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Short Note

One-dimensional random patchy saturation model for velocity

and attenuation in porous rocks

Tobias M. Miiller! and Boris Gurevich?!

INTRODUCTION

Porous rocks encountered in hydrocarbon reservoirs are of-
ten saturated with a mixture of two or more fluids. Generation
of synthetic seismograms as well as interpretation of in-situ
attenuation measurements require a theoretical understand-
ing of the relation between the heterogeneous distribution of
fluid patches and the acoustic properties of rocks. Thus, the
problem of calculating acoustic properties of rocks saturated
with a mixture of two fluids has attracted considerable interest
(White, 1975; Murphy, 1982; Gist, 1994; Mavko and Mukerji,
1998; Pride et al., 2004). At the same time, this problem is also
interesting from the theoretical point of view because partially
saturated rocks represent a particularly interesting situation
when the effects of dynamic poroelasticity may be significant
at seismic or sonic frequencies. Indeed, it is a radical departure
from the situation with a porous material fully saturated with a
single fluid. Such a fully saturated material exhibits frequency-
dependent effects only at frequencies comparable with Biot’s
characteristic frequency (Bourbié et al., 1987) w.=n¢/kps,
where p; is the fluid density, 7 is fluid viscosity, « is permeabil-
ity, and ¢ is porosity. For frequencies much lower than wc, the
dynamic effects can be ignored and Gassmann theory applies.
According to Gassmann theory (Bourbié et al., 1987), bulk
(K2 and shear (%3") moduli of the porous material made up
of a solid grain material with bulk modulus Kg fully saturated
with a fluid with the bulk modulus K are

KSat = K 4 o’ M, 1)
p = p, 2

where
a=1-K/Ks, M=1/[(—¢)/Ks+/Ksl. (3)

and K and p are bulk and shear moduli of the dry rock, respec-
tively.

The reason that partially saturated rocks respond to acoustic
waves differently from fully saturated rocks is fluid diffusion
between pockets of different fluid saturation. A fundamental
assumption of the Gassmann theory is that frequency is suf-
ficiently low so that the fluid everywhere in the rock can be
considered to be in pressure equilibrium. In a homogeneous,
fully saturated rock this is the case for frequencies below wc.
However, in partially saturated rocks, fluid pressure induced
by the passing wave in pockets of rock saturated by different
fluids will be different. Analysis of acoustic wave propagation
in such a material must be based on Biot’s equations of dy-
namic poroelasticity with spatially varying coefficients. Such
an analysis (Norris, 1993) shows that the distribution of pres-
sure is governed by the diffusion equation, with the diffusion
length

hg = (kkN/wn)'/2. 4)
Here, o is angular frequency, and
N =ML/H, 5)

where L =K 4+ 4u/3 and H = K3 4 441 /3 are the P-wave mod-
uli of the dry and saturated rock, respectively. If frequency is
low enough so that the characteristic heterogeneity length d is
much smaller than A4, then pressure equilibration is achieved,
and Gassmann theory can be used with fluid bulk modulus
calculated by Wood’s formula (e.g. Mavko et al., 1998). The
P-wave modulus is then Hy = H(Ky ), where the argument of
H equals the effective fluid bulk modulus,

Kw = [Si/Ks1 + S/Kea] ™, (6)

with § and K; denoting the saturation and modulus of the i th
fluid. The situation where the pockets of different fluids are
sufficiently small is referred to as homogeneous saturation. In
the opposite case, when d >> A4, there is no pressure communi-
cation between different pockets. In this case, fluid-flow effects
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can be ignored, and overall rock may be considered equivalent
to an elastic composite material consisting of homogeneous
parts, whose properties are given by Gassmann theory. Since
those parts differ only by the saturating fluid, they all have the
same shear modulus, and Hill’s equation for the bulk modulus
(Mavko et al., 1998) can be applied, resulting in

Hi = [S/H (K1) + S/H(Kt2)] (7)

This situation is referred to as patchy saturation and results in a
much more gradual increase of P-wave velocity with saturation
than in the case of homogeneous saturation (Figure 1).

