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Abstract

The Multidimensional Knapsack Problem (MKP) is known to be NP-hard in Operations Research.
It has a wide range of applications in engineering and management. In this paper, we propose a
binary differential search method to solve 0-1 MKPs in which the stochastic search is guided by a
Brownian motion-like random walk. Our proposed method is composed of two main operations:
discrete solution generating and feasible solution making. Discrete solution generating is realized
through integrating a Brownian motion-like random search with an integer rounding operation.
However, the rounded discrete variables may violate the constraints. To maintain the feasibility
of the rounded discrete variables, a feasible solution making strategy is executed. To demonstrate
the efficiency of our proposed algorithm, various 0-1 MKPs are solved by our proposed algorithm
as well as by some of the existing meta-heuristic methods. The obtained numerical results indicate
that our algorithm outperforms those existing meta-heuristic methods. Furthermore, it shows that
our algorithm has the capability to solve large-scale 0-1 MKPs.
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1. Introduction

The multidimensional knapsack problem is a generalization of a well-known Knapsack Problem
(KP) which has only one constraint. Even for the case with only one constraint, MKP is NP-hard
[1]. It has wide applications in areas, such as capital budgeting problems [2], loading problems
[3] and resource allocation [4]. A comprehensive review on practical applications and theoretical5

results of the MKPs can be found in [5].
0-1 MKP (for simplification, it is called MKP in following description) is to select a subset of

given objects (or items) in such a way that the total profit of the selected objects is maximized
while a set of knapsack constraints are satisfied. Let D be the number of objects, m be the number
of knapsack constraints with capacities Cj, (j = 1, 2, · · · ,m), pi be the profit of the object i in the10

knapsack, xi be a binary variable that xi = 1, if the object i has been stored in the knapsack and
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xi = 0, if it remains out of the knapsack, and wij be the entry of the knapsack’s constraints. Now
the MKP can be formally stated as follows:

max f(x) =
D∑

i=1

pixi (1)

subject to gj(x) =
D∑

i=1

wijxi ≤ Cj, ∀j = 1, 2, · · · ,m (2)

xi ∈ {0, 1}, i = 1, 2, · · · , D (3)

Without loss of generality, we assume that pi, wij and Cj are non-negative integers with wij ≤ Cj
and

∑D
i=1wij ≥ Cj.15

The 0-1 multidimensional knapsack problem is widely studied in the literature, for example,
[6, 7]. Some surveys on approaches to solving knapsack problems can be found in [8].

In optimization, there are two differential kinds of algorithms, deterministic algorithms [9] and
heuristic algorithms [10]. Many deterministic algorithms have been developed to solve MKPs, see,
for example, [11, 12]. A branch and bound algorithm is applied to solve MKP in [13]. An exact20

algorithm based on modifying the multi-criteria branch and bound algorithm is presented in [14] to
solve multiobjective and multiconstraint (or multidimensional) knapsack problems (MOMCKPs).
Meanwhile, dynamic programming is also widely applied to solve MKPs. A preprocessing proce-
dure for the 0-1 multidimensional knapsack problem is presented in [15]. An approach based on
dynamic programming is proposed to solve the 0-1 multi-objective knapsack problem in [16]. In25

[17], a method is proposed to solve exactly the knapsack sharing problem (KSP) based on dynamic
programming through decomposition of the original KSP problem into a set of knapsack problem-
s. In [7], an exact method based on a multi-level search strategy for solving the large-scale 0-1
Multidimensional Knapsack Problem. This search strategy is based on the reduced costs of the
non-basic variables of the Liner Programming relaxation solution. Another algorithm which com-30

bines Linear Programming with an efficient tabu search is proposed in [13] and it is embedded into
a variables fixing heuristic in the process of solving MKPs. However, all the methods mentioned
above still have difficulties to solving large-scale knapsack problems.

In recent decades, many bio-inspired methods, such as Genetic Algorithms [18], Improved
binary Artificial Fish Swarm algorithm [19], Particle Swarm Optimization (PSO) [20], Firefly35

Algorithm [21], Artificial Bee Colony (ABC) algorithm and Ant Colony Optimization [22, 23],
have been proposed to solve complex problems with high complexity. In [24], a binary fruit
fly optimization algorithm (bFOA) is proposed to solve the multidimensional knapsack problem
(MKP). In the bFOA, binary string is used to represent the solution of the MKP, and three
main search processes are designed to perform evolutionary search, including smell-based search40

process, local vision-based search process and global vision-based search process. In addition,
a group generating probability vector is designed to produce new solutions. In [25], a hybrid
artificially glowworm swarm optimization algorithm is presented to solve multidimensional 0-1
knapsack problem, which utilizes two important strategies: (i) how to select the item based on its
unit volume value; and (ii) the binary glowworm swarm optimization algorithm.45

Compared with the methods based on dynamic programming, bio-inspired methods appear to
be more effective for solving 0-1 knapsack problems [26]. For this, new bio-inspired methods have
been developed to solve knapsack problems. In [27], a modified discrete shuffled frog leaping algo-
rithm (MDSFL), which combines the local search of the “particle swarm optimization” technique
with the competitiveness mixing of information of the “shuffled complex evolution” technique, is50
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applied to solve MKPs. In order to achieve better performance, fuzzy possibility and necessity
approaches are used to obtain optimal solution with ant colony algorithm [23] and a quantum-
inspired artificial immune system (MOQAIS) with two diversity schemes, suppression algorithm
and truncation algorithm, are employed to improve the diversity of the population in [28].

The Differential Search (DS) [29, 30] algorithm is a new population-based meta-heuristic opti-55

mization algorithm that has been used with success to solve some continuous numerical optimiza-
tion problems. In comparison with some other algorithms, DS algorithm shows better performance
both in the global convergence and the convergence speed. In this paper, we propose a binary DS
(BDS) to solve the knapsack problem.

The remaining of the paper is organized as follows. Section 2 briefly introduces DS. Section60

3 details the binary Differential Search algorithm and how it solves MKP. Section 4 presents
numerical experiment. Section 5 ends the paper with some concluding remarks.

2. Review of Differential Search Algorithm

Differential Search (DS) algorithm is originally introduced to solve the problem of transforming
the geocentric Cartesian coordinates into geodetic coordinates in 2012. Comparison studies are65

carried out in [29] for continuous unconstrained optimization problems between the DS algorithm
and 8 widely used algorithms, including PSO, ABC, Differential Evolutionary (DE) algorithm, and
Gravitational Search Algorithm (GSA). The results show that DS algorithm in [29] is more pow-
erful. DS algorithm simulates the Brownian motion-like random-walk movement carried out by an
organism to migrate. In the migration movement, the migrating species of living beings constitute70

a superorganism, which contains a large number of individuals. Then, the superorganism starts
to change its position by moving towards more fruitful areas. The movement of a superorganism
is simulated by a Brownian motion-like random walk model. Therefore, the simulation of the
Brownian motion is taken as a search strategy in DS.

