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Abstract

Two dimensional colour and greyscale images have classically been the prevalent form of

data used in object and pattern recognition research. Newer methods of data collection such

as mobile-mapping, which uses vehicle mounted laser scanners and stereophotogrammetric

camera arrays, produce 2-D images combined with 3-D spatial data resulting in datasets

consisting of colourised point clouds and depth maps. The added modality of spatial depth

provided by these datasets is motivating renewed interest in approaches to feature extraction

and object recognition, particularly where explicitly acquired depth information can be used

to mitigate issues related to object scale.

The detection, recognition and localisation of objects of interest from very large image and

point cloud datasets is a common task across many different industries. Local Government

agencies, utility companies, commercial organisations and private parties maintain asset reg-

isters detailing their particular distributed infrastructures (e.g. traffic lights, telegraph poles,

garbage bins). The costs associated with the collection and maintenance of these datasets are

significant. Improvements in the automated detection and localisation of objects using such

datasets are therefore of keen interest to these users, as these techniques have the potential

to reduce the administrative burden associated with the upkeep of their asset registers.

Many computer vision systems have been developed to assist with object recognition, but

most of these systems rely only upon 2-D images of scenes and are unable to make use of

the extra modality of depth acquired by mobile-mapping systems. This thesis reports on two

object and pattern recognition techniques that were initially developed to address the task

of object detection and localisation in 2-D images, but have been enhanced herein to take

advantage of the explicit availability of depth data so as to improve their accuracy in object

classification / detection.

In the first of these methods, a popular and well performing feature extraction method (the

Histograms of Oriented Gradients) is redeveloped to undertake the efficient extraction of

features from arbitrarily located image subregions. These descriptors are compared in an

object classification framework in a scale invariant manner without the need to rescale image
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data. In the second method, object detection is carried out using a parts-based detection

technique based on Implicit Shape Models and Hough Forests. The technique is modified to

incorporate depth data in three different ways so as to enhance object detection accuracy.

Importantly, the modifications do not require adjustments to the underlying algorithm.

A final chapter introduces a new implementation of the Euclidean Distance Transform al-

gorithm that supercedes existing state-of-the-art approaches in its computational complexity

and runtime performance. Generalisations of this algorithm are intrinsic to parts-based meth-

ods of object detection as well as several other techniques in computer vision and pattern

recognition.

All of the techniques described in the thesis are empirically evaluated against newly acquired

3-D datasets generated from mobile-mapping systems, as well as standard 2-D image datasets

where appropriate.
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Chapter 1

Introduction

Evolution by natural selection has, over millions of years, developed mechanisms of visual

recognition that enable animals to recognise a diverse range of patterns, shapes, and objects

in their environments. Human beings (and other primates) can recognise objects in 2-D

images, even when the objects are presented in unfamiliar environments or orientations (Lo-

gothetis et al., 1994; Bülthoff and Edelman, 1992). Computer vision research into Generic

Object Recognition rests upon the assumption that visual recognition can, to some degree, be

synthesised within the existing computational paradigm. That is, it is assumed that recogni-

tion can be comprised of essentially serial tasks whereby input images are parsed to generate,

for example, lists of segmented scene elements with associated object labels.

It is not known if computers are sufficiently technologically advanced at this time to be able to

solve the generic object recognition problem. However, advances have been made concerning

recognition tasks specific to particular object instances or classes of objects that express

variation within constraints, such that a model of the type can be generated and stored to

compare against input data.

1.1 Generic Object Recognition

Historically, the problem of generic object recognition has been viewed as attempting to

accurately recognise and classify previously unknown objects from 2-D images where no prior

knowledge of the scene is available (Lowe, 1987). Knowledge of the scene includes the nature

of the scene itself, as well as the kind, number, and distribution of objects of interest in

the scene. The problem is compounded if the data are degraded due to, for example, non-

optimal lighting conditions, the presence of “clutter” (irrelevant features), or awkward viewing
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angles that can result in the salient image features becoming occluded. The generic object

recognition system is meant to recognise which features of the input data comprise objects

that are of interest to the user. One of the most challenging issues is how the system can

know that particular features are of interest to the user without being explicitly told. If the

user is interested in generic objects, then the system must have within it a codification of

“objectness” so that the elements of an input scene that express this characteristic can be

identified.

Computer vision theorists and neuroscientists have tried to understand how the human visual

system operates as a way of trying to understand how objects are characterised in images. The

modern age of object recognition research began when neuroscientist David Marr developed

a more exacting approach to computer vision and object recognition systems research (Marr,

1982). This framework, known as Marr’s paradigm, allowed researchers to focus their atten-

tion on particular aspects of the problem (Barrow et al., 1981). The most popular idea about

how human vision works is that two different modes of attention in the brain are combined;

bottom-up signals determine the salient or interesting regions in a scene, while top-down task

focussed mechanisms direct attention to known objects (Bar et al., 2006; Mechelli et al., 2004;

Navalpakkam and Itti, 2006; Itti and Koch, 2001; Oliva et al., 2003; Borenstein and Ullman,

2008).

Modern object recognition systems are developed along similar lines with the important top-

down requirement that the recognition system has some a priori knowledge of the nature of

the objects it is supposed to recognise i.e. those objects that are of interest to the user. In

analogy to the human engineering of flight in comparison to the understanding of the evolved

mechanics of flight in the animal world, the development of practically useful automated vi-

sion systems does not have to be restrained by our currently limited understanding of how

the human visual system is so adroit in the task of generic object recognition. The most

fundamental way in which generic object recognition is constrained is in the replacement of

the concept of generic objects with descriptions of the kinds of features the system should

recognise in the input data. This transforms the generic object recognition problem into a

task focussed search for specific features or objects of interest. More practically, this means

that the accuracy of object recognition systems can be evaluated by comparing their outputs

with human labellings of objects in the same input data. As long as the system can pro-

vide comparable accuracy to a human in its ability to recognise the objects of interest, how

the system achieves this (whether or not it has any similarities to the way in which visual

processing is undertaken in the brain) is irrelevant.

There are several application areas that benefit greatly from top-down task driven approaches

to object recognition. The examples below in one way or another search for specific features,
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patterns, or objects in their input data:

• Automated surveillance (Aggarwal and Ryoo, 2011),

• Robot navigation (Kruger et al., 2007),

• Autonomous driving (Geiger et al., 2012),

• Content-Based Image Retrieval (CBIR) (Datta et al., 2008),

• Image-Based Rendering (IBR) (Snavely et al., 2010),

• Photographic manipulation (Chen et al., 2009), and,

• Augmented Reality (AR) (Palmese and Trucco, 2008)

In academic and commercial institutions the world over, task oriented automatic object recog-

nition systems are now a burgeoning area of research and development.

1.1.1 Object Classification and Detection

The top-down, task focussed approach to recognising objects of interest in input data is more

commonly described as object classification. Relative to generic object recognition, this is

the simpler task of assigning labels from a database of object archetypes to one or more

input images. In this task, an image extract is presented to a recogniser or classifier. The

classifier has access to a database of generic models of different object archetypes, where

each model specifies the characteristic information about an archetype in sufficient detail to

be able to distinguish an instance of that type in an input image. The database may also

contain an entry for the None or Unknown type, which is assigned to an image extract when

the characteristics of the image evaluated by the classifier cannot be appropriately assigned

to any of the available archetypes defined by the stored models. In theory, this allows every

input image extract to be associated with the most appropriate label indicating the type of

object.

Object detection develops the classification task further to search for one or more specific

instances or examples of a particular object type in an image or a set of images. If the aim

is to detect an example of a particular object type, a model of that type is stored which
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represents the expected variation of the type’s exemplars. In object detection, it is unknown

a priori if an object is present in the image and, if it is present, where in the image it is

located. Further, it may not be necessary to classify the object’s type, merely to understand

if some object from a subset of types is present.

Object classification is often combined with detection because the detection of an object at

some location in an image nearly always requires comparing some extracted features from

that part of the image with a stored model of the object. In this thesis, the term “object

detection” is always used to refer to the detection of an example of an object’s archetype (or

simply type or class) rather than a particularly specified object.

From this point forward, the term “object recognition” is used to refer to either object classi-

fication or object detection or their combination. Object recognition in the generic sense will

no longer be discussed.

1.1.2 The Challenges of Object Recognition

Taking a top-down task driven approach to object recognition is the first step in making any

recognition task computationally tractable. However, there remain significant challenges that

must be overcome depending on the specific nature of the recognition task.

Even if the objects of interest can be enumerated, it is not immediately clear how the models

of these object types should be encoded for the recognition task without first understanding

the nature of the input data that will be parsed by the recognition system. The models

must be able to provide positive responses to the variety of 2-D projections and scales that

the real 3-D objects are shown in, since the models must be compared to the input data

(which nominally consist of 2-D image projections). Models that can only describe objects in

particular orientations, or at particular scales are not useful if the input imagery never displays

the objects in those orientations or at those scales. Similarly, if the objects of interest are

composed of articulated parts (e.g. people), or if there is wide variation in the appearance of

the object type (in terms of morphology, texture, or colour), then those object configurations

will remain unrecognised (i.e. false negatives) by models that do not adequately describe

the possible variations. The difficulty of recognition also increases as the variety of object

types to be detected increases, since this entails a larger model database resulting in lengthier

searches.

Objects are frequently occluded by other objects or features in the input imagery and back-
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ground clutter can confuse the recognition process, resulting in the erroneous detection of

objects where none exist (i.e. false positives). The input imagery will also likely contain

features that cannot be identified by the recognition system as belonging to modelled object

types or known scene elements and so the identification of all objects in a scene is generally

not possible.

Finally, the process of capturing the input data is itself imperfect (e.g. specular highlights or

shadowing resulting from non-ideal lighting), meaning that the recognition system must be

robust to a wide range of problematic imaging conditions.

Many of these issues can be entirely negated by constraining the scope of the recognition task

to be undertaken. Consider the case of an automated quality assurance system that aims to

detect potential problems with some known manufactured rigid part, copies of which pass by

on a conveyor belt where upon an image of the part is captured and passed to the system for

processing. The specified recognition task involves identifying that the part is present, that it

appears in a certain orientation, and that it is sufficiently similar in appearance to the model

of the part stored by the system to pass the quality assurance parameters.

In this scenario, a database of object type models is not needed because only a single object is

being modelled. If the object is not detected according to the single stored model, this should

indicate a potential problem to be investigated. Since the frequency of objects passing by on

the conveyor belt is known and there should be no other objects present on the conveyor belt,

it is not necessary to account for the possibility of occlusions or clutter. Anything that seems

on initial processing as though it is not an image of the object kept on file, should result in

the system raising a problem to be investigated. The location of the image capture system

with respect to the conveyor belt, and thus the objects on the conveyor belt, is known, and so

the expected orientation of the objects is known within tight parameters. Moreover, the part

is non-articulated and so should have consistent morphology. The range of expected colours

and textures of the object can also be specified exactly. Further, the objects will always be

artificially lit to the same degree of brightness and from the same angles. This simplifies the

modelling of the projected appearance of the object since any variation outside of these strict

parameters should cause the system to fail to recognise the object, and this may be suggestive

of a fault.

The strict task constraints around this particular recognition problem mean that developing

an automated solution is eminently feasible. The recognition task has in effect been recast as

a much more simple specific object detection and template matching problem. This example

demonstrates that it is often sufficient to develop techniques to solve only particular aspects

of the object recognition problem given the constraints of the recognition task and knowledge
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Figure 1-1: A Mobile Mapping platform: The Earthmine Mars stereophotogrammetric image
capture system. Copyright Earthmine Australia 2015.

of the problem context (i.e. the nature of the objects to be detected and the input image

data).

1.2 Multi-Modal Data

Most recent object recognition research has been concerned with the task of detecting and

classifying objects in 2-D colour (RGB) and grey-scale (intensity) images of scenes. Imaging

techniques such as stereophotogrammetry and laser scanning are beginning to see wider use,

especially in mobile mapping which is the process of generating geospatial data using vehicles

fitted with LiDAR, laser, radar, or photogrammetric remote sensing arrays. Mobile mapping

systems generate dense 3-D point clouds of scanned environments. Depending on the sensor

configuration used, these point data can be combined with coregistered colour information.

Figure 1-1 shows the Earthmine Mars mobile mapping stereophotogrammetric image capture

system mounted on a vehicle.

Much research is being conducted into investigating how 3-D geometric object models can

assist in object recognition tasks. However, the increasing availability of depth as an extra

modality in these image capture and mobile mapping systems means that there is great

potential for the combination of depth and 2-D image data to be used as the input for many

algorithms from fields related to object recognition such as pattern recognition, machine

learning, and computer vision. In particular, depth data as an extra modality can help to

constrain object recognition problems, increasing the accuracy of existing recognition systems,

or even helping to make certain kinds of recognition feasible. This thesis focuses on how depth
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data can assist in these tasks.

1.3 Contributions and Thesis Outline

Object recognition is a large and complex field of research encompassing a wide variety of

fundamental techniques from several areas of computer science. This thesis documents re-

search that was undertaken to develop some specific techniques in these areas as they relate

to the task of detecting examples from small sets of object types in scene data captured by

mobile imaging and mapping systems. The data are comprised of colour images with pixel

coregistered depth measurements.

The thesis is broken down as follows: Chapter 2 provides some necessary definitions and

details concerning certain essential elementary techniques and concepts that are referenced

throughout the thesis. For convenience, a glossary of terms is provided in appendix A.

Chapter 3 details the nature of the datasets used in this research together with the efforts

undertaken to generate the necessary training data required to conduct the experiments de-

tailed in later chapters. This chapter also describes the criteria and metrics used to evaluate

the accuracy of the object classification and detection experiments undertaken in this the-

sis.

Chapter 4 describes the development of a new feature extraction algorithm designed to be of

particular benefit in object recognition tasks where depth data are explicitly available. The

chapter compares this new method in the context of object classification against an existing

popular feature extraction method.

In chapter 5, the presence of individual object parts are detected using a randomised decision

tree based algorithm that combines aspects of classification and regression to discover the

locations of the comprising objects of interest. The algorithm is extended to take advan-

tage of explicit depth information so as to more accurately localise the detected objects of

interest.

Chapter 6 investigates the Euclidean Distance Transform algorithm. While not directly used

in other areas of this thesis, the algorithm is of fundamental importance in many areas of com-

puter vision and image processing more generally. In this chapter, the existing state-of-the-art

algorithm is analysed and modifications are introduced that improve upon its algorithmic ef-

ficiency. In a thorough empirical evaluation of the technique against a wide variety of data
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and alternative algorithms, the adjustments are shown to have practical benefits in improving

processing efficiency on real world datasets. The algorithm is also theoretically scalable to

spatial data having greater than two dimensions.

Chapter 7 summarises the major findings of this thesis.
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Chapter 2

Background

This chapter provides descriptions of essential terms and concepts that are used throughout

this thesis. The background material is divided into three areas of intrinsic importance in

automated object and pattern recognition. Section 2.1 describes the concept of features, how

they are generated from image data, and how they are used for object and pattern recognition.

Section 2.2 describes the underlying principles and mathematics involved in machine learning,

the kind of machine learning algorithms used in this thesis, and some of the challenges and

pitfalls involved in using these techniques. Section 2.3 describes how the concepts detailed

in the previous two sections can be integrated to successfully model whole object categories,

and how these models are used to detect and locate objects in query images. Appendix A

contains a glossary of terms.

2.1 Representing Features

In general, an object recognition scheme can be broken up into two main facets, both of which

work in concert to assist in the accurate detection of the objects of interest. These facets

are the methods by which objects or patterns of interest are encoded, and the methods by

which they are compared. Both of these aspects depend upon the fundamental concept of

feature descriptors or feature vectors. This section describes the nature of features, how they

are represented, and how they are used in object / pattern recognition.

The term descriptor, or region descriptor is used especially when feature vectors are ex-

tracted from image subregions having a certain specific character of interest, or from whole

objects or specific object parts. The algorithms that output feature vectors are called feature

extractors. In this thesis, feature extractors are developed to encode both the global char-
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acteristics of whole objects (chapter 4), and the characteristics of localised parts of objects

(chapter 5).

When performing generic object recognition, finding a match between an object class (some

stored model of an object that the user wishes to detect) and some input data requires eval-

uating measures of similarity that are neither too strict, nor too accommodating. If the

similarity measures are too strict, then object instances that are considered viable examples

of the class will go undetected (false negatives). If the similarity measures are too accommo-

dating of variability in object representation, then too much input data will be mistakenly

identified as valid examples of the object type (false positives).

Features are characteristics of an image that can be extracted at either a global level over the

whole of an object or image, or at a local level specified by subregions or particular points

in an image. The simplest example of a feature is the value of a pixel that represents its

colour or intensity (in the case of a grey scale image). A feature vector (or descriptor) can

then be defined as the concatenation of the individual values of a group of pixels such that

v = 〈v1, v2, v3, . . .〉. If such a feature vector is created from all of the pixel values bounded

by some rectangular region of an image that contains an object of interest, then the feature

vector can be thought of as a descriptor for that object. If it is then required that a new

image I be queried to detect the presence of that object, the detection can be carried out by

constructing feature descriptors ui ∈ I from all similarly sized bounding rectangles in I and

optimising a similarity measure f(v,ui). The similarity measure is generally defined as some

arithmetic comparison of the corresponding entries in the two feature vectors. For example,

if v and ui are normalised, the inner product of the two vectors is often used because the

definition of this operation performs a component wise comparison of the vector values. For

the inner product, f is maximised when v = ui.

In this näıve example, the type of features being used (the pixel values themselves) do not

afford much variation in the representation of different object instances as they appear in the

image data. Natural variation in the appearance of the objects that ought not to influence

the accuracy of the detection scheme can undermine the ability of the matching scheme to

identify objects of a similar type. For example, differences in brightness or contrast in the

query images will change the values in the generated feature vectors ui meaning that ui

cannot equate to v and the similarity measure f will give less optimal values. Features

must be used that are more robust (i.e. features that capture aspects of objects that are

relevant to the detection of those objects, while ignoring those aspects that are irrelevant to

encoding the presence of the object). Object detectors that can accommodate greater degrees

of variability are desired; not just in lighting, but also in scale, orientation, and viewpoint,

as well as differences in the morphology, colour, or texture of the objects themselves. For the
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purposes of detection, features should seek to encode only the salient aspects of an object’s

presence, not the incidental aspects. As such, the pixel values themselves are often not used,

and measures such as local contrast are often preferred since measures of difference between

neighbouring pixel values tend to be less affected by issues of lighting (in particular), than

the values themselves.

In general, since features can be derived from any characteristics of an image, any measured

feature value exists as a point in a range of possible values along that feature dimension. If

multiple different feature types are derived from a single part of the image, the concatenation

of those feature values into a descriptor can be viewed as a multidimensional measurement in

the feature space, defined by the range of values that can be taken on by those features.

The choice of the length of the feature vectors is partly determined by the quality of the

data. Combinations of multiple different feature types have shown success (Opelt et al., 2006;

Kittler et al., 1998; Gehler and Nowozin, 2009). Individual features are likely to be present

in many places in the data and appear in many different object types, so reliance upon

a single feature is unlikely to offer sufficient discriminatory power between object classes.

Using many different types of feature along with their spatial relationships can enhance the

discriminatory power of the descriptors in object classification (Campbell and Flynn, 2001).

Multiple different features increases the likelihood of being able to linearly separate object

categories, potentially improving object classification performance (this is discussed further

in section 2.2). Even though intuitively there does not appear to be much advantage to

generating descriptors that combine large numbers of features in different combinations, there

is evidence showing that over-complete samplings of certain kinds of features from image data

can result in improved recognition performance (Lecun et al., 1998; Riesenhuber and Poggio,

1999; Lowe, 2004; Dalal and Triggs, 2005; Krizhevsky et al., 2012). However, the run-time

costs of comparing large numbers of features may become prohibitive since the complexity of

object search increases exponentially for each new feature added to the descriptors.

Descriptors that encode a very large number of features will suffer from the curse of dimen-

sionality. This is the problem of being able to accurately infer an estimation of the population

distribution of an object class over the whole of some high dimensional feature space. To

achieve this, an object training set with cardinality that is exponential in the dimensionality

of the descriptors is required. Such problems can be mitigated by using hierarchical methods

of feature comparison however (Nister et al., 2006; Wu et al., 2008).

The quality of an object’s representation in an image affects the ability of a feature extractor

to accurately capture the salient information about that object. Features that are more

robust to such problems can be extracted in two ways. Firstly, features can be selected that
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are naturally less susceptible to the type of variation expected in the image data. This means

having sufficient knowledge of the nature and context of the data to understand how prevalent

the different forms of representational variability are.

Secondly, features can be selected for extraction only from certain areas of the image, or from

relatively larger regions. For example, it may be the case that that homogeneous subregions of

an image (e.g. in colour or texture) do not in general provide much salient information about

the presence of the objects of interest. In this case, extracting features from those areas and

involving them in the matching process may only serve to inject spurious information into the

object matching scheme. Alternatively, depending on the recognition task, such homogeneous

areas may be very indicative of the presence of a certain type of object. Interest Point (or

Keypoint) detectors are often used to help identify the parts of an image that might be of

more use. However, it is necessary to understand the nature of the data and the objects to

be detected so that an interest point detector can be employed that is appropriate for the

recognition task.

2.1.1 Feature Vector Length and Generality

Feature vectors are compared element wise to one another and this necessitates that they

be of equal length. For local features, the individual entries must also spatially correspond

for a meaningful comparison. Feature vector length must therefore be determined prior to

use, which means that the feature extraction algorithm must produce vectors of fixed length

from arbitrarily located image subregions. Objects may also be present at differing scales

and orientations, and so it is often necessary to extract features from image subregions that

are not fixed in their dimensions. For global feature vectors, individual feature values are

calculated over the whole of the subregion (an example feature might be the ratio of “dark”

to “light” pixels over the whole of the subregion) and so it matters less that different image

subregions contain different numbers of pixels, or that the subregions have different aspect

ratios.

A digital image of an object is already a discrete sampling of the true data; the value of each

pixel is an aggregate of the photons collected on the corresponding region of the camera’s

image sensor. Extracting feature values that are derived from digital image subregions that

are larger than a single pixel can be construed as another form of sampling. Depending on

the feature extraction method, a particular feature value will be informed by several pixels

in a discrete local area. It is often the case that local features are collected from subregions

of the projected region of an object in an image. If these subregions are relatively small
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compared to the object region, the generated features will be more invariant because groups

of fewer pixels cannot encode as much variation as larger groups. These smaller patches

can be less susceptible to some of the object representation challenges stated previously.

Increasing the proportion of the object that is needed to derive any given feature value reduces

the detectable resolution of the object using those same features. That is, the object must

already be apparent in the image at a minimum pixel resolution to supply enough information

to the feature extraction algorithm to derive feature values that allow for sufficiently accurate

discrimination of the object from other scene elements.

Objects at higher pixel resolutions present more detail. This might help to more accurately

model the feature value’s distribution for a given type of object (if enough high resolution

examples are provided). Alternatively, higher resolution examples may include spurious as-

pects of the objects that vary too much between instances (expressing too much intraclass

variation), resulting in feature distributions that poorly represent the object of interest at

that resolution. This can result in too many false positive detections when trying to match

instances of the same object type. Objects at lower resolutions may not include enough char-

acteristic information to accurately model the distribution of the feature values because not

enough of the salient structure of the object is visible. Determining a good object resolution

for the purposes of feature extraction and detection is particularly problematic where the

scale of an object is not fixed.

If a feature extraction mechanism is used that fixes the sampling resolution of the features

(i.e. the local region used to derive that feature has statically defined pixel dimensions),

constructing feature descriptors of fixed length can be achieved by altering the dimensions of

the input image. However, resizing the image data prior to feature extraction can introduce

other problems.

2.1.2 Resizing Image Extracts

Resizing an image (or an image subregion) can change the quality of information, affecting the

ability of the feature extractor to accurately encode salient characteristics about the features

or objects in the image. Dollar et al. (2014) showed that the information content of images

that have been resized (as sampled by a contrast gradient extractor) changes in proportion to

the degree of scaling. Although scaling an image up (scaling by a factor ≥ 1) allows for the

extraction of features with information content that is linear in the resizing factor (that is,

information is not lost), down scaling an image (scaling by a positive factor< 1) tends to result

in the loss of structural information and an attendant loss of information in the extracted
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descriptors. The degree of information loss in a downsampled image is larger than implied

by the downsampling factor. For contrast gradient magnitude normalised features, Dollar

et al. (2014) showed that the degree of loss is even more severe, which is a problem since such

normalisation can result in improved object detection accuracy. This suggests that feature

extractors that resize images in an initial preprocessing step risk corrupting the information

content of the extracted features, especially where resizing acts mainly to downsample images

from their originally sampled pixel resolution. Up sampling images may also degrade the

accuracy of feature encoding because of image interpolation methods, which (in general) act

over fixed size image regions irrespective of scale. This may cause local contrast differences to

become “smoothed” and less distinctive. The significance of this effect over larger aggregated

regions is not well understood.

Another problem not directly addressed by Dollar et al. (2014) has to do with the accuracy

of feature encoding between images that are ostensibly similar in nature but have different

native resolutions and are being resized to the same fixed pixel dimensions by different scaling

factors. The resizing operations will affect the content of the two images differently particu-

larly if one of the images must be scaled up and the other down. If scaling an image up, the

result will appear blurred because a standard interpolation technique must be used by the

rescaling algorithm to infer the content between neighbouring pixels in the original image,

which are moved further apart in the rescaled image. Using a simple image scaling algorithm,

it is generally not possible for the information content of the image to remain proportional

to the number of pixels in the image as the number of pixels used to represent the image

changes. An image that is scaled down will be represented by a reduced number of pixels and

the information content about neighbouring pixels must be aggregated, losing detail. It is

hypothesised that scaling images from the same class of object by different scaling factors may

introduce artefacts in the images that diminish the accuracy of the features being extracted

when used in the context of object recognition. This hypothesis is investigated in detail in

chapter 4 through the development of a feature extraction algorithm that does not require

images to be resized prior to the generation of a descriptor.

2.1.3 Scale Space and Image Pyramids

Without explicit knowledge about the distance to points of interest in an image of a scene,

managing appearance variation due to scale is typically performed by undertaking detection

over a predetermined range of image sizes termed the scale-space (Witkin, 1984). The dif-

ferently sized images are stored within a dedicated data structure termed an image pyramid .

The search for objects of interest in scale-space is then conducted by parsing the smallest
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up to the largest of the images in the pyramid. If positive responses are seen at the smaller

scales, the larger scale images can be investigated to assist in the verification of these de-

tections. This means that the object models (or at least parts of the models) must also be

comparable to the imagery at different scales. This is a popular approach when using parts-

based object models. The more detailed parts of the model describing the object type are

encoded at higher resolutions while a “root” part that describes the whole appearance of the

object is encoded at a lower resolution. Object hypotheses are initially generated in lower

resolution images using the root part of the model, which assists to efficiently threshold the

image into more and less promising regions. The more detailed higher resolution object part

encodings can then be used to validate these hypotheses. Felzenszwalb et al. (2008) used this

approach with object models having deformable parts. The detection of the higher resolution

parts in configurations acceptable to the model parameters validated the initial detections by

minimising the deformation of the independently detected object parts using a generalised

distance transform – see chapter 6.

To improve detection accuracy, more levels in the image pyramid are needed so search can be

undertaken more thoroughly. This is expensive in memory and processing efficiency however,

and so a trade off is necessary to achieve the desired levels of accuracy within processing

constraints. Image pyramids that represent scale-space with too few levels means that objects

in the query images having scales that are not represented in the image pyramid, may go

undetected.

The resizing of individual images or image extracts to fit larger or smaller pixel areas as

required for the extraction of descriptors is not especially computationally intensive until the

operation has to be performed many thousands of times. This can be the case in object

detection when the feature extractor must parse a very large number of separate subregions

of a query image. If explicit depth information is not available, then image pyramids must

be used to account for the possible presence of objects at different scales, and detection must

be carried out over the differently sized images, multiplying the number of resize operations

carried out over subregions of the image. Very fast implementations of scale-space image pyra-

mids exist for use in object recognition (Dollar et al., 2014; Crowley et al., 2002; Eaton et al.,

2006), but avoiding their use entirely by taking advantage of direct depth information will

always be faster since it avoids redundant reprocessing of the image at different scales.

Feature extraction techniques can be incorporated into interest point detectors that look for

the presence of certain image characteristics at different scales, selecting the “strongest” of

these at some scale level as points of interest in an image. Such scale invariant techniques

include the Scale Invariant Feature Transform (SIFT) (Lowe, 1999, 2004), the Gradient Lo-

cation Orientation Histogram (GLOH) (Mikolajczyk and Schmid, 2005), Contrast Context
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Histograms (CCH) (Huang et al., 2008), and Speeded-Up Robust Features (SURF) (Bay

et al., 2008). These interest point detectors locate regions of the query image, such as cor-

ners or edges, that can be used as seed regions for the extraction of descriptors centred on

and around these points. Corners and edges are identified by large changes in image intensity

over localised areas of typically two or three pixels in diameter. These interest point detectors

are effective because corners and edges encode structural information (as well as colour and

texture) about a scene, and contrast is relatively stable under changing lighting conditions

compared to absolute brightness, which is very susceptible to changes in illumination.

The Harris detector (Harris and Stephens, 1988) and the FAST (Features from Accelerated

Segment Test) detector (Rosten and Drummond, 2006) are two widely used interest point

detectors that aim to identify strong corner-like changes in intensity in the input image.

However, unlike the interest point detectors that incorporate scale invariance in their design,

the MSER, Harris and FAST detectors respond well only to gradient changes at predetermined

pixel dimensions, and so scale invariance cannot be achieved without processing an image at

different sizes. Not all interest point detectors designed without scale variance in mind are

redundant for interest point detection. The Maximally Stable Extremal Region (MSER)

interest point detector by Matas et al. (2004) is unlike the Harris and FAST detectors in

that it aims to discover blob-like structures rather than corner-like points in the input image

through the gradual variation of an intensity value threshold parameter t. Regions that

express minimal change over a large enough range of t are deemed to be stable regions of

potential interest for further processing. This method of detecting interesting points in the

image data is intrinsically robust to scale variance as it does not detect features such as

corners at a fixed pixel resolution.

2.1.4 Using Depth Data for Object Recognition

Multi-modal approaches to object classification and detection are relatively new because the

technology to produce range data that is accurately co-registered with 2-D colour images is

still maturing. Range (or depth) data give distances from the camera plane to objects in a

scene. A depth map represents this dimension of the data as a 2-D image. In this thesis,

points in the depth maps have values specified in real world units (typically metres). For

visualisation, the depth maps are contrast scaled to more easily indicate changes in distance

between scene elements.

Several feature extraction methods make explicit use of depth data such as Normal Aligned

Radial Features (NARF) (Steder et al., 2010), Tripod operators (Pipitone and Adams, 1993),
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Splash features (Stein and Medioni, 1992) (and other features that encode information about

object surface normals (Li and Guskov, 2007)). Depth data have also been used to assist in

guiding the object detection scheme over the image. By combining intensity based features

with range, images can be segmented into planar regions in the Z axis. This allows appearance

based features be scaled in accordance with the detected depth, and guides the detection

process resulting in improved detection accuracy (Rapus et al., 2008; Wei et al., 2011). Other

approaches to multi-modal object detection distinguish between features that are extracted

from 2-D images and features that are derived from depth, which are then combined into a

probabilistic framework (Gould et al., 2008).

Incorporating direct depth measurements into the feature extraction process, features can be

extracted that are more robust to changes in scale. Range information can be used to make

inferences about the viewpoint or the orientation of an object, and thus the RGB features

that are likely to be present in the corresponding image. Spin images (Johnson and Hebert,

1999) identify a 3-D reference point on an object to determine how a 2-D histogram should

be rotated for feature comparison.

The use of global image context (termed gist) has been used in 2-D colour images to inform

the likely presence of local features of interest (Murphy et al., 2006). Using range information

as contextual background information for an object has also been used with some limited

success (Wang et al., 2012). He et al. (2008) showed that contrast information can be encoded

over multiple scales prior to the extraction of contrast gradient features. Although this can

help in making the extracted features more robust against changes in scale, it does not help

to discern the actual size of objects.

A large number of different feature extraction techniques have been developed, often to lever-

age particular aspects of the data that are available for a specific recognition task. Several

disciplined comparisons between the relative effectiveness of different feature extraction tech-

niques in the context of object classification have been undertaken (Tuytelaars and Mikola-

jczyk, 2007; Mikolajczyk and Schmid, 2005; Li and Allinson, 2008; Yamazaki and Fels, 2009;

Knopp et al., 2010), but it is difficult to make general inferences about the relative efficacy of

different feature extractors when employed outside of their specific recognition tasks.

2.2 Machine Learning

This section provides a brief overview of machine learning and pattern recognition in the con-

text of object recognition. The aim of this section is not to provide an overarching summary
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of these (expansive) areas of research, but to introduce the general concepts and the specific

techniques and terms from these domains that are used in this thesis.

2.2.1 The Automated Recognition of Patterns

Object recognition sits within the broader field of pattern recognition since objects are de-

scribed as patterns of data represented by lists of scalar values (feature vectors). Mathemat-

ically, the recognition of a pattern X means it is determined as being an instance of some Y .

That is, a function h : X 7→ Y encodes the relationship between the X input values and the

Y output values. The function h is called the hypothesis and it conducts classification if Y

is discrete and regression if Y is continuous. X can also be discrete or continuous. In the

remainder of this thesis, X is continuous and the function h is termed the classification func-

tion since Y is usually discrete (although in chapter 5, regression is also undertaken alongside

classification). The problem of automated pattern and object recognition is in large part the

problem of how to define the function h.

The classical approach to generating the classification function h is to manually define lists

of rules or heuristics that can act on the input variable X to output the correct value of Y .

These rules stipulate conditions for the expected variations in the input variable X. The

inflexible nature of these conditions means that these “expert systems” are successful in only

limited domains where the training data that have been used to empirically derive the rules

for the classification function have a close similarity with the test data. Further, the lists of

rules are usually defined by a human expert who has constrained domain knowledge and the

resulting classification function will reflect the expert’s subjective biases. It is also difficult to

incorporate new observations into such systems, especially where such data contradict existing

rules in the classifier. It is not necessarily clear how and where changes should be made in the

system to account for adjustments in knowledge based on new observations. Such systems

are also not well suited to the task of regression because decisions made by expert systems

are usually categorical in nature.

The more modern approach to generating the classification function h is to do so implicitly

through techniques that automatically learn models of data. These automatically generated

models are then compared against new observations of X and the models that best fit the

observations are reported back to the user. All of these machine learning techniques are

statistical in nature in that they estimate their decision functions based upon large samples

of data. As such, machine learning algorithms are based upon a probabilistic framework,

which offers greater nuance in the decisions generated by classification functions learned in
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this way. It is often possible to formulate the classification function to output a mapping to

Y associated with some real valued confidence or likelihood of the classification being correct.

Thresholding on this value can be used to make the classifier more or less sensitive to its inputs

(this is exploited in the generation of precision-recall graphs described in section 3.5).

Unlike the classical approach, the automated process of learning the classification function

also lends itself more readily to the inclusion of new observations in its models. Finally,

automated learning is advantageous when the data are complex and the correlations and

relationships in the data are not obvious. The field of machine learning is concerned with the

development of algorithms that are able to generate successful classification functions of the

form hθ : X 7→ Y , or equivalently, to approximate a classification in the form of a probability

P (Y | X; θ).

There are two aspects to the classification function hθ. The framework for the model encoded

by the function h is typically chosen according to expert knowledge. This model represents

the function’s mathematical or algorithmic specification. θ, which is usually a vector quantity,

represents the parameters to the classifier. One kind of model h can be parameterised for

many different kinds of classification task. The model parameters θ are learned from data.

The manner in which these parameters are learned may be supervised if the data are associated

with Y values / labels, or unsupervised if no such Y value associations are given. When there

is no risk of confusion, the classification function is specified without θ such as h(x) (with h

taking a vector valued input).

2.2.2 Unsupervised versus Supervised Learning

Classifiers compare the similarity of an observation encoded by a feature vector to labelled

pattern archetypes (models) encoded in the classifier. These models are usually produced

offline during a training or learning phase. There are two main types of learning: supervised,

and unsupervised.

Unsupervised learning methods are often used where no labelled observations are available.

That is, for some set of N dimensional observations (typically provided as vectors), there

are no associated labels that categorise the observations. Unsupervised methods can be used

to analyse these data and perform automated grouping (or clustering) of the observations.

There are two main problems with unsupervised learning approaches. The first is in how two

data points should be compared for similarity. Typically, Euclidean distances are used but

this assumption can be complicated if the measurements are not standardised, causing some
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scalar components of the vectors to hold greater influence and biasing clustering along certain

dimensions where the scalar components are less variable. It is also unclear how linearly

separable the vectors are. Many of the individual feature values may be correlated, again

causing a clustering bias. As a result, the first step in this process is often to undertake some

form of dimensionality reduction such as Principal Components Analysis (PCA) to understand

the main dimensions of variance in the data. This can also help to simplify the classifier and

increase its accuracy by reducing the number of dimensions in which clustering need be

performed (the relative density of the data in the modelled dimensions is increased).

The second problem with unsupervised learning is that the number of clusters the data should

be segregated into is unknown a priori. Even if a visualisation of the data is available (e.g. if

the data can be visualised in two or three dimensions through dimensionality reduction), two

(or more) clusters of data points along a particular dimension do not necessarily mean that

those features were measured from two (or more) different cohorts. It might simply be that

the feature value xi has a bi-modal (or multi-modal) distribution given the group from which

they were measured. That is, P (X = xi | Y = yk) does not necessarily have a single mode.

Often, there is a temptation to assume that features are normally distributed when no such

evidence exists.

In supervised learning, classifier training is undertaken by supplying a large number of labelled

examples (otherwise known as the ground-truth) to the training algorithm. The algorithm

uses these data to construct the classification rules required to label new previously unob-

served data points. Supervised methods are generally much more accurate than unsupervised

methods because labelling the training data makes it easier to generate accurate estimations

of the distribution of values in the observations. The generation of classifiers through super-

vised learning takes one of two approaches; either a generative approach or a discriminative

approach.

2.2.3 Generative versus Discriminative Classification

In the generative approach to classification, the learning algorithm seeks to model the distri-

butions of the observations in the training data given the labels and therefore learn an estimate

for the population distributions of the object types over the features being measured. This

means modelling the likelihood P (X | Y ) and the prior P (Y ). Through Bayes’ rule, the

probability that some particular class label yk applies given a feature vector measurement x

20



can be written as

P (Y = yk | X = x) =
P (X = x | Y = yk)P (Y = yk)∑
j P (X = x | Y = yj)P (Y = yj)

(2.1)

where x is a feature vector having N dimensions. If (for calculation sake) it is assumed that

x is comprised of boolean values, this means that in order to be able to model the likelihood

distribution P (X | Y ) using training data, at least one of every single combination of values of

x would be needed – and in fact very many more because the distribution would be modelling

the frequency of the different combinations. To calculate the actual values of these frequency

parameters (which must sum to one), only 2N − 1 parameters are needed. If two classes

are being modelled (|Y | = 2), then this requires estimating 2(2N − 1) parameters for the

distribution. Typically, this is not feasible for even relatively short feature vectors of N ≈ 10

since this would require more than 2(210 − 1) = 2046 labelled observations and most feature

extractors generate much longer vectors with N in the order of 102 or more.

2.2.4 Näıve Bayes

For generative classifiers to be able to estimate the distribution of the likelihood function

P (X = x | Y = yk), some a priori assumptions need to be made about how the feature

values in x occur. The simplest assumption that reduces the complexity of modelling the

distribution is to assume that the values of x are conditionally independent of each other

given the class label Y = yk. This turns a computational problem that is exponential in N

into a problem that is only linear in N . This näıve assumption about the correlations between

the variables in x allows for equation 2.1 to be rewritten as the Näıve Bayes classification

function:

P (Y = yk | X = 〈x1, x2, x3, . . . , xN 〉) =
P (Y = yk)

∏n
i P (xi | Y = yk)∑

j P (Y = yj)
∏n
i P (xi | Y = yj)

. (2.2)

The most likely classification is found by maximising this function over all possible values of

Y where the denominator in equation 2.2 is ignored since it does not depend upon yk:

Y ← arg max
yk

P (Y = yk)
n∏
i

P (xi | Y = yk). (2.3)

If the values that are encoded by the feature vectors x are discrete (and not boolean), it is

necessary to estimate the frequency of occurrence of the different values that each element of
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x can take on. Similarly, more than two classes may be modelled by the classifier and this

requires estimating the parameter that specifies the prior likelihood of an observation being

from a class Y = yk ∈ K. Given some dataset H having observations 〈X,Y 〉 that comprise a

N dimensional feature vector X = x and a label Y = yk, with each element xi ∈ x being able

to take on values from J (with xi = j ∈ J) , then a single parameter for that distribution can

be found using maximum likelihood estimation as

P̂ (xi = j | Y = yk) =
|{〈X,Y 〉 ∈ H | xi = j ∩ Y = yk}|
|{〈X,Y 〉 ∈ H | Y = yk}|

. (2.4)

That is, P (xi = j | Y = yk) is estimated as the frequency of observations where the ith

element of a feature vector x takes on the value j, from within the set of observations labelled

as belonging to class yk. It is often the case that insufficient observations are present in the

training data to be able to estimate some of the distribution parameters. In this case, to avoid

the parameter being estimated as having zero likelihood of occurrence, a base probability

for every observation is introduced. This corresponds to a maximum a posteriori (MAP)

estimate for the parameter where each observation is presumed to have an initial equal non-

zero probability of occurring:

P̂ (xi = j | Y = yk) =
|{〈X,Y 〉 ∈ H | xi = j ∩ Y = yk}|+ l

|{〈X,Y 〉 ∈ H | Y = yk}|+ l|J | . (2.5)

This is known as Laplace smoothing where l is usually set to one. Similarly, the prior proba-

bility for the occurrence of an observation having a particular label Y = yk can be estimated

as

P̂ (Y = yk) =
|{〈X,Y 〉 ∈ H | Y = yk}|+ l

|H|+ l|K| . (2.6)

To estimate the parameters of the likelihood function P (X = x | Y = yk) when x ∈ RN , the

most common method is to make a second assumption that the values that each individual

element xi ∈ x can take on are normally distributed such that P (xi, yk) ∼ N (µik, σik). This

results in the Gaussian Näıve Bayes (GNB) classifier.

2.2.5 Logistic Regression

In the discriminative approach, the learning algorithm seeks to model the posterior distri-

bution P (Y | X) from the training data directly. Discriminative approaches are appropriate

when simply needing to determine class membership of an observation or when a simple clas-

sification function is needed. Linear classification boundaries are typical – especially in the

binary classification problem – and are simple to represent; linear classification functions can
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be encoded straightforwardly as vectors of weights.

The canonical example of a supervised learning method that can be used to perform dis-

criminative classification is logistic regression. As in näıve Bayes, distribution parameters

are assumed but instead of these being used to model the likelihood function P (X | Y ), the

assumptions place constraints around the parameters of the posterior function P (Y | X) and

the ground truth observations are used to directly train these parameters. In the binary

classification case such that Y ∈ {0, 1}, the models for the two classes are given as

P (Y = 0 | X = x) =
1

1 + exp(w0 +
∑N

i wixi)
(2.7)

P (Y = 1 | X = x) =
exp(w0 +

∑N
i wixi)

1 + exp(w0 +
∑N

i wixi)
(2.8)

where P (Y = 0 | X = x) + P (Y = 1 | X = x) = 1.

The weight vector w = 〈w0, w1, w2, . . . , wN 〉 ∈ RN+1 represents the distribution parameters

for these functions and it must be learned from the labelled training data. Note here that

there are N parameters (one for each of the elements of x) with an extra parameter which

represents the prior probability of the class value taken on by Y . One reasonable approach

to estimating w is to select parameters that allow for the likelihood of the labelled training

data to be maximised conditioned on these parameters:

w ← arg max
w

|H|∏
l

P (Y l | xl,w). (2.9)

This can be reformulated into a sum over logarithms as

w ← arg max
w

|H|∑
l

lnP (Y l | xl,w). (2.10)

This conditional log likelihood can be written in the binary classification case as

`(w) =

|H|∑
l

Y l lnP (Y l = 1 | xl,w) + (1− Y l) lnP (Y l = 0 | xl,w) (2.11)

which takes advantage of the fact that in the binary classification case Y ∈ {0, 1} and so only

one of the terms in the summation can ever be non-zero for each value of Y l. Substituting in
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equations 2.7 and 2.8, equation 2.11 can be rewritten as

`(w) =

|H|∑
l

Y l ln
P (Y l = 1 | xl,w)

P (Y l = 0 | xl,w)
+ lnP (Y l = 0 | xl,w) (2.12)

`(w) =

|H|∑
l

Y l(w0 +
N∑
i

wix
l
i)− ln(1 + exp(w0 +

N∑
i

wix
l
i)) (2.13)

Since a closed form solution to maximising `(w) with respect to w does not exist, the function

must be optimised using numerical methods such as gradient ascent. The gradient for this

function is a vector of partial derivatives with the ith element being of the form

∂`(w)

∂wi
=

|H|∑
l

xli(Y
l − P̂ (Y l = 1 | xl,w)) (2.14)

with w0 requiring that each observation in the training data be extended with x0 = 1.

P̂ (Y l | xl,w) is evaluated during each iteration of gradient ascent according to the current

estimate of w using equations 2.7 and 2.8. The error in prediction is given by the difference

between the labelled classification of Y l and the currently estimated probability that the

observation is labelled Y l = 1. Note that in the binary classification case, this error term in

the parentheses of equation 2.14 will be zero once Y l = P̂ (Y l = 1 | xl,w) whether Y l = 0 or

Y l = 1.

To perform gradient ascent on `(w), at each iteration the elements of the gradient vector are

updated according to

wi ← wi + η

|H|∑
l

xli(Y
l − P̂ (Y l = 1 | xl,w)) (2.15)

with η being some small constant specifying the extent to which wi is updated at the end of

each iteration. `(w) is a concave function in w and so gradient ascent will converge to the

function’s global maximum.

This procedure can overfit to the training data especially in sparsely populated high dimen-

sional datasets. One method that can be used to avoid overfitting is to replace function 2.10

with

w ← arg max
w

|H|∑
l

lnP (Y l | xl,w)− λ

2
‖w‖2 (2.16)

where ‖w‖2 specifies the `2-norm of w or the Euclidean distance described in parameter space

by the weights vector. Known as regularisation, this modification has the effect of penalising
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large variations between the individual weights and acts to give a more “rounded” distribution

over all of the parameters – de-emphasising the impact of outliers in the training data. The

constant λ is set to determine the impact of this penalty term. This results in the modified

gradient ascent rule:

wi ← wi + η

|H|∑
l

xli(Y
l − P̂ (Y l = 1 | xl,w))− ηλwi. (2.17)

Generative classifiers construct distributions that allows a new instance’s class membership

to be determined by evaluating its placement within the different class models (distributions)

available to the classifier. Generative models maintain parameters that describe the distri-

butions and so new observations can be incorporated into the existing models. As such,

generative classifiers are more suitable for reinforcement (or semi-supervised) learning which

is achieved by updating the likelihood function P (X | Y ) along with the prior P (Y ). It

is difficult to incorporate new observations into existing models encoded by discriminative

classifiers because the target function P (Y | X) must be regenerated by reevaluating all of

the existing observations against the new observation. This necessarily entails maintaining a

copy of the features used to generate the classifier which greatly increases the amount of data

needed to maintain the classifier.

In both approaches, the more data that are available, the more accurate the classifiers. Both

approaches must avoid overfitting to the training data i.e. deriving a classification function

that expresses too much bias towards the classification of observations that are very similar

in nature to the training data used to generate the classifier. As shown above in the case

of logistic regression (and other discriminative classifiers), a regularisation parameter can be

incorporated into the parameter estimation function to reduce the impact of such bias.

2.2.6 Classification Accuracy: Recall and Precision

The metrics that determine the accuracy of the classification function are given by the true

positive rate (or recall) and the positive prediction rate (or precision). This section discusses

how these concepts are impacted by the nature of the classification scheme. The calculation of

these metrics and how they are used to show differences in classification accuracy are detailed

in section 3.5.

A feature extractor that gives good classification recall will not encode features about the

objects of interest (the positive class) that only ever appear in “non-object” images (the
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negative class). Optimising recall can be achieved by increasing the variance of the values

encoded by the feature vectors extracted from the training data, such that more of the object’s

“population” may be represented by the classifier, thus increasing its ability to generalise to

new data.

A feature extractor that gives good classification precision encodes features about the objects

of interest that are sufficiently dissimilar from non-object images so that very few negative

class images will be mistakenly labelled by the classifier as positive class instances. Optimising

precision can be achieved by decreasing the variance of the values encoded by the feature

vectors extracted from the training data, so that only the objects given in the training data

will be represented in the classifier. Unfortunately, increasing precision to this degree means

that the classifier will overfit to the training data. While the classifier will be very precise

in its ability to specifically exclude anything that is not labelled as a positive instance in

the training data, it will have difficulty in being able to generalise to any new examples of

the object type (i.e. classify as positive examples of the type examples that are not already

included in the labelled training data).

The aim is to maximise both recall and precision in a classifier but because the mechanism

by which this is achieved requires changing the allowed degree of variation in the feature

values modelled by the classifier in opposite directions, the two concerns are in tension.

The decision boundary given by the classifier (if using a discriminative classifier) (i.e. the

thresholding hyperplane in feature space that delineates the identification of positive versus

negative instances in the binary classification problem), will almost certainly intersect the

population distributions of both the positive and the negative examples even if no intersection

is present according to the samples used to train the classifier. With generative classifiers,

this problem becomes one of determining the true membership of a test instance when the

estimated population distributions of the positive and negative classes overlap (which is always

the case when assuming distributions based upon Gaussian functions which never give exactly

zero at any point in their domain – which could be over all possible feature values). For

practical classification, thresholds must be used to determine when a given test instance is

sufficiently on either side of the classification boundary in the discriminative classification case,

or under a sufficient mass of the modelled probability distribution function in the generative

classification case.

A very simplified depiction of the binary classification problem in the context of discriminative

classification is given in figure 2-1 which shows a feature space having two dimensions with

each point in this space in R2. The complete population distribution of the positive examples

within this space is shown as the blue region, and the complete population distribution of the

negative examples is shown by the red region (in the binary classification formulation, the
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negative class is simply any part of the feature space that isn’t identified as being part of the

positive class). The circles indicate the feature vectors used as training data (ground truth)

for the positive class, and the crosses indicate the feature vectors used as training examples

of the negative class.

Non-Linear Classifier

Negative Training Instance

Positive Training Instance

Figure 2-1: A simplified representation of the population distributions of two object classes
Blue and Red within a two dimensional feature space, and the training data (circles and
crosses) used to train a classifier represented by the decision boundary (thick black line) esti-
mating the learned demarcation between the classes. The estimated boundary is an imperfect
fit to the true boundary and this will invariably lead to errors in classification.

The two dimensional feature space slices through the actual population distributions which

are much more complex in terms of the number of dimensions required to completely represent

them. Given these training data, the discriminative classification function is designated by

the black boundary which represents the learned estimation of the boundary between the

two classes. The classification function specifies that anything inside the boundary should be

labelled as a positive (blue) instance, and anything outside the boundary should be labelled

as a negative (red) instance. This boundary is not exactly incident with the true boundary

between the populations and so errors in classification will occur if new observations from the

red area inside this boundary are evaluated. This will result in false positives, or Type I errors

– causing a degradation in the precision rate while the recall rate is unaffected. Similarly,
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false negatives (or Type II errors) will result if observations from the blue area outside the

boundary are evaluated by the classifier (since these will be erroneously classified as red

instances) – causing a drop in the recall rate while precision is unaffected.

In this idealised situation, there is a single continuous boundary segregating the two popu-

lations. In practice, there may be many viable decision boundaries between the populations

given the specific dimensionality of the feature space. Alternatively, a boundary for some

specific feature dimensions may be too complex to be described by the given classifier. The

greatest change to the decision boundary can be brought about by changing the nature of

the feature space itself, either through the selection of different features, or by changing the

dimensionality of the feature space. Therefore, “better” features have the desired effect of

simplifying the representation of the “true” population boundary, increasing the potential

of the learning algorithm to estimate this boundary given a fixed number of training data

and a priori assumptions about the model being used to describe the boundary. The chosen

learning algorithm itself is constrained in how it can represent a decision boundary (or a

population distribution in the case of generative classifiers) and so the nature of the features

extracted in the observations being used to train the classifier tend to have greater significance

in controlling the ability of the learning algorithm to find a suitable classification function.

More succinctly, while the learning algorithm determines how a space is classified, the feature

extraction algorithms determine the nature of the space being classified.

The choice of features constrains the classification function in being able to operate only in a

certain feature space. Representational variance exhibited by other features (in other dimen-

sions) cannot be learned. This problem can be mitigated by ensuring that the features being

extracted for each observation are capable of capturing the expected variation in observations

from the query data. In classical object recognition, objects are represented in appearance

in terms of RGB or intensity images and so only appearance based features can be used to

model the expected distributions of the object classes. The use of multi-modal data – range

information in this case – can expand the domain of features available for use in modelling

the representational variance of the object populations. Features that encode depth informa-

tion may allow for other object characteristics to be modelled in the classifier (e.g. surface

morphology and silhouette/boundary information). These features are explored more with a

view to improving classification accuracy in chapter 4.

When modelling different features in a classifier, the range of variance in the different feature

values that are extracted must be standardised (usually between zero and one) so that the

training algorithm does not weight certain features as having greater significance than others

(some features will inherently express variation over a broader range of values than others).

The specific training algorithm may require that the feature vectors are processed further
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– normalisation using the `2-norm (Euclidean distance) is a common stipulation for many

classifiers.

Finally, many learning algorithms undertake dimensionality reduction on the extracted feature

vectors (such as PCA) before using these reduced feature vectors in the training of the classifier

itself. This is because classifiers may use the same feature extraction algorithms to collect

observations over a number of different object categories. These feature vectors can express

correlated variances in their elements in different ways depending upon the object type.

Understanding which of these covariances are important to model can increase the accuracy

of recall since basis vectors in the feature space along which less variance is represented may

be indicative of spurious features for that particular object class. In addition, the complexity

of the classifier itself is reduced making for more efficient processing. In this thesis, while

multiple object types are classified, the use of dimensionality reduction techniques is not

investigated since the focus is on evaluating the performance of other aspects of the object

recognition pipeline.

2.2.7 Combining Classifiers

Classifiers can be combined together in several ways to enhance accuracy. These methods

include bagging (short for bootstrap aggregating) which is a form of ensemble learning involving

the use of multiple independently trained classifiers. These are constructed by sampling

(with replacement) from the training dataset to produce classifiers that all behave slightly

differently, but provide aggregated decisions (by majority vote) that are more representative

of the populations from which the ground truth observations are sampled. The effect of

classifier bagging is to further reduce the influence of unrepresentative data by creating a

selection of different classifiers each having their own individual biases. These biases ought to

be randomly distributed and so they act to cancel one another out when taking an average

result.

Distinct from classifier bagging is boosting which combines together many poor quality classi-

fiers trained using small subsets of the ground truth data, but with weights iteratively trained

and associated with each subset of the training data to influence the behaviour of the classifier

regarding the value distribution of certain features. Boosting requires a much closer integra-

tion with the classification scheme being employed and is generally implemented within the

recognition scheme rather than as a post hoc addition.
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2.2.8 Classifiers Used In This Thesis

How object recognition is undertaken is largely determined by the specific nature of the task.

The schemes in use today are those geared toward the classification of objects from prede-

termined categories using state of the art machine learning classifiers such as Support Vector

Machines (SVMs) (Felzenszwalb et al., 2010; Zhang et al., 2011; Gao et al., 2011; Ozuysal

et al., 2009; Zhang and Chen, 2010; Bo et al., 2011; Dalal and Triggs, 2005), Random Forests

(John et al., 2010; Schroff et al., 2008), and Neural Networks (Rowley et al., 1998; Krizhevsky

et al., 2012; Zhao and Thorpe, 2000; LeCun et al., 1989; Cireşan et al., 2011) amongst others.

Marsland (2009) gives a good overview of several supervised and unsupervised techniques.

Many recognition schemes based on these methods (particularly neural networks) are expe-

riencing a resurgence in popularity as Moore’s law (Moore, 1965) continues to hold and the

processing power of modern computer technology increases exponentially allowing for ever

more complex algorithms to be executed against ever growing datasets.

