
©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE.

Use of UML 2.1 to Model Multi-Agent Systems
based on a Goal-driven Software Engineering

Ontology
Pornpit Wongthongtham, Darshan Dillon, Tharam Dillon, Elizabeth Chang

Digital Ecosystems and Business Intelligence Institute, Curtin University
GPO Box U1987 Perth Western Australia 6845 Australia

{p.wongthongtham, d.dillon, t.dillon, e.chang}@cbs.curtin.edu.au

Abstract— In this paper, we present the use of UML 2.1 to
model multi-agent systems based on a goal-driven software
engineering ontology. The lack of an efficient standardized
modeling language is evident. The uses of UML and stereotypes
UML to model multi-agent systems have been proposed.
However, there are still a number of issues with the existing
approaches due to inconsistent semantics of the existing UML
diagrams and unintuitive and complex notations. UML 2.1 allows
representing more complex scenarios and introducing greater
details into the modeling process enabling effective capture and
representation of multi-agent actions and interactions. UML 2.1
has not only enabled the introduction of a notation for the
Ontology based multi-agent systems, but also effective capture
and representation of the dynamic processes associated with
these the Ontology based multi-agent systems.

I. INTRODUCTION

The ontology provides an important mechanism to facilitate
producing semantically information used by software agents.
Since the ontology has been used to express a formally shared
understanding of information [1], it enables the sharing of an
agreement among software agents by making assumptions
explicit. The key idea is to have agreement explicitly
interpreted by software agents rather than just being implicitly
interpreted by humans. The representation of knowledge
including ideas, tasks, models, processes as well as
documentation using an ontology and sub-ontology, will
provide intuitive, clear, precise concepts and ideas, knowledge
and classified issues. Knowledge is organized into the
ontology and used by agents as the basis for classifying
knowledge enabling questions and problem solving.
Additionally knowledge can be shared among agents in
community.

Software agents in multi-agent systems are intelligent,
autonomous problem solvers capable of getting answers from
user queries, making decisions based on appropriateness,
communicating with other agents and conveying results to the
system or the users. They have their own goals, capabilities
and beliefs which allow them to act intelligently within their
field of expertise. Ontologies coupled with a multi-agent
system allows greater ease of communication by aggregating
the agreed knowledge and the domain knowledge into a
shared information resource platform and allow them to be
shared among users and enable the intelligent agents to use the

ontology to carry out initial communication with users when
the problem is raised in the first instance. The system utilizes
software agent based computing in the sense that the agent has
knowledge through consultation with ontologies in the
ontology repository. Due to agent capacities in reading and
reasoning published knowledge with guidance of the ontology,
the shared ontology enables agents to have meaningful
communications.

Issues within Software Engineering Ontology (SE
Ontology) based multi-agent systems modeling include the
lack of an efficient standardized modeling language. The uses
of UML and adopted UML have been used to model the
Ontology based multi-agent systems as a language for
modeling. The latest version of UML, namely UML 2.1, has
greater expressive power than previous UML versions. This
allows representing more complex scenarios and introducing
greater details into the modeling process enabling effective
capture and representation of multi-agent actions and
interactions. In this paper we illustrate how UML 2.1 can be
used to model an Ontology based MAS specifically designed
to software engineering domain. UML 2.1 has not only
enabled the introduction of a notation for the Ontology based
MAS, but also effective capture and representation of the
dynamic processes associated with these the Ontology based
MAS.

In section 2, we review literatures on multi-agent systems
modeling. SE Ontology based multi-agent systems are
described in section 3 and in section 4 we illustrate how UML
2.1 can be used to effectively model SE Ontology based
multi-agent systems. The paper is concluded in section 5.

II. LITERATURE REVIEWS

UML has been used to model multi-agent systems [2].
Adopted UML also has been used as a language for modeling
of agent-based systems [3-6]. Kavi et al. [3] propose to extend
UML with a number of modeling constructs. Next to the
Agent, the additional modeling constructs include (1) Belief,
Goal and Plan to enable modeling of the reactive and
proactive behaviors of agents; (2) FIPA Performative, KQML
Performative and Blackboard to model agent’s
communication. The authors use the Sequence Diagram.
However, they have changed the semantics of the Sequence
Diagram by using smiley faces, thought clouds, and the like.

Fourth International Conference on Semantics, Knowledge and Grid

978-0-7695-3401-5/08 $25.00 © 2008 IEEE

DOI 10.1109/SKG.2008.45

428

Da Silva et al. [4] propose MAS-ML as a modeling
language to support modeling of multi-agents systems. MAS-
ML is an extension of UML and uses Organization, Role and
Class Diagrams to model static aspects of an application while
Sequence Diagrams are used to model the dynamic aspects of
an application. We notice changes in the semantics of
rectangles without the use of a stereotype. Additionally, the
use of <<role_change>> is syntactically correct but the
resulting diagram appears complex and is difficult to follow.

