 3-19 Comparison plot of the breakthrough timing with respect to water 

production rate for Sub-Model C 
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Figure 3-20 Comparison plot of water cut ratio for Sub-Model C 



 

 

Figure 3-20 indicates clearly that the possible algorithms that could be used to 

represent the fine scale fluid flow behavior could be arithmetic, arithmetic-harmonic, 

harmonic-arithmetic and diagonal tensor.  However, similarly to Model B, it seems 

that the predictions at the coarse scale level have a higher recovery of the oil 

produced in the reservoir.  Further investigation on factors affecting the oil 

production recovery will be discussed in detail in Chapters 4 and 5. 

 

The geometric and harmonic algorithms seem to underestimate the water 

breakthrough and fluid flow performance at the coarse scale level. 

 

3.3.2.2. Entire Model C 

The results of testing Model C using different upscaling algorithms are summarised 

below with the comparison against the published SPE results at the fine scale 

simulation (Christie et al., 2001, p. 308-316). 

 
Figure 3-21 Comparison plot of field production rate using various existing 

algorithms for Model C with published results  
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Figure 3-22 Comparison plot of producer-1 water cut ratio using various existing 

algorithms for Model C with published results  

 
Figure 3-23 Comparison plot of producer-3 water cut ratio using various existing 

algorithms for Model C with published results  
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Figure 3-21, Figure 3-22 and Figure 3-23 have shown similar behavior as indicated 

by the sub-model C.  Fluid flow behaviors predicted by using various upscaling 

algorithms (arithmetic, arithmetic-harmonic, harmonic-arithmetic and diagonal 

tensor) were significantly different from the behavior at the fine scale. The field 

production rate seemed to be predicted at the higher rate, which implied higher 

recovery of the oil produced in the reservoir.  The water breakthrough was also 

predicted to come later than the prediction at the fine scale. Thus, further 

investigation on factors affecting the oil production recovery and water breakthrough 

will be discussed in detail in Chapter 4 and Chapter 5. 

 

3.4. CONCLUSION FROM EXISTING ALGORITHMS 

Based on the observations above, the use of different existing algorithms resulted in 

different overall field performances for various depositional environments.  From 

simple heterogeneity like Model A, to more complex heterogeneity such as Model C, 

a comparison has been made between the existing algorithms and how they behave 

differently compared to their coarse scale and fine scaled models. 

 

Prior to any upscaling procedure, the most important thing is the design and 

generation of the simulation coarse grid.  If possible, the fine grid and the coarse grid 

should be aligned to the primary flow directions to minimise the deviation in 

principal permeability directions.  For transmissibility in different directions to be 

approximately the same, the ratio between thickness and length of a coarse grid 

should ideally be equal to the inverse of a square root of ratio between the vertical 

and horizontal permeability.  This is not always the case, as most of the geological 

models are based on a single directional permeability log to represent the geological 

permeability field in a model.  If this is the case, engineering judgment will be 

required to decide the best design for the coarse grid model geometry depending on 

the anisotropy and variance of the permeability field and also taking the flow 

conditions for the reservoir into consideration. 
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For a simple case of heterogeneous formation made up of parallel beds of uniform 

permeability, a simple analytical solution of the Darcy’s flow equation yields 

effective permeability.  For flow, which is parallel to the bedding plane, the 

arithmetic algorithm can be used to determine the effective property of permeability.  

On the other hand, for flow that is perpendicular to the bedding plane, the harmonic 

mean can be used as the upscaling algorithm for effective permeability.  Refer to 

Appendix A for more detail on the derivation of arithmetic and harmonic means 

based on an analytical solution of Darcy‘s flow equation. 

 

For a general case of heterogeneous formation with arbitrary spatial arrangement of 

permeability, the effective permeability lies in between the arithmetic mean and 

harmonic mean.  This observation is consistent with previous research findings as 

summarised and discussed in Chapter 2.  For deterministic geological models similar 

to Model A, where the spatial distribution of permeability is assumed to be known at 

given scale of heterogeneity, a simple analytical solution can be used to obtain the 

effective permeability for arbitrary conditions and may not necessarily require the 

full tensor treatment.  It uses the assumptions of single phase, steady state flow and 

continuity equation with the combination of Darcy law to arrive at a pressure 

solution.  An exact solution can also be obtained only if there is a simple 

heterogeneity and anisotropy. 

 

For the case of purely random permeability distribution, the effective permeability is 

statistically best represented by the geometric mean, but this is not always the case 

for every random permeability reservoir model.  The combined averaging techniques 

such as geometric-arithmetic mean (first take the geometric mean then take the 

arithmetic mean of the geometric mean), harmonic-arithmetic mean, and arithmetic-

harmonic mean can also be used for the effective permeability determination.  

However, the proper method of averaging should depend on the nature of 

heterogeneity in the primary flow direction. 
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For complex cases with high permeability anisotropy and heterogeneity, full-tensor 

may be necessary.  A combination of simple analytical averaging can also be used, 



 

but the accuracy of using this simple analytical method will depend on the flow path 

tortuosity, as it will increase due to the presence of shales.  When there are fine scale 

barriers at the length scales of the coarse grids, care should be taken in using 

diagonal tensor, full tensor or re-normalisation methods, because unrealistically low 

effective permeability may be produced due to the applied boundary conditions.  In 

such cases, it is probably best to use diagonal or full tensors with skin added to each 

coarse grid. 

 

As shown in the comparison of the fine to coarse scale model behaviours on the 

above models, upscaling of only the absolute permeability under the assumption of 

single-phase flow may not ensure a satisfactory agreement between fine and coarse-

grid multiphase flow simulation results.  Due to this, relative permeability and 

capillary pressure upscaling should also be considered. 

 

Further complex upscaling, such as using the pseudo upscaling for generating the 

pseudo properties of the upscaled model, is sometimes not really effective.  The 

reason being is that it would require the reservoir simulation with the fine grid cells 

in order to get the dynamic properties (i.e. average reservoir pressure, average fluid 

saturation, average fluid relative permeability and equivalent average permeability at 

time step intervals to the end of the simulation run) of the reservoir model.  

Therefore, for models with a small number of grid cells, running the dynamic 

simulation would be the most feasible.  However, as the number of fine grid cells 

increases in the model, more extensive computer power would be required.  

Furthermore, in some cases, this could become a limitation to running the pseudo 

upscaling, and thus, this upscaling method could become infeasible. 
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In summary, the selection of the upscaling method should be consistent with the 

degree of the geologic complexity of reservoir.  Also, the average technique should 

be consistent with the reservoir geology determined by the original depositional 

environment and second alternations of the reservoir rocks. The permeability 

heterogeneity and anisotropy are controlled by the texture and structure of litho 

facies and litho facies architecture.  Thus, for optimal upscaling and minimising the 



 

uncertainty error in upscaling processes, a consistency between the fine scaled 

geological model and its coarse scaled dynamic simulation model is required.  

 

The turn around time will also be the critical judgement in deciding the best possible 

upscaling solution, as some upscaling algorithms will take longer to run for better 

accuracy in providing the effective properties of the upscaled model.  A simple 

summary chart is shown in Figure 3-24 for the comparison of speed versus accuracy 

for various existing upscaling algorithms.  The accuracy here was defined as the way 

the effective permeability of the upscaled model was being determined.  Also, the 

greater the permeability variability used within a coarse cell for averaging, the 

greater the uncertainty will be of the upscaled permeability.  Degrees of upscaling 

should then be chosen such that an optimum balance is achieved between the flow 

simulation time on the coarse grid and the preservation of important geologic 

features in the fine grid model. 
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Figure 3-24 Comparison of speed vs. accuracy for various existing upscaling 

algorithms 
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Chapter 4. 

THE NEW UPSCALING ALGORITHM 

The main purpose of upscaling is to find the most representative of the effective 

homogeneous grid cells that produce the same fluid flow characteristics under the 

same boundary conditions of the heterogeneous cells at a finer scale.  Based on the 

observations in Chapter 3, different upscaling algorithms for permeability may have 

several advantages and disadvantages in predicting the similarity of the fluid flow 

performance at the coarser scale to the fine scale level.  However, there is no specific 

algorithm that can be generally understood and used for various heterogeneity 

applications.  Furthermore, a common observation for all three various upscaling 

cases indicated optimistic results in the cumulative fluid being recovered. 

 

In this section, the derivation of the new algorithm will be proposed.  The accuracy 

of the new estimation of the effective properties as applied to flow in the porous 

media will then be judged by how well the fluid flow predictions made at the coarser 

(macro scale) level mimic the predictions made at the finer (micro scale) level.  

Further detailed discussions regarding the theories and practicality for the new 

upscaling algorithm will feature in Chapters 4 and 5 respectively. 

 

4.1. DERIVATION OF NEW ALGORITHM 

In the development of the new upscaling algorithm, the most important concept in 

upscaling is being able to find the most representative of the effective grid cell values 

at larger reservoir simulation modelling scales.  The upscaling of permeability will 

be the main focus, with additional enhancing treatments for supporting higher levels 

of accuracy, as this is the most complex property in upscaling, as discussed in 

previous chapters.  
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Keff =?

Fine Scale Coarse

Figure 4-1 Problem statement for the new upscaling algorithm 

 

Following is a summary of observations as has been discussed in previous chapters. 

All of these factors will be main considerations in the development of the new 

upscaling algorithm. 
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• 

• 

• 

• 

• 

There should not be a direct application for solutions at the fine scale to 

estimate the flow behaviour at the coarser scale, as this violates the main 

purpose of upscaling, which is to avoid conducting time-consuming flow 

simulations. 

An unrestricted number of grid blocks to be upscaled should not be a constraint 

in any upscaling algorithm.  

Designing and generating the simulation coarse grid should be, as much as 

possible, aligned with the primary flow direction to minimise the deviation in 

principal permeability directions. This implies similar methodology in 

designing the geological fine grid model. 

Generating a single averaged property at a coarse grid level is typically 

obtained by solving flow problems of original multiphase systems within a 

coarse grid under local boundary conditions. 

A general algorithm should not be deviated from the upscaling principal 

theory/observation (i.e. a simple case with parallel bedding can be represented 

by using the arithmetic mean, while a case with directional flow perpendicular 

to the bedding can be represented by using the harmonic mean).  Also the 

effective average permeability should be within the following bounds: 



 

HHAeffAHA KKKKK >>>>  

Based on previous experiments using the existing algorithm, several algorithms, such 

as diagonal tensor, arithmetic-harmonic, harmonic-arithmetic and renormalisation, 

are believed to be the most representative of the upscaling for permeability from the 

fine scale to its coarser scale.  In this research, the new algorithm is based on a 

combination principal theory of diagonal tensor, renormalisation and arithmetic-

harmonic/harmonic-arithmetic algorithms, which are proven to be valid upscaling 

algorithms, and will be proposed and tested further.  

 

The following upscaling concept is proposed for the new algorithm as shown below.  
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Computation 

geometry 

Averaging Flux across the specific 
direction with Arithmetic/Harmonic, 

Harmonic -Arithmetic 

Solve pressure by using Random 
Walk/Relaxation on Network 

Identifying the preferential 
pathway of fluid flow 

Apply pressure drop & boundary 
conditions 

In each 
Direction 

For each simulation grid block 

New Substitution Method 
for K based on Kirchoffs’ 

Theory Effective permeability tensor 

Figure 4-2 Process flowchart on the new upscaling algorithm 

The steps procedures will be discussed in detail in the following sections. 

 

4.1.1. Periodic boundary conditions 

The initial step in the upscaling concept is conducted by defining the pressure 

boundary for the area of interest.  The pressure boundary is defined similarly to the 

diagonal tensor or full tensor’s principal, by applying arbitrary pressure equal to one 

and zero at the inlet and outlet respectively.  The law of nature indicates that any 

fluid flow or particle will always move from a high potential to a low potential.  By 
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defining the pressure boundary, the fluid flow can be forced to flow in a specific 

direction and can be expressed as shown in Figure 4-3.  A periodic boundary for 

different directions can then be applied according to a similar principal. 

 

P = 1 P = 0 

P = 0 

P = 0
 

Figure 4-3 Pressure boundary conditions on new upscaling algorithm 

 

4.1.2. Pressure solution with random walk/relaxation method on 

network 

To be able to solve the fluid flow equation in a numerical performance, a similar 

method to the renormalisation method could possibly be used, by utilising the 

equivalent resistors of the electrical network.  In this section, similarity between the 

fluid flow equation and the electrical network solution will be discussed further.  The 

pressure solution, with a combination of the random walk and relaxation method on 

network, will be described in detail. 

4.1.2.1. Equivalent expression of Darcy’s law (fluid flow) with Ohm’s law 

(electrical network) 

The rate of the fluid flow in the porous media may be expressed using Darcy’s law 

and is defined as follows: 

 

X
PKAQ

∆
∆

−=
µ  

Equation 4-1 Darcy’s law of fluid flow in porous media 
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By referring to the above equation and the renormalisation theory, Darcy’s equation 

may possibly be expressed similarly to the simple Ohm’s law for the electrical 

network principal.  

 

Darcy’s law X
PKAQ

∆
∆

−=
µ  

 Ohm’s law    IRV =

Equation 4-2 Comparison of Darcy’s law of fluid flow in porous media and Ohm’s 
law of electrical network 

 

Both equations use the law of nature theory, meaning the fluid or charge particle will 

move if there are any potential differences and will flow from its high potential to its 

low potential.  In this case, the Voltage (V) for the electrical theory expressed the 

potential difference for the electrical charge to move, while on the other hand, in the 

fluid flow theory, the pressure drop X
P

∆
∆

expression indicates the potential difference 

for the movement of fluid to flow in the porous media.  The current (I) flow through 

the electrical network is equivalent to the amount of fluid flow through the media 

(Q).  Also, the resistivity can be expressed for both the electrical and porous media 

with the equivalent of electrical resistance (R) and the inverse of permeability (1/K) 

respectively. 

 

Therefore, both equations can be expressed according to the following equivalent 

expression: 

Voltage [V] is equivalent to pressure drop 
X
P

∂
∂ or in mathematical expression 









∂
∂

∝
X
PV  

• 

Current [I] is equivalent to fluid flow rate [Q], or in mathematical expression 

 [ ]QI ∝

• 
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Resistance [R] is equivalent to its inversely proportional of permeability [K], or 

in mathematical expression




 ∝

K
R 1

 

• 

 

4.1.2.2. Equivalent resistor network for permeability parameter model 

To be able to provide the pressure solution of the fluid flow in the numerical 

simulation, the equivalent resistor is required to be defined for the representation of 

the permeability parameter in the numerical simulation model.  The equivalent 

resistor of each fine cell is 
K
1 .  Thus, the permeability at the centre of the fine cell 

can be represented using the equivalent to two resistors in the series, which is 
K2
1 .  

In general, permeability is defined with the directional dependent in x, y and z 

directions.  Therefore, each block can be replaced with a cross of resistors as shown 

in Figure 4-4 in a two-dimensional illustration.  For isotropic media, the resistors will 

be the same in either direction as the permeability in x and y directions are the same. 

 

Figure 4-4 Equivalent resistor for isotropic permeability parameter (Kx = Ky) in a 
two-dimensional model 

≡ K21 K21
K2
1  

 
K2
1

K

 

The equivalent resistors of permeability parameters at each coarse grid cell can then 

be illustrated in the following diagram: 
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y
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P = 1 P = 0 

I 

V = 1 

Figure 4-5 Equivalent resistors for permeability parameter at each coarse cell in a 
two-dimensional model 

 

As mentioned above, in determining the effective permeability at one direction, the 

pressure boundaries are set such that the fluid will flow to a specific direction with 

the inlet and outlet uniform pressures of one and zero respectively, with no flow 

across to the other sides of the coarse grid block (δP/δy=0, δP/δz = 0).  Here, the 

fluid flow is only considered in one direction.  By referring to Figure 4-5, there are 

several dead-end edges at the other directions.  Therefore, for a better representation 

for calculating the effective permeability, these dead-end branches are eliminated and 

simplified in the following equivalent resistor network. 
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Figure 4-6 Simplified equivalent resistors for permeability parameter at each coarse 

cell in a two-dimensional model 

 

This network is then used to provide the pressure solution within the coarse grid cell. 

 

4.1.2.3. Pressure solution with random walk and method of relaxation 

To be able to solve the pressure solution in fluid flow, or the equivalent current 

solution in the electrical network as illustrated in Figure 4-6, the ‘random walk’ and 

‘method of relaxation’ are proposed to be used with a combination of Kirchhoff’s 

theories.  

 

4.1.2.3.1 Random walk and method of relaxation 

The method of relaxation was introduced for providing the approximate solutions to 

the discrete Dirichlet problem.  The method uses the function that has the specific 

boundary values, for the value at which the interior points is the average of the 
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values of its neighbours.  This is similar to the problem that must be solved, as there 

are boundary conditions and each cross flow/resistor is dependent on the values of its 

neighbours. 

 

The way the method of relaxation works is that initially, all the interior points are set 

to zero and the boundary points are fixed with the constant values of one and zero.  It 

begins with an interior point, and the value is then adjusted with the average of 

values at its neighbours.  Random walk with any potential alternate pathways, as 

shown in Figure 4-7, to the next interior point is then approximated with a similar 

averaging method of the neighbours’ values.  This process is then repeated for the 

rest of the interior points. (Doyle et al., 1984, p.22-25) 

 

After adjusting all the interior points, the results will not be harmonic anymore as 

most of the time the values are adjusted at a point to be the average value of its 

neighbours and those neighbours’ values are also adjusted in the next process.  In 

other words, readjusting those neighbours’ values has destroyed the harmony in this 

specific problem boundary.  However, the values are more nearly in harmony, if not 

in harmony, than the initial function we started with.  Thus, by repeating the above 

procedure, a better approximation closer to the solution can be obtained. 

 

The method of relaxation is summarised in Figure 4-8. 
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Figure 4-7 Few Possible Alterate Path Ways (indicated by lines) in solving the 

Simplified Network where Random Walks can be applied 
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Figure 4-8 the Relaxation Method 

 

So, how can the method of relaxation be related to our problem? 
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4.1.2.3.2 Kirchhoff’s theories and method of relaxation 

As stated in Section 4.1.2.1, Darcy’s law of equation, which governs the fluid flow 

equation, can be expressed with an equivalent equation as Ohm’s law equation for 

the electrical network.  The voltage [V] in the electrical network is equivalent to the 

pressure drop 
X
P

∂
∂  and the flowing current [I] is equivalent to the fluid flow rate [Q].  

The permeability, which is the property of fluid flow in porous media, can be 

expressed with the equivalent terms of inverse value of resistance [R]. 

 

In the electrical network’s principal, the current and voltage at any nodes can be 

solved by using Kirchhoff’s laws.  They are: 

Kirchhoff’s current law • 

• Kirchhoff’s voltage law 

 

Kirchhoff’s current law states that the sum of the currents entering or leaving a 

junction point at any instant is equal to zero (Del Toro, 1986, p. 15-17).  

 

∑
=

=
k

j
jI

1
0

 
Equation 4-3 Kirchhoff’s current law, where k denotes the number of circuit 

elements connected to the node in question 

 

Kirchhoff’s current law holds the principle of conservation of charge.  The number 

of electrons passing per second must be the same for all points in the circuit.  Thus, 

this principle of conservation of charge is also equivalent to the conservation of mass 

within the porous media under a steady state condition, as the fluid flow rate at any 

time into the reservoir should be equal to the fluid flow out from it.  An illustration 

of Kirchhoff’s current law is shown in Figure 4-9. 
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Figure 4-9 Illustrating diagram of Kirchhoff's current law 

 

By referring to Figure 4-9, Kirchhoff’s current law can be expressed as: 

03214

3214

=−−−
++=

IIII
IIII

 
 

Kirchhoff’s voltage law states that at any time instant, the sum of voltages in a closed 

circuit is zero (Del Toro, 1986, p. 15-17).  This voltage law holds the principle of 

conservation of energy, which is also required in the fluid flow description.  The 

mathematical expression for illustrating Kirchhoff’s voltage law is: 

 

nVVVE +++= ...21  
Equation 4-4 Kirchhoff’s voltage law 

 

The following diagram illustrates the above Kirchhoff’s voltage law. 
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R1 R2 
I I 

Figure 4-10 Illustrating diagram of Kirchhoff's voltage law 

 

Therefore, for the following network as illustrated in Figure 4-11, the above-

mentioned Kirchhoff’s voltage and current laws can be recombined to obtain the 

voltage (V) at the centre of the nodes. 
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VR 

VL 
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RD 

VD 

Figure 4-11 A cell network diagram for solving permeability fine scale network 
(Figure 4-6) 

 

By using Kirchhoff’s current law, the network as illustrated in Figure 4-10 can then 

be solved as follows: 

 

IL = IR + IU + ID 

75 



 

 

Substituting it with Ohm’s law as V = IR, then: 
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Rearranging the above one,  then: 
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Equation 4-5 Solving Voltage (V) at the centre of the node as illustrated with Figure 

4-11 

 

 

From the simplified Equation 4-5, the voltage at any centre of the nodes can be 

solved by taking the inverse resistor (1/R) weighted average of the voltages in the 

neighbouring points.  For the fluid flow in porous media, the pressure value 

(equivalent to voltage in electrical network) can then be approximated with the 

permeability weighted arithmetic average with the pressures at its surrounding cells.  

This averaging method is what the methods of relaxation use in the way of 

approximating the value at the centre points with its neighbouring points.  

 

By taking the methods of relaxation and a simplified Equation 4-5, the bigger 

network with any unlimited number of cells as illustrated in Figure 4-6 can then be 

solved. 
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4.1.3. Averaging for new effective permeability 

The next step, post solving the pressure solution within the network, is to identify the 

preferential pathways and to provide the single cell value for representing the 

average value of the effective permeability at the coarse scale model. 

 

Once again, according to the law of nature, the particle will always move from the 

greater to the lower potential.  This is the same principal with fluid flow in the 

reservoir.  The greater the pressure drop across the cell is, the greater tendency of the 

fluid to flow from one point to another.  Thus, once the pressure solution is obtained 

for the network as illustrated in Figure 4-6, the preferential path of fluid flow within 

the coarse grid system in the specific direction may be determined.  These 

preferential paths should be used as the basis for the effective properties’ 

determination, as this will govern the main prefential flow direction from the inlet to 

the outlet within the coarse cell.   

