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Abstract

We consider optimal investment problems for a diffusion market model with non-

observable random drifts that evolve as an Itô’s process. Admissible strategies do not use

direct observations of the market parameters, but rather use historical stock prices. For a

non-linear problem with a general performance criterion, the optimal portfolio strategy is

expressed via the solution of a scalar minimization problem and a linear parabolic equation

with coefficients generated by the Kalman filter.
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1 Introduction

The paper investigates an optimal investment problem for a market which consists of a locally

risk free asset, bond or bank account with interest rate r(t), and a finite number, n, of risky

stocks. We assume that the vector of stock prices S(t) evolves according to an Itô stochastic

differential equation dSi(t) = Si(t)[ai(t) dt +
∑

j σij(t) dwj(t)], i = 1, . . . , n, with a vector

of appreciation rates a(t) and a volatility matrix σ(t). The problem goes back to Merton

(1969), who found strategies which solve the optimization problem in which EU(X(T )) is to be

maximized, where X(T ) represents the wealth at the final time T and where U(·) is a utility

function. If the market parameters are observed, then the optimal strategies (i.e. current vector

of stock holdings) are functions of the current vector (r(t), a(t), σ(t), S(t), X(t)) (see, e.g., the
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survey in Hakansson (1997) and Karatzas and Shreve (1998)). But in practice, a(t) and σ(t))

have to be estimated from historical stock prices or some other observation process. There are

many papers devoted to estimation of (a(·), σ(·)), mainly based on modifications of Kalman-

Bucy filtering or the maximum likelihood principle (see e.g. Lo (1988), Chen and Scott (1993),

Pearson and Sun (1994)). Unfortunately, the process a(·) is usually hard to estimate in real-time

markets, because the drift term, a(·), is usually overshadowed by the diffusion term, σ(·). On

the other hand, σ(t) can, in principle, be found from stock prices. Thus, there remains the

problem of optimal investment with unobservable a(·).

In fact, the problem is one of linear filtering. If Ri(t) is the return on the ith stock, then

dR(t) = a(t)dt + σ(t)dw(t), so the estimation of a(t) given {R(τ), τ < t} (or {S(τ), τ < t}) is

a linear filtering problem. If a(·) is conditionally Gaussian, then the Kalman filter provides the

estimate which minimizes the error in the mean square sense.

A popular tool in optimal control and filtering theory is the separation theorem. This the-

orem has an analog in portfolio theory: it is the so-called “certainty equivalence principle”:

agents who know the solution of the optimal investment problem for the case of directly ob-

servable a(t) can solve the problem with unobservable a(t) by substituting E{a(t)|S(τ), τ < t}

(see, e.g., Gennotte (1986)). Unfortunately, this principle does not hold in the general case of

non-log utilities (see Kuwana (1995)). Note that this principle is unrelated to the much more

recent notion of “certainty equivalent value” to be found in the work of Frittelli (2000).

Williams (1977), Detemple (1986), Dothan and Feldman (1986), Gennotte (1986), Brennan

(1998) solved the investment problem using the Kalman-Bucy filter and dynamic programming.

By this method, the optimal strategy can be calculated via solution of the Bellman parabolic

equation; this equation is non-linear.

Karatzas (1997), Karatzas and Zhao (1998), Dokuchaev and Zhou (2000), Dokuchaev and

Teo (2000) have obtained optimal portfolio strategies in general non-Gaussian setting, but only

for case of time independent coefficients.

An approach based on Malliavin calculus gives a possibility to consider more general setting.

Lakner (1995), (1998) assumes that S(·) and w(·) have equal dimension (as we do), and that r(·)

and σ(·) are deterministic. This again guarantees that the filtration of S(·) is Brownian. Results

from filtering theory give a representation of the optimal portfolio, which is explicit in terms

of a conditional expectation of a Malliavin derivative when the ai(·) are Ornstein-Uhlenbeck

processes independent of w(·). Karatzas and Xue (1990) assume that there are more Brownian

motions than stocks. They assume that r(·) and σ(·) are adapted to the observable S(·). After
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projecting onto an n-dimensional Brownian motion which generates the same filtration as S(·),

they obtain a reduced, completely observable model; existence of an optimal portfolio follows,

but the optimal strategy is, as usual, defined only implicitly.

We also consider the optimal investment problem with random and unobservable a(·). Fol-

lowing Lakner (1998) and Rishel (1999), we assume that a(t) is a Gaussian process modelled by

a system of linear Itô’s equations. However, we consider a more general case when (a(·), r(·))

may depend on the realized returns (i.e., b(·) ̸= 0 in equation (2.4) below, and r(·) is correlated

with S(·)). We express the optimal strategy via solution of a Cauchy problem (4.3),(4.8) for

a linear parabolic equation in (n + 1)-dimensional vector space. Thus, we propose a simpler

method than dynamic programming: the nonlinear parabolic Bellman equation is replaced for a

linear parabolic equation. Note that the solution in Lakner (1998) expresses the optimal strategy

via a conditional expectation of a random claim that depends on w(·); the solution presented

below is also based on the martingale method but it is more constructive provided we can solve

the Cauchy problem (4.3),(4.8). Using the technique of backward stochastic partial differential

equations, we prove existence and uniqueness of the solution for this Cauchy problem. Further-

more, the most restrictive condition in Lakner (1998) was that the initial covariance of a(0) is

small enough (the condition (3.5) below). We replace it by another condition (4.9) that depends

on U : it is less restrictive than (3.5) for some U ’s and more restrictive for others U ’s. For some

problems, our condition (4.9) is automatically satisfied. In addition, we allow correlated a(·)

and w(·).

2 The Model and Definitions

Consider a diffusion model of a market consisting of a locally risk free bank account or bond

with price B(t), t ≥ 0, and n risky stocks with prices Si(t), t ≥ 0, i = 1, 2, . . . , n, where n < +∞

is given. The prices of the stocks evolve according to the following equations:

dSi(t) = Si(t)

ai(t)dt+ n∑
j=1

σij(t)dwj(t)

 , t > 0, (2.1)

where wi(t) are standard independent Wiener processes, ai(t) are appreciation rates, and σij(t)

are volatility coefficients. The initial price Si(0) > 0 is a given non-random constant. The price

of the bond evolves according to the following equation

B(t) = B(0) exp

(∫ t

0
r(t)dt

)
, (2.2)
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where B(0) is a given constant which we take to be 1 without loss of generality, and r(t) is the

random process of the risk-free interest rate.

We are given a probability space (Ω,F ,P), where Ω is a set of elementary events, F is a

complete σ-algebra of events, and P is a probability measure.

We introduce the vector processes (⊤ denoted transpose)

w(t) = (w1(t), . . . , wn(t))
⊤ , S(t) = (S1(t), . . . , Sn(t))

⊤ , a(t) = (a1(t), . . . , an(t))
⊤ ,

and the matrix process σ(t) = {σij(t)}ni,j=1 .

Let 1
∆
= (1, . . . , 1)⊤ ∈ Rn, and ã(t)

∆
= a(t)− r(t)1.

We define the return to time t by dRi(t) = dSi(t)/Si(t), Ri(0) = 0, and introduce the vector

of returns R(t) = (R1(t), . . . , Rn(t))
⊤ and of excess returns R̃i(t) = Ri(t)−

∫ t
0 r(s) ds.

Let {FS,r
t }0≤t≤T be the filtration generated by the process (r(t), S(t)) completed with the

null sets of F .

Set S̃(t)
∆
= exp

(
−
∫ t
0 r(s)ds

)
S(t).

We denote by |x| the Euclidean norm of a vector x ∈ Rk. For an Euclidean space E, we

denote by B([0, T ];E) the set of bounded measurable functions f(t) : [0, T ] → E. We denote

by In the identity matrix in Rn×n. As usual, we say that A < B for symmetric matrices if the

matrix B − A is definitely positive. We denote ϕ−
∆
= max(0,−ϕ), and we denote by I{·} the

indicator function.

