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Abstract. We present algorithms for solving a number of new models of facility location which
generalize the classical Fermat–Torricelli problem. Our first approach involves using Nesterov’s
smoothing technique and the minimization majorization principle to build smooth approximations
that are convenient for applying smooth optimization schemes. Another approach uses subgradient-
type algorithms to cope directly with the nondifferentiability of the cost functions. Convergence
results of the algorithms are proved and numerical tests are presented to show the effectiveness of
the proposed algorithms.

Key words. MM principle, Nesterov’s smoothing technique, Nesterov’s accelerated gradient
method, generalized Fermat–Torricelli problem, subgradient-type algorithms

AMS subject classifications. 49J52, 49K40, 58C20

DOI. 10.1137/130945442

1. Introduction. The Fermat–Torricelli problem was introduced in the 17th
century by the French mathematician Pierre de Fermat and can be stated as follows:
Given a finite collection of points in the plane, find a point that minimizes the sum
of the distances to those points. This practical problem has been the inspiration for
many new problems in the fields of computational geometry, logistics, and location
science. Many generalized versions of the Fermat–Torricelli have been introduced and
studied over the years; see [14, 15, 17, 19, 20, 21, 26] and the references therein. In
particular, the generalized Fermat–Torricelli problems involving distances to sets were
the topics of recent research; see [2, 4, 7, 19, 20].

In this paper, we focus mainly on developing effective numerical algorithms for
generalized Fermat–Torricelli problems. Let Rn be the n-dimensional Euclidean space.
Given a nonempty compact convex set F ⊂ R

n that contains the origin as an interior
point, define the function

(1) σF (u) := sup{〈u, x〉 | x ∈ F},

which reduces to the dual norm generated by a norm ‖ · ‖X when F := {x ∈
R

n | ‖x‖X ≤ 1}.
The generalized distance function defined by the dynamic F and the target set Θ

is given by

(2) dF (x; Θ) := inf{σF (x− w) | w ∈ Θ}.
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1816 NGUYEN MAU NAM, NGUYEN THAI AN, R. BLAKE RECTOR, JIE SUN

If F is the closed unit Euclidean ball of Rn, the function (2) reduces to the shortest
distance function or simply the distance function

(3) d(x; Θ) := inf{‖x− w‖ | w ∈ Θ}.

Given a finite collection of nonempty closed convex sets Ωi for i = 1, . . . ,m,
consider the following optimization problem:

(4) minimize T (x), x ∈ Ω,

where Ω is a convex constraint set, and the cost function T is defined by

T (x) :=

m∑
i=1

dF (x; Ωi).

In the general case of problem (4), the objective function T is not necessarily
smooth. To solve problem (4) or, more generally, a nonsmooth optimization problem,
a natural idea involves using smoothing techniques to approximate the original non-
smooth problem by a smooth one. Then, different smooth optimization schemes are
applied to the smooth problem. One of the successful implementations of this idea
was provided by Nesterov. In his seminal papers [25, 23], Nesterov introduced a fast
first-order method for solving convex smooth optimization problems in which the cost
functions have Lipschitz gradient. In contrast to the convergence rate of O(1/k) when
applying the classical gradient method to this class of problems, Nesterov’s acceler-
ated gradient method gives a convergence rate of O(1/k2). In Nesterov’s nonsmooth
optimization scheme, an original nonsmooth function of a particular form is approx-
imated by a smooth convex function with Lipschitz gradient. Then the accelerated
gradient method can be applied to solve the smooth approximation.

Another approach uses subgradient-type algorithms to cope directly with the
nondifferentiability. In fact, subgradient-type algorithms allow us to solve the problem
in very broad settings that involve distance functions generated by different norms
and also generalized distance functions generated by different sets F . However, the
classical subgradient method is known to be slow in general. Thus, it is not a good
option when the number of target sets is large in high dimensions. We apply the
stochastic subgradient method to deal with this situation. It has been shown that the
stochastic subgradient method is an effective tool for solving many practical problems;
see [1, 28] and the references therein. This simple method also shows its effectiveness
for solving the generalized Fermat–Torricelli problem.

The remainder of this paper is organized as follows. In section 2 we give an intro-
duction to Nesterov’s smoothing technique, Nesterov’s accelerated gradient method,
and the minimization majorization (MM) principle to solve nonsmooth optimization
problems. These tools will be used in sections 3 and 4 to develop numerical algorithms
for solving generalized Fermat–Torricelli problems with points and sets. Subgradient-
type algorithms for solving these problems are also presented in section 4. Section 5
contains numerical examples to illustrate the algorithms.

Throughout the paper, 〈·, ·〉 denotes the usual inner product in R
n, and the corre-

sponding Euclidean norm is denoted by ‖ ·‖; F is assumed to be a nonempty compact
convex set in R

n that contains 0 as an interior point; bdF denotes the topological
boundary of F . We also use basic concepts and results of convex optimization, which
can be found, e.g., in [24, 27].
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2. Nesterov’s smoothing technique, accelerated gradient method, and
MM principle. In this section we study and provide more details on Nesterov’s
smoothing technique and accelerated gradient method introduced in [23]. We also
present a general form of the MM principle well known in computational statistics.

Let f : Rn → R be a convex function. Consider the constrained optimization
problem

minimize f(x) subject to x ∈ Ω,

where f is not necessarily differentiable and Ω is a nonempty closed convex subset of
R

n.
The class of functions under consideration is given by

f(x) := max{〈Ax, u〉 − φ(u) | u ∈ Q}, x ∈ R
n,

where A is an m × n matrix, Q is a nonempty compact convex subset of Rm, and φ
is a continuous convex function on Q.

Let d be a continuous strongly convex function on Q with parameter σ > 0. The
function d is called a prox-function. Since d is strongly convex on Q, it has a unique
optimal solution on this set. Denote

ū := arg min{d(u) | u ∈ Q}.
Without loss of generality, we assume that d(ū) = 0. From the strong convexity of d,
we also have

d(u) ≥ σ

2
‖u− ū‖2 for all u ∈ Q.

Throughout the paper we will work mainly with the case where d(u) = 1
2‖u− ū‖2.

Let μ be a positive number called a smooth parameter. Define

(5) fμ(x) := max{〈Ax, u〉 − φ(u)− μd(u) | u ∈ Q}.
The function fμ will be the smooth approximation of f .

For an m× n matrix A = (aij), define

(6) ‖A‖ := max{‖Ax‖ | ‖x‖ ≤ 1}.
The definition gives us

‖Ax‖ ≤ ‖A‖ ‖x‖ for all x ∈ R
n.

We also recall the definition of the Euclidean projection from point x ∈ R
n to a

nonempty closed convex subset Ω of Rn:

π(x; Ω) := {w ∈ Ω | d(x; Ω) = ‖x− w‖}.
Let us present below a simplified version of [23, Theorem 1] that involves the

usual inner product of Rn. We provide a new detailed proof for the convenience of
the reader.

Theorem 2.1. Consider the function f given by

f(x) := max{〈Ax, u〉 − 〈b, u〉 | u ∈ Q}, x ∈ R
n,
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where A is an m× n matrix and Q is a compact subset of Rm. Let d(u) = 1
2‖u− ū‖2

with ū ∈ Q.
Then the function fμ in (5) has the explicit representation

fμ(x) =
‖Ax− b‖2

2μ
+ 〈Ax− b, ū〉 − μ

2

[
d(ū+

Ax− b

μ
;Q)

]2
and is continuously differentiable on R

n with its gradient given by

∇fμ(x) = A�uμ(x),

where uμ can be expressed in terms of the Euclidean projection

uμ(x) = π

(
ū+

Ax− b

μ
;Q

)
.