2.1. Generation of the initial solution75

In the process of solving optimization problem by DS, it is assumed that a population is made up
of random outcomes of these artificial-superorganism migrations. An artificial-superorganism will
migrate to the global minimum of the problem. During this migration, the artificial-superorganism
examines whether some randomly selected positions are suitable temporary positions during the
migration. If such a position is suitable to stopover temporarily during the migration, the members80

of the artificial-superorganism (i.e. artificial-organisms) that made such discovery immediately
settle at the discovered position and continue their migration from this position.

Artificial-organisms (i.e., Xi, i = 1, 2, · · · , N) making up an artificial-superorganism (i.e.,Sg, g =
1, 2, · · · , G) contain elements (i.e., xij, j = 1, 2, · · · , D) whose size is equal to the problem dimen-
sion. Here, N,G and D denote, respectively, the number of members in the superorganism, the
number of maximum generations (or iterations) and the dimension of each problem. Each element
of an artificial-organism in the initial position is defined as:

xij = lj + r · (uj − lj) (4)

where r is a uniformly distributed random number. Set L = (l1, l2, · · · , lD) and U = (u1, u2, · · · , uD)
as the lower and upper bounds for all the artificial-superorganism, where lj and uj are the lower
and upper bounds of the j-th dimension of the ith artificial-organism Xi, respectively. In such a85

case, an artificial-organism can be defined as Xi = [xij].
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2.2. Searching strategy of DS

The mechanism of DS for finding a stopover site in the remaining areas between the artificial-
organisms can be described by a Brownian motion-like random walk model (see Algorithm 1).
These individuals which are randomly selected in the artificial-organisms move towards the targets
of donor = XRandom Shuffling(i) so as to discover stopover sites that are defined by

S = Xi + γ · (donor −Xi) (5)

where S is a stopover site position. The function of Random Shuffling is to randomly change the
order of the elements in the set of i = {1, 2, · · · , N}. γ is a scale factor to control the scale of
position change among their members. Its value is generated from the Gamma distribution, with
parameters a and b, denoted by

γ = 1/GamRnd(a, b) (6)

The members (i.e., individuals) Xi of the artificial-organisms among the superorganisms Sk to
participate in the search process at stopover site are determined by a random process. This random
process is given by Algorithm 1 in which the randj, j = 1, · · · , 5 are the uniformly distributed90

random numbers and Counterk, k = 1, · · · , 4 denote four counters. The control parameters p1

and p2 are given as p1 = 0.3 and p2 = 0.3.
If one of the elements xij of Xi is moving beyond the limits of the habitat (i.e., the bound of

the search space), it is randomly deferred to another position in the habitat. If the individuals
of the artificial-organism discover a stopover site, which is more fertile than the sources owned by
the artificial-organism, the artificial-organism moves to that stopover site. So a selection strategy
in DS can be modelled by the following formula

S∗ =

{
S, if y(S) < y(S∗);

S∗, otherwise.
(7)

where y(S) and y(S∗) are the evaluation of the stopover site and the current best optimum,
respectively. This strategy is referred to as greedy rule. If the artificial-organisms change sites,
the superorganism containing the artificial-organisms continues its migration towards a global95

optimum.

2.3. Balance mechanism of exploration and exploitation in DS

Exploration (or diversification) and exploitation (or intensification) are the two main compo-
nents of any meta-heuristic algorithms [31]. Exploration is to generate diverse solutions so as to
explore the search space on the global scale, while exploitation is to focus on the search in a local100

region by exploiting the information that a current good solution is found in this region. When
designing a global optimization algorithm, we generally combine them together to select a better
solution.

The exploration, in DS algorithm, is realized through Brownian motion-like random walks (see
Algorithm 1) and the exploitation is realized through a greedy selection method as shown by105

Eq.(7). Despite the importance of a fine balance between the right amount of exploration and the
right degree of exploitation, there is no practical guideline for achieving this balance [32]. However,
the numerical experimental results in Section 4 show that the DS holds a good balance between
exploration and exploitation by keeping a simple searching strategy in the solution space.
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Algorithm 1 Matlab pseudo code: a Brownian motion-like random walk process searching for a
stopover site

1: % rand1, · · · rand5 are five random numbers in (0, 1)
2: if rand1 < rand2 then
3: if rand3 < p1 then
4: %Generate a random matrix Rn×D
5: R = rand(N,D)
6: for Counter1 = 1 : N do
7: % Set each element in matrix Rn×D to be 0 or 1 according to comparison with rand4

8: R(Counter1, :) = R(Counter1, :) < rand4

9: end for
10: else
11: %Generate a random matrix Rn×D whose elements are 1
12: R = ones(N,D)
13: for Counter2 = 1 : N do
14: % Set each element in matrix Rn×D to be 0 or 1 according to comparison with rand5

15: R(Counter2, randi(D)) = R(Counter2, randi(D)) < rand5

16: end for
17: end if
18: else
19: R = ones(N,D)
20: for Counter3 = 1 : N do
21: % Generate a vector d1×dp2·De whose elements are random integers in (0, D)
22: d = randi(D, 1, dp2 ·De)
23: for Counter4 = 1 : size(d) do
24: R(Counter3, d(Counter4)) = 0
25: end for
26: end for
27: end if
28: % Set the value of individualsI,J to be the position index of RI,J whose value is greater than

0
29: individualsI,J ← RI,J > 0|I ∈ i, J ∈ [1, D]
30: S(individualsI,J) = Superorganism(individualsI,J)

5



3. Binary differential search to MKP110

The original differential search algorithm mentioned above is designed to solve continuous
optimization problems with bound constraints. In this section, we will extend it to solve 0-1 MKP.