The model for r, σ, and a

To describe the distribution of ã(t), we shall use the model introduced in Lakner (1998, p.84),

generalized for our case of random r, non-constant coefficients for the equation for ã, and

correlated r, ã, and w. We assume that we are given measurable deterministic processes α(t),

β(t), b(t) and δ(t) such that

dã(t) = α(t)[δ(t)− ã(t)]dt+ b(t)dR̃(t) + β(t)dW (t), (2.3)

where α(t) ∈ Rn×n, β(t) ∈ Rn×n, b(t) ∈ Rn×n, δ(t) ∈ Rn, and where W is an n-dimensional

Wiener process in (Ω,F , P ). We assume that α(t), β(t), b(t), and δ(t) are continuous in t and

such that the matrix β(t) is invertible and |β(t)−1| ≤ c, where c > 0 is a constant. Further,

we assume that ã(0) follows an n-dimensional normal distribution with mean vector m0 and

covariance matrix γ0. The vector m0 and the matrix γ0 are assumed to be known. We note
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that this setting covers the case when ã is an n-dimensional Ornstein-Uhlenbeck process with

mean-reverting drift.

Clearly, equation (2.3) can be rewritten as

dã(t) =
(
α(t)δ(t) + [b(t)− α(t)]ã(t)

)
dt+ b(t)σ(t)dw(t) + β(t)dW (t). (2.4)

In addition, it can be seen that R̃i(t) evolve as

dR̃i(t) = ãi(t)dt+
n∑

j=1

σij(t)dwj(t), t > 0. (2.5)

We assume that the process σ(t) is continuous in t, non-random and such that σ(t)σ(t)⊤ ≥

cσIn, where cσ > 0 is a constant.

Further, we assume that r(·) = ϕr(R̃(·),Θ), where Θ is a random element in a metric space

Xr, and where ϕr : C([0, T ];Rn)× Xr → B([0, T ];R) is a measurable function, and Θ does not

depend on (w(·),W (·), ã(0)). In addition, we assume that the process r(t) is adapted to the

filtration generated by (R̃(t),Θ). Note that closed system (2.4)-(2.5) for the pair (ã(t), R̃(t))

does not include r(·), and (ã(·), R̃(·)) does not depend on Θ. Therefore, the market model is

well defined. The assumptions for measurability of r don’t look very natural. However, they

cover generic models when r is independent on R̃ or non-random, and we can still consider some

models with correlated r and R̃.

Under these assumptions, the solution of (2.1) is well defined, but the market is incomplete.

Let ϕ̃m(t, s), m = 0, 1, be the solution of the matrix equation
dϕ̃m

dt (t, s) = [m · b(t)− α(t)]ϕ̃m(t, s),

ϕ̃m(s, s) = In.

Let

K̃m(t)
∆
=

∫ t

0
ϕ̃m(t, s)b(s)σ(s)σ(s)⊤b(s)⊤ϕ̃m(t, s)⊤ds, m = 0, 1. (2.6)

We have that

ã(t) = ϕ̃1(t, 0)ã(0) +

∫ t

0
ϕ̃1(t, s)[α(s)δ(s)ds+ b(s)σ(s)dw(s) + β(s)dW (s)].

It follows that K̃1(t) is the covariance matrix for ã(t) calculated with β(t) ≡ 0 and ã(0) =

0. By the linearity of (2.4), it follows that K̃1(t) is the conditional covariance for ã(t) given

(W (·)|[0,t], ã(0)) or (W (·)|[0,T ], ã(0)).

Note that K̃m(t) can be found as solutions of linear equations that one can easy derive from

(2.4) and (4.1) (see, e.g., Arnold (1973), Chapter 8).
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We assume that b is ”small”. More precisely, we assume that there exists ε > 0 such that

TK̃m(t) + εIn < σ(t)σ(t)⊤ ∀t ∈ [0, T ], m = 0, 1. (2.7)

The risk neutral probability measure

Set Q(t)
∆
= (σ(t)σ(t)⊤)−1, and set

Z ∆
= exp

(∫ T

0
[σ(t)−1ã(t)]⊤dw(t) +

1

2

∫ T

0
ã(t)⊤Q(t)ã(t)dt

)
. (2.8)

Proposition 2.1

E
{
exp

1

2

∫ T

0
ã(t)⊤Q(t)ã(t)dt

∣∣∣W (·), ã(0)
}
< +∞ a.s. (2.9)

By this proposition, the Novikov’s condition is satisfied conditionally, E{Z−1 |W (·), ã(0)} =

1, then EZ−1 = 1.

Define the (equivalent) probability measure P∗ by dP∗/dP = Z−1. Let E∗ be the corre-

sponding expectation.

The wealth and strategies

Let X0 > 0 be the initial wealth at time t = 0, and let X(t) be the wealth at time t > 0,

X(0) = X0. We assume that

X(t) = π0(t) +
n∑

i=1

πi(t), (2.10)

where the pair (π0(t), π(t)) describes the portfolio at time t. The process π0(t) is the investment

in the bond, πi(t) is the investment in the ith stock, π(t) = (π1(t), . . . , πn(t))
⊤, t ≥ 0.

Definition 2.1 The process X̃(t)
∆
= exp

(
−
∫ t
0 r(s)ds

)
X(t) is called the normalized (or dis-

counted) wealth.

Let S(t)
∆
= diag (S1(t), . . . , Sn(t)) and S̃(t)

∆
= diag (S̃1(t), . . . , S̃n(t)) be diagonal matrices

with the corresponding diagonal elements. The portfolio is said to be self-financing, if

dX(t) = π(t)⊤S(t)−1dS(t) + π0(t)r(t)dt = π(t)⊤dR(t) + π0(t)r(t)dt. (2.11)

It follows from (2.10) that for such portfolios

dX(t) = r(t)X(t) dt+ π(t)⊤ (ã(t) dt+ σ(t) dw(t)) ,

dX̃(t) = B(t)−1π(t)⊤dR̃(t),
(2.12)

so π alone suffices to specify the portfolio; the process π0 is uniquely defined by π via

(2.10),(2.12); π it is called a self-financing strategy.
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Definition 2.2 Let Σ̄ be the class of all FS,r
t -predictable processes π(·) such that

•
∫ T
0

(
|π(t)⊤ã(t)|2 + |π(t)⊤σ(t)|2

)
dt <∞ a.s.

• there exists a constant qπ such that P
(
X̃(t)−X0 ≥ qπ,∀t ∈ [0, T ]

)
= 1.

A process π(·) ∈ Σ̄ is said to be an admissible strategy with corresponding wealth X(·).

For an admissible strategy π(·), X(t, π(·)) denotes the corresponding total wealth, and

X̃(t, π(·)) the corresponding normalized total wealth. It follows that X̃(t, π(·)) is a P∗-

supermartingale with E∗X̃(t, π(·)) ≤ X0 and E∗|X̃(t, π(·))| ≤ |X0|+ 2|qπ|.

Note that by definition, admissible strategies from Σ̄ use observations of r(t) and S(t) only.

For these strategies, the processes X(t) and X̃(t) are FS,r
t -adapted.

The following definition is standard.

Definition 2.3 Let ξ be a given random variable. An admissible strategy π(·) is said to replicate

the claim ξ if X(T, π(·)) = ξ a.s.

3 Problem statement and preliminary results

Let T > 0, let D̂ ⊂ R be convex and bounded below, and let X0 ∈ D̂ be given. Let U(·) : D̂ →

R ∪ {−∞} be such that U(X0) > −∞.

We may state our general problem as follows: Find an admissible self-financing strategy π(·)

which solves the following optimization problem:

Maximize EU(X̃(T, π(·))) over π(·) ∈ Σ̄ (3.1)

subject to

 X̃(0, π(·)) = X0,

X̃(T, π(·)) ∈ D̂ a.s.
(3.2)

The condition X̃(T, π(·)) ∈ D̂ may represent a requirement for a minimal normalized termi-

nal wealth if D̂ = [k,+∞), k > 0. This condition may represent also a requirement for the

normalized terminal wealth in goal achieving problems if D̂ = [k0, k1], k0 < k1.

We assume that U , X0 and D̂ satisfy the following two conditions.