SVMs, random forests, and neural networks are all examples of discriminative classifiers. One

possible reason for the increasing popularity of these kinds of classifiers (over generative clas-

sification methods) has to do with the availability of larger datasets. Ng and Jordan (2001)

showed theoretically and empirically that because of the stricter assumptions made by gener-

ative classification methods concerning the distribution of observable features (for reasons of

tractability), these methods do well with smaller datasets where the underlying assumptions

in the model more accurately reflect the true distribution parameters of the features. However,

in datasets where these näıve assumptions reflect the true distribution parameters less accu-

rately, or where more ground truth data are available to train the classifiers, discriminative

classifiers demonstrate greater accuracy.

In this thesis, two different supervised machine learning algorithms are used. Due to its recent

popularity and performance in a large number of other studies (Osuna et al., 1997; Pontil and

Verri, 1998; Maldonado-Bascon et al., 2007; Maji et al., 2008; Felzenszwalb et al., 2010), the

classification scheme used in chapter 4 to help compare the accuracy of two different feature

extraction techniques is the SVM (Schlkopf et al., 1995; Burges, 1998).

In chapter 5, an existing machine learning technique called a Hough Forest (based upon ran-

dom forests) is modified to make use of depth information available in its training data, and

the accuracy afforded by the adjusted technique is compared against the original implemen-

tation in the context of a parts-based object detection scheme. This method is selected for its

ability to aggregate independently detected object parts into a whole object detection scheme.

The learning method is interesting because it alternately invokes classification (to compare
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the similarity of object parts) and regression (to determine their likely location relative to the

comprising object).

2.2.9 Support Vector Machines

The linear SVM is a discriminative classifier that finds a set of “support vectors” and asso-

ciated weights to parameterise a hyperplane in feature space that separates the positive and

negative class instances. The support vectors are so called because they are the minimum set

of training data that are needed to define the separating hyperplane. For a linear classifier,

the size of this set is equal to the number of feature dimensions. The boundary surface is a

flat plane so it can be defined in terms of a single gradient vector orthogonal to the plane

with the same number of dimensions as the feature space.

In the standard SVM algorithm, a set of weights are trained – one per support vector – using

an iterative gradient ascent method akin to logistic regression. In the linear classifier, these

weights decide the orientation of the gradient vector in each dimension. This greatly simplifies

classification which then only entails the evaluation of the dot product of the plane’s gradient

vector with the feature vector from a new observation in order to find the distance of the new

example to the plane, and on which side of the plane it occurs. The downside to the linear

classifier is that the feature encoding used may not lend itself to a clean separation of the

positive and negative examples. In this case, a more complex separating surface is required

which is why non-linear kernel functions are used.

Figure 2-1 depicts feature space with two dimensions where the separation between the posi-

tive and negative instances requires a boundary that cannot be described using a simple linear

function. Figure 2-2 shows another representation of the two class situation where a different

feature extractor has been used to define the feature space. The use of different features

results in a different separation between the two classes. In this case, a linear classifier can

be used (shown as the solid black line) to separate the training data (shown as the crosses

and the circles) provided to the SVM algorithm. Given the ground truth observations, a

non-linear separating boundary given by the thick dashed line might also be possible. In this

case, the non-linear classifier estimates a function that separates the positive and negative

class populations more accurately (given by the boundary between the blue and red regions).

A non-linear classifier can give improved accuracy but the information needed to define the

separating boundary cannot be stored as concisely. Non-linear functions such as polynomials
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Non-Linear Classifier

Linear Classifier

Negative Training Instance

Positive Training Instance

Figure 2-2: The positive (blue) class and the negative (red) class population distribution
within a two dimensional feature space is shown. Both the linear and the non-linear classifier
fit the data, but due to the more accurate fit to the true population boundary given by the
non-linear classifier, it offers greater precision and recall accuracy.

or exponential functions require that the classifier store the support vectors and evaluate

the test feature vector against each of the support vectors as a weighted sum of the kernel

function. This can significantly slow down classification unless “good” parameters for the

function are found. Good parameters tend to result in a smaller number of support vectors

being needed to define the boundary between the positive and negative examples. Fewer

support vectors should be preferred to avoid overfitting to the training data, but not so few

that the boundary cannot model enough of the true variance in the population distributions

of the data.

In this thesis, both linear and non-linear SVMs are used. The non-linear classifier uses a radial

basis function RBFγ(x, s, α) for some support vector s, its trained weight α, and observation

x. It is defined as

δ = x− s (2.18)

RBFγ(x, s, α) = α exp(−γδ · δ) (2.19)
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Parameters γ and α should be chosen empirically through cross validation so as to give a good

fit to the training data. The non-kernel specific cost term α influences the nature of tolerance

that the classifier has toward misclassifications and can be used to decrease the proportion

of false negatives at the cost of increasing the false positive rate. Alternatively, a lower false

positive rate can be traded for an increased false negative rate.

The cost parameter is applied to all of the support vectors equally and changing it acts

to shift the position of the separating boundary in feature space as it is specified by the

support vectors. If a good separation isn’t possible, modifying α changes which of the data

are classified as positive or negative without changing the respective weighting of the false

positive and false negative rates. For the linear classifier, α acts to translate the boundary

in feature space. For radial basis functions, α acts to increase or decrease the volume within

the separating boundary surface.

For this thesis, a custom highly concurrent version of the SVM training and classification

algorithm was implemented in order to implement different kernel functions and to efficiently

process the large amount of data required for the experiments undertaken. All code is written

in C++, making use where possible of routines from the OpenCV1 image processing and

Boost2 C++ extension libraries.

2.3 Object Modelling

Object modelling for classification concerns the manner in which features and other data

about the objects of interest are stored within the recognition system, and how these models

interact with the rest of the detection and classification pipeline to effect recognition.

In bag-of-features (or bag-of-words) models, features are encoded as global characteristics of

an object. No spatial information concerning the relative placement of the features in the

object is encoded. A feature vector represents a collection of measurements over an object

(or a subregion of an image). Each element of the feature vector specifies a particular kind

of measurement, but the measurement itself is calculated over the whole of the object. The

feature measurements as they are stored at different locations in the vector may or may not

be independent of feature values at other locations in the vector given the object type.

A rigid descriptor encodes measurements concerning localised features of an object as it

1http://opencv.org
2http://www.boost.org
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appears from a particular viewpoint and the ordering of the features in the descriptor can

depend upon how the objects are represented in imagery. Rigid descriptions can be very

susceptible to small changes in appearance caused by variance in orientation, lighting, and

object morphology (especially in the case where objects are articulated). A rigid descriptor

makes assumptions about the values of the elements in certain positions of the vector given

a particular object type; a particular element in the vector gives a measurement for some

feature at some specific location in the object.

Bag-of-features classification schemes have been effective in some unsupervised object classi-

fication problems (Sivic et al., 2005), but such models are limited in their ability to discrimi-

nate between objects. While the values of certain global characteristics can be important, the

correlations between local characteristics of an object can provide the classifier with useful

discriminative information. With descriptors that encode features from specific locations, the

values of the individual elements in the vector are often dependent upon one another; the

presence of a feature at some location often correlates strongly with the values of features at

other locations in the object (other elements of the descriptor). Rigid descriptors are often

too inflexible to account for the wide range of variance innate to an object type unless the

view of the object type can always be well constrained. If the view cannot be well constrained,

models that can tolerate the required degrees of variance in the object’s representation must

be used.

One way in which the effects of representational variance can be mitigated is to use interest

point detectors which can help to identify features that are more salient about an object and

that are more resilient to the problems of object representation. For example, the Harris (Har-

ris and Stephens, 1988) and FAST (Rosten and Drummond, 2006) detectors can be used to

detect corners in an image which are typically more robust to slight changes in appearance

(and are typically rotationally invariant) or the SIFT (Lowe, 1999) keypoint detector which

allows for the scale invariant detection of keypoints. All these interest points are described by

relatively simple features that require a small number of values to characterise. The reason

for this is that they are typically combined together in recognition schemes so that many

features of the type when taken together can indicate the presence of an object of interest.

If a geometric model of a specific object instance is available then recognition can often be

carried out by looking for a correspondence of the detected keypoints with the locations of

the keypoints as they are known on the object model template. This geometric template

matching approach is not very extensible to different object categories, or objects that have a

high degree of intraclass variance. Without any kind of prescribed relationships between the

detected interest points, the mere detection of such keypoints by themselves is typically not

enough information to determine if an instance of a particular object type is present; many

different object types can exhibit the same kinds of simple keypoints.
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By combining the presence of simple features together with their relative positions, objects

can be modelled with greater discrimination. The challenge is in how these models can be

used for recognition. In a purely probabilistic classification scheme (such as Näıve Bayes),

this would require constructing and evaluating probability distribution functions for every

combination of basic feature – even those combinations that are not possible must have

some small probability attached to them. More intelligent modelling recognises that the

presence or values of certain features is conditioned only on a small subset of other features.

A generalised learning scheme must know which of these features should be conditioned on

which others.

2.3.1 Modelling Objects by Parts

Exploiting the spatial relationships between object parts has long been a popular approach

to object recognition (Nevatia and Binford, 1977; Fan et al., 1989; Sengupta and Boyer, 1995;

Dickinson et al., 1997; Huber et al., 2004).

Models than encode the relative locations of the parts of an image or an object are known

as pictorial structures (Fischler and Elschlager, 1973; Felzenszwalb and Huttenlocher, 2005).

These models represent objects as a deformable configuration of their individual parts. The

individual object parts encode the localised appearance of the object. The deformability

of the model of the object arises from a functional specification of the geometric relation-

ships between the parts so that configurations that occur more frequently are given greater

weight. In object recognition, these models are known more generally as deformable parts

models (Felzenszwalb et al., 2008). The models can also be combined into hierarchies where

they are generalised as grammar-based models (Zhu and Mumford, 2006).

Recognition schemes that use a parts based model framework proceed in two phases. Firstly,

the initial detection of the individual parts (the simpler features) that could comprise object

instances is carried out. Secondly, an analysis of the configuration of these parts to one

another is undertaken. One of the more popular methods of analysing the relative positions

of the object parts is by applying a distance transform to the locations of the detected

parts. This image processing function measures the distances between specific locations in an

image. Once the distances are known, the relative angles between the features/parts can be

estimated. If the parts are detected in an acceptable configuration (within the parameters of

the model), a strong detection response can be obtained. Calculation of the Euclidean distance

transform can be computationally expensive and several schemes use generalised distance

transforms instead. A detailed discussion of the Euclidean distance transform together with
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some optimisations of the state-of-the-art algorithm is presented in chapter 6.

Parts based object recognition schemes have become popular in recent years because of their

good recognition performance (Gall et al., 2009; Kumar and Patras, 2010; Rematas and Leibe,

2011; Barinova et al., 2012; Felzenszwalb et al., 2010). One problem with parts based models

is in how to learn the relationships between the object parts. If training data of an object type

are provided with the individual parts already labelled, then it is simple to learn distributions

of these parts in relation to one another. However, it is normally the case that training data

are labelled with object identifiers without any more detailed sub-labelling of the individual

parts. In these cases, it is necessary to automatically determine the salient parts of the object

instances and to categorise these parts according to their similarity before a parts based model

can be learned. While this task can be carried out using unsupervised learning approaches

(such as k means, or k nearest neighbours), because the categorisation is carried out only on

the appearance of the parts, their relative spatial locations are not taken into account. This

can result on parts of the object being modelled with too much flexibility in their allowed

placement which diminishes the utility of modelling the spatial relationships between the

parts.

One way of addressing the issue of which parts to model while at the same time constraining

their relative spatial positions, is to stipulate the topological dependencies between specific

parts whether or not such dependencies really exist. One popular topology of parts is a

star topology which makes the presence of the individual parts contingent only on the pres-

ence of a “root” part. This reduces the combinatorial complexity of the modelling problem

(each part is only conditioned on the presence of one other part), while still enforcing strict

relationships between the parts through the presence of the root part. The relative posi-

tions of each part with the root part can also be modelled using this arrangement. These

topological arrangements of parts are both simple to model and allow for straightforward

computability. As with grammar-based models in general, such models can be comprised of

multiple levels with a different root part specified at each level with parts encoded at different

resolutions (Felzenszwalb and Huttenlocher, 2005; Fidler and Leonardis, 2007).

Parts-based approaches to object modelling and recognition have shown superior performance

to global appearance or bag-of-features based methods in several ways. Parts-based recog-

nition approaches show improved robustness to variances in object representation as well as

where objects are partially occluded where the detection of individual parts can be used to in-

fer the presence of the whole. This can also allow for the detection of an object’s pose (position

and orientation) due to the part correspondences (Sun et al., 2010). Part-based approaches

can result in decreased training and memory requirements. If parts are simple enough, they

can be shared between multiple object types and the detection of specific parts reduces the
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set of possible object types in a multi-class classification scheme (Ott and Everingham, 2011).

In a multi-class recognition scheme, this approach can also be faster since unrelated object

types are not tested for sequentially (linearly). A hierarchical approach to detecting the parts

that comprise the objects of interest (i.e. in a grammar-based approach) can logarithmically

pare down the size of the set of object type candidates (Mikolajczyk et al., 2006; Ott and

Everingham, 2011). Finally, for object types that express a high degree of intraclass variabil-

ity, either where the object types are articulated, or simply where parts do not always have

strict spatial correspondences, parts-based approaches are better able to represent the innate

degree of variability in the type (Felzenszwalb and Huttenlocher, 2005).

2.3.2 Implicit Shape Models

The main drawback with parts-based models is the need to define a priori the nature of the

relationships between the object parts i.e. the topology. For some object types, it is possible

that even a very general topology (such as the star topology) does not provide a good model

for the parts of the object. Implicit Shape Models (ISM) (Leibe et al., 2004, 2007) arose from

extending the Hough Transform (Hough, 1962) to understand how the detection of simple

features could be used to infer the presence of more complex objects (Ballard, 1981). ISMs

build dictionaries (or codebooks) of descriptors for individual object parts. These descriptors

are generated from the locations of interest points detected in training examples. The spatial

distributions of the part descriptors are defined in terms of their relative positions from the

centroids of the whole object instances they are generated from. In this way, ISMs model the

individual object parts along with their spatial relationships using an implicit star topology.

While the centres of the object are usually used as the point of reference for the part offset

vectors, any predefined position relative to the object can be used. For simplicity in the

remainder of this section, the centroid of the objects will be assumed as the object reference

point.

Figure 2-3 shows how ISMs are constructed from training examples to produce part codebooks

for two different abstract object types – jagged “explosion” shapes, and rectangular shapes

with rounded corners. Since the only two salient characteristics of these objects is their

boundaries, their shape is indicative of their “object type”. The “parts” extracted from

around the boundary of the objects (indicated by the black squares) represent the local

descriptors that will be used to train classifiers to detect those parts in new (query) images.

Each part has associated with it an offset vector pointing to the position of the object’s centre

(the red dots). The part descriptors (labelled here with letters for clarity) when associated

with the object centroid offsets and the class label of the object from which they are extracted
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make up the codebook entries shown in table 2.1. Note that the codebook shown is generated

from two single examples. Multiple examples are normally used to generate the codebook,

and the offsets for each of the codebook parts determine a distribution of votes relative to

the part rather than a single vote location given by single vector.

Class Θ

Class Φ

A

B

C
D

E

F G

HI

Figure 2-3: Extracting “part” descriptors as part of the codebook generation process for two
ISMs encoding “jagged explosion” and “rounded rectangle” object types.

When being used for the detection of objects in a query image, the detection of the individual

parts is carried out in a transformed Hough space where the relative 2-D offsets of the detected

parts to their comprising object centroids is added to the 2-D position vector of the detected

part in the query image. This means that many independently detected parts “vote” for the

same object centroid in Hough space. The part classifier has access to the models of multiple

part “types” from the same object class through the generated codebook. Upon classifying

a sub-image extract as a particular type of part, the associated offset is used to determine

the relative location of the object’s centre. In this way many different parts from the same

object can be detected and the sum of the position vectors of these parts plus their object

centroid offset vectors will result in the same position vector denoting the centroid of the

object they comprise. This point in Hough space will receive a large number of votes – one

for each detected part. A large number of votes at one position in Hough space therefore

denotes the likely presence of an object comprised of these parts.
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Part Class Offset

A Θ -2.5, -5.0

B Θ -6.0, -2.0

C Θ -2.5, 2.5

D Θ 2.0, 5.0

E Θ 4.0, -1.5

F Φ 4.5, -3.5

G Φ -4.5, -3.5

H Φ -4.5, 3.5

I Φ 4.5, 3.5

Table 2.1: An example codebook of parts from two different object types (Θ and Φ) based
on the extracted parts of the “training” examples in figure 2-3.

This is represented in figure 2-4 which uses the parts extracted from figure 2-3 and stored in

the generated codebook in table 2.1 to detect new instances of the object types. Even though

the objects vary from the training examples in their global appearance, they are similar in

their local part characteristics and so these parts, when detected independently, vote for

common object centroids. Even though the votes by the individual parts do not exactly

agree, they cluster closely enough to infer the presence of the comprising objects.

A

B

CD

E

F G

HI

Figure 2-4: The codebook of “parts” in table 2.1 can be used to detect objects having similar
parts to those in the codebook.

One issue with this method of indirectly modelling and detecting the centre of an object is
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that due to intraclass variance as well as forms of representational variance, the offset vectors

(which are learned from training examples) do not exactly specify the object centres but

rather the positions of the centres of the objects used to train the ISM. In the generated

codebook for the ISM, the part offsets are samples from a 2-D distribution that describes the

likelihood of the occurrence of the object centre given that part. Some parts are located at

multiple positions on an object e.g. the wheels on a profile of a car. In this case, the same

part will have associated with it a distribution of offset vectors to the centre of the object type

that is described by a tri-modal 2-D distribution. This is because only two wheels are visible

when viewing the profile of a car and the front wheels are usually indistinguishable from the

rear wheels. A wheel “part” can be offset from a car’s centre in two different ways depending

on where it is located, therefore the separate detection of the wheels will cause votes to be

cast for the object centre in two different places. Only in one of these places – the actual car’s

centre – will the votes from both wheel offsets coincide. This location includes the largest

number of votes for the object centroid even though there are two candidate locations to the

left and right of the wheels, each having fewer votes.

This situation is depicted in figure 2-5 where the independent detection of the wheels of a car

(shown as the white circles) are used to infer the presence of the car itself. Three training

examples have been used to generate this ISM’s codebook, but since each training instance

has two wheels “parts”, each car instance gives two different offsets for the centroid based

on the fact that the two wheels in each example are similar enough in their appearance that

they are learned as a single part by the clustering algorithm that generates the codebook.

For the detection of the depicted car, this means that there are three main locations in the

image where the wheels are “voting” for the location of the car’s centre. The wheels of a car

are relative to the centres of the training instances in two different relative locations and so

twice as many votes are cast for the actual centre of the object as are cast at either of the

other two locations – ahead of the car, or behind it.

Figure 2-5: Detected wheel “parts” encoded by an Implicit Shape Model cast votes for the
location of a car’s centre.
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This situation is further complicated if objects of the type encoded by the ISM are not

rotationally invariant. If the car in the query image is rotated, then given the same ISM, the

wheel parts no longer agree on the centroid of the object since the part offsets do not take

into account possible part rotations. This situation is depicted in figure 2-6. In general, the

Figure 2-6: Due to the car’s rotation, the part offset vectors to the object centroid (which are
derived from examples without the same degree of rotation) centroid no longer agree and so
the centre of the car is less reliably detected by the wheel “parts”.

remedy for the issue shown in figure 2-6 is to make the part offset vectors dependent upon

the rotational orientation of the parts (the parts can be extracted using rotationally invariant

descriptors). However, in this particular case, the rotational symmetry of the part, a wheel,

makes it impossible to relate the orientation of the offset vector to the detected orientation of

the part and it is necessary to control rotational variation by some other means. Even though

parts such as wheels can present this kind of problem, most objects are not comprised solely

of such parts and so they can be modelled in the ISM in a rotationally invariant manner

that allows for the direction of the offset vector to be determined according to the detected

orientation of the parts in the query image.

The voting mechanic used by ISM requires a discretisation of the continuous distributions

described by the part offsets. Increasing detection precision requires a less coarse discreti-

sation, but this increases the relative sparsity of votes in Hough space making it harder to

determine the true modes and thus the likely positions of the objects. That is, there will

be many more candidate detections at more definite locations, but each detection location

will have associated with it a lower certainty. Alternatively, the resolution of Hough space

can be decreased, increasing the relative density of votes at each location, but at the cost of

decreasing detection precision.

A subsequent convolution of the Hough voting space with a Gaussian kernel of sufficient

dimensions can help to “smooth” out the votes especially if a Hough space with relatively
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high dimensions is used. The modes of this convolved Hough space then indicate the locations

of the detected objects. If a kernel of insufficient dimensions is used, the multiple modes that

indicate a single object detection will remain. Suitable dimensions for the kernel can be

empirically determined so that these multiple modes are merged into a single local maximum.

The dimensions of the kernel are partially dependent upon the innate characteristics of the

object type. A type with high intraclass variance will require a Gaussian kernel with larger

dimensions to account for the increased uncertainty in the relative offsets to the type’s average

centroid. Convolution with larger dimensioned kernels can be costly to compute and so it

is necessary to balance the dimensions of Hough space with the dimensions of the Gaussian

kernel.

Object Recognition Using ISMs

Implicit shape models themselves do not dictate any particular method of learning or clas-

sification. However, the need to model multiple different part “types” can be considered

equivalent to the need to model multiple different simple object types. Classification meth-

ods must then allow for the discrimination between several different categories of object or

part. Sequentially testing for the presence of each object type can be very inefficient if there

are a large number of objects. It may also be difficult to accurately discriminate between

similar object types (types that express low inter-class variance). Decision trees are a more

efficient method of performing object classification over a large number of types. Decision

trees partition feature space along different dimensions. The final classification decision is ar-

rived at after multiple sequential decision stages where successive subregions of feature space

are rejected according to the features being evaluated at each stage. The final classification

associates the evaluated feature vector with the remaining non-rejected subregion of feature

space. The object type(s) that populate that space are then the most likely candidates for

the classification of the object. Since multiple object types can populate the same subregion

of feature space, this allows a probability to be attached to an object classification based on

the relative proportions of the different object types in the remaining subregion.

Classification schemes based upon decision trees are non-linear because even though each

decision stage is itself linear, there are multiple linear decision stages acting orthogonally to

one another in feature space which cause different subregions of feature space to be excluded at

each stage. Figure 2-7 shows a two dimensional feature space that is partitioned according to

different decision stages. The order of these stages specifies the decision boundary locations

(shown with red lines). The decision tree classifier is able to find a sequence of decision

boundaries so that the three different object types (the blue regions that estimate their

population distributions in feature space) are roughly partitioned. While the partitioning may
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not be perfect (as shown), the three partitioned spaces C0, C1, and C2 contain a majority of one

particular object type and these proportions estimate the likelihood of each space containing

an instance of any particular object type.

C0

C1

C2

Figure 2-7: A partitioning of feature space by a decision tree that approximately matches the
regions populated by three different object types (the blue areas).

The Class Specific Hough Forest (CSHF) (Gall et al., 2009) is a refinement of the Hough forest

based method that detects objects using an ISM. The CSHF differs from the basic Hough

forest algorithm in that instead of learning codebooks of object parts, the CSHF directly

associates part encodings extracted randomly from the training data to the object type. This

avoids the need to undertake unsupervised learning (clustering) on the extracted parts and

increases the computational speed with which object parts can be compared at detection

time.

The appearance of the object parts along with their offsets can be trained in a combined

classification/regression approach that employs an ensemble of decision trees called a random

forest. At each stage in the decision tree, a random choice is made as to whether to opti-

mise a classification metric based on the appearance of a part, or a regression metric based

on a comparison of a part’s offset from the centre of its comprising object. At detection

time, feature descriptors generated from image patches are parsed by the decision tree to

lookup the leaf nodes that represent the classification and regression estimations of the ISM

encoded by the decision tree. A number of these randomised decision trees are used and

the classification/regression decisions of each tree are aggregated into the final Hough voting
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matrix. Together, this framework is termed a Randomised Hough Forest (Moosmann et al.,

2008).

The CSHF was developed originally as a 2-D object detection scheme. In chapter 5, sev-

eral extensions to the CSHF recognition scheme are developed and tested that utilise the

explicit availability of depth information in 2-D scenes to improve the accuracy of object

detection.
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Chapter 3

Datasets

This chapter gives an overview of the two main mobile mapping datasets used in this work, and

the techniques employed in their generation. Both of these datasets provide depth alongside

colour information, but the data are produced using different methods. The process of ground-

truthing and how it was undertaken on these datasets is also described.

Section 3.1 briefly outlines the main techniques used to acquire the data used in this the-

sis. Section 3.2 describes the characteristics of the Earthmine dataset which was captured

using stereophotogrammetry. Section 3.3 describes the AAM dataset and how these data

were collected using a combination of laser scanning and colour imaging. Section 3.4 details

the process undertaken to ground truth objects in both of these datasets within a com-

mon framework. These ground-truthed data are used to evaluate the accuracy of the object

classification and detection techniques presented in chapters 4 and 5. Section 3.5 defines a

method for evaluating classification and detection accuracy within a common mathematical

framework.

3.1 Dataset Fusion

Traditionally, object recognition has been undertaken using data collected from single sensor

modalities (e.g. 2-D colour images). In recent years, methods such as stereographic imaging

and laser scanning have allowed for the explicit collection of spatial information about scenes

(geolocations) alongside 2-D colour views. By coregistering the spatial information with the

2-D scene pixels, scene elements can be understood in terms of their depth relationships. This

fusing of these data generated by different sensor modalities can potentially help in improving

several aspects of object recognition.
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The spatial data are collected in conjunction with information on the position and orientation

of the sensing viewpoints by way of ancillary inertial tracking systems and Global Positioning

Satellite System (GPSS) receivers. This provides spatial and contextual understanding of a

scene that may be further exploited to assist in object recognition even while the nature of

scene elements themselves are unknown. In an example of how combining sensor modalities

can help with a simple object recognition task, Baatz et al. (2010) used mobile phone location

data (collected via GPS and wireless tower triangulation) combined with separately obtained

3-D building models to re-orient images taken from a user’s mobile phone camera into street

facing 2-D views. Standard 2-D computer vision techniques were then used to recognise build-

ings of interest. More broadly, the vast majority of computer vision and pattern recognition

algorithms have been developed to specifically process 2-D image data. There are thus signif-

icant research opportunities to return to these algorithms with a view to exploring how they

can be further developed to exploit multi-sensor fused datasets.

Three-D datasets of expansive urban environments have only recently become available due

to the decreasing costs and complexity involved in the collection of such data using mo-

bile mapping vehicles, and the improving accuracy with which a scene’s spatial information

can be registered against its colour imagery. There remain challenges however, and the two

main methods of collecting colourised spatial information (coloured point clouds) both have

disadvantages – particularly when used in mobile mapping where the movement and vibra-

tion of the vehicle and its sensor arrays can disrupt the accuracy with which the data are

acquired.

In stereographic imaging (or stereoscopy), scene data are acquired from multiple onboard 2-D

cameras having known baseline offsets to one another. These images are stitched together and

the slight differences in the 2-D image projections can be used to derive distance information

and thus spatial locations. While colour acquisition is good, the spatial accuracy afforded

by stereoscopy decreases with the distance to the scene elements. Post-processing (such as

bundle adjustments) must be undertaken to try to mitigate point cloud registration errors

with the 2-D colour image data. The Earthmine dataset, described in section 3.2, is generated

in this fashion.

In laser scanning, spatial information about scene elements is acquired via the direct measure-

ment of distance using lasers. Given the known constant speed of light, accurate measurements

of distance are derived by timing the reflection of these lasers from scene elements back to the

sensors located onboard the mobile mapping vehicle. Multiple measurements of a scene must

be made to generate accurate data (due in part to the different refractive indices of the mate-

rials that the lasers are being reflected off of) and this generally requires several passes by the

mapping vehicle (stereographic imaging requires only a single pass and so is more efficient).
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The lasers are only able to acquire depth information and so separate camera sensors must

be used to capture colour information about the scene. This must be coregistered against the

depth information acquired by the lasers in a post processing step.

The different sensor modalities are calibrated to produce output that closely aligns, however

slight differences in calibration and sensitivities to different environmental effects, as well as

vibrations between the sensors can cause misalignments between the differently generated

data. In addition, issues that are particular to one sensor (such as perspective effects in the

case of the camera sensor) can further complicate the data fusion process. These issues result

in inaccuracies in the registration of the colour information with the 3-D spatial data that

can be difficult to entirely resolve. The AAM dataset, described in section 3.3, is generated

in this manner.

3.2 The Earthmine Dataset

Earthmine1 (now owned by Audi, BMW, and Daimler2) specialise in the collection, generation

and delivery of street level 3-D imagery through the use of proprietary vehicle mounted 2-D

image capturing systems, post-processing software and client facing data query tools. The

data are comprised of images captured approximately every seven to ten metres from an array

of optical cameras mounted vertically in four stereo pairs facing forwards, backwards, left and

right, situated atop a mobile mapping vehicle. Figure 3-1 shows the proprietary Earthmine

Mars imaging system mounted on the roof of a vehicle.

These images are processed in a bulk operation to generate location information for the

image points via stereoscopy; the photogrammetric process of inferring depth from binocularly

aligned images. Further proprietary post-processing is conducted to clean up the location

estimates. An example of the resulting panorama can be seen in figure 3-2 where the viewpoint

is located ahead and to the left of the mapping vehicle, looking back towards the mapping

vehicle. The black patch on the road in the centre of the image shows the location of the

mapping vehicle. The black regions in general are those parts of the scene where not enough

reliable sensor information is available to the stereophotogrammetric process to reliably infer

depth information. This typically includes occluded regions (the underneath of the mapping

vehicle itself), regions that are too distant, and regions that present too small or thin a target

area for the cameras given the required resolution for resolving points stereographically (e.g.

the thin pole of the road light in the background is not produced even though the laterally

1http://www.earthmine.com
2https://en.m.wikipedia.org/wiki/HERE Map
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Figure 3-1: The Earthmine Mars Collection System collects high resolution stereo panoramic
imagery. Copyright Earthmine Australia 2015.

protruding lights are). The processed points are seen radiating outwards from the location of

the mapping vehicle.

The post-processing phase generates rectified square images of the front, left, back and right

viewpoints from the mapping vehicle, each viewpoint having a 90◦ field of view, and these

images are aligned with the ground plane. The raw data (as seen in figure 3-2) is not made

directly available to the client, but each pixel in these images can be queried using Earthmine’s

data access server (hosted either locally or remotely) to retrieve the associated location given

as latitude, longitude and altitude values. By retrieving location information for each of the

image pixels in the four viewpoint images, corresponding depth maps can be generated. Each

pixel’s latitude, longitude and altitude is converted into a Euclidean coordinate system by

mapping the location parameters through the WGS84 ellipsoid. By setting the origin of these

points to be the latitude, longitude and altitude of the imaging system, the depth z to any

point p in the images is calculated simply as

z = fp (3.1)

where f is the normalised focal vector of the image plane and points into the scene. Since

the field of view is never greater than 90◦, the depth value z is always non-negative.
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Figure 3-2: Visualising an example point cloud taken from the Earthmine dataset within the
custom point-cloud viewer application.

Stereophotogrammetry is generally not a very accurate method of deriving depth information

from a scene (compared with direct measurement techniques such as laser scanning). As

such, the generated depth maps provide only coarse estimates of object locations, and only

then when the objects are of sufficient size. The process also lacks accuracy in being able to

determine clean boundaries in depth; the location data are erroneous, and the severity of these

errors increases quickly with distance. There are also issues with the incorrect interpolation

of depth information, leading to erroneous jumps in depth where none exist, or missing depth

information entirely. Figure 3-3 shows the rear view from the mapping vehicle of a typical

scene in the dataset, with the left image showing the RGB colour image and the right view

showing the corresponding depth map. Lighter shades of grey in the depth map represent

closer points, and the image has been contrast enhanced to better display the changing depth

values. Black regions denote areas where no depth information is present (e.g. the sky) and

these regions are masked out on the colour image. The depth map on the right is extremely

noisy and it largely fails to accurately describe the boundaries of the objects present in the

scene on the left, let alone the surface morphology of objects such as cars and street side
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furniture.

(a) Rectified colour image. (b) Corresponding depth map.

Figure 3-3: An example scene taken from the Earthmine dataset showing the quality of the
raw image data.

Figure 3-4 shows another example from the dataset. A post-processing step is used to inter-

polate depth values but this often results in poor quality depth information. In this example

in particular, depth information is incorrect and missing from the building awning. In other

locations such as around the postbox, garbage bin and street signs, depth information is only

sufficient to indicate the presence of an object and its relative height above the ground. The

thin posts of the parking signs are missing entirely showing that stereoscopy is poor in ascer-

taining detailed depth information. There are also issues with the colour images caused by

incorrect stitching (visible in this example where the rim and opening of the garbage bin in

the bottom left of the image is not properly centred).

The Earthmine dataset used in this work consists of a large part of the central business district

of Perth, Western Australia. Stereophotogrammetry lacks the desired level of accuracy in

being able to provide accurate geospatial positioning. For a long time, the greater costs

associated with mobile mapping using laser scanners hindered its wider utilisation compared

to cheaper stereoscopic approaches. However, laser scanning costs are now falling, driving

growth in its popularity – particularly in mobile mapping. For these reasons, Earthmine has

now abandoned purely stereophotogrammetric methods as its primary means of generating

point cloud data, and now combines photographic imagery with laser scanners as part of the
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(a) Rectified colour image. (b) Corresponding depth map.

Figure 3-4: An example of incorrect depth interpolation in the Earthmine dataset.

HERE mapping company3. Due to the availability of laser scanned point clouds data, as well

as its improved precision over stereoscopic methods of 3-D point cloud generation, a second

dataset produced using laser scanning was sought.

3.3 The AAM Dataset

AAM4 specialise in the collection, processing, analysis and delivery of geospatial information

including data captured via fixed terrestrial, and mobile (terrestrial and airborne) laser scan-

ners. The dataset used in this work was generated using a single headed RIEGL laser scanner

– the 3DLM StreetMapper (3D Laser Mapping, 2015). This laser profiling system is capable

of collecting detailed spatial information with a full 360◦ field of view, a 300 metre range, and

a sensor capacity of 300,000 measurements per second. The laser scanner is combined with a

Ladybug3 (Point Grey Research, Inc, 2015) 360◦ spherical imaging capture system mounted

on the roof of a mobile mapping vehicle. The system is able to capture data at speeds of up

to 120km per hour.

The laser profiling system uses mirrors that rotate through a full 360◦ to direct the lasers at

3https://company.here.com/here/
4http://www.aamgroup.com
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a planar angle that is lateral to the mapping vehicle’s direction of travel; data are captured

in tiled cross sections as the mapping vehicle travels up the road. For each laser pulse, the

mirror’s angle is recorded and time of flight measurements taken so that XYZ coordinates

of the scanned objects within the laser scanner’s reference frame can be calculated. At each

capture location, a minimum of six passes are made at a 500 kHz capture rate. The vehicle’s

on-board Global Navigation Satellite System (GNSS) provides positioning information which

is used together with orientation information recorded at each imaging position to calculate

dense point clouds around the mapping vehicle with accuracy of approximately 2 centimetres

out to a range of 150 metres.

The Ladybug3 spherical imaging system captures colour information about the scene, and the

two datasets are combined to generate colourised 3-D point clouds centred on the mapping

vehicle. Finally, after further post-processing, the data are turned into point cloud “strips”

for saving into individual files in LAS(er)5 format; each file containing in the order of five

million points. An example of one of these point cloud strips (viewed from above at an oblique

angle) is shown in figure 3-5.

Figure 3-5: An example point cloud in the AAM dataset.

5http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
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The data used in this work are collected from along a seven kilometre stretch of Geelong Road

in Footscray, Victoria, Australia. In order to produce the required 2-D images from these

3-D point cloud strips, a custom viewer was built to view the point cloud data from the point

of view of the mapping vehicle (using GNSS data recorded within associated metadata files).

The application is used to generate perspective projections of the point cloud data from the

front, left, back and right of the mapping vehicle. From these views, both depth and colour

images are saved as standard PNG format images (PNG is used over JPEG to avoid lossy

compression artefacts). A non-standard integer based format is used to retain the floating

point accuracy of the range values to millimetre precision out to 100 metres. Generating the

images in this way allows the quality of the depth information in the AAM dataset (generated

via laser scanning) to be compared against the stereoscopically produced Earthmine depth

data. Figure 3-6 shows the colour and depth images generated from an example scene in the

dataset. Point cloud resolution decreases with distance, so small holes in the depth data are

interpolated however larger gaps are left as they are to avoid introducing spurious information.

The data are supplied as point clouds rather than images (as in the case of Earthmine), so

the generated colour images represent perspective projections of the points from the requisite

viewpoints, hence the quality of the colour imagery is poor in comparison to the Earthmine

colour images. As with Earthmine, areas outside of the prescribed depth range of 100 metres

are masked out since they are too distant to be useful for object recognition.

(a) Colour image data. (b) Corresponding depth map.

Figure 3-6: An example of scene from the AAM dataset (looking left from the mapping
vehicle).

Even though laser scanning instead of stereoscopy is used to produce the AAM data, it has
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issues of its own. Firstly, the colour images generated from the point cloud data is of very poor

quality. The mapping of pixels from the images captured by the Ladybug imaging system

to the spatial point data generated by the laser scanners is imperfect. This can result in

colour registration errors such as the power lines shown in figure 3-5 being shown in white.

Secondly, unlike the Earthmine dataset, the AAM dataset is much more limited in its diversity

of scenery and object types since the area scanned is not within a densely populated region.

The roads along which capturing was conducted are also generally very wide meaning that

most of the interesting features are more distant than in the Earthmine data. In addition,

the division of the data into strips that are orthogonal to the travel direction of the scanning

vehicle means that interesting image content is nearly always only present in the generated left

and right views. Finally, although the accuracy of the point cloud data (and thus the depth

data) is much better than in the Earthmine case due to the use of laser scanning, objects

that are closer to the mapping vehicle suffer from a “stippling” effect because different laser

scan passes cannot be combined at such a close range. This results in some semi-transparent

objects. However, given that most of the objects are more distant in the images, this does

not present too great a problem. Many of these problems can be seen in figure 3-7.

(a) Colour image data. (b) Corresponding depth map.

Figure 3-7: Problems with the AAM dataset including incorrect colour mapping and “stip-
pling” of objects near to the scanning vehicle caused by the inability to register multiple laser
scans at close range.

Neither the AAM or the Earthmine datasets perfectly capture 2-D colour images together

with coregistered depth information. Although the AAM dataset is lacking in being able to

provide accurate colour information, given the focus in this work to develop object recognition

54



techniques enhanced by depth information about the 2-D projection of a scene, it was decided

to use the AAM dataset as the primary dataset since the depth information produced from

laser scanning is both more accurate and less error prone than the depth data produced using

the stereoscopic approach of Earthmine.

3.4 Ground Truthing

The object recognition methods developed in this work primarily involve supervised machine

learning techniques. These methods entail providing an algorithm with many hundreds or

thousands of examples of the kind of object that is to be searched for so that a generalisable

model of the object can be statistically “learned” for later comparison against locations in

query images. Comparisons against these models at particular locations in the query images

indicate with a degree of confidence the presence of the objects of interest. These object

hypotheses can then be validated and properly localised within the image.

Although supervised machine learning methods can give good object detection accuracy,

providing sufficient data to create statistically accurate object models is a manually labour

intensive and repetitive task; human volunteers must manually parse large image datasets to

locate and label objects of the required type. This process of manually generating datasets

of pre-labelled object examples is termed ground-truthing.

In order to use the AAM and Earthmine data for the purposes of object recognition, it was

necessary to undertake a ground-truthing exercise on these datasets. This necessitated the

development of an application (and ancillary software libraries) to support this task. For the

ground-truthing exercise itself, participants were sought for their capability and willingness to

focus for lengthy periods while identifying and tagging hundreds of examples of the required

objects.

3.4.1 Application and Workflow Design

Two adult participants having Autism Spectrum Disorder (ASD) from Curtin University’s

Department of Occupational Therapy were chosen to undertake the ground-truthing exercise

because of their expected ability to perform at consistent work rates and levels of accuracy.

The application user interface and the workflow of the task itself was specifically designed to

be straightforward and to cater to the needs and abilities of the participants so as to facilitate

their working efficiency in this task, while minimising the need for supervision.
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The application was initially produced as a way of visualising images from the dataset and

for selecting and exporting arbitrary regions of the data to image files. For the purpose of

the ground-truthing exercise, a number of significant modifications were made to incorporate

the addition of object type labels and recording of instances into a file store.

An initial version of the application along with a description of the task and the expectations

for how the work would be undertaken was presented to the participants, and the participants

were encouraged to give feedback on how they thought the exercise would go. As a result

of these discussions, further modifications were made to address several issues that were

identified with the application and the expected workflow. Firstly, the ability to navigate

and visualise the point-cloud data was removed as it was felt that this feature would be too

distracting while not sufficiently enhancing the users ability to discern the presence of objects

in the data. Secondly, due to concerns over the finality of object extraction decisions, an

option was incorporated to remove an already extracted object from the ground-truthed set

(prior to this, the option was only available by manually editing the ground-truth store).

Thirdly, a set of keyboard strokes was incorporated to enhance the fine control required to

accurately place a bounding box around an object. The W,S,A,D keys were chosen to allow

the right-handed users to work with the system in a comfortable and familiar way. Finally, the

two users decided to parse the data in filename order from either end of the data directory to

avoid working on already processed images and potentially disagreeing about the extraction

of particular objects.

Through this iterative process of design and evaluation, a tailored application and workflow

was developed to maximise the ability of the users to undertake the ground-truthing exercise.

This was confirmed to be the case from making random assessments of the quality of object

extractions, and from tracking the work rates of the two users.

Figure 3-8 shows a screenshot of the application being used to determine the bounds of traffic

lights in the left facing view of a capture location in the AAM dataset. The interface allows

the user to interact with the Earthmine and AAM datasets in various ways. Individual

panoramas are loaded using the “Open Panorama” button on the bottom right. A particular

view direction is selected using the “Face” buttons in the bottom left. The type of view being

displayed – either the colour image, or a contrast scaled representation of the depth map, is

selected using the “View Type” buttons. New object types are defined with the “New Class”

button which displays a dialogue asking the user for the label to be used to identify the new

object category. The drop down list underneath this provides the currently defined list of

object categories. The currently selected object type (shown in the figure as “traffic light”)

is the label associated with new bounding rectangles drawn by the user in green. All of the

ground-truthed extracts for the currently selected object type are shown with blue bounds.
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The button labelled “Extract” fixes the association between the ground-truth bounding box

drawn in green and the currently selected object type, changing the green rectangle into a

fixed blue rectangle and recording the ground-truthed example in memory. The complete set

of ground-truth examples are written to file in a standardised text format upon application

exit.

Figure 3-8: The user interface for the custom ground-truthing application.

3.4.2 Task Details

Prior to commencement of the ground-truthing exercise itself, each LAS file in the AAM

dataset was processed to extract the colour and depth information for the four views (front,

left, back and right) and these images were translated into a source agnostic file format read-

able by the ground-truthing application. For the ground-truthing exercise, each of these files

was loaded in turn into the application whereupon the participant made a visual assessment
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of the colour and depth images to identify the required objects of interest. A list of desired ob-

ject types was defined beforehand based on a sample viewing of the data. Upon identification

of an object, its type was selected from a drop down list, and a bounding box was positioned

around the region of the image containing the object using the mouse. The user then pressed

a button to save the meta data for the tagging of that object including the object’s type, the

data file, the view within the file (front, left, back or right), and the location and dimensions

of the bounding box set by the user.

A number of different object types were identified for ground-truthing. Table 3.1 shows the

object types identified from the AAM dataset along with the number of objects eventually

extracted (after post-processing).

Object Count

Bus 12
Bus Shelter 24
Bus Stop Post 22
Car 729
Garbage Bin 16
Other Road Sign 1491
Parking Sign 8
Person 46
Rectangular Road Sign 668
Road Light 1461
Round Road Sign 23
Street Lamp 10
Telegraph Pole 937
Telephone Kiosk 20
Traffic Light 1172
Triangular Road Sign 163
Truck 104
Van 84

TOTAL 6990

Table 3.1: Object types and counts from the ground-truthing exercise on the AAM dataset.

The appearance of objects in the data varied significantly. In order to provide a reliable

dataset for submission to the machine learning algorithms, the appearance of an object needed

to meet certain criteria before it was deemed suitable for labelling and recording as part of

the ground-truth dataset for that object type. These criteria were:

1. Objects on the list of candidate object types,

2. Objects wholly contained within the image, and
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3. Objects not occluded by other objects (whether or not of the same type), or by other

scene elements.

For certain object types, the last of these criteria needed to be loosened. For example, the

presence of a small number of tree branches occluding a more obvious road light did not greatly

corrupt the appearance of the road light itself. However, instances of road lights more densely

occluded by branches and foliage were disregarded as such examples risked introducing too

much noise into the ground-truth which might potentially decrease classification precision.

It was also necessary to more concretely define the bounds of certain object types e.g. how

much wiring to include at the top of telegraph poles.

The nature of each object type was discussed in detail with the ground-truthing participants,

along with what characteristics made for “good” and “bad” examples for a given object

type. To avoid deliberating for too long about whether or not to tag a particular example, a

maximum time of approximately three minutes per object was observed by the participants.

If it took longer than this to decide if the example was suitable, the user moved on to the

next view or the next example without extracting the object for inclusion in the object

dataset.

These rules, and the design of the ground-truthing application allowed the participants to

carry out the task completely unaided. After commencing the exercise, on only a single

occasion did one of the participants request further clarification concerning the suitability of

an object type. After the end of the exercise, Awk scripts were run on the files containing the

ground truth meta data to ensure that no two bounding boxes overlapped or described the

same instance, and that each bounding box was completely contained within its view.

3.4.3 Task Evaluation

Data on work rates were collected from the participants at the end of each four hour shift.

These data were recorded whenever an object was extracted and included the file identifier,

the view from which the object was extracted (front, left, right, or rear), the type of the object

recorded, a time-stamp, and the location and dimensions of the bounding box placed around

the object. From these data for each shift, the average number of objects per file (object

density), and the average number of minutes spent on an object’s extraction (mins / object)

were calculated. Tables 3.2 and 3.3 show these data for the two participants, and figure 3-9

shows plots of these data over the duration of the exercise. Participant 2 was able to maintain

a consistent work rate over the duration of the exercise. Participant 1 was consistent in work
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rate apart from a single data point indicating a slow down around the Christmas break. These

charts also show no correlation between object density and work rate for either participant

indicating that changes in the apparent complexity of an image (as measured by the object

density) did not influence the speed at which the participants were able to identify and extract

the objects in the images (although image complexity in the AAM dataset is qualitatively

low). The data show that participant 2 was able to maintain a significantly higher work rate

overall than participant 1 (nearly 2.5 times faster) and this effect is not explainable by the

different average densities of objects seen in the panoramas by the two participants. The

difference is best explained by the participants’ differing capabilities.

Date Obj. Density Mins / Obj.

14/11 2.62 2.82

19/11 1.75 2.11

21/11 2.34 2.44

26/11 2.45 2.92

28/11 5.75 1.98

03/12 5.65 2.34

06/12 4.24 2.42

17/12 3.04 2.65

19/12 2.39 2.60

20/12 2.03 2.91

27/12 3.67 4.79

28/01 6.30 1.51

30/01 4.67 2.79

04/02 4.79 2.04

06/02 4.52 2.13

11/02 1.67 2.25

13/02 1.80 2.74

18/02 2.23 2.35

20/02 2.07 2.44

Table 3.2: Participant 1 work rates

Date Obj. Density Mins / Obj.

07/11 3.09 0.94

11/11 5.41 1.10

14/11 6.25 0.83

18/11 6.41 1.13

21/11 5.97 1.01

02/12 5.69 1.01

03/12 5.95 0.87

04/12 7.00 0.99

05/12 7.00 1.15

06/12 6.98 0.81

12/12 6.96 1.21

16/12 7.00 1.22

13/01 7.00 1.19

14/01 4.00 1.38

15/01 2.41 1.71

16/01 2.40 1.02

17/01 2.16 1.53

20/01 3.67 1.29

23/01 2.37 1.80

28/01 3.81 1.29

30/01 4.04 0.87

03/02 3.42 0.81

Table 3.3: Participant 2 work rates

The work rates of both users reached maximum efficiency within the first four hour shift and

remained relatively consistent over the full duration of the task. In addition, a qualitative

evaluation of a small set of examples from each shift provided confidence that the placements

of the object extraction bounding boxes by both participants remained accurate over the

duration of the exercise.

Although it was not possible to compare work rates and labelling accuracy against a baseline,
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Figure 3-9: Participant work rates and object density

the ability of the users to maintain such relatively high and consistent work rates and quality

on a very repetitive and mundane task, demonstrates the high level of competence that

individuals with ASD can bring to such a task.

3.5 Evaluating Detection Accuracy

This section explains how recall and precision are calculated in this thesis to compare the

accuracy of the different object classification and detection schemes being evaluated. These

calculations differ from the previous standard methods of calculating object classification and

detection metrics, and the reasoning behind these new metric derivations is justified in view

of the limitations of the earlier methods that are unable to accurately represent both recall

and precision within a standardised framework.

To understand the accuracy of a given object recognition scheme, data having known ground
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truth labels are used. The aim is to compare the classification or detection score achieved

by the recognition system, against these known labels. The two main performance metrics

of interest are recall and precision, however a number of other statistics that assess the

accuracy of an object classification / detection scheme can be calculated. All of these statistics

are computed from four core statistics derived from the classifier’s ability to correctly label

positive and negative examples – respectively, true-positives Tp, and true-negatives Tn – and

its inability to correctly label positive and negative examples – respectively, false-negatives

Fn, and false-positives Fp.

In object detection, a query image is parsed to discover if any objects of interest are present

in the image, and where they are located. This might be achieved using a sliding window

which iteratively selects subregions from the query image for classification. Classification

can therefore be treated as a special case of detection where the problem is one of choosing

whether a given image represents the object of interest or not; either the whole of the image

is considered as the object or none of it is. Detection allows for situations where a given

subregion of the query image encompasses only a portion of an object. In both cases, the

classification response to whether the image extract is or is not an example of the object of

interest is given by a confidence value ψ denoting how well the extract fits the classifier’s

pre-trained model of the object. The range of this value is classifier dependent but it can be

interpreted as a probability that the extract is an example of the positive class by standardising

it between 0 and 1. With an unbiased confidence threshold, values of ψ ≥ 0.5 indicate

classification as a positive example and values of ψ < 0.5 indicate classification as a negative

example. However, since the classifier itself may be biased, these confidence values are stored

so that metrics can be calculated at different thresholds once all of the responses have been

collected.

3.5.1 Evaluating Object Classification Accuracy

For object classification, two sets P and N are maintained to store the response probabilities

for the classification of the positive and negative validation examples respectively. After each

classification, in the case of positive examples, ψ is added to set P . In the case of a negative

example, 1− ψ is added to set N . Once all classification responses have been collated, for a

given value of the threshold t ∈ [0, 1], let

Pt = {ψ | ψ ∈ P,ψ ≥ t} (3.2)

and let

Nt = {ψ | ψ ∈ N,ψ ≥ t}. (3.3)
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The core statistics can then be calculated as

Tp = |Pt| (3.4)

Fn = |P | − Tp (3.5)

Tn = |Nt| (3.6)

Fp = |N | − Tn (3.7)

From these core statistics calculated at the given threshold, the summary statistics used for

evaluating the accuracy of the classifier can be derived. The Positive Predictive Value (PPV)

(also called precision) specifies the ratio of correct classifications to all positive classifications.

The True Positive Rate (TPR) (also called recall) specifies the ratio of correct classifications

to all the actual positive examples tested. The False Positive Rate (FPR) (also called fallout),

gives the rate at which the classifier spuriously classifies negative data as positives. The overall

accuracy (ACC) specifies the ratio of correctly classified examples (positives plus negatives),

however this will give a biased result if the number of positive and negative examples do not

match. The F1 statistic is calculated as the harmonic mean of precision and recall and it can

be useful in situations where a single metric that encompasses information about precision

and recall is preferred. The harmonic mean is less biased toward large discrepancies between

the precision and recall values.

PPV =
Tp

Tp + Fp
(3.8)

TPR =
Tp

Tp + Fn
(3.9)

FPR =
Fp

Fp + Tn
(3.10)

ACC =
Tp + Tn

Tp + Tn + Fp + Fn
(3.11)

F1 = 2

(
PPV · TPR
PPV + TPR

)
(3.12)

By varying t smoothly from 0 to 1 and calculating the core statistics at each value of t, the

behaviour of the classifier at different confidence levels can be evaluated. This is important

because even if a large number of training data are provided to the classifier, depending on

the features used, it may estimate a classification boundary that is either too closely fitting to

the training data (possibly resulting in a degradation in recall), or too loosely fitting (possibly

resulting in a degradation in precision). Of greater importance is the relationship between

precision and recall over a range of thresholds since this indicates how well the classifier is able
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to discriminate between the two classes. These changing values of precision and recall with

threshold are usually shown graphically with recall along the X axis and precision along the Y

axis. Each value of t ∈ [0, 1] defines a point in this plane, points which when taken together

define a curve. The closer the area under this curve is to 1, the better the discriminative

ability of the classifier. However, the classifier may be biased towards either better recall or

precision, and for a given object recognition task, one of these metrics may be more important

and so the area under the curve is usually too simplistic a measure to use to characterise the

behaviour of the classification scheme.

Examples of precision-recall curves are shown in figure 3-10 (this example is taken from

section 4.3.9). The graph shows different curves representing the accuracy of different feature

extractors on a single dataset.
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Figure 3-10: An example of precision-recall curves (extracted from section 4.3.9)

The behaviour of the precision and recall metrics can behave quite differently from one another

given changing feature extraction parameters. For this reason, some of the graphs in this

thesis (in particular, those throughout section 4.2) show recall and precision separately as the

dependent variable at a fixed classification threshold (nominally, the default) as the parameter

under evaluation is changed.
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3.5.2 Evaluating Object Detection Accuracy

For object detection, the calculations of the core statistics differ since the degree to which the

detection regions overlap with the ground truth rectangles is important. For the two class

detection problem, a validation set of images I ∈ Q with ground truth rectangles uniquely

identifiable to each image GI are defined. Let G ⊃ GI with the imposition that

∀g, h ∈ GI | area(g ∩ h) = 0

where area(x) is defined as the number of pixels in region x.

The images are presented to the object recognition scheme one at a time, and a scanning

algorithm classifies successive rectangular subregions r ∈ I (with r uniquely addressable to

I). Each response ψ giving the confidence of the classification of subregion r as a positive

example is recorded in a detection set D as a 2-tuple d = 〈r, ψ〉 under the condition that

∀b,d ∈ {〈r, ψ〉 | 〈r, ψ〉 ∈ D, 〈r ∈ I, ψ〉} | area(br ∩ dr) = 0.

After scanning all images in Q, for detection confidence thresholds t ∈ [0, 1], let

Dt = {〈r, ψ〉 | 〈r, ψ〉 ∈ D, 〈r, ψ ≥ t〉}.

The values of the core statistics can then be calculated as

Tp =
∑
g∈G

∑
d∈Dt

area(g ∩ dr) (3.13)

Fn =
∑
g∈G

area(g)− Tp (3.14)

Fp =
∑
d∈Dt

area(dr)− Tp (3.15)

Tn =
∑
I∈Q

area(I)− Tp − Fn − Fp (3.16)

The core statistics are given in terms of queried pixels but they can be normalised with

respect to the total area of the images in the query set if desired without affecting the

derivation of the summary statistics in equations 3.8—3.12. Importantly, this means that

the same mathematical framework for deriving these statistics can be used when evaluating

object classification accuracy, and when evaluating the accuracy of localising detected objects

in query images.

Figure 3-11 shows a positive ground truth bounding box (blue outline) located somewhere
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within a query image superimposed by a subregion of the query image being classified (red

outline). Every part of the query image not within ground truth bounding boxes is considered

as negative data. The text labels indicate which parts of the image account for the calculation

of the different core statistics.

Tp

Fn

Tn

Fp

Figure 3-11: A dense sampling of image subregions is classified. Areas of the image are used
to calculate the four core statistics according to how the detection subregions (red boxes)
overlap the ground truth bounding boxes (blue boxes).

This method of calculating the core statistics is preferred in this work for evaluating the

accuracy of object detection because it allows for detections that align more closely with the

ground truth labelling to contribute to heightened measures of accuracy (primarily precision

and recall). For a given labelling of ground truth instances in an image (for example, as

might be labelled according to the manual placement of rectangular bounding boxes), an

object detector that is deemed to be more accurate should be able to more closely match its

detections to those labellings.

