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ABSTRACT 

Photogrammetry and Laser Scanning can be used to complement one another, during 

instances where digital images are taken of the object of interest with the intention to 

merge the 3D data and image in order to reconstruct photorealistic virtual models 

with photo quality and metric realism. Laser scanning acquires 3D data points and 

intensity information of objects but is unable to directly obtain photorealistic colour 

in most cases. To get photorealistic colour, some laser scanners come with an on-

board camera, or alternatively a separate camera is used, and registration is required 

for both cases. One example uses a specially designed camera mounting for the laser 

scanner and another is to transfer colour information from 2D images captured from 

near the scanner to the 3D points using close-range photogrammetry. Currently 

limited methods exist for the registration of the data from multiple-sensors. This 

research outlines the evaluation and semi-automated registration of a single colour 

image to laser scanning point cloud data, using the canonical transformation and 

Direct Linear Transformation (DLT) methods for registration.  

 

The method presented in this thesis is to directly reconstruct three dimensional data 

from a single image with the assistance of estimated depth information. Laser 

scanning point cloud information is used to supplement the recovery of the estimated 

depth information, which is then assigned to the image data. Two primary aspects for 

this research are (1) the Synthetic Camera Image, following on from previous work 

reported in the literature on utilising synthetic imagery created from point-clouds, 

and (2) the Direct Linear Transformation model, which is used to provide the 

transformation parameters between the 2D and 3D datasets. 

 

Synthetic datasets were used to provide an indication of expected results in terms of 

range, incidence angle and image resolution. The image resolution is an important 

factor to consider. It should be as high as possible as it affects the outcome of 

precision. Testing with real data, the proposed method resulted in a precision of 2 

mm for the data of a model T-Rex dinosaur dataset, and 19mm for a typical indoor 

scene. The variations in precision levels are due to different values for range, 

incidence angle and image resolution. Overall the results achieved the expectations 

producing a colour point cloud with metric assessment. 
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1 INTRODUCTION 

3D models of existing buildings, vehicles and other objects can be created through 

photogrammetric methods. These can have photo quality colour, texture, accurate 

details and other life-like features to depict their counterparts in reality. These are 

generally called photorealistic reconstructions or models. There is always a need to 

improve the representation of virtual models and generally the aspect of realism is 

sought after, which can be created by the addition of extra information such as colour 

or points. 3D modelling of existing objects is becoming increasingly popular, with 

the main applications in heritage preservation and city modelling. Multiple images 

along with photogrammetric techniques may be used to create metrically accurate 

while visually stimulating photorealistic models, though it requires a great amount of 

time, effort as well as experience. 

 

One of the many advances in technology is the introduction of laser scanners, and 

there has been much research conducted into 3D laser scanning in terms of 

calibration, registration and segmentation (Vosselman and Maas, 2010). Laser 

scanning has recently gained popularity in the applications of cadastral and 

engineering surveying. Additionally they have been utilised with close-range 

photogrammetry for terrestrial, airborne and mobile applications. It offers a simpler 

approach to modelling, as it can directly acquire a 3D point cloud of objects in a 

relatively short time span. Photogrammetric 3D reconstruction can provide additional 

information, e.g. radiometric or reflective information of objects, to 3D point clouds 

from laser scanners. However, it has a limitation in that there is little flexibility (in 

terms of image resolution and perspective) in providing colour to its point cloud. A 

combination of laser scanner along with mounted cameras (whose location has been 

precisely obtained) as seen in Jansa et al. (2004), Sapkota (2008) and Kern (2001), 

can offer better flexibility and efficiency of photorealistic model creation.  

 

This research presents an alternative method for photorealistic model reconstruction, 

focusing on flexibility, whereby the 3D model is obtained using a laser scanning 

device and the colour information is obtained using one image from any calibrated 

camera without the need of specialised mounting equipment. The major obstacle of 

3D reconstruction of either single or multiple images is the recovery of depth 
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information of 3D points (Luhmann et al., 2006). In cases of multiple images, 3D 

photogrammetric resection (McGlone et al., 2004) with reflective targets has been 

successfully utilised in the last few decades in terrestrial and airborne applications. 

With close-range photogrammetry, relevant target detection, calibration and 

resection can be done with minimum user intervention using available commercial 

software (e.g. Australis, 2012; Adam Technology, 2012). However, a method for a 

single image has yet to to be developed for 3D reconstruction or back-projection 

(Hartley and Zisserman, 2003), simply because it is not possible without some other 

external information such as that from laser scanner data. 

 

This research was initiated from an idea that in the context of surveying applications, 

using terrestrial laser scanner data along with a single image, it may be possible to 

utilise 3D point clouds for estimating the depth information of 2D images. Two 

potential ideas were (1) to use Direct Linear Transformation (DLT) (Abdel-Aziz and 

Karara, 1971) and (2) to directly calculate the exterior orientation of a camera along 

with the camera calibration parameters with synthetic images (Forkuo and King, 

2005), for the reconstruction of 3D points containing additional information. This 

allows us to obtain much more detailed or additional information to the 3D point 

cloud, not just the colour information. For example, in cases of mobile laser scanning 

systems that have been gaining in popularity, a procedure to estimate the depth 

information of 2D images is important since it provides a way of obtaining metric 

information of objects other than from 3D point clouds obtained from terrestrial laser 

scanners, which is usually installed next to the camera system, e.g. spherical multiple 

cameras. Although it may be possible to extract the depth information from multiple-

images produced by this system, a more practical approach would be utilising 3D 

terrestrial laser scanners to assist this process instead of solely relying on the camera 

location from GNSS and INS. 

 

1. 1 Aim 

The aim of this research is to develop methods that can utilise a single image and a 

3D point cloud of the corresponding object/region to recreate a metrically precise 

photorealistic 3D object model. This research is in the field of photogrammetry and 

terrestrial laser scanning with the focus on registration of data from multiple sensors. 
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Terrestrial laser scanning, photogrammetry principles along with the Direct Linear 

Transformation (DLT) are the primary components used to assist the registration and 

back-projection between 3D and 2D spaces. 

 

1. 2 Significance and Approach 

The fusion of photogrammetry and laser scanning can be seen in Forkuo and King 

(2005), Kang, Zlatanova and Gorte (2007), Al-Manasir and Fraser (2006), Briese, 

Pfeifer and Haring (2003) and Beraldin (2004). This research of combining and 

evaluating 2D and 3D data, intends to further the concept of photogrammetry and 

laser scanning fusion by opening possibilities for improvements in the future in terms 

of: 

(a) Photorealistic 3D reconstructions: This has the potential in aiding heritage 

preservation and city model reconstruction with known metric model quality. 

There has been much research  in European Nations and Japan. For example see 

Briese, Pfeifer and Haring (2003), Liu et al. (2006), and Ikeuchi et al. (2003). 

(b) Quality Control: Having a metric measure presents an opportunity for 

registration results to be standardised to have a common index for comparison 

and an indicator of robustness. 

(c) Feature detection: Current feature detection relies on intensity, corners, edges, 

planes, points (Vosselman and Maas, 2010). This method will allow colour to be 

used to open new avenues of feature detection in 3D datasets, by way of 

transferring any 2D feature, lines or edges into 3D space as an initial estimation 

for 3D feature detection. 

(d) Hardware: To provide hardware flexibility, measurement quality and cost 

effectiveness in industrial applications such as surveying. 

(e) Visualisations: Improvements can be added to current software to automate this 

process to provide a quick photorealistic representation of the survey area. 

(f) Automation: Efficiency may potentially be increased with reduced times for 

manual selection and acquiring of commonly repeating tasks and geometric 

primitives. 
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In surveying and mapping, metric precision is valued over the visual appeal of image 

overlays and texture mapping. It is important to have the measurement data displayed 

accurately and precisely, so that it may reflect reality in terms of metrics. 

 

Using a combination of photogrammetric techniques along with the DLT, colour 

information is registered from a single camera image onto a 3D point cloud. The 

distinction is that utilising a single image without the need of mounting brackets or 

fixtures, is registered to provide point clouds with colour information using the DLT 

approach. 

 

1. 3 Dissertation Outline 

Chapter 1 provided the basis of this research, looking briefly at the current 

environment of registration fusion, which in this case is image and 3D point-cloud 

registration. The aim is to provide a solution that allows transformation from 3D to 

2D, and vice-versa, with a single image and 3D point-cloud. Its significance carries 

into many areas such as heritage preservations and city modelling by creating metric 

photorealistic 3D reconstructions, for quality control, feature detection, hardware, 

visualisations and automation. The flexibility of the method is the distinguishing 

factor when compared to other approaches. 

 

Chapter 2 introduces the main concepts and principles required in order to 

understand the research. A brief introduction into photogrammetry and laser 

scanning is presented, outlining even the fundamental workings of a camera and laser 

scanner. The key focus of the background is transformations with consideration to 

image capture and synthesis, as well as registration of datasets. Iterative Closest 

Point for image correspondence is described along with iterative least squares. 

Occlusion is discussed with brevity, as it does not pose any significance yet it is not 

to be overlooked. 

 

Chapter 3 looks into the methodology explaining the core principle of 3D to 2D 

(projection) and 2D to 3D (back-projection) transformations. The DLT is explained 

in depth, covering its relationship to the collinearity equations, image scale 

component, perspective centre and normalisation of the 12th parameter. Each step is 
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thoroughly discussed from acquiring the data, to projection and registration, and 

back-projection. Data acquisition includes obtaining 2D and 3D data, from the 

camera and laser scanner respectively, along with corresponding control point 

information. Then in terms of projection, creation of a Synthetic Camera Image 

(SCI) is explained followed by the Real Camera Image (RCI), which contains the 

colour information, and then the SCI using the Iterative Closest Point (ICP) method. 

Finally, the back-projection concept is detailed with three methods, the Direct 

Pseudo-Inverse method, the Two-Step solution, and the Additional Fourth-row 

method. 

 

Chapter 4 unveils the results of the proposed method using both synthesised data and 

real data. The initial testing of the simple back-projection shows that the three back-

projection methods are needed in order to transform back to the original location. 

Random errors were added to the simulated datasets to mimic reality, which was then 

tested in terms of range and incidence angle. Tests with different ranges indicated 

that errors increased with distance. The incident angle tests showed that a maximum 

of 30° will maintain a good level of precision. Range and resolution were 

interdependent meaning that an increased distance required higher pixel density to 

obtain good precision. The two real datasets tested shows consistent results with the 

tested simulated datasets, with the caveat that some thresholds and/or deletion of data 

or a different image viewpoint would be required to minimise incorrectly 

transformed data.  
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2 BACKGROUND 

2. 1 Introduction 

This chapter outlines the concepts and fundamental principles that are required for an 

extensive understanding for this research. The main concepts, which are Direct 

Linear Transformation (DLT), registration and Synthetic Camera Image (SCI), and 

the basics of Photogrammetry and Laser Scanning, are explained in detail. One can 

find further details of these topics in relevant text books and papers mentioned in this 

chapter, such as McGlone et al. (2004), Luhmann et al. (2006), Hartley and 

Zisserman (2003), Vosselman and Maas (2010), Mikhail, Bethel and McGlone 

(2001), Atkinson (1996), Wolf and Dewitt (2000), Kern (2001), Forkuo and King 

(2005), Abdel-Aziz and Karara (1971) and Karara (1989).  

 

2. 2 Photogrammetry 

Photogrammetry is a measurement technology with a focus on terrestrial surveying, 

used in situations requiring remote observations and measurements of physical 

objects or phenomena. Therefore, its fundamental objective has always been the 

indirect and precise determination of the spatial position of objects using 

photographic images and relevant mathematics, e.g. least-squares (McGlone et al., 

2004). Major advantages of using photogrammetry can be listed as follows: images 

being a common medium, a form of non-contact measurement, provision of high-

precision of measurement and ability to achieve very small details (Kern, 2001). 

However its limitations are that corresponding points or features for 3D geometry are 

necessary and it is a two-phase process, which is taking images and then examining 

its geometry by merging the images (Kern, 2001). These processes can also be 

computationally intensive, and inhomogeneous (not constant) precision on non-target 

areas can persist even after rigorous calibration and reconstruction (Luhmann et al., 

2006). 

 

Photogrammetric techniques are often used to determine three dimensional (3D) 

digital or graphical representations, e.g. location, size, and shape, of objects by 

means of measuring and analysing two-dimensional (2D) photographs (McGlone et 

al., 2004; Luhmann et al., 2006; Jiang, Jáuregui, and White, 2008). In order to 
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produce a 3D representation of an object, which is usually called 3D 

Photogrammetric or Photorealistic reconstruction, a minimum of two images with 

sufficient corresponding points are necessary since the depth information of 3D 

points needs to be estimated. Alternative methods exist to obtain this 3D 

construction, such as instruments with a two camera setup, e.g. AICON (2012) or a 

single camera with a grid projector along with photogrammetric principles to 

construct 3D data, e.g. Luhmann et al. (2006), although reconstruction can be 

computationally intensive.  

 

2.2.1 Camera, Images and scale 

Understanding the basics of cameras, images and scale is essential as this allows the 

later concept of Synthetic Camera Images (SCI, Forkuo and King, 2005) to be well 

understood for this research. Briefly speaking, the SCI is an artificial 2D image 

created from 3D point clouds by Terrestrial Laser Scanners (TLS), which is to be 

explained in detail later on in this chapter (Section 2.5).  

 

The basic pinhole model is commonly used to explain the process and effect of a 

camera capturing an image of an object as shown in Figure 2.1. A more in-depth look 

into the mathematics and geometry of the image capturing process has been 

presented in McGlone et al. (2004), Hartley and Zisserman (2003), Luhmann et al. 

(2006), Mikhail, Bethel and McGlone (2001), Atkinson(1996) and Karara (1989).  

 

Figure 2.1: Geometry of a pinhole camera where the optical axis is defined as the 
centre line passes through the Perspective Centre (PC). 
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The pinhole camera model indicates that light rays of the objects of Figure 2.1 will 

travel through the Perspective Centre (PC) at a focal length (f) and captured as an 

image on the imaging device, e.g. film or CCD (Charge-Coupled Device) array. In 

short, an image is a scaled planar 2D representation of the 3D objects.  

 

Depth information is in the form of the perpendicular distance of points on an object 

to the image plane, i.e. the surface of film or CCD and scale is the ratio between the 

focal length and the depth information (McGlone et al., 2004; Hartley and 

Zisserman, 2003). One can easily deduce that the depth information is lost during the 

photographic process presented in Figure 2.1. Furthermore, the objects with different 

depth, e.g. Objects 1 and 2 in Figure 2.1, can be represented as the same object in the 

2D image space, i.e. Image 2 in Figure 2.1. In order to regain or estimate the depth 

information, multiple images with resection has been successfully utilised (McGlone 

et al., 2004; Hartley and Zisserman, 2003). With the assistance of 3D points from 

terrestrial laser scanners, this research presents an alternative solution using a single 

image. 

 

2.2.2 Calibration and Interior Orientation  

Camera calibration is performed in order to determine the geometric model of a 

camera, which is described by its interior orientation parameters (Luhmann et al., 

2006). Evaluation of the performance and stability of a lens, determination of the 

optical and geometric parameters of a lens, lens-camera system, or of an imaging 

data acquisition system are several of the objectives met by the camera calibration 

(Atkinson, 1996). 

 

Network design is considered a fundamental component of close range 

photogrammetry, as it impacts accuracy and precision of the final 3D point 

coordinates by photogrammetric reconstruction with the least-square exterior 

orientation. In order to maximise the resultant accuracy, multiple convergent images 

need to be used with a good geometric strength of the ray intersections, which is 

significantly dependent on the network design for both calibration and actual 

measurement as it is for control and tie point measurement in surveying. The strength 

of ray intersections is influenced by the number of rays determining each point and 
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the angles between them (Luhmann et al., 2006). However, this is primarily of 

importance to multiple image reconstructions of 3D points, whereby this research 

presents an idea of utilising a single image assisted by already determined 3D points 

from terrestrial laser scanners. 

 

Calibration is also necessary in terms of reducing the effects of major distortions, e.g. 

radial lens distortion, for providing corresponding matches of the photo to the SCI. 

Notably, distortion will be present even with calibration, thus the automated 

matching method, e.g. Iterative Closet Point (ICP) (Besl and McKay, 1992), is 

implemented to assist the correspondence of closely-matched images, for this 

purpose of depth assignment. Metric cameras or other imaging systems with good 

camera stability are desirable to minimise the effects of distortion on the image, 

though it is not essential. 

 
Figure 2.2: Geometric locations of Interior Orientation parameters 

 

Interior orientation describes the parameters that model the passage of light rays 

through the lens onto the image plane, and it is essential to know, or to compensate 

for, these disparities with computations, before the use in photogrammetric projects 

(Karara, 1989; Atkinson, 1996). Elements of interior orientation are constants, which 

are needed so that accurate spatial information is to be determined from photographs 

(Wolf and Dewitt, 2000). The parameter set that the camera calibration process 

usually determines are: the principal distance (c) sometimes referred as the calibrated 

focal length (f), the Principal Point of Auto-collimation (PPA), affinity and shear, as 

well as the radial (symmetric) and decentring distortion of the lens (Karara, 1989; 

Wolf and Dewitt, 2000; Luhmann et al., 2006). These parameters will be 
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subsequently described in conjunction with Figure 2.2. The principal distance or the 

calibrated focal length (primarily referred to in the context of aerial photogrammetry 

when the focus is at infinity) is the perpendicular distance from the perspective 

centre of the lens system to the image plane (Karara, 1989; Atkinson, 1996). For 

close range photogrammetry, it is the principal distance that must be determined for 

every exposure if the camera is refocused, as the principal distance will vary 

(Atkinson 1996). 