Condition 3.1 There exists a measurable set Λ ⊆ [0,∞), and a measurable function F (·, ·) :

(0,∞)× Λ → D̂ such that for each z > 0, x̂ = F (z, λ) is a solution of the optimization problem

Maximize zU(x)− λx over x ∈ D̂. (3.3)
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Note that the usual concavity hypotheses imply this condition, but more general utility functions

are also covered. For example, this condition is satisfied for the goal achieving problem when

U(x) is a step function (see e.g. Karatzas (1997), Dokuchaev and Zhou (2000)).

Let Z̄ ∆
= E{Z|FS,r

T }. Since (R̃(·), ã(·)) does not depend on Θ, we have that Z does not

depend on Θ, and Z̄ = E{Z|R̃(·)}. Let F (·) be as in Condition 3.1.

Condition 3.2 There exists λ̂ ∈ Λ such that E∗|F (Z̄, λ̂)| < +∞ and E∗F (Z̄, λ̂) = X0.

We solve our problem in two steps using the martingale approach. First we show that

EU(F (Z̄, λ̂)) is an upper bound for the expected utility of normalized terminal wealth for

π(·) ∈ Σ̄. Then we find a portfolio π̂(·) which replicates the claim B(T )F (Z̄, λ̂). This establishes

the optimality of π̂(·).

The optimal claim

The following theorem is a reformulation of Theorem 2.5 from Lakner (1998) under slightly more

general conditions that allow discontinuous functions F and U such as step functions.

Theorem 3.1 (Dokuchaev and Haussmann (2000)). With λ̂ as in Condition 3.2, let ξ̂
∆
=

F (Z̄, λ̂). Then

(i) EU−(ξ̂) <∞, ξ̂ ∈ D̂ a.s.;

(ii) EU(ξ̂) ≥ EU(X̃(T, π(·))), ∀π(·) ∈ Σ̄;

(iii) The claim B(T )ξ̂ is attainable in Σ̄, and there exists a replicating strategy in Σ̄. This

strategy is optimal for problem (3.1)-(3.2).

This theorem uses duality approach for constrained optimization that goes back to Lagrange,

and λ̂ is the corresponding Lagrange multiplier.

Remark 3.1 Theorem 2.5 from Lakner (1998) was stated under some additional assumptions

that can be formulated in our notations as

(i) b(t) ≡ 0, r is non-random, r, σ, α, β, δ are constant, and D̂ = (0,+∞);

(ii) U is strictly concave and continuously differentiable on (0,+∞), and limx→+∞ U ′(x) = 0;

(iii) there exists a function J(·) : D̂ → R such that J(λ/x) ≡ F (x, λ);

(iv) E∗J(λ/Z̄) < +∞ for any λ > 0.
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Solution via conditional expectation

Let

â(t)
∆
= E{ã(t) | FS,r

t }.

Set α̃(t)
∆
= α(t)− b(t) and m0

∆
= Eã(0).

Let γ(t) ∈ Rn×n be the unique solution (in the class of symmetric nonnegative definite

matrices) of the deterministic Riccati’s equation
dγ
dt (t) = −[b(t)σ(t)⊤ + γ(t)]Q(t)[b(t)σ(t)⊤ + γ(t)]⊤ − α̃(t)γ(t)− γ(t)α̃(t)⊤ + β(t)β(t)⊤,

γ(0) = γ0.

(3.4)

Here γ0
∆
= E[ã(0)−m0][ã(0)−m0]

⊤. In fact, γ(t) = E
{
[ã(t)− â(t)][ã(t)− â(t)]⊤|FS,r

t

}
.

Let A(t)
∆
= −α̃(t)− γ(t)Q(t), and let ϕ(t) be the solution of the matrix equation

dϕ
dt (t) = A(t)ϕ(t),

ϕ(0) = In,

where In is the unit matrix in Rn×n.

The following theorem is a reformulation of Theorem 4.3 from Lakner (1998). It gives the

solution of the investment problem via conditional expectation of future values of some processes

with known evolution.

Theorem 3.2 (Lakner (1998)). Let conditions (i)-(iv) in Remark 3.1 holds, let U(x) be twice

differentiable on (0,+∞), and let

tr γ0 + T∥β∥2 < K1, K1 =
1

360T∥σ−1∥2K0
, K0 = max

t∈[0,T ]
∥e−αt∥2, (3.5)

where ∥ · ∥ denotes the Frobenius matrix norm, i.e., ∥σ−1∥2 = tr [σ−1σ−1⊤]. Further, let

J(x) < K(1 + x−5), −J ′(x) < K(1− x−2) (3.6)

for some K > 0. Then the optimal strategy is

π(t)⊤ = H(t)Z̄(t)E

{
J ′(λ̂Z̄)Z̄−2

[
−γ(t)[ϕ(t)⊤]−1

∫ T

t
ϕ(s)⊤[σ⊤]−1dŵ(s)− â(t)

]∣∣∣∣FS,r
t

}
,

where H(t)
∆
= λ̂er(t−T )Q and ŵ(t)

∆
= w(t)−

∫ t
0 σ

−1â(s)ds.

We propose below another solution such that the optimal strategy is presented via solution

of a linear deterministic parabolic equation. We replace conditions (3.5) by condition (4.9) that

can be less restrictive and is always satisfied if D̂ is bounded. In addition, we dropped condition

(3.6) and the condition that (r, a) and w are independent: we allow b(·) ̸= 0 and r = ϕr(R̃(·),Θ).
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4 Main results: Solution via linear parabolic equation

Let y(t) = (y1(t), . . . , yn+1(t)) = (â(t), yn+1(t)) be a process in Rn+1, where

â(t) = E{ã(t)|FS,r
t },

yn+1(t) = −1

2

∫ t

0
â(s)⊤Q(s)â(s)ds+

∫ t

0
â(s)⊤Q(s) dR̃(s).

Let functions f(·) : Rn+1 × [0, T ] → Rn+1 and g(·) : Rn+1 × [0, T ] → R(n+1)×n be such that

f(x, t)
∆
=

 [A(t)− b(t)σ(t)⊤Q(t)]x̂+ α(t)δ(t)

− 1
2 x̂

⊤Q(t)x̂

 , g(x, t)
∆
=

 [b(t)σ(t)⊤ + γ(t)]Q(t)

x̂⊤Q(t)

 .

Here A(t) and γ(t) are matrices defined above, γ(t) is the solution of (3.4), and

x = (x1, . . . , xn+1)
⊤ =

 x̂

xn+1

 , x̂ = (x1, . . . , xn)
⊤ .

By Theorem 10.3 from Liptser and Shiryaev (2000), p.396, the equation for â(t) is dâ(t) = [A(t)â(t)− b(t)σ(t)⊤Q(t)â(t) + α(t)δ(t)]dt+ [b(t)σ(t)⊤ + γ(t)]Q(t)dR̃(t),

â(0) = m0.
(4.1)

By (4.1)-(4.6), it follows that y(·) is the solution of the Itô’s equation dy(t) = f(y(t), t)dt+ g(y(t), t) dR̃(t),

y(0) = y0,
(4.2)

with

y0 =

 m0

0

 ∈ Rn+1, m0 = Eã(0).

The function f(y, t) here does not satisfy Lipshitz condition with respect to y ∈ Rn+1. However,

the solution of this equation is uniquely defined. (It is shown in the proof of Lemma 4.1 below

that the solution of (4.2) can be presented as a part of the unique solution of some Itô’s equation

with coefficients that are affine with respect to the state variable).

Lemma 4.1 Let a function Φ(·) : Rn+1 → R be such that

(i) E∗Φ(y(T )) = X0;

(ii) Φ(x) is continuously twice differentiable;
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(iii) E∗Φ(y(T ))
2 < +∞.