The elastic moduli in both homogeneous and patchy sat-
uration are given by real numbers and are independent of
frequency. However, while these moduli do not depend on
frequency, the ranges of applicability of these limiting mod-
uli do. Homogeneous saturation moduli represent the low-
frequency limit and patchy moduli the high-frequency limit. For
any nonzero water saturation (0 < S< 1), homogeneous mod-
uli are always smaller than those for patchy saturation. This
means that at intermediate frequencies the partially saturated
medium exhibits P-wave velocity dispersion and attenuation.
We are aware of only few models proposed to model frequency-
dependent effects of patchy saturation, including the periodic
flat-slab model (Norris, 1993) and the spherical-shell model
(White, 1975; Dutta and Seriff, 1979). Johnson (2001) devel-
oped a more general theory for elastic properties of rock con-
taining regular distribution of pockets of two fluids assuming
that the bulk modulus must obey Gassmann theory at low and
high frequencies and must also obey causality constraints. He
obtained excellent agreement of his “scaling” model with the
theoretical solutions for the periodic flat-slab and spherical-
shell models. The P-wave velocity and attenuation for the peri-
odic slab model based on Johnson’s results is shown in Figure 2
as functions of saturation and frequency. Pride and Berryman
(2003) developed a theory for frequency-dependent attenua-
tion due to mesoscale inhomogeneities for a double-porosity
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Figure 1. P-wave velocity of the Gassmann-Wood and
Gassmann-Hill model as a function of water saturation. The
properties of the porous rock are those of a typical reser-
voir sandstone (Ks=35 GPa, K=7 GPa, =9 GPa, ps=
2.65 g/em?, ¢ =8%, K¢ =0.25 GPa, pr =0.4 g/cm?). For light
gas, Ky =0.1 GPa and p; =0.1 g/cm?. For air, Ky =10° Pa and
ot =0.1 g/lcm?. For water, Ky =2.25 GPa and p =0.99 g/cm?>.

medium. A companion paper (Pride et al., 2004) shows that
the predictions of their model coincide with those of Johnson
(2001) if the fluid patches are interpreted as mesoscale inhomo-
geneities. A common feature of all these models is that the low-
frequency asymptotics of attenuation scales like Q™' o w.This
is also true for the model of Dvorkin et al. (2003), which is
based on the concept of the standard linear solid.

All above-mentioned solutions assume regular distribution
of fluids in a sense that the size of the fluid pockets is the
same throughout the medium. In reality, of course, fluids are
distributed throughout the medium somewhat randomly and
form pockets of different sizes and shapes. Experiments show
that the geometry of fluid patches strongly depends on the ex-
perimental setup (see, e.g., Cadoret et al., 1995, 1998) and is
also linked to rock heterogeneity (Knight et al., 1998). Tt is
the purpose of this Short Note to establish a relation between
wavefield attributes and heterogeneous distribution of fluids
for the case the fluid patches form a realization of a statis-
tically homogeneous random medium. This implies that only
simple statistical measures are required in order to character-
ize the patch distribution. In particular, we propose a 1D ran-
dom model based on the theory of statistical wave propagation
which includes the effect of interlayer flow. That is to say, the
diffusive fluid flow between the patches degenerates into a 1D
geometry where fluid flows from one slab into another. It is a
simplistic model in the sense that it does not account for the
origin of fluid patches nor for local flow effects occurring on
the pore scale. It also assumes that the fluids in the rock are
immiscible. However our model allows the analysis of the fre-
quency characteristics of patchy saturation which are (as shown
below) different from those assuming a periodic distribution
of patches. This difference has important implications for the
observability of the patchy saturation effect in field situations
and the determination of the scales of fluid distribution in the
earth. The proposed model can be used to compare the patchy
saturation effect observed at different frequency ranges such
as sonic logs and surface seismic data.

In the next section, we extend an existing theory for velocity
dispersion and attenuation in a poroelastic medium to the case
of partial saturation. We are particularly interested in the fre-
quency dependence of attenuation and its asymptotic behavior.
It follows a comparison of theoretical and reported experimen-
tal results. Finally, we discuss the difference between the 1D
random model and those based on periodicity assumptions.

