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Abstract. This paper considers a spacecraft pursuit-evasion problem taking

place in low earth orbit. The problem is formulated as a zero-sum differential

game in which there are two players, a pursuing spacecraft that attempts to
minimize a payoff, and an evading spacecraft that attempts to maximize the

same payoff. We introduce two associated optimal control problems and show

that a saddle point for the differential game exists if and only if the two optimal
control problems have the same optimal value. Then, on the basis of this result,

we propose two computational methods for determining a saddle point solu-
tion: a semi-direct control parameterization method (SDCP method), which

is based on a piecewise-constant control approximation scheme, and a hybrid

method, which combines the new SDCP method with the multiple shooting
method. Simulation results show that the proposed SDCP and hybrid meth-

ods are superior to the semi-direct collocation nonlinear programming method

(SDCNLP method), which is widely used to solve pursuit-evasion problems in
the aerospace field.

1. Introduction. Pursuit-evasion problems, in which opposing decision-makers in-
teract within a complex dynamic environment, are challenging problems to solve.
In this paper, we consider a pursuit-evasion problem involving two spacecraft acting
under independent control: the pursuing spacecraft attempts to minimize a certain
payoff function, while the evading spacecraft attempts to maximize the same func-
tion. This pursuit-evasion problem can be formulated as a zero-sum differential
game, of the type first introduced by Issacs in 1965 [13].

Friedman [8] and Berkovitz [2, 3] have derived necessary optimality conditions
and established the existence of open-loop saddle point trajectories for zero-sum
differential games. However, for differential games in the aerospace field, such as the
spacecraft pursuit-evasion problem considered in this paper, it is usually impossible
to derive analytical solutions [26, 27]. Hence, numerical methods are indispensable.
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Two types of numerical methods have been proposed for solving spacecraft
pursuit-evasion problems: the multiple shooting approach [4], which involves solving
a two-point boundary value problem formed from the necessary optimality condi-
tions of the corresponding differential game, and the semi-direct approach [11],
which involves replacing the differential game with a corresponding optimal control
problem. Multiple shooting methods give solutions of high accuracy [4], but their re-
gions of convergence are usually very narrow [28]. Semi-direct methods, on the other
hand, converge for a wide range of initial guesses, but they are usually not as accu-
rate as multiple shooting methods, because the optimal control formulation of the
differential game cannot be solved exactly. One of the most well-known semi-direct
methods is the semi-direct collocation nonlinear programming method (SDCNLP
method) proposed by Conway and his collaborators [11, 12, 23, 24]. This method
involves solving the optimal control formulation of the differential game using a
collocation method. Although the SDCNLP method often works well in practice,
it has two disadvantages: (i) solution accuracy is usually far less than that of the
multiple shooting method; and (ii) the optimal control problem being solved is not
precisely equivalent to the original differential game.

In this paper, we propose two new computational methods — a semi-direct con-
trol parameterization method (SDCP method) and a hybrid method — to overcome
the disadvantages of the SDCNLP method proposed by Conway et al. Our new
SDCP method involves introducing two optimal control problems corresponding to
the differential game, whereas the SDCNLP method relies on just one. We give a
precise proof to show that solving these optimal control problems in succession is
equivalent to solving the differential game. Similar results are not available for the
SDCNLP method. Moreover, instead of using the collocation method to solve the
optimal control formulations of the differential game (as suggested by Conway et
al.), we use the control parameterization method [16, 18, 19, 30]. The advantage of
control parameterization is that it results in a finite-dimensional approximate prob-
lem of much smaller dimension [15, 17]. After introducing the SDCP method, we
present a hybrid method that combines the SDCP and multiple shooting methods
to improve solution accuracy.

The remainder of this paper is organized as follows. In Section 2, we formulate
the spacecraft pursuit-evasion problem under consideration as a zero-sum differen-
tial game. Then, in Section 3, we give conditions for solution existence for this
differential game, and also review the necessary conditions for optimality. The
SDCP and hybrid methods are introduced in Section 4. Finally, in Section 5, these
new methods are compared with the existing SDCNLP method via a numerical
example.

2. The pursuit-evasion problem. Consider a pursuit-evasion problem involving
two spacecraft (the players). Let P denote pursuing spacecraft and let E denote the
evading spacecraft. Each spacecraft is governed by a dynamic system with its own
control variables. The dynamic systems for players P and E (which are uncoupled)
are given by

ẋP (t) = gP (t, xP (t)) +BP (t)uP (t), (1a)

ẋE(t) = gE(t, xE(t)) +BE(t)uE(t), (1b)

where xP (t) is the state of P , xE(t) is the state of E, uP (t) is the control of P ,
and uE(t) is the control of E. Here, gP (t, xP (t)) and gE(t, xE(t)) are continuously
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differentiable vector-valued functions, and BP (t) and BE(t) are continuous matrix-
valued functions depending on t. Furthermore, the controls uP (t) and uE(t) belong
to given admissible strategy sets UP and UE , respectively.

The initial conditions for system (1) are

xP (t0) = x0P , (2a)

xE(t0) = x0E , (2b)

where t0 is a given initial time.
We consider the following Mayer objective functional:

J(uP , uE) = Φ(xP (tf ), xE(tf )), (3)

where the terminal time tf is fixed and Φ is a given continuously differentiable
function. The spacecraft pursuit-evasion problem is defined as follows.