This framework for deriving object detection accuracy metrics is also extensible to ground-

truth and detection regions having non-rectangular bounds. While the calculations are sim-

pler using rectangular regions, because the definition of the area function relies only upon

the number of bounded pixels, arbitrarily shaped regions can be used. This allows for the

evaluation of object detection schemes where ground-truth objects are given using exact

segmentations. Due to the added complexity of producing such exact ground-truthed seg-

mentations, the ground-truthing exercise described in section 3.4 required only that bounding

rectangles around the object examples be defined.

3.5.3 Problems with Alternative Evaluation Criteria

The PASCAL Visual Object Classes (VOC) Challenge (Everingham et al., 2015) is a 2-D ob-

ject recognition challenge that ran between 2005 and 2012. One of the aims of this challenge
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was to stimulate interest into researching difficult object recognition tasks. During the period

in which the challenge ran, much effort was dedicated by many researchers towards the devel-

opment of object classification and detection schemes that could score well according to the

detection evaluation criteria stipulated by the challenge. The criteria used for the challenge

counted a ground truth object as detected if the intersection of a detection rectangle with a

ground truth rectangle was greater than 50% of the area given by the union of these regions

ao =
area(Bp ∩Bgt)
area(Bp ∪Bgt)

(3.17)

where ao > 0.5 denotes the detection of the instance bounded by rectangle Bgt according

to detection bounding box Bp (Everingham et al., 2015). The reason given for setting the

detection overlap threshold at 50% is that the rectangular ground truth labelling of real

world objects necessarily involves a degree of subjectivity, and detection schemes should not

be penalised for having a slightly imprecise interpretation of the object’s placement in the

image. However, this justification does not account for two observations. Firstly, although

the placement of a ground truth bounding box for a single instance may suffer from a degree

of subjectivity, there ought not to be any systematic (non-random) bias in the placement of

the bounding boxes in relation to the “correct” locations of the objects in the images, but if

the bias that exists is systematic, then it should in fact be interpreted as the correct labelling

of the object; detectors should still seek to match these ground truth bounding boxes as

closely as possible. Further, any bias in the placement of the ground truth rectangles present

in the data should be reflected equally in the portions of the dataset used for training and

for validation. If systematic bias is only present in either the training data or the validation

data, then this is a problem with the ground truth labelling of the data.

Secondly, although a given object detector may be penalised for imperfectly matching de-

tections, given enough test data, a better object detector should still be able to match its

detections to the known ground truth labels more accurately on average. The detection cri-

teria given in Everingham et al. (2015) cannot assist in evaluating in sufficient detail the

accuracy of detections – especially in the case of making a comparative analysis of the accu-

racy of two or more detectors. If two different object recognition schemes both manage to

correctly detect the same number of ground truth objects, but the first detector can more

accurately ascertain the positions of these objects, then the evaluation criteria given by Ever-

ingham et al. (2015) cannot differentiate between the schemes. While it is true that applying

segmentation to the results of detection from the two recognition schemes might ultimately

yield equivalent results, this assumes that segmentation is not already used as part of the

detection process for the schemes. In any case, a less accurate initial detection of an object

will be less likely to subsequently allow for a perfect segmentation of that object.
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The use of an overlap threshold to count detections in an “all or nothing” sense, can give the

false impression that an object detection scheme performs very much more accurately than

it does in reality. Defining rectangular bounding boxes is also not the only way of labelling

ground truth data (although this is arguably the easiest, and tends to be the most commonly

used method). Both detection regions and ground truth regions can be defined using non-

rectangular regions the area of a region can be defined simply as a pixel count. Since the

new evaluation criteria described herein measures accuracy in terms of pixel counts, it is

more generally applicable than methods of evaluation that count arbitrarily sized rectangular

regions. Assuming a labelling of the ground truth is available at a pixel level, calculation

of these evaluation criteria can even be undertaken after further validation such as object

segmentation has been carried out. The statistics as newly derived herein are then not

restricted to only evaluating the results of object detection; they may also be used to evaluate

the accuracy of the output from a complete object recognition scheme.

Deriving the core statistics for object detection by reference to the number of detected pix-

els, can also be applied to object classification instead of using equations 3.4—3.7 which

can be shown to be equivalent to those of equations 3.13—3.16 given the requirements of

classification. In object classification, the detection rectangles are the same as the ground

truth rectangles (the classifier is presented with a validation set which is comprised of the

ground truth positive and negative examples themselves), and the dimensions of the rect-

angles bounding each example are no longer important and may be set to an area of one

pixel. The rectangle locations are irrelevant. The classification conditions thus allow for the

definition of the positive ground truth extracts G = {r | area(r) = 1}, where r is a uniquely

identifiable extract, and D = G. Letting Dt = {〈r, ψ〉 | 〈r, ψ〉 ∈ D, 〈r, ψ ≥ t〉} for confidence

threshold t ∈ [0, 1], equation 3.13 then becomes

Tp =
∑
g∈G

∑
d∈Dt

area(g ∩ dr) =
∑
d∈Dt

area(dr) = |Dt|. (3.18)

Dt simplifies to the definition of Pt (equation 3.2) because the locations of r inDt are irrelevant

and the area of every example is equivalent. This means that

Tp = |Dt| = |Pt| (3.19)

which is the same as equation 3.4. By this rationale, the method of deriving the evaluating

criteria as given in equations 3.13—3.16 can be used for evaluating the results of object clas-

sification, detection, and segmentation (given pixel resolution ground truth labelling).
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Chapter 4

Scale Proportionate Histograms of

Oriented Gradients

Scale Proportionate Histograms of Oriented Gradients (Pro-HOG) is a feature extraction

technique based on the Histograms of Oriented Gradients (HOG) feature extractor of Dalal

and Triggs (2005). Pro-HOG encodes contrast gradient characteristics about local image re-

gions at a predefined fixed descriptor resolution without first resizing the input image extracts.

These descriptors can then be used to assist in the classification of image extracts.

Defining the resolution of the features encoded by the descriptor, offers two possible advan-

tages over methods that first undertake image resizing before computing descriptors over the

image. Firstly, the act of resizing an image extract can change the quality of information

it contains. Scaling an image down loses information because fewer digital elements (pixels)

are available to encode the information. Scaling an image up requires interpolating data be-

tween pixels which may introduce spurious information (depending on the effectiveness of the

scaling algorithm used which the feature extractor normally does not explicitly implement as

part of its algorithm). Pro-HOG seeks to avoid either of these two situations to maintain an

accurate feature encoding generated from the extract at its original pixel resolution.

Secondly, the need to resize image extracts prior to the generation and comparison of de-

scriptors is inefficient when a very large number of descriptors must be generated. This is

typically the situation in object detection where the task of identifying the objects of interest

in a query image necessarily involves the creation of very many descriptors from many differ-

ent, sometimes overlapping, image locations. By avoiding the need to resize image extracts,

Pro-HOG offers a much more efficient and accurate method to extract features.

This chapter describes the approach, design and implementation, and empirical evaluation
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of Pro-HOG compared to the classic HOG feature extractor described in section 4.1. In

section 4.2, the different parameters of Pro-HOG are evaluated in terms of their impact on

classification accuracy in a binary object classification task. In section 4.3 classification ex-

periments are carried out over 15 different object types from three different datasets and using

two different types of input data – grey scale/intensity images derived from colour images,

and for two of the datasets, depth imagery acquired using laser scanning or stereoscopy. The

findings from these experiments are discussed in section 4.4 and follow up experiments are

carried out in lieu of these findings to answer questions arising from the experiments in the

previous section. The chapter concludes with section 4.5 which summaries the findings re-

garding Pro-HOG’s utility for object classification versus HOG. It is concluded that Pro-HOG

is just as capable as the original HOG algorithm in being able to accurately encode objects

for the purposes of classification, and may in some circumstances (e.g. for smaller objects)

allow for increased classification accuracy – especially in recall.

4.1 Pro-HOG Design

This section describes the approach and implementation of Pro-HOG and its differences with

the classic HOG extractor of Dalal and Triggs (2005) upon which it is based.

4.1.1 Histograms of Oriented Gradients

Histograms of Oriented Gradients (HOG) (Dalal and Triggs, 2005) are a very popular and

well performing type of feature. The HOG feature extractor encodes contrast orientation and

magnitude over neighbouring local areas of an image. Contrast, being the first derivative of

image intensity, is especially good at encoding image structure especially at the boundaries

of objects because it is more tolerant to variance in illumination.

HOG feature extraction proceeds in the following manner: An image is first resized to pre-

defined pixel dimensions (according to a given parameterisation of the algorithm) and this

is then divided up into a grid of equivalently sized, nominally square, cells. Over each of

the cell subregions, the contrast is sampled and encoded in a histogram of predefined length.

Finally, each cell’s histogram is concatenated with three of its neighbouring cell histograms

into normalised 2× 2 blocks. This results in a total feature vector length of 4N(µ− 1)(ν − 1)

where N is the histogram length, and µ and ν are the width and height dimensions of the

grid of cells.
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HOG feature vectors are used in this chapter at the global level (over the whole of an extract

that bounds an object of interest). Dividing the extraction area into square cells comprised of

many pixels means that the descriptors express localised information as well as spatial rela-

tionships between these cellular regions because the cells are grouped together into overlapping

blocks from which contrast information is summarised into the fixed length histograms. In

this way, they encode both global and local information about an image extract.

HOG features have been used widely in a number of object recognition schemes and have

demonstrated usefulness over a large variety of different object and image types (Dalal and

Triggs, 2005; Felzenszwalb et al., 2010; Schroff et al., 2008; Gao et al., 2011). HOG gives good

general performance and its underlying method of extracting contrast gradients is widely used

as the basis for other feature extractors and interest point detectors. As such, it is used here

as the basis for Pro-HOG.

The core difference between Pro-HOG and HOG is that fixed feature vector lengths are

managed using integral images (Crow, 1984) instead of using images that have been resized

to fixed pixel dimensions. Integral images allow for the efficient computation of the sum

of any subregion of an image matrix by way of a simple arithmetic calculation over the

four corners of the subregion. The contrast gradient magnitudes are computed once over

all pixels, but unlike the integral histogram of Porikli (2005), the magnitudes are stored in

integral images that correspond to the histogram bins given by the gradient orientations.

Instead of propagating the construction of the histogram according to the changing location

in the image (meaning that several integral histograms must be maintained if the image is

to have features extracted from it at different scales, with the correct orientation bins being

found for each extraction), arbitrary subregions of the image can be selected to extract the

histogram data from in constant time.

Figure 4-1 shows an example of how a simple single valued image matrix (on the left) can be

encoded as an integral image (on the right). The sum over the blue region in the matrix on

the left can be calculated as (A + B) − (C + D) where A and B are respectively the values

at the “outer” top left and “inner” bottom right diagonals of the blue square, and C and D

are respectively the values at the “outer” bottom left and the “outer” top right of the blue

square. The “outer” square is shown in lighter blue in the right hand matrix in figure 4-1.

The contrast gradient orientations and magnitudes are calculated at the original pixel reso-

lution of the image, so no resizing is conducted that could degrade the quality of any image

structure and so the quality of the information encoded in the descriptors is maintained.

Scale-space image pyramids are not required to store the image data at different sizes to ac-
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Figure 4-1: Conversion of an image matrix (left) to an integral image matrix (right). The
integral image allows for sums over arbitrary regions of the image (dark blue region) to be
calculated by indexing into the integral image only at the four corners of the subregion.

count for the possible presence of objects at different scales. This means that object detection

using a sliding window based approach can be conducted efficiently since feature vectors of

arbitrary size and location can be extracted in constant time with only a few arithmetic oper-

ations after the initial pixel level calculation and storing of the gradient magnitudes. Objects

can be detected at arbitrarily fine scales instead of at the fixed scale intervals predetermined

by the use of image pyramids because the dimensions of the image subregion over which

features are to be extracted can be determined at run-time.

4.1.2 The Pro-HOG Algorithm

Feature extraction in Pro-HOG is performed in two phases. In the first phase, an image that

encodes the gradient information at every pixel is produced. In the second phase, rectangular

regions of arbitrary dimensions (up to the dimensions of the whole image) define the bounds

over which the features are extracted. In the second phase, because the gradient image is

held in memory as integral images and because the length of the feature vectors is fixed in

advance, the final descriptor can be generated in constant time irrespective of the actual pixel

dimensions of the rectangular subregions. This is especially useful during object detection,

where the whole of the query image can be processed in the first phase, while the extraction

of feature vectors from many candidate overlapping regions of the query image only entails

the constant time second phase of processing. For object detection, this makes Pro-HOG very

much more efficient than a näıve implementation of the HOG algorithm which redundantly

processes pixel gradient orientations many times over for overlapping candidate detection

regions. This feature of Pro-HOG makes it especially efficient for processing images in scale-

space whether or not explicit depth information is available, but especially where it is not
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and image-pyramids must be used, because overlapping regions must be evaluated to generate

responses at the different scales.

Figure 4-2 gives a high level diagrammatic representation of the algorithm. The diagram shows
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Figure 4-2: The main steps of the Pro-HOG feature extraction algorithm.

processing of the first phase in steps 1 – 3 with the second phase of processing comprised of

steps 4 – 6. The steps are outlined as:

1. Generation of the horizontal and vertical derivative maps at pixel resolution.

2. “Binning” of the pixel gradients according to magnitude into N separate image “bins”.

3. Creation of N + 1 integral images.
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4. Per cell aggregation of pixel gradients from the integral images into length N histograms.

5. Aggregation and normalisation of the cell histograms into 2× 2 cell-blocks.

6. Concatenation of the 2× 2 cell-block histograms into a final feature vector.

Prior to step four, the pixel dimensions and location of the cell grid within the image are

determined. In step 4 of the diagram, the cell grid (over which the features are extracted) is

shown as a subregion of the initial image from which the integral images are generated. This

is the typical use case for object detection. For classification, the cell grid is coincident with

the entire image. The following section explains each of these steps in detail.

4.1.3 Phase One: Pixel Resolution Contrast Gradient Integral Images

As in HOG, square root gamma correction can first be applied to the image during an initial

pre-processing stage to attempt to correct the impact of lighting issues that could interfere

with accurate contrast measurements. For each pixel value α, the corrected α′ is found as:

α′ ←
√
αΓ (4.1)

where Γ is set as the constant of maximum brightness (nominally 255 for 24 or 32 bit images).

Pro-HOG is designed to accept triple byte RGB or intensity (single channel) images, but it

can also accept multi-channel images of any intrinsic data type including floating point values.

Equation 4.1 is not required for non-appearance based data (such as depth maps).

In HOG, the image extract is initially resized to fixed pixel dimensions given by predeter-

mined parameters that determine one aspect of the eventual size of the feature vectors being

extracted. The first phase of Pro-HOG does away with this initial resizing step, and the

image extract is processed at the same pixel dimensions as provided. As previously discussed,

the motivation for doing this is to avoid the possibility of introducing gradient anomalies as

artefacts of image up or down sampling.

Steps One and Two

Every pixel in the input image is initialised with a zeroed out set of gradient maps G with

|G| = N being the desired number of histogram bins. Horizontal and vertical derivative

operators are applied to each pixel in the input image to create separate real valued horizontal
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h and vertical g difference maps. For clarity, both the gradient maps and the difference maps

are represented here as vectors. The contrast orientation of each element (pixel) i is calculated

as

θi = arctan
gi
hi

(4.2)

and the corresponding contrast magnitude is calculated as

δi =
√
g2i + h2i (4.3)

For images having more than a single channel (e.g. RGB images), the orientation that is used

is given by the largest δi over the channels. θi is mapped to the histogram gradient maps

indexed by b0, b1, and b2 and soft-binned into these in proportion to δi. The whole process

is given in algorithm 4.1.3 for an image having generated horizontal and vertical difference

maps h and g.

Algorithm 1 Pro-HOG’s calculation of oriented contrast magnitudes over the vertical and
horizontal difference maps of an input image (assumes single channel for simplicity).

1: function makeGradientMaps(g,h)
2: for gi ∈ g, hi ∈ h do
3: θ ← arctan gi

hi

4: δ ←
√
g2i + h2i . Single channel image assumed

5: φ← Nθ
2π

6: b1 ← bφc mod N . Centre bin index
7: b2 ← (b1 + 1) mod N . Right bin index
8: b0 ← (b1 +N − 1) mod N . Left bin index
9: Gb0(i)← Gb0(i) + δ(1− φ+ b1)

10: Gb1(i)← Gb1(i) + δ
11: Gb2(i)← Gb2(i) + δ(φ− b1)
12: end for
13: return G
14: end function

The divisor in the calculation of θ at line 5 in algorithm 4.1.3 specifies the angular width of

each histogram bin in terms of the histogram length N . An angular width of 2π/N (as used

in algorithm 4.1.3) specifies that the contrast orientations should be binned over the full circle

– that is, whether contrast is increasing or decreasing (and not just its magnitude) is used

to determine the correct bin. Setting this divisor as π/N specifies that contrast orientations

should be binned only over half a circle, i.e. that the sign of the contrast is irrelevant in

determining the histogram bin. For example, N = 18 gives 20◦ per bin if binning over the full

2π radians. Gradient angles may be binned over a π radian range if the direction of gradient

change is thought not to be important in the encoding of features. The histogram length N is
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one of the factors used to determine the length of the final feature vector. Binning over a full or

a half circle does not change the size of the final feature vector, but it changes by a factor of two

the angular resolution at which contrast gradients are encoded which can have a large impact

on the feature vector’s ability to generalise to new data when used in a classification/detection

framework. Dalal and Triggs (2005) showed in their original implementation of HOG that

binning over a full 360◦ in the pedestrian detection task decreases detection performance from

binning over 180◦, although they also state that binning over the full 360◦ does help with

detecting instances of other object classes such as cars and motorbikes (although they do not

provide results to demonstrate this).

Pro-HOG does not incorporate cell level bilinear interpolation of the histogram values, which

is used in HOG, because the definition of the cell grid is deferred to stage two of the algorithm.

In HOG, the cell grid is defined prior to the extraction of pixel contrast gradients (from the

resized image) and the histogram values can be bilinearly accrued in proportion to their

magnitudes in the histograms of the cells adjacent to the cell currently being processed. In

HOG, this is done to further reduce the possibility of cell histograms overfitting to the training

data to promote good generalisation (Dalal and Triggs, 2005).

Step Three

The gradient maps resulting from algorithm 4.1.3 are then convolved with a 3× 3 Gaussian

kernel to further improve the extractor’s robustness to slight variations in contrast orientation.

Larger smoothing kernels were tried (as well as no smoothing), but this resulted in degraded

classification accuracy. In HOG, the size of the Gaussian kernel is given by the fixed cell

pixel dimensions. The resulting N smoothed gradient maps are then converted to N integral

images. A final integral image is defined as the sum over all of the integral image histograms.

This final integral image is used to more efficiently normalise the feature vectors during stage

two of the algorithm using only three arithmetic operations (according to the definition of

integral image summation) given in figure 4-1 instead of N − 1 arithmetic operations.

4.1.4 Phase Two: Cell Histograms and Final Descriptor Generation

The aim in both HOG and Pro-HOG is to associate a histogram of contrast gradients of

length N with each cell of a fixed size grid where each cell bounds a group of pixels. In HOG

the pixel dimensions of these cells are fixed, and proportionately sized encoding of features is

achieved by resizing the input image. In Pro-HOG, the pixel dimensions of the cells are not
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explicitly fixed, but the number of cells, and the dimensions of the grid of cells are. Although

each cell’s pixel dimensions are not fixed, their aspect ratios are congruent with the aspect

ratio of the cell grid. The width and height of the grid of cells may be set independently, but

for simplicity of explanation here, they are assumed to be equivalent.

Figure 4-3 shows how classic HOG (on the left) first resizes the input image to fixed pixel

dimensions before extracting gradient information and defining the cell grid. In Pro-HOG (on

the right), the image remains at the original size and contrast gradient information is extracted

at the original image size. The pixel dimensions of the cells are determined according to the

original image pixel dimensions and the dimensions of the cell grid. The fact that the image is

not initially resized means that this step is undertaken more efficiently by Pro-HOG.

HOG Pro-HOG

Fixed cell pixel dimensions

Variable cell pixel dimensions

Resized...

Gradients extracted

Figure 4-3: Image scaling and cell grid definition for HOG (left column) versus Pro-HOG
(right column). Image from the PASCAL VOC 2007 “Car” dataset.
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The dimensions µ, ν of the cell grid are predetermined for all extracts, and this introduces a

lower limit of 2×2 pixels on the size of the image extracts for which Pro-HOG can construct a

feature vector. The pixel dimensions of the image must be no smaller than the predetermined

cell dimensions, because the pixel dimensions of each cell must be at least one pixel on a

side (though it is not required that cell dimensions be square). The optimum dimensions

of the cell grid can be found through cross validation against known data for any particular

object classification/detection task. Cell dimensions cannot be too large, or the features

will be sampled from the image at too high a resolution which can lead to overfitting of

the training data and poor generalisation (increasing the rate of false negative or Type II

classification errors). Cell dimensions that are too small however, can generalise too well

because not enough discriminative information about the object is recorded in the resulting

feature vector, and this can result in many false positives (Type I) misclassifications.

Step Four

The bounding rectangle defining the region of the image to extract features from is supplied

to the algorithm (the rectangle may be commensurate with the original image dimensions)

and the dimensions of the bounding rectangle are used to define the pixel dimensions of the

cells. The pixel dimensions of each cell are set by the proportion of cells that fit vertically

and horizontally within the predetermined dimensions of the cell grid overlaid on the image

extract (as shown in figure 4-3). When the number of pixels fitting either horizontally or

vertically do not divide into whole numbers by the dimensions of the cell grid, the remaining

pixels are distributed over a subset of the cells so that cells may not be exactly the same pixel

dimensions.

A histogram h such that |h| = N is then generated for each of the cells by calculating the

sum over the cell region of each of the histogram bin integral images. Given a rectangular cell

c with a top left corner x, y having width and height w, h, the general formula for calculating

the sum of the values within that area of integral image I is given as

sum(c) = Ix+w−1,y+h−1 − Ix−1,y+h−1 − Ix−1,y−1 + Ix−1,y−1. (4.4)

Figure 4-1 shows this calculation on an example image. It is preferred to define the integral

image such that corresponding image values are shifted one pixel down and to the right

leaving the first row and column as zeros. This allows for the replacement of the w − 1 and

h−1 terms with w and h terms in the indexing of the rectangular subregion and equation 4.4

can be written more succinctly. The value of histogram bin hi is set from the histogram bin
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integral image Ii as

hi = Ii,x+w,y+h − Ii,x,y+h − Ii,x,y + Ii,x,y. (4.5)

The calculation of the integral image subregion always has constant complexity irrespective

of the size of the subregion so each cell’s histogram can be calculated in an amount of time

linear in N .

Step Five

Each cell’s histogram is concatenated into 2 × 2 blocks of cell histograms v which are then

normalised according to the L1-sqrt given in Dalal and Triggs (2005) defined as the square

root of normalisation by the `1-norm plus a small constant to avoid division by zero errors:

v ←
√

v

‖v‖1 + ε
(4.6)

Other normalisation schemes (as used by HOG) such as `2-norm normalisation require the

sums of the squares of the individual cell histogram values which are more costly to compute

since totals can only be generated after the cell histograms have been produced – not during

phase one of the algorithm where the `1-norm can be more efficiently calculated by summing

over all the pixel gradient magnitudes and stored in an integral image. This efficiency is

realised primarily during object detection, where many feature vectors are calculated from

different (possibly overlapping) subregions of the same scene. In the original evaluation of

HOG, Dalal and Triggs (2005) show that using the normalisation scheme given in equation 4.6

does not result in significantly degraded accuracy from using normalisation schemes based on

the `2-norm. The calculation of the whole feature vector during phase two therefore executes

in constant time regardless of cell pixel dimensions.

Step Six

The final feature vector V consists of the concatenation of the v feature vectors from all the

2 × 2 cell blocks in the defined image subregion resulting in a final feature vector length of

|V | = 4N(µ− 1)(ν − 1).

The feature vector output from the Pro-HOG extractor for an image can be visualised by

splitting each 2 × 2 cell block’s 4N feature vector into the individual cell histograms, and

using the histogram values at the corresponding image locations to draw lines with grey

values that are in proportion with the magnitudes of each of the bins. The lines are drawn
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orthogonally to the orientations, and darker lines indicate larger contrast magnitudes in that

direction. Figure 4-4 shows a visualisation of the Pro-HOG features extracted from an image

of Lena. Figure 4-5 displays a zoomed in section of the image of Lena and the corresponding

(a) Original Lena (b) Lena Pro-HOGs at 32 × 32 cells

Figure 4-4: Lena Pro-HOG visualisation

section of the Pro-HOG visualisation showing how the histogram orientations make a “+”

shape over the bridge of the nose and the eyes. The darkness in these regions causing this

shape to appear is a result of the strong vertical contrast magnitudes along the nose combined

with the strong horizontal contrast magnitudes across the eyebrows. In general, darker regions

in the image correspond to larger contrast magnitudes.

4.1.5 Expected Benefits

In the original evaluation of HOG (Dalal and Triggs, 2005), fixed size dimensions for cells of

8×8 pixels gave the best results when being used to classify 1805 64×128 images of persons,

using a linear classifier trained with a SVM. It was suggested that the dimensions of the cells

were suited to the particular dimensions of the training and validation data such that each

cell’s histogram extracted information at a “good” level of detail for the object type. Each cell

encoded features for a level of detail commensurate with the ability to discern arms and legs

(for instance), but not at so great a level of detail such that irrelevant features of the objects

were encoded (e.g. folds of clothing, hairstyles, etc.) that would act to cause overfitting to

the training data. In order to maintain this fixed cell size, images are first resized which
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Figure 4-5: A zoomed in image of Lena showing the detail of the eyes in the visualised
Pro-HOG image, in particular the contrast magnitude peaks (darker parts) around the eyes
and the verticality of the nose bridge given by the strong vertical orientations shown by the
histograms in that area.

may possibly introduce artefacts related to up or down sampling the image. In Pro-HOG,

no image resizing is conducted and there is no possibility of introducing such artefacts. The

dimensions of the cell grid are defined a priori, so the benefit of having cell pixel dimensions

that are well scaled to a particular object classification/detection task can still be realised,

and comparisons between Pro-HOG feature vectors reflects spatial correspondences between

objects (given constancy of other variables such as viewpoint and rotation).

In HOG, the use of cells having fixed pixel dimensions means that an image is initially broken

down into discrete regions. For classification tasks, this is not problematic because the cell

grid will always (after resizing of the image extract) perfectly fit the bounding box of the

object. However, this is not the case for object detection where an object may or may not be

present in a test image at some unknown position and size. In this case, feature vectors must

be extracted from very many different locations in the image and at different sizes. Fixing

the cell pixel dimensions then requires construction of scale-space image pyramids if feature

vectors are to be extracted at different scales (effectively changing the resolution of the cell

grid). A complete set of HOG feature vectors must then be calculated for every region of

pixels defining a cell in each image. Calculating the initial pixel level histograms of oriented

gradients in Pro-HOG during the first phase of the algorithm is not costly because there is

no need to perform normalisation at this point. Normalisation (and calculation of square

roots) is only performed as and when cell level HOG features are needed. The normalisation

of the histograms in the HOG algorithm can be costly to carry out repeatedly at all levels of

an image pyramid. Further, because the positions of the cells are fixed in the test images in

the image pyramid, if objects are not located at pixel coordinates that are whole multiples

of the cell pixel dimensions, then the objects will be misaligned and spatial correspondence
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between the extracted feature vectors from the test image and the feature vectors held in the

classifier for the object will be degraded. Pro-HOG feature vectors can be extracted at pixel

level resolution (i.e. a new Pro-HOG feature vector can be extracted at a position offset from

the previous test location by a single pixel rather than a whole cell pixel step). This means

that Pro-HOG feature vectors can always be efficiently extracted from any location in a test

image, maximising their ability to detect an object at an arbitrary position.

Pro-HOG is implemented as part of a custom generalised feature extraction, learning and

evaluation framework. The version of HOG used to test against Pro-HOG is available through

the Open Computer Vision (OpenCV) software library; an extensive library of computer

vision, image processing and pattern recognition routines that is continually being expanded

as new algorithms are introduced by the research community. OpenCV is heavily used in

both research and industry, and as a result its algorithms are thoroughly tested and verified

to work as expected.

4.2 Testing Pro-HOG’s Parameters

In this section, different aspects of the Pro-HOG algorithm are evaluated and contrasted

against the classic HOG algorithm in terms of classification accuracy.

The main dataset used in this section is the PASCAL Visual Object Classes (VOC) 2007

dataset (Everingham et al., 2010). This dataset includes images of people (some examples

of which are shown in figure 4-6). Images of people are chosen to classify against because

this is the object class primarily used in the original evaluation of HOG by Dalal and Triggs

(2005). Dalal and Triggs (2005) introduced a new dataset for testing HOG: the INRIA dataset

containing 1805 64 × 128 pixel images of people cropped from personal photos (examples

of which can be seen in figure 4-7). The more recent Pascal VOC 2007 dataset contains

1777 examples of people (not including the examples in the dataset marked as “difficult” or

“truncated”) in a much more varied range of poses and scales than in the INRIA dataset,

and with the image extracts having varying pixel dimensions instead of being fixed size. This

is a better dataset for the purpose of evaluating Pro-HOG because it is based on the idea

of encoding features from images at their native pixel resolution, and it allows for the effect

of resizing the image extracts to be tested separately to see if image resizing actually does

introduce interpolation artefacts that can influence classification accuracy. The Pascal VOC

dataset (in its yearly iterations) has been very widely used by researchers across the field of

object recognition and scene classification (Lampert et al., 2008; Vedaldi et al., 2009; Divvala

et al., 2009; Felzenszwalb et al., 2010; Zhu et al., 2010; van de Sande et al., 2010; Malisiewicz
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et al., 2011; Alexe et al., 2010; Girshick et al., 2014). It is of comparable size to the INRIA

dataset, and is regarded in general as a very difficult dataset to produce good results over

(various versions of the dataset were used in annual object recognition challenges running

from 2006 to 2012 (Everingham et al., 2015)).

Figure 4-6: Sample extracts from the “Person” Pascal VOC 2007 dataset. Extracts have
varying dimensions and are resized for display here.

Figure 4-7: Example images from the “INRIA” dataset (Dalal and Triggs, 2005)

The Pascal VOC 2007 dataset contains a number of other object classes to test against. In

particular, the dataset contains 729 examples of cars (again, ignoring “difficult” and “trun-

cated” examples) which are chosen to test against in addition to the “person” class. Some

examples from the “car” dataset are shown in figure 4-8. Cars express much less variability

in their morphology compared to people who take on varying shapes according to a range of

factors including their age and current activity (which greatly changes the configuration of

their parts and orientation with respect to the viewer). As such, the degree of variation in the

appearance of cars is more constrained than for people; factors such as colour, texture and

viewpoint affect variation in a car’s appearance much more than changes due to age (rusting)

or configuration (having the doors, boot or bonnet open or closed). Images of cars more

commonly show them upright on the ground (although a few examples in the Pascal VOC
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2007 show images of cars from overhead). HOG and Pro-HOG features are extracted over

the whole of the image given by the ground truth bounding rectangle for each object extract.

This invariably means that feature vectors will encode contextual information about an ob-

ject too. This is widely accepted as being a good thing for the identification of objects since

variation in the appearance of an object’s background is useful for determining the presence

of the object itself (Rabinovich et al., 2007; Torralba and Sinha, 2001; Kim and Medioni,

2011). For representations of people, the variation around their strict boundaries is much

greater than for cars which are most commonly positioned on roads or other flat texturally

homogeneous surfaces. For these reasons, it is expected that for both HOG and Pro-HOG,

classification accuracy will be much better for cars than for people even though the person

dataset is much larger.

Figure 4-8: Sample extracts from the “Car” Pascal VOC 2007 dataset. Extracts have varying
dimensions and are resized for display here.

The pixel dimensions of the images for the “Car” and “Person” datasets vary considerably.

Figure 4-9 shows the smallest (on the left) and the largest examples from the dataset. The

smallest is 24 pixels wide by 10 pixels tall. The largest is 467 pixels wide by 373 pixels tall.

(a) 24 × 10 pixels (b) 467 × 373 pixels

Figure 4-9: Smallest and largest examples from the “Car” Pascal VOC 2007 dataset.
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The smallest and largest examples from the “Person” dataset are shown in figure 4-10 with

the smallest being 11× 29 pixels, and the largest being 439× 374 pixels.

(a) 11 × 29 pixels (b) 439 × 374 pixels

Figure 4-10: Smallest and largest examples from the “Person” Pascal VOC 2007 dataset.

The very large person example shows that some of the examples are not complete instances

of the object class in question (even though the dataset provides a labelling of “truncated”

examples). Other examples of poor quality instances (truncated or occluded) can be seen

in the selection of examples shown in figure 4-6. Surprisingly, the dataset also contains a

large number of instances of people riding or standing near bicycles or motorbikes. This

might result in classifiers learning structural features about bikes as well as people which may

decrease the classification accuracy on this dataset. The “Car” dataset also contains examples

of cars that are partially occluded or are atypical in general (including images of cars from

unusual viewpoints – in particular, looking down towards the car from above).
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4.2.1 General Methodology

Negative examples are collected independently given each object class being tested against.

Only images in the Pascal VOC 2007 dataset known not to contain the positive object class are

used for the negative extracts. To identify the dimensions of the subregions from these images

to use as the negative extracts, the bounding boxes from random positive object instances are

used. This is done to avoid the possibility of introducing bias concerning differing aspect ratios

between the positive and negative extracts. Initial testing using negative extracts with pixel

dimensions having randomly assigned aspect ratios led to unrealistically favourable results

being produced for both HOG and Pro-HOG.

As described in section 4.1, Pro-HOG (and HOG in its original design) can also directly parse

multi-channel images by selecting the channel from each pixel expressing the largest contrast

gradient. In all experiments, the RGB data are first converted to single channel grey scale

(intensity) images before processing. This is done to keep the experimental configuration

identical for both Pro-HOG and HOG because the OpenCV implementation of HOG only

accepts grey scale images.

In the original evaluation of HOG, only linear classifiers trained using SVMs were used (Dalal

and Triggs, 2005). In addition to linear classifiers, Pro-HOG and HOG are evaluated in

this work using non-linear SVMs. With the radial basis function used in the non-linear SVM

(see 2.2.9), the value of γ is set at 0.04. This value was found in testing to give an improvement

in accuracy over the linear classifier for nearly all of the feature extractor and dataset pairs

tested (to a greater or lesser degree). Values smaller or larger than this were found to be less

effective overall.

Other kernel functions that were tried included the polynomial and sigmoid functions (with

varying parameters), but neither of these resulted in levels of accuracy comparable to the

linear or radial basis functions. The polynomial and sigmoid functions take more than a

single parameter and so testing them is a far more involved process. The focus here is not to

evaluate the performance of different kernel functions, but only to show that classification in

a high dimensional feature space (such as is encoded by HOG and Pro-HOG) may be better

served by a non-linear, rather than a linear classifier.

For all experiments, the positive and negative image extracts are randomly divided into five

groups for cross validation. Five groups were chosen because this provides a good proportion

of data to train the classifier with in each round, while allowing for reasonably efficient

collation of results. During testing, using more than five groups did not give significantly
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different results to ten-fold cross validation. More extreme cross validation schemes (such as

leave-one-out cross validation – training on N − 1 data to validate a single instance in each

round) were not tried. Randomisation used pseudo random number generators seeded with

the same values in each experiment to ensure that each experiment’s results varied only due

to the parameters under evaluation.

Each of the five groups is used as the validation set in turn, with the other four groups

aggregated together to train the classifier. This five fold cross-validation is conducted for

each setting of a parameter in each of the feature extractors. Each round of cross-validation

generates a two class confusion matrix for the positive and negative examples. Figure 4-11

shows sample output displaying an example confusion matrix along with other information

concerning the configuration of parameters such as the SVM and the current feature extractor

being evaluated.

SVM Cross Validator

Parsing Pascal VOC directories... done

Loading data for class ’person’ with min size (width, height) [25 x 25] finished - count = 1562

Loading data for class ’random’ with min size (width, height) [25 x 25] finished - count = 15620

Using data resized to [72 x 72]

Extracting 17182 feature vectors with Pro-HOG [ 4 FALSE 8 8 ] (FV size = 1024) (took 18824.8 msecs)

Validation set sizes (positive, negative) = 312, 3124

Training set sizes (positive, negative) = 1248, 12496

SVM_COST: 1

SVM_EPS: 0.0001

KERNEL: linear

GAMMA: 1

COEF0: 0

DEGREE: 1

Doing 5-fold cross validation . . . . .

[ Results after validation set 5 of 5 ]

Real positives Real negatives Totals

Predicted positives TP: 1411 FP: 579 1990 PPV (Precision) = 0.7090

Predicted negatives FN: 4839 TN: 61901 66740 FNR (Type II) = 0.7742

Totals 6250 62480 68730 F1 = 0.3425

TPR (Recall) = 0.2258 FPR (Type I) = 0.0093 Accuracy = 0.9212

Figure 4-11: Sample output from a single round of cross-validation

The output represents a single data point giving classification accuracy for a given feature

extractor and SVM configuration. The displayed statistics include the Recall or True Positive

Rate (TPR), the Precision or Positive Predictive Value (PPV), the False Positive Rate (FPR

– or type I error rate), the False Negative Rate (FNR – or type II error rate), the F1 statistic

which is the harmonic mean of precision and recall, and the overall accuracy (ACC). Details

concerning the derivation of these statistics are given in section 3.5.
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4.2.2 Gradient Sign Sensitivity

Pro-HOG (and HOG as originally designed) allows for gradient changes to be measured

over 360◦ (sensitive to the sign of the gradient change as well as magnitude), or over 180◦

(insensitive to the sign of the gradient change – effectively storing the absolute magnitude).

For a fixed histogram length, the effect of setting Pro-HOG/HOG to be sensitive to the

sign of the contrast gradient has two effects. Firstly, the angular resolution at which gradient

magnitudes are stored is halved. That is, each histogram bin is responsible for storing gradient

magnitudes over angular sections that are twice as wide as in the case where Pro-HOG / HOG

is insensitive to the sign of the gradient change. Secondly, gradient change in a given direction

is stored in a bin in the histogram that is N
2 bins distant from the bin used to store gradient

change in the opposite direction (increase in gradient is treated as different to decrease in

gradient).

For some object types, distinguishing between the sign of the gradient change can help to

improve classification accuracy by widening (enhancing) inter-class discrimination. However,

for other object types, the effect may be to increase intraclass variation within the positive

class without necessarily improving inter-class discrimination leading to a relative decrease

in accuracy. Even if the length of the histogram is doubled in the case of contrast gradient

sign sensitivity (meaning that angular resolutions are equivalent in both cases), the effect of

not distinguishing between the gradient change in one direction versus change in the opposite

direction will still result in sampling over a different feature space, and thus the class distri-

butions (and the resulting classifiers) will be different. It is instructive and worthwhile to see

this difference for a particular object class, by comparing classification accuracy at a given

histogram length when Pro-HOG is insensitive to the sign of the contrast gradient, versus the

classification accuracy at twice the histogram length when Pro-HOG is sensitive to the sign

of the contrast gradient.

The difference in the setting of the contrast Gradient Sign Sensitivity (GSS) parameter is

shown in figure 4-12. The diagram shows a single cell of 4 × 4 pixels with two pixels α and

β (marked red and blue respectively). In Pro-HOG, the pixel dimensions of each cell are

defined by the cell grid dimensions and the pixel dimensions of the image. In HOG, the pixel

dimensions of the cells are defined a priori (the nominal setting given by Dalal and Triggs

(2005) is 8× 8 pixels). The values of the pixels adjacent to pixels α and β are shown. These

values are used to calculate θ{α,β} and δ{α,β} according to equations 4.2 and 4.3. Each cell is

associated with a histogram, with length fixed to eight bins in this example. Two histograms

are shown underneath the cell. The upper histogram shows how and where in the histogram

the two pixels contribute in relative terms when Pro-HOG is set to be insensitive to the sign
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of the contrast gradient – i.e. dark to light = light to dark. The lower of the two histograms

shows how and where these values are aggregated in the histogram when the direction in

which contrast is changing is taken into account – i.e. dark to light 6= light to dark. Note

that the intermediate step of producing the gradient maps according to algorithm 4.1.3 is not

shown here. The histograms are generated directly from the gradient maps rather than the

original input image.

θα = arctan
(
50−62
96−40

)
δα =

√
(50− 62)2 + (96− 40)2

3 =
⌊
8θα
2π

⌋
mod 8

7 =
⌊
8θα
π

⌋
mod 8

θβ = arctan
(
40−210
62−180

)
δβ =

√
(40− 210)2 + (62− 180)2
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⌊
8θβ
2π

⌋
mod 8
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⌊
8θβ
π

⌋
mod 8
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Figure 4-12: Contrast gradient binning inside a single 4 × 4 pixel cell. The histogram bins
into which gradient magnitudes are binned differ depending on whether Pro-HOG is sensitive
to the direction of the gradient (the lower histogram) or not (the upper histogram).

Gradient measurements that are diametrically opposite are stored in the same bin when

Pro-HOG is insensitive to the sign of the gradient change. This means that even when

Pro-HOG uses a histogram that is twice the length when sensitive to the sign of the gradient

change, the feature encoding will still be characteristically different (and not just in the length

of the generated descriptors which will be twice as long).

The histograms in figure 4-12 show the “soft-binning” of the gradient magnitudes in adjacent

bins. In HOG, orientation magnitudes are also aggregated in the histograms of adjacent cells.

This is a feature that is not implemented in Pro-HOG due to the separation of the pixel

gradient extraction phase and the cell histogram generation phase.
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Figure 4-13 shows precision-recall curves giving the classification accuracy of Pro-HOG for

the person and car Pascal VOC 2007 datasets with GSS both enabled and disabled. For an

otherwise fixed configuration of Pro-HOG, these results show how precision and recall change

over a varying range of decision thresholds. Pro-HOG is configured here using a histogram

length of nine, and cell-block dimensions of 8× 8 (9 × 9 cells) which emulate the settings of

HOG as evaluated in Dalal and Triggs (2005).
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Figure 4-13: Pro-HOG precision-recall curves comparing classification accuracy with gradient
sign sensitivity enabled and disabled (Linear SVMs).

For both the person and car datasets, the single configuration precision-recall results show

a slight improvement in precision and recall at all decision thresholds when Pro-HOG is

configured to be sensitive to the sign of the contrast gradient. In the case of the person

dataset, these results are interesting because they conflict with the results of Dalal and Triggs

(2005) where in the analysis of HOG, it was found that better accuracy over the INRIA

person dataset was obtained when HOG was configured to be insensitive to the sign of the

contrast gradient. The rationale given for this was that the wide range in background colours

and clothing made the sign of the contrast uninformative. However, the Pascal VOC 2007

dataset arguably represents even more in the way of variation concerning these characteristics

(as well as greater variation in other characteristics such as pose and viewpoint).

In the original evaluation of HOG, Dalal and Triggs (2005) state in their methodology that

they use left-right reflections of the person data and that the subjects in the INRIA dataset

are always upright. Using left-right flipped images in this way acts to remove any possible bias

in the more horizontal measurements of contrast orientation. This is appropriate, because

people are roughly symmetric in the vertical axis when standing, and the data should not

bias one particular orientation (e.g. looking to the left or to the right).
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To make a fair comparison, a dataset for the “Person” class was created using the 1777 original

images in the “Person” dataset plus their left-right reflections resulting in a positive dataset

of 3554 images. Again, ten times this number of negative instances were created – also using

flipped left-right images to avoid introducing a possible source of bias. The same doubling of

data (by including the left-right image counterparts) was performed for the “Car” dataset.

The results of performing the classification experiments again using these datasets are shown

in figure 4-14.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Pro-HOG (Grd. Sign Sensitive)
Pro-HOG (Grd. Sign Insensitive)

(a) “Person” (Pascal VOC 2007)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Pro-HOG (Grd. Sign Sensitive)
Pro-HOG (Grd. Sign Insensitive)

(b) “Car” (Pascal VOC 2007)

Figure 4-14: Pro-HOG precision-recall curves comparing classification accuracy with gradi-
ent sign sensitivity enabled and disabled (Linear SVMs) (Original images, plus horizontally
reflected images).

Figure 4-14(a) shows that the use of horizontally flipped image counterparts does decrease the

disparity in accuracy between the gradient sign sensitive and insensitive versions of Pro-HOG.

The GSS enabled version of Pro-HOG still gives slightly better accuracy however – contra-

dicting the explanation given by Dalal and Triggs (2005) for the results of HOG on the

INRIA person dataset. In particular, Dalal and Triggs (2005) state that on the INRIA person

dataset, HOG performs significantly worse when sensitive to the sign of the gradient. The

results in figure 4-14(b) show that the discrepancy in accuracy on the “Car” dataset between

the two different versions of Pro-HOG is also reduced, but that the GSS enabled version is

also still marginally better performing. Further experiments such as repeating the original

experiments on the INRIA dataset using Pro-HOG will help to resolve this issue, but are

beyond the scope of this thesis.
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4.2.3 Histogram Length

The evaluation of the GSS parameter in section 4.2.2 uses a fixed histogram length of nine.

This was based on the recommended setting of this parameter as used in HOG (Dalal and

Triggs, 2005). This section repeats the experiments of the previous section using a range of

histogram lengths. This is done to ascertain if the nominal setting of nine is still appropriate

for Pro-HOG when carrying out subsequent experiments over a range of different object

types.

The length of each cell’s gradient histogram affects the final length of the feature vector and

thus the time taken to extract the feature vector. The accuracy afforded by the feature vectors

for classification does not necessarily improve as the size of the feature vectors increases.

Generalisation to new data can be degraded if too much spurious information about the

training data is encoded in the feature vectors. Two parameters affect the length of the

feature vectors in both Pro-HOG and HOG. The first is the parameter that sets the length of

each individual cell’s histogram. This affects the angular width of the histogram bins. The

wider the angle, the fewer the bins and the greater the number of measurements set in each

bin on average. This means that not enough discriminative information about gradient angles

can be encoded in the histograms leading to degraded classification precision. If the length

of the cell histograms is too great, the feature vectors may start to overfit to the training

data since each bin represents a narrower gradient angle. This may degrade classification

recall. The second parameter is the number of cell blocks that defines how many histograms

are created for an extract. In this section, it is the first of these parameters that is varied

to understand the empirical effects on accuracy. The effect of varying the second of these

parameters is gauged in section 4.2.5.

In the following experiments, recall and precision accuracy at the default unadjusted classifica-

tion threshold (trained using both linear and non-linear SVMs) is evaluated. Under evaluation

are the “Person” and “Car” Pascal VOC 2007 datasets. For both HOG and Pro-HOG, cell-

block dimensions are fixed at 8× 8 (cell-block overlap for both HOG and Pro-HOG remains

fixed as the width/height of a cell giving cell-grid dimensions of 9× 9). For HOG, cell pixel

dimensions are fixed at 8 × 8 pixels. In HOG, images are therefore resized to 72 × 72 pixels

prior to feature extraction. Pro-HOG does not resize the images.

Cross validation is carried out for varying histogram lengths from 2 to 25 bins giving a

minimum feature vector length of 4 × 2 × 82 = 512, and a maximum feature vector length

of 4 × 25 × 82 = 6400. The tests are carried out as in section 4.2.2 with both GSS enabled

and disabled for Pro-HOG. As previously noted, the reference implementation of HOG being

92



used in these tests is insensitive to the sign of the gradient. The results of these experiments

are shown in figures 4-15 and 4-16.
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Figure 4-15: Pro-HOG classification precision and recall versus cell histogram length for HOG,
and GSS enabled and disabled versions of Pro-HOG. (“Person” Pascal VOC 2007 dataset with
linear SVMs).

On the “Person” dataset, figure 4-15 shows that while HOG has better recall accuracy over-

all (fewer false negatives), Pro-HOG gives better precision (fewer false positives). The im-

provement in precision by Pro-HOG is greater than the corresponding degradation in recall

meaning higher overall accuracy (although higher recall may be preferred over precision in

real world use). Pro-HOG with GSS enabled has better recall than with GSS disabled at

histogram sizes greater than ten. While recall does not increase for GSS disabled Pro-HOG

at histogram lengths larger than ten, recall does increase for GSS enabled Pro-HOG up to a

histogram length of 16, albeit slowly. Thereafter, recall no longer improves. For all three clas-

sifiers, precision degrades after an initial maximum value at a cell histogram length of three

(for HOG and GSS disabled Pro-HOG) and four (for GSS enabled Pro-HOG) although the

rate of degradation in precision as the histogram length increases for GSS enabled Pro-HOG

is less pronounced than for GSS disabled Pro-HOG. There is an unusually large jump in pre-

cision at 25 bins (also reflected to a lesser extent in recall) for GSS disabled Pro-HOG which

requires further investigation since this value is so unrepresentative of the trend up until this

point.

On the “Car” dataset, figure 4-16 shows that Pro-HOG improves both recall and precision

over HOG with linear classification. The higher values for recall and precision for all three

of the extraction techniques (compared to the “Person” dataset) are indicative of the ability

of the SVM to find a good separating boundary between the positive and negative classes.
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(b) Precision vs Histogram Length

Figure 4-16: Pro-HOG classification precision and recall versus cell histogram length for HOG,
and GSS enabled and disabled versions of Pro-HOG (“Car” Pascal VOC 2007 dataset with
linear SVMs).

As in the case of the “Person” dataset, enabling GSS gives higher accuracy in Pro-HOG at

larger histogram lengths (greater than ten for recall, but greater than five for precision), but

the improvement in recall and precision is not as great this time. The unusual bump in recall

and precision for Pro-HOG is again seen at bin 25, although it is not as pronounced as in the

case of the “Person” class. This indicates that the outlier value is probably not a random

occurrence and that it is unrelated to a specific collection of data. One possible explanation

is that this value is related to the specific pattern of pseudo random numbers generated when

performing cross-validation in every experiment (the random number generator is always

seeded with the same value).

For all three feature extractor configurations in both the “Person” and “Car” experiments,

increasing the cell histogram length and thus the resolution at which orientation information

is extracted does not lead to a degradation in recall and a corresponding improvement in

precision as expected; the opposite behaviour is in fact observed. In general, classifiers in

higher dimensional feature spaces are less accurate if the size of the dataset remains constant

because the average density of observations in feature space decreases. However, strong

correlations between multiple features may help the classifier to retain high accuracy even as

the number of features increases. Since classification accuracy remains high even as the length

of the individual cell histograms is increased, it may be that the more important parameter in

determining the accuracy of the classifier are the dimensions of the cell grid and the number

of individual cell histograms used to form the final feature vectors.
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Non-Linear Classification

A linear classifier may not allow for the best separation of feature space given the changing

length of the cell histograms and so it is instructive to repeat the experiments using non-linear

classification and the radial basis function of equation 2.19. Given the same feature vectors,

the non-linear classifier may be better able to separate the positive and negative classes, as

demonstrated by improved recall and precision. The results of these experiments using non-

linear classification are shown in figure 4-17 for the “Person” dataset, and the results for the

“Car” dataset are shown in figure 4-18.
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(b) Precision vs Histogram Length

Figure 4-17: Pro-HOG classification precision and recall versus cell histogram length for HOG,
and GSS enabled and disabled versions of Pro-HOG. (“Person” Pascal VOC 2007 dataset with
non-linear SVMs).

Figure 4-17(a) shows overall that recall is improved over all three feature extractors, but

that this improvement is more pronounced at the lower range of histogram lengths. For

GSS disabled Pro-HOG and HOG, maximum recall is reached at a histogram length of nine.

For GSS enabled Pro-HOG, accuracy in recall monotonically increases over the tested range,

although the increase is much more gradual after a histogram length of 16. The recall values

for GSS enabled Pro-HOG have magnitudes that approximately match those of GSS disabled

Pro-HOG at half the histogram length up to a histogram length of ten (for GSS enabled

Pro-HOG). This is congruent with the explanation of how the angular width mapped to each

histogram bin in the GSS case only matches the angular width in the GSS disabled case when

GSS histograms are twice as long. The increasing improvement in recall for GSS enabled

Pro-HOG compared to the gradually decreasing recall accuracy for GSS disabled Pro-HOG

after a histogram length of twelve is explained by the ability of GSS enabled Pro-HOG to

more distinctly encode contrast orientations that may be important features for classifying

the object class under evaluation. The degradation in recall at the longer histogram lengths
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for HOG and GSS disabled Pro-HOG may indicate the better separability afforded by non-

linear classification showing that a good separation in feature space has been found for a lower

feature space dimensionality. With the non-linear classifier, increasing the dimensionality of

features (especially since they encode essentially very similar aspects of the object) does not

serve to improve recall, and may be causing the classifier to begin to overfit to the training

data because of the narrower gradient angles represented by the histogram bins.

The precision results for non-linear classification of the “Person” dataset in figure 4-17(b)

are much higher overall, and remain high even at larger histogram lengths (unlike the linear

classification case shown in figure 4-15(b)). After bin nine in the non-linear case, better

accuracy in precision is delivered by HOG; as recall decreases with increasing histogram

length, the proportion of predicted positive instances (the precision) increases. Once again,

over the whole range of histogram lengths, GSS enabled Pro-HOG gives better precision than

GSS disabled Pro-HOG, but the difference is not as great – even at larger histogram lengths.

In the linear classification case, HOG precision at the smallest effective histogram length

started relatively low and decreased but in the non-linear case, HOG precision starts near the

same value but improves. With Pro-HOG, precision still decreases after initially high values,

but the decrease is much more shallow and the rate of degradation decreases as the histogram

length increases. This is further evidence that non-linear classification can produce a better

fit for the data than linear classification given the same feature space.
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(b) Precision vs Histogram Length

Figure 4-18: Pro-HOG classification precision and recall versus cell histogram length for HOG,
and GSS enabled and disabled versions of Pro-HOG. (“Car” Pascal VOC 2007 dataset with
non-linear SVMs).

Comparing the results for the non-linear classification of the “Car” dataset (see figure 4-18)

to that of the “Person” dataset, similar overall trends in the shapes of the graphs are ob-

served. Recall accuracy plateaus around a histogram length of nine for all three extractors
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and thereafter no longer increases and even gradually decreases (this is more clearly seen in

the HOG results). Greater dissimilarity between the two cases of classifier is evident in the

precision graph of figure 4-18(b). The change from linear to non-linear classification gives

a different ordering of the extractors in terms of their relative accuracy. HOG now gives

better precision than both the Pro-HOG extractors while there is now very little difference in

precision between the two Pro-HOG extractors. Overall precision is higher at all histogram

lengths which is congruent with the expectation that non-linear classification gives improved

class separability. The average precision taken over all three extractors shows a slight pos-

itive correlation with the histogram length (from being negatively correlated in the linear

classification case).

Summary

From the above results on both the “Person” and “Car” Pascal VOC 2007 datasets, the

following conclusions can be made about the effect of varying the cell histogram lengths in

HOG and Pro-HOG. Increasing the length of the histograms does not significantly degrade

classification recall, but it is also not improved. Recall accuracy is on the whole higher using

non-linear classification. GSS enabled Pro-HOG tends to show better recall than GSS disabled

Pro-HOG, but only at larger histogram lengths.

Non-linear classification allows for much improved precision over linear classification. In the

linear case, precision is not improved by increasing the length of the histograms and in the

non-linear case, precision is only improved in some cases and not significantly as histogram

length increases.

For any of the extractor configurations, a cell histogram length no shorter than nine is rec-

ommended to maintain sufficiently high classification recall and precision, but no larger than

this to avoid the possibility of degradation in accuracy (primarily in precision). This is con-

gruent with the cell histogram length recommendation for HOG in Dalal and Triggs (2005).

However, it is not clear if these conclusions are generally applicable or if they are specific to

the two datasets tested here. Further testing on a greater variety of object types should help

to clarify this.

Given the lack of very significant degradation in classification accuracy as the length of the

cell histograms increases, it is probable that this aspect of the algorithm is less important in

determining how accurately objects are encoded (for the purposes of classification), than the

cell resolution parameter which determines the number of histograms used to produce the

final descriptor. The effect of varying this parameter is investigated in section 4.2.5.
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4.2.4 Extract Scaling

In HOG, extracts are always resized to fixed pixel dimensions prior to calculating the cell

histograms. This means that all images, unless they are already at the predefined pixel

dimensions, experience some degree of resizing. Since the act of resizing an image can modify

the quality of the information it portrays (see section 2.1.2), it is important to understand

how the act of image resizing prior to the extraction of features affects the quality of the

extracted features. A proxy measure for this quality is classification accuracy.

In these experiments, Pro-HOG is evaluated using a fixed configuration against the Pascal

VOC 2007 “Person” and “Car” datasets. The individual extracts are resized to be larger or

smaller than the originals by different scaling factors. Pro-HOG always generates the cell

histograms using the image at the dimensions it is supplied in and so repeating the same

classification experiment with differently scaled image extracts will show if the act of scaling

the images changes the nature of the extracted feature descriptors, and thus the classification

accuracy.

