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Abstract
The nonnegativity of condrols 1 pesitive discrete-tume hinear
systems (PDLS) usually give rise to complementarity conditlons
i othe first-ovder Karash-Kube-Tucker optimality conditions —
. s complicates e analvtical solubion and usually leads o
| nmerical solutions. At the same time the appeal and the
: advantages of analytic solations are well appreciated. In thns
papet the minimum energy problem for PDLS with fixed
terminal state is reduced w0 a problem with a frec fnal state and
analytic solution to the latter is obtained. The relationship
between the two problems is studied in full detail.
Kev words. positive linear systems, discrete-time  svstems,
minimum energy problem. optimality conditions
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; 1. Introduction
s The minimum-energy problem for time invariant linear systems is a classical
] problem in control theory. It has elegant analytic solutions if no restrictions are
§ imposed on the state and control variables [8]. Positive discrete-time linear
} systems (PDLS) are defined on cones and not on linear spaces since the control
i and the trajectory are non-negative {6, 10]. The non-negativity of control n such
i systerns gives rise to complementarity conditions in the first-order Karush-Kuhn-
i Tucker (KKT} optimality conditions [3], which complicates the analytic solution
f and usually leads to numerical solutions. At the same time the appeal and the
i advantages of analytic solutions are well appreciated.
i
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ONTHE MINIMUM-ENERGY PROBLEM

Kaczorek [6] has obtamned analytical solution to the minimum-energy problem for
PDLS with fixed final state under some assumptions, among which the assumption
of reachability of the system and the assumption of zero initial state seem: to be
quite restrictive. The relation of the mimimum-energy problem with the reachable
sets that 1s the geometry of the problem 1s not studied in [6] either. In the very
recent work [11], the authors, on the basis of analysis of geometry of the problem,
obtain a more general result for PDLS with any non-negative pair of fixed terminal
(initial and final} states and scalar controls without the assumption of reachability
of the system.

Related work for continuous-time systerns with non-negative conirols is published
m [5, 7, 9] but the positivity of the system is not exploited in these papers.
Positivity 15 an intrinsic property of positive systems and in many cases 1t helps o
simplify the analysis and the results.

In this paper the minimum-energy problem for PDLS with any non-negative pair
of fixed terminal (imtial and final) states 1s reduced to a problem with free finai
state and an analytic solution to the latter is developed using the dynamic
programming approach [ 1] The relationship between the two problems is analysed.
A numerical example 1s also provided.

)

Z. Problem formuiation and preliminarvies
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ormulated as follows {6, 11]

where x(7) is the state of the system at time =0, 1,2, ..., 7, u{/)e R, is the control
sequence, the symbol R denoctes the set of all non-negative real numbers, 715 2
finite-time horizon, and the initial and final state are given by

—1‘(0:3 == 0 andx{T):xrz 0.
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ON THE MINIMUM-ENERGY PROBLEM

The state variables x(ry, 1= 0.7, are, clearly, non-negative for any nop-negative
jpitial state xg 2 ¢, and any {(1on- ﬂcgfﬁtixe) control sequence (3). So. the munnnun-
epergy  problem cansists  in finding a  (non- negative) control
sequenceju(fy2 0.1 = 0.7 —1)jand the corresponding trajectory
(). =04 T that <~at1<;f\ (2} — (4) and minimize the ° ‘energy” (1) of the mput
signal. Note that the dynamics of the positive discrete- time linear systems Is
described by the difference equation {2) and {3).

Uinder the natural assumption thatx; € e R {x,). where R;{x,)denotes the 7 — steps
reachable set [2. 10, 111 the opnma\ control sequence that minim izes the cost

function (1} in the minmmum-energy problem (1) — {4) with fixed final staie is
given by {11}
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where ¥ (1) s Thc a.onﬁcrfmfww optimal rajectory. and the optimal walue of the

cost funcoon (11is
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By relaxing the boundary condition x{ T} = x,, problem (1) — (4} can be reduced to

the following minimuim-energy problem with free final state

Minimize J = %er ~x(TW + iuz {1)] (7)
Subject to

dr+1)= axle)+ bule), 1= 0,... T~ 1 (8)

a,bz0 u(t)€R+ )
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ONTHE MINIMUM-ENERGY PROBLEM
2(0)=x,2 0 (10)

The new term in the cost function (1) reflects how close to the given terminal state
the terminal state in the reduced problem is. The solution to the minimum-energy
problem with free terminal state then gives a controi sequence that minimises the
energy (1) of the input and at the same time the corresponding (to that control
sequence) trajectory ends at a point, which is in a closed proximity of the targeted
terminal point x7.. In other words, the optimum control sequence resolves the
“trade-otf” between minimizing the energy of the input signal and the deviation
from the given terminal point x7.

