
Enhanced Mirrored Servers for Network Games
Steven Daniel Webb Sieteng Soh

Curtin University of Technology
Department of Computing
Perth, Western Australia

+61 8 9266 7680

William Lau

{steven.webb@postgrad,soh@cs,lauhow@cs}.curtin.edu.au

ABSTRACT
The Mirrored Server (MS) architecture uses multiple mirrored
servers across multiple locations to alleviate the bandwidth
bottleneck in the Client/Server (C/S) architecture. Each mirror
receives and multicasts player updates to the others, simulates
the game, and disseminates the new game state to players.
However, keeping the game state consistent between mirrors in
the presence of network delay, and maintaining game
responsiveness requires each server in MS to simulate the game
multiple times for each game update, and additional times in the
event of costly rollbacks. In this paper we propose the Enhanced
Mirrored Server (EMS) architecture. Like in the Peer-to-Peer
architecture, EMS allows peers to exchange updates directly,
resulting in a higher tolerance to delay at the mirrors. We
propose using bucket synchronization in the mirrors so that each
server in EMS simulates the game only once for each update and
does not require rollbacks. The server disseminates updates to
clients only in the event of inconsistency, and thus its outgoing
bandwidth is lower than in MS. Our EMS uses cryptographic
techniques to provide security equivalent to C/S, and prevents
the timestamp cheat possible in MS. Our analytical analysis and
simulations show the advantages of EMS over MS.

Categories and Subject Descriptors
C.2.4 [Computer-communications networks]: Distributed
applications – Client/server, distributed applications.

General Terms
Algorithms, Performance, Reliability, Security.

Keywords
Architecture, cheating, client/server, mirrored servers, MMOG,
peer-to-peer.

1. INTRODUCTION
Most networked games use a Client/Server (C/S) architecture, in
which the server is the game authority whose tasks include: (i)
receiving player updates, (ii) simulating game play, (iii)
validating and resolving conflicts in the simulation, (iv)

disseminating updates to clients, (v) storing the current game
state, (vi) storing the offline player's avatar state, and (vii)
authenticating players, downloading their avatar state, and
billing. With only one centralized trusted server, keeping the
game consistent and cheat free in C/S is straightforward.
Unfortunately, C/S suffers from the following limitations: (i) the
server’s incoming and outgoing bandwidth are bottlenecks as the
publisher must provision sufficient bandwidth for tasks (i) and
(iv) at one location, which is an expensive re-occurring cost
[12]; (ii) players geographically close to the server have an
unfair advantage, as they will have lower game delay (response
time) than those situated further away [6]; (iii) the server’s
processing power is a bottleneck, as it must simulate game play,
and validate and resolve conflicts in the simulation, as well as
calculating player’s AoI in task (iv); (iv) redirecting updates
through the server increases delay while consuming bandwidth
and processing power; and (v) the server is a single point of
failure for the system.

Several game architectures [1,2,6,8,11] have been proposed to
address the C/S limitations. Cronin, et al [6] proposed the
Mirrored Server (MS) architecture comprising multiple mirrored
servers connected by fast private links to distribute the required
bandwidth, reduce the range of client delays, and address the
single point of failure. Keeping the game cheat proof in MS is
straightforward assuming trusted mirrors. However, to maintain
game state consistency MS requires expensive mirror
synchronization that increases the cost of game play simulation,
validation, and conflict resolution, deteriorating the server’s
processing bottleneck. Furthermore, MS is vulnerable to time
cheating (discussed in Section 2). It also increases delay, as all
updates must be redirected through the mirrors. There are
several proposals focusing on improving MS [10,14]; however,
they focus on fair and interactive event delivery, whereas we
focus on minimising delay, increasing scalability, and cheat
prevention. Note that fairness and interactivity may also be
achieved through minimising delay.