 

The following descriptions are linked to Table 2.1 and Figure 2.2. The Principal 

Point of Auto-collimation (PPA) is the ideal case where the optical axis of the lens 

perpendicularly intersects the image plane, tested with auto-collimation methods. 

However, the practical case favours the use of analytical methods. The analytical 

methods estimate the PPA based on the relative distortions present, shifted from the 

image centre, and uses alternative terminology, Principal Point (PP) or Principal 

Point Offset (Clarke, Wang and Fryer, 1998). For close range photogrammetry, the 

image centre (M) is approximately equal to the nadir of the perspective centre, i.e. 

PPA ≈ M. The symmetric radial lens distortion (see Appendix F), which is the main 

constituent of image distortion for most camera systems, can be attributed to 

variations such as refraction, lens design, focusing distance and object distance at a 

constant focus. This distortion increases with the distance from the PPA. The 

tangential or decentring lens distortion (see Appendix F), formally known as radial-

asymmetric distortion, is mainly caused by decentring and misalignment of the lens 

elements. The affinity and shear describe the deviations of the image coordinate 

system (see Appendix F), with respect to skew from orthogonal and uniform scale of 

the coordinate axes (Luhmann et al., 2006). 
 

Title Notation 

Principal Point of Auto-collimation x0
'  and y0

'  

Image Coordinates xp
'  and xp

'  

Radial Lens Distortion ∆r' or  ∆xradial
'  and ∆yradial

'  

Tangential or Decentring Lens Distortion ∆xtan
'  and ∆ytan

'  

Affinity and Shear ∆xaff
'  and ∆yaff

'  

Table 2.1: Summary of the interior orientation parameters 
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The total correction combines the correction terms for imaging errors to apply to the 

image, to provide an ‘error-free’ image using equations (2.2) and (2.3):  

൤∆x'

∆y'൨= ቈ
∆xradial

' + ∆xtan
' + ∆xaff

'

∆yradial
' + ∆ytan

' + ∆yaff
' ቉ (2.2)

 

቎
x'

y'

z'

቏= ൦

xp
' - x0

' - ∆x'

yp
' - y0

' - ∆y'

-c

൪. (2.3)

 

where equation (2.2) is the combined correction for the radial lens distortion, 

decentring lens distortion, affinity and shear. Equation (2.3) is then used to correct 

the image for the combined distortion previously mentioned along with the PPA and 

PPO. It is essential to have the corrections applied in order to obtain a highly 

accurate match during the correspondence process for registering the camera image 

to the SCI.  

 

An experiment was set up in the photogrammetry laboratory of the Department of 

Spatial Sciences Studio at Curtin University and used for calibration of a typical 

camera. Figure 2.3 shows the calibration field that was used to calibrate the camera 

used for this project. Circular targets were used; with its centre representing the 

actual 3D point to be measured, while being ideal as it is rotation-invariant and scale-

invariant over a wide range of image magnifications (Luhmann et al., 2006). 

 

Retro-reflective targets (105 sets) were utilised for self-calibration of a consumer-

grade camera (Nikon D80) with commercial software (Australis, 2012). Although 

there are not enough points in the depth direction to the camera axis, the resultant 

exterior orientation and values of camera calibration errors were acceptable.  
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Figure 2.3:  Calibration field used for calibrating the camera (Australis, 2012). 
 

Circular retro reflective targets were chosen as it allows the target to be easily 

distinguished by providing a high contrast for edge detection of targets at a variety of 

angles and illumination conditions. Figure 2.4 shows an example of the output with 

the determined camera locations and orientations, in which the camera is represented 

by a small graphic consisting of a red body, green lens system and the orientation 

indicated by a small blue shutter button. The method of calibration used for this 

research is the ‘on-the-job’ calibration method used in conjunction with a test field, 

in which a field of object points as targets with known coordinates is imaged from 

several stations, as described by Luhmann et al. (2006). 

 

Good ray intersections are ensured by capturing a series of images of the test field 

perpendicularly and obliquely with a relative rotation of 90° around the optical axis, 

as seen in Figure 2.4. The interior orientation parameters, exterior orientation 

parameters and adjusted test field coordinates are determined by processing the 

measured image coordinates and approximately known object data using bundle 

adjustment (see section 2.1.3). Text books such as Luhmann et al. (2006), Atkinson 

(1996), and Hartley and Zisserman (2003) provide greater detail for the other 

calibration methods in the context of Photogrammetry and Computer Vision. 

 

2.2.3 Bundle adjustment and Image Orientation 

Exterior orientation consists of six parameters describing the spatial positions and 

orientation of the camera as shown in Figure 2.4 with respect to the global object 
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coordinate system. Space resection is the procedure used to calculate exterior 

orientation parameters (Luhmann et al., 2006; McGlone et al., 2004).  

 

Figure 2.4: Resected 3D points with position and orientation cameras with respect to 
the reconstructed object points (Australis, 2012). 

 

However, Wolf and Dewitt (2000) states that, generally the exterior orientation is not 

of interest to photogrammetrists, but is included for the purpose of consistency in the 

mathematical model. The context of that statement was in regards to bundle 

adjustment. Bundle adjustment (bundle block adjustment, multi-image triangulation, 

multi-image orientation) is a simultaneous numerical fitting method for an unlimited 

number of spatially distributed images that takes into account photogrammetric 

observations (measured image points), survey observations and an object coordinate 

system. The bundle adjustment is easily performed and is the most powerful and 

accurate method used in photogrammetry for determining image orientations and 

points. However, there are practical problems associated with bundle adjustment as 

follows: the solution is a large system of normal equations (up to few thousand 

unknowns), there is a need to generate approximate values of the unknowns and the 

need to detect and eliminate gross data errors (McGlone et al., 2004; Luhmann et al., 

2006). 

 

2. 3 Laser Scanning 

 
Laser scanners are non-contact measurement instruments used for both airborne and 

terrestrial cases (Vosselman and Maas 2010). Terrestrial laser scanning (TLS) is an 

innovative surveying technology allowing the user to capture large amounts of 3D 
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data directly, rapidly and with high accuracy (Reshetyuk, 2009). They capture and 

record the geometry and sometimes textural information of visible surfaces of objects 

and sites, producing a quantitative 3D digital representation (point-cloud) of the 

surface in a given field of view (Vosselman and Maas 2010). TLS can be used in 

many fields such as deformation monitoring, 3D modelling of buildings or other 

large scale scenes alongside photogrammetry and surveying methods (Liu et al., 

2006). According to Jansa et al. (2004) and Kern (2001), laser scanners have the 

benefits of having high spatial resolution, very good spatial coverage, moderate 

reconstruction effort, high 3D point density and depth accuracy, while the limitations 

are its colour, texture reconstruction, and high instrument costs. In terms of cameras, 

the two main attributes that may assist in reducing the limitations of laser scanning 

are the ability to provide colour information and the means for texture reconstruction. 

Presently, laser scanning is being used in conjunction with photogrammetry in the 

following applications: 

 

(a) Architecture and heritage preservation applications: including city 

modelling, heritage preservation and restoration, and art and cultural analysis 

(Briese, Pfeifer and Haring, 2003; Liu et al., 2006; Ikeuchi et al., 2003). 

(b) Engineering and surveying applications: requiring measurement of 

deformations and change detection, tunnel profiles and concrete tanks, all of 

which require high measurement precision (Vosselman and Maas, 2010). 

(c) Automotive applications: requiring measurement of surface design models for 

parts analysis, for deformation and safety testing, and the inspection of parts 

(Vosselman and Maas, 2010). 

(d) Industrial applications: including pipe and machinery location for power 

stations; aircraft and aerospace requiring extremely high accuracy for 

measurement of corner fittings and mechanically and thermally stressed objects; 

forensics using photogrammetry for crime scene and accident measurements, and 

reconstructions that can potentially use laser scanning for a more efficient means 

of 3D reconstruction (Vosselman and Maas, 2010). 
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2.3.1 Laser scanner data acquisition 

The laser scanner technology offers three basic methods of measurement, phase 

based, pulse based and triangulation (Vosselman and Maas 2010). Phase based 

measurements modulates the amplitude, power or wavelength of the light forming a 

continuous pattern, such as a sine wave, to measure the range based on the phase 

difference between the outgoing and the incoming wave (signal). The pulse based 

method repetitiously sends short bursts of light, and measurements are calculated 

based on the time difference between sent and received pulses. For shorter distances 

(usually under 5 metres) a triangulation approach is used, whereby measurement is 

based on the geometry of the laser and the detector at the instance of measurement. A 

detailed explanation of these methods and relevant history is provided in the 

textbook by Vosselman and Maas (2010). The laser scanner used for this research is 

a medium range scanner which uses the pulse based method. Table 2.2 gives the 

specifications for three different laser scanners shown in Figure 2.5. 

 

Short range Konica Minolta Specifications 

Measuring Method Triangulation, light block method 

Scan Range 0.6 to 1.0 m (In Standard mode) 

0.5 to 2.5 m (In Extended mode) 

Laser Class Class 2 (IEC60825-1) 

Accuracy ±0.05 mm 

Precision ±0.008 mm 

Image size 640x460 Pixels 

 

Medium 

range 

Leica HDS Specifications 

Measuring Method Pulsed, time-of-flight 

Scan Range 300 m 

Laser Class Class 3R (IEC 60825-1) 

Accuracy ±6 mm 

Precision ±4 mm 

Image size 1024x1024 pixels 
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Long range Riegl Specifications 

Measuring Method Pulsed, time-of-flight 

Scan Range 4000 m 

Laser Class Class 3R (IEC 60825-1) 

Accuracy ±15 mm 

Precision ±10 mm 

Image size 2560 x 1920 Pixels 

 

Table 2.2: Techical details of some commercial laser scanners (Minolta, 2012; Leica, 
2012; Riegl, 2012). 

 

         

      (a) ___________________(b) _________________(c) 

Figure 2.5:  (a) Short range scanner (Minolta, 2012) (b) Medium range scanner 
(Leica, 2012) (c) Long range scanner (Riegl, 2012) 

 

There are many laser scanning devices on the market that are used for the 

applications described previously. The three main classes of terrestrial laser scanner 

exist to provide the necessary accuracy required for the scanning range. Most short 

and medium range scanners also come equipped with a camera that is primarily used 

for inspection and visualisation purposes.  

 

An example of the data acquired by a laser scanner, i.e. conventional 3D point-cloud 

data would be hard to visually distinguish as shown in Figure 2.6(b) without some 

form of animation or motion. Therefore, techniques have been developed to provide 
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a better visual representation for the point-cloud data, such as intensity mapping or 

scaling that may be applied as seen in Figure 2.6 (a) and (c), respectively. 

 

   

___ (a) _____________________ (b) _________________ (c) 

Figure 2.6: Example of data from a laser scanner (a) Greyscale representation 
(b):Single-colour indicating visual issue (c) Intensity scale representation 

 

However, most current laser scanners contain a built-in camera to capture images to 

register as explained in Section 2.3. This provides a means of colour representation 

for the point-cloud as shown in Figure 2.8. The images acquired only offer a 

maximum image resolution of 1 megapixel and often with blurred images (i.e. poor 

sharpness), thus a need for this research offering the image resolution flexibility and 

clarity. 

 

2.3.2 Calibration of the laser scanner 

Although the research was conducted with un-calibrated point clouds, it is important 

to understand the possible systematic error sources of a terrestrial laser scanner since 

resultant 3D reconstruction errors in the proposed method will come from un-

modelled systematic errors, positional and angular uncertainty of 3D point clouds 

and imperfectness of the camera calibration, to name a few. One can find details on 

rigorous TLS calibration methodology in Bae and Lichti (2008), Reshetyuk (2009), 

and Vosselman and Maas (2010). 

  

The measurement principle of a terrestrial laser scanner is the same as an Electric 

Distance Measurement (EDM) or total station. In short, it measures the range, 

horizontal and vertical angles of a target. The spherical co-ordinate observations of 
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the ith object space point in the jth scanner space are range, ij, horizontal direction, 

ij, and elevation (vertical) angle, ij, which are parameterised in terms of scanner 

space Cartesian co-ordinates (xij, yij, zij) as: 

ρij = ට xij
2 + yij

2 + zij
2  + ∆ρ (2.4)

 

θij = tan-1 ቆ
yij

xij
ቇ + ∆θ (2.5)

 

and 

αij	=	 tan-1

ۉ

ۇ zij

ට xij
2 + yij

2
ی

ۊ + ∆α (2.6)

                                                           

where Δij, Δij, Δij are the radial, horizontal and vertical systematic error sources, 

respectively, including range offset, collimation and trunnion axis errors and so on 

(Reshetyuk, 2009; Vosselman and Maas, 2010).  

 

There are two available methods for terrestrial laser scanner calibration, which are 

individual component calibration and complete system self-calibration, of which the 

latter is more ideal. Some limitations to the individual component calibration are that 

some scanners, due to their functions and design, cannot be centred over a known 

point, while the lack of a telescope does not allow manual determination of the 

systematic errors (Vosselman and Maas, 2010). 

 

Terrestrial laser scanners sample a scene in uniform angular increments and the 

errors can be estimated through a highly redundant, network-based self-calibration 

procedure.  Data capture of a large number of targets in different locations and 

orientations is required for this method, and then least squares is used to 

simultaneously estimate the object space coordinates of the targets, the exterior 

orientation of each scanner frame as well as all additional parameters (Vosselman 

and Maas, 2010). 
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2. 4 Registration 

Registration is the process of transforming data from different sources and/or of 

different types into a reference system to allow for measurements and interpretations 

to take place. Generally registrations encompass components that relate to scale, 

skew, rotations and translations (Luhmann et al., 2006). Examples of the registration 

process can be found in Kang et al. (2007), Zitová and Flusser (2003), Al-Manasir 

and Fraser (2006) and Bae and Lichti (2008).  

 

In the case of a large project involving multiple medium and long range laser 

scanning datasets, registration would be required to combine the data together into 

one dataset. Control points and other corresponding points or features may be used in 

this process to match and orientate the datasets into one main coordinate system. 

This research uses corresponding control points in the image and the 3D dataset for 

registration. 

 

Figure 2.7 is an example of the registration process, where the image and point-cloud 

are registered to each other resulting in Figure 2.8 (a) or (b). Figure 2.8 (a) is an Real 

Camera Image (RCI) with targets in 2D manually identified (in blue), while Figure 

2.7 (b) has the same targets (in 3D) that were obtained with the laser scanner’s on-

board target identifier. Targets are shown as blue dots and the 3D point cloud of the 

room is in green. Registration of the two using either of the two aforementioned 

transformation methods will result in either image data converted to the 3D point-

cloud system, or 3D point-cloud information assigned to the RCI. 
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(a) ______________________________ (b) 

Figure 2.7 Areas including corresponding points: (a) Digital photo (b) Point-cloud 
 

In most cases registration takes place during the post processing of data, but some 

systems have been proposed that process the registration on the fly (during data 

capture within the instrument) such as in Jansa et al. (2004), Sapkota (2008), and 

Kern (2001). The process of registration in terms of this research is summarised as 

follows: 

(a) Identification of points in image and point-cloud require to be co-located 

(b) Transformation parameters determined based on the co-located points 

(c) Transformation parameters applied to move one dataset into another 

(d) For reverse transformation, current transformation parameters are inverted 

(e) The inverse transformation parameters applied to bring the dataset back 

  

(a) ____________________________ (b) 

Figure 2.8: Registration of (a) point-cloud to image (b) image to point-cloud 
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2. 5 Transformations 

Outlined in this section is the concept of Synthetic Camera Images (SCI) and its 

creation, along with the Helmert transformation and Direct Linear Transform (DLT), 

which are the two transformation methods used in this research.  

 

2.5.1 Homogeneous Coordinates and Helmert Transformation 

Homogeneous coordinates are commonly used in projective geometry, as they 

contain the relationship parameters that relate two differing sets of data together, 

especially as a set of ratios (Mikhail, Bethel and McGlone, 2001). It can be seen in 

the books by Mikhail, Bethel and McGlone (2001), Hartley and Zisserman (2003), as 

well as Luhmann et al. (2006) that the DLT is a form of the homogeneous coordinate 

model in that the 12 parameters arranged into a third row and fourth column matrix 

relates the image points to the 3D point-cloud data.  

