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ABSTRACT 

The plastic deformation of nanocrystalline copper subjected to tension has been studied using 

molecular dynamics simulation. The results show that, in the initial stage, the deformation is 

mainly boundary-mediated in small grains; while in the late stage, the deformation is 

accommodated by dislocations in large grains. It is also found that the stress-assisted grain 

growth occurs owing to atomic diffusion and grain boundary migration. These results are 

consistent with recent experimental observations. 
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Nanocrystalline (nc) materials have been widely studied over the past two decades owing 

to their outstanding physical, mechanical and chemical properties such as high strength, good 

thermal stability, enhanced diffusivity, and thermal conductivity [1–3]. nc materials include 

single- and multi-phase polycrystals with grain sizes of 1–250 nm and a large volume fraction 

of atoms being located in the grain boundary (GB) area. Experimental observations and 

computer simulations have shown that the properties of nc materials are closely tied to their 

peculiar microstructures and unique deformation mechanisms. It is of great importance to 

understand the structure–property relationships in materials down to the nanometer range that 

have attractive potential for advanced applications in nanoscale devices [2]. 

The plastic deformation of conventional coarse-grained materials is mainly accommodated 

by dislocation nucleation and motion. However, this mechanism and its corresponding models 

break down when applied to nc materials. To fully understand the mechanical response of an 

nc material to external loading, many efforts have been devoted to uncover the underlying 

physics, including experimental studies, fundamental theoretical analyses, and advanced 

computer simulations. For example, mechanical milling tests showed that the formation and 

migration of partial disclination dipoles allow nanostructured iron to fragment and rotate 

during severe plastic deformation [4]. Deformation twinning [5,6], another mechanism that 

accommodates plastic deformation in nc aluminium and copper, is thought to be directly 

related to the particular nanostructures, which has not been observed in their coarse-grained 

counterparts. The grain boundary-mediated process becomes a prominent deformation mode 

in these materials as the grain size decreases to tens of nanometers [5–7]. Recently, several 

theoretical models have been proposed to explain the rotational plastic deformation and 

dislocation nucleation mechanism experimentally observed in nanomaterials [8,9]. Although 

experimental observations have exhibited a completely different picture of deformation at 
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nano-scales, the atomic details of deformation cannot be obtained owing to the limitations of 

current experimental facilities. 

Molecular dynamics (MD) plays an increasingly important role in exploring the details of 

atomic motion and structural evolution in nc materials, and in understanding the underlying 

deformation mechanisms [10]. MD simulations on the deformation of nc copper showed a 

softening phenomenon with the decrease of grain size, i.e., the reverse Hall-Petch effect, 

owing to a large fraction of atoms at the GBs [11]. Two distinct atomic processes, atomic 

shuffling and stress-assisted free-volume migration, have been revealed on the GBs during 

sliding [12,13]. Coble-creep was found at the smallest grain size, which means that GB 

sliding is the predominant deformation mechanism [10]. In addition, by using a <110> 

-textured microstructure of hexagonal, same-sized grains, it has been detected that a partial 

dislocation was emitted from a GB, traveled through the entire grain, and ultimately absorbed 

by the opposite GBs [14]. Trailing partials in some materials like aluminium follow after the 

emission of leading partials; while in other materials like copper, a trailing partial was not 

seen but a stacking fault (SF) defect transecting the entire grain was formed [15]. Some 

details of dislocation-dislocation and dislocation-twin interactions were also revealed by 

computer simulations [16]. It seems that GB-mediated deformation, such as GB sliding and 

grain rotation, is responsible for plastic deformation in small grains (< 10 nm), while 

dislocation-accommodated plastic deformation mainly occurs in grains with a relatively large 

size (> 30 nm) [10–17]. 

Although significant advancement in the understanding of mechanical deformation of nc 

materials has been made, the following two important problems are still not fully understood: 

(1) What are the predominant mechanisms at different deformation stages of nc materials 

subjected to mechanical loads? (2) How can grain growth in an nc system be facilitated by the 
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presence of high stress? In this letter, we take face-centered cubic (fcc) copper as an example 

to investigate the deformation mechanisms of nc materials under uniaxial tension, with a 

focus on the difference between GB-mediated and dislocation-based mechanisms. Using the 

MD approach, the atomic details of these two mechanisms and their competition (or interplay) 

are studied. 