Because the images from within the datasets are of varying sizes, any differences in classifica-

tion accuracy will be due solely to the effects of scaling the extracts. If the image scale factor

is not important, the results ought to show relatively unchanged recall and precision accu-

racy for the two datasets and no obvious correlation with image scale. Any variation from a

consistent response will indicate that scaling the images (either up with factors < 1 or down

with factors ≥ 1) acts to improve or worsen classification accuracy. If accuracy does vary

with different scaling factors, the results should indicate if there is a preferred scaling factor

for the images. It is hypothesised that image scaling (whether up or down) can corrupt the

image quality, and so the expectation is that the best classification accuracy will be achieved

when no resizing is conducted (a scale factor of 1).

Pro-HOG is configured to use a fixed histogram length of nine and cell-block dimensions of

8× 8 (giving cell grid dimensions of 9× 9). Each image extract is scaled at intervals of 0.2 by

factors from 0.2 to 5.0, and five-fold cross validation is performed using the same methodology

as in section 4.2.2. The minimum size of a valid example for both datasets is set to 45 × 45

pixels so that at the smallest scale factor of 0.2, the images are still large enough to be encoded

by the 9 × 9 cell grid (each cell then represents a single pixel). Extracts smaller than these

dimensions from either of the datasets are not used. This results in total dataset sizes of 507

“Car” examples and 1219 “Person” examples. For both datasets, ten times as many negative

examples are used. Since the type of classification is irrelevant here, only linear classifiers are

used. Figure 4-19 shows precision and recall results for the two datasets.
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Figure 4-19: Recall & Precision against Extract Scale using Pro-HOG and Linear Classifiers

These results show that for the “Car” dataset, image scaling by a factor ≥ 1 does not change

the quality of the extracted features such that classification accuracy is degraded – either in

terms of recall or precision. This is because above a scale factor of one, the graphs remain

flat. At scaling factors < 1, recall and precision quickly degrade.

For the “Person” dataset, scaling the extracts by factors > 1 does appear to show a very

slight negative correlation with recall, but a very slight positive correlation with precision. At

scaling factors < 1, only precision is degraded – recall remains relatively unchanged. As the

image scale factor increases (> 1), the difference in recall and precision is due to a change in

the relative proportion of type I and type II errors (false positives and false negatives). The

overall number of true positive predictions remains fairly constant. The anomaly in recall at

a scale factor of one is difficult to explain since the same instances were used in each round

of cross validation. This was ensured by the use of the same seed for the pseudo random

number generator being used. It is probable that this result was simply due to the specific

nature of the features extracted at this scale. Similar recall accuracy is seen at a scale factor

of three. It is possible that there is no real correlation between accuracy and scale factor –

simply that the variance in the data is larger than in the “Car” dataset meaning that there

is greater variation in the results.

Summary

Down sampling the extracts at the smallest scaling factors tends to reduce both recall and

precision (although this is not clearly seen here in the results on the “Person” dataset). This is

not unexpected since down sampling the extracts from their original sizes reduces the amount
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of information present. These findings are congruent with those of Dollar et al. (2014).

These results help to validate the design of Pro-HOG in its avoidance of scaling input im-

ages prior to feature extraction. Image scaling appears to have no overall positive impact

on classification accuracy, and if images are scaled down from their provided dimensions,

the resulting classification accuracy can be severely degraded. The fact that image scaling

increases computation time for no apparent benefit means that there is no good reason to

incorporate it into a feature extractor if it can be avoided. HOG resizes all images to fixed

pixel dimensions before extracting features. This risks reducing classification accuracy if those

images are originally at larger dimensions than the fixed pixel resizing dimensions used by

HOG. These results strongly suggest that the extraction of HOG type features without first

resizing image extracts should be preferred.

4.2.5 Cell Grid Dimensions

This set of experiments repeats those of section 4.2.2 but use a fixed cell histogram length

for all three feature extraction configurations while varying the dimensions of the cell grid

over which the histograms are generated. The aim here is to understand how classification

accuracy behaves with the changing dimensions of the cell grid, and whether there is any

significant difference between Pro-HOG and HOG in this respect.

Changing the dimensions of the cell grid affects the relative area of an image encoded by each

cell’s histogram. Larger dimensions of the cell grid means a denser sampling of the image

features with more detail concerning the change across the image / object as a whole. This can

result in the descriptors encoding information that is too specific to the individual instances

and may lead to poor generalisation past a certain point. Smaller cell grid dimensions means

that less detail is extracted and generalisation should be improved, but this may also cause

an increase in the false positive rate if the cell grid dimensions are too small. The cell grid

dimensions increase in width and height by one cell in each step and so the length of the

produced feature vectors increases quadratically (as opposed to linearly when testing the

histogram length), so the point where recall begins to degrade may be reached sooner than

when solely increasing the length of the gradient histogram.

Neither HOG or Pro-HOG can accept images with pixel dimensions that are lower than the

predefined dimensions of the cell grid. In HOG, this is not an issue because images are resized

to fixed pixel dimensions prior to processing; images that are too small are up-scaled to the

necessary pixel dimensions. Since each data point needs to be generated using the same size

100



dataset, in Pro-HOG images having pixel dimensions smaller than the cell grid dimensions

being tested are first up-scaled so that they can be processed at those cell-grid dimensions.

This is acceptable because the evaluation in section 4.2.4 shows that up-scaling images does

not degrade the ability of the feature extractor to encode discriminative information about

the instances. This also allows the full dataset to be used for each object type. Note that

while Pro-HOG only ever up-scales images, HOG may down-scale some input images to the

predefined fixed pixel dimensions, and this can cause information to be lost – leading to

diminished classification accuracy.

Cell grid dimensions are evaluated from 2 × 2 cells-blocks to 25 × 25 cell-blocks. Since each

cell-block is 2 × 2 cells, the cell grid dimensions are one more than this in both height and

width (3×3 cells to 26×26 cells). The length of the individual cell histograms is fixed at nine

since the results of section 4.2.2 show that this gives good recall and precision over the “Car”

and “Person” Pascal VOC 2007 datasets. Larger histograms may result in improved recall

and precision but the gain is much smaller and relatively shorter feature vectors also have the

practical benefit of being faster to compute. This is also the histogram length recommended

for use in the original evaluation of HOG by Dalal and Triggs (2005) (and it is the default

parameter setting in the OpenCV reference implementation of HOG). Pro-HOG has gradient

sign sensitivity (GSS) disabled to allow for a fair comparison with HOG.

The results showing the effects on recall of varying the cell grid dimensions on the “Person”

Pascal VOC 2007 dataset are shown in figure 4-20. Figure 4-21 shows the effects on precision.

The experiments are conducted using both linear, and non-linear classification.
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Figure 4-20: Recall versus cell grid dimensions for the “Person” Pascal VOC 2007 dataset

Figure 4-20 shows that Pro-HOG and HOG encode information about the extracts differently

as the cell grid dimensions increase. Figure 4-20(a) shows that while HOG has higher recall
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over the full range of cell dimensions tested, the difference in recall accuracy with Pro-HOG

is not consistent. The rate of recall is initially similar between the two extractors before

diverging at cell-block dimensions of 5 × 5. Recall reaches a peak at cell-block dimensions

of 11 × 11 for HOG and cell-block dimensions of 15 × 15 for Pro-HOG. This difference in

behaviour in recall accuracy is more pronounced for the non-linear classifier as shown in

figure 4-20(b). In this non-linear case, HOG has a slightly narrower peak in maximum recall

around cell-block dimensions of 7×7. The peak in recall for Pro-HOG comes later at cell-block

dimensions of 9× 9.

The larger variation in recall accuracy shown by HOG (especially in the non-linear case)

shows that HOG is more susceptible than Pro-HOG to changes in the setting of the cell-

grid dimensions. This can be explained by the fact that HOG implements more involved

methods of “smoothing” the values of the generated cell histograms. At smaller cell grid

dimensions this will act to improve generalisation. However, at larger cell grid dimensions,

HOG’s interpolating of adjacent cell histograms may increase the “noisiness” of the generated

descriptors, decreasing recall accuracy faster than Pro-HOG which is better able to retain

structural details because it does not interpolate histogram values from adjacent cells.

The drop in recall accuracy for both Pro-HOG and HOG at the higher cell-block dimensions

seen in figure 4-20(b) is almost certainly due to the classifier overfitting to the training data

at higher feature vector dimensionality. The dimensionality of the feature space increases

quadratically with the dimensions of the cell grid while the number of observations remains

constant leading to a much more sparsely populated space for training the classifiers. In

the non-linear case, the greater degrees of freedom available to fit the separating hyperplane

means that the learning algorithm is much more likely to support a boundary that is less

representative of the true population boundary than in the linear case which is more limited

in its placement of the boundary in the same space.

The graph of precision using linear classification in figure 4-21(a) shows a distinct difference

in how Pro-HOG and HOG behave under the same configuration. At lower cell-block dimen-

sions, Pro-HOG exhibits higher precision than HOG until cell-block dimensions of 14 × 14.

Thereafter HOG gives improved precision. A similar trend is seen in figure 4-21(b), but

the cell-block dimensions at which HOG provides for improved accuracy comes earlier at

7× 7.

Measurements of precision become much less reliable at higher cell-block dimensions in the

non-linear classification case as the overall number of positive predictions falls (both true

positives and false positives) i.e. the differences in precision are much more pronounced in

relative terms. In the non-linear case of precision in figure 4-21(b), the drop off in precision
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(b) Precision vs Cell Grid Dimensions (RBF SVM)

Figure 4-21: Precision versus cell grid dimensions for the “Person” Pascal VOC 2007 dataset

comes at the point where the classifiers are failing to make any positive predictions – the

differences between the positive and the negative examples are completely opaque to the

non-linear classifiers at this high feature dimensionality given the sparsity of the training

data.

The results for the “Person” dataset show that HOG is more susceptible to changes in cell-

block dimensionality (with slightly narrower peaks, and more pronounced inflections in the

non-linear recall results), while Pro-HOG is slightly more stable but has less overall recall

accuracy. The higher rates of precision and the lower rates of recall seen with Pro-HOG,

especially at lower cell-block dimensions, could be because a larger proportion of the images

are not being scaled down as they are in HOG, and also that no interpolation or cell resolution

smoothing of the histograms is undertaken by Pro-HOG. Pro-HOG therefore has access to

more information in an image on average than HOG at the lower cell-block dimensions and

the individual cell histograms will be more specific to the examples they are generated from.

This increased detail seen by Pro-HOG in the larger examples will inhibit the recall of those

examples. As a proportion, if Pro-HOG is better able to correctly classify the smaller examples

but most of the larger examples are classified as negatives, this will show up as increased

precision over the positive predictions. The relative stability in recall shown by Pro-HOG

over HOG is then evidence of the bias of Pro-HOG towards these smaller examples.

Figures 4-22 and 4-23 show the results of these experiments repeated on the “Car” Pascal

VOC 2007 dataset.

As with the recall results for the “Person” dataset, the recall results for the “Car” dataset

shown in figure 4-22 show less variance over a greater range of cell grid dimensions for
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(a) Recall vs Cell Grid Dimensions (Linear SVM)
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Figure 4-22: Recall versus cell grid dimensions for the “Car” Pascal VOC 2007 dataset
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(b) Precision vs Cell Grid Dimensions (RBF SVM)

Figure 4-23: Precision versus cell grid dimensions for the “Car” Pascal VOC 2007 dataset

Pro-HOG, but more variance for HOG. Unlike the results on the “Person” dataset, recall

is on average higher for Pro-HOG. The difference in precision as the cell grid dimensions

vary as shown in the graphs of figure 4-23 is not as great as for the “Person” dataset. HOG

has slightly higher precision on average than Pro-HOG and this indicates increased certainty

in the positive predictions – a lower relative number of false positives. But with the lower

recall this suggests that HOG is overfitting to the training data more than Pro-HOG on this

dataset. This is unexpected given that HOG implements methods to interpolate and smooth

the characteristics of its generated histograms more than Pro-HOG does. The effect of such

functionality is usually to assist in the ability of the feature descriptors to generalise more

readily to new observations – increasing recall accuracy at the cost of precision. The fact

that this is not occurring on this particular dataset indicates that the lack of these features

in Pro-HOG may not place it at too great a disadvantage.
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Summary

Given these results on the “Person” and “Car” Pascal VOC 2007 datasets, there is no preferred

setting of the cell-block dimensionality that works best in both cases – either for Pro-HOG or

for HOG. Both HOG and Pro-HOG have similar classification accuracy on average although

they clearly behave differently on the two datasets. On the “Person” dataset, HOG gives

improved recall though not necessarily better precision. On the “Car” dataset, Pro-HOG

gives better recall, but better precision only at lower cell-block dimensions.

In general, to avoid the possibility of overfitting to the training data (particularly in the case

of non-linear classification), lower cell-block dimensions should be preferred. Cross-validation

on sample data can be performed to discover feature extraction parameters that are best

suited to the particular object classification task.

The results so far show on the two object classes evaluated (the “Person” and “Car” Pascal

VOC 2007 datasets), that it is very difficult to empirically establish whether Pro-HOG offers

improved recall and precision accuracy in general over HOG. Testing the extractors using

only two different object types is insufficient to provide a reliable insight into the behaviour of

Pro-HOG as it compares to HOG. In the following section, a more involved set of experiments

on a range of different object types from two new datasets is undertaken.
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4.3 Evaluation Against Many Object Types

In this section, Pro-HOG and HOG are evaluated for their object classification accuracy over

several object types from the AAM and Earthmine datasets (which are described in chapter 3).

The feature extractors are used to generate descriptors from both the RGB images (which

are first converted to intensity images), and the depth maps that are available in these two

datasets.

4.3.1 Experimental Aims

The primary aim of this section is to compare recall and precision accuracy over a relatively

diverse range of object types so that some reliable conclusions can be made about the general

performance of Pro-HOG compared to HOG in the context of object classification.

The secondary aim is to test if the features that can be extracted by Pro-HOG and HOG

from the depth maps available in the AAM and Earthmine datasets are comparable to the

features generated from the colour images in these datasets for the purposes of object classi-

fication.

Depth Descriptors

To produce feature vectors from the depth data, the extraction algorithms must be able to

handle the different data types. The depth data for the AAM and Earthmine datasets are

stored as single channel floating point values. Only depth values up to one hundred metres

are used. Larger values are presumed to be too distant to prove useful for classification

purposes and they are ignored. The depth data must be converted to a format that the

extractors are able to parse. The OpenCV implementation of HOG can only process byte

length integer pixel values (from 0 to 255 inclusive). In order to use the depth data in the

OpenCV implementation of HOG, the images are converted to this format, reducing the

precision of the depth values to 1
2 × 100

255 ≈ 0.2 metres. For the AAM data in particular where

depth values are captured at millimetre precision, this is a significant degradation in precision.

Pro-HOG is designed to convert all input data to floating point values before constructing

the pixel resolution contrast histograms. Although this means that Pro-HOG is slower than

HOG in this step (since floating point arithmetic is inherently slower than integer arithmetic),

it does mean that the precision of the data values remains intact. Pro-HOG thus allows for
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a more accurate encoding of the depth data compared to HOG and should give improved

classification accuracy – especially with the AAM object types.

Gradient Sign Sensitivity

Alongside HOG, Pro-HOG is tested against each object type in four different configurations.

In two of these, Pro-HOG is configured to be sensitive to the sign of the contrast gradient

(GSS enabled). The results of section 4.2.2 show that Pro-HOG gives better classification

accuracy on the Pascal VOC “Person” and “Car” object types with GSS enabled. The results

on the Pascal VOC 2007 “Person” dataset contradict the rationale given by Dalal and Triggs

(2005) for the explanation of why HOG gives better accuracy on the INRIA person dataset

when insensitive to the sign of the contrast gradient. Testing the effect of GSS being enabled

or disabled over a broader range of object types will help to understand how much of an

effect this setting has more generally. It is expected that enabling GSS in Pro-HOG will

allow for improved classification accuracy over most, if not all of the object types. As already

noted, the OpenCV implementation of HOG used in this work does not allow for HOG to be

configured to be sensitive to the sign of the contrast gradient, and so comparisons concerning

the effectiveness of GSS are made only between the two different configurations of Pro-HOG

for each object type.

Image Resizing Effects

Pro-HOG’s default mode of operation is to extract features from images as they are presented

at their native resolution. However, feature extraction using Pro-HOG can be modified to

emulate HOG’s behaviour of resizing input images to fixed pixel dimensions prior to the

extraction of features. This is undertaken for both the GSS enabled and disabled versions of

Pro-HOG. Fixing the dimensions of the input images for Pro-HOG to match HOG’s resizing

dimensions means that any differences in classification accuracy will be due to algorithmic

differences such as the block-normalisation scheme and the lack of bi-linear cell interpolation

of histogram values in Pro-HOG. In particular, this means that the GSS disabled version of

Pro-HOG should very closely match HOG but for these few algorithmic differences.

Pro-HOG seeks to trade its lack of some aspects of the HOG algorithm (and resulting possi-

ble degradation in classification accuracy), for scale-invariant feature extraction which avoids

image resizing, especially image resizing images down from their original dimensions which

section 4.2.4 showed decreased classification accuracy. By controlling this aspect of the algo-
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rithm and testing over a range of different object types with differing image dimensions, it can

be determined whether this trade off is to the overall benefit or detriment of Pro-HOG.

For object types represented at generally smaller sizes than the fixed resizing dimensions used

by HOG, it is expected that Pro-HOG will not perform as well as HOG because images will

be scaled up which was shown in section 4.2.4 to not decrease classification accuracy. HOG

will be able to leverage the aspects of its algorithm that are lacking from Pro-HOG in these

cases. For object types with native image sizes generally larger than the resizing dimensions

used by HOG, it is expected that Pro-HOG will allow for improved classification accuracy

because HOG will downsize the images causing information to be lost. Pro-HOG’s scale

independent feature extraction should allow for better feature representation and therefore

improved classification accuracy in these cases.

4.3.2 Methodological Parameters

Dalal and Triggs (2005) use cell-block dimensions of 8 × 8 in their evaluation on the INRIA

dataset. In section 4.2.5 these dimensions also resulted in reasonable levels of recall and

precision accuracy for the Pascal VOC 2007 “Person” and “Car” object types – for both

HOG and Pro-HOG. In the experiments in this section, HOG uses fixed cell pixel dimensions

of 8×8 – the same as used by Dalal and Triggs (2005) in HOG’s original evaluation against the

INRIA person dataset. This setting of the cell pixel dimensions may not be ideal for all object

types, but it provides a baseline in order to compare against Pro-HOG. This setting results

in fixed image resizing dimensions of 72×72 pixels prior to feature extraction since cell-blocks

are 2× 2 cells and the cell grid resolution must be 9× 9 to give 8× 8 cell-blocks.

Given the results of section 4.2.2 all datasets are evaluated using the left-right horizontal

reflections of the images (both the positive and negative image sets) to avoid any lateral

viewpoint bias in the object representations. The size of the negative image set for each class

is set at ten times the size of the positive image set. For each object type, the experiments

are repeated using both linear and non-linear (RBF) SVMs. For ease of comparison, results

for the Pascal VOC “Person” and “Car” classes are also given although only results for the

descriptors derived from the RGB images are available because depth information is not

available in the Pascal VOC dataset.
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4.3.3 Object Types

Table 4.1 shows the breakdown of the object types evaluated giving the number of examples

per class (left-right mirror pairs), the minimum and maximum dimensions (in pixels), and

the median area (in square pixels) of the examples in each class.

Dataset Object Count Min Size Max Size Median Area

Pascal VOC Car 729 24× 10 467× 373 14884 sq. pxls

Pascal VOC Person 1777 11× 29 439× 374 10816 sq. pxls

AAM Car 729 11× 9 162× 78 1089 sq. pxls

AAM Traffic Light 1172 8× 24 235× 243 2116 sq. pxls

AAM Triangular Road Sign 163 9× 14 73× 204 529 sq. pxls

AAM Truck / Van 188 19× 16 216× 113 2025 sq. pxls

AAM Road Light 1461 14× 49 248× 347 7921 sq. pxls

AAM Telegraph Pole 937 5× 16 79× 272 2304 sq. pxls

AAM Rectangular Road Sign 668 8× 12 99× 213 900 sq. pxls

AAM Generic Road Sign 1489 6× 20 95× 191 729 sq. pxls

Earthmine Car 52 16× 15 329× 169 8100 sq. pxls

Earthmine Garbage Bin 122 7× 9 51× 90 289 sq. pxls

Earthmine Traffic Light 178 8× 22 108× 318 1156 sq. pxls

Earthmine Parking Sign 143 7× 31 36× 169 1225 sq. pxls

Earthmine Traffic Cone 52 5× 9 31× 52 400 sq. pxls

Table 4.1: Object Classes used for Object Classification Evaluation

The experiments on each object type are separated into their own sections. For each object

type, a representative selection of examples are shown together with the distribution of the

extract sizes shown as a histogram. Any pertinent information concerning the object type and

how classification on the type may perform given its characteristics is also discussed.

The results are given in the form of tables showing the recall, precision and F1 scores for

HOG and each configuration of Pro-HOG, for both the linear and the non-linear classifiers at

the default classification threshold. Precision-recall graphs for the two classifiers types used

(linear on the left, non-linear on the right) show the resulting accuracy for the different feature

extractor configurations over all classification thresholds. Results are shown separately for the

descriptors generated from intensity images, and for those generated from depth maps.

Pseudo random number generators with the same seeds determine the subsets of the data in

each of the cross validation rounds, so that the results for the RGB and the depth descriptors

are directly comparable.

Following the results for each object type, a brief individual summary is given, concentrating

109



on the behaviour of the different configurations of the feature extractors, and the differences

in classification accuracy of the intensity and depth image based descriptor types.

After all of the individual evaluations of the different object types, section 4.4 summarises

the findings to make an assessment of the general behaviour of HOG versus Pro-HOG in its

different configurations over all fifteen of the tested object types. Some follow up experiments

are conducted to clarify questions raised in the individual object evaluations.

4.3.4 Pascal VOC “Car”

Some example images from the Pascal VOC “Car” dataset are given in figure 4-8. Figure 4-24

shows that the size distribution of these examples is large, but only 266 of the 729 examples

(36%) are less than the fixed resize dimensions of 722 square pixels. This means that almost

two thirds of the data are resized to be smaller than their original dimensions – potentially

degrading the quality of feature encoding in these cases. It is expected that Pro-HOG in its

originally conceived scale independent mode (not emulating HOG’s resizing behaviour) should

allow for an overall improved level of classification accuracy over image resizing configurations

of Pro-HOG as well as the original HOG algorithm.

Figure 4-24: Distribution of example sizes for the Pascal VOC “Car” object type.

In the linear classification case (figure 4-25(a)), the hypothesised behaviour is borne out with

some caveats. The GSS disabled, image resizing version of Pro-HOG, is most similar in

behaviour to HOG, and gives better performance than HOG even though it lacks some of the

algorithmic normalisation aspects of HOG. This level of accuracy cannot be entirely explained

in terms of the image resizing. The GSS enabled, image resizing version of Pro-HOG gives

accuracy that is more akin to (and not significantly different from) the two best performing

versions of Pro-HOG – both of which do not resize the images.

For the two versions of Pro-HOG that parse the images at their original size, whether or

not GSS is enabled, there is very little difference in classification accuracy. However, when
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.8411 0.7811 0.8137

Pro-HOG (GSS, 72× 72) Linear 0.8949 0.8121 0.8515

Pro-HOG (72× 72) Linear 0.8511 0.7922 0.8206

Pro-HOG (GSS) Linear 0.8972 0.8203 0.8570

Pro-HOG Linear 0.8780 0.8196 0.8478

HOG Non-Linear 0.9631 0.8409 0.8979

Pro-HOG (GSS, 72× 72) Non-Linear 0.9307 0.8381 0.8820

Pro-HOG (72× 72) Non-Linear 0.9267 0.8237 0.8722

Pro-HOG (GSS) Non-Linear 0.9243 0.8464 0.8836

Pro-HOG Non-Linear 0.9297 0.8525 0.8894

Table 4.2: Classification Results – Pascal VOC “Car” (Intensity descriptors)
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Figure 4-25: Precision versus Recall using feature descriptors extracted from intensity images
of the Pascal VOC 2007 “Car” object type.

the images are resized to fixed dimensions, enabling GSS improves accuracy – primarily in

precision which improves approximately twice as much as recall at the default classification

threshold. In the non-resizing versions of Pro-HOG, GSS also mainly improves precision, but

the gain is not as large.

In the results for the non-linear classification case shown in figure 4-25(b), the results across

the different extractors are much tighter. HOG gives better overall accuracy, closely followed

by the GSS disabled version of Pro-HOG (which gives the best overall recall).

Even though enabling GSS does not increase the dimensionality of the feature space, it does

allow for greater variance in the range of histogram encodings. With a fixed size of training

data but a more flexible training algorithm (as allowed by the non-linear kernel function), this
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may be contributing to a less accurate estimation of the classification boundary by the SVM.

At the default classification threshold, as seen in table 4.2, resizing the images in Pro-HOG

causes a slight drop in recall with no significant change in precision (a drop of ≈ 3% points

in recall for the GSS disabled version). In terms of overall accuracy, in the non-linear case,

Pro-HOG appears to offer no significant improvement over HOG for this object type.

4.3.5 Pascal VOC “Person”

Figure 4-6 shows some examples from the Pascal VOC “Person” dataset. Like the Pascal

VOC “Car” dataset, the size distribution of these data is also large, but with a greater mass

of the data at the smaller image sizes. Most of the images are represented at sizes larger than

the fixed resize dimensions. In this case, 66% of the images are larger and will be downsized

by HOG and the image resizing versions of Pro-HOG – leading to possible information loss.

It is expected that Pro-HOG in its original configuration will allow for improved accuracy

because of this bias towards larger native image sizes.

Figure 4-26: Distribution of example sizes for the Pascal VOC “Person” object type.

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.6904 0.4316 0.5312

Pro-HOG (GSS, 72× 72) Linear 0.7988 0.4133 0.5448

Pro-HOG (72× 72) Linear 0.7818 0.4114 0.5391

Pro-HOG (GSS) Linear 0.8247 0.3745 0.5151

Pro-HOG Linear 0.8001 0.3751 0.5107

HOG Non-Linear 0.8446 0.6165 0.7128

Pro-HOG (GSS, 72× 72) Non-Linear 0.8244 0.5656 0.6709

Pro-HOG (72× 72) Non-Linear 0.8104 0.5869 0.6808

Pro-HOG (GSS) Non-Linear 0.8715 0.4961 0.6322

Pro-HOG Non-Linear 0.8462 0.5478 0.6651

Table 4.3: Classification Results – Pascal VOC “Person” (Intensity descriptors)

Figure 4-27(a) shows that Pro-HOG enables better accuracy than HOG in all four of its
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Figure 4-27: Precision versus Recall using feature descriptors extracted from intensity images
of the Pascal VOC 2007 “Person” object type.

configurations in the case of linear classification. The image resizing versions of Pro-HOG

perform better than the non-resizing variants. Most of this improvement in accuracy is in

recall which offsets a slight reduction in precision.

This behaviour is not reflected in the Pascal VOC “Car” class in the linear classification

case. There are a much larger number of examples in this class however, and the intraclass

appearance variation is also much greater. Down-sizing the images may help to decrease the

amount of intraclass variation inherent in the different sizes of images caused by the inherently

fractal nature of the detail present in examples of this object type. That is, images at larger

resolutions will continue to introduce more detailed structure not present at lower resolutions

(e.g. clothing textures) instead of simply clarifying the structural information already present

(as in the case of objects such as cars that express relatively larger areas of uniform texture

and contrast). These results indicate that for certain kinds of objects, depending on whether

higher recall or precision is preferred, downsizing the images so that information is lost may

improve classification accuracy.

In the non-linear case, figure 4-27(b) shows that classification accuracy is again improved

overall for all five of the extractor techniques. Pro-HOG in all four of its configurations is

worse than HOG in this case however. The better performing versions of Pro-HOG are the

image resizing versions (as seen in the linear) case, but the ability of the non-linear classifier to

produce a more accurate classification boundary is enhanced by the added benefit of HOG’s

cell histogram spatial normalisation and cell grid resolution Gaussian smoothing.
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4.3.6 AAM “Car”

Some examples from this class are shown in figure 4-28. As is the case for most of the images in

this dataset, the act of projecting the coloured LAS point clouds and extracting the resulting

images, does not allow for high quality object representations. Additionally, the viewpoint of

the imaging camera (in the middle of the road) and the fact that only stationary vehicles are

present in the data, means that cars are located some distance from the camera (in car parks,

or parked on the side of the road). These issues mean that the vast majority of the objects are

relatively small and indistinct. The size distribution of the data is shown in figure 4-29 which

shows that most of the data (98%) are less than the fixed resizing dimensions required for

HOG. Therefore, Pro-HOG’s ability to parse the images at their native dimensions should not

contribute to improved classification accuracy and Pro-HOG is expected to do no better in this

case than HOG (and may be worse given Pro-HOG’s less involved histogram normalisation

scheme).

Figure 4-28: Sample extracts from the AAM “Car” dataset. Images are resized to fixed width
for display here, but have varying actual dimensions.
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Figure 4-29: Distribution of example sizes for the AAM “Car” object type.

Intensity Based Descriptors

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.8907 0.8436 0.8665

Pro-HOG (GSS, 72× 72) Linear 0.9293 0.8745 0.9011

Pro-HOG (72× 72) Linear 0.9012 0.8567 0.8783

Pro-HOG (GSS) Linear 0.9373 0.8717 0.9033

Pro-HOG Linear 0.9033 0.8717 0.8873

HOG Non-Linear 0.9632 0.8621 0.9099

Pro-HOG (GSS, 72× 72) Non-Linear 0.9676 0.8813 0.9225

Pro-HOG (72× 72) Non-Linear 0.9510 0.8649 0.9059

Pro-HOG (GSS) Non-Linear 0.9567 0.8779 0.9156

Pro-HOG Non-Linear 0.9565 0.8738 0.9133

Table 4.4: Classification Results – AAM “Car” (Intensity descriptors)

Contrary to expectations, in both the linear and the non-linear classification cases, figure 4-30

shows that Pro-HOG (in all four of its configurations) does not allow for classification accuracy

that is significantly better than HOG (but not definitely worse either). In particular, the

hypothesised behaviour is directly contradicted in the linear case (see figure 4-30(a)), where

the two best performing versions of Pro-HOG are the GSS enabled versions – with the non-

resizing version having slightly better overall accuracy due to improved precision. Accuracy

is very slightly reduced when the extracts are resized using Pro-HOG. In the version of

Pro-HOG most similar to HOG (the image resizing, GSS disabled configuration), accuracy in

both precision and recall is slightly better than HOG, implying that in this case, classification

benefits from not implementing bi-linear cell histogram interpolation and cell grid resolution

smoothing. This could be because Gaussian smoothing with a relatively larger kernel (as is

performed using HOG) further corrupts already noisy data which might better be served by

the use of a median filter to remove excess noise.

In the non-linear classification results shown in figure 4-30(b), accuracy is higher overall than
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Figure 4-30: Precision versus Recall using descriptors extracted from intensity images of the
AAM “Car” object type.

in the linear classification case. The overall ordering of the Pro-HOG extractors is unchanged

in terms of the F1 score at the default classification threshold shown in table 4.4, even though

the individual precision and recall rankings are slightly different. HOG gives better accuracy

than the Pro-HOG extractors in the non-linear case, but the image resizing configurations

of Pro-HOG give comparable accuracy. HOG’s recall is still lowest overall, but its precision

improves by more than seven percentage points indicating far fewer false positives than in the

linear case. This indicates that instead of simply generalising better, HOG allows the SVM

to create a classifier that better discriminates between the positive and negative distributions

as indicated by the higher precision scores for all of the extractors – not just HOG.

Depth Based Descriptors

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9491 0.9211 0.9349

Pro-HOG (GSS, 72× 72) Linear 0.9509 0.9170 0.9337

Pro-HOG (72× 72) Linear 0.9453 0.9122 0.9284

Pro-HOG (GSS) Linear 0.9513 0.9108 0.9306

Pro-HOG Linear 0.9315 0.9053 0.9183

HOG Non-Linear 0.9827 0.9355 0.9574

Pro-HOG (GSS, 72× 72) Non-Linear 0.9804 0.9287 0.9539

Pro-HOG (72× 72) Non-Linear 0.9810 0.9204 0.9498

Pro-HOG (GSS) Non-Linear 0.9760 0.9218 0.9481

Pro-HOG Non-Linear 0.9796 0.9232 0.9506

Table 4.5: Classification Results – AAM “Car” (Depth descriptors)
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Figure 4-31: Precision versus Recall using descriptors extracted from depth images of the
AAM “Car” object type.

With the depth based descriptors, classification accuracy as shown in figure 4-31 is improved

in both the linear and the non-linear cases over the intensity based descriptors. This can

partly be explained by the poor quality of the colour mapping in the AAM data. That the

depth descriptors give such an improvement over the intensity descriptors is surprising given

the apparently less descriptive nature of the data. The benefit of the depth data in the AAM

dataset is that it is far less susceptible to representational issues that can impair the quality of

the RGB data (such as lighting or intraclass variance caused by texture or colour differences

that are irrelevant to the object type). This qualitative difference in the data modalities may

mean that depth data is inherently more suitable in some contexts for generalised object

classification.

The results also show that although HOG is not able to encode depth values as accurately as

Pro-HOG (due to the rounding of values that occurs as part of the conversion of the floating

point data to integer valued data), HOG gives slightly better accuracy compared to the closest

performing Pro-HOG variant (with GSS enabled and resizing the extracts). This could be

because there is spurious variation in the surface morphology for this object type which is

being encoded by Pro-HOG but not by HOG because its rounding of these values smooths

out the depth variations that are not indicative of the object’s type. Pro-HOG in all of its

configurations gives very similar results, although the image resizing variants offer the best

accuracy in terms of recall in the linear classification case. For non-linear classification, there

are few differences in accuracy between the different variants.
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4.3.7 AAM “Traffic Light”

Some examples from the AAM “Traffic Light” dataset are shown in figure 4-32. This dataset

contains traffic lights consisting of the posts they are attached to as well as the actual cowling

and lights. The cowling and lights themselves are generally consistent in morphology, but

the lights are not necessarily always attached to simple upright posts (as seen in the second

example) meaning that the position of the lights (and the distinctive dark cowling) is not

always located in the upper middle of the image. The thinness of the object type means

that in some cases the object is difficult to distinguish from the background (see the third

example). Figure 4-33 shows that the bulk of the data (≈ 83%) are at a smaller size than the

fixed resizing resolution.

Figure 4-32: Sample extracts from the AAM “Traffic Light” dataset. Images are resized to
fixed width for display here, but have varying actual dimensions.

Figure 4-33: Distribution of example sizes for the AAM “Traffic Light” object type.

Intensity Based Descriptors

Figure 4-34 shows that in both the linear and the non-linear classification cases, better accu-

racy is achieved by the non-resizing versions of Pro-HOG (both the GSS enabled and disabled
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.8131 0.6015 0.6915

Pro-HOG (GSS, 72× 72) Linear 0.8840 0.6049 0.7183

Pro-HOG (72× 72) Linear 0.8568 0.5947 0.7021

Pro-HOG (GSS) Linear 0.8838 0.6391 0.7418

Pro-HOG Linear 0.8601 0.6476 0.7389

HOG Non-Linear 0.9470 0.6476 0.7692

Pro-HOG (GSS, 72× 72) Non-Linear 0.9431 0.6156 0.7450

Pro-HOG (72× 72) Non-Linear 0.9522 0.6463 0.7700

Pro-HOG (GSS) Non-Linear 0.9436 0.6497 0.7696

Pro-HOG Non-Linear 0.9393 0.6536 0.7708

Table 4.6: Classification Results – AAM “Traffic Light” (Intensity descriptors)
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Figure 4-34: Precision versus Recall using descriptors extracted from intensity images of the
AAM “Traffic Light” object type.

configurations). The GSS disabled versions improve recall over precision, but the GSS enabled

versions trade improved precision for recall. Resizing the images to fixed dimensions reduces

precision and recall accuracy. Since the bulk of the images are smaller in size than the fixed

resizing dimensions, this provides possible evidence that scaling the images up is contributing

to a degradation in accuracy. However, in section 4.2.4, it was demonstrated that scaling the

images up by a fixed amount for all of the images does not cause a worsening of classification

accuracy – a result that corroborates the conclusions of Dollar et al. (2014). This apparent

contradiction is resolved in consideration of the fact that most of the images are not scaled

up by the same factor and that the hypothesised effect of scaling the images up by different

factors is to introduce scaling artefacts that degrade the quality of the features extracted due

to the fixed methods of interpolation being applied to the images. This hypothesis is given

some support by these results.
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Depth Based Descriptors

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.8670 0.7257 0.7901

Pro-HOG (GSS, 72× 72) Linear 0.9011 0.6958 0.7853

Pro-HOG (72× 72) Linear 0.8839 0.7180 0.7924

Pro-HOG (GSS) Linear 0.8960 0.7244 0.8011

Pro-HOG Linear 0.9047 0.7453 0.8173

HOG Non-Linear 0.9821 0.7470 0.8486

Pro-HOG (GSS, 72× 72) Non-Linear 0.9776 0.7065 0.8202

Pro-HOG (72× 72) Non-Linear 0.9790 0.7351 0.8397

Pro-HOG (GSS) Non-Linear 0.9730 0.7223 0.8291

Pro-HOG Non-Linear 0.9725 0.7389 0.8398

Table 4.7: Classification Results – AAM “Traffic Light” (Depth descriptors)
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Figure 4-35: Precision versus Recall using descriptors extracted from depth images of the
AAM “Traffic Light” object type.

Figure 4-35 shows that with the depth based descriptors, accuracy in precision and recall

is improved over all feature extractor types compared to the intensity based descriptors. In

the case of linear classification, the basic Pro-HOG variant (without GSS) gives the highest

precision and recall accuracy. In the non-linear case, this variant of Pro-HOG is comparable

to HOG in accuracy.
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4.3.8 AAM “Triangular Road Sign”

Examples of the AAM “Triangular Road Sign” dataset are shown in figure 4-36. This dataset

is similar in nature to the AAM “Traffic Light” dataset, but with a lower intraclass variance

due to the fact that all of the sign posts are located directly underneath the triangular sign

and the sign itself is always located in the top middle of the images. As in the case for

most of the AAM object types, the examples are small and relatively indistinct. Figure 4-37

shows that most of the examples (≈ 97%) have smaller dimensions than the fixed resizing

dimensions meaning that resizing will cause most of the images to be scaled by factors > 1.

The variance in example sizes is low, meaning that the resizing factors will be similar and that

any scaling artefacts introduced will be reasonably consistent and therefore representative of

the examples.

While similar in nature to the AAM “Traffic Light” dataset, this dataset is smaller having

only 163 examples as opposed to 1172. Notwithstanding the size of the dataset, it is expected

that classification results will be similar to those for the AAM “Traffic Light” objects.

Figure 4-36: Sample extracts from the AAM “Triangular Road Sign” dataset. Images are
resized to fixed width for display here, but have varying actual dimensions.

Figure 4-37: Distribution of example sizes for the AAM “Triangular Road Sign” object type.
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9173 0.7822 0.8444

Pro-HOG (GSS, 72× 72) Linear 0.9030 0.8282 0.8640

Pro-HOG (72× 72) Linear 0.8605 0.7945 0.8262

Pro-HOG (GSS) Linear 0.8930 0.8190 0.8544

Pro-HOG Linear 0.8456 0.7393 0.7889

HOG Non-Linear 0.9418 0.7945 0.8619

Pro-HOG (GSS, 72× 72) Non-Linear 0.9585 0.8497 0.9008

Pro-HOG (72× 72) Non-Linear 0.9606 0.8221 0.8860

Pro-HOG (GSS) Non-Linear 0.9483 0.8436 0.8929

Pro-HOG Non-Linear 0.9354 0.7546 0.8353

Table 4.8: Classification Results – AAM “Triangular Road Sign” (Intensity descriptors)
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(b) Non-Linear Classification

Figure 4-38: Precision versus Recall using feature descriptors extracted from intensity images
of the AAM “Triangular Road Sign” object type.

Intensity Based Descriptors

Figure 4-38 shows that the relative accuracy of the extractors is similar in both the linear

and the non-linear classification cases, although accuracy in the non-linear case is higher

overall. The expectation that the results would follow those of the AAM “Traffic Light”

experiment is not borne out. In that experiment, both of the scale independent versions of

Pro-HOG gave better results than either of the image resizing configurations or HOG. In this

experiment, it is the choice of whether GSS is enabled that has a greater impact on accuracy.

In the GSS disabled versions of Pro-HOG, resizing the images is a much better option than

not. In both classification cases, the poorest performing extractor is Pro-HOG in its basic

configuration.

122



With the configuration of Pro-HOG that is most similar to HOG (image resizing with GSS

disabled), accuracy is approximately on a par with HOG. The two versions of Pro-HOG with

GSS enabled are the best performing extractors but the results between those two cases are

not significantly different (image resizing Pro-HOG is marginally better in both precision and

recall). As in the case of the Pascal VOC “Car” dataset, the benefit of having GSS enabled

or not is not independent of the choice of whether to resize the images to fixed dimensions

prior to extracting the features; the behaviour of these two aspects of the algorithm, taken

together with the object type under evaluation is influential in determining classification

accuracy.

Depth Based Descriptors

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9542 0.8957 0.9241

Pro-HOG (GSS, 72× 72) Linear 0.9479 0.8374 0.8893

Pro-HOG (72× 72) Linear 0.9621 0.8558 0.9058

Pro-HOG (GSS) Linear 0.9452 0.8466 0.8932

Pro-HOG Linear 0.9426 0.8558 0.8971

HOG Non-Linear 0.9793 0.8712 0.9221

Pro-HOG (GSS, 72× 72) Non-Linear 0.9830 0.8865 0.9323

Pro-HOG (72× 72) Non-Linear 0.9930 0.8712 0.9281

Pro-HOG (GSS) Non-Linear 0.9823 0.8497 0.9112

Pro-HOG Non-Linear 0.9861 0.8712 0.9251

Table 4.9: Classification Results – AAM “Triangular Road Sign” (Depth descriptors)
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Figure 4-39: Precision versus Recall using feature descriptors extracted from depth images of
the AAM “Triangular Road Sign” object type.

With the depth descriptors, classification accuracy is again much higher with this object
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class than when using the intensity based descriptors in both the linear and the non-linear

classification cases (as seen in figure 4-39). As in the AAM “Car” case, HOG again achieves

slightly higher precision and recall over Pro-HOG. Given the relatively flat nature of this

object type, the small changes in surface morphology which are not encoded by HOG (due to

the previously explained rounding issues) may enhance the generalising ability of the classifiers

over the Pro-HOG classifiers which are much more sensitive to small and sometimes spurious

changes in depth.

4.3.9 AAM “Truck / Van”

Examples of the AAM “Truck / Van” class are given in figure 4-40. This class is more varied

than the AAM “Car” class as it contains a less restricted object type. Some of the examples

in this class might better be categorised as large cars or four-wheel drive vehicles. The relative

size of the objects leads to much more variety in background too though all of the vehicles

are still predominantly located on grey homogeneous road surfaces.

Figure 4-41 shows that there is more variety in the pixel dimensions of the examples in

this dataset compared to the previous AAM datasets. Based on the results of the previous

experiments, the greater variation in appearance and example dimensions points to Pro-

HOG in its original configuration (either GSS enabled or not) giving improved classification

accuracy.

Intensity Based Descriptors

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.8528 0.6782 0.7556

Pro-HOG (GSS, 72× 72) Linear 0.9169 0.7633 0.8331

Pro-HOG (72× 72) Linear 0.8431 0.6862 0.7566

Pro-HOG (GSS) Linear 0.9097 0.7766 0.8379

Pro-HOG Linear 0.8424 0.6968 0.7627

HOG Non-Linear 0.9470 0.6649 0.7812

Pro-HOG (GSS, 72× 72) Non-Linear 0.9675 0.7926 0.8713

Pro-HOG (72× 72) Non-Linear 0.9304 0.6755 0.7827

Pro-HOG (GSS) Non-Linear 0.9325 0.7713 0.8443

Pro-HOG Non-Linear 0.9375 0.7181 0.8133

Table 4.10: Classification Results – AAM “Truck / Van” (Intensity descriptors)

In the linear case, figure 4-42(a) shows that having GSS enabled is the most important
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Figure 4-40: Sample extracts from the AAM “Truck / Van” dataset. Images are resized to
fixed width for display here, but have varying actual dimensions.

factor in achieving high classification accuracy for this object type. Both the GSS disabled

versions of Pro-HOG give classification accuracy that is no better than HOG. The results

in the non-linear case shown in figure 4-42(b), again show improved accuracy across all of

the extractors, but with the best method being the image resizing version of Pro-HOG. This

is counter-intuitive given the results so far and the expectations that classifying an object

type having larger variability in the size of its examples would benefit more from the scale-

independent nature of Pro-HOG in its non-resizing configuration. HOG results in the lowest

classification accuracy in both the linear and the non-linear case. The version of Pro-HOG

that is algorithmically most similar to HOG (with image resizing and GSS disabled) has almost

exactly the same accuracy as HOG – with better recall but slightly worse precision.

Depth Based Descriptors

With the depth based features, the differences between the different feature extractors become

less pronounced. Again, the overall accuracy in terms of both precision and recall is improved

over the intensity based descriptors, but GSS is no longer helping to improve accuracy for

the two Pro-HOG methods that implement it. Overall, HOG performs better than Pro-
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Figure 4-41: Distribution of example sizes for the AAM “Truck / Van” object type.
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Figure 4-42: Precision versus Recall using feature descriptors extracted from intensity images
of the AAM “Truck / Van” object type.

HOG with the depth based descriptors. Most tellingly, while the version of Pro-HOG that

is algorithmically closest to HOG performed almost identically to HOG with the intensity

based descriptors, with the depth descriptors it is slightly (though significantly) less accurate

in precision and recall. Given that most of the examples of trucks and vans are in profile

view and presenting a strong planar silhouette, the reason for this difference can most likely

be attributed to the depth rounding undertaken by HOG (the same reason as in the previous

case with the AAM “Triangular Road Sign” object type).

4.3.10 AAM “Road Light”

A selection of examples from the AAM “Road Light” class are shown in figure 4-44. This

object type expresses the greatest appearance variability within the AAM dataset tested so far.

It is also one of the largest datasets tested which gives greater confidence in the interpretation
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.8988 0.8032 0.8483

Pro-HOG (GSS, 72× 72) Linear 0.8958 0.8005 0.8455

Pro-HOG (72× 72) Linear 0.8889 0.7660 0.8229

Pro-HOG (GSS) Linear 0.8770 0.7394 0.8023

Pro-HOG Linear 0.8665 0.7420 0.7994

HOG Non-Linear 0.9505 0.8165 0.8784

Pro-HOG (GSS, 72× 72) Non-Linear 0.9669 0.7766 0.8614

Pro-HOG (72× 72) Non-Linear 0.9487 0.7872 0.8605

Pro-HOG (GSS) Non-Linear 0.9656 0.7473 0.8426

Pro-HOG Non-Linear 0.9281 0.7553 0.8328

Table 4.11: Classification Results – AAM “Truck / Van” (Depth descriptors)
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Figure 4-43: Precision versus Recall using feature descriptors extracted from depth images of
the AAM “Truck / Van” object type.

of results attached to this class, if there are significant differences in classification accuracy

between the extractor types. Figure 4-45 shows the distribution of image sizes in this class.

Only ≈ 26% of the images are below the fixed resize dimensions, meaning that the vast

majority of the examples will be rescaled down, possibly losing information. However, given

that the salient characteristics of this object type are strongly contrasting vertical poles, it is

unlikely that downsizing the images will result in information loss that is significant enough

to impact the quality of feature encoding and consequent classification accuracy.
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Figure 4-44: Sample extracts from the AAM “Road Light” dataset. Images are resized to
fixed width for display here, but have varying actual dimensions.

Figure 4-45: Distribution of example sizes for the AAM “Road Light” object type.

Intensity Based Descriptors

For this object type, classification accuracy is high in both the linear and the non-linear

cases of classification. Since the object extracts are almost always present with the sky as

background, this accuracy is probably due to the strong intensity gradient between the objects

and the sky’s black background (which has no depth information and so no colour information

is mapped either).

In the linear classification results shown in figure 4-46(a), the most important attribute of the

Pro-HOG extractors for achieving good accuracy is the use of GSS. The two GSS disabled

versions of Pro-HOG (that resize and that do not resize the images) achieve similar levels

of precision and recall and are both better than HOG, but not as good as the GSS enabled

versions of Pro-HOG. For this object type, the data appear to be distinctive enough for the
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9317 0.8631 0.8961

Pro-HOG (GSS, 72× 72) Linear 0.9644 0.9073 0.9349

Pro-HOG (72× 72) Linear 0.9467 0.8932 0.9192

Pro-HOG (GSS) Linear 0.9603 0.9182 0.9388

Pro-HOG Linear 0.9424 0.8901 0.9155

HOG Non-Linear 0.9823 0.9127 0.9462

Pro-HOG (GSS, 72× 72) Non-Linear 0.9831 0.9144 0.9475

Pro-HOG (72× 72) Non-Linear 0.9805 0.9117 0.9448

Pro-HOG (GSS) Non-Linear 0.9809 0.9144 0.9465

Pro-HOG Non-Linear 0.9790 0.9093 0.9429

Table 4.12: Classification Results – AAM “Road Light” (Intensity descriptors)
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Figure 4-46: Precision versus Recall using feature descriptors extracted from intensity images
of the AAM “Road Light” object type.

quality of feature encoding to not be degraded by the resizing of the extracts. In the results

for the non-linear case shown in figure 4-46(b), classification accuracy across all five of the

extractors is nearly identical.

Depth Based Descriptors

In the case of the depth descriptors, classification accuracy using Pro-HOG is nearly identical

to the accuracy attained with the intensity based descriptors – in both the linear and the

non-linear cases of classification (as shown in figure 4-47). The GSS enabled versions of Pro-

HOG still give better accuracy than the non GSS enabled versions of Pro-HOG. In the case of

HOG, whereas accuracy was worse with the intensity based descriptors, accuracy is improved
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9447 0.8901 0.9167

Pro-HOG (GSS, 72× 72) Linear 0.9568 0.9168 0.9364

Pro-HOG (72× 72) Linear 0.9376 0.8850 0.9106

Pro-HOG (GSS) Linear 0.9610 0.9185 0.9393

Pro-HOG Linear 0.9525 0.8925 0.9216

HOG Non-Linear 0.9843 0.9251 0.9538

Pro-HOG (GSS, 72× 72) Non-Linear 0.9839 0.9227 0.9523

Pro-HOG (72× 72) Non-Linear 0.9853 0.9196 0.9513

Pro-HOG (GSS) Non-Linear 0.9825 0.9220 0.9513

Pro-HOG Non-Linear 0.9824 0.9158 0.9479

Table 4.13: Classification Results – AAM “Road Light” (Depth descriptors)
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Figure 4-47: Precision versus Recall using feature descriptors extracted from depth images of
the AAM “Road Light” object type.

to the same level of Pro-HOG (in its base configuration) using the depth based descriptors.

Pro-HOG in its HOG emulating configuration (image resizing and GSS disabled), is slightly

less accurate in precision and recall over all classification thresholds compared to HOG.
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4.3.11 AAM “Telegraph Pole”

In qualitative terms, the AAM “Telegraph Pole” object type is similar to the AAM “Road

Light” class in its level of intraclass appearance variability. Like the AAM “Road Light”

class, it has a dominant structure in the form of a long vertical pole – this time wider and

with horizontal cross pieces. It is also a reasonably large dataset (937 examples). However,

the distribution of the image sizes is tighter than in the AAM “Road Light” dataset, with

many more examples smaller than the fixed resize dimensions (as seen in figure 4-49). This

makes the essential point of difference between this object type and the AAM “Road Light”

object type to be the dimensions of the examples. In this experiment, more of the examples

will be up scaled than not, and by different scaling factors > 1 (there is a reasonably even

spread of example sizes beneath the 72× 72 resize point).

Figure 4-48: Sample extracts from the AAM “Telegraph Pole” dataset. Images are resized to
fixed width for display here, but have varying actual dimensions.

Intensity Based Descriptors

Figure 4-50(a) shows that in the linear classification case, Pro-HOG has greater overall accu-

racy in all of its configurations than HOG, and in the non-linear case, figure 4-50(b) shows

that there is little significant difference between any of the feature extractor types. In the
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Figure 4-49: Distribution of example sizes for the AAM “Telegraph Pole” object type.

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9220 0.8324 0.8749

Pro-HOG (GSS, 72× 72) Linear 0.9271 0.8757 0.9007

Pro-HOG (72× 72) Linear 0.9268 0.8719 0.8985

Pro-HOG (GSS) Linear 0.9282 0.8490 0.8868

Pro-HOG Linear 0.9173 0.8639 0.8898

HOG Non-Linear 0.9479 0.8543 0.8987

Pro-HOG (GSS, 72× 72) Non-Linear 0.9484 0.8634 0.9039

Pro-HOG (72× 72) Non-Linear 0.9491 0.8762 0.9112

Pro-HOG (GSS) Non-Linear 0.9547 0.8650 0.9076

Pro-HOG Non-Linear 0.9485 0.8549 0.8992

Table 4.14: Classification Results – AAM “Telegraph Pole” (Intensity descriptors)

more distinctive linear case, the reason for the separation between the different Pro-HOG

classes is not the same as in the AAM “Road Light” class. For the AAM “Road Light” class,

enabling GSS allows for improved accuracy. For this object type, Pro-HOG gives improved

recall when resizing the extracts to fixed dimensions. Enabling GSS improves precision in the

Pro-HOG configurations, but the effect is very small (as seen at the default threshold level in

table 4.14).

In its most similar configuration to HOG, Pro-HOG gives significantly better recall (but with

a similar level of precision to HOG). Even though Pro-HOG lacks some of the features of the

HOG algorithm (i.e. cell resolution Gaussian filtering and cell histogram interpolation), this

results in improved rather than impaired classification accuracy for this object type. One

possible reason for this could be that with HOG, applying cell resolution Gaussian filtering

on top of the already “smoothed” enlarged examples (due to the extracts mainly being of

an original size that is smaller than the image resizing dimensions – the scaling up acting

to interpolate the image pixels), causes too much blurring around the object boundaries and

could be degrading the quality of the extracted features.

132



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

HOG
Pro-HOG (GSS, 72x72)
Pro-HOG (72x72)
Pro-HOG (GSS)
Pro-HOG

(a) Linear Classification

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

HOG
Pro-HOG (GSS, 72x72)
Pro-HOG (72x72)
Pro-HOG (GSS)
Pro-HOG

(b) Non-Linear Classification

Figure 4-50: Precision versus Recall using feature descriptors extracted from intensity images
of the AAM “Telegraph Pole” object type.

The telegraph poles have a lot of thin protrusions that are especially indicative of the object

type; too much blurring might diminish the appearance of these parts. In Pro-HOG, the lack

of cell grid resolution Gaussian filtering (Gaussian filtering is applied using a fixed 3× 3 pixel

kernel instead) leaves objects with more distinctive boundaries so the encoded features can

be more representative.

In the case of non-linear classification, the fact that the descriptors might be slightly less

representative of the objects using HOG has less of an effect on classification accuracy because

the non-linear boundary is less affected by such slight inaccuracies in feature representation

allowing HOG to perform at the same level of accuracy as Pro-HOG.

Depth Based Descriptors

With the depth based descriptors, figure 4-51(a) shows that HOG no longer results in lower

classification accuracy than Pro-HOG in the case of linear classification, and is comparable

with the accuracy achieved using the resizing versions of Pro-HOG. It is likely that the more

definite contrast gradients present in depth means that the more aggressive blurring in HOG’s

algorithm does not degrade the object representations (as given by the feature descriptors) as

much as when deriving object descriptors from the intensity images. In addition, the integer

rounding of depth used by HOG may help to standardise the appearance (in depth) of the

telegraph poles when present in the images at an oblique angle.
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9437 0.8853 0.9135

Pro-HOG (GSS, 72× 72) Linear 0.9462 0.8911 0.9178

Pro-HOG (72× 72) Linear 0.9378 0.8767 0.9062

Pro-HOG (GSS) Linear 0.9250 0.8751 0.8994

Pro-HOG Linear 0.9264 0.8794 0.9023

HOG Non-Linear 0.9566 0.9173 0.9365

Pro-HOG (GSS, 72× 72) Non-Linear 0.9643 0.8933 0.9274

Pro-HOG (72× 72) Non-Linear 0.9618 0.8991 0.9294

Pro-HOG (GSS) Non-Linear 0.9589 0.9077 0.9326

Pro-HOG Non-Linear 0.9620 0.8911 0.9252

Table 4.15: Classification Results – AAM “Telegraph Pole” (Depth descriptors)
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Figure 4-51: Precision versus Recall using feature descriptors extracted from depth images of
the AAM “Telegraph Pole” object type.