Problem (G). Subject to Eqs. (1) and (2), choose uP ∈ UP to minimize the payoff
(3), and choose uE ∈ UE to maximize the payoff (3).

The payoff function (3) can often be viewed as a measure of spacecraft separation.
Thus, in Problem (G), the pursuing spacecraft wants to minimize the separation,
while the evading spacecraft wants to maximize the separation.

3. Preliminary results. Problem (G) is a zero-sum differential game in which the
two players have competing objectives: player P wants to minimize the payoff, while
player E wants to maximize the same payoff. Because of these competing objectives,
the concept of “solution” to Problem (G) needs to be carefully considered. In this
section, we give existence conditions for a solution of Problem (G). The necessary
optimality conditions for Problem (G) will also be reviewed.

3.1. Solution existence for Problem (G). Throughout this paper, we assume
that the following condition is satisfied.

Assumption 3.1. The admissible strategy sets UP and UE are compact sets in
some metric space, and J is a continuous function from UP × UE → R.

To solve Problem (G), we seek control strategies u∗P ∈ UP and u∗E ∈ UE such
that

max
uE∈UE

J(u∗P , uE) = J(u∗P , u
∗
E) = min

uP∈UP

J(uP , u
∗
E). (4)

Any pair (u∗P , u
∗
E) satisfying (4) is called a saddle point for Problem (G). Note that

there could be multiple saddle points, and any such saddle point is a valid solution
of Problem (G) [1]. Note also that if Eq. (4) holds, then for any pair of control
strategies (uP , uE) ∈ UP × UE ,

J(u∗P , uE) ≤ J(u∗P , u
∗
E) ≤ J(uP , u

∗
E).

To proceed further, we need the following definitions.

Definition 3.2. For Problem (G), the set of best reply strategies for player P ,
given a fixed strategy uE ∈ UE for player E, is defined as

SP (uE) =
{
u′P ∈ UP : J(u′P , uE) = min

uP

J(uP , uE)
}
.

Similarly, the set of best reply strategies for player E, given a fixed strategy uP ∈ UP
for player P , is defined as

SE(uP ) =
{
u′E ∈ UE : J(uP , u

′
E) = max

uE

J(uP , uE)
}
.
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Note that SP (uE) contains the best reply strategies for P when E uses the fixed
strategy uE , and SE(uP ) contains the analogous strategies for E.

Definition 3.3. For any given uE ∈ UE , let u′P (uE) ∈ SP (uE) be a corresponding
best reply strategy for player P . Similarly, for any given uP ∈ UP , let u′E(uP ) ∈
SE(uP ) be a corresponding best reply strategy for player E. Then the lower value
of the zero-sum game is defined as

V − = max
uE

J(u′P (uE), uE) = max
uE

min
uP

J(uP , uE).

Similarly, the upper value of the zero-sum game is defined as

V + = min
uP

J(uP , u
′
E(uP )) = min

uP

max
uE

J(uP , uE).

Definition 3.4. If V + and V − are both finite, and V + = V − = V , then V is called
the value of the differential game.

Before we can characterize saddle point existence in Problem (G), we need the
following lemmas.

Lemma 3.5. The lower value of the zero-sum game is no greater than the upper
value of the zero-sum game. Mathematically,

V − ≤ V +.

Proof. According to the definition of V −, for each ε > 0, there exists a correspond-
ing strategy uεE ∈ UE such that

V − − ε ≤ J (u′P (uεE), uεE) , (5)

where u′P (uεE) ∈ SP (uεE) is a best reply strategy for P corresponding to uεE . Then,

V − − ε ≤ J (u′P (uεE), uεE) = min
uP

J(uP , u
ε
E) ≤ min

uP

max
uE

J(uP , uE) = V +.

Since ε > 0 was selected arbitrarily, we immediately deduce V − ≤ V +. This
completes the proof.

Lemma 3.6. Let
{
unP
}

be a sequence of control strategies for player P , and let{
u′E(unP )

}
be a corresponding sequence of best reply strategies for player E. Suppose

that (unP , u
′
E(unP ))→ (ūP , ūE) as n→∞, where (ūP , ūE) ∈ UP × UE. Then ūE is

a best reply strategy for player E corresponding to ūP .

Proof. According to Definition 3.2, for each n ≥ 1,

J(unP , u
′
E(unP )) ≥ J(unP , u

′
E(ūP )).

Thus, since J is continuous and (unP , u
′
E(unP ))→ (ūP , ūE) as n→∞,

J(ūP , ūE) ≥ J(ūP , u
′
E(ūP )).

There are two cases to consider:

(i) J(ūP , ūE) > J(ūP , u
′
E(ūP )); and

(ii) J(ūP , ūE) = J(ūP , u
′
E(ūP )).

But case (i) is clearly impossible, as u′E(ūP ) is a best reply strategy for player E
corresponding to ūP . Thus, we must have

J(ūP , ūE) = J(ūP , u
′
E(ūP )) = max

uE

J(ūP , uE).

This shows that ūE ∈ SE(ūP ), as required.



NUMERICAL SOLUTION OF A PURSUIT-EVASION PROBLEM 5

We also have the following analogue to Lemma 3.6 for a sequence of control
strategies for player E.