The gradient ∇fμ is a Lipschitz function with constant

�μ =
1

μ
‖A‖2.

Moreover,

(7) fμ(x) ≤ f(x) ≤ fμ(x) +
μ

2
[D(ū;Q)]2 for all x ∈ R

n,

where D(ū;Q) is the farthest distance from ū to Q defined by

D(ū;Q) := sup{‖ū− u‖ | u ∈ Q}.

Proof. We have

fμ(x) = sup

{
〈Ax− b, u〉 − μ

2
‖u− ū‖2 | u ∈ Q

}
= sup

{
− μ

2

(
‖u− ū‖2 − 2

μ
〈Ax− b, u〉

)
| u ∈ Q

}
= −μ

2
inf

{∥∥∥∥u− ū− Ax− b

μ

∥∥∥∥2 − ‖Ax− b‖2
μ2

− 2

μ
〈Ax − b, ū〉 | u ∈ Q

}
=

‖Ax− b‖2
2μ

+ 〈Ax − b, ū〉 − μ

2
inf

{∥∥∥∥u− ū− Ax − b

μ

∥∥∥∥2 | u ∈ Q

}
=

‖Ax− b‖2
2μ

+ 〈Ax − b, ū〉 − μ

2

[
d

(
ū+

Ax− b

μ
;Q

)]2
.

Since the function ψ(u) := [d(u;Q)]2 is continuously differentiable with ∇ψ(u) =
2[u − π(u;Q)] for all u ∈ R

m (see, e.g., [11, p. 186]), it follows from the chain rule
that

∇fμ(x) =
1

μ
A�(Ax − b) +A�ū− μ

2

[
2

μ
A�

(
ū+

Ax− b

μ
− π

(
ū+

Ax− b

μ
;Q

))]
= A�π

(
ū+

Ax− b

μ
;Q

)
.
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From the property of the projection mapping (see [11, Proposition 3.1.3, p. 118]) and
the Cauchy–Schwarz inequality, for any x, y ∈ R

n we have

‖∇fμ(x)−∇fμ(y)‖2 =

∥∥∥∥A�π
(
ū+

Ax− b

μ
;Q

)
−A�π

(
ū+

Ay − b

μ
;Q

)∥∥∥∥2
≤ ‖A‖2

∥∥∥∥π(ū+
Ax− b

μ
;Q

)
− π

(
ū+

Ay − b

μ
;Q

)∥∥∥∥2
≤ ‖A‖2

〈
Ax−Ay

μ
, π

(
ū+

Ax− b

μ
;Q

)
− π

(
ū+

Ay − b

μ
;Q

)〉
=

‖A‖2
μ

〈
x− y,A�π

(
ū+

Ax− b

μ
;Q

)
−A�π

(
ū+

Ay − b

μ
;Q

)〉
=

‖A‖2
μ

〈x− y,∇fμ(x)−∇fμ(y)〉

≤ ‖A‖2
μ

‖x− y‖‖∇fμ(x) −∇fμ(y)‖.

This implies that

‖∇fμ(x)−∇fμ(y)‖ ≤ ‖A‖2
μ

‖x− y‖.

The lower and upper bounds in (7) follow from

〈Ax−b, u〉− μ

2
‖u−ū‖2 ≤ 〈Ax−b, u〉 ≤

(
〈Ax− b, u〉 − μ

2
‖u− ū‖2

)
+

μ

2
sup{‖q−ū‖2 | q ∈ Q}

for all x ∈ R
n and u ∈ Q.

Example 2.2. Let ‖ · ‖X1 and ‖ · ‖X2 be two norms in R
m and R

n, respectively,
and let ‖ · ‖X∗

1
and ‖ · ‖X∗

2
be the corresponding dual norms, i.e.,

‖x‖X∗
i
:= sup{〈x, u〉 | ‖u‖Xi ≤ 1}, i = 1, 2.

Denote BX1 := {u ∈ R
m | ‖u‖X1 ≤ 1} and BX2 := {u ∈ R

n | ‖u‖X2 ≤ 1}. Consider
the function f : Rn → R defined by

g(x) := ‖Ax− b‖X∗
1
+ λ‖x‖X∗

2
,

whereA is anm×nmatrix, b ∈ R
m, and λ > 0. Using the prox-function d(u) = 1

2‖u‖2,
one finds a smooth approximation of f below:

gμ(x) =
‖Ax− b‖2

2μ
− μ

2

[
d

(
Ax− b

μ
;BX1

)]2
+ λ

(‖x‖2
2μ

− μ

2

[
d

(
x

μ
;BX2

)]2)
.

The gradient of fμ is

∇gμ(x) = A�π
(
Ax − b

μ
;BX1

)
+ λπ

(
x

μ
;BX2

)
,

and its Lipschitz constant is

Lμ =
‖A‖2 + λ

μ
.
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Moreover,

gμ(x) ≤ g(x) ≤ gμ(x) +
μ

2
([D(0;BX1 )]

2 + [D(0;BX2)]
2) for all x ∈ R

n.

For example, if ‖ · ‖X1 is the Euclidean norm, and ‖ · ‖X2 is the �∞-norm on R
n, then

∇gμ(x) = A� Ax − b

max{‖Ax− b‖, μ} + λmedian

(
x

μ
, e,−e

)
,

where e = [1, . . . , 1]� ∈ R
n.

Let us provide another example of support vector machine problems. Our ap-
proach simplifies and improves the results in [32].

Example 2.3. Let S := {(Xi, yi)}mi=1 be a training set, where Xi ∈ R
p is the

ith row of a matrix X and yi ∈ {−1, 1}. The corresponding linear support vector
machine problem can be reduced to solving the following problem:

minimize g(w) :=
1

2
‖w‖2 + λ

m∑
i=1

�i(w), w ∈ R
p,

where �i(w) = max{0, 1− yiXiw}, λ > 0.
Let Q := {u ∈ R

m | 0 ≤ ui ≤ 1}, and define

f(w) :=
m∑
i=1

�i(w) = max
u∈Q

〈e − Y Xw, u〉,

where e = [1, . . . , 1]� and Y = diag(y) with y = [y1, . . . , ym]�.
Using the prox-function d(u) = 1

2‖u‖2, one has

fμ(w) = max
u∈Q

[〈e − Y Xw, u〉 − μd(u)].

Then

uμ(w) = π

(
e− Y Xw

μ
;Q

)
=

{
u ∈ R

m | ui = median

{
1− yiXiw

μ
, 0, 1

}}
.

The gradient of fμ is given by

∇fμ(w) = −(Y X)�uμ(w),

and its Lipschitz constant is �μ = ‖YX‖2

μ , where the matrix norm is defined in (6).
Moreover,

fμ(w) ≤ f(w) ≤ fμ(w) +
mμ

2
for all w ∈ R

p.

Then we use the following smooth approximation of the original objective function
g:

gμ(w) :=
1

2
‖w‖2 + λfμ(w), w ∈ R

p.

Obviously,

∇gμ(w) = w + λ∇fμ(w),
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and a Lipschitz constant is

Lμ = 1 + λ
‖Y X‖2

μ
.

The smooth approximations obtained above are convenient for applying Nes-
terov’s accelerated gradient method presented in what follows. Let f : Rn → R be
a differentiable convex function with Lipschitz gradient. That is, there exists � > 0
such that

‖∇f(x)−∇f(y)‖ ≤ �‖x− y‖ for all x, y ∈ R
n.