Several peer-to-peer (P2P) architectures [1,2,8] have been
proposed to address the C/S limitations. P2P is scalable as the
bandwidth and processing requirements are entirely handled by
the clients; hence, there is no central bottleneck. Furthermore,
P2P systems are resource growing; as the number of clients
increases so does the overall bandwidth and processing power of
the system. Unfortunately, keeping the game consistent and
cheat-free in P2P is significantly harder and more costly than in
C/S or MS, as the latter utilizes trusted servers/mirrors to store
the world state and to validate and authenticate all player
updates [9].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission from the authors.
NetGames'07, September 19-20, 2007, Melbourne, Australia

Cheating is a major concern in network games as it degrades the
experience of the majority of players who are honest [12]. This
is catastrophic for games using subscription models to generate
revenue [7]. Although addressing cheating, consistency, conflict
resolution, and persistency issues is simplified in C/S and MS,
some forms of cheatings such as collusion and proxy/reflex
enhancers are still possible [18]. Several P2P protocols [1,2,8]
have been proposed to solve protocol level cheats. However,
these protocols fail to address the information exposure and
invalid command cheats which are prevalent in MMOG, while
introducing new forms of cheating (e.g., the inconsistency cheat)
not possible in C/S or MS [17]. In addition, these solutions
require costly distributed validation-algorithms that increase
game delay and bandwidth, which is economically undesirable.

The Referee Anti-Cheat Scheme (RACS) [17] is a hybrid
between C/S and P2P that allows players to exchange updates
directly. As updates are not routed through a server, RACS has
lower delay than C/S and MS. RACS uses a trusted referee
combined with cryptographic techniques to prevent cheating.
Webb, et al [17] shows that RACS offers the same level of
cheat-prevention as C/S. Since the referee only sends updates in
the event of inconsistencies or when peers cannot communicate
directly its outgoing (out-) bandwidth is minimised.
Furthermore, as updates are not routed through a server, players
geographically far away are not disadvantaged. However, the
referee in RACS receives, simulates, and validates all updates,
and therefore its incoming (in-) bandwidth or processing power
may create a bottleneck. Furthermore all of the bandwidth must
be provisioned at one location. Although fewer AoI calculations
are performed in RACS than in C/S, they are all executed by one
referee. Finally, the referee in RACS is a single point of failure.
We propose the Enhanced MS (EMS) architecture that allows
players to exchange updates directly. EMS improves MS since
it: (i) reduces the mirror’s out-bandwidth; (ii) reduces the
mirror’s processing requirements in performing game
simulations and AoI calculations; (iii) reduces the average client
delay; and (iv) provides security against the timestamp cheat
possible in MS (see Section 2).

The layout of the paper is as follows. Section 2 provides the
background on MS. Section 3 describes the proposed EMS.
Section 4 provides an analytical and simulation evaluation of
EMS. Finally, Section 5 concludes the paper. Note, “he” should
be read as “he or she” throughout this paper.

2. MIRRORED SERVER (MS) SCHEME
2.1 MS Architecture
The MS architecture [4,5,6], shown in Figure 1, comprises
multiple trusted servers (mirrors) deployed at geographically
different locations connected via a private well-provisioned (low
delay, high bandwidth, multicast enabled, lossless) network.
Each mirror has its own Internet connection, and clients
typically connect to their closest mirror for the lowest game
delay. Each client sends every update to its local mirror (ingress
mirror – I-mirror) which, in turn, multicasts it to all other
mirrors (egress mirrors – E-mirrors). Then, all mirrors simulate
the game world based on all client updates, and therefore are
able to directly resolve inconsistencies. Finally every mirror
periodically sends updates to its clients. When updating a client,
mirrors use AoI filtering to reduce the update size. As mirrors

only perform AoI filtering for connected clients, this processing
requirement is shared between mirrors.

Figure 1. The Mirrored Server (MS) architecture

To reduce the bandwidth bottleneck and the range of client
delays, MS distributes the responsibility of sending and
receiving updates across multiple mirrors. The use of multiple
servers avoids the single point of failure in C/S. Player updates
in MS, like in C/S, are routed through mirrors; thus, increasing
delay and consuming the mirror’s bandwidth and processing
power. In addition, as discussed in Section 2.2, MS requires
Trailing State Synchronization (TSS) to keep the game state
consistent among mirrors in the presence of network delay, and
to achieve acceptable game responsiveness. TSS necessitates
each mirror in MS simulate every update multiple times, and
may incur multiple update disseminations and rollback steps,
and thus MS has high processing overhead.