A 1D RANDOM PATCHY SATURATION MODEL

If the distribution of fluids in a rock is random, wave propa-
gation can be analyzed using Biot’s equations of poroelasticity
whose coefficients are now piecewise constant random func-
tions of position. The concept of a randomly inhomogeneous
porous medium was introduced by Lopatnikov and Gurevich
(1988). For the 1D case, Gurevich and Lopatnikov (1995) de-
veloped a model for attenuation and velocity dispersion. This
model, which employs a so-called Bourret approximation for
the ensemble-averaged (coherent) wavefield, accounts for con-
version scattering from fast P-waves into Biot’s slow wave
but neglects elastic scattering. These approximate results were
later validated theoretically [using the generalized O’Doherty-
Anstey formalism by Gelinsky et al. (1998)] and numerically
(Gurevich et al., 1997).
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In the 1D model of Gurevich and Lopatnikov (1995), all the
material parameters of the porous medium are assumed to be
stationary random functions of one coordinate z with given
correlation properties. From the geometrical point of view, it is
arandomized version of the periodic flat slab model, with slab
thickness randomly varying from slab to slab. In the Bourret
approximation, the effective complex P-wave modulus H for
waves propagating perpendicular to layering (z-direction) in a
random system of porous layers as a function of frequency is
given by

A(w) = Ho[l ~isks [ N w(s)expakzs)ds} ®)

where
W)
- K
k = Vio—— 1L )
(N)
is the effective wavenumber of Biot’s slow wave

[vVi=(i+1)/+v2] and
¥ (&) = (e(2)e(z— €))/(e(2)°) (10)

is the normalized autocorrelation function of the fluctuating
parameter £(z) =(z2)M(2)/H(z) — (¢(2)M(z)/H (2)). The an-
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gle brackets denote ensemble averaging. The degree of inho-
mogeneity of the medium is characterized by the dimensionless

coefficient
-1 2 2 -1
=t (- s) )
H L2 L/ \N

Expression 11 for s is the corrected version of equation 81
in Gurevich and Lopatnikov (1995). Parameter H, denotes
the P-wave modulus for an effective homogeneous porous
medium, i.e., H(0) = Hy. We note that in the presence of per-
meability fluctuations one has to use an averaged permeability
value to obtain k,. As shown in Shapiro and Miiller (1999),
the arithmetic average of k provides a good approximation to
(r). Note that the coefficient s does not include fluctuations of
permeability but those of porosity (via M).

We now specify the above results for the particular case of
partial saturation. Let us assume that the rock frame is ho-
mogeneous, while the fluid properties are piecewise constant
random functions of z with values corresponding to “water”
or “gas.” Such a medium can be also viewed as a system of al-
ternating water- and gas-saturated layers of random thickness.
Then the averaging operation for some quantity X can be writ-
ten (X)= X,,S+ Xg(1 — S), where subscripts ,, and 4 refer to
the water and gas phase, respectively. Applying this averaging

(11)
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Figure 2. Q! and velocity for P-waves as a function of saturation and frequency for random and periodic models.
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operation to equations 9 and 11 yields the explicit results

i_wan N, S+ /ngNg(1 — )

ky = , 12
"Vk N,S+Ng(1-9) (12)
and
M2 M2 M M 2
—2s4+ 31 -9 | 2s+31-5S
ST R0 [Hw R )]
S=«u

[NgS+ N, (1 — S)]|:i + a S)i|
Hy Hg

(13)
The effective P-wave modulus Hy is then given by the P-wave
modulus for homogeneous saturation: Hy = H,,. Equation 8 to-
gether with equations 12 and 13 describes the velocity disper-
sion and attenuation of the coherent wavefield for all frequen-
cies and saturations. If the wavelength is much larger than the
average patch size (which is plausible for seismic and sonic fre-
quencies), the proposed model can be also used in order to
characterize velocity and attenuation in single realizations of
the random medium.