Lemma 3.7. Let
{
unE
}

be a sequence of control strategies for player E, and let{
u′P (unE)

}
be a corresponding sequence of best reply strategies for player P . Suppose

that (u′P (unE), unE)→ (ūP , ūE) as n→∞, where (ūP , ūE) ∈ UP × UE. Then ūP is
a best reply strategy for player P corresponding to ūE.

Proof. Similar to the proof of Lemma 3.6.

We now present the following existence condition, which characterizes the solu-
tion of Problem (G).

Theorem 3.8. Under Assumption 3.1, a saddle point for Problem (G) exists if and
only if V − = V + = V .

Proof. Suppose that a saddle point (u∗P , u
∗
E) exists. Since we already know from

Lemma 3.5 that V − ≤ V +, it remains to show that V − ≥ V +. We have

V − = max
uE

min
uP

J(uP , uE) ≥ min
uP

J(uP , u
∗
E) = max

uE

J(u∗P , uE) ≥ min
uP

max
uE

J(uP , uE)

= V +.

Conversely, suppose that V − = V + = V . For each ε > 0, there exists a correspond-
ing uεE such that Eq. (5) holds. Similarly, there exists a corresponding uεP such
that

J (uεP , u
′
E(uεP )) ≤ V + + ε, (6)

where u′E(uεP ) is a best reply strategy for the evader corresponding to uεP .
Since UP and UE are compact (recall Assumption 3.1), we can choose a subse-

quence εn → 0 such that the corresponding subsequence of strategy pairs (uεnP , u
εn
E ),

and the corresponding sequence of best reply strategies (u′P (uεnE ), u′E(uεnP )), both
have limit points. That is, there exists strategy pairs (u∗P , u

∗
E) ∈ UP × UE and

(ū∗P , ū
∗
E) ∈ UP × UE such that, as n→∞,

(uεnP , u
εn
E )→ (u∗P , u

∗
E) , (u′P (uεnE ), u′E(uεnP ))→ (ū∗P , ū

∗
E).

Therefore, from (5) and (6),

V − − εn ≤ J (u′P (uεnE ), uεnE ) ≤ J (uεnP , u
εn
E )

≤ J (uεnP , u
′
E(uεnP )) ≤ V + + εn.

Since the payoff J is continuous on UP × UE , taking the limit as n→∞ gives

V − ≤ J (ū∗P , u
∗
E) ≤ J (u∗P , u

∗
E) ≤ J (u∗P , ū

∗
E) ≤ V +.

According to Lemmas 3.6 and 3.7, ū∗P is a best reply strategy for P corresponding
to u∗E , and ū∗E is a best reply strategy for E corresponding to u∗P . Thus,

V − ≤ min
uP

J(uP , u
∗
E) = J (ū∗P , u

∗
E) ≤ J (u∗P , u

∗
E)

≤ J (u∗P , ū
∗
E) = max

uE

J(u∗P , uE) ≤ V +.

Since V − = V +, this shows that (u∗P , u
∗
E) is a saddle point for Problem (G).
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3.2. Necessary optimality conditions for Problem (G). In this section, we
briefly review the necessary optimality conditions for Problem (G). For more details,
we refer readers to [8].

Define the Hamiltonian H as

H(t, xP , xE , uP , uE , λP , λE) = λTP gP (t, xP ) + λTP BP (t)uP

+ λTE gE(t, xE) + λTE BE(t)uE ,

where λP and λE are the adjoint variables for P and E, respectively.
Any saddle point solution for Problem (G) must satisfy the following equations:

u∗P (t) = arg min
uP∈UP

H(t, xP , xE , uP , uE , λP , λE) = arg min
uP∈UP

λTP (t)BP (t)uP (t), (7a)

u∗E(t) = arg max
uE∈UE

H(t, xP , xE , uP , uE , λP , λE) = arg max
uE∈UE

λTE(t)BE(t)uE(t), (7b)

where the adjoint variables λP and λE satisfy the differential equations,

λ̇P (t) = −
(
∂gP (t, xP (t))

∂xP

)T
λP (t), (8a)

λ̇E(t) = −
(
∂gE(t, xE(t))

∂xE

)T
λE(t), (8b)

with the terminal conditions

λP (tf ) =

(
∂Φ(xP (tf ), xE(tf ))

∂xP

)T
, (9a)

λE(tf ) =

(
∂Φ(xP (tf ), xE(tf ))

∂xE

)T
. (9b)

Note that, in view of equation (7a), the optimal strategy for the pursuer depends
solely on λP . Similarly, the optimal strategy for the evader depends solely on λE .
If the optimal strategies for players P and E can be expressed as explicit functions
of λP and λE , then these functions can be substituted into (1) and (8) to yield
a two-point boundary value problem (TPBVP) consisting of (1), (2), (8) and (9).
In principle, the multiple shooting method [28] can be applied to solve this TP-
BVP. However, good initial approximations of the optimal trajectories and adjoint
variables are required. We refer readers to [28] for more details on the multiple
shooting method. In this paper, we propose two new computational methods for
solving Problem (G), the details of which are discussed in the next section.