3.1. Constraint transformation

By virtue of the penalty method proposed in [33, 34], the mathematical model of MKP formu-
lated by Eqs. (1)-(3) is converted to the following unconstrained optimization problem:

F (x) = max

{
D∑

i=1

pixi + λ

m∑

j=1

[
min

{
Cj −

D∑

i=1

wjixi, 0

}]}
(8)

with

λ =

1 +
D∑
i=1

pi

max
i,j
{Cj − wji}

Note that the constant λ is such that if x = (x1, x2, · · · , xD) satisfies all the inequality constraints
(2), then

m∑

j=1

[
min

{
Cj −

D∑

i=1

wjixi, 0

}]
= 0

and
D∑

i=1

pixi ≥ 0

Alternatively, if x does not satisfy all of the constraints in MKP problem, then

m∑

j=1

[
min

{
Cj −

D∑

i=1

wjixi, 0

}]
≤ −

(
1 +

D∑

i=1

pixi

)

and F (x) ≤ −1. Through appending the constraints into the objective function as described in
(8), the constrained MKP is transferred to an unconstrained discrete maximization with bound115

constraints.

3.2. Generate initial solutions

To establish a binary Differential Search algorithm to solve MKP, the basic component is to
represent the solution of MKP and to generate the initial and new solutions. The initial solution
is a random binary vector of size N which is the number of artificial organisms. Thus, the initial
organism swarm consists of a random matrix as given below:

X = [X1, X2, · · · , XN ]T =




0 1 1 · · · 0
1 0 0 · · · 1
· · · · · ·

1 1 0 · · · 1



N×D

(9)
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3.3. Determine the stopover site

The donor in Eq. (5) can be constructed in two ways for BDS. One is that a random permu-
tation of 0 and 1 is taken as a donor in

donor = randn(1, D) (10)

where randn(1, D) is a function to generate a binary vector, and the other is that an elastic
superorganism (that means the superorganism with best fitness) is taken as a donor in

donor = arg max {f(Xi)} = arg max {f(xi1, · · · , xiD)} , i = 1, 2, · · · , N. (11)

where f(x) is a transfer function. The donor given by Eq. (11) is called elitist.
By virtue of the transfer function, a real number can be transferred into a binary number 0 or

1 according to

xij =

{
0, if f(xij) < rj, j = 1, 2, · · · , D;

1, otherwise.
(12)

where rj is random number generated between 0 and 1 to decide the variable as 0 or 1. If f(xij)120

is greater than rj, then the variable of xij is 1, otherwise it is 0.
Two functions are often applied as transfer functions for the transfer of a real number into

binary numbers 0 or 1. They are Tanh and Sigmoid [35, 36]. The Tanh function is expressed as

f(x) = Tanh(x) =
eτ |x| − 1

eτ |x| + 1
(13)

and the Sigmoid function is

f(x) = Sig(x) =
1

1 + e−τx
(14)

where f(x) denotes the probability of bit x equalling 1 (see Figure 1).
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Figure 1: (a) Tanh function Tanh(x) and (b) Sigmoid function Sig(x) with τ = 0.5, 1.5 and 2.5, respectively.

The procedure of a new binary solution generated by using of Eq. (12) for a stopover site
position, Si = (xi1, xi2, · · · , xi10) and the binary codes of Si in BDS algorithm with respect to
Tanh and Sigmoid functions are also as shown in Figure 2. The randomly generated bits of Xi125

are listed in Figure 2(a). A stopover position Si yielded by Eq. (5) is as showed in Figure 2(b).
The f(Si) using Tanh and Sigmoid functions are given in Figure 2(c) and 2(d). Figure 2(e) is the
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Figure 2: Demonstration of Binary-coded DS algorithm using Tanh and Sigmoid functions with τ = 2.5 and α = 0.5.

random number generated between 0 and 1 in order to decide the generating elements of Si as
0 or 1. The alteration of bits by Eq. (12) with transfer functions Tanh and Sigmoid are shown
as light shading in Figure 2(f) and 2(g), respectively. From (f) and (g) in Figure 2, it can be130

observed that there are more alterations of bits by using Tanh than Sigmoid. It is also noticed
that more alterations are involved by using Eq. (13) than by using Eq. (14). We will compare
their performances on solving MKPs through extensive numerical experiments in Subsection 4.1.

3.4. Generate new feasible solutions by Brownian motion-like random walk process

The Brownian motion-like random walk process searching for a stopover listed in Algorithm 1135

is easily enforced for binary coded stopover position since the matrix R generated in the procedure
of Algorithm 1 is a binary one valued. After Brownian-like random walk, the solution obtained
may be infeasible. There are several standard approaches to handle the constraints in binary
population-based methods [37, 38].

In BDS, a random heuristic procedure drop object proposed in [19] is adopted to make solutions140

feasible. At first, we define a set I = {i1, i2, · · · , iD} which composes of D randomly generated
indices. Then the drop object is performed on Si using the set I to make the solution feasible. If
a solution, which is such that the ik-th (k = 1, 2, · · · , d) object is stored in the knapsack, does not
satisfy the constraint, the ik-th object is dropped (i.e., changing bit 1 to 0) each time from the
knapsack according to the sequence of indices in the set I. This procedure is continued until a145

feasible solution is reached.

3.5. Termination criteria

For most swarm-based algorithms, the maximum number of iterations Itermax is usually taken
as the termination criterion for each of these algorithms. Here, we choose another alternative
criterion, maximum unimproved step (UImax), along with the Itermax. If it is not possible to150

improve the current best solution for a large number of iteration steps (UImax) which is less than
the maximum number of iterations, then the algorithm will terminate. The parameter UImax is
problem dependent. In general, the algorithm achieves good performance when UImax is a constant
satisfying Itermax

20
≤ UImax ≤ Itermax

10
.

The flowchart of BDS for MKPs is as shown in Figure 3. BDS is called Random Binary155

Differential Search (R-BDS) or Elitist Binary Differential Search (E-BDS) depending on whether
donor is computed either through Eq. (10) or Eq. (11). If the binarization in R-BDS is enforced
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by Tanh function Eq. (13) (respectively, by Sigmoid function Eq.(14)), such an algorithm is called
TR-BDS (respectively, SR-BDS). Similarly, TE-BDS (or SE-BDS) is the algorithm in which the
binarization is enforced by Tanh function Eq. (13) (respectively, by Sigmoid function Eq.(14)).
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Select best solution S* by 
greedy rule. G = G + 1. 

Termination criteria are met  

 

Output the best solution. Stop 

Yes 

No 

Preset parameters: N, Gmax, 𝜏𝜏, p1, p2.  

Initialize Xi and evaluate it by Eq. (9) 

 

Create donnor by Eqs. (10) or (11). Yield real Si by Eq. 
(6) and then transfer into binary by Eqs. (14) or (15). 

Generate new Si by Brownian-like random walk 

Si is feasible 

 

Apply drop_object procedure 
to Si 

Figure 3: Flowchart of BDS.