2.2 MS Synchronization
Updates exchanged between mirrors may be received at
different times due to the transmission delay in the private
network, resulting in inconsistencies amongst mirrors. To solve
inconsistencies Cronin, et al [6] propose TSS to maintain the
interactivity of high paced games. Unlike in C/S in which the
server keeps only the current state of the game world, each
mirror using TSS maintains n states: S0, S1, S2, S3, …, Sn-1,
where S0 is the leading state and is immediately rendered to the
players screens for fast responsiveness, while the n-1 trailing
states are used to resolve inconsistencies that may occur due to
update delay and/or loss. Each TSS state has increasing delay
behind the wall clock time. When an E-mirror receives an
update from another mirror the update is simulated in all states
newer than the update time. For example, consider three states
S0, S1, and S2 with delays of 0ms, 100ms, and 200ms
respectively. A new update timestamped 125ms in the past will
be immediately simulated in S0 and S1. If the simulation result in
S1 is inconsistent with that in S0 a rollback occurs, else the
simulation is allowed to continue. 75ms later S2 will execute the
update, and its state is compared to S0’s; if there is an
inconsistency a rollback occurs, else the simulation continues.
After Sn-1, updates are discarded and thus, any inconsistencies
beyond Sn-1 go undetected.

To rollback, the trailing state is copied to the leading state,
dynamic memory structures are repaired, and all elapsed updates
are re-executed; thus, any inconsistencies due to updates arriving
out of order are corrected. TSS is only effective when simulating
updates is inexpensive as each update is executed at least n times
for TSS with n states, and more when rollbacks occur.
Furthermore, performing a rollback is expensive, due to memory
management costs and the need to re-execute many updates.
Thus, the processing bottleneck in MS is worse than that in C/S.

 Mirror
 Client

2.3 MS Security
As MS utilises trusted mirrors, it is possible to achieve the same
level of security as in C/S; however, the protocol in [6] is
vulnerable to time cheating because updates are timestamped
(for event ordering) by the untrusted clients. Consider a player P
and cheater C with 25ms delay from mirror M, two states
S0=0ms and S1=100ms, and the current game time t=1000ms. As
shown in Figure 2, P sends a shoot command UP at t=1000ms to
M. M simulates UP in S0, calculates a hit against C, and responds
with the new state S0 to P and C at t=1025ms. C finds he has
been shot and cheats by sending a dodge command UC, with a
timestamp of t=975ms at t=1050ms (the cheat). Receiving UC,
M executes it in S0 and S1 at t=1075. At t=1100ms M executes
UP in S1 and detects an inconsistency with S0 (miss vs. hit).
Thus, M performs a rollback, and notifies P and C of the result
S0’ (a miss) at t=1100ms. Note, this cheat is preventable by
requiring each I-mirror to timestamp updates.

Figure 2. Time cheating in the MS architecture

3. ENHANCED MIRRORED SERVER
(EMS) SCHEME

3.1 EMS Architecture and Protocols

Figure 3. Enhanced Mirrored Server (EMS) architecture

The EMS architecture extends MS by allowing clients (peers) to
exchange updates directly, reducing delay and the mirror’s out-
bandwidth and processing power. EMS also extends RACS’s
security measures to achieve the same degree of security as in
RACS, and hence in C/S, and better than MS. EMS distributes
the in-bandwidth and processing requirements across multiple
referees to increase scalability and remove the single point of
failure. However, EMS requires an efficient mechanism to
synchronize the mirrored referees. Note that allowing P2P
updates makes referee response time in EMS less critical than
the mirror response time in MS, and hence, an efficient bucket
synchronization [9] is sufficient for EMS, in contrast to the
processing intensive TSS used in MS.

As shown in Figure 3, EMS comprises four entities: a set of
mirrored referees {Rf | f is the unique identifier (ID) of each
referee}, a set of players {Pf,i | i is the unique identifier (ID) of
each player connected to Rf}, an authentication server SA, and a
master server SM. An Rf is a process running on a mirror with ID
f. EMS maintains game consistency and prevents cheating since
each trusted/authoritative referee simulates and validates the
game, and stores the current game state. A referee sends state

updates only if its peers cannot communicate directly (i.e., PRP
mode described in Section 3.2).