4. Numerical solution methods. In this section, we propose two numerical
methods for solving Problem (G). In contrast with the traditional semi-direct meth-
ods in the literature (see, for example, the work by Horie [11]), our new methods
involve solving two optimal control problems instead of one. The advantage of our
new approach is that it is guaranteed to yield a saddle point solution of Problem (G)
(assuming one exists), whereas the optimal control formulation in the traditional
semi-direct approach is not precisely equivalent to the original differential game.
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4.1. Optimal control formulations. We assume that the maximization condi-
tion (7b) can be used to express the optimal strategy for player E as a unique
function of the adjoint variable λE(t):

u∗E(t) = ū∗E(λE(t)). (10)

Substituting (10) into (1), and appending the adjoint dynamics for λE , yields the
following extended system:

ẋP (t) = gP (t, xP (t)) +BP (t)uP (t), (11a)

ẋE(t) = gE(t, xE(t)) +BE(t)ū∗E(λE(t)), (11b)

λ̇E(t) = −
(
∂gE(t, xE(t))

∂xE

)T
λE(t), (11c)

with the initial conditions

xP (t0) = x0P , (12a)

xE(t0) = x0E , (12b)

and the terminal conditions

λE(tf ) =

(
∂Φ(xP (tf ), xE(tf ))

∂xE

)T
. (13)

Note that uP completely determines the state trajectory for xP via (11a) and (12a).
By substituting the resulting value of xP (tf ) into (13), we obtain a corresponding
two-point boundary value problem for xE and λE consisting of (11b), (11c), (12b)
and (13). We now define the following optimal control problem.

Problem (OP ). Subject to the extended system (11)-(13), choose uP ∈ UP to
minimize the payoff J .

In Problem (OP ), λE is viewed as an additional state variable subject to the
terminal state constraint (13). The following result reveals the relationship between
Problem (OP ) and Problem (G).

Proposition 4.1. The optimal payoff value of Problem (OP ) is equal to the upper
value of Problem (G).

Proof. Suppose player P uses the fixed strategy uP ∈ UP . Then player E’s goal is
to solve the following optimal control problem to determine the corresponding best
reply strategy:

max
uE

Φ(xP (tf ), xE(tf )),

subject to {
ẋE(t) = gE(t, xE(t)) +BE(t)uE(t),

xE(t0) = x0E ,

where xP is the solution of (11a) and (12a) corresponding to the fixed strategy uP .
The optimal control for this problem satisfies,

u∗E(t) = arg max
uE

{
λTE(t)BE(t)uE(t)

}
= ū∗E(λE(t)),
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where the adjoint variable λE satisfies
λ̇E(t) = −

(
∂gE(t, xE(t))

∂xE

)T
λE(t),

λE(tf ) =

(
∂Φ(xP (tf ), xE(tf ))

∂xE

)T
.

Since ū∗E is the unique control that satisfies these conditions, it must be the best
reply strategy corresponding to uP . Thus, the optimal value for Problem (OP ) is

min
uP

J(uP , ū
∗
E) = min

uP

max
uE

J(uP , uE) = V +,

as required. This completes the proof.

We now introduce the analogous optimal control problem for player E. To do
this, we assume that the minimization condition (7a) can be used to derive the
optimal strategy function for player P as a unique function of the adjoint variable
λP :

u∗P (t) = ū∗P (λP (t)). (14)

Substituting (14) into (1) and appending the adjoint dynamics for λP yields the
following extended system:

ẋP (t) = gP (t, xP (t)) +BP (t)ū∗P (λP (t)), (15a)

ẋE(t) = gE(t, xE(t)) +BE(t)uE(t), (15b)

λ̇P (t) = −
(
∂gP (t, xP (t))

∂xP

)T
λP (t), (15c)

with the boundary conditions

xP (t0) = x0P , (16a)

xE(t0) = x0E , (16b)

λP (tf ) =

(
∂Φ(xP (tf ), xE(tf ))

∂xP

)T
. (16c)

The following optimal control problem is the analogue of Problem (OP ) for player E.

Problem (OE). Subject to the extended system (15)-(16), choose uE ∈ UE to
maximize the payoff J .

We have the following result, which links Problem (OE) with Problem (G).

Proposition 4.2. The optimal payoff value of Problem (OE) is equal to the lower
value of Problem (G).

Proof. Similar to the proof of Proposition 4.1.

Combining Propositions 4.1 and 4.2 with Theorem 3.8 yields the following result.

Proposition 4.3. A saddle point for Problem (G) exists if and only if the optimal
payoff values of Problems (OP ) and (OE) are equal.

We now present the main result for this section.

Theorem 4.4. Let u∗P and u∗E be optimal controls for Problems (OP ) and (OE),
respectively. If the optimal payoff values of Problems (OP ) and (OE) are equal, then
(u∗P , u

∗
E) is a saddle point for Problem (G).
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Proof. Suppose that the optimal payoff values for Problems (OP ) and (OE) are
equal. Then it follows from Proposition 4.1, Proposition 4.2, and Theorem 3.8 that
there exists a saddle point for Problem (G).

Let ū∗E be the best reply strategy for player E corresponding to u∗P , and let ū∗P be
the best reply strategy for player P corresponding to u∗E . According to Propositions
4.1 and 4.2,

V + = min
uP

J(uP , u
′
E(uP )) = J(u∗P , ū

∗
E) = max

uE

J(u∗P , uE),

and

V − = max
uE

J(u′P (uE), uE) = J(ū∗P , u
∗
E) = min

uP

J(uP , u
∗
E).