4.3.12 AAM “Rectangular Road Sign”

Some examples from the AAM “Rectangular Road Sign” dataset are shown in figure 4-52.

The extracts tend to be represented by one or two vertical poles in the lower half of the

image with the rectangular sign itself taking up the top most part of the image. Although

the dataset contains a large number of examples (668), most of the examples are small and

indistinct. As seen in figure 4-53, 97% of the examples are smaller than the fixed resize

dimensions, with most of the examples having dimensions around 24× 39 pixels.

134



Figure 4-52: Sample extracts from the AAM “Rectangular Road Sign” dataset. Images are
resized to fixed width for display here, but have varying actual dimensions.

Figure 4-53: Distribution of example sizes for the AAM “Rectangular Road Sign” object type.

Intensity Based Descriptors

In the linear classification case, the results for the AAM “Rectangular Road Sign” object class

(see figure 4-54(a)) are similar to those for the AAM “Telegraph Pole” class (see figure 4-

50(a)) but with lower levels of accuracy overall, and more variability in the results because of

the smaller size of the dataset; the overall ordering of the different feature extractors in the

results is similar. As in the AAM “Telegraph Pole” case, the image resizing versions of Pro-

HOG give the greatest accuracy. Enabling GSS improves accuracy mainly in precision, but

only in Pro-HOG’s non-resizing configuration. Enabling GSS in Pro-HOG’s image resizing

configuration decreases recall and only increases precision marginally. Figure 4-54(b) shows

that in the non-linear classification case, there is little difference between all of the extractor

types with overall accuracy higher than in the linear case.
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.8733 0.7897 0.8294

Pro-HOG (GSS, 72× 72) Linear 0.9023 0.8016 0.8490

Pro-HOG (72× 72) Linear 0.8960 0.8189 0.8557

Pro-HOG (GSS) Linear 0.8940 0.7762 0.8309

Pro-HOG Linear 0.8482 0.7695 0.8069

HOG Non-Linear 0.9393 0.7522 0.8354

Pro-HOG (GSS, 72× 72) Non-Linear 0.9466 0.7695 0.8489

Pro-HOG (72× 72) Non-Linear 0.9388 0.7919 0.8591

Pro-HOG (GSS) Non-Linear 0.9332 0.7627 0.8394

Pro-HOG Non-Linear 0.9310 0.7575 0.8353

Table 4.16: Classification Results – AAM “Rectangular Road Sign” (Intensity descriptors)
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Figure 4-54: Precision versus Recall using feature descriptors extracted from intensity images
of the AAM “Rectangular Road Sign” object type.

Depth Based Descriptors

As in the previous examples, figure 4-55 shows that the depth descriptors give improved

accuracy over the intensity based descriptors for all extractor configurations. Again, HOG has

notably better performance using the depth based descriptors and is comparable in accuracy

to the Pro-HOG extractors. Unusually, the Pro-HOG configuration that is most like HOG

(image resizing and GSS disabled) provides for significantly less accuracy than any of the

other Pro-HOG configurations. The best performing configuration of Pro-HOG is also the

least similar to the HOG extractor. This is the non-resizing and GSS enabled variant. In the

experiments with the intensity based descriptors, this version of Pro-HOG was the better of

the two non-resizing variants, but still performed less well than both of the image resizing

variants. This indicates that image resizing serves as a positive (or non-inhibiting) influence
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9351 0.8308 0.8799

Pro-HOG (GSS, 72× 72) Linear 0.9276 0.7957 0.8566

Pro-HOG (72× 72) Linear 0.9367 0.8308 0.8806

Pro-HOG (GSS) Linear 0.9385 0.8451 0.8893

Pro-HOG Linear 0.9256 0.8293 0.8749

HOG Non-Linear 0.9701 0.8503 0.9063

Pro-HOG (GSS, 72× 72) Non-Linear 0.9667 0.8473 0.9031

Pro-HOG (72× 72) Non-Linear 0.9692 0.8466 0.9037

Pro-HOG (GSS) Non-Linear 0.9666 0.8443 0.9013

Pro-HOG Non-Linear 0.9689 0.8383 0.8989

Table 4.17: Classification Results – AAM “Rectangular Road Sign” (Depth descriptors)
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Figure 4-55: Precision versus Recall using feature descriptors extracted from depth images of
the AAM “Rectangular Road Sign” object type.

when using the intensity based descriptors, but that (in the case of this particular object type)

it degrades the accuracy of the depth based descriptors – and only in the case of Pro-HOG.

Since HOG resizes the images but does not suffer in accuracy to the same degree, it must be

that HOG’s more involved cell histogram interpolation and cell resolution Gaussian smoothing

methods help to mitigate feature descriptor degradation in this case.

4.3.13 AAM “Generic Road Sign”

The AAM “Generic Road Sign” class is the final of the AAM object types and it has much

greater variation in appearance than either of the other two AAM road sign classes. This

class was used for examples that couldn’t be more properly labelled as instances of either
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the rectangular or the triangular road sign classes. Some examples of the type are shown in

figure 4-56. As seen in figure 4-57, the examples in this class vary similarly in their image

dimensions to the AAM “Rectangular Road Sign” class although the dataset is more than

twice as large at 1489 examples.

Figure 4-56: Sample extracts from the AAM “Generic Road Sign” dataset. Images are resized
to fixed width for display here, but have varying actual dimensions.

Figure 4-57: Distribution of example sizes for the AAM “Generic Road Sign” object type.

Intensity Based Descriptors

In the case of linear classification, figure 4-58(a) shows that Pro-HOG in all of its configu-

rations gives significantly improved accuracy over HOG, with the GSS enabled, non-resizing

version of Pro-HOG resulting in the highest precision and recall classification scores. As seen

in figure 4-58(b), in the case of non-linear classification, there are no significant differences

between any of the feature extractor types. At the default threshold in the non-linear case

shown in table 4.18, Pro-HOG gives better recall than HOG by one or two percentage points

at most while precision is approximately unchanged across the different feature extractors.

In the linear case, even the Pro-HOG configuration that is most like HOG gives far better

accuracy. This indicates that for this object type, the aspects of the HOG algorithm that

cannot be implemented in Pro-HOG are not hindering Pro-HOG, but are in fact helping

Pro-HOG to derive descriptors that are better suited for classification.
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.8491 0.7330 0.7868

Pro-HOG (GSS, 72× 72) Linear 0.9033 0.7837 0.8393

Pro-HOG (72× 72) Linear 0.8898 0.7861 0.8347

Pro-HOG (GSS) Linear 0.9074 0.7999 0.8503

Pro-HOG Linear 0.8818 0.7888 0.8327

HOG Non-Linear 0.9417 0.8026 0.8666

Pro-HOG (GSS, 72× 72) Non-Linear 0.9493 0.8167 0.8780

Pro-HOG (72× 72) Non-Linear 0.9500 0.8230 0.8820

Pro-HOG (GSS) Non-Linear 0.9403 0.8146 0.8730

Pro-HOG Non-Linear 0.9437 0.8113 0.8725

Table 4.18: Classification Results – AAM “Generic Road Sign” (Intensity descriptors)
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Figure 4-58: Precision versus Recall using feature descriptors extracted from intensity images
of the AAM “Generic Road Sign” object type.

Depth Based Descriptors

Figure 4-59 shows that the depth based descriptors again demonstrate increased accuracy

over the intensity based descriptors across all of the extractor configurations. In the linear

case, figure 4-59(a) shows that HOG still gives lower classification accuracy than any of the

Pro-HOG extractor configurations, and that the GSS enabled, non-resizing version of Pro-

HOG is again the best performing of the four different Pro-HOG configurations although

the relative increase in improvement is much smaller than when using the intensity based

descriptors. The results for this object type are unusual in that this is the only case (in the

AAM dataset) where the use of depth based descriptors do not allow HOG to perform at a

comparable level of accuracy to the Pro-HOG extractors. For the intensity based descriptors,

figure 4-58(a) shows that in the linear case, all of the extractors have a strong bias towards
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9035 0.8610 0.8817

Pro-HOG (GSS, 72× 72) Linear 0.9329 0.8734 0.9022

Pro-HOG (72× 72) Linear 0.9159 0.8744 0.8947

Pro-HOG (GSS) Linear 0.9278 0.8852 0.9060

Pro-HOG Linear 0.9208 0.8707 0.8951

HOG Non-Linear 0.9713 0.8983 0.9334

Pro-HOG (GSS, 72× 72) Non-Linear 0.9716 0.8952 0.9318

Pro-HOG (72× 72) Non-Linear 0.9678 0.8895 0.9270

Pro-HOG (GSS) Non-Linear 0.9695 0.9070 0.9372

Pro-HOG Non-Linear 0.9715 0.8932 0.9307

Table 4.19: Classification Results – AAM “Generic Road Sign” (Depth descriptors)
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Figure 4-59: Precision versus Recall using feature descriptors extracted from depth images of
the AAM “Generic Road Sign” object type.

precision over recall (indicated by a greater proportion of the mass under the curves being

towards the top left corner of the graph). In the case of the linear depth based descriptors,

this bias is much less pronounced – the masses under the curves are more evenly distributed

on either side of the bottom left to top right diagonal.
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4.3.14 Earthmine “Car”

There are fewer examples per object type in the Earthmine dataset due to the difficulties in

acquiring accurate depth information from stereoscopic imaging. This means that less can be

inferred from the results of the experiments on the Earthmine object types.

As in the AAM dataset, because of the manner in which the Earthmine data were collected,

the viewpoints — and thus the orientations of the objects — are more constrained. The

extracts of cars in this dataset appear in more restricted orientations (profile and front/back

views) than those in the Pascal VOC dataset. However, unlike the AAM dataset where

colour (and thus intensity) information was poorly mapped, the examples in the Earthmine

dataset have colour information of a similar quality to the Pascal VOC dataset. The reduced

intraclass variance due to the objects having more restricted orientations should result in

improved classification accuracy scores even though there are only 52 examples in this object

category.

Some examples of the Earthmine “Car” dataset are shown in figure 4-60. As seen in figure 4-

61, the range of example sizes is much greater than in the AAM “Car” dataset, although not

as great as in the Pascal VOC “Car” dataset. Unlike the AAM “Car” dataset, the sizes of

the extracts in the Earthmine “Car” dataset are generally larger since they are much closer

to the camera. This means that only 22 of the 52 images (≈ 42%) are below the fixed image

resize dimensions.

Figure 4-60: Sample extracts from the Earthmine “Car” dataset. Images are resized to fixed
width for display here, but have varying actual dimensions.
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Figure 4-61: Distribution of example sizes for the Earthmine “Car” object type.

Intensity Based Descriptors

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9778 0.8462 0.9072

Pro-HOG (GSS, 72× 72) Linear 1.0000 0.9327 0.9652

Pro-HOG (72× 72) Linear 0.9706 0.9519 0.9612

Pro-HOG (GSS) Linear 0.9796 0.9231 0.9505

Pro-HOG Linear 0.9787 0.8846 0.9293

HOG Non-Linear 1.0000 0.8365 0.9110

Pro-HOG (GSS, 72× 72) Non-Linear 1.0000 0.8846 0.9388

Pro-HOG (72× 72) Non-Linear 1.0000 0.9423 0.9703

Pro-HOG (GSS) Non-Linear 0.9894 0.8942 0.9394

Pro-HOG Non-Linear 1.0000 0.8750 0.9333

Table 4.20: Classification Results – Earthmine “Car” (Intensity descriptors)

The small size of the Earthmine “Car” dataset means that the precision-recall graphs shown

in figure 4-62 are not very helpful in identifying which of the extractors perform better,

although it appears clear that the non-linear case provides for improved accuracy over the

linear classification case.

At the default classification threshold shown in table 4.20, in the linear case, Pro-HOG in

all four of its configurations exceeds HOG’s recall accuracy by between 4 and 11 percentage

points, and Pro-HOG has comparable precision to HOG. Enabling GSS is preferred for both

the resizing and non-resizing versions of Pro-HOG. In the non-linear classification case, preci-

sion is perfect in all but one of the extractor configurations. This indicates a low false-positive

rate and that the classifiers have overfit to the training data – i.e. they are not generalising

well enough. This is borne out by the relatively much lower (by an average of 10 percentage

points) recall scores. This can happen if within the object type there are specific sub-types

(in this case, colours or models of cars) that are more prevalent than others. This will cause

certain features to be weighted more heavily than others by the machine learning algorithm,
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Figure 4-62: Precision versus Recall using feature descriptors extracted from intensity images
of the Earthmine “Car” object type.

resulting in a biased classifier.

Depth Based Descriptors

In all of the previous experiments with the AAM object types, the use of depth descriptors

gives improved classification performance over the use of descriptors extracted from the in-

tensity data. However, using depth descriptors with the Earthmine dataset results in lower

classification accuracy than when using the intensity based descriptors.

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9778 0.8462 0.9072

Pro-HOG (GSS, 72× 72) Linear 0.9556 0.8269 0.8866

Pro-HOG (72× 72) Linear 0.9022 0.7981 0.8469

Pro-HOG (GSS) Linear 0.8333 0.7692 0.8000

Pro-HOG Linear 0.8851 0.7404 0.8063

HOG Non-Linear 1.0000 0.7115 0.8315

Pro-HOG (GSS, 72× 72) Non-Linear 0.9500 0.7308 0.8261

Pro-HOG (72× 72) Non-Linear 1.0000 0.6827 0.8114

Pro-HOG (GSS) Non-Linear 0.9286 0.7500 0.8298

Pro-HOG Non-Linear 0.9851 0.6346 0.7719

Table 4.21: Classification Results – Earthmine “Car” (Depth descriptors)

With the AAM data, the depth data generated by laser scanning is comparatively of a much

higher quality than its colour / intensity data. This situation is reversed with the Earthmine

dataset. The depth data generated by stereoscopy in the Earthmine data is much less accurate
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Figure 4-63: Precision versus Recall using feature descriptors extracted from depth images of
the Earthmine “Car” object type.

than the laser scan generated depth data in the AAM dataset, but the 2-D colour information

is of a much higher quality. With the Earthmine data, this means that the surface morphology

of the objects is likely to be noisy and inaccurate and not reliable enough to be usefully

encoded by the feature extractors. Moreover, the silhouettes of objects as described in depth

are often poorly represented meaning that even the object boundaries cannot be accurately

encoded in the descriptors.

The HOG implementation being used in these experiments rounds depth data to the nearest

metre. Poor quality depth information will therefore be more of a problem for the Pro-HOG

extractors which retain the input data’s original floating point values. The Pro-HOG extrac-

tors are more likely to encode spurious variations in depth that are not truly representative

of the objects. This is seen in figure 4-63 where the Pro-HOG extractors do not perform as

well as the HOG extractor. The two better performing versions of Pro-HOG (in both the

linear and the non-linear classification cases) are the extract resizing versions. Since the bulk

of the extracts for this object type have original dimensions that are larger than the resizing

dimensions, decreasing the size of the extracts has the effect of reducing the impact of local

noisy “bumps” over the surface of the objects meaning that the generated feature descriptors

are less influenced by random noise and are more representative of the object’s type.
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4.3.15 Earthmine “Garbage Bin”

The Earthmine “Garbage Bin” dataset expresses extremely little variation in appearance. The

objects themselves are nearly identical and are typically placed against a flat grey background

of paving stones. The bins themselves are all dark grey, cylindrical and supported by four

slim upright posts. A circular silver rim sits on top of each bin. Even though the objects are

viewed from different directions, their shape means that whatever the viewpoint, the objects

always have a very similar appearance (as can be seen in a selection of examples shown in

figure 4-64). The dataset is small with only 122 examples. Figure 4-65 shows that the range

of extract dimensions is also quite limited and that all instances in the dataset are smaller

than the fixed resizing dimensions.

Figure 4-64: Sample extracts from the Earthmine “Garbage Bin” dataset. Images are resized
to fixed width for display here, but have varying actual dimensions.

Figure 4-65: Distribution of example sizes for the Earthmine “Garbage Bin” object type.

Intensity Based Descriptors

The high degree of homogeneity in the examples means that accuracy is extremely good

in absolute terms across all of the extractor configurations in both the linear and the non-

linear classification cases. The precision-recall graphs shown in figure 4-66 show near perfect

discrimination across the full range of classification thresholds between the object examples

and the negative class of random extracts. Although all of the extractors do well, in the linear

case shown in figure 4-66(a), the HOG descriptors give slightly lower recall accuracy over the

Pro-HOG descriptors. The differences between the different Pro-HOG configurations are not
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9916 0.9672 0.9793

Pro-HOG (GSS, 72× 72) Linear 0.9959 0.9836 0.9897

Pro-HOG (72× 72) Linear 0.9959 0.9836 0.9897

Pro-HOG (GSS) Linear 0.9918 0.9918 0.9918

Pro-HOG Linear 0.9878 0.9918 0.9898

HOG Non-Linear 1.0000 0.9672 0.9833

Pro-HOG (GSS, 72× 72) Non-Linear 1.0000 0.9877 0.9938

Pro-HOG (72× 72) Non-Linear 1.0000 0.9795 0.9896

Pro-HOG (GSS) Non-Linear 0.9959 0.9836 0.9897

Pro-HOG Non-Linear 0.9916 0.9631 0.9771

Table 4.22: Classification Results – Earthmine “Garbage Bin” (Intensity descriptors)
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Figure 4-66: Precision versus Recall using feature descriptors extracted from intensity images
of the Earthmine “Garbage Bin” object type.

large enough to draw inferences about which of the configurations is best for this object

type.

Depth Based Descriptors

As previously mentioned in the case of the Earthmine “Car” dataset, this object type also

suffers from inadequate depth information. Figure 4-67 shows that in both the linear and

the non-linear classification case, accuracy is much worse across all extractor types than

when simply using the intensity based descriptors. Due to the small sizes of the objects,

and the inaccuracies endemic to stereoscopy, some of the examples were even missing depth

information entirely meaning that descriptors from those examples were unable to differentiate
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.3363 0.3074 0.3212

Pro-HOG (GSS, 72× 72) Linear 0.5503 0.4262 0.4804

Pro-HOG (72× 72) Linear 0.4400 0.3607 0.3964

Pro-HOG (GSS) Linear 0.5698 0.4180 0.4823

Pro-HOG Linear 0.4080 0.3361 0.3685

HOG Non-Linear 0.8507 0.2336 0.3666

Pro-HOG (GSS, 72× 72) Non-Linear 0.8103 0.3852 0.5222

Pro-HOG (72× 72) Non-Linear 0.8974 0.2869 0.4348

Pro-HOG (GSS) Non-Linear 0.8015 0.4303 0.5600

Pro-HOG Non-Linear 0.7959 0.3197 0.4561

Table 4.23: Classification Results – Earthmine “Garbage Bin” (Depth descriptors)
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Figure 4-67: Precision versus Recall using feature descriptors extracted from depth images of
the Earthmine “Garbage Bin” object type.

positive objects from negative extracts – especially from parts of the street scene where

garbage bins were not present. This is the cause behind the low recall rates experienced.

In both the linear and the non-linear cases, while accuracy was low overall, there is large

improvement in recall when using Pro-HOG with GSS enabled. Pro-HOG in its basic con-

figuration is no better or worse than HOG overall, but it does trade slightly worse precision

for better recall which indicates that Pro-HOG generalises slightly better for this object type

using the depth data available.
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4.3.16 Earthmine “Traffic Light”

Some examples of the Earthmine “Traffic Light” class are shown in figure 4-68. Figure 4-

69 shows that more than 86% of the instances in this dataset are below the fixed resize

dimensions of 72 × 72 pixels. The improved colourisation of the Earthmine dataset means

that although the objects themselves are more distinct in their appearance than in the AAM

“Traffic Light” class, the backgrounds are much more varied. Some examples also suffer from

occlusions (e.g. people walking in front of the lights, or signs that are mounted on the light

poles). Unlike the AAM “Traffic Light” class, nearly all of the examples show traffic lights

atop a single central vertical pole. There are 178 examples in this dataset meaning that it is

expected to be difficult given the significant intraclass variance to produce a well performing

classifier whatever feature extractor is used.

Figure 4-68: Sample extracts from the Earthmine “Traffic Light” dataset. Images are resized
to fixed width for display here, but have varying actual dimensions.

Figure 4-69: Distribution of example sizes for the Earthmine “Traffic Light” object type.
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Intensity Based Descriptors

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.7601 0.7011 0.7294

Pro-HOG (GSS, 72× 72) Linear 0.8158 0.7126 0.7607

Pro-HOG (72× 72) Linear 0.7276 0.6753 0.7004

Pro-HOG (GSS) Linear 0.7778 0.7040 0.7391

Pro-HOG Linear 0.6607 0.6322 0.6461

HOG Non-Linear 0.9349 0.7011 0.8013

Pro-HOG (GSS, 72× 72) Non-Linear 0.8949 0.7586 0.8212

Pro-HOG (72× 72) Non-Linear 0.9111 0.7069 0.7961

Pro-HOG (GSS) Non-Linear 0.9220 0.7471 0.8254

Pro-HOG Non-Linear 0.8885 0.7098 0.7891

Table 4.24: Classification Results – Earthmine “Traffic Light” (Intensity descriptors)
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Figure 4-70: Precision versus Recall using feature descriptors extracted from intensity images
of the Earthmine “Traffic Light” object type.

In the linear classification case, figure 4-70(a) shows that there is a large amount of variation

in the accuracy given by the different extractors. For both the resizing and the non-resizing

configurations of Pro-HOG, having GSS enabled allows for much higher precision and recall.

However, HOG, which does not implement GSS, has slightly better accuracy than the image

resizing version of Pro-HOG which it is closest to in its configuration. HOG’s more involved

process of spreading the contribution of each cell’s histogram values to its neighbouring cells

appears to be better suited to classifying this object type.

In the non-linear case, figure 4-70(b) shows again that classification is higher overall across

all five extractors and that the difference in accuracy between the different extractor types is

much lower. The overall ordering between the different extractors is relatively unchanged in
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the non-linear case.

For this object type using the intensity based descriptors, the results do not appear to show

that Pro-HOG’s scale-independent feature extraction is helpful in improving classification

accuracy.

Depth Based Descriptors

As in the previous Earthmine object categories, figure 4-71 shows that the inaccurate depth

data results in very poor classification accuracy when using the depth based descriptors. With

GSS enabled, Pro-HOG is much better than HOG in the linear case when resizing the images.

The effect is less pronounced in the non-linear case and it is not clear why accuracy should

improve so much only when these two algorithmic schemes of Pro-HOG are in effect together.

On this object type, Pro-HOG appears to be more effective than HOG at deriving descriptors

from degraded depth information.

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.3292 0.3017 0.3148

Pro-HOG (GSS, 72× 72) Linear 0.5933 0.4569 0.5162

Pro-HOG (72× 72) Linear 0.5054 0.4023 0.4480

Pro-HOG (GSS) Linear 0.5076 0.3851 0.4379

Pro-HOG Linear 0.4502 0.3764 0.4100

HOG Non-Linear 0.7586 0.2529 0.3793

Pro-HOG (GSS, 72× 72) Non-Linear 0.8282 0.3879 0.5284

Pro-HOG (72× 72) Non-Linear 0.8106 0.3075 0.4458

Pro-HOG (GSS) Non-Linear 0.7576 0.3592 0.4873

Pro-HOG Non-Linear 0.7188 0.2644 0.3866

Table 4.25: Classification Results – Earthmine “Traffic Light” (Depth descriptors)

4.3.17 Earthmine “Parking Sign”

The appearance variability in the Earthmine “Parking Sign” dataset is low. Each object is

composed of a thin black pole surmounted by a small white rectangular sign. The signs are

always placed at the kerbside and are rarely occluded given their proximity to the road itself.

Some examples are shown in figure 4-72. The distance from these objects to the imaging

equipment falls into bands according to whether the objects are placed at kerb edge nearest

to the mapping vehicle, or at the kerb edge furthest from the vehicle (to the left or the right of

the vehicle). This results in the two peaks in the size distribution graph shown in figure 4-73.
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Figure 4-71: Precision versus Recall using feature descriptors extracted from depth images of
the Earthmine “Traffic Light” object type.

For the examples closest to the imaging vehicle, the signs have more variance in apparent size

resulting in the tail to the distribution. Nearly 96% of the objects are smaller than the fixed

resize dimensions.

Intensity Based Descriptors

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.9399 0.9301 0.9350

Pro-HOG (GSS, 72× 72) Linear 0.9468 0.9336 0.9401

Pro-HOG (72× 72) Linear 0.9399 0.9301 0.9350

Pro-HOG (GSS) Linear 0.9565 0.9231 0.9395

Pro-HOG Linear 0.9191 0.8741 0.8961

HOG Non-Linear 0.9844 0.8846 0.9319

Pro-HOG (GSS, 72× 72) Non-Linear 0.9888 0.9301 0.9586

Pro-HOG (72× 72) Non-Linear 0.9889 0.9336 0.9604

Pro-HOG (GSS) Non-Linear 0.9890 0.9406 0.9642

Pro-HOG Non-Linear 0.9731 0.8846 0.9267

Table 4.26: Classification Results – Earthmine “Parking Sign” (Intensity descriptors)

The results for the different configurations of Pro-HOG shown in figure 4-74(a) have a sim-

ilar relationship to those for the Earthmine “Traffic Light” class (although the accuracy is

improved overall). Pro-HOG in its base configuration is less accurate overall by about four

percentage points than the Pro-HOG variants with either GSS enabled, or when resizing the

extracts. HOG is comparable in accuracy to Pro-HOG in these adjusted configurations, but

has higher recall; Pro-HOG has higher precision.
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Figure 4-72: Sample extracts from the Earthmine “Parking Sign” dataset. Images are resized
to fixed width for display here, but have varying actual dimensions.

Figure 4-73: Distribution of example sizes for the Earthmine “Parking Sign” object type.

In the non-linear case, figure 4-74(b) shows that the extractors are much more similar in their

levels of accuracy. Pro-HOG still gives slightly higher levels of recall in its three adjusted

configurations over its base configuration however. As seen previously, accuracy overall in the

non-linear case is much better than in the linear case.

Depth Based Descriptors

The Earthmine depth data for this object type are especially corrupt. In most examples, the

only part of the object seen in the depth images is the sign itself; the vertical pole is not visible

in the depth images of any of the extracts. In addition, the flat rectangular sign itself has
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Figure 4-74: Precision versus Recall using feature descriptors extracted from intensity images
of the Earthmine “Parking Sign” object type.

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.3100 0.2483 0.2757

Pro-HOG (GSS, 72× 72) Linear 0.4481 0.2867 0.3497

Pro-HOG (72× 72) Linear 0.4360 0.3217 0.3702

Pro-HOG (GSS) Linear 0.4806 0.3462 0.4024

Pro-HOG Linear 0.3858 0.3601 0.3725

HOG Non-Linear 0.5673 0.2063 0.3026

Pro-HOG (GSS, 72× 72) Non-Linear 0.6074 0.3462 0.4410

Pro-HOG (72× 72) Non-Linear 0.5972 0.3007 0.4000

Pro-HOG (GSS) Non-Linear 0.6641 0.3042 0.4173

Pro-HOG Non-Linear 0.6923 0.2832 0.4020

Table 4.27: Classification Results – Earthmine “Parking Sign” (Depth descriptors)

no interesting surface morphology and the rectangular silhouette of the sign is often poorly

defined in the data. All of these issues mean that the depth descriptors give very poor accuracy

when combined with the intensity based descriptors across all of the different extractor types,

in either the linear, or the non-linear classification tasks (as seen in figure 4-75).

Between the differing configurations of Pro-HOG, there are no great differences in classifica-

tion accuracy although the GSS enabled versions show a slight improvement over the GSS

disabled versions. Even though the depth data for this object type are poor, it is clear in both

the linear and the non-linear results that the Pro-HOG extractors create descriptors that al-

low for greater precision and recall to be attained over the HOG extractor. This is likely due

to the more complex interpolation of adjacent cell histograms in HOG. In Pro-HOG, because

the values of adjacent cell histograms are not interpolated, there is less chance of missing in-
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Figure 4-75: Precision versus Recall using feature descriptors extracted from depth images of
the Earthmine “Parking Sign” object type.

formation in one cell corrupting valid information in another. In HOG, the assumption that

useful features are present in all parts of the bounding rectangle specifying the extract means

that spurious or missing features can negatively impact on the ability of the final descriptor

to accurately represent the object. This makes Pro-HOG more robust, but it also potentially

means that it suffers in its generalisability since more emphasis is given to the presence (or

absence) of features localised to a single cell.

4.3.18 Earthmine “Traffic Cone”

The Earthmine “Traffic Cone” class is another vertically symmetric object type. The most

salient feature of this object — its distinctive orange colour — is not passed to the feature

extractors since images are first converted to grey scale. This object type’s size, simplicity,

and lack of distinguishing characteristics (in grey scale) suggest that it has the potential to

be easily confused for background scene elements. However, the ground-truth samples for

this type have minimal intraclass variance meaning that the classifier is also less likely to be

confused. Some examples of the type are shown in figure 4-76. Figure 4-77 shows that the

small size of the objects means that the dimensions of the image extracts are all less than

HOG’s fixed resizing dimensions. The objects are also indistinct especially where they appear

in front of background having strong contrast edges (e.g. road kerbs and road markings) which

increases the possibility of false-positive classifications.
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Figure 4-76: Sample extracts from the Earthmine “Traffic Cone” dataset. Images are resized
to fixed width for display here, but have varying actual dimensions.

Figure 4-77: Distribution of example sizes for the Earthmine “Traffic Cone” object type.

Intensity Based Descriptors

Feature Extractor Classifier Precision Recall F1

HOG Linear 0.8958 0.8431 0.8687

Pro-HOG (GSS, 72× 72) Linear 0.9175 0.8725 0.8945

Pro-HOG (72× 72) Linear 0.9032 0.8235 0.8615

Pro-HOG (GSS) Linear 0.8571 0.7647 0.8083

Pro-HOG Linear 0.8736 0.7451 0.8042

HOG Non-Linear 0.9535 0.8039 0.8723

Pro-HOG (GSS, 72× 72) Non-Linear 0.9535 0.8039 0.8723

Pro-HOG (72× 72) Non-Linear 0.9545 0.8235 0.8842

Pro-HOG (GSS) Non-Linear 0.9318 0.8039 0.8632

Pro-HOG Non-Linear 0.9383 0.7451 0.8306

Table 4.28: Classification Results – Earthmine “Traffic Cone” (Intensity descriptors)

In the linear classification case, figure 4-78(a) shows that both of the image resizing versions

of Pro-HOG are similar to HOG in their precision and recall scores. GSS enabled Pro-HOG

has the highest accuracy overall. The scale-independent versions of Pro-HOG (both the GSS

enabled and disabled versions) do very badly on this object type. This is likely because the

8 × 8 cell-block dimensions being used are too large for the native pixel dimensions of the

extracts. That is, the number of pixels being used by each cell to construct its histogram is

too small to generate histograms that are stable enough in their representations across images.

Additionally, because the cell pixel dimensions are not equal because the cell grid dimensions
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Figure 4-78: Precision versus Recall using feature descriptors extracted from intensity images
of the Earthmine “Traffic Cone” object type.

rarely divide the image dimensions by a whole number, in very small images there is a wider

variation in the number of pixels that each cell references to construct its histogram. The

histograms are then normalised and in doing so this can unfairly weight certain subsections

of the extracts. Extracting descriptors over the entire object dataset, leads to inconsistencies

between the cell histograms of spatially corresponding image/object parts.

In the non-linear case (see figure 4-78(a)), this issue still exists, but the flexibility in how the

classification boundary is defined allows the classifier to be less influenced by these histogram

encoding issues. The problem is exacerbated by the small size of the training dataset –

the poor quality examples where the histogram generation issue is most problematic have a

greater influence in deciding how the classification boundary should be placed. This is an

example of overfitting to the training data.

To verify that this issue really is the cause of the poor accuracy seen in the non-resizing

versions of Pro-HOG, the experiment was carried out again using cell-block dimensions of

4 × 4 (instead of 8 × 8). For HOG, each cell’s pixel dimensions are left at 8 × 8 pixels.

For the resizing versions of Pro-HOG, this is also the pixel dimensions of the cells in those

extractors. This implies extract resizing dimensions of 40×40 pixels. Using smaller cell block

dimensions gives descriptors with only a quarter of the length – 576 elements instead of 2304.

The precision-recall graphs for the linear and the non-linear classification cases using this

configuration are shown in figure 4-79.

Comparing figures 4-78(a) and 4-79(a), using smaller cell grid dimensions for this particular

object type results in improved recall and precision for the scale invariant configurations of
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Figure 4-79: Precision versus Recall using feature descriptors extracted from intensity images
of the Earthmine “Traffic Cone” object type with extraction cell-block dimensions of 4× 4.

Pro-HOG while the image resizing configurations (along with HOG) have relatively unchanged

levels of accuracy.

This relative improvement in accuracy is also noticeable in the non-linear classification case as

seen in figures 4-78(b) and 4-79(b) although the extent of improvement is less. By choosing

a configuration of Pro-HOG that is better suited to the object type, greater classification

accuracy is achieved in the linear case, than in the non-linear case. This is preferential for

object detection because linear classification is much more efficiently computed. This result

also demonstrates that larger feature vectors don’t necessarily result in feature encodings that

give higher classification accuracy.

Depth Based Descriptors

For comparison against the initial experiment with intensity based descriptors (with results

shown by the precision-recall curves in figure 4-78), the depth descriptors use the same 8× 8

cell block dimensions. The quality of the depth information for this object type is again very

degraded; the smaller size of the objects and the lower precision of stereoscopy in being able to

capture detailed changes in depth means that very few of the objects have depth information

that is representative of their morphology.

In the linear case, there is great variability in the accuracy achieved by the different extractor

configurations (see figure 4-80(a)). The two best performing extractors are Pro-HOG with

GSS enabled – both with and without resizing the extracts. The worst performing extractor is
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Feature Extractor Classifier Precision Recall F1

HOG Linear 0.6479 0.4510 0.5318

Pro-HOG (GSS, 72× 72) Linear 0.7143 0.5882 0.6452

Pro-HOG (72× 72) Linear 0.6164 0.4412 0.5143

Pro-HOG (GSS) Linear 0.6889 0.6078 0.6458

Pro-HOG Linear 0.5200 0.3824 0.4407

HOG Non-Linear 1.0000 0.3725 0.5429

Pro-HOG (GSS, 72× 72) Non-Linear 1.0000 0.5882 0.7407

Pro-HOG (72× 72) Non-Linear 0.9744 0.3725 0.5390

Pro-HOG (GSS) Non-Linear 0.9265 0.6176 0.7412

Pro-HOG Non-Linear 0.9286 0.3824 0.5417

Table 4.29: Classification Results – Earthmine “Traffic Cone” (Depth descriptors)
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Figure 4-80: Precision versus Recall using feature descriptors extracted from depth images of
the Earthmine “Traffic Cone” object type.

Pro-HOG in its basic configuration (i.e. with GSS disabled). The configuration of Pro-HOG

that is most similar to HOG is also closest in accuracy to HOG.

In the non-linear case, figure 4-80(b) shows that all of the extractors exhibit increased accu-

racy. The relative ordering of the Pro-HOG extractors is unchanged; the GSS enabled versions

still give the highest accuracy. In the non-linear case, HOG’s accuracy is relatively lower com-

pared with the two GSS disabled configurations of Pro-HOG implying that Pro-HOG gives

the learning algorithm more flexibility in being able to find a suitable classification bound-

ary.

In light of the increase in accuracy using the Pro-HOG extractors with the intensity based

descriptors when reducing the cell block dimensions to 4×4 (with results seen in figure 4-79),
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the experiment was repeated using the depth based descriptors and 4 × 4 cell blocks. The

results of these experiments are shown by the precision-recall curves for the linear and the

non-linear cases in figure 4-81.
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Figure 4-81: Precision versus Recall using feature descriptors extracted from depth images of
the Earthmine “Traffic Cone” object type with extraction cell-block dimensions of 4× 4.

When comparing figure 4-80(a) with figure 4-81(a), and figure 4-80(b) with figure 4-81(b),

it is clear that accuracy is also improved using the depth descriptors when going from cell

block dimensions of 8× 8 to 4× 4. While HOG as well as Pro-HOG in all its configurations

gives greater accuracy, the improvement is relatively larger for Pro-HOG. In both the linear

and the non-linear tests, all of the Pro-HOG configurations now provide conclusively better

accuracy over HOG.

Also notable when comparing figures 4-81(a), and 4-81(b) is the fact that non-linear clas-

sification, while still giving greater accuracy than linear classification, does not allow for as

great an improvement as seen in the initial depth based descriptor experiment (with results

shown in figure 4-80) where cell block dimensions of 8×8 are used. The reason for this is that

a smaller number of feature vector dimensions constrains the flexibility of the classification

boundary that can be learned for linear classification (the gain in accuracy in the linear case

is much greater than in the non-linear case); for the same size training dataset, the learner

is less likely to fit a classification hyperplane to the data that gives poor generalisation on

query data. This is an example of how the curse of dimensionality can degrade classification

accuracy.
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4.4 Observations and Recommendations

Overall, the results of the single object binary classification experiments show that there is no

standard configuration of any of the extractors (HOG or Pro-HOG) that is well suited for all

of the different object types. The size and symmetry of the objects are two factors which in-

fluence the quality of the extracted feature vectors. Ideally, for each object classification task,

the feature extractors being evaluated should be specifically configured using cross validation

over a subset of the object’s dataset. This is a computationally intensive process that takes

exponentially longer with the addition of subsequent extractor configuration parameters. As

demonstrated on the Earthmine “Traffic Cone” class, optimising classification accuracy for

one type of object cannot be achieved by choosing parameters for the extractors that are

based on the cross-validation results of object types that are significantly dissimilar.

4.4.1 Emulating HOG

In the preceding tests, HOG is included as a baseline feature extractor to confirm that

Pro-HOG gives similar classification results. The second configuration of Pro-HOG tested

in all of the experiments emulates HOG as closely as possible. This is achieved by resizing

the image examples to the same fixed dimensions that HOG uses, and disabling GSS (to

reflect the fixing of this parameter in the OpenCV implementation being used). When em-

ulating HOG in this way, the differences between the two algorithms are Pro-HOG’s lack of

cell grid resolution Gaussian filtering, and Pro-HOG’s lack of bilinear spatial interpolation of

the cell histograms which cannot be incorporated into Pro-HOG due to the division of the

algorithm into two separate phases.

Given that Pro-HOG does not implement these aspects of the HOG algorithm, Pro-HOG in

its HOG emulation configuration is not expected to meet or exceed the classification accuracy

afforded by HOG. However, in twelve out of the fifteen linear classification experiments,

Pro-HOG exceeded HOG in classification accuracy (measured as the F1 score) by an average

of 1.33% (with standard deviation of 2.57%). In the non-linear classification experiments,

Pro-HOG’s overall classification accuracy also exceeded HOG’s, but the improvement was

smaller with a mean gain in the F1 score of 0.81% (standard deviation of 2.51%).

This difference has two explanations. Either the OpenCV implementation of HOG deviates

from the specifications laid out in Dalal and Triggs (2005) in undocumented ways, or HOG’s

cell resolution Gaussian filtering and/or bilinear histogram spatial interpolation is acting to

decrease classification accuracy rather than increase it for most of the object types. Since HOG
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was originally evaluated against only a single object type – the INRIA person dataset (Dalal

and Triggs, 2005) – it is possible that certain features of the algorithm do not generalise

to different object types as well as originally intended. Follow-up investigation can help to

understand which of these explanations is more likely.

4.4.2 Effects of Gradient Sign Sensitivity (GSS)

It was not expected that GSS would be so effective in improving classification accuracy,

particularly because all of the experiments were carried out using the left-right reflections of

the extracts. In 14 of the 15 object types, enabling GSS resulted in higher overall classification

accuracy although often improving precision at the expense of recall. The only object type

where enabling GSS resulted in lower classification accuracy was the AAM “Rectangular Road

Sign” case, and there is no clear reason why enabling GSS should be less effective for this

object type especially when classification accuracy is improved with GSS enabled for similar

object types such as the Earthmine “Parking Sign” and AAM “Triangular Road Sign” object

types. This only further supports the notion that the extractor must be configured for the

given object type; presuppositions about the extractor’s “best” parameters for a given object

type based on evaluations of similar object types will not always hold.

4.4.3 Effects of Scale Invariance (SI)

These experiments demonstrate the effect of scale invariant feature extraction at fixed cell-

block dimensions. By comparing the classification accuracy of Pro-HOG in its originally

designed scale invariant mode, versus its HOG emulating resizing mode, all other aspects of the

algorithm are controlled to remain equivalent and the effect of image resizing on classification

accuracy can be seen.

Figure 4-82 shows the percentage improvement in classification accuracy (measured as the

F1 score) of Pro-HOG when extracting intensity based features in scale independent mode

at the fixed cell-block dimensions of 8 × 8 over all of the object types. The green bars show

improvement with GSS enabled and the blue bars show improvement with GSS disabled. The

object types are ordered in the X axis in increasing median image dimensions.

Figure 4-82 firstly indicates that Pro-HOG’s scale independent feature extraction does not in

general improve upon the classification accuracy achieved in Pro-HOG’s image resizing HOG

emulation mode at the given cell-block and histogram length configuration. Secondly, im-
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Figure 4-82: Percentage improvement in accuracy (F1 score) of Pro-HOG (Scale Independent)
from Pro-HOG (Resizing) over all object classes at cell-block dimensions of 8× 8.

provements in classification accuracy due to Pro-HOG’s scale independent feature extraction

are not correlated (in either the GSS enabled or disabled case) with the original size of the

extracts.

These experiments fixed the cell-block dimensions to 8 × 8 so as to ascertain how the scale-

invariant mode of Pro-HOG changes the quality of extracted features and so affects classifica-

tion accuracy. The dimensions were chosen because they were found in section 4.2.5 to allow

for good classification accuracy on the Pascal VOC “Car” and “Person” object types. In ad-

dition, the same dimensions are used by Dalal and Triggs (2005) in the evaluation of HOG on

the INRIA person dataset. However, as was seen in the Earthmine “Traffic Cone” experiment

in section 4.3.18, decreasing the cell-block dimensions for SI Pro-HOG improves classification

accuracy to be better than any of the other extractors using the 8× 8 cell-block dimensions

(with the intensity based descriptors). The reason for this is that the size of the images in

that dataset are already very small. At lower cell-block dimensions, the number of pixels per
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cell increases and each cell can therefore contribute more information to its histogram; the

constructed histograms are less “coarse” than when using larger cell-block dimensions and so

the descriptors correspond more closely to one another.

4.4.4 Better Accuracy with Shorter Descriptors

For the majority of the objects tested, the average size of the images is less than the fixed

resize dimensions of 72 × 72 pixels. At cell-block dimensions of 8 × 8 (giving a cell grid

resolution of 9 × 9), this means that Pro-HOG in its original (non-resizing) configuration,

constructs cell histograms using fewer than 82 pixels per cell. This means that it should be

the case for most of the object types that better classification accuracy can be achieved if

lower cell-block dimensions are used – even though this reduces the overall size of the feature

vectors being generated.

To test this hypothesis, a new set of tests to determine the effect of scaling on accuracy

was undertaken for each of the object types. Only linear classification is used since, as the

preceding results have shown, the differences in extractor behaviour are more obvious in the

linear classification case than in the non-linear case. Only intensity based descriptors are

used for these experiments since there is no reason to think that the use of depth descriptors

would affect the hypothesis. In addition, the tests on the Earthmine “Traffic Cone” object

type in section 4.3.18 showed that accuracy is also improved for that object type using the

depth based descriptors when reducing the cell grid resolution. GSS is also left disabled since

it is found to give lower overall accuracy for most of the object types – giving more room for

improvement. This also means that Pro-HOG can be directly compared to HOG which fixes

GSS to be disabled in its tested implementation. The histogram length is left unchanged at

nine.

For each object type, Pro-HOG is evaluated three times using five fold cross validation.

Initially, Pro-HOG in SI mode is used to determine the cell-block dimensions for the object

type that give the best classification accuracy (evaluated as the F1 score). In the subsequent

experiments, Pro-HOG is configured to use these cell-block dimensions, but the images are

resized prior to feature extraction.

In the first experiment, the fixed width and height of the extracts are set as the square root

of the median area of the examples in the object dataset. This means that as many images

are scaled up as are scaled down. In the second experiment, the fixed width and height are

set to be the minimum size that is at least as large in either dimension as the largest example
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in the dataset, but is also a whole multiple of the minimum cell pixel dimensions that allow

this to be true. For example, for some object datasets, if h is found to be the image with

the largest dimension (either horizontally or vertically), and if b is found to be the cell-block

dimensions that give optimal classification accuracy in SI Pro-HOG, then the image resize

dimensions mb ×mb are found as

nb =

⌈
max(hx, hy)

b+ 1

⌉
(4.7)

mb = (b+ 1)nb (4.8)

with max(x, y) defined as the larger of its two parameters. b + 1 is used because cell-block

dimensions of b× b require a cell grid with resolution b+ 1 on a side. For comparison, HOG

is also evaluated using the optimal cell-block dimensions, but with predetermined cell pixel

dimensions of nb×nb which ensures that HOG scales the images prior to extraction to mb×mb

pixels – the same dimensions as for Pro-HOG in it maximum resizing configuration.

The two different resizing settings are used to see how feature extraction quality changes. In

the first experiment, for each object type the same number of images are scaled up as are

scaled down. The median size for each object type is used as the fixed resizing dimensions

because scaling affects the extraction process differently depending on whether the scaling

factor is positive and < 1 or > 1. Using the median size removes the possibility of bias caused

by some object types having a larger average size than others.

In the second experiment, all of the images are scaled up. This is the best case for an

extractor that undertakes image resizing because any scaling down causes information to be

lost as shown by Dollar et al. (2014), potentially reducing the ability of the classifier to use

the features as they are encoded to discriminate between the positive and negative examples.

Scaling up does not lose information, but scaling artefacts may still be introduced causing

some degradation in the quality of the features that are extracted. It is expected that scaling

up all of the images should allow for improved classification accuracy than when scaling

up half of the images and scaling down the other. If scaling introduces any kind of image

corruption, then SI Pro-HOG should give classification accuracy that is at least as high as in

the maximum image resizing case.

Tables 4.30, 4.31, and 4.32 show the results of these experiments grouped by parent dataset

(Pascal VOC 2007, AAM and Earthmine). The first column gives the object type with the

size of the feature descriptor given in parentheses. The size of the descriptor depends upon

the optimal setting of the cell-block dimensions found for the object type by the SI variant

of Pro-HOG whose results are shown in the first row for the object. Column FX (Feature
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Extractor) specifies the configuration of the experiment where “Median” indicates that the

images are first resized to the median example size, and “Max” which indicates that the

images are first resized to the maximum dimensions for the object type. The dimensions that

the images are resized to prior to feature extraction are shown in parentheses (the original

“native” dimensions of the extracts apply in the SI case since, by definition, no image scaling is

performed). The classification accuracy values are given at the default classification threshold.

Precision-recall graphs are not shown due to the similarity of results between the different

extractors.

Object (FV Dims.) FX (Image Dims.) Precision Recall F1

SI (native) 0.8806 0.8196 0.8490
Car (1764) Median (122× 122) 0.8802 0.7915 0.8335

Max (472× 472) 0.8937 0.8018 0.8453
HOG (472× 472) 0.9080 0.8059 0.8539

SI (native) 0.7557 0.4083 0.5301
Person (3600) Median (104× 104) 0.7472 0.4465 0.5590

Max (440× 440) 0.7606 0.4443 0.5609
HOG (440× 440) 0.7032 0.4733 0.5658

Table 4.30: Pascal VOC 2007 dataset: comparing Pro-HOG’s scale independence versus image
resizing using optimal cell-block dimensions.

For the Pascal VOC 2007 “Car” class, the percentage improvements in precision for the SI and

maximum resizing versions of Pro-HOG are 0.05% and 1.53% respectively. The improvements

in recall for the same class are 3.55% and 1.30% respectively. The overall improvement as

measured by the F1 score for SI Pro-HOG is 1.86%. For the maximum resizing version of

Pro-HOG the improvement is 1.42%. The optimal setting for the cell-block dimensions in

this case (7× 7) results in a smaller feature vector but allows for higher accuracy than in the

original experiment in section 4.3.4.

For the Pascal VOC 2007 “Person” class, the percentage improvements in precision for the

SI and maximum resizing versions of Pro-HOG are 1.14% and 1.79% respectively. Recall is

reduced with SI Pro-HOG by 8.56%. Max Pro-HOG also reduces recall accuracy, but only by

0.49%. Overall with this class, SI Pro-HOG reduces overall accuracy by 5.17%. Max Pro-HOG

increases accuracy slightly by 0.34%. Contrary to expectations, in this case the resizing of

all of the images to median dimensions actually causes accuracy to increase overall; both the

maximum resizing and SI variants of Pro-HOG do worse in recall – although SI Pro-HOG

does much worse. The Pascal VOC 2007 “Person” class is the largest of all of the datasets

and so the results have significant statistical weight. The most likely explanation for this

discrepancy is that in order to achieve the higher overall classification accuracy, the optimal

cell-block dimensions of 10 × 10 are actually larger than used in the original experiment in

section 4.3.5. Because a large number of the examples in this class are significantly smaller
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than the median image dimensions, this means that the number of pixels per cell being used

to construct each histogram is smaller. This object type also has a particularly high degree

of intraclass variance as evidenced by the very low classification accuracy. This may be

an example of an object class where scaling the images up improves classification accuracy

because very finely detailed texture (as might be present in clothing) is not as accurately

encoded without being sampled over a larger number of pixels.

As shown in table 4.30, HOG has the highest classification accuracy for both of the classes

tested in the Pascal VOC 2007 dataset, although recall is highest for the “Car” object type

using SI Pro-HOG. For the “Person” class, HOG achieves much higher recall, but much lower

precision. The improved recall for the “Person” class may be caused by the extra functionality

present in that algorithm which serves to smooth small differences in appearance – a feature

that is better suited to this object type in particular.

Table 4.31 and figures 4-83 and 4-84 show the corresponding results for the object types from

the AAM dataset. Figure 4-83 shows that precision is definitively improved in general with

the one exception being the AAM “Traffic Light” case where precision is slightly degraded

from the Median resizing case. SI Pro-HOG does not improve upon precision as much as

the maximum resizing case however. The generally smaller sizes of the images in this class

mean that SI Pro-HOG is in some instances building histograms of negative instances from

fewer pixels per cell making the histograms coarser (having less variability to them) so that

they are more easily confused as positive examples by the classifier (remembering that the

negative instances have similar pixel dimensions to the positive instances in the dataset).

This explanation still allows for the grouping together of positive examples in feature space

as evidenced by the generally higher recall accuracy for SI Pro-HOG in figure 4-84.

In general, recall is improved in both the SI Pro-HOG and Max resizing cases over the Median

resizing case (with very slight degradation in only two of the cases). In the case of the

“Road Light” class, the cell-block dimensions are higher (at 9× 9) than originally tested (see

section 4.3.10), and so the reason for the lower recall values is almost certainly the same reason

that explains why the classification accuracy for the Pascal VOC 2007 “Person” is degraded.

Unexpectedly, recall is also degraded in the AAM “Traffic Light” case when resizing the

images to maximum dimensions implying that losing some information in the positive images

is beneficial for recall. It may be the case that the images from this dataset express a kind of

appearance variability that is easily constrained by scaling the images down.

Overall, apart from the AAM “Road Light” object type, the optimal cell-block dimensions for

SI Pro-HOG are lower than the cell-block dimensions used in the corresponding evaluations

through section 4.3 leading to feature descriptors having a significantly smaller number of
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dimensions. Table 4.31 shows that even though the feature descriptors are smaller, for every

object type in the AAM dataset, SI Pro-HOG outperforms HOG and both resizing versions

of Pro-HOG in recall.

Object (FV Dims) FX (Image Dims.) Precision Recall F1

SI (native) 0.9267 0.8841 0.9049
Car (900) Median (33× 33) 0.9162 0.8471 0.8803

Max (162× 162) 0.9334 0.8560 0.8930
HOG (162× 162) 0.9546 0.8512 0.8999

SI (native) 0.8828 0.6971 0.7790
Traffic Light (1296) Median (46× 46) 0.8831 0.6540 0.7515

Max (245× 245) 0.9025 0.6438 0.7515
HOG (245× 245) 0.9021 0.6293 0.7414

SI (native) 0.8973 0.8037 0.8479
Triangular Road Sign (576) Median (23× 23) 0.8905 0.7485 0.8133

Max (205× 205) 0.9233 0.8129 0.8646
HOG (205× 205) 0.9137 0.7791 0.8411

SI (native) 0.8771 0.7021 0.7799
Truck / Van (900) Median (45× 45) 0.8571 0.6223 0.7211

Max (216× 216) 0.8828 0.6410 0.7427
HOG (216× 216) 0.8415 0.5505 0.6656

SI (native) 0.9477 0.8990 0.9227
Road Light (2916) Median (89× 89) 0.9472 0.9021 0.9241

Max (350× 350) 0.9572 0.9021 0.9288
HOG (350× 350) 0.9549 0.8977 0.9254

SI (native) 0.9433 0.9413 0.9423
Telegraph Pole (144) Median (48× 48) 0.9237 0.9109 0.9172

Max (273× 273) 0.9262 0.9312 0.9287
HOG (273× 273) 0.9185 0.8965 0.9074

SI (native) 0.9142 0.8219 0.8656
Rectangular Road Sign (324) Median (30× 30) 0.9036 0.7717 0.8325

Max (216× 216) 0.9295 0.7994 0.8596
HOG (216× 216) 0.9072 0.7171 0.8010

SI (native) 0.9198 0.7928 0.8516
Generic Road Sign (576) Median (27× 27) 0.9134 0.7512 0.8244

Max (195× 195) 0.9377 0.7942 0.8600
HOG (195× 195) 0.9183 0.7287 0.8126

Table 4.31: AAM dataset: comparing Pro-HOG’s scale independence versus image resizing
using optimal cell-block dimensions.

Table 4.32 and figures 4-85 and 4-86 show the results for the objects from the Earthmine

datasets. As already noted, the number of instances per object type is very much lower than

for the object types from the Pascal VOC 2007 and AAM datasets. As such, the results from

these experiments carry less weight as they are more affected by the particular sampling of

the data in each object class.
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Figure 4-83: Percentage improvement in precision of the Pro-HOG (Scale Independent) and
Pro-HOG (Max Resized) extractors from the Pro-HOG (Median Resized) extractor for object
types from the AAM dataset (at object specific optimal cell-block dimensions).

Figure 4-85 shows that precision is again improved in general, but the smaller number of

samples means that the results are less convincing than in the case of the AAM results. In

two of the five object categories (“Garbage Bin” and “Parking Sign”), precision is degraded

but not greatly. For the “Garbage Bin” object type, the optimal cell-block dimensions are

8× 8; the same dimensions used in the original experiment in section 4.3.15.

In figure 4-86, recall is not significantly affected from the median resizing case overall, although

there is variation across the object types – again, best explained by the reduced sample sizes.

In the Earthmine “Car” case, a significantly larger cell-block dimensionality of 15 × 15 was

needed to maximise classification accuracy for SI Pro-HOG, even though this necessarily

reduced the number of pixels available to construct each cell’s histogram to less than 62 on

average for half of the examples. If the hypothesis of this section is correct, this is a possible

explanation for the drop in recall accuracy.

In the original Earthmine “Traffic Cone” experiment in section 4.3.18, while classification

accuracy was greatly improved in the GSS enabled scale invariant Pro-HOG case at cell-

block dimensions of 4× 4, the experiment here disables GSS. With this change, the optimal

cell-block dimensions were found to be slightly higher at 6 × 6 for SI Pro-HOG. Given the

very small size of the examples, this completely changes the resulting classification accuracy;

precision is improved, but recall is degraded. At these cell-block dimensions, at least half of
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Figure 4-84: Percentage improvement in recall of the Pro-HOG (Scale Independent) and Pro-
HOG (Max Resized) extractors from the Pro-HOG (Median Resized) extractor for object
types from the AAM dataset (at object specific optimal cell-block dimensions).

the instances have their histograms constructed using only 9 pixels per cell.

Even though overall in figure 4-85, recall is not significantly improved, SI Pro-HOG still

represents an improvement due to the fact that the extra processing required to resize the

images is not needed to achieve a comparable level of accuracy to HOG.

The results in this section empirically corroborate the analysis of Dollar et al. (2014) and show

that a reduction in feature encoding quality due to image scaling by a positive factor < 1

has tangible deleterious effects on classification accuracy. The results also justify the design

of Pro-HOG in its ability to accurately extract features from images without first having to

resize them.