In single-phase materials, grain size distributions usually follow a log-normal function and 

the average number of grain faces is ~6 (or ~14) in a two- (or three-) dimensional system [18]. 

Here, let us consider a three-dimensional, columnar nc copper sample. To represent a more 

realistic microstructure, the initial xy-plane profile of the sample is generated using a modified 

Potts model combined with Monte Carlo (MC) procedure [19,20], as shown in Fig. 1. The 

grain sizes lie in a relatively large range and follow a log-normal distribution, with textured 

orientation in the z ( >< 011 ) direction and randomly chosen mis-orientation angles (≥ 15°) 

between two adjacent grains. Individual grains are filled with copper atoms that occupy the 

fcc lattice with a specified orientation. The sample contains 184,325 atoms in 14 grains with 

diameters of 6–18 nm, corresponding to a system size of 44.5×38.6×1.28 nm
3
. Initially, the 

system is annealed at 300 K to obtain a stress-free equilibrium structure. Then, a uniaxial 

strain rate of 4×10
8
 s

-1
 is applied along the x-axis, keeping the stresses along the y- and z-axis 

zero. Periodic boundary conditions are applied in all directions. During the loading process, 

the temperature is kept at 300 K using a Nosé-Hoover thermostat [21,22]. The embedded 

atom method (EAM) [23] is used in the MD simulations. The stacking fault energy and 

unstable stacking fault energy given by the EAM are 17.2 and 157.8 mJ/m
2
, respectively, and 

the unstable twin fault energy is 166.9 mJ/m
2 

[24]. The equations of motion are integrated 

with time using a velocity Verlet algorithm [25]. The local atomic structures are determined 

by the Voronoi construction and are used to identify the dislocation core, SF, and deformation 
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twin [26]. 

A typical tensile stress-strain curve is shown in Fig. 2. It can be seen that, when uniaxial 

strain is less than ~2.5%, the stress is approximately a linear function of strain, i.e., elastic 

deformation is dominant. Despite the high loading rate used in MD simulations, it is worth 

noting that Young’s modulus of nc copper that was estimated to be about 105 GPa approaches 

the experimental value of 120 GPa [11]. When the critical strain is larger than 2.5%, the stress 

is roughly unchanged but with small fluctuations and the flow stress is ~2.1 GPa. The 

corresponding microstructure evolution during tensile loading is also shown in the insets of 

Fig. 2. In the early stage, the sample undergoes mainly elastic deformation so that dislocations 

and SFs are seldom observed [see inset (a)]. Then, as accompanied with the nucleation and 

propagation of several partial dislocations, plastic deformation starts [see inset (b)]. With 

further increase of loading, more and more dislocations appear and a dense network of SFs 

forms. As a result, the sample undergoes severe plastic deformation [from insets (c) to (f)]. 

The SF density, however, changes very slowly in the late stage [see insets (g) and (h)]. 

During the plastic deformation process, atoms adjacent to GBs slip on the most close- 

packed plane subjected to external loading or diffusion and re-arrange near the triple junction 

of GBs, inducing relative sliding between two neighboring grains because of their different 

slip systems. Thus, grain rotation occurs as a result of cooperative sliding along the opposite 

boundaries of the grain. Figure 3 shows the in-plane rotation angles of five selected grains 

with different diameters as a function of time. It is obvious that small grains rotate much 

faster than large ones. For example, after 500 ps, the magnitude of in-plane rotation angle of 

grain 7 (with diameter D7 = 6.7 nm) is about 30°, while it is about 10° for grain 2 with a larger 

diameter of D2 = 17.4 nm. It is interesting to note that there are several distinct rotation stages 

in the process (see Fig. 3): (1) during elastic deformation, almost all grains do not rotate; (2) 



- 6 - 

in the early stage of plastic deformation, the rotation rate of small grains is relatively high but 

the rotation of large grains is still not evident; and (3) after ~12% of applied strain is reached, 

the rotation rate of small grains decreases while large grains tend to rotate fast. 