Let Ω be a nonempty closed convex set. In his paper [23], Nesterov considered the
optimization problem

minimize f(x) subject to x ∈ Ω.

For x ∈ R
n, define

TΩ(x) := arg min

{
〈∇f(x), y − x〉+ �

2
‖x− y‖2 | y ∈ Ω

}
.

Let ρ : Rn → R be a strongly convex function with parameter σ > 0, and let x0 ∈ R
n

such that

x0 := arg min {ρ(x) | x ∈ Ω}.
Further, assume that ρ(x0) = 0. Then Nesterov’s accelerated gradient algorithm is
outlined as follows.

Algorithm 1.
INPUT: f , �.
INITIALIZE: Choose x0 ∈ Ω.
Set k = 0
Repeat the following

Find yk := TΩ(xk).

Find zk := arg min
{

�
σ
ρ(x) +

∑k
i=0

i+1
2

[f(xi) + 〈∇f(xi), x− xi〉]
∣∣ x ∈ Ω

}
.

Set xk+1 := 2
k+3

zk + k+1
k+3

yk.

Set k := k + 1.
until a stopping criterion is satisfied.
OUTPUT: yk.

For simplicity, we choose ρ(x) = σ
2 ‖x− x0‖2, where x0 ∈ Ω and σ = 1. Following

the proof of Theorem 2.1, it is not hard to see that

yk = TΩ(xk) = π

(
xk − ∇f(xk)

�
; Ω

)
.

Moreover,

zk = π

(
x0 − 1

�

k∑
i=0

i+ 1

2
∇f(xi); Ω

)
.

We continue with another important tool of convex optimization and computa-
tional statistics called the MM principle; see [8, 12, 16] and the references therein.
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Here we provide a more general version. Let f : Rn → R be a convex function, and
let Ω be a nonempty closed convex subset of Rn. Consider the optimization problem

(8) minimize f(x) subject to x ∈ Ω.

Let M : Rn ×R
p → R, and let F : Rn →→ R

p be a set-valued mapping with nonempty
values such that the following properties hold for all x, y ∈ R

n:

f(x) ≤ M(x, z) for all z ∈ F (y), and f(x) = M(x, z) for all z ∈ F (x).

Given x0 ∈ Ω, the MM algorithm to solve (8) is given by

Choose zk ∈ F (xk) and find xk+1 ∈ arg min{M(x, zk) | x ∈ Ω}.
Then

f(xk+1) ≤ M(xk+1, zk) ≤ M(xk, zk) = f(xk).

Finding an appropriate majorization is an important step in this algorithm. It
has been shown in [7] that the MM principle provides an effective tool for solving the
generalized Fermat–Torricelli problem. In what follows, we apply the MM principle in
combination with Nesterov’s smoothing technique and accelerated gradient method
to solve generalized Fermat–Torricelli problems in many different settings.

3. Generalized Fermat–Torricelli problems involving points. Let Ω be a
nonempty closed convex subset of Rn, and let ai ∈ R

n for i = 1, . . . ,m. In this section,
we consider the following generalized version of the Fermat–Torricelli problem:

(9) minimize H(x) :=

m∑
i=1

σF (x− ai) subject to x ∈ Ω.

Let us start with some properties of the function σF used in problem (9). The
following proposition can be proved easily.

Proposition 3.1. For the function σF defined in (1), the following properties
hold for all u, v ∈ R

n and λ ≥ 0:
(i) |σF (u)− σF (v)| ≤ ‖F‖‖u− v‖, where ‖F‖ := sup{‖f‖ | f ∈ F}.
(ii) σF (u+ v) ≤ σF (u) + σF (v).
(iii) σF (λu) = λσF (u), and σF (u) = 0 if and only if u = 0.
(iv) σF is a norm if we assume additionally that F is symmetric, i.e., F = −F .
(v) γ‖u‖ ≤ σF (u), where γ := sup{r > 0 | B(0; r) ⊂ F}.
Let Θ be a nonempty closed convex subset of Rn, and let x̄ ∈ Θ. The normal

cone in the sense of convex analysis to Θ at x̄ is defined by

N(x̄; Θ) := {v ∈ R
n | 〈v, x− x̄〉 ≤ 0 for all x ∈ Θ}.

It follows from the definition that the normal cone mapping N(·; Θ) has closed graph
in the sense that for any sequence xk → x̄ and vk → v̄ where vk ∈ N(xk; Θ), one has
that v̄ ∈ N(x̄; Θ).

Given an element v ∈ R
n, we also define cone {v} := {λv | λ ≥ 0}.

In what follows, we study the existence and uniqueness of the optimal solution
of problem (9). The following definition and the proposition afterward are important
for this purpose.

Definition 3.2. We say that F is normally smooth if for every x ∈ bdF there
exists ax ∈ R

n such that N(x;F ) = cone {ax}.
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GENERALIZED FERMAT–TORRICELLI PROBLEMS 1823

Given a positive definite matrix A, let

‖x‖X :=
√
x�Ax.

It is not hard to see that the set F := {x ∈ R
n | ‖x‖X ≤ 1} is normally smooth.

Indeed, N(x;F ) = cone {Ax} if ‖x‖X = 1; see [18, Proposition 2.48].
Define the set

B
∗
F := {u ∈ R

n | σF (u) ≤ 1},
and recall that a convex subset Θ of Rn is said to be strictly convex if tu+ (1− t)v ∈
intΘ whenever u, v ∈ Θ, u �= v, and t ∈ (0, 1).

Proposition 3.3. We have that F is normally smooth if and only if B
∗
F is

strictly convex.
Proof. Suppose that F is normally smooth. Fix any u, v ∈ B

∗
F with u �= v and

t ∈ (0, 1). Let us show that tu+(1−t)v ∈ intB∗
F , or equivalently, σF (tu+(1−t)v) < 1.

We need only consider the case where σF (u) = σF (v) = 1. Fix x̄, ȳ ∈ F such that

〈u, x̄〉 = σF (u) = 1 and 〈v, ȳ〉 = σF (v) = 1,

and fix e ∈ F such that

〈tu+ (1 − t)v, e〉 = σF (tu + (1− t)v).

It is obvious that σF (tu+(1− t)v) ≤ 1. By contradiction, suppose that σF (tu+ (1−
t)v) = 1. Then

1 = 〈tu + (1− t)v, e〉 = t〈u, e〉+ (1− t)〈v, e〉 ≤ t〈u, x̄〉+ (1− t)〈v, ȳ〉 = 1.

This implies that 〈u, e〉 = 〈u, x̄〉 = 1 = σF (u) and 〈v, e〉 = 〈v, ȳ〉 = 1 = σF (v). Then

〈u, x〉 ≤ 〈u, e〉 for all x ∈ F,

which implies that u ∈ N(e;F ). Similarly, v ∈ N(e;F ). Since F is normally smooth,
u = λv, where λ > 0. Thus,

1 = 〈u, e〉 = 〈λv, e〉 = λ〈v, e〉 = λ.

Hence λ = 1 and u = v, a contradiction.
Now suppose that B∗

F is strictly convex. Fix x̄ ∈ bdF , and fix any u, v ∈ N(x̄;F )
with u, v �= 0. Let α := σF (u) and β := σF (v). Then

〈u, x〉 ≤ 〈u, x̄〉 for all x ∈ F

and

〈v, x〉 ≤ 〈v, x̄〉 for all x ∈ F.