The spatial fluid distribution enters equation 8 through the
autocorrelation function ¥ (&). The solution can vary greatly
depending on the properties of ¥ (¢) In particular, by choosing
¥ (&) to be a periodic function with a fixed period d, one can
attain the uniform flat-slab model (Gurevich and Lopatnikov,
1995). If, on the other hand, the correlation function (&) is
integrable from 0 to oo (i.e., [~ ¥(§)dé = A< o0), then the
low-frequency asymptote is given by

A = Hw[l +isAk +...], (14)

which results in the following scaling for attenuation:

_ 3t e (15)

-1 _
Q= R{H}

In the static limit, the result for homogeneous saturation is re-
covered, i.e., H = Hy. The high frequency asymptotic depends
on the behavior of ¥ (&) in the vicinity of £ =0. For a large
class of correlation functions that can be expanded about the
origin in the power series ¥ (§)=1—2|¢|/d + ... with d < oo,
the high-frequency asymptotics yield

H = Hw[l +s—2is(ked) ™" +...],
~ Hu[1 —2is(ked) ™ +...], (16)

where Hy denotes the P-wave modulus for patchy saturation.
This results in the proportionality

1
oo —.
Q NG (17)

In particular, for the exponential correlation function
¥ (&) = exp(—2|&|/d), the integral in equation 8 can be eval-
uated analytically for all frequencies to give

H(w) = Hw 1+% : (18)

1 -
* kd

For the Gaussian correlation function v (§) = exp(—4&2/d?),
we obtain

H(w) = Hw[l — ivasQexp(—Q)[1 +erf(iQ)]], (19)

where Q =k,d/4 and erf denotes the error function. Result
18 in terms of P-wave velocity v, = v/ R{ H}/p and attenuation
Q! is illustrated in Figure 2 for constant correlation length
a=d/2=0.2m as a function of water saturation and frequency
(lines labeled “random”). The poroelastic moduli are the same
as for Figure 1, and the pore fluids are water and light gas with
viscosity 7 =3.0 x 1073 Pa-s. The 1D random patchy satura-
tion model is compared with the solution for the periodic slab
model (spatial period is d = 0.2 m) of Johnson (2001). The cor-
responding curves are denoted “periodic.” It can be observed
that for all intermediate values of saturation, the velocity for
the random patchy model is larger than that for the periodic so-
lution. This difference becomes larger if frequency decreases.
For the high-frequency range (f > 300 Hz), both models prac-
tically coincide with the Gassmann-Hill curve (see Figure 1).
Note also the more gradual variation of velocity with frequency
compared to the periodic slab model. This is consistent with
the larger width and lower magnitude of the attenuation for
the random patchy saturation model.

INTERPRETATION OF LABORATORY
ATTENUATION MEASUREMENTS

Patchy saturation is considered as one of the possible causes
of intrinsic attenuation at seismic and sonic frequencies. With
the help of the 1D random patchy saturation model, we will
now try to interpret attenuation measurements where fluid flow
between patches is believed to be the main source of attenu-
ation. Reported lab measurements of the dependence of at-
tenuation on the degree of saturation and frequency are often
based on the resonant bar technique (e.g. Cadoret et al., 1998)
operating at frequencies from several hundred Hz to a few kHz.
Instead of P-wave attenuation, the attenuation of extensional
waves is measured, and the above-mentioned theories should
be modified accordingly. However, measuring attenuation of
extensional (Qg) and shear waves (Qs) will also provide an
estimate of Qp = Q if the material’s Poisson ratio v is known
because

(1-v)1-20)Q ' =(1+v)Q' =2v(2—v)Q5"  (20)

(e.g. Mavko et al., 1998). The Poisson ratio is also dependent
on saturation and can be estimated using the measured P- and
S-wave velocities.