Besides the GB sliding-induced grain rotation, the plastic deformation of nc copper is also 

accommodated by the nucleation, propagation and interaction of dislocations. Two types of 

dislocation motions are commonly observed: (1) the single partial dislocation motion where a 

partial dislocation of ]211[6/1  nucleates from the GB, propagates into the interior of a 

grain and is eventually absorbed by the opposite GB, leaving behind a SF transecting the 

grain; and (2) the extended dislocation motion where two partials connected by a SF emit in 

sequence from the GB, move inside the grain, and are ultimately absorbed by the opposite GB. 

The partial is found in all grains of the simulated sample; while the extended dislocation is 

only observed in large grains because the distance between two partials is inversely 

proportional to the stacking fault energy and because a larger interior space is needed for its 

formation [10]. It is worth noting that, even in large copper grains, an extended dislocation 

can only be formed after a relatively long simulation time (~400 ps) because of the low 

temperature and large energy barrier between stable and unstable SFs [15]. During their 

motion in a large grain, two partial dislocation cores may meet and interact with each other. 

They can induce the formation of the Cottrell-Lomer lock. If the motion planes of these 

partial cores are the same or parallel, they can separate the intrinsic stacking fault and 

transform the extrinsic stacking fault to twin. Since the energy for a trail partial nucleation is 

comparable to that for a twin fault formation in nc copper, thus, both extended dislocation and 

deformation twin are observed in simulations [15]. 

As discussed above, there are two kinds of mechanisms which accommodate the plastic 

deformation of nc copper, i.e., grain boundary-mediated and dislocation-based ones. These 
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two mechanisms operate in different grains and stages: the former dominates in small grains 

and at an early plastic deformation stage, and the latter primarily controls the deformation of 

large grains at a late stage. During tensile loading, however, they co-exist and interplay with 

each other. Grain boundary sliding and rotation can facilitate the formation of dislocations. In 

nano-structured materials, dislocation cores are usually formed near GBs. This is because the 

local atomic structure of GBs is so disordered that the displacement misfit may be introduced 

into the system in a deformation process and a relative glide of atoms induces the formation 

of cores. Conversely, dislocation-based deformation can affect GB sliding and grain rotation, 

i.e., deformation twin and Cottrell-Lomer lock can induce two-fold (both stimulative and 

suppressive) effects on the GB-mediated process [16]. Deformation twins facilitate plastic 

deformation by adding extra slip systems. Once formed, these twins can repel certain types of 

gliding dislocations because their crystallographic axes are different on both sides. This 

suppressive mechanism makes the local structure stable in a certain period. The 

Cottrell-Lomer locks, formed by the interaction between dislocations, also inhibit sliding of 

certain atoms as deformation twins. It is the interplay between these two mechanisms that 

directly results in three distinct deformation and rotation stages (see Figs. 2 and 3). In the 

elastic stage, because the stress is too low to trigger GB sliding, the rotation is not activated 

and almost all the grains are kept unchanged. In the early stage of plastic deformation, the 

rotation rate is relatively high and the sample undergoes severe plastic deformation owing to 

the GB sliding-induced grain rotation and the formation and motion of dislocations. In the 

later stage, the rotation rate decreases to a low level owing to the occurrence of some 

suppressive ingredients, such as deformation twins and Cottrell-Lomer locks formed by the 

interaction of dislocations, which inhibit the atoms gliding in certain close-packed planes and 

decrease the rotation rate of small grains. These results are consistent with recent 
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experimental observations in the tensile test of nc alloys [27]. 