Since V + = V −, we have

J(u∗P , ū
∗
E) = V + = V − = J(ū∗P , u

∗
E). (17)

Furthermore, since ū∗P ∈ SP (u∗E) and ū∗E ∈ SE(u∗P ),

J(ū∗P , u
∗
E) = min

uP

J(uP , u
∗
E) ≤ J(u∗P , u

∗
E) ≤ max

uE

J(u∗P , uE) = J(u∗P , ū
∗
E). (18)

Combining (17) and (18) yields

min
uP

J(uP , u
∗
E) = J(u∗P , u

∗
E) = max

uE

J(u∗P , uE).

This shows that (u∗P , u
∗
E) is a saddle point for Problem (G).

On the basis of Theorem 4.4, Problem (G) can be solved using the following
procedure:

1. Solve Problem (OP ) to obtain an optimal control u∗P .
2. Solve Problem (OE) to obtain an optimal control u∗E .
3. Compare the optimal payoff values for Problems (OP ) and (OE). If the opti-

mal payoff values are equal, then (u∗P , u
∗
E) is a saddle point for Problem (G).

Otherwise, no saddle point exists.

To implement this procedure successfully, we require a numerical method for solving
Problems (OP ) and (OE). This is the focus of the next section.

4.2. Semi-direct control parameterization method. Both Problems (OP ) and
(OE) are optimal control problems in canonical form. Since these problems are
similar, we will restrict our attention to Problem (OP ) in this section.

To solve Problem (OP ) numerically, we will apply the control parameterization
technique [19, 29]. This technique involves partitioning the time horizon [ t0, tf ] into
a set of subintervals [τj−1, τj), where τj , j = 1, . . . , q, are fixed knot points such
that t0 = τ0 < τ1 < · · · < τq = tf . Then, the control function uP is approximated
by a piecewise-constant function as follows:

uP (t) ≈
q∑
j=1

σjχ[ τj−1,τj)(t), (19)

where χ[ τj−1,τj)(t) is the characteristic function defined by

χ[ τj−1,τj)(t) =

{
1, if t ∈ [ τj−1, τj) ,

0, otherwise.
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Substituting (19) into (11) gives

ẋP (t) = gP (t, xP (t)) +BP (t)σj

ẋE(t) = gE(t, xE(t)) +BE(t)ū∗E(λE(t))

λ̇E(t) = −
(
∂gE(t, xE(t))

∂xE

)T
λE(t)

 t ∈ [τj−1, τj), j = 1, . . . , q. (20)

Since the initial value of λE is unknown, we introduce a decision vector ζ such that
λE(t0) = ζ. Let E denote the set consisting of all suitable vectors for ζ. Then the
initial conditions for (20) are

xP (t0) = x0P , (21a)

xE(t0) = x0E , (21b)

λE(t0) = ζ. (21c)

Let

Ψ(xP , xE , λE) = λE −
(
∂Φ(xP , xE)

∂xE

)T
,

σ =
[
(σ1)

T
, (σ2)

T
, . . . , (σp)

T
]T
. (22)

Then, the terminal condition (13) can be expressed as the following terminal state
constraint:

Gq(σ, ζ) =
∥∥Ψ(xP (tf ), xE(tf ), λE(tf ))

∥∥2
2

= 0, (23)

where ‖·‖2 denotes the Euclidean norm.
Furthermore, let Ξ denote the set of all vectors in the form of (22) such that the

corresponding approximate control defined by (19) belongs to UP .
In view of the dynamic system (20)-(21), the payoff can be expressed as a function

of σ and ζ:

Jq(σ, ζ) = Φ(xP (tf ), xE(tf )). (24)

We now define the following finite-dimensional approximation of Problem (OP ).

Problem (Oq
P ). Subject to the system given by (20)-(21), and the terminal state

constraint (23), choose vectors σ ∈ Ξ and ζ ∈ E to minimize the payoff (24).

Problem (Oq
P ) can be solved as a nonlinear programming problem using stan-

dard constrained optimization methods, such as sequential quadratic programming
(SQP). To do this, we need the gradient formulas for the payoff Jq and the con-
straint function Gq. These gradient formulas are given in the following theorems,
which can be proved in a similar manner to Theorem 5.2.1 in [29].

Theorem 4.5. The gradients of the cost function Jq(σ, ζ) with respect to σ and ζ
are given by

∂Jq(σ, ζ)

∂σj
=

∫ τj

τj−1

ηTP (t)BP (t)dt, j = 1, . . . , q,

∂Jq(σ, ζ)

∂ζ
= ηTλ (t0),
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where the adjoint variable η = [ηTP , η
T
E , η

T
λ ]T satisfies the differential equations

η̇P (t) = −
(
∂gP (t, xP (t))

∂xP

)T
ηP (t),

η̇E(t) = −
(
∂gE(t, xE(t))

∂xE

)T
ηE(t) +

{
∂

∂xE

((
∂gE(t, xE(t))

∂xE

)T
λE(t)

)}T
ηλ(t),

η̇λ(t) = −
(
∂ū∗E(λE(t))

∂λE

)T
BTE(t)ηE(t) +

(
∂gE(t, xE(t))

∂xE

)
ηλ(t),

with the terminal conditions

ηP (tf ) =

(
∂Φ(xP (tf ), xE(tf ))

∂xP

)T
,

ηE(tf ) =

(
∂Φ(xP (tf ), xE(tf ))

∂xE

)T
,

ηλ(tf ) = 0.