 

By determining the preferential paths of the fluid to flow within the coarse grid cell, 

it was found that some dominant flow paths especially with high permeability streaks 

could be more preferable compared to other ones.  In this upscaling method, a 

variation of the fluid flow paths captured within the cell would be beneficial, as in 

reality these various paths would represent the various break-through of fluid flows 

from one end to another end. 

 

Therefore, what should the representation of a single value for the effective 

permeability within this coarse cell be?  
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Prior to averaging, the equivalent flow rate or current for the electrical term must be 

determined.  By referring to Ohm’s law equation (Equation 4-2), the potential 

difference (voltage or pressure drop) across one node to the neighbour nodes and the 

current (or fluid flow rate) may be determined by knowing the resistance (or 

permeability) between the two nodes.  For an illustration of this, please refer to 

Figure 4-13. 



 

 

 

Keff = ? 

Fine Scale Coarse

Figure 4-12 Illustrating preferential path within coarse grid cell 

 

In order to obtain the effective value of permeability for the coarse cell, the 

estimation of the overall resistance must be determined.  Within the coarse grid cell 

in the specific direction, the pressure difference (or the electrical potential/voltage 

difference) is known to be equal to one due to our definition for the pressure 

boundary.  If the current flowing (or fluid flow rate) through this coarse cell is 

known, the resultant equivalent resistance (or permeability) may be determined.  

 

P (or V) = 1 P (or V) = 0 

∆P = Pi+1 – Pi 

V = IR   (Electrical) 

∆P =Q.(1/K)  (≈ fluid flow equation) 

Combining 2 equations: 

Ii = ∆Pi*Ki 
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Figure 4-13 Illustrating Voltage (or Pressure Difference), Current (or Fluid Flow 
Rate) within a coarse grid cell 



 

 

Kirchhoff’s law stated that the sum of current flowing into the network would be the 

same as the sum of current flowing out from the network.  In this way, the current 

flowing through the coarse grid cell can be known.  Thus, the effective permeability 

can be defined as follows: 
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Equation 4-6 Derivation for effective permeability 

 

Permeability is an intensive property while resistance is an extensive one.  Thus, the 

changes of dimensions are required for consideration when determining the effective 

permeability.  In order to determine the average effective properties and convert the 

intensive properties of the permeability from the extensive parameters of the 

resistance, modification to Equation 4-6 is required. This can be expressed in a 

similar way to the arithmetic-harmonic method.  

 

Steps on the modification of the effective permeability determination are summarised 

below:  

1. The current on each fine cellblock is calculated by taking the product of the 

pressure difference with the permeability on that stream. 

2. The sum of the current on each row is then determined.  For the electrical 

network, the total current flowing through each row will be the same as 

between the inlet and outlet current.  Thus, the effective permeability as an 

extensive property becomes the total current as shown in Equation 4-6.  

However, the final modification on the effective permeability to become an 
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intensive property must then be multiplied by the block dimension on that 

direction.  For each row, the effective permeability is then determined using the 

following equation: 
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3. Similar to step 2, the final step must take the average current of all rows within 

the coarse cell.  For the electrical network, the total current will be the sum of 

currents on each row.  Thus, the effective permeability as an extensive property 

becomes the total current as shown in Equation 4-6.  Similar to step 2, 

dimensional changes must be incorporated for the intensive property, such as 

permeability.  Therefore, the final modification for the effective permeability 

as an intensive property must be divided by the total number of rows within the 

coarse cell.  Thus, the effective permeability is then simply the average of the 

total currents on each row. 
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The summary of the steps in determining the effective permeability in direction x is 

shown in Figure 4-14. 
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P (or V) = 0 
P (or V) = 1 

V = IR   (Electrical) 

∆P =Q.(1/K)  (≈ fluid flow equation) 

Combining 2 equations: 

Ii = ∆Pi*Ki ∆P = Pi+1 – Pi 

Sum current on each row 

Average current of 

all rows 

Figure 4-14 Modification for determining the effective permeability 

 

4.2. OTHER PARAMETERS IN THE NEW UPSCALING 

In the previous section, the derivation of the new algorithm only concentrated on 

finding the effective permeability.  The effective permeability only signifies the 

tendency of fluid flow from one cell to another one within the coarse scale model.  

However, this does not give an indication on how the upscaled model will perform as 

though it were at the fine scale level.  In this section, several enhanced treatments for 

supporting the accuracy of upscaling will also be discussed.  They are:  
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• 

• 

Treatment for incorporating unswept area in low permeability rock 

Well inflow performances. 

 



 

4.2.1. Treatment for incorporating unswept area in low 

permeability rock 

In any reservoir simulation study, the relative permeability (which describes the 

fraction of permeability that is available for one fluid in the presence of the other 

fluid flowing simultaneously through a porous media) is often defined by a single set 

of data to be used for any scaled model.  This is not always true, as the fluid 

behaviour of gas, oil and/or water is affected by permeability, porosity and fluid 

saturation.  This can be seen clearly from Darcy’s law of fluid flow, which states that 

the fluid flow rate is proportional to the permeability.  Therefore, the greater the 

permeability, the greater the fluid flow rate will be.  As a consequence of this, fluid 

within low permeability rock has a tendency to be stationary or become the least 

preferential fluid to flow.   

 

X
PKAQ

∆
∆

−=
µ  

Equation 4-7 Darcy’s law of fluid flow in porous media 

 

In the upscaled coarse scale model however, the fluid in the low permeability rock, 

which most likely becomes stationary and remains in the reservoir, will be treated 

differently.  With upscaling, the expected permeability values and its variance have 

in general decreased.  Thus, the high and low permeability streaks become more or 

less closer to the average expected value.  Due to this reason, fluid trapped in the low 

permeability rock which is supposed to be stationary, becomes movable under the 

upscaled coarse scale model.  This could be the reason why the fluid recovery was 

optimistic in most cases, as described in Chapter 3. 

 

Due to the reason described above, the appropriate value to describe the immobile 

fluid must be determined.  Permeability, which is the measure of the pore 

connectivity for the fluid flow in the porous media, is the highest contributing factor 

in the remaining fluid saturation.  The fluid remaining in the system will normally be 
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in the shale area where it has the least preferential fluid flow path in the system and 

the permeability and porosity properties are very low.  Shale permeability is found in 

the range up to 0.5 mDarcy.  Due to this, the following arbitrary permeability cut-off 

is used for describing the unswept area or a non-net area where the major residual 

fluid is still remaining in the system and will not be drained by any depletion 

scenarios. 

 

Reservoir Fluid Permeability Cut-off 

(mDarcy) 

Gas 0.10 

Oil 1.00 

Table 4-1 Permeability cut-off for residual fluid remaining in the reservoir 

 

The arbitaray permeability cut offs as shown in Table 4-1 are based on the 

traditionally adopted rules of thumb for cutoffs used by the Western petroleum 

industries. (Deakin et al., 1998, Balbinski et al., 2002, Cordell et al., 1965, 

Worthington et al., 2005) 

 

For incorporating the remaining fluid, the relative permeability, which describes the 

residual fluid saturation component in the reservoir, can then be altered. This is 

normally described in Corey’s equation as follows: 
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Equation 4-8 Corey equations for oil-water system 
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Equation 4-9 Corey equations for oil-gas system 

 

By treating the pore volume with low permeability as the additional residual fluid 

remaining in the system, the total residual fluid saturation within the coarse grid cell 

can then be recalculated and included in the relative permeability description.  The 

new set of relative permeability with the modified residual fluid saturation for each 

grid cell can then be used in the reservoir simulation at the upscaled model. 

 

Similar treatment can also be applied for incorporating the unpenetrated fluid from 

the current production wells and/or the unswept remaining reservoir fluid due to 

reservoir discontinuity (i.e. isolated sand due to shale barriers).  Streamline 

simulations may be used to give an indication of the remaining fluid in the reservoir.  

 

4.2.1.1. Verification of incorporating unswept area in low permeability rock 

For verification, Model B has been used at the fine scale level for rectifying the 

correct implementation of saturation modification and also the permeability cut-off 

used. The comparison simulation results are shown below and indicate a good 

agreement between the cases with and without the saturation modification.  

Therefore, this will not alter any simulation results, but will help to implement a 

correct representation of the unswept fluid at the low permeability rock within the 

coarse scale model. 
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Figure 4-15 Comparison plot of gas and oil production rate for Model B with and 

without saturation modification 

 

Further verification of the concept for improving the predictions at the coarse model 

is discussed in Chapter 5. 

 

4.2.2. Well inflow parameter 

Another important parameter to be considered in the reservoir simulation is the 

treatment of wells for the well performances.  The material balance of the fluid flow 

equations for the reservoir provides the grid block pressures and material fluid 

accumulations.  Another model, known as the well model, is also required to relate 

flow in the grid area surrounding the well to the well bore flow and to define the 

relationship between the grid block pressures and down-hole well bore pressures.  

This model will allow the simulation of realistic physical conditions at wells under 

specific reservoir conditions and their properties. (Dake, 1978, p.136-147) 
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The well inflow equation is usually described with an analytical method known as 

the Peaceman inflow model.  This model treats the well as the line source, in which 

relates the grid block conditions (pressure and fluid composition), the well bore 

pressure and the well flow in the reservoir as the strength of the source. 

 

For a steady state, the Peaceman equation can be outlined as follows: 
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For a semi-steady state, the Peaceman equation can be outlined as follows: 
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For a vertical well, the interval permeability height product is given by the block 

thickness (∆z) times the geometric average of the horizontal permeability.  This 

parameter is related to the physical properties of the model within the well 

perforation intervals.  This is subject to change due to the upscaled parameters of 

permeability at the coarser scaled cells compared to its fine scaled cells within the 

well perforation intervals.  A solution for treating this parameter at the coarser scale 

will be discussed later.  

 

zKKKH yx ∆=  

 

Another parameter used in Peaceman’s prescription is the equivalent well block 

radius.  It is calculated by using the following equation: 

 







 +∆+∆= 4422 /

x

y

y

x

y

x

y

x
K
K

K
K

K
K

K
K

E yxGr  

86 



 

 

This parameter depends on the x and y dimensions of the intersected grid block (∆x 

and ∆y) and on the local permeability in the horizontal plane.  G is a mathematical 

constant, which can be expressed using the Euler constant, γ . 

 

2807298.02/ ≈= −γeG  

 

For the isotropic horizontal permeability (Kx = Ky), the equation to calculate the 

equivalent radius simply becomes the following equation: 
221403649.0 yxrE ∆+∆=  

 

Based on the simplified equation, the equivalent radius will only depend on the 

dimensions of the intersected grid block.  With upscaling, the cell block dimensions 

seen at the well intervals at the coarser scaled model are sure to be much larger 

compared to the cell block dimension at its finer scaled model.  The change in 

dimension on a different scaled model will contribute to the changes of equivalent 

well radius.  

 

Other parameters used in Peaceman’s equation are well rates and the pressure 

difference at the reservoir and at the well bore, which are the result of a material 

balance in the reservoir model.  Therefore, in order to have the same well 

performance at the coarse scale compared to its fine-scaled model, these two 

parameters must be kept the same.  Thus, treatments for parameters like permeability 

height product and equivalent radius, which affect the well performance calculation, 

are required such that the well performance within the fine grid cells is preserved in 

the coarse grid.  

 

Therefore, the well inflow performance parameter at the coarse grid can be defined 

as follows: 
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The above modification can become significant, since in most field simulation 

studies, the well bore radius is only a very small fraction of the grid cell’s dimension 

and the volume contained in the well bore is much smaller than that present in an 

average grid block.  Thus, incorporating a consistency well performance within the 

coarse grid model to its fine grid model will be required.  This will result in forcing 

the reservoir simulator to take the time steps needed to accurately represent the well 

inflow performance and its interaction with well variables like pressures and flow 

rates. 
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Chapter 5. 

NEW UPSCALING ALGORITHM – ANALYSIS AND 

DISCUSSION 

The three different reservoir models described in Chapter 3 are used to investigate 

the accuracy of the new upscaling algorithm.  The improvements made to the new 

algorithm can then be quantified by how well the reservoir predictions made at the 

coarser scale mimic its’ fine scale prediction.  The prediction will also be compared 

with the existing upscaling algorithms’ predictions.   

 

The upscaling procedure shown in Figure 4-2 will be used to upscale the 

permeability parameter.  The enhancement treatments for co-operating the unswept 

remaining fluid, due to low permeability in reservoir and well treatment, will also be 

included.  Similar coarsening of the fine grid model to its coarse model, and other 

upscaling parameters such as porosity, capillary pressure, initial fluid distribution, 

and fluid PVT properties will be treated in the same way as described in Chapter 3. 

 

Insights drawn from the comparison of the new upscaling algorithm will also be 

discussed in detail in this chapter. 

 

5.1. MODEL A 

Model A, which represents a quite homogeneous reservoir, can be represented by 

any upscaling algorithm to describe its coarser grid parameters.  However, as 

identified earlier, the predictions at the coarse scale level seemed to underestimate 

the recovery of the oil produced in the reservoir.  In this case, the new upscaling 

algorithm will be compared to how well the new results fit within the previous 

results using the existing algorithms, and also how well it will correct the oil 

production recovery rate at its coarse scale predictions.  The results illustrating the 

flow performance with the new upscaling algorithm are shown in Figure 5-3 to 

89 



 

Figure 5-6.  The upscaled permeability model for Model A (Figure 5-2) is 

comparable to the fine scale model shown in Figure 5-1. 

 

 
Figure 5-1 Permeability model at fine scale for Model A 

 
Figure 5-2 Permeability model at coarse scale for Model A 

90 



 

 
Figure 5-3 Comparison plot of gas production rate for Model A 
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Figure 5-4 Comparison plot of oil production rate for Model A 



 

 
Figure 5-5 Comparison plot of cumulative oil production for Model A 

 
Figure 5-6 Comparison plot of cumulative gas production for Model A 
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Table 5-1 Comparison table for oil and gas ultimate recovery for Model A 

 
 

The comparison plots indicate clearly that the results obtained using the new 

upscaling algorithm fits with the results of the existing algorithms for Model A as 

expected.  It predicts similar behaviour to the numerical approaches of upscaling 

(such as the diagonal tensor method with closed and open boundary approaches) and 

also the analytical upscaling algorithms like arithmetic-harmonic and harmonic-

arithmetic methods. 

 

With the further treatment in incorporating the remaining unswept area within the 

model, the prediction for the oil produced recovery in the reservoir at a coarser scale 

model can be improved without altering any fluid flow communications (or 

transmissibility) in between grid cells.  This modification can be used with any 

upscaling algorithms. 

 

As a general conclusion, any upscaling algorithm can be used to describe the 

upscaled permeability parameter and to obtain similar flow behaviours at its coarser 
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scale, for reservoirs with quite homogeneous distributions.  Therefore, use of the 

analytical method is recommended, as it is faster in the upscaling process and yet has 

a similar accuracy compared to any of the other numerical algorithms, including the 

new upscaling algorithm.  However, careful consideration is still required as the 

degree of homogeneity/heterogeneity is often judged by each individual. 

 

5.2. MODEL B 

Model B is the 2D reservoir model, which has a heterogeneous characteristic both 

vertically and horizontally with the extensive shale strips acting as barriers within the 

reservoir.  The gas injection is used for the enhancement of the ultimate recovery of 

the oil produced.  Similar to Model A, the predictions at the coarse scale level had a 

higher recovery of oil produced in the reservoir compared to its prediction at the fine 

scale model.  Also, not all existing upscaling algorithms can be used to represent the 

upscaled permeability parameter at the coarser scale. The new upscaling algorithm 

results of Model B are summarised below in Figure 5-9 to Figure 5-12.  The upscaled 

permeability of Model B (Figure 5-8) is comparable to the fine scale permeability 

shown in Figure 5-7.  

 
Figure 5-7  Permeability model at fine scale of Model B 
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Figure 5-8  Permeability model at coarse scale of Model B 

 

 
Figure 5-9 Comparison plot of cumulative oil production for Model B 
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Figure 5-10 Comparison plot of cumulative gas production for Model B 

 
Figure 5-11 Comparison plot of oil production rate for Model B 
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Figure 5-12 Comparison plot of gas production rate for Model B 

 
Figure 5-13 Comparison plot of the breakthrough timing with respect to gas 

production rate for Model B 
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From the comparison plots above, the results obtained with the new algorithm have 

been able to better predict the fluid flow behaviour compared to other existing 

upscaling algorithms.  The breakthrough of the gas being injected can be closely 

predicted using the new algorithm as the upscaling method for the permeability 

parameter.  An alternative upscaling method that could be used is the diagonal tensor 

method, where the breakthrough timing is predicted to be around 30 days earlier 

compared to the prediction using the new algorithm. 

 

The new upscaling algorithm, with its modifications, has not only better predicted 

the fluid flow behaviour at the coarse scale level, but has also improved the 

prediction of the oil recovery.  The arithmetic-harmonic algorithm can be used as an 

alternative method to predict the oil recovery; however there is dissimilarity in terms 

of the fluid flow behaviour by using this algorithm as shown in Figure 5-9.  The 

prediction of the cumulative oil produced using the arithmetic-harmonic method has 

a very small difference at the beginning of the gas breakthrough, but it deviates 

further with further production.  

 

The oil saturation predicted at the end of the simulation is also compared in the 

simulations at the fine scale and coarse scale with the new algorithm, as shown in 

Figure 5-14 and Figure 5-15 respectively.  They are quite similar in predicting the 

fluid movement within the models. 

 

For a heterogeneous characteristic reservoir model with the extensive size of shale 

strips acting as barriers within the reservoir, the reservoir description at the coarse 

scale is especially important.  The parameter needs to represent the heterogeneity as 

much as possible at its coarse scale level, so that the reservoir performance can 

mimic it as if it was at its fine scale level.  From the above upscaling investigation, 

the new algorithm can be concluded to be the most representative algorithm in this 

case.  
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Figure 5-14 Fluid saturation plot at fine scale for Model B 

 

 
Figure 5-15 Fluid saturation plot at coarse scale (5x1x5 cells) for Model B 
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5.2.1. Comparison of New Algorithm to Pseudo Upscaling (Kyte 

and Berry) 

The results using the new upscaling algorithm are also compared with the prediction 

using pseudo upscaling approaches like the Kyte and Berry method, since the fine 

scale model is small enough to be run in the dynamic simulation model.  The 

comparison results are shown in Figure 5-16 and Figure 5-17.  

 

The breakthrough timing of the gas being injected is predicted very similarly to each 

other.  However, the remaining oil within the reservoir is better predicted using the 

new algorithm, rather than the pseudo upscaling method.  Furthermore, the new 

upscaling algorithm involves only a single time-step calculation at the fine scale 

level, compared to multiple time-step calculations to the end of the simulation period 

used by the pseudo upscaling method.  In this way, the new upscaling method not 

only provides better predictions at the coarse scale level, but also speeds up the turn-

around time for the upscaling process and simulation. 

 
Figure 5-16 Comparison plot of oil and gas production rates for Model B with 

pseudo upscaling (Kyte and Berry)  
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Figure 5-17 Comparison plot of cumulative oil and gas produced for Model B with 

pseudo upscaling (Kyte and Berry) 

 

5.2.2. Quality check on Model B at different scale of 10 x 1 x 5 

coarse cells 

For the quality checking of the new upscaling algorithm, Model B at the fine scale is 

also upscaled to 10 x 1 x 5 (50 cells) with the upscaling ratio of 10:1:4 (1 coarse cell 

= 40 fine cells).  The dynamic simulation results are shown in Figure 5-18 to Figure 

5-21.  The findings with different coarsening grids are consistent with the earlier 

findings for the 5 x 1 x 5 coarse scale Model B.  The breakthrough timing and the 

ultimate oil recovery using the new algorithm with modifications are found to be 

consistent with the behaviour at the fine scale level. 

 

In this particular coarsening model, where the amount of fine scale cells to be 

represented by a single coarse cell is little and the differences in the outcome of the 
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upscaled parameter using different upscaling algorithms are small, it is found that the 

new algorithm can predict more accurately compared to other existing algorithms.  

The statistics summarising the difference in the reservoir performances with various 

upscaling algorithms are shown in Table 5-2. 

 

 
Figure 5-18 Comparison plot of gas in place for Model B with 10 x 1 x 5 coarse cells 
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Figure 5-19 Comparison plot of remaining oil in Place for Model B – 10 x 1 x 5 

coarse cells 

 
Figure 5-20 Comparison plot of cumulative oil produced for Model B with 10 x 1 x 5 

coarse cells 
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Figure 5-21 Comparison plot of cumulative gas produced for Model B with 10 x 1 x 5 

coarse cells 

Table 5-2 Comparison table for oil and gas ultimate recovery for Model B – 10 x 1 x 5 

coarse cell 
 Model B – 10x1x5 Remaining 

GasIP 

MMSCF 

Remaining 

OilIP 

BBL 

CumGas 

MMSCF 

CumOil 

BBL 

CumGasInj 

MMSCF 

Fine Scale 0.244 67893 1.97 43434 2.22 

Arithmetic Harmonic 0.284 

(+16.3%) 

60791 

(-10.5%) 

1.90 

(-3.5%) 

50534 

(+16.3%) 

2.19 

(-1.3%) 

Harmonic Arithmetic 0.284 

(+16.5%) 

60742 

(-10.5%) 

1.78 

(-9.9%) 

50578 

(+16.4%) 

2.06 

(-6.98%) 

Diagonal Tensor 0.287 

(+17.8%) 

60157 

(-11.4%) 

1.87 

(-5.1%) 

51166 

(+17.8%) 

2.16 

(-2.6%) 

Geometric 0.278 

(+13.9%) 

61857 

(-8.9%) 

1.61 

(-18.5%) 

49468 

(+13.9%) 

1.89 

(-14.9%) 

New Algorithm 0.283 

(+16.0%) 

60923 

(-10.3%) 

1.9308 

(-2.1%) 

50399 

(+16.0%) 

2.22 

(0.0%) 

New Algorithm 

(Pseudo & Modified) 

0.244 

(0.0%) 

67903 

(0.0%) 

1.97 

(0.0%) 

43419 

(0.0%) 

2.22 

(0.0%) 
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5.3. MODEL C 

The new upscaling algorithm is also tested using Model C.  As in Chapter 3, a sector 

model of Model C has been used for comparison against the fine scale reservoir 

simulation predictions, due to limited computer resources for running such a large 

number of fine gridded cells.  The entire Model C fluid performance will then be 

compared against the published results at the fine scale level. 