It follows that 〈u, x̄〉 = α and 〈v, x̄〉 = β. Moreover,

σF (u + v) ≥ 〈u, x̄〉+ 〈v, x̄〉 = α+ β = σF (u) + σF (v),

and hence σF (u+ v) = σF (u) + σF (v). We have u/α, v/β ∈ B
∗
F and

σF

(
u

α

α

α+ β
+

v

β

β

α+ β

)
= 1.
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Since B
∗
F is strictly convex, one has u

α = v
β , and hence u = λv, where λ := α/β > 0.

The proof is now complete.
Remark 3.4. Suppose that F is normally smooth. It follows from the proof

of Proposition 3.3 that for u, v ∈ R
n with u, v �= 0, one has that σF (u + v) =

σF (u) + σF (v) if and only if u = λv for some λ > 0.
The proposition below gives sufficient conditions that guarantee the uniqueness

of an optimal solution of (9).
Proposition 3.5. Suppose that F is normally smooth. If for any x, y ∈ Ω with

x �= y the line connecting x and y, L(x, y), does not contain at least one of the points
ai for i = 1, . . . ,m, then problem (9) has a unique optimal solution.

Proof. It is not hard to see that for any α ∈ R, the set

Lα := {x ∈ Ω | H(x) ≤ α}
is compact, and so (9) has an optimal solution since H is continuous. Let us show
that the assumptions made guarantee that H is strictly convex on Ω, and hence (9)
has a unique optimal solution.

By contradiction, suppose that there exist x̄, ȳ ∈ Ω with x̄ �= ȳ and t ∈ (0, 1) such
that

H(tx̄+ (1− t)ȳ) = tH(x̄) + (1 − t)H(ȳ).

Then

σF (t(x̄− ai) + (1− t)(ȳ − ai)) = tσF (x̄− ai) + (1− t)σF (ȳ − ai)

= σF (t(x̄− ai)) + σF ((1− t)(ȳ − ai)) for all i = 1, . . . ,m.

If x̄ = ai or ȳ = ai, then obviously ai ∈ L(x̄, ȳ). Otherwise, by Remark 3.4, there
exists λi > 0 such that

t(x̄− ai) = λi(1 − t)(ȳ − ai).

This also implies that ai ∈ L(x̄, ȳ). We have seen that ai ∈ L(x̄, ȳ) for all i = 1, . . . ,m.
This contradiction shows that (9) has a unique optimal solution.

Let us consider the smooth approximation function given by

(10) Hμ(x) :=
m∑
i=1

(‖x− ai‖2
2μ

+ 〈x − ai, ū〉 − μ

2

[
d

(
ū+

x− ai
μ

;F

)]2)
,

where ū ∈ F .
Proposition 3.6. The function Hμ defined by (10) is continuously differentiable

on R
n with its gradient given by

∇Hμ(x) =

m∑
i=1

π

(
ū+

x− ai
μ

;F

)
.

The gradient ∇Hμ is a Lipschitz function with constant

Lμ =
m

μ
.

Moreover, one has the following estimate:

Hμ(x) ≤ H(x) ≤ Hμ(x) +m
μ

2
[D(ū;F )]2 for all x ∈ R

n.
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Proof. Given b ∈ R
n, define the function on R

n given by

f(x) := σF (x− b) = max{〈x− b, u〉 | u ∈ F}, x ∈ R
n.

Consider the prox-function

d(u) :=
1

2
‖u− ū‖2.

Applying Theorem 2.1, one has that the function fμ is continuously differentiable on
R

n with its gradient given by

∇fμ(x) = uμ(x) = π

(
ū+

x− b

μ
;F

)
.

Moreover, the gradient ∇fμ is a Lipschitz function with constant

�μ =
1

μ
.

The explicit formula for fμ is

fμ(x) =
‖x− b‖2

2μ
+ 〈x− b, ū〉 − μ

2

[
d

(
ū+

x− b

μ
;F

)]2
.

The conclusions then follow easily.
We are now ready to write a pseudocode for solving the Fermat–Torricelli problem

(9).

Algorithm 2.
INPUT: ai for i = 1, . . . ,m, μ.
INITIALIZE: Choose x0 ∈ Ω and set � = m

μ
.

Set k = 0
Repeat the following

Compute ∇Hμ(xk) =
∑m

i=1 π(ū+ xk−ai
μ

;F ).

Find yk := π(xk − 1
�
∇Hμ(xk); Ω).

Find zk := π(x0 − 1
�

∑k
i=0

i+1
2

∇Hμ(xi); Ω).
Set xk+1 := 2

k+3
zk + k+1

k+3
yk.

until a stopping criterion is satisfied.

Remark 3.7. When implementing Nesterov’s accelerated gradient method, in
order to get a more effective algorithm, instead of using a fixed smoothing parameter
μ, we often change μ during the iteration. The general optimization scheme is

INITIALIZE: x0 ∈ Ω, μ0 > 0, μ∗ > 0, σ ∈ (0, 1).
Set k = 0.
Repeat the following

Apply Nesterov’s accelerated gradient method with μ = μk and starting point xk

to obtain an approximate solution xk+1.
Update μk+1 = σμk.

until μ ≤ μ∗.

Example 3.8. In the case where F is the closed unit Euclidean ball, σF (x) = ‖x‖
is the Euclidean norm and

π(x;F ) =

{ { x

‖x‖
}
, ‖x‖ > 1,

{x}, ‖x‖ ≤ 1.
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Consider the �1-norm on R
n. For any x ∈ R

n, one has

‖x‖1 = max{〈x, u〉 | ‖u‖∞ ≤ 1}.
In this case,

F = {x ∈ R
n | |xi| ≤ 1 for all i = 1, . . . , n}.

The smooth approximation of the function f(x) := ‖x‖1 depends on the Euclidean
projection to the set F , which can be found explicitly. In fact, for any u ∈ R

n, one
has

π(u;F ) = {v ∈ R
n | vi = median {ui, 1,−1}}.

Now we consider the �∞-norm in R
n. For any x ∈ R

n, one has

‖x‖∞ = max{〈x, u〉 | ‖u‖1 ≤ 1}.
In this case,

F = {x ∈ R
n | ‖x‖1 ≤ 1}.

It is straightforward to find the Euclidean projection of a point to F in two and three
dimensions. In the case of high dimensions, there are available algorithms to find an
approximation of the projection; see, e.g., [10].

4. Generalized Fermat–Torricelli problems involving sets. In this sec-
tion, we study generalized Fermat–Torricelli problems that involve sets. Consider the
following optimization problem:

(11) minimize T (x) :=
m∑
i=1

dF (x; Ωi) subject to x ∈ Ω,

where Ω and Ωi for i = 1, . . . ,m are nonempty closed convex sets and at least one
of them is bounded. This assumption guarantees that the problem has an optimal
solution. The sets Ωi for i = 1, . . . ,m are called the target sets, and the set Ω is called
the constraint set.

The generalized projection from a point x ∈ R
n to a set Θ is defined based on the

generalized distance function (2) as follows:

(12) πF (x; Θ) := {w ∈ Θ | σF (x− w) = dF (x; Θ)}.
Note that this set is not necessarily a singleton in general.

Before investigating problem (11), we study some important properties of the
generalized distance function and the generalized projection to be used in what follows.

Proposition 4.1. Given a nonempty closed convex set Θ, consider the general-
ized distance function (2) and the generalized projection (12). The following properties
hold:

(i) For x̄ ∈ R
n, the set πF (x̄; Θ) is nonempty.