Then there exists a unique classical solution V : Rn+1 × [0, T ] → R of the boundary value

problem

∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x, t) +

1

2
tr

{
∂2V

∂x2
(x, t) g(x, t)σ(t)σ(t)⊤g(x, t)⊤

}
= 0, (4.3)

V (x, T ) = Φ(x). (4.4)

Further, the processes X̃(t, π(·)) ∆
= V (y(t), t) and π(t)⊤

∆
= B(t)∂V∂x (y(t), t)g(y(t), t), are uniquely

defined as elements of the spaces C([0, T ], L2(Ω,F , P∗)) and L2([0, T ], L2(Ω,F , P∗)) respectively,

and there exists a constant C > 0 such that

sup
t∈[0,T ]

E∗|X̃(t, π(·))|2 +E∗

∫ T

0
B(t)−2|π(t)|2dt ≤ CE∗|Φ(y(T ))|2 (4.5)

for all these Φ. Furthermore, the strategy π(t) = (π1(t), . . . , πn(t)) belongs to Σ̄ and replicates

the claim B(T )Φ(y(T )) given the initial wealth X0 with the normalized wealth X̃(t) = V (y(t), t).

Note that estimate (4.5) reminds the Krylov-Ficera estimate (see Theorem 5.3.3 from Ro-

zovskii (1980)) or its modification from Dokuchaev (1995)).

Further, we have that

dZ̄(t) = â(t)Z̄(t)dR̃(t). (4.6)

This formula (4.6) was derived in Theorem 3.1 from Lakner (1998) for the case when σ is

constant and b = 0. The proof for a non-constant σ(t) and b ̸= 0 can be found in Dokuchaev

and Haussmann (2000) and in Chapter 9 from Dokuchaev (2002). It follows that

yn+1(t) = ln Z̄(t). (4.7)

Introduce the function e(·) : Rn+1 → R such that e(y) = exp[yn+1] for y = (y1, . . . , yn+1)
⊤.

Note that Z̄ = e(y(T )).

Let V = V (x, t, λ) : Rn+1 × [0, T ] × Λ → R be the solution of partial differential equation

(4.3) with the condition

V (x, T, λ) = F (e(x), λ). (4.8)

The following result now is immediate.

Theorem 4.1 Let λ̂ be such as in Condition 3.2. Assume that the function F (·, λ̂) : R → R is

such that is such that conditions (i)-(ii) of Lemma 4.1 are satisfied with Φ(x)
∆
= F (e(x), λ̂), and

E∗F (Z̄, λ̂)2 < +∞. (4.9)
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Then there exists an unique classical solution V of problem (4.3)-(4.8) for λ = λ̂, and there

exists an admissible self-financing strategy π(·) ∈ Σ̄ which replicates the claim B(T )F (Z̄, λ̂).

This strategy is an optimal solution of problem (3.1)-(3.2), and

π̂(t)⊤ = B(t)
∂V

∂x
(y(t), t, λ̂)b(y(t), t), X̃(t, π(·)) = V (y(t), t, λ̂), (4.10)

Note that it is possible that condition (4.9) is not satisfied but the optimal claim F (Z̄, λ̂) is

still replicable in the class of strategies Σ̄. For example, let U(x) ≡ log x, X0 = 1, and (0,+∞) ⊆

D̂, then Λ = (0,∞), F (z, λ) = z/λ, λ̂ = 1, and the strategy is π(t)⊤ = B(t)â(t)⊤Z̄(t)Q(t) is

replicating (and optimal) even in the case when (4.9) is not satisfied.

5 Special cases

Note that conditions (3.5) were imposed in Lakner (1998) with the only purpose to ensure that

E∗Z̄5 < +∞, E∗Z̄−4 < +∞. (5.1)

Our condition (4.9) for examples (i)-(iii) listed below is satisfied if E∗Z̄µ < +∞ for some

µ ∈ R. For example (i), condition (4.9) is less restrictive than (5.1) if l < 5/2 and more

restrictive if l > 5/2. For example (ii), condition (4.9) is less restrictive than (5.1) if l < 2 and

more restrictive if l > 2. For example (iii), condition (4.9) is always less restrictive than (5.1).

These examples are from Dokuchaev and Haussmann (2001):

(i) Power utility. Assume D̂ = [0,+∞), X0 > 0, U(x) = d−1xd, where either d ∈ (0, 1) or

d < 0. Then Λ = (0,∞), F (z, λ) = (z/λ)l, and λ̂ = X
−1/l
0 (E∗Z̄ l)1/l, where l = 1/(1− d).

(ii) Assume D̂ = [0,+∞), U(x) = −xd + x, where d = 1 + 1/l, and l > 0 is an integer,

X0 > d−l. Then Λ = [0,∞), F (z, λ) = (1 + λ/z)ld−l, λ̂ is a root of a polynomial of degree l.

(iii) Mean-variance utility. Assume D̂ = R, U(x) = −kx2 + cx, where k ∈ R and c ≥ 0,

X0 > 0, then F (z, λ) = (c− λ/z)/(2k).

We present below some sufficient conditions that ensure E∗Z̄µ < +∞ and, therefore, can be

useful for verifying (6.2) .

Let K̃(t) be the covariance for ã(t) under the probability measure P∗, and let K̂(t) be the

covariance for â(t) under P∗.

Lemma 5.1 If µ ∈ [0, 1], then E∗Z̄µ < +∞. Let µ < 0 or µ > 1. Then E∗Z̄µ < +∞ if there

exist ε > 0 and p > 1 such that at least one of the following conditions holds:

(i) κ(p)K̂(t) < σ(t)σ(t)⊤−εIn for t ∈ [0, T ], where κ(p)
∆
= qT (µ2p−µ) > 0 with q

∆
= p(p−1)−1.

12



(ii) κ(p)K̃(t) < σ(t)σ(t)⊤ − εIn for t ∈ [0, T ].

It follows from Proposition 7.2 below that K̃(t) and K̂(t) are the covariances of the processes

defined by (2.4) and (4.1) respectively with R̃(·) replaced by R̃∗(·). Thus, these covariances can

be found as solutions of linear deterministic equations that one can easy derive from (2.4) and

(4.1) (see, e.g., Arnold (1973), Chapter 8).

6 Case of discontinuous F

To proceed further, we shall need a special weighted L2-space with a weight defined via some

parabolic equation. First, we introduce the operator

M(t)p
∆
= −

n+1∑
i=1

∂

∂xi
(p(x)fi(x, t)) +

1

2

n+1∑
i,j=1

∂2

∂xi∂xj
(p(x)ĝij(x, t)) ,

where ĝ
∆
= gσσ⊤g⊤.

Let ρi ∈ L2(R
n+1) ∩ C2(Rn+1), i = 1, 2, be given such that ρi(x) > 0 for all x ∈ Rn+1 and∫

Rn+1 ρi(x)dx = 1.

We consider the following parabolic equation
∂p
∂t (x, t) = M(t)p(x, t) + ρ1(x), t ∈ [0, T ],

p(x, 0) = ρ0(x).
(6.1)

This boundary value problem has the unique classical solution p(x, t) that is continuous in

Rn+1 × [0, T ]. Let

ρ(x)
∆
= min

t∈[0,T ]
p(x, t).

We have that

p(·, t) = G(t, 0)ρ0 +

∫ t

0
G(t, s)ρ1ds,

where G(t, s) is the semigroup operator generated by (6.1) (with ρ1 ≡ 0) and such that

G(s, s)ρi ≡ ρi. We have that (G(t, s)ρi)(x) > 0 for t ∈ [s, s + ε) for some ε = ε(x, s) > 0.

Hence p(x, t) > 0 for all x, t, and ρ(x) > 0 for all x ∈ Rn+1. We shall use this ρ as a weight

function.

We have that ρ ∈ L2(R
n+1) ∩ L1(R

n+1), since |ρ(x)| ≤ |ρ0(x)|.

We introduce the weighted space L2,ρ(R
n+1) with the norm

∥u∥L2,ρ(Rn+1)
∆
=

(∫
Rn+1

ρ(x)|u(x)|2dx
)1/2

.
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We introduce the space Yk of functions u = {ui(x, t)}ki=1 : R
n+1 × [0, T ] → Rk with the norm

∥u∥Yk

∆
=

( k∑
i=1

∫ T

0
∥ui(·, t)∥2L2,ρ(Rn+1) dt

)1/2
.