Theorem 4.6. The gradients of the constraint function Gq(σ, ζ) with respect to σ
and ζ are given by

∂Gq(σ, ζ)

∂σj
=

∫ τj

τj−1

µTP (t)BP (t)dt, j = 1, . . . , q,

∂Gq(σ, ζ)

∂ζ
= µTλ (t0),

where the adjoint variable µ = [µTP , µ
T
E , µ

T
λ ]T satisfies the differential equations

µ̇P (t) = −
(
∂gP (t, xP (t))

∂xP

)T
µP (t),

µ̇E(t) = −
(
∂gE(t, xE(t))

∂xE

)T
µE(t) +

{
∂

∂xE

((
∂gE(t, xE(t))

∂xE

)T
λE(t)

)}T
µλ(t),

µ̇λ(t) = −
(
∂ū∗E(λE(t))

∂λE

)T
BTE(t)µE(t) +

(
∂gE(t, xE(t))

∂xE

)
µλ(t),

with the terminal conditions

µP (tf ) = −2

[
∂

∂xP

(
∂Φ(xP (tf ), xE(tf ))

∂xE

)T]T
Ψ(xP (tf ), xE(tf ), λE(tf )),

µE(tf ) = −2

[
∂

∂xE

(
∂Φ(xP (tf ), xE(tf ))

∂xE

)T]T
Ψ(xP (tf ), xE(tf ), λE(tf )),

µλ(tf ) = 2Ψ(xP (tf ), xE(tf ), λE(tf )).

The gradient formulas in Theorems 4.5 and 4.6 can be incorporated into gradient-
based optimization techniques such as SQP to solve Problem (Oq

P ) numerically.
When q is large, the optimal piecewise-constant control is a good approximation of
the optimal control for Problem (OP ). In fact, it can be shown that, if uq,∗P is the
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optimal piecewise-constant control generated from the solution of Problem (Oq
P ),

and u∗P is an optimal control for Problem (OP ), then

lim
q→∞

J(uq,∗P ) = J(u∗P ).

See [20, 21, 29] for proofs of this result under various conditions.
Gradient-based optimization methods can only guarantee local optimal solutions.

Thus, the initial point used to start the optimization process is crucial. In the
numerical simulations in Section 5.2, we use the multi-objective genetic algorithm
(MOGA) in [7] to determine a good starting point.

4.3. Hybrid method. As with any semi-direct method, the key limitation of the
SDCP method is that the optimal control formulations of the differential game can,
in general, only be solved numerically. Indeed, although the control parameteri-
zation method generates approximate solutions that converge to the true solution
as the number of subintervals approaches infinity, the limiting solution is usually
never achievable in practice. Accordingly, we now propose a hybrid method that
combines the SDCP method with the multiple shooting method to improve solution
accuracy. In this hybrid method, the SDCP method is first used as pre-processor to
generate an approximate saddle point. This approximate saddle point is then used
as the initial guess for the multiple shooting method. By using this hybrid strategy,
the strong convergence properties of the semi-direct method and the high accuracy
of the multiple shooting method can both be achieved. The hybrid algorithm is
summarized below.

1. Solve Problem (OP ) numerically using the control parameterization method
described in Section 4.2. Let u∗P denote the approximate optimal control of
Problem (OP ) and let x∗E and λ∗E denote the corresponding trajectories for
player E and the adjoint variable for player E, respectively.

2. Solve Problem (OE) numerically using the control parameterization method
described in Section 4.2. Let u∗E denote the approximate optimal control of
Problem (OE) and let x∗P and λ∗P denote the corresponding trajectories for
player P and the adjoint variable for player P , respectively.

3. If the difference between the optimal payoff values of Problems (OP ) and (OE)
exceeds a given tolerance, then stop: no saddle point exists. Otherwise, take
(u∗P , u

∗
E) as an approximate saddle point.

4. Starting with the initial trajectories x∗P , x∗E , λ∗P and λ∗E , use the multiple
shooting method to solve the TPBVP described by Eqs. (1), (2), (8) and (9).

5. Numerical example. In this section, we give a specific model for the spacecraft
pursuit-evasion problem in low earth orbit. We then solve this problem using three
methods: the new SDCP and hybrid methods presented in Section 4, and the
existing SDCNLP method in reference [24].

5.1. Mathematical model. We consider a pursuit-evasion scenario involving two
spacecraft distributed in low earth orbit (altitude of between 160 km and 2000 km).
The coordinate system for the two spacecraft is shown in Fig. 1. The motion of the
ith spacecraft (i = P for the pursuer and i = E for the evader) is described by the
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x
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z

o

P

E

Reference Orbit

Earth

Figure 1. Coordinate system for the spacecraft pursuit-evasion problem.

following differential equations:

s̈xi (t) =
2µ

r3(t)
sxi (t) + 2ω(t)ṡyi (t) + ω̇(t)syi (t) + ω2(t)sxi (t) + Ti u

x
i (t), (25a)

s̈yi (t) = − µ

r3(t)
syi (t)− 2ω(t)ṡxi (t)− ω̇(t)sxi (t) + ω2(t)syi (t) + Ti u

y
i (t), (25b)

s̈zi (t) = −ω2(t)szi (t) + Ti u
z
i (t), (25c)

where sxi , syi and szi define the position of the ith spacecraft with respect to the
three coordinate axes, and uxi , uyi and uzi are control variables representing the
thrust directions along the three coordinate axes. Eqs. (25) are known as the
Clohessy-Wiltshire equations [5]. In these equations, Ti is the thrust-to-mass ratio
(constant) for the ith spacecraft, ω(t) is the angular velocity of the origin O, µ is
the earth planetary constant, and r(t) is the distance from the center of the earth
to the origin of the coordinate system.