(ii) For x̄ ∈ R
n, dF (x̄; Θ) = 0 if and only if x̄ ∈ Θ.

(iii) If x̄ /∈ Θ and w̄ ∈ πF (x̄; Θ), then w̄ ∈ bdΘ.
(iv) If F is normally smooth, then πF (x̄; Θ) is a singleton for every x̄ ∈ R

n and
the projection mapping πF (·; Θ) is continuous.
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GENERALIZED FERMAT–TORRICELLI PROBLEMS 1827

Proof. The proofs of (i) and (ii) are straightforward.
(iii) Suppose by contradiction that w̄ ∈ intΘ. Choose t ∈ (0, 1) sufficiently small

such that

wt := w̄ + t(x̄− w̄) ∈ Θ.

Then

σF (x̄− wt) = σF ((1 − t)(x̄− w̄)) = (1− t)σF (x̄− w̄) = (1− t)dF (x̄; Θ) < dF (x̄; Θ),

which is a contradiction.
(iv) If x̄ ∈ Θ, then πF (x̄; Θ) = {x̄}. Consider the case where x̄ /∈ Θ. Suppose by

contradiction that there exist w̄1, w̄2 ∈ πF (x̄; Θ) with w̄1 �= w̄2. Then

γ := σF (x̄− w̄1) = σF (x̄− w̄2) > 0.

By the positive homogeneity of σF ,

x̄− w̄1

γ
∈ B

∗
F and

x̄− w̄2

γ
∈ B

∗
F .

From Proposition 3.3, the set B∗
F is strictly convex, and hence

1

2

(
x̄− w̄1

γ
+

x̄− w̄2

γ

)
∈ intB∗

F .

This implies that

x̄− (w̄1 + w̄2)/2

γ
∈ intB∗

F .

It follows again by the homogeneity of σF that

σF (x̄− (w̄1 + w̄2)/2) < γ = dF (x̄; Θ),

which is a contradiction. It is not hard to show that πF (·; Θ) is continuous using a
sequential argument by contradiction.

To continue, we recall some basic concepts and results of convex analysis. A
systematic development of convex analysis can be found, for instance, in [11, 18, 27].
Let f : Rn → R be a convex function. For x̄ ∈ R

n, a subgradient of f at x̄ is a vector
v ∈ R

n that satisfies

〈v, x− x̄〉 ≤ f(x)− f(x̄) for all x ∈ R
n.

The set of all subgradients of f at x̄ is called the subdifferential of f at this point and
is denoted by ∂f(x̄).

For a finite number of convex functions fi : R
n → R for i = 1, . . . ,m, one has

∂

(
m∑
i=1

fi

)
(x) =

m∑
i=1

∂fi(x), x ∈ R
n.

It is well known that a convex function f : Rn → R has an absolute minimum on
a convex set Ω at x̄ ∈ Ω if and only if

0 ∈ ∂f(x̄) +N(x̄; Ω).
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The definition below is important in what follows.
Definition 4.2. A convex set F is said to be normally round if N(x;F ) �=

N(y;F ) whenever x, y ∈ bdF , x �= y.
Proposition 4.3. Given a nonempty closed convex set Θ, consider the general-

ized distance function (2). Then the following properties hold:
(i) |dF (x; Θ)− dF (y; Θ)| ≤ ‖F‖ ‖x− y‖ for all x, y ∈ R

n.
(ii) The function dF (·; Θ) is convex, and for any x̄ ∈ R

n,

∂dF (x̄; Θ) = ∂σF (x̄− w̄) ∩N(w̄; Θ),

where w̄ ∈ πF (x̄; Θ) and this representation does not depend on the choice of w̄.
(iii) If F is normally smooth and round, then the function σF (·) is differentiable

at any nonzero point, and the function dF (·; Θ) is continuously differentiable on the
complement of Θ with

∇dF (x̄; Θ) = ∇σF (x̄− w̄),

where x̄ /∈ Θ and w̄ := πF (x̄; Θ).
Proof. (i) This conclusion follows from the subadditivity and the Lipschitz prop-

erty of the function σF .
(ii) The function dF (·; Θ) can be expressed as the following infimal convolution:

dF (x; Θ) = inf{σF (x− w) + δ(w; Θ) | w ∈ R
n} = (g ⊕ σF )(x),

where g(x) := δ(x; Θ) is the indicator function associated with Θ, i.e., δ(x; Θ) = 0 if
x ∈ Θ, and δ(x; Θ) = ∞ otherwise. For any w̄ ∈ πF (x̄; Θ), one has

σF (x̄− w̄) + g(w̄) = σF (x̄− w̄) = dF (x̄; Θ).

By [18, Corollary 2.65],

∂dF (x̄; Θ) = ∂σF (x̄ − w̄) ∩ ∂g(w̄) = ∂σF (x̄− w̄) ∩N(w̄; Θ).

(iii) Let us first prove the differentiability of σF (·) at x̄ �= 0. From [18, Theorem
2.68], one has

∂σF (x̄) = S(x̄),

where S(x̄) := {p ∈ F | 〈x̄, p〉 = σF (x̄)}. We will show that S(x̄) is a singleton.
By contradiction, suppose that there exist p1, p2 ∈ S(x̄) with p1 �= p2. From the
definition, one has

x̄ ∈ N(p1;F ) = cone {a1} and x̄ ∈ N(p2;F ) = cone {a2}.

Then there exist λ1, λ2 > 0 such that x̄ = λ1a1 = λ2a2, and hence N(p1;F ) =
N(p2;F ), a contradiction to the normally smooth and round properties of F . Thus,
∂σF (x̄) = S(x̄) is a singleton, and hence σF is differentiable at x̄ by [18, Theorem
3.3].

Observe that the set ∂dF (x̄; Θ) is always nonempty. Since ∂dF (x̄; Θ) = ∂σF (x̄−
w̄) ∩ N(w̄; Θ) = ∇σF (x̄ − w̄) ∩ N(w̄; Θ), it is obvious that ∇σF (x̄ − w̄) ∈ N(w̄; Θ)
and ∂dF (x̄; Θ) = {∇σF (x̄ − w̄)}. Then the differentiability of dF (·; Θ) at x̄ follows
from [18, Theorem 3.3]. Since Θc is an open set and ∂dF (x; Θ) is a singleton for
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GENERALIZED FERMAT–TORRICELLI PROBLEMS 1829

every x ∈ Θc, the function dF (·; Θ) is continuously differentiable on this set; see the
corollary of [9, Proposition 2.2.2].

As a corollary, we obtain the following well-known formula for subdifferential of
the distance function (3).

Corollary 4.4. For a nonempty closed convex set Θ, the following representa-
tion holds for the distance function (3):

∂d(x̄; Θ) =

⎧⎨⎩N(x̄; Θ) ∩ B if x̄ ∈ Θ,{
x̄− π(x̄; Θ)

d(x̄; Θ)

}
if x̄ /∈ Θ.

The following proposition gives sufficient conditions that guarantee the uniqueness
of an optimal solution of problem (11).

Proposition 4.5. Suppose that F is normally smooth and the target sets Ωi for
i = 1, . . . ,m are strictly convex with at least one of them being bounded. If for any
x, y ∈ Ω with x �= y the line connecting x and y, L(x, y), does not intersect at least
one of the target sets, then problem (11) has a unique optimal solution.