 

5.3.1. Sub Model C 

A sector model of Model C, which is taken from the first 20 layers of Model C, is a 

heterogeneous model with low reservoir connectivity.  The upscaled permeability as 

shown in Figure 5-23 is comparable with the fine scale model (Figure 5-22).  The 

comparison results of the sector Model C with the new upscaling algorithm to the 

different existing upscaling algorithms are shown in Figure 5-24 to Figure 5-28. 

 
Figure 5-22 Permeability model with its cross sectional view of Sub-Model C at fine 

scale 
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Figure 5-23 Permeability model at the coarse scale of Sub-Model C with the new 

upscaling algorithm 

 
Figure 5-24 Comparison plot of water cut ratio for Sub-Model C 
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Figure 5-25 Comparison plot of water production rate for Sub-Model C 

 
Figure 5-26 Comparison plot of the breakthrough timing with respect to water 

production rate for Sub-Model C 
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Figure 5-27 Comparison plot of cumulative oil produced for Sub-Model C 

 
Figure 5-28 Comparison plot of cumulative water produced for Sub-Model C 
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Table 5-3 Comparison table for oil and gas ultimate recovery for Sub-Model C 
Model C – Sub Case Estimated 

Water Break 

through (Day) 

Remaining Oil 

In Place 

(mmbbl) 

CumOil 

106 BBL 

CumWater 

Injected 

Mmbbl 

Fine Scale 89.8 1.98 1.62 9.67 

Arithmetic 63.0 1.62 1.01 10.18 

Arithmetic Harmonic 63.0 1.62 1.98 10.10 

Harmonic Arithmetic 127.0 1.66 1.94 9.89 

Harmonic 1101.0 2.53 1.07 1.49 

Diagonal Tensor (seal) 63.0 1.65 1.95 9.97 

Diagonal Tensor (open) 127.0 1.54 2.06 10.07 

Geometric 248.8 1.85 1.75 7.08 

New Algorithm 63.0 1.53 2.07 10.15 

New Algorithm 

(modified) 

63.0 2.02 1.57 10.06 

 

From the above comparison plots (Figure 5-24, Figure 5-25 and Figure 5-26), the 

ratio of water cut and the corresponding water production rates are reasonably 

accurately predicted using the new upscaling algorithm.  The cumulative oil and 

water produced shown in Figure 5-27 and Figure 5-28 have also indicated good 

agreement between the predictions at the fine scale and the coarse scale with the new 

upscaling algorithm.  

 

5.3.2. Entire Model C 

The results for Model C with the new upscaling algorithm are shown in Figure 5-30 

to Figure 5-32 with the comparison against the published SPE results at the fine scale 

simulation. 

 

The upscaled permeability with the new upscaling algorithm is shown in Figure 5-29. 
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Figure 5-29 Permeability model at the coarse scale of Model C with new upscaling 

algorithm 

 
Figure 5-30 Comparison plot of producer P1 water cut for Model C 
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Figure 5-31 Comparison plot of producer P3 water cut for Model C 

 

 
Figure 5-32 Comparison plot of total field oil production rate for Model C 
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In this model, preserving the connectivity (or transmissibility) between grid cells to 

be represented at the coarser scale is also important, as well as upscaling the 

permeability parameter.  There are lots of micro high connectivity (shown in Figure 

5-33) within the coarse grid cells, which may influence the fluid flow pathways 

between the injector and the producers and hence later, breakthrough of the water 

being injected.  The upscaled permeability using the new algorithm only represents 

the average intra-connectivity within a coarse grid cell and not the inter-connectivity 

between coarse grid cells.  Therefore, to be able to match the fine scale behaviours, 

the micro-connectivity at the fine scale levels were studied using the single-phase 

streamline simulation.  Further modification to incorporate the micro-connectivity 

was also implemented as part of the upscaling process and the history matching of 

this model to its fine scale field performance. 

 

 

Figure 5-33 Porosity model (lower part on last 50 layers) of Model C (Christie et al., 

2001, p. 309) 

 

The modification has not only helped in improving the match of the reservoir 

performance at the coarse scale, but also improves the breakthrough time of the 

water being injected at the producers. 
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A further refinement on matching the field performances between the fine scale and 

the coarse scale model can possibly be performed by redefining the well inflow 



 

performance representation in the coarse scale model.  A mathematical 

representation for the well inflow performance, which is used as part of the new 

upscaling algorithm, is typically represented using the isotropic permeability 

assumption (i.e. the permeability values are assigned to be the same for all x, y and z 

directions).  Model C has an anisotropic permeability with a kv/kh of 0.3 in the 

channels and a kv/kh of 10-3 in background reservoir.  Due to the limited scope of 

this research, the well inflow performance at the coarse scale level may not be 

represented as precisely as the well inflow performance at its fine-scale level.  As a 

consequence, there are still slight discrepancies predicted with each individual 

producers/injector production/injection rate, as outlined in Figure 5-32. 

 

5.4. SUMMARY OF NEW UPSCALING RESULTS 

Based on the comparisons above, the new upscaling algorithm can be used to 

improve the overall field performance predictions for various depositional 

environments.  The predictions made at the coarse scale level using the new 

upscaling algorithm are comparable to fine scale performances from the 

homogeneous model (similar to Model A), to mostly heterogeneous models (such as 

Model B and C).  The new algorithm not only better predicts the fluid flow 

behaviour, but it also improves the fluid injected breakthrough time and gives better 

predictions of the ultimate fluid recovery based on the coarse scale model. 
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Chapter 6. 

DISCUSSION 

In any of the oil and gas industries, a prediction of reservoir performance is normally 

carried out by reservoir simulation.  In the full field reservoir model, the geological 

representation of the reservoir is often modeled at a scale of 50m x 50m x 1m by 

using the average values of the core/log scale data at a scale of 10cm x 10cm x 10cm.  

This fine scale geological model often has around one to 100 million grid cells, 

which cannot be carried out in a reservoir simulation due to limited computer power 

for the implicit and iterative procedures in the dynamic calculation.  Due to this, a 

coarsening of the fine geological model is required with the appropriate average 

representation of the effective properties at the coarse scale.  The rock properties that 

need to be upscaled are typically porosity, absolute and relative permeability and 

capillary pressure. 

 

In any reservoir prediction, a realistic description of the reservoir behavior under any 

depletion scheme is probably the most important factor.  Permeability, which 

describes the ability of fluid to flow through the connectivity of the pores of the rock 

in the porous media, is the major parameter that affects the reservoir behaviour.  In 

upscaling, unlike other parameters such as porosity and saturation which can be 

represented by weighted arithmetic averaging techniques, permeability is really the 

most complicated matter, since it is not an additive variable (i.e. the equivalent 

permeability in the reservoir scale cannot be calculated by arithmetic means).  The 

expected permeability values have, in general, decreased and permeability variance 

has also decreased in reservoir simulation scales compared to much finer scales such 

as geological or core scales.  Consequently, reducing the number of cells in any scale 

results in reducing the accuracy of the parameter model and also smooths the ability 

to describe the heterogeneity flow behaviour in the reservoir model.  Therefore, a 

balance is required between the loss of accuracy due to the smoothing (averaging) 

process and the gain in computer speed due to fewer numbers of grids. 
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Various upscaling algorithms for representing the effective properties at the coarse 

scales are commercially available.  They are based on various approaches from the 

simplest analytical form to more complex numerical forms of upscaling methods.  

The pseudo method based on the averaging of fine scale dynamic results is also 

being derived. 

 

The simplest analytical forms of upscaling such as arithmetic, harmonic and 

geometric averages are the most easy, fast and simple compared to other available 

upscaling algorithms.  However, these algorithms, in general, may not all be used for 

any reservoir models.  The reason is that upscaled permeability parameters can only 

be described as single directional properties.  In reality, this is not necessarily the 

case, as permeability is a tensor property, which has the variability in a three-

dimensional space to go from one direction to another.  These algorithms are best 

suited for the simplest homogeneous rock arrangements in either parallel or 

perpendicular to the bedding for arithmetic and harmonic averages respectively.  In 

theory, these algorithms can represent the upper and lower bounds of the effective 

properties.  For a random rock arrangement, the geometric average could be used, 

but high uncertainties in upscaled parameters will result.  
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With any uniform flow, upscaling algorithms such as arithmetic-harmonic and 

harmonic-arithmetic are considered to be the most effective and efficient methods to 

use.  These algorithms are quite economical in terms of processing time for upscaling 

processes and in determining the directional effective properties of the permeability.  

Furthermore, the effective properties may not always lead to accurate results, but 

they are generally honoured in the detailed reservoir descriptions (Lozano et al., 

1996, p. 328-338).  Theoretically, these directionally dependant arithmetic-harmonic 

and harmonic-arithmetic averages are believed to represent the upper and lower 

bounds of the effective permeability respectively.  For shaly geological 

environments, where barriers or shales are described within reservoirs as having a 

low permeability, careful consideration for using these directional dependant 

algorithms is required.  Biased upscaled properties to the lower permeability values 

may form as a result, which would not represent true reservoir properties. 



 

A common limitation to most of the analytical methods is the presence of the nil 

value(s), which is often defined for non-flow or barriers (i.e. shale or undefined/non-

active cells) in the system.  Any undefined values will limit the validity range to the 

effective permeability as a result. 

 

With these analytical upscaling methods, several theoretical bounds are also 

commercially available, and the average of the theoretical bounds is often used in 

determining the effective permeability.  They are normally easy to implement within 

the upscaling process and tend to be very fast in terms of computational speed.  

However, the disadvantages as described for each analytical algorithm are still valid 

and the effective permeability is only the approximated average value within the 

bound. 

 

Other better forms of upscaling algorithms are the diagonal tensor and full tensor 

methods, which are based on the Darcy’s law of flow equation and the law of mass 

conservation.  In general, they will give a better representation for the effective 

upscaled permeability, since they represent the solution of the fluid flow and yield 

the diagonal tensor of permeability in nature. Periodic boundary to the appropriate 

direction is used to obtain the diagonal tensor permeability (kxx, kyy, kzz).   

 

For the full tensor, a direct method for finding the effective permeability on the 

principal diagonal directions (kxy, kxz, kyx, kyz, kzx, kzy) can only be used since it is 

only required to provide three-dimensional solutions.  Certain ill-conditioned full 

tensor permeability can, however, give significant errors in the procedure.  

Furthermore, these principal directions of effective permeabilities are generally 

neglected by the reservoir simulators, as there are no available simulators to handle 

principal directional permeabilites.  

 

These tensor methods are also more expensive than other methods, since these 

methods are often time consuming and slow in speed for upscaling processes.   
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Other methods like renormalisation are also available and are based on the analogy 

of the electrical network and a successful star triangle transformation.  The effective 

permeability can be estimated by using a successive averaging over small regions 

(i.e. 2 x 2 x 2 of the fine scale block) to form a new ‘average permeability’ 

distribution with lower variance (i.e. reducing the variance) than the original scale.  

A further reduction in variance at the intermediate scale is then carried out before 

ending up with the coarse block size.  Each step is upscaled using an appropriate 

method such as single-phase flow simulation with the effective medium conductivity 

calculation.  This method is also good for taking large problems and breaking them 

down into a hierarchy of manageable problems, as has been proven successfully in 

theoretical physics areas.  However, this upscaling method can only be used as a 

local upscaling procedure.  It is poor for highly anisotropy media and probably 

unreliable due to unrealistic boundary condition effects. 

 

Another extensive computer upscaling method is the pseudo method.  It involves 

running the reservoir simulation at the fine scale.  The pseudo properties are then 

averaged out at different time steps, such that the reservoir properties change with 

time and will always have the same properties at the coarse scale to its fine scale.  

The set of pseudo properties generated for the coarse scale, however, is only problem 

specific.  Thus, for any other new requirement of the coarse scale, or at different 

coarse scales, the whole procedure needs to be repeated to obtain the necessary 

information.   

 

This method also tends to be time consuming and requires extensive computer power 

for solving the dynamic simulation at the fine scale and generating the pseudo 

properties.  With dynamic reservoir simulations, which involve iterative procedures 

for obtaining dynamic properties like pressure, flow and fluid changes within the 

reservoir, a limited number of fine grid cells will be a constraint of using this method 

due to limited available computer memory and hardware resources.  Furthermore, 

with the new technology of using geo-statistical methods, many geologists tend to 

generate much finer geological models for capturing finer heterogeneity of the 
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geological properties.  Thus, these pseudo methods will be limited in use due to 

computer limitations in running such a large number of fine geological cells. 

 

Various models with different degrees of geological heterogeneity are used for 

investigating the available upscaling algorithms.  Based on the experiments described 

in detail in Chapter 3, various available upscaling algorithms to describe the coarse 

scale effective properties have resulted in different fluid flow behaviours in 

comparison to their fine scale’s overall field performances for various different 

depositional environments.   

 

For a model with quite homogeneous depositional environments similar to Model A, 

any upscaling algorithm could be used to represent its coarse scale permeability 

parameter.  The simplest analytical algorithm would be the best selection in this 

specific case, since this would give a reasonable representation of the permeability 

parameter, and would also be significantly faster in the upscaling process turn around 

time.    

 

For a more complex heterogeneous environment, however, a heavy numerical 

upscaling algorithm (e.g. the diagonal tensor method) should be considered, since a 

realistic representation of the fine scale fluid flow behaviour must be mimicked at the 

coarse scale level.  Simple algorithms such as arithmetic-harmonic or harmonic-

arithmetic may possibly be used, but the accuracy needed to mimic the fine scale 

behaviour will depend highly on the flow path tortuosity with the presence of shales.  

When there are fine scale barriers at the length scales of the coarse grids, care should 

be taken in using numerical methods such as diagonal/full tensor or renormalisation 

methods, because unrealistically low effective permeability may be produced due to 

the applied boundary conditions. 

 

Further treatments such as upscaling the relative permeability and/or capillary 

pressure, or even using pseudo upscaling, are sometimes required to ensure a 

satisfactory agreement between fine and coarse grid flow simulation results.   
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The selection for choosing the appropriate upscaling algorithm is normally based on 

the geological depositional environment, rock fabric and fluid flow direction. This is 

sometimes cumbersome as it often depends on human judgement for its degree of 

geological complexity.  In reality, it is more complex than this, as the geological 

model is more heterogeneous than what can be described even within the core scale 

level.  Furthermore, with a lack of upscaling understanding, a simple upscaling 

algorithm such as arithmetic or harmonic average is often used.  Inappropriateness in 

the use of any upscaling algorithm can result in different reservoir behaviours at its 

coarse scale level.  Thus, the history matching at the coarse scale level can become a 

lengthy exercise, since the coarse scale behaviour can become significantly different 

to its fine scale behaviour due to the geological representation at the coarse scale 

level.  

 

Based on the above observations of using different available upscaling algorithms, a 

new upscaling algorithm has been developed for various depositional geological 

environments.  The aim of this algorithm is to find the best representation of the 

effective homogeneous grid cell that produces same fluid flow characteristics under 

the same boundary conditions of the heterogeneous cells at its fine scale level.  It is 

based on the combination principal theory of diagonal tensor, renormalisation and 

arithmetic-harmonic/harmonic-arithmetic algorithms. The upscaling concept is 

summarised in the following process diagram (Figure 6-1). 

 

A periodic boundary condition similar to diagonal tensor or full tensor’s principal 

theory is defined by applying arbitrary pressure equal to one and zero at the inlet and 

outlet respectively. By defining the pressure boundary, the fluid flow can be forced 

to flow in a specific direction, and thus, the effective properties representing the 

specified direction can then be obtained.  
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fluid flow 

Apply pressure drop & 
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In each 
direction 

For each simulation grid block 

New Substitution 
Method for K based on 

Kirchoffs’ Theory Effective permeability 

Figure 6-1 Process flowchart on new upscaling algorithm 

 

The pressure solution within a coarse scale cell can be solved by using a combination 

of the random walk and relaxation methods.  Prior to providing the pressure solution 

of the fluid flow in the numerical simulation, an equivalent resistor network to 

represent the fine-scale permeability parameter model is constructed similarly to the 

approach used for the re-normalisation method.  Both Kirchhoff’s electrical network 

theory and Darcy’s fluid flow equations use the same principal in preserving the 

conservation of charge and mass respectively. By using Kirchoff’s electrical network 

theory and obtaining the equivalent electrical parameters to the fluid flow 
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parameters, the pressure solution can then be obtained via the random walk and 

relaxation methods. 

 

With the law of nature, particles will move from the greater to the lower potential. 

This is the same principal for fluid flow in the reservoir. The greater the pressure 

drop is across the cell to the neighboring cell, the greater the tendency of the fluid to 

flow from one point to another.  The preferential paths of the fluid flow within the 

coarse grid cell in the specific direction can then be determined. These preferential 

paths are used as the basis for the effective properties’ determination, as this will 

govern the main preferential flow direction from the inlet to the outlet within the 

coarse scale cell.   With upscaling, these preferential pathways need to be captured, 

as in reality, these various paths will represent the various breakthrough point of the 

fluid flow from one end to the other end. 

 

A single cell value, representing the average value of the effective permeability at the 

coarse scale model, can then be obtained by capturing the various flow potential 

within the coarse scale cell.  An averaging method similar to the arithmetic-harmonic 

and harmonic-arithmetic algorithms is used on the derivation basis of conservation of 

mass and charge for Darcy’s fluid flow equation and Kirchhoff’s electrical network 

laws respectively. 

 

The derivation of the new algorithm as described above only concentrated on 

representing the effective properties at the coarse scale level from the fluid flow 

aspects in reservoir.  However, this does not give an indication of how these upscaled 

properties may influence other parameters.  Enhancement treatments for 

incorporating the unswept volume due to low rock permeability and representing the 

fine scale well inflow performances at the coarse scale level are also integrated. 
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In general, the new upscaling algorithm has been successfully developed to represent 

the effective properties for various geological depositional environments.  It can be 

used for various reservoir models from quite homogeneous reservoirs, like Model A, 

to the most heterogeneous model with flow barriers similar to Models B and C.  A 



 

better representation of the geological fine scale permeability at the coarse scale level 

can be obtained.  The reservoir fluid flow performance at the coarse scale level quite 

closely mimics its fine scale level via the upscaling with the new algorithm.  For a 

model with gas injection as the Enhancing Oil Recovery (EOR) process, the 

breakthrough timing for the fluid being injected is very important.  With the new 

algorithm, it not only better predicts the fluid flow behaviour, but it also improves 

the fluid injected breakthrough time and results in better predictions of the ultimate 

fluid recovery based on the coarse scale model.   

 

The most important element to be considered in any upscaling is the grid design for 

the coarse scale model.  The grid orientation should be aligned as much as possible 

to the main fluid flow direction.  Where possible, this orientation should also be 

consistent between the geological and coarse scaled dynamic simulation models.  

This will give a better upscaling representation at the coarse grid level and will also 

reduce the uncertainty due to grid orientation.  In this way, the assumption made for 

the new upscaling algorithm with regards to the fluid boundary will also be honored 

and the optimal upscaling can be achieved.  

 

A mathematical representation for the well inflow performance is typically 

represented using the isotropic permeability assumption (i.e. the same permeability 

values are assigned for all x, y and z directions).  Due to the limited scope of this 

research, for the model with an anisotropic permeability representation similar to 

Model C, the well inflow performance at the coarse scale level may not be 

represented as precisely as at its fine scale level.  The consequence of this is incorrect 

representation of the well inflow performance at the coarse scale level which may 

influence the process for matching the well rates and pressure drawdown (i.e. 

pressure decline rates).  This will also impact the slowing down and limit the process 

for the success of the overall upscaling procedure.   
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Therefore, in accessing the accuracy of the new upscaling algorithm, the well 

performance matching of each individual well for Model C was performed by 

modifying the well inflow properties.  This modification did not impact the fluid 



 

flow aspect and its connectivity in reservoir, but modified the well off-take rates and 

pressure drawdown which could be constrained by minimum bottom-hole pressure or 

specified tubing head pressure.  

 

The future improvement to representing a better well inflow performance for the 

upscaled model will also be recommended.  

 

Finding the most effective and efficient upscaling algorithm to represent the reservoir 

heterogeneity from the geological model scale to the reservoir simulation scale is the 

main focus in this research.  Thus, this research is based on the available data from 

geologists (the geological reservoir model with its petrophysical parameters), the 

laboratory data (PVT, capillary pressure and also, the relative permeability curves) 

and also the study of the flow characteristics of the reservoir.  Any potential impact 

due to the change in scale of the reservoir model to any of the parameters stated 

above is not going to be analysed, as the impact will not affect the heterogeneity 

representation of the fluid flow in the reservoir. 

 

Furthermore, in reality, the representation of the well inflow performance and data 

used, such as geological models, PVT, capillary pressure and relative permeability, 

are often uncertain.  Further refining with additional reservoir information from the 

pressure and production data monitoring are often carried out as part of the reservoir 

management process for reducing any uncertainty. 
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Chapter 7. 

CONCLUSIONS 

Upscaling, which lies in determining the effective properties representing the 

heterogeneous parts of reservoir descriptions, is perhaps the most complex 

mathematical problem.  With new development technologies, geological models tend 

to be built in a very fine resolution, such that the degree of heterogeneity in the 

reservoir is captured within the model.  This large number of fine grid resolution 

cells is not able to be carried out in reservoir simulations.  Thus, the average of these 

heterogeneities will always be required in the form of upscaling to represent the 

effective properties within the coarse scale for dynamic reservoir simulations. 

 

For additive rock properties, such as porosity and saturation, a simple averaging 

algorithm such as the ‘volume weighted arithmetic average’ could be considered as 

the best estimator in determining the effective porosity and initial saturation of the 

coarser grid.  This is because the rock pore volume and the fluid pore volume at the 

initial reservoir condition, which governs the fluid in place within the reservoir, can 

be preserved between the fine scale and coarse scale models.  

 

For permeability, which describes the ability of fluid to flow through the connectivity 

of the rock pores in the porous media and influence the dynamic reservoir behaviour, 

simple averaging algorithms (such as arithmetic and harmonic averages), in general 

do not always work in representing the effective properties at the coarse scale model.  