 

The Helmert transformation is a 3D to 3D transformation and is known by several 

different names, such as the similarity transformation, the 7-parameter 

transformation and the equiform transformation described by the equation: 

X = X0 +  M x (2.7)
 

or expanded into matrix form: 

൥
X
Y
Z
൩ 	= ൥

X0

Y0

Z0

൩+  ൥
m11 m12 m13
m21 m22 m23
m31 m32 m33

൩ ቈ
x
y
z
቉. (2.8)

 

where XR3×1  represents the 3D points (X, Y, Z), X0R3×1  represents the 

translation components,  is the scalar scale component, MR3×3 is the matrix 

containing 9 rotation parameters (calculation is in Appendix C) and xR3×1 is the 

image coordinates. The similarity transformation is defined by a set of 7 parameters, 

which are scale (), rotation (ω, φ, κ) and translation (tx, ty, tz), which are used to 

transform 3D datasets into different 3D coordinate systems. In order to determine the 

3D relationship between 3D datasets, a least squares approach may be implemented 

to obtain the 7 parameters, but this requires approximate initial values. Using the 
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homogeneous coordinate model, the 7-parameter transform method can be converted 

from Eq. 2.8 to 2.11 into the same form of representation as the DLT (Eq. 2.16):  

቎

X
Y
Z
1

቏= ൦

1 0
0 1

0 X0

0 Y0

0 0
0 0

1 Z0

0 1

൪ * ቎

 0
0 

0 0
0 0

0 0
0 0

 0
0 1

቏ * ൦

m11 m12
m21 m22

m13 0
m23 0

m31 m32

0 0
m33 0

0 1

൪ ቎

x
y
z
1

቏ (2.9)

 

቎

X
Y
Z
1

቏= ൦

m11 m12

m21 m22

m13 Tx

m23 Ty

m31 m32

0 0
m33 Tz

0 1

൪ ቎

x
y
z
1

቏ (2.10)

and 

ቈ
X
Y
Z
቉= ቎

m11 m12

m21 m22

m13 Tx

m23 Ty

m31 m32 m33 Tz

቏ ቈ
x
y
z
቉. (2.11)

 

Note that Eq. 2.8 is converted into Eq. 2.9, through application of matrix 

multiplication principles, which then multiplies into Eq. 2.10, thus having the 

homogeneous coordinates form. Eq. 2.11 is the condensed matrix version for the 

Helmert transformation having the redundant 4th row removed, which now offers a 

resemblance to the DLT matrix as outlined in the following Section 2.4.2. 

 

2.5.2 DLT 

The Direct Linear Transformation (DLT), an implementation of projective geometry, 

provides a linear function for modelling the transformation between the image pixel 

coordinate system and the object space coordinate system, and can be derived from 

collinearity equations (Atkinson, 1996; Mikhail, Bethel and McGlone, 2001; 

Luhmann et al., 2006). Originally proposed by Abdel-Aziz and Karara in 1971, the 

main advantage of the method is that it does not require approximate initial values, or 

a calibrated camera (Luhmann et al., 2006; Abdel-Aziz and Karara, 1971, Karara, 

1989). In the book by Hartley and Zisserman (2000), DLT is viewed in terms of 

homography or homogenous equations. DLT is derived from collinearity equations, 

as shown below: 
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xi
' =	x0

' + 
m11*(X-X0)+m12*(Y-Y0)+m13*(Z-Z0)

m31*(X-X0)+m32*(Y-Y0)+m33*(Z-Z0)
+ ∆x' (2.12)

 

yi
' =	y0

' + 
m21*(X-X0)+m22*(Y-Y0)+m23*(Z-Z0)

m31*(X-X0)+m32*(Y-Y0)+m33*(Z-Z0)
+ ∆y' (2.13)

 

DLT has 12 unknown parameters (though the 12th is usually normalised as 1) used to 

transform without requiring any initial values, but requires a minimum of 6 reference 

points (McGlone et al. 2004; Luhmann et al., 2006). However, the DLT does not 

contain an easily interpretable form as used in the Helmert transform; that is scale, 

rotation and translation. However, approximated exterior orientation parameters may 

be derived, as described in Luhmann et al. (2006), Atkinson (1996), Mikhail, Bethel 

and McGlone (2001) and Karara (1989). Eqs. 2.14 and 2.15 are the functional 

equations for the DLT, one to describe the relationship of the 3D points to the image 

coordinate x, and another to describe the relationship of the 3D points to the image 

coordinate y. The coefficients of the equations can be put into a matrix format as 

seen in Eq. 2.16. Notice that the last row coefficients are common to the two 

functional equations and are assigned, w, in the resultant vector as it is a scaling 

parameter. 

xi	=
H11*X0+H12*Y0+H13*Z0+H14 

H31*X0+H32*Y0+H33*Z0+H34
  (2.14)

 

yi	=
H21*X0+H22*Y0+H23*Z0+H24 

H31*X0+H32*Y0+H33*Z0+H34
 (2.15)

    

ቈ
x
y
w
቉= ൥

Hଵଵ Hଵଶ
Hଶଵ Hଶଶ

Hଵଷ Hଵସ
Hଶଷ Hଶସ

Hଷଵ Hଷଶ Hଷଷ Hଷସ
൩ * ቎

X
Y
Z
1

቏ (2.16)

 

The method of least-squares is used to estimate and calculate the parameters for the 

DLT. DLT primarily uses 11 parameters since the 12th parameter (H34) is generally 

given the value of 1, indicating that there is a normalisation, but a 12 parameter 

solution is also possible when treated as a parameter (Hartley and Zisserman, 2003).  
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An in depth discussion of the DLT is given in Chapter 3, while the derivation for the 

DLT coefficients is contained in Appendix B. 

 

2. 6 Synthetic Camera Image (SCI) and Real Camera Image (RCI) 

The Synthetic Camera Image (SCI) is an image created (with mathematical 

principles simulating a camera) from point-cloud data. Therefore it also contains 

scale information to transform it back into 3D. This synthetic image attempts to 

mimic the Real Camera Image (RCI). Forkuo and King (2005) provide the original 

explanation and concept. The RCI is a digital photo and the term is used to provide a 

distinction from simply using the word image, as both are images, but one is 

captured in reality (RCI) using a camera such as the Nikon D80 and the other is 

simulated or synthesised (SCI). 

 

 

Figure 2.9: Visual representation of 3D points projected onto a plane 
 

The creation of a synthetic image is based on a projection of an object onto a flat 

plane, which in principle is the same as capturing a photograph of an object. The 

light ray passes through a lens onto a flat surface (film or CCD), as indicated in 

Figure 2.9.  

 

Creation of an SCI as seen in Figure 2.10 (a) is required to provide the platform 

whereby a relationship can be determined between the 3D point-cloud and RCI. 
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In order to mimic the RCI, the SCI created in this research uses the 2D camera 

projection model (sometimes referred as the canonical model; Hartley and 

Zisserman, 2003) to create the SCI of a point-cloud: 

ri = k ሾM|Trሿ * r0 (2.17)
 

where k is the camera matrix, M and Tr are the rotation and translation matrix, 

respectively, and ri and 	r0 are the 2D image and 3D object points in the non-

homogeneous notation, respectively. Similar to the similarity transform, the camera 

projection model can also be expressed using homogeneous coordinates so that it is 

visually similar to the DLT when changed into matrix format, as indicated in Section 

2.4.2. Notably, the distinguishing difference between the camera projection model 

and the Helmert transformation is the scale matrix, whereby the camera projection 

model contains a matrix of interior orientation parameters (see Eq. 2.18) and the 

Helmert transformation has a singular scale (Eq. 2.8). 

 

In order to simulate a specified camera, the camera matrix k (Eq. 2.18) is required, 

which contains the calibration parameters to create a synthetic image with the 

properties of the specified camera: 

 k = ቎
f s x୮
0 f y୮
0 0 1

቏ (2.18)

 

where the focal length (f), skew (s) and principal point offset (x୮, y୮) are required in 

order to produce the SCI. In terms of the SCI, it is assumed that the calibration has 

been performed for the camera, thus requiring only the calibrated focal length to be 

entered and low principal point offset values. The RCI used would have the radial 

lens distortion applied allowing precise point to point correspondence solutions, thus 

reducing error propagation for 3D reconstruction. For the SCI x and y image 

coordinates, a millimetre to pixel ratio may be applied and then rounded to the 

closest integer to obtain a pixel based solution, or the pixel to millimetre ratio must 

be applied to the RCI for the two images to correspond. 
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The alternative approach for the creation of synthetic images is achieved using DLT. 

However, the synthetic images are created with a different approach whereby the 

DLT parameters are solved using least squares with corresponding points in the 2D 

image and 3D control points. Then an SCI is produced with the DLT equation, i.e. 

Eq. 2.16, in conjunction with the 3D point-cloud data, as seen in Figure 2.10 (a). 

 

    

(a) ____________________________ (b) 

Figure 2.10: (a) A synthetic image (SCI) (b) A photo (or RCI) 
 

2. 7 2D Iterative Closest Point 

The Iterative Closest Point (ICP) is fine registration method is used for 

correspondences of points, lines and surfaces (Besl and MacKay, 1992; Yang and 

Medioni, 1992; Salvi et al., 2007); a point based approach is implemented for 2D 

correspondences in this project. It is assumed that trials with the simulated data after 

transformations may obtain a singular solution. Other variants of ICP exist, e.g. Al-

Manasir and Fraser (2006), Rusinkiewicz and Levoy (2001), and Vosselman and 

Maas (2010), but point-to-point distance is the method used for this research, which 

is acceptable given the density of the 3D point cloud and the ease with which good 

correspondences between the image and point cloud can be determined. 

 

Outlined in Figure 2.11 is a brief overview of the ICP procedure represented by 

pseudo-code; beginning with point selection, then calculating and applying the 

transformation components, repeating the process until convergence is reached. 

Colour registration from 2D onto 3D or texture mapping refers to the application of 
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colour from images to point clouds, as seen in papers by Stamos and Allen (2002), 

Ikeuchi et al. (2003) and Liu et al. (2006). However, this research also allows the 

reverse of texture mapping (3D to 2D) for different properties, such as data from 

other sources like 3D point-clouds, to be registered to single images. A method is 

presented using DLT to attempt to preserve 2D image metric accuracy, while 

registering with 3D point-clouds. 

 

 

(a) ___________________________ (b)  

Figure 2.11: (a) Large offset of points before ICP (b) Both datasets closer post ICP 
 

The ICP algorithm result is presented in Algorithm 1. Two images are compared and 

one is selected to be the base image, while the other image is selected to 

merge/transform onto the base image. ICP and its variants have been utilised for the 

automated registration of 3D point-clouds, medical images, and for pattern 

recognition. The most important and difficult part of the ICP algorithm is to choose 

the metric criteria, e.g. Euclidean and Mahalanobis distances with consideration of 

statistical inferences, for the corresponding points in either 3D or 2D datasets. 
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1: procedure ICP (Points X1ij, X2ij) 

2: for iteration = 1 to user specified do 

3:  for j = 1 to length of X1 do 

4:  find closest point (minimum distance) with the kdtree 

5:  if distance < threshold distance 

6:  then store corresponding points X1ij and X2ij 

7:  else end 

8: end 

9: calculate rotations and translations with least squares 

10: apply transformation 

11: reduce threshold distance 

12: if converged && small residuals 

13: then break 

14: else end 

15: end procedure 

Figure 2.12: Brief summary of the conventional ICP algorithm 
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3 METHODOLOGY 

The generation of virtual representations of objects from sensor data requires 3D 

reconstruction or depth acquisition. Photogrammetry utilises multiple images and 

triangulation for calculation of its 3D points with colour assignment to each 3D point 

coming from one or more of the images. Alternative solutions incorporating 

photogrammetric principles exist such as AICON’s (2012) two camera setup, a 

single camera with grid projection system, SwissRanger’s 3D range camera 

(MesaImaging, 2012), or Terrestrial Laser Scanners (TLSs). The aforementioned 

methods of acquiring photorealistic models are faced with a combination of the 

following limitations:  (i) range and resolution constraints, (ii) static arrangements of 

the sensors, (iii)_sensitivity to lighting conditions, (iv) flexibility to incorporate 

different sensor types, and (vi) time based restrictions (Liu and Stamos, 2005).  

 

With these limitations in mind, this study provides a flexible solution for the 3D 

reconstruction and colour assignment using co-registered camera and TLS and 

solving for the registration. This registration approach focuses on the technique to 

provide the mapping of colour to point cloud, having flexibility by utilising any 

chosen camera and TLS setup. Firstly the camera is able to collect a myriad of 

colours in order to represent reality. Secondly the TLS, is able to acquire precise 

dense 3D point data of the object’s surface with minimal reconstruction effort. 

 

The conventional process of 3D reconstruction is to identify many corresponding 

points between multiple images and then triangulating with bundle adjustment to 

obtain 3D data points (McGlone et al., 2004; Luhmann et al., 2006; Atkinson, 1996). 

Although TLS has resolved the problem of obtaining 3D points, obtaining accurate 

colour information for the object still remains. Since cameras have the ability to 

provide much better colour information, camera images are used to supplement the 

limited colour acquisition of TLS. The method presented here focuses on using 

projective transforms as a means to achieve a set of parameters to relate the point 

cloud and image data together. As discussed in the previous chapters, the Direct 

Linear Transformation (DLT) is the main projective transform used, which is robust 

because of its linear solution of a non-linear problem and its ability to achieve a 

solution without requiring initial values. Discussed in this chapter is the relationship 
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between the various similar transforms: DLT, collinearity, camera projection 

equation, and Helmert transformation. This registration problem uses DLT. It is the 

most suitable technique, since it has the advantage of having a simple mathematical 

form and being relatively accurate, while offering camera setup flexibility (Chen, 

Armstrong and Raftopoulos, 1994; Dermanis, 1994a). 

 

The different aspects of the DLT method are explored in this research, apart from its 

use in deriving initial parameters and in calibration adjustments (McGlone et al., 

2004; Luhmann et al., 2006; Atkinson, 1996), it is used with the concept proposed by 

Forkuo and King (2005) to produce synthetic images (SCI). On a similar note, 

Ikeuchi et al. (2003) attempts using the DLT for a heritage modelling project, but 

discounts its potential in preference for development of the reflectance-edge based 

method because they perceived the DLT to be reliant on calibration, especially in 

terms of using calibration fixtures. However, this research takes an alternative path 

for the DLT, in which producing an SCI provides the transitioning medium for 

registration between 2D and 3D data, as correspondence and registration happen at a 

2D-2D level. The transitioning medium only requires the DLT to obtain the 

relationship between camera images (RCI) and the 3D point cloud data. Therefore, 

combining point clouds from TLS and images from a camera can be achieved using 

the SCI method which offers the ability to register at a 2D to 2D level by using the 

DLT. 

 

This chapter describes the entire process of the TLS and image registration 

methodology for creating photorealistic colour models, and depth information 

recovery. The core framework is presented first in which the key concepts are 

explained in detail to provide the foundational understanding. Then the method is 

proposed covering stages from data acquisition to the final back-projection. Lastly a 

concise summary of the entire methodology is presented. 

 

3. 1 Core Framework 

3.1.1 Fundamental Expressions for Projection and Back-Projection 

The DLT and the camera projection transformation are used to project 3D data into a 

2D plane, thus creating an SCI. The fundamental concept is to be able to perform a 
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projection from 3D into 2D and then to back-project from 2D back into 3D. To be 

able to successfully register the two types of datasets, it is essential to understand the 

method by forming the mathematical relationship between the datasets. Initially 

simulated data is used to get an understanding and provide control of the variables, 

and a closed system used for the purposes of testing. The base idea of projection 

between 3D and 2D space can be expressed by Eqs. 3.1 and 3.2, which are the 

projection and back-projection respectively (Hartley and Zisserman, 2003):  

቎
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w
1
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or more briefly, H Projective
-1  x =  X, where H ProjectiveR4×4 represents the matrix of 

projection parameters to be estimated, x R4×1 is the image coordinates and X R4×1 

is the object coordinates in the homogeneous coordinate system (Hartley and 

Zisserman, 2003). This forms the fundamental concept of projection and back-

projection, including an understanding of the mathematical relationship between 2D 

and 3D for the purpose of registration via projective means. 

 

Eqs. 3.1 and 3.2 together are a simple representation of the process from projection 

to back-projection. Back-projection is not as simple as the forward projection from 

3D onto 2D when it comes to the DLT. In theory, back-projection should be as 

simple as applying an inverse of the H Projective matrix into Eq. 3.1, and the result 

should become Eq. 3.2 due to matrix identities  I = H Projective
-1  H Projective, then the 

H Projective
-1  matrix multiplied by the H Projective matrix results in an identity matrix. 

However, this cannot apply to this case since the H Projective matrix in terms of the 

DLT comprises only 12 parameters, given as matrix H. Since the DLT contains 12 

parameters as expressed in Eq. 3.3, the H matrix to be inverted is not a square matrix 
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instead but rather HR3×4, a standard matrix inverse cannot be performed. Each 

parameter may be represented either by their location within the matrix or as 

parameters H1 to H12 as in Eq. 3.3. Note these notations HX and HX will be utilised 

in a mixed manner, whenever it is necessary, through this dissertation. 

 H = ൥
H11 H12
H21 H22

H13 H14

H23 H24

H31 H32 H33 H34

൩  = ൥
H1 H2 H3
H5 H6 H7
H9 H10 H11

H4
H8
H12

൩. (3.3) 

 

To solve the issue regarding inverting the H matrix, three methods, explained in 

Section 3.2.3, are devised which then allows for the back-projection. The main 

method is termed the pseudo-inverse method, as it applies a pseudo-inverse for the 

non-square DLT matrix; the second is a 2-Step solution, in which the projection 

matrix is split into two parts and the inverse performed to solve the rotation and 

translation separately; the third method is to apply an additional redundant row to 

treat the matrix as a type of 3D-3D transformation allowing a normal inverse to be 

performed. In essence, the simple representation provides only the conceptual 

understanding of the relationship matrix used for projection and back-projection, and 

further investigation is required in order for the back-projection to work. 