The control variables for player i are subject to the following constraints:√
uxi (t)2 + uyi (t)2 + uzi (t)

2 ≤ 1, t ∈ [t0, tf ].

Let vxi , vyi and vzi define the velocity of the ith spacecraft with respect to the three
coordinate axes. Then, the differential equations (25) can be written as the following
first-order dynamic system:

ṡxi (t) = vxi (t), (26a)

ṡyi (t) = vyi (t), (26b)

ṡzi (t) = vzi (t), (26c)

v̇xi (t) =
2µ

r3(t)
sxi (t) + 2ω(t)vyi (t) + ω̇(t)syi (t) + ω2(t)sxi (t) + Ti u

x
i (t), (26d)

v̇yi (t) = − µ

r3(t)
syi (t)− 2ω(t)vxi (t)− ω̇(t)sxi (t) + ω2(t)syi (t) + Ti u

y
i (t), (26e)

v̇zi (t) = −ω2(t)szi (t) + Ti u
z
i (t). (26f)

The payoff function in this example measures the separation distance between the
two spacecraft at the terminal time:

J =
1

2

[
(sxP (tf )− sxE(tf ))

2
+ (syP (tf )− syE(tf ))

2
+ (szP (tf )− szE(tf ))

2
]
. (27)

The spacecraft pursuit-evasion problem can be stated as follows: subject to the
dynamic system (26) with i = P , the pursuing spacecraft wants to choose its
control variables uxP , uyP and uzP to minimize the separation distance (27) at the
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terminal time, and subject to the dynamic system (26) with i = E, the evading
spacecraft wants to choose its control variables uxE , uyE and uzE to maximize the
separation distance (27) at the terminal time.

Using the minimization condition (7a), the optimal control functions for player
P are obtained by solving the following optimization problem:

min
ux
P ,u

y
P ,u

z
P

λxPu
x
P + λyPu

y
P + λzPu

z
P

subject to:

√
(uxP )

2
+ (uyP )

2
+ (uzP )

2 ≤ 1,

where λxP , λyP and λzP are the adjoint variables corresponding to vxP , vyP and vzP ,
respectively. Solving this optimization problem yields the optimal controls for player
P in terms of the adjoint variables:

uxP (t) = − λxP (t)√
[λxP (t)]

2
+ [λyP (t)]

2
+ [λzP (t)]

2
,

uyP (t) = −
λyP (t)√

[λxP (t)]
2

+ [λyP (t)]
2

+ [λzP (t)]
2
,

uzP (t) = − λzP (t)√
[λxP (t)]

2
+ [λyP (t)]

2
+ [λzP (t)]

2
.

Similarly, the optimal controls for player E are

uxE(t) =
λxE(t)√

[λxE(t)]
2

+ [λyE(t)]
2

+ [λzE(t)]
2
,

uyE(t) =
λyE(t)√

[λxE(t)]
2

+ [λyE(t)]
2

+ [λzE(t)]
2
,

uzE(t) =
λzE(t)√

[λxE(t)]
2

+ [λyE(t)]
2

+ [λzE(t)]
2
.

Using the formulas given above for the optimal control functions for players P
and E, we can readily obtain the optimal control problems corresponding to the
differential game (i.e., Problems (OP ) and (OE)).

5.2. Numerical results. According to Eq. (25), the in-plane motion (i.e., the x-y
subsystem) and the out-of-plane motion (i.e., the z subsystem) are independent and
can be considered separately. Thus, we assume that the pursuit-evasion problem
occurs in a co-planar orbit and r(t) = r0, where r0 is the sum of the radius of the
earth (6371 km) and the altitude of the origin O. We also assume that the angular

velocity ω(t) is constant and equals
√
µ/r30, where µ = 3.986×105 km3 is the earth

planetary constant.
We consider eight versions of the pursuit-evasion problem. These versions differ

in the initial values of the x-y state variables, the altitude of the origin, and the
values of TP and TE . Each version of the problem has a fixed terminal time of
tf = 500 seconds.

In versions 1-4 of the pursuit-evasion problem, the altitude of the origin is 500 km;
in versions 5-8, the altitude of the origin is 1000 km. The initial values of the x-y
state variables for each version are given in Table 1. Moreover, Table 2 gives the
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Table 1. Initial values of the x-y state variables

Version sxP syP vxP vyP sxE syE vxE vyE

1 0 0 0 0 9.958 24.01 −0.027 −0.0056

2 −1.046 −119.9 0.133 −0.001 9.906 36.02 −0.04 −0.006

3 −0.01 11.99 −0.013 0 19.74 60.13 −0.066 −0.011

4 −0.094 35.97 −0.039 −0.0001 19.83 48.11 −0.053 −0.011

5 0 0 0 0 9.988 12.88 −0.013 −0.005

6 −0.281 64.32 −0.064 −0.0002 9.955 25.76 -0.026 −0.005

7 20.00 0 0 −0.01 9.719 64.41 −0.0641 −0.006

8 19.99 12.89 −0.013 −0.0099 9.988 −12.88 0.0128 −0.0049

Table 2. Thrust-to-mass ratios for the two spacecraft

Version TP TE

1 0.0330g 0.01g

2 0.1820g 0.01g

3 0.0550g 0.01g

4 0.0270g 0.01g

5 0.0215g 0.01g

6 0.0450g 0.01g

7 0.0860g 0.01g

8 0.0336g 0.01g

values of TP and TE , where the constant g = 9.8× 10−3km/s
2

is the base unit for
the thrust-to-mass ratios.