Each player in EMS receives updates, simulates game play, and
sends updates to his peers and his designated referee. SA assigns
a unique ID i to each player Pf,i, assigns his I-mirror f (and hence
his referee Rf), authenticates joining Pf,i, downloads Pf,i’s avatar
state to his host with ID i and every mirror, manages billing, and
stores offline-player’s avatar state. The SA performs client to
mirror assignment to minimize delay and to prevent overloaded
mirrors; the algorithms used are beyond the scope of our work.

SM divides game time into rounds of length d within which
every Pf,i generates an update and sends it to his PP players
(described in Section 3.2) and his Rf , where f is the ID of its I-
mirror. A late message (not received within its round) is
considered for a future round assuming no newer messages have
been received; otherwise it is discarded. Rounds are
synchronized between hosts using NTP [8], and may be
pipelined to improve responsiveness. SM also adjusts the round
length and detects inconsistent updates sent between peers
(discussed later). Note that in Figure 3 we assume SA and SM are
co-located.

3.2 EMS Communication models
As shown in Figure 4, the communication between two peers
PX,A and PY,B that are mutually aware can be through the
mirrored referees RX and RY (Peer-Referee-Peer: PRP mode), or
direct (Peer-Peer: PP mode). In PRP each player sends and
receives messages to/from his referee. In contrast, peers in PP
exchange their messages directly, which reduces delay and the
mirror’s out-bandwidth, while maintaining security. Thus, PP is
the preferable mode. In either PP or PRP mode, two mutually
aware PX,A and PY,B may or may not be using the same referee.

(a) PRP mode (b) PP mode

Figure 4. EMS communication modes
EMS considers five different message formats: (i) peer-peer
message - MPPi (Ui), (ii) peer-referee message - MPRi (Ui, Si,
Ti), (iii) referee-peer message - MRPf (Ui, i), (iv) referee-referee
message – MRR (Ui’, Si), and (v) referee-master server message
– MRS (Ti). The subscripts in MPPi, MPRi, MRPf indicate each
message is digitally signed by the sender (i.e., Pf,i or Rf). As in
MS, we assume the private network is secure and lossless;
hence, MRR and MRS messages are not signed. Note that Ui =
(r, I), where r is the current round number and I is the update
information; Ui’ = (r’, I), where r’ is the current round number at
the I-mirror (discussed later); Si is secret information sent by a
player Pf,i only to his Rf; and for each update Pf,i received from
Pg,j in the previous round Ti={(j, H(Uj), D(MPPj))} where H(Uj)
is the hash of Uj, and D(MPPj) is the delay in receiving MPPj.
As Si is only sent to the trusted referees, opponents do not have
any secret information that may be exposed by cheating. Si is
multicast to all E-mirrors so that the simulation can be verified.
Ti is forwarded to SM to detect the inconsistency cheat and adjust
the round length. By comparing the hashes in Ti, SM detects

 Mirrored referee
 Peer
 Authentication /
 Master Server

Mirror M

Player P

Cheater C

Time (ms)
1000 1025 1050 1075 1100 1125

UP
 UC

S0
 S0

S0’
 S0’

inconsistencies between MPPs sent between peers. Using
D(MPPi), the master server calculates the optimal value for d.
Note that in PP mode a mirror sends MRP only in the event of
conflicts (dashed lines in Figure 4(b)).

When two PRP peers PX,A and PY,B are within each other’s AoI,
their respective referees will send MRP instructing them to
communicate directly; hence, transitioning to PP mode. On the
other hand, PX,A reverts to PRP (with respect to PY,B) if: (i) he is
no longer in PY,B’s AoI, and vice versa; (ii) he receives less than
p percent of PY,B’s last s≥1 messages, or (iii) he does not receive
PY,B’s update for more than w≥0 consecutive rounds. Reversion
requirement (i) provides AoI filtering to reduce bandwidth; only
players that include PY,A in their AoI will be updated;
requirement (ii) ensures that a minimum percentage of updates
are received, preventing a cheater repeatedly sending one
message and then dropping w consecutive messages; while
requirement (iii) ensures that losses are not clustered, which
would have a large impact on the game-play experience. For
either case, PX,A sends an MPPA (MPRA) to PY,B (RX), that
includes I notifying them of the reversion. RX forwards this to
RY, which only forwards PX,A’s moves to PY,B if PX,A is within
PY,B’s AoI. Note that EMS is cheat-proof when w=0 or p=100%.
The optimal values for w, p, and s should minimise PP to PRP
reversions, and the number of messages that may be dropped.