160

4. Simulation and Evaluation

In order to test the performances of TR-BDS, TE-BDS, SR-BDS and SE-BDS, we will test them
through solving three sets of well-known benchmark MKPs. Problem Set I includes 10 benchmark
problems which are referred to as “sento” and “weing”. Problem Set II contains 30 benchmark
problems which are referred to as “weish”. Problem Set I and Problem Set II are composed of small165

and medium sized knapsack problems, wherein the number of decision variables ranges from 20 to
105. Problem Set III are composed of high-dimensional knapsack problems, wherein the number
of decision variables (n) ranges from 100 to 2500. All computational experiments are carried out
within Matlab 7.5 environment on a PC equipped with Intel Pentium Dual-Core E5700 processor
(3.00 GHz) with 2 GB of RAM under Windows System.170
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4.1. Parameters setting

It can be expected that the greater the values of the parameters N and Gmax, the larger
the probability is to obtain the optimal solution, and vice versa. However, it will take more
computational time. In our implementations, we set N = 30 and Gmax = 10000. In addition, the
proposed BDS contains three key parameters: p1, p2 and τ in Eqs. (13) and (14). To investigate the175

influence of these three parameters on R-BDS and E-BDS, we test them on a medium-dimensional
problem sento1 (number of objects D = 60, and number of knapsacks m = 30) for 100 independent
trails by the method of the design of experiments (DOE) [39]. Considering five factor levels for
each parameter, we list the orthogonal array L25(53) and the obtained average response variable
(ARV, i.e., the average of total profit) values obtained by the BDS in Table 1. Meanwhile, we will180

investigate the effect of the tuning parameters to the numerical results. For this, we classify the
numerical results in Table 1 into 5 different levels in which one of the parameters is fixed, while the
other two parameters are varying. For example, the first response value 2896.2 in Table 2 means
the average ARV of 5 problems with τ = 0.5 in Table 1. All response values [39] are shown in Table
2 and depicted in Figure 4. ∆ in Table 2 is the error between the largest ARV and the smallest185

ARV in the same column. It is clear that the larger ∆ is, the more impact of the parameters to the
algorithm. Thus, we can observe from Table 2 that all three parameters have significant impacts
to SR-BDS and SE-BDS. However, for TR-BDS and TE-BDS, the parameter τ has more impact
than the parameters p1 and p2.

Figure 4 clearly shows that the binary discretization scheme based on Eq. (13) achieves better190

performance than that based on Eq.(14) under the same parameters setting. Therefore, we only
adopt TR-BDS and TE-BDS to solve MKP in the following discussions. From Table 2 and Figure
4, it can be observed that τ plays a key role for the numerical performance of the algorithm.
The greater the value τ is, the more benefit it is to achieve. In the following discussions, we set
p1 = 0.2, p2 = 0.3 and τ = 2.5.195

4.2. Analysis of numerical results by R-BDS and E-BDS

The comparison between TR-BDS and TE-BDS was carried out based on five performance
measures: success rate (SR), mean value (Mean), standard deviation (Std) and average computa-
tional time (ACT). SR is the ratio between the number of runs in which a known optimal solution
is captured and the number of executions. Mean is the average of the absolute differences between200

the simulation results and the known optimal solutions. Std is the standard deviation of final
solutions over runs. ACT is the average time taken in each run of the algorithm. Table 3 shows
the details of trial problems as well as the corresponding numerical results. More specifically, in
the first three column, the name of the problem (Pro), number of knapsacks and items of the
problem (D ×m) as well as the known optimum (Opt) are presented. Then, SR, Mean, Std and205

ACT corresponding to TR-BDS as well as TE-BDS are listed. The bar charts of success rate,
Mean and Std are depicted in Fig. 5. From Table 3 and Fig. 5, we can observe that for the
problems sento1 and sento2, TR-BDS has better success rate than TE-BDS but takes less average
computational time. For the problems pb4 and weing4, both TR-BDS and TE-BDS capture the
best known solution in the literature. However, for problems weing3 and weing7, the success rate210

of the two algorithms are near 0. For all the other problems, TR-BDS and TE-BDS have similar
performance measures.

Table 4 displays the results for 30 problems of weish and the corresponding information is
depicted in Fig. 6. All the results in Table 4 are based on 50 independent trials. For each
problem, Table 4 not only reports the best known solutions from OR-library, but also reports215

the numerical results obtained by TR-BDS and TE-BDS in terms of SR, Mean, Std and ACT.
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Table 1: Orthogonal array and average response variable (ARV) for BDS algorithms.

No. of Experiment
Parameter factors ARV

τ p1 p2 SR-BDS SE-BDS TR-BDS TE-BDS

1 1 (0.5) 1 (0.3) 1 (0.3) 1508.0 4984.0 4660.0 4666.0
2 1 (0.5) 2 (0.4) 3 (0.5) 2170.0 2865.0 4430.0 4832.0
3 1 (0.5) 3 (0.5) 5 (0.7) 2625.0 4480.0 5390.0 4832.0
4 1 (0.5) 4 (0.6) 2 (0.4) 4846.0 2349.0 4610.0 4760.0
5 1 (0.5) 5 (0.7) 4 (0.6) 3332.0 1918.0 5132.0 4832.0
6 2 (1.0) 1 (0.3) 5 (0.7) 4096.0 3838.0 5939.0 6798.0
7 2 (1.0) 2 (0.4) 2 (0.4) 2134.0 5394.0 6213.0 6493.0
8 2 (1.0) 3 (0.5) 4 (0.6) 3095.0 4034.0 6615.0 6090.0
9 2 (1.0) 4 (0.6) 1 (0.3) 4691.0 3401.0 6485.0 6726.0
10 2 (1.0) 5 (0.7) 3 (0.5) 868.0 3661.0 6696.0 6003.0
11 3 (1.5) 1 (0.3) 4 (0.6) 4027.0 4741.0 6896.0 6818.0
12 3 (1.5) 2 (0.4) 1 (0.3) 2139.0 2273.0 7217.0 7077.0
13 3 (1.5) 3 (0.5) 3 (0.5) 4589.0 2724.0 7440.0 7067.0
14 3 (1.5) 4 (0.6) 5 (0.7) 3177.0 3156.0 7097.0 7271.0
15 3 (1.5) 5 (0.7) 2 (0.4) 3482.0 2743.0 7348.0 7332.0
16 4 (2.0) 1 (0.3) 3 (0.5) 3725.0 5533.0 7688.0 7294.0
17 4 (2.0) 2 (0.4) 5 (0.7) 2955.0 2456.0 7639.0 7641.0
18 4 (2.0) 3 (0.5) 2 (0.4) 2640.0 3500.0 7641.0 7502.0
19 4 (2.0) 4 (0.6) 4 (0.6) 3445.0 4825.0 7627.0 7685.0
20 4 (2.0) 5 (0.7) 1 (0.3) 5235.0 3056.0 7644.0 7355.0
21 5 (2.5) 1 (0.3) 2 (0.4) 2889.0 4459.0 7739.0 7719.0
22 5 (2.5) 2 (0.4) 4 (0.6) 4354.0 3492.0 7772.0 7263.0
23 5 (2.5) 3 (0.5) 1 (0.3) 5029.0 3452.0 7725.0 7728.0
24 5 (2.5) 4 (0.6) 3 (0.5) 2240.0 3800.0 7761.0 7709.0
25 5 (2.5) 5 (0.7) 5 (0.7) 2101.0 3286.0 7741.0 7675.0

Table 2: The response value for different BDS algorithms.