In the next section we obtain an analytic solution to the relaxed minimum-energy
problem (7) — (10} and provide some comparative analysis with the generic
probiem {1} — (4).

3, Main resulis

Theorem 1. Let on the optimal wajectory o' 'x{1)<x,, 1= 0...T —1. Then the

opiiad coniiol sequence thai wilninizes ithe cost function [7) in the minipmir-
eneigy problen with free final siate (7) - (1) is given I

where x {1} is the corresponding optimal trajeciory. and the optimal value of the

cosi function (1) s -_;:,

L P
) LAy T lﬁ_'“ {]i\

1+b]ZaftT—liilli

Proof.

To find an analytic solution to the optimal contro! problem (7} - (10) we use the
dynamic programming approach [1].

The Bellman equation can be written as

nzl

J,{x)=mmn {%uz +J (x |
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ON THE MIMNIMUM-ENERGY PROBLEM

with

We try for 1= 7 — 1. We have:
: IRy -
J,,(x)=min {:u' + o —lax b)) } \

=l

B

where v = 7 13 and w = u((7*- 1) is to be deternuned by the initial condition

(107, A ditferentiation of the above expression with respect (o i leads 1o

Lof o et
_ N 4.-'(: .\}- — Ot

where o satisfyv w{7) € R we impose e condition ax(7 — 1) = a. . and. therefore,

[, —ax ]

7 vl =

Lbrl=-
e ! 1+ A
- LR R

Symilarty, for 7= 1 — 2 we have.

. ably —ax) L
w (1 -2)= REENRTE with a x(7-1y< x, .
T 4

and. respectively,

(xT —ar"x}' 03

and
7 lr+!lb x _aT :x
i (1) = T(j - ) ax(t) £ x; (14)
1+ 57 A7 =)
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ON THE MINIMUM-ENERGY PROBLEM

Let the expression (13) and (14) be true for 1 = k+ 1, thatis

FITURINS
(x? -a x)
S~ (15)

and, respectively,

(ke Ttk
) a ’b(xr —a' ',\') " |
i (k+1)= = cat (k) S xp s (16)
) ATi+1
1+b a )
i=k+l
We prove that {12 and (1d) hold also for /= A wamely
RS
{ Yy T CTT ‘fj
Jo(xy== e
. ‘q‘_\ TI]‘_ |
[+ LALF a
and, respectively
k-l Y
’l ]b{_,\‘].—u O,
wky= T SESRANS
, AT i)
b > a

<
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J {xy=min ’1?:;' +J, 0
‘/
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A substitution of the state aquation (23 (ot (Ry3 i {13) v

is a parameter that is to be specified by the

where v= u(k) and the state x(k) = x
initial  condition x(0) = Xo The differentiation of the expressiOH
- Tk} RS
P, ] {x,-a (axw—bu)) . _
b with respect to i resulis in
2 2z 3 = HT—i-4)
1+5 Z a K

i=hk+1
2-9727:
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ON THE MINIMUM-ENERGY PROBLEM

al e —a’ _
u“(i;}.—s_—ﬁ(%— ) (19)

] +_h:Z(.':”"H”

=4

where the condition o "x<x, is imposed in order to sausty uf{rje R,

Furthermore. the substitution of (19) in (18} leads to

. 1 s 5’.!7""_\’)3
(SR
T4 sy g

Sg. the assumpuions {1 3) and (14) hold for 7= AL and. therefoyc, they are true by
induction for anv & For7 =0 we have

o “?( f*._f«*'r}\}
z;'(G)AA—f—_—_ .

Tiss concludes the prooi

Remarl
Assume thaty (7=, Then, from (11) we have

b(x, —ax (1’ —1\)
Tf T-fl — .7-—,,.__
( ) ]Tb

Substituting the above expression for i (T -1} and taking into account ¥ (7) = x;

we obtain that x; = ax (T -1) and, hence,

b e (Tfl)wi,
@

which implies that the optimal control
u{(T-H=0.