Therefore, selection of the appropriate upscaling algorithm needs to be carried out 

prior to upscaling.  Factors such as geological depositional environment, degree of 

heterogeneity, and also the variability of permeability in the finer scale model are 

often the main criteria for selecting the appropriate upscaling algorithms.  

 

A new upscaling algorithm based on the combination principal theory of diagonal 

tensor, renormalisation and a combination of analytical algorithms has been 

successfully developed for generating the effective properties at various different 
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geological environments.  The average effective heterogeneity properties of the 

reservoir model can generally be used to more accurately represent the fluid flow 

behaviours at the coarse scale level as if it were at the fine scale level.  The enhanced 

recovery by fluid injection, the breakthrough time of the fluid being injected and the 

ultimate fluid recovery, are all better predicted by using the new algorithm in 

comparison to any other upscaling algorithms available.  The consequence of using 

this new upscaling algorithm is a slower turn-around time due to a longer upscaling 

process. However, more accurate representations of the effective properties can be 

achieved in dynamic simulation predictions.  

 

There are several other available upscaling algorithms, which may result in a quicker 

upscaling process than the extensive numerical approach, and may also possibly be 

used to represent the effective properties of the upscaled parameters.   However, 

careful consideration in selecting the appropriate upscaling algorithm will be 

required.  Inappropriate usage of any upscaling algorithm can result in different 

reservoir behaviours at the coarse scale level.  Thus, the history matching process can 

become a lengthy exercise resulting in a slower turn around time for the entire 

process of reservoir predictions, since the coarse scale behaviour can become 

significantly different to its fine scale behaviour due to geological representations at 

the coarse scale level. 

 

The successful answer to solving the upscaling process lies in the turn around time 

available for the upscaling and dynamic simulation processes to be carried out in 

day-to-day business.  This is often where the critical judgement lies in finding the 

best possible upscaling solution, as more accurate upscaling algorithms take longer 

to run for better accuracy in providing the effective properties for the upscaled 

model.  The greater the heterogeneity or variability of the fine scale properties to be 

upscaled (as a single coarse cell by averaging), the greater the uncertainty will be of 

the upscaled permeability.  The extensive numerical upscaling algorithm is therefore 

required for consideration in these instances as the appropriate upscaling algorithm.  

By using the extensive numerical upscaling process, an optimum balance of accuracy 
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can then be achieved between flow simulation time on the coarse grid and the 

upscaling process in preserving important geological features in fine grid models. 
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Appendix A 
Derivation of Some Existing Algorithms 

Darcy’s law  

The equation which governs most upscaling algorithms’ principal is the basic fluid 

flow equation in the porous media known as Darcy’s law.  Darcy’s law states that the 

fluid flow rate is proportional to the cross sectional area and the pressure difference 

∆P across a length of ∆x, and inversely proportional to the viscosity of the fluid.  The 

proportionality constant is referred to as the ‘permeability’.  Therefore, for a single 

flow, it is defined as: 
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Equation A- 1 Darcy’s law 

 

Permeability is a physical property of a large number of pores which influence the 

tendency of the fluid to flow from one place to another.  It is a micro scale property 

which is also by the grain size distribution and its shapes.  The permeability usually 

decreases as grain size decreases.  This is normally used to distinguish the rock type 

classification depending upon its geological rock depositional and its properties.  For 

example, the clean and unconsolidated sands may have permeability as high as five 

to 10 Darcies, while the compacted and cemented sandstone rocks tend to have a 

lower permeability.  Productive sandstone reservoirs usually have permeability in the 

range of 10 to 1000 mD.  Furthermore, the presence of clay, which may swell on 

contact fresh water, can also affect permeability resulting in the reduction of rock’s 

permeability by several orders of magnitude.  

 

Permeability does not only act upon one direction.  The flow in porous media often 

occurs in three principle directions, horizontally on x and y directions and also 
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vertically on the z direction.  Therefore, by regarding the potential gravitational 

effects, the three directional flows can be defined as: 
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Equation A- 2 Darcy’s law in 3-directional flow 

 

Effective Reservoir Properties 

In the reservoir modelling, the reservoir properties, which include porosity, 

permeability and fluid saturation, are typically assigned with the average value 

representation on each individual grid cells.  The average cell value is normally 

called ‘the effective properties’ of a heterogeneous block.   

 

 
Figure A- 1 Graphical representation of effective properties 

 

Porosity and Initial Fluid Saturation 
 

For the porosity or initial fluid saturation, the effective properties can easily be 

defined as these properties serve a function of preserving the total pore volume and 

the pore volume occupied by the fluid for porosity and water saturation respectively.  

By definition, the pore volume is basically the combination of the grid block porosity 

with the volume of the block, while the fluid pore volume is the combination of pore 

volume and the percentage of fluid saturation within the pore volume.   
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Porosity  

 

The definition of the effective porosity can then be derived with the following 

equations. 
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Equation A- 3 Derivation of effective porosity 

 

Therefore, from the derivation shown above, the effective porosity can be defined by 

using the bulk volume weighted arithmetic average. 

 

Initial Fluid Saturation 

 

Similar to porosity, the initial fluid saturation will affect the total pore volume 

occupied by the fluid within the medium.  In the reservoir modelling, the initial fluid 

saturation is normally assigned by using the water saturation, while the remaining 

pore volume will be the pore volume occupied by the hydrocarbon.  As mentioned 

earlier, preserving the hydrocarbon pore volume between the two different scales 

will be the main objective in creating the effective fluid saturation.   
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Equation A- 4 Derivation of effective initial water saturation 

 

From the derivation shown above, the effective water saturation can then be defined 

by using the pore volume weighted arithmetic average. 

 

Permeability 
 

For the permeability, which depends on the boundary conditions, the derivation is 

not as straight forward as the effective porosity or effective initial fluid saturation.   

The effective permeability is defined as the permeability of the homogeneous block, 

which will produce the same fluid-flow under the same boundary conditions. It is not 

an instinsic property of rock, since it is influenced by the boundary conditions, the 

geological depositional beddings and also the fluid flow within the system.  

 

Therefore, for simplicity, here are the following two derivations for determining the 

upper and lower bounds of the effective permeability by using the arithmetic and 

harmonic upscaling algorithms respectively. 
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Arithmetic Upscaling Algorithm Derived based on Parallel Bed (Linear Flow) 

 

The arithmetic algorithm uses the assumption that the fluid flow in the linear manner, 

which can be described as the fluid flow in the parallel bed having a different 

permeability for each layer. 
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Figure A- 2 Graphical representation of linear Flow in parallel bed for arithmetic 
upscaling algorithm derivation 
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For a fluid flow in the same boundary conditions, the pressure is assumed to be 

constant at each end of the flow system. The total flow rate can then be representated 

as the sum of the rates qi in each layer. 

 

∑=
i

iT qQ  

 

By applying Darcy’s law of equation, the above equation can then be determined as 

the following equation: 
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For the same block dimensions, the fluid viscosity and the pressure boundary 

conditions for both fine and coarse scale blocks, the common terms can then be 

cancelled on both sides of the equation. The equation then becomes the following:  

 

∑=
i

iiTave hKHK  

 

The average (effective) permeability can then be obtained by rearranging the above 

equation as shown in Equation A- 5.  
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Equation A- 5 The derivation of effective permeability with arithmetic average on 

parallel bed 

 

The above equation indicates that the average permeability is the height weighted 

arithmetic average of the individual layered permeability. 
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Harmonic Upscaling Algorithm Derived based on Serial Bed  

 

The fluid flow in the series of beds can be illustrated with the following picture. 
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Figure A- 3 Graphical representation of fluid flow in serial bed for harmonic 
upscaling algorithm derivation 

 

With the law of mass conservation, the fluid flow into the block will be equal to the 

sum of the accumulation of the fluid flow within the blocks and the flow rate out 

from the block.  Under the steady state at the equilibrium condition, the accumulation 

of fluid within the blocks will be negligible. Thus, the fluid will flow at the same 
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flow rate across each bed. For the same flow rate across each bed, the pressure 

difference will then be proportional to the length of the bed, i.  The fluid flow can be 

illustrated by applying Darcy’s law of equation as the following equation: 
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For the same block dimensions and the fluid viscosity, the common terms can then 

be cancelled on both sides of the equation. The equation is then as follows:  
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From the equation above and the Darcy’s fluid flow equation, the pressure 

differences between the blocks will serve as a function of the block permeability over 

the length i.  Therefore, by assuming a proportion of pressure difference on each 

block over the total pressure differences with the ratio of block permeability over the 

length i, the average permeability can then be obtained as follows: 
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Canceling some of the sum of the pressure differences and rearranging the above 

equation, the average permeability for the serial beds can then be obtained as the 

following equation: 
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Equation A- 6 The derivation of effective permeability with harmonic average on 

serial bed 

 

The above equation indicates that the average permeability on the serial bed can be 

defined with the length weighted harmonic average of each serial bed permeability.
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DIFFERENT SCALES AND INTEGRATION OF DATA IN RESERVOIR 
SIMULATION 

Lina Hartanto, Robert Amin & Raj Rajeswaran 
Curtin University of Technology 

Kent Street,  Bentley WA 6012, Australia 
 
 
Abstract 
 
The term upscaling and determination of pseudo-curves or effective 
parameters used on a coarse scale simulation grid are related to the 
complex and extensive problems associated with the reservoir 
studies. The primary strategy is mainly focused on the good physical 
and practical understanding of the particular processes in questions, 
and an appreciation of reservoir model sensitivities. Thus, the 
building of reservoir simulation models can be optimally determined. 
 
By concentrating on modeling and upscaling gas injection for 
Enhanced Oil Recovery (EOR) process, which included Interfacial 
Tension (IFT) and amicability effect, a new effective and efficient 
algorithm of upscaling will be investigated and determined by using 
several upscaled parameters. The sensitivities of these determined 
coarse scale parameters, i.e. porosity, absolute & relative 
permeabilities and capillary pressure, will also be studied through 
history matching of the existing field. 
 
Introduction 
 
Prediction of reservoir performance is 
normally carried out by reservoir 
simulation.  A numerical reservoir 
simulator solves approximately the 
equations of fluid flow in the reservoir, 
based on partitioning of the reservoir into 
a set of numerical grid blocks.  Each grid 
block is assumed to be homogeneous. In 
full field reservoir simulations, grid blocks 
are typically in the region of 10-m times 
100-m times 5-m. Consequently, there is a 
need to "average" the laboratory data 
before using them in simulators. The 
typical 3D geological models is usually 
with the resolution of 25m by 25 m by 1 
m or through the scale of available data 
such as logs, cores, or outcrops which 
may contain up to more than 10 million 

block. However, the available black oil 
simulator can only handle no more than 
300,000 grid cells due to computer 
memory and speed limitation in 
numerical simulation. Thus, this is the 
upscaling problem.  The rock 
properties that need to be upscaled are 
porosity, absolute and relative 
permeabilities, and capillary pressure, 
which each simulation grid block 
should represent the heterogeneous 
parts of the reservoir. 
 
Except in the case of truly 
homogeneous reservoirs, upscaling 
must always be carried out, although 
present day practice is not always 
recognized as such. For instance, 
plotting measured relative 
permeabilities as a function of 
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normalized saturation, and choosing some 
average curve as representative, is a form 
of upscaling. Such a procedure does not 
take into account the spatial arrangement 
of the different rock types, and will 
therefore be unreliable.  In media where 
the ratio between horizontal and vertical 
correlation lengths is large, for example, 
the proper upscaled relative permeabilities 
may be significantly different from their 
rock counterparts, even if all participating 
rock types have identical relative 
permeability curves. 
 
In history matching reservoir 
performance, relative permeabilities are 
perhaps the first parameter to be adjusted. 
Somewhat simplistically, this process 
should be interpreted as posteriors 
upscaling. The willingness to sacrifice 
relative permeabilities signals a perceived 
unreliability of the a priori upscaling 
originally carried out. 
 
Upscaling is a broad term, also 
encompassing techniques to increase 
numerical accuracy at the passage of sharp 
saturation fronts. Our main interest is 
more specific: If heterogeneities are small 
relative to the distance between wells, one 
can define "effective" properties of the 
heterogeneous medium, i.e. effective 
absolute and relative permeabilities and 
capillary pressure. Effective properties are 
physical parameters valid on the larger 
scale, and capture the average effect of 
small-scale heterogeneity.  Hence, 
coarsening the fine scale geological 
description by using the appropriate 
upscaling algorithm is important to 
maintain the integrity of the model for the 
fluid flow modeling purposes (i.e. 
maintain agreement in flow results 
between fine and coarse models). 
 
Several algorithms are commercially 
available for upscaling by using either 

analytical or numerical approaches.  
From the simple methods such as 
arithmetic, geometric and harmonic 
averages to the complicated tensor 
methods, such as Diagonal and Full 
tensor methods have been developed 
and existed commercially. However, 
there are several advantages and 
disadvantages associated with each 
upscaling algorithm. 
 
The simple upscaling method is the 
sampling. It is basically sample the 
permeability at the center of the grid 
block. It is simple but is inaccurate in 
preserving the heterogeneity of the 
reservoir. [Ref. 7, 9] 
 
The analytical methods such as 
Arithmetic, Geometric, Harmonic and 
Power averages, have been regarded as 
the fast and simple intuitively methods 
for upscaling. Some of these methods, 
i.e. harmonic, power and geometric 
methods would be disadvantageous 
with null values, as these zeros would 
create an undefined heterogeneity of 
the reservoir. Thus, limited range for 
validity is as a result.  In additional to 
these limitations, for determining the 
effective permeability, these methods 
can only solve the simple 1D or 2D 
reservoir model.  This is not the case in 
the real life. It requires more complex 
calculations than that, which is the 
three-dimensional approach.  
Furthermore, it suffers from some 
limitations in applicability. [Ref. 4, 5, 
7, 8, 9]  
 
Directional averages, i.e. Arithmetic-
Harmonic and Harmonic – Arithmetic 
methods, have been developed in order 
to simplify the determination of 
effective properties in 3-dimensional 
model.  The computation cost is low. 
However, these directional methods 
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would still not represent the effective 
permeability. The harmonic - arithmetic 
average is a finer lower bound to the 
effective permeability than the harmonic 
method. On the other hand, the arithmetic 
- harmonic method is the finer upper 
bound to the effective permeability than 
the arithmetic method (refer to Cardwell 
& Parsons' bounds). Furthermore, null 
value will still be the problem in these 
methods. [Ref. 7, 8, 9]  
 
In additional to this, renormalisation 
method has been implemented and used 
for many reservoir studies. They regard 
this method as the fast way of estimating 
effective properties by carrying out 
successive upscaling to obtain properties 
at the required scale.  It is more accurate 
than averaging methods in cases.  It is also 
good for taking the large problems and 
breaking it down into a hierarchy of 
manageable problems as it is proven 
successfully in theoretical physics areas. 
However, this upscaling method is only a 
local upscaling procedure.  It is poor for 
highly anisotropic media and probably 
unreliable due to unrealistic boundary 
condition effects. [Ref. 2, 3, 4, 7, 9, 10]  
 
Numerical methods, i.e. Diagonal and full 
tensor methods are also available based on 
the Darcy's Law and the mass 
conservation on each volume represented 
by a coarse grid block. By applying the 
relevant boundary conditions for the 
calculations, the directional effective 
permeability, i.e. x, y and z directions, can 
be determined. Null values can also be 
delimited by using these methods.  
Diagonal tensor can only determine the x-
x, y-y and z-z directions of effective 
permeability.  The effective permeabilities 
on the principle directions, i.e. x-y, x-z, y-
x, y-z, z-x, and z-y, have been neglected.  
These effective permeabilities on the 
principal directions can be determined by 

using the Full Tensor. However, these 
principal direction effective 
permeabilities will be neglected by the 
reservoir simulators, as there is no 
available simulator to handle these 
principal direction permeabilities. Also, 
as these numerical methods were based 
on applying the relevant boundary 
conditions, can these boundary 
conditions approximate the true 
reservoir conditions? [Ref. 1, 4, 6, 7]  
 
Overly, the main limitation of 
upscaling is that does not usually give 
indication on the validation of 
assumption made. There is limited 
attempt in analyzing the upscaling 
process, as there is no good theory 
exists to state whether the upscaled 
values are good or bad approximation. 
Only validation in the fundamental of 
inequality of the effective equivalent 
permeability has been published in 
several papers.  
 
Wiener's bound states that the effective 
permeability is lied between Harmonic 
mean and Arithmetic mean. Several 
authors, such as Wiener, Cardwell & 
Parsons, Matheron and other authors 
have demonstrated this bound theory.  
[Ref. 7, 9] 
 
Haskin & Shtrikman bounds is 
determined by using the method of self 
- consistent media and calculated on 
the based of the model of the medium 
built of composite sphere. The 
maximum permeability is obtained by 
assuming that the spheres are the low 
permeability and the shells are the high 
permeability, on the contrary, the 
inverse situation will be for the lower 
bound of the permeability 
determination. This result is found to 
be similar to Wiener bounds. [Ref. 9] 
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Cardwell & Parsons bounds are used an 
electric analogy. The arithmetic mean of 
the harmonic mean of the point 
permeability, calculated on each cell line 
parallel to the given direction, indicates 
the lower bound of the effective 
permeability. On the other hand, the upper 
bound of the effective permeability is 
obtained from the harmonic mean of the 
arithmetic means of the point permeability 
calculated over each slice of a cell 
perpendicular to the given direction. [Ref. 
7, 9]  
 
How reliable are these bounds in the real 
field study of the reservoir? 
 
For sure, in some situations, such as 
composite materials with the effective 
properties, which can be measured 
directly, the simple analytical upscaling 
method will be sufficient. The effective 
permeability may lie between the 
fundamental inequality of the effective 
permeability by using one of the 
"inequality" theories. However, we are not 
as fortunate in our business, since 
measurements can only practically be 
made on the cm scale in the laboratory 
and some reservoirs can only be 
represented with the heterogeneous 
models. Thus, the determination of 
effective properties is in practice a 
mathematical problem.  
 
 
Objectives 
 
The first stage objectives of the research 
are:  
 
- Finding the effective homogeneous 

physical properties that yield the same 
flow response as the heterogeneous 
one (rock type, porosity and 
permeability) for each grid cell 

- To focus on the good physical and 
practical understanding of 
particular process in questions and 
an appreciation of reservoir model 
sensitivities. Thus, optimal building 
of the reservoir simulation model 
can be built.  
 

This program provides upscaling tools 
to easily coarsen very large reservoir 
models to sizes acceptable to 
commercial fluid reservoir simulator. 
Using IRAP RMS, these large models 
can be manipulated quite easily. 
However, the variety of algorithms for 
determining the upscaled grid and 
calculating the upscaled reservoir 
properties gives the user the flexibility 
to create models are upscaled optimally 
for the given situation. 
 
Furthermore, through personal 
experiences dealing with geologists 
and engineers from several different 
companies, the understanding of 
upscaling method is very limited. 
Simple analytical methods (i.e. 
Harmonic method used for upscaling 
the permeability and arithmetic method 
for porosity) are normally used without 
knowing the availability of different 
algorithms and pros & cons of each 
individual algorithm. In this way, 
through the understanding of existing 
upscaling algorithms will lead to the 
development of the new algorithm 
which is efficient and better understood 
by our petroleum or oil & gas 
industries. 
 
The work will focus in particular on 
modeling and upscaling gas injection 
processes. In the coarse of the research 
program, a new algorithm for upscaling 
of relative permeability and capillary 
pressure based on a fine grid 
compositional or black oil simulation 
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will be developed. The algorithm will be 
implemented in a - computer program, 
which will be tied to our in-house 
compositional simulator, black oil 
simulator MORE/Smedvig. 
 
As several exiting upscaling algorithm 
based on the simulation grid, careful 
determination of gridding the simulation 
grid (i.e. coarse grid) is designed initially 
for the full field reservoir study. It is 
initially based on the single well models 
around the well. These single well models 
are used to understand a single well 
performance (i.e. history match of each 
individual well in the reasonable coverage 
reservoir area). Also, the uncertainties 
involved in the reservoir characterization 
in the geological way are investigated. By 
examining these single well models, 
similar characteristics of the geological 
model may be group into sector model.  It 
is used to investigate further on the 
influence of reservoir characteristics of 
the particular field and studying the fluid 
movement of the particular reservoir units. 
This study is then carried out for a further 
building of the full field model. Each of 
these models is gridded and filled with 
petrophysical properties by using the 
appropriate upscaling algorithms. [Ref. 
10] 
 
The upscaling algorithm is based on mass 
conservation, i.e. the determination of the 
coarse scale relative permeabilities and 
capillary pressures that minimize the error 
in the mass (mole number) of each 
component in all grid blocks at the end of 
a coarse scale time step. The algorithm 
differs from other approaches in three 
main respects: 
 
- Time steps may be different (longer) 

in the coarse scale simulation than in 
the fine scale simulation. This reflects 

the true situation, and tends to 
smooth out noise in the generated 
pseudo. 

- The optimization is performed on 
the whole coarse scale model, i.e. 
in all grid blocks simultaneously 
and not on individual grid block 
walls. 

- Compositional information is 
utilized. This opens for the 
possibility of simultaneously 
upscaling of phase behavior and 
relative permeability. This 
possibility has not yet been fully 
implemented in the code. The 
necessary additions may, however, 
easily be implemented. 

 
The selection of the effective and 
efficient algorithms will be mainly 
based on the conservation of the 
reservoir heterogeneities (i.e. reducing 
the uncertainties of reservoir 
throughout the reservoir geological 
model & laboratory data) and also the 
capability of the upscaled parameter 
data used to match the history of the 
productions. Furthermore, the accuracy 
of such effective properties as applied 
to flow through porous media will be 
judged by how well the fluid-flow 
prediction made at the coarser (macro-
scale) level mimic predictions made at 
the finer (micro-scale) level. Thus, the 
research will be based on the data 
analysis of the available data from the 
geologists (reservoir model with its 
petrophysical parameters), the rock 
laboratory data (PVT, capillary 
pressure and also the relative 
permeability curves) and also the study 
of the flow characteristic of the 
reservoir. 
 