Level
SR-BDS SE-BDS TR-BDS TE-BDS

τ p1 p2 τ p1 p2 τ p1 p2 τ p1 p2
level 1 2896.2 3249.0 3720.4 3319.2 4711.0 3433.2 4844.4 6584.4 6746.2 4784.4 6659.0 6710.4
level 2 2976.8 2750.4 3198.2 4065.6 3296.0 3689.0 6389.6 6654.2 6710.2 6422.0 6661.2 6761.2
level 3 3482.8 3595.6 2718.4 3127.4 3638.0 3716.6 7199.6 6962.2 6803.0 7113.0 6643.8 6581.0
level 4 3600.0 3679.8 3650.6 3874.0 3506.2 3802.0 7647.8 6716.0 6808.4 7495.4 6830.2 6537.6
level 5 3641.3 3003.6 2990.8 3590.8 2932.8 3443.2 7730.3 6912.2 6761.2 7574.8 6639.4 6843.4

∆ 745.1 929.4 1002.0 938.2 1778.2 368.8 2885.9 377.8 98.2 2790.4 190.8 305.8
Rank 3 2 1 2 1 3 1 2 3 1 3 2
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Figure 4: Fact level trend of BDS.
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Figure 5: Success rate, mean value and standard derivation bar charts of TR-BDS and TE-BDS for Problem Set
I.
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Figure 6: Success rate, mean value and standard derivation bar charts of TR-BDS and TE-BDS for Problem Set
II.
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Table 3: Results of both R-BDS and E-BDS on small scale MKP (Set I).

Prob. D ×m Opt
TR-BDS TE-BDS

SR Mean Std ACT (s) SR Mean Std ACT (s)
sento1 60× 30 7772 0.80 7756.13 60.24 21.7131 0.47 7758.43 18.74 24.2188
sento2 60× 30 8722 0.73 8719.93 4.03 21.6898 0.40 8717.43 6.07 24.8044
hp1 28× 4 3418 0.40 3409.80 6.82 16.3319 0.60 3412.60 6.73 19.0435
hp2 35× 4 3186 0.97 3185.57 2.37 16.5738 1.00 3186.00 0.00 19.2472
pb1 27× 4 3090 0.50 3083.17 6.96 16.1599 0.53 3083.60 6.97 18.6705
pb2 34× 4 3186 0.97 3185.57 2.37 16.5243 0.97 3185.40 3.29 19.0826
pb4 29× 2 95168 1.00 95168.00 0.00 15.8367 1.00 95168.00 0.00 18.3799
pb5 20× 10 2139 0.80 2135.60 6.92 16.4857 0.77 2135.03 7.31 18.8569
pb6 40× 30 776 0.57 769.80 8.12 20.1615 0.67 768.87 12.28 22.8154
pb7 37× 30 1035 0.80 1034.53 1.36 20.1421 0.80 1033.97 2.83 22.7094
weing1 28× 2 141278 1.00 141278.00 0.00 15.6541 0.97 141261.33 91.29 17.7692
weing2 28× 2 130883 1.00 130883.00 0.00 15.7355 0.93 130872.33 40.59 17.6515
weing3 28× 2 95677 0.00 95003.87 248.59 15.6108 0.03 94837.67 611.37 17.6014
weing4 28× 2 119337 1.00 119337.00 0.00 15.6454 1.00 119337.00 0.00 17.6944
weing5 28× 2 98796 0.70 97662.60 1760.89 16.9703 0.53 97001.27 1955.54 17.6121
weing6 28× 2 130623 1.00 130623.00 0.00 16.7528 0.97 130610.00 71.20 17.5885
weing7 105× 2 1095445 0.00 1087354.87 1453.51 21.6950 0.00 1088624.43 1445.27 22.6013
weing8 105× 2 624319 0.50 620258.83 8671.78 20.0473 0.20 619356.73 9046.16 21.2074

From Fig. 6, we can observe that TR-BDS and TE-BDS have similar performance measures. In
particular, Mean obtained by TR-BDS are nearly the same as that obtained by TE-BDS from Fig.
6. Except for the problem weish30, the SRs of both algorithm are greater than 75%. The most
encouraging result is that there are 10 problems in which success rates obtained by TR-BDS are220

100%. Comparing TR-BDS and TE-BDS, there are only 3 problems in which the success rates
obtained by TR-BDS are less than those obtained by TE-BDS. Furthermore, there are 26 problems
from 30 problems in which Stds obtained by TR-BDS are better than those obtained by TE-BDS.
In terms of computing time, for all problems in Table 4, nearly all of them can terminate and exit
the computation within 20 seconds. Thus, we conclude that TR-BDS outperforms TE-BDS if the225

scale of MKP is not large.

Figure 7: Mean value and standard derivation bar charts of TR-BDS and TE-BDS for Problem Set III.
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Table 4: Comparisons of TR-BDS with TE-BDS on medium scale MKP (Set II).