 

3.1.2 Correspondences and Collinearity 

A relationship between the two datasets needs to be established, using a set of 

corresponding points or features present in the image and the point-cloud. Then, the 

corresponding points will be used in the estimation of the H matrix via a least 

squares solution. Upon obtaining the parameters relating the image and the point 

cloud, registration between the two datasets can take place to provide either 

supplementation of 3D information onto an image, or the colour information from 

the image to be stored onto 3D making a photorealistic model. 

 

Collinearity can be represented by a set of equations that mathematically represents 

the ray path intersecting the object points, point of exposure and the image space, in 

three-dimensional space (Wolf and Dewitt, 2000). The general form of the 

collinearity can be expressed in two ways, one in a global coordinate system, e.g. Eq. 
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3.4 in Luhmann et al. (2006), while the other from a camera centric perspective, e.g. 

Eq. 3.5 in Karara (1971) or relevant expressions in McGlone et al. (2004) as:  

൥
X
Y
Z
൩  = ൥

X0

Y0

Z0

൩+  ൥
m11 m12 m13
m21 m22 m23
m31 m32 m33

൩ ቈ
x
y
z
቉ (3.4)

 

or more briefly, X=X0+Mx, and: 

ቈ
x
y
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቉  = 

1


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or more briefly, x=-1M-1(X-X0). Several other derivative expressions of the 

collinearity exist whereby slight modifications are present and may be known as the 

camera projection equation, which includes the k matrix of interior orientation 

parameters, Helmert or Similarity transformation that is primarily used as a 3D-3D 

shape-invariant transformation, and the DLT, which is a linear expression of the non-

linear form. 

 

3.1.3 Understanding the DLT 

An understanding is required of the DLT with respect to collinearity in order to 

establish a firm understanding of the back-projection methods. The DLT equation is 

developed from the collinearity. The six elements of exterior orientation and five 

elements of interior orientation relate to the DLT parameters (Dermanis, 1994a). 

Therefore some similarities between the two concepts are expected to be present.  

 

Similarities between collinearity and the DLT are evident when the equations are 

expressed in matrix form. An alternative expression exists (Dermanis, 1994a), for the 

conversion of the collinearity equation to the DLT. However, this method of 

expression is based on Karara (1971). The process of changing the collinearity 

solution to the DLT will be outlined, with explanation of the components that are 

merged into the DLT parameters. Therefore to begin, consider Eq. 3.5. This matrix 

form can be changed into the algebraic form (Eqs. 3.6 and 3.7), which is a more 

suitable representation to show the parameter changes: 
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x =c 
m11(X-X0)+m21(Y-Y0)+m31(Z-Z0)

m13(X-X0)+m23(Y-Y0)+m33(Z-Z0)
 (3.6) 

and: 

y =c
m12(X-X0)+m22(Y-Y0)+m32(Z-Z0)

m13(X-X0)+m23(Y-Y0)+m33(Z-Z0)
 (3.7) 

 

where x and y in the lower and upper cases represent the coordinates in the image 

and the object spaces, respectively, c is the principal distance of a camera, and mij is 

the individual component of the relative rotation matrix between the image and 3D 

point clouds spaces. Firstly, the equations are to be multiplied out using: 

 

x =c
m11X+m21Y+m31Z + (-m11X0-m21Y0-m31Z0)

m13X+m23Y+m33Z + (-m13X0-m23Y0-m33Z0)
 (3.8) 

 

and: 

y =c
m12X+m22Y+m32Z + (-m12X0-m22Y0-m32Z0)

m13X+m23Y+m33Z + (-m13X0-m23Y0-m33Z0)
 (3.9) 

 

where translation parts, i.e.  -mijX0, -mijY0 and -mijZ0, can be grouped together 

(indicated in brackets in Eqs. 3.8 and 3.9) as a constant to establish the DLT 

coefficients H4, H8 and H12. Next, the rotation and translation elements can be 

multiplied together and treated as coefficients. Eqs. 3.10 to 3.12 and Eqs. 3.11 to 

3.13, relate to the remaining DLT parameters. Consider: 

 

x =
c m11X+c m21Y+c m31Z+c H4

m13X+m23Y+m33Z+H12
 (3.10)

 

and 

y =
c m12X+c m22Y+c m32Z+c H8

m13X+m23Y+m33Z+H12
 (3.11) 

 

in which subsequently the principal distance can be incorporated into the equation. It 

can be also seen that parameters H1, H2, H3, H5, H6 and H7 contain the principal 
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distance and orientation elements whereas the parameters H9, H10 and H11 only 

contain rotation elements. This is notable when orientation angles are required to be 

determined as: 

x =
H1 X+H2 Y+H3 Z+H4

H9 X+H10 Y+H11 Z+H12
 (3.12)

and: 

y =
H5 X+H6 Y+H7 Z+H8

H9 X+H10 Y+H11 Z+H12
  

 
(3.13) 

 

which are the equivalent expressions to Eqs. (3.10) and (3.11). The DLT is 

commonly regarded as having 11 parameters, because the parameter H12 undergoes 

normalisation. The parameter H12 is divided through the two DLT equations, thus 

being expressed as unity as: 

x=ቌ

1
H12

1
H12

ቍ
H1 X+H2 Y+H3 Z+H4 

H9 X+H10 Y+H11 Z+H12
 = 

H1 X+H2 Y+H3 Z+H4

H9 X+H10 Y+H11 Z+1
 (3.14)

 

and 

y=ቌ

1
H12

1
H12

ቍ
H5 X+H6 Y+H7 Z+H8 

H9 X+H10 Y+H11 Z+H12
=

H5 X+H6 Y+H7 Z+H8

H9 X+H10 Y+H11 Z+1
 (3.15)

 

which are the equivalent DLT expressions to Eqs. (3.12) and (3.13).  

 

The elements that contribute to the DLT components can be summarised as:  

൥
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 k  M-1  ൫X - X0൯ = ൤k M-1

3,3
ฬ k M-1 Tr

 3,1
൨  ቎

X
Y
Z
1

቏, (3.17)

and 
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Representing the components in this perspective aids in understanding the 

calculation of the perspective centre used for the back projection. Eq. 3.17 is a matrix 

representation of the collinearity equation to demonstrate that similarity exists, 

represented in Eq. 3.18, where kM-1R3×3 is representative of H1, H2, H3, H5, H6, 

H7, H9, H10 and H11, and k M-1 TrR3×1 is representative of H4, H8 and H12. 

 

3.1.3.1 Limitations of the DLT 

The DLT offers a flexible method for the projection and back-projection, and 

furthermore, the resection in the case of multiple images leading to better 

opportunities in developing automated procedures for image analysis (Hartley and 

Zisserman, 2003). However, for the purpose of the back-projection from 2D to 3D 

space, the reverse solution through applying the inverse to the DLT matrix has a 

limitation due to its weakness of lacking the additional depth information for each 

image pixel (Hartley and Zisserman, 2003, Chen, Armstrong and Raftopoulos, 1994). 

Through an understanding of the fundamental relationship between the 

photogrammetric interpretation of a camera and the DLT, three methods can be used 

for providing the necessary additional information to the DLT for the back-projection 

of 2D images to 3D point clouds.  

 

3.1.4 Normalisation and 12th Parameter Recovery 

The 12th DLT parameter, i.e. H12, is commonly normalised as unity, but it may need 

to be extracted or recovered for instances such as determining orientation angles and 

also for successful back-projection. The best estimation for the 12th parameter uses 

the third component of the calculated perspective centre, termed Zୡ, as the 

perspective centre models the camera location or camera translation. This is based 

upon comparing the DLT and the collinearity equation, finding that similarity exists 

(see Eq. 3.18) for the translation side. The estimated 12th parameter needs to be 

applied to every component as represented in Eq 3.19. This is due to the 
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normalisation step, i.e. Eq. 3.14 and 3.15, thus needing to apply the inverse of the 

H12 factor for the entire function: 

 (H34) ቈ
x
y
w
቉= (H34) ൥
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3.1.5 Perspective Centre Calculation 

The perspective centre calculation of the DLT (Karara, 1989; Luhmann et al., 2006; 

Atkinson, 1996) is important as it provides the necessary translation parameters 

required for the proposed three back-projection methods in this dissertation. It is the 

base concept for the 2-step back-projection method. The formulation of the 

perspective centre requires the link represented in Eq. 3.18, which shows that the 

DLT matrix is split into two parts similar to the collinearity matrix. Based on the 

knowledge that the perspective centre is the location of the camera with respect to 

the origin of the object coordinate system, the values for X, Y and Z are given the 

value of zero (Eq. 3.18). Following though the calculation gives the solution in Eq. 

3.20, which then is rearranged to give the solution for the perspective centre in Eq. 

3.21: 
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and 
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3.1.6 The Image Scale Component 

The image scale component, termed w, needs to be understood as it is an integral 

component to the back-projection process. The image scale component is another 

normalised parameter just like the H12 coefficient of the DLT, as normalisation is 

required to transform via scaling the calculated image data or SCI back to its original 

image points (see Eq. 3.22): 
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in the non-homogeneous representation. The image scale component differs for each 

image point, since it acts as a 3D component, often seen as the collinearity parameter 

z in books by McGlone et al. (2004) and Luhmann et al. (2006). Before 

normalisation of the SCI or calculated image data, the coordinates are in terms of 3D 

space or the object space. Thus when normalisation occurs, the calculated image data 

is changed to the image coordinate system, being independent from the other data. 

To bring the image data into a 3D form, a method using the DLT is used to create 

SCIs, which allows registration between 2D and 3D to occur. 

 

The inner constraints in conjunction with the bundle adjustment has been widely 

utilised in close-range photogrammetry, e.g. Fraser (1997) and Dermanis (1994b) or 

commercial software like Australis (2012), in which observations including control 

points and parameters are dealt with in the context of a free network (Sillard and 

Boucher, 2001). In this study, the accuracy of the control points can be assumed to 

be much higher than the observations for both the collinearity and DLT approaches. 

The control points are obtained by using the laser scanner software, which will 

perform a precise scan of the target to determine the centre; also, a total station may 

be used to precisely collect the control point data. Therefore, much emphasis was 

placed on the recovery of the depth information of each pixel with the assistance of 

3D point clouds as presented in this chapter. Thus the free network with the inner 

constraint was not investigated.  

 

3. 2 Proposed Method 

3.2.1 Rigorous estimation of the DLT parameters 

The DLT is a form of projective transform, derived from the collinearity equations, 

which directly relates the Euclidean coordinates of the object and image points 

without the need of approximate initial values (McGlone et al., 2004; Abdel-Aziz 

and Karara, 1971). The camera projection model cannot be used in most cases 

because it is difficult to obtain the camera orientation parameters for a single image. 
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Thus the DLT is implemented to provide the relationship parameters because of its 

robust linear form (Luhmann et al., 2006). The camera projection matrix is only used 

initially in order to understand the mechanics of the DLT, as both are similar in 

presentation, being derived from the collinearity equation. It is inferred that the DLT 

comprises an alignment part, which deals with rotations, and a depth or z-axial 

projection part, which acts like translation. As mentioned previously in Section 3.1.3, 

using Eq. 3.16 as a reference, the scale and error components are intermixed within 

the 12 DLT matrix parameters.  

 

Determining the DLT projection matrix simply requires the 3D points and their 

corresponding 2D image points for a solution (Luhmann et al., 2006). The DLT 

coefficients can be determined with iterative least squares and is used for the purpose 

of obtaining the relationship parameters between the 2D and 3D control points, for 

generating an SCI and back-projection. Notably in this method, the solution obtained 

will show a good match for the 3D points to the image under normal circumstances 

and a near perfect match for simulated cases. However, as explained earlier, the DLT 

transformation coefficients will not allow the solution to easily revert back to the 

original 3D, unless the scaling component (w) is retained. Even with the scaling 

component, some form of manipulation is still required for back-projection, which is 

presented in the later sections. 

 

3.2.2 RCI and SCI 

3.2.2.1 Create SCI with control points only 

Initially, only the control points are required to create the SCI, which is done by 

multiplying the DLT projection matrix with the point cloud control points according 

to Eq. 3.28. This step is basically in preparation for registration of the RCI to the SCI 

using ICP. There is no reason to create the SCI for the whole point cloud because the 

ICP registration only requires a few corresponding points in order to match the two 

datasets and provide the transformation between the two. Figure 3.1 shows that 

points are projected using the camera projection model to create an SCI, which 

functions similarly to the DLT as explained in Chapter 2. The SCI is a mapping of 

the control points to the image system, which will then allow data manipulations to 
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take place in the same system and eventually to be utilised for the estimation of all 

the DLT parameters. 

 

 

Figure 3.1: A representation of the projection of control points to SCI points. 
 

3.2.2.2 Coarse and Fine Registration of RCI to SCI using ICP 

Registration at this stage requires an image matching method, e.g. Besl and McKay’s 

(1992) ICP, to be implemented on the RCI and SCI. The registration algorithm using 

ICP will produce a 2D transformation that is to be applied to the entire RCI making it 

ready for colour assignment in a later step. It is essential to obtain a very close match 

at this stage for high precision and accurate back-projection. A deep understanding of 

some of the requirements is required to ensure a good registration. 

 

The control points in the RCI and the SCI are factors that will determine the outcome 

of the transformation. Having sufficient and evenly distributed control points is 

needed to provide the best outcome (Chen, Armstrong and Raftopoulos, 1994). 

Control points within the RCI as well as the corresponding TLS control points are 

required to be located as accurately as possible as mentioned in the previous step. 

This is to allow a good DLT solution in order to create the control point based SCI 

for registration. 

 

Removal of image related errors in the RCI such as misalignments, radial lens 

distortion, skew, and so on, is needed in order to obtain a very close point-to-point 

correspondence with the SCI. As displayed in Figure 3.2, ICP can then be used to 

further match the RCI and SCI. In an ideal case, the RCI and the SCI would result in 

a perfect match when registering the two image datasets together. However, in reality 

Camera Centre 

Control Points 

SCI Points 
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many factors, especially errors, known and unknown would influence the disparity 

between the two datasets and should be removed when possible. 

 

 

Figure 3.2: The SCI and RCI control points to be closer after registration. 
 

Registration between the control points of the RCI and SCI will obtain the 

transformation parameters required, which is a by-product of the ICP algorithm. 

Figure 3.3 shows conceptually that the entire RCI would be transformed based on the 

parameters acquired in this step, thus rotated, scaled and skewed for colour 

assignment to the SCI at a later stage of this process. The RCI provides the colour 

information while the SCI contains the depth information, thus a good match 

between the RCI and SCI will allow an accurate colour model representation after 

back-projection. 

 

A very close match between the RCI and SCI is required, otherwise the location of 

the colour desired for the object may be offset or shifted, thus forming a 

misrepresentation or causing other misalignment effects. Figure 3.4 shows this 

problem visually as the original points that are expressed as X representing the 

coordinate set, i.e. X, Y, Z, have translated after the back-projection caused by a 

mismatch or low level precision of corresponding points in the image. This 

representation is modified based on the version of the points-to-rays back-projection 

concept (Hartley and Zisserman, 2003) for providing some understanding of the 

problems in the back-projection caused by registration at this stage. 

 

Based on Figure 3.4, an assumption can be made that range and incidence angle from 

the PC to the object will be influencing factors causing back-projection errors. In 

Before ICP 

RCI Control Points SCI Control Points 

After ICP 
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terms of range, as the distance from the object increases, the effect caused by the 

offset also increases. In a similar manner, as the angle of incidence increases, the 

likelihood of mismatches occurring also increases. In order to achieve a solution with 

minimal misrepresentations after back-projection, it is important to understand the 

effect on the solution due to the registration at this stage.    

 

Figure 3.3: The RCI is transformed to match the SCI. 

 
Before proceeding further, an additional refinement step may be desired to achieve 

closer matches between the SCI and the RCI, since having a closer match will enable 

the back-projection to have better accuracy. Therefore, iteration from step 2 to step 5 

may be considered (refer to Table 3.5). If iteration is implemented, the RCI control 

points must be updated and the DLT parameters recalculated. However, in 

performing the iteration the RCI may become overly skewed and distorted from the 

original due to multiple transformations being applied, thus compromising data 

quality. 

 

Figure 3.4: The effect of an offset in the image plane causing a misrepresentation of 
colour assignment in the point cloud. 
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3.2.2.3 Create an SCI of the entire point cloud 

This step requires the entire point cloud to be converted into an SCI, which is done 

by multiplying the point cloud coordinates with the DLT as shown in Eq. 2.16 

(Chapter 2, pp. 23). There may be multiple points per pixel, which is dependent on 

three factors: (1) point cloud density, (2) image resolution and (3) distance of image 

to object; as pixel size enlarges or reduces based on range. Figure 3.6 illustrates the 

multiple points per pixel phenomenon. 

 

Figure 3.5: RCI at pixel level: Each pixel may contain multiple SCI points. 
 

For dense point clouds or low image resolution, it can be seen that multiple points 

can be projected onto an individual pixel and the outcome should be similar to Figure 

3.5, and an increase in point cloud density should result in greater amount of points 

per pixel. To decrease the amount of multiple SCI points per pixel value, logically 

the density of the pixels has to increase or a higher resolution image obtained. Then 

there would be more pixels to dilute the SCI density.  

 

Figure 3.6: Geometric diagram to indicate multiple points per pixel as a function of 
range. 
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Range is an important factor as both the previous situations may be manipulated 

simply by changing the distance between image and object. Referring to Figure 3.6 at 

Range 1 there is an opportunity to fit more points onto a single pixel than at Range 2. 