When a player PX,A generates an update in PRP mode the
following steps occur: (i) PX,A sends MPRA (UA, SA, TA), to his
RX (his referee running on I-mirror X); (ii) RX receives the
update, ascertains MPRA’s authenticity (see Section 4.1), and
timestamps UA with the current round number r’ creating
UA’=(r’, I); (iii) RX multicasts MRR (UA’, SA) to all other
referees and unicasts MRS (TA) to SM; (iv) all referees simulate
the update and resolve state inconsistencies using r’ for event
ordering; and (v) all referees send the results to relevant PRP
players. If a referee detects an inconsistency it will notify all
relevant connected players; as all referees will detect the
inconsistency all relevant players will be notified. In PP mode
each referee performs all steps except step (v). The peers
perform the following additional actions in steps (i), (ii), and
(iv): (i) PX,A constructs MPPA (UA) and sends it to all PP peers;
(ii) PX,A receives MPPi from his PP peers, and ascertains their
authenticity; and (iv), PX,A simulates and validates received
MPPi messages.
In EMS, SM is responsible for adjusting d and detecting the
inconsistency cheat. As neither responsibility prevents the game
from progressing they can be located at a single central server
(possibly a mirror) and do not need to be performed in real time.
Requiring every referee to detect the inconsistency cheat and
adjust d would increase the referee’s processing requirements,
and increase the traffic on the private network, without any
benefit. To adjust d and detect the inconsistency cheat referees
in I-mirrors unicast Ti to SM in step (iii). As peers connected to
different mirrors may be interacting, the round length must be
set globally for the entire game (all mirrors and players). If SM
detects the inconsistency cheat it requests the peer to forward the
offending update - via the peer’s Rf - which is used to confirm
the cheat using the non-repudiation quality of digital signatures.

3.3 EMS Synchronization
As in MS, EMS requires a synchronization mechanism between
referees/mirrors, and we may use TSS [6] for their

synchronization. However, unlike in MS, we expect most
players will use PP mode in which they exchange updates
directly, and thus update dissemination time in EMS is not as
critical as in MS. In this paper, we use Bucket Synchronization
(BS) [9] for EMS as it is more efficient than TSS.

In BS game time is divided into buckets, with all updates
occurring at the same time in the same bucket. Updates in a
bucket are delayed by Δ time before being executed so that all
updates for that bucket are received before execution begins,
synchronizing all mirrors. The advantages of EMS using BS
over TSS are: (i) it needs a low processing requirement as every
update is only executed once by each mirror; (ii) it needs a low
memory requirement as there is only one game state; and (iii)
BS does not perform rollbacks. Notice that Δ delay in BS
increases the delay for PRP communications, possibly reducing
interactivity. However, this performance degradation adds
further incentive for peers to cooperate in PP communication.
Note that TSS with a delay Δ in the leading state and no trailing
states is in essence BS.

3.4 EMS Security
EMS solves all known protocol level cheats, information
exposure, and invalid commands since it includes all security
measures used by RACS [17]. In general, cheats are prevented
by the use of signed messages (spoofing), round number r
(replay attack, suppressed update, timestamp, and fixed delay),
referee simulation and validation (invalid command), on demand
loading (information exposure), and PRP mode (blind
opponent). The recipient of an MPP, MPR, or MRP message
validates its authenticity using the sender’s public key. Note, r
must not be used for message ordering as this would allow the
timestamp cheat. EMS prevents this cheat as mirrors timestamp
updates from peers, which is used by the other referees for event
ordering. Message validation is performed by the referee in the
I-mirror so that every MRP is only validated once, and MRR
size is reduced.