Results/Discussion 
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The reservoir model which is used 
throughout the research has the 
heterogeneous characteristics as indicated 
by the porosity and permeability 3D - 
parameters as shown in Figure 1 and 2 
respectively. This geological model has 
600,000 grid cells. 
 
In order to build the geological reservoir 
model, the geological log data is usually 
used as the hard data. This can be shown 
in Figure 3 the comparison in scale 
between the log curve data and the 
blocked well in the geological size of the 
reservoir model. This is one of the 
upscaling stages in the reservoir 
characterization. 
 
For any reservoir simulator, however, 
coarser grid is required, as mentioned 
previously.  
 
Apart from the grid cell, data required for 
the simulation are: rock properties 
(permeability, porosity, relative 
permeability & capillary pressure), 
reservoir geometry (the grid size, 
thickness & well location), initial fluid 
distribution ((initial fluid saturation); fluid 
properties (PVT data) and well production 
data (production schedule & productivity 
index or skin factor). 
 
The grid resolution sensitivities were 
initially studied before validating the 
upscaling algorithms. Three different 
models are used, they are: 
- Model 1: 65*80*30 (160,000 cells)  
- Model 2: 32*40*30 (38,000 cells) 
- Model 3: 32*40*15 (19,000 cells) 
 
Several scaling up algorithms were used 
in studying the fluid flow with the grid 
sensitivities in the coarser grid. For 
porosity, volumetric weighted arithmetic 
average was selected as preserving the 
pore volume was the main consideration. 

For the permeability, however, several 
algorithms such as Arithmetic- 
Harmonic average, Harmonic – 
Arithmetic average and diagonal tensor 
methods were selected and studied. 
 
General comparison on the algorithms 
based on the permeability 3D 
parameters theoritically were found as 
follows: 
 
Arithmetic – Harmonic & Harmonic – 
Arithmetic Averages 
- It is directional dependent; 

however, they suffer due to null 
values of the fine parameter values.  

- The effective permeability was 
found to be bounded between 
Arithmetic – Harmonic and 
Harmonic – Arithmetic averages. 

 
Diagonal Tensor 
- It represents the solution of flow 

equations and yields the diagonal 
tensor. 

- Relevant boundary conditions are 
required to be applied with this 
method. 

 
Results on the upscaled parameter 
values were shown in Figures 9 and 10 
for the porosity and permeability in the 
x direction with diagonal tensor for 
Model 2, respectively. 
 
In order to illustrate the sensitivities in 
the grid resolution, Streamlines 
Technology was used. This is also used 
for the validation of the upscaled 
parameters by comparing it with the 
fine simulation result. Various 
permeability upscaling methods were 
studied.  
 
Data for testing the streamlines were 
using 5 OPEN well producers with the 
initial condition of 300 bar as the 
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reference pressure at 3000 m, with 80% 
net to gross.  
 
Streamlines for fine geological model, 
Model 1, 2 and 3 simulations grids were 
shown in Figures 4, 5, 6 and 7 
respectively. It was found that the fluid 
flow drainage patterns on the plane view 
for simulation models were similar to the 
fine resolution pattern. The drainage 
performances of each model were shown 
otherwise though. By coarsening it 
furthers in any directions, it reduced the 
drainage capabilities slightly for each 
well, as shown in Figure 8 for comparing 
Model 1 and 2 with the fine grid. This 
could be due to increasing the 
uncertainties both in the geological model 
and the However, in reducing further on 
the z direction, the result for Model 3 was 
found to be totally different from the other 
simulation model and the fine grid one.  
 
Thus, fine grid can be reproduced on a 
coarser grid with the sensible upscaling. 
Simulation results confirm the predictions 
from the upscaled permeability. Hence, it 
is highly recommended to use the 
streamline technology as the tool for 
validation of simulation grid resolution 
sensitivities and should be studied initially 
in any individual field of studies. 
 
From the streamline results, it can be 
concluded that Model 1 & 2 are 
acceptable in coarsening the fine 
geological grid. Model 3, however, is too 
coarse and does not show the preservation 
in the well performances. Thus, study of 
fluid flow for different upscaling 
algorithms for permeability and porosity 
will be mainly based on Model 2 due to 
proportionality of speed with respect to 
the number of grid cells. 
 
As mentioned previously, volumetric 
weighted arithmetic average was used for 

scaling up the porosity parameter of the 
reservoir, while three (3) different 
algorithms (Arithmetic – Harmonic, 
Harmonic – Arithmetic and diagonal 
tensor methods) were used for scaling 
up the permeability parameter.  
Conclusion & Recommendations 
 
Streamlines technology has been 
expanding further in order to reduce 
the cost in time and concluded to be the 
fast validation of the grid sensitivities. 
 
With any uniform flows, several 
algorithms in upscaling have been 
concluded to be the most effective and 
efficient methods to use.  Volume 
weighted arithmetic average is 
concluded to be the good estimator for 
determining the effective porosity of 
the coarser grid. Arithmetic – 
Harmonic and Harmonic – Arithmetic 
algorithms are economical for 
determining the effective properties of 
the permeability. However, there is 
another algorithm, Diagonal Tensor 
which will give a better effective result 
on the upscaling of the permeability by 
considering the mass conservation and 
flow determination, but it is more 
expensive to use due to time and its 
speed.  
 
The development of multi phase 
upscaling and study of fluid flow in 
details are highly recommended in 
reducing the uncertainties in upscaling 
algorithms, but it will be costly. 
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APPENDICIES 
 
APPENDIX I: Petrophysical Properties of Fine Geological Grid 

 
Figure 1. Porosity of the Fine Geological Grid with 600,000 grid cells 

 

 
Figure 2. Permeability of the Fine Geological Grid with 600,000 grid 

cells 
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APPENDIX II: Changing Scales between Log and Geological Model Scales 

 

   
 

Figure 3. Comparison on Well-Blocking between Geological Grid and Simulation 
Grid II. 
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APPENDIX III: Streamlines for Model 1, 2 & 3 and fine geological grid model 

 

 
Figure 4. The streamlines of Fine Geological Grid with 600,000 grid cells 

 

 
Figure 5. The streamlines of Simulation Grid I with 160,000 grid cell 
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Figure 6. The streamlines of Simulation Grid II with 38,000 grid cells 

 

 
Figure 7. The streamlines of Simulation Grid III with 19,000 grid cells 
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APPENDIX IV: Drainage Profiles for Models 1, 2, 3 and Geological Grid 

 

 
Figure 8. Drainage Profile of Different Simulation Grids 
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APPENDIX V: Simulation Results on Upscaled Porosity and Permeability for 

Model 2 

 
Figure 9. Scaled up Porosity Parameter for Simulation Grid II (38,000 grid cells) 

 

 
Figure 10. Scaled up Permeability (x direction) Parameter for Simulation Grid II 

(38,000 grid cells) 
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APPENDIX VI: Production Profiles for Comparing Different Upscaling 

Algorithms with Simulation Model 2 

 

 
Figure 11. Comparison on Different Upscaling Methods on the Production 

Performances of Simulation Grid II. 
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APPENDIX VII: Statistical Comparison for Several Upscaling Algorithms for 

Model 2. 

 
Core data: 
- Porosity: range 0.271 – 0.433   Average: 0.355 
- Permeability: range: 0.177 – 16390.8  Average: 5282.7 

 
Fine Grid: 
- Porosity: range 0.272 – 0.420   Average: 0.349 
- Permeability: range: 0.185 – 13727.9  Average: 4826.04 
- Volumetric: Gas: 21.35 x 10^6 m3 Oil: 137.2 x 10^6 m3 
 
Model 2: 
- Porosity: range 0.273 – 0.400   Average: 0.345 
- Volumetric: Gas: 21.12 x 10^6 m3 Oil: 136.5 x 10^6 m3 
- Arithmetic – Harmonic  

- Permeability: range: 1.706 – 12710.8 Average: 4335.6 
- Harmonic – Arithmetic 

- Permeability: range: 1.706 – 12699.9 Average: 4293.9 
- Diagonal Tensor: 

- Permeability: range: 1.712 – 12727.3 Average: 4312.6 
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Presentation on “Different Scales & Integrated of Data in Reservoir 
Simulation” held at AAPG Conference in Bali – Indonesia on 18th 
October 2000.  
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©Different Scales & Integration of Data in Reservoir Simulation, by Lina Hartanto

Presentation Outline
● Objectives
● Upscaling? Why?
● Grid Sensitivities
● Scaling Up Geological model with various algorithms 
● Validation of Algorithms
● Results on Segmentation Simulations
● Summary & Conclusions
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Objectives
● Find the effective homogeneous physical properties that yield 

same flow response as the heterogeneous one (rock type, 
porosity and permeability) for each grid cell 

● to focus on particular process in questions & an appreciation of
reservoir model sensitivities --> Optimal building of the 
reservoir simulation model

 
 

©Different Scales & Integration of Data in Reservoir Simulation, by Lina Hartanto

Upscaling? Why?
● General 3D geological models:

– resolution of 50 x 50 x 1 m3 (or scale of available data: logs, 
cores, outcrops) 

– up to ~10 million blocks
● Available black oil simulator (unless parallel 

processing/simulator)
– May only handle no more than 300,000 blocks (computational, 

computer memory & speed limitations)
● Each simulation grid block represents heterogeneous parts of 

the reservoir
● Fine scale heterogeneity affects displacement processes
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Grid Comparisons
● Fine: 48*106*90 cells (460,000 grid cells)
● Simulation grid: (4 cases)

– Model I: 48*106*45 cells (230,000 grid cells)
– Model  II: 24*53*90 cells (115,000 grid cells)
– Model III: 24*53*45 cells   (  57,000 grid cells)
– Model IV: 16*36*30 cells   ( 17,000 grid cells)

Very Important: Simgrid design and orientation should be close as 
possible to the original geological fine grid.
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Porosity (Fine Grid Model)
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Permeability (Fine Grid Model)
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Various Available Upscaling Algorithms
Using RMSsimgrid from Roxar.
● Arithmetic
● Harmonic Simple Algorithms (1 direction)
● Geometric
● Arithmetic-Harmonic         Mix Simple algorithms
● Harmonic - Arithmetic
● Diagonal Tensor Tensor algorithms
● Full Tensor
● Renormalisation
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Scaling Up of Geological Model
● Porosity

– Volumetric weighted arithmetic average
– Preserving the pore volume locally and globally throughout reservoir

● Permeability - 4 algorithms
– Arithmetic - Harmonic Average
– Harmonic - Arithmetic Average
– Diagonal tensor
– Full Tensor

 
 

©Different Scales & Integration of Data in Reservoir Simulation, by Lina Hartanto

Algorithms comparison
● Arithmetic - Harmonic & Harmonic - Arithmetic Average

– direction dependent
– suffer null value
– A(H(K)) < Keff < H(A(K))

● Diagonal tensor
– represent the solution of flow equations
– yield diagonal tensor
– apply relevant boundary conditions 
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Validation of Algorithms
● Use streamlines:

– Validate upscaled parameters by comparison with fine 
simulation result

– Compare the results for various permeability upscaling methods 
==> comparing tracer breakthrough

– Illustrate sensitivity of grid resolution

 
 

©Different Scales & Integration of Data in Reservoir Simulation, by Lina Hartanto

Grid Sensitivities / Validation of Algorithms
● Streamline technology:

– (In this study, it is using RMSstream from Roxar)
– 7 wells: 4 OPEN well producers and 3 OPEN well injectors
– Initial condition: reference pressure 900 psi at 600 m
– Studied the dynamic response(s) from the geological reservoir 

model rapidly. ==> comparing tracer breakthrough
– Calculating transmissibility when underlying transport properties 

(K, NTG) have a strong dependence on orientation not just on 
positions

– Should be studied initially in any individual field study.
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Grid Sensitivities (cont.…)
● Preference: flow direction within reservoir in simulation

– representation of permeability as full tensor
– should minimize the diagonal directions of permeability
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Graph 1. Model III Breakthrough Time - Various Algorithms
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Graph 2. Model III - Difference in Breakthrough Time
Various Algorithms
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Graph 3. Model III - Difference in Breakthrough Time
(AH & Diagonal Tensor)
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Validation on Various Upscaling Algorithms
● Upscaling algorithm for Permeability:

DIAGONAL TENSOR ALGORITHM
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Model Selection

● Effective Permeability: Diagonal Tensor
● Single Well Simulation

– Simulated grid segment: around 1000 m radius from Well W2. 
– Capillary Pressure, PVT analysis & Relative Permeability are 

the same for both Fine & Coarse Grids.
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Graph 4. Various Models Breakthrough Time 
(Diagonal tensor)
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Simulated Fine Permeability Parameter
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Graph 5. Oil Production Rate for Various Models
(Diagonal Tensor)
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Graph 6. Gas Production Rate for Various Models 
(Diagonal Tensor)
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Graph 7. Cumulative Oil Production for Various Model 
(Diagonal Tensor)
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Graph 8. Cumulative Gas Production for Various Model 
(Diagonal Tensor)
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Summary/Conclusions
● Heterogeneous properties can be reproduced on a coarse grid with

sensible upscaling procedures.
● Grid sensitivities & flow directions need to be studied FIRST

– Via Streamlines
– Increase model turnaround time
– fast dynamic validation of grid resolution sensitivities

● Final Selection based on results:
– Effective Porosity: Volume weighted arithmetic average 
– Effective Permeability: Diagonal Tensor (viscous effect of fluid flow)
– Grid sensitivity limitation: Model III the best to proceed further for history matching, 

case study, well planning, etc.
● Future study should include the use of MULTIPHASE upscaling to validate 

models. (MAY BE!)
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Upscaling and determination of effective parameters on a coarse scale simulation grid have remained 
related to complex and extensive problems associated with the reservoir studies. The primary strategy 
is mainly focused on the good physical and practical understanding of the particular processes in 
question, and an appreciation of reservoir model sensitivities. Thus, the building of the reservoir 
models can be optimally determined. 

In this paper, by concentrating on modeling and upscaling gas injection of the Enhanced Oil Recovery 
(EOR) process, a new effective upscaling algorithm is derived and investigated for upscaling some 
required petrophysical parameters. The sensitivities of these determined coarse scale parameters, i.e. 
porosity, absolute and relative permeabilities would be studied through history matching by 
comparing on how well the reservoir performance at the coarse scale to its performance at the fine 
scale. 
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1 Introduction 

A numerical reservoir simulation is often used 
for the prediction of reservoir performance.  It 
is based on solving the fluid flow of equations 
in the reservoir by partitioning the reservoir 
into a set of numerical grid blocks.  Each grid 
block is assumed to be a homogeneous block 
in which its physical properties are 
represented by a single value.  The solution 
for fluid flow equations in each block is then 
solved by implicit and iterative approaches for 
fine difference element within the fluid flow 
equations.  This will require sufficient 
computational memory/power, which is highly 
dependent on the number of grid blocks used 
to solve.  In full field reservoir studies, the 
grid blocks in the geological modelling are 
typically in the regions of 50-meter times 50-
meter times 1-meter from the basis of scaling 
the available data such as logs, cores or 
outcrops which may contain up to more than a 

million grid blocks.  However, this large 
number of geological grid blocks is not 
possible to be carried out in the numerical 
dynamic reservoir simulation due to computer 
memory and speed limitations.  Consequently, 
there is a need to “average” the laboratory 
data/geological data in such a way that the 
data can be handled efficiently in the reservoir 
simulation modelling.  The properties that are 
typically upscaled are porosity, absolute & 
relative permeability and capillary pressures, 
which each simulation grid block should 
represent the heterogeneous parts of the 
reservoir.  

In any reservoir predictions, in the reservoir 
simulation scales, a realistic description of the 
reservoir behaviour under any depletion 
scheme is probably the main important factor.  
Permeability, which describes the ability of 
the fluid to flow through the connectivity of 
the pores of the rock in the porous media, is 
the major parameter that affects the reservoir 
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behaviours. In upscaling, permeability is 
really the complicated matter, since it is not an 
additive variable, i.e. the equivalent 
permeability in the reservoir scale is not 
possible to be calculated by the arithmetic 
mean.  The expected permeability values have 
in general decreased and the permeability 
variance has also decreased in the reservoir 
simulation scales compared to its finer scales 
like geological or core scales.  Therefore, 
reducing the number of cells in the scales 
results in reducing the accuracy of the 
parameter model and also smoothing the 
ability to describe the heterogeneity flow 
behaviour in the reservoir model.  A balance is 
required between loss of accuracy due to the 
smoothing (averaging) process and the gain in 
the computer speed due to fewer number of 
grid cells. 

Except in the case of truly homogeneous 
reservoirs, upscaling must always be carried 
out, although present day practice is not 
always recognized as such.  For instance, 
plotting measured relative permeabilities as a 
function of normalized saturation, and 
choosing some average curve as 
representative, is a form of upscaling.  Such a 
procedure does not take into account the 
spatial arrangement of the different rock types, 
and will therefore be unreliable.  In media 
where the ratio between horizontal and 
vertical correlation lengths is large, for 
example, the proper upscaled relative 
permeabilities may be significantly different 
from their rock counterparts, even if all 
participating rock types have identical relative 
permeability curves. 

In history matching reservoir performance, 
relative permeabilities are perhaps the first 
parameter to be adjusted to balance the loss of 
permeability descriptions within the reservoir 
model.  Somewhat simplistically, this process 
should be interpreted as posteriors upscaling.  
The willingness to sacrifice relative 
permeabilities signals a perceived unreliability 
of the a priori upscaling originally carried out. 

Upscaling is a broad term, also encompassing 
techniques to increase numerical accuracy at 
the passage of sharp saturation fronts. Our 
main interest is more specific: If 
heterogeneities are small relative to the 
distance between wells, one can define 
"effective" properties of the heterogeneous 
medium, i.e. effective absolute and relative 

permeabilities and capillary pressure. 
Effective properties are physical parameters 
valid on the larger scale, and capture the 
average effect of small-scale heterogeneity.  
Hence, coarsening the fine scale geological 
description by using the appropriate upscaling 
algorithm is important to maintain the 
integrity of the model for the fluid flow 
modelling purposes (i.e. maintain agreement 
in flow results between fine and coarse 
models). 

In this paper, by concentrating on modeling 
and upscaling gas injection of the Enhanced 
Oil Recovery (EOR) process, a new effective 
upscaling algorithm is derived and 
investigated for upscaling some required 
petrophysical parameters.  The sensitivities of 
these determined coarse scale parameters, i.e. 
porosity, absolute and relative permeabilities 
would be studied through history matching by 
comparing on how well the reservoir 
performance at the coarse scale to its 
performance at the fine scale.  Furthermore, 
comparison with the existing upscaling 
algorithms will also be performed to validate 
the improvement by using the new upscaling 
algorithm.  

2 Background information / Existing 
Upscaling Algorithms 

Several algorithms are commercially available 
for upscaling by using either analytical or 
numerical approaches.  From the simple 
methods such as arithmetic, geometric and 
harmonic averages to the complicated tensor 
methods, such as diagonal and full tensor 
methods have been developed and existed 
commercially.  Even a more complex method, 
referred as the multiphase upscaling or pseudo 
method, is also existed, in which it involves 
generating the solution of the reservoir 
simulation’s properties by either estimating 
the properties statically or running the full 
field reservoir simulation at its finer scale to 
provide the “average” properties dynamically.  
However, there are several advantages and 
disadvantages associated with each upscaling 
algorithm. 

The simple upscaling method is the sampling.  
It is basically sampling the permeability at the 
centre of the grid block.  It is simple but is 
inaccurate in preserving the heterogeneity of 
the reservoir. [10,13] 
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The analytical methods such as arithmetic, 
geometric, harmonic and power averages, 
have been regarded as the fast and simple 
intuitively methods for upscaling. Some of 
these methods, i.e. harmonic, power and 
geometric methods would be disadvantageous 
with null values, as these zeros would create 
an undefined heterogeneity of the reservoir.  
Thus, limited range for validity is as a result.  
In additional to these limitations, for 
determining the effective permeability, these 
methods can only solve the simple 1D or 2D 
reservoir model.  This is not the case in the 
real life.  It requires more complex 
calculations than that, which is the three-
dimensional approach.  Furthermore, it suffers 
from some limitations in applicability. [4, 7, 
10, 11, 13]  

Directional averages, i.e. Arithmetic-
Harmonic and Harmonic – Arithmetic 
methods, have been developed in order to 
simplify the determination of effective 
properties in 3-dimensional model.  The 
computation cost is low.  However, these 
directional methods would still not represent 
the effective permeability.  The harmonic 
arithmetic average is a finer lower bound to 
the effective permeability than the harmonic 
method.  On the other hand, the arithmetic 
harmonic method is the finer upper bound to 
the effective permeability than the arithmetic 
method (refer to Cardwell & Parsons' bounds).  
Furthermore, null value will still be the 
problem in these methods. [10, 11, 13]  

In addition to this, renormalization method has 
been implemented and used for many 
reservoir studies.  They regard this method as 
the fast way of estimating effective properties 
by carrying out successive upscaling to obtain 
properties at the required scale.  It is more 
accurate than averaging methods in cases.  It 
is also good for taking the large problems and 
breaking it down into a hierarchy of 
manageable problems as it has been proven 
successfully in theoretical physics areas.  
However, this upscaling method is only a local 
upscaling procedure.  It is poor for highly 
anisotropic media and probably unreliable due 
to unrealistic boundary condition effects. [2, 3, 
4, 10, 13, 14]  

Numerical methods, i.e. Diagonal and full 
tensor methods are also available based on the 
Darcy's Law and the mass conservation on 
each volume represented by a coarse grid 

block. By applying the relevant boundary 
conditions for the calculations, the directional 
effective permeability, i.e. x, y and z 
directions, can be determined. Null values can 
also be delimited by using these methods.  
Diagonal tensor can only determine the x-x, y-
y and z-z directions of effective permeability.  
The effective permeabilities on the principle 
directions, i.e. x-y, x-z, y-x, y-z, z-x, and z-y, 
have been neglected.  These effective 
permeabilities on the principal directions can 
be determined by using the Full Tensor. 
However, these principal direction effective 
permeabilities will be neglected by the 
reservoir simulators, as there is no available 
simulator to handle these principal direction 
permeabilities. Also, as these numerical 
methods were based on applying the relevant 
boundary conditions, can these boundary 
conditions approximate the true reservoir 
conditions? [1, 7, 10, 12, 13]  

The most complex upscaling method is the 
multi-phase upscaling or also known as the 
Pseudo method.  It is relatively complicated 
compared to the numerical or analytical single 
phase upscaling as it involves more complex 
solution for non-linear with coupling between 
rock properties and fluid flow effects.  The 
pseudo properties are normally generated for 
inputs to the reservoir simulation either from 
the basis of static estimation of the properties 
or from the “average” dynamic properties 
derived based on the reservoir simulation 
results at the finer scales.  The result at a 
coarse grid with the average properties should 
give comparable results to the fine grid 
simulation, since the inputs are based on the 
fine scale’s result. However, this multiphase 
upscaling can become very time consuming, 
as it requires the generation of the fine grid 
cell simulation prior to obtaining information 
required at the coarse scale. Due to its 
involvement with much finer scale and huge 
number of grid block cells; this will also 
require an extensive computer power to solve 
the simulation at the fine scale. Furthermore, 
the set of pseudo functions generated for the 
coarse scale is problem specific. Thus, for a 
new requirement of the coarse scale, the whole 
procedure is required to be repeated to obtain 
the necessary information. Also, this is not 
easy to generate for any other flow 
geometries. The widely used pseudo methods 
are Coats, Hearn, Stiles, Dykstra/Parson and 
Kyte/Berry methods.  
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Overly, the main limitation of upscaling is that 
it does not usually give indication on the 
validation of assumption made. There is 
limited attempt in analysing the upscaling 
process, as there is no logical theory existing 
to state whether the upscaled values are good 
or bad approximation.  Only validation in the 
fundamental of inequality of the effective 
equivalent permeability has been published in 
several papers.  