The RCI are integer values if using pixels, while SCI points may be in decimal 

values if no rounding is applied to conform to the RCI values. 

 

3.2.2.4 Assigning of Colour Information (Additional Data Registration) 

The colour information from the (closely) matching RCI may now be stored onto the 

SCI, ready for back-projection. Colour information for each coordinate value of the 

RCI can be stored at the same coordinate value of the SCI. In other words, colour 

information can be merged to the SCI, based on the matching pixels in the SCI and 

RCI. Some pixels may be assigned with several SCI points and some pixels may not 

have any points. This is dependent on point density, RCI perspective, RCI resolution 

and range. 

 

Figure 3.7: Colour information from the RCI points is stored at the corresponding 
SCI points. 

 

3.2.3 Proposed Back-projection methods 

Back-projection is a term used when explaining the reverse concept of forward 

projection, which is to project from image to object point (Eq. 3.2). The back-

projection concept in this method is based on that proposed by Hartley and 

Zisserman (2003). Referring to the representation given in Figure 3.8, the acquisition 

of an object point X from its corresponding image point x, requires a collinear ray 
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path determined from the perspective centre (PC) passing through the image point 

and a depth parameter to define a limit to the depth of the object point. 

 

Figure 3.8: Back-projection representing points to rays concept and to emphasise 
significance of the image depth value. 

 
The camera direction is defined within the DLT parameters, enabling the acquisition 

of the perspective centre. The ray path is defined by performing an inverse on the 

DLT parameters. Depth is defined partly through the acquisition of parameter w, in 

creation of an SCI, from the DLT projection (x = HX), i.e. Eq. 2.16, and the other 

part a translation/shift based on the method of back-projection. 

 

For further clarification, 3D points are projected into the 2D digital photo (RCI) and 

matched by points falling into the respective pixel region. This is not to merely 

project and back-project, but to define an associative relationship between the 2D 

and 3D, if it is solely projecting back and forward, one can also use standard 

photogrammetry functions and principles to achieve desired results. 

 

There is a method using OpenGL, which is a simple case of tracing the ray path, 

assigning the closest pixel colour and storing to the 3D point. However, this primary 

aim is to find the relationship between 2D and 3D for colour assignment with DLT.  

 

 

3.2.3.1 Direct Pseudo-Inverse of H 

This method uses a pseudo inverse to calculate a back-projection matrix for the DLT 

(Hartley and Zisserman 2003). A pseudo inverse is a method used for inverting non-

PC 

X 

Image 
x

Camera Direction

D
ep

th
 



46 

square matrices. Calculating the pseudo inverse for the DLT matrix is given by Eq. 

3.29, taken from Hartley and Zisserman (2003), where a pseudo inverse of the matrix 

is denoted with a superscript plus (+) symbol as follows: 

H+= HT  ( H  HT )
-1 (3.29)

 

The DLT pseudo inverse matrix, H+R4×3, is to be used with the coordinates of the 

SCI for back-projection (Eq. 3.30). Applying the pseudo inverse transformation will 

result in a set of four coordinate values, of which the first three pertain to the X, Y 

and Z image location coordinates while the last value (W) is the depth scaling 

parameter used to project or translate the points into object locations, which can be 

expressed as follows: 

൦

X+

Y+

Z+

W

൪= H+ ቎

x 
y 
w 

1

቏ (3.30)

 

The back-projected points without the application of the depth scaling parameter will 

only align and rescale the SCI image plane into the 3D point cloud coordinate 

system. As mentioned in section 3.1, the SCI is an image representation in the global 

coordinate system and that an RCI in the image system is independent. In order to 

complete the back-projection process, first the depth scaling parameter will need to 

be subtracted by 1 because of normalisation, see Eq. 3.31, as follows:  

቎

Tx 

Ty 

Tz

቏  = ሺW  - 1ሻ  ൥
Xc

Yc

Zc

൩ (3.31)

 

and 

൥
X 
Y 
Z 

൩= ቎
X 

+

Y 
+

Z+

቏+ ቎

Tx 

Ty 

Tz

቏. (3.32)

 

The recalculated depth scales are to be multiplied to the perspective centre to give 

the additional shift/translation, which are to be added to the non-depth back-

projected points, as in Eq. 3.32. Thus a set of coloured 3D back-projected points has 



47 

been created. A possible visual explanation based on Figure 3.8, is that the 

normalised unity defines a set depth, in which all points will relate to when applying 

only the pseudo-inverse. When plotting the pseudo-inverse object points (X+, Y+, 

Z+), the result will appear to be an enlarged image plane. Therefore a further step is 

required, based on the acquisition of the depth scaling parameter to shift individual 

object points. 

 

3.2.3.2 Two-Step solution with the DLT 

An alternative technique for back projection is the two step solution that resembles 

the calculation of the perspective centre with the DLT as seen in Atkinson (1996), 

Karara (1989) and Luhmann et al. (2006). This method of back-projection is unique 

as it is based on the calculation of the perspective centre (Eq. 3.34), whereby the 

DLT matrix is split into two parts (Eq. 3.33). The first part deals with the alignment 

or rotation element and the second with the translation. Comparing Eq. 3.34 with the 

collinearity Eq. 3.5, the resemblance can be seen when at the origin. A further 

explanation can be found by referring to Figure 3.8, where the PC is found by finding 

the camera direction. The camera direction is defined by the ray path from the PC to 

the origin and implying that H4, H8 and H12, is the location of the principal point. 

Understanding that H12 is 1 due to normalisation, the parameter set resembles image 

coordinates (H4, H8, 1) = (x, y, 1), thus this equation may be modified whereby Part 

2 (Eq.3.33) can be substituted with SCI values as expressed as: 

Part 1: ൥
H1 H2 H3

H5 H6 H7

H9 H10 H11

൩  and Part 2: ൥
H4
H8

H12

൩ (3.33)

 

which leads to: 

൥
Xc

Yc

Zc

൩= ൥
H1 H2 H3

H5 H6 H7

H9 H10 H11

൩

-1

 ൥
H4
H8

H12

൩ (3.34)

 

In order to calculate the perspective centre, which in essence is the camera location, 

an inverse of Part 1 in Eq. 3.33 must be obtained and then multiplied by Part 2 of Eq. 

3.33, which gives Eq. 3.34. Next is to perform the back projection, whereby the 
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initial step is to multiply each set of SCI points with the inverse of Part 1 as shown in 

Eq. 3.35:  

൥
X	
Y	
Z 

൩= ൥
H1 H2 H3

H5 H6 H7

H9 H10 H11

൩

-1

 ൥
x 
y 
w
൩. (3.35)

 

This will produce a full scale 3D point cloud at the origin. The next step is to use the 

results of the first step and translate them by the perspective centre, as shown in Eq. 

3.36: 

൥
X 
Y 
Z
൩= ൥

X 
Y 
Z
൩ - ൥

Xc

Yc

Zc

൩. (3.36)

 

3.2.3.3 Addition of Fourth-Row to the Original DLT Matrix 

This concept can be understood from a combination of two perspectives, first being 

the Helmert transformation, which is explained in Chapter 2, and second through 

graphical transformations (Luhmann et al., 2006). Although the above two are 

mentioned in that order, it should be noted that the order is irrelevant and that a fuller 

understanding is obtained through understanding both perspectives mentioned. A 

simple generalisation of this additional row concept is that the key to the 

development of this method was from a deeper look into the component nature that is 

inherent in projective transforms and applied to this DLT case. 

 

Firstly, it is explained in terms of the Helmert transformation that is defined by 7 

parameters: a scale, 3 rotations and 3 translations. When applying the Helmert 

transformation, the 3 rotation angles are required to be converted and used in the 

rotation matrix. Once the parameters are in a suitable form, they can be presented in 

the matrix form as shown in Eq. 2.11 (Chapter 2, pp. 22), which has the same matrix 

size as the DLT. In Eq. 2.10 (Chapter 2, pp.22), the same equation is represented, but 

as a square matrix of 4 rows and 4 columns, in which the entire bottom row is an 

addition only to modify it to become a homogeneous matrix. One of the benefits of 

this is that the matrix is square and a standard inverse can be performed to allow a 

back-projection, which is something desired for the DLT. The similarities between 
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the Helmert transformation and the DLT presents the possibility of having the DLT 

matrix inverted by applying the additional row. 

 

Secondly, the graphical transformation function relates to the DLT in two ways. 

Firstly the function is in homogeneous form and secondly, decomposition shows they 

consist of the same elements. The graphical transformation function is given below, 

which is taken from Luhmann et al. (2006). On a side note, comparing the 

decomposed formula with the Helmert transform shows near identical components: 

 T =

ۏ
ێ
ێ
ێ
ۍ

t11 t12
t21 t22

t13 ⋮t14
t23 ⋮t24

t31 t32

…………
t41 t42

t33 ⋮t34

…… ⋮ …
t43 ⋮t44 ے

ۑ
ۑ
ۑ
ې

= 

ۏ
ێ
ێ
ۍ
T11
3,3

⋮T12
⋮  1,3

…………
T21
3,1

⋮T22
ے1,1  ⋮

ۑ
ۑ
ې
 (3.37) 

 

and: 
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(3.38)

 

or more briefly, X = T  and x = TT TS TR x. 

 

Luhmann et al. (2006) states that the reverse transformation for the graphical 

transformation may not be changed as the projections are not necessarily 

commutative and the reverse transformation is given by x = T 
-1 X = TR

-1TS
-1TT

-1 X. 

Although the commutative properties of this transformation are of little importance 

to this method, the main part is that this transformation matrix can be reversed. 

Therefore, after investigating that the DLT matrix is similar in nature to this 

transform and the Helmert transform, the possibility of having an additional row to 

the DLT matrix arises to allow an inverse to be performed. The graphical 

transformation provides the meaning of the additional row. Referring to Eq. 3.37, the 

content of the sub-matrices can be identified as shown in Table 3.1. 
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Sub-matrix Content 

 ଵଵ Scaling, reflection in a line, rotation܂

 ଵଶ Translation܂

 ଶଵ Perspective܂

 ଶଶ Homogeneous scaling܂

Table 3.1: Description of the sub-matrices related to the graphical transform. 
 

The sub-matrix ܂ଶଵ deals with the perspective, in which the values can remain as 

zeroes as it is not required. Therefore it may be implemented for the DLT case. In 

understanding the similarities between the DLT and the two transformations 

mentioned previously, the additional row appears to be a viable solution that will 

allow the DLT function to be reversed. 

 

Following the registration process, the additional row inverse method requires the 

DLT matrix to be reconstructed into a 4 by 4 square matrix. This is done by adding 

to the DLT matrix a fourth row, as presented in Eq. 3.39. After that, it is multiplied 

by the SCI coordinate set. When examining the DLT matrix after the inverse has 

been applied, this method seems to closely resemble the 2-step method seeing that 

there is an alignment and perspective translation part as:  

቎

X
Y
Z
1

቏= ൦

H11 H12
H21 H22

H13 H14

H23 H24

H31 H32

0 0
H33 H34

0 1

൪

-1

 ቎

x
y
z
1

቏. (3.39) 

 

3. 3 Summary of Methodology 

The overview of the proposed methodology for the back-projection from 2D image 

to 3D space is outlined in Table 3.2, which shows the method as a sequence of eight 

steps. First, in terms of data acquisition, a selected area or object that requires 

modelling is photographed and scanned, thus providing an RCI and a point cloud. 

Next is to use the calibration parameters to create a rectified (error-removed) image 

of the RCI, as well as to locate the control points within the image and the 

corresponding control points from the point cloud. Having these corresponding 
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points allows the DLT parameters to be determined using iterative Least-Squares. 

Next, an SCI of the control points must be created in order to perform the 2D-2D 

registration using ICP. Multiplying the DLT matrix with the control points will result 

in creating the SCI of the control points. The SCI coordinates need to be normalised 

by the division of the coordinate values by the individual scale value (w). Once the 

SCI coordinates are changed into image space coordinates, the ICP registration can 

be performed on the RCI control points to match the SCI. The ICP registration 

algorithm contains the transformation required to be applied to the whole RCI, thus 

completion of the registration will allow the transformation to be applied on the RCI. 

Next is to create the SCI of the entire point cloud, which is performed using the DLT 

matrix and the entire point cloud, allowing the assigning of colour information onto 

the whole point cloud SCI from the corresponding RCI coordinates. At this stage, an 

SCI with colour information is obtained. Next, the back-projection can take place, 

using any of the three methods: the Pseudo-inverse method, the Two-Step method or 

the Additional row method. 

 Data acquisition and administration 

Step 1 

RCI (Corrected 2D Image) 3D point cloud from a TLS 

RCI (Located 2D control points 

in pixels or metric units) 

Point cloud (Located 3D control 

points) 

Registration process from 3D to 2D 

Step 2 Obtain DLT parameters with the iterative Least-Squares 

Step 3 Create SCI (control points only) 

Step 4 Register RCI to SCI (control points) using ICP 

Step 5 Apply transformation to RCI 

Step 6 Create SCI of the entire point cloud 

Step 7 Assign RCI information onto SCI 

Back-projection from 2D to 3D 

Step 8 

Primary Alternatives 

Method 1 Method 2 Method 3 

Pseudo-inverse 

method with DLT 

Two-Step method with 

DLT and six-parameter 

transformation 

Inverse with the 

additional row of DLT 

matrix 

Table 3.2: Stages in the overall process of the proposed method. 
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3. 4 Chapter summary 

For this research, the method for performing single image and point cloud depth 

information recovery is outlined in this chapter. The core idea is based on 

transforming 3D to 2D then from 2D to 3D. The projection and back-projection 

equations are explained first before exploring the DLT. The DLT is explained in 

terms of the collinearity equation, and covers normalisation of its 12th parameter. The 

perspective centre and the image scale component of the back-projection are 

explained, as they form the main elements of the method. 

 

Each process of the proposed method is outlined in detail, before proceeding to the 

summary outlining the nine steps required to register 2D and 3D datasets together, 

from data acquisition, to projection and registration, and finally back-projection. The 

process begins with obtaining the data and control point information from devices 

such as TLS for 3D and cameras for 2D. Then an SCI of the control points is to be 

created for registration, with ICP used to register the RCI to the SCI. The result of 

the ICP algorithm provides the transformation parameters to be applied to the RCI. 

Next, the colour information from the RCI is stored on the matching SCI points. 

Lastly, the SCI is back-projected using one of the presented methods, which are, the 

Direct Pseudo-Inverse method, the Two-Step solution, or the Additional Fourth-row 

method. 
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4 RESULTS 

4. 1 Experiment with simulated datasets 

This section presents the results of the camera projection and back-projection process 

using simulated data. Simulated data was used to provide adequate control over the 

test 3D data, in terms of errors and orientation. The basic concept is also shown to be 

applied in practical applications using the DLT method along with the three proposed 

back-projection solutions. 

 

4.1.1 Creation of simulated dataset 

To begin the process, the creation of a preliminary set of 3D points (e.g. box or 

conical shape) to represent a point cloud is conducted both manually with an 

arbitrary coordinate system, as well as using software such as Matlab 7.12. The 

simulated point clouds created have a small sample size in comparison to a real TLS 

point cloud at this preliminary stage. The first dataset, to be referred as the Roof 

Dataset, is a roof-like structure that is manually created using similar triangles and 

the camera scale and ratio principles as presented in Eq. 4.1: 

 

Range

Focal Length
= 

Field of View

Sensor Length
 (4.1)

 

Firstly, consideration was focussed on the scale to be achieved in terms of the 

sensor/image size, which meant that the object points are required to be at a certain 

distance or within the field of view. Image size, focal length, camera location (at 

origin or offset) and location of data points had to be taken into account. This was 

done by obtaining the imaging camera (in this case a Nikon D80) parameters for 

focal length (18mm) and sensor length (23.6mm), and choosing an approximate 

camera to object distance (10m) to calculate the viewable length. Figure 4.1 provides 

a visual explanation of this process. 
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Figure 4.1: Using similar triangles and ratios for the creation of the Roof Dataset. 
 

The other two datasets are created using Matlab 7.12 (see Appendix D), in which the 

Corner Dataset simulates a corner and the Conical Dataset represents a cylindrical 

cone shape. The Corner Dataset was intended to be used for the DLT, thus it contains 

several control points, which were manually selected. Figures 4.2, 4.3, 4.4 and 4.5 

show the three simulated sets of data: Roof Dataset, Corner Dataset, and Conical 

Dataset; and the Conical Dataset with control points, respectively. 
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(b) (c) 

Figure 4.2: The Roof Dataset, a roof-like structure with views:                                  
(a) overall (b) top (c) side. 

 

 

(a) 

  

(b) (c) 

Figure 4.3: The Corner Dataset, a box corner structure with views:                            
(a) overall (b) top (c) side. 
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(a) 

  

(b) (c) 

Figure 4.4: The Conical Dataset, a cylindrical cone structure with views: (a) overall 
(b) top (c) side. 

 

 
 

Figure 4.5: The Conical Dataset with control points highlighted in red and 3D map of 
the location with only control points. 
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4.1.2 Camera Projection Concept used to create the SCI 

The experimentation commenced with creating an SCI of all three datasets. For this 

preliminary stage, the known camera projection matrix is used for creating the SCI. 