In EMS, SM detects the inconsistency cheat by comparing the
hashes of all Uj in Ti forwarded by referees, and uses digital
signatures to verify the cheat. In contrast, the referee in RACS is
responsible for detecting this cheat as it receives all Ti [17].

Reference [1] describes the suppressed update cheat due to the
use of dead-reckoning. EMS addresses this cheat as the referee’s
dead-reckoned state is authoritative. Thus, if a cheater drops
updates he will be forced to use the referee’s dead-reckoned
move, which cannot be manipulated for cheating.

4. RESULTS AND ANALYSIS
4.1 Analytical evaluation
We compare the performances of MS and EMS in terms of their
client’s and mirror’s in- and out- bandwidth requirements for N
clients/peers and M mirrors. As in [4], let a and b be the number
of bytes/s of player commands sent by a client to its mirror and
by a mirror to other mirrors, respectively. We consider each
mirror to client message comprises three components. Basic
information (e.g., map, time, current location) requires c bytes/s
irrespective of N. On the other hand, global player information
(e.g., name, score) needs k bytes/s per player (N*k in total), and
AoI player information (e.g., location, appearance) costs e byte/s
per player (e*N in total). We assume AoI filtering reduces the

cost of the last component by a factor of α. Table 1 shows the
results, where public (private) denotes communication through
the Internet (private network). Note, if all peers in EMS use PRP
mode (worst case) EMS bandwidth requirements are equal to
those of MS. The direct update exchanges in EMS (PP) increase
the out-bandwidth requirement for each client. On the other
hand, since mirrors in EMS (PP) need only send updates to
resolve conflicts and provide general state information about the
game, their out-bandwidth is significantly smaller than in MS.
Notice that the mirror’s out-bandwidth in MS grows in O(N2/M),
and hence MS is not scalable when N outgrows M. In [4] MS is
shown superior to C/S with respect to server/mirror bandwidth
requirements, and thus we may conclude that EMS is also
superior to C/S with the same respect.

Table 1. Bandwidth analysis of various architectures

 MS & EMS (PRP) EMS (PP)
In c+(k+αe)N c+(k+αe)N Client

Out a a(k+αe)N
In a(N/M) a(N/M) Mirror

(Public) Out c(N/M)
+(k+αe)N(N/M) c(N/M)

In bN–b(N/M) bN–b(N/M) Mirror
(Private) Out b(N/M) b(N/M)

We can also analytically compare the processing requirements
of TSS and BS. Note that every update in TSS with n states is
processed n times, and more when rollbacks occur. Consider an
update (rollback) processing time of u (v) and β the probability
of an update causing a rollback. Thus, the processing cost of
TSS is: (((n * u) + (β * v)) * λ) * N, where λ is the number of
updates generated by each client per second. On the other hand,
BS processing cost is only (u * λ) * N, reducing the processing
of TSS by a factor of max(n, β * v). Since EMS uses BS, in
contrast to TSS in MS, EMS greatly reduces the processing
bottleneck in MS. EMS with PP mode further reduces the
mirrors processing requirement as fewer AoI calculations are
performed. EMS reduces the processing requirements of RACS
by distributing AoI calculations between M mirrors.

4.2 Simulation
To evaluate EMS against MS we simulated both using the
Network Game Simulator (NGS) (netgamesim.sourceforge.net)
[16]. All simulations used a world size of 1000 by 1000 units,
and 100 players each controlling an avatar with an AoI radius of
50 units. Avatar movement is controlled by the random-way-
point mobility model with a velocity of two units per second and
a wait time of 0. We simulated 1000 seconds with d=50ms
(clients generate 20 updates per second). The private network
delay is fixed at 50ms [6], and the peer-mirror and peer-peer
delays are 200ms. Peers are evenly distributed between mirrors.

Simulation 1 compares EMS and MS in terms of their
bandwidth and delay using 10 mirrors. Following [6], we
considered MS using TSS with a leading state of 0ms, and
trailing states: 50ms, 100ms, and 150ms with a rollback
probability of 0.044, 0.006, and 0.006 respectively for each of
the trailing states. On the other hand, we consider EMS using
bucket synchronization with Δ=150ms, so that MS and EMS
will have equal consistency and worst case delay. For EMS, we
set w=6, s=200, and p=94%, as the settings are appropriate for
fast paced Internet games [15,17]. These settings assume the
client software can interpolate/extrapolate up to 6 consecutive

lost updates, and that dropping less than 12 updates every ten
seconds (94% of the previous 200 messages were received) will
give a cheater an insignificant advantage [17]. If a pair of peers
reverts to PRP mode, they will not reattempt PP mode for at
least 60 seconds.