Proof. It is not hard to prove that if one of the target sets is bounded, then
each level set {x ∈ Ω | T (x) ≤ α} is bounded. Thus, (11) has an optimal solution.
It suffices to show that T is strictly convex on Ω under the given assumptions. By
contradiction, suppose that T is not strictly convex. Then there exist x̄, ȳ ∈ Ω and
t ∈ (0, 1) with x̄ �= ȳ and

T (tx̄+ (1− t)ȳ) = tT (x̄) + (1− t)T (ȳ).

This implies that dF (tx̄ + (1 − t)ȳ; Ωi) = tdF (x̄; Ωi) + (1 − t)dF (ȳ; Ωi) for all i =
1, . . . ,m. Choose i0 ∈ {1, . . . ,m} such that L(x̄, ȳ) ∩ Ωi0 = ∅. Let w̄1 := πF (x̄; Ωi0)
and w̄2 := πF (ȳ; Ωi0). Then

dF (tx̄+ (1− t)ȳ; Ωi0) = tdF (x̄; Ωi0) + (1− t)dF (ȳ; Ωi0)

= tσF (x̄− w̄1) + (1 − t)σF (ȳ − w̄2)

≥ σF ((tx̄+ (1 − t)ȳ)− (tw̄1 + (1− t)w̄2)).

It follows that tw̄1+(1−t)w̄2 = πF (tx̄+(1−t)ȳ; Ωi0) ∈ bdΩi0 . By the strict convexity
of Ωi0 , one has w̄1 = w̄2 =: w̄, and hence

σF (t(x̄− w̄) + (1− t)(ȳ − w̄)) = σF (t(x̄ − w̄)) + σF ((1 − t)(ȳ − w̄)).

Following the proof of Proposition 3.5 implies that w̄ ∈ L(x̄, ȳ), a contradiction.
Let us now apply the MM principle to the generalized Fermat–Torricelli problem.

We rely on the following properties, which hold for all x, y ∈ R
n:

(i) dF (x; Θ) = σF (x− w) for all w ∈ πF (x; Θ).
(ii) dF (x; Θ) ≤ σF (x− w) for all w ∈ πF (y; Θ).
Consider the set-valued mapping

F (x) := Πm
i=1πF (x; Ωi).

Then cost function T (x) is majorized by

T (x) ≤ M(x,w) :=

m∑
i=1

σF (x − wi), w = (w1, . . . , wm) ∈ F (y).
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Fig. 1. MM algorithm for a generalized Fermat–Torricelli problem.

Moreover, T (x) = M(x,w) whenever w ∈ F (x).
Thus, given x0 ∈ Ω, the MM iteration is given by

xk+1 ∈ arg min{M(x,wk) | x ∈ Ω} with wk ∈ F (xk).

This algorithm is illustrated in Figure 1 and can be written more explicitly as follows.

Algorithm 3.
INPUT: Ω and m target sets Ωi, i = 1, . . . , m.
INITIALIZE: x0 ∈ Ω.
Set k = 0.
Repeat the following

Find yk,i ∈ πF (xk; Ωi).
Solve the following problem with a stopping criterion

minx∈Ω

∑m
i=1 σF (x− yk,i),

and denote its solution by xk+1.
until a stopping criterion is satisfied.

Remark 4.6. Consider the Fermat–Torricelli problem

(13) minimize ϕ(x) :=
m∑
i=1

‖x− ai‖ subject to x ∈ Ω.

For x /∈ {a1, . . . , am},

∇ϕ(x) :=
m∑
i=1

x− ai
‖x− ai‖ .

Solving the equation ∇ϕ(x) = 0 yields

x =

∑m
i=1

ai
‖x− ai‖∑m

i=1

1

‖x− ai‖
.

If x /∈ {a1, . . . , am}, define

F (x) :=

∑m
i=1

ai
‖x− ai‖∑m

i=1

1

‖x− ai‖
.D
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Otherwise, put F (x) := x. The Weiszfeld algorithm (see [13]) for solving problem
(13) is stated as follows: Choose x0 ∈ Ω, and find xk+1 := π(F (xk); Ω) for k ≥ 1.

In the case where F is the closed unit Euclidean ball of Rn one has σF (x) = ‖x‖.
To solve the problem

min
x∈Ω

m∑
i=1

‖x− yk,i‖

in the MM algorithm above, we can also use the Weiszfeld algorithm or its improve-
ments.

Proposition 4.7. Consider the generalized Fermat–Torricelli problem (11) in
which F is normally smooth and round. Let {xk} be the sequence in the MM algorithm
defined by

xk+1 ∈ arg min

{
m∑
i=1

σF (x− πF (xk; Ωi)) | x ∈ Ω

}
.

Suppose that {xk} converges to x̄ that does not belong to Ωi for i = 1, . . . ,m. Then x̄
is an optimal solution of problem (11).

Proof. Since the sequence {xk} converges to x̄ that does not belong to Ωi for
i = 1, . . . ,m, we can assume that xk /∈ Ωi for i = 1, . . . ,m and for every k. From the
definition of the sequence {xk}, one has

0 ∈
m∑
i=1

∇σF (xk+1 − π(xk; Ωi)) +N(xk+1; Ω).

Using the continuity of ∇σF (·) and the projection mapping πF (·) to nonempty closed
convex sets as well as the closedness of the normal cone mapping, one has

0 ∈
m∑
i=1

∇σF (x̄− π(x̄; Ωi)) +N(x̄; Ω).

Thus,

0 ∈
m∑
i=1

∂dF (x̄; Ωi) +N(x̄; Ω) = ∂T (x̄) +N(x̄; Ω).

It follows that x̄ is also an optimal solution of problem (11).
It is of course important to find sufficient conditions that guarantee the conver-

gence of the sequence {xk}. This can be done using [8, Propositions 1 and 2]; see also
[7]. We justify the use of this approach in the following lemma and apply it in the
proposition that follows. For simplicity, we assume that the constraint set Ω does not
intersect any of the target sets Ωi for i = 1, . . . ,m.

Lemma 4.8. Consider the generalized Fermat–Torricelli problem (11) in which at
least one of the target sets Ωi for i = 1, . . . ,m is bounded and F is normally smooth
and round. Suppose that the constraint set Ω does not intersect any of the target sets
Ωi for i = 1, . . . ,m, and any x, y ∈ Ω with x �= y the line connecting x and y, L(x, y),
does not intersect at least one of the target sets. For any x ∈ Ω, consider the mapping
ψ : Ω → Ω defined by

ψ(x) := arg min

{
m∑
i=1

σF (y − πF (x; Ωi)) | y ∈ Ω

}
.
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Then ψ is continuous at any point x̄ ∈ Ω, and T (ψ(x)) < T (x) whenever x �= ψ(x).
Proof. Fix any x ∈ Ω. By Proposition 3.5 and from the assumptions made, the

function

g(y) :=

m∑
i=1

σF (y − πF (x; Ωi))

is strictly convex on Ω, so ψ(x) is the unique solution of the Fermat–Torricelli problem
generated by πF (x; Ωi) for i = 1, . . . ,m. Thus, ψ is well defined. Fix any sequence
{xk} that converges to x̄. Then yk := ψ(xk) satisfies

0 ∈
m∑
i=1

∇σF (yk − πF (xk; Ωi)) +N(yk; Ω).