In conventional materials, the Hall-Petch effect (hardness and yield strength increase with 

decreasing grain size) is generally observed. However, this effect often ceases to exist or even 

reverses in nc materials. There is a transition from the dislocation-based mechanism to the 

GB-mediated mechanism. The GBs can improve hardness and yield strength by serving as an 

inhibitor in coarse-grained materials to deter the generation and motion of dislocations inside 

a grain. However, they act as sources for dislocation nucleation and atom sliding to facilitate 

the plastic deformation in nc materials. Although the deformation transition from small grains 

to large ones appears during the loading process, it does not make much difference in the 

stress-strain curve (see Fig. 2) because grain rotation and dislocation nucleation originate 

from the motion of boundary atoms. The transition size in nc copper is about 10–20 nm. This 

differs from the conventional observation of strain-softening of coarse-grained materials 

where dislocations initiate in the interior of a grain. It is the interplay and competition 

between these two kinds of mechanisms that may be responsible for the super-plasticity as 

observed in our simulations. 

During the loading process, the atoms adjacent to GBs diffuse from one grain to another, 

leading to grain growth or shrinkage. In addition, the GB could migrate as a whole under 

stress, which also facilitates the grain growth. Figure 4 shows the shrinkage of grain 8 by 

virtue of the boundary migration, accompanying by the growth of its neighboring grains 2, 3, 

7 and 10. The initial size of grain 8 is ~8.2 nm. After 12% of applied strain (i.e., 300 ps), the 

grain size decreases to ~4.0 nm. Usually, thermally activated grain growth proceeds as a time 

scale of seconds, and is difficult at low temperature [28]. However, it is found that, in MD 

simulations, the grain growth occurs in a very short time period despite the high loading rate. 

This rapid growth suggests that the process is stress-assisted, which is consistent with recent 
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experimental and computational results from the indentation test of nc copper [28,29] and the 

tensile test of polycrystal nickel nanowire [30]. Generally, most small grains shrink during 

loading (grains 6 and 8). However, some small ones like grain 7 grow rather than consumed 

by large grains. This may be due to their local environments that are assembled by some 

peculiar short-length GBs with relatively low mis-orientation angles. Hence, the network 

effect is operative that prevents the contraction of these small grains. After 20% of applied 

strain, the total number of grains decreases to 12 (grains 6 and 8 merged with others), i.e., the 

average grain size increases from the initial diameter of ~12.5 nm to ~13.5 nm. However, it 

should be pointed out that the current study is inadequate in giving a statistical description of 

the kinetics of stress-assisted grain growth in the system owing to the limitation of the number 

of grains used in MD simulations. 

In summary, the deformation mechanism in an nc-fcc copper system has been investigated 

using the MD method. It is found that the GB-mediated deformation is mainly responsible for 

small grains during loading, while the dislocation-based mechanism commonly exists in large 

grains. Atomistic details show that the interplay and competition between these two 

mechanisms induce two distinct plastic deformation stages. In the early stage, GB sliding 

together with the rotation of small grains is dominant and partials emit from the GB with SFs 

behind. These SFs then transect small grains. With further loading, extended dislocations can 

be formed in large grains and the rotation of small grains is suppressed by the formation of the 

Cottrell-Lomer locks and deformation twins. MD simulation has also shown that grain growth 

is triggered by high stresses. These results are consistent with experimental observations and 

provide a better understanding of the plastic deformation and other unusual mechanical 

properties of nc materials. 
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Figure captions 

 

Fig. 1. (a) The initial xy-plane profile of an nc-fcc copper sample created using the MC 

procedure; and (b) the MD model with randomly specified crystallographic 

orientations. The periodic cell is denoted by the dotted line in (a). Red and blue lines 

in (b) indicate (111) and ( 111 ) planes, respectively. Numerals 1–14 represent grain 

indices. 

Fig. 2. Stress-strain curve for the nc-fcc copper sample under tension, where insets (a)–(h) 

show the microstructures at 0%, 2.5%, 3%, 4%, 5%, 6%, 12%, and 18% applied 

strains, respectively. The atoms in gray, green and red are those in local fcc, hcp, and 

disordered environments, respectively. 

Fig. 3. Rotation angles of five grains with different sizes as a function of time, where numbers 

represent the initial diameters of these grains. Insets show those mechanisms which 

dominate the different plastic deformation stages and grains. 

Fig. 4. Stress-assisted shrinkage of grain 8 after applied strain (a) 1%, (b) 4%, (c) 10%, and (d) 

12%, in which black lines indicate the GBs. 
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