Prob. D ×m Opt
TR-BDS TE-BDS

SR Mean Std ACT (s) SR Mean Std ACT (s)

weish01 30× 5 4554 1.00 4554.00 0.00 15.2652 1.00 4554.00 0.00 16.7416
weish02 30× 5 4536 1.00 4536.00 0.00 15.2703 1.00 4536.00 0.00 16.7622
weish03 30× 5 4115 1.00 4115.00 0.00 15.2181 0.94 4111.78 13.28 16.7433
weish04 30× 5 4561 1.00 4561.00 0.00 15.1311 1.00 4561.00 0.00 16.7153
weish05 30× 5 4514 1.00 4514.00 0.00 15.1210 0.96 4511.66 11.62 16.6559
weish06 40× 5 5557 1.00 5557.00 0.00 15.8183 0.96 5556.48 2.57 17.4351
weish07 40× 5 5567 0.98 5566.66 2.40 15.8109 0.90 5565.28 5.21 17.3659
weish08 40× 5 5605 0.98 5604.96 0.28 15.8611 0.88 5604.76 0.66 17.4458
weish09 40× 5 5246 1.00 5246.00 0.00 15.7656 0.94 5232.54 84.01 17.2558
weish10 50× 5 6339 1.00 6339.00 0.00 16.3044 0.94 6336.58 10.79 17.7758
weish11 50× 5 5643 0.92 5636.40 25.67 16.1803 0.78 5628.28 29.50 17.7822
weish12 50× 5 6339 0.96 6335.12 19.20 16.2363 0.96 6335.98 15.56 17.7879
weish13 50× 5 6159 0.98 6158.26 5.23 16.1985 0.86 6151.14 22.02 17.7417
weish14 60× 5 6954 0.92 6951.10 10.03 16.8444 0.96 6951.94 12.13 18.3319
weish15 60× 5 7486 0.96 7484.24 8.71 16.8303 0.80 7471.56 62.36 18.3912
weish16 60× 5 7289 1.00 7289.00 0.00 16.8837 0.92 7287.44 10.46 18.3757
weish17 60× 5 8633 1.00 8633.00 0.00 17.1654 0.98 8632.52 3.39 18.9749
weish18 70× 5 9580 0.98 9579.38 4.38 17.7140 0.86 9578.02 6.26 19.4470
weish19 70× 5 7698 0.96 7696.64 7.75 17.4233 0.84 7689.00 22.56 19.1762
weish20 70× 5 9450 0.96 9449.64 1.78 17.6414 0.84 9447.02 8.36 19.3375
weish21 70× 5 9074 0.96 9069.04 28.85 17.5878 0.90 9069.76 13.17 19.2294
weish22 80× 5 8947 0.98 8946.24 5.37 17.8769 0.90 8942.06 19.28 19.5396
weish23 80× 5 8344 0.92 8342.74 7.64 17.8119 0.79 8332.24 24.95 19.4928
weish24 80× 5 10220 0.68 10215.88 8.77 18.1588 0.88 10218.86 3.84 19.8913
weish25 80× 5 9939 0.84 9937.74 3.87 18.0170 0.76 9932.98 14.11 19.6974
weish26 90× 5 9584 0.94 9578.74 30.85 18.3924 0.78 9575.70 19.60 20.0068
weish27 90× 5 9819 0.98 9816.94 14.57 18.2732 0.80 9802.18 47.03 19.9562
weish28 90× 5 9492 0.94 9488.74 16.59 18.2810 0.82 9484.30 20.63 19.9651
weish29 90× 5 9410 0.92 9403.62 23.36 18.3022 0.90 9402.84 22.79 19.9990
weish30 90× 5 11191 0.32 11181.52 13.82 18.6734 0.46 11184.16 11.63 20.0000

Table 5: Comparisons of TR-BDS with TE-BDS on large-scale MKP (Set III).

Prob. D ×m TR-BDS TE-BDS
Mean Std ACT (s) Mean Std ACT (s)

mk gk01 100× 15 3688.26 6.02 21.1994 3720.86 7.01 22.5922
mk gk02 100× 25 3878.88 8.09 22.6084 3905.62 8.20 24.0208
mk gk03 150× 25 5512.06 7.55 25.6115 5542.22 9.87 26.9987
mk gk04 150× 50 5623.70 9.16 29.6552 5648.32 8.50 31.1158
mk gk05 200× 25 7349.14 11.41 28.4238 7376.84 9.56 29.9581
mk gk06 200× 50 7488.88 9.95 32.9163 7504.88 9.34 34.3660
mk gk07 500× 25 18588.20 22.74 42.4770 18600.36 21.70 44.1570
mk gk08 500× 50 18299.68 14.88 48.5358 18308.58 13.09 50.0867
mk gk09 1500× 25 56035.20 38.46 101.9255 56058.74 36.00 103.5136
mk gk10 1500× 50 55719.48 25.50 111.5450 55746.32 30.97 112.9763
mk gk11 2500× 100 93132.92 35.92 217.0807 93192.98 30.19 224.0877
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To test the scalability of TR-BDS and TE-BDS, we will apply them to the MKPs in which
the number of variables ranges from 100 to 2500. The corresponding information of problems as
well as the numerical results obtained by TR-BDS and TE-BDS are presented in Table 5. The
bar charts of Mean and Std are depicted in Figure 7. From Table 5 and Figure 7, we can observe230

that for all the problems, TE-BDS achieves better performance in terms of the Mean measure.
Meanwhile, TR-BDS and TE-BDS seem to have the similar trend as for Std, i.e., if Std obtained
by TR-BDS is large, Std obtained by TE-BDS will be large too, and vice versa. ACT shows that
even for 2500-dimensional knapsack problem, each run for both of the two algorithms takes within
5 minutes. Thus, TR-BDS and TE-BDS are promising to solve large-scale MKPs. A standard235

convergence curves for three large-scale problems: mk gk09, mk gk10 and mk gk11 are shown in
Figure 8.
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Figure 8: Convergence Curves for three large-scale problems, (a) for mk gk09, (b) for mk gk10 and (c) for mk gk11.

4.3. Results comparison with other algorithms

This section will do numerical experiment on Problem Set I and Problem Set II mentioned
above and 9 more complex benchmark problems from cbm.n presented by Chu and Beasley in [40]240

.

4.3.1. Numerical results comparison on Problem Sets I and II

In this subsection, we will compare TR-BDS and TE-BDS with MPSO [20] and CBPSOCTVA
[14]. To achieve this aim, we choose the benchmark problems from Problem Set I and Problem Set
II for comparison since solving large-scale MKPs takes long time. The information of the problems245

as well as the numerical results obtained by TR-BDS, TE-BDS, MBPSO and CBPSOCTVA are
listed in Table 6 and Table 7 in which only the success rates and standard deviations are presented.

We set the parameters in our algorithms as follow, N = 30, Gmax = 10000, p1 = 0.2, p2 = 0.3
and τ = 2.5.
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Both Table 6 and Table 7 show that TR-BDS and TE-BDS outperform MBPSO in terms of250

SRs and Stds. Thus, TR-BDS and TE-BDS outperform MBPSO. Now the remaining is to compare
TR-BDS and TE-BDS with CBPSOCTVA. Let us first analysis results in Table 6. In fact, for
all the problems, except the problem weing3, SRs obtained by TR-BDS and TE-BDS, are much
better than that obtained by CBPSOCTVA. In addition, for over 80% problems, Stds obtained
by TR-BDS and TE-BDS are less than that obtained by CBPSOCTVA. This observation is also255

true in Table 7. The box plots of Problem Set I and Problem Set II are depicted in Figure 9 and
Figure 10. These two figures are further evidenced that TR-BDS and TE-BDS are superior to the
algorithms MBPSO and CBPSOCTVA.