VisualAgent [5] is a Java-based development environment
which uses the MAS-ML and is composed of three tools: a
graphical tool, a transformation tool and a code generation
tool. The VisualAgent can be used to present some
preliminary ideas, but doesn’t allow for detailed presentation
as it virtually lacks existing UML diagrams or stereotypes.

Da Silva et al. [2] use UML2.0 Activity Diagrams to model
agent plans and actions. They consider a plan to be an activity,
decompose them into a number of actions and define the
action execution sequence. The strength of this approach is
that it allows definitions of stereotypes for Activity Diagrams.
However, the chosen notation appears to be difficult to
understand and to follow.

Use of ‘AgentUML’ [6] to model multi-agent systems
involves the use of many standard UML diagrams. For
example, a Sequence Diagram involves the inter-Agent
communication where each rectangle represents an
Agent/Role combination instead of a single object. Each
rectangle can then be expanded to have internal processing
represented with an Activity Diagram or a Statechart. Odell et
al. [6] illustrate the use of Activity Diagrams as well as the
use of Statecharts, one per Agent, using the Sequence
Diagram rectangles as a starting point one per Agent. In this
case, however, there is a departure from the normal usage of a
Statechart where is represents the states that an object (not an
Agent) goes through during its lifecycle. Finally, Odell et al.
[6] use the Collaboration Diagram as a mirror of the Sequence
Diagram with each node representing an Agent/Role
combination.

We have examined AUML diagrams given in [2] and
noticed that in the case of Sequence & Collaboration
Diagrams each rectangle at the head of lifelines represents a
single Agent/Role combination. This means that no stereotype
has been defined, yet the semantics of the diagrams have been
changed. This is a concern to us. Similarly, the semantics of
the Statechart has been changed so the collection of states
represents the lifecycle of an Agent/Role, not a single object
as they are meant to. The proper way to change the semantics
of existing diagrams is to define UML stereotypes. This has
not been done. Also, there are bound to be unforeseen
problems by simply substituting an Agent/Role where an
Object is meant to be in these UML diagrams. The final
problem we see with AgentUML is that is has been applied
repeatedly in the very narrow domain of Agent Protocols. To
make it useful it needs to be applied in a broad range of
problem domains. This is what we are endeavoring to do.

III. AGENTS FOR SOFTWARE ENGINEERING ONTOLOGY

Ontologies coupled with a multi-agents systems allow
greater ease of communication by aggregating the agreed
knowledge (project data / information / agreement) and the
domain knowledge of software engineering into a shared
information resource platform and allow them to be shared
enable the intelligent agents to use the ontology to carry out
initial communication with users.

The agent has knowledge through consultation with
ontologies in the ontology repository. Due to agent capacities
in reading and reasoning published knowledge with guidance
of the ontology, the shared ontology enables agents to have
meaningful communications. We design a set of agents
cooperating with each other and interacting with users or team
members, and these are

user agents which represent each team member being
provided with services,
safeguard agent which represents system
authentication for user authorisation and access level,
ontology agent which represents manipulation and
maintenance of the SE Ontology, and
decision maker agent which represents decision
making on the matter of updating the SE Ontology.

A software engineer having and working with their own
repository of software components, documents and codes, etc.
interacts with his/her user agent in the system when he/she
wants to enquire, to discuss a problem, to raise an issue, to
make a decision, or to find answers in a multi-site distributed
environment. If he/she requests to change or update project
data and it is beyond his/her user agent to decide then the user
agent will communicate with the decision making agent. The
decision making agent then gathers information from the other
team members as well as consults the ontologies from the
ontology repository. Making the decision is based on the
information obtained from consulting ontologies. The final
solution(s) will then be raised up and sent back to the involved
software engineers. In a case of the decision making agent has
difficulties coming up with any solutions; the agent will put it
through to the authorised person(s) or team leader to make a
decision. Once the agent gets the solution(s) from the person
or the team leader, it will automatically reconfigure or update
the ontology, the knowledge base in the resources as well as
sending back the solution(s) to the involved software
engineers. Ontology-based contents and agent capability
descriptions are machine-processable and thus the ontology
can be correctly reconfigured by the agents. In a case of
changing domain knowledge requests, the user agent is to
send the requests to the decision making agent which will then
require domain expert involved.