By avoiding the extra processing required to resize the images needed by HOG, and only

requiring feature descriptors with lower dimensionality for increased classification accuracy,

Pro-HOG is algorithmically faster as well as space saving in memory.
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Object (FV Dims) FX (Image Dims.) Precision Recall F1

SI (native) 1.000 0.9038 0.9495
Car (8100) Median (90× 90) 0.9802 0.9519 0.9659

Max (336× 336) 0.9792 0.9038 0.9400
HOG (336× 336) 0.9804 0.9615 0.9709

SI (native) 0.9878 0.9918 0.9898
Garbage Bin (2304) Median (17× 17) 1.0000 0.9918 0.9959

Max (90× 90) 0.9916 0.9713 0.9814
HOG (90× 90) 0.9873 0.9590 0.9730

SI (native) 0.7981 0.7270 0.7609
Traffic Light (1296) Median (34× 34) 0.7857 0.6954 0.7378

Max (322× 322) 0.8514 0.7241 0.7826
HOG (322× 322) 0.8113 0.7040 0.7538

SI (native) 0.9713 0.9476 0.9593
Parking Sign (1296) Median (35× 35) 0.9748 0.9476 0.9610

Max (175× 175) 0.9606 0.9371 0.9487
HOG (175× 175) 0.9478 0.8881 0.9170

SI (native) 0.9647 0.8039 0.8770
Traffic Cone (1296) Median (20× 20) 0.9362 0.8627 0.8980

Max (56× 56) 0.9560 0.8529 0.9016
HOG (56× 56) 0.9773 0.8431 0.9053

Table 4.32: Earthmine dataset: comparing Pro-HOG’s scale independence versus image re-
sizing using optimal cell-block dimensions.
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Figure 4-85: Percentage improvement in precision of the Pro-HOG (Scale Independent) and
Pro-HOG (Max Resized) extractors from the Pro-HOG (Median Resized) extractor for object
types from the Earthmine dataset (at object specific optimal cell-block dimensions).
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Figure 4-86: Percentage improvement in recall of the Pro-HOG (Scale Independent) and Pro-
HOG (Max Resized) extractors from the Pro-HOG (Median Resized) extractor for object
types from the Earthmine dataset (at object specific optimal cell-block dimensions).
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4.5 Conclusion

This chapter introduced Pro-HOG – a new algorithm for the extraction of features from 2-D

imagery based on Histograms of Oriented Gradients (HOG) by Dalal and Triggs (2005). The

algorithm is novel in that it maintains a fixed sampling resolution for the generation of feature

vectors irrespective of the dimensions of the subregion that the features are being extracted

from. This allows region descriptors coming from two differently sized image regions to be

directly compared without first scaling the extracts to identical dimensions.

Pro-HOG was compared against HOG in a rigorous suite of object classification experiments

against three different datasets, and using two different types of input data (grey scale in-

tensity images derived from colour images, and depth maps derived from stereoscopy and

laser scanning). The initial hypothesis postulated that Pro-HOG would provide for improved

classification accuracy over HOG due to its avoidance of image scaling and the possibility of

attendant scaling artefacts.

While a strong indication of increased accuracy (especially recall) with Pro-HOG was seen in

the AAM dataset – the largest of the three datasets tested, it is not possible to conclude that

Pro-HOG is superior in general to HOG for the purposes of classification. This is because

each object type was shown to be substantially different enough to require different settings

of the feature extraction parameters (for both Pro-HOG and HOG) in order to obtain the

optimal classification accuracy for the type. On the two smaller datasets tested – the Pascal

VOC 2007 dataset (which does not include depth data) and the Earthmine dataset, no strong

tendency towards increased classification accuracy using Pro-HOG was observed.

Section 4.2.4 tested the effects on classification accuracy of extract resizing. Resizing extracts

in the case of the Pascal VOC 2007 “Person” dataset was shown to degrade recall accuracy.

While this only constitutes evidence for one object type from a single dataset, depending on

the nature of the objects/features being tested, using Pro-HOG instead of HOG may help to

avoid this problem.

Even though no conclusive evidence was found for Pro-HOG having improved classification

accuracy over HOG, the results do suggest that it is possible to fix the sampling resolution in

the extraction mechanism prior to generating the feature vectors without incurring any loss

in classification accuracy. This means that Pro-HOG has some computational advantages

over HOG. A level of classification accuracy can be achieved with Pro-HOG that is at least as

good (if not better) than HOG using shorter feature vectors comprised of a coarser sampling

of the image data, hence this makes Pro-HOG more efficient in time and space because image
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scaling is unnecessary, and less memory is needed to store the descriptors.

The classification experiments using the object types from the AAM dataset demonstrated

that these advantages are especially evident with extracts having smaller dimensions. With

smaller object extracts, the act of resizing them to fixed dimensions does not provide any

informational advantage and so cannot aid classification. The resizing only serves to allow

the feature extractor to encode the extract’s features in a longer vector.

Due to its two stage implementation, two facets of the original HOG algorithm couldn’t be

implemented in Pro-HOG: cell resolution histogram interpolation and Gaussian smoothing at

the same resolution. By its empirical validation against HOG, it was shown that the lack of

these schemes in Pro-HOG does not confound classification accuracy.

Not explored in this chapter is the advantage offered by Pro-HOG’s two stage algorithm when

used in the context of object detection. With HOG, each extract (which may be any image

subregion) must be independently resized before a descriptor for the extract can be generated.

Performing this resizing operation in potentially thousands of different image locations is

computationally expensive – especially where different subregions overlap. Because Pro-HOG

processes the query image at a pixel resolution just once – storing the histogram orientations in

an integral image, the task of generating the feature descriptors for arbitrarily sized subregions

is made very much more efficient. An empirical assessment of this advantage especially in the

context of detection where depth information is explicitly available is a candidate for future

research.

4.5.1 Depth Based Features

As discussed in section 4.3, the Pro-HOG algorithm is implemented to represent input data

using floating point values. It was designed this way to enable it to more accurately encode

the differences in values in depth imagery. The reasoning behind this design decision was that

more accurately encoded feature vectors from depth extracts would be more representative

of changes in surface morphology in the object extracts and this would result in more accu-

rate classifiers being learned. However, the results showed that while Pro-HOG performed

better using depth based descriptors than with the intensity based descriptors, the size of

the improvement in accuracy was not as great overall as that experienced by the original

implementation of HOG when going from the intensity based to the depth based descriptors

– even though the tested HOG implementation rounded the depth values meaning that small

changes in surface morphology could not be represented. Overall, the effect of rounding the
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depth values was to improve classification accuracy so that HOG performed at least as well

as Pro-HOG with the depth based descriptors.

This result is best explained by the fact that when looking at the depth extracts of the positive

instances from any of the object classes, they tend to be represented as solid planar surfaces

expressing minimal variation in depth across their surfaces (which are shown orthogonally

to the camera’s viewpoint). For example, the orientation of road signs in the data is almost

wholly face on to the camera – which is not unexpected given that the mobile mapping vehicle

is road based and the vast majority of road sign examples are taken from the view of the

mapping vehicle facing up the road in the direction of travel. On the other hand, the random

negative extracts typically showed rapidly changing values in depth from horizontal surfaces

such as the road, or from patches of vegetation (particularly in the case of the AAM dataset

where the method of laser scanning allows for individual tree branches and the gaps between

them to be imaged).

In the implementation of Pro-HOG tested here, the fact that the small changes in surface

morphology were encoded in the feature vectors meant that the positive descriptors were

more likely to be confused with the descriptors extracted from the negative examples. In the

implementation of HOG tested here, these small changes in depth in the positive examples

were ignored due to the rounding meaning that the positive descriptors were less likely to

be confused for the negative descriptors. Because the negative examples expressed larger (on

average) changes in depth – changes of greater magnitude than could be affected by rounding

– HOG was able to encode the different classes using a much simpler characteristic: those

descriptors encoding a lot of change in depth (the negative examples) versus those descriptors

encoding very little change in depth over a significant portion of the descriptor (the positive

examples).

This explanation implies two things. Firstly, that the improvement in accuracy realised overall

by the depth based descriptors over the intensity based descriptors in the experiments in this

chapter is best explained by the fact that any object of interest (whatever its type) is more

likely to be present in those parts of the image where depth is changing only very minimally,

if at all. Secondly, that depth data can provide excellent contextual information to quickly

rule out those image areas that are unlikely to contain objects of interest – assuming that

the objects of interest are never present at oblique angles. In this case, a complex feature

vector extraction mechanism would not be required when undertaking object detection; a

thresholded transform of the depth data showing change in depth (using a Sobel operator)

would be sufficient. Detection and classification could then be carried out on the remaining

parts of the image.
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As a topic for possible further research, to more accurately ascertain the discriminative power

of depth based features, it will be more instructive to compare the accuracy of Pro-HOG

versus HOG when classifying over multiple object types instead of a single object type versus

random negative extracts. This may show that Pro-HOG’s encoding of the morphological

changes in depth gives improved classification precision over the implementation of HOG

tested here which rounds input values. It should be noted though, that this rounding issue

is not intrinsic to the HOG algorithm per se, but is incidental to the version of HOG being

evaluated here. There is no reason to think that Pro-HOG would be intrinsically better than

a HOG implementation that used floating point values internally.

4.5.2 Limitations

In section 4.2.2, when evaluating the effect of setting the contrast gradient measurement to be

sensitive or insensitive to the sign of the change, it was not possible to make a direct compari-

son with HOG for the case of gradient sign insensitivity because the OpenCV implementation

does not allow this parameter to be changed. Because the results of these tests with Pro-HOG

showed that gradient sign insensitivity may be preferred for recall, it could be the case that

changing this parameter in HOG will result in slightly higher recall (and lower precision)

values too, although the overall difference in precision and recall between the two settings

of gradient sign sensitivity was found to be slight (and far less important for classification

accuracy than changes to the histogram length or cell grid dimension parameters).

A second limitation of Pro-HOG is that it can only extract features from images having native

pixel dimensions at least as large as the predefined cell grid dimensions. One workaround is

to resize images that are below this limit up to the minimum allowed size – likely experiencing

only a minimal degradation in classification / detection accuracy. Since the optimum cell grid

dimensions are typically low (overall, 9 × 9 cells gave the best accuracy in testing), this is

unlikely to present a problem in practice; objects represented at these dimensions are already

too small to discern in most cases.
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Chapter 5

Extending Randomised Hough

Forests Using Depth Data

In previous chapters, feature descriptors encode the appearance characteristics of whole ob-

jects together with the relative spatial relationships of the parts of the objects using rigid

descriptors. Chapter 4 shows that the explicit availability of depth means that these descrip-

tors can be encoded using a scale invariant approach.

As noted in section 2.3, rigid descriptors are limited in their ability to accurately encode

the salient features of an object type, especially when there is significant variation in how

objects are represented in images. Section 2.3.2 introduced Implicit Shape Models (ISMs)

which represent object types in such a way that many of the representational problems that

afflict rigid descriptors can be mitigated. The Class Specific Hough Forest (CSHF) (Gall

et al., 2009) is a method of learning ISMs and comparing the generated models to features

extracted from query images to detect the presence of objects of the modelled type.

In this chapter, three extensions to the CSHF that make use of explicitly available depth data

are developed. The accuracy of object detection using the depth extended CSHF is evaluated

and the results compared against the CSHF in its original implementation without the depth

extensions. The depth extensions are shown to result in improved object detection accuracy

over the original method. Importantly, the extensions do not require any algorithmic changes

to the original CSHF algorithm but are effected by treating the inputs and outputs of the

algorithm differently.

Randomised Hough forests have been used with 3-D data and depth imagery in several ways.

Knopp et al. (2010) extended the SURF (Bay et al., 2008) feature descriptor for 3-D object

classification within a Hough forest based framework. Fully volumetric 3-D data have been
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used to train object part dictionaries (or code books) so that parts at the incorrect scale can

be rejected, improving the representative accuracy of the object models. This results in a

reduced number of false positives at detection time (Sun et al., 2010).

Using depth information, the scale of object parts has been used within a Hough forest frame-

work to allow parts to vote for the locations of their comprising objects in three dimensions

(as opposed to two dimensions as per the usual Hough forest scheme) (Salti et al., 2010).

However, this means that the voting space requires an extra dimension resulting in an in-

crease in the sparsity of votes; an exponentially larger number of votes is required to maintain

the same accuracy of detection. In the original evaluation of the CSHF, votes are also cast

in scale space by resizing the query image and performing detection over each of the separate

images (Gall et al., 2009) which is inefficient and only allows for the detection of object parts

at predefined scales.

In this chapter, part offsets are encoded using a 2-D vector, but the magnitude of the vector is

related to the actual scale of each part in the image as found by directly measuring the depth

at the location of the part. This scale invariant encoding of the part offset means that parts

from training examples with different pixel dimensions can contribute accurate part offsets in

the detection of an object at any scale in a query image.

The descriptors that encode the characteristics of a given part (defined as an image patch

or subregion) are termed patch descriptors. The framework developed and evaluated in this

chapter scales these patch descriptors depending upon the measured depth values from the

query images. The magnitude of the part offsets is defined in terms of the scaled size of

these local image regions. This means that salient part characteristics can be compared

from local image patches extracted at different scales and the pixel dimensions of the part

offset can be determined using the scale of the patches extracted from the query images.

Scale proportion feature extraction techniques (such as that developed in chapter 4 are well

suited to the generation of patch descriptors from local image regions having non-constant

dimensions. In this chapter, the scaled extraction of features is applied in the context of a

parts based object detector rather than a rigid template object classifier. The scaling of patch

descriptors has been undertaken in other work (Wang et al., 2012), but this used contextual

patches rather than patches taken from the objects themselves. In this chapter, patch scaling

is combined with scaled part offsets in an integrated approach to perform object detection

and localisation.

To take advantage of the high accuracy depth information provided by the AAM dataset (see

section 3.3) a simple depth based feature is developed to encode the local surface morphology

of objects as they appear in depth images. This depth feature is compared against the set
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of RGB based features used in the original CSHF evaluation (Gall et al., 2009). It is shown

that for some object types in the AAM dataset, the depth based feature which encodes

local patches using only 10 scalar values can provide detection accuracy (in both recall and

precision) that is at least as high as the original set of RGB based features which encode local

patches using 8192 scalar values. This allows for order of magnitude speed ups in feature

extraction and object detection, and significantly reduces memory requirements.

Hough forests have previously been combined with depth images to attempt to solve the

problem of estimating human pose (Holt and Bowden, 2012). In training, the uncertainty in

the spatial separation of an object’s parts has been considered in an attempt to improve the

estimation of its centroid (Sun et al., 2010; Wang et al., 2012). In the framework presented in

this chapter, depth values are used during detection to weight votes. It is assumed that the

measured depth of individual parts is reasonably consistent across the projected face of an

object. This assumption is leveraged to decrease the weight of votes from source part locations

where the disparity in depth between the location of the part and the voting location is large.

It is hypothesised that this will decrease the number of false positive votes, thereby increasing

detection precision at a given recall rate.

This chapter is organised as follows. Section 5.1 gives a brief overview of the CSHF framework

as developed for 2-D object detection in Gall et al. (2009). Section 5.2 describes the design

and implementation of the depth-based extensions to the CSHF object detection framework

and how they are used during the training (forest generation) and detection (vote aggregation)

phases. Section 5.3.2 describes how the depth data in the Earthmine dataset are adjusted

to account for the lower quality depth information. These adjustments are made according

to knowledge about the kind of objects being detected, as well as how the Earthmine data

were captured. Section 5.3 describes the experimental methodology used to compare the

results garnered from the original CSHF detector against the Earthmine and AAM datasets

with the CSHF detector using the new depth extensions against these data. Section 5.4

presents the outcomes of the experiments and provides an analysis of the efficacy of the depth

based extensions. Finally, section 5.5 concludes this chapter and describes areas for future

research.

5.1 Class Specific Hough Forests

This section gives an overview of the Class Specific Hough Forest (CSHF) algorithm as pre-

sented in Gall et al. (2009).
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Each tree in the CSHF specifies a set of leaf nodes that describe the parts of a particular class

of object and each tree is constructed to give a slightly different representation of a model that

encodes the appearance and location of the parts for the object type. The set of leaf nodes in

each tree represents a dictionary (or codebook) of implicitly learned parts. As described in

section 2.3.2, a boosted approach to classification using these differing decision trees (termed a

random forest) means that many of these slightly different models can be aggregated together,

and the classification results of all of them used to make a final determination as to the location

of the objects in query images. This has been shown to result in improved generalisation and

stability than for using a single tree (Amit and Geman, 1997). For Hough forests, this amounts

to each tree making its own slightly different set of votes in Hough space given the same input

data. The essential difference between the trees is the randomisation of decisions during tree

generation – the algorithms used to generate each tree are the same and so the description of

the algorithms that follows concerns a single tree.

A ground-truthed dataset for a single object type consists of examples of the object type

delimited with bounding boxes. Features extracted from small image subregions within these

bounding boxes are used to describe local parts of objects. Small fixed size regions are used

because actual object “parts” are heterogeneous across object types – varying in their shape

and extents. Small fixed size rectangular regions are simpler to compute and are less variable

in their appearance than the objects they describe. The variability of these smaller parts is

simpler to model than the variability of their comprising objects and it is this notion that

underpins the basis for modelling the complexity of an object by a configuration of its many

simpler parts. The specific configuration is given by a generated tree which partitions these

parts (as encoded by patch descriptors) having similar “appearance” according to a similarity

metric calculated over the descriptors, as well as by similar offsets from the reference points

of the objects the parts are taken from. In the original CSHF algorithm, the object centroid

denotes the part reference point.

A patch descriptor extracted over a single local image region can be comprised of one or

more independently acquired feature vectors of different dimensions; each feature measuring

different characteristics of the region. The concatenation of the feature vectors comprises the

complete descriptor for the image region (which is interpreted to be a part of an object).

Objects classes are modelled by thousands of such patch descriptors, each extracted from

a random location inside a bounding box delimiting an example instance of the class. The

offset of each patch descriptor to a standard reference point relative to the bounding box

of the example it was generated from is stored along with the patch descriptor. The patch

descriptor and the 2-D part offset vector are used during the training phase to generate each

tree of the CSHF.
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5.1.1 Training (Tree Generation)

The decision trees are binary i.e. all nodes have exactly two children apart from the leaf nodes

that have none. A node represents a decision point that evaluates either the appearance of a

part (its descriptor), or the part offset (the 2-D vector to the centre of the comprising object

instance). The objective of training the trees is to group together patch descriptors that are

similar in appearance (classification) and that also have similar offsets to the centres of their

comprising objects (regression). Once trained, the tree can be presented with new patch

descriptors extracted from query images. New patch descriptors are evaluated along a path

of nodes starting at the root node from parent to child until arriving at the leaf node which

determines how votes for the object centroid should be cast given the patch extract.

To train a random forest, each tree is trained on a random subset of the original training

dataset, with members of the subset sampled (with replacement) from the full training dataset.

This means that some instances may be included in the random training set more than once

which has the effect of weighting the decision tree more toward those examples. Within the

random forest framework, these differences when aggregated over multiple decision trees help

to cancel one another out – improving the overall accuracy of the votes (Amit and Geman,

1997). Each tree is trained independently, and so each tree can be trained concurrently –

decreasing the actual amount of time needed to train the entire forest.

After selecting the random subset of M training instances from the total set of ground-truthed

examples of the object class, each instance is parsed in turn to generate N patch extracts

sampled from random locations from within its bounding box. Unlike earlier Hough forest

detection frameworks which generate codebooks of object parts based on detected interest

points (Leibe et al., 2004, 2006, 2007), interest point detectors are not used with the CSHF.

This means that object parts can be more densely sampled, providing more information as

to the possible location of an object given the same amount of data. This also means that

any a priori assumptions about the usefulness of certain image features is avoided and the

utility of the different patch descriptors is learned by the decision trees. Dense sampling also

improves the robustness of the detector to noise and inaccuracies in the training data (Gall

et al., 2009).

Each patch extract is defined as a three tuple ε = (c, q,v) where c ∈ {0, 1} specifies whether

the extract is from a negative (0) or a positive (1) example, q is the descriptor for the local

patch, and v is the offset vector to the centre of the ground-truthed example. For negative

extracts, the value of v is left undefined since it is ignored. Equal sets of positive E1 and

negative E0 patch extracts are generated and these are supplied to a tree for training.
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Training proceeds by recursively partitioning the set of training positive and negative extracts

received by each node according to either a classification metric based on the appearance of

each patch extract’s descriptor, or a regression metric based on the similarity of the offset

vectors in the positive patch set. Recursion ends if one of the following four conditions are

met.

1. The tree’s maximum depth is reached.

2. Only negative patch extracts remain in the training set (|E1| = 0).

3. The training set’s minimum size has been reached.

4. It is not possible to find a binary partition of the training set using the given partition

function such that both of the partition sets are not empty within a fixed number of

tries.

The maximum depth of a tree is set to 15 and the minimum allowed number of patches per

node is set to 20. The choice of whether to partition a node’s training extracts according to

a classification or a regression metric is made randomly unless less than 5% of the training

patches are negative, or the node is within three levels of the maximum tree depth in which

case regression is used.

For each node, a partition of the training patches is sought over a fixed number of iterations

(20,000 by default) that maximises the metric for the classification or the regression function.

Each partition of the data is generated randomly by selecting two random indices i and j

from the kth randomly selected feature vector of the patch descriptors in the training set.

This gives two, two dimensional indices into each training patch descriptor q that are related

to the same feature. For each positive and negative patch descriptor q, the difference between

these indexed feature values is found as δ = qki − qkj . From these comparisons, the smallest

δmin and the largest δmax differences over all of the training patches are found. A threshold

value τ ∈ [δmin, δmax] is then randomly generated, and the patches are partitioned into one

of two prospective training sets for the current node’s children; set A if δ < τ , or set B if

δ ≥ τ . It is over these prospective sets A and B that the classification and regression metrics

are calculated.

If classification is used, then the metric is calculated in terms of the entropy of the prospective

training sets. Letting A be the prospective training set for the left child node, and B be the

prospective training set for the right child node, the classification metric is defined according
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to the combined entropy of the two sets U1 given by

entropy(x) = −x log x− (1− x) log(1− x) (5.1)

U1 = |A|entropy

( |{A | c = 1}|
|A|

)
+ |B|entropy

( |{B | c = 1}|
|B|

)
(5.2)

If regression is used to partition the patch extracts, the metric calculated is the variance

between the part offset vectors over the positive patch extracts for the two prospective training

sets. This metric U2 is defined as

U2 =
A∑

i∈A|c=1

(vi − vA)2 +
B∑

i∈B|c=1

(vi − vB)2 (5.3)

where v{A|B} is the mean offset vector for the positive extracts in prospective training set

{A|B}. Importantly, because the regression metric favours part offset distributions having

a single mode, parts that are similar in their appearance but have very dissimilar offsets

(because they are extracted from different relative locations in their comprising objects) are

grouped into separate sets. This increases the accuracy with which votes are eventually cast

because it decreases the problem of parts having too much variability in their allowed positions

relative to the object centroid.

The prospective training sets that are selected are those that minimise the selected metric

(either U1 or U2) and the parameters that provide this partition of the training extracts

i, j, k, and τ are stored in the node. Training recursively propagates to the left and right child

nodes supplying the partitioned datasets A and B respectively as the new training sets for

the nodes.

The randomisation of whether to partition each node’s training data based on classification

or regression, as well as the randomisation of the parameters to these functions, further helps

to ensure that each tree in the forest is substantially different. Once training is complete for a

tree, each of its leaf nodes represents a single entry in the ISM codebook comprising patches

having similar appearance (descriptors) and similar part offsets. The values stored in each

leaf node are the proportion of positive patch extracts, and the distribution of offset vectors

of these positive patch extracts.
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5.1.2 Detection (Vote Aggregation)

The detection of objects using a CSHF proceeds by extracting patch descriptors from each

location l in the query image Q. Letting f be the patch descriptor extractor function, each

patch descriptor q = f(Q, l) is supplied to each tree’s initial node (its root node) in the

random forest. The task of detection is to find each tree’s leaf node that represents the

codebook entry that is most similar to q. To achieve this, q is evaluated using the stored

partition parameters i, j, k, and τ stored in each node during training. If qki − qkj < τ , q is

passed to the left child node, otherwise q is passed to the right child node.

This process continues for each subsequent node until the tree’s matching leaf node, L is

found. Determining the correspondence of q with a tree’s leaf node is efficient because the

comparison is base 2 logarithmic in the number of leaf nodes stored in the tree.

Let H be a 2-D matrix that specifies the Hough image (the object vote space) having the same

pixel dimensions as Q. Let the boolean random variable Ex denote the existence of an object

at location x in Q. If q is generated from a local patch that is outside of the bounding box

of an object centred at x, then the probability of there being an object at x is independent

of q. That is,

P (Ex | q) = P (Ex) (5.4)

and no votes are cast in H. While a scene’s context is useful for inferring the presence

of an object, this aspect of detection is not dealt with explicitly by the ISM modelled by

the CSHF (notwithstanding the extent to which background scene elements are inevitably

captured inside of most training example bounding boxes and contribute as “pseudo parts”

to the detection of those objects). However, the CSHF assumes that all q are possibly located

within the bounding box of an object of the modelled type. This implies that every patch

extracted at position l is from an instance of the object type modelled by the CSHF meaning

that the boolean random variable Cl is true where C is the positive class label indicator. This

allows the probability of the existence of an object at x to be written as

P (Ex | q) = P (Ex, Cl | q) (5.5)

and by the general product rule of probability

P (Ex, Cl | q) = P (Ex | Cl, q)P (Cl | q). (5.6)

The factor P (Cl | q) in equation 5.6 is found simply as the proportion of the positive patch

extracts stored in L. The first factor can be estimated using Parzen-Window density estima-

tion by comparing the offset vector d = l− x against every training offset v ∈ L. This gives
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a probability estimate for a single tree of

P (Cl | q) =
|{ε ∈ L | c = 1}|

|L| (5.7)

P (Ex | Cl, q) =
1

|{ε ∈ L | c = 1}|
∑
v∈L

1

2πσ2
exp

(
−‖x− l− v‖

2

2σ2

)
(5.8)

P (Ex, Cl | q) =
1

|L|
∑
v∈L

1

2πσ2
exp

(
−‖x− l− v‖

2

2σ2

)
(5.9)

(5.10)

where σ2I2×2 is the covariance determined by the offset vectors stored in L. The final prob-

ability over the entire random forest R is then simply the mean of equation 5.9 calculated

over every tree T ∈ R derived as

P (Ex, Cl | q;R) =
1

|R|
∑
T ∈R

P (Ex, Cl | q; T ). (5.11)

The votes for the object at position x are given by the value at position x in H which is

generated as a simple sum of the independent part probabilities at each l in Q. Although

aggregating the individual part probabilities in this way discards the probabilistic interpreta-

tion, it allows H to express the relative confidence of object centroid occurrences where higher

values denote greater confidence. The locations of the highest of these confidence scores can

then be extracted as a set of object location hypotheses.

Unfortunately, the preceding derivation of P (Ex, Cl | q) cannot be efficiently undertaken

due to the computational complexity of calculating equation 5.9 for every extracted q. As a

substitute, the proportion of positive patches in each tree’s matched leaf node (equation 5.7)

is added directly to the values in H at the locations {v − l | v ∈ L}. The final Hough image

is then Gaussian filtered using a fixed size kernel.

In the original implementation, Gall et al. (2009) deal with scale variations by generating n

separate Hough images after resizing the query image with scale factors s1, s2, . . . , sn. These

scaled images are set into a 3-D scale space frustum and Gaussian filtration is performed

over the scale dimension to find estimates in a 3-D Hough space of the object hypotheses.

Practically, this step is computationally costly and only a coarse estimation of an object’s

scale can be derived. The accuracy also depends upon having a large amount of training

examples at all of the different scales at which new objects are expected to occur in the query

images.

184



5.2 Depth Based Extensions

This section describes the depth-based extensions to the CSHF object detection framework

and how they are incorporated into the training (tree generation) and detection (vote aggre-

gation) phases.

5.2.1 Patch / Offset Scaling

Objects of the same type are assumed to have very similar real world dimensions. For example,

most cars are about three to four metres in length. In the original formulation of the CSHF,

the dimensions of each part patch are set a priori as fixed pixel dimensions in accordance with

the requirements of the feature extraction algorithm – irrespective of the pixel dimensions of

the training examples. The characteristics of these patches therefore depends upon the scale

of the examples they are extracted from. Without explicit scale information, this diversity of

scale among the training data helps to train the CSHF in such a way that no particular scale

is emphasised (as long as dimensions of the training examples are representative of the scale

of the expected instances in the query images). Since there is inevitable disparity between the

representative object patches in the training data and the representative areas in the patches

extracted from the query images, object detection is carried out over different image scales

and the resulting Hough vote maps are aggregated (Gall et al., 2009). This scheme requires

a lot of training data to gain accurate results because there are a lot of false positive part

patch detections at incorrect scales.

Using depth information and a feature extraction algorithm that can operate over arbitrarily

sized image patches to generate constant size feature vectors, part patches that are more

representative of object parts can be used to train the CSHF because they express invariance

to changes in scale. The Pro-HOG feature extractor of chapter 4 was developed with such scale

invariance in mind. However, given depth information, any feature extraction method can

be used since the input image subregions (which scale in dimensions according to measured

depth) can be rescaled to the pixel dimensions required by the feature extraction algorithm

being used. In this chapter, this allows the same features to be extracted as in the original

evaluation of the CSHF (Gall et al., 2009) so that comparing between the original and the

CSHF with depth extensions enabled is not unduly confounded.

Each ground-truthed training example has a boundary defined by a closely fitting rectangle

(or bounding box). The bounding box’s centre is used as the nominal reference point, but any

point that is given in terms of the object’s bounding box dimensions can be used. Because
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the objects under evaluation in this chapter all have bases that are incident with the ground

plane, the bottom middle of the object’s bounding box is used as the reference point. The

reason for this is related entirely to the method of bounding box detection that is used, which

relies upon the accurate measurement of the object’s depth. It is not guaranteed that a

detected object has a valid surface in depth at its centre and so a more reliable location from

which to measure the object’s range from the camera plane is at its base. Even if the object

meets the ground plane at only one narrow point, the height of the object’s bounding box

will ensure that most points along the base of the object’s bounding box will be very nearly

the same in depth. For example, a traffic light’s pole may not be aligned along the vertical

centre of its bounding box making any determination of its depth unreliable if its depth is

measured at centre of the bounding box.

Let the training dataset for object type c be given as a set of tuples Tc = {(I, g)} where

I is the coregistered image and depth data within which the example is located, and g is a

four dimensional vector giving the pixel position and dimensions of the example’s bounding

box.

To determine the dimensions of each randomly located part patch within the bounding box

of an example in Tc, it is first necessary to set the real world 2-D dimensions of a part patch

Γc. This is a two dimensional vector specifying the horizontal and vertical dimensions of a

patch in the same units as the depth values in the query data (e.g. metres). The dimensions

of a part patch can be specific to the object type being modelled by the CSHF. For any

particular object type and feature extraction method, an optimal value of Γc can be found

using cross-validation.

Let depth(I,x) give the depth at point x in I and let λ be the known focal length in pixels

of the imaging camera. The pixel dimensions γ of a part patch located at position l in {I, g}
can be found by similar triangles as:

γl =
λ

depth(I, l)Γc (5.12)

This method requires that depth data be available with the training data and that it be

precise enough to describe the shape of the objects in depth. If the training data do not

contain depth information, an alternative method using the ratio between the fixed real world

patch dimensions Γc and the estimated average real world dimensions of the object type m̂c

can be used. This ratio is used to factor the pixel dimensions of the example’s bounding box

186



to derive an estimate of a patch’s pixel dimensions γ̂ as

γ̂ = 〈Γhgh
m̂h

,
Γvgv
m̂v
〉 (5.13)

where Γc = 〈Γh,Γv〉, m̂c = 〈m̂h, m̂v〉, and g = 〈gx, gy, gh, gv〉.

The advantage of this approach is that the training data do not require any depth data.

The disadvantage is that locations within an example’s bounding box that do not fall upon

the surface of the object itself (i.e. the location is outside the true extent of the object but

within the example’s bounding box) will have pixel dimensions for the “part” at that location

calculated that are not commensurate with the actual depth of the part at that location.

While the derivation of the patch pixel dimensions γ in equation 5.12 is parameterised with

the location of the patch l which makes the measurement dependent upon the coregistered

depth, the derivation of γ in equation 5.13 is an estimate, both because it relies upon an

estimation of the object’s true dimensions, and because it is independent of the location of

the patch. This means that the pixel dimensions of all of the patch extracts for a single

training exemplar are the same using this method. During detection (vote aggregation),

equation 5.12 is used to determine the appropriate apparent size of a part patch for a known

class c and extraction location l.

Offset Scaling

The idea behind scaling the offset vectors of parts to their comprising object reference points

is that an object presents similar values in depth over its 2-D projected surface. In other

words, pairs of points taken from unrestricted random locations in a depth image will express

much greater variability in depth on average than pairs of points that are randomly sampled

from the area delimited by the 2-D projection of a single object. More definitely, the absolute

difference in depth between any part of an object and a reference point on the object should

be small.

The part offset vectors in the original CSHF implementation are set in terms of horizontal and

vertical pixel distances. Without depth information, this is reasonable since parts are then

used to vote for an object at a particular scale. Without depth, a part descriptor extracted

from a smaller training example cannot be used to vote for the presence of an object in a

query image at a larger scale for two reasons. Firstly, the parts of the larger scaled object

are concordantly larger also and so any extracted patch descriptor from the query image

will represent the characteristics of a part that is proportionately smaller (because fixed
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pixel dimensions are used to generate the patch descriptors). This means that the extracted

query patch will likely not match the appearance of a patch extracted at the same relative

location from any of the training examples unless those training examples have the same

pixel dimensions. Secondly, even if patches extracted from the query image do match the

training patch descriptors stored in the CSHF, the scale difference means that the encoded

offset vectors in the training patches will incorrectly cause votes to be cast at locations in

Hough space where the query image object’s reference point isn’t, amounting to many false

positive detections of object reference points.

The assumption that object parts are similar in depth implies that the distances between parts

should be scaled according to measured depth. Since objects of the same type are assumed to

have similar real world dimensions, and parts taken from the same spatially relative locations

of an object should have similar scaled pixel dimensions, a part’s offset vector can be encoded

as the ratio of its distance (in pixels) to the object reference point r with the dimensions of

the part patch γ at l calculated according to equation 5.12 (or equation 5.13 if depth data

are not available). The object reference point r is set here to be the middle base of each

example’s bounding box. Given a part located at l in training image I, the extract offset v

to the reference point of the object specified by bounding box g is found as

r = 〈gx +
gw
2
, gy + gh〉 (5.14)

v = 〈rx − lx
γw

,
ry − ly
γh

〉 (5.15)

Because the formulation of the offset vector in equation 5.15 is unitless, this method of

encoding the offset vectors can be used regardless of whether patches use fixed pixel dimensions

(as in the original CSHF) or have their dimensions calculated using equation 5.12. As long

as the same patch dimension derivation method is used during both the training and the

detection phases, this method of encoding offsets as a proportion of the patch dimensions

allows the correct offset magnitudes to be derived at detection time.

The part offset vectors v point toward the object reference points in this formulation. The

original CSHF algorithm (Gall et al., 2009) has the offsets pointing toward the object parts

but this difference is irrelevant as long as the calculations are consistent throughout and that

ultimately the voting vectors are calculated to give the location of the object reference points

relative to the extracted patches.

The offset vectors calculated using equation 5.15 are unitless. This means that during training,

their magnitudes are standardised for parts coming from the same relative position in an

object – even if the training examples those parts are extracted from differ in scale. The ISM
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trained in the CSHF is then effectively a scale independent model of the object type.

At detection time, the pixel dimensions of a patch in the query image (determined using

equation 5.12) can be used to calculate the offset vectors in pixels giving the correct scaled

location of a potential object’s reference point relative to the patch. Given a patch located

at l in query image Q, the patch dimensions γ at l can be found according to equation 5.12.

The absolute pixel location to vote for the presence of a potential object’s reference point u

can then be calculated simply as

u = l+ 〈γwvx, γhvy〉 (5.16)

for every positive patch descriptor v matched by the CSHF given the query patch descriptor

extracted from γl.

It is hypothesised that this method of deriving patch dimensions and encoding offset vectors

using the provided depth information, should improve the accuracy with which votes can

be cast for the object reference points, improving precision at a given recall rate. The scale

independent encoding of offset vectors in the leaf nodes of the CSHF should also improve recall.

This is because the regression metric as used in the CSHF is sensitive to the magnitudes of

the offset vectors; positive training patches can be partitioned based on scale (leading to the

fact that the original implementation of the CSHF can only accurately cast votes for objects

at a particular scale). Since the magnitude of the unitless offset vectors will be in agreement

(for parts extracted from the same relative locations in an object), patch descriptors having

similar appearance are more likely to remain clustered together during the training phase. A

given part is then represented by a larger number of positive patch descriptors resulting in

a more representative encoding of the part’s variation. More reliable matching of new patch

descriptors taken from query images should therefore be possible since more decisions to

partition the training data have been taken in terms of the appearance characteristics of the

training patch descriptors rather than the associated offset regression metrics. However, the

improved patch appearance recall accuracy will not be to the detriment of the CSHF’s ability

to group together similar part offset vectors since they are now scale independent.

Figures 5-1 and 5-2 demonstrate the differences between fixed magnitude part offsets as used

in the original implementation of the CSHF (Gall et al., 2009), and scaled magnitude part

offsets used herein where the distance of a part to its voting location is scaled in proportion

to its real word distance from the camera plane.

Figure 5-1 represents the original CSHF implementation. In this case, the training patch

extracted from the larger scaled training instance of a traffic light has associated with it
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Voting

Fixed part offsets

Low accuracy votes for object centroids

Figure 5-1: Fixed magnitude offsets cause votes to be cast inaccurately when matching object
parts with different scales.

an offset vector of fixed length indicating the object centroid as the reference point. The

magnitude of this vector is determined by the pixel dimensions of the training example.

When matching parts are discovered in the query image, the offset vector is used at its

original magnitude without any scaling. This causes a vote to be cast some distance from

the centres of objects that aren’t at the same scale as the training example. In the query

image on the right of figure 5-1, the patches that are detected are false positives in that they

incorrectly match the wrong parts of the traffic light poles. This is one source of error in the

estimated object vote positions. The second source of error is due to the magnitude of the

offset vector which is too large given the smaller scales of the detected objects in relation to

the training example.

In figure 5-2, the same patch descriptor from the training data is used, but this time the offset

vector dimensions are encoded as a proportion of the patch dimensions. When matching parts

are detected in the query image, the scaled pixel dimensions of the corresponding patches

determine the magnitudes of the respective offset vectors. In the query image on the right of

figure 5-2, even though the matched parts are still false positive detections, the scaling of their

offset vectors means that the cast votes are closer to the reference points of the respective

objects than in figure 5-1. The errors are still present, but they are not as pronounced.

The aggregate result is to reduce the spatial extents of voting errors for detected objects –

potentially improving precision.
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Voting

Scaled part offsets

Improved voting accuracy for object centroids

Figure 5-2: The pixel dimensions of scaled offsets are found according to the dimensions of
the detected parts. This causes votes to be cast closer to the true locations of the object
reference points.

5.2.2 Depth Surface Features

For a baseline patch descriptor extraction method, the same set of features as defined by Gall

et al. (2009) are used. This feature extraction method was not designed with scale invariance

in mind since the process accepts image subregions having fixed pixel dimensions. Its use here

shows that a feature extraction method that was not specifically designed for scaled patch

descriptor extraction can still be used within the depth extended CSHF framework presented

in this chapter.

Features derived from the depth maps can be used together with (or instead of) features

extracted from patches of the corresponding colour images. Because depth information is a

lot less susceptible to natural imaging variations (such as lighting issues), the use of a depth

based descriptor may allow for a more consistent encoding of local surface morphology from

spatially respective object parts than may be possible using colour based patch descriptors

alone. To this end, a simple descriptor was designed to encode changes in depth over local

surface regions of an object.
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Colour Image Based Features

Each extracted image patch is first scaled to fixed dimensions of 16×16 pixels. Each descriptor

encodes 32 different feature types giving a 8192 dimensioned local descriptor (a feature value

is extracted from each of the 256 pixels in a patch). The features include the three Lab colour

space channels, the absolute values of the horizontal and vertical derivatives |δ/δx| and |δ/δy|,
the absolute values of the second degree derivatives |δ2/δ2x| and |δ2/δ2y |, together with nine

simple HOG-like channels (Dalal and Triggs, 2005). These 16 features are parsed with min

and max filters in 5× 5 pixel neighbourhoods to generate the 32 separate features. Min and

max filtering helps to reduce the degree of variability between parts (as they are represented

by the descriptor) taken from similar locations for a given object type.

Depth Map Based Features

The depth descriptor samples points at relative locations in arbitrarily sized square patches

to allow for the scaling of patch dimensions. For a square patch, five points are considered:

the four corners of the square, which are referred to clockwise from the top left as p0,p1,p2,

and p3, and the centre of the square, p4. The depth value at each of these points is compared

to the depth value at every other point. Only the absolute difference in depth between each

pair of points is encoded and so the ordering of the points in each pair is irrelevant. For n

points, this gives n(n−1)
2 depth difference values. For n = 5, the results can therefore be stored

in a vector having only 10 dimensions. Larger numbers of points in different relative positions

were tried (n = 9, n = 11, and n = 13) but in limited testing, none of these improved object

detection accuracy over the five point configuration. For any two points pi,pj in image I,

the depth difference feature value extraction function ddfx is defined as

ddfx(pi,pj , α) =
1

2
+ sign(δ)

min(|δ|, α)

2α
(5.17)

where

δ = depth(I,pi)− depth(I,pj) (5.18)

sign(δ) =

{
1 for δ ≥ 0

−1 for δ < 0
(5.19)

Parameter α specifies a positive value giving the sensitivity in depth (in metres) being encoded.

The resulting range of ddfx is [0, 1]. Differences in depth greater than α therefore cause ddfx

to take on its maximum value of one. Parameter α should be set according to the expected

variation in depth over a scaled patch region.

192



5.2.3 Depth Weighting

The assumption that the depth of object parts is similar across the projected surface of an

object is further exploited. During vote aggregation, the estimated locations of the potential

object reference points are calculated according to equation 5.16. For a single vote, if the

depth at the estimated object reference point is dissimilar to the depth at the location of the

part, the confidence in the vote should be lower. Inversely weighting the strength of votes by

the absolute difference in depth between the part and the estimated object reference point

accomplishes this.

In the standard CSHF algorithm, a part’s vote for its object reference point is weighted by

the proportion of positive parts in a tree’s matched leaf node L as per equation 5.7. Given

the classification of a patch descriptor located at l in query image Q, the “strength” of the

vote of each offset v ∈ L is given by

h(l,u) =
|{ε ∈ L | c = 1}|

|L||depth(Q, l)− depth(Q,u)| (5.20)

where u is found for each v ∈ L according to equation 5.16. This particular weighting was

selected because it gave the best results during testing. Functions that were tried but were

found to be less effective included exponentiation of the absolute difference in depth, as well

as the squared difference in depth. As in the original algorithm, each newly weighed vote

h(l,u) is aggregated at position u in H.

By this method, not every offset vector v ∈ L contributes an equal voting magnitude because

the offsets all differ slightly even though partitioning via the CSHF’s regression metric causes

similar offsets to be grouped together in the leaf nodes. The individual vote weighting thus

gives greater emphasis to the parts stored in a leaf node that are more likely to comprise

the object. It is hypothesised that this should reduce the degree of false positive responses

by narrowing the spatial extents of the modes in Hough space that indicate potential object

detections.

5.3 Experimental Method

Experiments were conducted using the AAM and Earthmine datasets with the object types

listed in table 5.1. Each image contains at least one example of one of the object types

being evaluated. The third column shows the total number of examples in the object dataset.

The fourth column specifies the number of images the examples are taken from. The object
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categories are the same as those used for evaluation in chapter 4 with the exception of the

“Car” and “Person” objects from the Pascal VOC 2007 dataset because this has no associated

depth imagery. Also excluded is the AAM “Generic Road Sign” object category because it

contains overlapping ground-truth bounding boxes and the method of evaluating detection

accuracy requires that ground-truth bounding boxes do not overlap (see section 3.5). Only

examples within 100 metres of the camera plane are considered. This requires excluding a

small number of examples from the Earthmine “Traffic Light” and “Parking Sign” object

datasets due to their distance.

Dataset Object Count Images

Earthmine Car 52 42

Earthmine Garbage Bin 122 100

Earthmine Traffic Light 175 75

Earthmine Parking Sign 134 111

Earthmine Traffic Cone 52 22

AAM Car 729 557

AAM Traffic Light 1172 872

AAM Triangular Road Sign 163 161

AAM Truck / Van 188 179

AAM Road Light 1461 1350

AAM Telegraph Pole 937 899

AAM Rectangular Road Sign 668 613

Table 5.1: Object Classes used for Object Detection Evaluation

Four different experiments are undertaken for each object class. Table 5.2 details each of

the experimental configurations. The “Original” experiment generates baseline results for

the CSHF without depth extensions. These baseline results are compared against the results

from the three other experiments using the respective depth extensions to evaluate if object

detection recall and / or precision are improved.

In the “Feature Type” column of table 5.2, GL refers to the original patch descriptor extraction

method as used by Gall et al. (2009) and described in section 5.2.2. As in the original CSHF

evaluation, 16 × 16 pixel patch descriptors are generated. Where patch scaling is used, the

features from the extracted region are resized to the required pixel dimensions. DD5FX refers

to the depth based features described in section 5.2.2 and the depth difference calculation of

equation 5.17 sets α = 1 irrespective of the object type.

The “Scaled−DW” and “Scaled+DW” experiments use the patch / offline scaling extension

described in section 5.2.1 without and with depth weighting (described in section 5.2.3) re-

spectively. Patch / offset scaling is evaluated with and without vote depth weighting to

determine if depth weighting actually does result in the intended improvement in detection
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precision.

The “Scaled DD5FX” experiment uses the depth based features described in section 5.2.2 in-

stead of the colour based features used in the original CSHF evaluation (Gall et al., 2009), and

combined with patch / offset scaling. In all three of the scaled patch / offset configurations,

patch dimensions of 0.5× 0.5 metres are used.

Experiment Patch / Offset Scaling Depth Weighting Feature Type

Original No No GL

Scaled−DW Yes No GL

Scaled+DW Yes Yes GL

Scaled DD5FX Yes No DD5FX

Table 5.2: The four experimental configurations for object detection on each object type.

Each experiment for each object category follows a standard methodology. Positive patch

descriptors are generated from fifty random locations within each example’s bounding box;

the random location of a patch determining its centre. Instead of using patches from every

pixel position in each example, a fixed number of patches are extracted from each example

for two reasons. Primarily, to avoid positively biasing larger examples, but secondarily, due

to memory constraints. The square dimensions of a patch means that up to three quarters of

its area can reside outside of an object’s bounding box (if the patch’s centre is in the corner

of an object’s bounding box). The ground-truth bounding rectangles closely fit the actual

boundaries of their objects. Extracting patch descriptors just inside the rectangular ground-

truth boundaries means that the actual boundary of the examples, and thus the shape of

the examples, is encoded. This is important as the bounding shape of an object is a useful

characteristic in helping to detect the presence of objects (Ballard, 1981). This feature of

patch extraction means that ground-truth examples are given in their local image surrounds

so that sufficient image background can be encoded by the patch descriptors. In previous

work, such context has been found to enhance detection accuracy due to the frequency with

which certain object types are found in particular locations (e.g. cars on roads) (Wang et al.,

2012; Kim and Medioni, 2011; Divvala et al., 2009; Torralba and Sinha, 2001).

The same number of negative patch descriptors are generated from the same images contain-

ing the positive examples, but sampled from random locations such that none of the negative

patches overlap with any of the positive example ground-truth bounding boxes. The pixel

dimensions of each patch extracted from the negative data are found in accordance with

equation 5.12. This requires that the negative data have coregistered depth data. Although

possible to simply extract fixed pixel dimension patches from random locations in the negative

images, the characteristics of these patches would then be independent of depth. Since the

character of the positive training patches is not independent of depth (due to the patch scaling
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process), it is important that no systematic difference be introduced between the positive and

the negative patches that might be represented in the extracted patch descriptors and then

learned by the CSHF. As with the positive patches, the negative patches are scaled prior to

feature extraction. Part offsets are only generated for positive part patches.

A pseudo random number generator is used to generate the locations for the fifty patches

extracted from each example. This is initialised using the same seed across all experiments

so that the variation in results is explainable only in terms of the different experimental

configurations. All patch descriptors and part offsets are generated in accordance with the

current experimental parameters.

Five-fold cross validation is used to evaluate detection accuracy. This is a good compromise

between the CSHF in each round drawing upon a large enough dataset to represent the object

type, and the length of time required for training. The cross validation rounds partition the

images containing the ground-truth examples into a set of training images, and a set of

validation (or query) images. For training the CSHF in each round, the positive and negative

patch extract sets are selected from the training images. The sizes of the positive and negative

patch extract sets are always equal, but the specific number of extracts used to train the CSHF

varies for each round because of the different number of objects in each image.

Each query image in the validation set is processed by generating patch descriptors at every

pixel location having coregistered depth values < 100 metres. Locations with no coregistered

depth (e.g. sky) or at greater distances are ignored. Patch descriptors are generated using

the appropriate feature extraction parameters for the experiment. The patches are parsed by

the CSHF to determine vote locations. If required for the experiment, the votes are weighted

according to equation 5.20 before being aggregated into the query image’s vote map. The

vote map H produced from each query image is then Gaussian smoothed with a 3 × 3 pixel

kernel (σ2 = 9) which helps to more accurately obtain the maxima in the Hough map since

neighbouring pixel votes are discretised. An alternative method (not evaluated here) would

have been to cast votes into smaller scale Hough maps before scaling up. It was noted that at

larger scales, inaccuracies in voting locations are also larger and that commensurately larger

Gaussian kernels should be used to account for these uncertainties. However this aspect of

vote aggregation was not tested here due, in part, to the added computational burden of

convolving images with dynamically scaling kernels.

In the original CSHF evaluation, Gall et al. (2009) carried out detection over n different

scales producing n different Hough vote maps. In these experiments, only single response

maps are produced for each query image so that the effect of the depth extensions can be

clearly demonstrated.
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5.3.1 Estimating Detected Object Bounds

The relative confidence of object detections for each query image Q is shown in its correspond-

ing vote map H. The points in Q specifying hypothesised object detections are given by the

corresponding maxima in H. These points are found by successively parsing H to find the

current maximum x = 〈x0, x1〉, finding the corresponding depth at x, and then calculating

the scaled average bounding box dimensions of an object of the type positioned such that its

centre base is at x. The area within the bounding box in H is suppressed so that subsequent

maxima are found outside of these bounds. This ensures that only the largest mode within

the local region of each potentially detected object is used to estimate its location.

The detection bounding box d = 〈x, y, h, v〉 at a mode x is defined as

dh = λ
mh

depth(Q,x)
(5.21)

dv = λ
mv

depth(Q,x)
(5.22)

dx = x0 −
dh
2

(5.23)

dy = x1 − dv (5.24)

assuming a top left pixel origin, where m = 〈mh,mv〉 gives the average horizontal and ver-

tical dimensions of the object type in the same units as used in the range imagery (nomi-

nally metres). This is either specified manually, or found upon processing the object type

dataset.

Twenty candidate detection boxes are identified for each vote map setting a maximum number

of allowed detections per query image and increasing the likelihood of locating most of the

ground-truth objects in each query image. Each detection box is associated with a confidence

score given as the value of H at x giving a set of detections DQ = {(d,Hx)} for each query

image Q. Overlapping detection areas in DQ are removed by retaining the highest confidence

detections. Where a lower confidence detection box t has at least half of its area overlapped

by a higher confidence detection box d, t is removed from the list of candidate detections. In

cases where t overlaps d with less than half of its area, bounding box t is modified in either

its vertical or horizontal dimension (but not both) so that it no longer overlaps d.

Because each view contains at least one instance of the object type being used for evaluation,

the confidence values for all detections in a view are standardised to fall into the range [0, 1].

This results in a modified detection set D′Q where ∀d, t ∈ D′Q | d ∩ t = ∅.
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The depth data are exploited to assist in the estimation of detected object bounding boxes

for all of the experiments, including the original baseline experiment. This is justified because

the method does not affect the prior determination of votes for the potential object reference

points, and bounding box estimation is used only to generate object location hypotheses.

The accuracy of bounding box estimation is controlled across the experiments because the

use of the depth data to determine the object bounds is affected only by the placement of the

Hough space maxima. Alternative methods for determining the bounds of detected objects

were considered, including methods that use the vote support (i.e. the locations of the patches

that vote for the identified maxima) to determine the object bounds. However, such methods

would have made it harder to appraise the extent to which the existing depth extensions

dictate object detection and localisation accuracy.

After the completion of cross validation, the combined ground truth and detection boxes for

the object dataset are processed according to the object detection evaluation criteria described

in section 3.5.2. One hundred threshold values taken evenly from the range [0, 1] are used

to generate 100 recall and precision data points, which are then used to plot precision-recall

graphs. The upper limit of 20 permissible object detection hypotheses per view means that

the calculated recall and precision values do not in general range from zero to one. The

relative placement of the precision-recall curves from the different experiments indicates the

relative detection accuracy achieved by the different experimental configurations for the object

type.

5.3.2 Earthmine Depth Image Preprocessing

The quality of the depth data in the AAM dataset are generally good due to the use of high

precision laser scanners. The depth data in the Earthmine dataset (see section 3.2) were

generated using stereophotogrammetry which has lower precision. As found in section 4.3,

the Earthmine depth data are noisy and much of the depth information for individual objects

(especially small or slim objects) is missing. In order to use the Earthmine depth data to

evaluate the depth extensions the depth images are preprocessed so as to reconstruct portions

of the missing depth data.

Figures 5-3(a) and 5-3(b) show a single view from one of the Earthmine panoramas giving

the colour information and the generated coregistered (stereoscopic) depth information re-

spectively (lighter regions in the depth image are closer to the camera plane). The image

in figure 5-3(b) shows that depth information is missing or erroneous in several regions, es-

pecially for the traffic lights where the depth information for the light poles is completely
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missing, and the traffic light cowlings are not accurately depicted. Larger surfaces such as

the ground plane and the building façades are more accurately represented.

(a) RGB channels (b) Depth channel

Figure 5-3: Missing and erroneous depth information in the Earthmine dataset.

All of the object types in this evaluation sit on the ground plane. In the Earthmine data, while

individual objects are often poorly represented in depth, the ground plane itself is not. The

depth based extensions require the objects of interest to be represented in depth as completely

as possible – especially over the projected surface of the object, to help discriminate the object

from its more distant background. The Earthmine depth information is incomplete for some

objects, hence these missing depth data must be reconstructed. While it is not possible

to fully and accurately reconstruct the depth silhouette of these objects (since this would

require these objects to already be detected and localised), a coarse estimate can help to

prevent parts of the object from being ignored at detection time when employing the depth

extensions.

The detection framework is class specific and the preprocessing requires the estimated average

real world dimensions of the object class m̂c to be modelled by the CSHF. At each pixel x

in a depth image I, the scaled size of the object ŝc is calculated as

ŝc =
λ

depth(I,x)
m̂c (5.25)

with λ being the focal length of the camera measured in pixels.

The depth at x is copied horizontally left and right and vertically down the image towards

the ground plane by the pixel dimensions ŝc, or until nearer depth values are encountered.
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The depth values are only copied downwards in the image because the object types being

tested all sit on the ground plane and the camera up vector points upwards in the image.

Growing the depth regions upwards would generate large spurious regions of invalid depth

values. Most ground-truth objects have some small number of “seed” pixels giving the depth

of the object at its top.

When applied to the depth image shown in figure 5-3(b) using the mean dimensions of the

traffic light object type (as estimated from the ground-truth), the image shown in figure 5-4

is generated.

Figure 5-4: After preprocessing the depth image in figure 5-3(b) using the average dimensions
of the Earthmine “Traffic Light” object type.

In the unprocessed Earthmine depth maps, a seed pixel for an object may be located at either

of the object’s horizontal extents. The corresponding depth value must therefore be copied

by a full scaled object width both to the left and to the right in order to ensure that the

newly expanded region in depth intersects where the object could be present in the image.

As a result, the processed depth images have much more expansive areas of similar depth

than would be present if the depth data were not incomplete. This is the reason for the large

foreground block in figure 5-4; it is generated from the depth information from the foreground

traffic light.