Further, we introduce the space W1 of functions u = u(x, t) : Rn+1× [0, T ] → R with the norm

∥u∥W1
∆
= ∥u∥Y1

+

∥∥∥∥∂u∂x g
∥∥∥∥
Yn

.

Finally, we introduce the space W1
C consisting of all functions u(·) ∈ W1 such that u(·) ∈

C([0, T ];L2,ρ(R
n+1)) with the norm

∥u∥W1
C

∆
= sup

t∈[0,T ]
∥u(·, t)∥L2,ρ(Rn+1) + ∥u∥W1 .

The above space is a Banach space, since the weighted space L2,ρ(R
n+1) is a Hilbert space.

In fact, the spaces Yk, W1, and W1
C , are the completions in the corresponding norms of the

set of smooth functions u : Rn+1 × [0, T ] → Rk or u : Rn+1 × [0, T ] → R respectively that have

finite support.

Theorem 6.1 Let p be the solution of (6.1), and let W1
C be the corrsponding space defined via

the weight ρ(x) = mint∈[0,T ] p(x, t). Let Φ(·) : Rn+1 → R be a measurable function such that∫
Rn+1

p(x, T )Φ(x)2dx < +∞. (6.2)

Then boundary value problem (4.3)-(4.4) admits a unique solution V ∈ W1
C . Moreover, there

exists a constant C > 0 independent on Φ(·) and such that

∥V ∥2W1
C
≤ C

∫
Rn+1

p(x, T )Φ(x)2dx. (6.3)

Note that condition (6.2) allows discontinuous Φ.

Remark 6.1 The definition of W1
C ensures that problem (4.3)–(4.4) can be stated in W1

C . The

functions V and (∂V/∂x)g are measurable and L2,ρ-integrable. The equality in (4.4) is the

equality for elements of the space L2,ρ(R
n+1), it is meaningful since V (·, t) is continuous in t in

L2,ρ(R
n+1). The equality in (4.3) is the equality for elements of the dual space W1∗, since all

components of ∂2V
∂x2 (x, t) g(x, t)σ(t)σ(t)

⊤g(x, t)⊤ belong to W1∗.

It follows from the proof of Theorem 6.1 below that ∥p(·, T )∥L1(Rn+1) = 2. Hence (6.2)

is satisfied for any bounded Φ. In addition, it can be shown that ∥p(·, T )∥L2(Rn+1) ≤
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C
∑

i=1,2 ∥ρi(·)∥L2(Rn+1), where C > 0 is a constant that does not depend on ρi. Therefore,

(6.2) is satisfied for any Φ ∈ L4(R
n+1).

Theorem 6.1 gives the possibility to present the optimal investment strategy via solution of

(4.3)–(4.4) for the case of discontinuous F . An example is the goal-achieving problem, when

D̂ = [0,∞), X0 ∈ (0, α), and U(x) = 0 if 0 ≤ x < α, U(x) = 1 if x ≥ α. Then Λ = (0,∞),

F (z, λ) = α if 0 < λ ≤ z/α, F (z, λ) = 0 if λ > z/α, and (6.2) holds for Φ(x) = F (e(x), λ) (∀λ).

7 Appendix: Proofs

Proof of Proposition 2.1 . By Jensen’ inequality, it follows that

E
{
exp 1

2

∫ T
0 ã(t)⊤Q(t)ã(t)dt

∣∣∣W (·), ã(0)
}
= E

{
exp 1

T

∫ T
0

T
2 ã(t)

⊤Q(t)ã(t)dt
∣∣∣W (·), ã(0)

}
≤ 1

T

∫ T
0 E

{
exp T

2 ã(t)
⊤Q(t)ã(t)dt

∣∣∣W (·), ã(0)
}
.

We have for definitely positive matrices that if A > B > 0 then B−1 > A−1. By condition (2.7)

with m = 1, it follows that

K̃0(t)
−1 > T [σ(t)σ(t)⊤ − εIn]

−1 = TQ(t)[In − εQ(t)]−1

= TQ(t)
[
In +

∑+∞
k=1{εQ(t)}k

]
> TQ(t) + TεQ(t)2 > TQ(t) +M,

(7.1)

where M =M(ε) > 0 is a definitely positive constant matrix. Clearly, we can take ε > 0 small

enough to ensure convergency of the series in (7.1).

To complete the proof, we shall use the following fact. Let ξ be a Gaussian n-dimensional

vector, Kξ
∆
= E(ξ−Eξ)(ξ−Eξ)⊤ > 0. It is known that the probability density function for ξ is

C exp[−1
2(x−Eξ)⊤K−1

ξ (x−Eξ)], where C > 0 is a constant. It follows that E exp(12ξ
⊤Pξ) < +∞

for any matrix P ∈ Rn×n such that 0 < P < K−1
ξ . Then the proof follows from (7.1). �

We introduce the process

R̃∗(t)
∆
=

∫ t

0
σ(s) dw(s).

Let n-dimensional vector random process ã∗(t) be defined as the solution of

dã∗(t) =
(
α(t)δ(t)− α(t)ã∗(t)

)
dt+ b(t)dR̃∗(t) + β(t)dW (t), ã∗(0) = ã(0).

Set

Z∗
∆
= exp

(∫ T

0
[σ(t)−1ã∗(t)]

⊤dw(t)− 1

2

∫ T

0
ã∗(t)

⊤Q(t)ã∗(t)dt

)
. (7.2)

Proposition 7.1 There exists a measurable function ψ : C([0, T ];Rn)×B([0, T ];Rn) → R such

that Z∗ = ψ(R̃∗(·), ã∗(·)) and Z = ψ(R̃(·), ã(·)).
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Proof. Clearly, ψ is defined by

logZ∗ =

∫ T

0
ã∗(t)

⊤Q(t)

(
dR̃∗(t)−

1

2
ã∗(t)dt

)
. (7.3)

�
Let r∗(·)

∆
= ϕr(R̃∗(·),Θ) and B∗(t)

∆
= B(0) exp

(∫ t
0 r∗(s)ds

)
(ϕr is defined in Section 2). Let

Z̄∗
∆
= E{Z∗|R̃∗(·), r∗(·)}. (7.4)

Let T ∆
= C([0, T ];Rn) × Rn. Clearly, there exists a measurable mapping A : [0, T ] ×

C([0, T ];Rn) × T → C([0, T ];Rn) such that ã∗(t) = A(t, R̃∗(·),W (·), ã(0)) and ã(t) =

A(t, R̃(·),W (·), ã(0)).

We have that Z̄∗ = E{Z∗|R̃∗(·)} = ψ̄(R̃∗(·)) and

Z̄∗ = E{ψ([R̃∗(·), ã∗(·)]|R̃∗(·)} = E{ψ[R̃∗(·),A(·, R̃∗(·),W (·), ã(0))]|R̃∗(·)}.

By Proposition 7.1, it follows that

Z̄ = E{ψ[R̃(·), ã(·)]|R̃(·)} = E{ψ[R̃(·),A(·, R̃(·),W (·), ã(0))]|R̃(·)}.