IV. USING UML 2.1 TO MODEL SE ONTOLOGY BASED MULTI-
AGENT SYSTEMS

A. Sociable SE Ontology based Multi-Agent Systems
Modeling

An UML Sequence Diagram is generally defined across the
page by a series of rectangles, each of which represents a class.
Each of these rectangles has a dotted line running vertically

429

down the page. These dotted lines are known as lifelines. As
you go down the page, time passes as messages flow between
objects. UMLS 2.1 allows for a particular class to have more
than one lifeline. Namely, a particular class may have many
ports, each one with its own lifeline. The agent may be
represented by a rectangle, and have many ports, each with its
own lifeline.

We use a Sequence Diagram where Composite Classes
have more than one port and represent different roles of the
same agent. Hanish & Dillon [8] have previously used a
similar and related approach to represent an Agent/Class
playing different roles. This will enable us to model SE
Ontology based multi-agent systems and represent agents
which play more than one role concurrently.

Each port has its own lifeline. If there are two ports, this
signifies two roles that are played by the agent from which the
ports come. We use Composite Class as a rectangle at the
head of lifelines in a Sequence Diagram, and each port to
represent a role played by the Composite Class, rather than
repeating rectangles for each class. Figure 1 shows a sequence
diagram representing a sequence of processes within the SE

Ontology based multi-agent systems. A number of agents play
multiple roles which are represented by multiple ports. The
safeguard agent plays four roles: systems authentication,
access level allocation, proposal management, and monitoring
users’ activities. The ontology agent also plays four roles:
navigation, querying, instance knowledge manipulation, and
domain knowledge manipulation. The decision making agent
plays two roles: reputation based decision and domain expert
based decision. Depending on which role the agent is acting in
when it sends/receives messages, the sequence diagram shows
arrows to/from a particular lifeline for the agent.

There are a couple of points worth noting in our sequence
diagram:

the lifelines of agents are solid throughout since agents
tend to be persistent
each rectangle represents a Composite Class which
implements an agent
each distinct role played by an agent is represented by
a distinct port on the rectangle with its own lifeline.

Fig.1 Sequence diagram representing sequence of processes within SE Ontology based multi-agent systems

430

As shown in Figure 1, we illustrate a system that has four
agents. Each user is assigned to a user agent when a login is
made. Each user agent is an initiator based on the user actions;
the agent will carry out the specific operations accordingly.
All the operations have different logic involved, but the
structure of creating a user agent is the same. In the agent
creation process, an agent object is created when a user login
is carried out. The user agent will kill itself if the team
member decides to log off the system or the team member is
idle for too long. This is typical behaviour of goal specific
agents, which exhibit one-shot behaviour. In other words, the
agent is created for a purpose, and once the purpose is
achieved, the agent will be terminated.

The safeguard agent will be doing user authentication and
authorization, access levels allocation, proposal management,
and monitoring users’ activities. The user identification will
be verified with the user database as well as access level
allocation. There will be five possible cases in access level
allocation. The first case is that the user navigates knowledge
in the form of SE Ontology. In the second case, the user
queries on the knowledge. These two cases require ontology
agent to do navigation and querying on SE Ontology.
Knowledge manipulation can form another three cases. Case
of manipulating minor instance knowledge require ontology
agent to do minor manipulating instance knowledge. Case of
manipulating major instance knowledge requires both
ontology agent and decision making agent to complete the
task. Basically the ontology agent passes the request to the
decision making agent to precede reputation based decision
processes including gathering information, consulting the SE
Ontology, etc. Case of manipulating domain knowledge also
requires both ontology agent and decision making agent to
complete the task. Similarly the ontology agent passes the
request to the decision making agent to precede domain expert
based decision processes. On passing through the decision
making agent, the proposals are recorded through logging
processes. The results of the processes are sent to the user
agent that made the enquiry as well as relevant user agents
that will have the affect of processes.

As the name itself states, the task of the decision making
agent is to make decisions on the matters of major updates
instance knowledge requests and the matters of updates
domain knowledge requests. The role of reputation based
decision making provides a mean for making the changes to
the reflected data in the SE Ontology based on the reputation
of users involved in the software engineering project.
Reputation based decision making detailed processes can be
found in literatures [9, 10]. Domain expert based decision
making detailed processes which involve human domain
experts can be found in literature [11].

To represent method lifting to define a composite class of
the ontology agent, we illustrate in Figure 2. The ontology
agent is defined by roles of navigation, query, instance
knowledge manipulation, and domain knowledge
manipulation, each of which is associated with their distinct
interface. We specify these interfaces by method lifting
method as shown in Figure 2. For example, interface of

component class navigation relates to the interface of a
composite class ontology agent. Component classes of
instance knowledge manipulation and domain knowledge
manipulation are inherited from component class
manipulation. The instance knowledge manipulation and
domain knowledge manipulation interfaces of composite class
ontology agent relate to the interfaces from component class
manipulation.