Table 6: Comparisons of TR-BDS, TE-BDS with MBPSO, and CBPSOTVAC on small scale MKP (Set I).

Prob. D ×m Opt
TR-BDS TE-BDS MBPSO[20] CBPSOCTVA[14]

SR Std SR Std SR Std SR Std

sento1 60× 30 7772 0.80 60.24 0.47 18.74 0.16 43.23 0.39 357.78
sento2 60× 30 8722 0.73 4.03 0.40 6.07 0.03 18.80 0.20 101.03
hp1 28× 4 3418 0.40 6.82 0.60 6.73 0.10 25.52 0.38 10.69
hp2 35× 4 3186 0.97 2.37 1.00 0.00 0.11 39.15 0.59 21.35
pb1 27× 4 3090 0.50 6.96 0.53 6.97 0.11 24.32 0.40 10.52
pb2 34× 4 3186 0.97 2.37 0.97 3.29 0.16 39.31 0.51 18.73
pb4 29× 2 95168 1.00 0.00 1.00 0.00 0.27 1803 0.84 875.1
pb5 20× 10 2139 0.80 6.92 0.77 7.31 0.08 24.36 0.80 6.83
pb6 40× 30 776 0.57 8.12 0.67 12.28 0.28 29.12 0.54 40.17
pb7 37× 30 1035 0.80 1.36 0.80 2.83 0.05 16.29 0.40 24.25
weing1 28× 2 141278 1.00 0.00 0.97 91.29 0.82 250.43 0.92 281.98
weing2 28× 2 130883 1.00 0.00 0.93 40.59 0.65 314.08 0.88 545.50
weing3 28× 2 95677 0.00 248.59 0.03 611.37 0.11 876.78 0.75 672.42
weing4 28× 2 119337 1.00 0.00 1.00 0.00 0.76 1270.80 0.97 378.58
weing5 28× 2 98796 0.70 1760.89 0.53 1955.54 0.52 1923.5 0.94 572.82
weing6 28× 2 130623 1.00 0.00 0.97 71.20 0.36 322.40 0.97 343.45
weing7 105× 2 1095445 0.00 1453.51 0.00 1445.27 0.02 1130.60 0.00 30020.00
weing8 105× 2 624319 0.50 8671.78 0.20 9046.16 0.03 4704.30 0.20 75169.00
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Figure 9: Boxplots of Problem set I of Multidimensional Knapsack Problem.
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Table 7: Comparisons of TR-BDS, TE-BDS with MBPSO, and CBPSOTVAC on medium scale MKP (Set II).

Prob. D ×m Opt
TR-BDS TE-BDS MBPSO[20] CBPSOCTVA[14]
SR Std SR Std SR Std SR Std

weish01 30× 5 4554 1.00 0.00 1.00 0.00 0.82 26.34 1.00 0.00
weish02 30× 5 4536 1.00 0.00 1.00 0.00 0.55 18.01 0.66 23.12
weish03 30× 5 4115 1.00 0.00 0.94 13.28 0.63 34.98 0.95 52.69
weish04 30× 5 4561 1.00 0.00 1.00 0.00 0.96 8.99 0.99 85.90
weish05 30× 5 4514 1.00 0.00 0.96 11.62 0.99 5.40 0.98 74.45
weish06 40× 5 5557 1.00 0.00 0.96 2.57 0.32 14.39 0.53 79.28
weish07 40× 5 5567 0.98 2.40 0.90 5.21 0.64 18.92 0.78 71.95
weish08 40× 5 5605 0.98 0.28 0.88 0.66 0.44 13.07 0.68 42.81
weish09 40× 5 5246 1.00 0.00 0.94 84.01 0.78 25.65 0.85 65.70
weish10 50× 5 6339 1.00 0.00 0.94 10.79 0.56 22.17 0.67 188.63
weish11 50× 5 5643 0.92 25.67 0.78 29.50 0.40 43.95 0.62 403.03
weish12 50× 5 6339 0.96 19.20 0.96 15.56 0.65 35.68 0.71 304.43
weish13 50× 5 6159 0.98 5.23 0.86 22.02 0.87 25.19 0.85 180.04
weish14 60× 5 6954 0.92 10.03 0.96 12.13 0.66 25.95 0.79 364.66
weish15 60× 5 7486 0.96 8.71 0.80 62.36 0.72 18.64 0.80 554.35
weish16 60× 5 7289 1.00 0.00 0.92 10.46 0.44 17.49 0.43 367.29
weish17 60× 5 8633 1.00 0.00 0.98 3.39 0.56 7.38 0.72 227.16
weish18 70× 5 9580 0.98 4.38 0.86 6.26 0.38 18.40 0.53 275.53
weish19 70× 5 7698 0.96 7.75 0.84 22.56 0.55 33.67 0.62 489.37
weish20 70× 5 9450 0.96 1.78 0.84 8.36 0.53 15.99 0.69 410.74
weish21 70× 5 9074 0.96 28.85 0.90 13.17 0.61 24.97 0.67 378.38
weish22 80× 5 8947 0.98 5.37 0.90 19.28 0.33 31.55 0.17 486.71
weish23 80× 5 8344 0.92 7.64 0.79 24.95 0.24 35.43 0.58 437.23
weish24 80× 5 10220 0.68 8.77 0.88 3.84 0.27 18.09 0.55 295.79
weish25 80× 5 9939 0.84 3.87 0.76 14.11 0.29 13.39 0.32 361.88
weish26 90× 5 9584 0.94 30.85 0.78 19.60 0.31 24.27 0.28 710.77
weish27 90× 5 9819 0.98 14.57 0.80 47.03 0.65 48.62 0.83 640.43
weish28 90× 5 9492 0.94 16.59 0.82 20.63 0.64 26.72 0.62 887.33
weish29 90× 5 9410 0.92 23.36 0.90 22.79 0.46 34.73 0.48 854.50
weish30 90× 5 11191 0.32 13.82 0.46 11.63 0.38 14.48 0.63 491.81
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Figure 10: Boxplots of problem set II of Multidimensional Knapsack Problem.
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Boxplots of TR-BDS, TE-BDS as well as MBPSO and CBPSOCTVA on Problem Set I and
Problem Set II are shown in Figure 9 and Figure 10. From the two figures, we can clearly observe260

that TR-BDS and TE-BDS perform better than MBPSO and CBPSOCTVA in terms of SR and
Std.