Wiener's bound states that the effective 
permeability is laid between Harmonic mean 
and Arithmetic mean. Several authors, such as 
Wiener, Cardwell & Parsons, Matheron and 
other authors have demonstrated this bound 
theory. [12, 13] 

Haskin & Shtrikman bounds is determined by 
using the method of self - consistent media 
and calculated on the based of the model of 
the medium built of composite sphere. The 
maximum permeability is obtained by 
assuming that the spheres are the low 
permeability and the shells are the high 
permeability, on the contrary, the inverse 
situation will be for the lower bound of the 
permeability determination.  This result is 
found to be similar to Wiener bounds. [13] 

Cardwell & Parsons bounds used an electric 
analogy.  The arithmetic mean of the harmonic 
mean of the point permeability, calculated on 
each cell line parallel to the given direction, 
indicates the lower bound of the effective 
permeability.  On the other hand, the upper 
bound of the effective permeability is obtained 
from the harmonic mean of the arithmetic 
means of the point permeability calculated 
over each slice of a cell perpendicular to the 
given direction. [13, 14]  

How reliable are these upscaling algorithms 
and upscaling bounds in the real field study of 
the reservoir?  Comparison studies with 
various upscaling algorithms will be discussed 
further in detail in Results/Discussion section.  

For sure, in some situations, such as 
composite materials with the effective 
properties, which can be measured directly, 
the simple analytical upscaling method will be 
sufficient. The effective permeability may lie 
between the fundamental inequalities of the 
effective permeability by using one of the 
"inequality" theories.  However, we are not as 
fortunate in our business, since measurements 

can only practically be made on the cm scale 
in the laboratory and some reservoirs can only 
be represented with the heterogeneous models.  
Thus, the determination of effective properties 
is in the practice of a mathematical problem.  

3 New Upscaling Methodology 

In this new upscaling algorithm’s 
development, the important concept in 
upscaling is finding the most representative of 
the effective grid cell values at larger reservoir 
simulation modelling scale such that the 
effective homogeneous grid cell produces the 
same fluid flow behaviour under the same 
boundary conditions of the heterogeneous 
cells at its finer scales.  The effective 
properties of the permeability will be the main 
focus in this new upscaling algorithm with the 
additional enhancing treatments for supporting 
the accuracy of upscaling.  The new 
estimation of the effective properties as 
applied to flow in the porous media will then 
be judged by how well the fluid flow 
predictions made at the coarser (macro scale) 
level mimic compared to the predictions made 
at the finer (micro scale) level. 

Keff =? 

Figure 1 Problem Statement for the New 
Upscaling Algorithm 

Several assumptions used prior to the 
upscaling development are summarized as 
follows: 

• No direct application for solution at fine 
scale to estimate the flow behaviour at the 
coarser scale, as it is violating the main 
purpose of upscaling which is to avoid 
conducting such time-consuming flow 
simulation. 

• No restriction on the number of grid blocks 
to be upscaled.  

• Selection of flexible gridding algorithm to 
better represents variation in reservoir 
heterogeneity & treatment of permeability, 
as full tensor is among many methods 

Fine Scale Coarse Scale
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developed to reduce the inherent errors 
associated with approximation. 

• Replacing original multiphase system with 
one in which averaged props at coarse grid 
is obtained by solving flow problem within 
coarse grid using local boundary 
conditions (sensitive to choice of boundary 
conditions & average flow simulation 
results. 

• Replace multiphase system with a single 
phase, steady state flow field in which 
local boundary assumptions is applied to 
upscale absolute permeability or block 
interface transmissibility. 

The following upscaling concept is proposed 
for the new algorithm. (Refer to Figure 3 for 
the process flow diagram).  It is based on the 
combination principal theories of several 
existed algorithms, which are believed to be 
the most representation of the upscaling for 
permeability from its fine scale to its coarser 
scale.  They are diagonal tensor, 
renormalization and arithmetic harmonic / 
harmonic arithmetic algorithms.  Each process 
step for the proposed methodology will be 
discussed in detail.  

1. Define the periodic boundary as Diagonal 
tensor/Full Tensor by assuming only fluid 
flow in the specific direction from one side 
to the other side, and no flow across to the 
other 2 directions. 

 

Figure 2 Pressure Boundary Conditions on 
New Upscaling Algorithm 

2. Solve the pressure by using Random 
Walk/Relaxation method on network with 
the combination of the electrical network 
principal similar to the renormalization 
theory. 

3. Identifying the preferential path of the 
fluid flow within the single coarse cell by 
identifying the larger pressure differences 

across the grid block and the preferential 
connection for this large pressure drop of a 
solved pressure solution. 

4. Determine the single representation of the 
fluid flow across the coarse grid by using 
the average flow rate/flux on each cell 
across the specific direction and sum of 
flux for the flow across the other 2 
directions. I.e. arithmetic harmonic mean 
for horizontal permeability and harmonic-
arithmetic mean for the vertical 
permeability.  

3.1 Periodic Boundary Conditions 

The initial step of the upscaling concept is 
defining the pressure boundary for the area of 
interest.  The pressure boundary is defined 
similar to Diagonal Tensor or Full tensor 
principal, by applying arbitrary pressure equal 
to 1 and 0 at the inlet and outlet respectively. 
From the law of nature, it indicates that any 
fluid flow or particle will move from high 
potential to the low potential.  By defining the 
pressure boundary, the fluid flow can be 
forced to flow in a specific direction and can 
be expressed as shown in Figure 2.  

3.2 Pressure Solution with Random 
Walk/Relaxation Method on Network 

To be able to solve the fluid flow equation in 
the numerical performance, similar method 
like the renormalization method can possibly 
be used to solve by using the equivalent 
resistors of the electrical network. In this 
section, the similarity of the fluid flow 
equation and the electrical network solution 
will be discussed further.  Pressure solution 
with the combination of the random walk and 
relaxation method on network will be 
described in detail. 

P = 0 

P = 0 P = 1 

P = 0 

Equivalent Expression of Darcy’s law (Fluid 
Flow) with Ohm’s law (Electrical Network) 

The rate of the fluid flow in the porous media 
may be expressed with Darcy’s Law and is 
defined as follows: 

X
PKAQ

∆
∆

−=
µ  

Equation 1 Darcy’s Law of Fluid flow 
in porous media 
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Figure 3 Process Flowcharts on New Upscaling Algorithm 

 

By referring to the above equation and 
renormalization theory, the Darcy’s equation 
may possibly be expressed similar to the 
simple Ohm’s law for the electrical network 
principal.  

Darcy’s law X
PKAQ

∆
∆

−=
µ  

Ohm’s law    IRV =
Equation 2 Comparison of Darcy’s 
Law of Fluid flow in porous media 

and Ohm’s law of Electrical Network 

 

Both equations are using the law of nature 
theory in which the fluid or charge particle 
will move if there are any potential differences 
and will flow from high potential to its low 
potential.  For this case, the Voltage (V) for 
the electrical theory expressed the potential 
difference for the electrical charge to move, 
while on the other hand, in the fluid flow, the 

pressure drop X
P

∆
∆

expression indicates the 
potential difference for the movement of fluid 
to flow in the porous media.  The current (I) 
flow through the electrical network is 
equivalent to the amount of fluid flow through 
the media (Q).  Also, the resistivity can be 
expressed for both electrical and porous media 
with the equivalent of electrical resistance (R) 

New Substitution Method 

for K based on Kirchhoffs’ 

Theory 
Effective permeability 

Computation 

geometry 

Apply pressure drop & boundary 

conditions 

For each simulation grid block 

Solve pressure by using Random 

Walk/Relaxation on Network 

In each 

direction Identifying the preferential 

pathway of fluid flow 

Averaging Flux across the specific 

direction with Arithmetic/Harmonic, 

Harmonic -Arithmetic 



 
and the inverse of permeability (1/K) 
respectively. 

Therefore by rearranging both equations, it 
can be expressed as the following equivalent 
expression: 

• Voltage [V] is equivalent to pressure drop 

X
P

∆
∆

or in mathematical expression 







∆
∆

∝
X
PV

 

• Current [I] is equivalent to fluid flow rate 
[Q] or in mathematical expression 

 [ ]QI ∝

• Resistance [R] is equivalent to its inversely 
proportional of permeability [K] or in 

mathematical expression 



 ∝

K
R 1

 

 

Equivalent Resistor Network for Permeability 
Parameter Model 

To be able to provide the pressure solution of 
the fluid flow in the numerical simulation, the 
equivalent resistor is required to be defined for 
the representation of permeability parameter 
in the numerical simulation model. The 
equivalent resistor of each fine cell is 

K
1 . 

Thus, the representation of permeability at the 
centre of the fine cell is equivalent to two 
resistors in series, which is 

K2
1 .  In general, 

permeability is defined with the directional 
dependent in x, y and z directions.  Therefore, 
each block can be replaced with a cross of 
resistors as shown in Figure 4 for two-
dimensional illustration.  For isotropic media, 
the resistors will be the same in either 
direction as the permeability in x and y 

directions are the same. 

Figure 4 Equivalent Resistor for 
Permeability Parameter in 2-

dimensional model 

The equivalent resistors of permeability 
parameter at each coarse grid cell can then be 
illustrated with the following diagram. 

 

Figure 5 Equivalent Resistor for 
Permeability Parameter at each coarse 

cell in 2-dimensional model 

As mentioned above, for determining the 
effective permeability at one direction, the 
pressure boundaries are set such that the fluid 
will flow to a specific direction with the inlet 
and outlet uniform pressures of 1 and 0 
respectively and no flow across to the other 
sides of the coarse grid block (P=0). Here, we 
are only considering the fluid flow in one 
direction.  By referring to Figure 5, we have 
several dead end edges at the other directions 
in which the fluid will never be flown to these 
end edges.  Therefore, for the better 
representation of calculating the effective 
permeability, these dead-end branches are 
eliminated and simplified as the following 
equivalent resistor network. 

 
K2
1  

≡ 
Figure 6 Simplified Equivalent Resistor for 

Permeability Parameter at each coarse cell in 
2-dimensional model 

This network is then used to provide the 
pressure solution within the coarse grid cell.  

K K21 K21

 
K2
1
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Pressure Solution with Random Walk and 
Method of Relaxation 

To be able to solve the pressure solution in 
fluid flow or the equivalent current solution in 
the electrical network as illustrated in Figure 
6, the random walk and method of relaxation 
are used with the combination of Kirchhoff’s 
theories.  

Random Walk and Method of Relaxation  

The method of relaxation was introduced for 
providing the approximate solutions to the 
discrete Dirichlet problem. The method is 
using the function that has the specific 
boundary values, for which the value at the 
interior points is the average of the values of 
its neighbours. This is similar to the problem 
that is required to be solved as there are the 
boundary conditions and each cross 
flow/resistor is dependent on the values of its 
neighbours. [6, 8] 

The way the method of relaxation works is 
that initially, all the interior points are set to be 
0 and the boundary points are fixed with the 
constant values of 1 and 0. It begins with an 
interior point, which the value is then adjusted 
with the average of values at its neighbours. 
Random walk to the next interior point is then 
approximated with the similar averaging 
method of the neighbours’ values. This 
process is then repeated for the rest of the 
interior points.  [6, 8] 

After adjusting all the interior points, the 
results will not be harmonic anymore as most 
of the time we are adjusting the value at a 
point to be the average value of its neighbours 
and also adjusting those neighbours’ values in 
the next process. In other word, readjusting 
those neighbours’ values has destroyed the 
harmony in this specific problem boundary. 
However, the values are more nearly harmony, 
if not harmony, than the initial function we 
started with. Thus, by repeating the above 
procedure, a better approximation more 
closely to the solution can be obtained. [6, 8] 

So, how can the method of relaxation be 
related to our problem? 

Kirchhoff’s Theories and Method of 
Relaxation 

As stated above, the Darcy’s law of equation, 
which governs the fluid flow equation, can be 
expressed with the equivalent equation as 
Ohm’s law equation for the electrical network. 
The voltage [V] in the electrical network is 

equivalent to the pressure drop X
P

∆
∆

 and the 
flowing current [I] is equivalent to the fluid 
flow rate [Q]. The permeability, which is the 
property of fluid flow in porous media, can be 
expressed with the equivalent terms of inverse 
value of resistance [R]. 

In the electrical network’s principal, the 
current and voltage at any nodes can be solved 
by using the Kirchhoff’s laws.  They are : 

• Kirchhoff’s current law 
• Kirchhoff’s voltage law 

Kirchhoff’s current law states that the sum of 
the currents entering or leaving a junction 
point at any instant is equal to zero. [Ref. 5]  

∑
=

=
k

j
jI

1
0

 

Equation 3 Kirchhoff’s Current Law, 
where k denotes the number of circuit 

elements connected to the node in 
question. 

The Kirchhoff’s current law holds the 
principle of conservation of charge. The 
number of electrons passing per second must 
be the same for all point in the circuit. Thus, 
this principle of conservation of charge is also 
equivalent to the conservation of mass within 
the porous media, as the fluid flow rate at any 
time into the reservoir should be equal to the 
fluid flow out from it. The illustration of the 
Kirchhoff’s current law is as shown in Figure 
7. 
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Figure 7 Illustrating Diagram of 
Kirchhoff's current law 

By referring to Figure 7, the Kirchhoff’s 
current law can be expressed as: 

03214

3214

=−−−
++=

IIII
IIII

 

Kirchhoff’s voltage law states that at any time 
instant the sum of voltages in a closed circuit 
is zero [Ref.5]. This voltage law holds the 
principle of conservation of energy, which is 
also required in the fluid flow description. The 
mathematical expression for illustrating this 
Kirchhoff’s voltage law is: 

nVVVE +++= ...21  
Equation 4 Kirchhoff’s Voltage Law 

The following diagram illustrates the above 
Kirchhoff’s voltage law. 

Figure 8 Illustrating Diagram of 
Kirchhoff's Voltage Law 

Therefore, for the following network as 
illustrated in Figure 9, the above-mentioned 
Kirchhoff’s Voltage and Current Laws can be 
recombined to obtain the voltage (V) at the 
centre of the nodes. 
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Figure 9 A Cell Network Diagram for 
Solving Permeability Fine Scale 

Network (Figure 4-6)  

 
By using the Kirchhoff’s current law, the 
network as illustrated in Figure 4-10 can then 
be solved as follows: 

IL = IR + IU + ID 

Substituting it with Ohm’s law as V = IR, 
then: 

D

D

U

U

R

R

L

L

R
VV

R
VV

R
VV

R
VV −

+
−

+
−

=
−

 

Rearranging the above one,  then: 
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Equation 5 Solving Voltage (V) at the 
centre of the node as illustrated with 

Figure 4-11 

From the simplified Equation 5, the voltage at 
any centre of the nodes can be solved by 
taking the inverse resistor (1/R) weighted 
average of the voltages in the neighbouring 
points. For the fluid flow in porous media, the 
pressure value (equivalent to voltage in 
electrical network) can then be approximated 
with the permeability weighted arithmetic 
average with the pressures at its surrounding 
cells. This averaging method is what the 
methods of relaxation used in the way of 
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approximating the value at the centre points 
with its neighbouring points.  

By taking the methods of relaxation and 
simplified Equation 5, the bigger network with 
any unlimited number of cells as illustrated in 
Figure 4-6 can then be solved. 

3.3 Averaging for New Effective 
Permeability 

The next step post solving the pressure 
solution within the network is to identifying 
the preferential pathways and to provide the 
single cell value for representing the 
“average” value of the effective permeability 
at the coarse scale model. 

With the law of nature, the particle will move 
from the greater to the lower potential. This is 
the same principal with fluid flow in the 
reservoir. The greater the pressure drop across 
the cell will have the greater tendency of the 
fluid to flow from one point to another one. 
Thus, once the pressure solution is obtained 
for the network as illustrated in Figure 4-6, the 
preferential path of fluid flow within the 
coarse grid system in the specific direction 
may be determined. These preferential paths 
will cause the differences in flow rates from 
one to another one within the coarse cell. 
Therefore, what should the representation of a 
single value for the effective permeability 
within this coarse cell be?  

 
Figure 10 Illustrating Preferential Paths within 

a Coarse Grid Cell 

Prior to averaging, the equivalent flow rate or 
current for the electrical term is required to be 
determined. By referring to Ohm’s law 
equation (Equation 2), the potential difference 
(voltage or pressure drop) across one node to 
the neighbour nodes and the current (or fluid 
flow rate) may be determined by knowing the 
resistance (or permeability) between the two 

(2) nodes. For illustration, please refer to 
Figure 11. 

 

P (or V) = 

1 
P (or V) = 

0 

∆P = Pi+1 – 

V = IR  

 (Electrical) 

∆P =Q.(1/K)  (≈ fluid flow 

Figure 11 Illustrating Voltage (or 
Pressure Difference), Current (or Fluid 
Flow Rate) within a Coarse Grid Cell 

In order to obtain the effective value of 
permeability for the coarse cell, the estimation 
of the overall resistance is required to be 
determined.  Within the coarse grid cell in the 
specific direction, the pressure difference (or 
the electrical potential/voltage difference) is 
known to be equal to 1 due to our definition 
for pressure boundary. If the current flowing 
(or fluid flow rate) through this coarse cell is 
known, the resultant of equivalent resistance 
(or permeability) may be determined.  

From the Kirchhoff’s current law, it stated that 
the sum of current flowing into the network 
would be the same as the sum of current 
flowing out from the network. In this way, the 
current flowing through the coarse grid cell 
can be known. Thus, the effective 
permeability can be defined as follows: 
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Equation 6 Derivation for Effective 
Permeability 
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From determining the preferential paths of the 
fluid to flow within the coarse grid cell, it was 
found that some paths might be more 
preferable compared to the other one. In this 
upscaling method, variation of the fluid flow 
paths within the cell will be beneficial to be 
captured as in reality as these various paths 
will be representing the various breakthrough 
of fluid flows from one end to another end.  
Furthermore, permeability is an intensive 
property while the resistance is an extensive 
one. Thus, the changes of dimensions is 
required to be considered within the 
determination of the effective permeability.  In 
order to capture the variability in fluid flow 
paths and the intensive properties of the 
permeability, modification on Equation 4-6 is 
required and similar averaging method to 
Arithmetic-Harmonic will be used.  

Steps on the modification of the effective 
permeability determination are summarized 
below:  

1. The current on each fine cellblock is 
calculated by taking product of the 
pressure difference with the permeability 
on that stream. 

2. The sum of current on each row is then 
determined. For the electrical network, the 
total current flowing through each row will 
be the same between the inlet and outlet 
current. Thus, the effective permeability as 
an extensive property becomes the inverse 
of the total current as shown in Equation 4-
6. However, the final modification on the 
effective permeability to become an 
intensive property is then required to be 
multiplied by the block dimension on that 
direction. For each row, the effective 

permeability is then determined as the 
following equation. 
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3. Similar to step 2, the final step is taking 
the average current of all rows within the 
coarse cell. For the electrical network, the 
total current will be the sum of current on 
each row. Thus, the effective permeability 
as an extensive property becomes the 
inverse of the total current as shown in 
Equation 4-6. Similar to step 2, 
dimensional changes are required to be 
incorporated for the intensive property 
such as permeability. Therefore, the final 
modification for the effective permeability 
as an intensive property is required to be 
divided by the total number of rows within 
the coarse cell. Thus, the effective 
permeability is then simply the average 
current of each row.   
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The summary of the steps in determining the 
effective permeability in direction X is shown 
in Figure 12. 
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P (or V) = 0 

∆P = Pi+1 – Pi 

P (or V) = 1 

V = IR   (Electrical) 
∆P =Q.(1/K)  (≈ fluid flow equation) 
Combining 2 equations: 
Ii = ∆Pi*Ki 
 

Sum current on each row 

Average current of 
all rows 

 
Figure 12 Modification for determining the Effective Permeability 

Treatment for Incorporating Unswept Area 
by modifying Saturation 

With any reservoir simulation studies, the 
relative permeability, which describes the 
fraction of permeability that is available for 
one fluid, in the presence of the other fluid 
flowing simultaneously through a porous 
media, is often defined by a single set of data 
at a constant porosity as Model B. This is not 
always true as the fluid behaviour of gas, oil 
and/or water is affected by the permeability, 
porosity and the initial water saturation. This 
can be seen clearly from the Timur’s equation, 
which is often used to predict the relationship 
between porosity, permeability and the initial 
water saturation.  