However, note that with the Conical Dataset and the final process, the DLT is used 

instead of the camera projection matrix for the SCI. However, the SCI of the Conical 

Dataset including its control points is created to act as an RCI for the DLT method 

(see Figure 4.7). Error components were not essential as the main objective was to 

create a suitable 2D and 3D pair, and it is assumed that calibration should remove the 

major error sources. Table 4.1 shows the parameters used in creation of the SCI of 

the three datasets.  

 

Dataset Focal length 

(m) 

Orientation Translation (m) Total number 

of points ω° φ° κ° Tx Ty Tz 

Roof 0.018 0° 0° 0° 0 0 2 61

Corner 0.018 311° 34° 11° 0 0 5 300

Conical 0.500 5° 8° 10° 1 1 5 1020

(Control = 12)

Table 4.1: Parameters used for the three datasets. 
 

For this initial procedure, an RCI was not obtained as the primary focus was 

basically to test the simple case of projection and back-projection. It may be assumed 

that in this case the RCI matches the SCI perfectly, because it is in an ideal 

environment. The projection produced the following SCIs (Figure 4.6) for the two 

datasets, based on the specifications mentioned earlier. Therefore there is also no 

need to perform the ICP algorithm for registering the RCI and SCI together. 
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Figure 4.6: SCI image of the Roof Dataset and the Corner Dataset with numbers 
representing individual points of the dataset. 

 

 

 

 

Figure 4.7: SCI of the Conical and control points. 
 

The simple case of back-projection by using the pseudo inverse onto the projection 

matrix produced results that are in the incorrect location, but notice that the data lies 

on a plane as shown in Figures 4.8 and 4.9. If the results are viewed from a specific 

angle, the results appear to match. The viewpoint is from roughly the centre of the 

incorrectly located results to the origin of the original 3D data points. Thus, it is 

required to find the viewpoint direction to the back-projected points and obtain the 

distance translation for the points by finding the appropriate scale value for the 

direction, which is explained in Section 3.2.3. 
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Figure 4.8: The back-projection of the SCI produces 3D points that form a plane 
(left). The red line in the left image indicates perspective direction which matches the 

control points (right). 
 

 

Figure 4.9: Another example with Corner Dataset of the back-projected 3D points 
matching at a certain perspective. 

 

The simple back-projection does form a trend as seen in Figures 4.8 and 4.9, which 

shows that despite having an alternate 3D location, the points lies in a plane. When 

the points are viewed from a certain perspective, a matching result seems to be 

displayed. This trend may be regarded as a transformation of the image into the 

object coordinate system. From this point, it can be seen that a transformation into its 

correct object points requires additional data along with the back-projection concept 

mentioned in Section 3.2.3. Thus, implementing the Pseudo-inverse method, the 

Two-Step method or the Additional Fourth-Row method will achieve a successful 

back-projection as indicated in Figure 4.10. 
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Figure 4.10: Back-projected SCI points to the original location. Left is back-
projected Roof Dataset and right is back-projected Corner Dataset. 

 

Figure 4.10 shows a perfect example of a successful back-projection, in which the 

RMS errors are zero. This case is as stated earlier: a back-projection of the SCI 

coordinates. To achieve this case when using the RCI, it is required that the RCI 

matches the SCI perfectly. However, this case does not occur in a practical scenario, 

and to achieve this requires the minimisation of the error of the RCI. This in theory 

will give the best case for back-projection with minimal errors. 

 

4.1.3 Using the DLT method and the significance of control points 

This section will use the Conical Dataset for explanation, which includes 12 selected 

control points. Thus far, the Conical Dataset contains a point cloud with a set of 

control points and a corresponding image (SCI) with control points. The conic is 1 

metre in length with a radius of 10 metres at the top and 20 metres at the base. As 

explained earlier, several points were randomly selected from the point cloud to be 

control points. A practical case involving errors for the simulated point cloud and the 

control points will be introduced later in Section 4.1.6. For this section, the focus will 

be on obtaining a general understanding of the effect of mismatches between the RCI 

and SCI, which incorporates the use of ICP. 

 

Since this is a simulated environment, an RCI from a real camera cannot be obtained. 

The method used to overcome this issue is to use the synthesised SCI created with 

the camera projection model to represent an RCI for this purpose, which also 

provides some control over the desired RCI results. In this case the distinction 
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between the two SCI will be SCICPM, which is created with the Camera Projection 

Model (CPM), as described in Chapter 2 and the SCIDLT, which is created using the 

DLT as part of the registration method. The DLT parameters are obtained using the 

control points of the SCICPM and 3D points via Least Squares, and used to create the 

SCIDLT. A comparison image is shown in Figure 4.11, along with the post ICP 

registration in order to match the two images together. 

 

  

Figure 4.11: Image comparison of the SCICPM and SCIDLT, and after ICP registration. 
 

There is not much difference when viewed at this scale, but metric differences can be 

seen in the results shown in Table 4.2. This initial set of results does not have any 

errors added to the data, yet there are still minor differences. These differences are 

primarily produced by the use of two different projection models, the DLT and the 

camera projection equation. The calculated RMS of the difference between the old 

SCICPM control points and the new SCICPM using ICP are 0.004px and 0.004px, for X 

and Y coordinates respectively and 0.004px for the total RMS, where px is one pixel 

in the image. These sub-pixel results indicate that there is minor variation for the 

image. 
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Control Points Original X (px) ICP: δX (px) Original Y (px) ICP: δY (px) 

1 145 -0.003 -9 0.004

2 12 -0.005 217 -0.008

3 -7 0.005 -112 0.003

4 138 -0.005 70 0.001

5 -124 0.004 71 -0.007

6 121 -0.003 9 0.002

7 76 0.001 -60 0.003

8 -43 -0.001 123 -0.007

9 75 -0.004 84 -0.002

10 23 0.003 -70 0.002

11 -48 0.004 -9 -0.002

12 -10 0.003 -48 0.001

Table 4.2: Difference of RCI coordinates of control points after ICP. 
 

Another test (Table 4.3) shows that the DLT maintains a consistent error despite 

having variations in the precision of the control points. The precision error has been 

set at varying levels ranging from 0.001m up to 0.050m. The comparison test is 

calculated between the SCICPM and SCIDLT and their respective back-projection 

results. Having this consistency of error is expected, as using the DLT method of 

matching provides the relationship between the datasets irrespective of the errors 

involved as well as the image resolution of the RCI being a factor influencing the 

precision, which will be discussed in Section 4.1.7.1. 

 

Control point introduced 

precision error (m) 

RMSe of ICP RMSe of back-projection 

0.001 0.004 0.027

0.002 0.004 0.026

0.003 0.004 0.026

0.004 0.004 0.026

0.005 0.004 0.027

0.006 0.004 0.026
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0.007 0.004 0.027

0.008 0.004 0.026

0.009 0.004 0.026

0.010 0.004 0.027

0.050 0.004 0.027

Table 4.3: RMS error between RCI and SCI, and RMS error of back-projection 
results for control points having varying levels of introduced errors. 

 

4.1.4 Comparison between the three methods of back-projection 

As explained in the background, the SCI contains the parameters that relate back to 

3D. After the ICP registration of the SCICPM to the SCIDLT, the entire SCICPM may be 

transformed in order for the colour information to be assigned to the SCIDLT. Then 

the SCIDLT may be back-projected with any of the three back-projection methods to 

obtain the 3D solution. The resulting back-projection is given in Tables 4.4, 4.5 and 

4.6, which includes the difference between the original and back-projected results.  

 

 X (m) δX (m) Y (m) δY (m) Z (m) δZ (m) 

1 22.500 0.049 1.000 -0.056 5.000 -0.012

2 -2.871 0.018 19.070 -0.005 5.053 -0.003

3 1.838 0.010 -17.463 -0.003 5.105 -0.002

4 17.158 -0.061 11.286 0.023 5.211 0.011

5 -13.370 -0.001 3.068 0.005 5.316 0.001

6 17.882 0.006 2.880 0.031 5.474 0.002

7 13.570 -0.016 -8.926 0.059 5.526 0.008

8 -6.841 -0.043 10.241 0.017 5.632 0.008

9 7.684 0.034 10.953 -0.030 5.895 -0.008

10 5.342 -0.041 -11.279 -0.025 5.737 0.004

11 -5.763 0.056 -3.818 -0.015 6.000 -0.010

12 -0.090 -0.012 -8.511 -0.002 6.000 0.002

Table 4.4: Pseudo-inverse method: Difference between back projection and original 
control point coordinates. 
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The calculated RMS of the difference between the Pseudo-inverse back-projected 

RCI control points and the original control points are 0.035m, 0.029m and 0.007m, 

for X, Y and Z coordinates respectively and the total RMS is 0.027m. 

 

 X (m) δX (m) Y (m) δY (m) Z (m) δZ (m) 

1 22.500 0.049 1.000 -0.056 5.000 -0.012

2 -2.871 0.018 19.070 -0.005 5.053 -0.003

3 1.838 0.010 -17.463 -0.003 5.105 -0.002

4 17.158 -0.061 11.286 0.023 5.211 0.011

5 -13.370 -0.001 3.068 0.005 5.316 0.001

6 17.882 0.006 2.880 0.031 5.474 0.002

7 13.570 -0.016 -8.926 0.059 5.526 0.008

8 -6.841 -0.043 10.241 0.017 5.632 0.008

9 7.684 0.034 10.953 -0.030 5.895 -0.008

10 5.342 -0.041 -11.279 -0.025 5.737 0.004

11 -5.763 0.056 -3.818 -0.015 6.000 -0.010

12 -0.090 -0.012 -8.511 -0.002 6.000 0.002

Table 4.5: Two-Step method: Difference between back projection and original 
control point coordinates. 

 

The calculated RMS of the difference between the Two-Step method back-projected 

RCI control points to the original control points are 0.035m, 0.029m and 0.007m, for 

X, Y and Z coordinates respectively and the total RMS is 0.027m. These results do 

not differ from the previous results for the Pseudo-inverse method, which is expected 

as each of the back projection methods only invert the projection process. The 

differences are based on the ICP result at the RCI and SCI correspondence stage. 

 

 X (m) δX (m) Y (m) δY (m) Z (m) δZ (m) 

1 22.500 0.049 1.000 -0.056 5.000 -0.012

2 -2.871 0.018 19.070 -0.005 5.053 -0.003

3 1.838 0.010 -17.463 -0.003 5.105 -0.002

4 17.158 -0.061 11.286 0.023 5.211 0.011

5 -13.370 -0.001 3.068 0.005 5.316 0.001
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6 17.882 0.006 2.880 0.031 5.474 0.002

7 13.570 -0.016 -8.926 0.059 5.526 0.008

8 -6.841 -0.043 10.241 0.017 5.632 0.008

9 7.684 0.034 10.953 -0.030 5.895 -0.008

10 5.342 -0.041 -11.279 -0.025 5.737 0.004

11 -5.763 0.056 -3.818 -0.015 6.000 -0.010

12 -0.090 -0.012 -8.511 -0.002 6.000 0.002

Table 4.6: Additional Fourth-Row method: Difference between back projection and 
original control point coordinates. 

 

The calculated RMS of the difference between the Additional Fourth-Row back-

projected RCI control points and the original control points are 0.035m, 0.029m and 

0.007m, for X, Y and Z coordinates respectively and the total RMS is 0.027m. As 

previously mentioned these results are the same as the back-projection methods that 

were developed to transform the SCI back to its original location. The back-

projection results will differ if the ICP results change, because of the differences due 

to the misalignment between the SCICPM and SCIDLT. 

 

4.1.5 Test with alternate forms of 3D data: Photogrammetry data 

To provide a practical dataset similar to the above test case, 3D points were acquired 

from Australis software (2012). This also demonstrates the versatility of this 

registration method as it may be used with alternate forms of 3D data, and not only 

with TLS point cloud information. The dataset was for a car door, as pictured in 

Figure 4.12. Bundle adjustment was used resulting in a total of 34 points, of which 

23 were randomly selected to be control points and 11 as normal points for checks. 

The image was processed using millimetres instead of pixels as a variation. The 

camera used was a BMP-DemoCam (see Table 4.7) as specified below, where the 

details were obtained from the Australis software. 

 

The DLT parameters were obtained using the selected control points for the image 

and 3D data. Then an SCI was created of the control points before the ICP was 

applied. After applying the ICP (Figure 4.13), the entire set of transformed RCI 

points was then back-projected (see Figure 4.14). The RMS error of the difference 
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between the original 3D points and the back-projected points are calculated with the 

results shown in Table 4.8. 

 

BMP-DemoCam 

Sensor size (CCD) 13.7×9.1 mm 

Image sizes 1524×1012 (10.0 MP) 

Focal Length 0.020m 

Pixel size (horizontal; vertical) 0.009 ሺmm per pixelሻ 

Table 4.7: Technical specifications of the camera used within the Australis software. 

 

Figure 4.12 The RCI image of the Car Door dataset (Australis, 2012). 

 

Figure 4.13 The ICP results of the RCI to SCI for the Car Door Dataset. 
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Figure 4.14 The overlaid SCI onto the RCI including check points (indicated by the 
‘+’ symbol). 

 

The overall results in Table 4.8 show that a small scale error in the image of 

0.002mm can produce up to 0.246m of error, dependent on image resolution and 

distance between image and object. Thus in order to achieve a desirable 3D colour 

transformation, one has to take into account the image resolution and distances. 

 

RMS Image (mm) 3D point cloud (m) 

 δX δY Total δX δY δZ Total 

Control 0.002 0.002 0.002 0.255 0.243 0.185 0.230

Checks 0.003 0.003 0.003 0.288 0.330 0.194 0.277

Overall 0.002 0.002 0.002 0.266 0.274 0.188 0.246

Table 4.8: Results and RMS for Back-projection using Pseudo-inverse, Two-Step or 
Additional Fourth-row methods. 

 

4.1.6 Simulated data with error information applied 

In order to apply errors, the Conical Dataset and its control points were converted 

from the Cartesian coordinates (XYZ) to spherical coordinates, which is given by 

Eqs. 2.4, 2.5 and 2.6, for range, horizontal direction and elevation angle respectively. 

When the data is converted to spherical coordinates, an error value is generated 
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which is based on the Leica HDS specifications, as outlined in Table 4.13. The 

precision of the control points were ±0.002mm for the X, Y and Z coordinates, which 

is based upon the TLS performance specifications (Leica, 2012). After the error 

values were applied, the data was converted back into Cartesian form. The 

conversion and error synthesis process is given as code in Appendix E. An SCI of the 

new dataset was created and overlaid with the SCI of the dataset without errors, as 

shown in Figure 4.15. After the ICP process, the SCICPM was back-projected and 

compared to the dataset with errors, as shown in Figure 4.16. For this dataset, the 

total RMS error was 0.039m, consisting of RMS error in X, Y and Z, which are 

0.050m, 0.045m and 0.008m respectively. Noticeably the RMS values have 

increased, which is expected as additional errors have been added. The Z component 

RMS error is small in comparison to the X and Y components, because the simulated 

camera is aligned with the Z axis. If the camera was in a different location then the Z 

component RMS error will change accordingly. 

 

Figure 4.15: The transformed RCI overlaid onto the SCI. 
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Figure 4.16: Differences from the back-projection to the original, caused by the 
mismatch between the SCI and RCI, with a close-up of a selected region. 

 

4.1.7 Analysis and Evaluation with simulated dataset 

Evaluation of the back-projected points is necessary to see the quality of the results 

obtained. The analysis is performed for the control points as these are the 

distinguishable references that can be assessed after the back-projection. This means 

that from the point of merging the RCI information to the SCI until the back-

projection, the control points are the only points that remain identified. The testing of 

the method would be a function of range and incidence angle. These sets of results 

would serve as indicators, which can be used as a guide of the influences of error for 

the image captured compared to the point cloud in terms of range and incidence 

angle. This is based on the Conical Dataset and the conditions are outlined under 

each of the sections. 

 

4.1.7.1 Distance 

The range component would begin at a distance of 6 metres from object to the 

camera. Having the camera close to the laser scanner, at this distance the projection 

of the object onto the image is maximized in size. Calculations will be performed in 

increments of 1 metre initially until 15 metres where the image dimensions change to 

smaller values. Thereafter the distance increases in increments of 5 metres to 60 
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metres, where there is little variation of the image resolution. The variations in the 

image RMS errors are most likely due to the ICP matching process. Referring to 

Table 4.9, as the distance increased, the RMS of the image did not appear to have a 

noticeable change, but the RMS error of the back-projected coordinates shows an 

increase. The cause for this is the image resolution, because as the distance increases, 

the image resolution is required to also increase to account for the detail required to 

be covered per pixel. In other words, the image resolution is a limiting factor as the 

distance increases, as detail will be lost when each pixel begins to cover a greater 

area of the object. Thus as distance increases it would be ideal to have adequate pixel 

resolution to achieve the desired results. 