Continue the process for f = T—2 and ¢ = T - 3, and form the induction hypothesis
for k=1
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ON THE MINIMUM-ENERGY FROBILEM

X(T-1)=—-L, (20)
o
and
W (T —1)=0. (21)

Now, assume that the expressions (20) and (21) are true for k£ = 7 and show that
they hold for &£ = 7 + 1 that s

xX(T—(+=x/a", (22)

and

z.f'(T—(t+1)):0.

Fock =1+ 1, the expiession (14) for the optimal control becomes
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where x = (7 — {7+ 1)) Then, a subsiitution of {22 and {23} in the jeetion
iRy vields
B |
[ \J‘»-I.— - i
= Y A — s ,
e 72w/ l"[a R TN
i ? ,,/F,(—A L
=T-dii 0y
which resulis in
AT e W x 1749
Al L ViE R : P
s that (20) is trus. Taking into account {24} it iz not difficult o see that the %

optimal control (23} becomes (T —(1+ 1)) = {1 . The hypothesis is thus proved and

this concindes the proof. The optimal control seguence 18

the corresponding optimal trajectory

N
| I T
1Ly a)to P i SRR '}'ﬂ} N
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ONTHE MINIMUM-ENERGY PROBLEM

and the optimal cost function
']n ( \‘u) =

4. Example

To illustrate the approach adopted in this paper we consider the followng simple
minimum-energy problem with fixed final state.

o IR ,
Minimze == 1) RN
et A
< =t

Subject iG
(r+l)= () rerlr) =000 G
L(a\pél:{__‘L (‘-,f‘
v{(0]==, =1 and {A-)rcéz“’x (28)
The 4-sieps reachable set{ses (il for the PLILS (26 - (2755 Ry =1 aiic

the final staie », =518 il interior pomt of Ry(H Note pleo That the systeni PE

ceachable and stable but not asymptoticaily [2. 10, til

Using expressions (3. (61 and the state equation (2) we abtan the optimal control
sequence

W (0) =1 (1= Lu(2y=Lu (3} =1
the corresponding optimal trajectory
x,=Lx ()= 2,5 (2)=3x 3 =4 ¥ (4)y=x, =5,

and the optimal cost function
Jo=2.

By relaxing the boundary condition x, =3 We reduce the problem (25) — (28) to
the following MinIMumMmM-eNergy problem with free final state

Minimize J =1§[(5 —x(ap + Ezf (1)) (29)
1=0

@CMMSE Poge 1389 of 1461 JSBN: 978-84-612-9727-6




ON THE MINIMUM-ENERGY PROBLEM

Subject to

x(!Jr]}:.\'(f)Jru(f)_. r=0....3 (30)
u{rye R, (37)
x(0)=1x,=1 {32)

To determine the optimal control sequence we use expression (11). For 1 =0 we

have
. 4
i (0) =TT
5
: 3 : : PV i RPE 9 -
and using the siate equation (305 we find the next state v (1) = -~ .Conseguently, we
| s
obtain
- i3
iy = and ¥ (2) = -
4 17
?1‘(2-}“;”_— ‘lﬂd X {'3,‘—"-f
3 3
and, finally,
- = . 21
#idy= - and xy {4)=—
R 5
Ve see il e conditicn o {0 D GO wphaaa! Gagectory. Do

responding optimal

the optimal confrol sequence is = |-

trajectory 1y (73! =1, =1 ,and the optimal cost function J, =1.6.

The above results tell us that by relaxing the minimume-cnergy probiem (25) - (28) :
with fixed final state to the punimum-cnergy problem (29) - (32) with free final §
32 - e
state we decrease the energy of the input (control) from 2 to == at the expense ot g
25 .

. L . o4
not reaching the final state — the deviation from the desired final state 3 is g

5. Concluding remarks

In this paper the minimum energy problem for positive discrete-time linear
systems with fixed final state is reduced to a minimum energy problem with free
final state by inciuding in the cost function a term that reflects the deviation of the
final state in the reduced problem from the targeted final state, Using the dynamic
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ONTHE MINIMUM-ENERGY PROBLEM

programming approach an analytic solution of the reduced minimum energy
problem with fiee final state s cbtained and analysed. It is shown that the
relaxation of the problem leads to a decrease of the “consumed” energy of the
input but at the expense of not reaching the desired final state. Such a “trade-off”

might be quite appealing in a number of real-life problems.

&.
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