Since at least one of the sets Ωi for i = 1, . . . ,m is bounded, we can show that
the sequence {yk} is bounded. Indeed, suppose that Ω1 is bounded and {yk} is
unbounded. Then there exists a subsequence {ykp} such that ‖ykp‖ → ∞ as p →
∞. For sufficiently large p and a fixed y ∈ Ω, since ykp = arg min{∑m

i=1 σF (y −
πF (xkp ; Ωi)) | y ∈ Ω}, we have

m∑
i=1

σF (y − πF (xkp ; Ωi)) ≥
m∑
i=1

σF (ykp − πF (xkp ; Ωi)) ≥ σF (ykp − πF (xkp ; Ω1))

≥ γ‖ykp − πF (xkp ; Ω1)‖,
where γ is the constant defined in Proposition 3.1. Letting p → ∞, one obtains a
contradiction showing that {yk} is bounded.

Now fix any subsequence {yk�
} of {yk} that converges to ȳ ∈ Ω. Then

0 ∈
m∑
i=1

∇σF (yk�
− π(xk�

; Ωi)) +N(yk�
; Ω),

which implies that

0 ∈
m∑
i=1

∇σF (ȳ − πF (x̄; Ωi)) +N(ȳ; Ω).

Therefore, ȳ = ψ(x̄). It follows that yk = ψ(xk) converges to ȳ = ψ(x̄), so ψ is
continuous at x̄. Fix any x ∈ Ω such that x �= ψ(x). Since the function g is strictly
convex on Ω and ψ(x) is its unique minimizer on Ω, one has that

T (ψ(x)) =
m∑
i=1

dF (ψ(x); Ωi) ≤
m∑
i=1

σF (ψ(x) − πF (x; Ωi))

<

m∑
i=1

σF (x− πF (x; Ωi)) = T (x).

The proof is now complete.
Let us present below a convergence theorem for the MM algorithm.
Theorem 4.9. Consider the generalized Fermat–Torricelli problem (11) in the

setting of Lemma 4.8. Let {xk} be a sequence generated by the MM algorithm, i.e.,
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xk+1 = ψ(xk) with a given x0 ∈ Ω. Then any subsequential limit of the sequence
{xk} is an optimal solution of problem (11). If we assume additionally that Ωi for
i = 1, . . . ,m are strictly convex, then {xk} converges to the unique optimal solution
of the problem.

Proof. In the setting of this theorem, [8, Proposition 1] implies that ‖xk+1−xk‖ →
0. Since xk+1 := ψ(xk), applying Lemma 4.8 yields T (xk+1) ≤ T (xk) ≤ · · · ≤ T (x0)
for every k. Then from the assumptions made, it is not hard to see that {xk} is a
bounded sequence. Let {xk�

} be a subsequence of {xk} that converges to some x̄′.
Note that ‖xk+1−xk‖ → 0 implies that {xk�+1} also converges to x̄′ as � → ∞. Since
xk�

/∈ Ωi for all i = 1, . . . ,m and for all �, from the definition of the sequence {xk},
one has

0 ∈
m∑
i=1

∇σF (xk�+1 − πF (xk�
; Ωi)) +N(xk�+1; Ω).

Then

0 ∈
m∑
i=1

∇σF (x̄
′ − πF (x̄

′; Ωi)) +N(x̄′; Ω).

Thus,

0 ∈
m∑
i=1

∂dF (x̄
′; Ωi) +N(x̄′; Ω) = ∂T (x̄′) +N(x̄′; Ω).

Therefore, x̄′ is an optimal solution of problem (11).
If Ωi for i = 1, . . . ,m are strictly convex, then problem (11) has a unique optimal

solution x̄ by Proposition 4.5. Thus, x̄′ = x̄ and the original sequence {xk} converges
to x̄.

It is important to note that the algorithm may not converge in general. Our
examples partially answer the question raised in the concluding remarks of [8].

Example 4.10. Let Ω1 and Ω2 be subsets of R2 defined by

Ω1 := {(x1, x2) ∈ R
2 | x2 ≥ 1} and Ω2 := {(x1, x2) ∈ R

2 | x2 ≤ −1}.
Consider the generalized Fermat–Torricelli problem (11) for two sets Ω1 and Ω2 with
the constraint being the line Ω := R × {0} generated by the �∞-norm, i.e., F =
{(u1, u2) ∈ R

2 | |u1| + |u2| ≤ 1}. Starting from x0 = (0, 0), choose y0,1 = (1, 1) and
y0,2 = (1,−1). Then x1 = (1, 0) is an optimal solution of the generalized Fermat–
Torricelli problem for two points y0,1 and y0,2 generated by the �∞-norm. Similarly,
we can choose y1,1 = (2, 1), y1,2 = (2,−1), and x2 = (2, 0). Repeating this process,
one sees that xk = (k, 0) is a sequence generated by the MM algorithm, which does
not have any convergent subsequence.

Example 4.11. Let Ω1 and Ω2 be subsets of R2 defined by

Ω1 := {(x1, 0) ∈ R
2 | x1 ≥ 0} and Ω2 := {(0, x2) ∈ R

2 | x2 ≥ 0}.
Consider the unconstrained generalized Fermat–Torricelli problem (11) for two sets
Ω1 and Ω2 generated by the �∞-norm. It is not hard to see that (0, 0) is the unique
optimal solution of this problem. Starting from x0 = (1/2, 1/2), choose y0,1 = (1, 0)
and y0,2 = (0, 1). Then x1 = (1/2, 1/2) is an optimal solution of the generalized
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Fermat–Torricelli problem for two points y0,1 and y0,2 generated by the �∞-norm.
Obviously, if we choose the projections in this way, the sequence of optimal solutions
and optimal values of the majorizations do not converge to the optimal solution and
the optimal value of the problem.

Let us consider an example in which the convergence for the MM method is not
guaranteed even if we consider generalized Fermat–Torricelli problems generated by
the Euclidean norm.

Example 4.12. Let Ωi for i = 1, 2, 3 be three Euclidean balls of R2 defined with
radii 1 and centers at (−4, 0), (0, 0), and (4, 0), respectively. Consider the uncon-
strained generalized Fermat–Torricelli problem (11) for these sets generated by the
Euclidean norm. We use the starting point x0 = (0, 1). Then y0,2 = x0 = (0, 1), and
y0,1 and y0,3 are the intersections of the line segments connecting x0 with the centers
of Ω1 and Ω3 and the boundaries of these disks. Obviously, xk = x0 for every k, where
xk is the sequence defined by the MM algorithm. However, x0 is not an optimal so-
lution of the problem. In fact, the solution set is the line segment connecting (−1, 0)
and (1, 0).

Let Θ be a nonempty closed convex set. Consider the generalized distance function
dF (·; Θ) generated by a dynamic F . For a point x̄ /∈ Θ, a point w̄ ∈ πF (x̄; Θ) is said
to be a representation of the subdifferential ∂dF (x̄; Θ) if

∂σF (x̄− w̄) ⊆ N(w̄; Θ).

From the definition we see that if F is normally smooth and round, then w̄ := πF (x̄; Θ)
is always a representation of the subdifferential ∂dF (x̄; Θ).

Example 4.13. Let Θ be the cube [c1 − r, c1 + r]× [c2 − r, c2 + r]× [c3 − r, c3 + r]
of R3, and let

F := {(u1, u2, u3) ∈ R
3 | |u1|+ |u2|+ |u3| ≤ 1}.

For any x /∈ Θ, the choice of projection

w := {y ∈ R
3 | yi = max{ci − r,min{xi, ci + r}}} ∈ πF (x; Θ)

satisfies that condition that w is a representation of ∂dF (x; Θ).
Proposition 4.14. Consider the generalized Fermat–Torricelli problem (11).