 

Figure 4.17 is derived from Table 4.9, and indicates some possible trends for this 

method based on distance. According to the graph, we can see that the increase in 

range from the object causes the back-projected points to increase in RMS error. This 

is most likely due to the decreasing size of the object in the image, which may also 

be referred to as a decrease in image resolution, causing a pixelated effect as pictured 

in Figure 4.18. Thus, having a lower number of pixels to define an image would 

mean lesser pixels to define the precision within the image, leading to a 

misrepresentation when back-projected. There are also less pixels defining the object 

and therefore it is expected that the RMS error for the image should be less. The 

optimal distance for this dataset, which is about 12m, appears to show that the image 

dimensions up to approximately 262px produce a balanced back-projected RMS 

error for that image resolution. In other words, based on these results, the threshold 

for image dimensions should be about 262px before the RMS error becomes too 

high. It also can be inferred that higher image resolutions will result in lower back-

projection RMS error values. Therefore, the outcome of the error in back-projection 

has a dependence upon image resolution, which is influenced by range.   
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Distance (Z m) Average image 

dimensions (px) 

RMS Total 

Image  (px) Back-Projection (m) 

1 3017 0.0037 0.0027

2 1544 0.0054 0.0063

3 1037 0.0012 0.0069

4 781 0.0087 0.0073

5 626 0.0036 0.0110

6 523 0.0082 0.0118

7 449 0.0062 0.0121

8 393 0.0041 0.0149

9 350 0.0022 0.0145

10 315 0.0019 0.0211

11 287 0.0042 0.0286

12 262 0.0013 0.0227

13 242 0.0043 0.0276

14 225 0.0021 0.0291

15 210 0.0058 0.0413

20 158 0.0024 0.0486

25 126 0.0014 0.0442

30 105 0.0016 0.0580

35 90 0.0024 0.0740

40 79 0.0025 0.0811

45 70 0.0028 0.0978

50 64 0.0043 0.1209

55 58 0.0033 0.1189

60 53 0.0039 0.1485

Table 4.9: RMS error results of Conical Data distance tests. 
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Figure 4.17: RMS error of image and back-projection, in terms of range. 
 

 

Figure 4.18: The RCI of the Conical Dataset at range 60m, simulating reduced 
resolution causing a pixelated effect compared to the original (Figure 4.4 (b)). 
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For variations in incidence angle, tests may be done from a perpendicular perspective 

and moving right or left until up to a maximum of 80° incident angle with changes 

by 10° at a distance of 25m. This test method determines the effect when the image 

is taken from angles away from nadir. Table 4.10, shows the opposite effect to the 

range tests, in which for this case, the image results seem to show an increase in error 

as the incident angle increases, with the back-projection showing no apparent trends. 

Figure 4.19 visually shows this trend and indicates that at 40° to 50° the back-

projection has a high RMS error. It is likely that from 40° onwards, the angle causes 

too many misalignments in the SCI and RCI. The optimal angle for image capture 

seems to be from nadir to 30°. Based on these results, it is best to limit the angle of 

capture within a 30° incident angle from the TLS data capture to obtain desirable 

results. 

 

 RMS Total 

Angle (ω°) Image  (px) Back-Projection (m) 

0 0.0031 0.0745

10 0.0016 0.0484

20 0.0037 0.0645

30 0.0049 0.0503

40 0.0073 0.0911

50 0.0280 0.0837

60 0.0380 0.0622

70 0.0276 0.0551

80 0.0775 0.0671

Table 4.10: RMS error results of Conical Data incident angle tests. 
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Figure 4.19: RMS error of image and back-projection, in terms of incident angle at 
range 25m. 

 

The following results were produced for the more optimal range of 12m. Similar to 

the previous distance of 25m, 30° was the limit for this dataset as Figure 4.21 

visually shows that this angle causes many of the points to be clustered into one area. 

Figure 4.20 provides a smoother indication than Figure 4.19 of the behaviour of the 

results up to the point where the image causes too much error. For this case, Table 

4.11 shows that within an incident angle of 10°, millimetre accuracy is achievable 

with an optimal range and image resolution (<0.0024m). 
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30 30 0.0651

33 33 0.5794

Table 4.11: RMS error results of the Conical Data incident angle tests. 
 

 

Figure 4.20: RMS error of image and back-projection, in terms of incidence angle at 
optimal range of 12m. 

 

 

Figure 4.21: Image showing the cause of error at the limit of incident angle. 
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4.1.7.2 Pixel Coverage  

It is important to note that the object area will require sufficient pixel coverage to 

enable better resulting precision. This is because the back-projection is dependent on 

good correspondence between the RCI and SCI. From nadir up to 30° should be the 

best angles to use, but it is not always possible as factors such as obstructions, 

lighting conditions and limited accessibility exist that will influence the location of 

the captured image. For this discussion, it is assumed that the angle of incidence is 

taken within the limits to preserve the shape of the coverage area (object) for the 

pixel, so that the focus can be on scale, range and image resolution. 

 

At a certain range, each pixel will cover a scaled region of the object; this will be 

referred to as the coverage area. This means that a certain range may cover a 1cm 

square or even a 50cm square for a pixel. This can be understood by the example in 

Figure 4.22, which shows the range alters the scale and therefore the density of 

pixels in the object area. Thus depending on range and focal length each pixel covers 

a certain region of the object. To reduce the coverage area, the range may be 

reduced, or a greater pixel density (better camera) used. Therefore when the coverage 

area is reduced, the result is to allow a greater level of precision because the RCI and 

SCI have a greater level of detail for the correspondence process. 

 

Figure 4.22: The range should be chosen so that the pixel and coverage area will 
allow the desired precision. 

 

4. 2 Experiments with Real Datasets 

This section considers real datasets, comprising a TLS point cloud with control 

points and a digital photo of the area/object taken with a consumer grade camera. 

The specifications of the equipment used for this test are outlined in Section 4.3.1. 

 

Pixel 
Coverage Area Range Focal Length 
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4.2.1 Data Acquisition and Specifications 

The data acquired from the camera and the TLS has to be processed and formatted 

into an organised form, whereby the corresponding control point data for the image 

and point cloud must be labelled and arranged into a suitable format for processing to 

take place. The RCI obtained from a consumer-grade SLR camera (Nikon D80), 

needs to have the distortion parameters applied to obtain a corrected image with 

minimal errors. The table below outlines the technical details of the camera and TLS 

used for this research. 

 

Nikon D80 

Sensor size (CCD) 23.6×15.8 mm 

Image sizes 3872×2592 (10.0 MP) 

Focal Length 0.018m 

Pixel size (horizontal; vertical) 0.006 ሺmm per pixelሻ 

Table 4.12: Technical specifications of the camera used (Nikon, 2012). 
 

 

Leica HDS Specifications 

Measuring Method Pulsed and time-of-flight 

Scan Range 300 m 

Laser Class Class 3R (IEC 60825-1) 

Accuracy ±6 mm 

Precision ±4 mm 

Horizontal Angle Precision 60 μrad 

Vertical Angle Precision 60 μrad 

Image size 1024×1024 pixels 

Table 4.13: Technical specifications of the Terrestrial Laser Scanner used. 
 

4.2.2 Results of Laboratory Dataset 

The test setup area as shown in Figure 4.23 consists of 17 targets which were a 

mixture of Leica HDS targets (10 targets) and printed black and white targets (7 
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targets). The approximate distance from the scanner to the objects was relatively 

close for this medium range scanner. The image was taken to cover the set of targets, 

while taking into account capturing within 30° and as close as possible attempting to 

effectively use the maximum pixel resolution for this area. As mentioned before in 

Section 4.1.7.1 it is important to have as much pixel density as possible for the given 

range to produce better back-projection results. This is a preliminary field test and 

Figure 4.24 is a plan of the setup area. 

 

 

Figure 4.23: An image of the setup area indicating the Leica HDS targets (red), and 
printed Black and White targets (green), that are used as control points. 

 

Figure 4.24: A plan of the setup area. 
 

Camera 
TLS 

~2.0m 

~1.5m ~1.0m 
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This dataset acquired using the Leica HDS, contains 88,216 points at the distance of 

1.5m, covering the available testing area. Figure 4.27 shows the image of the area 

with the corresponding point cloud data superimposed using the DLT. The 

corresponding control points for the image need to be identified during the data 

capture using the target detection feature of the TLS instrument. This is to ensure that 

the control points obtained are determined as accurately and precisely as possible. 

The RCI control points can be obtained using Australis (2012) or similar software 

with a centroid function to detect target centres. In order to obtain millimetre or pixel 

coordinate values, a conversion value may be calculated to convert the control point 

values of the SCI (Appendix A). In this project, pixel values are primarily used for 

the RCI control points. 

 

The registration of the RCI control points to the SCI is performed using ICP, which 

in turn provides the transformation parameters required to transform the entire RCI. 

The results of the ICP between the RCI and SCI control points are shown in Figure 

4.25. 

  

Figure 4.25: ICP results of the Lab Dataset in pixels. 
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The transformation parameters acquired from the ICP are then applied to the entire 

RCI, before proceeding to creating the SCI of the entire point cloud. Using the DLT 

parameters, the entire point cloud is converted into an SCI, as shown in Figure 4.26, 

including the control points. Next the transformed RCI colour information is 

assigned to the corresponding SCI points. As a visual example of this process, Figure 

4.27 shows the SCI points overlaid onto the RCI, whereby the green dots indicate the 

corresponding SCI points to be assigned the colour information. 

 

Some apparent limitations are erroneously stored colour data, outlined in red in 

Figure 4.27 where the region of the point cloud is not visible in the image, but 

present in the point cloud because of the slightly different viewpoints of the camera 

and TLS. The hidden region present in the point cloud causes the SCI to use the RCI 

colour information for that area. A future method suggested to avoid this occurrence 

is to apply threshold parameters, temporarily manually or automatically delete the 

data points that do not associate with the RCI, or obtain the image (or a second 

image) from a different perspective. 

 

Figure 4.26: SCI of the point cloud data in pixels. 
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Figure 4.27 The overlaid SCI onto the RCI with incorrectly stored data outlined 
within the red region. 

 

Once the colour information from the RCI has been stored onto the SCI, it is ready 

for back-projection. Figure 4.28, shows the back-projected coloured point-cloud 

which any of the three methods will produce. However it is important to view the 

differences metrically as well as visually. Table 4.14, shows the back-projection of 

the control points to 3D data space using the Pseudo-inverse method. Results for the 

Two-Step method and the Additional Fourth-row method are not shown as they 

produce the same results. The errors or mismatches after back-projection are a result 

of the mismatch of RCI to SCI control points, as ICP is the measure implemented to 

minimise the effect of the mismatch. 

 

Figure 4.28: The back projection points with colour assigned in metres. 
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 X (m) δX (m) Y (m) δY (m) Z (m) δZ (m) 

1 0.321 -0.008 -2.094 0.004 -0.250 -0.011

2 1.125 0.000 -1.522 0.000 0.150 0.000

3 1.156 -0.029 -1.084 0.006 -0.708 -0.013

4 0.773 0.046 -1.191 0.001 -0.708 -0.022

5 -0.310 -0.057 -1.307 0.002 -1.183 0.013

6 1.400 -0.020 -1.351 0.006 -0.252 -0.014

7 0.058 -0.024 -1.890 -0.002 -1.174 0.017

8 -0.116 -0.021 -1.703 -0.008 0.153 0.039

9 0.064 -0.006 -1.965 -0.001 -0.122 0.006

10 0.492 -0.041 -1.743 0.001 -1.151 0.010

11 0.839 0.000 -1.757 0.000 0.254 0.000

12 0.993 -0.033 -1.658 0.006 -0.540 -0.012

13 1.473 0.011 -1.318 -0.001 0.246 0.001

14 0.707 -0.033 -1.261 0.005 -0.715 -0.005

15 1.369 -0.006 -1.092 0.002 -0.717 -0.004

16 1.187 -0.014 -0.809 0.008 -0.714 -0.024

17 0.784 -0.037 -1.002 0.008 -0.840 -0.015

RMS  0.028 0.005  0.015

Total RMS  0.019

Table 4.14: Results and RMS for Back-projection using Pseudo-inverse, Two-Step or 
Additional Fourth-row method. 

 

The RMS errors of the results were within expectations for the given range (2m – 

3m) and image resolution. The RMS error of 0.019m for the control points would 

indicates the approximate error for the entire dataset. 

 

4.2.3 Results of T-Rex Dataset 

This dataset was acquired using the same instruments as mentioned in Section 4.2.1. 

The control points were manually obtained by picking the central points of the 

targets in both the image and the point cloud data. The image control point 

coordinates were obtained by using image viewing software showing pixel 
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coordinate values, while Cyclone v.6.0 was used to select the 3D point cloud 

coordinates. Figure 4.29 gives an indication of the 3D viewing space used to select 

the control points and its corresponding RCI. 

 

Figure 4.29: The RCI (left) and the point cloud for the T-Rex dataset (right). 
 

Next, the datasets were processed to produce the SCI of the point cloud (129923 

points), which produced the result shown in Figure 4.30. Some points of the SCI 

have erroneously assigned data, which is expected and highlighted in red. One 

method may be to manually delete the points that are misrepresented on the image. 

Another method that may limit the misrepresentation is to capture the image with an 

incident angle closer to nadir. 

 

Figure 4.30: The SCI of point cloud data overlaid onto RCI with red regions 
indicating data with incorrect colour assigned. 
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The T-Rex Dataset was acquired at a distance of approximately 1.3m from the 

object, yielding image RMS error of 1.5px after ICP (15.3px before ICP) and back-

projection RMS error of 2mm. These results are consistent with the findings in 

Section 4.1.7.1, whereby having a high resolution for the given range allows 

achievement of millimetre precision. With regard to incidence angle, having taken an 

image within the 30° limitations has also contributed to this solution obtaining 

millimetre precision. The results of the successful back-projection of this dataset are 

displayed in Figure 4.31 from a different angle: 

 

Figure 4.31: The back projection of T-Rex data with colour assigned. The 
dimensions are in metres. 

 

4. 3 Chapter Summary 

Several datasets were created in order to evaluate the back-projection techniques. 

One was manually calculated and two were generated in Matlab 7.12. The first test 

was to trial a simple back-projection by inverting the projection matrix, but the 

results were not transformed to their original location as expected. However a trend 

was identified, which was a pre-cursor to the development of the three back-

projection methods. 
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The three back-projection methods were tested to determine their performance, 

resulting in obtaining the same results for all three methods. Thus any of the three 

methods would be suitable in order to obtain a successful back-projection. In order to 

confirm the method works in a practical application, a dataset taken from Australis 

was used. 

 

The next step was to use a simulated dataset with some random errors incorporated 

based on the equipment specifications to simulate a more realistic dataset. The RCI 

was still simulated for this case. Then the DLT components were derived using least 

squares, followed by matching with ICP, and finally back projecting. This dataset 

was used to analyse the effect of range and incidence angle on the back-projection 

results. Showing that as a function of range, the errors in the back-projection 

increased when the distance increased. For the incidence angle, the effect was mainly 

on the error between the RCI and SCI, i.e. the image RMS error increased as the 

angle deviated away from the object. Based on the image resolution an optimal range 

may be determined, which is dependent on the precision requirements. Also, the 

incident angle of the captured RCI should be kept within 30° in order to maintain a 

good level of precision. 

 

The significance of the image resolution is discussed, since the results of the back-

projection relies on good ICP matching between the RCI and the SCI, thus it is 

important that consideration is taken for the pixel coverage of the object space. When 

millimetre precision is required for the back-projection, sufficient image resolution 

for the distance of image capture is required for consideration as each pixel 

contributes to the level of precision that can be obtained. 

 

Lastly, the proposed methodology was carried out in full using a realistic dataset 

comprising of a consumer grade digital SLR camera and TLS. Firstly the image data 

is acquired from a Nikon D80 and the point cloud data from the Leica laser scanner. 

Then the control points are identified for the image and point cloud data before using 

least squares to determine the DLT parameters. Next the SCI is created and ICP 

applied to produce the transformation required for the RCI to be matched. After ICP 

registration, the colour was registered onto the SCI and back projected to produce a 
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coloured point cloud. The RMS error of the control points was calculated to provide 

an indication of the mismatching of the colour data on the point cloud. 

 

The Laboratory dataset and the T-Rex dataset were the realistic datasets. Both 

datasets were able to meet the expectations based on the range and image resolutions 

that were used to capture these datasets. However, both had shown that some 

thresholds and/or deletion of data or an image from an alternative viewpoint would 

be required as some sections of the point-cloud had colour stored when no image 

data was available for those points. 

  



87 

5 CONCLUSION 

This dissertation proposed a method to utilise a single image and 3D point cloud for 

the provision of additional depth information using Direct Linear Transformation 

(DLT) in order to recreate a photorealistic 3D object model.   

 

The registration and back-projection applies both terrestrial laser scanning (TLS), 

photogrammetry principles along with DLT in order to create the 3D colour model. 

This DLT method also presents the opportunity to not only stay within the bounds of 

TLS and cameras for acquisition of data, but also utilise other sensors that are able to 

provide the same types of information, i.e. providing 2D and 3D information. 

 

Depth information recovery and flexibility are the main attributes of this method, 

which allows the use of a single image without the need of mounting brackets or 

fixtures, in registering point clouds with colour information using the DLT approach. 

The core idea is based on transforming 3D to 2D then from 2D to 3D, which is 

termed as projection and back-projection respectively. Since DLT is the basis of the 

method, an in-depth understanding is provided, outlining its relationship with the 

collinearity equation, its limitations, and normalisation. These main aspects of DLT 

are required to understand the relationship that is present using this method, between 

the 2D and 3D datasets.  

 

In terms of projection, it is quite a straightforward process, which is determining the 

DLT parameters using least squares to convert the point cloud data into image space. 

The image scale component is an important value arising from the use of DLT to 

calculate the Synthetic Camera Image (SCI), which is normally lost during the 

projection process. In order to achieve the transformation from 2D to 3D, the image 

scale component is the necessary depth parameter recovered enabling back-

projection. 