Hence there exists a measurable mapping ψ̄(·) : C([0, T ];Rn) → R such that

Z̄ = ψ̄(R̃(·)), Z̄∗ = ψ̄(R̃∗(·)). (7.5)

Proposition 7.2 Let a function ϕ : C([0, T ];Rn) × B([0, T ];Rn) × B([0, T ];R) → R be such

that Eϕ−(R̃(·), ã(·), r(·)) < +∞. Further, let a function ϕ̂ : C([0, T ];Rn)× B([0, T ];R) → R be

such that Eϕ̂−(R̃(·), r(·)) < +∞ . Then

Eϕ(R̃(·), ã(·), r(·)) = EZ∗ϕ(R̃∗(·), ã∗(·), r∗(·)), (7.6)

Eϕ̂(R̃(·), r(·)) = EZ̄∗ϕ̂(R̃∗(·), r∗(·)), (7.7)

E∗ϕ̂(R̃(·), r(·)) = Eϕ̂(R̃∗(·), r∗(·)). (7.8)

Proof. By assumption (Θ,W (·), ã(0)) is independent of w(·). To prove (7.6) it suffices to

prove

E
{
ϕ(R̃(·), ã(·), r(·))

∣∣∣Θ,W (·), ã(0)
}
= E

{
Z∗ϕ(R̃∗(·), ã∗(·), r∗(·))

∣∣∣Θ,W (·), ã(0)
}

a.s. (7.9)

Thus, for the next paragraph, without loss of generality, we shall suppose that (Θ,W (·), ã(0))

is deterministic, since for each value of (Θ,W (·), ã(0)) we can construct R̃, R̃∗, ã, ã∗.
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By the linearity of (2.4), it follows that K̃0(t) defined by (2.6) is the conditional covariance

for ã∗(t) given (W (·), ã(0)). Similarly to the proof of Proposition 2.1, it can be shown that (2.7)

with m = 0 ensures that E{Z∗|Θ,W (·), ã(0)} = 1 and EZ∗ = 1. We define the probability

measure P̄ by dP̄/dP = Z∗. (Each value of (Θ,W (·), ã(0)) generates its own P̄). By Girsanov’s

Theorem, the process

w̄(t)
∆
= w(t)−

∫ t

0
σ(s)−1ã∗(s)ds

is a Wiener process under P̄. From this we obtain

dR̃(t) = A(t, R̃(·),W (·), ã(0))dt+ σ(t)dw(t),

dR̃∗(t) = A(t, R̃∗(·),W (·), ã(0))dt+ σ(t)dw̄(t).

Then for each value of (Θ,W (·), ã(0)) the processes (R̃(·), ã(·), r(·)) and (R̃∗(·), ã∗(·), r∗(·)) have

the same distribution on the probability spaces defined by P and P̄ respectively, and (7.9), hence

(7.6) follows.

Further, (7.7) follows by taking conditional expectation in (7.6). Finally, using Proposi-

tion 7.1 and (7.6),

E∗ϕ̂(R̃(·), r(·)) = EZ−1ϕ̂(R̃(·), r(·)) = Eψ(R̃(·), ã(·))−1ϕ̂(R̃(·), r(·))

= EZ∗ψ(R̃∗(·), ã∗(·))−1ϕ̂(R̃∗(·), r∗(·)) = Eϕ̂(R̃∗(·), r∗(·)). �

We turn now to Theorem 3.1. Define ξ̂∗
∆
= F (Z̄∗, λ̂). It follows from (7.5) that if we define

ϕ̃ by ξ̂ = ϕ̃(R̃(·)), then ξ̂∗ = ϕ̃(R̃∗(·)).

Proof of Theorem 3.1. Let us show that EU−(ξ̂) < ∞ so that EU(ξ̂) is well defined. For

k = 1, 2, . . ., we introduce the random events

Ω
(k)
∗

∆
= {−k ≤ U(ξ̂∗) ≤ 0}, Ω(k) ∆

= {−k ≤ U(ξ̂) ≤ 0},

along with their indicator functions, I(k)∗ and I(k), respectively. The number ξ̂∗ provides the

unique maximum of the function Z̄∗U(ξ∗) − λ̂ξ∗ over D̂, and X0 ∈ D̂. By Proposition 7.2, we

have, for all k = 1, 2, . . .,

EI(k)U(ξ̂)−EI(k)∗ λ̂ξ̂∗ = EI(k)∗

(
Z̄∗U(ξ̂∗)− λ̂ξ̂∗

)
≥ EI(k)∗

(
Z̄∗U(X0)− λ̂X0

)
= EI(k)U(X0)− λ̂X0P(Ω

(k)
∗ ) ≥ −|U(X0)| − |λ̂X0| > −∞.

Furthermore, we have that E|ξ̂∗| = E∗|ξ̂| < +∞. Hence EU−(ξ̂) <∞.

Now observe that for any π ∈ Σ̄ we can apply (7.7) and (7.8) to U(X̃π(T )) (and use (7.5))

to obtain

EU(X̃π(T )) = E∗{Z̄U(X̃π(T ))} ≤ E∗{Z̄U(X̃π(T ))− λ̂X̃π(T )}+ λ̂X0

≤ E∗{Z̄U(ξ̂)− λ̂ξ̂}+ λ̂X0 = E∗Z̄U(ξ̂) = EU(ξ̂).
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Thus (ii) is satisfied.

Let us show (iii). Since σ is non-random, hence w-adapted, then ξ̂∗ = ϕ̂(w(·)), where

ϕ̂(·) : B([0, T ];Rn) → R is a measurable functions. By the martingale representation theorem,

ξ̂∗ = Eξ̂∗ +

∫ T

0
f(t, w(·)|[0,t])⊤dw(t),

where f(t, ·) : B([0, t];Rn) → Rn is a measurable function such that
∫ T
0 |f(t, w(·)|[0,t])|2dt <

+∞ a.s. There exists a unique measurable function f0(t, ·) : B([0, t];Rn) → Rn such that

f(t, w(·)|[0,t]) ≡ f0(t, R̃∗(·)|[0,t]). Thus,

ξ̂∗ = Eξ̂∗ +

∫ T

0
f0(t, R̃∗(·)|[0,t])⊤dw(t) = Eξ̂∗ +

∫ T

0
f0(t, R̃∗(·)|[0,t])⊤σ(t)−1dR̃∗(t).

Proposition 7.2 implies that Eξ̂∗ = E∗ξ̂ = X0, and

ξ̂ = X0 +

∫ T

0
f0(t, R̃(·)|[0,t])⊤σ(t)−1dR̃(t).

Hence the strategy π̂(t)⊤ = B(t)f0(t, R̃(·)|[0,t])⊤σ(t)−1 replicates B(T )ξ̂. It belongs to Σ̄; in

particular, since w and R̃ generate the same sigma-algebra and D̂ is convex, then X̃(t, π(·)) =

E
{
ξ̂ | R̃(·)|[0,t]

}
∈ D̂, hence bounded below. This completes the proof of Theorem 3.1. �

Proof of Lemma 4.1. Let V ∆
= Rn ×R×R

n(n+1)
2 . Clearly, V is a ñ-dimensional linear vector

space, where ñ
∆
= n+ 1+ n(n+ 1)/2. Let ỹ(t) = (ỹ1(t), ỹ2(t), ỹ3(t)) be a process in V such that

ỹ(t) = (y(t), ỹ3(t)) = (ỹ1(t), ỹ2(t), ỹ3(t)) =
(
â(t), ln Z̄(t), â(t)â(t)⊤

)
.

The last equality is satisfied by (4.7). It can be seen that the equation for ỹ(t) is linear:

dỹ1(t) = [Â(t)ỹ1(t) + v(t)]dt+ E(t) dR̃(t),

dỹ2(t) = −1
2Tr{Q(t)ỹ3(t)} dt+ ỹ1(t)

⊤Q(t) dR̃(t),

dỹ3(t) = [Â(t)ỹ3(t) + ỹ3(t)
⊤Â(t)⊤ + v(t)ỹ2(t)

⊤ + ỹ2(t)v(t)
⊤ + 1

2{E(t)σ(t)σ(t)⊤E(t)⊤}]dt

+E(t) dR̃(t)ỹ2(t)
⊤ + y2(t) dR̃(t)

⊤E(t)⊤.

Here Â(t), v(t), E(t) are known deterministic functions in Rn×n, Rn and Rn×n respectively. In

particular, Â(t) = A(t)− b(t)σ(t)⊤Q(t). Thus, the equation for ŷ(t) can be rewritten as dỹ(t) = f̃(ỹ(t), t)dt+
∑n

i=1 g̃i(ỹ(t), t) dR̃i(t),

ỹ(0) = ỹ0,
(7.10)

with ỹ0 =
(
m0, 0,m0m

⊤
0

)
, and with some functions f̃(x̃, t) : V × [0, T ] → V and g̃i(x̃, t) :

V × [0, T ] → V, i = 1, . . . , n, that are affine in x̃ ∈ V with continuous in t coefficients. In
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particular, ∂f̃(x̃, t)/∂x̃ and ∂g̃i(x̃, t)/∂x̃ depend only on t, and they are uniformly bounded.

Hence (7.10) has an unique solution. Therefore, equation (4.2) has the unique solution y(t).