4.3.2. Numerical results comparison on MKP problems set proposed by Chu and Beasley

cbm.n r (wherem,n and r is the number of constraints, variables and the instance, respectively)
is another well-known set of MKP instances available on the OR-Library website [41]. We choose265

9 and 3 problems from cb5.100 and cb10.500, respectively, to test our algorithms. We set the
parameters in our algorithms as follow, N = 100, Gmax = 50000, p1 = 0.2, p2 = 0.3 and τ = 2.5.
The comparison results on 9 instances from cb5.500 with BSA [42] and ABC [22] are presented in
Tables 8. The comparison results on 12 instances from cb10.500 with other two algorithms [13, 7]
are listed in Table 9. For clarity, these problems are renamed as ORmxn-t r (where m,n and r is270

still the number of constraints, variables and the instance, respectively, and t is a tightness rate
by which the coefficients in both sides of Eq. (2) are constrained, that is Cj = t

∑D
i=1wij, ∀j =

1, 2, · · · ,m) in the first collum of Tables 8 and 9.

Table 8: Comparisons of TR-BDS, TE-BDS with BSA and ABC on cb5.100.

Prob.
Best BSA [42] ABC [22] TR-BDS TE-BDS

known Best Mean Best Mean Best Mean Best Mean

OR5x100-0.25 1 24381 24381 24381 24381 24381 24381 24381 24381 24381
OR5x100-0.25 2 24274 24274 24274 24274 24274 24274 24224.68 24274 24274
OR5x100-0.25 3 23551 23551 23551 23551 23547.1 23551 23535.96 23551 23551
OR5x100-0.50 1 23534 23534 23534 23534 23534 23534 23534 23534 23534
OR5x100-0.50 2 23991 23991 23991 23991 23988.5 23966 23944.64 23991 23991
OR5x100-0.50 3 24613 24613 24613 24613 24613 24613 24539.52 24613 24613
OR5x100-0.75 1 25591 25591 25591 25591 25591 25591 25523.88 25591 25591
OR5x100-0.75 2 23410 23410 23410 23410 23410 23410 23356.80 23410 23410
OR5x100-0.75 3 24216 24216 24216 24216 24216 24216 24198.24 24216 24216

Table 8 lists test results for 9 problems selected from benchmarks cb5.100. For each problem,
the table reports the best and average solutions found by TR-BDS, TE-BDS as well as those275

obtained by M. Kong et al [42] and S. Sundar et al [22].
We can observe from Table 8 that BSA, ABC and TE-BDS find all the best solutions for

the 9 tested problems. For TR-BDS, it achieves the best solutions for 8 problems, but it cannot
for problem OR5x100-0.50 2. Both BSA and TE-BDS get better average solutions for all the 9
problems. Indeed, in each trial, both BSA and TE-BDS can capture the best solution for each280

tested problem. However, TR-BDS and ABC are not the case. From this point of view, BSA and
TE-BDS are more robust than ABC and TR-BDS.

Table 9 shows the results for 12 problems of cb10.500. For each problem, the best solutions
found by M. Vasquez et al [13] and S. Boussier et al [7], the best and average solution achieved by
TR-BDS and TE-BDS, the average computing time spent by TR-BDS and TE-BDS are listed in285

this table. Among them, Alg. 2 [7] achieves the best solutions for all problems; TR-BDS achieves
three best solutions and TE-BDS achieves seven best solutions for 12 tested problems. It is a pity
that the average solutions obtained by TR-BDS and TE-BDS are not so stable as those reported
in the previous tables. This may be caused by the complexity of this set of tested problems. The
average time spent by our algorithms are less than 7500 seconds. Comparing TE-BDS with Alg.290
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Table 9: Comparisons of TR-BDS, TE-BDS with Algorithm 1 in [13] and Algorithm 2 in [7] for cb10.500, the
computing time by TR-BDS and TE-BDS.

Prob. Alg. 1 [13] Alg. 2 [7]
TR-BDS TE-BDS

Best Mean Time(s) Best Mean Time(s)

OR10x500-0.25 1 117811 117821 114716 114425.40 6650 117811 117801.20 6725
OR10x500-0.25 2 119232 119249 119232 119223.00 6652 119249 118024.00 6795
OR10x500-0.25 3 119215 119215 117821 117625.60 6637 119215 117801.40 6795
OR10x500-0.25 4 118813 118829 118813 117625.80 6645 118813 117801.20 6825
OR10x500-0.50 1 217377 217377 209191 208710 7092 217377 212570 7094
OR10x500-0.50 2 219077 219077 219077 217277 7068 219077 218570 7140
OR10x500-0.50 3 217806 217847 210282 210172 7131 217377 212570 7543
OR10x500-0.50 4 216868 216868 209242 206178 7192 216868 216868 7640
OR10x500-0.75 1 304387 304387 304387 302658 7469 304387 304264 7552
OR10x500-0.75 2 302379 302379 302379 302658 6969 302379 302164 6998
OR10x500-0.70 3 302416 302417 290931 290859 7102 302416 302014 7610
OR10x500-0.70 4 300757 300784 290859 290021 7082 291295 291170 7640

2 [7], we can observe that the performance of TE-BDS is slightly worse than that of Alg. 2 [7]
which is based on exact algorithm. However, the solution time obtained by our method is much
less than that obtained by Alg. 2 [7]. it is better if you can list the computational time for a test
problem and compare it. Thus, TE-BDS can be viewed as a complement of Alg. 2 [7] to trade off
computational time and solution performance.295

5. Conclusion

In this paper, a novel binary DS algorithm incorporating two different solution strategies,
TR-BDS and TE-BDS, was introduced to solve 0-1 MKPs. Three sets of benchmark tests are
solved so as to investigate the numerical performances of TR-BDS and TE-BDS. In addition,
TR-BDS and TE-BDS are compared with similar algorithms developed recently in the literature.300

The numerical results show that TR-BDS and TE-BDS not only can be used to solve large-scale
0-1 MKPs, but also outperform the existing algorithms for Problem Sets I and II. For more
complex benchmarks cbm.n, our algorithms perform as better as other meta-heuristic algorithms,
but slightly worse than the exact algorithm in [7]. However, exact algorithms are suffered from
expensive computation, but meta-heuristic algorithm are not. An interesting future research topic305

is to investigate the applications of TR-BDS and TE-BDS in other real applications, such as project
scheduling, discrete-valued optimal control and resource allocation.
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