 

There are two main aspects that are common for back-projection, the image scale 

component and the perspective centre. The depth parameter is given by the image 

scale component, while the perspective centre provides the translation component to 

shift the coordinates into the appropriate locations. These two components form the 
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basis of the three methods of back-projection, which are the pseudo-inverse method, 

Two-Step method and the Additional Fourth-Row method.  

 

The process of the proposed method begins with acquiring the data and control point 

information from devices such as TLS for 3D and cameras for 2D. Then the DLT 

parameters are obtained by means of a least squares solution, which is used to create 

an SCI of the control points for registration. Registration of the SCI to the Real 

Camera Image (RCI) uses the corresponding control points in the SCI and the RCI 

with ICP. The ICP process will transform the RCI to match the SCI as close as 

possible, in which the colour information will be assigned to the SCI. After assigning 

the colour information, the SCI is then back-projected using one of the methods, e.g. 

pseudo-inverse method, which results in a photo-realistic colour model. 

 

In order to examine the proposed method, synthetic and real datasets were used and 

analysed in terms of range and incidence angle. The synthetic datasets are simulated 

using the manual calculation and automated methods, while the real datasets were 

obtained using photogrammetric software as well as the TLS and camera 

combination. The preliminary test showed that the simple back-projection via a 

matrix inverse did not return the projected 3D points to their original location, which 

is expected, hence the development of the three proposed back-projection methods. 

These three methods of back-projection were designed to obtain the original 3D 

coordinates from the SCI solution, thus using any of these methods can achieve the 

desired back-projection results. 

 

The synthetic datasets provided initial indications of factors that attributed to the 

back-projection and colour assignment, which were ICP correspondence of the RCI 

and SCI control points, range, incidence angle and image resolution. The registration 

stage involving ICP indicated that it was necessary to achieve a close match between 

the RCI and the SCI to ensure back-projection results with minimal error. The ideal 

case is to have a perfect match of the RCI to the SCI, however for practical 

scenarios, minimizing the components of error will provide the best results. 
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Testing of the range component shows that there is an optimal maximum range 

versus error performance, and that reducing the range from the optimal will produce 

better results. More importantly, the image resolution presents itself as the major 

component and that range is an influencing factor. This test accentuates that the 

image resolution has to be considered in order to achieve precise results. 

 

The incidence angle tests the effect of capturing the image at a variety of angles. 

Results indicate that having angles of image capture above 30° from the face of the 

object produced poor/high values for precision, which were caused by clustering of 

data. Thus, the photographed object should be taken within the 30° incidence angle 

to achieve good levels of precision. 

 

An important aspect to consider is pixel coverage, which will aid in producing results 

with good levels of precision. This aspect is to make an awareness that the 

influencing factors of range and incidence angle are to be taken into account for the 

image resolution. The main aim is to reduce the pixel coverage for the intended 

project, which can be achieved by either having a very high image resolution 

(determined by the camera used) or a shorter range.  

 

After testing with synthetic datasets, two real datasets were acquired to test the 

proposed method. Both the datasets were acquired with the Nikon D80 (image) and 

the Leica Scanstation laser scanner (point cloud). The DLT parameters were obtained 

using the corresponding control points, followed by the creation of the SCI of the 

control points. Then colour information from the RCI is registered onto the SCI with 

ICP. Next, the SCI can be back-projected with any of the three methods to produce a 

coloured point cloud. Lastly, the RMS error was calculated from the control points to 

provide a metric indication of the amount of mismatching. Both datasets met the 

expectations based on range and image resolutions, and a successful coloured point-

cloud with metric indication of quality was achieved. 
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APPENDIX A CONVERSION CALCULATION MM-TO-PX 
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APPENDIX A: Conversion calculation mm-to-px 

 

This shows the conceptual working through for the calculation of the pixel to 

millimetre ratio conversion, when inversed will provide the converse, millimetre to 

pixel ratio: 

 

mmv

pxv

=
ሺvertical sensor length in mmሻ

(vertical image length in px)
 

(A.1) 

 

mmh

pxh

=
ሺhorizontal sensor length in mmሻ

(horizontal image length in px)
 

(A.2) 

 

xi ሺmmሻ ൌ	
mmh

pxh
xi ሺpxሻ 

(A.3) 

 

yi ሺmmሻ ൌ	
mmv

pxv
yi ሺpxሻ 

(A.4) 

 

The sensor length can be found from the manufacturer’s website or in the device 

manual, while the image extents can be found via software or as mentioned 

previously. In most cases, the sensors are square, which means that the calculated 

ratios are equal for the horizontal image and sensor length, and the vertical image 

and sensor length.  

 

mmv

pxv
ൌ	
mmh

pxh
 (A.5) 
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APPENDIX B 

DERIVATIVE FOR DLT COEFFICIENTS 
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APPENDIX B: Derivative for DLT coefficients 

 

The following are the derivations for the DLT parameters used in the least squares 

design matrix, where F1 and F2 are the two DLT equations: 

 

M = H1 X + H2 Y + H3 Z + H4 (B.1) 

 

N = H5 X + H6 Y + H7 Z + H8 (B.2) 

 

U = H9 X + H10 Y + H11 Z + 1 (B.3) 

 

Fଵ ൌ	
M
U

 (B.4) 

 

Fଶ ൌ	
N
U

 (B.5) 

 

The following are derivatives with respect to the DLT coefficients of Eq. B.4., the 

function relating to the image coordinates x: 

 

dFଵ
dH1

ൌ	
X
U

 
dFଵ
dH2

ൌ	
Y
U

 
dFଵ
dH3

ൌ	
Z
U

 
dFଵ
dH4

ൌ	
1
U

 
(B.6)

 

dFଵ
dH9

ൌ	‐x	
X
U

 
dFଵ
dH10

ൌ	‐x	
Y
U

 
dFଵ
dH11

ൌ	‐x	
Z
U

 
(B.7)

 

The following are derivatives with respect to the DLT coefficients of Eq. B.5., the 

function relating to the image coordinates y: 

 

dFଶ
dH5

ൌ	
X
U

 
dFଶ
dH6

ൌ	
Y
U

 
dFଶ
dH7

ൌ	
Z
U

 
dFଶ
dH8

ൌ	
1
U

 
(B.8)

 

dFଶ
dH9

ൌ	‐y	
X
U

 
dFଶ
dH10

ൌ	‐y	
Y
U

 
dFଶ
dH11

ൌ	‐y	
Z
U

 
(B.9)
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APPENDIX C 

ROTATION MATRIX 
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APPENDIX C: Rotation Matrix 

 

The orientation of the image space relative to the object space can be determined 

using the rotation matrix as described in books by Luhmann et al. (2006) and 

McGlone et al. (2004). The rotation matrix, M, consists of nine direction cosines as a 

function of orientation three angles (, , ) as the Cardan angle sequence (Eq. A.4). 

The calculation is applied as follows: 

 

Mሺωሻ= ൥
1 0 0
0 cos ω sinω
0 - sinω cosω

൩ (C.1) 

 

Mሺφሻ= ൥
cosφ 0 -sinφ

0 1 0
sinφ 0 cosφ

൩ (C.2) 

  

Mሺκሻ= ൥
cos κ sin κ 0
- sin κ cos κ 0

0 0 1
൩ (C.3) 

  

Mሺω,φ,κሻൌ	Mሺκሻ*	Mሺφሻ*Mሺωሻ (C.4) 
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APPENDIX D 

CONICAL AND CORNER DATASET CODE  
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APPENDIX D: Conical and Corner Dataset Code 

 

Matlab code for corner and conical dataset creation: Results 

 

ConicalData.m 

 

clear all 
  
%Conical Translation 
TrClyX=3; 
TrClyY=1; 
TrClyZ=5; 
  
%camera location 
  
tr_x=1; 
tr_y=1; 
tr_z=5; 
  
%cylinder(R,m) R=diameter:can specify amount of points m=points 
around conical 
n=20;%use this to specify levels of the conical/cone 
m=50; 
for i=1:n 
    R(i)=20-i*0.5; 
end 
  
[X,Y,Z] = cylinder(R,m); 
  
figure(1) 
clf(1) 
plot3(X,Y,Z,'.'); 
  
count=0; 
  
for i=1:n 
    for j=1:size(X,2) 
         
        count=count+1;count_num(count,1)= count; 
        X2(count)=X(i,j)+TrClyX; 
        Y2(count)=Y(i,j)+TrClyY; 
        Z2(count)=Z(i,j)+TrClyZ; 
    end 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%NORMAL DATA POINT CLOUD 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
all_X2=X2; 
all_Y2=Y2; 
all_Z2=Z2; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%CHOOSE CONTROL POINTS 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear X2 Y2 Z2 
control_ID=[1 67 140 210 331 461 555 632 877 754 999 1005]; 
for i=1:size(control_ID,2) 
    Ctrl_X2(i)=all_X2(control_ID(i)); 
    Ctrl_Y2(i)=all_Y2(control_ID(i)); 
    Ctrl_Z2(i)=all_Z2(control_ID(i)); 
    counter(i,1:2)=[i control_ID(i)]; 
end 
  
XYZ2=[Ctrl_X2;Ctrl_Y2;Ctrl_Z2]; 
all_XYZ2=[all_X2;all_Y2;all_Z2]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
omega=5;%degrees 
phi=8; %degrees 
kappa=10;%degrees 
mat_R = rotation_matrix(omega,phi,kappa); 
% with calibration done there should be 0,0 for Xp,Yp 
mat_K=[0.50/0.006 0      0.0 
       0    0.50/0.006   0.0 
       0     0      1]; 
mat_Tr=[tr_x tr_y tr_z]; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%CREATE IMAGE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Ctrl_img=mat_K*[mat_R mat_Tr'] 
*[Ctrl_X2;Ctrl_Y2;Ctrl_Z2;ones(1,size(Ctrl_X2,2))]; 
 
img02=mat_K*[mat_R mat_Tr']*[all_XYZ2;ones(1,size(all_XYZ2,2))]; 
  
for i=1:size(Ctrl_img,2) 
Ctrl_img_norm(1:3,i)=round(Ctrl_img(1:3,i)/Ctrl_img(3,i)); 
end 
for i=1:size(img02,2) 
img_norm02(1:3,i)=round(img02(1:3,i)/img02(3,i)); 
end 
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CornerData.m 

clear all 
  
sides=0; 
count=0; 
box_size=10; 
  
%%% create the box bounded by vertices 
  
        for i=1:box_size; 
            for j=1:box_size; 
                count=count+1; 
                box(count,1)=count; 
                box(count,2)=i; 
                box(count,3)=j; 
                box(count,4)=0; 
                 
            end 
        end 
  
       for i=1:box_size; 
            for j=1:box_size; 
                count=count+1; 
                box(count,1)=count; 
                box(count,2)=i; 
                box(count,3)=0; 
                box(count,4)=j; 
                 
            end 
       end 
        
       for i=1:box_size; 
           for j=1:box_size; 
               count=count+1; 
               box(count,1)=count; 
               box(count,2)=0; 
               box(count,3)=i; 
               box(count,4)=j; 
                
           end 
       end 
 
%%% translation 
box=[box(:,1) box(:,2)+20 box(:,3)+20 box(:,4)+20]; 
 
box=box+10; 
 
save data(‘file’); 
  

%% Creating Synthetic Camera Images from DLT 
  
%%% Load Data 
data = load(‘file’); 
  
control_points_ID = data(:,1); 
control_points = [data(:,2) data(:,3) data(:,4)];%(m) 
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% apply_calibration parameters 
% k_matrix 
focal_length=0.018; 
shear=0; 
mx=1/0.000006;%pixels per unit in x (m) 
my=1/0.000006;%pixels per unit in y (m) 
offset_x=0.00;%principal point offset x (m) 
offset_y=0.00;%principal point offset y (m) 
K_matrix = k_matrix(focal_length, shear, mx, my, offset_x, offset_y) 
  
% rotation_matrix 
omega=311; 
phi=34; 
kappa=11; 
mat_R = rotation_matrix(omega,phi,kappa) 
     
% translation 
translation = [0.0 0.0 5.0]'; 
  
% k_projection.m 
[projection, temp_points, image_points] = k_projection(K_matrix, 
mat_R, translation, control_points); 
projection 
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APPENDIX E 

APPLYING ERROR TO DATASETS 
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APPENDIX E: Applying Error to Datasets 

 

Matlab code for applying randomised error to the datasets. 

 

XYZ2TLS_w_error.m 

 

%%%Initial items 
clear all 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
data  = load(‘file’); 
data2 = load(‘file’); 
data3 = load(‘file’); 
data4 = load(‘file’); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
ctID = data(:,1); 
ct_X = data(:,2); 
ct_Y = data(:,3); 
ct_Z = data(:,4); 
  
allID = data3(:,1); 
all_X = data3(:,2); 
all_Y = data3(:,3); 
all_Z = data3(:,4); 
  
%convert to TLS system 
for i=1:size(ctID,1) 
    %just control points 
    X=ct_X(i); 
    Y=ct_Y(i); 
    Z=ct_Z(i); 
     
    ct_range(i,1)=sqrt(X^2 + Y^2 + Z^2); 
    ct_horizontal_direction(i,1)=atan(Y/X); 
    ct_elevation_angle(i,1)=atan(Z/sqrt(X^2+Y^2)); 
end 
  
for i=1:size(allID,1) 
    %all points 
    X=all_X(i); 
    Y=all_Y(i); 
    Z=all_Z(i); 
     
    all_range(i,1)=sqrt(X^2+Y^2+Z^2); 
    all_horizontal_direction(i,1)=atan(Y/X); 
    all_elevation_angle(i,1)=atan(Z/sqrt(X^2+Y^2)); 
  
end 
  
%add error 
for i=1:size(allID,1) 
    %for the range error 
    % millimeter error within 0.004 range equal to Leica HDS 
    Rerror=random('bino',4,0.5)/1000; 
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    random_n=random('bino',1,0.5); 
        if random_n==1 
            Rerror=Rerror*-1; 
        end 
    Eall_range(i,1)=all_range(i,1)+Rerror; 
    %for the horizontal direction error at 60 urad (micro-radians) 
    Herror=(random('bino',60,0.5))/1e6; %only for urad 
    random_n=random('bino',1,0.5); 
        if random_n==1 
            Herror=Herror*-1; 
        end 
    
Eall_horizontal_direction(i,1)=all_horizontal_direction(i,1)+Herror; 
    %for the elevation angle error at 60 urad 
    Eerror=(random('bino',60,0.5))/1e6; %only for urad 
    random_n=random('bino',1,0.5); 
        if random_n==1 
            Eerror=Eerror*-1; 
        end 
    Eall_elevation_angle(i,1)=all_elevation_angle(i,1)+Eerror; 
  
end 
  
% Thanks to Reshetyuk, Y. @ 3rd IAG / 12th FIG Symposium, Baden, May 
22-24, 2006 
for i=1:size(allID,1) 
    sign=all_X(i,1)/abs(all_X(i,1)); 
    
all_X_new(i,1)=sign*abs(Eall_range(i,1)*cos(Eall_horizontal_directio
n(i,1))*cos(Eall_elevation_angle(i,1))); 
    sign=all_Y(i,1)/abs(all_Y(i,1)); 
    
all_Y_new(i,1)=sign*abs(Eall_range(i,1)*sin(Eall_horizontal_directio
n(i,1))*cos(Eall_elevation_angle(i,1))); 
    sign=all_Z(i,1)/abs(all_Z(i,1)); 
    
all_Z_new(i,1)=sign*abs(Eall_range(i,1)*sin(Eall_elevation_angle(i,1
))); 
end 
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APPENDIX F 

ADDITIONAL INTERIOR ORIENTATION DESCRIPTIONS 
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APPENDIX F: Additional Interior Orientation Descriptions 

 

Symmetric radial lens distortion: 

This is the main constituent of image distortion for most camera systems, can be 

attributed to variations such as refraction, lens design, focusing distance and object 

distance at a constant focus. This distortion increases radially with the distance from 

the principal point. The distortion curve is described with the Seidel polynomial 

series, having the distortion parameters K1 to Kn. The equation below includes an 

additional constant K0 term, which is applied to remove the correlations with image 

scale or principal distance. (Luhmann et al., 2006) 

∆r'rad	ൌ	K0൅K1r'3൅K1r'5൅K1r'7൅… (F.1) 
 

The tangential or decentring lens distortion: 

The tangential or decentring lens distortion, based on Luhmann et al. (2006), 

formally known as radial-asymmetric distortion, is mainly caused by decentring and 

misalignment of the lens elements. Generally this distortion is minimal for high 

quality lenses and is much lesser than the radial lens distortion. However, for low-

cost lenses that appear mostly for video and surveillance systems, this error may be 

significant. The following equations are used to compensate for this distortion: 

∆x'tan ൌ	B1൫r'2൅2x'2൯൅2B2x'y' (F.2) 

∆y'tan ൌ	B2൫r
'2൅2y'2൯൅2B1x'y' (F.3) 

 

The affinity and shear: 

The affinity and shear describe the deviations of the image coordinate system, with 

respect to skew from orthogonal and uniform scale of the coordinate axes (Luhmann 

et al., 2006). Digital imaging systems are usually affected by this when its sensors 

are rectangular rather than square. The following functions are used to describe 

affinity and shear: 

∆x'aff ൌ	C1x'൅	C2y' (F.4) 

∆y'
aff = 0 (F.5) 

 