Figure 5 shows the average delay and the mirror/referee out-
bandwidth with increasing packet loss between peers due to
network loss, cheating, or firewalls. MS has nearly fixed delay
and bandwidth; however, the delay and bandwidth are high as all
updates are routed through the mirrors. On the other hand, with
0% loss (i.e., lossless network and no cheaters) all players in
EMS are in PP mode and therefore very few messages are routed
through the referees; hence, the out-bandwidth and delay in
EMS is far lower than MS. As packet loss increases peers revert
to PRP communication, increasing the referee’s out-bandwidth
and average delay. Above 40% packet loss peers rapidly revert
to PRP communication, dramatically increasing the impact of
bucket synchronization, increasing delay. Above 70% packet
loss EMS has higher delay than MS; however, the bandwidth in
EMS never exceeds MS. As Internet loss rates are typically less
than 1% [3], and assuming less than 69% of players are using
protocol cheats or are firewalled from peers, EMS outperforms
MS using this topology.

Figure 5. MS and EMS delay and out-bandwidth

To evaluate the bandwidth scalability of the referees in EMS, we
repeated Simulation 1 using 20, 10, and 5 referees, each
supporting 5, 10, and 20 peers respectively, in Simulation 2. As
shown in Figure 6, EMS offers excellent out-bandwidth
scalability when most peers use PP mode (i.e., with global loss
rates below 40%); the referee’s out-bandwidth is minimal, as
they do not forward updates. However, the referee’s out-
bandwidth increases as the number of PRP peers increases. Note
that in either case the referee’s in-bandwidth may potentially be
a bottleneck.
For Simulation 3, we used EMS to compare the processing
scalability and delay of BS and TSS with four trailing states. For
processing time, we used the data in [6] in which every
command and rollback takes 0.144ms and 1410ms, respectively.
We considered processing 2*106 commands (100 players, 20
updates per second, 1000 seconds) for zero to five rollbacks. As
shown in Figure 7, BS requires a constant processing time (i.e.,
0.144ms*2*106=288 seconds). On the other hand, the minimum
processing time for TSS is four times that for BS (i.e., 1152
seconds), and increases linearly with the number of rollbacks. It
is obvious that TSS has far higher processing requirements than
BS. We generated the delay results in Figure 7 by repeating
Simulation 1 for EMS with BS and EMS with TSS. As shown in
the figure, TSS does provide lower delay, but only when the loss

200
0 20 40

D
elay (m

s)

MS Bandwidth EMS Bandwidth

60 80 100

5

20

10

15

B
an

dw
id

th
 (K

b/
s)

Global Loss rate (%)

MS Delay EMS Delay

300

400

500

600

700

800

rate exceeds 40%, and the difference is marginal. However, BS
offers a better user-perceived consistency than TSS affected by
rollbacks.

Figure 6. EMS referee bandwidth

Figure 7. Synchronization processing and delay

5. CONCLUSION
In this paper we have proposed EMS to improve the
performance of the MS architecture. EMS allows peers to
directly exchange updates, in contrast to routing all updates
through the mirrors in MS. Our simulation shows that EMS
greatly reduces the mirrors out-bandwidth of MS. With no
rollbacks and only one state, EMS significantly reduces the
processing requirement of MS. Further, we have shown how
EMS prevents timestamp cheating, possible in MS.

While EMS has high scalability in terms of bandwidth, its
potential growth is still limited by its processing requirements as
all mirrors must simulate the entire world. Furthermore,
although the in-bandwidth is distributed across multiple referees,
it may still potentially present a bottleneck. To reduce the
required processing power of the referees we are investigating
dividing the virtual world into regions, and load balancing the
regions between referees. When the processing requirements no
longer present a bottleneck we intend to distribute the referees to
player machines to distribute the required in-bandwidth almost
entirely to peers. However, this raises issues of referee trust and
selection that must be addressed to prevent cheating.