Let Ṽ (x̃, t)
∆
= E∗Φ(ȳ

x̃,s(T )), where the process ȳx̃,s(·) takes values in Rn+1 and is such that

ỹx̃,s(·) = (ȳx̃,s(·), ỹx̃,s3 (·)) is the solution of (7.10) given the initial condition ỹ(s) = x̃ ∈ V. Then

Ṽ (x̃, t) is the classical solution of the boundary value problem for the corresponding backward

Kolmogorov’s equation  ∂Ṽ
∂t (x̃, t) + L(t)Ṽ (x̃, t) = 0, t ∈ [0, T ],

V (x̃, T ) = Φ(x̃1, x̃2),
(7.11)

where x̃ = (x̃1, x̃2, x̃3) ∈ Rn × R × R
n(n+1)

2 , and where L(t) is the second order differential

operator on functions v : V → R generated by the Markov process ỹ(t).

Let yx,s(·) = (yx,s1 (·), . . . , yx,sn+1(·)) be the solution of (4.2), and let V (x, t)
∆
= E∗Φ(y

x,t(T )).

Clearly,

ỹx̃,s(t) ≡ (yx,s(t), ŷx,s(t)ŷx,s(t)⊤) =
(
yx,s1 (t), . . . , yx,sn (t), yx,sn+1(t), ŷ

x,s(t)ŷx,s(t)⊤
)
,

if

x̃ = (x, x̃3) = (x̂, xn+1, x̂x̂
⊤), x̂ = (x1, . . . , xn), x = (x1, . . . , xn, xn+1) = (x̂, xn+1) ∈ Rn+1,

x̃3 = x̂x̂⊤ ∈ Rn(n+1)/2, ŷx,s(·) = (yx,s1 (·), . . . , yx,sn (·)).

In that case, V (x, t) ≡ Ṽ (x1, x̂2, x̂2x̂
⊤
2 ), where x = (x̂, xn+1), x̂ ∈ Rn. Therefore, V (x, t) is the

classical solution of problem (4.3)-(4.4).

Let y∗(·) denotes the solution of (4.2) with R̃(·) replaced by R̃∗(·) =
∫ ·
0 σ(t) dw(t).

Set X̃∗(t)
∆
= V (y∗(t), t). From (4.3) and Itô’s Lemma, it follows that

X̃∗(T ) = X̃∗(t) +

∫ T

t
B∗(s)

−1π∗(s)
⊤dR̃∗(s),

where π∗(t)
⊤ ∆

= B∗(t)
∂V
∂x (y∗(t), t)g(y∗(t), t). It follows that X̃∗(0) = V (y∗(0), 0) =

EV (y∗(T ), T ) = X0 and

dX̃∗(t) = B∗(t)
−1π∗(t)

⊤dR̃∗(t), X̃∗(T ) = Φ(y∗(T )). (7.12)

Then X̃∗(t) = ψ̃(t, R̃∗) for some measurable ψ̃, and the result follows if we observe that X̃(t) =

ψ̃(t, R̃) replicates the claim as desired for π(t)⊤
∆
= B(t)∂V∂x (y(t), t)g(y(t), t).

To continue, we require some a priori estimates. Let ζ∗(t)
∆
= B∗(t)

−1σ(t)⊤π∗(t).
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We consider the conditional probability space given (Θ,W (·), ã(0)). With respect to the

conditional probability space, it follows from (7.12) that dX̃∗(t) = ζ∗(t)
⊤dw(t),

X̃∗(T ) = Φ(y∗(T )).
(7.13)

By Proposition 2.2 El Karoui et al (1997), the (unique) solution (ζ∗(t), X̃∗(t)) of linear stochastic

backward equation (7.13) is a process in L2([0, T ], L2(Ω,F , P ))×C([0, T ], L2(Ω,F , P )), and there

exists a constant c0, independent of (Φ(·),Θ,W (·), ã(0)) and such that

supt∈[0,T ]E
{
|X̃∗(t)|2|Θ,W (·), ã(0)

}
+E

{∫ T
0 |ζ∗(t)|2dt

∣∣∣∣Θ,W (·), ã(0)
}

≤ c0E
{
Φ(y∗(T ))

2|Θ,W (·), ã(0)
}

a.s.

Hence

sup
t∈[0,T ]

E|X̃∗(t)|2 +E

∫ T

0
B∗(t)

−2|π∗(t)|2dt ≤ c1EΦ(y∗(T ))
2, (7.14)

where c1 > 0 is a constant that does not depend on Φ(·). Then (4.5) follows. This completes

the proof. �
Proof of Theorem 4.1. Clearly, the equation for y(t) is dâ(t) = [A(t)ŷ(t)− b(t)σ(t)⊤Q(t) + α(t)δ(t)]dt+ γ(t)Q(t) dR̃(t),

dyn+1(t) =
1
2 â(t)

⊤Q(t)â(t)dt− â(t)⊤Q(t) dR̃(t).

As in the proof above, it can be shown that X̃(t) = V (y(t), t, λ̂) is the solution of some equation

(7.12), i.e. it is the normalized wealth. Then the proof follows. �
Let N2 be the set of all Gaussian processes ā(t) : [0, T ] × Ω → Rn which are progres-

sively measurable with respect to the filtration generated by [a(0), w(t),W (t)] and such that

E
∫ T
0 |ā(t)|2dt < +∞. For ā(·) ∈ N2, let

Z(t, ā(·)) ∆
= exp

[∫ t

0
ā(s)⊤Q(s)dR̃(s)− 1

2

∫ t

0
ā(s)⊤Q(s)ā(s)ds

]
.

Proposition 7.3 Let ā(·) ∈ N2, let p ∈ (1,+∞), and let µ ∈ R, µ < 0 or µ > 1. Let K̄(t) be

the covariance matrix of ā(t) under P∗, and let κ(p)
∆
= qT (µ2p− µ), where q

∆
= p(p− 1)−1. Let

κ(p)K̄(t) < σ(t)σ(t)⊤ − εIn, where ε > 0 is a constant. Then E∗Z(t, ā(·))µ < +∞.

Proof of Proposition 7.3. If µ ∈ [0, 1], then E∗Z(t, ā(·))µ < +∞ ( see Lakner (1998), p.93).

Therefore, we can assume without loss of generality that µ < 0 or µ > 1. Clearly,

Z(t, ā(·))µ = exp
[
µ
∫ t
0 ā(s)

⊤Q(s)dR̃(s)− µ
2

∫ t
0 ā(s)

⊤Q(s)ā(s)ds
]
= ζ(t)ζ0(t),
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where

ζ(t)
∆
= exp

[
µ

∫ t

0
ā(s)⊤Q(s)dR̃(s)− µ2p

2

∫ t

0
ā(s)⊤Q(s)ā(s)ds

]
,

and

ζ0(t)
∆
= exp

[
µ2p− µ

2

∫ t

0
ā(s)⊤Q(s)ā(s)ds

]
.

By Hölder inequality, E∗Zµ ≤ [E∗ζ(T )
p]1/p [E∗ζ0(T )

q]1/q.

Similarly to the proof of Lemma A.1 from Lakner (1998), we have that E∗ζ(T )
p < +∞

because ζ(t)p is a positive local martingale with respect to P∗, thus by Fatou’s lemma it is a

supermartingale.

By Jensen’s inequality,

E∗ζ0(T )
q = E∗ exp

[
q µ

2p−µ
2

∫ T
0 ā(s)⊤Q(s)ā(s)ds

]
= E∗ exp

[
1
2T κ(p)

∫ T
0 ā(s)⊤Q(s)ā(s)ds

]
≤ 1

T

∫ T
0 E∗ exp

[
1
2κ(p)ā(s)

⊤Q(s)ā(s)
]
ds.