)/(136.0 24.4
WiSk φ=  

Equation 7 Timur’s equation 
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Figure 13 Variability of Permeability, Porosity 
and Water Saturation according to Timur’s 

equation 

Furthermore, fluid behaviour between two 
phases is often described with the Capillary 
number and Bond number.  The bond number, 
which describes the fundamental behaviour of 
the system with the buoyancy forces, is fixed 
for a particular fluid pair.  The magnitude of 
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the buoyant forces determines the maximum 
residual saturation and the threshold Capillary 
number for mobilization.  The magnitude of 
the Capillary number, which is describing the 
capillarity of the fluid forces acting on the 
rock, then determines the corresponding 
residual saturation by determining the total 
force acting on residual.  It is thus clear that 
the relationship between residual saturation 
and the capillary number derives from the 
geometry of the porous medium. 

nonWettingWetting

WettingWetting
Ca

q
N

,σ

µ
=

 
Equation 8 Capillary Number 
(Catchpole and Fulford, 1966) 

The Bond Number (NBO) was used to quantify 
the contribution of buoyant forces, which arise 
from difference in density between the two 
fluids. 
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Equation 9 Bond Number 

The “total effects” number (NTe) is the total 
acting on residual. 

BOCaTe NMNN .+=  
Equation 10 “Total Effects” number 

Due to this as described above, the 
modification in the relative permeability is 
required to co-operate the residual fluid 
remaining in the fine scale system.  
Permeability, which is the measure of the pore 
connectivity for the fluid flow in the porous 
media, is the most contributing factor in the 
remaining fluid saturation.  The residual fluid 
remaining in the system will be mainly in the 
shale area where it is the least preferential 
fluid flow path in the system and the 
permeability & porosity are very low. Shale 
permeability is found in the range up to 0.5 
mDarcy.  Due to this, the following 
permeability cut-off is used for describing the 
unswept area where the major residual fluid is 
still remaining in the system and will not be 
drained by any depletion scenarios.  

Initial Reservoir 

Fluid 

Permeability Cut-

off (mDarcy) 

Oil Phase 0.100 

Gas Phase 0.001 

Table 1 Permeability cut-off for residual fluid 
remaining in the reservoir 

 

Figure 14 Comparison Plot of Gas & Oil 
Production Rate With and Without Saturation 

Modification 

The relative permeability is normally 
described by the Corey’s equation as the 
following equation. 

Now
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Equation 11 Corey Equations for Oil-Water 

System 
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Equation 12 Corey Equations for Oil-Gas 

System 

It is then altered for co-operating the modified 
residual fluid saturation for the coarse grid 
scale with the Corey equation as described 
above.  

This is true for most of the cases.  Under 
steady state for the immiscible flow, the 
displacement in the system will be closed to 
incompressible and will prevail in the 
reservoir condition with the reservoir pressure 
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at any point remaining constant.  There must, 
of course, be a pressure differential between 
injection and production wells but the 
variation in the pressure dependent variables, 
viscosities and densities, resulting in this 
differential is ignored. In this displacement 
situation, the rate of the fluid being injected 
will result to be the same as the rate of fluid 
being produced.  

4 Results/Discussion 

Model description 

The model used is the 2D reservoir model (i.e. 
vertical cross sectional flow model with 2000 
cells (100x1x20 cells)) of an oil reservoir, 
which is taken from first case of the Tenth 
SPE Comparative Solution Project: A 
Comparison of Upscaling Techniques (SPE 
72469).  It is a heterogeneous reservoir, as 
shown in Figure 15. The permeability is 
correlated and distributed geostatistically over 
a small correlation length with the extensive 
size of shale strips acting as barrier in the 
model. The gas injection is used in this model 
for enhancing the ultimate recovery of the oil 
produced.  

 
Figure 15 Permeability Model at a 

Fine Scale 

For the comparison purposed, the above 
model will be coarsened from 100x1x20 cells 
(2000 cells) to 5x1x5 cells (25 cells).  The 

reason being is that both lateral and vertical 
variability of the permeability are quite 
heterogeneous.  In this experiment, finding the 
effective properties at any coarser scale will 
be required.  Thus, testing the upscaling 
algorithm to represent 80 fine scale cells as a 
single coarse cell will use.  

Result with Comparison to Various 
Upscaling Algorithms 

The reservoir simulation results of using the 
new upscaling algorithms are summarised in 
this section. The comparison plots of the 
cumulative oil and gas production are shown 
in Figure 16 and Figure 17 respectively. 

From the existed algorithms, the possible 
algorithms that can be used to represent the 
fine scale fluid flow behaviours are Arithmetic 
Harmonic and Diagonal Tensor.  The 
upscaling with the Diagonal Tensor algorithm 
seems to better predict the gas breakthrough 
time of approximately 70 –80 days earlier than 
the fine scale’s prediction, while the upscaling 
using the Arithmetic-Harmonic is better 
predicted the ultimate oil recovery at the end 
of the simulation.  However, with the 
Arithmetic Harmonic, the predicted 
cumulative oil recovery has slightly different 
profile compared to the fine scale prediction.  
It predicted very closely prior to breakthrough, 
but the deviation is increased as it goes further 
from breakthrough point, which signifies 
slightly differences in the reservoir prediction.  

Among those existed algorithms, Harmonic-
Arithmetic seems to be the worst algorithm to 
represent the fluid flow behaviour at the 
coarser scales.  It predicted later breakthrough 
and hence delayed the ultimate recovery time 
for the reservoir prediction, which can become 
quite significant in terms of reservoir 
management point of view. 
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Figure 16 Comparison Plot of Cumulative Oil Production  

 

 
Figure 17 Comparison Plot of Cumulative Gas Production 

Using the new upscaling algorithm, the 
prediction at the coarse scales has improved 
significantly.  The breakthrough time of the 
gas injected fluid can be represented more 
accurately by approximately 20 to 30 days of 
the simulation time, while the ultimate 
recovered oil produced is similar to the best 
predicted algorithm which is Arithmetic 
Harmonic.  

However, similar to most of the upscaling 
algorithms, the predictions at the coarse scale 
level seemed to have higher recovery of the oil 
produced in the reservoir, which is as expected 

due to unswept fluid remaining in the 
reservoir being produced at its coarser scale.  
The reservoir prediction with the new pseudo 
relative permeability by modifying its 
saturation to incorporate this unswept fraction 
of the fluid has indicated a much better 
improvement in the reservoir prediction at the 
coarser scale. 

The fluid saturation profiles at the end of the 
simulation time are also compared as shown in 
Figure 18 and Figure 19 at its fine and coarser 
scales with the new algorithm respectively.  
They are found to be similar in profiles. 
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Figure 18 Fluid Saturation Plot at Fine Scale

 
Figure 19 Fluid Saturation Plot at Coarse Scale (5x1x5 cells 

 

Quality Check on the New Upscaling 
Algorithm with different scale (10x1.5 coarse 
cells) 

For the quality checking for the new upscaling 
algorithm, the model at the fine scale is 
upscaled to 10x1x5 (50 cells) with the 

upscaling ratio of 10:1:4 (1 coarse cell = 40 
fine cells). 

The result of using different coarse scale with 
the new algorithm has concluded similar 
findings as discussed before for 5x1x5 coarse 
scale model. 
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Upscaled to 10x1x5 CumGas 

MMSCF 
CumOil 

BBL 
CumGasInj 

MMSCF 
Fine Scale 1.97 43434 2.21 

Arithmetic Harmonic 1.90 
(-3.5%) 

50534 
(+16.3%) 

2.19 
(-1.3%) 

Harmonic Arithmetic 1.78 
(-9.90%) 

50578 
(+16.4%) 

2.06 
(-7.0%) 

Diagonal Tensor 1.87 
(-5.14%) 

51166 
(+17.8%) 

2.16 
(-2.6%) 

Geometric 1.61 
(-18.5%) 

49468 
(+13.9%) 

1.89 
(-14.9%) 

New Algorithm 1.93 
(-2.1%) 

50399 
(+16.0%) 

2.22 
(0.0%) 

New Algorithm (Pseudo & Modified) 1.97 
(-0.0%) 

43419 
(-0.0%) 

2.22 
(0.0%) 

Table 2 Comparison Table for Oil & Gas Ultimate Recovery– 10x1x5 Coarse Cells 

 
Figure 20 Comparison Plot of Cumulative Oil Produced with 10x1x5 Coarse Cells 
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Figure 21 Comparison Plot of Cumulative Gas Produced with 10x1x5 Coarse Cells 

Result with Comparison to Pseudo Upscaling 
(Kyte and Berry) 

For comparison purposes, the reservoir 
prediction by using the new algorithm with the 
new pseudo method is also compared against 
the reservoir prediction by using the multi 
phase upscaling like Kyte & Berry method.  It 
was found that the new algorithm is better 
predicted the cumulative oil produced 
compared to Kyte & Berry method, while the 

cumulative gas produced is similar in profile 
between the two upscaling methods.  

Therefore, it can be concluded that the new 
algorithm has provided a significant 
improvement in upscaling theory.  It is not 
only improving by better prediction of the 
reservoir fluid flow behaviour at the coarser 
scale, but is also improving the significant 
amount time for upscaling as it is compared to 
the multiphase upscaling like Kyte & Berry 
method. 

 
Figure 22 Comparison Plot of CumulativeOil & Gas Produced with Pseudo 

Upscaling 
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5 Conclusions & Recommendations 

The following conclusions and 
recommendations are derived from the result. 

New upscaling algorithm has been 
successfully developed for providing 
better prediction of the fluid flow 
behaviour at its coarser scales compared 
to some existed upscaling algorithms like 
Diagonal tensor, arithmetic harmonic, 
harmonic arithmetic and/or multi phase 
upscaling like Kyte and Berry method.  

• 

• 

• 

• 

• 

Identified improvement by using the new 
upscaling algorithm is better 
representation for the fluid breakthrough 
estimation for the reservoir field study 
and also better accurate prediction of the 
ultimate recovered of the fluid produced.  

Upscaling should be assessed individually 
from one case to another. 

Treatment on the undrained/unswept fluid 
within the reservoir model should be 
treated carefully. Net To Gross 
representation for undrainage flow path 
will need to be assessed individually in 
each model.  

Streamlines simulation may be useful for 
identifying the unswept fluid paths within 
the reservoir models. 
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Nomenclature 
k permeability in fine cell 
K effective permeability in coarse cell 
Q  the flow rate 
A  cross sectional area 
P  pressure 
X  length in x direction 
µ  Viscosity 
V  electrical voltage 
I  electrical current  

R  electrical resistance 
Krg relative permeability of gas 
Krog relative permeability of gas in the 

presence of oil 
Krow relative permeability of water in the 

presence of oil 
Krw relative permeability of water 
Krg* Krg at the end point 
Krog* Krog at the end point 
Krow* Krow at the end point 
Krw* Krw at the end point 
h reservoir thickness 
L reservoir length 
∆P/∆L pressure change across reservoir 

length 

Subscript 

n, m, p number of blocks in x, y, z direction 
i, j, k block index 
x, y, z directional indication (x, y, z 

direction) 
A arithmetic average 
AH arithmetic harmonic average 
G geometric average 
H harmonic average 
HA harmonic arithmetic average 
g gas 
gc connate gas 
w water 
wc connate water 
orw residual oil  
org residual gas 
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Appendix C 
 New Upscaling Algorithm in IRAP RMS IPL Script 

// File Name: Relax_3D_XYZ_Final_Apr03_LH.ipl 
// Author: Lina Hartanto 
// 
// Capital letter represents the fine grid properties, while Lower case letter represents the coarse grid 
properties 
// 
// Declaration 
Int NO_COL, NO_ROW, NO_LAY, no_col, no_row, no_lay, no_iter 
Int I, J, K, i, j, k, tempI, tempJ, tempK, n 
Int UPCELLi, UPCELLj, UPCELLk 
Int tempi, tempj, tempk 
Parameter Kl, Kr, Ku, Kd, Kf, Kb 
Parameter KXl, KXr, KXu, KXd, KXf, KXb, WXl, WXr, WXu, WXd, WXf, WXb 
Parameter KZl, KZr, KZu, KZd, KZf, KZb, WZl, WZr, WZu, WZd, WZf, WZb 
Parameter KYl, KYr, KYu, KYd, KYf, KYb, WYl, WYr, WYu, WYd, WYf, WYb 
Parameter KX, KY, KZ 
Parameter WX, CurX, CurX2 
Parameter WZ, CurZ, CurZ2 
Parameter WY, CurY, CurY2 
Parameter CurrX, KXeff 
Parameter CurrZ, KZeff 
Parameter CurrY, KYeff 
//Parameter KXeffTEMP, KZeffTEMP, KYeffTEMP 
Parameter ITER 
 
Zone Z = @ZONES[32] //Zone Number for Fine Model 
Zone z = @ZONES[33] //Zone Number for Coarse Model to be upscaled to. 
 
NO_COL = Z.columns 
NO_ROW = Z.rows 
NO_LAY = Z.layers 
 
no_col = z.columns 
no_row = z.rows 
no_lay = z.layers 
 
// Assigning the Permeability Values 
// Left hand side K_X 
Kl = CreateContinuousParameter(Z, "Kleft") 
KX = Z.K_X 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
   tempi = 1 
     WHILE tempi <= no_col DO 
       UPCELLk = tempk*NO_LAY/no_lay 
       K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <=UPCELLk DO 
      UPCELLj = tempj*NO_ROW/no_row 
      J = (tempj-1)*UPCELLj/tempj+1 
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    WHILE J <=UPCELLj DO 
    UPCELLi = tempi*NO_COL/no_col 
     I = (tempi-1)*UPCELLi/tempi + 1 
      Kl[I,J,K]=KX[I,J,K]*2 
      I = I + 1  
      WHILE I <=UPCELLi DO 
       tempI = I - 1 
       Kl[I,J,K] = 1/(1/(2*KX[I,J,K])+1/(KX[tempI,J,K]*2)) 
      I = I+1 
      ENDWHILE 
    J=J+1 
    ENDWHILE 
    K=K+1 
    ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
Iconize(Kl) 
 
//  RightHand Side K_X 
Kr = CreateContinuousParameter(Z, "Kright") 
KX = Z.K_X 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLk = tempk*NO_LAY/no_lay 
   K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <=UPCELLk DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj+1 
    WHILE J <=UPCELLj DO 
     UPCELLi = tempi*NO_COL/no_col 
     I = (tempi-1)*UPCELLi/tempi + 1  
     WHILE I <=UPCELLi DO 
      tempI = I + 1 
      IF tempI <=UPCELLi THEN Kr[I,J,K] = 
1/(1/(2*KX[I,J,K])+1/(KX[tempI,J,K]*2)) ENDIF 
     I = I+1 
     ENDWHILE 
     Kr[UPCELLi,J,K]=KX[UPCELLi,J,K]*2 
    J=J+1 
    ENDWHILE 
   K=K+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
Iconize(Kr) 
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// Front side K_Y 
Kf = CreateContinuousParameter(Z, "Kfront") 
KY = Z.K_Y 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLk = tempk*NO_LAY/no_lay 
   K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <=UPCELLk DO 
    UPCELLi = tempi*NO_COL/no_col 
    I = (tempi-1)*UPCELLi/tempi+1 
    WHILE I <=UPCELLi DO 
     tempJ = J - 1 
     UPCELLj = tempj*NO_ROW/no_row 
     J = (tempj-1)*UPCELLj/tempj + 1 
     Kf[I,J,K]=KY[I,J,K]*2 
     J = J + 1  
     WHILE J <=UPCELLj DO 
      Kf[I,J,K] = 1/(1/(2*KY[I,J,K])+1/(KY[I,tempJ,K]*2)) 
     J = J+1 
     ENDWHILE 
    I=I+1 
    ENDWHILE 
   K=K+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
Iconize(Kf) 
 
//  Back Side K_Y 
Kb = CreateContinuousParameter(Z, "Kback") 
KY = Z.K_Y 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLk = tempk*NO_LAY/no_lay 
   K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <=UPCELLk DO 
    UPCELLi = tempi*NO_COL/no_col 
    I = (tempi-1)*UPCELLi/tempi + 1  
    WHILE I <=UPCELLi DO 
     UPCELLj = tempj*NO_ROW/no_row 
     J = (tempj-1)*UPCELLj/tempj+1 
     WHILE J <=UPCELLj DO 
      tempJ = J + 1 
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      IF tempJ <= UPCELLj THEN Kb[I,J,K] = 
1/(1/(2*KY[I,J,K])+1/(2*KY[I,tempJ,K])) ENDIF     
     J = J+1 
     ENDWHILE 
     Kb[I,UPCELLj,K]=KY[I,UPCELLj,K]*2 
    I =I+1 
    ENDWHILE 
   K=K+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
Iconize(Kb) 
 
// Up side K_Z 
Ku = CreateContinuousParameter(Z, "Kup") 
KZ = Z.K_Z 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLi = tempi*NO_COL/no_col 
   I = (tempi-1)*UPCELLi/tempi + 1 
   WHILE I <=UPCELLi DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj+1 
    WHILE J <=UPCELLj DO 
     UPCELLk = tempk*NO_LAY/no_lay 
     K = (tempk-1)*UPCELLk/tempk +1 
     Ku[I,J,K]=KZ[I,J,K]*2 
     K = K + 1  
     WHILE K <=UPCELLk DO 
      tempK = K - 1 
      Ku[I,J,K] = 1/(1/(2*KZ[I,J,K])+1/(KZ[I,J,tempK]*2)) 
     K=K+1 
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   I = I+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
Iconize(Ku) 
 
//  Down Side K_Z 
Kd = CreateContinuousParameter(Z, "Kdown") 
KZ = Z.K_Z 
tempk = 1 
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WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLi = tempi*NO_COL/no_col 
   I = (tempi-1)*UPCELLi/tempi + 1  
   WHILE I <=UPCELLi DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj+1 
    WHILE J <=UPCELLj DO 
     UPCELLk = tempk*NO_LAY/no_lay 
     K = (tempk-1)*UPCELLk/tempk +1 
     WHILE K <=UPCELLk DO 
      tempK = K + 1 
      IF tempK <=UPCELLk THEN Kd[I,J,K] = 
1/(1/(2*KZ[I,J,K])+1/(KZ[I,J,tempK]*2)) ENDIF 
      K=K+1 
     ENDWHILE 
     Kd[I,J,UPCELLk]=KZ[I,J,UPCELLk]*2 
    J=J+1 
    ENDWHILE 
   I = I+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
Iconize(Kd) 
 
// creating WX weighting Parameter Left 
WXl = CreateContinuousParameter(Z, "WXleft") 
WXr = CreateContinuousParameter(Z, "WXright") 
WXu = CreateContinuousParameter(Z, "WXup") 
WXd = CreateContinuousParameter(Z, "WXdown") 
WXf = CreateContinuousParameter(Z, "WXfront") 
WXb = CreateContinuousParameter(Z, "WXback") 
WZl = CreateContinuousParameter(Z, "WZleft") 
WZr = CreateContinuousParameter(Z, "WZright") 
WZu = CreateContinuousParameter(Z, "WZup") 
WZd = CreateContinuousParameter(Z, "WZdown") 
WZf = CreateContinuousParameter(Z, "WZfront") 
WZb = CreateContinuousParameter(Z, "WZback") 
WYl = CreateContinuousParameter(Z, "WYleft") 
WYr = CreateContinuousParameter(Z, "WYright") 
WYu = CreateContinuousParameter(Z, "WYup") 
WYd = CreateContinuousParameter(Z, "WYdown") 
WYf = CreateContinuousParameter(Z, "WYfront") 
WYb = CreateContinuousParameter(Z, "WYback") 
 
Iconize(WXl) 
Iconize(WXr) 
Iconize(WXd) 
Iconize(WXu) 
Iconize(WXf) 
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Iconize(WXb) 
Iconize(WZl) 
Iconize(WZr) 
Iconize(WZd) 
Iconize(WZu) 
Iconize(WZf) 
Iconize(WZb) 
Iconize(WYl) 
Iconize(WYr) 
Iconize(WYd) 
Iconize(WYu) 
Iconize(WYf) 
Iconize(WYb) 
 
// Creating the Permeability for X direction Calculation 
KXl = CreateContinuousParameter(Z, "KXleft") 
KXr = CreateContinuousParameter(Z, "KXright") 
KXu = CreateContinuousParameter(Z, "KXup") 
KXd = CreateContinuousParameter(Z, "KXdown") 
KXf = CreateContinuousParameter(Z, "KXfront") 
KXb = CreateContinuousParameter(Z, "KXback") 
KXl=Z.Kleft 
KXr=Z.Kright 
KXu=Z.Kup 
KXd=Z.Kdown 
KXf=Z.Kfront 
KXb=Z.Kback 
 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <= no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLi = tempi*NO_COL/no_col 
   I = (tempi-1)*UPCELLi/tempi + 1  
   WHILE I <=UPCELLi DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj+1 
    WHILE J <=UPCELLj DO 
     UPCELLk = tempk*NO_LAY/no_lay 
     K = (tempk-1)*UPCELLk/tempk +1 
     WHILE K <= UPCELLk DO 
      IF K = UPCELLk THEN KXd[I,J,K]=0 ENDIF 
      IF J = UPCELLj THEN KXb[I,J,K]=0 ENDIF 
      IF K = (tempk-1)*UPCELLk/tempk + 1 THEN KXu[I,J,K]=0 ENDIF 
      IF J = (tempj-1)*UPCELLj/tempj + 1 THEN KXf[I,J,K]=0 ENDIF 
      tempI=(tempi-1)*UPCELLi/tempi+1 
      WXl[tempI,J,K] = 1 
     K = K+1 
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   I=I+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
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 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
Iconize(KXl) 
Iconize(KXr) 
Iconize(KXu) 
Iconize(KXd) 
Iconize(KXf) 
Iconize(KXb) 
 
// creating Permeability Parameter for Z direction calculation 
KZl = CreateContinuousParameter(Z, "KZleft") 
KZr = CreateContinuousParameter(Z, "KZright") 
KZu = CreateContinuousParameter(Z, "KZup") 
KZd = CreateContinuousParameter(Z, "KZdown") 
KZf = CreateContinuousParameter(Z, "KZfront") 
KZb = CreateContinuousParameter(Z, "KZback") 
KZl=Z.Kleft 
KZr=Z.Kright 
KZu=Z.Kup 
KZd=Z.Kdown 
KZf=Z.Kfront 
KZb=Z.Kback 
 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLk = tempk*NO_LAY/no_lay 
   K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <= UPCELLk DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj+1 
    WHILE J <=UPCELLj DO 
     UPCELLi = tempi*NO_COL/no_col 
     I = (tempi-1)*UPCELLi/tempi + 1  
     WHILE I <= UPCELLi DO 
      IF I = UPCELLi THEN KZr[I,J,K]=0 ENDIF 
      IF J = UPCELLj THEN KZb[I,J,K]=0 ENDIF 
      IF I = (tempi-1)*UPCELLi/tempi +1 THEN KZl[I,J,K]=0 ENDIF 
      IF J = (tempj-1)*UPCELLj/tempj + 1 THEN KZf[I,J,K]=0 ENDIF 
      tempK=(tempk-1)*UPCELLk/tempk+1 
      WZu[I,J,tempK] = 1 
     I = I+1      
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   K=K+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
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ENDWHILE 
 