Acknowledgements
We would like to thank the anonymous reviewers for their
helpful suggestions.

6. REFERENCES
[1] Baughman, N. E., Liberatore, M., & Levine, B. N. Cheat-

Proof Playout for Centralized and Peer-to-Peer Gaming.
IEEE/ACM Trans. Networking 22, 1 (2007), pp. 1-17.

[2] Corman, A. B., Douglas, S., Schachte, P., & Teague, V. A
Secure Event Agreement (SEA) protocol for peer-to-peer
games. in Proc. ARES'06, pp. 34-41.

[3] Cottrell, R. L., Khan, S., ICFA SCIC Network Monitoring
Report. http://www.slac.stanford.edu/xorg/icfa/icfa-net-
paper-jan07/

[4] Cronin, E., Filstrup, B., & Kurc, A. A Distributed
multiplayer game server system. Project Report. 2001.
warriors.eecs.umich.edu/games/papers/quakefinal.pdf.

[5] Cronin, E., Filstrup, B., Kurc, A. & Jamin, S. An efficient
synchronization mechanism for mirrored game
architectures. In Proc. Netgames 2002, pp. 67-73.

[6] Cronin, E., Kurn, A., Filstrup, B., & Jamin, S. An efficient
synchronization mechanism for mirrored game
architectures. Multimedia Tools and Applications 23, 1
(2004), pp. 7-30.

[7] DeLap, M., et. al., Is runtime verification applicable to
cheat detection? in Proc. ACM NetGames '04, pp. 134-138.

[8] GautheierDickey, C., Zappala, D., Lo, V., & Marr, J. Low-
Latency and Cheat-proof Event Ordering for Distributed
Games. in Proc. NOSSDAV '04, pp. 134-139.

[9] Gautier, L., Diot, C., & Kurose, J. End-to-end transmission
control mechanisms for multiparty interactive applications
on the Internet. in Proc. INFOCOM ’99, 3, pp. 1470-1479.

[10] Guo, K., Mukherjee, S., Rangarajan, S., Paul, S. A Fair
Message Exchange Framework for Distributed Multi-
Player Games. In Proc. Netgames 2003, pp. 29-41.

[11] Kabus, P., Terpstra, W., Cilia, M., & Buchmann, A.
Addressing cheating in distributed MMOGs. in Proc.
NetGames '05, pp. 1-6.

[12] Mulligan, J., & Patrovsky, B. Developing Online Games:
An Insider's Guide. 2003: New Riders Publishing.

[13] Monch, C., Grimen, G., & Midtstraum, R. Protecting online
games against cheating. In Proc. Netgames 2006.

[14] Palazzi, C., Ferretti, S., Cacciaguerra, S., & Roccetti, M.
On maintaining interactivity in event delivery
synchronization for mirrored game architectures. In Proc.
GlobeCom 2004, pp. 157-165.

[15] Valve, Source Multiplayer Networking.
http://developer.valvesoftware.com/wiki/Source_Multipla
yer_Networking, Dec. 2006.

[16] Webb, S. D., Lau, W., & Soh, S. NGS: An Application
Layer Network Game Simulator. in Proc. Australasian
conf. IE'06, pp. 15-22.

[17] Webb, S., Soh, S., & Lau, W. RACS: a Referee Anti-Cheat
Scheme for P2P gaming. in Proc. NOSSDAV’07, pp. 34-
42.

[18] Yan, J. Security Design in Online Games. in Proc. IEEE
ACSAC '03, pp. 286-295.

2000

0 20 40 60 80 100

Pr
oc

es
si

ng
 ti

m
e

(s
)

Global Loss rate (%)

TSS Processing BS Processing

4000

6000

0

8000

10000

1 2 3 4 5
200

300

400

500

600

Rollbacks

TSS Delay BS Delay

D
elay (m

s)

0 20 40

5 peers/referee 20 peers/referee

60 80

B
an

dw
id

th
 (K

b/
s)

Global Loss rate (%)
100

10

10 peers/referee

20

30

40