Details of our numerical implementation are given as follows. For the SDCP
method, we use the FORTRAN software package MISER 3.2 [14], which is based
on the nonlinear programming code NLPQL by Schittkowski [25], to implement the
control parameterization procedure with q = 10 subintervals. The multi-objective
genetic algorithm code by Deb et al. [7] is used to determine a good starting point
for MISER 3.2. For the hybrid method, we use the multiple shooting code BND-
SCO [22], with the solution obtained by MISER 3.2 as the starting point. Finally,
for the SDCNLP method, we use the Gauss-Lobatto quadrature collocation method
and solve the resulting nonlinear programming problem using the FORTRAN code
NPSOL [9].

The computer used for our numerical experiments is a server with two 2.27GHz
Xeon CPUs and 24 GB memory. For both the SDCP and the SDCNLP methods, we
set the constraint accuracy and the optimization tolerance to 10−9. Fig. 2-5 show
the optimal controls and optimal state trajectories for Problem (OP ) corresponding
to versions 1 and 2 of the pursuit-evasion problem. Since the optimal controls and
optimal state trajectories for the other versions are similar, they are not shown here.
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Figure 2. Optimal solution for version 1: optimal controls and
state trajectories generated by the SDCP and SDCNLP methods.

In Table 3, we compare the accuracy of the SDCP, hybrid and SDCNLP methods.
The errors for the SDCP and SDCNLP methods are measured by the violation
of constraint (9); the error for the multiple shooting method is the sum of the
constraint errors at each shooting point. The results in Table 3 indicate that, as
expected, the hybrid method is considerably more accurate than both the SDCP
and the SDCNLP methods.

In Tables 4 and 5, we compare the efficiency of the three methods in terms of
CPU time. The results in Table 4 show that the SDCP method requires much less
computation time than the SDCNLP method with the same level of precision. When
the constraint tolerance is reduced to 10−16 to match the accuracy of the hybrid
method, the SDCNLP method with ten subintervals (and five Gauss-Lobatto quad-
rature points per subinterval) does not converge. Moreover, we observed that even
when the number of subintervals increases, the results from the SDCNLP method
are still not as accurate as those from the hybrid method. This is due to finite
precision arithmetic [6]; an accumulation of rounding errors begins to dominate so-
lution accuracy as the number of collocation points increases [10]. Table 5 shows
the corresponding CPU times for the hybrid method. The stars in the SDCNLP
column indicate that when the constraint tolerance is 10−16, the SDCNLP method
did not converge for any of the eight versions of the pursuit-evasion problem.
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Figure 3. Optimal solution for version 1: optimal controls and
state trajectories generated by the SDCP and hybrid methods.

Table 3. Constraint violations for the optimal solutions generated
by the SDCP, hybrid and SDCNLP methods

Version
Constraint violation

SDCP Hybrid method SDCNLP

1 6.8025× 10−8 1.4142× 10−16 1.1032× 10−10

2 6.5385× 10−9 5.5099× 10−15 2.8806× 10−9

3 7.6607× 10−10 2.7568× 10−16 1.8813× 10−10

4 1.9229× 10−10 2.1679× 10−17 1.2515× 10−9

5 2.4050× 10−10 1.8708× 10−16 8.1093× 10−10

6 2.4050× 10−10 4.2426× 10−15 1.0611× 10−10

7 6.1088× 10−10 1.8708× 10−16 2.5512× 10−10

8 1.8344× 10−10 2.0736× 10−15 3.7322× 10−10

6. Conclusions. This paper introduces two computational methods for generat-
ing numerical solutions to a class of spacecraft pursuit-evasion differential games.
The first method, called the semi-direct control parameterization method (SDCP
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Figure 4. Optimal solution for version 2: optimal controls and
state trajectories generated by the SDCP and SDCNLP methods.

Table 4. Computation times for the SDCNLP and SDCP methods

Version
Computation time (seconds)

SDCNLP SDCP

1 2.424 0.358

2 1.887 0.124

3 4.161 0.328

4 2.443 0.299

5 5.327 1.627

6 2.243 0.427

7 5.319 0.459

8 1.885 0.453

method), is based on two optimal control formulations of the differential game.
Our main result shows that by solving these optimal control problems, we can
determine whether the differential game has a saddle point solution. The second
method we presented is a hybrid method that combines the SDCP method with the
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Figure 5. Optimal solution for version 2: optimal controls and
state trajectories generated by the SDCP and hybrid methods.

Table 5. Computation times for the SDCNLP and hybrid methods

Version
Computation time (seconds)

SDCNLP Hybrid method

1 * 0.491

2 * 0.247

3 * 0.448

4 * 0.412

5 * 1.893

6 * 0.710

7 * 0.695

8 * 0.665

multiple shooting method to capture the best qualities of each method—namely,
the strong convergence properties of the SDCP method and the accuracy of the
multiple shooting method. Our numerical results in Section 5.2 indicate that, for
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the class of spacecraft pursuit-evasion problems considered in this paper, our new
methods outperform the existing SDCNLP method.
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