Let {xk} be the sequence in the MM algorithm defined by

xk+1 ∈ arg min

{
m∑
i=1

σF (x− yk,i) | x ∈ Ω

}
,

where yk,i ∈ πF (xk; Ωi). Suppose that {xk} converges to x̄ that does not belong to Ωi

for i = 1, . . . ,m. Suppose further that for any limit point, ȳi ∈ πF (x̄; Ωi) of {yk,i} is
a representation of the subdifferential ∂dF (x̄; Ωi). Then x̄ is an optimal solution of
the problem.

Proof. For sufficiently large k, from the definition of the sequence {xk}, one has

0 ∈
m∑
i=1

∂σF (xk+1 − yk,i) +N(xk+1; Ω).

The estimate

σF (−yk,i) ≤ σF (−xk) + σF (xk − yk,i) ≤ sup
k
[σF (−xk) + dF (xk; Ωi)] < ∞
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implies that {yk,i}k is a bounded sequence in Ωi for i = 1, . . . ,m. Without loss of
generality, we can assume that yk,i → ȳi ∈ πF (x̄; Ωi) as k → ∞. Using the fact that
∂σF (u) is compact for any u ∈ R

n and the normal cone mapping u →→ N(u; Ω) has
closed graph yields

0 ∈
m∑
i=1

∂σF (x̄− ȳi) +N(x̄; Ω).

Since ∂σF (x̄− ȳi) = ∂σF (x̄− ȳi) ∩N(ȳi; Ωi) = ∂dF (x̄; Ωi),

0 ∈
m∑
i=1

∂dF (x̄; Ωi) +N(x̄; Ω) = ∂T (x̄) +N(x̄; Ω).

Therefore, x̄ is also an optimal solution of problem (11).
Remark 4.15 (subgradient-type algorithms). The generalized Fermat–Torricelli

problems presented in this section and section 3 can be solved by the projected subgra-
dient method (see, e.g., [3, 29]). When applying the projected subgradient algorithm
to the generalized Fermat–Torricelli problem (11), at iteration k we need to find a
subgradient uk,i of each component function ϕi(x) = dF (x; Ωi) for i = 1, . . . ,m at xk.
By the well-known subdifferential sum rule of convex analysis,

wk :=

m∑
i=1

uk,i

is a subgradient of T at xk. Proposition 4.3 as well as its specification to the case
of the distance function in Corollary 4.4 provide us with a method of finding such a
subgradient. Note that if xk ∈ Ωi, the subdifferential ∂dF (xk; Ωi) always contains 0,
so we can choose uk,i = 0. In the case where xk /∈ Ωi, a subgradient uk,i can be found
by using a projection point pk,i ∈ πF (xk; Ωi) and we find uk,i ∈ ∂σF (xk − pk,i) ∩
N(pk,i; Ωi).

The projected subgradient algorithm exhibits slow convergence rates when apply-
ing to the generalized Fermat–Torricelli problems (9) and (11). One of the reasons
is that in each iteration, in order to get an improvement we need to calculate all
subgradients uk,i for i = 1, . . . ,m. This is computationally expensive if the number
of target sets is large. In order to overcome this shortcoming, the stochastic subgra-
dient method provides an alternative; see [3]. The main idea is that in each iteration,
rather than scanning through all the target sets to find a subgradient as in the sub-
gradient method, we choose t uniformly at random from I and find the subgradient
wk,t ∈ ∂dF (xk; Ωt). After that, we define w̃k := mwk,t and perform the iteration

xk+1 := π(xk − αkw̃k; Ω).

A more general method can be presented as follows. Fix a positive integer p such
that p ≤ |I|. At the iteration k, we choose uniformly at random a nonempty set of
indices Ik, |Ik| = p, that is a subset of I. Then for each i ∈ Ik, find uk,i ∈ ∂dF (xk; Ωi).
After that, set

w̃k := m

∑
i∈Ik

uk,i

p
,

and perform the iteration

xk+1 := π(xk − αkw̃k; Ω), Vk+1 := min{Vk, f(xk)}.D
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5. Numerical examples. To demonstrate the methods presented in the previ-
ous sections, let us consider a numerical example below.

Example 5.1. The latitude/longitude coordinates in decimal format of 1217 US
cities are recorded, e.g., at http://www.realestate3d.com/gps/uslatlongdegmin.htm.
We convert the longitudes provided by the website above from positive to negative to
match with the real data. Our goal is to find a point that minimizes the sum of the
distances to the given points representing the cities.

If we consider the case where σF (x) = ‖x‖, the Euclidean norm, Algorithm 2 al-
lows us to find an approximate optimal value V ∗ ≈ 23409.33 and an approximate opti-
mal solution x∗ ≈ (38.63,−97.35). Similarly, if σF (x) = ‖x‖1, an approximate optimal
value is V ∗ ≈ 28724.68 and an approximate optimal solution is x∗ ≈ (39.48,−97.22).
With the same situation but considering the �∞-norm, an approximate optimal value
is V ∗ ≈ 21987.76 and an approximate optimal solution is x∗ ≈ (37.54,−97.54).

Figure 2 below shows the relation between the number of iterations k and the
optimal value Vk = H(yk) generated by different norms.
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Fig. 2. Generalized Fermat–Torricelli problems with different norms.

In the example below we apply Algorithm 2 in combination with the Weiszfeld
algorithm to solve generalized Fermat–Torricelli problems involving sets.

Example 5.2. In the same setting as Example 5.1, we consider 1217 squares cen-
tered at the coordinates of the cities with the same radius (half-side length) r = 2.
The constraint is the line given by the equation x− y = −180. We implement Algo-
rithm 3 with the starting point x0 = (0, 180) to solve the generalized Fermat–Torricelli
problem generated by these squares and the Euclidean norm. In each step of the MM
algorithm, we use Weiszfeld’s algorithm to solve the classical Fermat–Torricelli prob-
lem generated by the projections yk,i for i = 1, . . . , 1217. The MM method gives
very fast convergence rate in this example. With 5 iterations of the MM algorithm
along with 10 iterations of Weiszfeld’s algorithm, we achieve an approximate optimal
value V ∗ ≈ 38161.35 and an approximate optimal solution x∗ ≈ (56.84,−123.16);
see Figure 3. It is required to perform more than 15, 000 iterations of the stochastic
subgradient algorithm to achieve similar results. However, the MM algorithm may
not converge in some situations where the sequence xk enters the target sets, while
the stochastic subgradient method is applicable to this case.

Example 5.3. Consider six given cubes in R
3 with centers defined by the rows of
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Fig. 3. A generalized Fermat–Torricelli problem with US cities.

the matrix ⎛⎜⎜⎜⎜⎜⎜⎝
−6 6 −4
−5 −3 −6
2 3 4
4 −4 −5
5 6 −6

−5 −2 4

⎞⎟⎟⎟⎟⎟⎟⎠
and the half-side lengths being ri = 1.5 for i = 1, . . . , 6. The implementation of the
algorithm above for the generalized Fermat–Torricelli problem for the cubes generated
by the Euclidean norm yields a suboptimal solution x∗ = (−1.0405, 0.8402,−1.4322).
This result can also be obtained by the subgradient method under a much slower
convergence rate.

With the same problem but considering the �∞-norm instead of the Euclidean
norm, the choice of the projection from a point x to any cube Ω with center c and
half-side length r is given by

{y ∈ R
3 | yi = max{ci − r,min{xi, ci + r}}} ∈ πF (x; Ω).

Then one obtains a suboptimal solution x∗ = (−0.6511, 0.6511,−0.3489); see Figure
4.

Fig. 4. A generalized Fermat–Torricelli problem with the MM method.
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