Iconize(KZr) 
Iconize(KZl) 
Iconize(KZf) 
Iconize(KZb) 
Iconize(KZu) 
Iconize(KZd) 
 
// Creating Permeability parameter for Y direction calculation 
KYl = CreateContinuousParameter(Z, "KYleft") 
KYr = CreateContinuousParameter(Z, "KYright") 
KYu = CreateContinuousParameter(Z, "KYup") 
KYd = CreateContinuousParameter(Z, "KYdown") 
KYf = CreateContinuousParameter(Z, "KYfront") 
KYb = CreateContinuousParameter(Z, "KYback") 
KYl=Z.Kleft 
KYr=Z.Kright 
KYu=Z.Kup 
KYd=Z.Kdown 
KYf=Z.Kfront 
KYb=Z.Kback 
 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLi = tempi*NO_COL/no_col 
   I= (tempi-1)*UPCELLi/tempi + 1  
   WHILE I <= UPCELLi DO 
    UPCELLk = tempk*NO_LAY/no_lay 
    K = (tempk-1)*UPCELLk/tempk +1 
    WHILE K <= UPCELLk DO 
     UPCELLj = tempj*NO_ROW/no_row 
     J = (tempj-1)*UPCELLj/tempj+1 
     WHILE J <=UPCELLj DO 
      IF I = UPCELLi THEN KYr[I,J,K]=0 ENDIF 
      IF K = UPCELLk THEN KYd[I,J,K]=0 ENDIF 
      IF I = (tempi-1)*UPCELLi/tempi +1 THEN KYl[I,J,K]=0 ENDIF 
      IF K = (tempk-1)*UPCELLk/tempk + 1 THEN KYu[I,J,K]=0 ENDIF 
      tempJ=(tempj-1)*UPCELLj/tempj+1 
      WYf[I,tempJ,K] = 1 
      J = J+1      
     ENDWHILE 
    K=K+1 
    ENDWHILE 
   I=I+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
Iconize(KYl) 
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Iconize(KYr) 
Iconize(KYu) 
Iconize(KYd) 
Iconize(KYf) 
Iconize(KYb) 
 
// Calculation for Iteration in X direction 
WX = CreateContinuousParameter(Z,"newWX") 
Iconize(WX) 
ITER= CreateContinuousParameter(Z, "iter") 
Iconize(ITER) 
n = 1 
no_iter = 25 
WHILE n <= no_iter DO 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <= no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLk = tempk*NO_LAY/no_lay 
   K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <=UPCELLk DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj + 1 
    WHILE J <=UPCELLj DO 
     UPCELLi = tempi*NO_COL/no_col 
     I = (tempi-1)*UPCELLi/tempi +1 
     WHILE I <=UPCELLi DO   
      WX[I,J,K] = KXl[I,J,K]*WXl[I,J,K]+KXr[I,J,K]*WXr[I,J,K]  
      WX[I,J,K] = WX[I,J,K]+KXd[I,J,K]*WXd[I,J,K]+KXu[I,J,K]*WXu[I,J,K] 
      WX[I,J,K] = WX[I,J,K]+KXf[I,J,K]*WXf[I,J,K]+KXb[I,J,K]*WXb[I,J,K] 
      WX[I,J,K] = 
WX[I,J,K]/(KXl[I,J,K]+KXr[I,J,K]+KXd[I,J,K]+KXu[I,J,K]+KXf[I,J,K]+KXb[I,J,K]) 
//      updating values      
      tempI = I - 1 
      IF tempI >= (((tempi-1)*UPCELLi/tempi)+1) AND tempI<=UPCELLi THEN 
WXr[tempI,J,K] = WX[I,J,K] ENDIF 
 
      tempI = I + 1 
      IF tempI <= UPCELLi THEN WXl[tempI,J,K] = WX[I,J,K] ENDIF 
 
//      Restoring original value 
      IF I =((tempi-1)*UPCELLi/tempi) +1 THEN WXl[I,J,K]= 1 ENDIF 
      IF I = UPCELLi THEN WXr[I,J,K] = 0 ENDIF 
 
      tempK = K + 1 
      IF tempK <= UPCELLk THEN WXu[I,J,tempK] = WX[I,J,K] ENDIF 
 
      tempK = K - 1 
      IF tempK >=(((tempk-1)*UPCELLk/tempk) +1) AND tempK <= UPCELLk 
THEN WXd[I,J,tempK] = WX[I,J,K] ENDIF 
 
      IF K = ((tempk-1)*UPCELLk/tempk) +1 THEN WXu[I,J,K] = 0 ENDIF  
      IF K = UPCELLk THEN WXd[I,J,K] = 0 ENDIF  
 
      tempJ = J + 1 
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      IF tempJ <= UPCELLj THEN WXf[I,tempJ,K] = WX[I,J,K] ENDIF 
 
      tempJ = J - 1 
      IF tempJ >=(((tempj-1)*UPCELLj/tempj) +1) AND tempJ <= UPCELLj THEN 
WXb[I,tempJ,K] = WX[I,J,K] ENDIF 
       
      IF J = ((tempj-1)*UPCELLj/tempj) +1 THEN WXf[I,J,K] = 0 ENDIF 
      IF J = UPCELLj THEN WXb[I,J,K] = 0 ENDIF 
      SetParameter(Z,"iter",ITER) 
      SetParameter(Z,"WXleft",WXl) 
      SetParameter(Z,"WXright",WXr) 
      SetParameter(Z,"WXup",WXu) 
      SetParameter(Z,"WXdown",WXd) 
      SetParameter(Z,"WXfront",WXf) 
      SetParameter(Z,"WXback",WXb)  
      SetParameter(Z,"newWX",WX)   
     I = I + 1 
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   K=K+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
n = n+1 
ENDWHILE 
 
// Calculation for Iteration in Z direction 
WZ = CreateContinuousParameter(Z,"newWZ") 
Iconize(WZ) 
n = 1 
no_iter = 25 
WHILE n <= no_iter DO 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLk = tempk*NO_LAY/no_lay 
   K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <=UPCELLk DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj + 1 
    WHILE J <=UPCELLj DO 
     UPCELLi = tempi*NO_COL/no_col 
     I = (tempi-1)*UPCELLi/tempi +1 
     WHILE I <=UPCELLi DO   
      WZ[I,J,K] = KZl[I,J,K]*WZl[I,J,K]+KZr[I,J,K]*WZr[I,J,K]  
      WZ[I,J,K] = WZ[I,J,K]+KZd[I,J,K]*WZd[I,J,K]+KZu[I,J,K]*WZu[I,J,K] 
      WZ[I,J,K] = WZ[I,J,K]+KZf[I,J,K]*WZf[I,J,K]+KZb[I,J,K]*WZb[I,J,K] 
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      WZ[I,J,K] = 
WZ[I,J,K]/(KZl[I,J,K]+KZr[I,J,K]+KZd[I,J,K]+KZu[I,J,K]+KZf[I,J,K]+KZb[I,J,K]) 



 
//      updating values 
      tempK = K - 1 
      IF tempK >= (((tempk-1)*UPCELLk/tempk) +1) AND tempK <=UPCELLk 
THEN WZd[I,J,tempK] = WZ[I,J,K] ENDIF 
      tempK = K + 1 
      IF tempK <= UPCELLk THEN WZu[I,J,tempK] = WZ[I,J,K] ENDIF 
 
//      Restoring original value 
      IF K =((tempk-1)*UPCELLk/tempk) +1 THEN WZu[I,J,K]= 1 ENDIF  
      IF K = UPCELLk THEN WZd[I,J,K] = 0 ENDIF 
 
      tempI = I + 1 
      IF tempI >=(((tempi-1)*UPCELLi/tempi) +1) AND tempI <=UPCELLi THEN 
WZl[tempI,J,K] = WZ[I,J,K] ENDIF 
 
      tempI = I - 1 
      IF tempI >=(((tempi-1)*UPCELLi/tempi) +1) AND tempI <=UPCELLi THEN 
WZr[tempI,J,K] = WZ[I,J,K] ENDIF 
 
      IF I = ((tempi-1)*UPCELLi/tempi) + 1 THEN WZl[I,J,K] = 0 ENDIF 
      IF I = UPCELLi THEN WZr[I,J,K] = 0 ENDIF 
 
      tempJ = J + 1 
      IF tempJ <= UPCELLj THEN WZf[I,tempJ,K] = WZ[I,J,K] ENDIF 
 
      tempJ = J - 1 
      IF tempJ >=(((tempj-1)*UPCELLj/tempj) +1) AND tempJ <= UPCELLj THEN 
WZb[I,tempJ,K] = WZ[I,J,K] ENDIF 
       
      IF J = ((tempj-1)*UPCELLj/tempj) +1 THEN WZf[I,J,K] = 0 ENDIF 
      IF J = UPCELLj THEN WZb[I,J,K] = 0 ENDIF 
      SetParameter(Z,"iter",ITER) 
      SetParameter(Z,"WZleft",WZl) 
      SetParameter(Z,"WZright",WZr) 
      SetParameter(Z,"WZup",WZu) 
      SetParameter(Z,"WZdown",WZd) 
      SetParameter(Z,"WZfront",WZf) 
      SetParameter(Z,"WZback",WZb)  
      SetParameter(Z,"newWZ",WZ)  
     I = I + 1 
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   K=K+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
n = n+1 
ENDWHILE 
 
// Calculation for Iteration in Y direction 
WY = CreateContinuousParameter(Z,"newWY") 
Iconize(WY) 
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n = 1 
no_iter = 20 
WHILE n <= no_iter DO 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLk = tempk*NO_LAY/no_lay 
   K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <=UPCELLk DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj + 1 
    WHILE J <=UPCELLj DO 
     UPCELLi = tempi*NO_COL/no_col 
     I = (tempi-1)*UPCELLi/tempi +1 
     WHILE I <=UPCELLi DO   
      WY[I,J,K] = 
KYl[I,J,K]*WYl[I,J,K]+KYr[I,J,K]*WYr[I,J,K]+KYd[I,J,K]*WYd[I,J,K]+KYu[I,J,K]*WYu[I,J,K] 
      WY[I,J,K] = WY[I,J,K]+KYf[I,J,K]*WYf[I,J,K]+KYb[I,J,K]*WYb[I,J,K] 
      WY[I,J,K] = 
WY[I,J,K]/(KYl[I,J,K]+KYr[I,J,K]+KYd[I,J,K]+KYu[I,J,K]+KYf[I,J,K]+KYb[I,J,K]) 
//      updating values 
      tempJ = J - 1 
      IF tempJ >= (((tempj-1)*UPCELLj/tempj) +1) AND tempJ <=UPCELLj THEN 
WYb[I,tempJ,K] = WY[I,J,K] ENDIF 
      tempJ = J + 1 
      IF tempJ <= UPCELLj THEN WYf[I,tempJ,K] = WY[I,J,K] ENDIF 
 
//      Restoring original value 
      IF J =((tempj-1)*UPCELLj/tempj) +1 THEN WYf[I,J,K]= 1 ENDIF 
      IF J = UPCELLj THEN WYb[I,J,K] = 0 ENDIF  
 
      tempI = I + 1 
      IF tempI >=(((tempi-1)*UPCELLi/tempi) +1) AND tempI <=UPCELLi THEN 
WYl[tempI,J,K] = WY[I,J,K] ENDIF 
 
      tempI = I - 1 
      IF tempI >=(((tempi-1)*UPCELLi/tempi) +1) AND tempI <=UPCELLi THEN 
WYr[tempI,J,K] = WY[I,J,K] ENDIF 
      IF I = ((tempi-1)*UPCELLi/tempi) + 1 THEN WYl[I,J,K] = 0 ENDIF 
      IF I = UPCELLi THEN WYr[I,J,K] = 0 ENDIF  
 
      tempK = K + 1 
      IF tempK <= UPCELLk THEN WYu[I,J,tempK] = WY[I,J,K] ENDIF 
 
      tempK = K - 1 
      IF tempK >=(((tempk-1)*UPCELLk/tempk) +1) AND tempK <= UPCELLk 
THEN WYd[I,J,tempK] = WY[I,J,K] ENDIF 
       
      IF K = ((tempk-1)*UPCELLk/tempk) +1 THEN WYu[I,J,K] = 0 ENDIF 
      IF K = UPCELLk THEN WYd[I,J,K] = 0 ENDIF 
      SetParameter(Z,"iter",ITER) 
      SetParameter(Z,"WYleft",WYl) 
      SetParameter(Z,"WYright",WYr) 
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      SetParameter(Z,"WYdown",WYd) 
      SetParameter(Z,"WYfront",WYf) 
      SetParameter(Z,"WYback",WYb)  
      SetParameter(Z,"newWY",WY) 
     I = I + 1 
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   K=K+1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
n = n+1 
ENDWHILE 
 
// calculating the CurrentX through the system 
CurX = CreateContinuousParameter(Z,"CurrentX") 
CurX2 = CreateContinuousParameter(Z,"CurrentXright") 
Iconize(CurX) 
Iconize(CurX2) 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLk = tempk*NO_LAY/no_lay 
   K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <=UPCELLk DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj+1 
    WHILE J <=UPCELLj DO 
     UPCELLi = tempi*NO_COL/no_col 
     I = (tempi-1)*UPCELLi/tempi +1 
     WHILE I <=UPCELLi DO 
      IF I > (tempi-1)*UPCELLi/tempi +1 AND I < UPCELLi THEN  
       tempI = I - 1 
       CurX[I,J,K] = ((WX[tempI,J,K]- WX[I,J,K])*KXl[I,J,K]) 
      ENDIF 
      IF I = (tempi-1)*UPCELLi/tempi +1 THEN CurX[I,J,K] = ((1 - WX[I,J,K])* 
KXl[I,J,K]) ENDIF      
      tempI = I + 1 
      IF tempI <= UPCELLi THEN CurX2[I,J,K] = (WX[I,J,K]- 
WX[tempI,J,K])*KXr[I,J,K] ENDIF 
      IF tempI >= UPCELLi THEN CurX2[I,J,K] = (WX[I,J,K])*KXr[I,J,K] ENDIF 
      SetParameter(Z,"CurrentX",CurX) 
      SetParameter(Z,"CurrentXright",CurX2) 
     I = I + 1 
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   K=K+1 
   ENDWHILE 
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  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
 
// calculating the CurrentZ through the system 
CurZ = CreateContinuousParameter(Z,"CurrentZ") 
CurZ2 = CreateContinuousParameter(Z,"CurrentZdown") 
Iconize(CurZ) 
Iconize(CurZ2) 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLi = tempi*NO_COL/no_col 
   I = (tempi-1)*UPCELLi/tempi +1 
   WHILE I <=UPCELLi DO  
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj+1 
    WHILE J <=UPCELLj DO 
     UPCELLk = tempk*NO_LAY/no_lay 
     K = (tempk-1)*UPCELLk/tempk +1  
     WHILE K <=UPCELLk DO      
      IF K = (tempk-1)*UPCELLk/tempk +1 THEN CurZ[I,J,K] = (1-
WZ[I,J,K])*KZu[I,J,K] ENDIF 
      IF K >(tempk-1)*UPCELLk/tempk+1 AND K< UPCELLk THEN 
       tempK = K - 1 
       CurZ[I,J,K] = (WZ[I,J,tempK]- WZ[I,J,K])*KZu[I,J,K] 
      ENDIF 
      tempK = K +1 
      IF tempK <= UPCELLk THEN CurZ2[I,J,K] = (WZ[I,J,K]- 
WZ[I,J,tempK])*KZd[I,J,K] ENDIF 
      IF tempK >= UPCELLk THEN CurZ2[I,J,K] = (WZ[I,J,K])*KZd[I,J,K] ENDIF 
      SetParameter(Z,"CurrentZ",CurZ) 
      SetParameter(Z,"CurrentZdown",CurZ2) 
     K = K + 1 
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   I = I +1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
 
// Calculating the CurrentY through the system 
CurY = CreateContinuousParameter(Z,"CurrentY") 
CurY2 = CreateContinuousParameter(Z,"CurrentYback") 
Iconize(CurY) 
Iconize(CurY2) 
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tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   UPCELLi = tempi*NO_COL/no_col 
   I = (tempi-1)*UPCELLi/tempi +1 
   WHILE I <=UPCELLi DO  
    UPCELLk = tempk*NO_LAY/no_lay 
    K = (tempk-1)*UPCELLk/tempk+1 
    WHILE K <=UPCELLk DO 
     UPCELLj = tempj*NO_ROW/no_row 
     J = (tempj-1)*UPCELLj/tempj +1 
     WHILE J <= UPCELLj DO 
      IF J = (tempj-1)*UPCELLj/tempj +1 THEN CurY[I,J,K] = (1-WY[I,J,K])* 
KYf[I,J,K] ENDIF 
      IF J > (tempj-1)*UPCELLj/tempj +1 AND J < UPCELLj THEN 
       tempJ = J - 1 
       CurY[I,J,K] = (WY[I,tempJ,K]- WY[I,J,K])*KYf[I,J,K] 
      ENDIF 
      tempJ = J +1 
      IF tempJ <= UPCELLj THEN CurY2[I,J,K] = (WY[I,J,K]- 
WY[I,tempJ,K])*KYb[I,J,K] ENDIF 
      IF tempJ >= UPCELLj THEN CurY2[I,J,K] = (WY[I,J,K])*KYb[I,J,K] ENDIF 
      SetParameter(Z,"CurrentY",CurY) 
      SetParameter(Z,"CurrentYback",CurY2) 
     J = J + 1 
     ENDWHILE 
    K=K+1 
    ENDWHILE 
   I = I +1 
   ENDWHILE 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
 
// Parameter CurrentX 
// For CurrentX calculation 
CurrX = Z.CurrentX 
KXeff = CreateContinuousParameter(z,"K_Xeff") 
Iconize(KXeff) 
// Setting the upscale k to the upscaled grid and calculation of K effective 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   KXeff[tempi,tempj,tempk] = 0 
   UPCELLi = tempi*NO_COL/no_col 
   I = (tempi-1)*UPCELLi/tempi +1 
   WHILE I <=UPCELLi DO 
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    J = (tempj-1)*UPCELLj/tempj+1 
    WHILE J <=UPCELLj DO 
     UPCELLk = tempk*NO_LAY/no_lay 
     K = (tempk-1)*UPCELLk/tempk +1 
     WHILE K <= UPCELLk DO  
      KXeff[tempi,tempj,tempk]= KXeff[tempi,tempj,tempk]+ CurrX[I,J,K]  
     K = K + 1 
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   I=I+1 
   ENDWHILE 
   KXeff[tempi,tempj,tempk] = KXeff[tempi,tempj,tempk]/(NO_LAY/ no_lay) 
   SetParameter(z,"K_Xeff",KXeff) 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
 
// Parameter CurrentZ 
// For CurrentZ calculation 
CurrZ = Z.CurrentZ 
KZeff = CreateContinuousParameter(z,"K_Zeff") 
Iconize(KZeff) 
// Setting the upscale k to the upscaled grid and calculation of K effective 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   KZeff[tempi,tempj,tempk] = 0 
   UPCELLk = tempk*NO_LAY/no_lay 
   K = (tempk-1)*UPCELLk/tempk +1 
   WHILE K <= UPCELLk DO 
    UPCELLj = tempj*NO_ROW/no_row 
    J = (tempj-1)*UPCELLj/tempj+1 
    WHILE J <= UPCELLj DO 
     UPCELLi = tempi*NO_COL/no_col 
     I = (tempi-1)*UPCELLi/tempi +1 
     WHILE I <= UPCELLi DO 
      KZeff[tempi,tempj,tempk] = KZeff[tempi,tempj,tempk]+CurrZ[I,J,K] 
     I = I + 1 
     ENDWHILE 
    J=J+1 
    ENDWHILE 
   K=K+1 
   ENDWHILE 
   KZeff[tempi,tempj,tempk] = KZeff[tempi,tempj,tempk]/((NO_COL/ no_col)) 
   SetParameter(z,"K_Zeff",KZeff) 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
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ENDWHILE 
 
// Parameter CurrentY 
// For CurrentY calculation 
CurrY = Z.CurrentY 
KYeff = CreateContinuousParameter(z,"K_Yeff") 
Iconize(KYeff) 
// Setting the upscale k to the upscaled grid and calculation of K effective 
tempk = 1 
WHILE tempk <=no_lay DO 
 tempj = 1 
 WHILE tempj <=no_row DO 
  tempi = 1 
  WHILE tempi <= no_col DO 
   KYeff[tempi,tempj,tempk] = 0 
   UPCELLj = tempj*NO_ROW/no_row 
   J = (tempj-1)*UPCELLj/tempj+1 
   WHILE J <= UPCELLj DO 
    UPCELLk = tempk*NO_LAY/no_lay 
    K = (tempk-1)*UPCELLk/tempk +1 
    WHILE K <= UPCELLk DO 
     UPCELLi = tempi*NO_COL/no_col 
     I = (tempi-1)*UPCELLi/tempi +1 
     WHILE I <= UPCELLi DO 
      KYeff[tempi,tempj,tempk] = KYeff[tempi,tempj,tempk]+CurrY[I,J,K] 
     I = I + 1 
     ENDWHILE 
    K=K+1 
    ENDWHILE 
   J=J+1 
   ENDWHILE 
   KYeff[tempi,tempj,tempk] = KYeff[tempi,tempj,tempk]/((NO_LAY/ no_lay)) 
   SetParameter(z,"K_Yeff",KYeff) 
  tempi = tempi +1 
  ENDWHILE 
 tempj = tempj +1 
 ENDWHILE 
tempk = tempk + 1 
ENDWHILE 
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