Given the nature of the depth extensions, over compensating for the missing depth information

is preferable if the alternative is that depth information remains incomplete; the detection

accuracy can only be improved using the depth based extensions if sufficient depth information

about the objects is available.
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5.4 Results and Analysis

Each of the following sections presents results for the experiments evaluated against one of the

twelve object categories listed in table 5.1. Each section shows the generated precision-recall

graph for the four different experimental configurations. This is followed by an example query

image that is indicative of the dataset showing the ground-truth objects delimited with blue

bounding boxes. The resulting contrast scaled Hough vote maps are then shown for that

query image. These show the qualitative differences between the voting patterns generated

for the hypothesised object detections using the different depth extensions compared with the

original unchanged CSHF detector of Gall et al. (2009).

Each section includes an analysis of the results in terms of the ability of the depth extensions

to enhance detection accuracy given the characteristics of the particular object type and the

dataset in general (AAM or Earthmine). An overall summary of the results for all of the

object types follows in section 5.4.13.

5.4.1 Earthmine “Car”

Figure 5-5 shows precision-recall graphs for the results from the four experiments listed in

table 5.2 carried out on the Earthmine “Car” object type.
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Figure 5-5: Precision versus Recall for Earthmine “Car” detection using CSHF with and
without depth extensions.

201



Figure 5-5 shows that for this object type, all of the depth extensions improve detection recall,

and that precision is also higher at every recall level. That is, the depth extensions allow for

more of the ground-truth objects to be detected than in the baseline case and fewer false

positive errors are made in doing so.

When combined with the patch / offset scaling extension, the original 8192 dimension feature

vectors generated from the colour images give higher accuracy than the ten dimensional fea-

ture vectors generated from the depth images. Even though the depth data for the Earthmine

dataset are poor quality, the larger average size of the objects in comparison to other scene

elements means that the depth based feature improves good detection accuracy for this ob-

ject type. The larger size of the objects also allows the depth weighting extension to further

improve detection accuracy because patch descriptors are generated from a larger subregion

having the same depth as the reference point the parts are voting for.

An example query image from the Earthmine “Car” dataset showing ground-truth object

location(s) with blue rectangles is shown in figure 5-6(a). Figures 5-6(c) through 5-6(f)

show contrast scaled Hough vote maps from the four different experimental configurations in

table 5.2.

(a) Ground-Truth (b) Adjusted Depth (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-6: A representative query image from the Earthmine “Car” dataset, and generated
Hough vote maps for the four different experimental configurations.
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Figures 5-6(d) and 5-6(e) show much more “compact” voting regions than in the baseline

results shown in figure 5-6(c). The much brighter regions around the kerb edges and over the

building façade in the baseline results of figure 5-6(c) compared to the patch / offset scaling

results in figure 5-6(d) show that the many non-scaled patch descriptors from these regions

are erroneously being classified as possible car parts in the baseline case. Patch scaling is

acting to reduce the number of false positive patch descriptor classifications.

As hypothesised, the effect of depth weighting seen in figure 5-6(e), is to reduce the magnitude

of the votes being cast in regions where the difference in depth between the extracted parts

and the voting locations are too large. This is indicated by the darker regions in this figure

when compared with figure 5-6(d). The higher contrast edges to these darker regions in

figure 5-6(e) are due to the results of the processing of the Earthmine depth images prior to

cross validation.

Figure 5-6(f) shows that the depth based feature produces vote map results that are not as

washed out as in the original case as seen in figure 5-6(c), but the vote clusters are not as

compact. This is likely due to the much lower dimensionality of the depth based features and

the fact that colour information is being ignored.

5.4.2 Earthmine “Garbage Bin”

Figure 5-7 shows precision-recall graphs for the results from the Earthmine “Garbage Bin”

object type. When using the original colour based feature descriptors, the patch / offset

scaling extension significantly improves detection accuracy. As the detection confidence levels

increase, recall accuracy remains high in the case of the patch / offset scaling results, while

recall accuracy drops very quickly in the original configuration.

For the results in the case of the two patch / offset scaling configurations using the original

colour based features, contrary to expectations, the depth weighting extension does not in-

crease precision at a given level of recall. In fact, using the depth weighting extension for this

object type results in a reduction in precision. This could be due to the smaller size of the

objects compared to the results observed for the Earthmine “Car” object type.

The images in figure 5-8 show results for an example query image from this dataset. Figure 5-

8(c) shows the vote map generated from the original configuration. The brightest region in

this image is at the base of the pole at the left of the image. This indicates that the garbage

bin parts are being detected at the wrong scale. The true location of the ground-truth garbage
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Figure 5-7: Precision versus Recall for Earthmine “Garbage Bin” detection using CSHF with
and without depth extensions.

bin is darker and less well defined. Figure 5-8(d) shows the results using patch / offset scaling

(without depth weighting). In this vote map, the true location of the ground-truth garbage

bin is clearly found, and the base of the pole to the left of the image is no longer being

erroneously detected. Patch / offset scaling is having the desired effect in this case as it more

accurately detects the locations of the garbage bins at the scale they appear in the query

image.

When the depth weighing extension is introduced, the effect shown in figure 5-8(e) is to intro-

duce many more bright regions indicating possible detection hypotheses at a higher confidence

level. This is due to the contrast normalisation on the images and this actually indicates that

the true location of the ground-truth garbage bin received votes of a lower aggregate mag-

nitude. This implies that the relatively higher vote response seen in figure 5-8(d) is because

it was generated from more patch descriptors extracted from locations dissimilar in depth

to the voting location. This further implies that the contextual surrounds of the object are

having a greater contribution to the object’s detection.

The vote map for this query image resulting from the use of the depth based features shown

in figure 5-8(f) shows that the depth based features are not well suited to this dataset. A

large number of poorly defined vote maxima are generated, and the true location of the object

is not confidently determined.
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(a) Ground-Truth (b) Adjusted Depth (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-8: A representative query image from the Earthmine “Garbage Bin” dataset, and
generated Hough vote maps for the four different experimental configurations.

5.4.3 Earthmine “Traffic Light”

Figure 5-9 shows precision-recall graphs for the results from the Earthmine “Traffic Light”

object type. For this object type, the patch / offset scaling extension results in slightly

worse detection accuracy results compared to the original method. Again, depth weighting

decreases rather than increases precision. The depth based features are far worse than the

original colour based features.

The images showing the generated vote maps for the different experiments on an example

query image are shown in figure 5-10. These images reflect the decrease in detection accuracy

evidenced by the precision-recall graphs in figure 5-9. In all three cases where the depth

extensions are applied, the response maps are more washed out indicating lower confidence

detections than in the example vote map generated in the original case seen in figure 5-

10(c).
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Figure 5-9: Precision versus Recall for Earthmine “Traffic Light” detection using CSHF with
and without depth extensions.

(a) Ground-Truth (b) Adjusted Depth (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-10: A representative query image from the Earthmine “Traffic Light” dataset, and
generated Hough vote maps for the four different experimental configurations.
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5.4.4 Earthmine “Parking Sign”

Figure 5-11 shows precision-recall graphs for the results generated from the Earthmine “Park-

ing Sign” object type. Patch / offset scaling improves precision accuracy when compared to
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Figure 5-11: Precision versus Recall for Earthmine “Parking Sign” detection using CSHF
with and without depth extensions.

the baseline configuration but only when the depth weighting extension is disabled. Recall

accuracy is not significant improved. The depth based features for this object type again fail

to offer discriminative power comparable to the original colour based features. The continued

inability of the depth based features to offer detection accuracy comparable to the colour

based features is almost certainly due to the depth image preprocessing carried out on the

Earthmine images.

Example vote maps generated for an example query image are shown in figure 5-12. The vote

map generated for the patch / offset scaling experiment (without depth weighting) shown

in figure 5-12(d) shows that there are fewer false positive detections than in the case of the

vote map generated from the original CSHF displayed in figure 5-12(c). For this example

query image, the effect of depth weighting shown in figure 5-12(e) is qualitatively to reduce

the aggregated magnitude of the false positive detections (when compared to the results in

figure 5-12(d)) — which should increase detection precision. However, this single example’s

results are contrary to the overall results that show that depth weighting acts to decrease the

relative accuracy in precision overall.
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(a) Ground-Truth (b) Adjusted Depth (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-12: A representative query image from the Earthmine “Parking Sign” dataset, and
generated Hough vote maps for the four different experimental configurations.

5.4.5 Earthmine “Traffic Cone”

Figure 5-13 shows precision-recall graphs for the results from the experiments conducted using

the Earthmine “Traffic Cone” object type. The precision-recall curves show that the patch /

offset scaling extension improves both recall and precision at all confidence thresholds over the

original non-depth extended version of the CSHF. However, depth weighting only improves

precision beyond this at the higher confidence thresholds (where recall is lower). Again, the

depth based features offer very poor detection accuracy compared to the original colour based

features.

The images in figure 5-14 show generated response maps for each of the experiments for an

example query image. In all four of the vote maps, the two ground-truth traffic cones are

detected with the highest confidence detections. Precision is qualitatively highest in figure 5-

14(e) where much more of the response map is darker and the few maxima are brighter and

more tightly clustered.
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Figure 5-13: Precision versus Recall for Earthmine “Traffic Cone” detection using CSHF with
and without depth extensions.

(a) Ground-Truth (b) Adjusted Depth (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-14: A representative query image from the Earthmine “Traffic Cone” dataset, and
generated Hough vote maps for the four different experimental configurations.
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5.4.6 AAM “Car”

Precision-recall graphs are shown in figure 5-15 for the results of the experiments carried out

on the AAM “Car” object type.
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Figure 5-15: Precision versus Recall for AAM “Car” detection using CSHF with and without
depth extensions.

For this dataset, both recall and precision detection accuracy is much higher using the depth

based features in lieu of the original colour based features even though the depth based fea-

tures are encoded using only ten dimensions as opposed to the 8192 dimensional colour based

features. This is likely due to the fact that the AAM depth data are much more accurate

than the Earthmine data and depth image preprocessing is not necessary for the AAM depth

data. Given this improved accuracy in depth, it is unexpected that the patch / offset scaling

extension results in levels of detection accuracy that are much lower than the baseline config-

uration. The higher accuracy depth data should lead to more precise scaling of object part

patches and their associated offsets resulting in tighter clusters of aggregated votes having

larger overall values.

The results for the depth weighting extension are also counter-intuitive; depth weighting the

patch / offset scaling votes does not improve precision accuracy. Again, this indicates that

significant votes are being generated from query image subregions that are not located within

the extents of the projected surface of the objects.

The generated vote maps in figure 5-16 provide some insights into why the patch / offset

scaling extension results in much lower detection accuracy. In the original response map
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shown in figure 5-16(c), the three bright areas denote the ground-truth locations of the cars in

the query image. Corresponding bright regions are also present in the response map generated

in the patch / offset scaling experiment without depth weighting shown in figure 5-16(d), but

the relative brightness of these locations is lower.

Given the very noisy colour images in the AAM datasets, it may be the case that patch scaling

decreases rather than increases the discriminative ability of the CSHF. By maintaining fixed

pixel dimensions in the original scheme, the scale of the patches may itself be contributing to

increased detection accuracy if most of the examples in the dataset are present within a very

narrow range of scales. This is evidenced from the histogram of object sizes for this dataset

presented in figure 4-29 on page 115. Further support for this explanation is given by the

fact that when using the depth based features instead of the colour based features, detection

accuracy is improved.

(a) Ground-Truth (b) Depth Map (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-16: A representative query image from the AAM “Car” dataset with corresponding
depth map, and generated Hough vote maps for the four different experimental configurations.
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5.4.7 AAM “Traffic Light”

Precision-recall graphs showing the results for the AAM “Traffic Light” object type are shown

in figure 5-17.
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Figure 5-17: Precision versus Recall for AAM “Traffic Light” detection using CSHF with and
without depth extensions.

For this object type, none of the depth extensions provided detection accuracy improvements

beyond the baseline results given by the original CSHF configuration. Overall, detection accu-

racy was poor in all of the CSHF configurations. Again, given the poor detection performance

by the patch / offset scaling extensions, it is likely that the fixed dimension patches used in

the original CSHF configuration encode salient information about the object type at its most

commonly occurring scale in the imagery. The size distribution data for the ground-truth

examples shown in figure 4-33 on page 118 bear this out; most of the examples fall within a

relatively narrow range of pixel dimensions.

As in the results for the AAM “Car” object type, the better detection accuracy provided

by the depth based features (compared to the colour image based features) offers further

corroboration of this explanation. Qualitative results from an example query image for this

dataset are shown in figure 5-18.
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(a) Ground-Truth (b) Depth Map (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-18: A representative query image from the AAM “Traffic Light” dataset with cor-
responding depth map, and generated Hough vote maps for the four different experimental
configurations.

5.4.8 AAM “Triangular Road Sign”

Figure 5-19 shows precision-recall graphs for the results from the AAM “Triangular Road

Sign” object class. Similar object detection accuracy is seen in the results for the AAM

“Triangular Road Sign” object type as was observed in the cases of the AAM “Car” and

“Traffic Light” object types. None of the depth extensions are able to improve detection

accuracy over the baseline configuration, and again, the size distribution of the ground-truth

examples (as shown in figure 4-37 on page 121) falls within a very narrow range. Again, the

depth based features give detection accuracy that is better than the patch / offset scaled

colour image based features, but this is most likely due to the much higher quality depth

information compared to the colour information. The images in figure 5-20 show the Hough

vote maps generated from the different experimental configurations for an example query

image.
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Figure 5-19: Precision versus Recall for AAM “Triangular Road Sign” detection using CSHF
with and without depth extensions.

(a) Ground-Truth (b) Depth Map (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-20: A representative query image from the AAM “Triangular Road Sign” dataset
with corresponding depth map, and generated Hough vote maps for the four different exper-
imental configurations.
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5.4.9 AAM “Truck / Van”

Figure 5-21 shows precision-recall graphs for the results from the experiments carried out on

the AAM “Truck / Van” object type.
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Figure 5-21: Precision versus Recall for AAM “Truck / Van” detection using CSHF with and
without depth extensions.

The results for this object type differ from the results seen thus far for the other AAM

object types. The detection accuracy afforded by the patch / offset scaled colour image based

patch descriptors (with or without depth weighting) is still worse than in the case of the

non-scaling CSHF experiment. However, the depth based features this for this object type

provide significantly improved detection accuracy over the baseline results. There are two

main differences explaining this result. Firstly, the nature of the object type is more complex

when represented in depth — the shape of the object type is arguably more distinctive than

for the previous AAM object types. Secondly, the objects are present in the ground-truth

data at a greater range of scales as evidenced by figure 4-41 on page 126. This increase

in scale variability in the ground-truth data may be of more benefit to depth based feature

representations of the object parts because the ground-truth examples for this object type

are especially noisy in the colour imagery.

Even though the depth based features offer improved accuracy over the original colour based

features, the overall detection accuracy is still very low indicating that the features and / or

the data are not sufficient to detect the objects with good reliability. As seen in figure 5-22, all

of the Hough maps generated from each experimental configuration for the example ground-

truth image shown in figure 5-22(a) are washed out and no strongly clustered maximum is
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shown that denotes the presence of the single ground-truthed example (which is indistinct

even in the colour image).

(a) Ground-Truth (b) Depth Map (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-22: A representative query image from the AAM “Truck / Van” dataset with cor-
responding depth map, and generated Hough vote maps for the four different experimental
configurations.

5.4.10 AAM “Road Light”

The results for the AAM “Road Light” object class are shown in the precision-recall curves

of figure 5-23. Only the depth based features are effective in improving detection accuracy

(specifically precision accuracy at given recall levels) in the case of the AAM “Road Light”

object class. The patch / offset scaling extension is, again, ineffective in improving object

detection accuracy over the baseline results, and whether or not depth weighting is enabled

has no significant bearing on accuracy. Once again, it is likely that the limited range of scales

that the object type is represented at is allowing the fixed size patch descriptors used in the

original CSHF configuration to encode scale dependent features about the object type causing

detection accuracy to be higher than in the patch / offset scaling configurations.

For the example query image shown in figure 5-24(a), comparing the Hough vote maps gen-
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Figure 5-23: Precision versus Recall for AAM “Road Light” detection using CSHF with and
without depth extensions.

erated from the original and the scaled DD5FX experiments shown in figures 5-24(c) and 5-

24(f), it is clear that the depth based features are better able to accurately locate the base

of the road light. Given the very poor detection accuracy using the colour image based fea-

tures, this is almost certainly due to the extremely noisy colour imagery in the AAM dataset

rather than any evidence that the depth based features are intrinsically better for object

detection.

5.4.11 AAM “Telegraph Pole”

Figure 5-25 shows precision-recall curves for the results from experiments carried out on the

the AAM “Telegraph Pole” object type. The results for the AAM “Telegraph Pole” follow

the trend for the other AAM object types tested so far. The patch / offset scaling extensions

fail to improve detection accuracy. The depth-weighting extension has no practical bearing

on detection accuracy even though its qualitative effects clearly differentiate the results from

the two corresponding experiments (contrast figure 5-26(d) with figure 5-26(e)).

Using the example query image shown in figure 5-26(a), the improvement in precision using the

depth based features is clearly demonstrated when comparing the Hough vote map generated

from the baseline CSHF configuration in figure 5-26(c) with the vote map generated from the

scaled DD5FX experiment shown in figure 5-26(f). In particular, the strong false positive

local maximum shown in the middle of the three maxima in figure 5-26(c), is absent in

figure 5-26(f).
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(a) Ground-Truth (b) Depth Map (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-24: A representative query image from the AAM “Road Light” dataset with cor-
responding depth map, and generated Hough vote maps for the four different experimental
configurations.

5.4.12 AAM “Rectangular Road Sign”

Precision-recall curves showing the results for the experiments carried out on the AAM “Rect-

angular Road Sign” object type are shown in figure 5-27. listed in table 5.2 carried out on

the AAM “Rectangular Road Sign” object type.

Once again, the depth extensions are ineffective in improving detection accuracy for this

object type. On this occasion, the depth based features are even less effective than the colour

image based features. This is likely due to the fact that examples of the object type are

relatively flat in depth and have few distinguishing characteristics. In addition, examples of

the object type are easily confused for other objects such as traffic lights, light poles and

trees. Some examples of the generated Hough vote maps from the different experimental

configurations are shown in figure 5-28.
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Figure 5-25: Precision versus Recall for AAM “Telegraph Pole” detection using CSHF with
and without depth extensions.

(a) Ground-Truth (b) Depth Map (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-26: A representative query image from the AAM “Telegraph Pole” dataset with
corresponding depth map, and generated Hough vote maps for the four different experimental
configurations.
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Figure 5-27: Precision versus Recall for AAM “Rectangular Road Sign” detection using CSHF
with and without depth extensions.

(a) Ground-Truth (b) Depth Map (c) Original

(d) Scaled−DW (e) Scaled+DW (f) Scaled DD5FX

Figure 5-28: A representative query image from the AAM “Rectangular Road Sign” dataset
with corresponding depth map, and generated Hough vote maps for the four different exper-
imental configurations.
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5.4.13 Overall Analysis

The results show clear differences between the detection accuracy achieved by the CSHF depth

extensions using the Earthmine datasets, and the accuracy achieved using the AAM datasets.

This is mainly due to the very different quality in each of these datasets. In the Earthmine

data, the colour imagery is of high quality and this preferences the colour based features. In

the AAM data, the depth data are of much higher relative quality and this preferences the

depth based features.

In the case of the Earthmine object types, the patch / offset scaling extension largely improved

detection accuracy by increasing precision at existing recall rates. That is, the extension did

not help to detect objects that were not already detected by the baseline CSHF, but the

extension helped to reduce the rate of false positive detections in the query images, increasing

overall confidence in the existing detections.

In none of the results for the Earthmine object types did the depth weighting extension

significantly improve detection precision beyond that already achieved without the use of the

extension.

Earthmine’s poor quality depth data necessitated that the depth images first be preprocessed

using the procedure outlined in section 5.3.2. This resulted in unavoidable corruption of any

existing shape information present in depth meaning that the depth based features were not

able to improve detection accuracy. For all of the Earthmine object types apart from the

“Car” object type, detection accuracy was severely degraded.

Overall, the poor quality colour information in the AAM dataset meant that the colour

based descriptors faired less well than the depth based descriptors. For the larger object

types and the types having greater projected surface area including the “Truck / Van”,

“Car”, “Telegraph Pole”, and “Road Light” types, the depth based descriptors with only ten

dimensional patch descriptors outperformed the much larger colour based 8192 dimensional

patch descriptors. Recall was found to be nearly as high as in the baseline configuration,

but with higher precision at all confidence thresholds. It is likely that the high precision

depth information increases object detection accuracy when using the depth based features.

However, the reason the depth based features achieve higher levels of accuracy than the colour

based features for these object types is more to do with the fact that the colour imagery is

of a much lower quality in the AAM data; the colour based features are correspondingly less

able to discriminate between object parts and background scene elements.
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In the case of the smaller, less distinctive objects – the “Traffic Light”, “Rectangular Road

Sign”, and “Triangular Road Sign” object types, the depth based descriptors are less effective.

Slightly lower recall and precision levels compared to the control experiment were observed

in these cases. A depth based feature is not a good candidate for encoding characteristics

about objects that are essentially flat in depth (such as signs).

For the AAM object types, the patch / offset scaling extension when combined with the

original colour based features of section 5.2.2 tended to give much lower detection accuracy

in both recall and precision than without the patch / offset scaling extension – whether or

not depth weighting was being used. This is unexpected because the higher precision depth

information in the AAM datasets should mean that patches from similar relative spatial

locations in an object are clustered together in the trained CSHF, resulting in improving

detection accuracy. These counter intuitive results are explained when considering the much

lower variation in the size of the examples in the AAM datasets, and the poor quality colour

information. Any potential gains in detection accuracy that the depth extensions might offer

are not realised because the baseline CSHF configuration is able to encode scale dependent

features about the object types that remain accurate during validation.

5.5 Conclusion

The results on the Earthmine object types show that incorporating scale both in the determi-

nation of the patch subregions from which descriptors are extracted, and in the encoding of

the object part offset vectors, is able to improve object detection accuracy using the CSHF.

This improvement in accuracy is achieved without making any modifications to the underly-

ing CSHF algorithm, and using existing colour based feature descriptors. While the results on

the AAM object types do not support this conclusion, this is almost certainly due to the poor

quality colour information present in this dataset. Given the higher quality colour informa-

tion in the Earthmine data, as well as the fact that the patch / offset scaling extension does

not require highly accurate depth information in order to be effective, it is concluded that

where coregistered depth and RGB data are available, incorporating scale using the depth

data in the manner described can effect large gains in object detection accuracy.

For the AAM object types, the very low dimensional depth feature descriptors described in

section 5.2.2 result in detection accuracy that is at least as high as when using the original set

of RGB based features. However, given the poor quality colour imagery in this dataset, the

result is more reasonably explained by the inadequacy of the colour based features in being

able to discriminate between parts of objects and background scene elements. This situation is
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reversed in the case of the Earthmine data where the RGB based features are more effective

than the depth based features due to the much higher quality colour information. Given

a dataset having both accurate RGB and depth information, features generated from both

of these modes may improve detection accuracy by a greater margin than by simply using

features from one of these modes.

It was expected that the depth weighting extension would help to lessen the influence of false

positive part detections, thereby improving precision at a given level of recall. While qualita-

tive differences in the generated Hough vote maps were observed, this did not translate into

enhanced detection precision. Overall, no significant improvement in precision was observed

using this extension. The effect of depth weighting was not tested independently from the

patch / offset scaling extension. However, using depth weighting without patch / offset scal-

ing if depth information is explicitly available makes little sense given the large improvement

in detection accuracy resulting from the use of patch / offset scaling.

5.5.1 Limitations

The main limitations of the experiments concerns the poor quality datasets used to evaluate

the efficacy of the depth based extensions in improving object detection accuracy. Neither

the Earthmine or the AAM datasets are ideally suited to this task.

Earthmine’s lower quality depth data mean that it is not possible to use the depth imagery

in its native state. The preprocessing of the depth images is only sufficient to restore miss-

ing depth data under the assumption that individual parts of the same object have similar

depth and that at least a single valid pixel in depth is available at the top of each object of

interest. The depth based patch descriptors are unable to meaningfully encode the surface

characteristics of the objects, and this is true whether or not the Earthmine depth images

have been processed. This leads to the poor performance of the depth based descriptors on

the Earthmine object types. The patch / offset scaling extension faired better using the pro-

cessed depth images because it needs only general estimates of the depth of an object over

its projected surface in order to be effective in improving detection accuracy.

Particularly poor performance was observed over most of the object types in the AAM dataset.

This was due to several factors. Firstly, unlike the Earthmine data, some views in the AAM

dataset are repeated several times because of the method of data collection. Panoramas were

collected with fixed periodicity meaning that when the mapping vehicle was momentarily

stopped (e.g. at traffic lights), data continued to be captured. This resulted in several
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captures of the same scene and a subsequent ground-truthing of the same individual object

examples – resulting in a training bias toward these examples. A more stringent ground-

truthing and data cleaning process would have helped to improve the ability of the CSHF to

learn more representative object types, and to improve the overall detection accuracy.

Secondly, due to the short range of the laser scanners and the larger average distance of the

mapping vehicle to the objects of interest, many of the objects are not represented against

visible background. Since patch descriptors are not extracted from image regions where depth

information is unavailable, this results in a number of objects not having their parts used for

training (or being detected).

Thirdly, the AAM data are significantly corrupted in the colour imagery resulting in degraded

detection accuracy when using the colour based features. Objects closer to the image plane

also have degraded depth due to the fixed sampling density of the laser scanners resulting

in a “mesh-like” appearance in depth for these objects. This degrades the ability of depth

based features to encode surface morphology. In general, only the objects in the AAM dataset

having relatively larger exposed surface areas at larger distances from the image plane (the

“Car” and ”Truck / Van” object types) allow the depth based features to encode salient

information about the objects.

Finally, the range of scales of the different object types in the AAM dataset is very limited.

Since the depth extensions are designed to show how objects at varying scales can be detected

more accurately, this lack of variability in distance within each object category makes it very

difficult to produce results that meaningfully represent the potential of the CSHF’s depth

based extensions. Significantly, this deficit in the AAM data adversely affects the depth

extended configurations of the CSHF – especially the patch / offset scaling extended version

– while acting to improve the accuracy of the original CSHF configuration since this is no

longer adversely impacted by scale effects; the original CSHF models each object type at its

frequently occurring scale and the encoding of features that depend on the scale of the objects

is not penalised.

One possible deficiency in the patch / offset scaling approach that is unrelated to the data

concerns the accuracy of voting for objects at larger scales. The placement of votes for larger

objects in the query images will be less accurate because small inaccuracies are amplified at

larger scales. As noted in section 5.3, these inaccuracies could be accounted for by filtering

the resulting vote maps using Gaussian kernels that change in size according to distance from

the camera plane. However, this would introduce significant computational overheads and

given the very similar scales of the objects in the datasets (particularly in the AAM data),

evaluating the possible improvement in detection accuracy this would bring should be deferred
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until data are available having objects at a greater range of scales.

5.5.2 Further Research

Given the severe limitations in the datasets used to evaluate the presented depth extensions,

these experiments should be repeated using datasets having both high quality depth and

colour information. This may show that the CSHF depth extensions described in this chapter

fair better than demonstrated in this thesis.

In the case of the experiments using the patch / offset scaling extension, the patches were

constrained to be fixed in their dimensions of 0.5×0.5 metres for all of the tested object types.

Future research should investigate the effect on detection accuracy of varying the dimensions

of these patches (in concert with different feature types) for different types of object.

The experiments in this chapter showed how a simple depth based feature compared with the

colour based features for object detection. Since the CSHF allows for combinations of different

feature types (taken from different modalities), the CSHF can be trained on both types of

features at once. This may result in heightened detection accuracy where depth features are

more discriminative than colour based features in some cases and vice versa.

The depth based features presented in section 5.2.2 are parameterised on the number of surface

points sampled. In the experiments, this was fixed to five, however this was based on a very

limited evaluation on a few different object categories. It is likely that detection accuracy

for different object types will benefit from specific parameterisations of the number of depth

sampling points. The detection of different object types from datasets having more precise

depth information may also benefit from a more involved sampling of each patch’s depth.

There is significant scope to investigate in more detail the utility of this feature extraction

method.
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Chapter 6

An Efficient Euclidean Distance

Transform

The Euclidean Distance Transform (EDT) is an important and widely used basic image

processing operation that is central to many other fundamental algorithms in computer vision,

and object and pattern recognition. Tasks that require (or can benefit from) calculation of

the EDT as part of their processing include watershed segmentation, morphological image

filtering, object skeletonisation, determination of non-polygonal object centroids and shape

measures, calculation of Voronoi diagrams (Dirichlet tessellations), Delaunay triangulation,

shape matching, and shortest path computation (Rosenfeld and Pfaltz, 1968; Danielsson,

1980; Cuisenaire and Macq, 1999; Fabbri et al., 2008; Bailey, 2012).

Within the field of object detection and localisation, distance transforms have been used to

detect objects in query images by efficiently determining the least cost positions and deforma-

tions of the parts of deformable parts based object models (Felzenszwalb and Huttenlocher,

2005), and also for matching edge based models in query images (Borgefors, 1988; Hutten-

locher et al., 1993). Distance transforms have also been used in the matching of contour

based features (Shotton et al., 2005). Even though distance transform algorithms are not

directly used as part of the object detection or classification methods presented earlier in this

thesis, the algorithm is intrinsic to modern object detection methods that use parts-based

models. Efficient implementations of the algorithm are therefore important to decrease the

overall computational burden during object detection, freeing up computing resources for

other tasks – especially where real-time object recognition is desirable.

Several algorithms that compute the exact EDT have been proposed. Many of these have

super-linear or polynomial time complexity in the number of image pixels in the worst case,

but express linear time complexity in the average case (Lotufo and Zampirolli, 2001; Saito
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and Toriwaki, 1994; Cuisenaire and Macq, 1999). However, a large number of recently de-

veloped algorithms (particularly those based around parabola intersections and construction

of Voronoi regions) give linear time worst case complexity (Breu et al., 1995; Hirata, 1996;

Meijster et al., 2000; Maurer et al., 2003; Felzenszwalb and Huttenlocher, 2004; Bailey, 2005;

Krinidis, 2012; Wang and Tan, 2013). To date, there exist few studies that have empirically

assessed the performance of these algorithms (Cuisenaire, 1999; Fabbri et al., 2008), and the

more recent algorithms have been assessed in Wang and Tan (2013). These evaluations com-

pared the CPU run-time performance of the algorithms for a range of artificially produced

binary images including random dots of varying densities and randomly located squares of

different sizes, densities and angles of rotation (Fabbri et al., 2008; Wang and Tan, 2013).

Most of the algorithms gave good practical performance but no dynamic analysis of the com-

putational complexity of these algorithms was conducted. In a more recent study by Wang

and Tan (2013), new linear time algorithms (Felzenszwalb and Huttenlocher, 2004; Wang

and Tan, 2013) were evaluated against a selection of the best performing algorithms from the

previous study by Fabbri et al. (2008) using the CPU sequential run-time performance of each

of the algorithms against the same set of artificial images as used in that study. Wang and

Tan (2013) concluded that their new linear time algorithm provides faster practical run-time

performance over all previous state-of-the-art algorithms tested.

In this chapter, a number of the most recent state-of-the-art EDT algorithms are evaluated

against a newly presented method of computing the EDT employing several extensions that

aim to significantly reduce the number of pixel iterations required to compute the EDT. The

algorithms are tested against a range of different images for their dynamic computational

complexity and their real-time sequential CPU performance. The new algorithm’s compu-

tational complexity is linear in the worst case and is found empirically to have a smaller

coefficient of computational complexity than the other state-of-the-art EDT algorithms in

the average case. The new algorithm is also found empirically to be faster in real-time CPU

performance that the existing state-of-the-art methods tested. As with other EDT algorithms

of similar nature, the new algorithm has a constant space requirement in proportion to the

square root of the input image size, it can be extended to functions of higher dimension, it can

be modified to use distance metrics other than Euclidean, and it can easily be implemented

to exploit concurrent processing (e.g. GPU) environments.
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6.1 Distance Transform Metrics

A distance transform d maps a binary image I(p) ∈ {F ,B} to an image where every fore-

ground point (in F ) is set with the distance to its nearest background point (in B):

d(p) =

0 I(p) ∈ B
arg minI(q)∈B ‖q − p‖ I(p) ∈ F

(6.1)

where ‖q − p‖ is the distance calculation between points q and p. The inverse of this operation

is to produce the distance transform where every background point is set with the distance to

its closest foreground point (i.e. F and B are interchanged in the above function to produce

the inverse distance map). The normal and the inverse distance maps can be used for different

purposes. As examples of differences in use, the normal distance map can be used to produce

foreground object skeletonisations, or to extract shape metrics about an object of interest.

The inverse distance map can be used to determine path distances to objects from arbitrary

starting locations, or to assist in template matching algorithms.

Several different distance metrics can be used to compute ‖q − p‖. Two of the most popular

of these have been the city block (or Manhattan) distance metric (the L1 norm), and the

chessboard distance metric (the L∞ norm). The city block distance metric assumes 4-way

connectivity between pixels and distances are computed by summing over the 4-connected

paths between endpoint pixels in the image:

‖q − p‖1 = |qx − px|+ |qy − py|, (6.2)

The chessboard distance metric assumes 8-way pixel connectivity. In this arrangement, paths

between endpoints typically give a unit cost to diagonal pixels on the path (though non-integer

costs may be used).

‖q − p‖∞ = max(|qx − px|, |qy − py|). (6.3)

For both the 4-connected and 8-connected arrangements, even though the path costs are

minimised, the costs do not represent the direct (Euclidean) distance between endpoints. In

the case of the city block distance metric, the path cost overestimates the straight line distance

(traversing to a diagonally adjacent pixel costs 2 points). In the case of the chessboard distance

metric with a unit cost set for traversing to diagonally adjacent pixels, the path cost sum

underestimates the straight line distance. Examples of these two distance metrics are shown

in figure 6-1 along with the straight line Euclidean distance.
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Figure 6-1: Chessboard, city block (Manhattan), and Euclidean distance metrics.

Another problem with using non-Euclidean distance metrics is the anisotropy present in the

resulting distance maps; distance transforms computed using non-Euclidean distance metrics

are sensitive to rotations of the input image whereas the Euclidean distance is an isotropic

metric. Being rotationally symmetric, it is invariant to rotations of the input image (i.e. a

calculated distance from point A to point B does not depend upon the angle the line segment

AB makes with the base of the image). An example of the anisotropy resulting from the use

of non-Euclidean distance metrics is shown in figure 6-2. The different distance transforms

shown compute distances over the image to a central point. Figure 6-2(a) shows the vertical

and horizontal anisotropy present when using the city block distance metric. Figure 6-2(b)

shows the anisotropic effect when using the 8-way chessboard distance which has the effect of

reorienting the distance error into the image’s diagonals. The undesirable anisotropic effect

of both these metrics can be reduced by combining them using a two pass Chamfer distance

transform (Rosenfeld and Pfaltz, 1966; Borgefors, 1986). This algorithm makes two passes

over the image pixels with two different 3×3 based structuring elements. At each pixel in the

image, the new value is set according to the minimum (or maximum) of the values within the

structuring element centred over that pixel’s location. A term is added to each of the values

enclosed by the structuring element, the value of the term being determined by the position in

the structuring element relative to the target pixel. Typically, a constant term α is added to

the values found at the adjacent vertical and horizontal positions in the structuring element,

and a different constant term β is added to the values at the adjacent diagonal positions in

the structuring element (typically with β > α). In the case where α = β = 1, the algorithm
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produces the same distance transform as produced when using the chessboard distance metric.

In the case where α = 1 and β =∞, the algorithm produces the same distance transform as

produced when using the city block distance metric. However, using other constant terms such

as α = 3 and β = 4 (and normalising the resulting map by 1
4) allows for a distance transform

to be produced that suffers with less overall anisotropy and is a closer approximation to the

true Euclidean distance transform. Figure 6-2(c) shows the distance transform calculated

using the Chamfer 3-4 algorithm. While larger sized structuring elements (e.g. 5×5 or 7×7)

with different terms can produce distance transforms with progressively less anisotropy, and

that are closer in value to the true Euclidean distance transform, computation times rapidly

increase (Akmal Butt and Maragos, 1998). For comparison, figure 6-2(d) shows the lack of

anisotropy when using the Euclidean distance metric; the distance values are the same for

any point on a circle of given radius centred on the middle point in the image.

Because the Euclidean distance is invariant to image rotation, and because true straight line

distance is more useful in many real world applications (such as in computing shortest paths,

or for collecting shape metrics for object template matching purposes), the Euclidean distance

(as given in equation 6.4) is generally preferred over other distance metrics (Bailey, 2005; Breu

et al., 1995; Fabbri et al., 2008; Maurer et al., 2003).

‖q − p‖2 =
√

(qx − px)2 + (qy − py)2 (6.4)

6.1.1 Difficulties in computing the Euclidean Distance Transform

Computing Euclidean distance over discrete grids is complicated due to the necessary dis-

cretisation of continuous values. Around intersections where the distance to three or more

foreground points is minimised in the continuous domain, the discrete domain does not reflect

the situation of distinct, fully connected partitions being closer to their seed foreground point

than any other point. This situation is otherwise known as the Voronoi diagram (or Dirichlet

tessellation). In the discrete space, sometimes a single region (as given in the continuous

domain) must be split into two separate regions. This problem of non-locality means that

algorithms to compute Euclidean distances cannot use step counting style methods (as used

for computing distance maps using the city block or chessboard distance metrics) since such

methods are predicated on a discrete domain (the size of a step given by a grid square unit)

that define immediately adjacent grid cells as being closer than others. Figure 6-3 describes

the problem graphically. Given three grid cells (g,p, q), the regions closest to them in the

continuous domain are delineated by the dotted lines. However, because the discretised grid

cells overlap these boundaries, selection of the closest point around the intersection of the

regions (in particular, at grid cells A,B,C) is complicated. Grid cell B is disconnected from
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(a) Distance transform using the city block metric. (b) Distance transform using the chessboard metric.

(c) Distance transform using Chamfer 3-4. (d) Distance transform using the Euclidean metric.

Figure 6-2: Applying distance transforms using different metrics to an image with a single,
centred feature pixel. The city block (a), chessboard (b) and Chamfer 3-4 (c) metrics produce
results suffering from anisotropic effects. Only the Euclidean distance metric (d) results in
an isotropic (rotationally invariant) distance map. (Images are contrast stretched for clarity.)
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Figure 6-3: Discretisation of Euclidean distances leads to problems of non-locality.

the rest of the region that is also closer to grid cell p than to either g or q. At both A and

C, the Euclidean distance to p is larger than for g and q respectively. But unlike the case for

discrete distance metrics such as the city block and chessboard metrics, this does not imply

that cell B (which is even further away in the continuous domain from g,p and q) can only

be closest to either g or q. This inherent difficulty in calculating the exact Euclidean distance

transform, and the practicable suitability of distance transforms produced using simpler step

aggregation type algorithms and distance metrics specifically designed to be used over discrete

grids has meant that fast and exact methods of computing the distance transform using the

Euclidean distance metric have only recently (since the 1990s) been developed (Fabbri et al.,

2008).

6.1.2 Euclidean Distance Transform Algorithms

Given an image with N pixels having k background pixels (and N −k foreground pixels), the

number of brute force operations to compute the distance map is k(N − k) (each background

pixel must be tested against every foreground pixel). This expression is maximal when k = N
2 .

By simple substitution, the asymptotic maximum for the complexity of the brute force algo-

rithm is therefore O(N2). The asymptotic lower bound is given when k = 1 (the distance

transform is undefined when there are no background pixels), giving a minimum algorithmic

complexity of Ω(N).

For large N the brute force O(N2) algorithm is generally too inefficient and so algorithms
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that exploit properties of the distance calculation within local regions must be exploited.

These local results are then propagated to other areas of the distance map to produce the

final transform. The various methods by which the distance transform is calculated therefore

differ in how results about local distances are calculated and propagated.

All state-of-the-art EDT algorithms actually calculate the squared EDT (the L2
2 norm). This

is because the squared Euclidean distance is always a whole integer over discrete grids of pixels

and real valued representation issues (which are possible sources of error) can be avoided.

Moreover, distance calculations can be sped up by using integer division and avoiding the

requirement to calculate square roots. For practical use in optimisation style problems, the

L2
2 norm is usually suitable (or even preferred) in place of the L2 norm. For applications

requiring the actual Euclidean distance, the square root of the final distance map can be

taken.

Fabbri et al. (2008) give three different categories of EDT algorithm. In the first category,

ordered propagation algorithms (otherwise known as grass-fire algorithms) proceed by prop-

agating local distance values from seed foreground/background points. While the city block

and chessboard metrics are well suited to this type of algorithm (by way of counting steps),

Euclidean distances can be calculated by incorporating a “bucket” list for the pixels on the

propagation front where each bucket holds references to pixels having equal distance value.

Although ordered propagation algorithms can be designed to run very efficiently, they are

not easily extensible to functions or images having more than two dimensions, and are not

straight-forwardly modified to utilise independent processing architectures. Cuisenaire (1999)

gives several different algorithms to compute the EDT by propagation. One of these meth-

ods (propagation by multiple neighbourhoods – PMN) works by aggregating approximately

calculated distance transform maps constructed over coarse pixel neighbourhoods. However,

the method cannot (without adjustment) accommodate images of arbitrarily large dimensions

and still guarantee exact EDT calculation. The algorithm has been empirically evaluated as

having linear worst case complexity (Fabbri et al., 2008).

Raster scanning algorithms are the second category of EDT algorithms and these operate

by scanning the image in some predefined order (e.g. left-to-right, top-to-bottom in one

pass, then right-to-left, bottom-to-top in a second pass) and typically use 2-D local region

structuring elements centred on the current pixel of interest. The Chamfer 3-4 algorithm

is an example of this method (though it does not compute the exact distance transform).

Raster scanning algorithms that produce the exact Euclidean distance map can be fast when

scanning the image, but because of the need to compute the exact distance, several different

structuring elements must be used and parsed at each position in the image. This means that

the same pixels must be interrogated several times over and this increases the amount of time
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spent in each pixel iteration – slowing the algorithm overall. There have been no comparative

evaluations of raster scanning algorithms in the recent surveys of Fabbri et al. (2008) and

Wang and Tan (2013). Algorithms of this type include those proposed by Danielsson (1980),

Shih and Wu (2004), and Krinidis (2012) who present an O(MN) 2-D image raster scanning

algorithm that extends the work of Danielsson (1980) to use four different masks of reduced

size (where M is the combined size of the structuring elements).

Independent scanning (or dimensionality reduction) algorithms (Rosenfeld and Pfaltz, 1968)

represent the third (and most common) category of EDT algorithms. These algorithms work

over 1-D arrays of image rows/columns independently of other rows/columns in the image.

As such, the locality of pixels being exploited is constrained to single dimension pixel windows

centred on the current point of interest. These algorithms proceed in two phases by first pars-

ing an image’s columns/rows to calculate the squared Euclidean distances from foreground

points along one dimension, before using these results in the second phase to calculate the

orthogonal row-wise/column-wise squared Euclidean distances along the second dimension.

This type of algorithm has the advantage of being extensible to data of more than two dimen-

sions because the results from previous dimension parses are used as input to the next (higher)

dimension. In addition, independent scanning algorithms can be easily written to take advan-

tage of concurrent processing environments because only individual rows/columns are written

to at any one time, and the original binary input image can be left untouched in memory.

Thirdly, because the algorithm is decomposed into functions on single dimension arrays, this

category of EDT algorithms is conceptually simpler to understand and develop.

Independent scanning algorithms have developed along two major lines with a third, less

popular approach based on the mathematical morphology of an image (erosions and dila-

tions) (Fabbri et al., 2008). The third approach, originally developed by Shih and Mitchell

(1992) has been extended to enable a reduction in size of the 3×3 structuring element to a sin-

gle dimension 1×3 array allowing the algorithm to work over rows/columns independently of

each other (Lotufo and Zampirolli, 2001). The two more popular approaches are based around

the determination of the intersections of the quadratic distance function parabolas (Saito and

Toriwaki, 1994; Hirata, 1996; Meijster et al., 2000; Felzenszwalb and Huttenlocher, 2004), and

the calculation of Voronoi region intersections (Breu et al., 1995; Ogniewicz and Kübler, 1995;

Guan and Ma, 1998; Maurer et al., 2003; Bailey, 2005; Wang and Tan, 2013). While Felzen-

szwalb and Huttenlocher (2004) cites Breu et al. (1995) and Maurer et al. (2003), their work

constructs Euclidean distances by way of calculating parabola intersections. However, it can

be shown that both approaches are mathematically equivalent (see section 6.2.2) and that

all of these algorithms are very similar in their second stages with differences generally given

in the choice of which calculations to optimise. Felzenszwalb and Huttenlocher (2004) give

an O(N) independent scanning algorithm that proceeds by constructing the lower bound of

234



the squared Euclidean distance parabolas in the input array. The lower bound is stored in

a list which is finally parsed to calculate the minimum distances at each index. Wang and

Tan (2013) developed a very similar algorithm to construct the lower bound of the squared

Euclidean distance parabolas but derived their algorithm from the calculation of intersecting

Voronoi regions. The main improvement over the work of Felzenszwalb and Huttenlocher

(2004) is to optimise the calculation of intersections resulting in a faster overall run-time even

though it typically requires at least as many pixel iterations and updates to the final distance

map. The implementation is also made more efficient by updating the final distance map

in-place requiring only minimal extra memory (proportional to the size of an image row).

Wang and Tan (2013) also provide an empirical evaluation of their method compared with

the method of Felzenszwalb and Huttenlocher (2004) and a selection of the best performing

algorithms as evaluated in the survey of Fabbri et al. (2008).

This chapter presents a new algorithm of this class, also based on the method of calculation of

quadratic parabola or Voronoi region intersections and derived from the earlier body of work

most recently exemplified in the algorithms of Felzenszwalb and Huttenlocher (2004) and

Wang and Tan (2013). In this new method, a set of algorithmic optimisations are introduced

to allow certain calculations and updates to the distance map to be avoided entirely while

the computational optimisations given previously by Wang and Tan (2013) are retained.

These new extensions result in an algorithm that, in many cases, computes the EDT more

than twice as quickly as previous methods and is generally faster and more efficient (in

computational complexity) than the previous state-of-the-art EDT algorithms. Though not

as stable, in some cases, the new algorithm even compares in speed to the Chamfer 3-4

algorithm which has the potential to increase accuracy in applications that might benefit

from exact distance calculations but are currently too resource constrained to practically

implement existing methods.
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6.2 The Extended EDT Algorithm

The new extensions are explained in the context of a generalised independent scanning algo-

rithm of the kind implemented by Felzenszwalb and Huttenlocher (2004) and later by Wang

and Tan (2013) with specific references made to those algorithms where relevant. The main

advantages proffered by the new extensions are to avoid making unnecessary updates to the

input/output distance map, and at each point in the image, to reduce the number of com-

parisons with members of a list of potentially nearer points.

As described here, the algorithm actually calculates the inverse Euclidean distance transform

(i.e. each background point is set with the distance to its nearest foreground point). Like all

independent scanning algorithms, the algorithm proceeds in two stages. In stage one, pixels

are scanned in columns (or rows) to calculate the minimum one-dimensional vertical (or

horizontal) distance from each foreground pixel in the column/row to every background pixel

in the column/row. The actual distance metric calculated depends on the input required

to the second stage of the algorithm, however in the implementation by Felzenszwalb and

Huttenlocher (2004), the distance metric is the squared Euclidean distance. In the method

of Wang and Tan (2013), this stage calculates the squared Euclidean distance of each nearest

foreground point in the column/row to the image origin (i.e. the top left corner), rather

than to the background point itself. This is to facilitate the efficient computation of the

parabola or Voronoi region intersections (see section 6.2.2). In the algorithm of Felzenszwalb

and Huttenlocher (2004), no separate stage one algorithm is given because the stage two

algorithm actually subsumes the logic of stage one (and the method is presented in the

context of performing distance transforms on arbitrary 1-D arrays). The stage one algorithm

as used by Wang and Tan (2013) for the case of a 2-D (or higher-D) image is presented

here. This algorithm is more efficient (requiring Ω(n) array accesses/updates in the best

case) than the Ω(2n) algorithm used by Lotufo and Zampirolli (2001); Maurer et al. (2003)

and others (Fabbri et al., 2008) (where n is the length of a row/column image array).

6.2.1 First Stage Calculation

The pixels in each column are independently scanned top to bottom with squared Euclidean

distances to the last parsed foreground pixel updated until a new foreground pixel is seen,

whereupon the point of equidistance t with the previously seen foreground point is calculated,

and updates proceed back in the opposite direction. Values in the array up to this point t

are overwritten with the squared Euclidean distance to the new foreground pixel and when

point t is reached, iteration picks up again where it left off, proceeding once more in the
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original direction, updating values to the right of the most recently seen foreground pixel.

Pseudo-code for this stage one column-wise (row-wise) scan is given in algorithm 2. For a

column/row of length n, the complexity of this algorithm is O(n). Specifically, in the worst

case, the maximum number of value revisions (updates in the opposite direction governed

by the inner while loop) is n − 1 and this happens when the input array has only a single

foreground point located at the end of the array. In this case, the algorithm is no faster than

the simple Ω(2n) method given by Lotufo and Zampirolli (2001).

Algorithm 2 EDT Stage 1: Fast in-place calculation of 1-D squared Euclidean distances

1: procedure Calc1DSquaredEuclideanDistance(array)
2: dsum←∞
3: t← −1
4: for i← 0, length(array) do
5: if array[i] = 0 then
6: if t > −1 then . min index to iterate back to when updating distances
7: t← (t+ i)/2
8: end if
9: d← 1

10: dsum← 1
11: k ← i− 1
12: while k > t do . Update previously set larger distances
13: array[k]← dsum
14: k ← k − 1
15: d← d+ 2
16: dsum← dsum+ d
17: end while
18: t← i . Update last seen index of foreground pixel
19: d← 1
20: dsum← 1
21: else
22: array[i]← dsum . Set distance to current closest foreground point
23: d← d+ 2
24: dsum← dsum+ d
25: end if
26: end for
27: end procedure

6.2.2 Second Stage Calculation

Assuming a column-wise scan of the image in stage one, in stage two, the image’s rows are

independently parsed and each array location in turn is compared against a list of previously

parsed row locations stored as a stack. The value of each array element is the squared
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Euclidean distance to its nearest orthogonally located foreground point (either above or below

the row). As iteration proceeds from left to right along the row, the row intersection of each

new point with the previously seen point is calculated. The orthogonal distance to each

foreground point is the squared distance for the ordinate of the foreground points, hence this

calculation is equivalent to equating the two parabolas representing the squared Euclidean

distance functions rooted at the (abscissae, value2) of the corresponding elements in the row

array. This derivation of the intersection is used by Felzenszwalb and Huttenlocher (2004)

and is depicted in figure 6-4. The figure shows the pixel rows and columns of an image with

two foreground points p and q. Their respective vertical distances from the row currently

being parsed (row 0) are 1 and 2. The point along the current row t that is equidistant from

these points is given by equation 6.5 (also shown on the diagram) as the intersection of the

corresponding blue parabolas.

Columns

t

Rows

qt = 〈qx − t, qy〉

q = 〈qx, 2〉
p = 〈px, 1〉

pt = 〈px − t, py〉

6

5

4

3

2

1

0

(t− px)2 + p2y = (t− qx)2 + q2y

Figure 6-4: Calculation of the location of intersection along the row being equidistant from
foreground points p and q by parabola intersection (Felzenszwalb and Huttenlocher, 2004)

The derivation of this intersection location t is then given by:

(t− px)2 + p2y = (t− qx)2 + q2y (6.5)

t2 − 2tpx + p2x + p2y = t2 − 2tqx + q2x + q2y (6.6)

2t(qx − px) = (q2x + q2y)− (p2x + p2y) (6.7)

t =
(q2x + q2y)− (p2x + p2y)

2(qx − px)
(6.8)
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In figure 6-4, the equidistant location is also determined by the red vectors |pt| = |qt|. In

general, let tij be the intersection point (point of equidistance) along the current row for

point pair i, j. As each point in the row is parsed, it is appended to a stack of candidate

nearest points. The value of t calculated with q (the most recently parsed point) and p (the

most recently added point to the stack of candidate nearest points), determines if q is simply

pushed onto the stack, or if elements are popped off the stack until a value of tqg is calculated

for some previously stored point g allowing q to be pushed onto the stack (or to replace the

stack entirely if the list is emptied before a suitable g is found).

The location of intersection can be calculated to be behind the current row index, equal to

the current row index, or ahead of the current row index. A different derivation is given

in figure 6-5. This method is used by Wang and Tan (2013) to derive their algorithm (a

method they term “perpendicular bisection” but essentially equivalent to the calculation of

intersecting Voronoi regions as used in earlier methods (Breu et al., 1995; Ogniewicz and

Kübler, 1995; Guan and Ma, 1998; Maurer et al., 2003)). This method is equivalent to the

derivation by intersecting parabolas shown in figure 6-4.

〈tqp, 0〉 〈Ax, 0〉

pt = 〈px − t, py〉

Current Row (Row 0)

qt = 〈qx − t, qy〉

q = 〈qx, qy〉

A = 〈 qx+px2 ,
qy+py

2 〉

p = 〈px, py〉g

Figure 6-5: Direct calculation of the location of intersection along the row being equidistant
from foreground points p and q by perpendicular bisection (Wang and Tan, 2013)

As noted previously, tqp can be derived by equating the magnitudes of vectors pt and qt:

|pt| = |qt| (6.9)

|〈px − t, py〉| = |〈qx − t, qy〉| (6.10)

(px − t)2 + p2y = (qx − t)2 + q2y (6.11)
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p2x − 2tpx + t2 + p2y = q2x − 2tqx + t2 + q2y (6.12)

2t(qx − px) = (q2x + q2y)− (p2x + p2y) (6.13)

Equations 6.7 and 6.13 are the same, so these methods are clearly equivalent. Letting ph be

the squared Euclidean distance of p from the origin (i.e. ph = p2x + p2y), then

2t(qx − px) = qh − ph (6.14)

t =
qh − ph

2(qx − px)
(6.15)

By pre-calculating ph during stage one, Wang and Tan (2013) are able to optimise the calcu-

lation of t (which is called very frequently) leading to a much faster algorithm for the same

number of iterations. qx is always strictly greater than px, hence the sign of t is determined by

the numerator of equation 6.15. This is particularly important to note for implementation in

C/C++ where division of negative values is truncated towards zero which can lead to incorrect

calculation of t in rare cases. This possible source of error can be avoided because it is only

necessary to know that a negative value of t will occur (entailing that the previously stored

point be popped from the candidate nearest points stack). This test also allows for the use

of integer division in equation 6.15 leading to a further speed up. All of these optimisations

are implemented by Wang and Tan (2013).

A more intuitive derivation of t can be seen in figure 6-5 when one considers that the right

triangle constructed from vector vertices A = 〈 qx+px2 ,
qy+py

2 〉, 〈tqp, 0〉, and 〈Ax, 0〉 is similar

to the right triangle constructed from vector vertices p, q, and 〈px, qy〉 (the two blue triangles

in the figure) but rotated a quarter circle and scaled. The intersection t can then be derived

simply by undoing the scale and rotation: setting the ratios of the sides of these triangles

inversely equal to one another and multiplying through.

− qy − py
qx − px

=
2

qy + py

(
qx + px

2
− t
)

(6.16)

p2y − q2y = q2x − p2x − 2t(qx − px) (6.17)

t =
qh − ph

2(qx − px)
(6.18)

Once calculated, while tqp is at least as small as the previously calculated and stored tpg (i.e.

tqp ≤ tpg), p is popped from the stack and new intersection location tqg is calculated and set

as the left bound of q with g. This is the calculation of the location of intersection for the

Voronoi regions along row R having q and g as their closest points. Point p can be discarded

because its distance to any location in row R is never less than the minimum distance at

any location in the row to either the point to its left (g) or the newly parsed point to its
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right (q). This evaluation of previously stored points on the stack against new point q may

take several iterations and it continues until the calculated intersection between q and an old

point on the stack is found to be at least as large as the stored intersection for that point

and the immediately nearest point to its left (next on the stack). When tqp is found to be

strictly greater than the intersection of p and the previous nearest point on the stack g (i.e.

tqp > tpg), q (and its left bound intersection with p) is pushed onto the stack. This process

is depicted in figure 6-6 in the case of a single iteration (comparison of new point q against

previously stored candidate nearest points g, and p immediately to its left).

tpg

i

g

p

q

(a) Situation after parsing p at location Ri

tpg

i

tqp

g

p

q

(b) After parsing q, calculation of tqp to the left of
tpq causes p to be popped from the stack of candidate
nearest points

i

tqg

g

p

q

(c) Correction of the Voronoi intersection of q with g
after discarding p as being closer anywhere along R

Figure 6-6: Process of comparing the intersection of the Voronoi region at row R for new
point q against previously stored points g and p (iteration along R at i in each diagram
moving left to right)

In stage three of the algorithm, the completed list of nearest points is parsed and the respective

row array values updated to the squared Euclidean distance to the corresponding points.
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All points in the row must be parsed at least once, hence the run-time performance of this

algorithm depends on the number of times candidate nearest foreground points are evaluated

in the stack, and the number of updates needed to transform the original input row into the

squared Euclidean distances to the final list of nearest points.