(7.15)

Remind that Q
∆
= (σσ⊤)−1, and κ(p) > 0. Similarly to (7.1), we obtain

K̄(t)−1 > κ(p)[σ(t)σ(t)⊤ − εIn]
−1 = κ(p)Q(t)[In − εQ(t)]−1

= κ(p)Q(t)
[
In +

∑+∞
k=1{εQ(t)}k

]
> κ(p)Q(t) + κ(p)εQ(t)2 > κ(p)Q(t) +M1,

(7.16)

where M1 = M1(ε) > 0 is a definitely positive constant matrix. (We can take ε > 0 small

enough to ensure convergency.) Similarly to the proof of Proposition 2.1, it follows from (7.15),

(7.16) that E∗ζ0(T )
q < +∞ and E∗Z(t, ā(·))µ < +∞. �

Proof of Lemma 5.1. If µ ∈ [0, 1], then E∗Z̄µ < +∞ ( see Lakner (1998), p.93). Therefore,

we can assume without loss of generality that µ < 0 or µ > 1. Note that â(·) ∈ N2. By

Proposition 7.3, if (i) is satisfied then E∗Z̄µ < +∞.

Further, let (ii) be satisfied. Clearly, ã(·) ∈ N2. By Proposition 7.3 again, E∗Z(T, ã(·))µ <

+∞. By (7.4), Z̄∗ = E{Z(T, ã∗(·))|R̃∗(·), r∗(·)}. Hence by Jensen’s inequality E∗Z̄µ ≤

E∗Z(T, ã(·))µ < +∞. �
Proof of Theorem 6.1. Let τ be a random variable that takes values in [0, T ] and such

that P(τ = 0) = 1/2 and P(τ ∈ (t1, t2]) = (t2 − t1)/(2T ) for 0 < t1 < t2 ≤ T . Let ηi ∈

L2(Ω,F ,P,Rn+2) be random vectors such that they have the probability density functions

ρi(x), i = 0, 1. We assume that τ, η0, η1, w,Θ,W (·), ã(0) are mutually independent.

Let η
∆
= η0I{τ=0} + η1I{τ>0}, and let η∗(·) be the solution of the Itô’s equation dη∗(t) = f(η∗(t), t)dt+ g(η∗(t), t)dR̃∗(t), t > τ,

η∗(τ) = η.
(7.17)
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Equation (6.1) is the forward Kolmogorov’s equation for the case when time of birth is distributed

as τ , and the vector η∗(t) has the conditional probability density function p(x, t)/2 in the sense

that P(η∗(t) ∈ Γ, t ≥ τ) = 1/2
∫
Γ p(x, t)dx for any domain Γ ⊂ Rn+1, where p is the solution of

(6.1).

Note that we need random τ with the selected probability density on (0, T ] to generate the

free term in parabolic equation (6.1).

Assume that Φ(·) ∈ C2(Rn+1) and it has finite support. Let V (x, t)
∆
= E∗Φ(y

x,t(T )), where

yx,s(·) is the solution of (4.2). Then V (x, t) is the classical solution of problem (4.3)-(4.4). Set

Ỹ∗(t)
∆
= V (η∗(t), t). From (4.3) and Itô’s Lemma, it follows that

Ỹ∗(T ) = Ỹ∗(t) +

∫ T

t
B∗(s)

−1ϱ∗(s)
⊤dR̃∗(s), τ ≤ t ≤ T,

where ϱ∗(t)
⊤ ∆
= B∗(t)

∂V
∂x (η∗(t), t)g(η∗(t), t). Hence

dỸ∗(t) = B∗(t)
−1ϱ∗(t)

⊤dR̃∗(t), Ỹ∗(T ) = Φ(η∗(T )). (7.18)

To continue, we require some estimates. Let ζ̂∗(t)
∆
= B∗(t)

−1σ(t)⊤ϱ∗(t).

Consider the conditional probability space given (τ, η,Θ,W (·), ã(0)). With respect to the

conditional probability space, it follows from (7.18) that dỸ∗(t) = ζ̂∗(t)
⊤dw(t),

Ỹ∗(T ) = Φ(η∗(T )).
(7.19)

By Proposition 2.2 El Karoui et al (1997)) again, the (unique) solution (ζ̂∗(t), Ỹ∗(t)) of stochas-

tic backward equation (7.19) is a process in L2([τ, T ], L
2(Ω,F , P )) × C([τ, T ], L2(Ω,F , P ))

given (τ, η,Θ,W (·), ã(0)), and there exists a constant C0 that is independent of

(Φ(·), τ, η,Θ,W (·), ã(0)), and such that

supt∈[0,T ]EI{t≥τ}

{
|Ỹ∗(t)|2| τ, η,Θ,W (·), ã(0)

}
+E

{∫ T
0 I{t≥τ}|ζ̂∗(t)|2dt

∣∣∣ τ, η,Θ,W (·), ã(0)
}

= supt∈[τ,T ]E
{
|Ỹ∗(t)|2 | τ, η,Θ,W (·), ã(0)

}
+E

{∫ T
τ |ζ̂∗(t)|2dt

∣∣∣ τ, η,Θ,W (·), ã(0)
}

≤ C0E
{
Φ(η∗(T ))

2 | τ, η,Θ,W (·), ã(0)
}

a.s.

Hence there exists a constant c0, independent of Φ(·) and such that

sup
t∈[0,T ]

EI{t≥τ}|Ỹ∗(t)|2 +E

∫ T

0
I{t≥τ}B∗(t)

−2|ϱ∗(t)|2dt ≤ c0EΦ(η∗(T ))
2. (7.20)
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Let Φ(·) be a general measurable function satisfying the conditions specified in the theorem.

Then, there exists a sequence {Φ(i)(·)}, where Φ(i)(·) ∈ C2(Rn+1) are such that they all have

finite support and

E|Φ(i)(η∗(T ))− Φ(η∗(T ))|2 =
∫
Rn+2 p(x, T )|Φ(i)(x)− Φ(x)|2dx→ 0 as i→ ∞. (7.21)

Let Ỹ
(i)
∗ (·), ϱ(i)∗ (·), and V (i)(·) be the corresponding processes and functions. Let

Ψi,j
∆
= sup

t∈[0,T ]
EI{t≥τ}|Ỹ

(i)
∗ (t)− Ỹ

(j)
∗ (t)|2 +E

∫ T

0
I{t≥τ}B∗(t)

−2|ϱ(i)∗ (t)− ϱ
(j)
∗ (t)|2dt.

By (7.20)-(7.21) and the linearity of (7.19), it follows that

Ψi,j ≤ c0E|Φ(i)(η∗(T ))− Φ(j)(η∗(T ))|2 → 0 as i, j → ∞.

We have that V (j) ∈ W1
C , since they are bounded together with their partial derivatives with

respect to x1, . . . , xn+1. Remind that 0 < ρ(x) ≤ p(x, t) for all x, t. Furthermore, we have that

Ψi,j = sup
t∈[0,T ]

∫
Rn+1

p(x, t)|V (i)(x, t)− V (j)(x, t)|2dx

+

∫ T

s
dt

∫
Rn+1

p(x, t)

∣∣∣∣∣
[
∂V (i)

∂x
(x, t)− ∂V (j)

∂x
(x, t)

]
g(x, t)

∣∣∣∣∣
2

dx.

Hence ∥V (i) − V (j)∥2W1
C

≤ Ψi,j → 0 as i, j → ∞. Therefore, V (i) is a Cauchy sequence in

W1
C , and it has the limit V in W1

C . This V is the desired solution, and (6.3) is satisfied. This

completes the proof. �
Note that it follows from the proof above that the sequences {Ỹ (i)

∗ (·)}∞i=1 and {ϱ(i)∗ (·)}∞i=1

are Cauchy sequences in the spaces C([τ, T ];L2(Ω,F ,P{· | τ})) and L2([τ, T ];L
2(Ω,F ,P{· | τ}))

respectively. Hence the corresponding limits Ỹ∗(·), ϱ∗(·) exist and belong to these spaces given

τ .

This paper presents development of some results and ideas that grew up from our collabora-

tion with Ulrich Haussmann during the author’s stay at Pacific Institute for the Mathematical

Sciences, Vancouver (see, e.g., Dokuchaev and Haussmann (2000)). The author wish to thank

Prof. U. Haussmann for the support and useful discussion. The author also wishes to thank the

anonymous referees for their insightful comments which greatly strengthened the paper.
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