Fig. 2 Method lifting for composite class Ontology Agent

B. Goal-driven SE Ontology based Multi-Agent Systems
Modeling

We can model the goal-driven aspect of the agent by a
Composite Structure Diagram with Parts, and Ports. Each part
represents a distinct area of processing within the agent. Each
port represents a different role played by the agent. The
<<Agent>> stereotype based on the Composite Structure
Diagram [12] can be used to model the safeguard agent, the
ontology agent, and the decision making agent. The
<<Agent>> stereotype must have a name, at least one part
which controls the efforts of the agent to achieve a goal and at
least one port which relates to its playing a role.

Fig. 3 Composite Structure Diagram for the safeguard agent

We use a Composite Structure Diagram to represent the
goal-driven nature of an agent. In the case of the safeguard
agent shown in Figure 3, we have four ports which correspond
to four different roles of this agent, and four parts which show
distinct areas of process within the agent. Note that the same
two ports (authentication, access levels allocation, proposal
management, and monitoring users’ activities) that were
present in the sequence diagram are also present here. Each of
the ports is a construct which enables the Agent to interact

431

with other Agents, namely Ontology agent and decision
making agent.

Fig 4 Composite Structure Diagram for the ontology agent

Fig 5 Composite Structure Diagram for the decision making agent

Composite structure diagrams representing goal-driven
characteristic of the ontology agent and decision making agent
are shown in Figure 4 and Figure 5 respectively. We have four
ports corresponding with four roles of the ontology agent and
four parts illustrating distinct processes within the ontology
agent while we have two ports (two roles) for the decision
making agent and two parts within the decision making agent.

V. CONCLUSIONS

In this paper, we use UML 2.1 sequence diagram and
composite structure diagram to model social and goal-driven

SE Ontology based multi-agent systems. The crucial point is
that we have not changed the semantics of the sequence
diagram which makes our use of UML 2.1 valid. In our future
works, we will examine the use of other UML 2.1 diagrams.

REFERENCES
[1] Gruber, T.R. Toward principles for the design of ontologies used for

knowledge sharing. in International Workshop on Formal Ontology in
Conceptual Analysis and Knowledge Representation. 1993. Padova,
Italy: Kluwer Academic Publishers, Deventer, The Netherlands.

[2] J. Odell, H.P.V.D.a.B.B., Representing Agent Interaction Protocols in
UML, in Agent-Oriented Software Engineering, M.W. P. Ciancarini,
Editor. 2001, Springer-Verlag. p. 121-140.

[3] K. Kavi, D.C.K., H. Bhambhani, G. Pancholi, M. Kanikarla. Extending
UML for Modeling and Design of MultiAgent Systems. in the 2nd
International Workshop on Software Engineering for Large-Scale Multi-
Agent Systems (SELMAS2003). 2003. USA.

[4] V. T. da Silva, R.C.N., C. J. P. de Lucena, Using the MAS-ML to model
a multi-agent system. Software engineering for multi-agent systems II :
research issues and practical applications, 2004. 2940: p. 129-148.

[5] B. A. de Maria, V.T.d.S., R. C. Noya, C. J. P. de Lucena. VisualAgent:
A Software Development Environment for Multi-Agent Systems. in The
20th Brazilian Symposium on Databases and 19th Brazilian Symposium
on Software Engeneering. 2005. Brazil.

[6] V. T. da Silva, R.C.N., C. J. P. de Lucena. Using the UML 2.0 Activity
Diagram to Model Agent Plans and Actions. in the 4th International
Conference on Autonomous Agents and Multiagent Systems. 2005.
Netherlands.

[7] Wand, Y., V.C. Storey, and R. Weber, An Ontological Analysis of the
Relationship Construct in Conceptual Modeling. ACM Transactions on
Database Systems, 1999. 24(4): p. 495-528.

[8] Dillon, A.A.H.a.T.S. Object-oriented behavior modeling for real-time
design. in the3rd International Workshop on Object-Oriented Real-Time
Dependable Systems (WORDS '97). 1997. USA.

[9] Wongthongtham, P., Chang, E., Dillon, T.S., Sommerville, I. , Software
Engineering Ontology - Instance Knowledge Part I. International
Journal of Computer Science and Network Security, 2007.

[10] Wongthongtham, P., A methodology for multi-site distributed software
development, in School of Information Systems. 2006, Curtin University
of Technology: Perth.

[11] Wongthongtham, P.C., E. , Towards Social Network based Approach
for Software Engineering Ontology Sharing and Evolution, in LNCS On
the Move to Meaningful Internet Systems 2007: OTM 2007 Workshops.
2007, Springer LNCS

[12] D.S. Dillon, T.S.D., and E. Chang. Using UML 2.1 to model Multi-
Agent Systems. in the 6th IFIP Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems. 2008. Italy.

432