6.2.3 Algorithm Extensions

In the method described above, there are two opportunities during stage two to reduce the

number of computations. Firstly, the number of comparisons to candidate nearest points on

the stack can be reduced. Secondly, the number of final updates required to produce the

output distance map can be reduced. The extensions described below lead to efficiency gains

in both of these areas.

First Extension

The first extension stems from the fact that at commencement of the second stage, array

locations that are no more than one unit distant from their orthogonally located foreground

points do not need their distance values updating in the final stage three of the algorithm (i.e.

locations which either are themselves a foreground point, or locations that are immediately

adjacent to a foreground point either above or below them). For these row locations, it is

impossible for any other foreground point referenced from any other location in the array to be

closer. This implies that only the endpoints of contiguous regions of this nature (subsequently

termed “foreground” regions) have any influence in the calculation of distances at any other

locations in the array and so only these endpoints need to be added to the candidate nearest

points stack.

Given a mechanism to identify foreground region endpoints during the final stage three up-

date, points within the foreground regions (including the endpoints themselves) can be ig-

nored. This allows the number of comparisons to entries in the candidate nearest points stack

to be reduced in two ways. Firstly, the overall number of candidate points added to the stack

is greatly reduced because points between the foreground endpoints are ignored. Secondly,

upon identification of a foreground region point (whether it is a single point or contiguous

with others to its right), the whole stack of previously stored candidate nearest points can be

discarded. This is because no previously stored point can be closer to any point to the right

of the newly parsed point than the newly parsed point itself.
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This situation is shown in figure 6-7 where the dotted lines slanting down and to the right

denote the four left bound intersection locations with the current row of the Voronoi regions

closest to the four points shown in red in columns h through k. All of these intersections are

beyond index k. As iteration proceeds from left to right from column h to column k and each

new foreground point is encountered, each is in turn pushed onto the candidate nearest points

stack. When the foreground point in column l is seen (shown in blue), the candidate points

stack is reset because none of the four previously parsed points having left bound intersection

locations ≥ l can be closer than the new point at any location in the row.

h i j k l

Figure 6-7: When the first foreground point at l is parsed, previously stored candidate points
at locations h, i, j and k are discarded.

Further, because foreground regions can be present at either end of the row, these points can

be excluded before the main loop of stage two is entered meaning that the effective length of

the row is reduced.

Second Extension

The second optimisation incorporated into the algorithm immediately discards newly parsed

point q after calculation of its Voronoi region intersection with the most recently stored

previous point p if either:

1. The calculated intersection tqp is to the left of the start or to the right of the effective

end of the row, or
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2. In the current row y there already exists at location 〈tqp, y〉 a foreground point g = 〈tqp, gy〉
such that |gy| ≤ |q − 〈tqp, y〉|.

This early discard of points has the effect of further reducing the overall size of the candidate

nearest points stack, and thus the upper bound on the number of comparisons when parsing

points further along in the row.

Figure 6-8 describes this situation graphically. The row intersection locations of red points p

and q with previously stored closest point g (tpg and tqg) are both within the array bounds

(the right edge of this figure) but the orthogonal distances from row y at these locations to

blue points u and v are at least as short. Therefore, points p and q can be immediately

discarded instead of being pushed onto the candidate nearest points stack.

In the case of points r and s, their calculated row intersections are beyond the effective end

of the array, and so they will never be closer at any point along the row than point g; these

points too can be discarded immediately upon parsing.

g

p

q

r

s

v

u

tpg tqg

trg
tsg

Row y

Figure 6-8: A newly parsed point p is discarded early if its location of intersection t along
row y is either beyond the effective end of the array, or the orthogonal distance from row y
to a foreground point already in column t is ≤ |p− 〈t, y〉|.

All of the previous optimisations of Wang and Tan (2013) are retained. In particular, instead

of calculating ph in-place during stage one of the algorithm (requiring that all array values

be updated in stage three), ph is calculated during the stage two identification of nearest

points and stored as part of the candidate points list. For these purposes a small struct (a
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dedicated collection of ordered variables in memory) is used to collate candidate point values.

Letting p = {x, d, b, h}, px is the ordinate of p, pd is the value at R[px] (the orthogonally

row offset squared Euclidean distance of the point as calculated during stage one), pb is the

left exclusive array bound of the region of the row closest to p (given by the integer division

calculation of t), and ph = p2x + pd (calculated once and stored for reuse). Calculating ph

during stage two of the algorithm is no more costly than computing it during stage one,

and this allows updates to large sections (all of the foreground regions) of the distance map

to be avoided entirely because the original input array is left untouched. In the best case

where foreground regions occupy all or the majority of the image, the required total number

of pixel iterations tends toward Ω(2N). The previous minimum number of pixel iterations

required (as in Felzenszwalb and Huttenlocher (2004) and Wang and Tan (2013)) was Ω(3N)

because of the need to calculate squared Euclidean distance values for every entry in the input

array.

For implementation convenience, two macros are defined. Let calct(qx, qh, px, ph) be de-

fined according to equation 6.15 using integer division as algorithm 3. For readability, let

Algorithm 3 Calculation of the location of row intersection using integer division

Ensure: qx > px
function calct(qx, qh, px, ph)

if qh < ph then
return −1

else
return qh−ph

2∗(qx−px) . Never negative (see equation 6.15)
end if

end function

sqdist(q, i) = (qx − i)2 + qd, i.e. the squared Euclidean distance of foreground point q from

row array location i. Pseudo-code for stage two is given in algorithm 4.

The function described by listing 5 is called prior to entry of the main loop in algorithm 4.

This function skips over the contiguous portion of points in the row (starting from the left)

that are too far away to be considered in the distance transform. If no such values are found,

foreground points are skipped over reducing the effective length of the row from the left. The

function returns the starting index i for iteration in the main loop of algorithm 4 together

with the minimum effective index of the row.

Procedure 6 is called from the main loop of algorithm 4 to compare a newly parsed point

q against the existing stack of candidate nearest points npList. The procedure updates the

reference values npList, pidx, plast so that on return, q has either been discarded according to

the second optimisation (see line 13), has replaced the stack entirely (see line 9), or has been
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pushed onto the stack at a location according to correct calculation of the Voronoi intersection

of q with a previously stored point (entailing that zero or more previously stored points are

popped from the stack) (see line 15). On return, pidx and plast are updated to point to the

currently closest point and the last point in npList respectively.

Finally, the previously trivial third stage update of the row array to calculate the squared

Euclidean distance values is modified to recognise the endpoint pairs of foreground regions

so as to ignore the array values that do not need updating. This stage now also includes a

small optimisation to take advantage of the quicker calculation of squared distances by adding

together adjacent sums of the series of odd numbers (akin to the method used during stage

one). Pseudo-code for this new final stage is given in algorithm 7.

6.2.4 Unimplemented Modifications

In addition to the presented extensions, two other modifications were developed. While re-

ducing the algorithmic complexity (the overall number of pixel iterations required to compute

the final distance map), the reductions in iterations due to these modifications were not large

enough to offset the increased computational overheads required to produce them. The mod-

ifications resulted in no significant gains in sequential CPU run-time performance, and in the

case of the second, more involved modification, a small performance decrease was observed.

As a result, these modifications are left unimplemented in the final algorithm.

The first of these unimplemented modification introduces an early stack reset check by making

an initial comparison against the bottom of the candidate nearest points stack (i.e. for the

first point having an intersection location to the right of the current array index i). Early

tests showed that the rate of stack resets enabled by this extra check did not have sufficient

impact to warrant the extra computation of t. This early stack reset check would likely be

more effective if sufficient measures were not already being used to minimise the size of the

candidate points stack.

The second, more involved modification, takes advantage of contiguous row values referring

to foreground points at the same orthogonal distance from the current row. This situation is

shown in figure 6-9(a).

In figure 6-9(a), the blue foreground points are all at the same height and it is clear that the

distances from each of these points to the y = 0 intersection with the horizontal axis (the row

array) are all minimised by those points. None of the red points can be closer at any location
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(a) Min distance equal contiguous row values

q
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tqp
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yqg
0

(b) Invalid calculation of the intersection location

Figure 6-9: In 6-9(a), contiguous regions of equal row value can be ignored to avoid unnec-
essary updates (only endpoint locations need be stored). In 6-9(b), the presence of a point
lower than the contiguous row values complicates the calculation of the intersection location.

along row y = 0 within [i, j]. This means that the corresponding values at array locations [i, j]

can be ignored in the stage three update. However, while endpoints of contiguous regions in

the array having values ≤ 1 are always closer to locations outside the region that are adjacent

to the endpoints in the array, the same is not true for the endpoints of contiguous regions

having arbitrary height. In figure 6-9(b), point q to the right of the row height contiguous

region is found to be lower.

This requires calculating the equidistant location of intersection of point q with the correct

point within the set of contiguous blue foreground points. It is no longer the case that the

minimum distance is already set over the whole of the range [i, j] and that updates over the

whole of this region can be ignored. If only the endpoints of the blue region are stored, this new

intersection location cannot be calculated using equation 6.15. The location of tqp incorrectly

determines that row array locations ≥ tqp are closer to q than to any of the blue points. To

determine the correct intersection location in these cases, the real Euclidean distance must

be calculated requiring a square root operation (giving the intersection location in figure 6-

9(b) of yqg). This adjustment must be included as part of the main candidate nearest point

stack update. This significantly increases computational overheads for little to no practical

performance advantage, and a reduction in performance in many cases.
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Algorithm 4 EDT Stage 2: Per row identification of candidate nearest points

Ensure: length(npList) ≥ length(array)
1: procedure IdentifyNearestPoints(npList, array)
2: n← length(array)
3: i,minj ← ignoreFromLeft(array)
4: if i < n then
5: npList[0]← {i, array[i],minj, i2 + array[i]}
6: i← i+ 1
7: end if
8: p← 0
9: plast← 0

10: maxj ← n− 1 . Ignore values ≤ 1 from the right
11: while maxj > i ∧ array[maxj] ≤ 1 do
12: maxj ← maxj − 1
13: end while
14: maxj ← max(n− 1,maxj + 1)
15: while i ≤ maxj do
16: if plast > p ∧ i > npList[p+ 1]b then . Update closest current point at i
17: p← p+ 1
18: end if
19: if array[i] <∞ then
20: q ← {i, array[i],minj, i2 + array[i]}
21: if array[i] < 2 then . Store endpoints of regions ≤ 1
22: if array[i− 1] > 1 then . Left endpoint
23: plast← p
24: updateNearestPointStack(array,minj,maxj, npList, p, plast, q)
25: else if array[i+ 1] > 1 then . Right endpoint
26: qb ← npList[p]x − 1
27: plast← plast+ 1
28: p← plast
29: npList[p]← q
30: end if
31: else
32: updateNearestPointStack(array,minj,maxj, npList, p, plast, q)
33: end if
34: end if
35: i← i+ 1
36: end while
37: if length(npList) > 0 then
38: if array[maxj] ≤ 1 then
39: maxj ← maxj − 1
40: end if
41: CalcFinalSquaredEuclideanDistance(npList, array,maxj)
42: end if
43: end procedure
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Algorithm 5 EDT Stage 2a: Skip over initial points at left

1: function ignoreFromLeft(array)
2: n← length(array)
3: i← 0
4: while i < n ∧ array[i] ≥ ∞ do . Skip points at infinity
5: i← i+ 1
6: end while
7: minj ← −1
8: if i = 0 then . Only skip foreground points if no prior points at infinity
9: while i < n ∧ array[i] < 2 do

10: i← i+ 1
11: end while
12: minj ← i− 1
13: if i < n then . Ensure i starts at first foreground point
14: i← max(0, i− 1)
15: end if
16: end if
17: return i,minj
18: end function

Algorithm 6 EDT Stage 2b: Update the stack of candidate nearest points with new point q

1: procedure updateNearestPointsStack(array,minj,maxj, npList, pidx, plast, q)
2: p← npList[plast]
3: t← calct(qx, qh, px, ph)
4: while t ≤ pb ∧ plast > 0 do
5: plast← plast− 1
6: p← npList[plast]
7: t← calct(qx, qh, px, ph)
8: end while
9: if t < 0 then

10: npList[0]← q
11: qb ← minj
12: pidx← 0
13: else if (t > maxj) ∨ (t ≥ qx ∧ array[t+ 1] ≤ sqdist(q, t+ 1)) then
14: return
15: else
16: qb ← t
17: plast← plast+ 1
18: npList[plast]← q
19: if plast < pidx then
20: pidx← plast
21: end if
22: end if
23: end procedure
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Algorithm 7 EDT Stage 3: Squared Euclidean distance calculation over non-foreground

1: procedure CalcFinalSquaredEuclideanDistance(npList, array, rowEndIdx)
2: j ← rowEndIdx
3: for i ∈ [length(npList)− 1, 0] do
4: np← npList[i]
5: dsum← npd + (j − npx)2

6: d← 2(j − npx)− 1
7: while j > max(npx, npb) do . Update up to right most bound
8: array[j]← dsum
9: dsum← dsum− d

10: d← d− 2
11: j ← j − 1
12: end while
13: nq ← npList[i− 1]
14: if npd < 2 ∧ nqd < 2 ∧ npb < nqx then . Skip contiguous foreground
15: j ← npb . Left exclusive bound less than next nearest point’s location
16: else
17: while j > npb do . Point not part of contiguous region of foreground
18: array[j]← dsum
19: dsum← dsum− d
20: d← d− 2
21: j ← j − 1
22: end while
23: end if
24: end for
25: end procedure
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6.3 Experimental Methodology

Algorithms for computing the EDT can be compared in terms of their time and space re-

quirements, their ability to exactly compute the EDT, their simplicity (or ease of understand-

ing/implementation) and their extensibility to different domains. Of these aspects, arguably

the most important issue for practical purposes is the speed of calculation. While space re-

quirements are still a consideration (especially for some of the older algorithms tested e.g.

Saito and Toriwaki (1994); Cuisenaire and Macq (1999); Lotufo and Zampirolli (2001)), none

of the more recent algorithms have especially severe memory requirements. In particular,

the algorithmic framework as described in section 6.2 (as used in the algorithms of Meijster

et al. (2000), Maurer et al. (2003), Felzenszwalb and Huttenlocher (2004) and Wang and Tan

(2013)) has memory requirements proportional to the square root of the size of the image –

not including memory required to store the image itself.

Previous studies have compared the performance of different algorithms according to their

real-time CPU sequential execution speeds. Variability in implementation characteristics

(language, compiler/optimisation, platform etc.) can adversely affect the reliability of such

results. In these previous studies, all algorithms were compiled within the same language,

and using the same optimisation flags. However, it is still the case that in real world use,

manual optimisations, or choosing to implement a particular algorithm in a well suited lan-

guage, or understanding that a given algorithm works better under particular conditions with

well controlled input data, can still throw doubt onto scientific conclusions that any single

algorithm offers superior performance in the general case.

By itself, the analysis of real-time CPU performance (though of ultimate practical impor-

tance) does not provide a reliable enough measure of the true computational complexity of an

algorithm. If combined with an understanding of the dynamic computational complexity of

an algorithm, more reliable conclusions can be made concerning the behaviour of an algorithm

under a range of inputs, especially with regard to the stability of any particular algorithm for

datasets of different character. Computational complexity is independent of implementation

or platform, hence it can be used as a more impartial metric to compare the effectiveness

of different algorithms, and the analysis remains valid in the face of continued technological

improvements.

For any particular EDT algorithm, code that appears long and complex statically can per-

form very well dynamically on real inputs (explaining the practical usefulness of algorithms

that have super-linear static computational complexity). The nature of the calculation of

the EDT means that it is difficult to empirically evaluate the actual number of instructions
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performed by each algorithm on any given input image. The logic of the various EDT al-

gorithms is generally dependent on factors other than the overall size of the input such as

image aspect ratio, the ratio of foreground to background points, the homogeneity of fore-

ground/background regions, the distribution of the foreground/background points, and the

morphology of the foreground/background regions (for example, the degree to which straight

edges are represented or if the image contains convex foreground objects). These factors can

affect the algorithms in different ways, and so it is necessary to test the algorithms against a

range of input data that are diverse enough to address such factors so that evaluation does

not unfairly bias any particular algorithm that might take advantage of one or more of these

factors.

In this section, the dynamic computational complexity and the real-time sequential CPU

performance of the different algorithms are empirically evaluated. Most of the algorithms

tested have linear worst case complexity, though in some cases, the constant of complexity

can be quite high.

Counting the actual number of operations carried out by each algorithm as they work over

different input data is generally not practicable so a proxy measure for the dynamic compu-

tational complexity of an algorithm is used. This is achieved by embedding loop counters

in the source code of each of the algorithms and by taking note of long operations (such as

array copying). Although these counts do not consider the constant computation factor for a

given iteration of a loop (i.e. the number of instructions carried out in the body of a loop),

the counts can provide a good estimate of the computational complexity of the algorithm as

a linear factor of the actual computational complexity on a given input. Since the biggest

factor in the actual computational complexity is the number of times memory (image loca-

tions) must be referenced, counting loop iterations is a sensible indicator of true algorithmic

performance; finding the algorithms with the fewest pixel iterations / loop counts gives a

reasonable indication of which algorithms offer the fastest actual algorithmic implementation

over a range of inputs.

Even though loop counters are instructive in comparing how the different algorithms vary

in their behaviour over different input data, it is not necessarily warranted to compare this

statistic directly between the different algorithms because the complexity of statement blocks

can vary a great deal across algorithms. Loop iteration counts are provided to help ascertain

the stability of each of the algorithms over a range of inputs.

Of more practical relevance are results giving the amount of CPU time required by each of

the algorithms. The cost of incrementing the pixel iteration counters is an added cost to the

run-time of each algorithm, but this cost is negligible and is roughly equal across all of the
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algorithms tested so it can be ignored for the purposes of comparison.

The algorithms selected for evaluation are the same as tested by Wang and Tan (2013) with the

addition of the new algorithm using the extensions as presented in this chapter. In addition,

even though it does not give the exact distance transform, the Chamfer 3-4 algorithm (Barrow

et al., 1977; Borgefors, 1988) is included to give a baseline comparison of the performance of

each algorithm. In many applications where exact distance calculations are less important,

the Chamfer 3-4 algorithm (or algorithms of a similar nature) are used because they are

generally faster and give more stable performance than exact Euclidean distance transform

algorithms. The algorithms are listed in table 6.1 together with their type and worst case

asymptotic complexity.

Method Short Name Complexity Type

Palmer et al.(2014) RP O(N) Ind. Scanning

Felzenszwalb and Huttenlocher (2004) PFF O(N) Ind. Scanning

Wang and Tan (2013) PBEDT O(N) Ind. Scanning

Lotufo and Zampirolli (2001) LZ O(N
3
2 ) Ind. Scanning

Maurer et al. (2003) MAURER O(N) Ind. Scanning

Meijster et al. (2000) MEIJ O(N) Ind. Scanning

Cuisenaire and Macq (1999) CUIS O(N) Ord. Propagation

Saito and Toriwaki (1994) SAITO O(N
3
2 ) Ind. Scanning

Chamfer 3-4 (not Euclidean) CHAM34 O(N) Raster Scanning

Table 6.1: Distance Transform Algorithms Evaluated

The algorithms are empirically evaluated over several different datasets. Each image from

each dataset is provided as binary input to each of the algorithms in turn and the results

collected and recorded. In the case of non-binary images, the images are contrast stretched

and thresholded at each of the threshold levels before being inverted and thresholded again at

each of the levels. Contrast stretching helps ensure that the threshold levels are applicable to

every input image and give good distributions of foreground and background regions.

6.3.1 Datasets

In previous work, these algorithms have been evaluated primarily against artificial datasets (Fab-

bri et al., 2008; Wang and Tan, 2013). No thorough evaluation on “natural” real world imagery

has been conducted. The computational complexity (and the correlated CPU run-time per-

formance) of all of these EDT algorithms is highly dependent on the nature of the image and

so it is important to test using a broad selection of different data so as to not unfairly favour
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any particular algorithm if one is to make a general conclusion about practical performance.

In this work, five different datasets are used. These are summarised in table 6.2.

Dataset Image Type Data Points Image Dimensions

Fabbri et al. (2008) Artificial (Binary) 114 3000× 3000 and 4000× 4000

MARS Natural (Colour) 555 7000× 1764 to 7000× 9419

MARS EDGE Natural (Binary) 37 7000× 1764 to 7000× 9419

NATURAL Natural (Colour) 240 7000× 4650 to 7000× 9333

RANDOM LINES Artificial (Binary) 50 4057× 5779 and 5779× 4057

Table 6.2: Datasets used for evaluation of Euclidean Distance Transform algorithms

Fabbri et al. (2008) Dataset

The first dataset consists of the larger images (3000× 3000 and 4000× 4000 pixel dimension)

from the dataset used in the study of Fabbri et al. (2008). CPU processing power has increased

substantially, hence only the larger images are used to give more discriminative results across

the different algorithms. These images are all binary and consist of 11 images of random

dots covering varying proportions of the image. The coverage proportions are 1, 10, 20, 30,

40, 50, 60, 70, 80, 90 and 99 percent. Both 30002 and 40002 pixel images are available for

these examples giving 22 images. Also within this dataset are images of squares of different

sizes and rotation angles, all again with different coverage proportions. These images are only

given in 30002 pixel dimensions. The coverage proportions (of the squares) in these images

are 15, 30, 50, 70, and 95 percent. Seven images for each coverage proportion give squares in

different angles of rotations: 0◦, 30◦, 45◦, 60◦, 75◦, 90◦ (the 0◦ and 90◦ images are duplicates).

This gives 35 images of squares and 57 total images in this dataset. Finally, to increase the

robustness of the results, all of the images in this dataset are negated swapping “background”

with “foreground” pixels and incorporated into the original dataset giving a final total of 114

images. Two examples from this dataset are given in figure 6-10.

MARS Dataset

The second test dataset comprises a selection of 37 images of the landscape of the planet

Mars as imaged by various rovers and orbiting spacecraft courtesy of NASA/JPL-Caltech

(2014). These are all colour images of varying original large image dimensions scaled up to

a common width of 7000 pixels wide and a varying number of pixels in height ranging from

1764 to 9419. Some of the images also contain artificial components such as photographic
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(a) Random dots (80% coverage) (b) Random squares (30% coverage, 30◦ rotation)

Figure 6-10: Sample test images from the Fabbri et al. (2008) dataset

measurements and other notations. The varying aspect ratios of the images helps to avoid

any bias towards algorithms that perform better on square images. The images give a range

of interesting non-random naturally occurring features from a specific domain. For testing,

because these images are not binary, seven different threshold levels are used to generate

images with “foreground” and “background” components. The threshold levels used are 36,

72, 108, 144, 180, 216, and 252. The images are also inverted in the RGB colour space and

the same seven threshold values used for the inverted images. Additionally, a threshold level

of zero is used to produce images of all “foreground” or all “background” to test the edge case

performance of the algorithms. Four examples from this dataset are shown in figure 6-11.

MARS EDGE Dataset

The third dataset uses the same imagery as the second dataset, but instead of applying

multiple thresholds, the images are processed to generate edge images using the Canny edge

detector (Canny, 1986) (using parameters of 10 and 120 for the hysteresis first and second

thresholds respectively). These edge images are then treated as binary images giving 37 data

points.
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(a) The Curiosity rover’s view of a Martian dune after
crossing it

(b) Martian landscape with rock rows and mount
sharp imaged by the Curiosity rover

(c) Martian dunes imaged from the Mars Reconnais-
sance Orbiter

(d) Autumn frost accumulation on dunes as imaged
from the Mars Reconnaissance Orbiter

Figure 6-11: Sample images from the Mars dataset courtesy of NASA/JPL-Caltech (2014)

NATURAL Dataset

The fourth dataset is comprised of a selection of 16 widely varying non-artificial, colour (or

grey-scale) images obtained from a variety of public domain sources. These images are also

inverted and scaled to provide a fixed width of 7000 pixels and a varying height (images have

different aspect ratios). The same threshold values as for the Mars dataset are used giving

240 total test cases for each algorithm. Figure 6-12 gives two examples from this dataset.

RANDOM LINES Dataset

The final dataset is comprised of 50 artificially generated images of randomly located and

oriented lines of varying length and density. Image dimensions (width × height) are either
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(a) Lena Söderberg (b) Cell nuclei (from the Python Image Tutorial)

Figure 6-12: Sample test images from the Natural (Misc) dataset

4057 × 5779 or 5779 × 4057. Prime dimensions are used to test algorithms that might take

advantage of images that are easily subdivided into regions of equal size. The number of

lines generated in each image is fixed (from 1 to 20000), but since their location, length, and

angle of orientation is randomly selected, the total coverage of the lines in an image increases

non-uniformly from ≈ 0% to 84%. Figure 6-13 shows two sample images from this dataset.

6.3.2 Exactness

In previous evaluations, all of the algorithms tested were empirically found to produce the

exact Euclidean distance maps (by comparison against brute force exemplars) (Fabbri et al.,

2008; Wang and Tan, 2013). In this work, it was found that the algorithm by Maurer et al.

(2003) as implemented by Fabbri et al. (2008) (and as used in those previous studies) does

not produce the exact distance map for one of the test images used in the study of Fabbri

et al. (2008). The erroneous result is shown in figure 6-14.

This empirical error was not addressed in the study by Fabbri et al. (2008). Because the

algorithm’s exactness is theoretically proven (Maurer et al., 2003), it is assumed that the

actual implementation is in error, rather than the theoretical algorithm per se. As such, all

results for this EDT algorithm are retained, with the caveat that fixing the implementation
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(a) 7981 random lines giving 59% foreground coverage (b) 2794 random lines giving 28% foreground coverage

Figure 6-13: Sample test images from the Random Lines dataset

should not affect the resulting performance statistics too greatly.

In several cases, an inexact distance map is also produced by the original implementation of

the algorithm given by Felzenszwalb and Huttenlocher (2004). This algorithm is similar in

fundamental respects to the other algorithms evaluated, hence it is again presumed that fixing

the implementation should not significantly impact upon the resulting run-time performance

of the algorithm. In the case of this algorithm, inexact EDTs are only generated for very

high resolution images (i.e. more than a few thousand pixels on either edge). On images

having fewer pixels the algorithm typically produces the exact EDT. It is noted that this

algorithm, unlike the method of Wang and Tan (2013), uses a real valued calculation of the

parabola intersection rather than integer division and that the nature of the errors in very

large images suggests that propagation of inexact representations of floating point values may

be to blame.

Implementations of all of the algorithms except PBEDT, PFF and RP are provided as part

of the Animal computer vision library (Fabbri, 2013). Source code for PBEDT is provided
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(a) Input image from the Fabbri et al.
(2008) dataset (95% squares @ 60◦ ro-
tation, 30002 pixels)

(b) Input threshold image

(c) Inexact EDT (Maurer’s algorithm) (d) Correct reference EDT

Figure 6-14: Inexact calculation by an implementation of Maurer et al. (2003)’s distance
transform algorithm Fabbri et al. (2008) (see the top right corner of figure 6-14(c))

by the authors (Wang and Tan, 2013) and is compiled into the source code of the Animal

computer vision library. Source code for PFF is provided by the authors (Felzenszwalb and

Huttenlocher, 2004) and is separately compiled along with the implementation of the new

(RP) algorithm. All algorithms are implemented as C/C++ and compiled as C++ using the

Free Software Foundation’s g++ compiler version 4.8.21. To ensure parity of machine code,

optimisation flags for compilation of the Animal computer vision library and the PFF and

RP algorithms and all associated test harnesses were set equal to level three optimisation

(-O3). All testing was single threaded and performed on an Intel Core i7-3632QM processor

with 8GBs RAM. Portable CPU timing mechanisms were provided using the Boost2 C++

library.

1https://gcc.gnu.org/
2http://www.boost.org/
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6.4 Results

Results for the Fabbri et al. (2008) dataset giving the mean, max and min CPU processing

times (in seconds) along with the mean number of iterations required to produce the distance

transforms are given in table 6.3. Results corresponding to the MARS, MARS EDGE, NAT-

URAL and RANDOM LINES datasets are shown in tables 6.4, 6.5, 6.6, and 6.7 respectively.

Algorithm Mean CPU Max CPU Min CPU Mean Iterations

RP 0.15 0.48 0.04 2.70

PFF 0.23 0.47 0.13 3.33

PBEDT 0.21 0.48 0.14 3.49

LZ 0.24 1.22 0.06 12.16

MAURER 0.21 0.50 0.13 4.74

MEIJ 0.23 0.65 0.14 5.08

CUIS 0.27 1.05 0.06 3.81

SAITO 0.17 0.51 0.05 8.78

CHAM34 0.11 0.18 0.09 2.00

Table 6.3: Fabbri et al. (2008) dataset results

Algorithm Mean CPU Max CPU Min CPU Mean Iterations

RP 0.51 2.13 0.05 2.65

PFF 0.87 2.60 0.17 3.23

PBEDT 0.73 2.29 0.10 3.37

LZ 1.37 19.18 0.08 13.54

MAURER 0.70 2.10 0.10 4.62

MEIJ 0.78 2.19 0.16 5.07

CUIS 1.27 9.58 0.09 4.39

SAITO 0.87 12.04 0.06 11.52

CHAM34 0.55 1.43 0.13 2.00

Table 6.4: MARS dataset results
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Algorithm Mean CPU Max CPU Min CPU Mean Iterations

RP 0.75 2.13 0.05 3.22

PFF 1.02 2.60 0.23 3.47

PBEDT 0.77 2.13 0.06 3.75

LZ 1.88 21.59 0.12 15.40

MAURER 0.79 2.06 0.10 4.29

MEIJ 0.90 2.25 0.25 5.13

CUIS 2.15 7.82 0.08 4.97

SAITO 1.01 2.71 0.10 11.23

CHAM34 0.41 1.05 0.11 2.00

Table 6.5: MARS EDGE dataset results

Algorithm Mean CPU Max CPU Min CPU Mean Iterations

RP 0.50 1.22 0.18 2.67

PFF 0.90 1.65 0.57 3.23

PBEDT 0.77 1.63 0.26 3.37

LZ 1.42 6.97 0.28 18.64

MAURER 0.71 1.34 0.33 4.60

MEIJ 0.80 1.34 0.55 5.09

CUIS 1.13 3.27 0.20 4.10

SAITO 1.07 6.68 0.19 15.79

CHAM34 0.44 0.68 0.32 2.00

Table 6.6: NATURAL dataset results

Algorithm Mean CPU Max CPU Min CPU Mean Iterations

RP 0.38 0.62 0.16 2.41

PFF 0.58 0.68 0.49 3.23

PBEDT 0.54 0.59 0.21 3.29

LZ 0.48 2.86 0.31 6.91

MAURER 0.63 0.97 0.29 4.86

MEIJ 0.64 0.82 0.47 5.04

CUIS 0.65 1.51 0.33 3.72

SAITO 0.34 1.99 0.21 6.36

CHAM34 0.24 0.25 0.23 2.00

Table 6.7: RANDOM LINES dataset results
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Figure 6-16 shows box-plots for the median and interquartile ranges of the CPU run-times (in

seconds) and the median and interquartile ranges for the pixel iterations required to produce

the distance transform images from the Fabbri et al. (2008) dataset. Figures 6-17, 6-18,

6-19, and 6-20 give the same information for the MARS, MARS EDGE, NATURAL, and

RANDOM LINES datasets respectively.

For every dataset apart from the RANDOM LINES dataset, the new algorithm (RP) gives

a faster mean CPU processing time than any of the other Euclidean distance transform

algorithms. In the RANDOM LINES dataset, in all cases except one, SAITO is faster than

RP by ≈ 0.04 seconds, but in a single case the processing time of SAITO is more than ten

times slower than RP (1.99 vs 0.16 seconds). This particular data point was verified multiple

times to ensure that this processing outlier was in fact indicative of the speed of SAITO in

this case. This particular input image also resulted in two of the slowest processing times for

the LZ and CUIS algorithms (2.86 and 1.34 seconds respectively) indicating that this lack

of stability on some inputs is shared by algorithms other than SAITO. However, this same

input image gave some of the fastest processing times on the other algorithms tested (RP:

0.16, PFF: 0.58, PBEDT: 0.21, MAURER: 0.29, MEIJ: 0.47, CHAM34: 0.24), and the time of

0.16 seconds for RP was the fastest processing time for any test image from this dataset.

Figure 6-20(a) shows the outlier for this input image on a number of algorithms (in the case of

the LZ algorithm, the outlier is not shown as it is off the top of the graph). When comparing

the behaviour of the new algorithm (RP) to the most recently evaluated algorithm (and the

one to which it is most closely related - PBEDT - in figure 6-20(a), the advantages given by

the new extensions are clearly evident. RP was only marginally slower than PBEDT in this

dataset in only four out of fifty cases.

In the results for the original dataset of Fabbri et al. (2008) (large images only), RP is the

fastest algorithm with the next closest being SAITO. On this dataset, SAITO is more stable

over all of the test inputs than on the RANDOM LINES dataset, and the LZ and CUIS

algorithms again show poor stability. For the remainder of the algorithms, the variability in

results is not great enough to draw reliable conclusions as to which of the five of RP, PFF,

PBEDT, MAURER and MEIJ give better performance overall even though RP appears to

show the best performance over most of the inputs. The Chamfer 3-4 algorithm is fastest

and most stable overall on this dataset. To conclude from this dataset alone, it would appear

that the older SAITO algorithm offers performance comparable to the new algorithm (RP)

and better performance than the newer PFF, PBEDT, MAURER and MEIJ algorithms.

However, this conclusion does not hold when comparing against the results from the other

datasets.
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In the MARS dataset, figure 6-17(a) shows a much clearer separation in performance between

the older LZ, CUIS and SAITO algorithms, and the newer RP, PFF, PBEDT, MAURER

and MEIJ algorithms. This distinction is also evident in the results from the NATURAL

dataset (figure 6-19(a)). SAITO is faster than LZ and CUIS but is not the most stable (it

has the second slowest performance for any individual input after LZ on both the MARS and

NATURAL datasets). Given the results on the MARS and NATURAL datasets, it can be

concluded that for general use, if predictable, stable performance is required, the LZ, CUIS

and SAITO algorithms should be avoided.

The results from the MARS dataset also provide a clearer indication of the performance differ-

ences between the five remaining EDT algorithms. RP gives faster performance overall than

any of the EDT algorithms even though the RP, PFF, PBEDT, MAURER and MEIJ algo-

rithms all exhibit similar performance stability. Compared to PBEDT, RP gives performance

at least as fast as PBEDT in 454 cases out of 556. On the MARS dataset, only MAURER

has a smaller maximum CPU run-time than RP (though this difference is not significant).

However, on the particular instance giving that result, the degree of inexactness in the EDT

produced by MAURER (as implemented by Fabbri et al. (2008)) is quite large compared to

the exact distance map produced by RP (see figure 6-15 for a comparison) and so the results

for MAURER are not as reliable.

(a) Original image (b) Thresholded image (c) Inexact calculation (d) Correct calculation

Figure 6-15: Inexact calculation of the EDT by Maurer et al. (2003)’s algorithm (Fabbri et al.,
2008) on the Mars dataset. Original image courtesy of NASA/JPL-Caltech (2014).

Similar conclusions relating to the relative performance of the different algorithms can be
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drawn from the results for the NATURAL dataset (figure 6-19). RP again, gives consistently

better performance over all of the other algorithms evaluated.

Finally, on both the MARS and NATURAL datasets, RP is the only algorithm to give faster

performance on average than the (inexact) Chamfer 3-4 algorithm (though the Chamfer 3-4

algorithm is much more stable). This is because the RP algorithm is able to ignore large

swathes of the image that are already foreground whereas the Chamfer 3-4 algorithm must

parse every pixel. These extensions in the RP algorithm have less of an effect in the artificial

images because foreground regions are typically more broken up (less homogeneous) and so the

average length of “skippable” foreground regions in the artificial images is reduced. As seen

in figure 6-18(a), the results from the MARS EDGE dataset support this explanation. The

degree of speed up in the new algorithm (RP) is far less in this dataset and overall performance

is approximately on parity with PBEDT. In terms of raw CPU processing speed, in the MARS

EDGE dataset, RP is no better (though no worse) than the current state-of-the-art PBEDT

algorithm. However, as seen in table 6.5 and figure 6-18(b), the RP algorithm is still more

efficient than PBEDT in terms of the number of iterations required by the algorithm (3.22

vs 3.75). This is because even though there are fewer “skippable” foreground regions (and

those that do occur are of shorter length), the parsing of a foreground point still results in the

discard of previously stored candidate nearest points meaning that there are fewer comparisons

against previous stored points. However, the relative sparsity of foreground points in these

edge maps means that this improvement in efficiency does not translate into an overall speed

up in run-time performance; the added complexity of the required algorithmic logic is not

being offset by the potential gains of this optimisation in this case. Table 6.5 also shows

that the performance for the LZ and CUIS algorithms is typically much worse than the other

algorithms on this dataset (though the performance of SAITO is comparable to PFF in these

results).

The results on the MARS and NATURAL datasets imply that if non-edge images are being

processed, and algorithmic stability is not as important as overall speed (e.g. in applications

where very many natural images are being processed in rapid succession), the RP algorithm

can be a better performing choice than even inexact algorithms such as the Chamfer 3-

4 algorithm, not only from the perspective of giving more accurate results, but from the

perspective of being faster to compute overall. However, given the results from the Fabbri

et al. (2008), MARS EDGE and RANDOM datasets, if edge images are being processed,

the choice of algorithm depends primarily on accuracy requirements. If accuracy is not as

important as speed, inexact algorithms such as the Chamfer 3-4 algorithm should be preferred.

If accuracy is important, RP or PBEDT should be used (though with higher proportions of

foreground points, RP will give better performance).
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(a) CPU run-times (seconds) for the Fabbri et al. (2008) dataset
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(b) Pixel iterations for the Fabbri et al. (2008) dataset

Figure 6-16: Box-plots showing per algorithm median and interquartile range results for the
Fabbri et al. (2008) dataset
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(a) CPU run-times (seconds) for the MARS dataset
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(b) Pixel iterations for the MARS dataset

Figure 6-17: Box-plots showing per algorithm median and interquartile range results for the
MARS dataset
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(a) CPU run-times (seconds) for the MARS EDGE dataset
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(b) Pixel iterations for the MARS EDGE dataset

Figure 6-18: Box-plots showing per algorithm median and interquartile range results for the
MARS EDGE dataset
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(b) Pixel iterations for the NATURAL dataset

Figure 6-19: Box-plots showing per algorithm median and interquartile range results for the
NATURAL dataset
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(a) CPU run-times (seconds) for the RANDOM LINES dataset
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(b) Pixel iterations for the RANDOM LINES dataset

Figure 6-20: Box-plots showing per algorithm median and interquartile range results for the
RANDOM LINES dataset
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6.5 Conclusion

In this chapter, a new algorithm to calculate the Euclidean distance transform was introduced.

The new method is exact and avoids redundant processing of the input/output image meaning

that fewer pixel accesses/updates are needed than in previous state-of-the-art methods. The

new algorithm is at least as fast as the fastest previous state-of-the-art algorithm and, for many

kinds of input, is up to a third faster. For some inputs, the new algorithm is comparable in

performance to some methods that compute the inexact Euclidean distance transform.

The algorithm is relatively stable across different image types and retains all of the advan-

tages of previous methods, the most important of which are extensibility to higher dimen-

sional input data (e.g. 3-D data such as point clouds) and the ability to take advantage

of concurrent processing techniques due to the fact that rows of the input data are parsed

independently.

The new algorithm is particularly suited to inputs having a large proportion of foreground

points because these values can be ignored; other algorithms use methods that inefficiently

recalculate distances to these points. The results of this evaluation show that in all cases

where fast calculation of the EDT is sought, the presented algorithm should be preferred over

previous methods.

Future research is needed to empirically demonstrate the extensibility of this algorithm, and

its attendant performance improvements to higher dimensional input data. The underlying

method of scanning each dimension in the input data independently means that the per-

formance improvements demonstrated here on 2-D images should scale exponentially as the

number of dimensions in the input data increase. Further research can also investigate how

much of a performance improvement can be gained when moving to a non-sequential process-

ing framework.
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Chapter 7

Conclusions

Object and pattern recognition is a very broad field. However, most of the computer vision

techniques that exist today have been developed with 2-D imagery in mind since this has

been the most easily acquired form of data, and our expectations have been high for being

able to develop algorithms that can perform at least as well as humans on object recognition

tasks using 2-D images such as photographs.

The burgeoning use of mobile mapping technology and the resulting availability of coregistered

depth information and 3-D point clouds offers many possibilities to extend these existing

techniques, and to develop new techniques with the aim of ultimately improving the efficiency

and accuracy of object recognition tasks.

This thesis has explored three popular techniques that are core to the field of object and

pattern recognition, and computer vision in general. It has been shown through theoretical

and empirical analysis that the new algorithms and modifications to existing algorithms that

have been presented in this thesis offer improved object detection / classification accuracy,

as well as improvements in efficiency over the existing techniques upon which they build. In

addition, this thesis details the significant body of knowledge and mathematical background

necessary to develop and evaluate the techniques that have been presented in the main body

of this thesis.

In chapter 3, a custom ground-truthing software application was developed and an exercise

undertaken to generate the data needed as part of the experimental designs of chapters 4

and 5. This exercise was novel in itself in that it leveraged the talents of individuals with

Autism Spectrum Disorder (ASD) to efficiently and accurately label examples of the various

object types. Given the limitations encountered in the nature of the datasets used for ground-

truthing (see section 7.1), future attempts at ground-truthing new datasets will involve much
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more rigorous checking of the data before hand to reduce the possibility of duplicated or

poor quality examples. Also presented in chapter 3 was a common mathematical framework

to help standardise how the accuracy of different object classification and object detection

techniques can be evaluated.

In chapter 4, a new feature extraction method based upon an existing popular feature extrac-

tion process – the Histograms of Oriented Gradients (HOG) (Dalal and Triggs, 2005) – was

presented. The new method, known as Pro-HOG (Scale Proportionate HOG) takes advantage

of explicitly available depth information to encode feature information in fixed dimension scale

agnostic descriptors. Pro-HOG was empirically evaluated against the standard HOG algo-

rithm using three different image datasets (two of which having associated coregistered depth

information) within a standard object classification framework using both linear and non-

linear classifiers generated by a Support Vector Machine (SVM). It was shown that Pro-HOG

provides for object classification accuracy that is at least as good as when using HOG. The

extraction algorithm developed is more efficient than HOG in time and space, especially in the

context of object detection where feature vectors from many thousands of image subregions

must be generated. Evaluating the time and space requirements of Pro-HOG versus HOG in

the context of object detection is a candidate for future research. Pro-HOG also showed that

it is capable of encoding features from the depth maps with floating point accuracy. In future

research, performing classification over multiple different object types (as opposed to the bi-

nary classification problem) will help to demonstrate the discriminative power of such depth

based features. Further comparisons against HOG using an implementation that allows for

the sign of the contrast gradient to be encoded should be explored. Repeating the evaluation

of HOG by Dalal and Triggs (2005) against the INRIA person dataset using Pro-HOG will

also help to further validate its empirical accuracy.

In chapter 5, an existing 2-D object detection and localisation technique – the Class Specific

Hough Forest (CSHF) (Gall et al., 2009) – was used to show how detection accuracy can

be improved using explicitly available depth information without modifying the underlying

algorithmic details of the CSHF. Three different extensions were evaluated against two differ-

ent datasets having coregistered depth information. It was shown that incorporating scaling

into the descriptor extraction process and implicitly scaling the dimensions of the objects

being detected helps to improve overall detection accuracy. This was shown using fixed patch

dimensions of 0.5 × 0.5 metres. Future research should investigate the impact of varying

these dimensions for different object types on detection accuracy. In addition, it was shown

that a very simple (ten dimensional) feature vector generated from the depth information

can be competitive in terms of accuracy with much higher dimensional features extracted

from the 2-D colour imagery. Future research should investigate whether combining depth

and colour based features within a single CSHF improves detection accuracy. In addition,
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different parameterisations of the depth based features should be researched since the more

or less detailed samplings of the surface morphology of objects may be more or less suited to

particular categories of object. Contrary to expectations, the depth weighting extension was

empirically found to decrease rather than increase object detection accuracy.

Finally, chapter 6 introduced a new algorithm for generating the Euclidean Distance Trans-

form (EDT) which is a fundamental algorithm used in the matching of Deformable Parts

Based Models (DPBM) (Felzenszwalb and Huttenlocher, 2005) as well as many other areas

of computer vision and image processing. The method is based upon earlier state-of-the-art

algorithms and performance gains are effected by removing certain unnecessary computations

to reduce the average number of times the pixels in the input images are parsed. Fast and

exact methods of computing the distance transform offer reduced computational overheads

when performing object detection using DPBMs. Importantly, the method also theoretically

allows for the efficient and exact calculation of distance transforms using input data having

greater than two dimensions. This is not demonstrated empirically in this thesis but is a can-

didate for future research along with an empirical assessment of the performance advantages

possible by moving the algorithm to a concurrent processing framework.

7.1 Limitations

Most of the difficulties experienced in producing the experimental results presented in this

thesis stemmed from the difficulties in acquiring data of sufficient quality to evaluate the

techniques developed in chapters 4 and 5. Paradoxically, even though mobile mapping is

seeing much wider use, many of the datasets being generated are by private organisations

and as such are not being made freely (or easily) available for research outside of those

organisations. It has only been through industry partnerships that it has been possible to use

the specific Earthmine and AAM datasets used in this thesis.

The nature of the extensions in chapters 4 and 5 depend upon the fact that existing 2-D only

techniques are not intrinsically independent of scale and that the new techniques (Pro-HOG

in chapter 4, and the depth extensions to the CSHF in chapter 5) are intrinsically independent

of scale because they leverage explicitly available depth information. In order to show that

the scale independent nature of these techniques enhances their performance over existing

methods, a data environment having good variance in scale is needed.

For use in the evaluations of classification and detection accuracy, it was necessary to under-

take a ground-truthing exercise on the Earthmine and AAM provided datasets. As described
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in section 3.4, this entailed developing a custom software application and associated process

that was undertaken by two volunteers. The aim of the task was to produce object datasets

expressing wide intraclass variance in both appearance and scale. Unfortunately, due to the

limitations of the mobile mapping process, and the characteristics of the environments being

mapped, it became clear that most objects of a particular type in either the Earthmine or the

AAM provided datasets presented only within a limited range of scales. Using these ground-

truth datasets, this meant that it was difficult in the empirical evaluations of chapters 4 and 5

to show that the new techniques presented in those chapters effected significant improvements

in object classification or detection accuracy over the existing methods.

Aside from problems of scale, the datasets were also unable to provide both high quality colour

and depth information. Where high quality colour based features could be generated from

the Earthmine data, its poor quality depth maps hindered the scale invariant aspects of the

new algorithms making the new techniques appear less capable than they may otherwise have

appeared with more accurate coregistered depth data available. In the case of the AAM data,

colour based feature extractors were less able to meaningfully encode the salient characteristics

of objects (or their parts) because of the poor quality coregistration of the colour data to the

generated point clouds. This severely limited the range of object classification or detection

accuracy achievable by any technique (scale independent or not) thereby also reducing the

range of possible improvements in accuracy observable due to any particular technique.

Even with these limitations however, the presented results provide preliminary indications

that the algorithms and techniques developed in this thesis offer routes to improved object

classification and detection accuracy through the integration of depth data with existing 2-D

image based techniques. Moreover, even where accuracy is comparable to existing techniques,

significant gains in computing and memory efficiency can be achieved by avoiding the need to

scale image subregions, or to conduct detection over multiple image scales. Future research

should attempt to verify the utility of the techniques presented in chapters 4 and 5 of this

thesis by evaluating them over new datasets having much higher quality colour and depth

information, and a much more varied range of object scales.

274



Bibliography

3D Laser Mapping (2015). 3DLM StreetMapper. http://www.3dlasermapping.com/

streetmapper/. Last Accessed: 2015-09-01.

Aggarwal, J. and Ryoo, M. (2011). Human activity analysis: A review. ACM Comput. Surv.,

43(3), 16:1–16:43.

Akmal Butt, M. and Maragos, P. (1998). Optimum design of chamfer distance transforms.

Image Processing, IEEE Transactions on, 7(10), 1477–1484.

Alexe, B., Deselaers, T., and Ferrari, V. (2010). What is an object? In Computer Vision and

Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 73–80.

Amit, Y. and Geman, D. (1997). Shape quantization and recognition with randomized trees.

Neural Computation, 9(7), 1545–1588.
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Appendix A

Glossary of Terms

Appearance Based Model : A Model that is concerned primarily with encoding how a type is

projected into the image domain.

Bounding Box or Rectangle: The delineation of an object or feature of interest is often

specified as a rectangular sub-region of an image. This defines an image extract. Bounding

boxes are used because they are simple to define, although when defining an object’s bounds,

they often also include background image information that is not specific to the object, but

may be helpful contextually for detection tasks because certain kinds of objects are often

present against particular backgrounds. For example, cars often appear with road surfaces as

part of their background.

Classification: Estimating the value of a discrete random variable Y as the result of evaluating

a discriminating function that takes X as input. X may be either continuous or discrete. See

Regression.

Clustering : A form of Unsupervised Learning where data are grouped within some Feature

Space according to their similarity in that space.

Codebook : Within a Model, specific high level characteristics about an object type may be

particularly prevalent. The canonical encoding of this characteristic within a Model comprises

a codebook entry. Codebook entries may be considered as models within models since they

encode expected variation for a simpler component.

Cross Validation: A process for dividing a ground-truthed dataset into training and validation

subsets, using the training set to build a classification or regression function, and evaluating

the correctness of that function on the validation set. Typically, the process iterates using

different training and validation subsets until every example in the dataset has been used for

both training and validation. In N -fold cross validation, the dataset is divided into N subsets

and each of the N subsets is used as the validation set with the remaining N−1 subsets being

used for training. The value of N can range from two up to the size of the dataset itself (in
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which case the scheme is termed Leave-One-Out Cross Validation.

Decision Tree: An algorithm that encodes a branching sequence of questions to be asked of

some input data (usually a Feature Vector). Input data are provided to the tree at the root

node and the resulting evaluation of each node’s query about its input data determines the

child node that the input data are sent to next. The last node in the sequence is termed a

leaf node. Each node, except the leaf nodes can have multiple children. Decision Trees are

directed acyclic graphs. A common form of Decision Tree encodes a binary predicate decision

in each node (except the leaf nodes) resulting in a binary tree having a depth of log2N for

N nodes. Decision trees are typically used as one way of encoding classifier functions.

Depth Map / Image: An image where each pixel is a value that represents the distance from

the camera plane to the corresponding point in a scene.

Dictionary : See Codebook.

Discriminative Modelling : A discriminative model is primarily concerned with accurately

estimating and encoding the boundaries between types or categories.

Dynamic Analysis: An analysis of the computational complexity of an algorithm as mea-

sured against specific input data. This is distinct from a Static Analysis which provides a

theoretical analysis of the run-time computational complexity of an algorithm in the worst,

best or average case by counting the number of source code statements executed in these

scenarios.

Feature: Either a particular high level object of interest (e.g. a street sign) or a characteristic

of some object in some scene data (e.g. a building edge). A feature encodes a specific

characteristic of an image, image subregion, or object measured along a particular subset of

dimensions (see Local versus Global). Scalar encodings are produced by measurements along a

single dimension. Vector encodings are produced by measurements over multiple dimensions.

These scalars or vectors can be concatenated into feature vectors or feature descriptors (see

section 2.1).

Feature Space: When being used to connote specific characteristics of an image, feature

values are often represented by vectors. After extracting all features from a location in

some data (e.g. an image), the value of those features can be represented as a point in N -

dimensional space where N is the length of the feature vector giving the concatenation of

all the scalar values representing the features of interest from that location in the data. See

section 2.1.

Geometry Based Model : A Model that is concerned primarily with encoding how a type is

structured. Such models are often used to match objects to templates through translations,

rotations, scalings, and deformations of parts.
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Generative Modelling : A generative model encodes sufficient information about a type that

examples of the type can be generated (if only notionally) from the model.

Ground-Truth: The manually validated locations and labels of objects or patterns in data.

The process of generating the ground-truth is termed ground-truthing. Data that have un-

dergone ground-truthing are said to be ground-truthed or labelled.

Histograms of Oriented Gradients (HOG): A specific kind of feature that encodes contrast

information about an object or image subregion. See section 4.1.1.

Integral Image: A matrix whereby the sum over any arbitrary rectangular subregion of the

matrix can be evaluated by a simple arithmetic calculation involving the values in the matrix

at the four corners of the subregion. See figure 4-1 (page 72).

Inter-class Variability : The degree of variation expressed between the model parameter dis-

tributions of different object classes.

Intra-class Variability : The degree of variation expressed between the individual instances

(members) of a modelled object class.

Interest Point : Specific kinds of features (e.g. edges, corners, particular shapes) that are

typically indicative of more interesting parts of a scene or object. Such features may help

to encode within a model the distinctiveness about a particular object type, or to indicate

locations within a scene that the recognition scheme should prioritise. Also known as Key-

points.

Keypoint : See Interest Point.

Local versus Global : When used in the context of image features, local connotes a feature

of interest at some specific location within the image. Global connotes a feature that is

characteristic of the whole image.

Model : An encoding of the essential characteristics of some object type. The accuracy and

fidelity of the model depends upon its intended use. There are two varieties of modelling:

Generative and Discriminative. Model’s encode the degree of allowed variation in the char-

acteristics that parameterise the object type. See Intra/Inter-class Variability.

Object Class / Type / Category : Objects can be grouped in accordance with different measures

of similarity including function, geometry, or appearance in scenes. A grouping of objects

according to these criteria specifies an object class or type. How an object class is encoded is

specified by a Model of the object type.

Object Classification: Given some predefined list of labels, the association of some example

to one of those labels.

Object Detection: The determination that some instance or example of a type is present.
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Object(s) of Interest : Specific examples of the object type that the user wishes to find.

Object Localisation: The determination of the location of some object in a scene. Usually

undertaken in concert with Object Detection.

Object Recognition: The evaluation of a parsed pattern of data as an example of some previ-

ously known type (in which case recognition utilises Object Classification), or as an example

of some previously unknown type.

Parts Based Model : An encoding of a type via a modelling of its component parts.

Precision: Given a method of estimating whether an item is an example of some type, pre-

cision is the ratio of correct estimates to the total set of all estimates made. In other words,

the proportion of correct estimates.

Recall : Given a method of estimating whether an item is an example of some type, recall is

the ratio of correct estimates to the total set of actual examples of the type. In other words,

the proportion of discovered examples.

Regression: Estimating the value of a continuous random variable Y as the result of evaluating

a function that models the distribution of Y against an input variable X. X may be either

continuous or discrete. See Classification.

Segmentation: Segmenting an object is the act of either manually or automatically determin-

ing the strict bounds of an object.

Salient Region: Those characteristics or elements of an object, or scene that provide more

“useful” information to the object recognition task. For example, a homogonous image region

is typically less salient than an equivalently sized image region have some contrast information.

This is because the contrast information encodes extra information the homogonous image

region cannot such as orientation (or even scale). Some Interest Point detectors are designed

to identify specific kinds of such regions.

Scene: The image that contains objects of interest as well as other scene elements that may

or may not provide assistance in determining the presence and locations of the objects of

interest.

Static Analysis: See Dynamic Analysis.

Supervised Learning : An algorithm that takes labelled training data as input and produces

a classification / regression function that aims to estimate the class membership of new

(unlabelled) instances.

Support Vector Machine (SVM): A type of Supervised Learning characterised by its identi-

fication of the minimal subset of training data (the Support Vectors) that are sufficient to

model a discriminative classification function.
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Thresholding : Discretisation of an input into binary values α and β based on a threshold

value τ . For some input x, the thresholding function t is defined as

t(x, τ) =

{
α for xi < τ

β for xi ≥ τ
,∀xi ∈ x. (A.1)

Type I Error : A false positive. Incorrectly identifying an item as an example of some

type.

Type II Error : A false negative. Failing to recognise an item as an example of some type.

Unsupervised Learning : An algorithm that takes unlabelled training data as input and pro-

duces a classification / regression function that aims to estimate the class membership of new

(unlabelled) instances.
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