In the following, we interpret the experimental data of
Cadoret et al. (1995, 1998). In particular, we choose the data
set of the drying and depressurized experiments on the “Es-
taillades” limestone, where the observed velocity and atten-
uation behavior are mainly caused by the wave-induced fluid
flow between patches (see Figures 13 and 3 in Cadoret et al.,
1995 and 1998, respectively). For this data set, computer to-
mography (CT) scans of the rock sample are also available.
We use these scans in order to infer a saturation-dependent
correlation length a(S). We find that an exponential decrease
of a with saturation is most consistent with the data. This is
also supported by the analysis of Tserkovnyak and Johnson
(2002), where an average patch size is directly estimated from
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the measured velocity and attenuation data using Johnson’s
(2001) theory. Figure 3 shows the P-wave velocity (normalized
by the dry rock velocity) measured at two frequencies for the
drying experiment as a function of water saturation. The theo-
retical predictions according to the 1D patchy saturation model
are also displayed. The parameter a, corresponds to a refer-
ence correlation length and is estimated from the saturation
map with S=0.92 (Figure 4 in Cadoret et al., 1998). One can
observe a qualitative agreement between experimental data
and theoretical prediction. The overall shape of the saturation
dependency of velocity and attenuation is well reproduced. For
the experiment with frequency f =1 kHz, the random patchy-
saturation model overestimates the experimental velocities for
almost all saturations. This mismatch is possibly caused by the
fact that the diffusion length (Ag ~ 3.5 cm) is of the order of the
radius of the cylindrical sample (4 cm) so that the wave-induced
pressure is practically equilibrated even at finite frequencies.
In fact, the Gassmann-Wood bound provides a better predic-
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Figure 3. (Top) Dependence of normalized P-wave velocity
(normalized by the P-wave velocity of dry rock) on satura-
tion after the drying experiments of Cadoret et al. (1995). Ex-
perimental data can be qualitatively described by the random
patchy saturation model with an estimated correlation length
from the CT scans of the rock sample (a, denotes the corre-
lation length estimated for S=0.92). (Bottom) For the drying
and depressurized experiments with f =1 kHz, the P-wave at-
tenuation data can be also qualitatively described by the ran-
dom patchy-saturation model.

tion. Taking into account the almost constant S-wave velocity
(Figure 6in Cadoret et al., 1995), we compute the Poisson ratio.
The computed values of v range from 0.13 for the dry rock to
0.27 for the fully saturated rock. We note that the poroelastic
constants inferred from the experimental data are consistent
with those determined by Tserkovnyak and Johnson (2002).
Based on relationship 20 among the quality factors Q, Qg, and
Qs, we compute Q! for the drying and depressurized exper-
iments (connected symbols in the bottom part of Figure 3).
These experimental data can be qualitatively described by the
random patchy saturation model (curves in the bottom part
of Figure 3). In particular, the larger attenuation in the drying
experiment compared to that in the depressurizing experiment
can be consistently modeled using information on the average
patch size (we use ay=3.5 cm for drying and a, =0.3 cm for
depressurizing experiment). We are aware of the fact that the
measured attenuation in the depressurizing experiment may be
partially caused by the Biot-Gardner effect, which introduces
additional error in the Qp estimate (White, 1986). The latter
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Figure 4. (Top) Q! as a function of frequency after the ex-
periment of Murphy (1982). If correlation length is chosen
such that experimental and theoretical maxima coincide, the
random patchy saturation model is able to predict the magni-
tude of measured attenuation well. The periodic-slab model,
however, overestimates the amount of attenuation. (Bottom)
P-wave velocity as a function of saturation measured at fre-
quency f =560 Hz (after Murphy, 1984). The random patchy-
saturation model yields reasonable results only for S< 0.8. The
Gassmann-Wood bound fits the data for all saturation values
very well.
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error may result in an overestimation of the attenuation caused
by fluid flow between the patches. However, it shows that the
overall behavior of attenuation is consistent to first order with
the 1D random patchy-saturation model.

Murphy (1982) measured attenuation of extensional and
shear waves in porous sandstones using a resonant bar tech-
nique. Attenuation is measured as a function of frequency
and saturation. Because of the very small Poisson ratio of the
“Massilon” sandstone (v ~0.02), the extensional wave attenu-
ation can be interpreted as P-wave attenuation (with an error
of 5% as estimated by Murphy). The results of Murphy (1982)
are replotted in Figure 4, where Q™! is shown in the frequency
interval between 500 and 5000 Hz for an estimated saturation
of S~75%. Most data points were collected in the vicinity
of the maximum (about 4 kHz). All poroelastic moduli are
known from the experiment (Murphy, 1982, 1984). However,
there is no information available on the average size of the
fluid patches. That means we have to choose the correlation
length (and also the type of correlation function) one way or
another in order to model the experimental results. Assum-
ing that the observed attenuation is only caused by fluid flow
between patches, we choose the correlation length in such a
way that maximal attenuation occurs at the same frequency in
theory and experiment. We think that this is a natural choice
because (1) the measurements clearly identify such a maximum
and (2) it is the frequency dependence which is specific for the
attenuation mechanism under consideration. According to the
random patchy-saturation model, attenuation becomes maxi-
mal at frequency f =« N/(2zna?). The solid line in the upper
plot of Figure 4 corresponds to Q! based on formula 18 with
a correlation length of a=0.5 cm. Comparing our theoretical
estimates and experiment (solid line and connected symbols in
Figure 4), we conclude that the 1D random patchy saturation
model predicts the magnitude of attenuation reasonably well
(within an accuracy of 20% in the maximum region). Using a
Gaussian correlation function with the same correlation length
produces a slightly larger attenuation. Applying the same cri-
terion (coincidence of attenuation peaks) to the periodic slab
solution with spatial period d =4.5 cm yields the dashed line
in Figure 4, which clearly overestimates the amount of atten-
uation. Obviously, the choice of the correlation function influ-
ences the result. A consistency check with the given P-wave
velocity measured at f =560 Hz (Figure 1 in Murphy, 1984)
shows that our model yields only reasonable results for S< 0.8
(lower part of Figure 4). For higher saturation (i.e., S=0.91),
the Gassmann-Wood bound (or equivalently our model with
a— 0) yields a satisfactory prediction. This implies a case of
homogeneous saturation with zero attenuation which, how-
ever, contradicts to the observed attenuation of Q~!'=0.05
(see Figure 8 in Murphy, 1982). This means that this attenu-
ation is caused by some physical mechanism other than patchy
saturation.

DISCUSSION AND CONCLUSIONS

The main conclusion from our results is that velocity dis-
persion and attenuation for waves propagating in rocks with
a 1D random fluid distribution change significantly when the
fluid is characterized by a 1D or 3D periodic distribution. In
particular, for a 1D random fluid distribution with exponen-
tial correlation, the inverse quality factor at high frequencies

scales with w~"/2, which is the same as for the scaling model

and the periodic models (see Johnson, 2001; Pride et al., 2004).
At low frequencies, however, 1/Q in the 1D random patchy
saturation model scales with w'/2, while in the scaling model
and the periodic models 1/Q scales with w. Consequently the
shape of the dispersion and attenuation curves for the ran-
dom patchy-saturation model is different compared to peri-
odic models in that both the attenuation and dispersion curves
exhibit much more gradual variation with frequency. This dif-
ference in P-wave velocity dispersion can be clearly observed
in Figure 2. This behavior is to be expected since there is no
longer a single pocket size or period which defines a single
crossover frequency.

There are several important implications from this discrep-
ancy. First of all, it is reasonable to assume that random spatial
distribution of fluids is more realistic than the periodic one.
Thus, given that the dispersion relationships for the two situa-
tions are qualitatively different, the random patchy-saturation
model may be more useful in the analysis of patchy satura-
tion effects. Second, the much more gradual variation of ve-
locity and the width of the attenuation peak in this situation
imply that effects of dispersion and attenuation may be signif-
icant over a much wider frequency range than was previously
thought. Third, it is clear that not just the parameters, but the
very form of the real dispersion relationship will depend on the
statistical properties of spatial fluid distribution.

From the comparison with laboratory attenuation measure-
ments, we conclude that the 1D random patchy-saturation
model is able to describe the saturation and frequency depen-
dence as well as the magnitude of attenuation at least qualita-
tively. The proposed model may be a good starting point for
interpretation of in-situ attenuation measurements and estima-
tion of the average size of the fluid patches. A model of patchy
saturation with a more realistic 3D random fluid distribution
is under development.
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